

Towards high-power, multi-GHz waveguide lasers

**A.Choudhary¹, A.A.Lagatsky², K.Pradeesh¹, W.Sibbett²,
C.T.A.Brown² and D.P.Shepherd¹**

¹*Optoelectronics Research Centre, University of Southampton, UK SO171BJ*

²*School of Physics and Astronomy, University of St Andrews, UK, KY16 9SS*

E-mail: ac12g10@orc.soton.ac.uk

There has been a growing interest in the development of laser sources with high (> GHz) pulse repetition rates owing to their potential applications in areas such as non-linear microscopy, optical sampling, frequency metrology, optical communications, optical arbitrary waveform generation and for the calibration of astronomical spectrographs (astro-combs). Ultrafast lasers based on low-loss waveguide geometry offer a combination of features (low-threshold operation, high efficiency and moderate non-linearities) which make them attractive for development of compact, low-cost, multi-GHz femtosecond sources.

Towards this goal we have demonstrated mode-locked operation of an Yb^{3+} -doped waveguide laser with a repetition rate of 4.9 GHz, pulse duration of 740 fs and an output power of 80 mW [1] (Figure 1) around 1050 nm. Recently, by using even shorter cavity lengths, we have achieved a repetition rate of up to 15.2 GHz [2].

Currently, we are working on power-scaling of our 5 GHz waveguide sources using a fiber amplification setup as described in [3]. We believe that such a multi-watt, multi-GHz waveguide laser source could find many applications in laser science and technology areas.

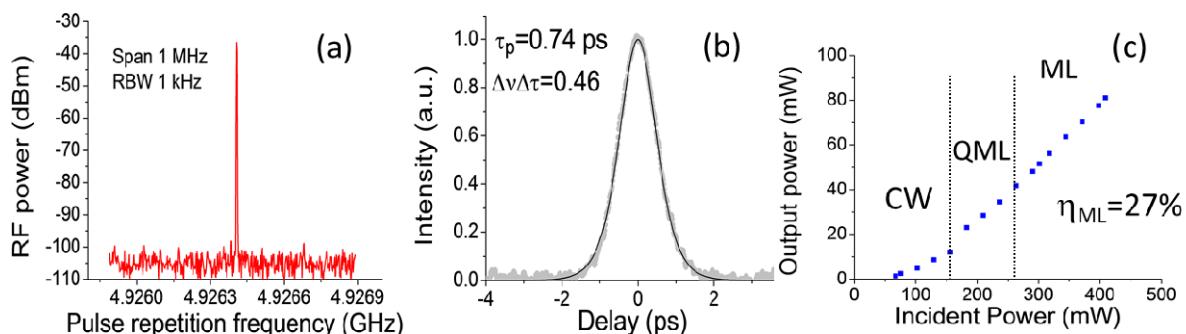


Figure 1. (a) Radio frequency spectra, (b) autocorrelation trace, and (c) input-output power characteristics for the 4.9 GHz mode-locked waveguide laser.

References

- [1] A.Choudhary, A.A.Lagatsky, K.Pradeesh, W.Sibbett, C.T.A.Brown and D.P.Shepherd, Opt. Lett. **37**, 4416-4418 (2012)
- [2] A.Choudhary, A.A.Lagatsky, K.Pradeesh, W.Sibbett, C.T.A.Brown, and D.P.Shepherd, CLEO Europe **CF/IE 8.3** (2013)
- [3] C.R.Head, H.Y.Chan, J.S.Feehan, D.P.Shepherd, S.-U.Alam, A.C.Tropper, J.H.V.Price, K.G.Wilcox, IEEE Photon. Technol. Lett. **25**, 464-467(2013)