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1. Performance Comparison of Interdependent and Isolated Systems   

We compare the performance of an interdependent system against that of a system which has each of its sub-
networks isolated or independent from one another. Fig. S1 plots the relative size, P, of the giant component of 
network A and B, as function of q (the size of attack to network A), for a undirected interdependent system with 

��,� � ��,� � 1.0		and 	��,� � ��,� � 2. The results are compared against those of isolated, but otherwise 
identical, networks, A’ and B’. A failure threshold		� is observed for the interdependent system. When 	 
 	�, a 
giant component exists in both networks A and B; when 	 � 	�, both networks become completely fragmented. 
The disruption to network A results from the initial attack plus the iterative propagation of cascading failure, 
while the disruption to network B is purely caused by cascading failure. Therefore it is not surprising that 
network B performs better than network A. While an isolated network A undergoes continuous transition at 	� 
(i.e., ��   is continuous at 	� ), an abrupt transition is observed at  	�  for an interdependent system. For an 
interdependent system in which A and B are fully dependent on each other, �� and �� at 	� (denoted as ��� 	and  
���
 are non-zero, and abruptly drop to zero when 	 � 	� . When either ��,� � ��,� is sufficiently large or 
	��,� � ��,� is sufficiently small, the performance of an interdependent system approaches that of a system 
which has each of its sub-networks isolated or independent from one another.  

 
Fig. S1 Performance comparison of interdependent and isolated systems: relative size, P, of giant components for 

networks A and B, as function of, q, the size of initial disruption to network A, when ��,� � ��,� � 1.0, 	��,� � ��,� �

2, and all dependencies are undirected. The results are compared against those of isolated, but otherwise identical, 

networks, A’ and B’. 

2. Performance Study of Undirected systems  

For an undirected system, as interdependencies are symmetric, the following condition must always be satisfied:  

	�� ∗ ��,� ∗ 	��,� � �� ∗ ��,� ∗ ��,� (S1) 

That is, the total number of dependences of one network, A, on another network, B, must always equal the total 
number of dependences of network B on network A.   

We studied the performance of undirected systems when ��,�	and ��,� take different values, and the results 
are plotted in Fig. S2(a)1. We observed that the ratio  ��,�:��,� , determined by 	��,�: ��,�, plays an important 
role in determining system performance. The larger  ��,�:��,�, the better the system performs when an attack 

                                                           
1
 Though, in principle, both ��,� and ��,�	may be arbitrary non-negative integers, Eq. (S1) restricts the values that ��,� 

and ��,�		may take. For example, for a system where �
�,�

� 0.5 ∗ �
�,�, instead of 1, the minimum value for ��,� is 2 (so as 

to ensure an integer value for  ��,�). This is reflected in Fig. S2(a) for the system with ��,�
� 	0.5, ��,�

� 1.0 and  ��,�
�

0.5 ∗ �
�,�.  



is initiated in network A. However, systems with the same ��,�:��,� do not deliver the same performance 
when different values are given to	��,�  and ��,� . For systems with the same ��,�:��,� , smaller ��,�  and 
��,�are better for system performance. For example, when ��,�:��,� 	 � 1.0, a system with ��,� �	��,� �
0.5	performs better than a system with ��,� �	��,� � 1.0. 

We also studied the performance of undirected systems when ��,� 	and ��,�	take different values, and results are 
presented in Fig. S2(b)2. A strong negative correlation between IP and ��,�	(and ��,�
	 was identified, i.e., 
increasing ��,�	(and ��,�
	, reduces IP.  The ratio  ��,�: ��,� , determined by 	��,�:��,�, plays an important 
role in deciding system performance. The smaller ��,�: ��,�, the better a system performs when an attack is 
initiated in network A. However, systems with the same ��,�: ��,� ratio do not deliver the same performance 
when different values are assigned to	��,�	and	��,� . For systems with the same ��,�: ��,� , the larger 
	��,�	and	��,�, the better the system performs. For example, when ��,�: ��,� � 1.0,  a system with 	��,� �
	��,� � 2 performs better than a system with 	��,� �	��,� � 1. 

(a)  

 

(b)  

 

Fig. S2 Undirected systems. (a) aggregate performance IP as a function of ��,�  (b) aggregate performance IP as a function of  

	��,�. 

 
The joint effect of the redundancy, �, and extent, �, on the performance of undirected systems are summarised 
in Fig. S3. By varying ��,� � ��,� � �  and ��,� � ��,� � �  respectively, a wide range of undirected 
systems were simulated. Results in Fig. S3 show that an undirected system is most vulnerable when ��,� �
��,� � 1  and ��,� � ��,� � 1.0,  and its performance improves when ��,� � ��,�  increases its value or  
��,� � ��,� decreased its value. 
 

 
Fig. S3 Aggregated system performance of undirected systems. IP is plotted as a function of  ��,� � ��,� � 
  and  

��,� � ��,� � �.  

                                                           
2 ��,� and ��,�	are in the range of 0.0 to 1.0 . However  Eq. (S1) can restrict the values that  ��,� and  ��,� may take. For 
example, for a system with ��,� � 2 ∗ ��,�, in order for both ��,� and  ��,� to be valid, the range of 	��,�	 is [0.0, 0.5] and 
the range of ��,� is [0.0, 1.0].  This is reflected in Fig. S2(b) for the system with ��,� � 2, ��,� � 1 and ��,� � 2 ∗ ��,�.  



 
 
 

3. Performance Study of Directed systems  
By contrast with undirected coupling, dependencies within a directed system are asymmetric. Therefore the 
number of dependencies of network A on network B does not have to be the same as the number of 
dependencies of network B on network A. That is, 	��,� and ��,�	�or 	��,� and 	��,�
	do not constrain one 
another as in an undirected setting. This allows a wide range of network coupling modes to be generated to 
simulate real world systems. Fig. S4 shows the performance of directed systems where the dependent 
redundancy and dependent extent from its sub-networks are different from one other. When the initial 
disruption starts in network A, we observed that: 

• ��,� plays a more dominant role than 	��,�. When we fix ��,� and increase 	��,�, IP increases, but it 
does not increase as fast as when we fix ��,� and increase ��,�.  

• ��,� plays a more important role than ��,�. When we fix ��,� and increase ��,�, IP decreases, but it 
does not decrease as fast as when we fix ��,� and increase ��,�. 

 
This is because when the disruption is initiated in network A, 		��,�  and ��,�	determines the magnitude of 
failure propagation from A to B at the first iteration of cascading failure. The failure probability of a network B 
node is proportional to ��,� and inversely proportional to ��,�. Therefore, increasing ��,� directly increases 
the extent to which failure is cascaded to network B, and consequently increases the chances of failure 
propagation in the subsequent stages of the cascade. On the other hand, increasing  ��,� directly reduces failure 
cascaded to network B, which in turn reduces the chances of failure propagation in the further iterations of the 
cascade. Our experiments reveal that ��,� impacts on system performance only when ��,� is sufficient large, 
and 	��,�  impacts on system performance only when ��,�  is sufficient small. When ��,�  is small (or 
��,�	is	large
, varying ��,�(or 	��,�) has no significant effect on system performance. 

(a)  

 

(b)  

 
Fig. S4 Performance of directed systems. (a) aggregate performance, IP, as a function of ��,� and ��,� , where 

	��,� � 	��,� � 1.0 (b) aggregate performance, IP, as a function of  	��,� and 	��,�, where ��,� � ��,� � 2. 

 
A directed system is more vulnerable than an undirected system. Fig. S5 and Fig. 5 (of the main paper) show 
that a directed system has a smaller failure threshold than an undirected system, and therefore is more 
vulnerable to cascading failure. The performance of a directed system approaches that of an undirected system 
when ��,� � ��,� � 	� is sufficient large or ��,� � ��,� � � is sufficient small.  
 



 
Fig. S5 Performance comparison of undirected and directed systems: failure threshold, 
�, as a function of ��,� � ��,� �

�, where ��,� � ��,� � 	2. 

4. Impact of Network Topology and Disruption Strategy on System 

Performance 

Additional to the analysis of coupled ER networks as reported in the main paper, we also consider the 
performance of interdependent systems that couple two Barabási–Albert scale free (SF) networks, and systems 
that couple ER and SF networks. The experiments were carried out over networks of the same size and order as 
coupled ER networks, i.e., each sub-network has 10000 nodes with average node degree of 4. The aggregate 
performance of these systems under random node attack is presented in Fig. S6. Comparison of these results 
with Fig. S3 of this document and Fig. 3 of the main paper shows similar patterns in overall performance to 
those reported for the ER-ER networks.  

(a)SF-SF, undirected 

 

(b)ER-SF, undirected 

 

(c)SF-ER, undirected 

 

 

(d)SF-SF, directed 

 

(e)ER-SF, directed (f)SF-ER, directed 

 
Fig. S6. Simulation results for pairs of coupled networks of varying topology under random attack. Aggregate performance 

IP is plotted as a function of  ��,� � ��,� � 
  (vertical axis) and  ��,� � ��,� � � (horizontal axis) (a) IP for SF-SF 

systems with undirected dependencies  (b) IP for ER-SF systems with undirected dependencies - where network disruption 

starts in ER (c) IP for SF-ER systems with undirected dependencies - where network disruption starts in SF (d) IP for SF-SF 

systems with directed dependencies (e) IP for ER-SF systems with directed dependencies (f) IP for SF-ER systems with 

directed dependencies. 



 

In the main paper, we have reported on the performance of ER-ER and SF-SF systems under deliberate attacks. 
We also carried out experiments to investigate the performance of systems that couple ER and SF network under 
deliberate attacks. Fig. S7 shows the aggregate performance of these systems under two types of deliberate 
attack: high degree node biased attack (henceforth highBias attack) and low degree node biased attack 
(henceforth lowBias attack). Results presented in Fig. 12 (of the main paper) and Fig. S7 demonstrate that the 
SF-SF and SF-ER are most heavily impacted by highBias attacks, but perform better than ER-ER or ER-SF 
networks subjected to lowBias attacks. The degree distribution of SF networks leads to more highly connected 
hub nodes compared to ER networks. Consequently highBias attacks lead to more fragmentation in an SF 
network than in an ER network. On the other hand, due to the existence of a large portion of low degree nodes 
in SF networks, when lowBias attack is employed, nodes of lower connectivity are preferentially targeted so the 
SF-SF and SF-ER systems outperform the other two configurations as a result of a lowBias attack. 

 

(a) SF-ER, highBias (b)SF-ER, lowBias 

 
(c) ER-SF, highBias (d) ER-SF, lowBias 

 
 

Fig. S7 Results for systems under lowBias and highBias attacks. Aggregate performance IP is plotted as a 

function of  ��,� � ��,� � 
  (vertical axis) and  ��,� � ��,� � � (horizontal axis), under directed 

dependency setting (i.e.	��,� � 	��,� � 1
. 

 

5. Reducing Vulnerability: Outlook and Discussion  
 

5.1 Optimising Interdependency Redundancy 
We studied the effect of interdependency redundancy on the performance change of directed systems. Since a 
directed system with 	��,� � 	��,�	 � 1	performs worst, we used it as a baseline system to study how the 
performance of a directed system may be improved. We use  ��  to denote the ratio of change from one 
interdependency setting to another.   ��	is calculated as follows, where !�� and !�	 are aggregate performance 
measures under interdependency setting x and y.  
 

 ��= �!�	 " !��
/!��  (S2) 



 
Three strategies were studied and results are presented in Fig. S8. Strategy I fixed ��,� � 1 and increased 	��,�. 
Strategy II fixed ��,� � 1 and increased ��,�. In the third case we increased both  ��,� and ��,� at the same 
rate. The performance of a directed system improves at the fastest rate in strategy III, but this strategy can be 
expensive to implement since it requires the creation of additional supporting links from both networks. While 
strategy II achieves slightly lower performance than strategy III, it is significantly more affordable since it 
requires only 50% of the additional dependencies. Strategy I is the least desirable in terms of the rate of 
improvement it achieves. For example, with strategy I, increasing  ��,�  from 1 to 4 improves system 
performance by around 400%. For the same investment (increasing  ��,� from 1 to 4), strategy II improves the 
system performance by around 600%.  Increasing ��,� and	��,� simultaneously is the most desirable solution 
to reduce the vulnerability of directed systems. When the cost of investing in additional redundancy is 
considered, adding further support from the attacked network to the other network is more effective than the 
other way around.  
 

  
Fig. S8 Reducing vulnerability: ratio of performance change ���	when interdependent redundancy, K, was increased 

under three different strategies. 

5.2 Supporting High Degree Nodes 

Since the failure of high degree nodes is more likely to lead to large scale network fragmentation, we 
investigated the effect of protecting high degree nodes as a means of improving system performance. One way 
of doing this is to increase the support of a high degree node and make it less vulnerable to cascading failure. 
We name the this strategy HDMS (High Degree node getting More Support). Rather than assigning 
interdependencies randomly across networks, the likelihood that node u in one network (e.g., network A) gains 

support from a node in another network (e.g., network B) increases exponentially with u’s degree, $
 : 
 

�%&

�,�' 	∝ 	)� ∗ �1 * )�

�             (S3) 

Fig. S9 shows how by fixing )�	and increasing )�, we can vary the interdependent links for high degree nodes. 
When )� is small, interdependencies are uniformly distributed, i.e., each node has similar support. The support 
received by high degree nodes increases with increasing )�. 



 
Fig. S9 The relation between node degree and the support that a node receives in a SF-SF system with HDMS protection 

strategy.  We fix  �		 � 0.02 and vary ��	 in the range 0.01 to 0.05. The plot is generated for a directed system with 2000 

nodes and with average intra-network degree of 4, where ��,� � ��,� � 	2 and ��,� � ��,� � 1.0.  

 

Our experimental results show that for a range of HDMS strategies of increasing )� (and consequently the 
number of supporting interdependent links) there is little gain in aggregate system performance.  However Fig. 
S10 shows that increasing )� does reduce the variability of P and leads to a more consistent failure response. 
This can help network operators better plan for a respond to failure.   

 
Fig. S10 Simulation results for SF-SF HDMS systems where inter-network dependencies are directed and ��,� � ��,� �

1.0 and  ��,� � ��,� � 2. Frequency of relative size of giant component P is plotted as a function of q and P.  (a) 

�� � 0.01.  (b) �� � 0.02.  (c) �� � 0.03.   

 


