Interpretation of hardness evolution in metals processed by high-pressure torsion
Interpretation of hardness evolution in metals processed by high-pressure torsion
The processing of metals through the application of high-pressure torsion (HPT) provides the potential for achieving exceptional grain refinement in bulk disks. Numerous reports are now available describing the application of HPT to a range of pure metals and simple alloys. Excellent grain refinement was achieved using this processing technique with the average grain size often reduced to the nanoscale range. By contrast, the development of microstructure and local hardness is different depending upon the material properties. In order to make HPT processing more practical, it is indispensable to investigate the nature of the sample characteristics immediately after conventional HPT processing. Accordingly, this report demonstrates the different models of hardness evolution using representative materials of AZ31 magnesium alloy, high-purity aluminum, and Zn–22 % Al eutectoid alloy processed by HPT. Separate models are described for the evolution of hardness with equivalent strain, and the correlation between these models is suggested by the homologous temperature of HPT processing. A special emphasis is placed on examining the numerical expression of the level of strain hardening or softening of these metals with increasing equivalent strain
6586-6596
Kawasaki, Megumi
944ba471-eb78-46db-bfb7-3f0296d9ef6d
Figueiredo, Roberto B.
2e0060b8-6368-4d87-825a-c3cb90e92145
Huang, Yi
9f4df815-51c1-4ee8-ad63-a92bf997103e
Langdon, Terence G.
86e69b4f-e16d-4830-bf8a-5a9c11f0de86
2014
Kawasaki, Megumi
944ba471-eb78-46db-bfb7-3f0296d9ef6d
Figueiredo, Roberto B.
2e0060b8-6368-4d87-825a-c3cb90e92145
Huang, Yi
9f4df815-51c1-4ee8-ad63-a92bf997103e
Langdon, Terence G.
86e69b4f-e16d-4830-bf8a-5a9c11f0de86
Kawasaki, Megumi, Figueiredo, Roberto B., Huang, Yi and Langdon, Terence G.
(2014)
Interpretation of hardness evolution in metals processed by high-pressure torsion.
Journal of Materials Science, 49, .
(doi:10.1007/s10853-014-8262-8).
Abstract
The processing of metals through the application of high-pressure torsion (HPT) provides the potential for achieving exceptional grain refinement in bulk disks. Numerous reports are now available describing the application of HPT to a range of pure metals and simple alloys. Excellent grain refinement was achieved using this processing technique with the average grain size often reduced to the nanoscale range. By contrast, the development of microstructure and local hardness is different depending upon the material properties. In order to make HPT processing more practical, it is indispensable to investigate the nature of the sample characteristics immediately after conventional HPT processing. Accordingly, this report demonstrates the different models of hardness evolution using representative materials of AZ31 magnesium alloy, high-purity aluminum, and Zn–22 % Al eutectoid alloy processed by HPT. Separate models are described for the evolution of hardness with equivalent strain, and the correlation between these models is suggested by the homologous temperature of HPT processing. A special emphasis is placed on examining the numerical expression of the level of strain hardening or softening of these metals with increasing equivalent strain
This record has no associated files available for download.
More information
Published date: 2014
Organisations:
Engineering Mats & Surface Engineerg Gp
Identifiers
Local EPrints ID: 364304
URI: http://eprints.soton.ac.uk/id/eprint/364304
ISSN: 0022-2461
PURE UUID: 0f70127f-ba0b-42d9-a8ff-09ccdf819095
Catalogue record
Date deposited: 12 May 2014 07:45
Last modified: 15 Mar 2024 03:39
Export record
Altmetrics
Contributors
Author:
Megumi Kawasaki
Author:
Roberto B. Figueiredo
Author:
Yi Huang
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics