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Abstract. Network theory is increasingly employed to study the structure and behaviour of social, 
physical and technological systems - including civil infrastructure. Many of these systems are 
interconnected and the interdependencies between them allow disruptive events to propagate across 
networks, enabling damage to spread far beyond the immediate footprint of disturbance.  In this 
research we experiment with a model to characterise the configuration of interdependencies in terms 
of direction, redundancy, and extent, and we analyse the performance of interdependent systems with 
a wide range of possible coupling modes. We demonstrate that networks with directed dependencies 
are less robust than those with undirected dependencies, and that the degree of redundancy in inter-
network dependencies can have a differential effect on robustness depending on the directionality of 
the dependencies. As interdependencies between many real-world systems exhibit these 
characteristics, it is likely that many such systems operate near their critical thresholds. The 
vulnerability of an interdependent network is shown to be reducible in a cost effective way, either by 
optimising inter-network connections, or by hardening high degree nodes. The results improve 
understanding of the influence of interdependencies on system performance and provide insight into 
how to mitigate associated risks. 
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1. Introduction 

Network theory is a powerful tool to help us understand 
the structure and behaviours of systems found in nature, 
technology and human society [1-3]. Previous research has 
tended to focus on studying single, isolated systems [4-10], 
thereby neglecting the complex coupling that can exist 
between these systems [3, 11-15]. For instance, in the civil 
infrastructure domain, the successful operation of a power 
system requires water for cooling, transport to supply fuel, 
and ICT (Information and Communication Technology) 
systems for control; and these systems in turn require 
power systems to supply electricity. This interdependence 
on the one hand may improve network functionality and 
efficiency, but on the other hand may introduce unforeseen 
vulnerabilities. As demonstrated in [11, 13, 16-19], the 
failure of one network component may propagate across 
the system boundary, resulting in cascading failure across 
multiple sectors. 
 
The importance of understanding the effects associated 
with network interdependencies has been widely 
recognised [12, 20-29]. Important insights from previous 
modelling of interdependent systems show that (i) analysis 
of systems with one-to-one undirected dependencies show 

that failure initiated in one network can propagate across 
networks recursively and lead to a cascading failure of the 
wider networked system [12]; (ii) the vulnerability of an 
interdependent system is reduced when the extent of 
coupling between networks decreases [21]; and, (iii) 
traditional network protection strategies, such as 
protecting high degree nodes, are less effective in an 
interdependent network than in a single network [30].  
 
Previous research has used relatively simple and 
constrained representations of interdependencies that are 
not particularly representative of those observed in real-
world systems. Here we present a model that describes 
coupled systems as a network of networks.  We consider 
how the configuration of network interdependencies plays 
an important role in determining how failure propagates 
between networks, and the ability of the system to absorb 
disruptions. The model characterises interdependencies 
along multiple dimensions, enabling systems of different 
strength of coupling to be represented. We analyse the 
behaviour and performance of a range of interdependent 
system configurations, and explore strategies to reduce the 
risks of cascading failure. Our research reveals a number 
of non-intuitive insights into the behaviour of 
interdependent systems. The severity of cascading failure 
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is shown to increase significantly when inter-network 
connections are directed, and the degree of redundancy in 
inter-network connections can have a differential effect on 
the robustness of systems depending on the directionality 
of inter-network connections. Network topology also 
influences system performance although this is heavily 
mediated by the mechanism of network disruption. We 
further demonstrate that the risks of cascading failure can 
be reduced in a number of ways, either by manipulating 
the directionality of inter-network connections, or by 
hardening high degree nodes.  
 
By providing some quantitative insights into the impact of 
interdependencies, it is intended that results presented in 
the paper could be valuable to stakeholders of various 
social-technological systems by providing hitherto 
unavailable analysis of how to: 1) maximise the reliability 
of interdependent systems; 2) adapt an existing system to 
meet the challenges imposed by natural and manmade 
hazards. The remaining parts of the paper are organised as 
follows. Sect. 2 describes the interdependent network 
model. Sect. 3 outlines the model of cascading failure. 
Sects. 4 and 5 report results derived from the model. Sect. 
6 discusses how structural vulnerability of interdependent 
systems can be reduced. Sect. 7 provides conclusions and 
identifies future research needs. 

2. Interdependent Network Model 
Interdependencies in real-world networks are more 
homogeneous than previous modelling studies have 
considered [31].  Here we present a model that 
characterises inter-network dependencies along three key 
dimensions (Fig. 1), that enables us to describe and 
simulate a wide range of network coupling modes.  

 

Fig. 1 Dimensions of interdependency measurement 

We define a ‘network of networks’ that couples � ≥ 2 
disjoint networks and is represented as a pair {�, ℒ}, where  
� = {��, … ,��, … ,�� } and ℒ = {ℒ�,�, … , ℒ�,�, … , ℒ�,�, … , ℒ�,�} . 
�� is the set of nodes in network �, and  ℒ�,� the set of links 
that connect nodes from network i to network j.  Links in 
ℒ�,� connect nodes within the same network, and we call 
such links the “intra-links”. When � ≠ � , links in ℒ�,� 
connect nodes in two disjoint networks, and we call such 
links the “inter-links”, i.e., interdependent links.   

We acknowledge that not every node in a network depends 
on another network. For example, in a coupled road and 

ICT system, some but not all road junctions require traffic 
signals (controlled by an ICT system) for their operation. 
Furthermore, dependencies between networks are 
unbalanced. For example, a significant portion of a 
transport network nodes require the support of an ICT 
network for control and management, but the number of 
dependent nodes of ICT on transport network is 
considerably small. Thus, the first dimension of our model 
considers the extent of dependency (denoted as ℱ), defined 
here as the fraction of network nodes that are dependent on 
another network1. For a system consisting of two networks 
i and j, ℱ  is partitioned into two components, 	ℱ�,� 	and 
	ℱ�,� . The former specifies the fraction of nodes in network 
i that depend on network j. The latter specifies the fraction 
of nodes in network j that depend on network i. Two 
networks i and j are fully inter-dependent when 	��,� =

��,� = 1.0, otherwise they are partially inter-dependent.  

Interdependency relations are not always restricted to one-
to-one. For example, emergency services such as hospitals 
frequently have multiple power connections, so that failure 
of one power line or generator will enable continued 
operation. Our second dimension, redundancy of 
dependencies, �, is partitioned into �� ,�	and ��,� , where 
�� ,� represents the redundancy of the dependency of 
network i on network j, i.e., the average number of 
supporting nodes that a dependent node in network i has 
from network j. Similarly, ��,�  describes the redundancy 
of the dependency of network j on network i.  As with any 
network link, an interdependency link has an associated 
cost, hence �  in real world is usually very small when 
comparing to system size N, (i.e. � ≪ �), as discussed 
and evidenced in [12, 26, 32, 33].  

Finally we observed that inter-network dependencies are 
not always mutual or symmetric.  For example, whilst a 
power substation might supply electricity to an ICT hub, 
this same hub does not necessarily provide information 
control to the power plant. Hence interdependencies can 
be quantified in term of directionality. An undirected 
interdependent link (	, 
) ∈ ℒ�,�		(� ≠ �) exists where there 
also exists a (
,	) ∈ ℒ�,�. Otherwise it is directed. We use 
parameter �  to specify the directionality of an 
interdependent system. �  is partitioned into two 
components, 	��,� 	 and 	��,� .The former specifies the 
fraction of directed dependencies that network i has on 
network j. The latter specifies the fraction of directed 
dependencies that network j has on network i. Systems of 
two extremes are identified. One extreme is an undirected 
system, a system that is connected by undirected 
dependencies only, i.e.,	��,� = 	��,� = 0. Another extreme 
is a directed system, a system that is connected by directed 
dependencies only, i.e.,	��,� = 	��,� = 1. Real world 

                                                           
1
 ℱ could be generalised into a vector when number of networks 
� > 2.  This also applies to parameters � and �  as described 
below. 

Redundancy �  Extent ℱ  

Directionality �  
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systems usually have a mixture of directed and undirected 
links and hence sit in between these two extremes.  

The proposed model captures some basic yet important 
features which have a significant role to play in 
characterising network interdependency. By configuring 
interdependent directionality, redundancy and extent, the 
model can represent, and simulate the performance of, 
interdependencies that are more representative of real 
world couplings.  For example, a one-way interdependent 
system can be generated if we set 	��,� � 0 and ��,� � 0, a 
typical relationship that exists between ICT and other 
infrastructure networks. An unbalanced interdependent 
system is modelled if we set 	��,� ∗ 	��,� � ��,� ∗ ��,� , a 
commonly observed relationship between a pair of 
interdependent networks.  

3. Cascading Failure Model  
In order for any network node to function, we assume that 
at least one of its supporting nodes from each of the 
networks on which it depends is available.  Nodes fail via 
three mechanisms (i) through direct disruption, (ii) if it 
loses all of its supporting nodes from at least one of the 
networks that support it, (iii) finally, in line with 
percolation theory approaches [34], a node fails if it is 
disconnected from the largest component (the giant 
component) of the network to which it belongs.  

We recognise that this is a simplified description of failure 
and that a number of other factors such as storage capacity, 
human intervention and component condition modulate 
failure processes. For example, if a road junction loses the 
control signal from its ICT network, it doesn’t fail 
completely.  Rather, its capacity for accommodating traffic 
flow is altered. By removing capacity, lag and latency, our 
analysis is more tractable and enables us to focus on 
generating insights into the implication of interdependency 
in a worst case scenario where these other factors are not 
able to modulate the failure processes.  

For simplicity, we consider an interdependent system 
composed of two networks A and B, initially with size 	�

� 
and 	�

�. We assume that network disruption is initiated by 
disabling a fraction 
	of nodes from network A. When 
these nodes are removed, all their links fail (including both 
intra- and inter-links). The failure of these nodes and links 
may result in fragmentation of network A. Only the nodes 
belonging to the largest connected component are still 
functional, while nodes that are part of the remaining 
smaller network fragments become non-functional. The 
failure of these network A nodes removes or reduces the 
support that network B obtains from network A. A network 
B node fails if it loses all its supporting nodes from 
network A. The failure of network B nodes may cause 
fragmentation of network B. Again, only the nodes 
belonging to the largest component of B remain functional. 
We call this point the end of stage 1 of a cascading failure 
and record the numbers of nodes in the giant components 
of networks A and B at this stage as 	�

� and 	�
�.  

During cascade stage 2, we remove nodes in A that have 
lost all their support from B, and then remove all A nodes 
that are disconnected from the largest component of A. We 
then apply the same to network B. We use 	�

� and 	�
� to 

specify the sizes of the largest components of the system at 
the end of stage t of the cascade of failure. At the end of 
the cascade process, both networks stop losing nodes, and 
the system stabilises at stage T when: 

�		
�
� � 		

�

		
�
� � 		

�
 (1) 

 

This is shown visually, for a system of size 	�
� � 	�

� � 6, 
in Fig. 2 where the system stabilises at  � 2.  

(a) Stage 0 

 

(b) Stage 1 (c) Stage 2 

   

 
Fig. 2 Cascading failure process of an interdependent system.  

The initial system, shown in (a), has a set of nodes in network 

A and B, labelled ���, ��, … � and���, ��, …} respectively. An 

intra-link is represented as a solid line, and an inter-link is 

represented as a dashed line. At Stage 0, node ��  is 

disabled/attacked. When �� fails, all links connected to	�� fail. 

This disconnects �� from the largest component of network A, 

and therefore �� fails. The failure of �� and �� triggers the 

failure of �� (supported by ��) and �� (supported by ��). The 

failure of  �� disconnects ��	from the largest component of 

network B, hence ��  fails. This leads to the system 

configuration shown in (b).  The failure of �� leads to the 

failure of ��, before the system eventually stabilises in the 

configuration shown in (c). 

 

We use the following measures to quantify the post-attack 
performance of an interdependent system: 

(1) The connectedness of a system is measured by the 
relative size of the largest component, P, of the final 
stabilised system after the cascading failure, as follows: 
 

���
��� � 		

� � 		
�

	�
� � 	�

�

�� � 		
�/	�

�

�� � 		
�/	�

�

 (2) 

 
The larger P is, the more nodes remain in the largest 
connected component, the better the system is 
considered to perform.  
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(2) The failure threshold 
�  is the minimum size of 
disruption that causes a system to collapse to � � 0. 
The larger 
� is, the more robust the system.  
 

(3) The aggregate performance, IP, characterises the 
behaviour of an interdependent system subjected to a 
full range of network disruption event sizes 
�, 	
�, … , 
� . . . , 
�  where 
� � 0,  
� � 1  and 
�
� �
� .  IP  is the integral of P(q) which, for the n 
disruptions tested, is calculated as: 

�� � ∑ �� ∗ �
�
� � 
��������

��   (3) 
 

A larger IP indicates a more robust system. 

4. Influence of Interdependency    
We measure the performance of interdependent systems 
over a wide range of extent, redundancy and directionality 
as defined in Sect. 2. This section analyses systems that 
consist of two Erdös-Rényi (ER) networks. We will 
explore the impact of network size, topology and 
disruption modes in Sect. 5.  

Experiments were carried out over systems that couple two 
networks of 	�

� � 	�
� � 10,000 nodes, with an average 

degrees ��
� � ��

� � 4. We initiate disruption by removing 
a randomly selected fraction q of network ! nodes. The 
choice of system size is based on our observation of real 
networks, in particular civil infrastructure systems. Most 
of these are characterised by large number of nodes (a few 
thousands or more), with a typically small degree 
distribution (often 3-4) [2, 4, 35], and with only a 
proportion of nodes dependent on another network. We 
therefore investigated a much wider variable space to 
consider not only how real-world systems perform, but 
how deviations from this might enhance or reduce 
performance. 

4.1 Impact of Interdependent Directionality 
The most vulnerable interdependent configuration is when 
two networks are inter-connected only with directional 
links, i.e. 	"�,� � 	"�,� � 1. Fig. 3 shows the aggregate 
performance of a directed interdependent system when ��,� � ��,� � � and ��,� � ��,� � # are varied 
respectively. The worst performance (IP is nearly 0) 
occurs when �	,
 	 �
,	 	 1 and �	,
 	 �
,	 	 1. In this 
situation, even a small portion of network disruption can 
cause catastrophic cascade and lead to the collapse of a 
whole system.  
 

  
Fig. 3 Aggregated system performance, IP, of a directed 

interdependent system with �	,
 	 �
,	 	 �  and �	,
 	

�
,	 	 .  

 
This compares to �� $ 0.3  when the networks are 
connected via undirected links only, i.e. 	"�,� � 	"�,� � 0, 
which is dramatic improvement over a directed system of 
otherwise the same configuration. Fig. 4 shows the 
difference in performance between undirected and directed 
systems. For any given � and #, a directed system never 
has greater IP, hence is more vulnerable than an 
undirected system. The greatest difference in performance 
occurs when ��,� � ��,� � 0.5  and ��,� � ��,� ' 5 . 
Our research shows that when � is sufficiently large or � 
is very small, the IP of a directed system approaches that 
of an undirected system. 

Fig. 4 Difference between the aggregate 

performance ����������� � ��������� ) of undirected and 

directed systems when  �	,
 	 �
,	 	 � and �	,
 	 �
,	 	

 are varied. 

 

The robustness of an undirected system is further 
manifested by the facts that it has a larger failure 
threshold	
� 	than a directed system. As shown in Fig. 5, 
the smaller ��,�	and ��,�  (or the larger �	,
  and ��,� , 
see Fig. S5 of the supplementary information), the bigger 
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the impacts they make, and the larger performance 
differences observed between two extremes of systems.  
 

Fig. 5 Failure threshold, ��, as a function of �	,
 	 �
,	 	

	� when �	,
 	 �
,	 	 1.0.  

The main reason for the poorer performance of a directed 
system is that it presents more possibilities for the 
existence of longer dependency chains than an undirected 
system. A dependency chain exists where a network A 
node, u, supports a network B node, v, and v in turn 
supports a further network A node w (where ( � )), and 
so on. These dependency chains run back and forth 
between the two inter-connected networks. A failure of u 
compromises the robustness of all downstream nodes in 
the dependency chain, potentially triggering their failure 
and a possible cascade.   
 
In an undirected system, as inter-network dependency is 
mutual, when u supports v, v also supports ). As well as u, *  supports ��,� � 1  other A nodes, i.e., *   introduces ��,� � 1 nodes into the dependency chain. However, in a 
directed setting, as inter-network dependencies are not 
symmetric, *  does not necessarily support ),  instead  
introducing ��,� additional A nodes into the dependency 
chain. Hence in a directed system dependency chains tend 
to be longer than in an undirected system, causing a more 
effective propagation of failure across networks and an 
increased system vulnerability. The smaller ��,� , the 
greater the difference made by switching from undirected 
to directed dependencies (Fig. 5), which is consistent with 
other analysis [36].  
 

4.2 Impact of Interdependent Extent �  and 

Redundancy � 
The vulnerability of an interdependent system can be 
reduced by either increasing  ��,�	and ��,�

 or decreasing ��,�  and ��,�, as illustrated in Fig. 6. Our experiments 
reveal that system performance (in terms of P) increases 
linearly as �	,
  and ��,�   decrease. An interdependent 
system improves its performance at a slow rate when we 
increase ��,�	 �  ��,� � � , and a good fit2  to the 

                                                           
2
 The values of a and b depend on the setting of �	,
 and �
,	, 

and a=0.325 and b=0.152 were identified for the setting and 
results presented in Fig. 6. 

simulated results was observed for � � + � , ∗ -log	���. 
Increasing ��,�	 and ��,�  is more effective when ��,�	and ��,�  are small and this strategy becomes less 
responsive when ��,�	and ��,� are large (exceeding 8 in 
this setting). On the other hand, decreasing �	,
 and ��,� 
can achieve a more consistent performance gain 
throughout the range of  ��,�  and ��,� .  However, it is 
important to note that two strategies for reducing 
vulnerability do not represent the same cost.  Whilst the 
performance gain achieved by increasing ��,� � ��,� �	1  to ��,� � ��,� � 	2  can be accomplished by 
decreasing ��,� � ��,� � 1  to ��,� � ��,� $ 0.75 ,  
however, if all nodes in network B are fully dependent on 
a connection to network A (e.g. all components in one 
network may require connection to an electricity grid) then 
options for altering �  will be limited, or require 
development of new decentralised energy systems which 
must be balanced against the costs of doubling the number 
of inter-network connections associated with doubling �. 
 
 

Fig. 6 Aggregate performance IP as a function of K (�	,
 	

�
,	 	 �, �	,
 	 �
,	 	 1 and 	�	,
 	 	�
,	 	 0�, and IP as 

a function of F ( �	,
 	 �
,	 	 , �	,
 	 �
,	 	 1  and 

	�	,
 	 	�
,	 	 0�. 

 
Low interdependent redundancy not only leads to reduced 
system performance, but also abrupt system failure, as 
shown in Fig. 7. Under the setting of �	,
 	 �
,	 	

1.0,	when ��,�  and ��,�  are small, a large functioning 
component exists when 
 ' 
�, and it suddenly collapses 
when q reaches 
�. Increasing ��,�and ��,�can ease off 
the abruptness of network failure and results in a relatively 
continuous phase transition at 
� 3 .  This is because the 
larger 	��,� and ��,� , the more support a node receives 
from another network. In this instance, both network A and 
B behave as independent networks. Our experiment 
indicates that as there is little cascading effect, ��  will 
tend to approach the size of a giant component for a single 
network of the same scale4; for network B, when 
 ' 
�, 
                                                           
3
 Phase transition here means the change of network size from 

non-zero to zero. 
4

 See Sect. 1 of the supplementary information for the 
performance comparison between interdependent and single, 
isolated systems. 
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removing nodes from network A does not impact on the 
integrity of network B and �� approaches 1.0.  	Network B 
collapses only when network A collapses, i.e., �� 
approaches zero when 
 � 
�. 
 

 
Fig. 7 Relative size of giant component P as a function of q 

(the size of the attack on network A), where �	,
 	 �
,	 	

1.0, and �	,
 	 �
,	 	 � are varied.  

The abrupt failure was only observed on systems when ��,�	and ��,�  are sufficient large, e.g. greater than 0.5 
under the setting of ��,� � ��,� � 2, as shown in Fig. 8. 
This is because the larger ��,� 	and ��,�, the more tightly 
network A and B depend on each other. This naturally 
results in increased propagation of failure across networks, 
and the reduced system performance. When ��,�	 and ��,�	are small, the performance of systems approach that 
of single networks, exhibiting a relatively continuous 
phase transition, but with A and B behaving differently.  	�� 	 is zero but �� 	 is non-zero at the end of a cascade. 
Total fragmentation of network B happens in a cascade 
only when ��,�  (the fraction of dependent nodes in 
network B) exceeds the failure threshold of a single 
network of the same properties as network B. When ��,� 
is smaller than the failure threshold of such a single 
network, collapse of network A does not cause the collapse 
of network B, and 	��  approaches the size of the giant 
component of a single network when it has ��,� fraction 
of nodes removed. This results in the non-zero P as shown 
in Fig. 8. Examples of such a phenomenon are often 
observed in a coupled gas and electricity system. When 
only a small portion of an electricity network relies on a 
gas network for fuel supply, the collapse of the gas 
network will only disrupt a portion of the electricity 
network.  
   

 
Fig. 8 Relative size of giant component P as a function of q 

(the size of the attack on network A), where 	�	,
 	

�
,	 	 2,  and �	,
 	 �
,	 	  are varied. 

 
In summary, varying interdependency can modify system 
behaviour and the limits within which it can operate safely. 
Systematically testing a range of interdependency 
configurations has provided a more complete picture of the 
role interactions between networks play in mediating 
system performance5 . Subsequent sections consider the 
influence of other network properties, and potential 
countermeasures to mitigate vulnerabilities associated with 
interdependency. 
 

5. Influence of Network Sizes, 
Topologies and Disruption Modes  

The performance of an interdependent system can be 
influenced by factors such as network size, topologies and 
disruption modes.  
 

5.1 Network Size 
We applied our model to interdependent systems 
comprising different numbers of network nodes, 	�

�  and 	�
� , and average node degree, ��

� and ��
� . These results 

exhibit similar trends and patterns to those reported in Sect. 
4.  Aggregate system performance IP and failure threshold 
� varies very little for a range of network sizes. However, 
Fig. 9 indicates that P (size of giant component) collapses 
more abruptly for larger networks. Thus, and perhaps non-
intuitively, larger interdependent systems can be more 
fragile. This agrees with results reported in [12].  
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 Readers are referred to the supplementary information for 
additional supporting analysis.   
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Fig. 9 Impact of network size. P is plotted as a function of q. 

Results are obtained on systems with ��
	 	 ��


 	 4, �	,
 	

�
,	 	 1.0 , ��,� 	 ��,� 	 2 and 	"�,� � 	"�,� � 1. 
 
Furthermore, the performance of interdependent networks 
is shown to improve when we increase node degrees ��

� 
and ��

�. Fig. 10 shows that 
� 	increases with ��
� � ��

� �' 2 �. This observation is consistent with the analytical 
solution obtained for a single network [34] for ER 
networks. 

 
Fig. 10 Impact of network node degree. Failure threshold �� is 

plotted as a function of ��
	 	 ��

� 	� � �  for systems under 

the interdependency setting of �	,
 	 �
,	 	 1.0   and 

��,� 	 ��,� 	 2. 

  

5.2 Network Topology 
We also studied systems that couple networks of different 
topologies6 . These results shows similar trends and 
patterns in overall performance to those reported for the 
ER-ER networks in Sect. 4 (see Fig. S6 of the 
supplementary information). However, the aggregate 
measure of performance, IP, obfuscates variability in 
system behaviour. Fig. 11 shows the variability of giant 
component size, P, for a given initial network disruption q, 
and the frequency that a system stabilises at P, for q.   

Variability is greatest in a system that couples two scale 
free networks (SF-SF system) and smallest in an ER-ER 
system. The parameter region where variability is greater 
is for small P (when � ' 0.5	in	this	setting ). This 

                                                           
6
 We focus on ER and SF networks as they are consistent with the 

structure of many social and engineered systems, enabling us to interpret 
results in the context of real systems. 

suggests that a SF-SF system is more volatile or 
unpredictable, when compared with similar systems that 
contain one or more ER networks. The lower variability of 
P for ER-ER systems stems from the more uniform node 
degree distribution of ER networks, so that the initial 
failure is over nodes of similar connectivity. The greater 
variability of node degree distribution of a SF network 
makes performance more sensitive to the connectivity of 
nodes that are disabled. This results in different forms of 
network fragmentation and thus a wider range of P.  

 
 
Fig. 11 Impact of network topologies. Frequency of relative size 

of giant component P is plotted as a function of q and P.  

Dependencies are set with 	�	,
 	 	�
,	 	 1,  �	,
 	 �
,	 	

0.8  and ��,� 	 ��,� 	 1. 

 

5.3 Network Disruption Strategy 
Network disruption strategies can influence system 
performance. We explore two types of deliberate attack: 
high degree node biased attack (highBias attack) and low 
degree node biased attack (lowBias attack) on both SF-SF 
and ER-ER systems (Fig. 12) (see Fig. S7 of the 
supplementary information for the results on ER-SF and 
SF-ER systems). For the highBias attack, we set the 
probability that a node is disrupted as being proportional 
to its degree. In lowBias attack, the probability is inversely 
proportional to its degree. The SF-SF are most heavily 
impacted by highBias attacks, but perform better when 
subjected to lowBias attacks. The degree distribution of SF 
networks leads to more highly connected hub nodes 
compared to ER networks.  Consequently highBias attacks 
lead to more fragmentation in a system with SF networks 
than in a system with ER networks. On the other hand, due 
to the existence of a large portion of low degree nodes in 
SF networks, when lowBias attack is employed, nodes of 
lower connectivity are preferentially targeted so the SF-SF 
systems outperform the other configurations as a result of 
a lowBias attack.   
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(a) SF-SF, highBias  (b) SF-SF, lowBias 

  
(c) ER-ER, highBias (d) ER-ER, lowBias 

  

 

Fig. 12 Results for systems under lowBias and highBias attacks. 

Aggregate performance IP is plotted as a function of  ��,� 	

��,� 	 � (vertical axis) and �	,
 	 �
,	 	  (horizontal axis), 

under dependency setting of	�	,
 	 	�
,	 	 1.  

   

6. Reducing Vulnerability: Outlook 
and Discussion  

Results presented in previous sections indicate that 
vulnerability can be introduced into systems when network 
structures and interdependency are sub-optimal. The 
performance of interdependent systems can be improved if 
the extent of dependency decreases or the redundancy of 
dependency increases, as we discussed earlier. In this 
section we present two alternative countermeasures to 
reduce the vulnerability of interdependent systems.   
 
6.1 Optimising Interdependent Directionality 
Results in Sect. 4 indicate that a directed system is more 
vulnerable than an undirected system. In this section we 
study how a directed system might improve its 
performance through turning directed dependencies into 
undirected dependencies. To do this, we start with a 
system that has maximum possible directed links, e.g. 	"�,� � 	"�,� � 1. We gradually decrease 	"�,� and 	"�,� 
until it reaches the lowest limit or becomes an undirected 
system7 . We record how the system changes its 
performance against that of the original system. Fig. 13 

                                                           
7
 Since undirected dependencies are symmetric, 	�	,
 and 	�
,	 

relate to each other via equation�1 � 	�	,
� ∗ �	,
 ∗ �	,
 	
�1 � 	�
,	� ∗ �
,	 ∗ �
,	. This can restrict what values  	�	,
 
and 	�	,
 can take. The effect of this is shown in Fig. 13, where 
in certain scenarios the range of 	�	,
  is [0.5,1.0] instead of 
[0.0,1.0]. 

presents our results for a few different settings of ��,� , ��,�, ��,� and ��,�. 
 

Fig. 13 Reducing vulnerability: ratio of performance change in 

term of aggregate performance IP, when the 

proportion,		"�,�
, of  directed dependencies decreases in an 

interdependent system. 

 
A dramatic improvement was observed for relatively 
vulnerable systems, e.g., systems where ��,� � ��,� � 1 
and ��,� � ��,� � 1.0. For such systems, by turning 30% 
of the directed links to undirected links, over 100% 
performance improvement can be achieved. The 
improvement reaches 270% when 50% of the directed 
links were turned into undirected links. However, the 
effectiveness of this strategy reduces for systems with 
large  ��,�  and ��,�  or small ��,�  and ��,�.	  For 
example, the 270% improvement achieved in the last case 
drops to only about 30% when ��,� � ��,� � 2.  Hence 
we can conclude that changing directed links into 
undirected links is a cost effective way to reduce 
vulnerability. Without introducing additional dependency 
links (and therefore cost), this strategy is extremely 
effective for systems that are particularly vulnerable to 
cascading failure, i.e., those with a significant extent of 
dependency, but a low degree of redundancy in these 
dependencies.  
 
6.2 Hardening High Degree Nodes 
Since the failure of high degree nodes is more likely to 
lead to large scale network fragmentation, we investigated 
the effect of hardening or protecting high degree nodes as 
a means to reducing vulnerability. We explore the strategy 
that improves the hardness of a high degree node and 
make it less likely to fail when facing an attack. In our 
experiments, we assign the level of hardening that a node 
receives as proportional to its degree such that the failure 
probability of a node is inversely proportional to its 
degree:  

��2�	~	 12�
 (4) 

 
where α ; 0. When α � 0, ��2� has the same value for all 
k, i.e. the model simulates a scenario that all nodes receive 
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same level of protection. For α � 0, higher values indicate 
increased hardening of high degree nodes. By tuning α, we 
can configure the significance of protecting high degree 
nodes. Fig. 14 plots how the performance of SF-SF and 
ER-ER systems improves when we increase α. Aggregate 
performance IP is shown to increase with α  for all the 
networks considered in our research. SF-SF networks 
exhibit the greatest performance gains because protection 
of their high degree hub nodes reduces the probability of 
large scale fragmentation. The more investment we put on 
protecting high degree nodes, the more performance gain 
we obtain. However care must be taken when practising 
this method due to the cost involved.   
 

Fig. 14 Performance improvement when high degree nodes are 

hardened. Aggregate performance, IP, is plotted as function of 

� as specified in Eq. (4). Both SF-SF and ER-ER systems have 

dependency setting 	�	,
 	 	�
,	 	 1, �	,
 	 �
,	 	 1.0 and 

��,� 	 ��,� 	 2. 

 
In summary, the vulnerability of an interdependent 
network is shown to be reducible either by optimising 
inter-network connections, or by hardening high degree 
nodes. Our additional research on reducing the 
vulnerability of interdependent systems is in the 
supplementary document.   
 

7. Conclusions 

This paper presents an approach to studying the 
vulnerability of interdependent systems. The proposed 
network model characterises interdependencies along 
multiple dimensions, and provides the capacity to capture 
many of the interdependencies encountered in natural, 
engineered or social systems. Unlike previous research 
where the description of interdependency was more 
limited, thereby enabling analytical solutions to be found, 
we have sought to understand interdependencies through 
numerical simulations. Our research reveals that varying 
the nature of cross-network dependency can modify the 
behaviour of an interdependent system and hence change 
the conditions for its safe operation. The most salient 
findings are: 

• The directionality, extent and redundancy that we use 
to characterise inter-network dependency are 

pertinent properties that mediate the performance of 
an interdependent system.  

• The disruption to a system can be disproportionate to 
attack size when inter-network dependent 
configurations are sub-optimal. 

• Networks with directed dependencies are less robust 
than those with undirected dependencies.  

• The degree of redundancy in inter-network 
dependencies can have a differential effect on 
robustness depending on their direction. 

The above observations are applicable to a range of 
classical network topologies, which include structures 
observed in many social and engineered systems.  
However, the performance of interdependent networks is 
heavily influenced by attack mechanisms. A large scale 
system is more likely to experience abrupt collapse during 
a cascade than a small scale system does. Networks with 
hubs, or broad degree distributions were more sensitive to 
degree biased attacks, and they exhibited much wider 
variability in their system response when the surviving 
components of these systems are small. 

The most vulnerable interdependent configuration is for 
networks to have each node connected to another network 
by a directed link, but with few redundant connections.  As 
most real-world systems have a very small number of 
redundant inter-connections and such interdependencies 
are rarely wired mutually or symmetrically between 
networks, we expect they often operate near their critical 
points and significant cascading failure could be triggered 
by a relatively small scale initial disruption. This is 
consistent with real examples of failure across inter-
connected infrastructure systems, such as the 2003 Italy 
power blackout [37] and the 2009 UK Cumbrian floods 
[38]. Typically, infrastructure systems are managed 
independently of each other so understanding the best 
strategies to protect the network for which an operator is 
responsible must account for dependencies with other 
networks.  We have demonstrated several strategies for 
improving the performance of interdependent systems and 
shown that the magnitude of cascading failure can be 
significantly decreased when the directionality of inter-
network dependencies is optimised. Hardening high 
degree nodes is another effective way to improve system 
performance. 
 
The model describes important features of network 
interdependencies that have been observed in real systems. 
The results represent an improved understanding of 
complex interdependencies and risks associated with them. 
We recognise that they do not capture all the processes 
associated with failure of real systems but provide 
conservative insights into the implications of different 
interdependent structures on network performance.  We 
are extending this analysis to consider issues around 
capacity and flow in network connections and the spatial 
properties of systems. 
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