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Abstract

A major constraint to crop growth is the poor bioavailability of edaphic nutrients, especially

phosphate (P). Improving the nutrient acquisition efficiency of crops is crucial in addressing

pressing global food-security issues arising from increasing world population, reduced fertile

land and changes in the climate. Despite the undoubted importance of root architecture and

root/soil interactions to nutrient uptake, there is a lack of approaches for quantifying plant

roots non-invasively at all scales. Mathematical models have allowed our understanding of

root and soil interactions to be improved, but are almost invariably reliant on idealised ge-

ometries or virtual root growth models. In order to improve phenotyping of advantageous

traits for low-P conditions and improve the accuracy of root growth and uptake models, more

sophisticated and robust approaches to in vivo root and soil characterisation are needed. Micro-

focus X-ray Computed Tomography (µ-CT) is a methodology that has shown promise for non-

invasive imaging of roots and soil at various scales. However, this potential has not been

extended to consideration of either very small (rhizosphere scale) or large (mature root system

scale) samples. This thesis combines discovery experiments and method development in order

to achieve two primary objectives:

• The development of more robust, well-described approaches to root and soil µ-CT imag-

ing. Chapters 2 and 3 explore the potential of clinical contrasting methods in root in-

vestigation, and show how careful consideration of imaging parameters combined with

development of user-invariant image-processing protocol can improve measurement of

macro-porous volume fraction, a key soil parameter.

• Chapter 4 develops an assay for first-time 3D imaging of root hairs in situ within the

rhizosphere. The resulting data is used to parameterise an explicit P uptake model at the

hair scale, suggesting a different contribution of hairs to uptake than was predicted using

idealised geometries. Chapter 5 then extends the paradigm for root hair imaging and

model generation, building a robust, modular workflow for investigating P dynamics in

the rhizosphere that can accommodate non-optimal soil-water states.
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2.10 Seed selection routine for seeded region-growth method A) original image, B)

data-set binarised with a minimum-error filter, C) distance map generated for

porous domain and D) seed selection voxel set. . . . . . . . . . . . . . . . . . . . . 68

2.11 Plots of connected porosity against tolerance value for each soil, calculated by

seeded region-growth. Values are the means of porosities derived from five

randomly selected seed points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.12 Typical pore space sampled for influence of seeded region-growth seed point

location. Seeds were evenly distributed along the vector between 1 and 10. SRG

data are found in Figure 2.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.13 Macro-pore volume fractions (%) as estimated by seeded region-growth, gravi-

metrically, Otsu’s filter [Otsu, 1979] and minimum-error filter [Kittler and Illing-

worth, 1986]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.14 Seeded region-growth connected porosity (%) plotted against seed grey-level

intensity for each of 10 seed points along the vector shown in Figure 2.12. . . . . 74

2.15 Comparison of original data with the binary representation of connected vol-

ume produced by the automated method for A) Soil 1, B) Soil 5 and C) Soil 4

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.16 Reconstructed Soil 5 data showing an overlay of A) seeded region-growth re-

gion at estimated tolerance, B) the same region dilated to lie on the x = y line

in Figure 2.12, demonstrating resultant over-estimation of macro-pore region.

This suggests that undetectably small pores are responsible for the difference in

porosity derived by the image-based and gravimetric methods. . . . . . . . . . . 77
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3.1 Schematic showing three proposed methods for introducing media in order to

improve root/soil contrast. (A) Xylem contrasting via root tissues (B) Negative

(soil) contrasting via saturation of soil with a medium impervious to absorp-

tion by roots, (C) Phloem contrasting via aerial tissues. In each case, contrast

medium is shown in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Intensity of contrasting was quantified by defining a poly-line around the inner-

most bundle of the stele (shown in red). The mean value of enclosed voxels (I)

was used as an intensity measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Cross sections through µ − CT data of a seminal root, treated with a 25% so-

lution of Niopam 300. Greylevel data is shown in the left column, along with

corresponding colour-map of attenuation coefficient. The band indicated on the

legend represents one standard deviation centred on the mean value for the sur-

rounding soil. Frame (1) represents the emergence of the seminal root from the

seed, with frames (2-5) situated at 4.9mm intervals down the root. . . . . . . . . 89

3.4 Plots showing mean attenuation coefficient of contrasted region with respect to

distance from seed, comparing all dilution steps for Niopam 300 and Gastro-

grafin 370. The red line indicates the mean attenuation coefficient of the sur-

rounding soil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 The root system of juvenile Pisum sativum, treated with a 25% solution of Niopam

300. (A) The contrasted phloem vasculature is shown with a colour-map rep-

resenting attenuation coefficient. Variation in attenuation coefficient over the

contrasted region can be seen. (B) The same region is shown overlaid with the

un-contrasted tissue of the root cortex. Root nodules are clearly visible. . . . . . . 92

3.6 A rhizobial nodule situated on a lateral root of Pisum sativum, treated with a

100% solution of Niopam 300. (a) The external morphology of the nodule, with

seminal root and seed remnants visible. (b) The contrasted vasculature of the

nodule. The vessel arrangement is clearly visible, and the colour-map shows

the heterogeneity of attenuation coefficients. Regions of high local attenuation

coefficient, resulting from high iodine concentration are clearly discernible. . . . 93

3.7 A lateral root (LR) of Pisum sativum, treated with a 25% solution of Gastrografin

370. Highly attenuating phases are visible within the LR with an attenuation

coefficient range substantially higher than the mean level of both the soil phases

and the stele of the seminal root. The surface of the LR also shows evidence

highly attenuating phases, as indicated by the arrow, suggesting that the con-

trast media has been transported across the epidermis. . . . . . . . . . . . . . . . 94

3.8 Plot showing the relationship between attenuation coefficient (represented by

16-bit grey-levels), and the iodine concentration of the contrast medium in mg.ml−1.

The equation for the best-fit line is shown in Section 3.3.5. . . . . . . . . . . . . . . 95
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4.1 Assuming a quasi-radial distribution of roots, interference with the walls of a

cylindrical growth chamber will begin to occur for multiple roots at the same

growth period (if at all). Frames (A) and (B) show side and top-view schemat-

ics of this condition. By contrast, in a quasi-planar growth chamber such as a

rhizobox), roots emerging parallel to the short axis will quickly be constrained

by physical interaction with chamber walls. Frames (C) and (D) show affected

roots in red. Such roots will necessarily exhibit significant deviation from the

growth paths expected in an unconstrained condition. . . . . . . . . . . . . . . . . 101

4.2 Figure from Butterbach-Bahl et al. showing SEM microscopy images of aerenchyma

in roots of Oryza sativa [Butterbach-Bahl et al., 2000]. (A) Root section close to a

root tip of a 13 day old specimen. (B) Cross section of a young basal root section

of a 39 day old specimen. (C) Cross section of a mature basal root section of a 39

day old specimen. Degeneration of cortical cells to aerenchyma is much more

pronounced in the basal region. (P - cortical cells, CC - central cylinder, RH -

rhizodermis, SC - sclerenchymatous cylinder, E - exodermis, AE - aerenchyma.) . 102

4.3 Figure clearly shows root cross-sections, well-distinguished from the surround-

ing soil phases. Frame (B) shows an SEM image of a mature rice root cross

section, with aerenchyma (labelled AE) clearly visible surrounding a fluid-filled

stele (reproduced from Butterbach-bahl et al. [Butterbach-Bahl et al., 2000]) Com-

paring the image with the single root cross-section for the CT data shown in (A),

it is evident that the gas phase is responsible for the favourable contrast with the

soil. By comparison, the stele region has a very similar attenuation coefficient to

the surrounding soil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 3D root architecture of rice Oryza sativa cv Nipponbare extracted from raw data

using global greylevel thresholding. Positions of tillers are shown in green, with

the soil surface indicated in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Slices through raw data with no beam hardening correction or grey-level nor-

malisation applied. (A) Full-field, (B) ROI, (C) CLDA. The beam-hardening ar-

tifact is clearly visible in frames (A) and (B). . . . . . . . . . . . . . . . . . . . . . . 107

4.6 The xy slices used for quantification of the beam-hardening artifact were defined

at d ≈ 2.5cm below the soil surface in each sample. The figure shows a schematic

of the growth chamber, with corresponding 2D radiograph. Line (A) shows the

approximate position of the slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Scatter plots of attenuation coefficient along lines bisecting raw, un-normalised

16−bit reconstructed data. Plots are shown along the same line for four beam

hardening correction presets, with intensity of the correction increasing from 1

(uncorrected) to 4. Also shown are lines of best fit, demonstrating the character-

istic cupping artifact. (A) Full-field, (B) ROI, (C) CLDA. . . . . . . . . . . . . . . . 109
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4.8 Figure showing the relationship between CNR and the degree of beam-hardening

reduction for ROI, full-field and CLDA data . . . . . . . . . . . . . . . . . . . . . . 110

4.9 Figure showing the relationship between CNR and the degree of beam-hardening

reduction for ROI, full-field and CLDA data . . . . . . . . . . . . . . . . . . . . . . 110

4.10 Sub-regions of reconstructed slices from (A) full-field data and (B) ROI data,

showing root cross sections at a position ≈ 6mm beneath the seed position. Po-

sitions are shown schematically in (B). . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.11 (A) Gas bubbles (represented in grey) of similar diameter to primary roots (rep-

resented by the black line) are often indistinguishable from root cross sections

in static x, y slices of reconstructed data. (B) The connectivity of the root (repre-

sented by the red line) over many slices allows the root positions to be differen-

tiated from those of the gas bubbles (represented in pink) by rastering through

the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.12 Root system of 5-week old rice plant Oyyza sativa cv Varyla, following post-scan

root washing. Labels indicate the length order (increasing from 1-14). . . . . . . . 112

4.13 The accuracy of voxel count as an estimator of length in a skeletonised filament

depends on the length scaling factor (ls) used, and the morphology of the fila-

ment. (A) In straight filaments of connected voxels aligned with the x, y or z

axes, the length is best approximated by multiplying the voxel count (nvoxels) by

the voxel edge length (lx,y,z) (assuming isometric voxels). (B) However, if vox-

els exhibit a high degree of tortuosity, such that most voxels make contact on

corners rather than faces, the use of lx,y,z as a scaling factor will result in length

underestimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.14 Figure shows segmented primary root paths of Varyla grown for 5 weeks in 21cm

diameter growth chambers. (A) Root architecture extracted from ROI scan, (B)

architecture extracted from full-field scan, (C) overlay showing both congruence

of extracted root paths between the two conditions, and the enhanced capture

of root length in the full-field data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.15 Aerial growth of 5-week old rice plants (A) Oyyza sativa cv Mudgo and (B) Oyyza

sativa cv Varyla in the as-scanned condition. . . . . . . . . . . . . . . . . . . . . . . 117

4.16 Root system of 5-week old rice plants (A) Oyyza sativa cv Varyla and (B) Oyyza

sativa cv Mudgo following post-scan root washing. The greater root length of the

Mudgo specimen is evident. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.17 3D root architecture of 5-week old rice plants (A) Oyyza sativa cv Varyla and (B)

Oyyza sativa cv Mudgo grown in 22cm diameter growth chamber, as revealed by

X-ray CT imaging. Differences in root number, length and angle distribution are

clearly distinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
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4.18 Normalised histograms of primary root angle for Oyyza sativa cv Varyla and

Oyyza sativa cv Mudgo derived from analysis of CT data (plotted with bin-width

of 10◦). Angles are measured from a plane aligned with soil surface. Compared

to the unimodal distribution of angles for Mudgo, the architecture of Varyla dis-

plays a more multi-modal characteristic, as suggested visually in Figure 4.17 . . 118

5.1 Figure from Lambers et al. showing plant responses to P limitation [Lambers

et al., 2006]. Low P conditions result in a low plant-P status, which is sensed by

the plant, resulting in up-regulation of a variety of species-specific P-starvation

responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Figure from Ma et al. showing the regulation of root density in Arabidospis

thaliana as a function of P concentration in the growth media. Hair counts are

the means for six plants, and error bars represent SE [Ma et al., 2001]. . . . . . . . 124

5.3 Figure from Ma et al. showing changes in root hair density of Arabidopsis thaliana

over time. Plants were grown in either low P (1mmol.m−3) or high P (1000mmol.m−3)

media, and hair density was measured over time on five 1mm root segments.

The five bars at each time point (from left to right) represent the segments be-

tween 0− 1, 1− 2, 2− 3, 3− 4 and 4− 5mm from the root tip respectively. Each

bar is the mean for six plants, and error bars show SE. . . . . . . . . . . . . . . . . 125

5.4 Figure from Ma et al. showing the effect on root hair density in Arabidopsis

thaliana arising from removal of single nutrients from the growth media. . . . . . 126

5.5 Figure from Muller et al. showing differences in hair formation between cpc and

ttg mutants of Arabidopsis thaliana grown in different P conditions [Müller and

Schmidt, 2004]. (a) cpc mutant grown in control P conditions, (c) cpc mutant

grown in P-deficient media, (d) ttg mutant grown in control P conditions, (f) ttg

mutant grown in P-deficient media. Bar = 250µm . . . . . . . . . . . . . . . . . . 127

5.6 Micrographs from Ma et al. showing cross sections of Arabisopsis thaliana roots

grown in different P conditions, taken 3mm from the root apex. Trichoblasts are

indicated by asterisks, and it can be seen that low P conditions have altered the

trichoblast file count of the root. Magnification is 400×, low P media concentra-

tion is 1mmol.m−3 and high P media concentration is 1000mmol.m−3 [Ma et al.,

2001]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Figure showing air gap apparatus of Gahoonia et al. for estimation of the root

hair contribution to overall plant P uptake [Gahoonia and Nielsen, 1998]. A root

mat (e) grows against one side of a pair of meshes (d) which define an air gap

(f). Hairs grow through the mesh, crossing the air gap (h) into a region of 32P

labelled soil. The micrograph shows root hairs (b) crossing the 1mm air gap

between the two meshes (a, c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
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5.8 A micrograph obstained using cryoscanning electron microscopy, showing the

rhizosphere surrounding a root of buckwheat (Fagopyron esculentum) [Hinsinger

et al., 2005]. A variety of root hair interactions with pores and soil aggregates

are clearly visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.9 Schematic from van Noordwijk et al. showing SEM microscopy of sections through

freeze-dried wheat roots and rhizosphere soil. (A) Root-soil contact regions seen

between soil surfaces and the root exodermis. (B) Root cross section in macrop-

ore, with root hairs visible. [Van Noordwijk et al., 1993]. . . . . . . . . . . . . . . . 130

5.10 The procedure for dismantling growth assemblies prior to imaging. (A) The

syringe bundle was removed from exterior tube. (B) The foil collar was removed

to expose soil. (C-D) A scalpel was used to excise all material flush with the top

of the syringe bundle. (E) Roots were visually identified in the barrels. (F) After

imaging, roots can be gently washed from individual barrels to validate structure.133

5.11 Schematic showing assembly of growth chambers. A) bundles of seven 1ml

syringe tubes were taped together, B) a foil collar was added as a root guide, C)

soil was introduced to the tubes, and seeds planted, D) each bundle was placed

in a larger 50ml tube with a layer of perlite added to aid hydration, E) individual

tubes were separated immediately prior to imaging. . . . . . . . . . . . . . . . . . 134

5.12 (A-B) Macroscope images showing two primary roots of different diameters,

grown using the syringe barrel assay. After 10 days growth following germina-

tion, root hairs and lateral roots are clearly present. . . . . . . . . . . . . . . . . . 135

5.13 (A) A sample stage adaptor designed to hold syringe barrels samples with min-

imal intra-scan movement. (B) A sample in position prior to SRXCT imaging,

with the scintillator visible in the background. . . . . . . . . . . . . . . . . . . . . 136

5.14 Schematic showing the layout of a standard synchrotron tomography beam-

line. A coherent, monochromatic beam of X-ray photons produced by electro-

magnetic interference of an accelerated electron beam (A) is filtered to give a

monochromatic energy distribution (B). It then travels through a series of at-

tenuators and slits (C) and a fast-shutter assembly (D) before passing through

the sample, which sits on a rotating stage (E). The attenuated beam is then con-

verted to visible light by a scintillator (F), reflected by a mirror (G) and passes

through filters and lenses (H) before radiographs are acquired by a charge cou-

pled device (CCD) array (I). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.15 Visualisation of the segment used for numerical simulation of P uptake. (A)

Initial aligned sub-selection, (B) raw data of the sub-section, (C) classification of

root hairs, soil, fluid and root surface regions for volume mesh generation, (D)

the resulting three-dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . 140
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5.16 Schematic showing soil/root-hair/fluid system, with equations governing P ki-

netics. (A) The boundary condition (Equation 5.4) and conservation of mass

(Equation 5.2) on the soil surface are applied to all soil/fluid interfaces. (B) Sim-

ple diffusion (Equation 5.1) governs movement of P in the fluid phase. (C) The

uptake boundary condition at the root hair and root surfaces (Equation 5.3) fol-

lows Michaelis-Menten kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.17 Schematic showing parameters for calculating the ratio of depletion zones on

soil particles to corresponding uptake zones on root and root hair surfaces. A

total of (n) seed points are evenly spaced along a root hair or the root surface

(shown in green) with a spacing of (δ0). Tracing paths back to aggregates along

paths of maximum concentration gradient calculated by the numerical model,

a set of (n) points on the soil surfaces is defined. The ratio of summated inter-

point distances between the soil surface and the root or hair surface is a measure

of how spatially focused is the uptake of P. Inter-aggregate distances (δa) are

rejected using a statistical procedure. For each point on the soil surface, the

ratio ( δ2δ1 ) is calculated. For points where this ratio falls more than two standard

deviations outside the mean for the whole set, the inter-point distance is rejected

as being an inter-aggregate distance. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.18 (A-D) Examples of hairs traversing soil pore spaces. . . . . . . . . . . . . . . . . . 147

5.19 (A-D) Examples of hairs closely following soil surface contours. . . . . . . . . . . 148

5.20 (A-D) Examples of hairs infiltrating fissures and intra-aggregate cracks. . . . . . 149

5.21 Cortical spaces were observed at numerous positions along the main root. (A)

An x, y planar section in which no large cortical voids are apparent, (B-C) x, y

planar sections showing cortical voids (CV - cortical void). . . . . . . . . . . . . . 150

5.22 Cross section in the x, y plane of the seminal root at a lateral root branching

point (SR - seminal root, LR - lateral root.) . . . . . . . . . . . . . . . . . . . . . . . 150

5.23 Digitally rendered 3D volume with the soil phases partially cut away to reveal

a ≈ 3mm section of a juvenile seminal root of Triticum aestivum including lateral

roots and root hairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.24 (A) Estimated surface concentrations of phosphate (Ca) on the soil particle sur-

faces after 10h of uptake by root and root hairs, (B) streamlines showing phos-

phate transport paths from soil surfaces to root hairs (magenta) and root surface

(blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
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5.25 Consolidated simulation results (over 10h). Left axis indicates cumulative P up-

take, plotted separately for root surface and root hairs, with Ca,0 values corre-

sponding to phosphate indices P1, P2 and P3. Right axis shows ratios of polyline

distance between groups of streamline start points (on soil surfaces) and groups

of corresponding end points (on root and root hair surfaces, see Figure 5.17),

where streamlines follow maximum Cl concentration gradients (shown in Fig-

ure 5.24-B). Plotted points are mean values for all sets, calculated separately for

root and root hairs (with standard error in means indicated by error bars.) . . . . 153

6.1 Schematic showing the method for registering major root-axes for higher-resolution

ROI scanning. Using FIJI, the positions of both centre of rotation (a) and the root

axis (b) are determined. Shifting the sample stage through vector~ab then centres

the ROI on the root axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2 Cross sections of primary roots: (A) Varyla, 3 (B) Sadri tor Misri, 6 (C) Sadri tor

Misri, 8 (D) Varyla, 1 (E) Santiago, 17 (F) Santiago, 19 (G) Santiago, 20 (H) Sadri tor

Misri, 21 (I) Santiago, 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3 Data for sample 3 (Oryza sativa cv Varyla), acquired at 600nm spatial resolution.

Aerenchyma structure is clearly visible, as are hairs initiating from the root epi-

dermis. A fluid phase is distinguishable in inter-aggregate spaces. . . . . . . . . . 163

6.4 Panes A-D show root hairs in sample 3 (Oryza sativa cv Varyla) transitioning

between gas and fluid phases. The hairs become indistinguishable in fluid due

to the matched attenuation coefficients of water and fluid-filled cells . . . . . . . 164

6.5 Panes A-D show different aggregate structures in sample 3 (Oryza sativa cv Varyla).

Whereas some (A) have a highly homogenous intra-aggregate attenuation coef-

ficient and pore distribution (given the imaging contrast and resolution), others

demonstrate substantially more complex micro-structures . . . . . . . . . . . . . 165

6.6 The ROI defined for image-processing. The dotted line indicates a distance of

≈ 425µm from the root surface, this being the length of the longest hair in the

validation data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.7 Comparing ROIs from data in sample 3 (A) and the wheat sample considered

in Chapter 5 (B), the difference in macropore fluid characteristics can be seen.

Arrows show representative regions of macro-pore fluid. . . . . . . . . . . . . . . 169

6.8 A greylevel histogram of the ROI demonstrates why segmentation methods re-

liant on global greylevel classification are unsuitable. Whereas the lower inten-

sity peak (red region) encodes voxels representing the gas phase only, the fluid,

root tissue and soil phases are encoded together within the higher intensity peak

(blue region). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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6.9 The trainable segmentation algorithm is applied to raw data (A) to classify solid

and fluid phases as distinct from gas (B). The resulting region (C) is then re-

classified to separate the gas and fluid phases (D) leaving isolated soil regions

(E). Binarising and recombining the soil and fluid phases results in the output

geometry (F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.10 Hair path characteristics fall into one of a number of classes, including (A) hairs

that cross macropore space, enter fluid and do not re-emerge, (B) hairs that cross

macropore space, enter fluid and do re-emerge, (C) hairs that are entirely within

the fluid phase, (D) hairs that are entirely within the gas phase. . . . . . . . . . . 172

6.11 3D rendering of the output from image segmentation procedures, with cut-

aways to show features. Hairs shown are from sets (HFV ) and (HPV ). Fluid

is only shown in one half of the soil region. Root surfaces have been partially

cut away to show internal structure of aerenchyma and stele. . . . . . . . . . . . . 174

6.12 Schematic showing the procedure for definition of coincident surface area be-

tween different phases. (A) The fluid region is dilated by a single voxel, with

a logical AND then applied between fluid and root voxels. (B) The result is a

single voxel shell which can be used to estimate contact surface area. . . . . . . . 174

6.13 Figure showing the region of the root surface which is directly coincident to

either soil or fluid phases (red). The hairs are generated using the HairGrower

algorithm described in Section 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.14 For each hair, a certain set of characteristic entities can be defined (A). Pepidermal
is the location at which the hair initiated from the root epidermis. Pinterface is

the point at which the hair transitions from gas to fluid phase. Pfinal is the point

at which the hair terminates (concealed within fluid in most cases). (B) Shows

the vector ( ~PepidermalPinterface) used to approximate existing length and direction.177

6.15 Flow diagram outlining the top-level operation of the HairGrower algorithm. . . . 188

6.16 The steps taken by the HairGrower algorithm to complete a single root hair. (A)

The vector ~PepidermalPinterface is defined. (B) A test array of points is defined

around Pinterface. (C) Points requiring more than 90◦ of deviation are disal-

lowed. (D) A new seed is randomly selected from the remaining point set, so

long as other constraints are met. (E) A new array of test points is defined. (F)

Points corresponding to soil and root phases are disallowed. (G) A point meet-

ing all validation criteria is randomly selected. (H) Once the full length (Ltotal,n)

for the hair is reached, the 3D path is written to an output file. . . . . . . . . . . . 189

6.17 Middle slice of the geometric input data for the HairGrower algorithm. Root and

soil regions are binarised with 8-bit grey-level value of 255, whilst macro-pore

regions have a value of 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
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6.18 (A) An example of a completed hair population generated by the HairGrower

algorithm. For the subregion indicated in red, frames (B-J) show the virtual

hair morphologies for 9 further iterations. The stochasticity of the algorithm

is evidenced by the different length distributions and paths generated despite

identical input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
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Chapter 1

Understanding the roles of roots and

soils in relation to plant nutrient

acquisition

The literature review in this chapter serves as a broad introduction to domain challenges and

hypotheses that form the basis of this thesis. More detailed literature pertaining to particular

experimental work is found in relevant chapters.

1.1 The importance of agriculture to global food security

Over 200 years ago Thomas Robert Malthus wrote an essay, in which he predicted that left

unchecked, a continuously growing global population would eventually face famines, dis-

ease and widespread mortality [Herder et al., 2010; Malthus, 1798]. In the present day these

concerns remain, as the global population continues to increase, whilst the area of viable agri-

cultural land available for food production is contracting [Godfray et al., 2010]. During the

1960’s, Asia, Africa and Latin America were thought by many to be on the brink of politi-

cal and humanitarian crisis, as growth in agricultural yields failed to keep pace with popu-

lation increases driven to a great extent by rapidly declining infant mortality rates [Khush,

2001]. A widely read book of the time, Famine 1975! predicted that by 1977 parts of the un-

derdeveloped world would be suffering famines, by 1982 these famines would have reached

catastrophic proportions, and that soon thereafter, revolutions, economic upheaval and so-

cial turmoil would ravage large areas as a result [Khush, 2001; Paddock and Paddock, 1968].

That these predictions failed to materialise is due almost entirely to what is now known as the

‘Green Revolution,’ in agriculture, through which new approaches for genetic improvement of

crops were implemented to bring about profound yield increases [Khush, 2001]. The objective

impact of this revolution cannot be overstated. Despite a doubling in the population of densely
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populated, low-GDP nations in the period 1966-2000, food production increased by 125% over

the same timescale, averting many of the socio-economic disasters that had been predicted to

result from severe food shortages.

The declining per-capita food production in Asia in the preceding years of the century had

directly resulted from a failure to develop increasingly efficient varieties of rice (Oryza sativa)

[Khush, 1999]. The backbone of the agricultural revolution in this region, improved germplasm,

was made possible in large part by work at the International Rice Research Institute (IRRI) in

the Philippines, which remedied some of the more obvious shortcomings of contemporary rice

varieties [Khush, 2001]. Their work focused on improvement of above-ground traits, produc-

ing new varieties that generated less non-grain biomass and had short stems that were less

prone to damage by inclement weather conditions. Following this breakthrough, a range of

other factors that had previously been uneconomical, such as improved irrigation and inten-

sive fertilisation, were able to help provide viable yield improvements [Sanchez et al., 1997].

Similar advances for the other major global crops, wheat (Triticum aestivum) and maize (Zea

mays) occured across the developed world following similar breeding programmes by institu-

tions such as the International Maize and Wheat Improvement Centre (CIMMYT) in Mexico

[Khush, 2001].

Despite the impact of this agricultural revolution in the latter half of the 20th Century, global

staple crop production per capita is once again falling, and the threat of severe food short-

falls exists once more [Khush, 1999]. In the present day, three cereal species; rice (Oryza sativa),

wheat (Triticum aestivum) and maize (Zea mays) are responsible for meeting 75% of human crop-

food requirements [Coudert et al., 2010]. Based on UN estimates of global population growth,

production of these cereals will need to increase by > 40% in order to meet projected demand

by 2030, an increase which will have to be achieved against the backdrop of diminished fer-

tilizer availability, a contraction in absolute fertile land area and reduced irrigation [Coudert

et al., 2010]. In addressing the crisis of the 1960’s, the dominant strategy had been the breeding

of short-stature and lodging-resistant varieties with high sensitivity to inputs of fertilisers. In

the present day, new increases in yield must be achieved without widespread possibility of

recourse to intensive fertilisation, particularly in the developing world [Khush, 1999; Lynch,

2007]. Rather than focusing on optimising the useful biomass and seed yield as previously

[Gonzalez et al., 2009; Xing and Zhang, 2010], an obvious approach to this challenge is to focus

on the often-neglected influence of root system characteristics on yield potential [Herder et al.,

2010].
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1.2 Plant root systems and their inherent complexity

The growth and resource acquisition processes of plant root systems exhibit a multi-faceted

complexity significantly exceeding that of the aerial plant. Above ground, the primary ob-

jectives of plants are the interception of light and CO2, maintenance of water homeostasis,

and reproduction. Detrimental environmental constraints to aerial growth include heat expo-

sure, competition for light, and damage resulting from both weather and herbivorous attack

[Postma et al., 2013]. By comparison, necessary resource capture by roots extends to more

than 14 essential nutrients (in addition to water) as well as several others that are non-essential

but beneficial for growth [Postma et al., 2013]. The list of detrimental environmental factors

affecting roots includes aluminium, sodium, chloride and manganese toxicity, low water avail-

ability, soil saturation, low temperature, herbivore attacks and excessive mechanical resistance

[Postma et al., 2013]. Furthermore, compared to the above-ground plant, the below-ground

portion is involved in far more complicated biochemical processes and a large number of bi-

otic interactions with the wide array of fauna present in agricultural soils [De Deyn and Van

der Putten, 2005; Watt et al., 2006]. Given the inherent complexity of plant root systems and

the soils in which they grow, improving understanding of root development and linking ar-

chitecture to resource acquisition are highly non-trivial objectives.

As a direct result of root complexity, our present knowledge of many fundamental processes

related to mature plants (such as uptake kinetics and root senescence characteristics) is limited

[Darrah et al., 2006; Lontoc-Roy et al., 2006]. A review by Gregory et al. argues that due to the

difficulty of measuring root systems, little attention has been given to specific characteristics

that may prove pivotal in facilitating more efficient nutrient and water uptake [Gregory et al.,

2005]. Partly responsible for this is the extraordinary extensivity of mature plant root networks,

which makes accurate quantification of even simple characteristics extremely difficult and time

consuming [Taiz and Zeiger, 2002]. A study by Dittmer of winter rye (Secale cereale) plants used

extensive manual sampling to estimate the size of a single root system after 16 weeks growth,

finding 13.8 × 106 roots with a total length of over 620km and surface area of almost 250m2

[Dittmer, 1938]. The number of root hairs was estimated to be 14 × 109 with a total length

of over 10 × 103km and surface area of 400m2. Such extensiveness poses clear challenges to

reliable characterisation at the entire plant scale, even discounting the added complexity of the

soil environment in which roots grow.

The complexity of root systems is not limited to architecture or morphology alone, since plants

exert mechanical and biochemical influences upon their environment, mediating soil proper-

ties in order to optimize uptake of essential nutrients [Lambers et al., 2006]. A few of these

processes are shown in schematic form in Figure 1.1. An important example is the enhanced

mobilisation of PO4 ions in dry soil horizons by the transfer of water to superficial layers from
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Figure 1.1: (A) Roots are engaged in a complex array of interlinked processes with rhizosphere
soil [Brady and Weil, 1996]. Roots respond plastically to soil nutrient and water status, as well
as the mechanical impedance presented by the complex physical structure. In turn, roots influ-
ence the soil through mechanical interference, water uptake and redistribution, and exudation
of numerous compounds including polysaccharides and surfactants which influence soil fauna
and soil water characteristics [Hinsinger et al., 2005].

deep in the root system - a mechanism termed hydraulic redistribution or hydraulic lift [Burgess

et al., 1998], but which has proven complicated to quantify experimentally [Lambers et al.,

2006]. Better understood is the exudation of mucilage and organic compounds through which

plants establish the rhizosphere (Figure 1.1-A), a key zone of biochemical activity surrounding

plant roots, improving the mobility of phosphate and other nutrients [Gahoonia and Nielsen,

1998; Peterson and Farquhar, 1996]. Zoysa et al. found that root exudates were able to exert pro-

found effects on soil phosphate chemistry, though this effect was limited to a small soil volume

extending a maximum of 3mm from the root surfaces. This places the influence of exudation

at the length scale of the rhizosphere rather than that of the bulk soil, and demonstrates that

comprehensive root system characterisation must consider processes at the single root scale as

well as the root system scale. [Zoysa et al., 1997].

1.3 Phosphate, a key growth-limiting nutrient in agriculture

Alongside mechanical anchoring the most significant role of the root system is the acquisition

of key resources, of which the inorganic nutrient phosphorus (P) is one of the most important.

In plants, P forms a component of nucleic acids and phospholipids, assists in the activation of

many enzymes, and plays an important role in carbon metabolism. As such, it is second only

to nitrogen (N) in its importance for growth [Dery and Anderson, 2007].

Low P availability limits agricultural productivity (Figure 1.2), a limitation which can usu-
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Figure 1.2: Low nutrient status affects plant vigour. Frames (A) and (B) show the same geno-
type of rice (Oryza sativa cv. KAS) after (30d) growth. The soil in (A) is in a low-P condition,
and the soil in (B) has been treated with P fertiliser to an equivalent P level of 50kg.ha−1. The
greater above-ground biomass of the plant grown in P-treated soil is evident.
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ally only be overcome by supplying fertilizer to the soil [Vance et al., 2003]. Unlike nitrates,

phosphate cannot be synthesised industrially or generated by other soil organisms, a situa-

tion that has led to rapid depletion of global rock phosphate reserves [Lambers et al., 2006].

Despite this, many agricultural soils subject to intensive, long-term fertiliser application have

over time accumulated high concentrations of P that is unavailable to most plants. This un-

availability results from strong sorption of the nutrient with soil, as well as the poor adaption

of many plants to access these forms, which can account for the fate of 80 − 90% of applied

P [Jones, 1998]. Along with others, Krasilnikoff et al propose that low soil availability of P is

one of the most significant factors contributing to poor food availability in equatorial Africa,

with phosphate application often having little effect on yields due to rapid chelation by iron

(Fe) and aluminium (Al) oxides in the soil [Krasilnikoff et al., 2003]. As discussed, the revo-

lution of global agriculture during the 20th Century was largely possible due to the increased

availability of mined rock phosphate, but many farms worldwide still do not receive adequate

supplies [Dery and Anderson, 2007]. As it is often applied carelessly, waste and environmental

pollution frequently result [Dery and Anderson, 2007].

Recently, a predictive paradigm from the oil industry known as Hubbert peak theory has been

applied to data for known P reserves in order to forecast depletion rates of mineable stocks,

with the estimated period for near-total exhaustion of global P predicted at between 50 and 130

years [Dery and Anderson, 2007]. Given the reliance of global food supplies on P, depletion

at this rate is of acute significance, as unlike other essential nutrients there are no effective

substitutes for mined P fertiliser in intensive agriculture [Survey, 2011]. The joint problems of

P reserve depletion, poor uptake efficiency and off-site pollution place a great impetus on two

areas; the development of new crop varieties which can acquire soil P more efficiently, and

improved soil management protocols which minimise waste [Lambers et al., 2006].

Phosphate dynamics at the rhizosphere scale

Phosphate acquisition is primarily a function of three processes;

• The movement of PO4 ions from soil (source) to roots and root hairs (sinks).

• The mechanism and rate of absorption once ions reach a sink surface.

• The binding and solubilisation reactions on aggregate surfaces and intra-aggregate re-

gions.

Mass flow typically accounts for less than 5% of total P uptake by plants, such that transport

of the ions is limited by the diffusion coefficient (D), the value for which is very low in soil
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[Lambers et al., 2006]. Numerical modelling has suggested that increasing the maximum in-

flow rate of P at the plant root surfaces has little effect on total uptake, due to the governing

influence of diffusion rate [Jungk, 2001; Silberbush and Barber, 1983]. This limitation leads to

zones of local P depletion which are commonly observed in rhizosphere studies, and were first

visualised using radiographic methods which allowed quantification of 32P gradients around

roots [Lewis and Quirk, 1967]. Such gradients arise when the root or root-hair uptake rate

exceeds the rate at which mass flow or diffusive transport are able to replace P being lost from

the rhizosphere at the uptake surfaces [Jungk, 2001]. In such cases, the rate of replenishment

in depletion zones is predominantly governed by the buffer power (b) of the particular soil in

which the plant is grown [Zoysa et al., 1997]. In response to low P availability, the plant may

be able to actively mobilise ions by modifying soil water status through hydraulic redistribu-

tion, or by altering the chemistry of the rhizosphere through release of exudates containing

carboxylates and phosphatases [Lambers et al., 2006]

Accurately determining how far the rhizosphere extends from root surfaces is difficult, since

the various plant nutrients have different diffusion coefficients, and hence different deple-

tion profiles in the soil [Hinsinger et al., 2005]. There is thus no easily defined single bound-

ary between the rhizosphere and bulk soil, and the zone for N may be many tens of times

greater in diameter than that for P, which typically extends less than 1mm from the root sur-

face [Hinsinger et al., 2005]. Figure 1.3 shows such a depletion gradient for a root of maize (Zea

mays), measured using a 33P tracer. The existence of these small length-scales of depletion for

such a key nutrient has led to the suggestion that only a very small percentage of the total

soil volume within the boundaries of root growth (< 1%) can truly be termed the rhizosphere

[Hinsinger et al., 2005].

Though the rhizosphere is clearly a vitally important zone for understanding nutrient uptake,

accurately quantifying the movement of [PO4]
3− ions close to the root surfaces is a non-trivial

task. Because the region of soil in which the plant can exert influence lies in such close prox-

imity to root surfaces, accurate sampling is extremely difficult [Hinsinger et al., 2005]. Even

where aggregates directly adhering to roots (as in Figure 1.1-A) can be selectively sampled,

rhizosphere effects may be underestimated, since the length scale of these aggregates is often

greater than that of P depletion gradients [Hinsinger et al., 2005]. In the face of these chal-

lenges, an important refinement in measurement of rhizosphere processes was achieved by

applying an approach in which roots are grown against a porous, planar membrane housed

within a laboratory growth chamber [Kuchenbuch and Jungk, 1982; Wenzel et al., 2001]. Soil

can then be sampled in planes parallel to that of the membrane in order to quantify deple-

tion and exudation profiles, though it must be considered that the root geometry represents

a substantial oversimplification of the unconstrained state, and does not allow any spatial
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Figure 1.3: Figure from Hinsinger et al. showing characterisation of P depletion profiles around
a maize (Zea mays) root. (a) Roots are grown in a rhizobox, in soil treated with a 33P tracer.
Measuring radioactivity allows P concentration to be estimated at discrete points on the view-
ing plane. (b) Shows the concentration of P in soil solution plotted with respect to distance
from the root surface.

heterogeneity of uptake along individual roots to be quantified [Hinsinger et al., 2005]. Up-

take processes also exhibit temporal heterogeneity due to changing environmental conditions,

not least the diurnal variation of light (which governs photosynthesis rates) and the coupled

heterogeneity of nutrient and water demands [Hinsinger et al., 2005]. Further complexity is

introduced in that certain other soil fauna also uptake soil P, including microbes, which have

been observed to contain a great diversity of different P compounds, not all of which are avail-

able to plants [Hedley and Stewart, 1982]. Additionally, the homogeneity of soil P distribution

assumed as an initial condition in many models has been shown to be erroneous, with a sig-

nificant variation in concentration observed over a range of length scales [Darrah et al., 2006;

Hedley and Stewart, 1982].

It is clear that many different rhizosphere states can potentially develop, and that these are

dependent on a potentially enormous number of possible specific combinations of soil, plant,

fauna and environmental conditions [Darrah et al., 2006]. Since the efficiency of fertiliser utili-

sation in agriculture is presently< 50% for all the major plant nutrients, there is a clear need to

understand the most dominant processes governing P acquisition in agricultural systems, and

thus how plant breeding and soil management might improve yield efficiency [Postma et al.,

2013].
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1.4 Targeted breeding of root traits for enhanced P acquisition by

crop plants

It is well known that genotypic variations among plant species are responsible for widely dif-

fering nutrient acquisition by roots, and utilisation by the plant [Marschener, 1998]. Since one

route to enhanced P uptake is increased total soil exploration, there are a wide range of mor-

phological and architectural root adaptations that could potentially improve uptake efficiency,

including modified branching angles, branching rates, and specific root length [Haling et al.,

2013; White et al., 2013]. Degrees of variation in individual traits can be substantial due to

the highly plastic nature of plant development, with intra-species variations in root size and

growth rates potentially varying by orders of magnitude [Callaway et al., 2003]. Given the

number of interlinked processes involved in root function, it is very difficult to define the con-

cept of an ‘optimum’ root architecture [Fitter et al., 1991; Robinson, 1988]. Nonetheless, there is

increasing consensus that cultivars can and should be developed with root systems tailored for

optimal nutrient and water efficiency, and thus enhanced yield, given a specific set of environ-

mental parameters [Ao et al., 2010; Bingham and Wu, 2011; Chen et al., 2011; de Dorlodot et al.,

2007; Dunbabin et al., 2005, 2013; Gregory et al., 2009; Lynch, 2007; Lynch and Brown, 2012; WU

et al., 2005]. A recent review by Brown et al. suggested an extensive list of possible root adap-

tations from the RSA to the hair scale, though the observation was made that all adaptions

entail certain drawbacks (such as high carbon cost, or increased susceptibility to pathogens)

[Brown et al., 2012]. In order to generate greater yield with fewer inputs, plant breeding ap-

proaches are needed which can incorporate advantageous traits into new germplasm, but this

in turn will require substantially better understanding of plant growth and phenomics than is

currently available [de Dorlodot et al., 2007; Lynch, 2007; Postma et al., 2013]

1.4.1 The key link between plant root architecture and nutrient acquisition effi-
ciency

The characterisation of plant roots can be broadly divided into two domains; one concerning

architecture and morphology, and the other concerning biochemical soil mediation processes

[Darrah et al., 2006; Lynch, 1995]. Lambers et al. have proposed that in particularly extreme

nutrient-deficient environments, it is the optimised combination of RSA and biochemistry

which most strongly determines the success of plant development [Lambers et al., 2006]. Al-

though traits in both domains make an interlinked contribution to overall plant performance,

previous studies have tended to investigate these domains independently of one another [Dar-

rah et al., 2006]. This is in large part due to the extensiveness, diversity and plasticity of root

architecture, which have posed a daunting challenge in attempts to develop methodological

approaches to root classification [Dittmer, 1938; Lynch, 1995]. It is also extremely difficult to
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Figure 1.4: Protocol used by Fang et al. to non-destructively image root architecture in gel
culture. Roots are grown in gel (a) and scanned periodically using a laser-scanning apparatus
which allows reconstruction of root paths in three-dimensions [Fang et al., 2009].

accurately measure release rates and chemical compositions of root exudates in the soil en-

vironment, leading the bulk of recent studies to focus on plants grown hydroponically or in

gel culture (Figure 1.4); conditions which allow little interpolation with the field environment

[Gregory and Hinsinger, 1999; Heeraman et al., 1997; Pierret et al., 2005]. Exudates are pre-

dominantly composed of carboxylates (citrate, malate, malonate etc) which solubilise organic

and inorganic phosphate via ligand exchange [Lambers et al., 2006]. Phenolics and mucilage,

also found in exudates, are capable of mobilizing phosphate, but to a lesser extent [Lambers

et al., 2006]. Because the interactions of such compounds are complex and numerous; com-

petitive and synergistic processes occur in the rhizosphere which do not lend themselves to

straightforward experimental observation [Hinsinger et al., 2005].

Aside from exudation and absorption processes, roots can be characterised with respect to

spatial distribution and branching, with substantial investigative effort having recently been

focused in this area [Gregory et al., 2003; Heeraman et al., 1997; Jenneson et al., 2003; Kaestner

et al., 2006; Perret et al., 2007; Turcotte et al., 1998]. A review by Lynch describes different do-

mains under which structural root characteristics can be classified [Lynch, 1995]. The morphol-

ogy of the system refers to the surface features of individual root axes, including the presence

of root hairs and secondary roots, as well as epidermal characteristics [Lynch, 1995]. The distri-

bution of roots describes system features such as length and biomass topologically with respect
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to variables such as soil horizon, distance from a seminal root, and distance to neighbouring

plants; without taking into account the spatial orientation of network elements [Lynch, 1995].

Root system architecture (RSA) is a term used to describe the spatial configuration of a root sys-

tem, and whilst not accounting for morphology, is superior to either topology or distribution,

since both these components may themselves be derived from a comprehensive description of

the root architecture [Lynch, 1995]. The heterogeneous distribution of nutrients and water in

real soils means that plant RSA is a significant factor in the effectiveness with which resources

can be acquired by the plant [de Dorlodot et al., 2007].

Alongside RSA, the structure of the soil in which crops grow is also highly correlated with

their development, and thus is of significant agricultural importance [Lipiec et al., 2006; Pagliai

and De Nobili, 1993; Stewart et al., 1999]. Optimal crop development is strongly linked to

the aeration, water transport and root penetration characteristics of the soil [Hinsinger et al.,

2009; Perret et al., 1999; Pires et al., 2005; Stewart et al., 1999]. However, the complexity of the

medium has necessitated that much work be descriptive, concerned with differences between

soils rather than the linking of structural parameters decisively to their functional relevance

for growth [Hinsinger et al., 2009]. Further relevant literature regarding soil structure is found

in Chapter 2, which considers a new method for porosity quantification in soils.

Important architectural traits are not limited to the root system scale, or even the single root

scale. Root hairs, single-cell extensions of the root surface, can contribute substantially to P

uptake, in some conditions accounting for up to 80% of total P acquisition [Gahoonia and

Nielsen, 1998; Jungk, 2001]. It has been suggested that root hairs enhance uptake by access-

ing resources isolated from the root surface by air-filled voids, increasing root-soil contact and

anchoring roots into the soil matrix, aiding mechanical penetration [Bengough et al., 2011]. Ex-

tensive consideration is given to the role of root hairs in Chapter 5, but at all scales it is evident

that an over-reliance on in vitro methods of characterising both architectural and biochemical

root traits has blinded investigators to quite how complex an array of biochemical and physi-

cal processes is present in real soil systems [McCully, 1999]. Full consideration of the literature

relating to root-hairs is found in Chapter 5.

1.5 Canonical methods for quantifying root traits, soil characteris-

tics, and their influence on nutrient acquisition

It has been demonstrated from the pertinent literature that RSA and soil structure are both

key elements in understanding the fundamental bases of nutrient uptake efficiency in plants.

Because of the known importance of such characteristics, a wide variety of methods has been

developed in order to allow investigation of roots and the soils in which they grow, and facil-
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itate comparison of relevant traits through genotyping and phenotyping work. The following

section reviews some of the most significant extant methodologies for root system elucidation.

1.5.1 Destructive and direct-observation methods

Due to the fact that roots grow in an opaque soil medium, traditional methods for investigating

both biomass and topology necessarily involved disturbance or artificial constraint of the soil-

plant system [Perret et al., 2007]. Before the relatively recent emergence of tomographic meth-

ods as tools for the characterisation of subterranean plant growth, the most commonly used

techniques had been variations of either direct observation (rhizoboxes and minirhizotrons) or

destructive root washing approaches [Pierret et al., 2005].

Root washing methods

The general approach to destructive root observation begins with the extraction of either cores

or monolithic soil samples, from which roots are separated via careful washing before being

subjected to manual or computer-assisted analysis techniques [Pierret et al., 2005]. Variations

of this generalised approach include simple washing under a fine stream of water [Berntson

and Woodward, 1992], soaking for 24 − 48h in a clay-dispersant solution (sodium pyrophos-

phate) followed by washing using fine sieves and filter paper [Pagliai and De Nobili, 1993],

washing in a succession of sieves of decreasing mesh diameter [Sierra et al., 2003], and use of

commercially available root washing equipment based on the design of Smucker et al. [Pier-

ret et al., 2005; Smucker et al., 1982]. Though the use of these techniques is extensive in the

literature, it is clear that in addition to being time-consuming, the separation of roots from

rhizosphere soil through conventional destructive techniques unavoidably introduces exper-

imental artefacts by damaging the roots and root hairs [Wenzel et al., 2001]. There is much

evidence in the literature to support this view, with suggestions made that the widespread

use of such techniques is a function of pragmatic considerations such as low cost and rapidity,

rather than verifiable accuracy and reproducibility [Pierret et al., 2005].

Many studies have drawn attention to the fact that biomass and root length data obtained

through root washing are sensitive to relatively small changes in methodological approach.

In a destructive study of cores containing tree roots, Livesley et al found that measured root

length was highly dependant on the mesh-size of the sieves used to retrieve root material from

the washing solution [Livesley et al., 1999]. Sierra et al. proposed that loss of root material

during washing and sorting is among the most significant sources of error in the experimental

estimation of root mass [Sierra et al., 2003], whilst in a review of root investigation methods,

McCully estimated that fine roots (diameter < 0.8mm) of Zea mays plants lost during conven-

tional washing methods could account for more than 50% of total root length [McCully, 1999].
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A study by Amato et al. has also drawn attention to the significance of mesh size in estimating

total root length, reporting that sieving at a mesh diameter of 2mm recovered only 10% of the

total root length that could be recovered at a mesh diameter of 0.2mm [Amato and Ritchie,

2002]. Such findings correlate with the those of a review spanning more than six decades of

plant root research, in which Pierret et al. concluded that over 50% of total root length in Brassica

napus L. is comprised of roots with diameter < 0.2mm. When it is considered that the standard

version of the commercially available Delta-T root washing apparatus uses a 0.5mm mesh, it

appears likely that studies undertaken using such equipment will significantly underestimate

total root length [Pierret et al., 2005].

Comparison of the root recovery rates obtained using different methodologies yields some-

what surprising results. A review by Pierret et al ranked the average values of root density

(Lv) derived from various studies representing the full range of current techniques, and found

that whereas the recent studies utilising root washing generally estimated Lv values that were

higher than those in minirhizotron studies and lower than those for X-Ray CT studies, the

highest values of all were from washing studies conducted in the 1930’s by Dittmer and oth-

ers (see Figure 1.5) [Dittmer, 1938; Pierret et al., 2005]. This suggests that in addition to the

known influence of mesh size on measured values of Lv, root washing techniques are also

highly dependant on human factors, such as the care taken in separation of soil and root mat-

ter. These factors are proposed as a likely reason for the significantly higher Lv values esti-

mated by Dittmer when compared to those of later studies utilising less tedious but also less

meticulous separation methods [Pierret et al., 2005].

1.5.2 In vivo methods

Despite being of certain use in quantifying biomass, length density and topology of root sys-

tems, destructive root characterisation methods such as washing usually fail to provide useful

information about RSA [Tracy et al., 2010]. The extrication of roots from soil unavoidably intro-

duces artefacts such as damage or root loss, destroys the native architecture of the system, and

negates the opportunity to analyse the same plant at a later developmental stage [Lynch, 1995].

Moreover, methods involving the washing of soil cores are not only time consuming, but also

spatially and temporally discontinuous, with the difficulty of interpretation and comparison

with other studies providing substantial disincentives to their use [Gregory et al., 2003]. For

these reasons, the ability to observe roots and soil biota in vivo is highly desirable, and the de-

velopment of such techniques has brought with it the promise of an improved understanding

of soil-root interactions [Lynch, 1995]. Direct observation of the soil environment is also ad-

vantageous in determining how soil fauna such as earthworms both colonise and modify their

surroundings, and the effect of such interactions on soil structure and root behaviour [Lussen-

36



Figure 1.5: Comparison of Lv values achieved by different characterisation methods [Pierret
et al., 2005].

hop and Fogel, 1993]. In their simplest form, direct observation methods require simply that

plant roots are able to be grown against some form of sampling surface through which they

can be sampled by the investigator, either by eye using image capture devices, or via chemical

assay. The following protocols are all variations on this philosophy.

Rhizoboxes/Rhizotrons

Minirhizotrons are an extremely simple direct-observation tool for studying growing roots in

situ. A minirhizotron setup comprises clear polymer tubes implanted at a field site, into which

a specially adapted camera may be periodically inserted to record development of adjacent

roots [Johnson et al., 2001]. Though the technique has allowed the application of demographic

methods to roots in the field environment, facilitating the tabulation of developmental stages

from initial growth to senescence, it has proven difficult to convert root counts into more use-

ful data such as length densities or biomass [Lussenhop and Fogel, 1993; Pierret et al., 2005].

Since digital root extraction of root positions from minirhizotron images is in practice very

difficult, the accuracy of the method is reliant on the ability of the user to recognise root mate-

rial in scanned images [Pierret et al., 2005]. Moreover, there is evidence that due to the rapid

turnover rates of fine roots, a significant proportion of such material is likely to be missed if

the sampling frequency of the study is longer than one week [Johnson et al., 2001]. Further
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complications in the use of minirhizotrons arise when estimating root densities, since installa-

tion unavoidably causes local compaction in the soil around the tube. Moreover, soil or tube

movement can result in an air gap between the tube and soil, forming a preferential growth

path that will cause bias when root data is upscaled to generate whole-plant estimates of root

density [Lussenhop and Fogel, 1993].

Alternatives to minirhizotrons include rhizotrons and rhizoboxes, the former designed for the

direct observation of plant roots, and the latter for the characterisation of rhizosphere biochem-

ical properties including hydration, pH, and exudate concentration at varying distances from

a root mat [Wenzel et al., 2001]. Rhizotrons most commonly comprise a plexiglass box filled

with soil and fitted with a suitable system to provide hydration in accordance with desired pa-

rameters [Wenzel et al., 2001]. Light is generally occluded in order to simulate field conditions

and prevent algal growth, with a hinged flap allowing periodic viewing of roots adjacent to a

certain plane [Gibeaut et al., 1997; Heeraman et al., 1997]. In practice this plane is often ori-

ented at an angle which exploits root gravitropism to provide favourable root-to-glass contact,

with characteristic figures of 45◦ [Dinkelaker et al., 1993] and 55◦ [Berntson and Woodward,

1992] to the horizontal being characteristic [Wenzel et al., 2001]. Methods for qualitative assess-

ment of root growth in rhizotrons are similar to those utilised in minirhizotrons, though the

comparatively easier access and more favourable geometry provided by a flat viewing plane

offer greater scope for quantitative measurements to be made. At a simple level, a study by

Berntson et al. made use of acetate sheets to trace root systems by hand at different intervals

[Berntson and Woodward, 1992], whilst a more refined methodology implemented by Schmidt

et al. among others examined roots of rice plants using a flat-bed scanner fixed in front of a

rhizotron window (see Figure 1.6) [Schmidt et al., 2011]. The use of commercially available flat-

bed scanners in this application is still widespread in root and rhizosphere research [Dannoura

et al., 2012; Schmidt et al., 2011].

Other more specialised methodologies based on the rhizobox concept have been developed for

the investigation of specific processes. One example is an agar-based bioreporter assay recently

developed for quantification of inorganic arsenic mobilisation and release in rhizosphere soil

[Kuppardt et al., 2010]. Roots of maize (Zea mays) were grown in a planar geometry, and agar

plates containing bioreporter bacteria E. coli DH5α 1598 applied directly to the root system

for a 2h incubation period. Following a further incubation interval post-removal, fluorescence

measurements were taken in order to quantify arsenite and arsenate concentrations. Such

novel methodologies are presently limited to investigation of planar root systems, but do allow

spatially-resolved quantification of chemical speciation around roots, at resolutions well into

the < 1mm range.
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Figure 1.6: Figures from Schmidt et al., showing scans of Oryza sativa roots grown in a standard
rhizotron setup [Schmidt et al., 2011]. Soil is a standard paddy medium (Anthraquic Cam-
bisol), and Fe oxidation can clearly be seen around roots (orange and black regions). Images
are shown at 20, 45 and 105 days after transplanting (DAT), and scale bar is 5cm.)

Tomographic imaging methods

Destructive characterisation and rhizotron-based direct observation approaches have been in-

sufficient in satisfactorily capturing the architectural and morphological complexity of root

systems [Heeraman et al., 1997]. Reviews have pointed to the clear need for development

of non-destructive techniques allowing study of the rhizosphere in-situ, and in recent years

a number of innovations in non-invasive imaging appear to have shown significant promise

in meeting this requirement [Gregory and Hinsinger, 1999]. Two families of techniques, X-ray

Computed Tomography (XCT) and Nuclear Magnetic Resonance Imaging (NMRI), represent a

step-change in this regard, both allowing three-dimensional, non-invasive and non-destructive

imaging of a wide range of biological materials [Heeraman et al., 1997; Stuppy et al., 2003].

These methods hold significant promise for the study of root systems [Moran et al., 2000],

soil structure [Mooney, 2002], and water movement in the rhizosphere [Aylmore, 1993], all

of which have until recently been hampered by the destructive or spatially diffuse nature of

the methods previously available [Gregory and Hinsinger, 1999]. As well as providing the

capacity to qualitatively assess root and soil characteristics, non-invasive imaging entails the

possibility of employing digital image analysis techniques to measure roots as they appear

in-situ [Pierret et al., 2005].

The latest generation of X-ray CT scanners provide superior spatial resolution to that afforded

by NMRI, with the additional benefits of largely density-proportional attenuation and imper-

viousness to paramagnetic elements leading to increasing adoption in plant and geosciences

[Gregory et al., 2003; Perret et al., 2007]. These techniques have been used in the field of plant

science for around 20 years, in optimum conditions allowing non-destructive geometric clas-
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sification of roots in real soils, but interpretation of the resulting data remains a serious and

ongoing challenge [Dunbabin et al., 2013].

1.5.3 The role of numerical modelling in predicting nutrient acquisition character-
istics

Alongside root observation methods, and partly due to the difficulty of measuring root char-

acteristics and related processes in situ, mathematical modelling methods have long proven to

be a useful tool in plant and soil sciences. By considering root and soil structure virtually, and

approximating biochemical processes using mathematical equations, simulated ’experiments’

into the influence of different conditions, traits and parameters can be conducted without the

need for time-consuming growth trials [Dunbabin et al., 2013]. The modelling of root systems

gives investigators an opportunity to investigate the influence of geometric root parameters

which are non-trivial to investigate experimentally [Dunbabin et al., 2013]. Modelling can be

broadly considered as existing across two overlapping domains, one concerned with the sim-

ulation of physical root growth at scales from the root hair to the entire root system scale, and

the other concerned with simulating biochemical transport, reaction and uptake processes at

the same range of scales.

Methods for modelling nutrient uptake by plant roots

Current approaches to modelling the transport and uptake of nutrients are varied, but the

foundations were laid in in the 1960’s in work by Barber, Nye and others who developed early

models for the uptake of poorly-mobile nutrients and water by plant roots [Bagshaw et al.,

1972; Barber et al., 1963; Drew et al., 1969; Nye, 1966]. These early models considered the up-

take rate of ions by a small, idealised root section giving a cumulative total per unit length

which could then be integrated over the entire root length (determined by destructive root-

washing methods) to provide a whole-plant estimate. This early approach, now commonly

known as the Nye-Tinker-Barber model, assumes that uptake occurs only from the fluid phase,

that soil is structurally homogeneous, and that the matrix is at 100% water saturation [Barber

and Silberbush, 1984; Nye and Tinker, 1977; Roose et al., 2001; Tinker and Nye, 2000]. Fur-

thermore, plant mediation of the kinetics of nutrient uptake and diffusion (by processes such

as exudation) are neglected [Drew et al., 1969]. In the model, the standard diffusion equation

describes ion kinetics in the fluid phase:

∂Cl
∂t

= D∇2Cl, (1.1)

where Cl (mol.m−3) is the concentration of P in pore water, and D (m2.s−1) is the diffusion

constant for P in water.
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Flux across the root surface is defined by some suitable expression, usually an experimentally-

informed Michaelis-Menten law (describing catalysis of adsorption and desorption processes

by enzymes). The flux of ions into solution from the soil surfaces is governed by a boundary

condition which approximates the influence of soil chemistry on absorption and desorption

[Murray, 1993]. Though the Nye-Tinker-Barber model can be considered mechanistic (in that

it explains constituent processes in terms of physical laws), the lack of understanding required

to accurately describe processes below the rhizosphere scale means that it ceases to be truly

mechanistic below this scale [Darrah et al., 2006].

More recent work by Roose and Fowler, Ptashnyk et al., Leitner et al., Zygalakis et al. and others has

built upon this model, gradually reducing the number of assumptions made by the minimal

approach. Roose and Fowler re-derived the equations used in the classical model by consider-

ing two mobile forms of soil P; one in solution, and one in the solid phase [Darrah et al., 2006;

Roose and Fowler, 2004]. The technique of non-dimensionalisation allowed for identification of

processes which could be excluded during upscaling of the model [Roose and Fowler, 2004].

Others have added the influence of root hairs to this model using a homogenisation method

to transform spatial heterogeneities at different scales into a single, computationally tractable

description [Leitner et al., 2010b; Pavliotis and Stuart, 2008]. In this manner the root-hair func-

tions were integrated into the larger-scale model [Leitner et al., 2010b]. It was assumed that

soil was quasi-homogenous at the scale considered, and a compound diffusion coefficient was

defined in order to include both the buffer power (b) and an impedance factor (representing

the effect of pore tortuosity in the soil matrix) [Leitner et al., 2010b]. As with earlier models,

Michaelis-Menten kinetics were used to describe the relationship between concentration at the

root hair surface and the rate of influx across the surface [Leitner et al., 2010b]. This represented

an improvement upon earlier approaches which had either expanded the effective root radius

by the hair length (to form a ’virtual’ root cylinder with a greater diameter) [Passioura, 1963],

or modified the transport continuity equation for transport to the root surface to include a sec-

ond sink term accounting for nutrient flux into hairs [Bhat et al., 1976]. Though some studies

have attempted to explicitly consider the root hairs as part of a three-dimensional model [Geel-

hoed et al., 1997], this is highly challenging computationally, and most workers have instead

chosen alternative approaches [Leitner et al., 2010b].

By taking the previously outlined approach, Leitner et al. were able to predict how quickly de-

pletion gradients are likely to form in the soil, and thus inform the timescale over which such

processes ought to be experimentally investigated [Leitner et al., 2010b]. Alongside this work,

Zygalakis et al. have also developed a model of nutrient uptake by root hairs. This approach

removes the assumption of soil quasi-homogeneity at the hair scale by instead considering

the soil in terms of two domains (following Ptashnyk et al.) [Ptashnyk et al., 2011; Zygalakis
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et al., 2011]. In this model, the continuity equation contains separate terms describing fast

and slow reactions within the aggregates, and both fast and slow sorption are also considered

at the particle surfaces [Zygalakis et al., 2011]. As in previous models, the uptake function

is described in terms of a Michaelis-Menten type law. Two transport zones are considered -

an extra-hair zone (with no sink terms) and a hair zone (in which the equation governing the

inter-aggregate space includes a sink term representing the influence of root hairs) [Zygalakis

et al., 2011]. Root-hair influx rates were based on those determined experimentally for root sur-

faces, an assumption made on the basis that similar trans-membrane transport mechanisms

govern uptake in both cases [Mudge et al., 2002]. Once defined, this dual-porosity model

was compared to the single-porosity model of Leitner et al, with substantial differences dis-

covered in estimated uptake. Greater cumulative uptake was predicted for the dual-porosity

case, since nutrient release from the intra-aggregate space was able to replace nutrients lost

at the soil/fluid boundary [Zygalakis et al., 2011]. Furthermore, given a constant total length,

increasing root hair lengths enhanced uptake to a greater degree than increasing their distribu-

tion density; a difference that was not predicted by the single-porosity model [Zygalakis et al.,

2011]. Uptake in the dual-porosity model was also less sensitive to changes in soil moisture

content [Zygalakis et al., 2011].

As previously discussed, the invasive measurement of rhizosphere soil for the purpose of val-

idating parameters at the root hair scale is extremely difficult, and hence such parameters are

difficult to validate experimentally [McCully, 1999; Zoysa et al., 1997]. Headway is being made

in certain areas, such as the more accurate quantification of ion fluxes across root membranes

(in vitro) using the microelectrode ion flux estimation (MIFE) technique pioneered in plant ap-

plications by Shabala et al. [Shabala et al., 2006]. Despite this, there is a lack of knowledge in

other areas such as that required to allow nutrient spatial heterogeneity to be non-invasively

and accurately determined. Though this heterogeneity has been mapped for very small thin-

section soil samples (40 × 30 × 2.5µm) by combining spatially-resolved X-Ray fluorescence

(XRF) and X-ray absorption near-edge structure (XANES) techniques, there are substantial

caveats with such a approaches. The sample sizes are extremely small when compared to the

length scales of rooted soil volumes, samples must be resin-infused, and both techniques re-

quire use of synchrotron radiation sources [Lombi et al., 2006]. Such studies suggest that it is

not presently possible to characterise spatial distribution of nutrients at larger scales in three

dimensions. This shortfall reiterates the need for more multidisciplinary approaches, com-

bining the joint efforts of theoreticians and experimentalists, in order to synthesise accurate

parameter determination with explicitly considered, mechanistic models in order to advance

understanding.
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Methods for modelling physical growth of plant roots

Nutrient uptake models in the literature most often use idealised simplifications of the root/-

soil environment as the architecture upon which equations for nutrient kinetics are solved. In

the simplest case, this can be a cylinder representing the root, within a larger cylinder repre-

senting the soil, perhaps with a cylinder of intermediate radius representing the root hair zone

[Darrah et al., 2006]. Later models have considered more sophisticated geometries, in which

soil and air phases are represented as an ordered array of spheres in a water matrix, with

roots or root hairs arranged among them in a repeating pattern (Figure 1.7) [Zygalakis et al.,

2011]. Ultimately it is desirable to consider the entire root system within a modelling envi-

ronment, allowing the investigator to compare functional tradeoffs between different rooting

strategies [Dunbabin et al., 2013]. Due to the difficulty of extracting real 3D root architecture

from plants in soil, a range of computational environments have been developed allowing

the virtual growth of quasi-realistic root systems, which can then be imported into finite ele-

ment software for nutrient or water uptake modelling [Dunbabin et al., 2013]. SimRoot [Lynch

et al., 1997], ROOTMAP [Diggle, 1988], RootTyp [Pagès et al., 2004] and RootBox [Leitner et al.,

2010a] all allow the user to virtually ’grow’ entire root systems according to a large number

of input parameters. The dependence on user-defined parameters varies, with some envi-

ronments making more use of stochastic processes, and others heavily dependent on detailed

input of experimental or literature-derived data for branching rates, branching angles, growth

rates and other traits [Dunbabin et al., 2013]. Schnepf et al. parameterised the RootBox model

in a recent study using detailed root drawings acquired from field sectioning of crops during

the 1950’s [Kutschera and Lichtenegger, 1960; Schnepf et al., 2012]. The models also differ

substantially in their accounting for the physical and biochemical properties of soil and their

influence on root growth. ROOTMAP places particular emphasis on responsive plasticity in

root hair growth and nutrient uptake based on soil conditions [Dunbabin et al., 2013].

Unavoidably, the number of parameters required to approximate the different plant and soil

processes and interactions is large, a factor that introduces limitations not only in accuracy,

but also in validating whether or not unintended consequences have resulted from parameter

interaction [Dunbabin et al., 2013]. To make finite element models at the whole-plant scale

tractable, polygon meshing must also be at a coarse scale compared to the hair and single

aggregate scale. Added to the fact that most models do not consider any soil property dif-

ferences between rhizosphere and bulk soil, rhizosphere-scale activity is clearly likely to be

under-accounted for [Carminati et al., 2010]. Only two of these simulation environments, Sim-

Root and ROOTMAP have the facility to take into account the influence of root hairs at all

[Dunbabin et al., 2013].

The accuracy of growth models are limited by a paucity of mathematical descriptions of cer-
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Figure 1.7: Figure from Zygalakis et al. showing the periodic geometry used in their model of
root-hair P uptake. At least one soil particle is assumed to lie between adjacent hairs [Zygalakis
et al., 2011].

tain more complex physical processes on the one hand, and a lack of experimentally-derived

parameterisation data on the other [Dunbabin et al., 2013]. Root morphological features such

as hair structure and aerenchyma are also usually overlooked. In order to be more widely inte-

grated into plant breeding efforts, the influences of the environment on phenotypic plasticity

will have to better predicted [Lynch and Brown, 2012]. Though such models can currently

provide relatively good approximations to plant-scale root structure, an improved ability to

investigate root systems in situ at a range of scales will not only allow explicit nutrient up-

take modelling to be achieved on real geometry, but also help parameterise virtual models,

particularly with the aid of upscaling regimes such as homogenisation [Schnepf et al., 2008].

1.6 Key requirements for progress towards improved nutrient up-

take efficiency in crops

Towards better-informed targeted breeding and soil management for improved crop P effi-

ciency, a number of aims can now be summarised which shape the work in this thesis.

1.6.1 The explicit consideration of rhizosphere-scale processes in numerical regimes

Current modelling approaches almost always neglect the explicit consideration of root hairs

[Leitner et al., 2010b]. Nonetheless, some numerical studies have investigated the influence of

root hair traits on uptake of P at the single root scale using a variety of methods [Ma et al.,

2001]. Though these have allowed functional tradeoffs between traits such as length and den-

sity to be investigated to some degree, the soil is considered structurally and biochemically as
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Figure 1.8: (A) Cryo-SEM studies reveal a degree of morphological complexity in hair and soil
interactions that is unaccounted for in (B) agar-grown studies [Müller and Schmidt, 2004] or
(C) hair-scale numerical models [Zygalakis et al., 2011].

a bulk medium, and the hair architecture is highly ordered, both of which are serious over-

simplifications [Ma et al., 2001]. It is known from cryogenic scanning electron microscopy

(cryo-SEM) studies that hairs in real soil are likely to experience much more complex physi-

cal interaction with rhizosphere soil than is suggested either by these models or by agar plate

studies [Hinsinger et al., 2005; Van Noordwijk et al., 1993] (See Figure 1.8). It would be sen-

sible to consider rhizosphere and hair complexity as fully as possible in models at the appro-

priate scale in order to establish the fundamental processes and timescales governing uptake,

allowing these findings to be incorporated during careful mathematical upscaling to the root-

system scale [Roose and Fowler, 2004]. Considering both hairs and soil explicitly would allow

the removal of certain assumptions currently necessary to account for a lack of understand-

ing, such as the definition of a compound diffusion coefficient into which the influence of soil

buffer power (b) is incorporated, along with the averaged influence of pore tortuosity effects

in the form of a simple, scalar ‘impedance factor’ [Leitner et al., 2010b]. Since the physical and

biochemical properties of the rhizosphere differ markedly from those of bulk soil [Carminati

et al., 2010; Gregory et al., 2005; Hinsinger et al., 2009], it seems most prudent to visualise them

non-destructively, and to expend experimental effort to make such advances possible.

1.6.2 Conclusion - extending the scope of X-ray CT imaging in plant science

The complexity of coupled plant and soil processes has in large part been underestimated

due to an over-reliance on in vitro investigation methods [McCully, 1999]. µ-CT imaging (re-

viewed in Chapter 2) potentially offers the possibility to non-destructively investigate root

architecture, morphology, anatomy and the structural characteristics of the surrounding soil

and water at a range of scales, but work is needed to extend its utility in the field of plant

science. The following developments are considered to be particularly timely and relevant for

investigation.
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Imaging the RSA of large-scale plant samples

Of particular interest for investigation using µ-CT are root scales that are absent from previ-

ous work, yet known to be highly relevant to understanding of development and function,

with particular emphasis on traits implicated in phosphate uptake. One of these is the re-

alistic length scales of mature root-systems, as opposed to the < 10cm sample diameters at

which virtually all previous work has been focused. By extending beyond juvenile samples to

investigation of more mature crops at the root-system scale, it is likely that quantification of

field-relevant architecture for trait phenotyping as well as parameterisation of nutrient uptake

and growth models can be improved.

Imaging root hairs and soil at the rhizosphere scale

There have been few attempts to image root systems at the > 10 − 15cm scale, but a similar

paucity of work also exists at the microscale. At present, no studies have used non-destructive

tomographic imaging to investigate the rhizosphere or the micro-scale plant and fungal struc-

tures that colonise it. Root hairs and mycorrhizae are both known to be highly implicated

in the uptake of immobile nutrients [Lambers et al., 2006], but the nature of their interaction

with real soils is poorly known. The overwhelming majority of studies into root hair develop-

ment, trait differentiation between species, and responses to abiotic stress have been carried

out in vitro using agar or phytagel plates. Though these make observation straightforward,

such conditions allow little interpolation with the conditions of the field environment [Gre-

gory and Hinsinger, 1999; Heeraman et al., 1997; Pierret et al., 2005]. It is unclear whether such

data can in fact be meaningfully translated to the much more complex context of real soil at

all, and unfortunately such considerations are usually absent from such studies [Herder et al.,

2010]. Since µ-CT methods now allow investigation down to the< 1µm scale, it is important to

utilise such capabilities to unravel the actual structure of soil, hairs and mycorrhizae in the rhi-

zosphere zone, in order to improve our understanding of their morphology and development,

but also to facilitate the acquisition of more accurate statistical data than is available through

destructive sampling or in vitro approaches. The ability to directly investigate hair and rhizo-

sphere traits between different soil states and genotypes may generate data that will enhance

breeding efforts to generate germplasm tailored for low-P environments. Since a great deal of

our knowledge about root hairs comes from samples grown in mechanically and chemically

homogenous phytagel [Causin et al., 2012; Maizel et al., 2011; Yang et al., 2013; Yi et al., 2010],

it is important to develop more sophisticated approaches that can detect plastic responses to

the physical and biochemical complexity of the real soil environment [McCully, 1999]. If this

is achieved, existing models can then be parameterised with real hair and rhizosphere soil ge-

ometry, allowing the influence on nutrient uptake of differences in genotypic/phenotypic hair

traits, soil structure and water content to be compared using explicit regimes at unprecedented
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levels of accuracy.

Improving and standardising workflows for µ-CT imaging

Interpretation of µ-CT data still remains a difficult task within the plant and soil science com-

munities [Dunbabin et al., 2013]. An in-depth review of µ-CT imaging in plant and soil sci-

ences, found in Chapter 2, reveals the wide range of parameters and protocols used for imag-

ing of roots in soil, often without justification for their use [Keyes et al., 2013b]. In addition, a

high degree of user-based variation is known to exist in quantification of even simple soil and

root parameters from µ-CT data [Baveye et al., 2010]. There exists a clear need for standard-

isation of imaging procedures and reporting of imaging parameters in a manner that allows

increasing optimisation of protocols for maximum root retrieval. Furthermore, a move away

from imaging in sands or very sand-rich media should be made in order to more accurately

capture the behaviour of the root in the much more complex biochemical and mechanical envi-

ronment represented by real soil [McCully, 1999]. One way to achieve this is the development

of methods such as those existing in clinical X-ray CT to treat samples using radio-opaque me-

dia for artificial contrast enhancement. Such methods have not been applied in plant science,

despite low-contrast being a perennial issue.

Further to acquisition, analysis of soil and root µ-CT data has traditionally been ad hoc and

heuristic, either failing to be carried out according to well-validated protocols, or failing to link

observed characteristics to important plant and soil processes [Houston et al., 2013]. As well

as improving methods to visualise the architecture and morphology of undisturbed plants in

real soil, it will be increasingly important to use such information both to compare genotypic

and phenotypic trait differentiation, and to link traits to uptake and other key processes using

modelling and other multidisciplinary approaches.

1.7 Rationale and major hypotheses

These key areas of investigation suggested by the literature give shape to a number of gov-

erning hypotheses for experiments. This thesis considers the use of µ-CT as a technique for

the non-destructive investigation of roots and soil at a number of scales. The technique holds

promise for the phenotyping of important P uptake traits, and the parameterisation of root

and growth uptake models which can be used to predict the influence of different soil and root

factors on P efficiency. However, given continued drawbacks in the form of a limited sample-

size range and availability of well codified paradigms for interpretation of data, there is a clear

need for progress before µ-CT begins to realise its considerable potential as a method in plant

and soil sciences. Though detailed sub-hypotheses appear in the course of relevant chapters,

the major guiding hypotheses shaping this body of work are as follows:
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• Novel methods and robust workflow development can be combined to address problems

affecting the reproducibility of soil/root parameter measurement, such as an intrinsic

lack of root/soil contrast in root/soil µ-CT.

• Development of new protocols for large-sample imaging can allow the un-constrained,

non-invasive, in vivo quantification of key root system parameters at the scale of the

mature plant, allowing phenotyping and model parameterisation from roots free from

heavily constrained geometries (rhizoboxes) or non-field growth media (i.e gels, sands

and nutrient solutions).

• µ-CT can be applied to plant and soil morphology at the rhizosphere scale in order to

understand the interactions of hairs with the real soil environment in a manner that fa-

cilitates both novel qualitative insights, and the parameterisation of explicit numerical

P-uptake models for the first time at the hair scale.

The following chapters consider experimental approaches to validation of these hypotheses,

through a multidisciplinary combination of targeted discovery experiments and systematic

method development.

A detailed review of the µ-CT imaging method at a level accessible to the non-specialist is

found at the beginning of Chapter 2. µ-CT imaging methods form a substantial component of

the thesis, such that the reader may regularly be referred back to the methods and definitions

within this section.
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Chapter 2

Addressing measurement accuracy and

contrast issues in µ-CT studies of roots

and soil

Two canonical issues affecting the use of µ-CT imaging in soil and plant sciences are the low

contrast classically attainable between roots and their surrounding environment, and the high

degree of user-bias and variation in measurement of even simple soil and root parameters.

Soil porosity is one such parameter which correlates with many soil and plant processes, such

that accurate quantification is of known importance. This chapter considers present issues

with the estimation of soil porosity using µ-CT, arising in both the imaging and image process-

ing domains. It is then shown how an informed tuning of imaging parameters can be used to

maximise image contrast, with a novel algorithm used to automate the process of soil segmenta-

tion into macropore and aggregate regions. Segmentation is an important step in image-based

porosity measurement and preparation of geometric soil representations for use in numeri-

cal models, but is often performed either using simplistic global thresholding tools or using

highly user-dependent approaches. The results generated using the algorithm are compared

to results from both gravimetry and canonical image-based segmentation approaches. The al-

gorithm is later applied in Chapter 5 to prepare µ-CT data for numerical modelling at the hair

scale.

2.1 A comprehensive review of µ-CT imaging methodology in the

fields of plant and soil science

2.1.1 The history of X-ray Computed Tomography in plant and soil sciences

X-ray CT imaging (XCT) originated in 1971, initially as an exclusively medical diagnostic tool,
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Figure 2.1: (A) 2D images are composed of discrete elements (usually of square geometry)
called (pixels), (B) 3D datasets are composed of similar elements called voxels, which have an
x, y and z dimension (C). In most cases, x = y = z.

designed for scanning of human-sized objects, and operating at non-lethal X-ray doses [Stuppy

et al., 2003]. It allows the non-invasive 3D reconstruction of objects, where image contrast is

predominantly determined by the differences in X-ray attenuation of different sample con-

stituents. Though it can be viewed as single, 2D planar ‘slices’, XCT data is predominantly

presented as a 3D array of image elements known as ‘voxels,’ analogous to pixels in 2D im-

ages, but with a cuboidal geometry (see Figure 2.1). The edge length of the voxels is one factor

determining the spatial resolution of the data, thus influencing the smallest observable feature

size (Figure 2.1-C).

Early XCT studies of soil structure [Hainsworth and Aylmore, 1983; Hamza and Aylmore,

1992] explored the potential of using medical devices, and concluded that it was possible to

acquire insight beyond the scope of traditional soil/root investigation methods [Gregory et al.,

2003]. The spatial resolution of the images was (≈ 1.5 × 1.5 × 10mm); too coarse to distin-

guish all but the coarsest scales of soil porosity [Gregory et al., 2003]. Later, Watanabe et al.

explored the potential of medical scanners to quantify plant roots, and were successful in de-

tecting the coarse roots of Chinese yam (Dioscoria oppositifolia L.) [Watanabe et al., 1992], whilst

Tollner et al. were able to distinguish roots in samples of the significantly finer-rooted soy-

bean (Glicine max L.), though only the seminal roots were visible at the system resolution of

(1.14mm) [Perret et al., 2007; Tollner et al., 1994]. A study by Heeraman et al. was the first to

use a non-medical device, obtaining images of common bean (Phaesolus vulgaris L˙) plants at

a resolution of (160 × 160 × 200µm), and detecting roots with a diameter of (350µm) using a

high-energy industrial unit with a 420kV accelerating potential and a scan time of 4.1h per

sample [Heeraman et al., 1997]. Such resolution offered a substantial improvement over that

attainable using medical systems, and though the latter offer faster acquisition times, their

usefulness is still limited by comparatively poor resolution, as well as the fact that scanning

parameters are optimised for the human body rather than soils or root tissue [Jenneson et al.,

2003; Lontoc-Roy et al., 2006]. By comparison, micro-focus X-ray CT (µ-CT) uses significantly

higher-resolution monochromatic or polychromatic X-ray sources and static flat-panel or lin-

ear detector arrays, which allow for up to a 100-fold increase in spatial resolution compared
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to most medical systems [Stuppy et al., 2003]. The increasing affordability and prevalence of

such scanners has meant ever-increasing use of µ-CT within the fields of soil and root research.

Examples of extracted root architectures acquired using the technique are shown in Figure 2.2.

The first use of a system specifically designed for the observation and quantification of roots in

soil was in a study by Jenneson et al., who built a bespoke scanner capable of a voxel resolution

of (100 × 100 × 100µmin), with scan times of around 40m for samples with diameter (25mm)

and height (30mm) [Jenneson et al., 2003]. Though representing an improvement in terms of

scan time and resolution, the results of the study shared the limitations of earlier investigations

in that detection of finer roots was limited, and the pore space of the growth media was finer

than could be resolved at the resolution available [Kaestner et al., 2006]. The sample diameters

in this study (and those in a further study using the same device by Gregory et al. [Gregory

et al., 2003]) were limited by the low source energy and the small detector size, resulting in

conditions whereby roots came into contact with the growth chamber walls and became indis-

tinguishable in data soon after germination [Perret et al., 2007]. In the present day, despite the

relative maturity of µ-CT technology, it is clear that there is significant work to be undertaken

in developing effective imaging protocols which facilitate subsequent extraction and charac-

terisation of root architecture and morphology [Heeraman et al., 1997; Perret et al., 2007].

Even rudimentary representation of feature morphology within µCT image data requires a

system resolution that is at least twice as fine as the feature of interest, but in images with a

significant degree of noise, or where surrounding material is markedly heterogeneous, suc-

cessful detection may require a higher relative spatial resolution [Kaestner et al., 2006]. As

well as spatial resolution, the contrast between phases is an important property of a CT image,

with maximisation of contrast being an important prerequisite for effective feature extraction

[Heeraman et al., 1997]. With respect to X-ray attenuation coefficient (the measure of how

strongly X-rays are attenuated by the material), theoretical contrast (Cth) between materials in

a CT image is defined as,

Cth ≈
|µf − µb|

µb
× 100%, (2.1)

where (µf ) and (µb) are attenuation coefficient of feature and background respectively [Sivers

and Silver, 1990]. Because of the influence of image noise on feature detection, it is often helpful

to consider the contrast to noise ratio (CNR) instead of the idealised contrast, defined as,

CNR =
|µf − µb|
NROI

, (2.2)

where (µf ) and (µb) are the mean attenuation coefficients in sampled feature and background
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Figure 2.2: Example geometries of root systems obtained from X-Ray CT data. (A) Compound
image showing growth over time of wheat (Triticum aestivum) roots [Gregory et al., 2003]. (B)
Early rooting of chickpea (Cicer arietinum) [Perret et al., 2007]. (C) Roots of 29 day old wheat
[Flavel et al., 2012]. (D) Roots of maize (Zea mays) extracted from CT data using a novel root
tracking algorithm [Mairhofer et al., 2012]. Note the small scale of samples.
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regions, and (NROI ) is the noise of interest, equivalent to one standard deviation in the sampled

values of µf . In addition to CNR, the signal to noise ratio (SNR) of reconstructed µ-CT images is

also an important quality parameter that is used to assess image quality and compare datasets.

SNR is simply calculated as,

SNR =
µf

NROI
, (2.3)

Attenuation of X-rays at photon energies of < 1MeV is dominated by photoelectric absorption

and Compton scatter, for which attenuation is proportional to the inverse of the third and first

power of photon energy respectively. Reducing beam energy is thus a means of improving

contrast, though because photon emission, atomic interactions and detection are all proba-

bilistic events, this is achieved at the expense of a reduced signal-to-noise ratio. The easiest

way to mitigate against this problem is to increase acquisition time, thus improving the de-

tector counting statistics, but though inherent detector and electronic noise can be minimised,

they cannot be eliminated [Heeraman et al., 1997]. For samples with good spatial stability over

time, this is often unproblematic, but in the case of roots and soils, the inherent instability of

the structures involved means that longer scans risk generating increasingly severe movement

artifacts in the data.

2.1.2 The operation of a 3rd generation µ− CT system

The use of conventional X-ray CT as a means to characterise the structure of a sample relies on

two fundamental physical processes:

• The differential attenuation experienced by an X-ray beam, dependent on the density

and chemistry of phases in the sample.

• The ability to acquire 2D radiographs at different angles through an object in order

to reconstruct the attenuation coefficient at discrete points in 3D space [Gregory and

Hinsinger, 1999].

The following section will elucidate the components required to transform these principles

into a useful instrument for scientific investigation, and hence describe the basic operation of

a third-generation µ-CT scanner.

Figure 2.3 shows a simplified schematic of imaging operation. The pertinent output of a con-

temporary µ-CT scanner is a large number of angular projections; 2D transmission radiographs

acquired sequentially as a sample rotates through 2π radians (π radians for synchrotron CT)

[Gregory and Hinsinger, 1999]. Sampling theory indicates that for optimum image quality, the

number of projections (nproj) should be kept in the range nproj > (π2 ) × ndet,x, where ndet,x
is the number of detector elements in the x direction. During the reconstruction process that
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Figure 2.3: Schematic of µ-CT scanner operation. (1) The basic hardware elements of a bench-
top scanner are a polychromatic X-ray source (a), a rotating sample stage (b) and a flat-panel
or linear-array (CLDA) detector (c). (2) The source generates a cone beam of photons, which
are attenuated as they pass through the object on the stage. (3) The detector acquires a 2D ra-
diograph (projection) for this angular step. (4) The sample stage rotates by 2π

nproj
radians, ready

for the next radiograph acquisition.
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Figure 2.4: Representative X-ray emission energy spectrum. The photon beam comprises low
energy bremsstrahlung, and higher energy ‘K’ peaks, the energy of which is characteristic of the
target material.

follows image acquisition, a three-dimensional volume is generated from these projections, of-

ten using a numerical back-projection algorithm, which allows a three-dimensional matrix of

attenuation coefficients to be generated by reconstructing x, y planar ‘slices’ for all positions

along the z axis [Gregory and Hinsinger, 1999; Heeraman et al., 1997].

In the case of bench-top µ−CT scanners, the X-ray photon beam is generated by bombarding a

metal target with thermionically emitted electrons in a vacuum tube, producing photons with

an initial energy spectrum that is a function of element voltage, target material and beam fil-

tering [Heeraman et al., 1997]. The different components of this spectrum are the broad energy

bremsstrahlung, emitted when an incident electron is diverted by a nucleus, along with charac-

teristic high-energy peaks arising from photons re-emitted when electrons in target atoms are

knocked to lower atomic-energy levels by incident electrons (see Figure 2.4). The transmitted

intensity of the X-ray beam through the object can be approximated using Beer’s Law:

I = Io exp (−µX), (2.4)

Where Io is the source intensity of the X-ray beam, µ is the linear attenuation coefficient (as-

suming here that the material is homogenous), and X is the distance travelled through the

sample. µ is a function of material density (ρ) and mass attenuation coefficient (µ∗), a relation-

ship given by:

µ = ρµ∗, (2.5)

The mass attenuation coefficient (µ∗) is itself a function of both the atomic number (Z) of the
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material and the photon energy of the X-ray beam. The previous equations assume that the

absorbing material is homogeneous in density and composition over the distance X . How-

ever, for heterogeneous materials the attenuation coefficient will vary along the beam path,

requiring the initial equation for I to be rewritten as an integral with respect to the variable of

integration along the beam (ξ):

I(X) = Io exp

[
−
∫ x

0
µ(ξ)dξ

]
, (2.6)

This equation can be rearranged to give:

ln (Io/I(X)) =

∫ x

0
µ(ξ)dξ, (2.7)

[Heeraman et al., 1997]

CT characterisation of materials using such an X-ray source is achieved by computation of

the linear attenuation coefficient (µ) of the beam between the source and detector [Lontoc-

Roy et al., 2006]. µ is a measure of the proportion of incident X-rays which are absorbed

or scattered within the material, which in the case of hard X-rays in the Compton domain

is linearly related to material density [Heeraman et al., 1997; Lontoc-Roy et al., 2006; Perret

et al., 2007]. In medical imaging, calculated values of µ are often normalised with respect

to water and air by the following expression, which yields a CT number (CTN), expressed in

dimensionless Hounsfield units:

CTN =
(µsubject − µwater)
(µwater − µair)

× k, (2.8)

Where µair = 0, and k ≈ 1000 [Lontoc-Roy et al., 2006]. Unlike a synchrotron X-ray source

which typically produces a coherent, monochromatic photon beam, the X-ray beam emitted

by bombardment of a target by electrons is clearly polychromatic [Jenneson et al., 2003]. The

varying attenuation of different-energy photons by the sample material leads to preferential

absorption of those with lower energy, which due to varying path-lengths through the sam-

ple results in beam hardening artefacts in the output image [Gregory et al., 2003]. This is often

visible in CT data in the form of a ‘cupping’ effect, where attenuation coefficient increases ra-

dially from the centre of the object outward (Figure 2.5). To mitigate against this phenomenon,

the beam can be filtered to produce a quasi-monochromatic spectrum, characterised by a sin-

gle, prominent peak at an energy which is particularly well suited to imaging of the sample

in question [Jenneson et al., 2003]. In their study of plant roots, Jenneson et al. used a beam

with peak energy of 22keV filtered using 2mm of aluminium (Al) and 50µm of palladium (Pd)

[Jenneson et al., 2003], exploiting the preferential low-energy X-ray absorption of the Al, and

element-specific k-edge filtering of high energies by the Pd. Most modern µ-CT systems typ-
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Figure 2.5: The beam hardening artifact presents in x, y slices as an increase in attenuation
coefficient from the centre to the fringes of the image. The plot shows the influence of the
effect. The presence of moderate to severe beam hardening makes successful segmentation
of phases based on greylevel difficult, since the attenuation coefficient of materially identical
regions will vary as a function of distance from the sample centre in addition to the expected
influence of density and atomic number.

ically offer a range of target material for X-ray generation, which along with filters can help

optimise beam characteristics for refinement of image quality [Gregory and Hinsinger, 1999].

Along with beam hardening, another detrimental effect regularly encountered in µ-CT images

is ring artefacts (Figure 2.6). These present as concentric rings of spurious attenuation coeffi-

cient, and arise from fluctuation in the output of individual detector elements during a scan

[Jenneson et al., 2003]. Ring artifacts can be mitigated against by introducing a linear trans-

lation of the stage between projections, thus using different detector elements to acquire each

projection, but introducing a corresponding penalty in increased acquisition time [Gregory

et al., 2003; Jenneson et al., 2003].

Despite the similar anatomy of most commercially available µ-CT units, different studies of

roots and soil have used a distinct range of different parameters in their respective experi-

ments. Table 2.1 shows a subset of widely-cited CT studies of plants and soils from the liter-

ature, along with imaging parameters and relevant details regarding sample preparation and

data-processing. Tellingly, in a liminal space between artificial media and field soils, the major-

ity have either used sand or soil with a high sand content, sieved to very fine aggregate sizes

in the range 0.1− 2mm.

2.1.3 Issues affecting characterisation of organic materials using µ-CT

Despite advances in the ability to visualise roots in three-dimensions using µ-CT, the resulting

datasets nonetheless present the researcher with a three-dimensional geometric entity which
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Figure 2.6: Ring hardening artifacts present as concentric rings of spuriously high or low at-
tenuation coefficient relative to the range of values in the image. Frame-averaging and lateral
shifts of the sample during scanning can mitigate against the artifact, but at the cost of in-
creased acquisition times.
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Figure 2.7: Schematic illustrating the partial volume effect. (A) A 3D object composed of two
perfectly homogenous phases of different density is scanned using µ-CT. (B) In the ideal case,
x, y slices through the reconstructed data would reveal two regions of discrete attenuation
coefficient, with an abrupt inter-phase transition. (C) In reality, the transition between phases
is blurred as a result of averaging effects. (D) Attenuation coefficient plotted along the dotted
lines in frames (A-B).

can be challenging to quantify and interpret [Dunbabin et al., 2013; Lynch, 1995]. It must be

remembered that features in data are of course only representations of real structure within the

physical sample. Spurious image entities introduced by beam hardening, streaking around

high-density phases, and ring artefacts all complicate the task of drawing accurate conclusions

regarding physical characteristics [Lontoc-Roy et al., 2006]. Even in the virtual absence of

such artifacts, the often similar attenuation coefficients of root, soil and fluid phases make the

task of segmenting regions of interest (ROI) a particular problem in plant imaging [Heeraman

et al., 1997; Lontoc-Roy et al., 2006]. The issue of poor contrast is particularly significant when

attempting to differentiate between root material and surrounding soil, and likely results from

one or both of two different phenomena [Lontoc-Roy et al., 2006]:

1. The similar attenuation coefficients of water and roots frequently results in poorly con-

trasted images when a disadvantageous combination of soil structure and hydration

protocol have led to substantial water content in the soil matrix [Gregory et al., 2003].

In some soils, the water content can cause these issues even at normal field capacities

[Heeraman et al., 1997].
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2. At the boundaries between phases of different density, (typically soil and air), attenua-

tion coefficients of voxels become averaged leading to values of attenuation coefficient

which fall between the averages for the two adjacent phases [Gregory et al., 2003]. (See

Figure 2.7). This so-called partial volume effect can lead to small air-filled pores within the

soil structure being spuriously assigned similar attenuation coefficients to those of the

root matter in the image, a problem which has generally been countered in studies by

using coarse media of a single aggregate size [Gregory et al., 2003; Perret et al., 2007].

These two problems have led many researchers to avoid the use of real soils in µ-CT studies of

plant root growth, despite such soils being ideal (and necessary) for representing more closely

the field environment [Gregory et al., 2003].

A further drawback with the use of µ-CT in plant sciences lies in the tradeoff between field

of view (FOV) and image resolution. Though it is desirable to investigate larger and more

mature plants, increasing the sample size carries associated issues regarding resolution and

beam hardening [Aylmore, 1993]. Though increasing the beam energy reduces image contrast,

larger samples necessitate such an increase, improving X-ray penetration in order to avoid

detrimental beam hardening artefacts [Heeraman et al., 1997; Lontoc-Roy et al., 2006].

Certain upper limits to sample size arise naturally due to the detector size and both the volume

and mass-handling capabilities of the manipulator stage, but increasing the sample size also

necessitates a change in magnification in order to situate the sample in the detector FOV [Gre-

gory et al., 2009]. Because the x, y size of the detector array is subject to practical limitations,

bringing more of the sample into the FOV reduces the spatial resolution [Gregory et al., 2009].

Since some root features (such as root hairs) are known to be in the same order of magnitude

as the current resolution limit of most µ-CT scanners, the decrease in resolution resulting from

an increase in sample size clearly entails challenges in segmenting such features from resulting

images [Gregory et al., 2009].

One of the major aims of this thesis is to extend the use of µ-CT imaging techniques to scales

outside the current range of sample sizes, plant species and soil conditions most commonly

used in the well-cited studies from the literature. Given the challenges of acquiring data of

plants in real soil at the root-hair scale and the mature root-system scale, particular attention

to optimisation of imaging parameters is an imperative.
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2.2 Development of a user-invariant approach to quantification of

soil porosity using µ-CT

2.2.1 Introduction

Soil is the growth medium of all agriculturally relevant plants, with key soil characteristics

known to correlate strongly with plant growth performance [Dexter, 2004; Lipiec et al., 2006].

Soils are commonly described with respect to two domains; a textural domain, characterizing

the intra-aggregate region, and in the case of well-aggregated soils, the structural domain that

exists between constituent aggregates [Dexter, 2004]. Whereas the textural domain is thought

to be little affected by soil management processes, the structural domain, comprising micro-

cracks, cracks, bio-pores and tillage-induced macrostructures is reported to be sensitive to ex-

ternal factors such as tillage and irrigation [Dexter, 2004]. The equivalent pore radius marking

the crossover between domains has been quantified between≈ 2 to 10µm [Kutilek and Nielsen,

2006; Lipiec et al., 2006], with the structural domain often further taxonomically divided be-

tween storage pores of 1 to 100µm and transmission pores of 200 to 400µm [Greenland and

Pereira, 1977]. Transmission pores are seen to be particularly significant for the penetration of

feeding roots [Pagliai and De Nobili, 1993]. Furthermore, a study of various clay sub-soils has

shown distribution of wheat roots to be spatially associated with soil macro-pore networks

[Pierret et al., 1999; Stewart et al., 1999], potentially due to roots bypassing regions of high

mechanical impedance [Lipiec et al., 2006]. With regards to plant development, a thorough

classification of soil porosity in both domains is seen to be important for understanding and

modeling phosphate transport [Darrah et al., 2006]. Recent work in this field has moved to-

wards increasingly realistic soil models by seeking to describe both structural and textural

domains. This allows models to be built incorporating a dual porosity regime which draws

a distinction between mobile and immobile soil water fractions [Kodesôova et al., 2009; Zy-

galakis et al., 2011]. A robust, quantifiable understanding of soil porosity characteristics is thus

key to furthering quantitative bio-physical understanding of many significant and dependent

processes [Grevers et al., 1989].

The heterogeneity of soils, and the difficulty of linking structural characteristics to soil-specific

processes has hindered progress in accurately and reproducibly defining soil structural pa-

rameters [Young et al., 2001]. Characterisation has predominantly been built upon a frame-

work which describes soils in terms of well-defined aggregates separated by pores, combining

to form aggregate packings on a higher-magnitude length scale [Kaestner et al., 2008; Young

et al., 2001]. This model has been used as a basis for the approximation of diffusion-reaction

processes, though it fails in the case where macro-pores and aggregates cannot be clearly differ-

entiated [Young et al., 2001]. Various approaches have been applied to the classification of dif-
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ferent aspects of soil structure, including, but not limited to; representative aggregate models

generated using Boolean random sets [Glasbey et al., 1991], prediction of soil-moisture retention

characteristics using neural networks and pedo-transfer functions [Koekkoek and Booltink, 1999],

bounded fractal approximations [Crawford et al., 1997], simplification of aggregates to representa-

tive bodies [Rappoldt, 1990], and use of a disector for estimation of Euler-Poincaré characteristic

[Vogel and Kretzschmar, 1996]. Though such approaches have yielded valuable results, the

relative lack of interaction between experimentalists and modelers across disciplines has di-

minished the applicability of results [Young et al., 2001]. Progress has also been hindered due

to the complexity and high micro-scale heterogeneity of real soils as well as the lack of tech-

niques to suitably confront such complexity [Lombi and Susini, 2009].

Despite the existence of a considerable and growing body of research, literature on the use

of µ-CT in soil-structure characterisation reveals a paucity of robust, well-tested methods, ad-

dressing issues such as operator influence and stability to repeat measurement. This has been

highlighted by a recent round-robin study by Baveye et al., in which three test images of soils

were thresholded by 13 experts worldwide and comparison made between structural mea-

surements based on their individual approaches. Findings showed that for a two-dimensional

µ-CT image, porosity estimates made by the experts varied from 12.92 − 72.71%, with a stan-

dard deviation of 14.36%. The study concluded that such variation was in large part due to

user bias and the the very different approaches used by the individuals involved [Baveye et al.,

2010]. The absence of a standardized, methodological framework for acquisition and process-

ing of images for soil quantification can thus be seen as a pressing problem for the community,

impeding satisfactory exploitation of the potential of µ-CT imaging [Thompson et al., 1992].

Moreover, there has been very little development in assessing how imaging and reconstruc-

tion settings can be optimised to improve image quality [Houston et al., 2013].

This chapter illustrates how an established and computationally efficient image processing

approach, seeded region growth (SRG), can be applied in an automated and systematic man-

ner to the determination of basic structural parameters in samples of real soils. A protocol is

laid out for segmentation of connected macro-pore regions from µ−CT data from five highly-

aggregated soil samples, obtained under reasonably standard laboratory conditions (varying

X-ray target and filtration conditions). The macro-porous volume-fractions elucidated by the

approach are compared with results derived from traditional global-thresholding of image

data as well as a direct gravimetric approach.

2.3 Materials and methods
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2.3.1 Soil selection and preparation

Five soils were selected for porosity investigation using µ-CT and a gravimetric method. Three

were procured from fields involved in phosphate trials at an agricultural site in Suffolk, UK.

Of these, two (both Calcic Vertisols of the Newmarket series, hereafter referred to as Soils

1 and 2), were sampled from different positions in a single field, whilst the third (a Calcic

Vertisol of the Hanslope series, Soil 3), was sourced from another location at the same site

(FAO, 1990). A Chromi-Abruptic Luvisol of the Dunnington Heath series (hereafter referred

to as Soil 4) was sourced from a University of Nottingham field site at Sutton Bonington, UK

(52◦49′52′′,−1◦15′13′′), and a Eutric Cambisol of the Denbigh series (hereafter referred to as Soil

5) was sourced from a field site at the University of Bangor, Gwynedd, UK (53◦13′54′′, 4◦0′54′′).

Though it is desirable to quantify samples which closely represent field conditions, in view of

the requirement to calibrate results against gravimetric data, soils were prepared in a manner

which allowed fine control of hydration and structure. Benchmarking the image-based quan-

tification of porosity against a gravimetric method necessitated a number of repeats, for which

sample preparation had to be as closely controlled as possible. Larger mineral phases were re-

moved from all samples using a soil sieve with a 4mm aperture mesh, after which all material

was desiccated in an oven for 48h at 74◦C. Following desiccation, soils were passed through

a 1.8mm mesh, with the resultant material sieved a second time at 1.18mm. Material passing

through the second mesh was discarded, such that the approximate diameter of aggregates

was from 1.18− 1.8mm. Sample material was stored in airtight containers to prevent moisture

uptake.

Sample containment

To facilitate efficient imaging, soils were contained within separated, interlocking polymer

tubes assembled into a stack to simplify batch acquisition. Tubes were manufactured from

circular-section, extruded acrylic with an internal diameter of 19mm and wall thickness of

3mm. A line corresponding to a fill volume of 9cm3 was marked on each sample holder using

the meniscus of a 9.00g mass of de-aired water hand-pipetted into each sample holder as a

reference.

Sample preparation

Desiccated soils were introduced to sample tubes up to the 9cm3 demarcation line. Samples

were immediately weighed to determine the soil bulk density. Due to the difficulty of accu-

rately applying a repeatable compaction process to all samples, no such treatment was im-

plemented. Samples were prepared immediately before imaging to minimise settling before
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image acquisition.

2.3.2 µ-CT Imaging

All CT data for this study was generated using a bespoke Nikon/Metris hutch µ-CT scanner at

the µ−VIS X-ray imaging centre, University of Southampton, UK. Images were acquired with

a Perkin Elmer 1621, 2096 × 2096 element flat-panel detector (Perkin Elmer Inc., Cambridge,

UK) with a cesium iodide (CsI) scintillator, with a total of 2101 projections generated for each

sample. Two datasets were acquired per sample, using tungsten (W) and molybdenum (Mo)

reflection X-ray targets at a 60kV accelerating potential. Further data were acquired for the Soil

4 and Soil 5 samples using a W target at 40kV with a 0.1mm tin (Sn) filter, selected to produce

a narrower X-ray spectrum via k-edge filtration (Figure 2.8). The accelerating potential was

constrained to 40kV by the requirement to overlap the dominant energy peak of the target

with the k-edge of the filter material, (further details regarding k-edge filtering can be found in

[Crotty et al., 2007]). Mean energy, simulated using the SpekCalc utility [Poludniowski et al.,

2009], was ≈ 23keV for the unfiltered case, and ≈ 24keV for the filtered case (including 0.5mm

beryllium (Be) exit window in all cases). As a consequence of reduced flux, projection exposure

times were increased from 1s to 4s for the filtered beam condition, necessitating an increase in

total scan time from 35 to 140 minutes.

Volumes were reconstructed from raw projection data using a standard filtered Feldkamp

back-projection algorithm implemented in Nikon Metrology CT Pro 3D, producing 32bit datasets

for analysis [Feldkamp et al., 1984]. Isotropic voxel resolution of all reconstructed data was

21.6µm. A comprehensive overview of acquisition, reconstruction, and image quality parame-

ters is available on page 49 of Section 2.1, and in the relevant literature and standards [ASTM,

2008; Ketcham and Carlson, 2001].

2.3.3 Gravimetric pore-volume estimation

Post-imaging, the porosity of samples was estimated directly using a reversal of a standard,

simple gravimetric approach for estimation of water content in soil cores [Dane, 2002]. De-

ionised water was hand-pipetted to the 9cm3 demarcation on each tube, and samples were

weighed to determine the mass of water at saturation. Samples were sealed to prevent evap-

oration and left for 12h for any further absorption to occur. After this time, menisci remained

constant on all samples, and no additional water was introduced. Four repeat measurements

were made for each soil type.

2.3.4 Feature extraction from reconstructed data

Reconstructed data were down-sampled to 16−bit format, and grey-levels normalized (linear

65



Figure 2.8: Comparison of an unfiltered X-Ray beam from the hutch µCT scanner, generated
with a W target, with a quasi-monochromatic beam from the same target, produced through
k-edge filtering using 0.1mm of Sn.
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Figure 2.9: Example slices from data-sets, and grey-level histograms (with regard to entire
volumes) of A) Soil 1, B) Soil 5, C) Soil 4, obtained using FIJI, demonstrating the bimodal
distribution in grey-levels.

re-scaling for equivalent attenuation of surrounding air and the acrylic polymer of the sample

tube; −1000HU and 118.2HU respectively [Prionas et al., 2010]) for convenience of visualiza-

tion and comparison. Down-sampling from 32 to 16bit produced images with 65536 discrete

grey-levels; providing a level of accuracy more than appropriate to the application, particularly

considering that 8bit images (with 256 discrete levels) are the norm [Baveye et al., 2010]. All

procedures were implemented using the FIJI open-source, image processing package [Schin-

delin et al., 2012].

9cm3 cylindrical regions of interest were extracted from the datasets, with noise reduction be-

ing carried out via a 3× 3 pixel median filter applied to each slice. The influence of seed point

selection and threshold tolerance for seeded region growth (SRG) segmentation of contigu-

ous macro-pore space was then determined via a new hybrid protocol. Seed points for region

growth segmentation (five in the first instance) were automatically selected from the central

slice of each dataset according to the following procedure. Since the datasets all returned a
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Figure 2.10: Seed selection routine for seeded region-growth method A) original image, B)
data-set binarised with a minimum-error filter, C) distance map generated for porous domain
and D) seed selection voxel set.
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Figure 2.11: Plots of connected porosity against tolerance value for each soil, calculated by
seeded region-growth. Values are the means of porosities derived from five randomly selected
seed points.

clearly bimodal histogram (Figure 2.9), a minimum error filter [Kittler and Illingworth, 1986]

was used to generate an approximate threshold between the air and soil aggregates for the en-

tire volume. This output was then used to produce a binarised dataset of the porous domain,

from which a distance transform was computed, such that lower intensity voxels in the re-

sulting volume were indicative of a greater distance from the initially estimated soil aggregate

boundaries. A global threshold was applied to the distance map, excluding all voxels with

distances less than 80% of the maximum value in each image (Figure 2.10). For each dataset,

five seed points were then randomly selected from this set for input into a 26-neighbour, static

SRG algorithm, implemented in the C# programming language. The algorithm was run twice

from each seed point; once taking into account the entire volume, and once constrained to the

middle 200 slices of each dataset, as defined along the z axis. The influence of tolerance param-

eter on connected-volume output was then determined by varying the tolerance value in steps

across the entire grey scale range. The mean input/output characteristics thus determined for

the five soils are shown in Figure 2.11.

2.3.5 Beam hardening estimation
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Due to the heterogeneity of attenuation coefficients within soils, grey-level variations in the

homogenous polymer wall of each tube were used to indicate the magnitude of the beam-

hardening artifact. Within the z-axis mid-slice of each dataset, vectors were defined radially

from the tube centre-line at 0◦, 45◦ and 90◦ to the y-axis, being constrained to the plane of

the slice, normal to the z-axis. For the vector segments pertaining to the tube walls, voxel

intensity values were plotted with respect to distance from the tube midpoint. The gradient of

a line fitted through these points provided an approximate measure as to the degree of beam

hardening.

2.3.6 Sensitivity of SRG to seed location

A typical large macro-pore with a quasi-circular cross-section was selected from within the

middle slice of the Soil 3 dataset, for which a further seed set was generated. A line was man-

ually specified across this pore, the start and end points of which were situated within the

visually determined partial volume between the voxels of the pore and those of the neigh-

bouring aggregates (Figure 2.12). 10 evenly spaced points along this vector were selected as

seed points for SRG, using a tolerance step magnitude of 1000 over the entire grey-level range.

2.3.7 Histogram thresholding

In addition to segmentation using the SRG method, data were generated for comparison using

two histogram thresholding methods; Otsu’s method [Otsu, 1979] and the minimum-error

filter [Kittler and Illingworth, 1986].

2.4 Results and Discussion

2.4.1 Image processing rationale

Though SRG is a well-defined method in the literature of a number of fields, this work demon-

strates how such standard techniques may be combined into a hybrid approach which reduces

the degree of user bias inherent in present image-based soil quantification routines. Discus-

sion of this protocol will be followed by a discussion of the image-quality parameters relevant

to success of thresholding methods, and the effectiveness of various strategies in improving

image quality at the data-acquisition stage.

2.4.2 SRG detected volumes

For samples of Soils 1-5, plots of connected porosity volume with respect to tolerance values

produced an S-shaped curve with a stable linear region surrounding the inflection point. For
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Figure 2.12: Typical pore space sampled for influence of seeded region-growth seed point lo-
cation. Seeds were evenly distributed along the vector between 1 and 10. SRG data are found
in Figure 2.14.
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all samples, output curves generated using both entire datasets and 200-slice sub-volumes cor-

related with no observable deviation, suggesting that the mid-sample sub-volumes are repre-

sentative inputs from which meaningful inferences can be made regarding the larger volumes.

Existing SRG approaches typically require the user to manually specify either seed point (or

points), a homogeneity criterion (usually as a function of a threshold value), or both. Accord-

ing to the findings of Baveye et al. regarding user bias, development of a more robust, stable

and unsupervised approach necessitates automated, intervention-free methods for selection

of these input parameters [Baveye et al., 2010]. Though the homogeneity criterion has often

been tuned using trial and error [Adams and Bischof, 1994], a common approach to automat-

ing its selection is to develop some parameter (W) which is a function of image properties (i.e.

standard deviation, contrast-to-noise ratio) derived from the entire volume and/or a sample

seed-region [del Fresno et al., 2009; Sivewright and Elliott, 1994]. In this paper, the homo-

geneity criterion was based on tolerance value alone, and the characteristic S-shaped curve

obtained by plotting connected volume for a range of tolerances, as produced by the SRG al-

gorithm, provided the basis for final tolerance value selection (Figure 2.11. The S-shape of

the tolerance/volume characteristic for these soils is largely due to the partial volume effect

between the quasi-homogenous soil and air regions, which introduces non-linearity in the tol-

erance/volume relationship. A tolerance value coinciding with the inflection point correlates

with a condition where the boundary of the connected region lies within the partial volume

between the two dominant material phases. The existence of identifiable inflection points thus

provides a route to estimation of a user independent tolerance value from the SRG data.

Positions of inflection points were determined using a finite-difference method to approximate

the 2nd derivative of each output curve. In each case, linear interpolation between tolerance

values either side of the sign change was used to more accurately approximate the tolerance

at the inflection point. In this manner, user-independent tolerance values were derived for

the 5 randomly selected seed points drawn from the set generated by the distance mapping

procedure. For all datasets, these values were then used to generate final SRG output data

from which macroporous volume fractions were derived. (Figure 2.13).

2.4.3 Sensitivity of SRG algorithm to seed location

Whilst automated selection of SRG seed points via the distance transform is effectively de-

signed to reduce the probability of unrepresentative seed point grey-values due to local ar-

tifacts (such as beam hardening streaks, edge streaks and partial volumes), the potential in-

fluence of such artifacts has been tested on a small sub-region of a dataset. SRG data were

generated according to the previously outlined method using seed points that were linearly
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Figure 2.13: Macro-pore volume fractions (%) as estimated by seeded region-growth, gravi-
metrically, Otsu’s filter [Otsu, 1979] and minimum-error filter [Kittler and Illingworth, 1986].
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Figure 2.14: Seeded region-growth connected porosity (%) plotted against seed grey-level in-
tensity for each of 10 seed points along the vector shown in Figure 2.12.

distributed across a single pore (Figure 2.12). Comparison of detected volumes allowed the

sensitivity of the algorithm to changes in seed position and grey-level intensity to be deter-

mined, since low variability of volume output despite differing seed position and/or grey-

level intensity correlates with stability. Figure 2.14 shows that output volumes correlated well

for intra-pore points, despite the range in grey-level intensity values of the seed voxels (in-

dicated on the x axis). Outlying grey-level intensities, and visual inspection of seed position

demonstrated that vector end-points 1 and 10 lie within the partial volume region between ag-

gregate and pore domains, accounting for the slightly elevated estimation of macro-pore vol-

ume when compared to the other points (≈ 1.4%). Though point 9 also displayed an elevated

grey-level value compared to the range of the other intra-pore points, there was no consequent

increase in SRG output volume calculated using the inflection-point tolerance. The elevated

grey-level intensity of this point as compared to other intra-pore seeds suggests particular in-

fluence of artifact effects (i.e. streaks, noise) in the seed locality, however such effects appear

not to have impacted the stability of the method. Nonetheless, seed points this close to the ag-

gregate boundaries would be rejected anyhow during the distance transform pre-processing

stage of the overall SRG workflow, reducing the potential for error.
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2.4.4 Gravimetric and global thresholding results

The gravimetric method yielded four results for each soil type, and total water mass at satura-

tion was used to estimate porosities, which were 61.6%, 61.4%, 61.4%, 61.9% and 66.2%respectively

for Soils 1, 2, 3, 4 and 5. The macro-pore volumes estimated using the SRG approach for

each sample were compared with these results, as well as those derived from the histogram-

thresholding methods (Figure 2.13). Good correlation between SRG derived macro-pore re-

gions and the reconstructed image data was visually established for all datasets (Figure 2.15).

For all soil samples, macro-pore volume estimations derived from approaches in the image-

processing domain were smaller than those estimated using the gravimetric method, demon-

strated by their position below the x = y line in Figure 2.13. Dilating the boundaries of the

SRG determined macropore region of the Soil 5 dataset by 2 voxels to simulate a region with a

volume fraction lying on the x = y line results in a clearly visible overestimation of the macro-

pore domain, as compared to the result derived using the inflection-point tolerance value (Fig-

ure 2.16). This strongly suggests that the increase in porosity estimated using the gravimetric

method is not due to underestimation of macro-pore boundaries. This supports the hypothe-

sis that the SRG method provides a more accurate classification of the macropore space than

gravimetry, with the difference in porosity determined by the two methods being accounted

for by the intra-aggregate textural porosity. Since µ−CT only allows inference to be made re-

garding structures at a scale of at least the voxel resolution, it is likely that the difference in

porosity estimate between image-based and gravimetric methods is due to textural porosity

of a length scale too small to be detectable at the imaging resolution [Horgan, 1998]. Further-

more, due to its intrinsic connectivity constraint, the SRG approach does not account for any

pores which are connected to the macro-pore domain by micro-pore networks of undetectably

small size.

The varying volume fractions estimated using the histogram thresholding approaches can be

accounted for by the feature-independence of the methods used [Adams and Bischof, 1994].

In both cases, threshold is determined using the grey-level distribution alone. Thus, where

contrast allows, intra-aggregate porosity may be classified, but equally, there may be underes-

timation of the macro-pore region. This latter effect was visually verifiable in the case of the

minimum-error filter.

2.4.5 Influence of imaging parameters on image quality

All artifacts, though different in their identifying characteristics, introduce local error into the

direct proportionality between voxel intensity and material attenuation coefficient. Seed-based

75



Figure 2.15: Comparison of original data with the binary representation of connected volume
produced by the automated method for A) Soil 1, B) Soil 5 and C) Soil 4 samples.
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Figure 2.16: Reconstructed Soil 5 data showing an overlay of A) seeded region-growth region
at estimated tolerance, B) the same region dilated to lie on the x = y line in Figure 2.12, demon-
strating resultant over-estimation of macro-pore region. This suggests that undetectably small
pores are responsible for the difference in porosity derived by the image-based and gravimetric
methods.
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methods are known to be particularly sensitive to noise, since a single atypical voxel chosen as

a seed point will potentially skew the entire region classification [Adams and Bischof, 1994].

In view of such sensitivities, the effectiveness of different artifact reduction strategies in the

imaging domain was investigated.

2.4.6 Target and filter materials

Voxels pertaining to the polymer tube wall were used to provide an estimate of the degree of

beam hardening present in each image. Though beam-hardening effects can be localized, the

global cupping artifact arises as a result of the preferential absorption of lower energy photons

in sample objects when using a polychromatic X-ray source. Plotting the variation in greyscale

intensities along a radially aligned vector through a polymer region (with homogenous atten-

uation coefficient) allowed the effects of filtering on the severity of this artifact to be compared.

Filtering the X-ray beam with 0.1mm of Sn provided a substantial reduction in the magnitude

of the beam-hardening artifact in all 3 samples; consistent with the quasi-monochromatic con-

ditions achieved by k-edge filtering (2.2).

Table 2.2: Normalized beam-hardening for individual samples, as demonstrated by normal-
ized greyscale gradients across the thickness of the polymeric (acrylic) wall of the sample con-
tainer. Grey scale gradients are shown for scans with the W target, with and without a 0.1mm
Sn filter

Soil ID Unfiltered With 0.1mm Sn Reduction using filter (%)
Soil 5 0.085 0.0467 45.1
Soil 4 0.018 0.002 88.9

Matching the emission spectrum of the target to the X-ray absorption characteristics of a suit-

able filter can produce a beam with much narrower energy peak than in the unfiltered con-

dition (Figure 2.8), however substantial reductions in available photon flux occur, requiring

greatly increased scan times and/or increased X-ray source power, with a consequent reduc-

tion in spatial resolution due to increased spot size. The benefit of reducing beam hardening

through filtration is thus dependent on the sensitivity of the SRG method to local changes in

voxel intensity within the macro-pore space. The comparison of returned volumes from seed

points along a single pore showed that the method is resilient to small changes in seed inten-

sity, suggesting that the more than fourfold increase in imaging time when using the filter is

an inefficient use of resources in this instance. In other imaging scenarios, particularly those

where grey-levels are calibrated against a phantom and used to measure density, such an ap-

proach to reduce beam hardening would potentially be justifiable.

2.4.7 Influence of X-ray target material
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In the case of simple thresholding strategies, accurate differentiation of phases within data

requires the existence of sufficient contrast so that grey-level distributions of such regions do

not substantially overlap. Classification of phases within soils using X-ray CT data is often

associated with difficulties in obtaining adequate contrast between air, water and solid regions

[Kaestner et al., 2008]. Whilst the accelerating potential (keV) provides a primary means of

controlling the X-ray spectrum, and hence the effective image contrast, the chosen target ma-

terial will vary the characteristics of the spectrum obtained. Calculation of key image quality

parameters allowed the influence of these differences to be quantified. Calculation of signal to

noise and contrast to noise ratios (SNR, CNR respectively) showed that there is also a modest

improvement in noise performance obtained via use of a W target instead of Mo for an equal

scan duration. Use of the W target improved the mean SNR across the samples from 13.4 to

14.8, and the CNR from 12.9 to 15.0, as compared to the Mo target.

2.5 Conclusions

A seeded region growth (SRG) algorithm has been used to provide the basis for a robust, au-

tomatable approach to the segmentation of interconnected macro-porous domain from µ-CT

images of well-aggregated soils. Identification and quantification of artifacts and image quality

parameters has demonstrated that image quality (in terms of beam hardening and noise char-

acteristics) can be improved through well-informed use of filters and X-ray target materials,

although influence on segmented macro-pore space was found to be small in the present work.

The SRG algorithm, using a range of tolerances to explore the dynamic range of the dataset,

was found to produce characteristic S-shaped curves of tolerance value against returned vol-

ume. A finite-difference approximation of characteristic curves allows determination of turn-

ing points, and thus tolerance value, which represent a repeatedly determinable characteristic.

It was possible to automatically select seed points for the SRG algorithm in a robust man-

ner using distance maps generated from regions segmented via an initial histogram-derived

threshold. This method was found to be stable to changes in seed location, and variation in

grey-level intensity of the order found within the macro-pore domain of the datasets. The dif-

ference in porosity determined using SRG and the gravimetric method is directly attributable

to the textural porosity volume fraction of the intra-aggregate domain. SRG is thus seen to be a

useful approach for segmenting out macropore space in mineral soils, however there are likely

to be limitations imposed in quantifying soils with more heterogeneous density distributions.

Organic matter will produce variation in grey-level gradients between different air/aggregate

boundaries, possibly leading to over or under-estimate of the macro-pore region. A possi-

ble refinement envisaged to the protocol is to use the boundary determined between macro-

porous and aggregate domains as a seed region for a local gradient-search, using additional

image-processing operators to differentiate better between material phases, particularly in the
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presence of water.
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Chapter 3

The application of clinical contrast

media for enhanced contrast in µ-CT

imaging of plant roots

As discussed in Chapter 2, poor root-to-soil contrast in reconstructed data is a fundamental

issue in root and soil µ-CT. Though a number of imaging domain approaches can be used to

improve the CNR and SNR of data (as described in Section 2.4.7), the application of chemical

contrasting methods such as those used in clinical XCT has not as yet been assessed in plant µ-

CT. In this chapter, two commonly used, iodine-based medical contrast media were trialled to

assess performance in elucidating RSA, physiology and flow processes in roots of pea plants

(Pisum sativum). A loading protocol was developed, and a dilution series of each medium

tested in order to characterise the relationship between iodine concentration and contrast en-

hancement. Quantification of attenuation coefficient down the contrasted steles of seminal

roots allowed contrast profiles to be plotted with respect to root length. Calibrating attenua-

tion coefficient against concentration allowed a relationship to be derived. This suggested that

in addition to enhancing contrast for architecture extraction, the technique may have potential

in temporally-resolved tracing of phloem flow processes.

3.1 Introduction

The degree of contrast in µ-CT data is determined by differential X-ray attenuation of different

sample constituents, with attenuation being a function of material mass density and effective

atomic number (see Section 2.1). Problematically for the imaging of plants in field conditions,

roots are regularly in contact with water and soil organic material (SOM), both of which have

an almost identical attenuation coefficient to plant tissues. Consequently, regions pertaining to

roots, water and SOM are often challenging to distinguish in µ-CT data, making extraction of
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continuous root architecture unfeasible, particularly for fine roots [Menon et al., 2006].

In µ-CT studies of plant root and soil systems, mitigation of these problems has typically been

achieved through optimising soil composition and/or hydration profile. A review of previ-

ous studies has shown that the growth media used have almost exclusively been rich in sand,

with a low SOM content [Gregory et al., 2003; Pierret et al., 2005; Tracy et al., 2010]. Close

control of soil hydration in samples has also been a common means by which to improve the

detection rate of roots during post-processing [Lontoc-Roy et al., 2006]. Though careful ma-

nipulation of soil composition and hydration can improve extraction of root architecture from

data, an over-reliance on these approaches means that numerous realistic field conditions are

at present excluded from examination using µ-CT methods. There is a clear need for imaging

approaches that are tolerant to a wider range of soil and water conditions, particularly those

found in the field, allowing root structures to be characterised. In human and mammalian

soft-tissue imaging, radio-opaque contrast media are routinely used to enhance feature iden-

tification [Hallouard et al., 2010]. The local contrast improvement in perfused tissues occurs

due to the high attenuation coefficients of these media, and in clinical applications, there now

exists a wide range of water-soluble, iodine-based compounds with high effective atomic num-

ber and low-reactivity, suitable for a variety of different XCT imaging protocols [Christiansen,

2005].

A mature field in medical science, the potential use of contrast media is as yet virtually unex-

plored within plant radiology. Though the clinical contrast agent Gastrografin has been used

in one study to identify locations on the roots of cabbage (Brassica oleracea capitata) that had

been affected by verticilium wilt, the study only examined plants in vitro, and did not inves-

tigate root architecture [Kemmochi and Maru, 2004]. In clinical XCT, the scanning of tissue

regions at different time intervals after infusion of a contrast medium allows dynamic fluid

behaviour such as preferential flow paths and perfusion rates to be quantified [Fournier et al.,

2004; Roberts and Stewart, 2002]. Though Nuclear Magnetic Resonance imaging (NMR) has

been used to non-invasively quantify water velocity in aerial plant tissues [Windt et al., 2009],

the use of suitable tracers to characterise the dynamics of delivery of photosynthesis products

and foliar-applied compounds to plant roots has not been attempted using µ-CT. Since plant

roots possess extensive vascular systems for water, solute and carbon transport, it was hypoth-

esised that development of a chemical-contrasting protocol for plant µ-CT might be feasible.

Assessment could then be made of the following potential applications:

• The improvement of general root-to-soil contrast, according to Equation 2.1 in Section 2.1,

allowing enhanced extraction of continuous RSA from µ-CT data.

• The characterisation of flow in the vasculature of plant roots, with the possibility of trac-
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Figure 3.1: Schematic showing three proposed methods for introducing media in order to im-
prove root/soil contrast. (A) Xylem contrasting via root tissues (B) Negative (soil) contrasting
via saturation of soil with a medium impervious to absorption by roots, (C) Phloem contrasting
via aerial tissues. In each case, contrast medium is shown in yellow.

ing phloem demand, in a manner analogous to flow characterisation in clinical XCT.

• The identification of intra-root physiology that is normally not visible in µ-CT due to the

very similar attenuation coefficients of the different regions within the root cross-section.

3.1.1 Methods for delivery of contrast media to target regions

The use of contrast media in clinical XCT is made possible by the existence of a vascular trans-

port system in the mammalian body. The vasculature of higher plants comprises two con-

nected but functionally distinct networks; the xylem, which transports water from the roots

towards transpiration surfaces, and the phloem, which transports photoassimilates from the

tissues in which they are produced towards sinks where they are required to support growth.

The distinct characteristics of the two systems largely determines the most suitable manner in

which to introduce contrast media to each. Further to these two loading routes, it is conceiv-

able that negative contrasting of roots could be effected by introducing a contrast agent to soil

and pore water which was impervious to plant uptake. Figure 3.1 shows a schematic of these

three posited methods.

3.1.2 Loading media into plant xylem

The xylem network is the structurally simpler of the vascular systems, consisting of long
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strings of dead cells whose cell walls have broken down at the connecting surfaces, form-

ing long conducting tubes. Water entering the roots is carried along these tubes towards aerial

tissues by a negative pressure gradient, maintained by stomatal transpiration on the leaf sur-

faces. Provided that the roots of the plant permit uptake of the iodinated compound across the

epidermis, loading of the xylem system would be most straightforwardly effected by isolating

particular roots from the soil. The most obvious way to achieve such isolation of roots is a

modification of the air-gap apparatus developed by Gahoonia et al in order to verify the role of

root hairs in phosphate uptake [Gahoonia and Nielsen, 1991]. By allowing roots to cross an

air gap into a chamber containing contrast agent, the possibility of soil contamination would

be negated, though this approach would necessitate the plant reaching a stage of maturity at

which the roots had reached the boundaries of the growth chamber. The problematic aspect of

this approach is that by the point where root development was sufficient for growth across an

air gap to a secondary chamber, the root system would likely have developed a mat against the

mesh, constricting the architecture to an artificial geometry. Furthermore, in the absence of hy-

draulic redistribution processes, only those roots with access to the iodinated solution would

become contrasted, with the result that lower-order laterals with no access to the medium may

remain undetectable during post-processing.

3.1.3 Loading media into plant phloem

Since the work of Hartig in the mid 19th Century, it has been known that phloem plays a major

role in plant translocation of organic solutes [Hartig, 1858]. As well as fulfilling a different

role in terms of transport, the phloem network differs structurally from the xylem. Whereas

xylem cells are dead at maturity, the transport cells of the phloem system are living [Taiz and

Zeiger, 2002]. These individual elements are linked by sieve pores which range in size from

5 − 15µm, forming long strings of conducting cells known as sieve tubes. The major sinks for

photosynthesates during plant development are the root and shoot apices, with the leaves

closest to the emergence of the primary stem preferentially supplying the bulk of the root

requirements, and those furthest from the root system supplying the requirements of aerial

tissues [Taiz and Zeiger, 2002]. Though this is the general case, there exists a certain degree of

plasticity in supply characteristics, and the plant can adapt to resupply tissues from different

sources when preferred sources are lost (as a result of mechanical damage or disease) [Joy,

1964].

Wheareas xylem loading would necessarily take place near the apices of the roots (in order to

maximise contrasted length), the oppositely oriented principal direction of phloem transport

(from photosynthesising sources to root sinks) indicates that loading of the phloem should be

achieved through the aerial tissue. There is precedent in the literature for this approach, since

introduction of P32 to the phloem system of small plants has been achieved previously by
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excising flaps in leaf tissues to expose the cut ends of sieve tubes [Watson, 1976]. Provided that

the osmolality and viscosity of the contrasting solution are kept within a range that permits

uptake and transport within the sieve tubes, it is proposed that a similar approach to that of

Watson et al might be a successful means to contrast the root tissues.

3.1.4 Controlling factors in experimental design

Within the body, the successful use of contrast agents to visualise structures is dependent,

among other factors, on the velocity with which the solution or suspension is transported to

the target region, the local concentration (and thus radio-opacity) which can be attained in the

region of interest, and the chemotoxicity of the compound [Christiansen, 2005; Singh and Daf-

tary, 2008]. In medical applications, intravenous administration of 100− 200ml of intravenous

iodinated contrast agent is generally necessary in order to produce adequate contrast for visu-

alisation of vascular tissues [Christiansen, 2005]. For an average-sized adult, this equates to a

volumetric concentration of iodinated solution of 2-4% in the blood during imaging. Assessing

the loaded volume required in a plant of a given size is difficult to estimate, given a paucity

of data for total phloem volume as a function of biomass. Thus, it was necessary to assess a

variety of dilutions of the candidate media in order to characterise performance.

In addition to medium delivery volume and concentration, the timescale over which the con-

trasting solution will be transported throughout the plant is also an important factor in de-

veloping an experimental protocol for contrast-assisted µ-CT imaging of roots. Transport of

photosynthesate solution along phloem sieve tubes is many orders of magnitude greater than

can be accounted for by diffusion alone [Taiz and Zeiger, 2002]. Velocity measurements have

been conducted using various techniques, primarily either by tracing of radioactive isotopes,

or via nuclear magnetic resonance (NMR) imaging. Velocities determined through these meth-

ods were found to range from 0.3 − 1.5m.h−1 [Taiz and Zeiger, 2002]. A study of 35 day old

sunflower (Helianthus annus L) plants using P32 tracer introduced to leaf phloem measured

average velocity in the main stem at 0.5mh−1, with radioactivity (proportional to tracer con-

centration) continuing to increase for > 24h [Watson, 1976]. NMR-based measurements of

phloem velocity in 40 day old Ricinis communis L from two studies range from 0.94−1.44mh−1

[Peuke et al., 2001; Rokitta et al., 1999]. These findings suggest that for phloem loading, a

duration at the ≥ 24h scale is most suitable.

3.2 Materials and methods

A winter pea variety (Pisum sativum L. cv. frisson) was chosen for investigation, owing to a rela-

tively rapid growth rate and coarse roots (as compared to other commonly investigated plants

such as Arabidopsis thaliana). Growth containers were 50ml polypropylene centrifuge tubes,
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and hydration was facilitated via 16 perforations of approximately 1mm diameter around the

base of each tube. The growth medium was a Denbigh series Eutric Cambisol from the Ah

horizon of a lowland-grassland environment at Bangor University (53◦13′54′′, 4◦0′54′′), which

was freeze-sterilised for 16h and sieved to < 2mm particle size. Seeds were pre-germinated at

21◦C for 96h on moist filter paper, before being surface planted at a density of one seed per

tube, the seeds being covered with a 5mm layer of soil. Soil was treated with a rhizobium

culture, in order to promote root nodulation. Growth was conducted in a controlled growth

environment (Fitotron ECR), under fluorescent lights on a simulated diurnal cycle, with 16h

light at 23oC and 60% humidity, and 8h darkness at 18◦C and 55% humidity with 0.5h.◦C−1

temperature and 0.5%.h−1 humidity ramp rate. Sample tubes were initially top-watered via

pipette, then kept in a 5cm depth of water to allow capillary hydration of the soil.

Two iodinated contrast agents were used, both of which are used gastrologically and intra-

venously in medical X-Ray CT imaging. Gastrografin (a mixture of 100mg.ml−1 sodium ami-

dotrizoate and 660mg.ml−1 meglumine amidotrizoate) is a high-osmolality, ionic iodinate, and

was supplied at an iodine concentration of 370mg.ml−1 and osmolality of ≈ 2150mOsm.kg−1.

Niopam (iopamidol) is a low-osmolality, non-ionic iodinate, and was supplied at an iodine

concentration of 300mg.ml−1, and osmolality of ≈ 800mOsm.kg−1. The contrast media were

mixed with de-ionised water to form a dilution series, with Niopam concentrations of 100%,

50%, 25% and 1%, and Gastrografin concentrations of 66%, 50%, 25% and 1%.

For 24h prior to imaging, Gastrografin and Niopam were loaded into the phloem of the plants

using a modification of a leaf-flap approach following Watson [Watson, 1976]. A single branched

stem axis was cut with a scalpel, near a leaf sheath on each plant, following which the cut sur-

face of the stem was submerged in an Eppendorf tube containing a single dilution-step of a

particular contrast medium. Tubes were foil-wrapped to occlude sunlight and avoid denatur-

ing of the contrast media, and stems were fastened securely with small lengths of autoclave

tape to ensure complete submersion of the cut surfaces throughout the infusion period. After

24h, the plants were transported for µ-CT imaging, and the stem of each sample removed from

the contrast agent immediately prior to imaging.

Scans were acquired using an X-TEK/Nikon Metrology HMX ST225 at the µ−VIS Centre for

Computed Tomography at Southampton University. A total of 3142 angular projections were

acquired for each sample using a W target in reflection mode, with 2 frames-per-projection,

and an exposure of 0.5s. The beam accelerating potential was 110kV and tube current was

120µA. Each plant was scanned once, generating a total of 8 datasets, one for each dilution step.

Volumes were reconstructed using a Feldkamp back-projection algorithm implemented in the

Metris CT Pro software package (Nikon Metrology, Tring, UK), generating 32−bit datasets
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with an isotropic voxel resolution of 16.3µm. A beam-hardening correction was applied dur-

ing reconstruction to compensate for a modest beam-hardening artifact present in the data (see

Section 4.3.2 for a full description). The datasets were scaled down to 16−bit for more tractable

image processing, using the same transformation on each dataset. Data were checked for slope

and offset normalisation using the polymer and air regions of the data, but variation proved

negligible due to the identical scan parameters, and none of the samples required any adjust-

ment.

Measurements of attenuation coefficient were made using the open source image-processing

software FIJI [Schindelin et al., 2012]. Examination of root cross sections in each sample re-

vealed that the internal structure of the seminal root was clearly distinguishable, with the

phloem vessels evidently contrasted by the infused media. In single data slices normal to the

root axis, a Cintiq 22HD graphical tablet was used to manually define a poly-line at the bound-

ary between the contrasted vascular bundle in the stele and the un-contrasted tissue of the

cortex (see Figure 3.2). Only the innermost discrete bundle was considered in each case, and

mean grey-level intensity (I) was reported for the voxel set enclosed by the polyline. A series

of such measurements was made, beginning in a plane normal to the root axis, defined at the

point where the seminal root exited the seed. Measurements were taken at intervals of 100

voxels (1600µm) down the root length, until the phloem region became indistinguishable.

Root architectures were also extracted as three-dimensional entities, following the procedure of

Flavel et al., using a seeded region-growth (SRG) procedure within the post-processing software

package VGStudio MAX 2.1 [Flavel et al., 2012]. This process was carried out separately for

the un-contrasted tissue and the contrasted region, using an adaptive tolerance and a variety

of user-defined seed points.

In order to calibrate iodine concentration against attenuation coefficient in the resulting data,

a phantom containing a dilution series of Gastrografin 370 was prepared for imaging. Gastro-

grafin solution was pipetted into a clean beaker and made up to concentrations of 100%, 50%,

25%, 10%, 5%, 1% by volume using pure RO H2O at RT. A control sample of 100% RO H2O was

also prepared. At each dilution step, 1ml of solution was drawn up into a 1ml polymer syringe

barrel, following which all syringe barrels were clustered into a single sample for imaging. The

resulting cluster was imaged and reconstructed using the same parameters used for the root

samples. In the reconstructed data, FIJI was used to find the mean attenuation coefficient (I)

of the fluid region in each syringe.

3.3 Results
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Figure 3.2: Intensity of contrasting was quantified by defining a poly-line around the inner-
most bundle of the stele (shown in red). The mean value of enclosed voxels (I) was used as an
intensity measure.

3.3.1 Comparative effectiveness of Niopam and Gastrografin

All plants except those treated with 1% concentrations showed clear evidence of root contrast

enhancement. Figure 3.3 shows reconstructed x, y sections through the seminal root of the

plant treated with 25% Niopam 300, showing a substantial elevation of attenuation coefficient

in the stele as compared with the un-contrasted cortical tissue. In frames (1-4) of Figure 3.3,

simple visual inspection confirms that the attenuation coefficient of the phloem region is higher

than the mean value for the surrounding soil. Over this region, the contrasted phloem could

be extracted automatically in a user-invariant manner using global histogram-based segmen-

tation methods [Otsu, 1979] . Figure 3.4 shows the mean intensity (I) with distance in the

contrasted vascular bundle for all samples (with the exception of the 1% concentration solu-

tions). A red line indicates the mean soil attenuation coefficient, estimated by sampling small

regions at 20 randomly selected points in the central slice of each sample. In root regions

for which I falls below this threshold, global histogram segmentation will fail as a reliable

architecture-extraction method. Comparing the intensity plots in Figure 3.4 clearly reveals

that for equivalent dilution steps, Niopam 300 was more effective than Gastrografin 370 at en-

hancing contrast between roots and the surrounding soil, and that both media provided the

most extensive contrast enhancement at a concentration of 25%.
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Figure 3.3: Cross sections through µ−CT data of a seminal root, treated with a 25% solution of
Niopam 300. Greylevel data is shown in the left column, along with corresponding colour-map
of attenuation coefficient. The band indicated on the legend represents one standard deviation
centred on the mean value for the surrounding soil. Frame (1) represents the emergence of the
seminal root from the seed, with frames (2-5) situated at 4.9mm intervals down the root.
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Figure 3.4: Plots showing mean attenuation coefficient of contrasted region with respect to
distance from seed, comparing all dilution steps for Niopam 300 and Gastrografin 370. The
red line indicates the mean attenuation coefficient of the surrounding soil.
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3.3.2 Use of attenuation to map vascular iodine concentration

Figure 3.5-A shows the architecture of the contrasted phloem region, extracted via SRG from

the 25% Niopam dataset. The range of attenuation coefficients in the phloem is shown us-

ing a colour-map, with the legend indicating the mean value of soil attenuation (including

one standard deviation centred on this value). It was possible to extract phloem regions us-

ing SRG even where the mean attenuation coefficient had fallen well below that of the sur-

rounding soil phases. This is the case because voxels (discrete 3D image elements) in the data

pertaining to the contrasted stele region are ‘insulated’ from those of the surrounding soil by

the un-contrasted tissue of the cortex. The SRG algorithm classifies regions based on both

attenuation coefficient and connectivity of voxels, hence regions of similar attenuation coef-

ficient isolated from each other by regions of distinctly different attenuation coefficient will

not be co-classified. Figure 3.5-B shows a comparison of the resulting phloem region with the

un-contrasted tissue region extracted using SRG. Evidently, there were some regions where

un-contrasted tissue architecture was extractable but where the phloem had not been ade-

quately contrasted to allow extraction. Conversely, some regions were only extractable via

SRG segmentation of the contrasted phloem. The observation of different intensities suggests

a possible variation in phloem demand between different lateral roots.

3.3.3 Extraction of vascular physiology within root tissues

In Figure 3.5, the macrostructure of a number of rhizobial nodules is clearly visible. Figure 3.6

shows detail of a nodule from the sample treated with 100% Niopam, showing both the ex-

ternal structure and the vasculature. Figure 3.6-A clearly shows the seminal root, the remains

of the seed casing, and a nodule situated on a first order lateral root. Figure 3.6-B shows the

structure of the phloem vasculature, with a colour-map representing corresponding attenua-

tion coefficient. In addition to revealing the intricate, branched structure of the phloem vessels

within the nodule, the heterogeneity of contrast enhancement across the phloem volume is

clearly visible. Since attenuation coefficient in this region is a function of iodine concentration,

the substantial spatial heterogeneity of attenuation coefficients within the phloem indicates

corresponding heterogeneity in iodine concentration. As discussed previously, such observa-

tions raise the hypothesis of whether suitable contrast media might have an application as

tracers for investigation of flow processes.

3.3.4 Exudation of contrast agents into soil

In the sample treated with a 25% dilution of Gastrografin 370, highly attenuating phases were

observed surrounding lateral roots at a number of positions. The attenuation coefficient of this

phase exceeded those of the surrounding soil phases, but was similar to that of the root stele,

suggesting that it originated from the root. Though a number of examples of this phenomenon
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Figure 3.5: The root system of juvenile Pisum sativum, treated with a 25% solution of Niopam
300. (A) The contrasted phloem vasculature is shown with a colour-map representing atten-
uation coefficient. Variation in attenuation coefficient over the contrasted region can be seen.
(B) The same region is shown overlaid with the un-contrasted tissue of the root cortex. Root
nodules are clearly visible.
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Figure 3.6: A rhizobial nodule situated on a lateral root of Pisum sativum, treated with a 100%
solution of Niopam 300. (a) The external morphology of the nodule, with seminal root and
seed remnants visible. (b) The contrasted vasculature of the nodule. The vessel arrangement
is clearly visible, and the colour-map shows the heterogeneity of attenuation coefficients. Re-
gions of high local attenuation coefficient, resulting from high iodine concentration are clearly
discernible.
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Figure 3.7: A lateral root (LR) of Pisum sativum, treated with a 25% solution of Gastrografin
370. Highly attenuating phases are visible within the LR with an attenuation coefficient range
substantially higher than the mean level of both the soil phases and the stele of the seminal
root. The surface of the LR also shows evidence highly attenuating phases, as indicated by the
arrow, suggesting that the contrast media has been transported across the epidermis.

(shown in Figure 3.7) were found within the data for the roots treated with 25% Gastrografin

370, it was not evident in any of the other datasets. It should also be noted in Figure 3.7 that

the attenuation coefficient in the LR is much greater than for higher order root from which

it originates. This suggests either that a bolus of locally high iodine concentration was in

the process of moving through the lateral root during the scan, or that molecules of sodium

amidotrizoate and diatrizoic acid had locally accumulated within the root as an end-fate.

3.3.5 Use of a phantom to calibrate iodine concentration to attenuation coefficient

Figure 3.8 shows 16−bit attenuation coefficient plotted as a function of Iodine concentration

for all dilution steps in the phantom. A third order polynomial (y = −4e−12x3 + 4e−7x2 +

0.0082x − 35.892) was fitted to the data with an accuracy of R2 = 1. The correlation justifies

the use of the function as a conversion factor between iodine concentration and attenuation

coefficient in the contrasted root data.

3.4 Discussion

The results confirm the hypothesis that clinical contrast media can provide meaningful insight

into plant root architecture and transport processes that extends beyond the scope of conven-

tional µ-CT protocols. By enabling the phloem to be visualised distinctly from surrounding tis-

sues, physiological detail can be discerned that is not usually conducive to investigation using

bench-top devices. At present, only synchrotron beam-lines and certain very high resolution

laboratory X-ray imaging facilities allow access to the sophisticated suite of phase-contrast

techniques that can provide substantial imaging-domain contrast enhancement between re-
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Figure 3.8: Plot showing the relationship between attenuation coefficient (represented by 16-
bit grey-levels), and the iodine concentration of the contrast medium in mg.ml−1. The equation
for the best-fit line is shown in Section 3.3.5.

gions of very similar attenuation coefficient, such as plant tissues and bulk water [Stampanoni

et al., 2006]. However, sample sizes for these systems are typically limited to the < 1cm range,

making these methods suitable only for studies at the single root and root hair scales [Keyes

et al., 2013a]. The use of contrast media allows normally indistinguishable features to be iden-

tified in soil, in vivo, with a standard bench-top scanner of the type most commonly used for

root and soil CT imaging. Because the technique depends upon phloem translocation rather

than any intrinsic contrast between soil and root tissues, we predict that effectiveness should

be largely invariant to soil water and SOM status. It will be noted that in the data presented,

the water content of the soil was low, such that macro-pore space was gas-filled. Under these

hydraulically favourable conditions, it was possible to extract a large degree of the RSA with-

out using the contrasted stele regions (see Figure 3.5 on page 3.5). Further development of the

method will assess the hypothesis that in conditions of high soil water content, even a mod-

erate chemical contrasting effect within the roots may allow extraction of otherwise invisible

RSA

For both contrast media used, a dilution of 25% provided the most extensive enhancement of

attenuation coefficient in the phloem. Because higher concentrations of I should always re-

sult in higher attenuation, it is evident that there exists an optimum balance between iodine

concentration and detrimental factors such as viscosity and osmolality of the medium. Gastro-

grafin, which has a higher viscosity, osmolality and ionicity, was significantly less effective than
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Niopam at comparable dilutions, despite a 23.3% higher I content per unit volume. Within the

human body, matching the osmolality of a contrast agent to that of the blood is known to re-

sult in a better tolerance and thus fewer adverse side effects. Toxicity to the plant at higher

concentrations might be responsible for reduced uptake of the medium, and thereby reduced

contrasting of phloem tissue. It is possible that in plants, uptake might be improved by careful

matching of the medium to important physical and chemical parameters of the phloem. In a

study by Fu et al. which experimentally determined the osmolality of sap from the phloem of

both herbaceous and woody plants, values were found to range from 400 − 800mOsm/kg [Fu

et al., 2011]. Whereas the osmolality of Gastrografin is substantially higher at 2150mOsm/kg,

the osmolality of Niopam 300 at 37◦C is ≈ 640mOsm/kg, resulting in likely iso-osmolar con-

ditions in the 50− 100% dilution range. This property matching may have been implicated in

the superior performance of Niopam when compared to Gastrografin at similar dilutions.

Other contrast media might also be suited to applications in root µ-CT. The composition of

clinical contrast media is optimised for low reactivity, binding-affinity and viscosity, as well

as closely plasma-matched osmolality, all of which correlate with a reduction in detrimental

side-effects in mammals [Christiansen, 2005; Wynn et al., 2011]. However, in extracting root

architecture, the main experimental requirement is to achieve a maximal attenuation coefficient

differential between root and soil, for which purpose other properties, such as binding, might

in fact be advantageous. It is evident from the attenuation profiles in Figure 3.4 that Niopam

and Gastrografin concentration in phloem regions can diminish once loading of the medium at

the infusion point ceases. This is possibly why a number of the attenuation coefficient profiles

in Figure 3.4 reach a maximum further along the seminal root than the initial datum, even

though the datum is closer to the infusion point. Once the infusion through the stem ceases,

un-contrasted phloem is apparently able to move down behind the contrasted bolus, reducing

the attenuation coefficient in the trailing region. Though this has promising implications for

the quantification of flow processes, alternative media with a binding affinity for starch (such

as elemental iodine) should be assessed for their performance in contrasting roots specifically

for RSA extraction.

As seen in Figure 3.7, it appears that in some cases, contrast media is able to be transported

across the root epidermis and into the rhizosphere soil. Very highly attenuating phases are

seen to coat root surfaces in several regions of the root system treated with a 25% dilution of

Gastrografin 370. No similar phenomena were observed in the data for any other dilutions

of either contrast medium. Though there is insufficient data to draw empirical conclusions,

the most obvious candidate mechanism for this phenomenon would appear to be transport

of constituent molecules from the contrast medium via root exudation. As described in the

literature review, plants exude a variety of compounds which alter the physical and chemical
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properties of rhizosphere soil, thereby influencing a host of transport mechanisms and faunal

interactions. The range of compounds exuded by roots includes proteins, amino acids, organic

acids, monosaccharides and polysaccharides [Hinsinger et al., 2005]. A study of mucilage from

roots of maize (Zea mays) has found that (94% w/w) was composed of carbohydrates, of which

the major monosaccharides were galactose (26%, molecular volume 155.8Å3), arabinose (20%,

molecular volume 130.69Å3) glucose (18%, molecular volume 155.8Å3), fucose (18%, molec-

ular volume 147.56Å3) and xylose (15%, molecular volume 130.96Å3) [Bacic et al., 1986]. It

is conceivable that the constituent molecules of Gastrografin (sodium amidotrizoate, molec-

ular volume 276.2Å3, and diatrizoic acid, molecular volume 278.9Å3) might be transported

along with these constituents, whereas the substantially greater molecular volume of iopami-

dol (424.5Å3) renders the molecules too large to be transported via exudation. If roots are to

be contrasted for extraction of RSA, the leaching of contrast media into the soil represents a

deleterious phenomenon. However, media that are able to be transported across the root epi-

dermis might have a role in allowing root exudates to be visualised in-situ using µ-CT, if a

suitable protocol could be developed and validated.

3.5 Conclusions and future work

Clinical contrast media such as Niopam and Gastrografin evidently hold potential for the in-

vestigation of fluid flow in plant tissues, and potentially as a surrogate marker for key solutes.

The initial results presented in this work have demonstrated that Iodine concentration pro-

files can be quantified and visualized. By determining the mathematical relationship between

iodine concentration and attenuation coefficient via µ-CT of a suitable dilution series, it is pos-

sible to directly report iodine concentration from data of contrasted plants. A methodology

based on this principle could be used to investigate the variability of phloem demand to dif-

ferent roots and the end fate of species delivered from aerial tissues, in a manner analogous

to methods already used to quantify perfusion and flow rates in the clinical domain [Fournier

et al., 2004]. The suitability of particular contrast media for use as tracers for photosynthe-

sis products or foliar-applied species will depend on the similarity between flow kinetics of

the molecules. Future work will use phloem flow modelling to characterise the transport be-

haviour of different iodinated molecules in the phloem, in order to screen candidate media for

these applications.
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Chapter 4

Imaging at the root-system scale using

novel acquisition and reconstruction

approaches

The literature review demonstrated that the majority of µ-CT studies of plants have been both

small-scale (≈ 2−12cm diameter) and made use of idealised soil states in order to enhance soil

to root contrast. This chapter explores the potential for extending the scale of feasible stud-

ies up towards sample diameters more representative of mature root systems, in realistic soil

conditions. Extracting root features at reduced voxel resolution necessitates a compensatory

increase in the attenuation coefficient differential between roots and soil. Unfortunately this

is difficult without either modifying the soil away from common field conditions, or chemi-

cally increasing the X-ray attenuation of the roots (as discussed in Chapter 3). Roots of certain

plants, such as rice (Oryza sativa), present a third possibility for enhanced contrast. By exploit-

ing the naturally occurring attenuation difference between root aerenchyma and flooded soil,

the ability to detect RSA can be maintained even at comparatively lower voxel resolutions than

found in existing µ-CT studies. This chapter develops a robustly optimised protocol for RSA

extraction of primary rice roots grown in field soil in large (> 20cm) chambers. By extracting

root paths from reconstructed data, rooting length and angles can be compared between geno-

types, in real soil conditions requiring neither quasi-planar growth constraints or homogenous

gel media.

This chapter considers sequentially:

1. Validation of the contrast between root aerenchyma and flooded soil in reconstructed

µ-CT data.

2. Development of a robust protocol for large-sample imaging and subsequent extraction

of RSA parameters
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3. Use of the protocol to compare two contrasting genotypes with differing performance in

low-P soil

4.1 Introduction

Table 2.1 on page 59 tabulates scan metadata from studies spanning 15 years, showing cer-

tain clear trends in the use of X-ray CT to investigate plants. Of the 13 studies reviewed, the

majority made use of idealised media, and 10 investigated plants grown in pots of diameter

< 10cm. Of the studies at the largest pot diameters (200 and 130mm), one investigated resin-

impregnated tree roots, and the others both investigated species of only modest agricultural

interest, grown in pure, homogenous sand [Han et al., 2008; Perret et al., 2007; Pierret et al.,

1999]. 9 of the studies did not investigate either of the major three staple crops, maize (Zea

mays), rice (Oryza sativa) and wheat (Triticum aestivum), with the remaining 4 all investigating

wheat.

A number of observations may be made regarding these trends. Firstly, the known impor-

tance of real soil in influencing root plasticity means that the architecture and morphology

of roots grown in an inert and physically homogenous sand medium cannot be expected to

correlate with those found in the field [McCully, 1999]. Secondly, the relatively small sam-

ple sizes used preclude the investigation of more mature (and agriculturally relevant) plant

samples, since roots quickly reach and interact with the walls of the growth chambers, intro-

ducing artifacts to the extracted RSA data [Perret et al., 2007]. Thirdly, rice (Oryza sativa) and

maize (Zea mays) are conspicuously absent from root µ-CT studies, despite their major global

importance as staple cereals [Coudert et al., 2010]. In the case of rice, drought stress and poor

soil fertility present particularly major barriers to necessary improvements in per-capita yield

[Champoux et al., 1995; Wissuwa et al., 2006]. Growth is constrained by drought stress across

large swaths of Asia, Africa and Latin-America, which are entirely reliant on rain for irrigation

[Champoux et al., 1995]. It has been estimated that around 28% of global ricelands are affected

by alternating flooding and drying, causing stresses which constrain yield [Champoux et al.,

1995]. In addition to lowland agriculture, 11% of global production is accounted for by upland

rice, which is almost always exposed to water stresses [Champoux et al., 1995]. Clearly, even

small improvements in drought resistance would have a substantial impact on food security

in the developing world. As for other crops (see Section 1.4.1) changes in RSA are known to

confer benefit in such environments, with increased rooting depth and branching correlating

particularly strongly with yield improvement [Asch et al., 2005; Lorens et al., 1987; Mambani

and Lal, 1983; Wright et al., 1983]. Rooting angles in many crop plants are known to be in-

fluenced by the P status of the soil, with attenuation of the gravitropic response commonly

attenuated in low-P conditions, resulting in shallower rooting [Dunbabin et al., 2013; Postma
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et al., 2013]. However, this trait is not universal, with some species and genotypes displaying

a steeper-rooting phenotype under low-P conditions [Bonser et al., 1996]. The ability to quan-

tify and compare root angle distributions between genotypes is thus of interest for genotyping

and phenotyping, but because root-angle information is lost if roots are destructively sampled

from the soil, non-invasive methods are required. Bengough et al. demonstrated a methodology

for the estimation of soil-grown root angles in 9d old barley samples (Hordeum vulgare), grown

in quasi-planar, rhizobox-type geometries [Bengough et al., 2004]. By pressing a board with a

grid of metal pins into the soil-filled rhizoboxes, then gently washing the roots free of soil mat-

ter, the growth angles of the soil-grown plants could be measured (see Section 4.5 for further

detail and example images.) Problematically, rooting angles of plants grown in quasi-planar

soil volumes will almost certainly be influenced by mechanical interference with the chamber

walls (as shown in Figure 4.1). This poses the hypothesis as to whether µ-CT methods can be

applied to samples at significantly large diameter to allow the measurement of mechanically

unconstrained rooting angles of mature plants.

Rice presents a favourable candidate species for investigation with µ-CT, not only because of

its global importance as a staple crop, but as a result of innate root morphology characteristics.

Cellular respiration in plants is limited by oxygen availability, but advantageous genetic adap-

tation allows certain plants to respond to saturation-induced reduction in O2 supply to root

surfaces by generating continuous internal gaseous pathways, known as aerenchyma [Aulakh

et al., 2000; Taiz and Zeiger, 2002]. The poor contrast usually available between root and fluid

regions in reconstructed µ-CT data results form their closely matched attenuation coefficients

(µf for the root, and µb for the background), such that the theoretical contrast (Cth) between

two regions, given by,

Cth ≈
|µf − µb|

µb
× 100%, (4.1)

is low. A database of attenuation coefficients maintained by the National Institute of Standards

and Technology (NIST) gives values for (µ) of 1.37cm2.g−1 and 1.36cm2.g−1 for pure water

and human soft tissue respectively, given a characteristic accelerating potential for root µ-CT

imaging of 200keV. This equates to a theoretical contrast of (Cth = 0.8%) between features

and background in reconstructed data. (X-ray absorption in human soft tissue is assumed to

be a reasonable analogue for plant tissue). By comparison, the theoretical contrast between

pure water and air at the same accelerating potential is more than 10 times greater, at (Cth =

10%). Thus, it was hypothesised that the gas-filled aerenchyma of rice roots might provide

an advantageous degree of contrast in flooded soil conditions of the type used for rice culture

across Asia [De Datta and Sharma, 1985].

The following hypotheses were proposed:
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Figure 4.1: Assuming a quasi-radial distribution of roots, interference with the walls of a cylin-
drical growth chamber will begin to occur for multiple roots at the same growth period (if at
all). Frames (A) and (B) show side and top-view schematics of this condition. By contrast, in a
quasi-planar growth chamber such as a rhizobox), roots emerging parallel to the short axis will
quickly be constrained by physical interaction with chamber walls. Frames (C) and (D) show
affected roots in red. Such roots will necessarily exhibit significant deviation from the growth
paths expected in an unconstrained condition.

101



Figure 4.2: Figure from Butterbach-Bahl et al. showing SEM microscopy images of aerenchyma
in roots of Oryza sativa [Butterbach-Bahl et al., 2000]. (A) Root section close to a root tip of a
13 day old specimen. (B) Cross section of a young basal root section of a 39 day old specimen.
(C) Cross section of a mature basal root section of a 39 day old specimen. Degeneration of
cortical cells to aerenchyma is much more pronounced in the basal region. (P - cortical cells,
CC - central cylinder, RH - rhizodermis, SC - sclerenchymatous cylinder, E - exodermis, AE -
aerenchyma.)

• The aerenchymous gas continuum of rice root systems provides sufficient image contrast

with surrounding fluid and soil phases to be used as a means for extraction of RSA in

flooded soil conditions.

• The aerenchyma-contrasting principle can be exploited and combined with robust selec-

tion of suitable imaging parameters in order characterise key RSA parameters of plants

at sample scales considerably in excess of those used in literature studies (≈ 10cm).

4.2 Characterising contrast between root aerenchyma and flooded

soil in reconstructed µ-CT data of rice (Oryza sativa)

4.2.1 Materials and methods

In order to assess the degree of contrast between the gas continuum of rice roots and saturated

soil phases in reconstructed µ-CT data, a validation experiment was carried out. A polymer

growth chamber of 105mm internal diameter and 200mm height was constructed, allowing

flooded soil conditions to be maintained throughout the growth period. The growth medium

was a Eutric Cambisol of the Denbigh series, sourced from a field site at the University of

Bangor, Gwynedd, UK (53◦13′54′′, 4◦0′54′′), desiccated at 23◦C for 72h before sieving manu-

ally at a mesh diameter of 5mm in order to remove larger mineral phases which might cause

scattering artifacts in reconstructed data. Water was added to the sieved soil until 100% satura-

tion was reached, following which the flooded soil was manually stirred for 10min to remove

structure, homogenising the medium. This process approximates the puddling procedure used

across Asia to prepare soil for rice agriculture [De Datta and Sharma, 1985]. After a 1h settling
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period, standing water was removed from the surface of the soil, and the saturated soil and

water mixture introduced to the growth chamber. The chamber was filled to a level ≈ 5cm

below the opening, with a surface water layer of depth ≈ 2cm maintained throughout the

growth period. Seeds of Oryza sativa cv. Nipponbare were pre-treated at 55◦C in order to break

dormancy, following which 8 seeds were planted to the surface of the soil. Plants were grown

in a glasshouse for 35 days, maintained at a temperature range of 25− 28◦C, following which

the growth chamber was transported for imaging.

Images were acquired using a Nikon/Metris hutch µ−CT scanner, with a Perkin Elmer 1621,

2096 × 2096 element flat-panel detector (Perkin Elmer Inc., Cambridge, UK) and cesium io-

dide (CsI) scintillator. A total of 3142 projections were generated at an accelerating potential

of 160kV and a tube current of 186mA using a tungsten (W) target, (in order to satisfy the

requirement for > 10% X-ray transmission). Volumes were reconstructed using a Feldkamp

back-projection algorithm implemented in the Metris CT Pro software package (Nikon Metrol-

ogy, Tring, UK), generating 16−bit datasets with an isotropic voxel resolution of 58.8µm.

Root structures were segmented using a global thresholding routine in the image-processing

package FIJI. Upper and lower values of attenuation coefficient were adjusted in order to max-

imise the visibility of root material whilst avoiding classifying soil phases. In order to remove

voxels representing gas bubbles, which had been co-classified with aerenchyma due to a near-

identical attenuation coefficient, a sphericity constraint was applied using the analyse particles

plugin in FIJI to filter out discrete, quasi-spherical voxel sets.

4.2.2 Results and discussion

Figure 4.3 shows a magnified x, y slice through the reconstructed data, showing clearly the

cross-sections of numerous roots, with a magnified sub-frame clearly demonstrating the vis-

ibility of internal structure, including the central stele. Beneficial contrasting is apparent be-

tween the aerenchymous region of the cortex and the surrounding phases. Figure 4.4 shows a

3D rendering of the RSA extracted using simple global thresholding methods, with the tiller

positions of each plant superimposed for reference. It was evident that some root regions

were not extracted using the global thresholding protocol, and that moreover, the high plant-

ing density had led to constraint by chamber walls, as well as extensive inter-growth of roots

from different plants. Nonetheless, given the relatively large diameter of the growth cham-

ber compared to other studies (see Table 2.1), the extensivity of extracted RSA compares very

favourably with the results of other studies (see Figure 2.2 in Chapter 2). This is particularly

notable given the simple global thresholding routine used, a class of segmentation approach

that is generally considered significantly too simple for root segmentation [Flavel et al., 2012].
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Figure 4.3: Figure clearly shows root cross-sections, well-distinguished from the surround-
ing soil phases. Frame (B) shows an SEM image of a mature rice root cross section, with
aerenchyma (labelled AE) clearly visible surrounding a fluid-filled stele (reproduced from
Butterbach-bahl et al. [Butterbach-Bahl et al., 2000]) Comparing the image with the single root
cross-section for the CT data shown in (A), it is evident that the gas phase is responsible for the
favourable contrast with the soil. By comparison, the stele region has a very similar attenuation
coefficient to the surrounding soil.

4.3 Optimisation of imaging parameters for quantification of RSA

traits using a large-sample µ-CT protocol

Given the favourable performance of aerenchymal contrasting in growth chambers of ≈ 11cm

diameter, an experiment was designed to benchmark the performance of different imaging

and reconstruction modes at larger sample sizes (≈ 21cm). The aim was to robustly determine

a set of parameters for imaging and reconstruction, in order to optimise image quality and

root extraction rate against scan time. With optimal protocol parameters, and the extraction

rate validated against values from destructive sampling, the final objective was to apply the

protocol to two contrasting rice genotypes, assessing the potential of large-sample imaging for

non-destructive phenotyping of root angle traits in low-P soil.

4.3.1 Materials and methods

Rice was planted to growth chambers according to the protocol described in Section 4.2.1. For

this experiment, the chamber diameter was increased to 21cm, giving a full-field image reso-

lution of ≈ 100µm using the 2096 × 2096 element flat-panel detector available. A rice variety

(Oryza sativa cv Varyla) was provided by collaborators at the Japan International Research Cen-

tre for Agricultural Sciences (JIRCAS), being a comparatively poor-performing genotype in

low-P conditions. A single pre-germinated seed was planted to the soil surface of the chamber
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Figure 4.4: 3D root architecture of rice Oryza sativa cv Nipponbare extracted from raw data using
global greylevel thresholding. Positions of tillers are shown in green, with the soil surface
indicated in red.
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in a central position.

The growth period was 5 weeks, after which the chamber was imaged using the 445kV Nikon

Hutch µ-CT scanner at the µ−VIS centre.

Benchmarking µ-CT imaging modes

The following contrasting imaging modes were compared:

• Full-field imaging of the entire chamber, using a 2096 × 2096 element flat panel detec-

tor, for a voxel resolution of 106.2µm. 3142 radiographs were acquired at 8 frames per

projection (FPP), representing a modest compromise between scan duration and artifact

reduction, for a total scan time of 0.94h.

• ROI imaging of a central sub-region with diameter ≈ 10.5cm, situated concentric to the

chamber circumference and extending down ≈ 9cm below the soil surface, for a voxel

resolution of 53.8µm . 9000 radiographs were acquired at 16 frames per projection (FPP),

representing a heavy weighting towards image quality at the penalty of long scan time

of 5.4h.

• A 27-slice scan acquired using a curved linear detector array (CLDA). The curved design

of the CLDA ensures an isometric source-to-detector distance for all detector elements,

allowing deeper elements to be used which effectively eliminate the deleterious sampling

of scattered photons. For imaging of higher density samples, for which scatter-related ar-

tifacts such as noise and streaks can negatively impact upon resolution, CLDA detectors

increase CNR and SNR relative to flat-panel scans. However, because a complete set of

angular projections yields only a single x, y slice, acquisition times for entire volumes

can be many orders of magnitude greater than for flat-panel scans. For this reason, only

27 slices were acquired, with 2001 radiographs and no frame averaging representing a

heavy weighting towards scan-time reduction. Nonetheless, the scan time was still 3.9h

Table 4.1: Scan metadata for scans of Varyla in 21cm diameter growth chambers.

Scan type Spatial res. (µm) kV mA Filter Duration (h) Projections FPP
Full-field 106.2 320 279 1mm copper 0.94 3142 8

ROI 53.8 320 279 1mm copper 5.4 9001 16
CLDA 120.16 320 312 2mm copper 3.9 2001 1

Scan metadata for all scans are shown in Table 4.1. For each dataset, a single slice situated

≈ 25mm below the soil surface (Figure 4.6) was reconstructed using the Metris CT Pro FDK
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Figure 4.5: Slices through raw data with no beam hardening correction or grey-level normali-
sation applied. (A) Full-field, (B) ROI, (C) CLDA. The beam-hardening artifact is clearly visible
in frames (A) and (B).

algorithm, according to 5 progressively greater degrees of beam-hardening correction. Rep-

resentative slices of raw data with no correction applied are shown in Figure 4.5. The degree

of correction was determined by discrete presets within the software. The magnitude of the

beam hardening correction for each reconstructed slice was quantified in a similar manner to

Section 2.3.5 on page 69. Because in this instance, no homogenous polymer region was present

in reconstructed data, the beam hardening artifact was quantified by averaging the attenuation

coefficient profiles along lines bisecting the data at 0◦, 90◦, 45◦ and 135◦ to the x axis. Curves

were fitted to the data in order to better visualise the artifact and compare severity between

reconstruction presets. 3rd and 6th order polynomials were fitted to data for the CLDA data

and ROI/full-field datasets respectively. Plots and fits are shown in Figure 4.7. Plots showing

the relationship between CNR and SNR are found in Figures 4.8 and 4.9. CNR and SNR were

estimated according to Equations 2.2 and 2.3, with values of mean gas and soil/fluid attenu-

ation coefficient (µf and µb respectively) sampled using 10 circles of 20 voxel diameter sited

in randomly selected gas bubbles, and 10 randomly situated in the soil/fluid phase. All sam-

pling regions were constrained within a central circle of 200 voxel diameter, where variance in

attenuation coefficient due to the beam hardening artifact was at a minimum (see Figure 4.7).

Extracting primary RSA from reconstructed µ-CT data

Samples were reconstructed with optimal parameters based on quantification of the beam

hardening artifact, and the values of CNR and SNR (see Section 4.3.2). The spatial resolu-

tion of the resulting data was insufficient for the application of global thresholding method

used in Section 4.2.1, with root cross-sections difficult to differentiate from gas bubbles of sim-

ilar diameter within static x, y slices. However, by rastering through x, y slices of reconstructed

data in the z direction, the positions of primary root cross sections were easily identified. Fig-

ure 4.11 explains the concept of rastering, demonstrating schematically how the method fa-
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Figure 4.6: The xy slices used for quantification of the beam-hardening artifact were defined at
d ≈ 2.5cm below the soil surface in each sample. The figure shows a schematic of the growth
chamber, with corresponding 2D radiograph. Line (A) shows the approximate position of the
slice.

cilitates user-identification of root cross-sections and rejection of gas bubbles. Because global

thresholding and SRG methods were found to be unsuitable, a semi-manual protocol was ap-

plied to segment the root architecture. Using AVIZO 6 image-analysis software, the positions

of root cross-sections were user-defined at intervals of ≈ 20 voxels along the z axis of the

dataset until, each root became indistinguishable from the soil and fluid phases. An interpola-

tion algorithm was then used to fit curves through the indicated points, generating continuous

root pathways. This protocol was carried out for ROI and full-field datasets. With only 27

slices, the z dimension of the data acquired using the CLDA was not sufficient allow root de-

tection.

Skeletonising root architectures in FIJI allowed root lengths to be estimated. Each skeletonised

root was quantified by both total voxel count (nvoxels) and a straight-line trignometric approx-

imation between the seed position and the furthest extent of each root. Figure 4.13 illustrates

considerations in selecting a suitable scaling parameter (τs) to convert voxel count to root

length, using a simple function (Lroot = τs × nvoxels). If voxels in a skeletonised root pre-
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Figure 4.7: Scatter plots of attenuation coefficient along lines bisecting raw, un-normalised
16−bit reconstructed data. Plots are shown along the same line for four beam hardening cor-
rection presets, with intensity of the correction increasing from 1 (uncorrected) to 4. Also
shown are lines of best fit, demonstrating the characteristic cupping artifact. (A) Full-field,
(B) ROI, (C) CLDA.
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Figure 4.8: Figure showing the relationship between CNR and the degree of beam-hardening
reduction for ROI, full-field and CLDA data

Figure 4.9: Figure showing the relationship between CNR and the degree of beam-hardening
reduction for ROI, full-field and CLDA data
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Figure 4.10: Sub-regions of reconstructed slices from (A) full-field data and (B) ROI data, show-
ing root cross sections at a position ≈ 6mm beneath the seed position. Positions are shown
schematically in (B).

Figure 4.11: (A) Gas bubbles (represented in grey) of similar diameter to primary roots (repre-
sented by the black line) are often indistinguishable from root cross sections in static x, y slices
of reconstructed data. (B) The connectivity of the root (represented by the red line) over many
slices allows the root positions to be differentiated from those of the gas bubbles (represented
in pink) by rastering through the data.
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Figure 4.12: Root system of 5-week old rice plant Oyyza sativa cv Varyla, following post-scan
root washing. Labels indicate the length order (increasing from 1-14).

dominantly mate face-to-face, then the most suitable scaling parameter would be (τs = lx,y,z),

where (lx,y,z) is the isotropic voxel resolution, such that the root length (L) is approximated by,

Lroot = lx,y,z × nvoxels, (4.2)

however if the majority of voxels mate corner-to-corner, a more suitable value would be,

τs =
√
(3× lx,y,z2), (4.3)

Since in practice, both face-to-face and corner-to-corner mating occurs in the skeletonised root

filaments, a generally appropriate general scaling factor is given by,

τs =

√
(3(lx,y,z

2)) + (lx,y,z)

2
, (4.4)

These values were compared against lengths measured following careful washing of root ar-

chitecture from surrounding soil (see Figure 4.12. Photographing the root system orthogonal

to the plane in which they were carefully arranged allowed lengths to be measured using FIJI

by manually tracing the roots with the aid of a graphical tablet. Figure 4.12 shows the washed

root system, with roots labelled according to length

4.3.2 Results
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Figure 4.13: The accuracy of voxel count as an estimator of length in a skeletonised filament
depends on the length scaling factor (ls) used, and the morphology of the filament. (A) In
straight filaments of connected voxels aligned with the x, y or z axes, the length is best ap-
proximated by multiplying the voxel count (nvoxels) by the voxel edge length (lx,y,z) (assuming
isometric voxels). (B) However, if voxels exhibit a high degree of tortuosity, such that most
voxels make contact on corners rather than faces, the use of lx,y,z as a scaling factor will result
in length underestimation.

Figure 4.14 shows extracted RSA revealed by ROI and full-field scans. Overlaying the two re-

gions (Figure 4.14-C) demonstrates the congruence of the RSA determination between the two

imaging modes. Despite the user-supervised nature of the segmentation method, it appears to

be an accurate means by which to determine the growth paths of primary roots. 14 roots were

detected in the ROI and full-field data, a figure validated by the washing study. Evident in

Figure 4.14-C is the greater root length revealed by the full-field scan. The percentages of the

total validated length estimated using voxel-counting and straight line methods were 92.0%

and 87.1% respectively.

Lateral roots were not observed in the µ-CT data, but the washed roots (shown in Figure 4.12)

show scarce evidence of lateral root development. It was thus not possible to determine

whether or not lateral root material could be detectable in data acquired using the parame-

ters and spatial resolutions utilised in this study.

4.3.3 Discussion

The study was extended to consider a growth chamber of ≈ 21cm diameter, revealing that pri-

mary roots were still detectable as a consequence of the aerenchymous gas continuum. Of the

three imaging modes benchmarked to assess performance, the CLDA detector generated data

with the highest CNR, though the SNR was high compared to scans acquired using the flat-

panel detector (Figure 4.8). This was expected, since to prevent excessive acquisition times, no

frame averaging was applied to the radiographs, compared with 16 frames-per-projection gen-
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Figure 4.14: Figure shows segmented primary root paths of Varyla grown for 5 weeks in 21cm
diameter growth chambers. (A) Root architecture extracted from ROI scan, (B) architecture
extracted from full-field scan, (C) overlay showing both congruence of extracted root paths
between the two conditions, and the enhanced capture of root length in the full-field data.
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erated during the ROI scan and 8 for the full-field data. Despite the comparatively high CNR

achieved using the CLDA, the limitation of low-slice count, resulting from the 1D precluded

the use of rastering. As a result, it was not possible to reliably differentiate between root cross

sections and gas bubbles.

Quantification of the beam hardening artifact for all beam hardening reconstruction (BHR) pre-

sets is shown in Figure 4.7 on page 109. Figure 4.7-C shows clearly the comparatively greater

image noise for the CLDA data, due to the lack of frame averaging during acquisition. The

beam hardening characteristic of the CLDA data demonstrated the classical parabolic ‘cup-

ping’ artifact, with the BHR presets only serving to invert the characteristic, resulting in a

more severe artifact. Figure 4.7-B shows the data for the ROI scan, with the large number

of projections and averaged radiographs having minimised image noise. The beam harden-

ing artifact was also mild compared to the other data, with the same parabolic characteristic.

None of the presets appreciably reduced the artifact. Figures 4.8 and 4.9 demonstrate that in

general, beam hardening corrections are achieved at the expense of decreased CNR and SNR,

such that correction should only be considered if the artifact is severe, or if calibration of atten-

uation coefficients is a prerequisite of the experiment. Figure 4.7-A shows data for the full-field

scan, demonstrating a parabolic beam hardening characteristic, which became bimodal with

the application of beam hardening correction. The optimisation of BHR against SNR and CNR

should be made with respect to the analysis which is to be applied to the data. For this appli-

cation, where maximum image contrast for RSA extraction was the key requirement, the SNR

and CNR cost of using BHR was unjustified.

Extraction of RSA from reconstructed full-field and ROI data using a semi-supervised proto-

col revealed good agreement between the two scans. The full-field scan had twice the field

of view used for the ROI scan, resulting in a greater captured root length. Comparison of

two digital root length estimation methods revealed it was possible to capture > 90% of the

washed length using the full-field data. Failure to extract regions near root tips was expected,

since aerenchyma formation is less advanced in younger root tissue [Butterbach-Bahl et al.,

2000]. Because RSA extracted from the full-field data correlated well with that from the higher-

resolution ROI scan, with a greater root length capture rate, the full-field parameters were

deemed to be most suitable for assessment of root angles between genotypes. Since the acqui-

sition times increase more than five-fold for ROI imaging, only the ability to detect fine roots

would justify the use of this protocol.
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4.4 The application of an optimised imaging and RSA extraction

protocol to comparison of rice genotypes with differing perfor-

mance in low-P soil

4.4.1 Introduction

Following establishment of a µ-CT imaging and image-processing protocol for large cylindri-

cal samples, the methods were applied to measurement of rooting angles in two contrasting

genotypes supplied by collaborators at JIRCAS. Extensive field trials at a JIRCAS field site in

Tsukuba, Japan have determined one of the genotypes (Oryza sativa cv Mudgo) to be high yield-

ing in low-P conditions, with a large explored root volume, whereas the other (Oryza sativa cv

Varyla) is a comparatively poorly yielding variety under the same conditions. Destructive

field-sampling suggests that Mudgo has a larger root volume than Varyla, but such sampling

has not allowed quantification of root angles. In this section, the validated and robustly opti-

mised large-sample imaging protocol is applied to the estimation of unconstrained root angle

distributions.

4.4.2 Materials and methods

Seeds were prepared and planted to 21cm diameter growth chambers according to the pro-

tocol described in Section 4.3.1, using the same low-P soil. The growth period was 5 weeks,

following which both chambers were imaged using the full-field scanning and reconstruction

parameters that were optimised as part of the same protocol. Figure 4.15 shows the samples

in the as-scanned condition. Following imaging, the root systems were carefully washed (Fig-

ure 4.16). Data were reconstructed and analysed using parameters and protocols described

for full-field data in Section 4.3.1. By defining a straight line between seed and root tip, the z

length between the two points was used to trignometrically estimate the angle of each root to

the horizontal.

4.4.3 Results

Figure 4.17 shows the primary RSA of the two genotypes. As indicated from field trials, the

Mudgo sample had a greater root number, with 54 primary roots, compared to 29 for the Varyla

sample. The scan data also revealed contrasting root angle characteristics. Plotting histograms

of angle revealed the unimodal character of the Mudgo root angle distribution as compared to

the more multimodal distribution of the Varyla sample. Total root lengths estimated using the

rescaled voxel-counting method were 557cm and 282cm respectively. The two genotypes were

thus non-destructively observed to possess very different primary rooting traits.
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Figure 4.15: Aerial growth of 5-week old rice plants (A) Oyyza sativa cv Mudgo and (B) Oyyza
sativa cv Varyla in the as-scanned condition.

Figure 4.16: Root system of 5-week old rice plants (A) Oyyza sativa cv Varyla and (B) Oyyza sativa
cv Mudgo following post-scan root washing. The greater root length of the Mudgo specimen is
evident.

Figure 4.17: 3D root architecture of 5-week old rice plants (A) Oyyza sativa cv Varyla and (B)
Oyyza sativa cv Mudgo grown in 22cm diameter growth chamber, as revealed by X-ray CT
imaging. Differences in root number, length and angle distribution are clearly distinguishable.
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Figure 4.18: Normalised histograms of primary root angle for Oyyza sativa cv Varyla and Oyyza
sativa cv Mudgo derived from analysis of CT data (plotted with bin-width of 10◦). Angles are
measured from a plane aligned with soil surface. Compared to the unimodal distribution
of angles for Mudgo, the architecture of Varyla displays a more multi-modal characteristic, as
suggested visually in Figure 4.17
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4.5 Conclusions and future work

In this section, the use of a favourable attenuation-coefficient differential between aerenchyma

and a saturated soil phase was validated for imaging at large sample scales in real soil. The

well-cited domain literature suggests that the sample size of (≈ 21cm) represents a new bench-

mark for real-soil imaging of RSA. The method was validated for path accuracy, and achieved a

primary-root length extraction rate of (> 90%) as compared to a root-washing method. Due to

the low tortuosity of the primary roots, a straight-line approximation of root path was used to

estimate root angles between two genotypes with contrasting low-P performance. The results

corroborated with visual observations of the extracted RSA, revealing that the higher-yielding

genotype (Mudgo) had a unimodal distribution of root angles, with most roots at ≈ 30◦ to the

horizontal, whereas (Varyla) had a more multi-modal characteristic, with peaks at≈ 20◦,≈ 40◦

and ≈ 60◦. It was also determined that the total primary root length of the Mudgo sample was

97% higher than for Varyla.

The focus of this study was on validation and development of an optimised protocol for root

angle measurement. The obvious extension of the presented work is the application of the

protocol to genotypes of interest, in order to screen for a correlation between root angle and

performance in low-P conditions. Through ongoing collaboration with JIRCAS, the opportu-

nity exists to down-select genotypes from extensive field trials in low-P trials for this purpose.

Appendix 8.3 outlines a protocol for the estimation of rice root angles in rhizoboxes, which was

applied to four promising genotypes provided by JIRCAS. The results suggested characteris-

tic genotypic angle distributions, which as in µ-CT data were detectable both visually and by

plotting histograms. With the exception of Oryza sativa cv Sadri tor Misri, the measured angle

distributions for the genotypes were all steep-weighted, as compared to the distributions for

Mudgo and Varyla determined using µ-CT, which were both shallow-weighted. It is hypothe-

sised that in rhizoboxes, shallow roots growing normal to the rhizobox faces are constrained

by mechanical impedance to grow more steeply than would be accounted for by root gravit-

ropism alone. This result indicates that quantification of angles in field conditions will be best

achieved using µ-CT method of the kind detailed in this chapter.

A future large-scale study will compare repeats of ≈ 6− 8 genotypes suggested by field trials

at JIRCAS to have distinctly different low-P root characteristics. Further to use in phenotyp-

ing, RSA data acquired using large-scale µ-CT imaging will be used to assess the influence of

different traits on uptake of both P and zinc (Zn), in collaboration with both JIRCAS and the

University of Cranfield.
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Chapter 5

Synchrotron X-ray CT imaging

combined with a novel root growth

assay for in vivo elucidation of

undisturbed root hairs in real soil

This chapter considers the application of µm-scale synchrotron X-ray computed tomography

(SRXT) imaging to investigate the intact rhizosphere of living roots for the first time. A novel

workflow is demonstrated for sample preparation, imaging, image processing and compu-

tational modelling of data, not only showing root hair structure in unprecedented detail, but

suggesting via explicit nutrient uptake simulation the comparative influence of hairs and roots

in different conditions.

The work is split into two sections:

• In the first, a literature review considers canonical methods of root hair characterisation.

The first time imaging of wheat root hairs is then described, detailing the protocol used

to grow and image hairs, the post-processing methods used to extract salient features

from data, and the application of numerical modelling to real hair and soil interactions

for the first time.

• The second section considers an array of secondary hypotheses raised by the first exper-

iment, then demonstrates a number of novel approaches in order to improve the sophis-

tication of the methodology.
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5.1 Introduction

Root hairs are single-cell extensions initiating from the root epidermis, and are thought to in-

crease uptake of poorly mobile nutrients from soil by increasing the absorptive surface area of

the root network [Ma et al., 2001]. It is posited that the very small diameter of these structures

allows them to forage the soil particularly efficiently for poorly mobile nutrients [Jungk, 2001].

Their particular significance for the uptake of P was suggested in seminal work by Lewis and

Quirk, who observed depletion zones of the radioactive isotope 32P around root hairs [Lewis

and Quirk, 1967]. In addition to their contribution to P uptake, root hairs are known to act as

sites for symbiotic interactions with organisms such as rhizobacteria [Mylona et al., 1995], and

it has also been suggested that they may assist in the mechanical anchoring of plants into the

soil matrix [Sieberer et al., 2005].

In the plants that form them, root hairs are generated in vast numbers. Early root-washing

studies by Dittmer estimated that for a single, developing Secale cereale plant, each 24 hour pe-

riod was responsible for the growth of 118 million hairs with a total length of 55 miles [Dittmer,

1937]. These lateral, tubular extensions of certain epidermal cells can reach extremely great

lengths compared to their diameters [Sieberer et al., 2005]. As seen in Table 5.1, the mean

diameters and lengths of root hairs vary substantially by species, with no particular correla-

tion existing between the two dimensions. The later work of Dittmer found hairs of 370µm

length and 5µm diameter in Franxinus lanceolata, whereas despite a substantially greater di-

ameter of 14µm, root hairs of Convolvulus arvensis were on average only 80µm long [Dittmer,

1949]. The spatial arrangement of hairs in the soil matrix also varies depending on species and

environmental conditions, and paths can be tortuous as a result of root-soil interaction and

the influence of mucilage [Peterson and Farquhar, 1996]. Though hairs investigated under the

microscope are occasionally observed to be branched, the work of Dittmer, despite examining

millions of hairs from hundreds of plants, never found evidence of a septate hair [Dittmer,

1949].

Root hairs reach maturity after a relatively short period compared to the lifecycle of the main

roots. Early work by McElgunn and Harrison observed that the interval from emergence to cell

death in root hairs of month old Secale cereale plants was of the order of two days [McElgunn

and Harrison, 1969]. Later work by Fusseder indicated that the internal cytoplasmic structures

of root hairs of Zea mays had begun to decay after the same period [Fusseder, 1987]. However,

the cell walls were seen to remain in place for many days, despite the probable termination of

uptake related to the decay of internal structures.

5.1.1 Root hair plasticity in response to abiotic stress
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Table 5.1: Table following Dittmer, showing mean root hair diameters and lengths for a variety
of different plant species [Dittmer, 1949].

Species Avg. hair diameter on main root (µm) Avg. hair length on main root (µm)

Equisetum arvense L. 15 1200
Agropyron elongatum 12 800

Agrostis astoriana 13 600
Avena sativa 14 1400

Eragrostis curvula 8 270
Secale cereale 15 1500

Cerastium arvense 12 750
Descurainia pinnata 7 350

Parosela dalea 15 110
Soya maz 17 240

Trifolia repens 8 250
Euphorbia albomarginata 9 300

Sium suave 8 150
Nepeta cataria 8 410

Plantango major 12 220
Tagetes patula 14 180

The environmental plasticity of roots and root hairs in soil has traditionally made it difficult

to accurately measure branching characteristics and the chronology of developmental events

[de Dorlodot et al., 2007]. It has long been known that RSA is a highly plastic trait, with

genotypically identical specimens exhibiting large phenotypic diversity in response to differ-

ing nutrient stresses; a mechanism known as trophomorphogenesis [Müller and Schmidt, 2004].

In the case of P stress, a number of potential adaptions are possible, as seen in Figure 5.1. Of

these adaptions, it was the observation that root hair density increases under low P conditions

which first led to speculation that hairs primarily exist to enhance the efficiency of immobile

ion uptake [Gilroy and Jones, 2000]. Since nutrients such as P and K are as immobile in the soil

as they are essential for growth, the ability to respond plastically to pools of these nutrients is

a highly beneficial trait for the majority of plants [Peterson and Farquhar, 1996]. The intercep-

tion of immobile nutrients such as P can be greatly improved by upregulating the frequency

and length of root hairs, as well as increasing overall root proliferation [Lambers et al., 2006].

Though such proliferation is generally thought to occur preferentially towards nutrient-rich

patches, conflicting findings exist regarding whether the rhizosphere represents a zone of local

depletion or increased concentration of essential nutrients, since both situations have been ob-

served in studies [Hinsinger et al., 2005]. Schottelndreier and Falkengren-Grerup have suggested

that this variability could either be the result of rhizosphere effects, or of preferential growth

into nutrient rich regions [Schottelndreier and Falkengren-Grerup, 1999].
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Figure 5.1: Figure from Lambers et al. showing plant responses to P limitation [Lambers et al.,
2006]. Low P conditions result in a low plant-P status, which is sensed by the plant, resulting
in up-regulation of a variety of species-specific P-starvation responses.

Studies of phosphate-driven plasticity have elucidated an array of physiological responses ex-

isting in both the morphological and architectural domains [Lynch, 1995]. The work of Ma

et al, growing Arabidopsis thaliana in phytagel, found that during early developmental stages

(< 7 days) root hair density did not differ significantly between low and high P conditions.

However, by the 9 day point, it was seen that plants in low-P media displayed substantially

higher root hair density, and that this density decreased logarithmically with increasing P con-

centration (see Figure 5.2 and Figure 5.3) [Ma et al., 2001]. Furthermore, there was found to be

a uniquely strong relationship between P availability and root hair density, as compared with

responses to all other nutrients in the study (see Figure 5.4) [Ma et al., 2001]. Work with mu-

tants of the model plant Arabidopsis thaliana has also shown the profound contrast between hair

formation in high and low P conditions (see Figure 5.5). Other studies have found root hair

formation to be influenced by soil pH and Ca2+ concentration [Ewens and Leigh, 1985], as well

as bicarbonate [Bergmann, 1958] and iron deficiency [Romheld and Marschner, 1981], but it is

clear that the most dominant factors in trophomorphogenesis are availability and distribution

of the essential nutrients N and P [Jungk, 2001; Osmont et al., 2007].

In controlling such adaptions, two way signalling via hormones and sugars between roots

and the aerial tissue ensures that growth in both domains remains balanced [Jones and Ljung,

2011]. Nutrient homeostasis is regulated systematically, but evidence suggests that signalling
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Figure 5.2: Figure from Ma et al. showing the regulation of root density in Arabidospis thaliana
as a function of P concentration in the growth media. Hair counts are the means for six plants,
and error bars represent SE [Ma et al., 2001].

responsible for morphological plasticity is controlled locally [Raghothama, 2000]. This has led

to the hypothesis that external levels of certain specific nutrients (P and Fe) are sensed in tissues

or individual cells, and not with respect to the systemic nutrient status of the plant [López-

Bucio et al., 2003; Müller and Schmidt, 2004]. By contrast, other work has suggested that P

concentration at root surfaces does not regulate hair formation, with systemic concentration

instead being the significant parameter [Jungk, 2001]. Work by Fohse and Jungk demonstrated

via split-root experiments that different root hair densities could be formed over regions with

identical surface P concentrations, depending on the fraction of the surface to which the con-

centration was applied [Fohse and Jungk, 1983]. This strongly supports the hypothesis that up

or down-regulation of hair density is not primarily a response to locally sensed P levels [Jungk,

2001]. Such experiments have established the necessity of a shoot-derived signal in order for

root hairs to lengthen, but found that there can be additional enhancement in lengthening as a

result of low root-P status [Jungk, 2001]. Though work is ongoing to trace the signalling path-

ways involved, it has been suggested that auxin is a leading candidate for the shoot-derived

signal transporter [Lambers et al., 2006].

In Arabidopsis thaliana, the mechanism of root-hair response to low soil P is through increasing

the number of files of trichoblasts (cells from which hairs initiate) in the developing roots, as

seen in Figure 5.6 [Ma et al., 2001]. Individual trichoblasts do not necessarily always develop

a root hair, with a study by Ma et al. showing that in high P media, the non-formation rate was

76%, and even in low P conditions, 10% of trichoblasts failed to produce hairs [Ma et al., 2001].

The development of extra trichoblast files in preference to 100% utilization of pre-existing tri-
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Figure 5.3: Figure from Ma et al. showing changes in root hair density of Arabidopsis thaliana
over time. Plants were grown in either low P (1mmol.m−3) or high P (1000mmol.m−3) media,
and hair density was measured over time on five 1mm root segments. The five bars at each
time point (from left to right) represent the segments between 0 − 1, 1 − 2, 2 − 3, 3 − 4 and
4−5mm from the root tip respectively. Each bar is the mean for six plants, and error bars show
SE.

choblast cells appears to confer an advantage in that greater longitudinal spacing lowers the

competition for nutrients between neighbouring hairs [Ma et al., 2001]. Though much remains

to be discovered about regulation of hair growth, it is apparent that the local cell response

(elongation), and the developmental response (hair density) work together as part of an effi-

cient P scavenging strategy in low-P environments [Ma et al., 2001].

It is not only soil nutrient concentrations that are responsible for trophomorphogenesis. Con-

tact of roots with micro-organisms can significantly alter branching and elongation character-

istics, a particular example of which is the infection of petunias with the bacterium Ralsto-

nia solanacearum, which inhibits elongation and enhances branching of LRs [Zolobowska and

Van Gijsegem, 2006]. Symbiotic relationships with ectomycorrhizae also suppress elongation

whilst inducing branching of LRs which are markedly shorter than those of uninfected plants
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Figure 5.4: Figure from Ma et al. showing the effect on root hair density in Arabidopsis thaliana
arising from removal of single nutrients from the growth media.

[Osmont et al., 2007]. Soil heterogeneity also controls root growth to a certain degree, in that

preferential proliferation usually occurs into soil macropores. Such can be the extent of this

correlation that in one study, 80% of roots were found to be situated within a 1mm distance

of macropores [Hinsinger et al., 2005]. Many studies have found that root hairs also appear

to preferentially infiltrate the pore spaces of soils [Michael, 2001] (though the difficulty of in-

situ imaging requires cautious acceptance of such findings). One proposed mechanism behind

this correlation is aeration-related dehydration, leading to water stress, increased metabolic ac-

tivity, upscaling of ethylene synthesis and resultant root hair formation in response [Michael,

2001].

5.1.2 Canonical methods for investigating root hairs and their role in P acquisition

The length to which hairs can penetrate the soil surrounding the root is significant in quanti-

fying the volume of soil from which uptake can occur, as well as the characteristics of the de-

pletion profile in this region [Jungk, 2001]. Further complicating quantification of the uptake

contribution of hairs is the temporally dynamic element that is present in reality. Since their

effective life in the soil is so short (< 3 days), the active root hair zone is gradually displaced in

the direction of root-tip growth, longitudinal to the root axis [Jungk, 2001]. Using a radioactive

tracer, Claassen et al. showed that concentration at the root surface of the low-mobility nutrient

potassium (K) reached a maximum less than one day after the emergence of root hairs, with

the depletion zone radius growing from 0.5mm to 3mm over the following 3 days [Claassen
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Figure 5.5: Figure from Muller et al. showing differences in hair formation between cpc and ttg
mutants of Arabidopsis thaliana grown in different P conditions [Müller and Schmidt, 2004]. (a)
cpc mutant grown in control P conditions, (c) cpc mutant grown in P-deficient media, (d) ttg
mutant grown in control P conditions, (f) ttg mutant grown in P-deficient media. Bar = 250µm

et al., 1981]. The suggestion of these findings is that even if hairs remained active longer than

a few days, their utility to the plant would be negated by the unavailability of poorly mobile

nutrients [Jungk, 2001]. It remains to be determined whether hair senescence is driven by re-

dundancy (when uptake rates become sufficiently small to render hairs ineffective) or whether

the initiation of programmed cell death is unconnected to P availability.

Though the enormous increase in surface area afforded to the plant by the production of hairs

has long been known to correlate with improved uptake of immobile nutrients [Bole, 1973;

Gahoonia and Nielsen, 1998], the mechanisms by which hairs uptake phosphate have been

more difficult to elucidate. Work by Itoh and Barber showed that discounting the influence of

hairs in uptake models leads to systematic underestimation of influx as compared to uptake

measured in real plants [Itoh and Barber, 1983]. To experimentally confirm the role of hairs in

uptake, Gahoonia et al designed a vermiculite-filled growth chamber from which hairs could

cross an air gap into a soil volume containing the radioactive phosphorus isotope 32P, whilst

roots were excluded (see Figure 5.7). Detection of 32P in the aerial tissues after 2 days demon-

strated conclusively the contribution of root hairs to total uptake by the plant [Gahoonia and

Nielsen, 1998]. When 70% of the hairs from Secale cereale plants were able to access the radioac-

tive chamber, it was seen that after 4 days, 32P from this region accounted for 63% of the total

P measured in the shoots [Gahoonia and Nielsen, 1998]. Phosphate is thus clearly taken up in

substantial quantities by root hairs, driven by an electrochemical gradient across the plasma

membrane, maintained by H+-ATPase. The work of Moriau et al. demonstrated that in Nico-

tiana plumbaginifolia, genes linked with H+-ATPase activity are expressed in substantial levels,

with expression peaking in young hairs, and falling off as they mature [Moriau et al., 1999].

This trend correlates with the temporal reduction in P uptake predicted in ageing hairs, as

discussed previously.
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Figure 5.6: Micrographs from Ma et al. showing cross sections of Arabisopsis thaliana roots
grown in different P conditions, taken 3mm from the root apex. Trichoblasts are indicated by
asterisks, and it can be seen that low P conditions have altered the trichoblast file count of
the root. Magnification is 400×, low P media concentration is 1mmol.m−3 and high P media
concentration is 1000mmol.m−3 [Ma et al., 2001].

5.1.3 The importance of hair/soil interactions in determining plant performance in
low-P environments

Though split pot and air-gap protocols have helped understand the bulk contribution of hairs

to nutrient uptake, virtually all our understanding about root hair morphology has come from

roots grown on agar or phytagel plates [Maizel et al., 2011; Yi et al., 2010]. A different approach

is microscopy of carefully washed root samples, which dates back at least as far as the work

of Dittmer in the 1930’s [Dittmer, 1937; Haling et al., 2013]. Haling et al. used this methodol-

ogy, combined with measurement of resulting digital images in the open-source package FIJI,

to characterise root hair lengths of barley cultivars grown under different degrees of soil com-

paction [Haling et al., 2013]. Though considering hairs grown in real soil, problematically such

a method cannot provide information about explicit hair/soil interaction, and the likelihood of

experimental artifacts is extremely high given the fragility of hairs [McCully, 1999]. Although

the need to be able to finely examine crop root hair morphology is undoubted in understand-

ing nutrient acquisition, neither destructive washing nor in vitro methods can examine the

interplay between hairs and the extraordinary structural and biochemical heterogeneity that

characterises real soils at all scales [Hinsinger et al., 2009]. However, cryogenic scanning elec-

tron microscopy (cryo-SEM) is one technique that has provided qualitative insight into the

true complexity of hair/soil interactions, though the technique does not lend itself well to

quantification [McCully, 1999; Yu et al., 2013]. By cryogenically cooling rhizosphere samples

and sectioning them normal to a root axis, it is possible to use SEM to visualise hairs in the

soil environment, as seen in Figure 5.8. The data shows that hairs growing into macropores

initially exhibit the straight growth familiar from in vitro studies, but that one they begin to
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Figure 5.7: Figure showing air gap apparatus of Gahoonia et al. for estimation of the root hair
contribution to overall plant P uptake [Gahoonia and Nielsen, 1998]. A root mat (e) grows
against one side of a pair of meshes (d) which define an air gap (f). Hairs grow through the
mesh, crossing the air gap (h) into a region of 32P labelled soil. The micrograph shows root
hairs (b) crossing the 1mm air gap between the two meshes (a, c).

interact with soil, curling, distortion and branching result [McCully, 1999]. How such mor-

phology might influence uptake is difficult to ascertain, particularly since the nature of contact

with the soil, and with pore water, is likely to have a key influence on uptake kinetics. As

discussed previously, attempts to model the influence of root hair traits on nutrient uptake

have considered straight hairs within a bulk or highly ordered soil medium [Ma et al., 2001;

Roose and Zygalakis, 2010], a situation which is clearly far from capturing even the structural

complexity of hair/soil interactions, let alone the high degree of known temporal and spatial

heterogeneity in water and nutrient distribution [Ashley et al., 2006; Carminati and Vetterlein,

2012]. Progressing understanding of the contribution different root hair traits make to uptake

of immobile nutrients will require methods allowing direct observation of hair and soil inter-

actions, preferably in a manner that allows the predictive power of computational approaches

to be brought to bear on the data.

5.2 Guiding principles for experiment design

The technique of synchrotron X-ray computed tomography (SRXCT) holds promise for the in-

vestigation of intact rhizosphere structure and the root hairs which form such an important

component of this region. The latest generation of SRXT beam-lines facilitate rapid image ac-

quisition (≈ 5m) at voxel resolutions in the range (≈ 0.1 − 15µm). It was hypothesised that

SRXT imaging coupled with a suitable growth protocol might facilitate first-time 3D imaging

of root hairs within the soil environment. Dependent on species, the diameter of root hairs

generally lies in the range≈ 7−17µm [Dittmer, 1949]. Because field of view (FOV) diameter in

imaging is inversely proportional to reconstructed voxel resolution, substantial constraints are

placed on the experimental protocol. The field of view must necessarily be very small if hair-
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Figure 5.8: A micrograph obstained using cryoscanning electron microscopy, showing the rhi-
zosphere surrounding a root of buckwheat (Fagopyron esculentum) [Hinsinger et al., 2005]. A
variety of root hair interactions with pores and soil aggregates are clearly visible.

Figure 5.9: Schematic from van Noordwijk et al. showing SEM microscopy of sections through
freeze-dried wheat roots and rhizosphere soil. (A) Root-soil contact regions seen between soil
surfaces and the root exodermis. (B) Root cross section in macropore, with root hairs visible.
[Van Noordwijk et al., 1993].
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scale features are to be reliably detected in reconstructed data. Furthermore, movement both

of the whole sample and of structures within the sample must be minimised. When imag-

ing at resolutions at the 1µm scale, as opposed to the lower resolutions at which roots have

conventionally been investigated in literature studies, the influence of movements at similar

length scales to those of roots, water or soil aggregates becomes more pronounced. Problemat-

ically, a living plant growing in uncompacted, hydrated soil represents an inherently unstable,

dynamic system, prone to movement. As has been seen in previous work, root growth, root

bending, soil consolidation, water movement, and bulk shrinkage due to water evaporation

can all introduce substantial movement and associated blurring in images, even when scan

times are relatively short (< 1h). Despite many µ-CT systems being capable of < 5µm resolu-

tion in transmission mode, the low flux constraint at the required spot size necessitates longer

scans, during which movement of roots, soil and water can be very pronounced relative to the

spatial resolution. SRXCT sources, though not necessarily offering appreciable resolution ben-

efits over benchtop systems, offer greatly improved flux, with the result that acquisition times

can be substantially reduced from the hour to the minute scale [Connolley et al., 2007]. When

samples are inherently structurally unstable, as is the case with soils and plants, this reduced

acquisition time is of great benefit in reducing intra-scan movement.

These factors clearly pointed to the suitability of synchrotron X-Ray CT combined with very

small sample sizes for the elucidation of root hair structure and interactions with soil. The

X02DA (‘TOMCAT’) beamline at the Swiss Light Source (Paul Scherrer Institute, Villigen,

Switzerland), is one such facility, optimised for tomographic X-Ray imaging at resolutions

of 0.36 − 14.8µm [Stampanoni et al., 2006]. This range is ideal for investigation of structures

at the root hair scale. The beamline acquires radiographs using a detector with 2048 × 2048

elements, so when imaging at a resolution of 1.5µm the maximum field of view diameter is

only 3.072mm, necessitating extremely small sample sizes compared to previous plant X-ray

CT studies in the literature. In order to design a suitable experiment, the following criteria

were identified:

1. Selection of a plant variety with suitable root and root hair characteristics for investiga-

tion.

2. Development of a growth protocol satisfying the requirements of both plant develop-

ment and imaging constraints.

3. Acquisition of CT data with sufficient resolution, contrast and quality that root hairs are

discernible.

4. Image processing of resulting data, ensuring sufficiently accurate determination and dif-

ferentiation of distinct phases and structures.
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5. Generation of accurate FE volume meshes from defined regions.

6. Derivation of a mechanistic simulation model using robust approaches to modelling of

P uptake, soil-surface binding and fluid diffusion kinetics.

7. Derivation of defensible and where possible, experimentally-derived parameters to set

initial conditions for the model.

8. Application of equations and initial conditions to the FE model and computation of so-

lutions over a suitable timescale.

9. Post-processing and analysis of simulation data for improved understanding of P move-

ment in the rhizosphere .

10. Application of findings to real-world plant breeding, fertilization and soil management.

5.3 Materials and methods

5.3.1 Selection of a suitable plant variety

Wheat (Triticum aestivum) has root hairs with diameter of≈ 12µm [Singh Gahoonia et al., 1997],

which given sufficient contrast should be visible at the 1.5µm resolution available at X02DA

(‘TOMCAT’). The relatively fast growth of wheat, coarse primary rooting and substantial agri-

cultural significance were deemed to render it suitable as a candidate species for imaging.

Trials conducted using ‘Santiago’ variety winter wheat (KWS, Thriplow, UK) confirmed that

healthy plants could be grown successfully in a Chromi-Abruptic Luvisol sourced from the

Sutton Bonington field site at the University of Nottingham (52◦49′52′′, −1◦15′13′′). Soil chem-

istry for this soil, derived from an assay at Bangor University (Bangor, UK), is given in Table 5.2

(full experimental procedure is given in Section 8.2.1).

Table 5.2: Soil chemistry of Chromi-Abruptic Luvisol, derived via soil assay.

Nutrient Bulk D (kg.l−1) Csol (mol.l−1) Csor (mol.kg−1) Ctot (mol.l−1) b
PO4 1.1 11E−6 522.6E−6 578.7E−6 48.87
NH4 1.1 471.25E−6 2.44E−3 2.8E−3 6.03
K 1.1 1.11E−3 2.28E−3 3.0E−3 2.22

For growth, the necessity of imaging extremely small (≈ 3mm) diameter samples placed sub-

stantial constraints on the design of the apparatus. Trials showed that it was possible to grow

roots in small soil volumes by clustering 1ml polymer syringe barrels together, filling them

with finely sieved soil, then planting seeds to a bulk layer of soil above the barrel openings.
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Figure 5.10: The procedure for dismantling growth assemblies prior to imaging. (A) The sy-
ringe bundle was removed from exterior tube. (B) The foil collar was removed to expose soil.
(C-D) A scalpel was used to excise all material flush with the top of the syringe bundle. (E)
Roots were visually identified in the barrels. (F) After imaging, roots can be gently washed
from individual barrels to validate structure.

In this manner, growing roots could enter individual cylinders of soil, and following separa-

tion of the barrels, single tubes of internal diameter (≈ 4mm) were rendered that satisfied the

constraints for imaging. Figure 5.10 shows the protocol for dismantling the growth chambers.

Since hairs are known to remain in position up to many days after their internal, cytoplasmic

structures have ceased to operate [Fusseder, 1987], imaging within minutes of aerial tissue

excision is almost certain to capture the in vivo positions.

For the experiment, bundles of seven syringe barrels (with tabs removed) were housed within

50ml standard lab tubes with 16 holes cut into the base to allow hydration and drainage. A

collar of aluminium foil was added to each bundle to occlude light and act as a root guide, en-

couraging growth down the syringe barrels. Each exterior tube was pre-filled with a 20mm

depth of perlite granules in order to raise the bundle height and improve drainage. The
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Figure 5.11: Schematic showing assembly of growth chambers. A) bundles of seven 1ml sy-
ringe tubes were taped together, B) a foil collar was added as a root guide, C) soil was intro-
duced to the tubes, and seeds planted, D) each bundle was placed in a larger 50ml tube with a
layer of perlite added to aid hydration, E) individual tubes were separated immediately prior
to imaging.

soils used were a Chromi-Abruptic Luvisol (described previously) and a peat-based compost

(Scott’s Levington F2+S). Soils were autoclaved according to standard laboratory procedure in

order to prevent algal and fungal growth, then sieved using a 1.2mm aperture soil sieve to pro-

duce a texture that allowed adequate filling of the tubes without formation of large macropores

of a similar length scale to the tube diameter. The soil was treated with the systemic pesticide

Intercept 60 WP according to standard glasshouse procedure, then sieved between 1.6mm and

1.18mm, in order to be introduced easily to the barrels. Details of the apparatus are shown in

Figure 5.11

The prepared Luvisol was introduced to tube bundles and lightly compacted by periodically

tapping each bundle on a bench top (following Gregory et al. [Gregory et al., 2003]), refilling

in between compactions to ensure the soil filled the barrels. A 10mm layer of compost was

intoduced above the barrel tops in order to provide additional nutrients for improvement of

growth. Seeds of Triticum aestevicum (‘Santiago’) were pre-germinated at RT for 48h on damp

tissue paper, before being transplanted to the growth assemblies and lightly covered with 5mm

of compost. The resulting assembly is shown in Figure 5.11. Plants were grown for 10 days in a

controlled growth environment (Fitotron SGR, Weiss-Gallenkamp, Loughborough, UK), being

top-watered initially, and subsequently hydrated passively from the base. Day conditions were

16h at 23◦C and 60% humidity, night conditions were 8h at 18◦C and 55% humidity, with

humidity and temperature both ramped up and down between states over 30 minute periods.
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Figure 5.12: (A-B) Macroscope images showing two primary roots of different diameters,
grown using the syringe barrel assay. After 10 days growth following germination, root hairs
and lateral roots are clearly present.

5.3.2 Validation of hair growth

To validate root hair growth in the assemblies after the 10 day growth period, roots were ex-

tracted, washed, and imaged using light microscopy. Each cluster of barrels was carefully re-

moved from the exterior tube, the foil collar removed, and both soil and plant material gently

excised flush with the tops of the barrels using a scalpel. The bundle of syringe barrels was dis-

mantled, and individual barrels were examined visually to identify samples which contained

roots.

After gently washing the roots from the barrels in a large beaker of water, root segments were

transferred to a petri-dish for imaging using both light microscopy and macroscopy. Resulting

images are shown in Figure 5.12. Root hairs could be clearly seen in all images, despite the

destructive nature of the washing technique used to separate roots from the soil, confirming

validating the suitability of the protocol for growth of roots with intact hairs.

5.3.3 Imaging at the SLS

Imaging took place at the TOMCAT beamline on the X02DA port of the Swiss Light Source

synchrotron in Villigen, Switzerland. Each cluster of barrels was carefully removed from the

exterior tube, and both soil and plant material gently excised flush with the tops of the bar-

rels using a scalpel. Individual barrels were examined visually to identify samples which

contained roots (determined by validation of root cross-sections at the cut surface). From this

subset of tubes, sections were identified in which the roots were surrounded by soil as opposed

to being in contact with the wall. These were the sections selected as the regions of interest for
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Figure 5.13: (A) A sample stage adaptor designed to hold syringe barrels samples with mini-
mal intra-scan movement. (B) A sample in position prior to SRXCT imaging, with the scintil-
lator visible in the background.

SRXCT imaging. Figure 5.13 shows the setup for imaging individual samples. Time for ac-

quisition of a full set of radiographs was (≈ 5minutes) due to the high available flux, allowing

rapid exposure times as compared to µ-CT systems.

5.3.4 Imaging parameters

Figure 5.14 shows the basic layout of the beamline. The samples were imaged using a coher-

ent, monochromatic synchrotron X-ray beam at an accelerating potential of 20KeV, with 1501

equiangular projections taken through 180◦. The projections were processed using a multi-

node computer cluster in order to produce light and dark corrected sinograms, which were in

turn converted to a stack of 2D, 8bit tiff files for analysis.

Image processing

Using the image processing package FIJI to view the data [Schindelin et al., 2012], root hairs

were clearly visible in the individual 2D images which together comprised the 3D volume.

Visual inspection of the data suggested little artifact influence, with no pronounced movement-

derived artefacts. The quality, resolution and contrast of the data were of sufficiently high

quality that many root hair characteristics could be straightforwardly identified without any

image processing or feature extraction.

Though hairs were clearly identifiable, automated extraction of these features from the soil

proved challenging, due to the similar attenuation coefficients of soil phases, and the numer-

ous contacts made between hairs and soil structures. Global thresholding and seeded region
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Figure 5.14: Schematic showing the layout of a standard synchrotron tomography beamline.
A coherent, monochromatic beam of X-ray photons produced by electromagnetic interference
of an accelerated electron beam (A) is filtered to give a monochromatic energy distribution
(B). It then travels through a series of attenuators and slits (C) and a fast-shutter assembly (D)
before passing through the sample, which sits on a rotating stage (E). The attenuated beam is
then converted to visible light by a scintillator (F), reflected by a mirror (G) and passes through
filters and lenses (H) before radiographs are acquired by a charge coupled device (CCD) array
(I).

growth (SRG) methods both failed to provide reliable classification. Given the absence of mul-

tiple datasets, the highly original nature of the findings, and the constraints of time, it was

deemed that a manual segmentation approach was both necessary and justifiable. Manual

segmentation was undertaken using AVIZO 6 Fire software (VSG Inc., Burlington, MA, USA),

with a Cintiq 22HD graphics tablet (Wacom Co. Ltd., Saitama, Japan) allowing sensitive and

accurate tracing of features. Using the tablet, root hairs were visually identified at the main

root surface and traced outwards, following each individual hair and capturing all voxels per-

taining to it until the hair reached a terminus or became visually indistinguishable from neigh-

bouring soil phases. Once all hairs that initiated from the epidermis had been traced, it was

clear that unclassified hairs still remained within soil pores, with some fragments visible at a

distance of > 1mm from the root surface. These non-continuous fragments were traced where

distinguishable, being classified according to a second voxel set.

5.3.5 Defining subset segments for simulations

For the purposes of modeling the diffusion of nutrient species from the aggregates to the root

hairs, certain constraints were placed upon the element count of the meshed volume. A trial to

benchmark the performance of the IRIDIS 3 supercomputer cluster (University of Southamp-

ton, UK) against the most powerful stand-alone computing solution available (32-core AMD

workstation with 128GB RAM, supplied by Broadberry Data Systems, Middlesex, UK) found

that the stand-alone workstation was able to solve the equations for a larger mesh than the

cluster. Though this was found to be due to poor optimisation of COMSOL on the IRIDIS clus-

ter, rather than lack of raw hardware capacity, the present study was limited by these issues
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to working within the capabilities of the stand-alone workstation. By running a series of sim-

ulations, maintaining otherwise identical parameters but increasing the element count of the

mesh each time, an upper limit of 9 × 106 elements was determined, above which there was

insufficient RAM available for the solver to build the required matrices.

A segment geometry was chosen as the basic format for sub-sets of data. By defining a segment

of a cylinder, the centerline of which is aligned with the root centerline at various positions,

future comparisons are possible between regions of identical volume at different positions

along the root. Prior to definition of a single segment, the entire dataset was registered using

rotational transforms such that the major root axis was parallel to theZ axis. This was achieved

by determination of the root centre-point in two slices at different ends of the imaged root

section, followed by trivial trigonometric derivation of the transformation angles required to

align the line defined by these two points with respect to the Z axis.

A sub-volume was defined as a segment whose centre-line was coincident with the major axis

of the root. The segment dimensions are the swept angle in radians (θseg), segment radius

(rseg), and segment depth (dseg). The segment was defined with dimensions θseg = 1.29rad,

rseg = 600µm and dseg = 557µm. The rhizosphere region from which the segment was defined

was chosen for its representative mixture of macro-pore space and aggregates, along with vis-

ible hairs. As well as being limited by the solvable element count of the resultant mesh, the

dimensions were constrained by the need to avoid lateral roots, volume edges, and regions

affected by artefacts.

The root hairs and the root surface within the segment were classified manually according

to the previous procedure, whilst the soil phase was segmented automatically using an auto-

mated seeded region growth approach, following Keyes et al. [Keyes et al., 2013a]. Since the

manual nature of the root hair segmentation leads to potential double-classification of voxels at

hair/soil contact points, shared voxels had to be classified singly before mesh generation. FIJI

was used to assign any such voxels to the root region. Regions pertaining to hairs, root and soil

were than combined as distinct volumes into a single volume, and the remaining unclassified

voxels were classified as water.

5.3.6 Generating volume meshes

These regions were used to generate a partitioned volume mesh for input to COMSOL though

use of the ScanIP software package (Simpleware Ltd., Exeter, United Kingdom). ScanIP offers

two meshing algorithms, one producing a mixed tetrahedral and hexahedral mesh (+FEGrid)

and the other producing a smoothed all-tetrahedral mesh (+FEFree). Friedrichs et al. used Sca-

nIP for meshing of SEM and confocal microscopy data, and compared the performance of the
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two algorithms on identical datasets [Friedrichs et al., 2012]. They found the mesh produced

by the +FEFree algorithm to be more detailed, but it required ample pre-processing before it

could be used successfully in FE packages. Despite the smoothing, the present study required

use of the +FEFree algorithm since trials found the element counts and computation times to

be prohibitively high when using +FEGrid. Parameters were tuned to maximise quality whilst

satisfying the n < 9 × 106 elements constraint. The resulting parameters used for final mesh

generation are given in Table 5.3.

Table 5.3: Input parameters for +FEFree meshing algorithm in ScanIP, used to mesh segment
for input to COMSOL.

Parameter Value

Coarseness −50
Smoothing iterations 20

Target min. edge length −0.0001mm
Target max. edge length 1mm

Target max. error 0.0008mm
Surface change rate 30
Internal change rate 100

Target element count across a layer 0.5
Quality optimisation cycles 5

The mesh was imported into COMSOL (Version 4.2a, COMSOL Inc., Burlington, MA, USA)

for solution of the numerical model. The geometry is shown in Figure 5.15

5.3.7 Definition of the explicit model

The model applied to the geometry was derived from that of Schnepf et al. [Schnepf et al.,

2011], which though in their case was applied to a more geometrically simple case, explicitly

considers P uptake and soil-surface binding reactions. Since other approaches in the literature

consider these processes on a bulk basis, the model of Schnepf et al. was deemed to be the most

suitable foundation for the root hair uptake case developed in this work.

5.3.8 Summary of equations

The following is a summary of the equations as used to set up the numerical simulation:

Movement of phosphate in water follows simple fluid diffusion:

∂Cl
∂t

= D∇2Cl, (5.1)
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Figure 5.15: Visualisation of the segment used for numerical simulation of P uptake. (A) Ini-
tial aligned sub-selection, (B) raw data of the sub-section, (C) classification of root hairs, soil,
fluid and root surface regions for volume mesh generation, (D) the resulting three-dimensional
model
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Where Cl (mol.m−3) is the concentration of P in pore water, and D (m2.s−1) is the diffusion

constant for P in water.

The conservation of mass on the soil surface is represented by the following first order reaction:

dCa
dt

= −kd(Ca −
ka
kd
Cl) (5.2)

Where Ca (mol.m−2) is the quantity of bound P per unit of surface area on soil aggregates, ka
(ms−1) is the sorption rate, and kd (s−1) is the desorption rate.

The uptake boundary condition applied to the root hair and root surfaces is described by

Michaelis-Menten kinetics:

Dn̂ · ∇Cl = −
Fm(Cl − Cmin)

Km + (Cl − Cmin)
, (5.3)

Where Cmin (mol.m−3) is the concentration of P in pore water at which plant uptake stops,

Fm (mol.m−2.s−1) is the maximal P uptake rate, Km (mol.m−3) is the concentration at which

uptake is half of the potential maximum, and n̂ is a vector normal to the root surface, pointing

out of the fluid domain.

The boundary condition between soil surface and fluid phase takes into account the binding

reactions, and as such is coupled with equation 5.2:

Dn̂ · ∇Cl = kd(Ca −
ka
kd
Cl), (5.4)

External surfaces of the domain of integration take the following zero-flux boundary condition:

n̂ · ∇Cl = 0 (5.5)

At t = 0, the soil and all related surface and fluid P concentrations are assumed to be in

equilibrium, i.e. ka
kd

=
Ca,0
Cl,0

. Cl,0 is straightforward to determine experimentally, however

it is not possible to directly measure the soil surface concentration using standard assaying

approaches. The volume concentration, Ca(V ), can be determined, and then converted into a

surface concentration using Ca,0 =
Ca(V )ρV

S , where V (m3) is the soil aggregate volume, S (m2)

is the soil surface area, and ρ (kg.m−3) is the soil bulk density.

Figure 5.16 shows a schematic of a simplified geometry with the model applied.

5.3.9 Experimental approaches for soil model parameterization

The soil chemistry of the Luvisol used in the experiment was analyzed by collaborators from
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Figure 5.16: Schematic showing soil/root-hair/fluid system, with equations governing P ki-
netics. (A) The boundary condition (Equation 5.4) and conservation of mass (Equation 5.2)
on the soil surface are applied to all soil/fluid interfaces. (B) Simple diffusion (Equation 5.1)
governs movement of P in the fluid phase. (C) The uptake boundary condition at the root hair
and root surfaces (Equation 5.3) follows Michaelis-Menten kinetics.

University of Bangor, Bangor, UK. By experimentally determining the input parameters for the

model rather than using figures derived from the literature, the simulation could be parame-

terised to approximate as closely as possible the real soil P status. The standard soil assaying

protocol used can be found described in detail within Appendix 8.2.1. The list of parameters

used in the model are shown in Table 5.4

5.3.10 Numerical modelling

Running the model for a > 24h period showed that the uptake had dropped to zero by the 10h

point. For the next run of the model, the time steps for the simulation were set to give better

resolution near to the beginning, in order to better capture the initial stage. Since the initial

conditions of the model represent equilibrium, the first mechanism within the rhizosphere

once the model begins is the generation of sufficiently strong depletion gradients by root and

root hair uptake that P begins to desorb from the soil surfaces. Data were recorded for time

points at 0s and 1× 10−9s, then in steps of 0.1s from 0.1− 1s, steps of 60s from 1− 600s, steps

of 600s from 600 − 3600s, and steps of 1800s from 3600 − 30600s. Three simulations were run,

using initial conditions approximating three different agronomic soil P indices (P1, P2, P3).

The soil indexing system is a scheme adopted by the UK government in order to regulate P

fertiliser use [DEFRA, 2010]. A soil with index P3 contains 39mgP.l−1, a concentration usually

deemed sufficient for crop production without additional P application. Soils with indices P2

and P1 (23mgP.l−1 and 12mgP.l−1 respectively) are generally treated with P fertiliser for crop

production.
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Table 5.4: Parameters used in the explicit model, derived from a soil assay of the Luvisol
growth medium

Parameter Expression Value Units

D - 10−9 m2.s−1

km - 6× 10−3 mol.m−3

Fm - 5× 10−8 mol.m2.s−1

S - 3.1158× 10−6 m2

V - 3.4832× 10−11 m3

ρ - 1.1× 103 kg.m−3

θ - 0.33 -
Cmin - 2× 10−5 mol.m−3

Ctot - 0.25× 10−3 mol.kg−1

A - 0.7975 -
κ - 1.269× 10−3 s−1

Csor ACtot 1.994× 10−4 mol.kg−1

Ca,0 CsorρV/S 2.452× 10−6 mol.m−2

Cl,0 ρ(Ctot − Csor)/θ 0.1687 mol.m−3

kd κ(1−A) 2.569× 10−4 s−1

b Ca,0/Cl,0 1.453× 10−5 m

5.3.11 Analysing results

5.3.12 Exporting data for post-processing

Once the simulation had concluded, results were exported from COMSOL for post-processing.

Comma-separated variable (CSV) files containing scalar values of Ca and Cl at grid points de-

fined in Cartesian coordinates were exported for a number of time steps. Files were imported

into the post-processing and visualisation package AVIZO 7 Wind (VSG Inc., Burlington, MA,

USA). The CSV data for Ca and Cl were interpolated onto grids with the same X,Y, Z dimen-

sions as the original RAW data used to generate the FE mesh, using the ClusterToGrid module,

then saved as 32-bit RAW files for which the attenuation coefficients mapped the scalar con-

centration values of the original data at each point. Post-processing of the Cl dataset was

completed by applying a logical AND along with a version of the original RAW data in which

the fluid phase region had a value 1, and all other regions were 0. To complete post-processing

of the Ca dataset, a logical AND was applied along with a version of the original RAW data

in which the soil phase region had value 1, and all other regions were 0. To visualise the Ca
distribution at various time steps, the finalised voxel data were combined with the root sur-

face and root hair regions segmented previously, allowing Ca to be seen in relation to uptake

surfaces.
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The Cl dataset was visualised by using streamlines set to follow paths of maximum concentra-

tion gradient between soil surfaces and uptake surfaces. Of particular interest was the relative

area and location of sorbed P from which root hair and root surface uptake occurred. An esti-

mate was derived by seeding streamlines from linearly distributed sets of equally spaced seed

points on root hairs and root surfaces (where spacing was δ0). A total of 10 sets of 80 linearly

arranged seed points were defined in a grid pattern on the root surface, and a total of 12 such

sets were arranged longitudinally on root hair surfaces at random points on randomly selected

hairs. Using the open source software ParaView [Ahrens et al., 2005], single streamlines were

calculated from each seed point, following the path of maximum concentration gradient back

to the soil surfaces. This not only allowed diffusion paths to be visualised, but also the ratio of

summated lengths between initiation points and end points to be calculated. This provided a

quantifiable measure of how diffuse or localised the uptake of P was from root hairs and the

root surface.

In the case where streamlines from a single seed set terminated on the surfaces of different soil

aggregates, a false measure of the spread would result from inclusion of the inter-aggregate

distances. The following procedure mitigated against this outcome, by statistically rejecting

outlying distances between terminal points. Figure 5.17 shows a schematic illustrating the

procedure. In this case, 10 streamlines link evenly spaced seed points on the root hair with

terminal points on the soil surfaces of two distinct particles, A and B. The intra-terminus dis-

tance between two neighbouring points is δ1. Removing every other terminal point, the intra-

terminus distance between two neighbouring points becomes (δ2). In the case where stream-

lines have been split between two or more aggregates, very large outlier distances such as (δa)

will exist. By calculating (δ1) and (δ2) for each terminal point, the parameter ( δ2δ1 − 2) could

be defined for each point, which would be 0 in the idealised case where (δ1) is the same for

every point. By calculating the mean value of ( δ2δ1 −2) for each streamline set, and rejecting any

intra-point distances (δ1) for which ( δ2δ1 − 2) is more than two standard-deviations outside the

mean, outliers could be rejected (the δa case), and the sum of remaining values of (δ1) used.

5.4 Results

5.4.1 Qualitative observations

A wealth of insights was obtained from the SRXCT data, with initial examination of the raw

data clearly demonstrating the heterogeneity of hair-particle interactions. The interactions be-

tween hairs and soil aggregates were just as complex as had been suggested by cryo-SEM

images [McCully, 1999]. Figure 5.18 shows examples of hairs which traverse macropores to-

wards aggregate surfaces. Figure 5.19 shows examples of hairs which appear to follow closely
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Figure 5.17: Schematic showing parameters for calculating the ratio of depletion zones on soil
particles to corresponding uptake zones on root and root hair surfaces. A total of (n) seed
points are evenly spaced along a root hair or the root surface (shown in green) with a spacing
of (δ0). Tracing paths back to aggregates along paths of maximum concentration gradient
calculated by the numerical model, a set of (n) points on the soil surfaces is defined. The
ratio of summated inter-point distances between the soil surface and the root or hair surface is
a measure of how spatially focused is the uptake of P. Inter-aggregate distances (δa) are rejected
using a statistical procedure. For each point on the soil surface, the ratio ( δ2δ1 ) is calculated. For
points where this ratio falls more than two standard deviations outside the mean for the whole
set, the inter-point distance is rejected as being an inter-aggregate distance.
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the surface contours of soil particles. Figure 5.20 shows examples of hairs which appear to

infiltrate fissures and cracks in the soil matrix. Clearly, due to similar attenuation coefficients,

reliable distinction of root hair and soil voxels is challenging in the many cases where hairs are

in close proximity to soil surfaces.

It was also possible to derive an estimate of root hair density from the segmented geometry.

Over the subsection used in the simulation, the root hair density, translated into the com-

monly reported form, was ≈ 210hairs.mm−1. Differing growth protocols, growth periods and

sampling positions make direct comparison with figures cited in the literature difficult, but

it is clear that this estimate far exceeds the range elucidated for Triticum aestivum using root-

washing. Gahoonia et al. estimated a mean density of 24 − 38hairs.mm−1, with samples taken

across a range of plants grown for 7 and 14 days [Gahoonia and Nielsen, 1998]. Itoh and Barber

estimated densities of 56 − 181hairs.mm−1 by sampling the roots of 6 different species [Itoh

and Barber, 1983]. Bole grew ‘Chinese Spring’ and ‘S-615’ cultivars of Triticum aestivum for 28

days at high and low P indices, and estimated density as 20− 80hairs.mm−1 [Bole, 1973].

In addition to hair and soil interactions, the high resolution and contrast of the SRXCT data also

allowed the internal structures of the root to be visualised in detail. Individual cortical cells

could be clearly distinguished, as well as cortical spaces extending for varying lengths parallel

to the root axis (Figure 5.21). Also visible were the internal structures at branches where lateral

roots emerge from the seminal root (Figure 5.22). Though, only initial observations, such non-

invasive elucidation of internal structure may aid in improving understanding of root tissue

development, adaption and senescence.

By extracting the hairs, soil and root as separate volumes, it was possible to visualise these

structures in three dimensions. Figure 5.23 shows a 3D volume rendering of the root with soil

phases partially cut away, such that the proliferation of root hairs can be clearly seen. It was to

a subsection of this model that the simulation was applied (Figure 5.15).

5.4.2 Results of P uptake simulation

In all three simulations (P1, P2 and P3), cumulative P uptake by root surface and root hairs

was comparable, with uptake decreasing to very low values by > 5h (Figure 5.25). In all cases

the root uptake was ≈ 15% greater than for hairs, contradicting the dominant paradigm in

the literature, that root hairs dominate P uptake [Barber and Silberbush, 1984; Leitner et al.,

2010b; Ma et al., 2001; Tinker and Nye, 2000]. In the model, the surface areas of root surface

and root hairs were 1.96× 10−7mm and 1.66× 10−7mm respectively, giving a root surface area

18% greater than that of the hairs. The difference in P uptake was thus attributable to the

difference in surface area between the two entities, rather than the soil volume explored by the
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Figure 5.18: (A-D) Examples of hairs traversing soil pore spaces.
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Figure 5.19: (A-D) Examples of hairs closely following soil surface contours.
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Figure 5.20: (A-D) Examples of hairs infiltrating fissures and intra-aggregate cracks.
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Figure 5.21: Cortical spaces were observed at numerous positions along the main root. (A)
An x, y planar section in which no large cortical voids are apparent, (B-C) x, y planar sections
showing cortical voids (CV - cortical void).

Figure 5.22: Cross section in the x, y plane of the seminal root at a lateral root branching point
(SR - seminal root, LR - lateral root.)
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Figure 5.23: Digitally rendered 3D volume with the soil phases partially cut away to reveal a
≈ 3mm section of a juvenile seminal root of Triticum aestivum including lateral roots and root
hairs.
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Figure 5.24: (A) Estimated surface concentrations of phosphate (Ca) on the soil particle surfaces
after 10h of uptake by root and root hairs, (B) streamlines showing phosphate transport paths
from soil surfaces to root hairs (magenta) and root surface (blue).

root hairs. The heterogeneity in Ca of the P remaining on the soil surfaces after 10h is shown in

Figure 5.24-A, with the relationship between depletion and proximity to roots and root hairs

clearly evident.

The flux of soil P from particle surfaces to root and root hairs was visualised by plotting diffu-

sion streamlines (Figure 5.24-B). Mean ratios of sub-sampled streamline sets, along with stan-

dard mean error for root hair and root surfaces are shown in Figure 5.25. The particle surface

area from which the root hairs draw P is approximately 2− 3 times greater than their own sur-

face area, whereas for the root surface, the equivalent region on the soil surface is 5− 10 times

greater than the uptake surface area. This difference arises through creation of global diffusion

gradients by the root surface at a greater length scale than the more localised gradients gen-

erated very close to soil particles by the root hairs. The thin geometry and close proximity of

hairs to soil particle surfaces results in P fluxes that are substantially more influenced by hair

diameter and curvature. Comparing mean streamline lengths relating to root surface and root

hair P fluxes confirmed that, dependent on time point, streamline paths were approximately

5 − 9% longer for the root surface. Additional insight was conferred by the dynamic nature

of the error bounds on the mean measure of soil surface to root/root-hair ratios. During the

early stages of uptake variation was high, since diffusion in the fluid phase was interacting

dynamically with the P binding on soil particle surfaces (i.e. the diffusion profile in soil-pore

fluid, driven by uptake, had begun to influence soil particle surfaces, but the binding reactions

had not yet reached equilibrium.) Also evident from Figure 5.25 was a period of adjustment

in Ca values (via particle to particle interactions) in the 2 − 3h range, after which equilibrium
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Figure 5.25: Consolidated simulation results (over 10h). Left axis indicates cumulative P up-
take, plotted separately for root surface and root hairs, withCa,0 values corresponding to phos-
phate indices P1, P2 and P3. Right axis shows ratios of polyline distance between groups of
streamline start points (on soil surfaces) and groups of corresponding end points (on root and
root hair surfaces, see Figure 5.17), where streamlines follow maximumCl concentration gradi-
ents (shown in Figure 5.24-B). Plotted points are mean values for all sets, calculated separately
for root and root hairs (with standard error in means indicated by error bars.)

was reached across the entire soil-pore and soil-surface domain.

5.5 Discussion

For the first time, it has been possible to bring together the most sophisticated non-invasive

imaging techniques and mechanistic uptake models from the literature, completing the work-

flow from living plant in real soil to estimates of uptake based on explicit simulation. Though

other studies have considered these two domains individually, either elucidating root mor-

phology and architecture, or deriving models, this study has shown the explanatory power

of bringing both capabilities together. The ability to visualise root architecture non-invasively

is an important step in phenotyping for improved root traits, but the addition of modelling

also allows us to understand which of these varied traits might be most effective in improv-

ing uptake efficiency, and thus yield. Further to generating highly useful data, this study also
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serves as a proof of concept, and an encouragement to more researchers to combine imaging

and modelling to plant root study at a variety of length-scales.

The study achieved first-time imaging of root hairs in field soils at high resolution, through

the combination of a novel growth protocol and the use of a synchrotron X-ray source. The

short acquisition times possible due to the very high flux (as compared to benchtop systems)

are of great benefit in imaging an unstable system such as roots in soil. By reducing acquisition

time to the minute scale as opposed to the hour scale, high quality data were attainable which

allowed root hairs to be seen clearly enough to be manually segmented. This allowed root

hairs and their interactions with the soil to be seen clearly for the first time in the undisturbed

condition. The undisturbed nature of the method also yielded root hair density measurement

greatly in excess of the characteristic range of values estimated for soil-grown roots using root-

washing approaches. The data allowed parameterisation of a numerical P uptake model with

real hair and soil interaction geometry for the first time. Understanding of mechanical inter-

actions and uptake characteristics may have a direct future role in breeding of new varieties

with improved hair traits for poor P environments.

The degree of complexity observed in hair/soil interactions does raise challenges in character-

ising such behaviour by developing a taxonomy for describing interactions. Hairs in the data

were easy to identify and trace when clearly traversing larger pores, but where hairs came in

close proximity with soil, it often became difficult to trace them reliably. In cases where such

hairs can be clearly seen, defining the nature of the apparent ‘contact’ between hair and soil

is complex, since the presence of water films between roots and the soil means that the true

contact may not in fact be made, even where hairs follow the contour of a soil particle or infil-

trate a fissure. Considering that effective automated extraction algorithms are only starting to

be developed for coarse roots, it appears that it may be some time until automated image pro-

cessing for extraction of hairs from data is possible. In the meantime, now that hairs are clearly

able to be visualised using certain X-ray CT setups, a pressing task is qualitatively defining the

various possible interactions in a robust manner.

5.6 Conclusions

This study has demonstrated that in situ imaging of living roots in soil is possible using

SRXTM, and that consequent resolution of individual root hairs with respect to soil aggre-

gates can be achieved. Root hair interactions with the rhizosphere soil were described in-situ

for the first time, with the derived figures for hair density suggesting that current estimates

for soil-grown roots (acquired by means of root washing) represent a substantial underestima-

tion. Image segmentation approaches (including those developed in Section 2.2) were used
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to generate a 3D model of root hairs and soil aggregates, to which a rhizosphere-scale P up-

take model was applied and solved. This approach substantially improved upon existing P

uptake models, showing that P uptake by root hairs is a rapid process, occurring on the same

timescale as P uptake by the root. Quantification of the zones from which root hairs extract

P from the soil suggests that the majority is extracted from soil surfaces immediately adjacent

to root hairs, with very little acquired from particle surfaces oriented away from them. These

results have major implications regarding how root hairs should be modeled at the plant and

crop scale, and indicate that previous modeling studies should be re-visited using an imaging-

based, multi-scale homogenization approach. This research also opens up possibilities for as-

sessing how different surface binding reactions and geometries in the soil might influence

different rhizosphere processes.
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Chapter 6

Towards a paradigm for image based

modelling of hairs grown in non-ideal

soil states

Chapter 5 demonstrated the feasibility of establishing a workflow incorporating novel SRXCT

imaging and image-based modelling. However, towards the goal of a larger scale comparison

of genotypes and soil conditions, the workflow was extended to include non-ideal soil states.

The comparatively dry soil conditions for which the data in Chapter 5 were acquired meant

the absence of a macro-pore fluid fraction. In this chapter, the same growth assay and SRXCT

imaging protocols were applied to samples with higher soil water content, revealing issues

with hair detection similar to those often encountered in root detection at larger sample scales

[Menon et al., 2006]. Rice genotypes provided by collaborators at JIRCAS were assessed along-

side the wheat genotype used previously during imaging at the TOMCAT beamline of the SLS

synchrotron in Villigen, Switzerland. Qualitative analysis of the data revealed the necessity

of applying either contrast enhancement methods (such as those developed in Chapter 3) or

growth modelling approaches, due to concealment of hair segments in pore water regions. A

hair growth modeling algorithm (HairGrower) was developed in order to ‘complete’ partially

visible hairs according to a stochastic regime, taking into account the length distribution of

soil-grown hairs, and the rhizosphere structure revealed by SRXCT imaging. Finally, a mesh

convergence test was carried out in order to determine optimal parameters for finite element

(FE) mesh generation. The entire workflow represents a robust scheme to prepare geometries

suitable for future explicit modelling studies, even in cases where soil water states are sub-

optimal for hair detection. An overview flowchart of the entire plant to data workflow may be

found in schematic form in Appendix 8.7.
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6.1 Introduction

Chapter 5 demonstrated that in reconstructed data from SRXCT of samples where no bulk

macropore water fraction was present, hairs were easily identifiable in the macropore domain.

More challenging to identify were growth paths in regions where hairs made extended con-

tact with aggregate surfaces. In these hair/soil coincident regions, phase contrast effects made

differentiation between soil/pore boundaries and both hair/pore and hair/soil boundaries

difficult to achieve reliably. Automated tracing of such structures is a highly challenging prob-

lem in the computer-vision domain, variants of which also exist for substantially simpler cases

of feature extraction from µ-CT data of roots from real soils. By way of example, RooTrak, a re-

cently published algorithm for automated extraction of coarse roots from µ-CT data [Mairhofer

et al., 2012], has proven to be only partially effective at unsupervised extraction of root archi-

tectures of first and second order roots. In SRXCT data, the level of complexity of the images

is far greater than those for which RooTrak and similar algorithms are designed, suggesting

that highly sophisticated, novel approaches from within the computer vision domain will be

necessary for development of such methods in future.

Furthermore, water content in soils can vary greatly across temporal and spatial domains, with

corresponding influences upon nutrient acquisition by plants [Carminati and Vetterlein, 2012].

Therefore, whereas the study in Chapter 5 investigated root hairs in the absence of macropore

water, it is of significant interest to be able to image and model hairs across conditions of dif-

fering pore-water content. Such imaging considerably heightens the level of complexity in the

image-processing domain, since the attenuation coefficients of water and non-aerenchymous

plant matter are extremely similar, with the likely result that contrast between hairs and bulk

fluid will be minimal, even given the excellent spatial resolution available using synchrotron

SRXCT methods (see Chapter 5).

In order to assess the performance of X-ray CT imaging in such conditions, an experiment was

devised to grow wheat and rice (Oryza sativa) in partially flooded soil conditions, according to

the following guiding hypotheses:

• It is possible to image rice (Oryza sativa) at the rhizosphere scale in a similar manner as

already demonstrated for wheat.

• It is possible to discern root hairs in reconstructed data for samples in which the soil

macropore space is at least partially filled with fluid.

• Novel methods in the image-processing domain can be used to give greater insight into

hair nutrient uptake processes.
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• Enhancements to the image-based modelling protocol can make computation more tractable

and verify accuracy.

6.2 Preparation and imaging of plant samples

6.2.1 Materials and methods

Plant growth

Three plant varieties were chosen for investigation, one wheat genotype (Triticum aestivum cv.

Santiago) and two contrasting rice genotypes provided by collaborators at JIRCAS, (Oryza sativa

cv. Varyla and Oryza sativa cv. Sadri tor Misri), the latter demonstrating markedly better per-

formance in low-P conditions according to field trials conducted by collaborators at JIRCAS.

Following the protocol outlined in Section 5.3.1, samples were grown suitable for imaging at

the TOMCAT beamline on the X02DA port of the Swiss Light Source, Villigen, Switzerland

[SLS]. The soil used was a low-P Eutric Cambisol of the Denbigh series, sourced from a field

site at the University of Bangor, Gwynedd, UK (53◦13′54′′, 4◦0′54′′). Following autoclaving

and a 72h desiccation period at 23◦C, the soil was sieved between an upper bound of mesh

aperture 1.18mm and a lower bound of 0.8mm to produce quasi-homogenous aggregates. Soil

was introduced to clusters of 7× 1ml syringe barrels, prepared as previously with foil collars

to act as root guides. Seeds were heat-treated at 55◦C for 72h in order to break dormancy,

then pre-germinated on wetted filter paper at 25◦C for 72h. Seeds were planted to the growth

chambers, with a 15mm depth of soil covering each seed, followed by 5ml of water applied

to the soil surface. Hydration was maintained via capillary rise from a tray of water, with

an additional 3ml top-applied every 72h in order to maintain the soil at a high water content.

Plants were grown for varying periods in a controlled growth environment (Fitotron SGR,

Weiss-Gallenkamp, Loughborough, UK). Day conditions were 16h at 23◦C and 60% humidity,

night conditions were 8h at 18◦C and 55% humidity, with humidity and temperature both

ramped up and down between states over 30 minute periods. In total, 6 replicates of Santiago,

6 replicates of Varyla and 8 replicates of Sadri tor Misri were prepared.

Imaging at 1.5µm resolution

Samples were transported for imaging at the SLS, following which a number were prepared

and imaged according to the protocol outlined in Section 5.3.3. Due to the constraints of avail-

able beamtime, it was necessary to subsample particular samples of interest prior to imaging.
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Details for the chosen samples are tabulated in Table 6.1. A single syringe barrel for each of

these samples was chosen based on a two stage criterion stipulating that the barrel in ques-

tion had to contain a root, but must also include a section for which the root was not growing

coincident to the barrel wall. For suitable samples, the position of the region of interest (ROI)

was recorded relative to a datum point, in order to allow adjustment of the sample stage to

the correct height prior to imaging. All growth chambers were dismantled and the resulting

discrete barrels assessed for imaging according to this protocol. A total of 10 datasets were

acquired in this manner.

Table 6.1: Growth conditions for synchrotron samples

ID Species Genotype Growth (d) Imaging resolution (µm)

1 Oryza sativa Varyla 12 1.5
3b Oryza sativa Varyla 12 0.6
3 Oryza sativa Varyla 12 1.5
6 Oryza sativa Sadri tor Misri 12 1.5
8 Oryza sativa Sadri tor Misri 12 1.5
17 Triticum aestivum Santiago 12 1.5
19 Triticum aestivum Santiago 12 1.5
20 Triticum aestivum Santiago 12 1.5
21 Oryza sativa Varyla 20 1.5
22 Oryza sativa Varyla 20 1.5
24 Triticum aestivum Santiago 20 1.5

Imaging at 600nm resolution

The rapidity of the reconstruction workflow at TOMCAT allowed single x, y slices of acquired

data to be visualised < 10min following the end of each scan. This presented the potential

for registering the root axis position within a dataset by measuring the offset in x and y axes

required to align the root surface or centreline with the axis of stage rotation (See Figure 6.1.

In such a manner, ROI scans of root and rhizosphere could be acquired at higher resolution, in

order to uncover finer-scale root, hair and soil structures. This procedure was carried out for a

Varyla sample (3) which had been identified during scanning at 1.5µm as having a particularly

advantageous water content and soil structure for hair visualisation. The beamline optics were

adjusted for imaging at a spatial resolution of 600µm, following which the sample was re-

scanned.

6.2.2 Results
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Figure 6.1: Schematic showing the method for registering major root-axes for higher-resolution
ROI scanning. Using FIJI, the positions of both centre of rotation (a) and the root axis (b) are
determined. Shifting the sample stage through vector ~ab then centres the ROI on the root axis.
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Data were quantitatively analysed as in Chapter 5 using FIJI. Figure 6.2 shows representative

cross sections through all data acquired at 1.5µm resolution. Compared to the data consid-

ered in Chapter 5, the water content of the soil was visibly higher. The macropore domain

was partially filled with fluid phases, and fluid regions were coincident to root surfaces in

many instances. Figure 6.2-G shows that for data of sample 2, the entire root circumference

was in contact with fluid, such that the root surface was indistinguishable. In this instance,

as discussed previously, only the contrast between fluid and cortical gas phases allowed the

position of the root to be identified.

Figures 6.3 and 6.4 show data acquired for a Varyla sample (3) at 600nm resolution. Whereas

in data considered in Chapter 5, hairs were clearly visible in macropores, and often visible

in contact with aggregates, the high macropore fluid content of the soil in data considered

here served to conceal hair paths. In Figure 6.4, hairs are highly visible in the gas phase, but

immediately become indistinguishable from fluid one the hair transitions from one phase to

the other.

The data acquired at 600nm also clearly reveal the heterogeneity of soil aggregate microstruc-

ture. Figure 6.5 shows four different soil aggregates each with distinctive internal texture and

intra-aggregate pore structure characteristics. Whereas some aggregates have a structure that

appears highly homogenous in terms of both attenuation coefficient and porosity at the detec-

tion threshold of the data (Figure 6.5-D), others indicate the presence of more complex combi-

nations of constituent phases (Figure 6.5-A).

6.2.3 Results

The data clearly demonstrate the quantity and complexity of rhizosphere morphology infor-

mation that is accessible using SRXCT techniques. Root structures down to the level of the

single cortical cell were clearly visible (Figure 6.3), and the aggregate and fluid distributions

around the root could be resolved in unprecedentedly fine detail. However, the multi-phase

complexity raises significant challenges as to the optimal way to process data in order to an-

swer pertinent questions about rhizosphere processes. The presence of mixed gas and fluid

phases in the macropore space serves to shield root hairs from view. This deleterious contrast

between hairs and fluid limited the use of hair segmentation techniques used in Chapter 5, to

a class of hair segments positioned fully within the gas phase. In order to prepare data for

image-based modelling routines, a more sophisticated approach to hair characterisation was

thus necessary. The following section is concerned with development of such a workflow.
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Figure 6.2: Cross sections of primary roots: (A) Varyla, 3 (B) Sadri tor Misri, 6 (C) Sadri tor Misri,
8 (D) Varyla, 1 (E) Santiago, 17 (F) Santiago, 19 (G) Santiago, 20 (H) Sadri tor Misri, 21 (I) Santiago,
24

162



Figure 6.3: Data for sample 3 (Oryza sativa cv Varyla), acquired at 600nm spatial resolution.
Aerenchyma structure is clearly visible, as are hairs initiating from the root epidermis. A fluid
phase is distinguishable in inter-aggregate spaces.
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Figure 6.4: Panes A-D show root hairs in sample 3 (Oryza sativa cv Varyla) transitioning be-
tween gas and fluid phases. The hairs become indistinguishable in fluid due to the matched
attenuation coefficients of water and fluid-filled cells
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Figure 6.5: Panes A-D show different aggregate structures in sample 3 (Oryza sativa cv Varyla).
Whereas some (A) have a highly homogenous intra-aggregate attenuation coefficient and pore
distribution (given the imaging contrast and resolution), others demonstrate substantially
more complex micro-structures
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6.3 An improved paradigm for image-based modelling using SRXCT-

derived rhizosphere data

The primary requirement in processing any CT data for explicit model parameterisation is the

accurate classification of relevant features in 3D, allowing the generation of meshed geometries

to which suitable equations can be applied in the simulation domain [Keyes et al., 2013a]. For

samples containing a mixture of gas and fluid in the macropore domain, the classification of

features represented two particular challenges in addition to those considered in Chapter 5:

• Achieving multiphase soil, gas and fluid segmentation

• Remedying the paucity of image contrast between root hairs and the fluid phase.

This section first considers the segmentation of fluid and soil phases, following which exten-

sive treatment will be given to a novel, image-based paradigm for explicit root hair growth

simulation. The preparation of geometries for P-uptake modelling in unsaturated conditions

will thus be described.

6.3.1 Methods

Definition of a candidate sample and region of interest

Qualitative analysis of datasets revealed that in most cases, fluid content was too high to allow

determination of even incomplete hair paths. Of the data acquired at 1.5µm resolution, only

that pertaining to sample 3 (Oryza sativa cv Varyla) had a majority of visible root length both

unaffected by deleterious edge effects, and with an apparent majority of surface area not in

direct contact with fluid or soil phases. In the regions where gas-filled macropore space was

coincident to the root surface, full and partial hair paths were clearly discernible. On this

justification, the dataset was chosen as a basis for workflow development.

A region of interest (ROI) was first sub-selected for image processing. In order to remove

regions affected by edge effects, and to generate a geometry which was tractable for feature-

extraction and FE meshing processes, a sub-region was cropped from the raw data represent-

ing a root length of 1.5mm, centred around the mid-point of the dataset in the z axis. Because

the major root axis was close to the edge of the dataset in the x axis, it was necessary to crop

to within 225µm of the root surface in the positive x direction. However, in the negative x

direction, and in both directions along the y axis, 1mm of rhizosphere extending radially from

the root surface was maintained. Given that the maximum root hair length determined in ex-

perimental data was 424µm (Appendix 8.3), it can be considered that the ROI entirely enclosed
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the root hair zone for ≈ 300◦ of the root circumference (as shown in Figure 6.6). The resulting

x, y, z dimensions of the dataset were (1155× 1791× 1000).

Multi-phase segmentation of air, fluid and soil regions

The observed structure of the rhizosphere in the acquired data were more complex than for the

data considered in Chapter 5, due to the presence of mixed gas/fluid phases within the macro-

pore domain. Figure 6.7 demonstrates the significant difference in rhizosphere morphology

elucidated by comparing data from the two imaging sessions sessions. In Figure 6.7-B, the

macropore domain is entirely gas filled, whereas in Figure 6.7-A, it is only partially gas-filled,

with the remainder consisting of a mixed fluid/soil phase. In some localised regions, the fluid

appears near-homogenous, whereas in others, a heterogenous texture indicates a suspension

of higher-density phases.

Robust segmentation of soil phases from µ-CT and SRXCT data is a non-trivial problem, as dis-

cussed in depth in Chapter 2. As part of this thesis, an algorithm was successfully applied to

segment soil and macropore phases from µ-CT data [Keyes et al., 2013a]. Recently, others have

developed alternative schemes for minimisation operator bias in soil segmentation, including

techniques based on gradient masking [Schlüter et al., 2010] and indicator kriging [Houston

et al., 2013]. Though such methods improve upon user-supervised approaches, they all con-

sider the bi-level segmentation case, such that as presented, none was suitable for extraction

of multiple phases from the hydraulically sub-optimal SRXCT data considered here.

Because the grey-level distribution of the data considered is bi-modal, with a lower intensity

peak representing the gas phase (Figure 6.8), voxels for aggregates, roots and fluid phases are

all encoded within a single, higher-intensity peak. Because image segmentation methods tak-

ing into account grey-level value alone will fail, additional operators that take into account

morphological characteristics of the data must be used [Schlüter et al., 2010; Vogel and Kret-

zschmar, 1996].

To this end, a trainable segmentation approach was used, developed by Kaynig et al. for

the classification of neurons in serial-section transmission electron-microscopy (ssTEM) data

[Kaynig et al., 2010]. The approach allows the user to classify regions of pixels belonging to a

number of distinct material classes (fluid, air, soil) within a single slice of the RAW grey-level

CT data, and uses a random forest method, following Breiman, for classification of voxels in the

entire dataset [Breiman, 2001]. The algorithm uses a combination of well-defined image filters

(i.e. the difference between two Gaussians, the local gradient given by Sobel filtering and the

computation of 2x2 Hessian matrices) to define a range of descriptive parameters for each im-

age pixel. The user trains the random forest classifier by manually defining sample sets of voxels
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Figure 6.6: The ROI defined for image-processing. The dotted line indicates a distance of
≈ 425µm from the root surface, this being the length of the longest hair in the validation data.
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Figure 6.7: Comparing ROIs from data in sample 3 (A) and the wheat sample considered in
Chapter 5 (B), the difference in macropore fluid characteristics can be seen. Arrows show
representative regions of macro-pore fluid.

Figure 6.8: A greylevel histogram of the ROI demonstrates why segmentation methods reliant
on global greylevel classification are unsuitable. Whereas the lower intensity peak (red re-
gion) encodes voxels representing the gas phase only, the fluid, root tissue and soil phases are
encoded together within the higher intensity peak (blue region).
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for each material class. The statistical method of bootstrapping (sampling with replacement) is

used to parameterise the classifier, using the descriptive parameters of each user-defined pixel

set to establish conditions determining the class to which a given test voxel is most likely to

belong. The random forest algorithm is then applied to the entire dataset, allocating every voxel

to the most probable parent class.

The specific application of the procedure to tri-phase segmentation in this work was to per-

form two distinct classification steps. First, the algorithm, implemented in FIJI, was used to

differentiate between gas and non-gas phases, with the resulting non-gas region then being

re-processed in order to separate the fluid from the solid phase. Figure 6.9 shows the stages

of this routine. Median filtering with a radius of 6 voxels was applied following each segmen-

tation stage in order to remove speckling artifacts in the classified results, whilst preserving

gross surface topology. Distinct, binarised 8−bit RAW files were thus generated for the soil

and fluid phases.

Segmentation of roots and root hairs

Visible hair lengths were segmented using AVIZO 6 software, according to the protocol de-

tailed in Section 5.3.4. Figure 6.10 shows the range of possible cases for hair interaction with

soil and fluid phases. Of these, two hair sets were defined, one for which the entire length was

visible (HFV ), as shown in Figure 6.10-D, and the other for which only part of the hair length

was visible (HPV ), as shown in Figure 6.10-A. The set of hairs with no visible length was not

considered in this case, (i.e. hairs that initiate in positions where fluid and/or soil are coinci-

dent to the root surface), as shown in Figure 6.10-C. Also excluded from consideration were

hair segments emerging from the fluid phase for which no (Pepidermal) could be determined, as

shown in Figure 6.10-B. These were excluded on the basis of two factors:

• Only one such hair was observed during qualitative analysis of the dataset.

• Such hairs introduce significant added complexity to the virtual hair growth stage con-

sidered later. An algorithm is described for ‘growing’ hairs with explicit reference to soil

structure, but predicting a reverse path would require the added constraint that the hair

path must track back to a root surface. Including such a constraint whilst maintaining

stochasticity and a constrained length distribution is significantly more complex than it

is for the ‘open-ended’ hair growth case. Though their inclusion is a clear objective for

future work, such cases were not considered here.

For hairs in the set (HPV ), the cartesian coordinates of initiation points on the root surface

(Pepidermal) and points at which hairs transitioned to bulk fluid (Pinterface) were recorded ex-

plicitly in a CSV file for later use in a simulation procedure. Distinct, binarised 8bit RAW files

were thus generated for hair sets (HFV ) and (HPV ).
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Figure 6.9: The trainable segmentation algorithm is applied to raw data (A) to classify solid and
fluid phases as distinct from gas (B). The resulting region (C) is then re-classified to separate
the gas and fluid phases (D) leaving isolated soil regions (E). Binarising and recombining the
soil and fluid phases results in the output geometry (F).
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Figure 6.10: Hair path characteristics fall into one of a number of classes, including (A) hairs
that cross macropore space, enter fluid and do not re-emerge, (B) hairs that cross macropore
space, enter fluid and do re-emerge, (C) hairs that are entirely within the fluid phase, (D) hairs
that are entirely within the gas phase.
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Roots were segmented within AVIZO 6, using a semi-automated method combining man-

ual classification of root cross-sections and an interpolation procedure. Using a Cintiq 22HD

graphics tablet (Wacom Co. Ltd., Saitama, Japan), primary and lateral root cross sections were

classified manually at a slice spacing of 20 voxels in the data z axis. An inbuilt interpola-

tion algorithm within AVIZO 6 was then used to generate a 3D volume with a surface fitted

to maintain a smooth surface topology following the in-slice user-defined boundaries. The

resulting volume was exported as a binarised 8bit RAW file.

Combining segmented regions into a master geometry

After definition of necessary phases (soil, fluid, roots, visible root hairs), the datasets were

combined to generate a master geometry suitable for:

• The quantification of rhizosphere properties (i.e. volume fractions, surface areas, wetted

hair length).

• The parameterisation of 3D regions impermeable to hairs (soil, roots), allowing explicit

consideration of mechanical impedance effects in a virtual hair growth model.

• Generation of FE meshes, to allow explicit numerical modelling of nutrient acquisition

by hairs and roots.

Figure 6.11 shows a volume rendering of the resulting master dataset, with cutaways to show

internal root structure and soil phases.

Quantifying key rhizosphere morphology parameters

The master dataset can be used to quantify a range of rhizosphere structural properties. Vol-

ume fractions of soil aggregates, gas, macropore fluid and roots can be calculated by counting

voxels belonging to each phase. Areas of coincidence are also estimated between different

phases using the following approach:

• The two phases for which coincidence is to be quantified are extracted from the master

dataset as discrete, binarised regions (i.e. fluid and root in Figure 6.12-A).

• Within FIJI, a binary dilation operator is applied to one of the regions, adding a 1-voxel-

deep layer to the entire surface, such that a single voxel overlap exists across coincident

regions.

• Applying a logical AND function to the two regions leaves only the coincident surface

region in the form of a ‘shell’ of a single voxel thickness (Figure 6.12-B).
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Figure 6.11: 3D rendering of the output from image segmentation procedures, with cutaways
to show features. Hairs shown are from sets (HFV ) and (HPV ). Fluid is only shown in one
half of the soil region. Root surfaces have been partially cut away to show internal structure of
aerenchyma and stele.

Figure 6.12: Schematic showing the procedure for definition of coincident surface area between
different phases. (A) The fluid region is dilated by a single voxel, with a logical AND then
applied between fluid and root voxels. (B) The result is a single voxel shell which can be used
to estimate contact surface area.
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Figure 6.13: Figure showing the region of the root surface which is directly coincident to either
soil or fluid phases (red). The hairs are generated using the HairGrower algorithm described
in Section 6.4.

In this manner, the surface area of coincident voxel regions can be both visualised and quan-

tified, allowing parameters such as the wetted soil and root surface area to be reported. For

the root length shown in Figure 6.11, Figure 6.13 shows the region of the root surface directly

coincident to either soil or fluid phases. Over the 1.5mm root length considered in the region

of interest (ROI), 32.15% of the total root surface was found to be in immediate contact with

soil and water phase. In this region, the determination of hairs was not possible. Along the

root length, a total of 276 hairs were classified, of which 221 were only partially visible due

to coincidence with macropore fluid, giving a total density of 184hairs/mm. If the same hair

density exists over the fluid and soil coincident surface of the root, the root hair density might

be as high as 271hairs/mm, far in excess of any estimates from root washing studies.

6.4 Development of HairGrower, a novel algorithm for virtual hair

growth

6.4.1 Classifying hairs in poor contrast situations

As discussed in Section 6.2.2, it was impossible to resolve hairs in the data once they enter
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regions of bulk macropore fluid. The problem is one of image contrast rather than spatial reso-

lution, such that even in data acquired at 600nm resolution, it was not possible to differentiate

between hairs and fluid with the naked eye. Three hypothetical solutions to the problem are:

• Enhance contrast by using chemical manipulation of plant or pore water to improve the

inherent difference in attenuation coefficients between fluid and root hairs.

• Enhance contrast in the imaging domain through exploitation of phase contrast effects,

including full phase retrieval.

• Use computational approaches in the image-processing domain to complete missing

components of hair architecture.

A trial was carried out using an adaption of the a contrasting protocol developed in Chapter 3,

with imaging carried out at the SRXCT beamline at the DIAMOND light source at Harwell,

UK. Hardware limitations meant that samples received much greater doses of ionising radi-

ation than in previous experiments (see Appendix 8.4). This resulted in a degree of cortical

damage and motion artifacts which precluded any meaningful assessment of effectiveness in

this case. Robust assessment of phase-contrast applications in root hair imaging is a primary

aim for future SRXCT imaging experiments.

The remainder of this chapter is given to development of a hair modelling paradigm, Hair-

Grower, which allows the generation of virtual hair completions in data affected by poor con-

trast between hairs and macropore fluid.

6.4.2 Virtual completion of root hairs using unsupervised, computational methods

Though the high volume fraction of macropore fluid in the majority of datasets precludes

meaningful assessment of hair morphology, approaches in the simulation domain can poten-

tially allow models to be parameterised by virtual completion of partially visible hairs. As

discussed in Section 1.5.3, previous approaches to modelling of root systems at scales from the

root hair [Ma et al., 2001] to the entire root system [Diggle, 1988; Leitner et al., 2010a; Lynch

et al., 1997; Pagès et al., 2004] have made use of growth simulation schemes in order to provide

geometric parameterisation for root/soil models. Because these models consider root growth

in a bulk soil volume without a explicitly represented structure, root deflection arising from the

complex physical and biochemical properties of real soils is typically simulated according to a

stochastic regime [Dunbabin et al., 2013]. The stochastic character of root growth is thought to

be determined both by environment and genetics [Postma et al., 2013], and in growth models it

has tended to be tuned using a variety of scalar indices representing the magnitude of various

effects, such as deflection due local compaction and the influence gravitropism on root angles

[Lynch et al., 1997]
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Figure 6.14: For each hair, a certain set of characteristic entities can be defined (A). Pepidermal
is the location at which the hair initiated from the root epidermis. Pinterface is the point at
which the hair transitions from gas to fluid phase. Pfinal is the point at which the hair termi-
nates (concealed within fluid in most cases). (B) Shows the vector ( ~PepidermalPinterface) used to
approximate existing length and direction.

As seen, data acquired using synchrotron µ-CT contains highly detailed information regard-

ing the spatial arrangement of soil phases, macropore fluid, major root axes, and to a degree

(dependent on macropore fluid characteristics), the paths of fully and partially visible hairs

in the rhizosphere. Problematically for image-based nutrient uptake modelling, in which the

fluid provides the ion transport continuum between bound soil nutrients and plant uptake sur-

faces, the inability to resolve hairs in fluid means that only hair lengths that do not contribute

to uptake can be considered. In the absence of a hair growth simulation procedure, the only

models that could be parameterised would be those considering uptake by root surfaces alone,

or by hairs of the set (HPV ) in a fully saturated regime (as considered in Chapter 5). Though

this is a standard assumption in explicit models [Barber and Silberbush, 1984], it would be

preferable to be able to combine the fine 3D structural insight afforded by synchrotron imag-

ing with the benefits of virtual root modelling. In future, prediction of P uptake characteristics

can then be achieved explicitly at the hair scale for non-idealised saturation conditions.

Analysis of the data showed that for the ROI considered, 80.0% of hairs were only partially

visible due to coincidence with macropore fluid. However, it was feasible to quantify the

length of each hair in the set (HPV), as well as the coordinates of each epidermal initiation point

(Pepidermal), and the corresponding point at which the hair enters the fluid phase Pinterface
(see Figure 6.14). In this manner the spatial distribution of all partially visible hairs on the

root surface could be defined, as well as the existing length (Lexisting) and an approximate

direction vector of growth at the point of fluid entry for each hair ( ~PepidermalPinterface). Though

any number of genetic and biochemical factors could ostensibly be considered, the remaining

parameterisation requirements for a minimal model of physical interactions are:

• The manner in which hairs deviate as a result of mechanical interaction with the major
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component phases (soil aggregates, fluid, gas) of the rhizosphere.

• The final length (Lfinal) to which each hair must be grown, such that a required growth

length for each hair (Lvirtual) can be defined as Lvirtual = Lfinal − Lexisting.

By defining a value of Lvirtual for each hair, together with a set of rules governing the nature

of interaction with different rhizosphere phases, growth of a virtual hair set within a suitable

computational environment could be achieved.

Setting up the growth model

The growth algorithm was written in MATLAB (Mathworks, Natick, Mass, US), selected as a

high-level environment facilitating straightforward prototyping and debugging of code during

development. The top-level overview of the algorithm is as follows:

• Import or define all necessary parameters, including (i) initiation and termination points

of partially-visible hairs, (ii) experimentally determined full hair lengths, (iii) soil, root,

water and air phases as 3D entities, (iv) parameters to determine stochastic growth pro-

cedure.

• Fit a distribution to the experimental hair length data, then use survival analysis sam-

pling to apply a discrete value of Lvirtual to each hair.

• Use a stochastic growth routine to define a virtual continuation path for each hair, such

that the final total length matches the value of Lfinal defined via survival analysis. The

growth path should take into account necessary deflection around soil aggregate and

root phases.

• Write the virtual continuation paths of all completed hairs to an output file suitable for

meshing as an input for numerical modelling.

As with other virtual growth paradigms, the design of the algorithm follows a modular form,

such that later improvements to various processes can be added or substituted in. The opera-

tion of the algorithm is now described in detail (the entire code can be found in Appendix 8.6).

Parameterising the nature of physical hair interactions with the rhizosphere.

To most closely approximate the real growth characteristics of hairs, observations from the

SRXCT data were used to guide algorithm design. Qualitative analysis of root hair data from

the TOMCAT beamline indicated the following characteristics of root hair and rhizosphere

interactions:
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• In the macropore domain, SRXCT data suggested that hairs are most often found to cross

pores without gross deviation. This is likely a consequence of the uni-axial nature of hair

growth, driven as it is by radially constrained turgor pressure and tip-focused deposition

of new cell wall material [Gilroy and Jones, 2000; Sieberer et al., 2005]. It should be noted

that in vitro de-polymerisation of endoplasmic micro-tubules (EMTs) has been observed

to cause waviness in hairs of Arabidopsis thaliana [Sieberer et al., 2005], and such EMT

array regulation may be responsible for the curling of hairs around rhizo-bacteria which

represents the initiation of symbiotic nodule formation in leguminous plants [Esseling

and Emons, 2004; Hadri and Bisseling, 1998; Kijne, 1992]. However, for rice and wheat

grown in sterilised soil, such influences on hair morphology can be precluded.

• When hairs make contact with soil aggregates, a complex array of morphologies can re-

sult. In Chapter 5, it was observed that once a hair contacts the surface of an aggregate,

the impedance to growth necessitates deviation, following which the hair either re-enters

the macropore space, or maintains contact with the aggregate, following the surface pro-

file. A single hair can make a number of such interactions with discrete aggregates.

In the absence of a temporally resolved study, it unclear is to what extent the observed mor-

phology of a hair represents the path actually transcribed by the tip during growth, since water

and soil movement may alter the position of a hair subsequent to development. It is conceiv-

able that a hair grown in saturated macropore space could be deposited against an aggregate

surface via hydraulic effects (i.e. surface tension) if the fluid later drains away under the influ-

ence of redistribution processes. What is nonetheless clear is that hair pathways are confined

to either the macropore domain, or, in a minority of incidences, intra-aggregate cracks. It fol-

lows that a hair growth model which explicitly considers hair/aggregate interactions should

constrain growth to within pore spaces of at least the diameter of the growing hairs.

Parameterising hair length distributions

An important parameter requiring external validation is the length to which hairs should be

grown during a growth simulation procedure. Because only partial length data is gained from

analysis of the CT data, it is necessary to estimate the required values of Lfinal for each hair

in the set (HPV ) using a complementary methodology. Various studies in the literature have

estimated mean hair lengths using phytagel assays or washed root segments [Dittmer, 1949;

Haling et al., 2013], but have not reported the distribution of lengths in the sample set. At

the root system scale, models have been similarly parameterised using measurements taken

from detailed drawings of root systems acquired in the field via planar sectioning [Kutschera,

2009; Schnepf et al., 2012]. In this study, it is preferable to parameterise hair length against a

distribution of lengths rather than a mean value, in order to more accurately capture the real

characteristics of hair morphology in the rhizosphere.
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Given known values of Lexisting for the partially visible hair set in the CT data, corresponding

values for Lvirtual can be sampled through the application of survival analysis statistics. Con-

sidering the application of this principle to root hair length, if a distribution of experimentally

derived Lfinal values is known, it is possible to calculate the probabilities of a hair with length

Lexisting reaching different values of L in the range Lexisting ≥ L ≤ Lmax, where Lmax is the

maximum possible value of L.

Validation data for soil-grown hairs can be achieved through image-based measurement of

carefully washed root segments in FIJI, following [Haling et al., 2013]. Root washing methods

entail experimental artifacts as a consequence of mechanical damage [McCully, 1999], but there

is a paucity of alternative validation protocols for soil-grown roots. A protocol for estimation

of hair length distributions following Haling et al. can be found in Appendix 8.3.

Statistical hair length sampling

In order to select appropriate values of Lvirtual for each hair, methods from the field of survival

analysis statistics are used. Survival analysis considers the probability of an individual from

a sample set surviving to a certain age, given that both the individual’s existing age and the

distribution of terminal ages for the population is known. If a distribution of experimentally

derived Lfinal values is known, it is thus possible to sample completion lengths (Lvirtual) for

each hair in the set, such that the distribution of resulting lengths matches that of the validation

data. Though it would be feasible to calculate the mean of the validation data, and apply this

same value of Lfinal to every hair, the use of a distribution allows for a consideration of hair

morphology more closely representing the real condition. Input parameters necessary for the

application of survival analysis are:

• An array containing (Pepidermal) and (Pinterface) coordinates for each visible hair section

in the segmented CT data.

• An array of experimentally derived hair lengths.

The first stage is the estimation of discrete existing hair lengths (Lexisting,n) using a trignomet-

ric, straight-line approximation between Pepidermal,n and Pinterface,n. Because hairs in macrop-

ore space are observed to have near-zero tortuosity, this is considered a reasonable assumption.

In order to generate a continuous probability distribution from the experimental data, allowing

application of survival analysis theory, characteristic parameters α and β were fitted in to the

Weibull probability density function (PDF) using MATLAB, defined as,

y = f(l|α, β) = β(
l(β−1)

αβ
)e−(

l
α
)β , (6.1)
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where α is the scale parameter and β is the shape parameter.

Methods from survival analysis were then used to estimate the likelihood of each of the n

hairs in the set (HPV ) reaching a final length (Ltot,n = Lexisting,n + Lvirtual,n), given both the

distribution of final lengths (g(α, β)), and the observed partial length (Lexisting,n). For any

length (l) in the range (Lexisting ≤ l ≤ Lmax), two key entities are defined; the survival function

(SF),

S(l) = P (Ltot > l), (6.2)

and its complementary function, the lifetime distribution function (LDF),

F (l) = P (Ltot ≤ l), (6.3)

which is the probability that a random variable (Ltot) with a known probability distribution

will be less than or equal to (l). This takes the form of a cumulative distribution function

(CDF), which can be computed in MATLAB from the fitted PDF (Equation 6.1). Being the

complement of the survival function, the LDF can also be defined as,

F (l) = 1− S(l), (6.4)

and where the derivative of F (l) can be computed, it is also possible to define the correspond-

ing PDF f(l), where,

f(l) =
d

dl
F (l), (6.5)

The probability (P ) of a hair reaching each length in the range Lexisting ≤ ltest ≤ Lmax, given

a set value of Lexisting is given by first computing a PDF of future lifetime according to the

equation:

P (Lvirtual|Lexisting) =
f(Lexisting + Lvirtual)

S(Lexisting)
(6.6)

Where f(Lexisting + Ltot) is the PDF of (Lexisting + Lvirtual) over the range (Lexisting ≥ ltest ≥
Lmax), according to Equation 6.5.

Using Equation 6.4, S(Lexisting) can be written in the form (1 − F (l)), where as discussed,

(F (l)) is the CDF of (Lexisting). Both CDF and PDF are computed in MATLAB, using the α

and β values derived by fitting Equation 6.1 to the experimentally derived hair length data.

Because each partially-visible hair has a distinct value of Lexisting, it is necessary to define an

individual PDF of future lifetime for each hair.
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Discrete P values were calculated using a FOR loop which iterates over Equation 6.6, using a

1D array of Lvirtual values over the range (Lexisting ≤ ltest ≤ Lmax), with a step size (dx), set

in this instance to (dx = 0.1). Thus a total of (Lmax−Lexisting0.1 ) discrete values of P are calculated.

Randomised sampling of the resulting array allowed a value of Ltot to be selected for the given

hair. The required growth length to be added to the partial hair by the HairGrower algorithm

was then trivially given by,

Lvirtual,n = Ltot,n − Lexisting,n (6.7)

Repeating this procedure for all the hairs in the set (HPV ), defined from the SRXCT data al-

lowed complete definition of the final lengths required to parameterise the virtual growth

procedure which follows.

Full description of the HairGrower algorithm

The hair growth steps of the algorithm are presented graphically in Figure 6.16, using a sim-

plified 2D representation of the real 3D case. Figure 6.15 shows a flow-chart overview of the

algorithm.

The growth algorithm uses a binarised, 3D representation of soil and root phases as a geometric

input (Figure 6.17), allowing the growth to be simulated via explicit mechanical interactions

within the rhizosphere. An 8bit RAW file with voxel dimensions (xCT , yCT , zCT ) is imported

into MATLAB, in which voxels representing root and soil phases have a value of 255, and air

and fluid phases have a value of 0. This is read into a 3D array of size (xCT , yCT , zCT ), such

that each element has a corresponding index value of either 255 or 0. A zero array (dummy)

with the same coordinates is defined, to which are written the hair paths that are the output of

the algorithm.

The growth algorithm functions iteratively on each hair. A step length (Lstep) for each iteration

is defined by the user, though if Lstep ≥ Lvirtual, the step length is automatically defined as

(Lstep = Lvirtual/2). A step number is defined as (nsteps = Lvirtual/Lstep), which is the number

of growth iterations required to complete the hair. The initial growth vector for the hair is

defined as the product of Lstep and the unit vector in the direction of the visible hair segment.

The next stage in the algorithm is to determine in which direction the next iteration should

be made from the initial point (Pinit), relative to the previous line segment. The chosen point

(Pseed) becomes the initiation point for the following iteration, and the process continues until

the number of iterations reaches nsteps.

For the first iteration, Pinit is defined as the hair entry point to the fluid phase (Pinterface).
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The position of Pseed is determined by interrogating a large number (npoints) of test points

(Ptest) for validity of certain criteria. Because the step length is constrained, all test points must

necessarily lie on the surface of a sphere with radius Lstep, centred on Pinit. The placing of

evenly distributed points on a sphere is a well known mathematical problem, since for large

values of npoints, there exists no exact formula allowing the coordinates of the points to be

defined [Kuijlaars and Saff, 1997]. As a result, approximations must be used. Most commonly,

this is achieved by either simulating the equilibrium positions of repelling points constrained

to a spherical surface [Tatham, 2012], or by distributing points along a spiral transcribed on the

surface of a unit sphere [Kuijlaars and Saff, 1997]. Methods based on the spiral approach are

computationally much faster than those requiring simulation, and of these the Golden Section

spiral provides more even packing of points than the Saff & Kuijlaars method, with the added

benefit of accommodatng any number of points. Using this method, a total of npoints points are

defined on a unit sphere, with the coordinates multiplied by (Lstep) and translated such that the

centre of the circle is coincident with Pinit. This provides the coordinates of npoints test points

surrounding Pinit, for which corresponding array values (ψxtest,n,ytest,n,ztest,n) are known.

Sampling of a single point in order to initalise Pinit for the next iterative step is performed

according to the following criteria:

• Points are rejected for which the vector ( ~PinitPtest) forms an angle of more than 90◦ to that

of the vector ( ~PepidermalPinterface). This is to prevent the possibility of a hair deviating by

more than 90◦ from the visible growth direction.

• Points are rejected for which any coordinate is outside the range of the dataset. In other

words, the coordinates of each test point must satisfy all the criteria,

(0 ≤ xtest ≤ xCT ), (0 ≤ ytest ≤ yCT ), (0 ≤ ztest ≤ zCT ) (6.8)

• Points are rejected for which index value satisfies the constraint (ψxtest,n,ytest,n,ztest,n =

255), as defined by the imported SRXCT data, since such points lie within the location of

either soil or root phases.

Un-rejected test points are next grouped according to the angle between the vectors ( ~PinitPtest)

and ( ~PepidermalPinterface). This angle (αtest,n) is calculated for each point, and points then

grouped into four sets:

1. 0◦ ≤ αtest < 15◦

2. 15◦ ≤ αtest < 30◦

3. 30◦ ≤ αtest < 50◦
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4. 50◦ ≤ αtest ≤ 90◦.

The uni-axial, turgor-driven extension of hairs means that growth is likely to continue in a

direction close to the existing orientation, unless mechanical impedance constrains the growth

path. Selection of a new Pseed thus always begins with the set of smallest angle, moving to the

next if the preferred set is empty. If no suitable point exists in any set, hair growth is terminated

and the algorithm moves to consider the subsequent hair. Selection of points within any non-

zero set where npoints > 1 is randomised in order to model the stochasticity observed in real

hair growth [Dunbabin et al., 2013; Postma et al., 2013].

Once a new Pseed has been initialised in this manner, values of elements in the dummy array

that lie along the vector (Pinit to Pseed) are switched from 0 to 255. When all growth steps for an

individual hair are completed, the result is a continuous, skeletonised hair path represented

by elements of value 255 in the dummy array. This array is exported as a RAW file at the

conclusion of the growth algorithm, and the skeletonised paths dilated in FIJI using binary

operators, giving a hair diameter which is correct relative to the spatial resolution of the SRXCT

data.

Building virtual and SRXCT-derived geometries into a single model

Following export of the 8bit RAW file containing skeletons of the virtual root paths, a sequence

of image-processing operations was implemented in FIJI to achieve two objectives:

• Incorporate all phases into one master volume for input to an FE mesh generation process.

• Extract relevant morphological data from the master volume, in order to quantify rhi-

zosphere characteristics relevant to nutrient uptake (such as wetted hair length, wetted

root surface area and volumetric fluid content).

Examples of hair morphologies generated by repeat iterations of the HairGrower algorithm,

using the same parameters are shown in Figure 6.18. The stochastic element of the algorithm

is evident, causing the length and path for each hair to vary over progressive iteration.

Quantifying statistics relevant to P transport in the rhizosphere

In addition to the hair densities and wetted root surface areas quantified in Section 6.3.1, wet-

ted hair lengths were reported for each virtual hair set. As only wetted hair surfaces will have

access to soil P, it is hypothesised that the ratio of wetted/un-wetted hair length might correlate

with hair P uptake. Lengths were estimated by counting voxels of skeletonised hair sets and

applying a scaling factor as described with relation to RSA in Section 4.3.1 of Chapter 4. Voxel

counts for wetted hair segments were acquired in FIJI by applying a logical AND to find the
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coincident voxels between output hair skeletons and the macropore fluid phase region. When

applied to measure total hair length of 10 separate HairGrower iterations, the mean value was

101.95% of that used to initialise HairGrower, at a RSD of < 1% (see Equation 6.9). The voxel

counting method was thus validated for measurement of wetted hair lengths.

The variation in total grown hair length was small, with a relative standard deviation (RSD) of

only 3.6% over 10 HairGrower iterations. Relative standard deviation is given by,

RSD =
x

s
, (6.9)

where (x) is the mean length value of total hair length, and (s) is the standard deviation for the

10 iterations. The small degree of variation observed is partly a result of the random sampling

used to determine hair lengths, and partly due to the small number of hairs in each iteration

that cease extension before reaching (Ltot). The latter condition can occur during the simulated

growth of a single hair if all test values of (Pseed) fail at least one of the criteria for acceptance.

Over 10 iterations of HairGrower, given the total volumetric macropore fluid content of 21.5%,

50% of the total hair length was found to be in the fluid phase. The RSD for total wetted hair

length was 4.1%, compared to 3.6% for the total grown length, suggesting that at 1.5mm root-

section scale, the stochasticity of hair growth does not markedly influence the total hair length

implicated in P uptake. However, when a small sub-segment of the root was considered (as in

Chapter 5), the RSD over 10 iterations increased markedly. The segment had a swept angle of

50◦, aligned with the root centreline, with a radius of 550µm and covering a z length of 0.25mm.

The enclosed volume of rhizosphere was (≈ 1/100) of that enclosed by the master ROI. Over

10 iterations of HairGrower, 43.7% of the total hair length in the segment was found to be in

the fluid phase. RSD values for the total and wetted lengths were 7.9% and 26.7% respectively,

revealing that at length-scale of the segment, an order of magnitude smaller than that of the

ROI, variation in wetted length was substantially greater.

6.5 Discussion and conclusion

By applying an explicit hair growth model, 3D rhizosphere models could be generated. These

improved on the models developed in Chapter 5 by allowing realistic macropore water distri-

butions to be considered, whilst also allowed prediction of virtual hair geometries according

to validated length distributions and a stochastic tip-extension scheme. The growth model

considered the spatial arrangement of soil aggregates and the lengths and growth vectors of

partially visible hairs, in order to capture as much of the known morphology as possible. The

work in this chapter has thus described a modular workflow for acquiring data, processing ex-

tractable structure into 3D geometries, and generating informed estimates of ‘missing’ compo-
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nents according to the best available approximations derived using complementary methods.

Each element of this modular workflow can be improved in future, should more robust method-

ologies be developed. In line with the motivations for Section 2.2, user-invariant segmentation

methodologies are preferable to supervised methods where available. In this work, a review of

the literature revealed a paucity of image-processing methods suited to the soil and hair com-

plexity revealed in the reconstructed data. Future work within the computer vision domain

will likely result in algorithms for multi-phase segmentation and filament tracing in such data,

at which point such methods can easily be substituted into the presented workflow.

Generating 3D models allowed hair statistics to be estimated. Java scripts written for the FIJI

image processing utility allowed automated quantification of hair density, wetted root hair

lengths, wetted root surface area, and macropore water content . Future modelling studies im-

plemented using image-derived geometries will thus be able to relate P uptake characteristics

directly to rhizosphere structure parameters. Using these approaches, it was found that varia-

tion in wetted hair length is sensitive to the length scale considered. A systematic assessment

of different length scales may in future assist in establishing the scale at which heterogeneity

in the rhizosphere must be considered. It may prove possible to establish correlations be-

tween uptake characteristics (as predicted using a numerical modelling regime as laid out in

Chapter 5) and these image-derived parameters, in which case the parameters might be used

to predict nutrient transport characteristics without the need for modelling and the associated

computational resources. Appendix 8.5 outlines the method and results of a mesh convergence

test, applied to a small (200× 200× 200voxel) subset of the 3D model generated in this chapter.

The results established a set of mesh generation parameters necessary for robust application

of the Schnepf et al. model implemented in Chapter 5, in order to inform the use of the FEFree+

meshing algorithm in ScanIP during future modeling studies [Schnepf et al., 2011]. Further-

more, fitting curves to simulation metadata from the Iridis 4 supercomputer cluster allowed

the element count in the meshed geometry to be related to both the time period and memory

resources required for solution of the model.

Although a full comparative modelling study was beyond the scope of this work, acquisition

of further SRXCT data and subsequent analysis using the plant-to-model workflow established

in Chapters 5 and 6 will allow the influence on P uptake of hair morphology, soil structure and

water distribution to be predicted. The structural detail that the workflow reveals will allow

this to be achieved to a greater degree of accuracy than has previously been possible using

idealised models with no explicit consideration of rhizosphere heterogeneity. If the influence

of hair traits on nutrient acquisition can be robustly predicted at the hair scale via explicit
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numerical models, upscaling methods such as homogensation can be applied to improve the

accuracy of models at larger scales. Using such methods, the influence of hairs can be included

non-explicitly in models at the whole-plant RSA scale, themselves parameterised accurately

using using large-scale µ-CT imaging protocols of the kind developed in Chapter 4.
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Figure 6.15: Flow diagram outlining the top-level operation of the HairGrower algorithm.
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Figure 6.16: The steps taken by the HairGrower algorithm to complete a single root hair. (A)
The vector ~PepidermalPinterface is defined. (B) A test array of points is defined around Pinterface.
(C) Points requiring more than 90◦ of deviation are disallowed. (D) A new seed is randomly
selected from the remaining point set, so long as other constraints are met. (E) A new array of
test points is defined. (F) Points corresponding to soil and root phases are disallowed. (G) A
point meeting all validation criteria is randomly selected. (H) Once the full length (Ltotal,n) for
the hair is reached, the 3D path is written to an output file.
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Figure 6.17: Middle slice of the geometric input data for the HairGrower algorithm. Root and
soil regions are binarised with 8-bit grey-level value of 255, whilst macro-pore regions have a
value of 0.
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Figure 6.18: (A) An example of a completed hair population generated by the HairGrower al-
gorithm. For the subregion indicated in red, frames (B-J) show the virtual hair morphologies
for 9 further iterations. The stochasticity of the algorithm is evidenced by the different length
distributions and paths generated despite identical input parameters.
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Chapter 7

Final Conclusions

The work presented in this thesis has considered improvements to existing work in the do-

main of plant root imaging and modelling. A review of the pertinent literature reveals that

both phenotyping and modelling efforts have been hampered by a paucity of methods for re-

liable assessment of root system and soil complexity at a range of scales. The more accurate

understanding of root system traits and the parameterisation of numerical models will be re-

liant on the ability to observe the real arrangement of RSA within the field soil environment.

Existing methods for direct observation either constrain the plant physically, or represent con-

ditions of mechanical impedance and chemistry that bear little relation to those of field soil.

µ-CT techniques offer the potential for non-destructive investigation of plant roots in the real

soil environment. Unfortunately studies often give little technical justification for imaging

and reconstruction parameters, and the system scales considered are dominated by samples in

the 2 − 10cm diameter range. In order to better understand the roles of specific soil and root

structural traits in nutrient acquisition, the ability to investigate both the mature RSA scale and

the rhizosphere scale are important. Robust and well described methods are also necessary in

order to reduce as far as possible the influence of user bias in image analysis.

This thesis has considered the application of novel methods within the µ-CT imaging, digital

image-processing and image-based modelling domains:

Imaging domain

In the imaging domain, new methods have been described for the imaging of unprecedentedly

large root systems of rice (Oryza sativa), and the imaging of root hairs at the µm scale in rice

and wheat (Triticum aestivum). The large-scale imaging protocol extended the sample diameter

range for plant-scale imaging to > 20cm, with good capture of primary roots allowing root
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lengths and angles to be compared between different genotypes. The small scale SRXCT as-

say and imaging protocol has allowed undisturbed root hair morphology to be examined in

vivo within the rhizosphere. A workflow has been developed which allows qualitative anal-

ysis of hair-to-soil interactions, quantification of key hair traits, and the parameterisation of

numerical P uptake models for the first time at the hair scale. At the canonical sample scale of

well-cited µ-CT studies (2− 10cm), mature chemical contrasting methods drawn from clinical

XCT were assessed for architecture extraction for the first time. The methodogy developed was

trialled using two iodinated contrast media, with optimum concentrations determined for use

in plant root µ-CT. Use of the media in conjunction with imaging allowed physiological detail

such as the vascular structure of rhizobial nodules to be revealed for the first time. Calibration

of attenuation coefficient against iodine concentration also suggested that chemical contrast-

ing methodologies might in future be used for temporally resolved detection of preferential

vascular flow in roots.

Imaging-processing domain

Imaging of root hairs in non-optimal soil water states revealed an inability to resolve hair struc-

tures within macropore water. In order to generate geometries which could be used to analyse

the rhizosphere, a paradigm for virtual hair growth was developed, allowing partially-visible

hairs to be completed according to an explicit, stochastic regime. Experimentally derived hair

length distributions of soil-grown roots were used to allow random sampling of specific hair

completion lengths for individual hairs. The model incorporated as much information from

the SRXCT data as possible, including mechanical impedance due to hair-and-aggregate inter-

action, and the existing growth vectors and lengths of partially visible hair segments. Models

generated using this approach were used to predict the influence of length scale on the hetero-

geneity of wetted hair length, thought to be a key parameter influencing P uptake.

In the domain of soil segmentation, a method was developed for user-invariant extraction of

connected macropore volumes from µ-CT data. Estimation of soil porosity from µ-CT data

has often been highly dependent on user-supervised selection of parameters, leading to the

potential for large differences in pore volume estimates made by different users from the same

data. By combining a seeded region growth (SRG) algorithm with a user-invariant selection of

a tuning parameter based on image data, a protocol for unsupervised soil segmentation was

defined.

Image-based modelling domain

By applying a numerical model to rhizosphere geometry elucidated by SRXCT, it was possi-

ble to consider the undisturbed arrangement of hairs and soil aggregates within a modelling
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paradigm for the first time. The results suggested that previous models may have overesti-

mated the influence of hairs compared to that of the root, with the study suggesting compara-

ble uptake of soil P by both regions. By quantifying streamline sets following paths of maximal

concentration gradient in macropore water, the more focused, localised uptake of P by hairs

was revealed, as compared to the root surface. The dynamic adjustment of inter-terminal dis-

tances in streamline sets seeded from hairs and the roots also provided insight into the nature

of uptake. Three periods were suggested: (i) the progressive interference with aggregates of

depletion fronts through pore fluid, (ii) a period of aggregate-to-aggregate redistribution of

P, and (iii) an equilibrium condition in which the spatial arrangement of depletion gradients

ceased to change temporally. With a workflow now in place for a full-scale modelling study

of hair distributions in rhizosphere soil at field water capacity, much greater insight into the

dynamics of P uptake and transport kinetics will be possible.

7.0.1 Future work

A number of final suggestions are made as to work which will follow on or complement the

developments and results laid out in this thesis:

• With a workflow now in place to image, quantify, visualise and model rhizosphere-scale

nutrient acquisition processes, a comparative study of crop genotypes with suspected

trait differentiation at the hair scale is an obvious short-term goal.

• Future SRXCT studies will allow the potential for the visualisation of hairs in pore wa-

ter using either chemical contrasting or phase contrast methods to be assessed. If such

techniques make resolution of hairs in the fluid phase possible, the complexity of the

image-processing required to extract hair paths might be significantly reduced.

• Fungal mycorrhizae exist at a similar scale to that of hairs, but extend over much greater

distances within the soil. With the ability to resolve hairs using SRXCT established, there

is clear justification to develop a complementary assay for the isolated growth of myc-

orrhizae in soil volumes of similar scales. Such work would allow parameterisation of

mycorrhizal P uptake models in the same manner as achieved for root hairs, extending

our understanding of mycorrhizal importance in low-P agricultural contexts.

• The suitability of clinical contrast media established for plant use has been demonstrated.

Protocols should now be defined for their application in revealing different facets of root

behaviour. Different media, loading and imaging strategies are likely to be optimal for

investigation of (i) RSA in poor-contrast situations, (ii) elucidation of internal root phys-

iology, and (iii) temporally-resolved phloem flow characteristics.
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• A clear impediment to the more accurate parameterisation of numerical models at the

hair scale is a lack of understanding regarding nutrient distribution. In this study ini-

tial soil P concentration was homogenous, determined via chemical assaying. A better

approach would be to map concentration distributions in soil using in situ methods, in

order to allow parameterisation of initial conditions. Future application of X-ray absorp-

tion near edge structure (XANES) fluorescence spectroscopy may allow the spatially-

resolved speciation of sorbed P and other nutrients at the single-aggregate scale. In this

manner, image-based concentration mapping could allow less idealised initial conditions

to be considered in future models.
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Chapter 8

Appendices

8.1 Estimation of root angles in contrasting rice genotypes using a

rhizobox protocol

8.1.1 Growth conditions

Four genotypes of rice Oryza sativa were chosen from among participating varieties in a JIRCAS

field trial, Kaladri, Sadri tor Misri, ARC and Binyalawan. Plants were grown in rhizo-boxes with

dimensions 30cm × 30cm × 2cm, constructed of transparent polycarbonate with a removable

front-plate, and wrapped in foil to occlude light. The boxes were filled with soil, according

to two conditions. Three replicates of each genotype were grown in a low-P soil (0P), with

a single replicate grown in the same soil treated with P fertiliser up to an equivalent soil P

content of 50kg.Ha−1 (50P). Hydration during the growth period was maintained via capillary

rise from a tray of water, with occasional top-watering. Plants were grown in a glasshouse,

with temperature ranging from 20− 32◦C over the growth period.

After a growth period of 35 days, the boxes were dismantled to allow quantification of root

system parameters (Figure 8.1), according to the a protocol following Bengough et al. [Bengough

et al., 2004]:

• The front plates were first removed to expose the root system.

• A rigid foam board with a uniform grid arrangement of 20mm metal pins, at a spacing

of 20mm, was pressed against the soil.

• The rhizobox was gently inverted, allowing the root system and soil to be transferred to

the foam board.

• With the board lifted to a near-vertical angle, a gentle stream of water was used to man-

ually remove the bulk of the soil.
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• A single representative coarse and fine primary root respectively were excised next to

the seed and transferred to a sample tube containing RO H2O (in order to allow later

characterisation of root hair morphology).

• Soil adhering to the remaining roots was removed using a stream of water combined

with gentle mechanical manipulation.

• The root system was photographed orthogonal to the plane of the foam board, in order

to allow approximate quantification of rooting angles.

8.1.2 Results

Figure 8.2 shows root architecture data for one repeat of all genotypes in both 0P and 50P

conditions, with the metal pins protruding from the foam board allowing the growth angles

of primary roots to be approximated for each sample. Though visual inspection appears to

confirm that root angle distributions differ substantially across different genotypes, root angles

were quantified using the acquired 2D images in order to allow comparison with µ-CT derived

values.

Measurement of root angles made the assumption that the root path between the seed and

the furthest visible extent of the root could be approximated as a straight line. By manually

defining the position of the seed (Pseed), and the position of each discernible primary root at

a position near the tip (Ptip), a vector ( ~PseedPtip) could be defined to describe the approximate

growth path of each root. It was then possible to define the distribution of root angles with

respect to the soil surface horizon. Carrying out this procedure for all samples, histograms of

primary root angle were generated.

Figure 8.3 shows root angle distributions for each of the genotypes in the P0 condition (ARC,

Binyalawan, Kaladri, Sadri tor Misri), with genotypic trends clearly evident. Whereas ARC

shows heavy weighting towards steep rooting, Sadri tor Misri exhibits a a far more even dis-

tribution of angles across the range 0− 90◦. Kaladri root angles were similar to those for ARC,

though with less heavy weighting towards steep roots. Binyalawan exhibited a characteristic

peak centred around 60◦ for all repeats.

8.2 Parameterisation of P sorption characteristics via soil assaying

8.2.1 Solution and solid phase P concentrations (Csol and Csor).
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Figure 8.1: (A) Plants were grown in rhizoboxes. (B-D) By removing the face-plate, a board
with an array of extruding metal pins could be gently pressed into the soil, with the entire root
system gently transferred from the box to the board. (E) Gentle washing of the soil from the
root system allowed the root angles to be maintained by the pins. (F) Photographing the root
system orthogonal to the board plane provides images suitable for digital root angle estima-
tion.

Pore water was extracted from replicated 20g batches of soil, according to the centrifuge-

drainage method of Giesler and Lundström, then analysed to determine P concentration fol-

lowing Murphy and Riley [Giesler and Lundström, 1993; Morphy and Riley, 1962].

To elucidate the relationship between Csol and Csor, a sorption isotherm was constructed fol-

lowing the approach of Barber [Barber, 1995]. 1g quantities of desiccated soil were mixed with

5ml volumes of KH2PO4 labelled with the radioactive Phosphorus isotope 33-P, which has an

activity of kBq.ml−1. 33-P concentrations of 0.01, 0.05, 0.1, 0.25, 0.5 and 1mM were used, with

24h of shaking at 200rev.min−1 prior to centrifuging at 24 × 103g. The Csol of the supernatant

was determined by liquid scintillation counting with a Wallac 1404 counter (Perkin-Elmer,

Boston, MA, USA). Having calculated Csol at each 33-P concentration, Sigmaplot v11 (Systat

Software Inc., San Jose, CA, USA) was used to fit a Langmuir adsorption isotherm to the data,
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enabling Csor to be calculated for the pore water equilibrium P concentration determined ini-

tially.

8.2.2 Buffer power (b)

The buffer power ratio of the soil was estimated for the equilibrium condition using the equa-

tion:

b =
dCtot
dCsol

(8.1)

Where:

Ctot = (Csol × θ) + (Csor × γ) (8.2)

And θ and γ are soil volumetric water content and soil bulk density respectively.

8.2.3 P soil adsorption constant (ka)

A similar approach was used for determination of ka. As before, 1g samples of soil were shaken

with 5ml volumes of 33P labelled KH2PO4 (at concentrations of 0.25 and 0.05mM), with Csol

of 33-P measured after equilibration periods of 0, 0.25, 0.5, 1, 2, 4, 8, 12 and 24 hours. Csor
of 33-P was determined as previously, with absorption and desorption constants (ka and kd)

calculated by plotting Csor vs time and fitting the following equation:

Ca = CtotA(1− e−κt) (8.3)

It is assumed that adsorption kinetics at the soil surface can described by a linear equation of

the form found in Equation 5.2. Given the data derived previously for Csor with respect to

time, ka and kd can be determined using the following equation:

ρCtot = ρCsor + θCl (8.4)

Where θ is the dimensionless water capacity, ρ is the bulk soil density, Csor is the sorbed soil

bulk concentration (mol.kg−1) and Ctot is the total concentration (mol.kg−1). Multiplying equa-

tion 5.2 by S
V (the ratio of soil surface area to solid phase volume, determined from CT data),

and using equation 8.4, an equation for Csor is obtained:

dCsor
dt

= −(kd +
kaS

θV
)Csor +

kaS

θV
Ctot (8.5)

Setting the intial condition Csor = CtotA(1− e−kt, this equation has the general solution:

Csor = CtotA(1− e−κt) (8.6)
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Where A = kaS/V
kdθ+kaS/V

and κ = kd +
kaS
θV are determined by a fitting procedure, using only the

two lowest concentrations and fitting data in MATLAB (Mathworks, Natick, MA, USA). The

resulting curves are shown in Figure 8.4.

8.3 Parameterisation of hair length distributions via washing of soil-

grown roots

To parameterise a hair length distribution for the HairGrower algorithm, sections were sam-

pled from sections of soil grown primary roots. Root sections grown in low-P soil were sam-

pled during destructive assessment of plants grown in Section 4.5. The sections were gently

washed to remove soil, and after plating of sections on microscope slides, hairs lengths were

estimated following the approach of Haling et al., using a microscope to image root surface

sections. Stitching together resulting images (Figure 8.5) and importing them into FIJI allowed

hair lengths to be measured using poly-lines defined using a graphical tablet. In order to avoid

regions most severely affected by washing artifacts, only five (1× 1mm) regions in each image

were used for length measurement, being chosen by the user as the most densely populated

by hairs.

8.4 Root damage caused by excess ionising radiation during SRXCT

imaging

A chemical-contrasting protocol developed in Chapter 3 was trialled using the SRXCT beam-

line at the DIAMOND light source at Harwell, UK. Leaf sections of mature plants (rice (Rice

(Oryza sativa cv Sadri tor Misri/Oryza sativa cv Varyla) and wheat (Triticum aestivum cv Santiago))

were excised and submerged for 24h in solutions of either Gastrografin 370 at a 25% dilution

or strong Lugol’s solution (iodine and potassium iodide) at 10% dilution. Reconstructed slices

through the data for rice and wheat showed no evidence of chemical contrast enhancement in

either stele or hairs, but did reveal extensive root damage and movement artifacts (Figure 8.6).

Excessive X-ray flux to the samples had resulted from a technical fault in the sample stage,

requiring that centre of rotation for each scan be determined manually. As a result, the sam-

ples were subjected to ≈ 15m of exposure to the X-ray beam, as opposed to the ≈ 5m that

was characteristic of imaging carried out at the SLS. The degree of damage caused rendered it

impossible to distinguish whether the lack of contrast resulted from radiation damage, or from

unsuitability of the chemical contrasting protocol.

Carefully washing root sections from samples and imaging using light macroscopy in the

scanned region validated the existence of damage to the cortical tissue (Figure 8.7. Clearly,
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these results suggest an upper limit to the exposure of the plant to SRXCT radiation before

disadvantageous artifacts begin to result.

8.5 Convergence testing of an image-derived sub-geometry using a

numerical P-uptake model

The computing resources required for numerical solution of am explicitly-considered P uptake

model are proportional to the element count of the meshed geometry. It is thus advantageous

to optimise mesh quality in order to avoid un-necessarily fine elements. In order to determine

the threshold of convergence for the P uptake model of Schnepf et al. defined in Section 5.3.8, a

small reference geometry was used to run a range of computational tests.

A small ROI was selected (shown in Figure 8.8), a cubic geometry with an edge length of

200voxels (300µm), including a single hair of length 300µm and diameter 14µm. Prior to the

meshing stage, a number of variants of the geometry were generated in order to assess the

influence of voxel binning on both model convergence time and simulation results. Figure 8.9

shows slices through the resulting datasets, binned to edge lengths of 200, 100, 50, 40, 33, 29, 25

and 22 voxels respectively. As in Section 5.3.6, the +FEFree algorithm within the ScanIP soft-

ware package (Simpleware Ltd., Exeter, United Kingdom) was used for mesh generation. The

voxel-binned datasets were all meshed using the same parameters, detailed in Table 8.1. The

parameters were scaled for each dataset in order to compensate for the larger voxel sizes as

the degree of binning was progressively increased. In addition, the original un-binned dataset

was meshed using 4 different parameter sets (detailed in Table 8.2) selected to produce iter-

atively finer meshes. The parameters used were defined by adjustment of a global coarseness

parameter, which determined the values of individual parameters shown in Table 8.2. Python

scripting was used to automate the process of file import, mesh generation and export for batch

operation.

Following generation of meshed geometries, the P uptake model described in Section 5.3.8

was applied to each geometry using LiveLink for COMSOL and MATLAB, allowing all model

parameters to be defined in MATLAB script form. MATLAB could then be used to batch-

import COMSOL model files exported from ScanIP, apply the various elements of the model

(i.e. timescale, boundary conditions and initial parameters), and batch export files ready for

import to the Iridis 4 cluster. This protocol circumvents the graphical interface (GUI), allow-

ing a large number of different geometries to be prepared using the same physics and initial

conditions in a timely and accurate manner [Trott and Matthias, 2010].

The models were solved using the high power computing (HPC) nodes of the Iridis 4 cluster

at the University of Southampton. Depletion of P was compared for all geometries by com-
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Table 8.1: Parameters used to mesh binned geometries 1-8.

Parameter Value

Smoothing iterations 20
Target min. edge length 0.00135mm
Target max. edge length 0.015mm

Target max. error 0.015mm
Target element count across a layer 0.5

Quality optimisation cycles 10
Surface change rate 100
Internal change rate 40

puting the surface integral of Ca on the soil surfaces with respect to time. Figure 8.11 shows

the resulting depletion curves for all geometries, which reveal that excellent convergence was

obtained for geometries 10-12, with close convergence obtained for geometry 9. For all the

geometries that had been binned prior to meshing, the initial angle of the Ca/t curves became

progressively steeper as the degree of binning increased. With a ≈ 20% variation in the time

taken to exhaust Ca between the geometries, the parameters which satisfied the convergence

condition (10, 11 and 12) are preferable.

In order to approximate the largest tractable input geometry, metadata exported from Iridis

was used to plot the relationships between element count and both convergence time and

RAM usage (Figure 8.10). Table 8.3 shows metadata for all computations. Using equations of

best-fit lines for each plot, maximum tractable element counts were estimated for the available

resources computational resources. With RAM limited to 256GB and the maximum runtime

limited to 60h, the maximum element count was estimated as 12.6 × 106, thus defining the

target maximum element count for mesh generation.

8.6 Full MATLAB code for the HairGrower algorithm

%############################################

%# #

%# HAIRGROWER v1 (with WeibullFit add-on) #

%# #

%############################################

% Hairgrower is a program to grow semi-virtual root hairs. It uses

% synchrotron CT data as an input, as well as hair washout data (or
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% alternative hair length data.)

% Hairs are grown from SEED POINTS. These are provided in a csv file that

% should be named:

% "pointsdata.csv"

% This csv file has the start and end points of each existing hair in the

% data. The start points are where hairs initiate at the root surface, and

% the end points are the positions where hairs are no longer visible due to

% water content (hairs are usuall invisible in CT data when water is present.)

% The SEED POINTS are the positions of these end points.

% A GROWTH VECTOR is defined (approximated as the vector between start and

% end point, since hairs are usually near-straight.)

% HAIRGROWER assigns a continuation length to each of these hairs using a

% distribution fitted to experimental data. The process for this is

% contained in the WEIBULLFIT algorithm, which begins this script.

% Once an array of continuation lengths (one for each hair) has been

% defined, all information required for HAIRGROWER is complete.

% The script virtually 'grows' a skeletonied path for each hair. This is

% done using an iterative process, contrained by a user-defined preferred

% angle, a step length which scales with continuation length, and a

% binarised soil dataset, dilated by a few times from its actual size.

% Hairs will attempt to grow within a certain angle to the previous step

% vector(beginning with the seed vector), but are allowed increase this

% angle up to 90 degrees if necessary.

% Growth is not permitted into regions with a greylevel greater

% than a certain threshold value (soilthresh) which represents

% the solid phase. Growth is also not permitted into xyz space

% which lies outside the limits of the input volume.

% Data is output in the form of a tiff stack, which can be used for

% post-processing.

%##########################################################################

%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** CLEAR VARIABLES *** %

%%%%%%%%%%%%%%%%%%%%%%%%%%

clear ptsxyz;
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clear dummy;

clear LengthComparison;

clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** READ IN TIFF STACK *** %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The initial step is to read in a stack of tiffs. This should represent

% the soil phase. It is sensible to dilate the soil phase by 1/2 the

% final desired hair diameter (to avoid soil/hair overlaps when the hairs

% are eventually dilated.)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** 2 - NON DIALOG IMAGE INPUT *** %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf('Beginning to read in dataset');

fprintf('\n');

% Set the target file, and the filename of the tiff stack (with wildcards

% for enumeration).

fileFolder = fullfile('H:\Matlab_work_for_simulations_10_07_13');

dirOutput = dir(fullfile(fileFolder,'HairGrowerInputGeometry*.tif'));

fileNames = {dirOutput.name}';

numFrames = numel(fileNames); % The number of tiffs

I = imread(fileNames{1});

% Preallocate the array

% sequence = zeros([size(I) numFrames],class(I));

% sequence(:,:,1) = I;

% Create image sequence array

for p = 2:numFrames

sequence(:,:,p) = imread(fileNames{p});

end

% Find dimensions in xyz of input data

datasetx = size(sequence,1);

datasety = size(sequence,2);

datasetz = size(sequence,3);
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fprintf('Dataset read in successfully')

fprintf('\n');

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜END OF FILE IMPORT SEQUENCE˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%

clear PointsInput;

fprintf('Beginning Weibull fitting and length assignment process')

fprintf('\n');

% This is the input data and will usually have been manually assessed.

% Each hair has two rows, and the x/y/z values of the start point are on

% indices (n,2-4), with end points on indices (n+1,2-4). Index (n,1) is

% the number (for n = odd).

PointsInput = csvread('pointsdata.csv');

InputSize = size(PointsInput,1); % This is TWICE the number of hairs.

clear hairlengths;

CountHair = 1;

% Build an array of hair lengths (using trignometric approximation).

for ir=1:2:InputSize

xlength = PointsInput(ir,2) - PointsInput(ir+1,2);

ylength = PointsInput(ir,3) - PointsInput(ir+1,3);

zlength = PointsInput(ir,4) - PointsInput(ir+1,4);

hairlength = (1.5*sqrt((xlengthˆ2)+(ylengthˆ2)+(zlengthˆ2))); % Scale data to

actual length (um) from data coordinates

hairlengths(CountHair,1) = hairlength;

DATACOMPARISONDEBUG(CountHair,1) = hairlength;

CountHair = CountHair+1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** WEIBULLFIT PROCESS *** %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% The WeibullFit algorithm fits a Weibull distribution to the experimental

% validation data (from washout / hydroponics or otherwise). It then uses

% this distribution to assign a 'random' length to each discrete hair from

% the CT data.

% Import the validation data.

Lengths = csvread('MicroscopeData.csv');

% Fit Weibull parameters to data

WblParams = wblfit(Lengths);

WBLalpha = WblParams(1);

WBLbeta = WblParams(2);

LGTH = 0:20:460;

% The Weibull parameters.

WeibullFit(1,1) = WBLalpha;

WeibullFit(1,2) = WBLbeta;

% Output a histrogram of the validation length data.

% figure(1)

%

% hist(Lengths,20)

% axis([0 500 0 50])

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜#####################˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜#*** MAJOR LOOP *** #˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜#####################˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

% This is the major loop. All remaining processes are contained within it,

% including hair growth. The number of runs is the number of unique hair

% geometries that will be produced (make sure there are enough folders

% named

for WeibRuns = 1:10

% A failure counter is initiated to check for hair growth failures in the later

growth stage

FailCount = 0;

%continuation algorithm
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%measured length

dx=0.1;

gamma=[0:dx:max(Lengths)];

IterData(1,1) = WBLalpha;

IterData(1,2) = WBLbeta;

IterData(1,3) = sum(Lengths);

IterData(1,4) = sum(Lengths)/length(Lengths);

countBIG = 0; % The count of runs through the whole dataset

countSMALL = 0; % The count of individual hairs

for hr=1:size(hairlengths);

l0=hairlengths(hr);

probability=zeros(1,length(gamma));

for ir=1:length(gamma)

probability(ir)= wblpdf(l0+gamma(ir),WBLalpha,WBLbeta)/(1- wblcdf(l0,WBLalpha,

WBLbeta));

end

cdf=dx*cumsum(probability);

%plot(gamma,cdf)

% rand > [0 , cdf(1:end-1)]

WBLy = dx*sum(rand > [0 , cdf(1:end-1)]);

FinalLengths(hr) = WBLy + hairlengths(hr);

DATACOMPARISONDEBUG(hr,2) = WBLy;

DATACOMPARISONDEBUG(hr,3) = hairlengths(hr);

DATACOMPARISONDEBUG(hr,4) = WBLy + hairlengths(hr);

countBIG;

countSMALL = countSMALL+1;

HairWeibCount = num2str(countSMALL);

WeibFullMess = strcat('Fitting virtual length to hair :', HairWeibCount);

fprintf(WeibFullMess);

fprintf('\n');

WeibPercComp = num2str(round((countSMALL/(InputSize/2))*100));
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WeibPercMeter = strcat('Percentage completion :', WeibPercComp);

fprintf(WeibPercMeter);

fprintf('\n');

end

WblParamsVIRTUAL = wblfit(FinalLengths);

WBLalphaVIRTUAL = WblParamsVIRTUAL(1);

WBLbetaVIRTUAL = WblParamsVIRTUAL(2);

WeibullFit(WeibRuns,3) = WBLalphaVIRTUAL;

WeibullFit(WeibRuns,4) = WBLbetaVIRTUAL;

WBLXaxis = [1:10:500];

WBLXaxis = transpose(WBLXaxis);

RunID = num2str(WeibRuns);

CSVName = 'FinalLengths_';

CSVExtension = '.csv';

CSVFileName = strcat(CSVName, RunID, CSVExtension);

csvwrite(CSVFileName,FinalLengths);

for g=1:(length(PointsInput)/2)

comparison(g,1)= hairlengths(g);

comparison(g,2)= FinalLengths(g);

comparison(g,3)= FinalLengths(g)-hairlengths(g);

end

fprintf('Finished Weibull processes')

fprintf('\n');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** READ IN / GENERATE OTHER DATA ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** 2 - NON DIALOG BOX METHOD *** %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear PointsInput;

PointsInput = csvread('pointsdata.csv');
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clear FinalLengths;

FinalLengths = csvread(CSVFileName);

InputSize = size(PointsInput,1);

clear hairdata;

CountHair = 1;

%##########################################################################

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** BUILDING THE HAIR DATA ARRAY *** %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This is the array which contains the necessary information for completion

% of each hair, and also serves as the initiating data.

% The array 'hairdata' has one row for each hair, and includes xyz

% coordinates of initiation and end point of the visible section, as well

% as the length of each hair.

for i=1:2:InputSize

hairdata(CountHair,1) = PointsInput(i,2);

hairdata(CountHair,2) = PointsInput(i,3);

hairdata(CountHair,3) = PointsInput(i,4);

hairdata(CountHair,4) = PointsInput(i+1,2);

hairdata(CountHair,5) = PointsInput(i+1,3);

hairdata(CountHair,6) = PointsInput(i+1,4);

hairdata(CountHair,7) = FinalLengths(CountHair); % the total desired distance

for each hair

CountHair = CountHair+1;

end

% x and y values are swapped to put points in MATLAB coordinate system

hairdata(:,[1 2]) = hairdata(:,[2 1]);

hairdata(:,[4 5]) = hairdata(:,[5 4]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** BUILD ZERO ARRAY FOR OUTPUT ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% the zero matrix to which virtual hair skeletons will be written

%(by replacing 0 with 255 along hair paths)

dummy = zeros(datasetx, datasety, datasetz);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** DEFINITION OF VARIABLES / CONSTANTS ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** 1 - NON DIALOG BOX METHOD *** %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

targetangle = 15; % the desired maximum angle of 'wiggle' that the hair is allowed

to have in the absence of obstacles.

numtest = 400; % the number of test points generated on the test sphere

soilthresh = 200; % the threshold of greylevel value above which the hair cannot

grow.

targetangle = targetangle / 57.2957795 ; % convert target to radians

numbhairs = size(hairdata,1); % finds the number of hairs from the hairdata csv

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜#####################˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜# *** HAIR LOOP *** #˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜#####################˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

% DEFINE VECTOR FOR THE VISIBLE PORTION OF THE HAIR

% The outer loop iterates through each hair and builds a completion onto it

% based on the input length data and parameters.

TotalHairLength = 0;

ThisIsHair = 0;

for d=1:numbhairs

% Print progress information to output

ThisIsHair = ThisIsHair + 1;

PercentComplete =(ThisIsHair/numbhairs)*100;

TIH = num2str(ThisIsHair);

PC = num2str(round(PercentComplete));

message1 = strcat('Now processing hair : ', TIH);

message2 = strcat('Percentage complete : ', PC);

fprintf(message1);
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fprintf('\n');

fprintf(message2);

fprintf('\n');

tic

% Clear all relevant variables which change each time the loop iterates.

clear numsteps;

clear ptsxyz;

clear p;

clear vectxdim1

clear vectydim2

clear vectzdim3

clear vectIS

clear ISlength

clear targetlength

clear growthlength

clear numsteps

% Read in initiation and end point positions from the 'hairdata' master array

initx=hairdata(d,1); %initialise initx to the value in import data.

inity=hairdata(d,2); %initialise inity to the value in import data.

initz=hairdata(d,3); %initialise initz to the value in import data.

seedx=hairdata(d,4); %initialise seedx to the value in import data.

seedy=hairdata(d,5); %initialise seedy to the value in import data.

seedz=hairdata(d,6); %initialise seedz to the value in import data.

% Find x/y/z components of the vector between initiation and end of

% visible portion

vectxdim1 = seedx-initx;

vectydim2 = seedy-inity;

vectzdim3 = seedz-initz;

% Define vector from initiation to end of visible portion (IS)

vectIS = [vectxdim1,vectydim2,vectzdim3];

% And find the length.

ISlength = (1.5*sqrt(((vectxdim1)ˆ2)+((vectydim2)ˆ2)+((vectzdim3)ˆ2))); %

Scale length from data coordinates to actual length

DATACOMPARISONDEBUG(d,5) = ISlength;
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% Read in the target length from the master data array. This is the

% final total length to which the hair will be grown.

targetlength=hairdata(d,7);

DATACOMPARISONDEBUG(d,6) = targetlength;

% Calculate the required simulated growth length past the end of the

% visible section.

growthlength = ((targetlength-ISlength)/1.5);

DATACOMPARISONDEBUG(d,7) = growthlength*1.5;

% Adapt steps for low growth lengths to make sure tiny growth lengths

% do not cause code to fail. This prevents step lengths being <1. If

% the growth length is <2, step length is 1, if growth length <8, step

% lenght is 2, and for all other growth lengths, step length is 8.

if (growthlength < 2)

steps = 1;

elseif (growthlength < 8)

steps = 2;

else

steps = 8;

end

% Calculate the integer number of iterations required to reach the

% required length

numsteps = round(growthlength/steps);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** BUILDING THE TEST SPHERE ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The code assigns quasi-equally spaced points on a unit-sphere surface

% according to the golden-spiral method. This unit sphere is then scaled

% by radius to the step size. It is from these points that a growth

% destination is chosen, depending on various constraints of angle,
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% greyscale and length.

StepCtr = 0; % A counter

% Assigns quasi-equally spaced points on a unit-sphere surface according to the

golden-spiral method.

for j=1:numsteps,

StepCtr = StepCtr+1;

numpts= 2*numtest; % initialises for twice as many points as required (

since half will be removed later).

radius=steps; % sets radius to user defined step value.

inc = pi * (3-sqrt(5));

off = 2/numpts;

k = 0:numpts-1;

y = k * off - 1 + (off/2);

r = sqrt(1 - (y.ˆ2));

phi = k * inc;

p = [cos(phi).*r; y ;sin(phi).*r]'; % 'p' is an an (n,3) matrix of x,y,z,

values of the n surface points

p = radius*p ; % scales the unit sphere to the step size.

p(:,1)=p(:,1)+seedx; % aligns the scaled sphere to the seed location (S)

p(:,2)=p(:,2)+seedy; % aligns the scaled sphere to the seed location (S)

p(:,3)=p(:,3)+seedz; % aligns the scaled sphere to the seed location (S)

% p is an array of xyz positions for all surface points. It is

% also where all true/false criteria for the different checks are

% kept.

p=round(p); % turns x,y,z values of surface points to integers in order to

read greylevel values.

%%%%%%%%%%%%%%%%%%%%%%%%

%*** IN RANGE CHECK ***%

%%%%%%%%%%%%%%%%%%%%%%%%

% If the point lies within the dataset, it will be given a value 1 in

% the 6th column, otherwise the value will be zero (valid). This has

% the effect of constraining the later growth to within the dataset as

% out-of-data points cannot be chosen as the next growth destination.
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for k=1:numpts;

if (p(k,1) >= datasetx)

p(k,6) = 1;

elseif (p(k,2) >= datasety)

p(k,6) = 1;

elseif (p(k,3) >= datasetz)

p(k,6) = 1;

elseif (p(k,1) < 1)

p(k,6) = 1;

elseif (p(k,2) < 1)

p(k,6) = 1;

elseif (p(k,3) < 1)

p(k,6) = 1;

else

p(k,6)=0;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%

%*** GREYLEVEL CHECK ***%

%%%%%%%%%%%%%%%%%%%%%%%%%

% The next check is whether the surface point lies within the soil

% phase or not. The soil threshold value is user defined and has the

% variable name 'soilthresh'

for l=1:numpts; % loop to check validity of greylevels for each surface point

greyx = p(l,1); % the x coordinate of the randomly selected surface point

greyy = p(l,2); % the y coordinate of the randomly selected surface point

greyz = p(l,3); % the z coordinate of the randomly selected surface point
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if p(l,6) == 0;

testgrey = sequence(greyx,greyy,greyz); % find greylevel in dataset for

this surface point

if testgrey<soilthresh

p(l,4)=1; % sets in-range values to 1 if the point is in valid

range

elseif testgrey == soilthresh

p(l,4)=0; % sets out-of-range values to 0 if point is outside valid

range

elseif testgrey > soilthresh

p(l,4)=0;

end

else

% if the point is outside the dataset range, set its greyscale

% truth value to that of soil (0)

p(l,4)=0;

end

end

%%%%%%%%%%%%%%%%%%%%%

%*** ANGLE CHECK ***%

%%%%%%%%%%%%%%%%%%%%%

% CHECK IF ANGLE BETWEEN CURRENT VECTOR AND INITAL VECTOR IS IN ALLOWABLE

% RANGE AND IF SO ADD A NUMBER TO 5th COLUMN IN P.

% THE NUMBER (1-4) DENOTES THE BAND INTO WHICH THE VECTOR ANGLE FALLS

% RELATIVE TO THE INITIAL (VISIBLE) VECTOR

for s=1:numpts; % loop over all surface points to check validity of angle

testvectx = p(s,1) - seedx; % specify x dist between each surface point and the

circle centre (S)
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testvecty = p(s,2) - seedy; % specify y dist between each surface point and the

circle centre (S)

testvectz = p(s,3) - seedz; % specify z dist between each surface point and the

circle centre (S)

growvect = [testvectx,testvecty,testvectz]; % creates the vector of the test

segment

DistToCentre = sqrt((testvectxˆ2)+(testvectyˆ2)+(testvectzˆ2));

vectangle = atan2(norm(cross(vectIS,growvect)),vectIS*growvect'); % the angle

between the test segment and the initial vector from input data

%Write the angles and the distances into the SurfacePointArray file for

debugging purposes

p(s,8) = vectangle;

p(s,9) = DistToCentre;

if vectangle<targetangle

p(s,5)=1; % sets column 5 of p to 1 if vector is in range

elseif vectangle<(2*targetangle)

p(s,5)=2; % sets column 5 of p to 2 if vector is within two

times the target

elseif vectangle<(3*targetangle)

p(s,5)=3; % sets column 5 of p to 3 if vector is within three

times the target

elseif vectangle<1.57

p(s,5)=4; % sets column 5 of p to 4 if vector is within 90

degrees of the preceding vector

else

p(s,5)=0; % sets column 5 of p to 0 if vector is out of range (

i.e. outside the hemisphere)

end

end
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counttest1 = 0; % initialise the counter for surface points within the

first choice of angle

counttest2 = 0; % initialise the counter for surface points within the

second choice of angle

counttest3 = 0; % initialise the counter for surface points within the

third choice of angle

counttest4 = 0; % initialise the counter for surface points within the

fourth choice of angle

clear angleis1;

clear angleis2;

clear angleis3;

clear angleis4;

clear testgrey;

clear testangle;

clear testrange;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** CATEGORISE POINTS BY ANGLE ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Place points from the p array into different arrays named 'angleisn'

% where n is from 1 to 4, depending on which bin the vector between the

% seed and that point falls wrt the initial vector angle.

for o=1:numpts;

testgrey=p(o,4); % for each surface point in array p, report if the

greylevel is in range (1) or out of range (0)

testangle=p(o,5); % for each surface point in array p, report if the

angle is in first (1) 2nd (2) 3rd (3) or 4th (4) choice band.

testrange=p(o,6); % for each surface point, report if it lies outside

the dimesnions of the input data (1=bad) or inside (0=good)

if ((testgrey==1)&&(testangle==1)&&(testrange˜=1)) % xyz values of any

point with allowable greylevel and first choice angle are put into (n,3)

array angleis1

counttest1=counttest1+1; % the counter to correctly allocate the

row number for each value.

angleis1(counttest1,1)=p(o,1);

angleis1(counttest1,2)=p(o,2);

angleis1(counttest1,3)=p(o,3);

elseif ((testgrey==1)&&(testangle==2)&&(testrange˜=1)) % xyz values of

any point with allowable greylevel and second choice angle are put
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into (n,3) array angleis2

counttest2=counttest2+1;

angleis2(counttest2,1)=p(o,1);

angleis2(counttest2,2)=p(o,2);

angleis2(counttest2,3)=p(o,3);

elseif ((testgrey==1)&&(testangle==3)&&(testrange˜=1)) % xyz values of

any point with allowable greylevel and third choice angle are put

into (n,3) array angleis3

counttest3=counttest3+1;

angleis3(counttest3,1)=p(o,1);

angleis3(counttest3,2)=p(o,2);

angleis3(counttest3,3)=p(o,3);

elseif ((testgrey==1)&&(testangle==4)&&(testrange˜=1)) % xyz values of

any point with allowable greylevel and fourth choice angle are put

into (n,3) array angleis4

counttest4=counttest4+1;

angleis4(counttest4,1)=p(o,1);

angleis4(counttest4,2)=p(o,2);

angleis4(counttest4,3)=p(o,3);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** CHECK WHETHER THE ANGLE ARRAYS EXIST, AND COUNT POINTS IN EACH ARRAY ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% clear the arrays and variables related to determining existence and

% size of 'angleisn' arrays.

clear isthere1;

clear isthere2;

clear isthere3;

clear isthere4;

clear sizeangle1;

clear sizeangle2;

clear sizeangle3;

clear sizeangle4;
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isthere1 = exist('angleis1'); % returns a value of 1 if the array exists.

isthere2 = exist('angleis2'); % returns a value of 1 if the array exists.

isthere3 = exist('angleis3'); % returns a value of 1 if the array exists.

isthere4 = exist('angleis4'); % returns a value of 1 if the array exists.

% check if there are any points in each of the arrays, from first

% to fourth choice. If so, return the number of points.

if (isthere1==1)

sizeangle1 = size(angleis1,1); % reports number of points within the first

choice of angle band (< targ).

end

if (isthere2==1)

sizeangle2 = size(angleis2,1); % reports number of points within the second

choice of angle band (< 2*targ).

end

if (isthere3==1)

sizeangle3 = size(angleis3,1); % reports number of points within the third

choice of angle band (< 3*targ).

end

if (isthere4==1)

sizeangle4 = size(angleis4,1); % reports number of points within the 4th

choice of angle band (< 90 deg).

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** NEXT GROWTH POINT SELECTION PROCESS ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Chooses a new seed point from one of the subarrays 'angleisn'

% working iteratively from the most desirable to least desirable

% angle. The first array with a valid point will have one of them

% randomly chosen.

if (isthere1==1) % if any first choice points exist...
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RaNumArr = randperm(sizeangle1);

rnum = RaNumArr(randi(size(RaNumArr,2))); % select a random row

from the array of first choice points

newseedx = angleis1(rnum,1); % sets new seed x value for next

iteration

newseedy = angleis1(rnum,2); % sets new seed y value for next

iteration

newseedz = angleis1(rnum,3); % sets new seed z value for next

iteration

elseif (isthere2==1) % otherwise, if any second choice points exist...

RaNumArr = randperm(sizeangle2);

rnum = RaNumArr(randi(size(RaNumArr,2))); % select a random row

from the array of first choice points

newseedx = angleis2(rnum,1); % sets new seed x value for next

iteration

newseedy = angleis2(rnum,2); % sets new seed y value for next

iteration

newseedz = angleis2(rnum,3); % sets new seed z value for next

iteration

elseif (isthere3==1) % otherwise, if any third choice points exist...

RaNumArr = randperm(sizeangle3);

rnum = RaNumArr(randi(size(RaNumArr,2))); % select a random row

from the array of first choice points

newseedx = angleis3(rnum,1); % sets new seed x value for next

iteration

newseedy = angleis3(rnum,2); % sets new seed y value for next

iteration

newseedz = angleis3(rnum,3); % sets new seed z value for next

iteration

elseif (isthere4==1) % otherwise, if any fourth choice points exist...

RaNumArr = randperm(sizeangle4);

rnum = RaNumArr(randi(size(RaNumArr,2))); % select a random row

from the array of first choice points

newseedx = angleis4(rnum,1); % sets new seed x value for next

iteration

newseedy = angleis4(rnum,2); % sets new seed y value for next

iteration
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newseedz = angleis4(rnum,3); % sets new seed z value for next

iteration

end

% Break out of loop if there is no point found (due to going out of

% domain)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** WRITE POINTS TO THE MASTER OUTPUT ARRAY ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The start and end point of the vector just described will be

% written to a master array, which is used to write out the output

% images after the hair growth algorithm is finished.

if ((isthere1==1)||(isthere2==1)||(isthere3==1)||(isthere4==1)) % if any of

them are 1....

vectxdim = newseedx-seedx; % find length in x dir between init and seed

vectydim = newseedy-seedy; % find length in y dir between init and seed

vectzdim = newseedz-seedz; % find length in z dir between init and seed

ptsxyz(j,1)=newseedx;

ptsxyz(j,2)=newseedy;

ptsxyz(j,3)=newseedz;

ptsxyz(j,4)=seedx;

ptsxyz(j,5)=seedy;

ptsxyz(j,6)=seedz;

ptsxyz(j,7)=(sqrt(((vectxdim)ˆ2)+((vectydim)ˆ2)+((vectzdim)ˆ2))); % the

distance of the step to this found point from the seed.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** SET UP VARIABLES FOR NEXT ITERATION ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% seed(xyz) is now the newly found surface value, and the new

% initiation (xyz) is that of the seed point from which it was

% found.

seedx=newseedx; % update new initial x value to the seed point of current

iteration

seedy=newseedy; % update new initial y value to the seed point of current

iteration

seedz=newseedz; % update new initial z value to the seed point of current

iteration
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% Break out of loop if there is no point found (due to going out of

% domain)

else

FailCount = FailCount + 1;

ERR1 = 'Could not find a suitable point for hair number : ';

ERR2 = num2str(ThisIsHair);

ERR3 = '. Failed on step :';

ERR4 = num2str(StepCtr);

ErrMess = strcat(ERR1, ERR2, ERR3, ERR4);

fprintf(ErrMess)

fprintf('\n');

Step_Failure_Error_Log(FailCount, 1) = ThisIsHair;

Step_Failure_Error_Log(FailCount, 2) = StepCtr;

Step_Failure_Error_Log(FailCount, 3) = seedx;

Step_Failure_Error_Log(FailCount, 4) = seedy;

Step_Failure_Error_Log(FailCount, 5) = seedz;

break

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*** WRITE OUT FOUND VALUES FOR GROWTH STEP TO DUMMY MATRIX ***%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

isthereptsxyz = exist('ptsxyz');

if (isthereptsxyz==1)

ThisHairLength = 0;

numgrwsteps=size(ptsxyz,1);

clear hairvals;

clear xcomp

clear ycomp

clear zcomp

clear writevec

clear xang
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clear yang

clear zang

clear startptx

clear startpty

clear startptz

clear xcompstp

clear ycompstp

clear zcompstp

iterstep = 1; % set length of each step to half of the longest inter-point

distance

xunitv = [1,0,0]; % set up x unit vector

yunitv = [0,1,0]; % set up y unit vector

zunitv = [0,0,1]; % set up y unit vector

for t=1:numgrwsteps

xcomp=ptsxyz(t,1)-ptsxyz(t,4);

ycomp=ptsxyz(t,2)-ptsxyz(t,5);

zcomp=ptsxyz(t,3)-ptsxyz(t,6);

stepl = ptsxyz(t,7); % set length of growth vector

writevec = [xcomp, ycomp,zcomp]; % the vector for segment n (linking

seed and surface point)

xang = atan2(norm(cross(xunitv,writevec)),xunitv*writevec'); % find

angle between x axis and writevec (rads)

yang = atan2(norm(cross(yunitv,writevec)),yunitv*writevec'); % find

angle between y axis and writevec (rads)

zang = atan2(norm(cross(zunitv,writevec)),zunitv*writevec'); % find

angle between z axis and writevec (rads)

numvcsteps = round(stepl/iterstep); % establish the number of write

steps required given the radius size of the test sphere

startptx = ptsxyz(t,4);

startpty = ptsxyz(t,5);

startptz = ptsxyz(t,6);

TotalHairLength = TotalHairLength + stepl;

ThisHairLength = ThisHairLength + stepl;

for q=1:numvcsteps

xcompstp = ceil((q*iterstep)*cos(xang)); % find x component of
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growvect at the ith step

ycompstp = ceil((q*iterstep)*cos(yang)); % find y component of

growvect at the ith step

zcompstp = ceil((q*iterstep)*cos(zang)); % find y component of

growvect at the ith step

hairvals(q,1) = ((startptx) + xcompstp); % write x value of point

to be written to (numcvsteps,3) array "hairvals"

hairvals(q,2) = ((startpty) + ycompstp); % write y value of point

to be written to (numcvsteps,3) array "hairvals"

hairvals(q,3) = ((startptz) + zcompstp); % write y value of point

to be written to (numcvsteps,3) array "hairvals"

end

dummy(startptx,startpty,startptz)=255;

for m=1:numvcsteps

dummy(hairvals(m,1), hairvals(m,2), hairvals(m,3)) = (255); % for

each xyz coordinate in hairvals, set the value at the

corresponding lcoation in dummy matrix to 255

end

end

% Write out hair lengths to an array where column is the run, and

% row is the hair (for debugging purposes)

HairLengthsIndividual(d, WeibRuns) = ThisHairLength*1.5;

else

continue

end

toc

end

fprintf('Starting to write TIF data to file');

fprintf('\n');

OuTpUt = 'OUTPUT_';
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NumRun = num2str(WeibRuns);

FiLeNaMe = strcat(OuTpUt, NumRun);

OverWriteQuery = exist(FiLeNaMe);

if (OverWriteQuery==7)

cd(FiLeNaMe);

delete *.tif;

else

mkdir(FiLeNaMe);

cd(FiLeNaMe);

end

for i=1:datasetz;

a=num2str(i);

filename = 'output';

fltype = '.tif';

filename = strcat(filename,a,fltype);

imwrite(dummy(:,:,i),filename,'WriteMode','append','Compression','none');

end

fprintf('Finished TIF output');

fprintf('\n')

cd ..;

% Report the total hair length for the entire dataset into a row of array

% "TotalHairLengthArr"

TotalHairLengthArr(WeibRuns) = TotalHairLength*1.5;

RunNumber = num2str(WeibRuns);
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MenSage = '

Error_log_of_failed_hairs_with_failure_step_and_xyz_of_seed_at_failure_WEIBRUN_'

;

MsGwBr = strcat(MenSage, RunNumber);

csvwrite(MsGwBr, Step_Failure_Error_Log);

clc

end

csvwrite('List_of_total_hair_lengths_for_runs', TotalHairLengthArr);

csvwrite('

List_of_Weibull_parameters_of_virtual_datasets_for_comparison_with_those_from_washout_fit

', WeibullFit);

csvwrite('Lists_of_discrete_hair_lengths_one_column_per_HairGrower_run',

HairLengthsIndividual);

WeibullFit = csvread('

List_of_Weibull_parameters_of_virtual_datasets_for_comparison_with_those_from_washout_fit

');

8.7 Flowchart of the SRXCT rhizosphere imaging workflow
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Figure 8.2: Rhizobox-grown root architecture of 30 day old rice plants of differing genotypes.
ARC =, BIN = Binyalawan, KAL =, KAS =, N4 =, SAD = Sadri tor Misri. Samples are shown
from low-P soil and identical soil treated before planting with P fertiliser up to an equivalent
soil content of 50Kg P.Ha−1. There is a clear up-regulation of fine rooting in the high-P soil
condition compared to the samples in low-P soil.
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Figure 8.3: Histograms of primary root angle for (A) KAL, (B) ARC, (C) BIN and (D) STM in
low-P soil. Data from three replicates (R1, R2, R3) are shown.

Figure 8.4: Determination of A and κ via curve fitting of Csor vs t, using experimental data
from the two lowest concentrations of 33P labelled KH2PO4.
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Figure 8.5: Data used for sampling of soil-grown root hair lengths. One fine primary and one
coarse primary were sampled following gentle washing of rhizobox-grown roots in the low-
P condition, but before manual removal of soil from roots. Each was cut into a number of
subsections of ≈ 2cm for analysis, at a 2cm spacing from tip to the basal region. Frames (1-7)
represent fine primary subsections, and frames (8-10) represent coarse primary subsections.
The entire length of each subsection was imaged using an Olympus BX50 microscope and
a 4× magnification. After stitching all images together, 5 subregions were defined for each
subsection, each representing a distance of 1mm on the root surface. All hairs in subregions
which were in sharp focus were measured in FIJI to generate a set of 220 hair lengths.
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Figure 8.6: Frames (1-3) show movement artifacts and cortical damage caused by excessive
exposure of samples to X-rays during sample set-up. (A) Wheat (Triticum aestivum cv Santiago)
(B) Rice (Oryza sativa cv Sadri tor Misri) (C) Rice (Oryza sativa cv Varyla) (D) Comparison data
of undamaged rice root Oryza sativa cv Varyla acquired at the SLS synchrotron
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Figure 8.7: Macroscope images showing damage to roots due to excessive X-ray flux during
sample set-up. (A) Wheat (Triticum aestivum cv Santiago, comparing damaged (1) and undam-
aged (2) regions. (B) Rice (Oryza sativa cv Varyla). (C) Rice (Oryza sativa cv Sadri tor Misri) (D)
Control sample of rice (Oryza sativa cv Varyla) for comparison.
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Figure 8.8: (A) The geometry used for the convergence test. (B) Mesh output file from ScanIP.
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Figure 8.9: xy slices through the geometry used for the convergence test, showing the influence
of progressive voxel binning on topology. Edge lengths from (A-I) are (in voxels): 200, 100, 67,
50, 40, 33, 29, 25, 22.
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Figure 8.10: Plotting metadata from the Iridis 4 cluster for all simulations allowed broad rela-
tionships to be established between element count and both RAM utilisation and convergence
time.

Figure 8.11: Plots of soil-bound P with respect to time are shown for all meshed geometries.
Convergence was reached for meshes 10-12, with other mesh parameters leading to variation
in predicted depletion profile.
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Table 8.3: Iridis metadata

ID Edge length (vox.) Convergence time (h) RAM usage (GB) Element count

1 22 0.01 10.24 6.32× 104

2 25 0.13 10.66 8.78× 104

3 29 0.26 11.03 1.14× 105

4 33 0.25 11.39 1.45× 105

5 40 0.40 12.47 2.16× 105

6 50 0.57 14.00 3.12× 105

7 67 0.73 17.19 4.66× 105

8 100 1.75 21.88 7.78× 105

9 200 3.68 39.90 2.32× 106

10 200 3.44 39.13 1.79× 106

11 200 14.26 98.81 4.41× 106

12 200 13.17 98.96 4.67× 106

236



Figure 8.12: Flowchart showing all steps of the rhizosphere imaging and modelling protocol
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Glossary

The following is a glossary of terms used, defined in the context of their use in the domain of

this work:

• Artifact - Spurious features in reconstructed data. Artifacts result from non-ideal phys-

ical effects in the source, sample, and detector, leading to deviance in the reconstructed

data away from the true representation of the attenuation profile in the sample.

• Boolean random set - A stochastic approach to generation of virtual pore domains with

distributions of effective radii and throat sizes which approximate those of real soil, al-

lowing modelling of pore-domain processes without the requirement for imaging meth-

ods.

• Bootstrapping - A resampling method, using repeated sampling of a parent dataset to

estimate its degree of error. For a dataset for which the error is unknown, multiple re-

sampling allows it to be compared to the resulting ‘bootstrapped’ data, thus giving a

measure of the likely error.

• Compton scattering - An X-ray attenuation mode generally dominant at higher ener-

gies to photoelectric absorption, in the range (≈ 500 >≈ 1 × 104keV). Rather than being

absorbed, photons are deflected by atomic electrons.

• cryo-SEM - A method for preparing samples for scanning electron microscopy, using

cryogenic temperatures to stabilise the sample structure, allowing sectioning and imag-

ing.

• Euler Poincaré characteristic - A dimensionless descriptor of a topological space. The

Euler Poincaré characteristic describes shape and character of a space as a function of,

but without explicit reference to, specific properties (such as vertices or faces), allowing

comparison between different spaces (such as connected macro pore domains).

• Gaussian difference - Using the Gaussian operator to filter the same image using two

difference standard deviation values, then subtracting one from the other produces an
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image in which preferentially suppressed frequencies in the image are filtered out. Be-

cause image noise has a high spatial frequency, the difference of Gaussians (DoG) method

can suppress noise whilst revealing useful spatial detail such as edges.

• Golden section spiral - A spiral for which the distance from the origin increases by a

factor of the Golden Ratio for every 90◦ of rotation. The golden section spiral forms the

basis of a computationally highly-efficient method for approximating the evenly-spaced

distribution of points on the surface of a sphere.

• Hessian matrix - A square matrix of second-order PDE’s of a function (f(x, y)) at a point.

Point-wise determination of a 2x2 Hessian matrix forms the basis of a number of feature

detection algorithms, since it allows curvature in image features to be quantified.

• Homogenisation - Modelling of complex heterogenous systems can be simplified by con-

sidering a unit cell on the smallest length scale of significance, characterising behaviour

of governing equations within this domain, then upscaling to larger scales. Homogeni-

sation theory allows the contribution of individual features at the unit cell scale to be

considered at higher scales, without the requirement to explicitly consider them. The

computational load required for solution of a model can thus be drastically reduced.

• Hydraulic lift - The redistribution of water in the soil by the plant. Water absorbed in a

horizon at higher water potential is leached into soil at lower water potential in order to

improve mobility of nutrrients.

• K-edge filtering - A method for filtering an X-ray spectrum to generate a quasi-monochromatic

effect. The characteristic emission peak of a target material is matched to the character-

istic absorption of a filter. Through careful selection of energy, target and filter materials,

energies around the desired K-peak can be preferentially absorbed.

• Morphology - A description of the form and structure of a biological entity.

• Neural network - An approach in computer modelling using a synthetic approximation

of the nervous system of the brain. Neural networks are often used in developing train-

able pattern recognition algorithms.

• Non-dimensionalisation - A technique used to simplify equations, or uncover character-

istic behaviour of a mathematically-described system, achieved using variable-substitution

to remove physical units.

• Pedo-transfer function - A function for translating between variables, used in soil sci-

ence to infer difficult-to-measure soil properties from known properties.

• Photoelectric absorption - The dominant X-ray attenuation up to energies of around

(≈ 500keV).
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• Poly-line - A line defined by straight segments joining a number of discrete points to

form a quasi-curve.

• Puddling - A method used to prepare soil for rice culture, in which structure is removed

by mechanical shearing at 100% soil saturation.

• Random Forest - A method for trainable, computational decision-making, in which a

large number of decision trees (the ‘forest’) are trained using a set of classes, with these

criteria used by each tree to assign each test sample to its most likely parent class. The

modal decision between those of all the trees for a given sample is chosen as the target

class.

• Reconstruction - The computational process by which a series of angular projections is

converted into a 3D volume of voxels.

• Resin-infusion tomography - A process by which a sample is infused with hard-setting

epoxy resin, before being mechanically sectioned and investigated, often using light mi-

croscopy.

• Rhizosphere - The small region surrounding plant roots in which the majority of nutrient

transport processes take place, and in which the greatest diversity of soil fauna is found.

• Scintillator - A thin wafer of material which emits visible light when irradiated by X-

rays. On an SRXCT beamline, a scintillator turns the attenuated X-ray beam into light,

which is captured using a light-sensitive charge coupled detector (CCD).

• Segmentation - An image analysis process by which voxels in CT data are isolated and

assigned to a particular material class.

• Sobel filtering - An image processing function, used in edge detection. The Sobel op-

erator approximates the gradient in image intensity function, allowing transition rate in

attenuation coefficient between image regions to be quantified.

• Spatial resolution - The smallest resolvable feature size in reconstructed CT data. Spatial

resolution is a function of detector, source, sample and reconstruction characteristics.

• Streamlines - Curves which are parallel to the direction of the concentration gradient in

the fluid at a point in space.

• Topology - A description of the relationships between different elements in a branching

system.

• Trophomorphogenesis - A term used to describe the plasticity of a root system in re-

sponse to environmental constraints.
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• Voxel - The smallest geometric unit of a 3D dataset.

• XANES - X-ray Absorption Near Edge Structure absorption spectroscopy. A technique

using absorption peaks of incident X-rays to map chemical species in materials in a spa-

tially resolvable manner.
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