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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

ON THE ANALYSIS OF STRUCTURE IN TEXTURE

by Ben Waller

Until now texture has been largely viewed as a statistical or holistic paradigm: textures

are described as a whole and by summary statistics. In this thesis it is assumed that

there is a structure underlying the texture leading to models, reconstruction and to scale

based analysis. Local Binary Patterns are used throughout as the basis functions for

texture and methods have been developed to reconstruct texture images from arrays of

their LBP codes. The reconstructed images contain identical texture properties to the

original; providing the same array of LBP codes. An evidence gathering approach has

been developed to provide a model for each texture class based on the spatial structure

of these elements throughout the image. This method, called Evidence Gathering Tex-

ture Segmentation, provides good results for segmentation with smooth boundaries and

minimal oversegmentation, when compared with existing methods. Analysing micro-

and macro-structures confers ability to include scale in texture analysis. A novel com-

bination of lowpass and highpass filters produces images devoid of structures at certain

scales; allowing both the micro- and macro-structures to be analysed without occlusion

by other scales of texture within the image. A two stage training process is used to

learn the optimum filter sizes and to produce model histograms for each known texture

class. The process, called Accumulative Filtering, gives superior results compared to

the best multiresolution LBP configuration and analysis only using lowpass filters. By

reconstruction, by evidence gathering and by analysis of micro- and macro-structures,

new capabilities are described to exploit structure within the analysis of texture.
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Chapter 1

Context and Contributions

1.1 Context

Texture is an important property of images, representing the structural and statistical

distribution of elements throughout the image. Images can contain a single texture, for

example an image of a brick wall, or multiple textures of varying distribution throughout

the image such as a satellite image containing textures representing urban areas, fields,

forest and water. Image segmentation by texture has a wide range of applications, from

analysis of medical images (Kontinen et al., 1997) to remote sensing (Lucieer et al.,

2003). Additionally there are industrial applications of texture analysis which include

visual inspection and defect detection (Mäenpää et al., 2003). Texture classification

typically relies on using a measure of similarity between a texture sample and known

texture classes to classify the sample. Segmentation is usually performed either by

classification of each pixel separately via a windowing method (Mäenpää et al., 2000b)

or by an iterative split and merge algorithm (Ojala and Pietikäinen, 1999).

There are two main types of textures: regular textures that adhere to a repeated struc-

ture and irregular textures that follow a statistical distribution but do not have a re-

peating pattern. Figures 1.1(a) and 1.1(b) are examples of regular textures and Figures

1.1(c) and 1.1(d) are examples of irregular textures. Texture descriptors can be divided

into two types; structural and statistical. Structural approaches apply a transform, such

as the Fourier transform, to the image and then obtain a set of measurements which

describe the texture (Nixon and Aguado, 2012). Statistical approaches classify textures

by measuring a property of the image and comparing the rate of occurrence of this to

that obtained from training images. A well-known example of this is the co-occurrence

matrix, developed by Haralick et al. (1973), where the number of pairs of pixels sepa-

rated by a particular distance and orientation with specific intensities are counted. The

matrix of number of pairs is used as the texture descriptor for classification. Another

1
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(a) (b)

(c) (d)

Figure 1.1: Texture Examples

popular and more modern operator is Local Binary Patterns (LBP) which uses the in-

tensity at a point to threshold surrounding pixels to produce a code representing the

texture pattern at that point (Ojala et al., 2002b). A histogram of the texture codes

is used as the texture descriptor. Both operators are well established and the LBP has

continued to receive significant attention over the years with many published extensions

and applications (Guo et al., 2010; Bhatt et al., 2010).

Using a statistical texture classification algorithm on regular textures may result in er-

rors because there could be another texture class with the same statistical distribution

arranged in a different structure. If such a texture is present in the database, distinguish-

ing between the two may be impossible with this method. Similarly, using a structural

algorithm on irregular textures could result in errors because the algorithm will attempt

to fit a structure to the image and this may vary widely across the sample.

Most textures taken from real images contain structures present at different scales.

Consider the image of the stone wall in Figure 1.2. The arrangement of the stones is
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Figure 1.2: Texture Example

the large scale component of the texture and is referred to as the macro-structure. The

texture of the surface of the stones is the small scale component, referred to as the micro-

structure. It is important to note the distinction between micro- and macro-structures

and micro- and macro-textures; the latter referring to entire textures at either a large or

small scale. This is a relative description between separate images, whereas the structure

terminology is relative between scales within an image.

One advantage of the Fourier transform is the ability to reconstruct so as to understand

frequency content. Signals can be decomposed into their constituent frequencies for

analysis, filtering and processing before being reconstructed back into their original

form. To date, this notion has been absent in texture analysis. The ability to decompose

texture into its basis functions for analysis and processing and then reconstruct back to

the image would be of great use.
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1.2 Contributions

The primary motivation underlying this thesis is to understand the structure of texture.

Regardless of scale, all textures are made up of texture elements, or textels. These

fundamental patterns represent structures such as edges, corners, spots and line ends.

Each textel can be represented in 3x3 pixels and Local Binary Patterns provide a code

for each possible configuration in this grid. Contrast is not a property of texture so

the thresholding nature of the LBP’s calculation makes the set of LBP codes perfect

for acting as the basis functions of texture: no textels exist that cannot be uniquely

represented by an LBP code. The texture content of an image can be stored in an array

of these codes. Analysis of the array can aid texture segmentation and classification and

is an essential component in the three main contributions of this thesis:

• Algorithms to reconstruct images from an array of their LBP codes

• An evidence gathering algorithm using the structure of LBP codes for texture

segmentation

• A filtering technique to improve existing methods of texture segmentation

The first contribution of this thesis is an investigation into methods of reconstructing

an image from its LBP array. Several methods are proposed here and the Minimum

Contrast Algorithm (MCA) provides a reconstructed image that completely matches the

textural properties of the original, while retaining some of the contrast. This algorithm

has been published in [4]. Several methods are also proposed here for reconstruction from

uniform LBP codes: a harder challenge due to the absence of the rotation information

of the textels. It is demonstrated that it is possible to reconstruct an image such that

the reconstructed image produces the same array of uniform LBP codes.

The understanding of the LBP process and the information contained within led to the

development of the further contributions in this thesis. Histograms of LBP codes for

texture are a very successful statistical operator for both classification and segmentation,

however for regular textures the structure is destroyed when the histogram is generated.

Texture elements on their own only contain information on a small area of an image

and do not encode anything about the overall structure of the texture, which is the

relationships between distant texture elements. This is stored in the arrangement of the

codes and the MCA used this arrangement to calculate the relationships. There is a

requirement, therefore, for a feature vector which stores the LBP codes without losing

the structural information. The Generalised Hough Transform (GHT) (Ballard, 1981)

has been used in template matching to search an image for instances of any arbitrary

shape. It forms a shape descriptor by calculating the gradient at each pixel on the

shape’s perimeter and storing this in a table along with the vector giving the translation

from the pixel to the centre of the shape. This principle can be extended to texture
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by replacing the gradient with LBP code and perimeter with area. In this manner,

the LBP codes are stored with their structure for texture analysis. This method, called

Evidence Gathering Texture Segmentation, is presented in Chapter 4 of this thesis. This

new approach is the first use of evidence gathering to determine texture and has been

demonstrated to give very good results for texture segmentation, as published in [1],

while maintaining smooth texture boundaries and minimising noise. A colour extension

to the evidence gathering procedure is also presented: It uses a new colour quantisation

scheme called Huesat based on hue and saturation to provide colour classes which are

integrated into the evidence gathering method. This novel texture segmentation method

has been published in [2].

LBP codes can also fail to distinguish between micro- and macro-structures; leading

to a loss of information that could be useful for texture analysis. Image filtering can

be used to remove the structures at certain scales from the image. The chapter on re-

construction shows that a better reconstruction of contrast can be obtained if separate

reconstructions from filtered versions of the original image are combined into a single

reconstruction. This principle is applied to texture segmentation in Chapter 5. This

found that combining the feature vectors from applying the texture with a number of

different filters can give a more complete description which includes micro- and macro-

structure information. The contribution is a scale based technique which uses a novel

combination of lowpass and highpass filters to provide a feature vector for texture anal-

ysis which focusses equally on the micro- and macro-structures that form the image.

This process is called Accumulative Filtering and has been published in [3].

[1] B.M. Waller, M.S. Nixon and J.N. Carter. Texture segmentation by evidence

gathering. In Proc. of the 3rd British Machine Vision UK Student Workshop

(BMVC’11 WS), Dundee, UK, pages 91–101, 2011.

[2] B.M. Waller, M.S. Nixon and J.N. Carter. Colour texture segmentation using ev-

idence gathering. In Proc. of the 1st IET Image Processing Conference (IPR’12),

London, UK, 2012.

[3] B.M. Waller, M.S. Nixon and J.N. Carter. Analysing micro- and macro-structures

in textures. In Proc. of the 8th International Conference on Signal Image Tech-

nology and Internet Systems (SITIS’12), Sorrento, Italy, 2012.

[4] B.M. Waller, M.S. Nixon and J.N. Carter. Image Reconstruction from Local Bi-

nary Patterns. In Proc. of the 9th International Conference on Signal Image

Technology and Internet Systems (SITIS’13), Kyoto, Japan, 2013.
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1.3 Thesis outline

The thesis is organised as follows: Chapter 2 summarises the existing work on the

Local Binary Pattern operator that is used extensively throughout this thesis to provide

texture information and Chapter 3 describes the methods by which an image can be

reconstructed from its LBP codes. Chapter 4 describes the evidence gathering algorithm

and Chapter 5 describes the scale based technique. Chapter 6 concludes the thesis and

outlines the future work that will be done.



Chapter 2

Local Binary Patterns

2.1 Introduction

Local Binary Patterns are texture descriptors which label individual pixels in an image

with a code corresponding to the local texture pattern surrounding the pixel. First

introduced by Ojala et al. (1996), the earliest form of the LBP used the centre pixel

of a 3x3 grid to threshold each of the eight neighbouring pixels. If the intensity of the

neighbouring pixels were greater than or equal to the centre pixel they were assigned a

label of ‘1’. If the intensity was lower than the centre pixel they were assigned the label

‘0’. Each neighbouring pixel was assigned a weighting dependant on its position relative

to the centre pixel. The weightings multiplied by the threshold outcome were added to

give the LBP code for the centre pixel. This is a unique number representing the texture

pattern. This process is illustrated in Figure 2.1, where the LBP code is calculated to

be 169.

A histogram containing the frequency of occurrence of each LBP code over the whole

image is obtained and compared to the histograms of known textures to classify the

image into one of the texture classes. The comparison is achieved using a dissimilarity

6 5 2

7 6 1

9 3 7

(a) Pixel intensity values

1 0 0

1 0

1 0 1

(b) Threshold results

1 2 4

8 16

32 64 128

(c) Pixel weights

1 0 0

8 0

32 0 128

(d) Result

Figure 2.1: LBP Calculation

7
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g1

g2

g4'

g3

g3'

g1'

g4

g2'

Figure 2.2: Opposite neighbours for SCOV calculation.

measure and the sample will be classified as the texture with the lowest score when the

histograms are compared. A popular measure is the Kullback–Leibler divergence:

L(S,M) = −
N∑
n=1

Sn ln(Mn) (2.1)

where N is the number of histogram bins, Sn and Mn are the probabilities of bin n in

the sample and model histograms respectively. Supervised texture segmentation can be

performed by placing a disk on each pixel and calculating the histogram of LBP values

for each pixel on the disk and then classifying the central pixel based on the dissimilarity

of the histogram against the training data (Mäenpää et al., 2000b). Additionally, an

unsupervised split and merge technique was proposed by Ojala and Pietikäinen (1999)

to segment images by texture.

2.2 Extensions

In addition to being used on its own, the LBP operator was combined with two other

processes. The first was image contrast, which was calculated by finding the difference

between the average intensity of the pixels in the neighbourhood which were assigned the

value ‘1’ by the LBP algorithm, and the average of those assigned ‘0’ (Ojala et al., 1996).

This formed the LBP/C operator. The second process was the covariance (SCOV), which

measures the pattern correlation as well as the local contrast and was combined with

the LBP in Harwood et al. (1995). It is calculated using the following equation:

SCOV =
1

4

4∑
i=1

(gi − µ)(g
′
i − µ) (2.2)
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In the equation µ is the local mean, g1 to g4 are four of the pixels surrounding the

centre pixel and g
′
1 to g

′
4 are the opposite pixels as shown in Figure 2.2. When combined

with the LBP, the LBP/SCOV operator is formed. Experimental results show that the

combined operators give lower classification error rates than the LBP on its own, with

LBP/C being slightly better than LBP/SCOV (Ojala et al., 1996). Research has also

shown that including the LBP in a multichannel texture descriptor gives significantly

better results than a multichannel method not including the LBP (Ojala and Pietikainen,

1998).

2.3 Multi-scale LBP

The LBP operator underwent several evolutions before becoming the powerful texture

operator it is today. The original form only draws upon information within a 3x3 pixel

window to determine the texture structure at a point, which is a limiting factor for images

containing larger scale textures. Mäenpää et al. (2000b) introduced the concept of a

multi-predicate LBP, whereby the neighbourhood size was increased beyond 3x3 to 5x5

and 7x7 pixels. By concatenating the histograms obtained from each predicate, the LBP

becomes multi-scaled since it can classify any texture pattern which is repeated within

one of the neighbourhoods. Two-dimensional similarity metrics are used to classify

textures using this method because each texture class has a histogram for each scale.

The preferred measure for the dissimilarity between these concatenated histograms is as

follows:

L(S,M) = −
H∑
h=1

N∑
n=1

ThsShn∑
h Ths

ln

(
ThmMhn∑

h Thm

)
(2.3)

where H is the number of histograms for each texture sample, Nh is the number of bins

in histogram h, Shn and Mhn are the probabilities of the nth bin in the hth sample and

model histogram respectively and Ths and Thm are the total number of entries in the

sample and model histograms.

The next version of the multi-scale LBP was formed by arranging the sampling points

in a circular format rather than a square and increasing the number of points from 8

to 16 and above. This increases the space covered by the LBP operator and hence can

be tailored to fit different scales. This is referred to as the LBPP operator, where P is

the number of points on the circle. It was later defined in terms of both the number of

points and the radius, R, of the circle to allow the resolution of the LBP to be altered

without changing the scale (Ojala et al., 2002b). This is known as the LBPP,R operator

and is defined as follows:
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(d) P=16, R=2.0

Figure 2.3: LBPP,R variants

LBPP,R =
P−1∑
p=0

s(gp − gc)2P (2.4)

s(x) =

{
1, x ≥ 0

0, x < 0
(2.5)

Bilinear interpolation is required to obtain the grey level of the points g0 to gP−1 that

do not fall in the centre of a pixel. The arrangement of a selection of possible LBPP,R

variants is shown in Figure 2.3.

Given that the centre pixel gc is at coordinate (0,0), the coordinates of gp can be found

from:

gp =

(
R cos

(
2πp

P

)
, R sin

(
2πp

P

))
(2.6)

2.4 Uniform LBP

An early attempt at defining a rotation invariant LBP operator, named LBPROT, aimed

to ensure that the same LBP code was produced for a given texture pattern regardless

of its orientation (Pietikäinen et al., 2000). The first difference between LBPROT and

the original LBP operator was the ordering of weightings in a circular manner. The

weightings were assigned clockwise with the top left pixel being ‘1’ and the centre left

having a weighting of ‘128’. The resultant binary pattern is then shifted right until the

least significant bit is a ‘1’ (except in the case of binary pattern ‘00000000’); matching

one of the 36 unique LBPROT patterns. For example, the pattern ‘00100100’ would

become ‘00001001’, which is LBPROT pattern number 4. LBPROT did not provide

very good results and Ojala et al. (2002b) stated that this was for two reasons. Firstly,

the frequency of occurrence of the 36 patterns varied greatly and consequently they

were not the best representation of texture pattern. Secondly, the angular space was

quantised at 45o intervals, which is too large for effective rotation invariance. It was
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(a) Spot (b) Spot/Flat (c) Line end (d) Edge (e) Corner

Figure 2.4: Primitive texture patterns

noted that certain fundamental patterns made up the majority of all LBPROT patterns

observed. These are the patterns which have at most two 0/1 transitions (Ojala et al.,

2002b; Mäenpää et al., 2000a) and are called “uniform” LBP patterns. The LBP riu2
P,R

technique assigns all patterns which are not included in the uniform subset to the same

pattern. This means that for P values of 8, there will be ten different patterns produced:

the uniform patterns from ‘0’ to ‘8’ and pattern ‘9’ which is the agglomeration of all

other patterns. This process is illustrated in the equations below:

LBP riu2
P,R =

{∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(2.7)

where

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)| (2.8)

The uniform LBP patterns can each be considered to represent a different primitive

texture pattern (Mäenpää and Pietikäinen, 2005). Figure 2.4 shows an example of the

patterns represented by five of the uniform patterns. White circles represent a ‘1’ and

black circles represent a ‘0’.

LBP riu2
P,R can also be combined with a local image texture contrast measure V ARP,R

which is described by the following formula:

V ARP,R =
1

P

P−1∑
p=0

(gp − µ)2 (2.9)

where

µ =
1

P

P−1∑
p=0

gp (2.10)
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While the resultant LBP riu2
P,R / V ARP,R operator is no longer grey scale invariant it

does provide very good results, often surpassing the independent results of either of the

component operators.

The LBP continues to be developed and its applications are not restricted to texture

classification and segmentation (Pietikäinen et al., 2011). These include object detection

(Zhang et al., 2006), fingerprint matching (Nanni and Lumini, 2008), gaze tracking (Lu

et al., 2010), defect detection (Tajeripour et al., 2008) and ulcer detection (Li and Meng,

2009). There also exist other operators similar in nature to the LBP. One example is

Local Greylevel Appearance (LGA) which retains more of the contrast information by

storing a quantised intensity for each of the pixels in the window instead of just a binary

value (Zwiggelaar, 2010).

2.5 Conclusions

Local Binary Patterns are an appropriate tool for exploring structure because they

provide a set of basis functions for texture. It is possible to determine the structure of

the texture in an image from the distribution of LBP codes throughout it. Analysis of

this structure can be used for texture classification or segmentation. Chapter 3 explores

methods by which an image can be reconstructed from its LBP codes for the purpose of

achieving a greater understanding of the information contained by the LBP. The findings

of this chapter are used in the texture segmentation methods proposed in Chapters 4

and 5. Nixon and Aguado (2012) includes a section on the Local Binary Pattern which

contains parts largely derived from the material in this chapter.



Chapter 3

Texture Reconstruction

3.1 Introduction

This chapter explores several ways in which a textured image can be reconstructed from

an array of its Local Binary Pattern (LBP) codes. No published work exists in this

area; it is unknown whether this is because it is not thought to be possible, there is a

loss of information due to the thresholding function of the LBP, or if it has simply not

been considered useful. There exist, however, several reasons why it would be beneficial

to have such an algorithm. The LBP operator has been used with much success in the

techniques developed for it, many of which are described in Pietikäinen et al. (2011).

However, in order to develop an algorithm which uses LBP codes to its full potential

it is important to understand exactly what is represented by the codes. If the LBP

codes are used to reconstruct the original image, the differences between the original

and reconstructed images can show what information the LBP codes capture and what

information is lost in the process. Analysis of the missing information can suggest ways

of integrating additional information into the LBP process to produce a more complete

texture analysis tool. A second reason to perform reconstruction is to understand the

capability of spoofing a system that uses LBP codes. Nanni and Lumini (2008) introduce

a fingerprint matching algorithm which extracts features using LBP codes. If the LBP

data were available, it would be possible to reconstruct an image of a fingerprint that

would possess the same textural properties and therefore provide the same feature vector

if it were to be processed with the algorithm again. By investigating the ease of spoofing

such a system using this method, countermeasures can be identified to make the LBP

more robust against spoofing. Finally, due to the thresholding nature of the LBP, the

reconstructed images will not contain all of the contrast information; giving an image

containing identical texture properties, but without the effects of illumination. The

reconstruction process can be applied as a pre-processing step for texture analysis to

normalise the images.

13
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Most implementations of the LBP use a variety of the rotation invariant uniform LBP

as described by Ojala et al. (2002b). There exists a one to many relationship between

the standard LBP of Ojala et al. (1996) and the uniform LBP. Similarly, a one to many

relationship exists between the original image and an array of standard LBP codes. The

process for reconstruction therefore can be split into two stages. Firstly, the uniform

LBP codes must be converted to standard LBP codes. Essentially, the difference between

the two types of code is that while in both cases the composition of the binary code

is known (with the exception of uniform code ‘9’), the starting point for the rotation

is not known for the uniform codes. This can be inferred to some degree of success

from the LBP codes of the surrounding pixels. The second stage is to reconstruct the

original image from the array of standard LBP codes. In this chapter, several methods

for reconstructing from the standard LBP and from the uniform LBP are described.

3.2 Reconstruction using neighbour relationships

Each standard LBP code represents the relationship between the pixel and its neigh-

bours. When viewed in binary form, each bit of the code determines whether the in-

tensity of the pixel is greater than or less than the neighbour represented by that bit.

The eight bits are arranged as in Figure 3.1, which shows which neighbouring pixel is

represented by which bit of the LBP code. If bit 0 of the LBP code is a ‘1’ its upper

left neighbour has an intensity greater than or equal to the pixel X. Similarly, if the

value is a ‘0’, the neighbour has a lower value than the pixel. It can be deduced that

if the grey level values of all eight neighbouring pixels are known (labelled as pixels

Q,R, S, T, U, V, Y in Figure 3.2), the value of the central pixel, X, can be determined to

a certain degree of accuracy based on these relationships. X must take a value between

the lowest neighbour that has a greater value than X; Xmax, and the highest neighbour

that has a value lower than X, Xmin:

X =
Xmin +Xmax

2
(3.1)

Xmax is calculated by Equation 3.2, where x and y are the coordinates of X and f(x, y, n)

is the function in Equation 3.3.

Xmax = min (f(x, y, n)) n ∈ {0...7} (3.2)

f(x, y, n) =

{
Ix+a,y+b LBPx,y[n] = 1

255 LBPx,y[n] = 0
(3.3)
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n a b

0 -1 -1
1 0 -1
2 +1 -1
3 +1 0
4 +1 +1
5 0 +1
6 -1 +1
7 -1 0

Table 3.1: Coordinate offsets for pixel neighbours.

0 1 2

7 X 3

6 5 4

Figure 3.1: Neighbours corresponding to LBP code bits.

LBPx,y is the LBP code in binary form for the pixel at x, y and Ix,y is the grey level

value of the pixel. The offsets a and b are listed in Table 3.1 for each neighbour n. The

function returns the grey level value of the neighbour if the neighbour is greater than

pixel X (determined by the LBP code of X). If the neighbour is not greater than X,

it returns the value 255. This is the maximum value a pixel could take and ensuring

that this neighbour does not influence the calculation of Xmin. Xmin is calculated in a

similar way in Equations 3.4 and 3.5, where the function g(x, y, n) returns the value of

the neighbour if the neighbour has an intensity lower than that of X and 0 otherwise.

The final value chosen for X is the midpoint between Xmax and Xmin, as shown in

Equation 3.1.

Xmin = max (g(x, y, n)) n ∈ {0...7} (3.4)

g(x, y, n) =

{
Ix+a,y+b LBPx,y[n] = 0

0 LBPx,y[n] = 1
(3.5)
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B Q Y W L

A P O N M

C R X V K

D S T U J

E F G H I

Figure 3.2: Immediate and close neighbours of pixel X.

In the original calculation of the LBP code (see Chapter 2), the neighbouring pixels are

classified as either “less than” or “greater than or equal to” the central pixel by the

threshold function. This means that from the LBP code it is impossible to know if a

pixel is equal to its neighbour. However, if the LBP codes of the neighbours are also

known it is possible to differentiate between “greater than” and “equal to”. Instead

of just examining the bit of the LBP code that represents the neighbour, a bit pair is

constructed from the relationship in the opposite direction. The bit pair between pixel

X and its neighbour N contains the LBP bit of X in the direction of N followed by the

LBP bit of N in the direction of X. If the neighbour N is to the left of X and has a

lower intensity than X, this first part will be a ‘0’, as this is what the seventh bit of

X’s LBP code represents. The third bit of N ’s LBP code will represent the relationship

in the opposite direction and must be a ‘1’, as X must be greater than N . This means

that the bit pair is (0|1) for the relationship (X|N). If N is definitely greater than X,

the bit pair will be (1|0). Finally, if the LBP codes of both pixels report that the other

is either greater than or equal, the pixels must be equal, as two pixels cannot be greater

than one another. This is represented by the bit pair (1|1). The corresponding LBP

bits for the bit pairs are shown in Table 3.2.

Information regarding the value of pixel X can also be obtained from a further distance.

Consider pixel A from Figure 3.2. From bit 2 of its LBP code (A2) it can be determined

whether pixel A has a value higher than or lower than pixel Q. Similarly, bit 6 of pixel

X’s LBP code (X6) will determine whether X is higher than or lower than pixel Q. If

A2 = X6 no information can be obtained because pixels A and X are both higher than

or lower than pixel Q. However, if A2 if ‘1’ and X6 is ‘0’, pixel X must have a value

lower than pixel A:

X < Q and A > Q (3.6)

X < Q < A (3.7)
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Neighbour Opposite

0 4
1 5
2 6
3 7
4 0
5 1
6 2
7 3

Table 3.2: Table showing the corresponding opposite neighbour for each pixel’s
neighbour. For example, pixel X has a neighbour in the direction 3. This pixel’s
neighbour in direction 7 is the original pixel X.

X < A (3.8)

Similarly, if A2 is ‘0’ and X6 is ‘1’ then pixel X has a value greater than A. Some pixels

have two or three shared neighbours with X and these extra neighbours can be examined

if a relationship cannot be determined from the first. For example, if C3 equals X7 the

relationships of C and X with R cannot be used to find the relationship between X

and C. Instead the relationships with pixels S and Q can be examined to see if they

yield a solution. As for the first example, a value for X can be calculated by finding

the midpoint between the highest “greater than” neighbour and the lowest “less than”

neighbour.

3.2.1 Reconstruction algorithms

The algorithm described by Equations 3.2 to 3.5 cannot be used in its current form for

texture reconstruction because it relies on the a priori knowledge of the intensity of each

of the pixel’s neighbours. Instead, the first two rows and columns in the reconstructed

image are set to an arbitrary initial value and the algorithm proceeds in a vertical

raster using only the neighbours which were initially set or previously calculated to

make a decision. These neighbours are represented by the labels A to G and P to T in

Figure 3.2, as these pixels will be calculated before pixel X. From the values of these

neighbouring pixels, Xmin and Xmax are calculated for pixel X. In the absence of any

equal neighbours, the midpoint between Xmin and Xmax is chosen for the pixel, as shown

in Equation 3.1.

This however, leads to an element of uncertainty of the new value of the pixel, because

the pixel could take any of the other values in the range, with equal probability. Pixel Y ,

which is calculated after pixel X, depends on the value chosen for pixel X; an erroneous

decision for X can lead to further error in Y . Most of the time an erroneous decision

will result in a smaller range of values that Y can take (an error giving X a value that
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would increase the “lower than” value or decrease the “higher than” value for Y will not

have any effect). Since all values in the range can be selected with equal probability,

taking a value from a subset of this range is not increasing the error. Problems occur,

however, when an error in X results in Y having a “greater than” value higher than the

“less than” value. A value can clearly not be taken which satisfies both conditions. It

is also not known which of the neighbours contributed the error, so it cannot simply be

discounted from the calculation. The solution is to set the value to 0.5 and not allow

pixel Y to contribute to further calculations. Two “levels” of reconstruction algorithm

have been developed. The first, Level 1, uses the LBP codes of X and the immediate

neighbours Q to T to calculate a grey level value for X. The equations for Xmax and

Xmin for Level 1 reconstruction are calculated from similar equations to Equations 3.2

to 3.5. The difference is that the terms referring to neighbours below or to the right of

the pixel have been removed. This is shown in Equations 3.9 and 3.10.

XmaxL1 = min (f(x, y, 0), f(x, y, 1), f(x, y, 6), f(x, y, 7)) (3.9)

XminL1 = max (g(x, y, 0), g(x, y, 1), g(x, y, 6), g(x, y, 7)) (3.10)

The second algorithm, Level 2, also uses the codes of A to G and P , in addition to the

immediate neighbours, to make the decision. For each of these neighbours, the LBP

codes are compared with the pixels a distance of 1 away from the it and pixel X, as in

Equations 3.6 to 3.8. A function h(N) gives the relationship between pixel X and pixel

N . If this function returns a 1, N is greater than X. If it returns a 0, N is less than

X. If the function returns -1, no relationship could be determined. Equation 3.11 shows

the calculation for the function for neighbour A. The LBP codes of X (LBPx,y) and Q

(LBPx−1,y+1) are used to determine the relationship to A. If the sixth bit of both codes

is 1, then Q is greater than X and A is greater than Q. If they are both 0, then Q is

less than X and A is less than Q. If the codes are different the relationship is unknown.

h(x, y,A) =


1 (LBPx,y[6] = 1) & (LBPx−1,y+1[6] = 1)

0 (LBPx,y[6] = 0) & (LBPx−1,y+1[6] = 0)

−1 otherwise

(3.11)

There are two routes of length 2 between X and B. One goes via Q and the other via

pixel R. If one route fails to give a relationship, the other may still be of use. The route

via Q is used in the first term in Equation 3.12, before the OR operator. This uses the

sixth bit of the LBP code of X and the seventh bit of the LBP code of Q to determine

the relationship to B. The second term uses the seventh bit of the LBP code of X and

the sixth bit of the LBP code of R (LBPx−1,y). If either of these terms are true, B must

be greater than X.
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h(x, y,B) =



1 ((LBPx,y[6] = 1) & (LBPx−1,y+1[7] = 1))

|| ((LBPx,y[7] = 1) & (LBPx−1,y[6] = 1))

0 ((LBPx,y[6] = 0) & (LBPx−1,y+1[7] = 0))

|| ((LBPx,y[7] = 0) & (LBPx−1,y[6] = 0))

−1 otherwise

(3.12)

The function h is calculated in a similar manner for the neighbours C to G. The Level 2

calculation for Xmax, XmaxL2 , is the minimum value of the neighbours A−G and P −T
where the neighbours are greater than X. This is shown in Equation 3.13 where the

result from the Level 1 calculation is used along with the more distant neighbours. The

function i(x, y,N) returns the intensity of the neighbour, IN , if the neighbour is greater

than X (h(N) = 1), or 255 otherwise. XminL2 is the largest of the neighbours that are

lower than X and is calculated in Equation 3.14. Function j(x, y,N) returns the value

of the neighbour if the neighbour has a lower value than X and a zero otherwise.

XmaxL2 = min(XmaxL1 , i(x, y,A), i(x, y,B), i(x, y, C), i(x, y,D)

, i(x, y, E), i(x, y, F ), i(x, y,G))
(3.13)

XminL2 = max(XminL1 , j(x, y,A), j(x, y,B), j(x, y, C), j(x, y,D)

, j(x, y, E), j(x, y, F ), j(x, y,G))
(3.14)

i(x, y,N) =

{
IN h(N) = 1

255 otherwise
(3.15)

j(x, y,N) =

{
IN h(N) = 0

0 otherwise
(3.16)

To test the reconstruction algorithms, the 27 Brodatz (Brodatz, 1966) textures shown

in Appendix A were reconstructed with both the Level 1 and Level 2 variants of the

algorithm. The quality of result was quantified using two methods:

• The first method tests the textural content of the reconstructed image, by calculat-

ing an LBP code for each pixel and comparing these with those from the original

image. The percentage match is used as a measure of the quality of textural

reconstruction.
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Figure 3.3: Comparison of percentage LBP code match for each image between
the Level 1 and Level 2 versions of the reconstruction algorithm. The solid blue
line represents the line of equality and the dashed green line is the trend.

Algorithm Grey Level Error Standard Deviation LBP Match (%) Standard Deviation

Level 1 0.230 0.0463 77.9 5.73
Level 2 0.225 0.0477 84.7 6.21

Table 3.3: Average grey level error and LBP code match for the Level 1 and
Level 2 versions of the algorithm. The differences between Level 1 and Level 2 for
both grey level error and LBP match are statistically significant (p = 1.3× 10−4

and p = 3.4× 10−15 respectively).

• The second method tests how different the grey levels of the pixels are to those from

the original image. The calculation for this error, e, is shown in Equation 3.17,

where X and Y are the dimensions of the image and R and O are the reconstructed

and original images respectively.

e =

∑X
x=0

∑Y
y=0 |Rxy −Oxy|
XY

(3.17)

The results from the reconstructions of the 27 images are shown in Figures 3.3 and

3.4 for the two metrics. Each dot on the scatterplot represents a single image and

its position represents the performance of this image with the two algorithms for the

given metric. The solid blue line is the line of equality: a dot on this line performs
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Figure 3.4: Comparison of grey level error between the Level 1 and Level 2
versions of the algorithm.

equally for both algorithms. The dashed green line is the trend. The average values

for the two metrics are also listed in Table 3.3. It is clear from the first graph that

the textural quality from Level 2 reconstruction is superior to Level 1 for every image

tested. The second graph shows that the grey level error is slightly lower for Level

2, so overall, Level 2 is the better algorithm. Reconstructed images from three of the

Brodatz images and one from the Berkeley Segmentation Dataset (Martin et al., 2001)

are shown in Figure 3.5. It is clear from all four images that the reconstructed images

preserve the structure of the originals. The LBP is intended to describe the texture

content of the image, which is the structure of the texture elements. As this is visible

in the reconstruction, this means that the LBP process is capturing texture well and

that the reconstruction algorithm is able to reproduce the texture of the image based

on the LBP codes. The contrast however has not been adequately reconstructed. Since

the LBP thresholds the difference in intensity between neighbouring pixels, it is not

possible for the reconstruction algorithm to determine how much greater than or less

than a pixel is to its neighbour. The results using Level 2 neighbourhood look almost

identical to those obtained using a Level 1 neighbourhood, indicating that the visual

properties of the images are very similar, as seen in Figure 3.4. The textural properties

of the images are however slightly different, with Level 2 giving the closest match to the

original image. Since the goal of the reconstruction process is to reproduce the texture,

the Level 2 algorithm will be used exclusively from this point.
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(a) Original Image (b) Level 1 reconstruction (c) Level 2 reconstruction

(d) Original Image (e) Level 1 reconstruction (f) Level 2 reconstruction

(g) Original Image (h) Level 1 reconstruction (i) Level 2 reconstruction

(j) Original Image (k) Level 1 reconstruction (l) Level 2 reconstruction

Figure 3.5: Reconstructing original images from LBP codes using level 1 and
level 2 algorithms.
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Algorithm Grey Level Error Standard Deviation LBP Match (%) Standard Deviation

Direction 1 0.225 0.0477 84.7 6.21
Direction 2 0.230 0.0489 84.1 6.23
Averaged 0.180 0.0408 85.3 5.82

Table 3.4: Average grey level error and LBP code match for the two directions
of the algorithm and the averaged direction. The differences between Direction
1 and Direction 2 for both grey level error and LBP match are not statistically
significant (p = 0.42 and p = 0.024 respectively). The differences between
Direction 1 and the averaged result are however statistically significant for grey
level error (p = 4.6× 10−9), but not for LBP match (p = 0.052).

3.2.2 Direction

The tests in Section 3.2.1 were for the algorithms performed in a vertical raster, from the

top left of the image to the bottom right. It is entirely possible to reverse the algorithm

and go from the bottom right to the top left. The tests on the Level 2 algorithm have

been repeated for both of these directions. Direction 1 refers to top left to bottom

right and Direction 2 refers to bottom right to top left. Additionally, a result has been

obtained by averaging the pixel intensities from Directions 1 and 2. Figures 3.6(a) and

3.7(a) show the comparison between Direction 1 and Direction 2 for both LBP codes

and error. There is very little difference between the two directions using these metrics.

Similarly, Figure 3.6(b) shows that there is not much difference in terms of LPB match

between Direction 1 and the averaged result. However the visual properties, shown in

Figure 3.7(b), are much better for the averaged result. The average values for the tests

are listed in Table 3.4. Figure 3.8 shows a selection of examples of the reconstructed

images using different directions. There is a noticeable difference between Figures 3.8(g)

and 3.8(h) and between Figures 3.8(j) and 3.8(k). This is due to the algorithm starting

at a different point in the image. Because each pixel is assigned a value close to that

of its neighbours, if the starting point is in a dark region, the rest of the image is likely

to retain this property. By averaging results from multiple directions this effect can

be reduced; making the reconstructed image visually closer to the original that either

of the directions alone. The textural property is unaffected with direction because the

pixels still retain the “greater than” and “less than” relationships to the same degree

regardless of direction.

3.2.3 Initial values

The reconstructed image must be given an initial value for the two borders adjacent to

the starting position for the algorithm so that every pixel has values for the neighbours

that are used in their calculation. One could assume that the optimum values for these

boundary pixels would be those from the original image, however this would require the
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(a) Comparison between Direction 1 and Direction 2.
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(b) Comparison between Direction 1 and Averaged.

Figure 3.6: Comparison of percentage LBP code match for each image between
the two directions and averaged.
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(a) Comparison between Direction 1 and Direction 2.
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(b) Comparison between Direction 1 and Averaged.

Figure 3.7: Comparison of grey level error for each image between the two
directions and averaged.
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(a) Direction 1 (b) Direction 2 (c) Averaged

(d) Direction 1 (e) Direction 2 (f) Averaged

(g) Direction 1 (h) Direction 2 (i) Averaged

(j) Direction 1 (k) Direction 2 (l) Averaged

Figure 3.8: Reconstructing original images from LBP codes using the Level 2
algorithm in different directions.
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Algorithm Grey Level Error Standard Deviation LBP Match (%) Standard Deviation

Grey 0.180 0.0408 85.3 5.82
Random 0.184 0.0406 83.4 5.68
Original 0.174 0.0388 86.0 5.84

Table 3.5: Average grey level error and LBP code match for the three initialisa-
tions of the algorithm. The differences between grey and random are statistically
significant for both measures (p = 1.1×10−13 and p = 2.9×10−24 respectively).
The differences between grey and original are also significant (p = 2.5 × 10−10

and p = 3.3× 10−12 respectively).

result to be known a priori, defeating the point of reconstruction. Two alternatives are

setting these values to either a fixed number, such as 0.5, or determining separate values

by random selection. Experiments have determined that it makes little difference which

method is used; the structure of the image is quickly formed regardless of the initial

state. The graphs in Figures 3.9 and 3.10 show that for both metrics, using the fixed

grey boundary gives better results than random initialisation. As expected, it is slightly

better to use the original values for the boundary, but this of course is impossible as they

will not be known at this stage. The important thing to notice is that the absence of this

a priori information is not detrimental to the process and makes very little difference.

All tests were run using the Level 2 algorithm and an average of both directions. The

averaged for these tests are listed in Table 3.5. Figure 3.11 shows a selection of examples

of the reconstructed images using different directions.

3.2.4 Local image contrast

The results obtained from the reconstruction algorithm are good, however they do not

accurately capture the contrast within the image. The micro- and macro-structures

within the texture are equally prominent in the reconstructed image, making the image

appear noisy. From this, it can be concluded that the LBP codes do not contain enough

information on their own to fully describe the image and further information describing

the contrast must be included for a full representation and reconstruction.

Local contrast measures have been previously used to supplement LBP information (see

Chapter 2). It is reasonable to assume that it should be possible to use such a measure

to select a more suitable value for a pixel within its calculated range than simply taking

the average. The two main measures used in conjunction with the LBP operator are

image contrast to form LBP/C and covariance to form LBP/SCOV; the latter including

pattern correlation as well as local contrast. Experimental results from Kontinen et al.

(1997) indicate that LBP/C performs better and so the local contrast was included for

image reconstruction. The local contrast for a pixel, C, is calculated by the difference

in average grey levels for the neighbouring pixels with thresholded values ‘1’ and ‘0’
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(a) Comparison between random initialisation and grey initialisation.
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(b) Comparison between grey initialisation and original value initialisation.

Figure 3.9: Comparison of percentage LBP code match for each image between
the three initialisation methods.
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(a) Comparison between random initialisation and grey initialisation.
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(b) Comparison between grey initialisation and original value initialisation.

Figure 3.10: Comparison of grey level error for each image between the three
initialisation methods.
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(a) Grey Initial Value (b) Random Initial Value (c) Original Image Border

(d) Grey Initial Value (e) Random Initial Value (f) Original Image Border

(g) Grey Initial Value (h) Random Initial Value (i) Original Image Border

(j) Grey Initial Value (k) Random Initial Value (l) Original Image Border

Figure 3.11: Reconstructing original images from LBP codes using different
initial values for the border.
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Algorithm Grey Level Error Standard Deviation LBP Match (%) Standard Deviation

Contrast 0.286 0.0475 64.3 10.3
No Contrast 0.180 0.0408 85.3 5.82

Table 3.6: Average grey level error and LBP code match for the algorithm with
and without the inclusion of contrast information. The differences between
contrast and no contrast are statistically significant for both measures (p =
9.1× 10−16 and p = 8.8× 10−17 respectively).

respectively, as per Equation 3.18.

C = E(gn | gn ≥ gc)− E(gn | gn < gc) (3.18)

where

n ∈ N = {1, 2, 3, 4, 5, 6, 7, 8} (3.19)

The new value for the pixel must between the greater than value, Xmin, and the less

than value, Xmax, calculated by the reconstruction algorithm. Equation 3.1 sets this to

be the midpoint. The local contrast can be included such that when C = 0 there is the

lowest contrast and the pixel must take the most similar value to its neighbours. This

would be either Xmin or Xmax. Since the grey levels of all neighbours used to calculate

the contrast (including those to the right and bottom) are not known, the LBP code

must be examined to decide which extreme to take. If the number of one bits, y, in the

LBP code is greater than or equal to four the pixel is considered to be light and takes

the lower than value. Otherwise the pixel is considered to be dark and takes the greater

than value. This gives the pixel the closest value to its neighbours and satisfies the low

contrast requirement. If C = 1 there is high contrast and the pixel must take the most

different value to its neighbours. The midpoint between Xmin and Xmax satisfies this

condition. Since most values for C fall between these values a function of C is used as

a scaling factor to select the best value within the given range.

val =

(
f(C)× Xmax −Xmin

2

)
+Xmin (3.20)

f(C) =

{
1 + C if y ≥ 4

1− C otherwise
(3.21)

Figures 3.12 and 3.13 show that with both metrics of reconstruction quality, every image

performs worse when using the contrast information in the manner described. This is

also illustrated in Figure 3.14 where it is clear that the contrast process only increases

the contrast across the entire image. The difference in performance is also clear in

the average values listed in Table 3.6. The problem with the theory of this method of
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Figure 3.12: Comparison of percentage LBP code match for each image between
reconstruction using contrast information and reconstruction without.
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Figure 3.13: Comparison of grey level error for each image between reconstruc-
tion using contrast information and reconstruction without.
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(a) Original Image (b) Contrast not included (c) Contrast included

(d) Original Image (e) Contrast not included (f) Contrast included

(g) Original Image (h) Contrast not included (i) Contrast included

(j) Original Image (k) Contrast not included (l) Contrast included

Figure 3.14: Reconstructing original images from LBP codes using level 2 algo-
rithm with and without including contrast information.
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including contrast information is that the original number for the contrast at a pixel

takes into account the intensities of all of the pixels neighbours. In particular, the eye

will be drawn to the difference in intensity across a pixel. The reconstruction process

only has access to calculated intensities for one side of the pixel, as the other has yet

to be calculated. This means that the contrast information cannot be used effectively

with this reconstruction method. Similarly, the covariance is unsuitable as it also takes

into account the difference between the neighbours across the pixel. Saving the contrast

information purely for the purposes of reconstruction is also inefficient and contains as

many bits as the intensity value.

3.2.5 Image filtering

Textures are made up of structures at different scales and the contrast at each scale

is different. For example in the texture in Figure 3.14(a) there are two main scales.

The larger scale contains black circles separated by white. The contrast at this scale

is very high. The smaller scale in the image contains the detail of the surface of the

black circles and has a much lower contrast than the rest of the image. If the image is

convolved with a lowpass filter an image is obtained which is devoid of the high frequency

texture structures present at the smaller scales of the image. Similarly, highpass filters

remove texture structures at the larger scales of the image. By using several lowpass

and highpass filters a series of images is obtained, each with with a different range of

frequencies removed. This concept is explored further in Chapter 5 and the filtering

process is detailed in Section 5.3. A process has been developed to include this filtering

process with texture reconstruction. The image is filtered with 180 lowpass filters and

100 highpass filters. The filter sizes for the lowpass filters range between f = 0 and

f = 0.703 with increments of 0.0078. The highpass filters range from f = 0 to f =

0.39 with the same increments. Each of the filtered images is separately reconstructed

and the reconstructed results are averaged to form a single reconstructed image. The

reconstructed images from the filtering process have a contrast much closer to the original

image. This can be seen in the graph in Figure 3.17. The LBP codes, however, are a

poorer match, as shown in Figure 3.16. This means that the contrast reconstruction is

better using the filtering process but the texture reconstruction is less accurate. The

average values for the tests are shown in Table 3.7. Figure 3.15 illustrates the effect this

filtering process has on texture segmentation.

3.3 Minimum Contrast Algorithm

The algorithm proposed in the previous section estimates the grey level of each pixel

from the value of its neighbours using the higher than or lower than relationship di-

rected by the LBP codes of the pixels. This approach gives a reconstruction that is
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(a) Original Image (b) Standard reconstruction (c) Reconstruction by filtering

(d) Original Image (e) Standard reconstruction (f) Reconstruction by filtering

(g) Original Image (h) Standard reconstruction (i) Reconstruction by filtering

(j) Original Image (k) Standard reconstruction (l) Reconstruction by filtering

Figure 3.15: Reconstructing original images from LBP codes using level 2 algo-
rithm with and with using filtering process.
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Figure 3.16: Comparison of percentage LBP code match for each image between
reconstruction using the filtering method and reconstruction without.

0.0 0.1 0.2 0.3 0.4 0.5
Without Filtering

0.0

0.1

0.2

0.3

0.4

0.5

W
ith

 F
ilt

er
in

g

Figure 3.17: Comparison of grey level error for each image between reconstruc-
tion using the filtering method and reconstruction without.
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Algorithm Grey Level Error Standard Deviation LBP Match (%) Standard Deviation

With Filtering 0.131 0.0436 59.8 9.81
No Filtering 0.180 0.0408 85.3 5.82

Table 3.7: Average grey level error and LBP code match for the algorithm
with and without the filtering process. The differences between the algorithm
with filtering and without filtering are statistically significant for both measures
(p = 3.0× 10−13 and p = 2.7× 10−20 respectively).

not completely accurate, as at each stage a pixel’s value must be selected from an often

wide range of possibilities. When the reconstructed image is processed again with the

LBP operator, the newly calculated codes do not match those of the original image

with 100% accuracy, hence giving an incorrect solution to reconstruction despite visu-

ally containing many of the texture features of the original. An alternative algorithm

called the Minimum Contrast Algorithm has been developed to fulfil the requirement of

a reconstruction algorithm which provides an image that completely matches the LBP

codes of the original.

As shown previously, the relationship between a pixel and its neighbours can be de-

termined from the LBP codes and the neighbour is classified as “greater than”, “less

than” or “equal to” the central pixel. The Level 2 algorithm from Section 3.2.1 took

this one stage further by calculating the relationships between the central pixel and the

surrounding pixels a distance of 2 pixels away. This additional information was shown

to improve significantly the LBP code match between the reconstructed and original

images. The Minimum Contrast Algorithm takes this principle but extends it to include

relationships between pixels much further apart. Each pixel is given a value based on

its distance to the furthest local minima or maxima. Local minima are pixels which

have a lower intensity than any of their neighbours. These pixels have the LBP code

255, as each neighbour is either greater than or equal to the pixel with this code. A

local minima can be spread over multiple pixels if they have equal intensity. In this

case, each of the pixels is labelled as a minima. Local maxima are pixels whose neigh-

bours are all lower than or equal to them. These pixels have LBP codes made up of 0s.

They may also contain 1s under the condition that the corresponding neighbour has a

1 in the opposite direction to indicate that the two pixels are equal. To simplify this

computation, the binary form of the LBP is replaced with a ternary code, where a 2

represents equality. Thus, any pixels with a code made up of 0s or 2s are local maxima.

The array of ternary codes can be calculated directly from the array of binary codes

with no additional information required.

The minimum contrast algorithm calculates the longest route between each pixel and

the furthest local minima (or maxima). If a pixel is greater than its neighbour its grey

level must be at least one degree greater than the neighbour. If a non-direct route

between two neighbouring pixels exists such that each pixel on the route is greater than
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the previous pixel then the grey level of the end pixel must increase by a number of

degrees equal to the length of the route. Therefore, if the longest route is found then

this can be said to be the minimum contrast between the two pixels; the intensities

could not be closer than this value without violating one of the relationships. A value

can be calculated for each pixel by arbitrarily assigning a value to each local minima

and calculating the longest path between each local minima and each pixel that can

be reached by the minima without routing through a pixel that is lower than the one

before. Equal to relationships should be included in the route, but do not increment

the route length. In a similar manner, the process can start from local maxima and

calculate routes in the opposite direction.

Two limitations exist for this algorithm. The first is that while the minimum contrast

between pixels can be calculated there is no way of knowing if the contrast in the original

image was actually greater than this. This information is unobtainable due to the nature

of LBP calculation. The second limitation is that the relationship between two local

minima (or between two local maxima) is not known. An equal value must therefore

be assigned to them. These limitations do not impact the ability of the algorithm to

reconstruct an image with the same textural properties of the original and identical LBP

codes are achieved when processed back with the LBP operator.

3.3.1 Procedure

Starting from each local minima, a number of threads are created equal to the number

of neighbouring pixels that are greater than or equal to the pixel (which by definition

is 8 for a local minima). Each thread then jumps to its respective neighbour and splits

into the number of possible options to continue its route upward. The objective is to

explore each possible path up from the local minima. There may of course be multiple

routes between a pixel A and a pixel B. When continuing onwards from pixel B it is

inefficient to waste time continuing the paths that reached B in a shorter distance, so if

a thread reaches a pixel in fewer steps than another thread, the thread is terminated.

Figure 3.18 gives an example of calculating the longest distance from a local minima in

pixel A to each of the other 5 pixels in the array. Considering only pixels A and B, pixel

B must be at least one unit greater than pixel A due to the corresponding LBP code

bits. However, when all 6 pixels are considered, it must be 4 units greater as the longest

path is A → C → F → D → B. The route A → C → E → F → D → B appears

longer, however as C is equal to E the length of the route is still only 4.

Figure 3.19 shows an example of a route going from a local minimum to another pixel

in the image via greater than paths. The numbers in the centre of each pixel indicate

the route length at that point.
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Figure 3.18: Applying the Minimum Contrast Algorithm for six pixels.
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Figure 3.19: Example route from a local minimum to a pixel.

The algorithm can be described as follows: set each local minima to an arbitrary value

and spread up from this pixel. Spreading up consists of examining the relationship

between the pixel and its neighbours. If a neighbour is greater than the pixel, the

neighbour is set to a value of one higher than the pixel unless it already has a greater

value than this. If the neighbour is equal to the pixel set the neighbour to the same

value as the pixel unless it is already so. If the neighbour has been updated, spread

up from the neighbour. This process is encapsulated in Equation 3.22, which is used

to calculate the new values of each neighbour N of the current pixel T being spread

upwards by the thread. TN is the ternary code representing the relationship of pixel N

to X. The algorithm can be performed in reverse, by spreading down from each local

maxima. This is described by Equation 3.23. Once the spreading process is complete,

the pixel values must be scaled to be within the range [0,255].
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Nup =


T + 1 (TN = 1) & (N < T + 1)

T (TN = 2) & (N < T )

N otherwise

(3.22)

Ndown =


T − 1 (TN = 0) & (N > T − 1)

T (TN = 2) & (N > T )

N otherwise

(3.23)

This algorithm ensures that the longest route is always found. If a thread arrives at

a pixel that already has a lower value than the thread would set, the thread does not

continue past this point. This is because a longer path to this pixel from the local

minima has already been found. Both directions of the Minimum Contrast Algorithm

provide a complete solution for the image, which provides the same LBP codes as the

original, however spreading down results in a lighter image, and spreading up results in

a darker image. This is because due to the nature of the Minimum Contrast Algorithm,

most pixel values do not stray too far from the local minima/maxima and only a few

achieve a greater distance. Therefore when spreading down, most pixels are close to the

high (light) starting point and only a few are set to low (dark) values. A compromise can

be achieved by performing reconstruction in both directions and averaging the results

for each pixel. This provides a more balanced image while still retaining the 100% LBP

accuracy seen in the individual results.

3.3.2 Results

The Minimum Contrast Algorithm was applied to the 27 Brodatz images in both di-

rections (up and down) and averaged. For each image, the algorithm provided a recon-

struction that completely matched the LBP codes of the original, with the exception of

the pixels along the edge of the image. This demonstrates that the texture of the recon-

structed images is identical to the original. The error, e, was computed to determine the

quality of contrast replication and these results are shown in Figure 3.20. As expected,

the up and down directions have poor contrast compared to the reconstruction method

introduced in the previous section. However, when both reconstructed images are aver-

aged, a superior contrast is obtained that still retains the 100% LBP code match. The

average grey level errors for the reconstructions under each variant of the MCA and the

standard reconstruction method are listed in Table 3.8.

Figure 3.21 shows the reconstructed images of three of the Brodatz textures. The com-

plete LBP code match is confirmed by visual inspection of the images, where it is clear

that the texture has been reproduced perfectly: each reconstructed image has the same

structure as the original. In terms of contrast, the MCA has retained a large amount of
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(b) MCAdown: p = 0.0014.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Standard Reconstruction

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
C
A
a
ve
ra
ge
d

(c) MCAaveraged: p = 1.6× 10−11.

Figure 3.20: Grey level error for the two MCA directions and averaged compared
to the standard reconstruction. Values for the statistical significance of each
graph are shown in the captions.
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Algorithm Grey Level Error Standard Deviation LBP Match (%) Standard Deviation

Standard 0.180 0.0408 85.3 5.82
MCAup 0.232 0.105 100.0 0.00
MCAdown 0.262 0.111 100.0 0.00
MCAaveraged 0.130 0.0472 100.0 0.00
MCAfilter 0.112 0.0450 100.0 0.00

Table 3.8: Average grey level error and LBP code match for the variants of the
MCA compared against the standard reconstruction method.

this. This is especially noticeable for the texture of Figure 3.21(a). Each of the recon-

structions for this texture clearly have a higher contrast for the macro-structures; the

lighter rings in the image visibly stand out from the background. The micro-structure in

the black circles has a lower contrast. The contrast replication is not perfect, but is an

improvement on the standard reconstruction presented earlier and exceeds expectations

given the limitations of the LBP. Each of the chosen Brodatz images has a different

average intensity. The first is a dark image, and so spreading up gives the closest match.

The third is light and spreading down is the closest. The best reconstruction for the

second image is an average of the two directions. To minimise the potential error in

average intensity it is better to chose the averaged result if no further information is

known.

Figure 3.22 shows the reconstruction of an image of a pyramid using MCA. This image

also exhibits the property of retaining texture seen in the Brodatz images. In particular,

the cloud on the right hand side of the image has been very well reconstructed in some

areas. The overall structure of the reconstructions also matches well to the original.

The main difference between this result and the Brodatz results is that the pyramid

image does not have a global average intensity. The different textured regions of the

image have very different properties. Since it is impossible to distinguish between any

two local maxima or minima the average intensity must be the same throughout the

reconstructed images. The averaged reconstruction provides the best match in this

instance. The texture content of the reconstructed images is however identical to the

original. As such, the Minimum Contrast Algorithm can provide an image from a set of

LBP codes that would spoof any system that works by calculating the LBP codes of an

image. Since contrast information is rarely used in such systems the MCA provides an

effective solution to this stage of the process.

The Minimum Contrast Algorithm was also applied to the filtered images from Sec-

tion 3.4.2. Each filtered image was processed with the MCA in both directions and

averaged. The average of all filters for each image was then calculated to get the final

reconstruction. Upon analysis of the results, it is clear that the texture content of the

reconstructed images is not as good when filtering is used: only 60% LBP code match

on average. However, visually the images look better. This is confirmed by the graph
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(a) Original Image (b) Original Image (c) Original Image

(d) Spreading Down (e) Spreading Down (f) Spreading Down

(g) Spreading Up (h) Spreading Up (i) Spreading Up

(j) Averaged (k) Averaged (l) Averaged

Figure 3.21: Reconstructing original images from LBP codes using the Minimum
Contrast Algorithm.
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(a) Original Image (b) Spreading Down

(c) Spreading Up (d) Averaged

Figure 3.22: Reconstructing pyramid image from LBP codes using the Minimum
Contrast Algorithm.

in Figure 3.23, which compares the MCA applied to filtered images with the original

images. The reconstructions of a selection of Brodatz images and the pyramid image are

shown in Figure 3.24. There is a marked improvement in contrast for the filtered recon-

struction over the standard MCA. This is especially apparent in Figure 3.24(i) where

the distinction between macro- and micro-structures is much clearer. The pyramid im-

age has visual improvements on the texture of the pyramid itself, and the boundary

between the clouds and sky is visually closer to the original than the standard MCA

reconstruction.

3.4 Reconstruction from uniform LBP

It has been demonstrated in this chapter that it is possible to reconstruct an image

from standard LBP codes such that the reconstructed image produces an identical set of

codes when processed with the LBP operator. However most applications for LBP use

the rotation invariant uniform LBP. The Minimum Contrast Algorithm cannot be used

on uniform LBP codes because due to the absence of rotation information, it is known

how many 1’s and 0’s make up the codes 0 to 8, but not which neighbours each refers to.

Additionally almost nothing is known about the relationship to the neighbours of pixels
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Figure 3.23: Error for MCA using filtered and original images.

with code 9. There is a need, therefore, for an algorithm to convert a set of uniform

LBP codes to standard LBP codes to complete the reconstruction process.

To convert the codes, each pixel is considered to have an 8-bit blank code called a

textel, where each bit can be filled in separately from the others as more information

becomes available. From immediate inspection of the LBP codes two things can be

done to fill in some of the blanks. Firstly, any pixels with codes 0 or 8 can be set to

00000000 or 11111111 respectively. Unlike all other uniform codes, 0 and 8 have only

one possible solution. Secondly, where any 0s have been set, the opposite bit of the

neighbour represented by the 0 must be a 1. This is because if pixel X is lower than

pixel Y , pixel Y must be greater than pixel X. The reverse is not true when a 1 is set.

This is because a 1 represents greater than or equal to. Purely considering the Minimum

Contrast Algorithm, it does not matter if the opposite blank is set to 0 (greater than)

or 1 (equal to), the flow of the spreading algorithm will be the same, just giving a

slightly different, but still correct, result. The problem arises when the textel is “filled”

(see Section 3.4.1). Setting a 0 instead of a 1 (or vice versa) will affect the other bits

within the textel and an incorrect choice can result in the formation of an impossible

arrangement of LBP codes (see Section 3.4.4).
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(a) Original Image (b) Standard reconstruction (c) Reconstruction by filtering

(d) Original Image (e) Standard reconstruction (f) Reconstruction by filtering

(g) Original Image (h) Standard reconstruction (i) Reconstruction by filtering

(j) Original Image (k) Standard reconstruction (l) Reconstruction by filtering

Figure 3.24: Reconstructing original images from LBP codes using MCA with
and with using filtering process.
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3.4.1 Filling textels

Once one bit of a textel has been updated, it needs to be “filled” to see if this addition

of information can set any of the other blanks in the textel. This involves applying a

series of simple logic rules based on the LBP code. Codes 0 and 8 do not require rules

as there is only one possible configuration for each. Code 9 is a special case and has a

separate criteria for filling. The remaining codes 1-7 are filled by the application of each

of the following rules:

• Remove any gaps between 0’s too small to fit all the 1s. For these LBP codes,

all the 1s in the textel must be together. Therefore, if there are gaps between 0s

in the textel too small to fit all of the 1s, then these blank bits must be set to 0.

Example, if the LBP code is 3, and the textel is 0 - - 0 - - - -, this will be changed

to 0 0 0 0 - - - -. It should be clear that this textel can be further filled to 0 0 0 0

- 1 1 -, and this will be covered in a later rule.

• Remove any gaps between 1s too small to fit all the 0s. This is the exact opposite

of the previous rule. As with 1s, all 0s in the textel must be together, so any gaps

between 1s too small to fit all the 0s (number of 0s equal to 8 minus LBP code),

must be set to 1s. Example; for LBP code of 5 there must be 3 0s, so 1 - - 1 - - - -

becomes 1 1 1 1 - - - -. Again, this can be further filled to 1 1 1 1 - 0 0 - and this

is covered in a later rule.

• Start from the left and right of 0s. Count a number of bits equal to the LBP code

and if a 1 is passed, any subsequent blanks must be a 1. Example: LBP code 4, 0

- 1 - - - - - becomes 0 - 1 1 1 - - -.

• Fill in any gaps between 1s where a wrap around is not possible given the number

of required 1s. Where the textel is - - 1 - - 1 - -, if the code is less than 6, it’s not

possible to wrap around (1 1 1 - - 1 1 1) and so the gap must be filled to - - 1 1 1

1 - -.

• Set any blanks that are too far away from the 1s to 0. If the code is x, any blanks

at a distance of more than x − 1 away from a 1 in the textel must be set to 0.

Example: LBP code 4 textel - 1 - - - - - - becomes - 1 - - - 0 - -.

• Set any blanks that are too far away from the 0s to 1. If the code is x, any blanks

at a distance of more than 8− x− 1 away from a 0 in the textel must be set to 1.

Example: LBP code 4 textel - 0 - - - - - - becomes - 0 - - - 1 - -.

• If all 0s are filled in, set the rest of the blanks to 1s. Example, LBP code 5 textel

- 0 0 0 - - - - becomes 1 0 0 0 1 1 1 1.

If these rules are executed in order, the incomplete textel will be filled as much as it

can given the current state of information. If the LBP code for the textel to be spread
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Incomplete Filled

- 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1
- 1 - 0 0 0 0 1 0 1 - 0 0 0 0 1
1 1 - 0 - 1 - 1 1 1 - 0 - 1 0 1
- 1 - 1 - 0 - 0 - 1 - 1 - 0 - 0
0 1 0 0 - 0 0 0 0 1 0 0 1 0 0 0
0 - - 1 0 0 0 0 0 1 0 1 0 0 0 0
1 - - 0 0 0 0 1 1 0 1 0 0 0 0 1
- - - 0 0 0 0 0 1 0 1 0 0 0 0 0
- 0 0 0 0 0 - - 1 0 0 0 0 0 1 0
- 1 1 - 1 1 - 0 - 1 1 0 1 1 - 0
- 0 0 0 0 - 1 - 1 0 0 0 0 - 1 0
1 1 1 1 - - - 1 1 1 1 1 0 1 0 1
1 - 1 1 1 1 - - 1 0 1 1 1 1 - -
1 - 1 - - 1 1 1 1 0 1 - - 1 1 1
1 1 1 1 - - 1 - 1 1 1 1 - - 1 0
0 - - 0 - 1 1 1 0 - - 0 - 1 1 1

Table 3.9: Test vectors for filling textels with LBP code 9. Some of the tex-
tels are still incomplete after filling as further information is required before
completion.

is a 9, a different procedure must be followed. In this case, the textel must contain at

least two groups of 1s and at least two groups of 0s. Otherwise the textel becomes one

of the other codes. The filling algorithm for 9s calculates the number of groups of 1s

and groups of 0s currently in the textel and calculates the number of groups of 1s or 0s

it is possible to fit into the textel given its current state of completion. If the number

of possible groups is equal to the number of missing groups, the possible groups must

be filled in. For example, if the textel is 1 1 1 1 - - - 1, there is one group of 1s and no

groups of 0s. The number of possible groups of 0s that could fit into this gap is 2 and

this is equal to the number of groups of 0s that is required to add to make the textel

valid. Therefore, the only correct solution is 1 1 1 1 0 1 0 1. For the example, 1 - 1 - - 1

1 1, there are two possible groups for 0s as there are two groups of blanks. The second

group contains two blanks; this can only hold one group of 0s, but it does not matter

which is set to 0. Both blanks could be a 0, or only one of them. Therefore neither of

the two blanks will be set until further completion of the textel removes the choice. The

correct filling of the textel is therefore 1 0 1 - - 1 1 1. Table 3.9 lists the correct fillings

of a number of incomplete textels with LBP code 9.

3.4.2 Spreading

Spreading is the act of taking a pixel as a starting point and exploring all the routes from

neighbours that are “less than” the starting pixel. The function for spreading a textel

is recursive; for each 0 in the textels of the starting pixel, set a 1 in the corresponding
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Figure 3.25: Reconstructing original images from LBP codes using MCA with
and with using filtering process.

opposite textel bit for the neighbouring pixel, and run the spread textel function from

this neighbouring pixel. The algorithm cannot spread from a 1 in the textel, because the

opposite bit could be either a 0 or a 1, and there is no way of determining which it is.

The first act of the spreading function is to fill the textel. This is required, because when

spread textel is called for a neighbour pixel, the only new information that has been set

is the 1 from the original pixel’s 0. This will not allow any further spreading from this

point, as it points back to the starting pixel. This new information may however allow

the algorithm to set more of the bits of the textel when the textel is filled. If any bits

have been set to zero during this process, the algorithm can spread in their direction.

Figure 3.25 shows an example of spreading and filling from a local maximum. On the

left is two adjacent pixels, where the bottom one is a local maximum with uniform LBP

code ‘0’ and the top pixel has a uniform LBP code of ‘3’. From the individual bits of

the LBP code of the bottom pixel, it is clear that the top pixel must be lower than

the bottom pixel. Therefore, in reverse, the bottom pixel must be greater than the

top pixel. A ‘1’ can be assigned to the textel bit of the top pixel corresponding to its

relationship to the other pixel. This process is spreading. Now the upper pixel’s textel is

more complete, it must be filled to see if any more information can be determined from

the new addition. This results in the textel shown in Figure 3.25(b). Using the rules

from Section 3.4.1, three zeroes can be filled into the textel. This is because the textel

must contain three adjacent ones, and with the position of the ‘1’ that has already been

placed, it is impossible for there to be a ‘1’ in the three textel bits furthest away.
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3.4.3 Textel completion

The fill and spread technique detailed above does not give a complete solution to every

pixel’s textel. To complete the remainder there is no choice but to set one of the

incomplete bits to a 0, fill and spread from this point and when this is exhausted, take

the next incomplete bit and set it to 0. If an error is encountered (see Section 3.4.4) the

state of the textels is reverted back to the previous guess and the bit is set to a 1. If

this also results in an error, the algorithm goes one stage further back and keep going

back until the process continues without error. This is achieved using an array and a

stack. An array is created the same size as that containing the textel information. Each

time a guess is made, the bit number, x and y coordinates of the pixel and whether

the guess was a 0 or a 1 is stored onto the stack. Each time textel information is set

from a fill and spread from a guess, the corresponding elements of the new array are set

with the current level of the stack. When an error occurs, the stack is popped and sets

to blank every textel bit where the corresponding new array bit is equal to the popped

stack level. This resets the state of the textels to how they were before the guess was

made.

3.4.4 Penrose stairs

It is very easy to use the guess, fill and spread method to compute a standard LBP

code for each of the uniform LBP codes in the image. When these standard LBP

codes are analysed, they map with 100% accuracy back onto the uniform LBP codes.

However, when this array of standard LBP codes is passed into the Minimum Contrast

Algorithm, the algorithm will almost certainly get stuck in an infinite loop. This is due

to the Penrose Stairs phenomenon shown in Penrose and Penrose (1958). The Penrose

Staircase, shown in Figure 3.26, is an impossible staircase with four sides that form a

continuous loop, so if one were to climb them, they would keep going forever; none of

the corners are at the top. The analogy in LPB codes is a connected loop of pixels such

that each is lower than the one before, as demonstrated in Figure 3.27. These staircases

contain at least three pixels, but could continue much further. The reconstruction

algorithm needs to ensure that as soon as a Penrose Staircase is discovered the last

guess is undone.

3.4.5 Error checking

After a textel has been updated, the current state of all the textels must be examined

for the presence of any Penrose stairs. This is done using an algorithm similar to

the Minimum Contrast Algorithm. Starting from the pixel whose textel has just been

updated, a number of threads are created, equal to the number of neighbours that must
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Figure 3.26: Illustration of a Penrose staircase. Image downloaded
from Wikipedia (http://en.wikipedia.org/wiki/File:Impossible staircase.svg)
and was released into the public domain by its author.
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Figure 3.27: Example of a Penrose Staircase in LBP codes.

be lower than or equal to the current pixel. There are three conditions that satisfy this

constraint. If the textel for the current pixel is a 0 pointing at the neighbour, then the

neighbour must be lower. If this textel bit is a 1, and the corresponding neighbour’s bit

is also a 1, then they are equal. Finally, if the corresponding neighbour’s bit is a 1 and

this pixel’s bit is undefined, then the neighbour could be either lower or equal, and so

a thread is created. If the pixel’s bit is 1 and the neighbour is undefined, a thread is

not created as the neighbour could turn out to be greater than the pixel. For each of

these neighbouring pixels, the process is repeated, dividing the thread into the number

of subsequent neighbours that are lower than or equal. Each thread represents a route

originating at the starting pixel consisting only of less than or equal to relationships

between neighbouring pixels on the route.

The thread stores information about the route that it has taken. The neighbouring

pixel that it has just arrived from is not examined to see if it is lower than or equal to.

This is because if the two pixels are equal, this process would bounce between the two

indefinitely. If the thread has taken at least one guaranteed lower than route to this

point then this is stored. Additionally, if it has exclusively taken equal to routes this is
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stored too. These two variables allow the algorithm to determine if the current pixel is

lower than the starting point, or equal to it.

Once a thread arrives at a pixel, it checks if a Penrose Staircase has developed. If the

thread has arrived back to the starting position through a route not exclusively made

up of equal to relationships then a Staircase is present and an error has occurred. If the

thread has arrived at a position it has already been and an error has not been detected,

that particular loop must be due to equal to relationships, as any Penrose Staircases are

caught at creation. In these cases, the thread is killed but the process continues.

There is one final feature of the error checking function. If a thread arrives at a pixel

neighbouring the original starting pixel it may be possible to fill in some more of the

textels for these pixels. If the thread has contained at least one lower than in its route,

the neighbouring pixel must be lower than the starting pixel. If the textel bits are not

already set at 1 and 0 respectively then these can be set now. Similarly if the route

has been exclusively equal to relationships and this has not been reflected in the textels

already, the two bits can be set to 1s.

3.4.6 Incomplete reconstruction

The procedure described in Section 3.4.3 is prohibitively slow due to the large number

of possible choices that could be made by the textel completion algorithm. If an error

is made at the start that does not result in the formation of Penrose stairs until much

later, all that effort is wasted and significantly more will be wasted determining the

source of the error. It is possible to get a reconstruction of the image by performing the

fill and spread algorithm up to the point where no further information can be obtained

without guessing. At this point, the textels will not be complete for every pixel, but

can nevertheless be sent to the Minimum Contrast Algorithm in this state. Not all

routes will be found by the MCA, but enough will be present to partially reconstruct

the image. Some pixels will not get assigned a value, because they are not connected

via a route. These pixels are given the default value assigned to the local minima and

maxima. Reconstruction of three images using this method are shown in Figure 3.28.

The reconstructed images are patchy, as expected, however the areas that have been

reconstructed are of a similar quality to the reconstructed images from the MCA on

non-uniform LBP codes. This is important as it shows that the rotation of the textels

can be reconstructed despite this being removed during the calculation of the uniform

codes. This suggests that the rotation invariant property of uniform LBP codes is only

valid when the codes are removed from the array and the relationships between them

are not known, as is the case for Histogram Comparison.
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(a) Original Image (b) Original Image (c) Original Image

(d) Spreading Up (e) Spreading Up (f) Spreading Up

(g) Spreading Down (h) Spreading Down (i) Spreading Down

(j) Averaged (k) Averaged (l) Averaged

Figure 3.28: Reconstructing original images from uniform LBP codes using the
MCA on incomplete textels.
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3.5 Uniform LBP reconstruction by inspection

With the exception of code 9, each uniform LBP code represents the number of neigh-

bouring pixels that have a higher grey level value than the pixel that the code represents.

A pixel with a high value is unlikely to be lower than most of its neighbours, so it is

likely to have a low LBP code. Similarly, a low valued pixel is unlikely to be higher

than its neighbours, so is likely to have a high LBP code. The codes can therefore be

considered to be inversely proportional to the intensity of the pixel.

3.5.1 Analysis of relationship between LBP code and intensity

To test this theory, four images have been analysed to determine the extent of the

relationship between pixel intensity and uniform LBP code. For each image, a scatterplot

is displayed in Figure 3.29 with each dot representing the average grey level of the pixels

for that LBP code. The blue line shows the trend for codes 0 to 8, and red error bars

show the standard deviation. For images 03 and 14, the trend is as expected: the

intensity decreases as LBP code increases. Code 1 for image 14 does not fit this model,

but as the error bars are large an anomaly of this type is to be expected. Image 21 is

different from 03 and 14 in that it contains very high contrast. Most of the pixels are

either very dark or very light. This is reflected in the trend, as it does not follow the

linear pattern of the previous images. However, the relationship is still the same: as the

LBP code increases, the intensity decreases. The pyramid image contains textures of

multiple classes and different regions of the image contain a different average intensity.

Therefore, there is almost no relationship between a pixel selected at random and its

LBP code.

The ninth uniform LBP code is harder to predict as it may have between 2 and 7

neighbours with a higher intensity. Examination of the graphs in Figure 3.29 show that

it closely follows the behaviours of codes 3 and 4, even sharing a similarly sized error bar.

Having determined this relationship, it is clear that a reconstruction of the image can

be obtained by assigning a grey level to each pixel which reflects its LBP code. Pixels

with an LBP code of 9 are calculated as if their code is 3.5. The equation to convert

the uniform LBP codes to pixel intensities is shown in Equation 3.24 below, where the

LBP codes are reversed and then scaled to fit the range of pixel values.

Ix,y =

{
(8− LBPx,y) · (1/8) LBPx,y < 9

(8− 3.5) · (1/8) LBPx,y = 9
(3.24)

A look up table for these intensities is given in Table 3.10. Four images have been

reconstructed using this method and are shown in Figure 3.30. The quality of the
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Uniform LBP Code Pixel Intensity

0 1.0
1 0.875
2 0.75
3 0.625
4 0.5
5 0.375
6 0.25
7 0.125
8 0.0
9 0.5625

Table 3.10: Pixel intensities for reconstruction based on Uniform LBP code.
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Figure 3.29: Image intensities for each LBP code for a selection of images.

reconstruction is not very high, however it is very clear that the textural structure of

the images has been retained using this method.
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(a) Original (b) Reconstructed

(c) Original (d) Reconstructed

(e) Original (f) Reconstructed

(g) Original (h) Reconstructed

Figure 3.30: Reconstruction from Uniform LBP codes using inspection.
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Image Greater than Less than

03 88.7 90.0
14 90.2 90.6
21 89.2 91.2
Pyramid 84.2 85.5

Table 3.11: Neighbour analysis for four images.

3.6 Minimum Contrast Algorithm for uniform LPB codes

By definition, a pixel has a lower (or equal) intensity than the number of its neighbours

equal to its LBP code. For example, if the LBP code is 3, the pixel has a lower or

equal intensity than three of its neighbours. It would be reasonable to expect that the

neighbours that do have a higher value also have a lower LBP code than the pixel.

This has been experimentally tested by examining the intensities and LBP codes of

each pixels’ neighbours. For each pixel in the image (excluding those with code 9), the

proportion of its neighbours with a lower than or equal LBP code that also have a greater

than or equal intensity is calculated. This is then averaged over the entire image. The

opposite calculation is also computed; the proportion of neighbours with an LBP code

greater than or equal that also have an intensity lower than or equal to the pixel. These

calculations for four images are shown in Table 3.11 where the “Greater than” column

refers to the first calculation and “Less than” refers to the second calculation. The

results of this test indicate that on average only around 10% of a pixel’s neighbours do

not have an intensity that reflects the relationship between the two pixels’ LBP codes.

Therefore, this information can be used to create a reconstruction algorithm using the

relationships between uniform LBP codes.

The Minimum Contrast Algorithm can be adapted to reconstruct from uniform LBP

codes. It makes the assumptions discussed above, with the addition that if the LBP

codes are equal, their intensities are equal. This is to prevent the formation of Penrose

stairs in the event of more than two adjacent pixels with an equal LBP code: if an equal

code is treated as a “greater than”, each of these pixels would be considered greater

than the one before and the algorithm would loop infinitely. This process is shown in

Equations 3.25 and 3.26.

Nup =


T + 1 ((LBPN < LBPT )‖(LBPN = 9))) & (N < T + 1)

T (LBPN = LBPT ) & (N < T )

N otherwise

(3.25)

Ndown =


T − 1 ((LBPN > LBPT )‖(LBPN = 9)) & (N > T − 1)

T (LBPN = LBPT ) & (N > T )

N otherwise

(3.26)
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A small number of the pixels are not assigned a value during this process. This is

due to the minority of routes taken being incorrect: thereby not spreading into some

pixels that it should; occasionally resulting in those pixels never being spread into. The

reconstructions using this method are shown in Figure 3.31. The texture features are

not as sharp in this reconstruction as those obtained from the direct inspection of the

codes.

3.6.1 Hybrid reconstruction

It is possible to combine the output of the reconstruction of uniform LBP codes using

MCA with the partial reconstruction using the fill and spread method. After the par-

tial reconstruction has been completed, any unassigned pixels take their value from the

reconstruction of uniform codes using MCA. This gives a hybrid reconstruction; con-

taining the best of both algorithms. Reconstructed images are shown in Figure 3.32.

These reconstructions are not perfect, however reiterate the ability of the algorithms to

reconstruct the rotation of the textels, despite this not being present in the individual

uniform codes. Without the rotation, it would be impossible to reconstruct any of the

macro-structures within the texture.

3.7 Conclusions

This chapter has investigated several methods for reconstructing an image from an array

of LBP codes. The first focus was on reconstruction from standard LBP codes; where

each binary code stores the relationship between the pixel and each of its neighbours.

The first method used these relationships to estimate the pixel values from previously

calculated neighbours. This required initial values to be set, but the initial values could

be randomly assigned without affecting the process. This reconstruction method gave

low visual error, but did not give an image that had a perfect LBP code match to the

original.

The Minimum Contrast Algorithm (MCA) was developed to rectify this: a complete

LBP code match was achieved for every image. This is an entirely novel algorithm

and this manner of reconstruction has never been done before. The MCA uses the

relationships inherently coded in the LBP to form routes between identified local minima

and maxima points and every pixel in the image. Images are reconstructed with some

of the contrast information still in place; something previously thought to be impossible

given the nature of the LBP’s thresholding function. While some of the contrast is

retained, the majority is lost in the reconstruction process. The images used all contain

texture elements at different scales. The smaller structures in the images contain a much

lower contrast than the larger scale structures, however the LBP does not differentiate
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(a) Original Image (b) Original Image (c) Original Image

(d) Spreading Up (e) Spreading Up (f) Spreading Up

(g) Spreading Down (h) Spreading Down (i) Spreading Down

(j) Averaged (k) Averaged (l) Averaged

Figure 3.31: Reconstructing original images using the MCA on uniform LBP
codes.
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(a) Original Image (b) Original Image (c) Original Image

(d) Spreading Up (e) Spreading Up (f) Spreading Up

(g) Spreading Down (h) Spreading Down (i) Spreading Down

(j) Averaged (k) Averaged (l) Averaged

Figure 3.32: Reconstructing original images from uniform LBP codes using the
hybrid method.
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between them. As such, when the images are reconstructed, all scales within the image

are treated the same and the result is an image containing uniform contrast; with the

smaller elements equally prominent. This suggests that to better represent the textures,

a scale based LBP operator would be more effective. Because it is not known if one local

minimum/maximum is greater than or less than another, all minima/maxima are given

the same value. This means that each region of the image has the same average grey

level, removing any effects of illumination from the images. This has been experimentally

verified by synthetically changing the illumination of some areas of the images prior

to reconstruction. Visually, this gives the same reconstruction as the original image.

As the reconstructed image contains a perfect texture reproduction but loses all of

the illumination and some of the contrast information, the MCA could be used as a

preprocessing step prior to image texture analysis to normalise the images.

Most applications of the LBP currently use the uniform LBP Ojala et al. (2002b). To

reconstruct from uniform LBP to the original image a two stage process is required, of

which the MCA completes the second stage: converting from standard LBP codes to the

original image. A method for completing the first stage, converting from uniform codes

to standard codes, was also described in this chapter. With the uniform codes 0-8, it is

known how many ones and zeroes are in the standard code, and it is known that all of

the ones are consecutive. The unknown factor is where the string of ones begins. This

has to be inferred from the LBP codes of the neighbouring pixels. A “fill and spread”

method uses all the information present to calculate as much of the standard LBP code

as possible. Unfortunately, there is not enough information available to fully complete

the process. A process of estimation and error checking has to be used to complete the

textels. This is, unfortunately, extremely slow and until another method of completing

the textels is developed the algorithm is unfeasable. It is, however, possible to use the

incomplete textels with the MCA to give a partial reconstruction of the image from

uniform LBP codes. The results of this show that despite the codes being rotation

invariant, the rotation of the textels is in fact encoded by the neighbouring pixels. The

structure of the texture therefore contains this information.

A correlation was discovered between the uniform LBP code and the pixel intensity.

This means that a crude reconstruction can be obtained by simply assigning a grey level

value to each of the LBP codes. It is also possible to use the MCA on uniform LBP

codes by assuming certain relationships between codes. If one uniform LBP code is a

higher number than its neighbour, more of its neighbours have a higher value than it, so

the neighbour is likely to be one of these. These reconstruction methods show that while

a perfect reconstruction cannot be obtained directly from the uniform codes, enough of

the structure of the texture is encoded this way to enable texture analysis methods to

use the arrangement of uniform codes in an advantageous way.

Both the MCA and the reconstruction from uniform LBP codes rely on the arrangement

of the LBP codes to achieve the reconstructed image. The MCA would be unable to
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calculate the route length, and therefore minimum contrast, between two pixels without

knowing this structure. Similarly, it would be impossible to fill any of the textels for the

uniform LBP reconstruction without knowing the LPB codes of each specific neighbour.

Often, Local Binary Patterns are used for texture classification and segmentation by

generating a histogram of the occurrence of each code within a section of the image.

These histograms are matched to those generated from model textures to determine the

texture content pixels within that section. As such, the structure of the textels which is

so essential to the reconstruction processes is lost. Chapter 4 presents a segmentation

algorithm that uses this structural information in an advantageous way.

In this chapter the use of image filtering was explored to improve reconstruction results.

It was discovered that when the image was applied with a number of different filters

and the reconstructions of the filtered images were averaged, the final image contained

a much closer contrast to the original. This implies that analysis of the separate filtered

images has advantages over analysing the unfiltered images. Chapter 5 introduces a

method called Accumulative Filtering which uses this principle to improve the accuracy

of texture segmentation techniques.



Chapter 4

Evidence Gathering Texture

Segmentation

4.1 Introduction

Taking histograms of Local Binary Pattern (LBP) codes provides a statistical measure

of the distribution of texture elements in an image. Local distributions can be obtained

by compiling the histogram over a window, however all structural information is lost.

Mäenpää and Pietikäinen (2005) observed that each LBP code limits the set of possible

codes adjacent to it: there are some combinations of codes that cannot exist. This has

been experimentally validated in Chapter 3 where it was found that there are arrays

of LBP codes that are impossible to map back to an image. The implications of this

are that the arrangement of LBP codes within a texture is not random and that taking

a histogram of the codes reduces the available information further to that originally

lost in the LBP process. It is possible for several textures to have the same histogram,

rendering such methods incapable of distinguishing between them. Since structure is an

important and fundamental property of texture it is logical to consider that improved

performance could be obtained if the structural information is utilised. The findings of

Chapter 3 suggest that using the structure of LBP codes will be advantageous to texture

analysis methods because it is this structure which encodes contrast information and the

rotation of individual textels.

A new approach to texture segmentation is presented which uses the principles of tem-

plate matching present in the Generalised Hough Transform (GHT) and modifies it to

match texture instead of shape. In the GHT, evidence is obtained from each pixel in

the image on the possibility of the shape being searched for being centred on particu-

lar pixels. The new texture algorithm gathers evidence on the possibility of a texture

class being searched for being present at particular pixels. The technique exploits a

property of the Local Binary Pattern (LBP) texture descriptor which is that if there

63
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is structure in the image space, there must be structure in the LBP space. By storing

the LBP code along with its offset to the centre of the texture region for each pixel,

this structural information is not lost and a unique descriptor is produced which can be

used in the classification and segmentation of images. The descriptor is unique because

it can be used to regenerate the array of LBP codes that represent the texture sample,

unlike a histogram of LBP codes which cannot. This is important for reconstructing

the original image from the feature vector. The new algorithm, referred to henceforth

as Grey Scale Evidence Gathering Texture Segmentation (GSEGTS), is the first use of

evidence gathering in texture segmentation and achieves high segmentation accuracy

with smooth texture regions and boundaries by transferring the principles of template

matching present in the GHT method to texture analysis.

4.2 Generalised Hough Transform

The Generalised Hough Transform (Ballard, 1981) uses an evidence gathering approach

to determine the location of previously defined arbitrary shapes within an image. An

arbitrary shape can be described by its perimeter, however if the scale of the shape were

to change, the perimeter would also change. A scale and rotation invariant description

relates the gradient of the edges of the shape, θ, with a previously defined reference

point of the shape (usually the centre). A table is generated containing a series of bins

for quantised gradient values. For each edge point on the shape, an entry is added to

the bin representing the gradient at that point. The entry is the vector r = a - x, which

maps the position of the edge point, x, to the centre of the shape, a. This table is

referred to as an R-table.

To find the shape in an image, an edge detection algorithm must first be applied such

that a binary image is produced, with a ‘1’ representing an edge and a ‘0’ representing

a non-edge pixel. Each edge pixel could potentially be any part of the shape. If the

gradient is calculated, it is known which parts of the shape the edge could be (if any) by

looking at the R-table entries for that gradient. If there are multiple entries, the edge

pixel could correspond equally to any of these. Using the vectors stored in the table, the

centre point of the shape can be calculated in either case. If the shape is present in the

image its centre point will have been calculated by many edge points, so an accumulator

array is used to store how many times each potential centre point has been calculated.

The algorithm for using the R-table to find shapes with in an image is described by

Ballard (1981) as:

“For each edge pixel x in the image, increment all the corresponding points x + r in

the accumulator array A where r is a table entry indexed by θ, i.e., r(θ). Maxima in A

correspond to possible instances of the shape S.”
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For shapes of a fixed scale and rotation, the accumulator is simply a two-dimensional

array, where each cell corresponds to a pixel in the image, in which votes are stored

based on the evidence gathered from the edge pixels in the image. To search for shapes

with an unknown scale and orientation, the accumulator can be extended to four dimen-

sions. The original R-table can be used to fill the extra dimensions because the various

scales and orientations can be calculated from transformations of the table. The scale

transformation, TS , is calculated from:

TS [R(φ)] = sR(φ) (4.1)

Each vector in the R-table is simply scaled by the same factor, s, to perform the trans-

formation. The rotation transformation, Tφ, is calculated from:

Tφ [R(φ)] = Rot {R [(φ− θ) mod 2π] , θ} (4.2)

The R-table indices are offset by (−θ mod 2π) which effectively translates the r vectors

from their position on the rotated shape to the corresponding position on the original

shape. The indices are then rotated to make the vectors point in the correct direction.

4.3 Method

Evidence Gathering Texture Segmentation uses the general principles of the GHT but

searches the image for a particular texture rather than a shape. Before sample images

can be analysed, an R-table must be generated for each known texture class. This de-

scribes the structure and composition of a section of the texture and is used to classify

the texture class of the sample images. Sub-images, or cells, are taken from the training

images and the LBP code is calculated for each pixel within the cell. Each cell is equiva-

lent to the reference shape used in the GHT: a model example of what the algorithm will

attempt to find and must be large enough to contain one full repetition of the texture’s

pattern.

In the GHT, R-table bins were indexed by the gradient of edge pixels. Since texture

cannot be described purely by its boundary, the search cannot be limited to edge pixels;

all pixels must be taken into account. Instead of gradient, the identifying factor of the

pixels are their Local Binary Pattern (LBP) code. The R-table therefore contains a

number of bins equal to the number of different LBP codes that exist for the version of

the LBP that is being used. For LBP P values of eight, the number of bins will be ten;

one for each of the nine uniform LBP codes and a miscellaneous bin for all other codes

which are not classified as one of the uniform patterns. For each pixel in the cell an entry

is submitted to the bin corresponding to the LBP code for that pixel. The entry is a two
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(b) R-table

Figure 4.1: Example LBP values for a 5x5 pixel cell and corresponding R-table.

dimensional vector r=(xr,yr) representing the translation from the pixel to the reference

point of the cell, chosen to be the centre. In Figure 4.1, the top left pixel (shown in red)

in the cell has an LBP code of ‘1’ and so an entry is made in the ‘1’ bin with the vector

(2,2) which maps the top left pixel to the centre. The size and number of cells taken

from the training images are not fixed and these parameters can be tailored for different

applications. The size of the cell should be large enough to contain at least one full

example of the repeating pattern in the texture. Having multiple cells for each texture

class will provide more evidence for classification during the segmentation process.

The following equation is used to calculate the R-table entry for each pixel x = (x,y) in

a cell of centre c = (xc, yc):

r = c− x (4.3)

where the R-table index is the LBP code calculated by Equation 2.7 at the point x =

(x,y).

As with the GHT, evidence is stored in an array called the accumulator, and a separate

accumulator is maintained for each of the texture classes that are being searched for.

In the segmentation of sample images, the LBP code for each pixel in the entire image

is calculated. The entries in the R-tables represent the possible locations of the current

pixel relative to the reference point of the cell. For the example in Figure 4.1, if a pixel

in the sample image had an LBP code of ‘6’, it could correspond equally to any of the

three positions within the cell also with that LBP code. For each in turn, votes are

made for the area that would cover the entire cell positioned on that pixel. Rephrasing

Ballard (1981), the algorithm becomes: For each pixel x in the image, increment all the

corresponding points in a cell centred on the point x + r in the accumulator array A

where r is a table entry indexed by the LBP code at point x. Maxima in A correspond

to possible instances of the texture T.

Voting is done in blocks rather than for individual pixels because texture covers an area

and a single pixel on its own does not contain texture. The three block votes for an LBP

code of ‘6’ using the R-table in Figure 4.1(b) are shown in Figure 4.2. The algorithm is
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Figure 4.2: Accumulator showing block votes for three R-table entries, bordered
by red, green and blue rectangles.

effectively searching the sample image for the texture structure observed in the training

cell. In Figure 4.2, it can be seen that four of the pixels in the image were within all

three possible cells for that R-table and hence these pixels have a higher probability of

belonging to that texture class. The equations for calculating the coordinates of the

four corners of the rectangle covering the voting block for each R-table entry, where the

reference point is the centre of the cell, are as follows:

Top left = x + r + (−cw
2
,−ch

2
) (4.4)

Top right = x + r + (
cw
2
,−ch

2
) (4.5)

Bottom left = x + r + (−cw
2
,
ch
2

) (4.6)

Bottom right = x + r + (
cw
2
,
ch
2

) (4.7)

where cw and ch are the cell width and cell height respectively.

An accumulator for each texture class maintains the number of votes for each pixel for

that texture. If there is more than one cell for a texture class, the votes of the subsequent

cells are added to the accumulator for the first cell. When the voting process is finished,

the higher the number of votes for each pixel, the higher the probability of the pixel

belonging to that texture class. It is important to note that analysis of a single pixel

yields evidence for many other pixels. This works because if there is structure in the

texture, the LBP code at a point is related to those around it. Using a higher number

of cells per texture class increases the amount of evidence used to classify pixels and

leads to a higher accuracy. Segmentation is performed by filling an accumulator for each

texture class and assigning each pixel to the texture class with the highest number of

votes at that point.
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4.4 Extensions

4.4.1 Multiple cells

The cell taken from the training image, from which the R-table describing that class is

calculated, contains only a small percentage of the available information in the image.

The cells must be large enough to contain at least one full repetition of the pattern of

the texture, however, each iteration of this pattern will vary for real images. Samples

from the image to be segmented are classified into the texture class of the R-table with

the best match. If each texture class has multiple R-tables, the sample will match some

better than others, resulting in a higher chance of a successful segmentation.

4.4.2 Matched voting

An issue with the original form of the GSEGTS algorithm is overvoting. Since most

modern LBP variants only have ten different codes many votes are made for the wrong

texture since there will always be an element of overlap in the code occurrence. The

LBP methodology still works; there will always be more votes for a perfect sample than

for a different texture, however the presence of noise or a slightly distorted texture

sample can reduce the contrast of votes between texture classes. A solution to this

problem is the matched voting extension. In the GSEGTS algorithm the LBP code of

the pixel being classified is matched to those of the training cells. However, revisiting the

theory of structure present in the LBP space shows that if there is also a match between

the LBP codes of the neighbouring pixels in the sample image and the neighbouring

pixels in the training cell there is a higher chance of the pixel belonging to that texture

class. The matched voting extension awards one extra block vote per correctly matched

neighbouring pixel. Tests have shown that allowing the neighbouring LBP codes to

match any of the neighbouring codes in the R-table gives the best contrast increase

while maintaining the rotation invariant properties and number of votes for correct

textures. This means that in the example in Figure 4.2, the three entries in the R-table

will not be treated equally and will be assigned votes dependent on how closely the

structure matches. Each R-table entry is now required to contain the LBP codes for

the neighbouring pixels as well as the vector from the pixel to the centre of the cell.

Figure 4.3 shows the typical performance increase when matched voting is used instead

of standard voting.

4.4.3 Multi-scale support

Multi-scale versions of the LBP operator can be obtained from the individual histograms

of the LBP at different scales by extending the measure of dissimilarity to compare over
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(a) (b) 93.8% (c) 95.5%

Figure 4.3: Matched Voting: a) original image; b) Results using radius of 1 and
2 and nine cells of size 32x32 pixels without using matched voting; c) Results
under the same conditions using the matched voting extension.

(a) (b) 59.3% (c) 95.5%

Figure 4.4: Multiscale: a) original image; b) Segmentation results using LBP
radius of 1 and nine cells of 32x32 pixels c) Segmentation results using LBP
radius of 1 and 2 and nine cells of 32x32 pixels.

multiple histograms. The multi-scale LBP has been demonstrated to give better results

than the single scale version (Ojala et al., 2002b). The GSEGTS algorithm can be

similarly extended to support multiple scales by calculating the votes for each pixel at

each scale and then adding them together. In Figure 4.4(b) it can be seen that not all

textures are identified correctly using an LBP radius of 1, however when these results

are combined with those obtained from an LBP radius of 2, as seen in Figure 4.4(c), a

vastly improved segmentation is obtained.

4.4.4 Vote normalisation

It can be observed that different textures have different voting strengths. This means

that some textures could give a larger number of votes for an incorrect texture than

another texture could give for a correct match. This leads to cases where votes from one

texture overpower those from another, distorting the segmentation results. A solution

is to normalise the voting, whereby the votes from each texture are weighted according

to their strength factor. One way of calculating the strength factor is to add up the

total number of votes for the texture over the entire image and divide by the number
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Cluster 3

Cluster 2

Cluster 1

Figure 4.5: Segmentation accuracy of mosaics from the Brodatz subset using
both the new evidence gathering algorithm and the histogram comparison algo-
rithm. The solid line represents the line of equality and the dashed line is the
trend line.

of pixels. When all votes for a texture are divided by its strength factor the stronger

textures will have their influence over the regions of other textures weakened, reducing

the “overspill” effect. The equation for performing normalisation on an accumulator A

of size w by h is:

Anorm (x, y) =
A (x, y) ∗ w ∗ h∑w
a=0

∑h
b=0A(a, b)

(4.8)

If normalisation is required where one texture is weaker than the others, its use can

restore the texture boundaries to their correct locations. Better results can sometimes

be obtained from manual assignment of the strength factors, leading us to believe that

a machine learning approach is the best way of obtaining the optimum strength factor

during the training stage.
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4.5 Results

4.5.1 Texture mosaics

A subset of 27 textures from the Brodatz album (Brodatz, 1966) was used to generate

50 mosaics containing four randomly selected textures. Many of the Brodatz images do

not contain what is typically regarded as a single texture and are unsuitable for use in

this application. The chosen images all contain a single texture, with examples of both

regular and irregular textures included. This subset is included in Appendix A. For each

texture in the subset, the bottom right quarter was used to generate the mosaics, and the

top left quarter was used to provide training data for segmentation. Segmentation was

performed using the GSEGTS algorithm, employing LBP radii of both 1 and 2 for multi-

scale support and segmenting using 9 cells of 32x32 pixels each. The matched voting

and automatic normalisation features were also enabled. The standard method of image

segmentation using a texture classification algorithm classifies each pixel individually

by taking a window centred on it and performing comparison against the training data

(Petrou and Sevilla, 2006). For comparison, the LBP segmentation from Mäenpää et al.

(2000b), which uses this method to segment each of the 50 texture mosaics, was chosen.

For simplicity, this algorithm will be referred to as Histogram Comparison (HC).

Results from the segmentations of the mosaics are shown in the scatter graph in Figure

4.5. Each of the 50 mosaics are represented by a dot on the plot, with the position on

the x- and y-axis relating to the segmentation accuracy with histogram comparison and

GSEGTS respectively. The solid blue line is the line of equality, which represents where

the dots would lie if both algorithms performed the same. The dashed green line is the

trend. The preponderance of results exceeding the line of equality shows the superiority

of the new approach. The new GSEGTS algorithm achieved an average segmentation

accuracy of 86.9% and standard deviation of 8.12 over the twenty tests compared with

an average of 80.3% and standard deviation of 10.36 achieved by HC.

The results that form Cluster 1 performed significantly better with HC than the GSEGTS

algorithm. Upon examination of the segmentations, it was found that in each case a

single texture failed to be identified correctly, resulting in the poor performance. These

textures are shown in Figure 4.7. Most of these textures are irregular textures. Since

GSEGTS uses the structure of texture to segment images it is unsurprising that it does

not perform as well with irregular textures as it does with regular textures. An example

of this error is shown in Figure 4.6(a) where it is apparent that the upper right texture

(Brodatz texture 48) has been falsely identified as the bottom right texture (Brodatz tex-

ture 17). The mosaics in Cluster 2 were poorly segmented by both GSEGTS and HC. In

both cases, the confusions were between irregular textures. The results forming Cluster

3 were also examined to see which combinations of textures performed favourably with

the GSEGTS algorithm and not so well with histogram comparison. In each case where
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(a) GSEGTS (b) HC

Figure 4.6: Example segmentation results where there has been a misclassifica-
tion of a texture.

the algorithm could not differentiate between textures, each segment contained regions

of the other texture. In particular, texture 57 contains a similar statistical distribution

of texture elements to other textures in the subset and so its inclusion in a mosaic causes

the HC algorithm to perform poorly. Figure 4.6(b) shows the segmentation result from

HC where textures 17 (top right) and 57 (bottom right) have been confused.

It is apparent from Figure 4.6 that both algorithms respond to error in significantly

different ways. In GSEGTS, a single pixel is calculated from evidence gathered from a

region of up to (3n−2)2 pixels, for a cell of size n2 pixels. This means that large regions of

homogeneous texture are likely to be segmented as a single texture even if there are small

variations from the training cell within the texture. By contrast, histogram comparison

only takes into account an n2 region of pixels to make a decision, also abandoning

any structural information present in the region. Any small variations in composition

of texture elements within the window increase the likelihood of an incorrect decision

being made. When there are two textures with similar composition of texture elements

in the image the change of an individual pixel being misclassified is high. This leads to

patches of the wrong texture in the segmentation output where there is variation in the

image. This is less of an issue in texture classification where a single decision is made

for each image, but yields unsatisfactory results for segmentation applications.

Quantitatively, a poor GSEGTS segmentation still achieves above 70% accuracy. This

includes a 25 percentage point loss from the misclassified texture and up to 5 percentage

points lost from boundary errors. Poor results from HC were often much lower: down

to 50% accuracy. This is mainly due to patches of incorrectly classified pixels within an

otherwise correctly segmented region.
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1 5 11 12 24

29

Figure 4.7: Textures contributing to poor GSEGTS performance in Cluster 1.

4.5.2 Natural images

A selection of natural images have been segmented using GSEGTS and HC to asses their

performance on images with natural texture boundaries and variation within texture

segments. Since these images do not come with samples of the texture classes to use as

training data, segmentation using GSEGTS and HC requires the provision of samples of

the texture classes to be found in the image prior to segmentation. These are supplied

to the algorithm by entering the coordinates of a location within the image containing

that texture class.

The first is a simple image from the VisTex database (Pickard et al., 1995) containing

just two texture classes. Figure 4.8 shows the segmentation of this image using GSEGTS

and HC. Both provide an almost perfect segmentation, but GSEGTS does have a notice-

ably smoother boundary between the two textures. Results from three images from the

Berkeley Segmentation Dataset (Martin et al., 2001) have also been included. The first

is an Egyptian pyramid shown in Figure 4.9. The results obtained from the GSEGTS

algorithm and the standard HC algorithm are shown in Figures 4.9(c) and 4.9(d) re-

spectively. A manual segmentation of the image is included in Figure 4.9(b) and the

segmentations are compared to this ground truth to obtain a numerical indicator of their

quality. Both algorithms provide a good segmentation of the image, however it is appar-

ent that that the GSEGTS algorithm provides a much smoother boundary between the

textures. The segmentation accuracy is higher for HC, but this is down to areas of cloud

being misclassified as sky. If the original image is examined it is apparent that for these

ambiguous areas, the patches of cloud are almost indistinguishable from the sky texture,

therefore the GSEGTS algorithm can be forgiven for the error. The second image is of a

mountain scene and results are shown in Figure 4.10. GSEGTS provides a significantly

better result than the HC algorithm and again features smoother boundaries between

textures and lower noise within texture segments. For the third image, shown in Figure

4.11, HC performs better in terms of percentage match against the manually segmented
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(a) (b) (c)

Figure 4.8: GPS6 (Pickard et al., 1995): a) original image; b) segmentation
using the GSEGTS algorithm; c) segmentation using the HC algorithm.

(a) (b)

(c) 83.8% (d) 88.1%

Figure 4.9: BSDS Pyramid: a) original image; b) manual segmentation; c)
segmentation using the GSEGTS algorithm; d) segmentation using histogram
comparison.

result (Figure 4.11(b)) however the GSEGTS algorithm gives a clearer, reduced noise

result with much smoother texture boundaries. Additionally it can be noted that the

classification error in the bottom right corner of the image can be attributed to a change

in camera focus; giving different local texture patterns. This highlights the need for a

multi-scale approach to texture analysis, which is addressed in Chapter 5.
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(a) (b)

(c) 76.7% (d) 67.8%

Figure 4.10: BSDS Mountain: a) original image; b) manual segmentation; c)
segmentation using the GSEGTS algorithm; d) segmentation using the HC al-
gorithm.

(a) (b)

(c) 67.11% (d) 77.34%

Figure 4.11: BSDS Birds: a) original image; b) manual segmentation; c) segmen-
tation using the GSEGTS algorithm; d) segmentation using the HC algorithm.
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4.6 Colour and texture

There are three main ways of combining colour and texture information into a single

operator. The first is a parallel combination, whereby colour and texture operators are

applied separately to an image and the results are concatenated into a single feature

vector. The advantage of this approach is that colour information can easily be added

to an existing texture algorithm by applying a colour operator in parallel. The second

approach is sequential, wherein the colour operator is applied first and the texture algo-

rithm operates on this “colour-space”; finding texture within the colour. The advantage

of this method is that the feature vector provided by the algorithm can still be processed

in the same way as that obtained from a pure texture version. An example of a sequen-

tial colour-texture operator is the JSEG algorithm developed by Deng and Manjunath

(2001). The final way of combining colour and texture information is the integrated

approach. This involves fusing colour and texture to form a single feature vector.

Opinion is divided on which method for combining colour and texture information is the

best. Mäenpää and Pietikäinen (2004) claimed that using colour and texture in parallel

is not the most effective way of utilising the information and suggested that under

static illumination conditions colour alone works best, while grey scale alone works best

under varying illumination. However, Palm (2004) showed that adding colour histogram

information to grey scale features in a parallel manner gave better results for texture

classification than the grey scale operator alone. He further claimed that using an

integrated colour texture feature can yield an even better result.

The evidence gathering approach described earlier in the chapter has been extended

to include colour information in the segmentation process. A new colour quantisation

scheme called Huesat based on hue and saturation has been developed to provide colour

classes which are integrated into the evidence gathering method. The extended algorithm

is referred to as Colour Class Evidence Gathering Texture Segmentation (CCEGTS). It

has been demonstrated that CCEGTS provides consistently better segmentation results

than the original grey-scale EGTS algorithm (GSEGTS), an example of which is avail-

able in Figure 4.19. The new algorithm is also compared against colour segmentation

using RGB histogram comparison and Huesat to show that the integrated colour-texture

approach is superior to using colour or texture on their own.

Remotely sensed images contain a variety of colour and texture information representing

many different features, each formed of its own unique blend of patterns. The images

of the Earth’s surface captured by satellites are used for many applications; leading

to conclusions about the rate of coastal erosion, deforestation and urban development

within a region. As it is an appropriate application for colour-texture segmentation, the

new CCEGTS algorithm is used to segment remotely sensed images as well as colour-

texture mosaics.
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4.7 Colour Class Evidence Gathering Texture Segmenta-

tion

The concept of segmenting an image by combining colour and texture information in an

integrated manner can be applied to the evidence gathering approach by indexing each

R-table entry by colour class as well as the LBP code. This combines colour information

with texture and helps to reduce votes for incorrect textures by limiting voting to within

colour classes. The new Huesat colour quantisation algorithm is applied to the image

to assign each pixel into a colour class. The colour classes are determined from the hue

and saturation calculated from the RGB values of each pixel. Other colour quantisation

approaches could also be used.

4.7.1 Colour quantisation

A new colour quantisation scheme based on hue and saturation has been developed to

assign each pixel into a colour class. The hue spectrum is quantised into twelve 30 degree

intervals, each of which is assigned a colour class number. In addition, a thirteenth class

is created for colours with a saturation of less than 25%. Each colour class is intended

to represent a group of colours recognisable under a single label such as “red”, “pink” or

“purple”. The low saturation class is intended to capture grey pixels. Colours under this

condition can have small visual differences but large differences in hue, so it is important

to assign them their own class. Equation 4.9 shows the calculation of colour class from

hue and saturation. The hue values are offset by 15 degrees to ensure that the primary

colours fall in the centres of their respective colour classes. The effects of this colour

quantisation scheme are illustrated in Figure 4.12, showing a smoothly varying palette

categorised into regions of colour.

C =

{
trunc

(
hue+15

30

)
if sat ≥ 0.25

12 otherwise
(4.9)

Twelve colour classes are chosen because this number means each class is small enough

to exploit class separation, but large enough to ameliorate noise. The new colour quan-

tisation scheme, referred to as Huesat, can be used on its own as a colour segmentation

algorithm by applying the same principles of histogram comparison as used by the RGB

histogram comparison algorithm in Swain and Ballard (1991). This is shown in Equa-

tion 4.10 where n is the number of colour classes, I is the image histogram and M the

model histogram.

H(I,M) =

∑n
j=1 min(Ij ,Mj)∑n

j=1Mj
(4.10)
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(a) Palette (b) Quantised Palette

Figure 4.12: Colour palette before and after quantisation.

4.7.2 Evidence gathering

As with the grey-scale version of the algorithm (GSEGTS), before sample images can

be analysed an R-table must be generated for each known texture class. The R-table

contains a number of bins equal to the number of different LBP codes that exist for the

version of the LBP that is being used multiplied by the number of colour classes. For

LBP P values of eight and standard colour quantisation giving thirteen colour classes,

the number of bins will be 130; thirteen bins for each of the nine uniform LBP codes

and thirteen bins for all other LBP codes which are not classified as one of the uniform

patterns. For each pixel in the cell an entry is submitted to the bin corresponding to

the LBP code and colour class for that pixel. The entry is still a two dimensional vector

r=(xr,yr) representing the translation from the pixel to the reference point of the cell

and is usually chosen to be the centre. In Figure 4.13, the top left pixel in the cell has

an LBP code of ‘1’ and the colour class is orange, so an entry is made in the ‘1,0’ bin

with the vector (2,2) which maps the top left pixel to the centre.

The following equation is used to calculate the R-table entry for each pixel x = (x,y) in

a cell of centre c = (xc, yc):

r = c− x (4.11)

where the R-table index is the LBP code calculated by Equation 2.7 and the colour class

calculated by Equation 4.9 at point x = (x,y). The grey scale version of the algorithm

can be derived from the extended version by setting the colour class of each pixel to 12

(grey) regardless of the actual colour. This effectively means that each entry is indexed

only by the LBP code.

4.7.3 Voting

Evidence is stored in an accumulator array and a separate accumulator is maintained

for each of the texture classes that are being searched for. In the segmentation of sample
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(a) Cell

 
Bin Number Entries 

LBP Code Colour Class 

1 0 (2,2) 

2 0 (1,0) 

1 (1,2)(-2,2)(2,-2)  

 
3 

0 (0,1)(-2,0) 

1 (-1,1)(0,0)(1,-1) 

2 (0,2)(1,1)(-2,1)(2,0) 

4 0 (2,-1) 

 
5 

0 (0,-2) 

1 (2,1)(-2,-1) 

2 (0,-1)(1,-2) 

6 0 (-1,2) 

2 (-1,0)(-2,-2) 

7 0 (-1,-1) 

8 1 (-1,-2) 

(b) R-table

Figure 4.13: Example LBP and colour class values for a 5x5 pixel cell and
corresponding R-table. The reference point of the cell is the centre pixel with
LBP code ‘3’ and colour class blue. Empty R-table bins are not shown.

images, the LBP code and colour class for each pixel in the entire image is calculated.

The entries in the R-tables represent the possible locations of the current pixel relative

to the reference point of the cell. For the example in Fig. 4.13, if a pixel in the sample

image had an LBP code of ‘3’ and colour class ‘1’ (blue), it could correspond equally to

any of the three positions within the cell also with that combination of LBP code and

colour class. For each in turn, votes are made for the area that would cover the entire

cell positioned on that pixel. The process is: for each pixel x in the image, increment all

the corresponding points in a cell centred on the point x + r in the accumulator array A

where r is a table entry indexed by the LBP code and colour class at point x. Maxima

in A correspond to possible instances of the texture T. Voting is done in blocks because

the information from a single pixel gives evidence for each pixel in the cell.

The three block votes for an LBP code of ‘3’ and colour class ‘1’ using the R-table

in Figure 4.13(b) are shown in Figure 4.14. The algorithm is effectively searching the

sample image for the texture structure observed in the training cell. In Figure 4.14, it

can be seen that nine of the pixels in the image were within all three possible cells for that

R-table and hence these pixels have a higher probability of belonging to that texture

class. Compared to the GSEGTS algorithm, the computational cost for CCEGTS is

reduced since there will be fewer block votes made for each pixel in the image since the

entries in each grey-scale R-table bin are spread over a number of bins in the new colour

version of the algorithm.

The matched voting extension and vote normalisation from the original GSEGTS algo-

rithm are applied to CCEGTS in exactly the same way. Segmentation is performed by
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Figure 4.14: Accumulator showing block votes for three R-table entries, bor-
dered by red, green and blue rectangles.

compiling an accumulator for each texture class and assigning each pixel in the image

to the texture class with the highest number of votes at that point.

4.8 Results

4.8.1 Texture mosaics

To test the CCEGTS algorithm, a set of fifty mosaics was generated by random selection

from a subset of 30 textures from the VisTex database (Pickard et al., 1995), which

consists of real world colour texture images. For comparison, segmentations were also run

using GSEGTS and LBP histogram comparison (Mäenpää et al., 2000b). Segmentation

was performed using cells of size 16x16 pixels and tests were run using 1,3,6,10 and 225

cells from the training image. For LBP histograms, model histograms were generated

using the data from the cells taken for CCEGTS and GSEGTS. This ensures comparable

results as each algorithm has access to the same amount of training data. Average

segmentation accuracies for the 50 mosaics in each test are shown in Figure 4.15. It is

clear from these results that CCEGTS outperforms GSEGTS and LBP HC regardless

of the number of training cells taken. However, the performances of GSEGTS and LBP

HC are very similar using this measure. When looking at the individual segmentation

results is can be observed that the evidence gathering approaches both give very smooth

regions of texture with minimal noise within segments. This is not always the case for

histogram comparison, so a measure of over- and under-segmentation has been generated

to quantify this. A boundary pixel is identified if its assigned class differs from at least

one of its neighbours and the number of these boundary pixels is computed for each

mosaic. The difference between this number and that of a perfect result (2044 boundary

pixels for a mosaic of size 512x512) is calculated and an average is obtained for the
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Figure 4.15: Comparison of performance between new and existing algorithms
at various numbers of cells (CCEGTS)/windows (HC). Each point is the average
result from 50 mosaic segmentations.

set of 50 mosaics. A graph showing this measure is shown in Figure 4.16 where the

lower the boundary error, the better the result. It is very clear that both CCEGTS

and GSEGTS vastly outperform histogram comparison. If these results are taken into

consideration with the segmentation accuracies previously calculated it can be concluded

that GSEGTS is a better segmentation algorithm than LBP HC if segments with low

noise is desired.

Comparisons between individual algorithms are shown in Figures 4.17 and 4.18 where

the solid blue line represents the line of equality and the dashed green line represents

the trend. Each dot in the scatterplot represents the segmentation of a single mosaic

under both algorithms being compared.

4.8.2 Remote sensing

The new approach was also applied to the segmentation of a number of remotely sensed

images. Segmentation using CCEGTS and GSEGTS requires the provision of samples

of the texture classes to be found in the image prior to segmentation. These are supplied

to the algorithm by entering the coordinates of a location within the image containing



82 Chapter 4 Evidence Gathering Texture Segmentation

1 3 6 10 225
Number of Cells/Windows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Av

er
ag

e 
Bo

un
da

ry
 E

rr
or

CCEGTS
GSEGTS
LBP HC

Figure 4.16: Comparison of performance between new and existing algorithms
at various numbers of cells (CCEGTS)/windows (HC). Each point is the average
result from 50 mosaic segmentations.

that texture class. The example shown in Figure 4.19 shows an aerial view of Hong

Kong, containing urban, non-urban and water sections. An improved segmentation re-

sult was achieved using the new CCEGTS algorithm when compared with the GSEGTS

algorithm. In particular it can be seen that the urban area in the lower half of the image

contains some noise in the GSEGTS segmentation which is completely eliminated using

the colour version. Comparisons against RGB histogram comparison, LBP histogram

comparison and JSEG segmentation also indicate the superiority of the new approach.

In an image such as this which contains strong colour differentiation between semantic

sections of the image it can be noted that the CCEGTS segmentation is a less noisy

alternative to pure colour RGB histogram comparison. The unsupervised segmentation

result obtained using the JSEG algorithm performs less favourably due to the high rate

of over-segmentation. The inclusion of colour information is especially important in the

image of New York in Figure 4.20 as both GSEGTS and LBP Histogram Comparison

give poor results. CCEGTS and Huesat give more accurate results with CCEGTS again

providing a smoother, less noisy segmentation than Huesat alone. Figure 4.21 highlights

again the problems of oversegmentation with the JSEG algorithm, as the city is divided

into many regions. CCEGTS assigns most of the city region into a single contiguous

block; a useful property for later analysis of the results.
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Figure 4.17: Comparison between CCEGTS and GSEGTS with 10 cells of size
16x16.

4.9 Conclusions

In this chapter, a new method for image texture segmentation has been presented which

is the first use of an evidence gathering approach in the field of texture analysis. In

contrast to conventional methods which compare measurements from a sample of an

image to training data to classify a single pixel, this approach compiles information

gathered from each pixel into evidence to support the classification of nearby pixels into

each known texture class. Each pixel is then classified into the class for which it has

the most evidence. A statistical test has been performed using a subset of the Brodatz

texture database and the GSEGTS algorithm gives an average performance of 86.9%

with a standard deviation of 8.12, compared with an average of 80.3% with a standard

deviation of 10.36 for the HC algorithm under the same conditions. The lower standard

deviation implies that in addition to performing better on average, the new algorithm

is also more robust. Tests on real images from the Berkeley Segmentation Dataset

show higher segmentation accuracies are obtained from the GSEGTS algorithm. The

results also provide noticeably smoother texture boundaries and reduced noise within

texture regions. The proposed GSEGTS algorithm is an implementation of a higher

order texture descriptor; classifying texture based on the structure of the individual

elements which make up the texture. Existing “low order” descriptors use the rate of
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Figure 4.18: Comparison between CCEGTS with 10 cells of size 16x16 and LBP
Histogram Comparison using 10 windows of size 16x16.

(a) Original Image (b) GSEGTS Segmentation (c) CCEGTS Segmentation

(d) LBP HC Segmentation (e) JSEG Segmentation (f) Huesat Segmentation

Figure 4.19: Segmenting an image of Hong Kong with new and comparison
algorithms.
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(a) Original Image (b) GSEGTS Segmentation (c) CCEGTS Segmentation

(d) LBP Histogram Comparison (e) JSEG Segmentation (f) Huesat Segmentation

Figure 4.20: Segmenting an image of New York with new and comparison algo-
rithms.

occurrence of the texture elements to classify the textures, providing a descriptor which

is not necessarily unique to a single texture class. By contrast, the GSEGTS algorithm

generates a unique R-table for each texture which not only supplies information on the

occurrence of texture elements, but also their structure.

A colour extension to the evidence gathering texture segmentation algorithm has also

been presented, which uses colour classes provided by the new Huesat colour quantisa-

tion scheme to integrate colour information into the texture operator. Segmentations

have been performed on a subset of the VisTex database; demonstrating superiority of

the CCEGTS algorithm when compared to the basic operators from which the evidence

gathering method builds upon. When applied to satellite imagery CCEGTS provides ap-

pealing segmentations which are a substantial improvement on the GSEGTS algorithm.

This, alongside the results obtained from VisTex, shows that the inclusion of colour

information provides a better result at a decreased computational cost than texture

information alone.
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(a) Original Image (b) GSEGTS Segmentation (c) CCEGTS Segmentation

(d) LBP Histogram Comparison (e) JSEG Segmentation (f) Huesat Segmentation

Figure 4.21: Segmenting an image of Rio de Janeiro with new and comparison
algorithms.



Chapter 5

Scale Based Texture Analysis

5.1 Introduction

Natural images contain many different textures at different scales. Also, depending

on camera viewpoint, instances of one texture may be present at different scales. For

example, in an image of a house, the arrangement of bricks are one texture however if

viewed at an angle, the bricks nearest the camera are at a larger scale than those further

away. This highlights the need for a multi-scale approach to texture analysis as otherwise

the close image of bricks will be classified as a different texture. Even samples of texture

in databases such as VisTex (Pickard et al., 1995) do not contain a single texture at

a single scale. An image of a brick wall contains the textures corresponding to the

surface of the brick and surface of the mortar at a low scale and the pattern the bricks

produce at a larger scale. Applications can be optimised to capture a specific texture

within the image, but this disregards information that could improve the segmentation

or classification rates for that sample.

The large scale components of an image are known as macro-structures and the small

scale components are known as micro-structures. Image filtering can be used to remove

the structures from certain scales of the image. Micro-structures, which are those that

repeat the most throughout the image, tend to be present in the high frequency com-

ponents of the image. Lowpass filtering therefore can be used to remove these high

frequencies, and hence micro-structures, from the image. Similarly, highpass filtering

can be used to remove the macro-structures from the image. As the cutoff frequency

of the filter is changed to remove more frequencies, more structures will be removed

from the image. It is possible therefore, to analyse images in the absence of certain tex-

ture scales, thereby enhancing the effect of the remaining components on segmentation

performance.

Previous chapters in this thesis have concluded that such a multi-scale approach is

required. The Evidence Gathering algorithm in Chapter 4 performs better if more

87
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than one scale is taken into account. Chapter 3 demonstrates that if reconstruction is

performed on separate scales within an image and then recombined into a single image,

a more visually accurate image can be obtained from the LBP codes. This suggests

that the sum of the parts is greater than the whole when considering the Local Binary

Pattern operator.

Previous work on using filtering to construct a multi-scale texture descriptor includes a

paper by Turtinen and Pietikäinen (2006), where a multi-scale feature vector for each

pixel was extracted by taking three squares of increasing size around the pixel and

resizing the larger two to the dimensions of the smallest using Gaussian filtering and

downsampling. A Local Binary Pattern (LBP) histogram was computed for each square

and the histograms concatenated together into a single feature. He et al. (2010) used a

Gaussian pyramid to obtain features at different scales and concatenated the histograms

in a similar manner. Both papers focussed on macro-structures, with micro-structures

only obtained from the original unfiltered image in each case. Since filtering the image

with a lowpass Gaussian filter exposes the macro-structures a highpass filter can be used

to expose the micro-structures.

In this chapter a technique for multi-scale texture segmentation is introduced. The Ac-

cumulative Filtering algorithm works with any existing texture operator which provides

a feature vector. Feature vectors are constructed from separately highpass and lowpass

filtered images to focus equally on the micro- and macro-structures that form the image.

These are concatenated along with the feature vector for the original image to provide

a single multi-scale feature vector. This approach has been applied to the LBP and Ga-

bor filters, providing a greatly improved segmentation accuracy across the entire image,

including texture boundaries.

5.2 Multi-scale LBP

The basic LBP (Ojala et al., 1996) covers a 3x3 pixel area of the image and is considered

too small for images containing larger scales. Mäenpää et al. (2000b) introduced a multi-

predicate LBP which increased the area from which the LBP code is calculated. The

histograms from various predicates are concatenated together to form a single multi-

scale description of the texture. This was found to provide improved results over those

obtained from the basic LBP. Ojala et al. (2002b) extended this further with the multi-

resolution LBP which calculated the LBP code from P points on a circle of radius R.

This method of increasing the size of the LBP operator enables it to capture the larger

scales in the image which would otherwise be missed, but it must still be combined with

the basic LBP to ensure that the smaller scale elements of the image are also captured.

This has the same effect as the process of lowpass filtering followed by downsampling
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seen in (Turtinen and Pietikäinen, 2006) and (He et al., 2010); instead of increasing the

size of LBP, the image is reduced in size.

5.3 Image filtering

The scale based approach is achieved by selectively removing certain ranges of frequencies

from the images prior to analysis. This is done by filtering the image. For the most

basic variant of Accumulative Filtering, lowpass filters are used to remove the micro-

structures and highpass filters are used to remove the macro-structures. Lowpass filtering

is commonly achieved by convolving the image with a Gaussian filter. It is also possible

to achieve highpass Gaussian filtering by applying the following steps:

1. Apply lowpass Gaussian filtering to image

2. Invert filtered image

3. Add the inverted image to original image

Gaussian filters are controlled by two main parameters: the size of the filter and the

standard deviation of the Gaussian distribution. Having two parameters makes the

procedure more complex as these need to be calculated from a simple cut off frequency

to provide the desired images. There is an alternative method which does allow easy

control:

1. Convert to frequency domain using Discrete Fourier Transform (DFT)

2. Rearrange quadrants of image to place low frequency components at the centre

3. Multiply image with filter

4. Apply inverse DFT to convert back to the image domain.

The filter described above is an array of ones and zeros the same size as the image.

Where a zero exists in the filter, the frequency represented by this coordinate in the

image will be removed after multiplication. A one has no effect on the image. As

the low frequencies are rearranged to the centre, with each axis of the array increasing

with increasing frequency as shown in Figure 5.1, lowpass filtering can be achieved by

retaining the components within a circle centred on the DC point and removing all

frequencies outside this point. Highpass filtering removes the frequencies within the

circle and retains those outside it. The cutoff frequencies of both type of filters are

controlled using the radius of the circle. These filters are described in Equations 5.1 and

5.2 where f is the filter size and w is the width of the image.
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Figure 5.1: Rearranging quadrants in the frequency domain.

FLP (u, v) =

{
F(u, v) if

√
u2 + v2 ≤ f · w

0 otherwise
(5.1)

FHP (u, v) =

{
0 if

√
u2 + v2 ≤ f · w

F(u, v) otherwise
(5.2)

The width of the image in pixels, w, is necessary for the filtering process because larger

images are represented by a larger range of spatial frequencies in the Fourier domain.

This is important during supervised image segmentation when sample and model images

are of different sizes. The filter size, f , is related to the cutoff frequency of the filter.

Lowpass filtered images could be downsampled without reducing information content,

but image size is retained to allow later comparison with highpass filtered images. More

sophisticated filter mechanisms could be used, but the premise here is to explore whether

frequency domain filtering (and particularly highpass) can be used to explore scale to

advantage in texture segmentation. Figure 5.2 shows the effects of applying lowpass

and highpass filters of various sizes to a mosaic generated from a subset of the VisTex

database (Pickard et al., 1995).

Before applying the principles of Accumulative Filtering, it is important to know the

effect that filtering the images has on their segmentation accuracy. For this purpose, fifty

mosaics of size 512x512 were generated by random selection from a subset of 30 textures

from the VisTex database. These mosaics were filtered and then segmented using LBP

histogram comparison to highlight the effects of image filtering on segmentation results.

Training samples used in the segmentations were filtered to the same extent as the

mosaics. The results from these tests are shown in Figures 5.3 and 5.4. The graphs

show that that the unfiltered image (represented by f = 0.71 for lowpass and f = 0 for

highpass) performs best and as the size of the filter changes such that more frequencies

are removed from image, the segmentation accuracy decreases. This can be attributed to

the lower level of information content within the filtered images. Where the segmentation

algorithm had all the texture scales to draw upon in the original image, there are fewer
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(a) VisTex Mosaic (b) Image applied with lowpass filter
of size f=0.049.

(c) Image applied with lowpass filter
of size f=0.10.

(d) Image applied with lowpass filter
of size f=0.15.

(e) Image applied with lowpass filter
of size f=0.20.

(f) Image applied with highpass filter
of size f=0.02.

(g) Image applied with highpass fil-
ter of size f=0.05.

(h) Image applied with highpass fil-
ter of size f=0.10.

(i) Image applied with highpass filter
of size f=0.20.

Figure 5.2: Applying various highpass and lowpass filters to a mosaic of VisTex
images.

present in the filtered images from which to make a decision. However, for some parts of

individual images, a better result can be obtained when using one of the filtered images

instead of the original image. There is a small dip in the graph in Figure 5.3; for the

low filter sizes most of the information has been removed from the image making the

results extremely unreliable. Small amounts of noise can cause pixels to be reclassified

into a different texture class, resulting in this dip and the spike around f = 0.1. These

anomalies are specific to the images used and do not represent the overall trend.
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Figure 5.3: Average mosaic segmentation accuracy for lowpass filtered images.

5.4 Accumulative Filtering

The principle of the new Accumulative Filtering (AF) technique is that segmentation of

a filtered image, while of limited use on its own, can enhance the result when combined

with the feature vector provided by the original unfiltered image. During segmentation,

pixels are assigned to a particular texture class based on the distances measured between

the pixel and each class by the texture operator. When an incorrect texture class has

been selected for a pixel in the segmentation of an unfiltered image, in many of the cases

the correct texture was the second closest result and the difference between the two

distances was small. When the same segmentation is performed under various different

filter sizes overall accuracy decreases as the filter removes more information, but some

of the originally incorrectly classified pixels can be correctly classified at some filter

sizes. For the filtered image where the pixel is correctly classified there is often a large

measured distance between it and the originally incorrectly classified texture class. If

the distances between the pixels and each texture class for the filtered image are added

to those obtained from the original image the overall result will be correct for that pixel

and retains the overall high accuracy across the image.

The algorithm segments an image by filtering the image multiple times each with a

different cutoff frequency and then segments each filtered image and the original image
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Figure 5.4: Average mosaic segmentation accuracy for highpass filtered images.

concurrently. A final decision is made on the texture class for each pixel by combining

the results from each filtered image using the Kullback–Leibler divergence in Equation

5.3, which has the effect of adding the distances obtained for each texture class from

each filtered image. It has been observed that taking the sum of segmentation results

of all levels of filtering up to a certain point (at which the level of filtering results in so

much information loss its inclusion is detrimental) will give a much improved result over

the original segmentation. Further, taking the sum of a small selection of non-adjacent

filtering levels will give an even better result.

It is often the case where two textures within a mosaic share similar micro- or macro-

structures when the original image is viewed. This gives an element of ambiguity between

the texture classes and there will be many pixels classified within one texture’s bounds

for the other texture. This was observed in Section 4.5 and is also the case for the mosaic

of VisTex images in Figure 5.5, where the unfiltered segmentation results are shown in

Figure 5.5(d). There is much confusion between the bottom left (green) and top right

(dark blue) textures. When a low pass filter with size f = 0.31 is applied to the mosaic

and texture samples, the micro-structure causing the ambiguity has been removed and

there are fewer errors between these two texture classes. This is shown in Figure 5.5(e).

On the whole, however, the segmentation of this filtered image is slightly worse than

that of the original image, with 81.1% achieved for the original image and 81.0% for



94 Chapter 5 Scale Based Texture Analysis

the filtered image. When the distances for each segmentation are added together, with

the combined result shown in Figure 5.5(f), there is a vast improvement over both, with

88.5% accuracy achieved.

When the image is segmented after being filtered with a high pass filter of size f = 0.13,

there are very few mistakes between the top right and bottom right (light blue) textures

and also fewer between top left and bottom right than there were before, see Figure

5.5(g). This result on its own is extremely poor, with an accuracy of 75.1%, however

when added to results from the original image and the low pass size f = 0.31 image an

even better result is achieved at 91.3%, which is shown in Figure 5.5(h).

5.4.1 Segmentation algorithm

The Accumulative Filtering technique is designed to work with any texture operator that

can provide a distance between each pixel and each texture class. Initially, Uniform Local

Binary Patterns (LBP) (Ojala et al., 2002b) have been chosen as the texture descriptor

and Histogram Comparison (HC) (Mäenpää et al., 2000b) is used to segment the texture

mosaics based on their LBP codes to provide these distances. The output from the HC

algorithm is a distance from each pixel in the image to each of the possible texture

classes. The AF process provides multiple histograms for each texture class; one for

each filter size used. A two-dimensional Kullback–Leibler divergence is used (Mäenpää

et al., 2000b) to calculate the distance between sample, S, and model, M , in this case:

L(S,M) = −
∑
f∈A

N∑
n=1

Sfn lnMfn (5.3)

N is the number of histogram bins, Sfn and Mfn are the probabilities of bin n in

histogram f for the sample and model respectively and A is the set of filter sizes chosen

for the segmentation. All segmentation for AF is done using the uniform LBP with P=8

and R=1 where the points are the values of the eight boundary pixels in a 3x3 grid.

This is because this arrangement was found to give the best results. For each pixel, p,

in the image, a sample histogram S is obtained from the pixels in a window centred on

pixel p, and the distance L(S,M) is calculated for each texture class’ model histogram

M . The pixel is classified into the texture class which minimises this distance metric.

5.4.2 Filter selection algorithm

Accumulative Filtering combines the histograms from the image separately applied with

a number of different filter sizes. A filter selection algorithm is employed to choose the

optimum sizes to use for a given application. This involves the segmentation of a set of

training images with known ground truth. The filters are added to the process in stages
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(a) Original image (b) Image applied with low pass filter
of size f=0.31.

(c) Image applied with high pass fil-
ter of size f=0.13.

(d) Result from unfiltered image:
81.1% accuracy

(e) Result from image filtered with
low pass f=0.31. 81.0% accuracy

(f) Result from lowpass f=0.31
added to unfiltered: 88.5% accuracy

(g) Result from high pass f=0.13.
75.1% accuracy

(h) Result from highpass f=0.13,
lowpass f=0.31 and unfiltered:
91.3% accuracy

Figure 5.5: Segmenting a texture mosaic with 0, 1 and 2 filtered images added

and at each stage, the best filter is determined by adding each in turn and selecting the

one which maximises the segmentation accuracy calculated from the ground truth. In

Figures 5.3 and 5.4, the maximum segmentation accuracy is obtained from the unfiltered

image, so this suggests that the best starting point is the original image. To find the best

filter to add for the next stage, each filter’s histogram is separately combined with the

original image’s and the best combination is selected. This pair will then form the basis

for selecting a filter at stage 2. The set of filters used at stage i is therefore calculated
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by:

Ai = {Ai−1 + fmax} (5.4)

where

fmax = argmaxf (AF ({Ai−1 + f | f ∈ Z})) (5.5)

and Z is the set of all available filter sizes and AF (A) is the segmentation accuracy from

the Accumulative Filtering process using set of filter sizes A. Set A0 contains only a

highpass filter of size 0, which is equivalent to no filtering and segmentation using this is

the same as using the standard LBP method, LBP riu2
8,1 . Accumulative Filtering can be

done exclusively with lowpass filters: AFL, highpass filters: AFH , or a combination of

both: AFLH .For the lowpass filters, 182 filter sizes between 3.9× 10−3 and 7.1× 10−1

were used. Larger lowpass filter sizes removed no further information from the image

and had the same effect as no filtering. For highpass, 100 filters sized between 3.9×10−3

and 3.9×10−1 were used. The selected filter sizes reflect integer values for the expression

f · w in Equation 5.1 for the images used. Further increases to the highpass filter size

removed so much information from the image that their inclusion was always detrimental

to the process.

5.4.3 Varying LBP operator size

The size and precision of the uniform LBP operator is controlled using the number of

points, P , on a radius R. Ojala et al. (2002b) found that using multiple LBP operators

with different P and R values gave better results than using a single operator. However,

the results do not go beyond combining more than three operators together and only a

very limited selection of P and R combinations are used. The principles of Accumulative

Filtering can be extended to the multi-scale LBP. By processing each image with varying

configurations of P and R and then combining the segmentation distances, in the same

manner as those from the filtered images are combined, an improved result can be

obtained. All combinations of P values between 8 and 40 (increments of 4) and R

values between 1 and 5 (increments of 0.5) have been used. Inclusion of Accumulative

Filtering using P and R, AFPR also allows for a fairer comparison between AFLH and

the multi-scale LBP. Finally, the filter selection algorithm can be allowed to choose from

any combination of lowpass filters, highpass filters and unfiltered images processed with

varying P and R values. This is known as AFLHPR.
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5.5 Results

5.5.1 Training

Accumulative Filtering can be used by choosing fixed filter sizes, but for optimum results

is is beneficial to use the filter selection algorithm to determine the optimum set of filter

sizes to use for the type of image being processed. A set of 50 mosaics each of size

512x512 pixels was generated by random selection of four textures from a subset of 30

textures from the VisTex database, one of which is shown in Figure 5.5(a). From each

texture sample used, one quarter was included in the mosaic and a different quarter

was used for the training data for supervised segmentation. The optimum filter sizes for

Accumulative Filtering (AF) to use for the Vistex database were selected using this set

of mosaics.

The selection process can be visualised in Figure 5.6. It is known from Figure 5.3 that the

best option for the first stage is to use the unfiltered image. The segmentation accuracy

for this is represented by the red line for comparative purposes. The dark blue line in

the graph shows the segmentation accuracy of each filter size when used separately in

conjunction with the unfiltered image. For example, the point on this line at f = 0.3

will be the accuracy of the segmentation using the combined results of the unfiltered

image plus the image filtered with the lowpass filter f = 0.3. It can immediately be

seen that other than the most extreme lowpass filters with f < 0.11, it does not matter

which filter size is selected; its inclusion will increase the segmentation accuracy. Of

course, the effect varies with filter size and the peak of the graph is at f = 0.3. The

optimum set of filters for Stage 2 Lowpass Accumulative Filtering (AFL) is therefore

A2 = {0.71, 0.3} (where f ≥ 0.71 is the equivalent of an unfiltered image). The result for

this segmentation is shown by the light blue line. The green line shows the segmentation

accuracy when the filters of Stage 2 are added to each of the filters in turn. When a

similar filter size to that added during Stage 2 is added, there is a noticeable decline

in accuracy. The range of viable filters is smaller for this stage, but extends from the

minimum usable filter size defined in Stage 2, to just before the optimum Stage 2 filter.

By including the optimum Stage 3 filter f = 0.15, the segmentation accuracy can be

maximised.

This trend is continued in Figure 5.7 which compares Stages 3 and 4. Stage 4 (shown

in green) has clear negative performance when including a filter size close to those used

in the previous stages. The best filters to use at this stage are now the larger filters.

This indicates that taking a selection of filters from across the whole range is the best

approach. The optimum filter sizes added at each stage of AFL are shown in the second

column of Table 5.1.

Highpass Accumulative Filtering, AFH , behaves in a similar manner. Adding segmen-

tations from any of the filter sizes to the unfiltered image yields a significantly large



98 Chapter 5 Scale Based Texture Analysis

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Lowpass filter size

70

72

74

76

78

80
Se

gm
en

ta
tio

n 
Ac

cu
ra

cy
 (%

)

Stage 1 Max
Stage 2
Stage 2 Max
Stage 3

Figure 5.6: Selection the optimum lowpass filter sizes to add at stages 2 and 3.

performance increase, as shown by the dark blue line in Figure 5.8. For Stage 3, as

with AFL, adding filter sizes close to that chosen to be added in Stage 2 has as negative

effect, but there is still a large range of viable filters to use, spaced a sufficient distance

from the previously used ones. Figure 5.9 shows Stage 4 in green. Here, the best filters

to use are at either end of the spectrum, adding further evidence to the conclusion that

evenly spaced filters are the best choice given no prior knowledge.

It is also possible to include a combination of lowpass and highpass filters: AFLH . The

best filter size out of any of the lowpass or highpass filters for Stage 2 was the highpass

filter of size f = 0.27 (H0.27). The dark blue line in Figure 5.10 shows the effect of

adding any of the lowpass or highpass filters to the segmentations of H0.27 and the

unfiltered image. Filter sizes to the left of the black vertical line are the lowpass filters

and those to the right are highpass filters. Since a highpass filter was added at Stage

2, the lowpass filter section of the graph has been translated upwards for Stage 3. The

highpass filter side takes the expected form seen in Figure 5.8 with the dip where the

previous filter was chosen. A lowpass filter was chosen for this stage as it produced

the best result. For Stage 4, shown in Figure 5.11, a the lowpass curve now has the

dip, and the highpass curve has been translated upwards from its form in Stage 3. It

transpires that alternating between lowpass and highpass filters for each stage produces

the optimum results: superior to either lowpass or highpass on their own with the same
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Figure 5.7: Selecting the optimum lowpass filter sizes to add at stages 3 and 4.

Stage AFL AFH AFLH
1 0.71 0.00 L 0.71
2 0.29 0.27 H 0.27
3 0.15 0.13 L 0.31
4 0.61 0.33 H 0.13
5 0.23 0.01 L 0.15
6 0.40 0.22 H 0.33
7 0.13 0.35 L 0.40
8 0.71 0.04 H 0.09
9 0.26 0.00 L 0.23
10 0.10 0.26 H 0.35
11 0.71 0.14 L 0.10

Table 5.1: Filter sizes added at each stage of Accumulative Filtering.

number of filters added. This is shown in Table 5.1 which lists the filter sizes chosen at

each Accumulative Filtering stage.

5.5.2 Testing learnt filter sizes

A second set of 50 mosaics was generated from the subset of 30 textures from the

VisTex database, using a third quarter of the image. These were used to test the filter
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Figure 5.8: Selecting the optimum highpass filter sizes to add at stages 2 and 3.

sizes chosen by the filter selection process for Accumulative Filtering. If the average

segmentation accuracies for the AF variants are similar to those obtained during training,

then the training process has succeeded in providing a good selection of filters to use.

The training process suggested the optimum filter sizes (or P and R configuration) to

add at each stage, up to the tenth addition, for AFL, AFH , AFLH , AFPR and AFLHPR.

The segmentation accuracies for each variant at each stage are shown in Figure 5.12.

Statistical analysis using a paired t-test has demonstrated that the accuracy increase

with each additional filtered image result added is statistically significant up to and

including the eleventh stage. There was little difference between the results, shown

in Figure 5.12, between AFL and AFH at all stages, with AFH performing slightly

better at 81.1% compared to AFL’s 80.9% at 10 added filters. The combined AFLH

exceeded the results of both other tests at all stages, with a segmentation accuracy of

83.4% achieved at 10 added filters. The combined experiment showed that the optimum

configuration was an equal amount of lowpass and highpass filters, and the filter sizes

automatically selected by the process were the same or similar to those chosen in the

separate experiments. The segmentation results for training and test, in Table 5.2, show

that the accuracies are slightly lower for the test mosaics than the training ones. show

that significant improvements can be made in the segmentation results by using AF.

Since the result for using the LBP without AF, LBP riu2
8,1 , also performs slightly worse

with the test images it is clear that these mosaics are slightly harder to segment than
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Figure 5.9: Selecting the optimum highpass filter sizes to add at stages 3 and 4.

Algorithm Training (%) Test (%)

LBP riu2
8,1 76.5 76.0

LBP riu2
8,1+24,3 75.1 74.8

LBP riu2
16,2+24,3 70.0 70.2

LBP riu2
8,1+16,2+24,3 75.9 76.0

AFL 80.9 79.0
AFH 81.1 80.5
AFLH 84.0 82.8
AFPR 82.6 81.9
AFLHPR 86.2 85.2

Table 5.2: Average mosaic segmentation accuracy using AF and the best mul-
tiresolution LBP configurations from Ojala et al. (2002b)

the training ones. Therefore, this demonstrates that the AF filter selection process is

able to select a set of filters to use and improve segmentation results significantly over

segmentation without using AF.

AFPR achieved an accuracy of 82.6% at when 10 operators were added; better than either

AFL or AFH . AFPR performed slightly better than AFLH up to 3 additional filters, but

AFLH is much better for all subsequent stages tested. AFLHPR vastly outperformed

all other tests, achieving 86.2% at with ten additions. These results demonstrate that

low and highpass filtering are best used in conjunction with varying P and R. An
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Figure 5.10: Selecting the optimum lowpass and highpass filter sizes to add at
stages 2 and 3.

image of a pyramid from the Berkeley Segmentation Dataset (Martin et al., 2001) was

segmented using LBP riu2
8,1 and AFLHPR. The results, shown in Figure 5.13 show a

marked improvement, particularly around the texture boundaries using the new method.

5.6 Additive noise

Susceptibility to noise is often considered to be a problem with highpass filtering, how-

ever this is not the case with AF. For this analysis, additive Gaussian noise has been

introduced to the test mosaics before filtering and segmentation. The filter sizes used for

the Accumulative Filtering process are the same as those used in previous tests; selected

from the training mosaics. The texture samples used in segmentation are the original

ones and do not include the additive noise. The first test is performing standard LBP

histogram segmentation with varying levels of noise added to the mosaics; this is to

ascertain the effects of noise on the LBP process absent the effects of filtering. As shown

in the graph in Figure 5.14, noise has a large effect on the standard LBP. Because the

texture samples the mosaics are compared to do not include additive noise, the mosaics

will have a greater similarity to the texture class with the greatest proportion of the

high frequency components that closely resemble Gaussian noise. This will result in a

reduced likelihood of the correct texture class being chosen for each pixel and ultimately
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Figure 5.11: Selecting the optimum lowpass and highpass filter sizes to add at
stages 3 and 4.

a lower segmentation accuracy. The segmentation accuracies for highpass Accumulative

Filtering are initially higher than those without filtering, but after the noise level has

reached σ = 0.02 it performs slightly worse. This reduction in performance is not as

large as could be expected. Lowpass Accumulative Filtering performs better under noise

than LBP with no filtering. This is to be expected as the filters will remove much of the

noise from the image prior to segmentation. Accumulative Filtering using both low- and

high-pass filtering performs significantly better that LBP with no filtering, regardless of

the level of additive noise. As such, it appears that the combination of highpass and

lowpass Accumulative Filtering is an optimal choice for image segmentation and noise

does not markedly affect either type of filter.

5.7 Bandstop Accumulative Filtering

After the success of using lowpass and highpass filters to expose the micro- and macro-

structures in texture, use of the two other filter types, bandpass and bandstop, were

investigated. For bandpass it was quickly discovered that unless a very large frequency

band was retained there was not enough content left in the image for successful texture

analysis. Having a large band greatly reduces the number of possible configurations

since the discarded frequencies must always begin at the two ends of the spectrum;
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Figure 5.12: Average mosaic segmentation accuracy during the AF training
process

the highest or lowest frequencies. Since Accumulative Filtering requires a significant

number of different filter sizes to be used it was decided not to take the investigation

into bandpass further. Bandstop, however, offers a much greater range of freedom with

regards to parameter choice. In effect, the bandstop filter is selecting a frequency range,

or scale, to discard, allowing the structures present at the other scales to be analysed in

the absence of the removed scale. This differs from low- and high-pass filtering because

the band being removed is not constrained to begin or end at either the minimum or

maximum frequency.

Bandstop filters are described by two parameters; the start and end points of the band.

Alternatively, they can be expressed by the width and centre point of the band. This is

the preferred method of description since the investigation will include bands of different

widths. Bandwidths of 25, 50 and 75 were used, with the range of centre points used

starting from (bandwidth/2) to (182-(bandwidth/2)). The set of 50 training mosaics

used for low- and high-pass Accumulative Filtering were used for bandstop Accumulative

Filtering (AFBS) and 10 filtered images were added, with the results shown in Figure

5.12.
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(a) Original image (b) Manual segmentation

(c) Without AF: 90.3% (d) With AF: 93.4%

Figure 5.13: Segmenting an image of a pyramid with and without using Accu-
mulative Filtering. The percentage match against the manual segmentation is
shown.

5.8 Gabor filters

The Accumulative Filtering process is not designed for exclusive use with Local Binary

Patterns. It is intended to be used as a method of improving segmentation results of

any texture operator that provides a feature vector to classify a pixel into a texture

class. Jain and Farrokhnia (1991) introduced a popular method of segmenting texture

using Gabor filters. 2D Gabor filters (Daugman, 1988) allow simultaneous decimation

in frequency and position, providing a description of the image in terms of frequencies at

a particular position. The Gabor filter is a sinewave modulated by a Gaussian envelope

and is described by Equation 5.6 where u0 and φ are the frequency and phase of the sine

wave and σx and σy control the shape of the Gaussian envelope in the x and y directions

respectively.
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Figure 5.14: Average mosaic segmentation with increasing levels of additive
Gaussian noise.

h(x, y) = exp
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x2

σ2
x

+
y2

σ2
y

]}
cos (2πu0x+ φ) (5.6)

The general principle of segmentation using Gabor filters is to create a bank of Gabor

filters, filter the image with each and calculate features from the filtered images. A

clustering algorithm is then used to segment the image from the features. The bank of

Gabor filters is constructed from a selection of frequency, u0, and orientation, θ values.

Clausi and Jernigan (2000) found that using θ spacings of 30◦ gave better results over

the commonly used 45◦ spacing. For this reason 30◦ has been chosen, giving the values

θ = {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}.

Zhang et al. (2002) suggested a set of frequency values that emphasises the intermediate

frequency band to improve texture segmentation. These are calculated by Equations 5.7

to 5.9, where N is the width of the image. For the 512x512 pixel images used in this

chapter, these equations provide 12 frequencies to use for Gabor filters.

FH = 0.25 + 2i−0.5

N 0.25 ≤ FH < 0.5 (5.7)
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FL = 0.25− 2i−0.5

N 0 < FL < 0.25 (5.8)

i = 1, 2, ..., log2(N/8) (5.9)

The 12 frequencies multiplied by the 6 rotations give a filter bank of 84 Gabor filters.

The final parameters to set are σx and σy which are set to be the same: σ. This is

dependant on the bandwidth, b, which is set to 1, and the frequency u0 as per Equation

5.10.

σ =
1

πu0

√
ln 2

2

2b + 1

2b − 1
(5.10)

Once the image has been convolved separately with each Gabor filter, a nonlinear trans-

formation is applied to the output of each filter, which is shown in Equation 5.11.

ψ(t) = tanh (αt) =
1− e−2αt

1 + e−2αt
(5.11)

Once this processing is complete, the next stage is to use K-means clustering to provide

a distance between each pixel and each texture class (cluster). The pixels is assigned to

the closest texture class.

The filter bank is shown in both the spacial and frequency domains in Figure 5.15. The

combined effect of the entire filter bank in the frequency domain is shown in Figure 5.16.

This shows that Gabor filtering acts largely like a bandpass filter.

5.8.1 Accumulative Filtering for Gabor filters

The hypothesis of Accumulative Filtering was that if a segmentation algorithm can

provide a distance between each pixel and each texture class, AF can be used to improve

the segmentation accuracy. To integrate AF into the Gabor process, the original image

is filtered with each of the AF filters. The output of each of these filters is then passed

to the Gabor filtering function. Therefore, for each of the AF filters, a set of Gabor

filters is created which provides the distances between each pixel and each texture class.

These distances from each AF filter are added to give a final distance which is used for

segmentation.

Without using Accumulative Filtering, Gabor filters perform poorly on the set of VisTex

mosaics, giving an average segmentation accuracy of 58.6% over the 50 images. The set

of lowpass and highpass filters used previously were used for the Gabor Accumulative
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(a) Spacial Domain (b) Frequency Domain

Figure 5.15: Gabor filter bank.

Filtering, AFGLH . Figures 5.17 and 5.18 show the effect of pre-filtering the images before

applying Gabor segmentation without doing the AF process. These are analogous to

Figures 5.3 and 5.4. The effect of lowpass filtering on Gabor segmentation is similar

to the effect is has on LBP segmentation: the best result is obtained by not doing any

filtering at all. For Gabor, however, the results are static until the cutoff frequency

approaches f = 0.5, where it begins to worsen. This implies that frequencies above this

point are already removed by the Gabor filters, as their inclusion has no effect on the

final segmentation accuracy. Highpass filtering behaves in an unexpected manner. As

the cutoff frequency increases (and more frequencies are removed from the images), the

segmentation accuracy actually increases.

For Stage 2 AFGLH , the best filter from Stage 1, highpass f = 0.332, was combined with

each of the filters in turn. Contrary to the behaviour of Accumulative Filtering with

LBP, the best filter to add at Stage 2 was f = 0.328, almost exactly the same as the filter

added previously. At Stage 3, the filter was f = 0.352. Figure 5.19 shows the effects of

each filter added at each Stage. The initial benefit to segmentation accuracy is obtained

by highpass filtering the image prior to Gabor filtering; applying Accumulative Filtering
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Figure 5.16: Combined effect of Gabor filter bank

does increase the results further, but the improvement is small. Ten more filters have

to be added to raise the accuracy from 68.4% to 69.4%.

5.9 Conclusions

This chapter has introduced a new scale based technique to increase the segmentation

accuracy of any texture operator by focussing equally on the micro- and macro-structures

within the image. Typically in texture segmentation, a texture operator is applied to

an image to provide a feature vector. A distance metric then calculates the distance

between each pixel and each texture class based on the feature vector. Each pixel is

assigned to its closest texture class. Accumulative Filtering completes this process up

until the point where the distances have been calculated to the texture classes. This is

done for the unfiltered image, and for each output of the chosen filter bank. The final

distance between each pixel and each texture class is the combined distance from all of

the filtered images and the original image. This combined distance is used for the final

segmentation, resulting in a significantly improved accuracy.

Accumulative Filtering using lowpass filters focusses mainly on the macro-structures and

can achieve a significant increase in segmentation accuracy. Highpass AF, which focusses

on the micro-structures, gives a similar increase in performance. The real advantages

of AF are realised when the filter bank contains a mixture of lowpass and highpass

filters. The percentage point increase in accuracy using AFLH is almost that of AFL
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Figure 5.17: Gabor filtering after lowpass filtering.
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Figure 5.18: Gabor filtering after highpass filtering.
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Figure 5.19: Gabor Accumulative Filtering.

and AFH added together. This reinforces the hypothesis that a procedure which focusses

equally on micro- and macro-structures is superior to one which only focuses on one.

Most alternative scale based methods eschew micro-structures, via some form of lowpass

filtering, due to a fear of emphasising noise. As shown for the LBP, this is unfounded as

the LBP performs poorly under additive noise regardless of the filtering method used.

In addition to the main investigation into lowpass and highpass filters, a number of

alternatives were considered. The first was Accumulative Filtering using different com-

binations of LBP P and R configurations. Varying the radius, R, has a similar effect

to lowpass filtering and increasing the number of points, P , will improve the precision

of the LBP operator; enabling the capture of high frequency components. AFPR was a

success, initially outperforming AFLH with a small number of filters. The real gains for

this were seen when the P and R configurations were combined with the addition of low-

pass and highpass filters: AFLHPR. This gave a huge performance increase. Bandstop

filtering was introduced in an attempt to combine the effects of lowpass and highpass

filtering into a single filter. This worked as desired and the performance gain of AFLH

was achieved using far fewer filters with AFBS .

The final focus of this chapter was to verify the claim that Accumulative Filtering could

be used with texture operators other than the LBP. Gabor filters were chosen for this

as they also can be used to provide distances between each pixel and each texture class.

As with the LBP, the filters were applied to the image prior to texture analysis. Gabor

filtering was then applied to the original image and each of the filtered images in turn,
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with the distances added to provide the final combined distance between each pixel and

each texture class. Overall, AFGLH did give a performance increase over Gabor filtering

with no pre-filtering, however this was in a different manner to AF with LBP. With LBP,

prefiltering the images before segmentation had a detrimental effect unless AF was used.

With the Gabor filtering parameters chosen, prefiltering with highpass filters actually

gave a significant increase in accuracy. When AF was also used, the results increased

further, but not to the extent observed with the LBP.

Accumulative Filtering has shown that it is possible to combine the segmentation results

from a number of filtered images into a single segmentation with an accuracy higher than

any of the composite parts. This multi-scale approach can be tuned for the images that

it will be segmenting; the optimum filter sizes selected during the training process can

be used to similar effect with a test set of images.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The primary aim of this thesis has been to explore the structure present in image texture

and suggest ways in which this knowledge can be used to improve texture segmentation

accuracy. Throughout the thesis, Local Binary Patterns have been used as a basic

texture operator as they are simple, powerful and can easily be integrated into various

segmentation algorithms. Before designing a new algorithm based on LBP codes, it

is crucial to understand the information encoded by the LBP process and how the

structure of the codes relate to the textures they represent. For this purpose, Chapter

3 investigated methods by which arrays of LBP codes could be used to reconstruct the

original images whose texture elements are represented by the codes. The findings of

this chapter had huge implications on the rest of this thesis; one of the main conclusions

is that the positioning of the LBP codes in relation to each other contains as much

information as the codes themselves. Individual LBP codes represent the texture element

present at a pixel. On a more fundamental level, the codes show which neighbours (or

how many, in the case of uniform LBP codes) are greater than or less than the pixel

represented by the code. The Minimum Contrast Algorithm provided a novel way of

using these relationships to infer greater than or less than relationships between pixels

much further apart, allowing an intensity value to be assigned to each pixel without

violating any of the relationships encoded within the LBP array. Without knowing the

positioning of the codes within the array, it would be impossible for the structure of the

texture to be analysed and image reconstruction would not be feasible.

One of the most common methods of segmenting textures using the LBP is through

histogram comparison. The LBP codes of pixels within a section of the image centred

on a pixel are placed into a histogram and the pixel is assigned to the texture class with

the closest matching histogram. This is an excellent method of analysing the statistical

distribution of texture elements in an image, but neglects to include any information on

113
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their structure. There is a requirement for a method in which the structure present in

textured images can be analysed and used in conjunction with the statistical distribution

of texture elements in an advantageous way. Chapter 4 provided such a method: The

new Evidence Gathering Texture Segmentation (EGTS) algorithm is an approach to

texture segmentation tailored for regular textures with a repeating structure. EGTS

classifies texture using cells; a small array of LBP codes which contains a sample of

the structure and composition of texture elements. The information within the cells are

stored in Generalised Hough Transform style R-tables, which place each pixel’s position

within the cell in a bin corresponding to its LBP code. Evidence is then gathered from

each pixel in the image to be segmented and votes are placed for pixels that could

belong to a texture class based on this evidence. The algorithm was tested on databases

containing a range of different types of texture, showing that it can still perform well

on textures that it is not designed for. The results for the Brodatz subset show an

improvement over histogram comparison and the results for the Vistex subset show

comparable performance. The real advantage of the new approach is the smoothness of

the results and low rate of oversegmentation, as demonstrated by the boundary error

measure. This showed a huge advantage to EGTS over histograms. The colour extension

to EGTS demonstrated that integrating colour information with texture information

was advantageous in nearly all mosaics tested. The viability of using a colour-texture

operator over colour or texture independently is a topic of contention amongst academics

so this is a significant result.

Chapter 3’s investigation into the effects of image filtering found that a much better

reconstruction is possible if filtering is used. If the original image is filtered with a

selection of highpass and lowpass filters and the LBP codes of the outputs of these fil-

ters are reconstructed and averaged, an image is produced with a much closer contrast

to that of the original. Chapter 5 sought to apply this principle to texture segmenta-

tion. The Accumulative Filtering algorithm applies a bank of filters to the image to

be segmented. The output of each filter is segmented to the point where a distance

is calculated between each pixel and each texture class. The distances are added for

each filter and the total distance is used to segment the image. This process focusses

equally on the micro- and macro-structures in texture, an advantage over other scale

based methods which concentrate only on the macro-structures by using lowpass fil-

tering, either directly or by increasing the area of calculation of the LBP code. As a

result, AF can improve segmentation results significantly, as has been demonstrated on

a set of 50 mosaics containing VisTex textures where a 10 percentage point increase

was observed. The Accumulative Filtering process was also demonstrated to be effective

for other segmentation algorithms. Gabor filters were successfully improved using the

method.
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6.2 Future Work

6.2.1 Reconstruction from uniform LBP codes

Chapter 3 introduced an algorithm that can reconstruct an image from its LPB codes

such that if the reconstructed image is processed with the LBP operator an identical

array of LBP codes is produced to that of the original image. Most systems that use Local

Binary Patterns use the uniform variant of the operator, which stores less information

in a smaller set of codes making reconstruction a harder task. There is a requirement

for an algorithm that can reconstruct these codes directly, or convert them into an array

of standard, non-uniform codes, so that the Minimum Contrast Algorithm (MCA) can

be applied. Such an algorithm is presented in Section 3.4, however there is not enough

information contained within the uniform LBP codes for the algorithm to convert them

entirely to standard LBP codes. Many codes remain unknown or incomplete after the

process is finished. It is relatively easy to estimate the remainder of the information

and produce an array of standard LBP codes that maps completely back to the uniform

codes, but this array is almost certain to be impossible to reconstruct from; causing the

MCA to get stuck in an infinite loop. The proposed solution prevents these errors but

takes a prohibitively long time to compute the textels. The alternative uniform LBP

reconstruction algorithms presented in Sections 3.5 and 3.6 provide an estimation of the

original image, but do not possess the complete LBP code match that is required for

some applications. There is a need, therefore, for an algorithm to complete the uniform

reconstruction in a more efficient manner. It may be possible to use an algorithm such

as a Monte Carlo Tree Search (MCTS). The problem of completing the textels is very

much like that of a board game like Chess or Go. In these games, a poor choice of move

is not immediately apparent by inspection of the board, it is only later after several more

moves have been played that it is realised. Completing a textel in a certain way may

not immediately introduce an error into the array. However, after several more textels

have been completed a mistake introduced by the original “move” becomes apparent

as regardless of the current choice, an impossible situation is inevitable. Chaslot et al.

(2008) used MCTS with success for the game Go and therefore may be suitable for

reconstruction from uniform LBP codes.

6.2.2 Accumulative Filtering for EGTS

The technique of Accumulative Filtering, proposed in Chapter 5 is intended for use with

any texture segmentation algorithm that provides a distance between each pixel and

each of the texture classes that may be in the image. In this thesis, it has been success-

fully tested with the established Local Binary Pattern (using Histogram Comparison)

and Gabor filter processes. The Evidence Gathering Texture Segmentation algorithms

presented in Chapter 4 provide votes for each texture class at each pixel. The votes can
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be inverted to provide a distance, which would be compatible with the Accumulative

Filtering process.

6.2.3 Image filtering

The image filtering used in Chapter 5 uses a very basic process; the image is Fourier

transformed and any components found above or below a certain cut off frequency have

their magnitude set to zero. This type of “rectangular” filtering can result in undesired

effects, such as ringing. Alternative windowing types include Hanning, Hamming and

Gaussian. For image smoothing, a Gaussian kernel is considered to be the only viable

option (Lindeberg, 1994). As smoothing is lowpass filtering it is possible to create images

filtered to the same extent as the Fourier transform method with a reduced occurrence

of the undesired effects by using Gaussian smoothing. It is also possible to achieve a

highpass Gaussian filter by applying the following steps:

1. Apply standard Gaussian filter

2. Invert image

3. Add to original image

The low frequencies will cancel out due to destructive interference, leaving only the

highpass frequencies. The tests in Section 5.5 will be repeated using Gaussian filtering

instead of Fourier, to see if there are any advantages. In addition, Fourier filtering using

different windowing methods will be investigated.

6.2.4 Histogram comparison

Another area for exploration is the distance metric used to compare histograms of LBP

codes. The standard one used is the Kullback–Leibler divergence and is shown in Equa-

tion 6.1. This has two main disadvantages: L(A,A) 6= 0 and L(A,B) 6= L(B,A). This

means that the distance measured between histograms A and B cannot be compared

with confidence to the distance between C and D.

L(S,M) = −
N∑
n=1

Sn ln(Mn) (6.1)

An alternative distance metric has been designed to not have these issues and is shown in

Equation 6.2. This has been tested for histogram comparison on the VisTex database and

performs slightly worse than the original algorithm. However, for Accumulative Filtering

it has been observed performing better than the original when multiple histograms are
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concatenated. Further work will be done to investigate this to see if the new metric is a

viable replacement.

L(S,M) =

N∑
n=1

abs

(
ln

(
Mn

Sn

))
(6.2)

6.2.5 Further testing

Other areas to explore in future work are testing the Accumulative Filtering algorithm on

different databases and more comparisons with existing algorithms. Different databases

would highlight the robustness of the algorithm; showing its ability to work with a set

of images not used during its development. Possible candidates would be the Brodatz

database used in Chapter 4 (Brodatz, 1966), the Prague Texture Segmentation Datagen-

erator (Haindl and Mikeš, 2008) and the Outex database (Ojala et al., 2002a). Existing

algorithms to compare against could include those by Turtinen and Pietikäinen (2006)

and He et al. (2010) which were briefly described in Chapter 5. These tests would reaf-

firm the superiority of using a combined lowpass and highpass approach to scale based

texture analysis.
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Figure A.1: Subset of the Brodatz texture database used to generate texture
mosaics.
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Bark0 Bark4 Bark6 Bark8 Bark9

Brick1 Brick4 Brick5 Fabric0 Fabric4
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Figure A.2: Subset of the VisTex texture database used to generate texture
mosaics.
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T. Mäenpää, M. Turtinen, and M. Pietikäinen. Real-time surface inspection by texture.

Real-Time Imaging, 9(5):289–296, 2003.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natu-

ral images and its application to evaluating segmentation algorithms and measuring

ecological statistics. In Proc. ICCV, volume 2, pages 416–423, 2001.

L. Nanni and A. Lumini. Local binary patterns for a hybrid fingerprint matcher. Pattern

Recognition, 41(11):3461–3466, 2008.

M. S. Nixon and A. S. Aguado. Feature extraction and image processing for computer

vision, 3rd Ed. Academic Press, 2012.
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