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In this Supplemental Material we demonstrate how the
mean-field theory of the optical response of an atomic
sample emerges from the complete theory of light-
induced correlations. The full theoretical model is em-
ployed in the main section in the stochastic numerical
simulations of the cooperative response.

Hierarchy of correlation functions for resonant
atomic sample

We will briefly review the coupled theory for light and
atoms that was developed in Refs. [1, 2]. The total elec-
tric field E(r) is expressed in terms of the atomic polar-
ization density P(r) by the monochromatic expression,

E(r) = E0(r) +

∫
d3r′ G(r− r′)P(r′) . (1)

Here all the amplitudes E(r), E0(r), and P(r′) corre-
spond to the positive frequency components oscillating
at the dominant frequency ω of the incident light field.
The incident field ε0E0 would be the electric displace-
ment of the driving light if the matter were absent, and
G(r − r′) represents the dipole field propagator, a 3 × 3
matrix. The expression G(r − r′)d is equal to the usual
positive-frequency component of the electric field from
a monochromatic dipole with the complex amplitude d,
given that the dipole resides at r′ and the field is observed
at r [3]. The explicit expression is
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1
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− d

3ε0
δ(r) , (2)

with n̂ = r/r and k = ω/c. The integral in Eq. (1) is not
convergent at the origin. The expression (2) should be
understood in such a way that the integral of the term
inside the braces over an infinitesimal sphere enclosing
the origin vanishes [1]. The delta function part then en-
sures that the Gauss law in a volume enclosing the origin
is satisfied [3].

The expression (1) is the integral representation of
Maxwell’s equations for the electric field amplitude in an
atomic medium. Although it provides the scattered field
in terms of the atomic polarization, there is general no
simple way of finding P(r′). In order to solve the coupled
theory for light and matter we derived from quantum field
theoretical formalism a hierarchy of equations of motion

for the correlation functions of atomic density and polar-
ization. In the limit of low light intensity, these involve
correlation functions ρp(r1, . . . , rp) for the ground state
atomic positions at points r1, . . . , rp and correlation func-
tions for ground state atoms at r1, . . . , rp−1, given that
there is polarization at rp, Pp(r1, . . . , rp−1; rp). For a
J = 0 → J ′ = 1 atomic transition the response of the
medium is isotropic, and we have a hierarchy of equa-
tions of motion for the positive frequency components of
the correlation functions

Ṗp(r1, . . . , rp−1; rp) =

(i∆− γ)Pp(r1, . . . , rp−1; rp) + iζE0(rp)ρk(r1, . . . , rp)

+ iζ
∑
q 6=p

G(rp − rq)Pp(r1, . . . , rq−1, rq+1 . . . , rp; rq)

+ iζ

∫
d3rp+1G(rp − rp+1)Pp+1(r1, . . . , rp; rp+1), (3)

with p = 1, 2, . . .. Here ∆ = ω − ω0 is the detuning from
the atomic resonance ω0, γ is the HWHM linewidth of
the transition, ζ = D2/~, and D is the dipole moment
matrix element.

The peculiar feature of Eq. (3) is the third line. It
describes p atoms interacting with each other via the
dipole-dipole interaction. The light mediates interactions
in which photons are repeatedly exchanged by the atoms
at positions r1, . . . , rp, corresponding to recurrent scat-
tering events. Such processes are responsible for subra-
diant and superradiant resonances.

The full set of equations (3) can be solved by stochastic
classical-electrodynamics simulations exactly, apart from
statistical fluctuations [4]. In each stochastic realization
we sample the positions of the atomic dipoles so that they
have the proper correlation functions ρp(r1, . . . , rp), and
then solve the optical response for the given set of atomic
positions from Eqs. (3) and (4) of the main text. Average
over many realizations will give, say, the electric field that
would be obtained by substituting the exact solution of
Eqs. (3) to the right-hand side of Eq. (1). In the main
text this is implemented for uncorrelated positions of the
atoms in a disk-shaped container.

Mean-field response

The lowest-order equation in the hierarchy (3) repre-
sents the equation of motion for the polarization and



2

reads

Ṗ(r1) = (i∆− γ)P(r1) + iζρ(r1)E0(r1)

+ iζ

∫
d3r2 G(r1 − r2)P2(r1; r2) . (4)

Suppose we factorize here the lowest nontrivial correla-
tion function P2(r1; r2) as

P2(r1; r2) = ρ(r1)P(r2) , (5)

ignoring any light-induced correlations between the
ground state atom at r1 and the polarization at r2. The
polarization may be solved from Eqs. (4) and (5), and
the scattered light is then obtained from Eq. (1). This
represents the mean-field response of the system.

In this work we compare the full numerical solution of
the stochastic simulations, which represents the solution
of Eqs. (3), with the mean-field response. In order to
derive the mean-field solution we assume an infinite slab
of atoms with a uniform density and thickness h, such
that the atoms fill the region z ∈ [0, h]. We illuminate the
sample by an incident plane wave E0(r) = E0 ê exp (ikz),
where ê denotes the polarization unit vector for light.
Equation for the scattered light (1), together with the
stationary mean-field equation for the polarization,

P(r) = αρ(r)E0(r) + αρ(r)

∫
d3r′ G(r− r′)P(r′) , (6)

where α = −D2/[~(∆ + iγ)] denotes the atomic po-
larizability, can then be solved exactly by substituting
P(r) = P+ ê exp(ik′z) + P− ê exp(−ik′z), for 0 ≤ z ≤ h,
where the complex k′ [Im(k′) > 0] represents a damped
plane wave. Specifically the transmission properties of
light can be obtained by solving for the electric field am-
plitude E(r) = ET ê exp (ikz), for z > h. In this way, we
find an analytic low-density expression for the resonance
shift for the transmitted light [5]

∆L = ∆LL−
3

4
∆LL

(
1− sin 2hk

2hk

)
; ∆LL = − ρD

2

3ε0 ~
.

(7)
There is an alternative approach to derive the mean-

field result that further illustrates the role of recurrent

scattering. This argument is very similar to the one
we used in the derivation of the Lorentz-Lorenz shift
in Ref. [2]. We assume that the ground state atoms in
the absence of light are initially uncorrelated, such that
ρp(r1, . . . , rp) = ρ1(r1) . . . ρ1(rp). Suppose we keep all
the equations of the hierarchy (3), but neglect the re-
current scattering terms, i.e., the third line of Eq. (3)
for each p = 1, 2, . . .. Then the steady-state solution is
obtained by the following set of damped plane waves

Pp(r1, . . . ; rp)

=

{
ρp−1 ê (P+e

ik′zp + P−e
−ik′zp), 0 ≤ z1, . . . , zp ≤ h;

0, otherwise ,

(8)
With this substitution every steady-state equation in the
hierarchy is effectively reduced to Eq. (6), and we find the
same mean-field Lorentz-Lorenz shift and the collective
Lamb shift as above.
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