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Abstract

For the first time a Bayesian geostatistical version of the Moran Curve, a logarithmic form of the Ricker stock recruitment
curve, is proposed that is able to give an estimate of net change in population demographic rates considering components
such as fertility and density dependent and density independent mortalities. The method is applied to spatio-temporally
referenced count data of tsetse flies obtained from fly-rounds. The model is a linear regression with three components:
population rate of change estimated from the Moran curve, an explicit spatio-temporal covariance, and the observation
error optimised within a Bayesian framework. The model was applied to the three main climate seasons of Zambia (rainy –
January to April, cold-dry – May to August, and hot-dry – September to December) taking into account land surface
temperature and (seasonally changing) cattle distribution. The model shows a maximum positive net change during the
hot-dry season and a minimum between the rainy and cold-dry seasons. Density independent losses are correlated
positively with day-time land surface temperature and negatively with night-time land surface temperature and cattle
distribution. The inclusion of density dependent mortality increases considerably the goodness of fit of the model. Cross
validation with an independent dataset taken from the same area resulted in a very accurate estimate of tsetse catches. In
general, the overall framework provides an important tool for vector control and eradication by identifying vector
population concentrations and local vector demographic rates. It can also be applied to the case of sustainable harvesting
of natural populations.
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Introduction

There are several ways of analysing animal and plant

population data. The simplest involves an actuarial approach as

applied to human populations where the likelihood of death and

the expectation of future life are assumed to depend only upon

age. For many animal and plant populations, however, mortality

also comes about from both density independent and density

dependent effects and the simple actuarial approach is no longer

valid. [1] developed an alternative life-table approach in which the

contributions of both density dependent and independent mortal-

ities to changes in total generation mortality were examined over

several generations; they defined the ‘key factor’ as the mortality

mostly responsible for changes in the total generation mortality

over time. A third approach to analysing population data is due to

the fisheries research of [2] who produced stock recruitment

curves by plotting successive (usually annual) fish counts against

each other on a graph (the present year/generation on the x-axis

and the next year/generation on the y-axis). The simplest sort of

Ricker curve rises rapidly from the origin (when stock numbers

increase rapidly from low densities) but eventually turns over as

density dependent population limitation becomes important; in an

ideal world fishing removes those individuals that would otherwise

die through density dependent losses, without affecting the

standing crop. Whilst Varley and Gradwell’s life-table approach

[1] was developed for species with non-overlapping generations,

the Ricker curve [2] can also be applied to species with

overlapping generations. Rogers, studying tsetse flies in Africa

[3], was the first to connect these two approaches by applying the

density dependent and density independent losses concepts of the

Varley and Gradwell approach to the logarithmic form of Ricker

curve, called a Moran curve (logarithms were necessary because

Varley and Gradwell’s mortalities were expressed logarithmically,

as ‘k-values’). Tsetse have continuous overlapping generations and

the Moran curve approach was shown, through its application to

the output of a simple tsetse population model, to be able to

quantify (as k-values) the mean monthly density dependent and

density independent losses of tsetse in Nigeria and Zambia.

For any population to persist or increase locally total annual

fertility must equal or exceed total annual density independent
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mortality; at equilibrium, the balance of production (fertility minus

density independent mortality) is then accounted for by density

dependent mortalities (due to competitors, predators or parasites).

If inescapable density independent losses exceed fertility, the

population will be in continuous decline until it becomes extinct.

Such populations can persist in an area only if they are periodically

‘topped up’ from elsewhere, by immigration.

Application of the Moran curve approach to the analysis of field

data involves making some assumptions about population fertility

which, for simplicity, is usually assumed constant. In reality, tsetse

fertility depends mostly upon temperature [4], so the assumption

of constancy in Moran curve analysis means that variations in

fertility are treated as variations in mortality; this is unlikely to be a

serious problem because natural variations in fertility are very

much less than natural variations in mortality. The net change in

the population’s demographic rates (hereafter simply ‘‘net

change’’) is the difference between fertility and population losses

(sum of the density dependent and density independent mortality).

Moran curve analysis (see Appendix S1 for a complete

description of the method and its application to tsetse fly sample

data) provoked criticism on several fronts, mainly targeted at the

subjectivity in choosing the intercept on the y-axis of the Moran

plot (determined by the fertility rate) and the density at which

density dependent effects begin to become important – the

turnover point in the standard Ricker curve [5]. In this paper, we

aim: (i) to develop a less subjective Moran curve analysis; (ii) to

quantify the tsetse population net change; (iii) to estimate the

strength of density dependent effects, the importance of which for

tsetse has previously been questioned [6]; and (iv) to demonstrate

the advantages for control techniques in identifying both the times

(seasons) and places in which to concentrate tsetse suppression

activities.

There are other options to analyse population models, for

example the Bayesian state-space ‘‘normal dynamic linear models’’

proposed by [7] and applied to the Ricker model. This advanced

approach allows the inclusion in the model of observational error

(related to the sample data) and process error (related to the

functions applied in the model), and the extension of time series

analysis to nonstationary and non linear models [8–11]. Bayesian

state-space models are at present one of the best options for

population models. Our aim here, however, is to consider a model

with explicit spatio-temporal covariance and population param-

eters estimated from the Moran curve.

Methods

Ethics Statement
The sampling at each location was authorized by the

Department of Veterinary and Livestock Development, Zambia.

The field studies did not involve endangered or protected species

but only tsetse flies. This is not a vertebrate study.

Field Methods
Analysis was applied to data for tsetse flies (Glossina morsitans

morsitans Westwood) from South-Eastern Zambia (field data

provided in Appendix S6). The sampling scheme was both spatial

and longitudinal, and involved man-baited black screens carried

on fixed fly-rounds [12], which are commonly used for sampling

this species of tsetse (see Appendix S2 for a full description of the

sampling method and the geographic area analysed). Sampling

was carried out in four sites (listed from North to South):

Lusandwa, Kasamanda, Zinaka and Chisulo (Table 1 and

Appendix S2). In each site there were two sampling transects

arranged in opposite directions and with stopping points at 100 m
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intervals. G. morsitans are attracted to moving black screens and

follow the catching party without necessarily landing on the

humans or the screen. Periodic stops are therefore used to sample

with small fly nets both the following flies and flies landing on

either the screen or the surrounding vegetation.

Sampling was repeated on average seven times each month. For

the present analysis, the monthly catches for each stop were used

without distinguishing the sexes, because some catches were very

small.

Although the data from Kasamanda contain only few non-zero

tsetse catches, this site had a similar number of space and time

sampling points (Table 1, column ‘‘Stops’’) as the other three sites

and hence it contributes equally in determining the spatio-

temporal correlation.

It is common in analysis of tsetse populations to model only the

average catches at each site. Here, in a full spatio-temporal

framework, the dataset is not averaged, either in space or time.

This enables us to retain all of the population variability within

sampling sites. Finally, the same number of visits was used at each

stop per month, so the data did not need to be standardised.

Environmental Correlates
The variables used to interpret the level and variation of the

density independent mortality are the day-time land surface

temperature (DLST), night-time land surface temperature (NLST)

and monthly cattle density (see Appendix S3 for further details of

these variables).

Statistical Method
The Bayesian Geostatistical model applied for estimating tsetse

population net changes is a modification of the Moran curve

method. Starting from the Moran curve model equation, which is

assumed to be applied to each of the stopping points on each fly

round:

log10 ytz1ð Þ~ b{ ditzddtð Þð Þzlog10 ytð Þ ð1Þ

where b is the monthly logarithmic fertility rate; yt and yt+1 are the

numbers of flies caught at n locations in successive months t and

t+1; di is the density independent mortality and dd is the density

dependent mortality acting at the S locations at time t, and usually

different from one fly round stop to another. The first term on the

right hand side b{ ditzddtð Þð Þ is the net change (difference

between fertility rate and population losses) which is zero when the

population is in equilibrium.

The model has been extended to a linear regression form with

the addition of a spatio-temporal correlation effect, Z, and an error

component e (observation error):

log10 ytz1ð Þ~ b{ d�iitzddtð Þzlog10 ytð Þð ÞzZze ð2Þ

with the following conditionings:

d�iit~b1zb2X

Z*N 0,s2
zV Q,r,dð Þ

� �

e*N 0,s2
eI

� �
where d�iit is the density independent mean response from a linear

regression of the (matrix of) environmental covariates, X, with

intercept b1 and regression coefficients b2 (a vector of length equal

to the number of environmental covariates). In other words,

estimates of di are used to fit an environmental linear regression

from which b1 and b2 are obtained. The coefficients are then used

to back calculate the mean density independent mortality d�ii. We

are interested in the environmental signal of di, while its

stochasticity will contribute to the other model components (i.e.

the spatio-temporal effect and/or the error term).

Z is a one column vector with spatio-temporal normally

distributed random effects with mean zero and a covariance

matrix given by the product of the spatial variance, s2
z , and the

correlation matrix, V; the latter is expressed as a function of the

spatial correlation parameter, Q, the temporal correlation param-

eter, r, and the interaction term, d, as appearing in the double

exponential non-separable spatio-temporal function [13] chosen

for this analysis:

V Q,r,dð Þ~ exp
Ds

Q
{d

Ds

Q

Dt

r
{

Dt

r

� �
ð3Þ

where D is the Euclidean distance in space, s, or time, t, as

indicated by the subscript. Finally, e is the independent and

identically normally distributed error.

log10 ytz1ð Þ is Gaussian distributed. Fixing

NC~ b{ d�iitzddtð Þzlog10 ytð Þð Þ and following the re-parame-

terisation of the variance parameter of Yan et al. (2007), the model

can be re-written as:

Table 2. Mean values of the net change during the three seasons in the four sites in Zambia.

Locations Rainy Cold-dry Hot-dry Year mean

Lusandwa 0.080 0.003 0.105 0.061

Kasamanda 20.022 NA NA 20.022

Zinaka 0.006 0.057 NA 0.032

Chisulo 20.007 0.033 0.107 0.049

All sites 0.018 0.028 0.106 0.054

Rainy (January to April), cold-dry (May to August) and hot-dry (September to December) seasons; and the mean values throughout the year.
doi:10.1371/journal.pone.0096002.t002

Net Changes of Tsetse Population in Zambia
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Figure 1. Tsetse population net change in the prediction zone for each season and summed for the entire period. The latter is stable
or growing if the net change is equal to or larger than 0; otherwise it is declining. The upper-right corner map shows the position of the predicted
area (red square) in Zambia.
doi:10.1371/journal.pone.0096002.g001

Net Changes of Tsetse Population in Zambia
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log10 ytz1ð Þ*N NC,s2 1{kð ÞV Q,r,dð ÞzkI½ �
� �

s2~s2
ezs2

z

k~s2
e
�
s2

ð4Þ

Hence, the likelihood is:

p log10 ytz1ð ÞDs2,Q,r,d,k
� �

~ s2
� �{n=2

DV Q,r,d,kð ÞD{1=2|

exp

{
1

2s2
log10 ytz1ð Þ{ NC½ �T V Q,r,d,kð Þ{1

log10 ytz1ð Þ{ NC½ �
� �ð5Þ

The posterior density of the model’s unknown parameters, given

the observed data y, is defined as:

p Q,r,d,k,s2Dlog10 ytz1ð Þ
� �

*

p log10 ytz1ð ÞDs2,Q,r,d,k
� �

p s2Dk
� �

p kð Þp rð Þp Qð Þp dð Þ
ð6Þ

where p(?) denotes the prior probability of its argument.

Table 3. Estimates of the different parameters in the model.

Moran curve optimal parameters (4 best models)

1 2 3 4

DIC 560 683 693 701

b 0.230 0.401 0.297 0.297

a 0.459 0.3380 0.338 0.621

a 30 30 30 30

Coefficients for the density independent linear regression

Estimate Std. error T value Probability

b1 0.642 0.087 7.304 5.19e-13

b2 (LSTD) 0.011 0.003 3.834 ,0.001

b2 (LSTN) 20.020 0.005 24.292 1.92e-05

b2 (CT) 20.004 ,0.001 26.531 9.80e-11

Posterior estimates from the Bayesian components

Median Mean Std. deviation 95% HPD

s2
z 0.267 0.283 0.130 (0.184,0.424)

s2
e 0.060 0.061 0.009 (0.047,0.075)

Q (km) 1.568 1.744 1.894 (0.965,3.157)

r (months) 0.975 0.943 0.082 (0.720,0.999)

D 0.864 0.836 0.142 (0.467,0.999)

b, fertility rate; a, population size at which the density dependent mortality effect starts; a, angle of the density dependent effect; b1, intercept of the linear regression
for the density independent mortality effect; b2 regression coefficients; Q, spatial range; r, temporal range; d, interactive term for the spatio-temporal effect; s2

z , spatial

variance; s2
e , error variance.

doi:10.1371/journal.pone.0096002.t003

Figure 2. Tsetse population losses (dd +di) for the different
locations: Lusandwa (sky-blue line), Zinaka (red line), Kasa-
manda (green line) and Chisulo (dark-blue line). The horizontal
bold black line at 0.23 is the estimated fertility rate level (assumed
constant). The vertical lines delineate the different seasons: rainy
(months 1 to 4), cold-dry (months 5 to 8) and hot-dry (months 9 to 11).
doi:10.1371/journal.pone.0096002.g002
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In the model the parameters associated with net change are

treated differently from those associated with the variance. di and

dd are computed from the fertility rate, b, the population size at

which the density dependent mortality starts, a, and the intensity of

density dependent losses expressed as the slope, a. Hence, given a

set of b, a and a, di and dd are estimated from the Moran curve

model:

ddt~
0, if log10 ytð Þƒa

log10 ytð Þ{a½ � 1z tan 90{a’ð Þ½ � otherwise

(

dit~bzlog10 ytð Þ{log10 ytz1ð Þ{ddt

a’~135{a

ð7Þ

The losses due to density dependence, dd, operate in addition to

any density independent losses only above a threshold population

size of a (the derivation of equation (7) in shown in Appendix S5).

Thus the analysis assumes density dependent and independent

effects are mutually exclusive and separable (i.e. additive in their

effects). This is likely to be an over-simplification; in reality both

density dependent and independent mortalities are operating

simultaneously. Therefore, as with fertility and mortality, it is likely

that there is in reality some mixing of the density dependent and

independent mortalities estimated in the way outlined above; our

approach will identify only the equivalent density dependent and

independent mortalities required additively to bring about the

population change actually recorded from one month to the next.

We have produced 27,000 net change candidates from the

combinations of values (30) of the parameters:

b = sequence of values from 0.2 to 0.4 at intervals of 0.0069.

a = sequence of values from 0 to 1.5 at intervals of 0.051.

a = sequence of values from 0 to 90 at intervals of 3.1.

For the second set of parameters Q, r, d, k, s,2 we assumed

independent priors. The two variances s2
z ,s2

e

� �
are both Inverse

Gamma distributed (this distribution is the conjugate prior for the

variance of a Gaussian distribution) of the form IG(h,c) with h = 5

and c = 1 for s2
e and h = 0.9 and c = 0.25 for s2

z . Uniform priors

over valid positive limits are defined for the spatio-temporal

parameters: spatial range (km), Q,Uniform(0,3); temporal range

(months), r,Uniform(0,6); interactive term d,Uniform(0,1).

These priors are not the best choice for mixed models without

spatial effects [14,15] because they can lead to an improper

posterior, but they are a common choice for their properties (and

computation results) in Bayesian mapping [16]. In fact, choosing

uniform priors for the spatio-temporal function parameters allows

the restriction of their estimate to a small number of them, which

leads to a faster and better control of the spatio-temporal

covariance by avoiding values associated with the absence of

autocorrelation. Alternatively, informative priors can be applied

(and need to be investigated), such as Jeffreys priors or Maximal

Data Information priors. The posterior samples of Q, r, d, s2 and

k given y are obtained from the RAMPS algorithm [17] and the

convergence of the MCMC chains was tested with the Gelman-

Rubin convergence statistic [18]. The MCMC was run until

convergence and until the Monte Carlo error for all the

parameters was equal or less than 5% [19]. At the end of MCMC

sampling, 200 samples for each parameter were extracted with

regular thinning from the respective chains.

In practice, for each net change candidate the RAMPS

algorithm finds the Bayesian estimates of the spatio-temporal

covariance parameters and observational error. Once the MCMC

chains have converged, a sample of the converged chains is taken

and used to calculate the model DIC. Therefore the lowest DIC

within the 27,000 models (27,000 is the number of net change

candidates) was selected and the associated parameters were then

employed in the mapping predictions.

The algorithm was built using a series of functions described in

Appendix S4.

Mapping
The fertility rate, the regression coefficients for the density

independent effect and the average density dependent effect acting

at each month in the model with the lowest DIC were employed to

predict the net population change on a grid of points within the

study area. Simple kriging was then applied to add a spatio-

temporal covariance to this net change. The latter is an

interpolator, the estimates of which are obtained from weighted

linear combination of the data. Weights are obtained from the

spatio-temporal covariance function. In simple kriging the mean is

assumed to be known.

Out-Of-Sample Validation
The model was run on two sites (Lusandwa and Zinaka, the sites

with a larger number of tsetse catches) in order to make

predictions for a third site (Chisulo). The statistics applied were:

mean difference between original and predicted logarithmic tsetse

counts (ME) and the mean squared difference between original

and predicted logarithmic tsetse counts (MSE). For s = 1,2,…,S and

t = 1,2,…,T points. The formulae are:

ME~
1

S � T

XT

t~1

XS

s~1

ys,t{ŷys,t ð8Þ

MSE~
1

S � T

XT

t~1

XS

s~1

ys,t{ŷys,t

� �2 ð9Þ

Results

The principal aim of this analysis was to estimate and

understand the net changes in tsetse populations over space and

time. The impact and therefore importance of density dependent

mortality can be tested by re-doing the analysis without it, thus

considering only density independent mortality. Removing the

density dependent component from the model yielded a DIC

value of 938, a drastic reduction in model fit when compared with

a value of 560 for the full model. This suggests that density

dependent losses explain a great deal of the variation of the

population data.

The net change in abundance for the study year was slightly

greater than zero (0.05), with the largest seasonal value in the hot-

dry season (Table 2). Therefore population losses balanced gains

and the modelled total population in the area was apparently in

equilibrium (increasing by only one individual).

The spatio-temporal net change predictions for the three

seasons in Zambia are shown in Fig. 1. All three maps show a

mixture of high and low net change in both space and time. There

is a substantial reduction in net change in the North-West part of

Net Changes of Tsetse Population in Zambia
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the study area between the rainy and cold-dry seasons. The

positive large values of net change in the other areas, however,

balance these losses and produce an overall positive value of net

change for the cold-dry season that is larger than that for the rainy

season. The maximum net change occurred in the hot-dry season.

The model allows us to identify areas where the tsetse population

is always doing well, that is, where the net changes are zero or

positive in all three seasons (green areas in the black and green

picture of Fig. 1). These areas may be regarded as tsetse ‘sources’

(reservoirs), although a longer sampling period would be needed to

determine if this is permanently the case.

The Moran curve parameters associated with the lowest DIC

are: 0.23 for fertility rate, 30u for the intensity of density

dependence (slope), and 0.46 for the logarithmic population size

at which density dependent mortality starts (Table 3).

The value of 0.23 (the antilog value is 1.69) indicates a

maximum rate of population increase in the study area of just

under 70% per month, less than the maximum possible value (at

slightly higher temperatures) of about 100%, that is, a population

doubling per month [3] (female flies produce one full grown larva

every 6/7 or more days which pupates more or less immediately

and emerges as an adult fly after 20 or more days; all development

times are temperature dependent). The slope of the density

dependent effect (30 degrees) is characteristic of a population

showing under-compensation [20]. This is to be expected of insect

species such as tsetse that have very comparatively low fertility

rates. Finally, the density dependent mortality starts at a

population density of around 2.87 (antilog of 0.46) tsetse flies per

stop on the fly rounds. This reflects the usually low values of the

catches (90% of the catches were of between zero and three flies

per stop; the minimum and maximum catches were, respectively,

0 and 18 tsetse).

The beta coefficients obtained from the regression of density

independent losses on climate variables (Table 3) suggest lower

mortalities as night-time surface temperatures increased, and when

cattle numbers increased, and higher mortalities when day-time

land surface temperatures increased. These results are in

accordance with the literature on the biology of tsetse, but this

analysis quantifies these relationships more clearly than previously.

Finally, the model predicts relatively rapid declines in both

spatial and temporal correlations with a spatial range of 1.7 km

and a temporal range of 1 month. The average values used to

correct the space-time interaction was significantly different from

zero, indicating that the two dimensions of space and time cannot

be separated, and that the spatial and temporal ranges co-varied

(Table 3).

Validation based on applying the net change parameters

estimated from Lusandwa and Zinaka to estimate the logarithmic

catch data from Chisulo produced accurate statistics: the ME was

0.1 (equivalent to 1.25 tsetse flies) and the MSE 0.35 (equivalent to

2.23 tsetse flies).

Discussion

The study sites included areas with mean total population losses

that were both lower and higher than the estimated fertility rate

(Figure 2). Between rainy and cold-dry seasons net changes were

negative for most of the sites (except from Zinaka) indicating that

the total population was sustained only through immigration; for

example in Lusandwa, Chisulo and Kasamanda. In particular the

Lusandwa population appears to be maintained only by consid-

erable immigration (from the North-West) occurring mainly in the

cold-dry and hot-dry seasons. Such immigration could be from an

animal game park near to the northern border of the area [21].

Despite the high immigration rate, the Lusandwa tsetse population

is very low, due to low survival rates of both immigrant and

resident flies, perhaps because of the limited availability of hosts in

Lusandwa. In Zinaka, the partial results (the survey does not cover

the whole year) indicates a more stable population with population

losses always lower than the fertility rate. Zinaka is a site far from

game parks and is unlikely to be affected by immigration. Hence

environmental conditions make this area suitable for low density

tsetse populations.

Net changes are highest in the hot-dry seasons in Zambia

(Table 2). These results are in agreement with previous studies on

tsetse populations in Zambia and elsewhere [22,23], where G. m.

morsitans is most abundant between the end of the hot dry season

and the beginning of the rainy season and less abundant during

the cold-dry season because of a combination of climate,

vegetation and host grazing patterns.

During the rainy season, density dependent mortality provides

an upper limit to fly population density. Density dependent losses

from one area may be due not to death but to emigration to other

areas which results in immigration (which may also be density

dependent) into those areas. Thus density dependent population

movement [24,25] may result in the persistence of tsetse

throughout much larger areas. Considerable, periodic large scale

movement of tsetse flies has been recorded in the Nguruman area

of SW Kenya [26], with possibly the same effects (maintaining

populations that otherwise would become seasonally extinct). It

appears therefore that in this region of Zambia tsetse seem to show

all the characteristics of a metapopulation [27].

It is a matter of some debate whether tsetse populations should

be targeted by control when they are most or when they are least

numerous; the approach described here can identify these periods

in the annual cycle and the additional level of control that needs to

be applied to reduce the tsetse population’s rate of increase to the

low level required for eventual population extinction.

Conclusions

The modelling approach suggested here has three key

innovations: (i) estimation of the tsetse population’s fertility rate

and the levels of density independent and density dependent losses,

(ii) implementation of spatio-temporal autocorrelation methods;

and (iii) mapping net change, which can be related to environ-

mental or host variables. Even though the optimal search between

27,000 models and the use of Bayesian geostatistics required

considerable computer resources and a long processing time, it is

an improvement on previous population mapping methods

because it quantifies both birth and death rates in a spatio-

temporal framework, thus highlighting the levels of additional

mortality required, and the times and places to apply them, to

reduce the target population to any desired level, and even to

extinction.

The present analysis could be improved by adapting the

model for simultaneous operation of density independent and

density dependent effects. Density dependent losses are likely

continuously to be adjusting their impacts as populations rise and

fall each month through density independent effects. Obviously,

the total losses cannot be less than those actually observed

but the allocation of these losses to density dependent or

independent causes may change if a continuous approach is

adopted.

In conclusion, this research offers a novel approach to

estimating key demographic parameters in a geostatistical

Bayesian framework. Referring to the origin of the Ricker/

Moran curve approach we suggest that this approach could also
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usefully inform policies for the rational management and

harvesting of natural populations such as fish stocks. In the case

of tsetse flies, population loss maps are fundamental tools for tsetse

control and management. In the case of harvesting, analogous

maps can indicate where and when harvesting is most sustainable.

Estimating the accuracy and uncertainty of such maps is

now possible with widely available, enhanced computational

power.
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