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ABSTRACT

In this paper we study Monte Carlo type approaches to Bayesian
sparse inference under a squared error loss. This problem arises in
Compressed Sensing, where sparse signals are to be estimated and
where recovery performance is measured in terms of the expected
sum of squared error. In this setting, it is common knowledge that
the mean over the posterior is the optimal estimator. The problem is
however that the posterior distribution has to be estimated, which is
extremely difficult. We here contrast approaches that use a Monte
Carlo estimate for the posterior mean. The randomised Iterative
Hard Thresholding algorithm is compared to a new approach that
is inspired by sequential importance sampling and uses a bootstrap
re-sampling step based on importance weights.

Index Terms— Compressed Sensing, Iterative Hard Threshold-
ing, Sparse Inverse Problem, Bayesian methods, Importance Sam-
pling

1. INTRODUCTION

Sparse signal representations and Compressed Sensing [1], [2], [3],
[4] have over the last ten years developed into standard tools in signal
processing and sampling. Compressed Sensing allows us to sample
and reconstruct finite dimensional sparse signals using fewer sam-
ples than predicted by the Nyquist rate. Let x be an N dimensional
vector which is sampled using M linear measurements {〈x, φn〉},
where 〈·, ·〉 is the inner product and φn a measurement vector. Im-
portantly, assume that x is sparse or approximately sparse, that is,
many of the elements xi of x are zero (or have a small magnitude).
Let Φ ∈ RM×N be the matrix with rows φn so that the vector con-
taining all the measurements is

y = Φx + e, (1)

where e is observation noise.
If we take M measurements, then a challenging case is one in

which M < N so that the recovery problem: “estimate x from
y,” becomes ill posed unless we further constrain x. In traditional
compressed sensing, the constraint is the assumption that x is sparse,
which might lead to the following optimisation problem

x̂ = arg min
x:‖x‖0≤K

‖y −Φx‖2, (2)

where ‖x‖0 measures the number of non-zero elements in the vector
x. This combinatorial problem is one formulation of the Compressed
Sensing recovery problem in which we are searching through all vec-
tors x with no more thanK non-zero elements in order to minimises

This research was supported by EPSRC grant EP/K037102/1.

the squared error ‖y − Φx‖2. Unfortunately, the problem is one
of the NP-hard optimisation problems and much of the Compressed
Sensing literature has focussed on the study of mathematical condi-
tions that guarantee that more efficient computational methods are
able to provide good estimates [1]. Of particular relevance for this
paper is the Iterative Hard Thresholding algorithm [7].

2. BAYESIAN ESTIMATION AND IMPORTANCE
SAMPLING

For a given set of observed data y, let {σ̂i(y)} be the set of estimates
of several parameters of interest. The optimal Bayesian estimate for
σi that minimises the cost

E[(
∑
i

(σ̂i(y)− σi)
2)] (3)

is known to be the posterior mean

σ̂i(y) =

∫
σip({σi}|y)

∏
i

dσi, (4)

where E is the expectation with respect to y and {σi} and where
p({σi}|y) is the posterior distribution of {σi} given y (see e.g. [5]).

p(x|y) =

∫
p(y|x,u)p(x|u)p(u)

p(y)
du (5)

E[(
∑
i

(x̂i(yi)− xi)
2)] (6)

is known to be the posterior mean

x̂i(yi) =

∫
xp(x|yi)dx, (7)

In most cases of interest, the integration over the posterior re-
quired to evaluate the posterior mean cannot be evaluated and so
approximate estimates have to be used. A common approach here
are Monte Carlo methods [6].

A Monte Carlo estimate approximates the integral by a sum over
samples xi drawn from the distribution p(x)

∫
f(x)p(x) dx ≈

N∑
i=1

1

N
f(xi), (8)

where p(x) is a probability distribution and f(x) a function (e.g.
using f(x) = x would give us the mean of the distribution p(x)).
If we were able to draw samples from the distribution p(x), then the



approximation becomes exact in the limit if we take more and more
samples [6] 1.

If we cannot draw the samples from the distribution p(x), then
we can instead draw samples from an alternative proposal distribu-
tion q(x). If we choose q(x) such that the ratio p(x)/q(x) remains
bounded for all values of x for which p(x) is defined, then we can
write a Monte Carlo estimate as∫

f(x)p(x) dx =

∫
p(x)

q(x)
f(x)q(x) dx ≈

N∑
i=1

1

N

p(xi)

q(xi)
f(xi),

(9)
where now a weighted Monte Carlo estimate is used with proposal
distribution q(·) and weights wi = p(xi)

q(xi)
.

In many cases, we can only evaluate the distributions p(xi) and
q(xi) up to some unknown constant. In this case, it is customary to
normalise the wights wi such that

∑
i wi = 1.

3. BAYESIAN HARD THRESHOLDING (BHT)

In the setting of Compressed Sensing, the idea to use an average
estimate, rather than a single point estimate, has been promoted re-
cently in [8] and [9]. Inspired by the realisation that the posterior
mean is the optimal estimate to minimise expected squared error,
both of these publications introduce random element selection into
two well known sparse recovery algorithms, Orthogonal Matching
Pursuit [10] and Iterative Hard Thresholding [7]. However, the ran-
domisation introduced into these approaches does not guarantee that
the algorithms produce samples drawn from the relevant posterior
distribution and so, the average estimate remains sub-optimal.

We here build on this idea and contrast them to a new Monte
Carlo based approach. We are motivated by the observation that,
if we can only sample from an approximation to the posterior dis-
tribution, then computational Bayesian reasoning suggests the use
of importance weights, which should then be used for an Importance
estimate. We here concentrate on approaches that are similar to those
in [9] and that do not add a significant increase in computational cost
to the method presented there. Similar ideas that extend the approach
in [8] follow similar arguments.

3.1. The Bayesian Model

There are many different approaches to formalise a sparse bayesian
model. We here use a formulation based on indicator variables ui ∈
{0, 1}. Let u be the vector of variables ui. The individual entries
in the sparse vector x are then assumed to have the following condi-
tional distribution p(x|u) =

∏
i p(xi|ui), where

p(xi|ui) =

{
N (0, σx) if ui = 1
0 otherwise, (10)

with N (0, σx) being a zero mean normal distribution with variance
σx.

This prior distribution is complimented by a normal likelihood
defied through the observation equation

y = Φx + e, (11)

where e is a multivariate i.i.d. normal variable with variance σe.

p(y|x,u) = N (Φx, σeI), (12)

1See the reference for the exact conditions on the samples required for
this to hold.

It thus remains to specify the distribution of the indicator vari-
ables ui. Two potential alternatives here are

p(u) =

{
1

(NK)
if ui = 1 for exactly K indices i

0 otherwise,
(13)

or

p(u) =
∏
i

p(ui) =

(
N

K

)
pK(1− p)N−K . (14)

The first proposal draws a set of K distinct indices (without replace-
ment) and thus leads to a distribution on the indicator variables that
is not independent. The distribution of the indicator variables in the
second distribution is, by contrast, i.i.d. binary.

3.2. A Bayesian IHT algorithm

As in [9], we consider a randomised IHT algorithm. However, our
aim is to ensure that samples are drawn form the correct distribution.
For the Bayesian model above, the true posterior is proportional to

p(x|y) ∝
∑

ui∈{0,1}

p(y|x,u)p(x|u)p(u), (15)

where the summation is over all combinations of u. Due to the com-
binatorial nature of the problem, we cannot evaluate the above sum-
mation and so cannot efficiently sample from this distribution. In-
stead, we sample x from a Markov Chain, where each sample in
the chain is defined using a randomised iterative hard thresholding
iteration. Let x1 = 0 and define

an+1 = xn + µngn, (16)

where gn = ΦT (y −Φxn) and

µn =
gT

ΓngΓn

gT
ΓnΦT

ΓnΦΓngΓn
, (17)

with Γn = {i : xi 6= 0}. We then use a proposal distribution
π(u|an+1) which samples the new indicator variables un+1 from a
distribution that depends on an+1 and thus on xn. The idea is that
large values in an+1 should indicate locations in which x is likely to
be non-zero so that for large n the distribution p(x|y) is, up to some
constant c, well approximated by our sampling distribution

p(x|y) ≈ cπ(y|x,u)π(x|u)π(u|xn). (18)

The conditional distributions π(y|x,u) and π(x|u) could be, for ex-
ample, the true prior and likelihood p(x|y,u), which are multivari-
ate normal. However, sampling from p(x|y,u) would require the
calculation of a matrix inverse, which will be slow for large problems
and an alternative i.i.d. proposal distribution can be used instead.

The Markov Chain is defined through the following model. In
the first iteration we sample from

π(x1,u1) ∝ π(x1|u1)π(u1), (19)

whilst in iteration n we use

π(xn,un|xn−1) ∝ π(xn|un,xn−1)π(un|xn−1). (20)



3.3. Calculating Importance Weights

For any sample xs we draw, we calculate Importance weights. To
do this, we need to evaluate the distribution π(xn,un). Unfortu-
nately, to evaluate π(xn,un), we would have to integrate the distri-
bution π(x1,u1)

∏
n>1 π(xn,un|xn−1) over all possible sample

paths x1, . . .xn−1 which is not feasible.
Instead, we take our motivation from the field of sequential im-

portance sampling. Let us draw S samples x1
s from the distribution

π(x1) ∝ π(x1|u1)π(u1
i ). As in sequential Monte Carlo methods,

we approximate the distribution p(x|y) with the following distribu-
tion

p(x|y) ≈
∑
s

wsδ(x
2
s), (21)

where the weights are the importance weights

w1
s ∝ p(x1

s|y)/(π(x1
s|u1

s)π(u1
s)). (22)

We then use boot strapping to generate a new set of samples x̃1
s by

drawing samples from x1
s with replacement where each x1

s is drawn
with probabilityw1

s . In the limit as S goes to infinity, the samples x1
s

are effectively drawn form the desired distribution, however, due to
the finite S, the approximation is biased. To reduce this bias, we use
several sampling steps and thus generate a Markov Chain of samples.

In the nth step of the Markov Chain, we draw the S samples xn
s

from the distribution

π(xn|un)π(un|x̃n−1). (23)

The marginal distribution for xn
s and un

s is then approximately

π(xn
s ,u

n
s ) =

∫
x̃n−1

π(xn, x̃n−1un)π(x̃n−1)

≈
S∑

r=1

π(xn
s |un

s )π(un
s |x̃n−1

r )π(x̃n−1
r ). (24)

which can be used to calculated new importance weights

wn
s ∝ p(xn

s |y)/(

S∑
r=1

π(xn
s |un

s )π(un
s |x̃n−1

r )π(x̃n−1
r )). (25)

3.4. Calculating and sampling from the proposal distributions

The speed of convergence of the Monte Carlo estimate to the true
sample mean depends (to some extend) on the closeness of the sam-
ple distribution to the distribution of interest [6].

Depending on the true prior probability p(u), different choices
are advisable. If our prior is that in equation (13), then the posterior
will be zero for any signal that has more then K non-zero elements.
This implies that Importance weights will also be zero whenever the
samples un have more than K non-zero elements. Weights that are
zero do not contribute to the estimated sample mean leading to an
inefficient sampling scheme. To avoid this, the proposal distribution
should ideally constrain the samples’ sparsity. This leads necessar-
ily to a proposal distribution that is not independent. The proposed
sampling in [9] is of this type and is defined implicitly through the
following procedure (where Ii(γ) is the indicator function which is
1 if i = γ and 0 otherwise).

We will call this approach Proposal Distribution 1.

• Γ0 = ∅
• Iterate for k = 0, k + +, n ≤ K

– c =
∑

i/∈Γ0 ai(x
n)

– {ãi(xn)} = {ai(xn)/c : i /∈ Γ0}

– γk ∼ p(γ|{ãi(xn)}) =
∏

i/∈Γ0 Ii(γ)ãi(x
n)

– Γk = Γk−1 ∪ γk,

The other approach, tailored to the prior in equation (14), would
be to sample from an independent distribution.

We will call this approach Proposal Distribution 2.

π(u|a) =
∏
i

f(ai)
ui(1− f(ai))

1−ui , (26)

where f(·) is a function such that f(ai) ≤ 1.
Both of these proposal distributions are easy to sample from,

however, to calculate the weights, we also need to be able to eval-
uate π(un|an) for given un and a. This is easy for equation (26),
which is given in closed form, but the dependent distribution pro-
posed in [9] is only defined implicitly through the recursion used
for sampling. The problem is the following. The distribution from
which γ is sampled in each recursion changes, because samples that
are selected in previous iterations are removed so that the probabil-
ities for element selection changes. After K elements have been
selected, there are K! different permutations in the order in which
the elements could have been selected and the probability for each
of these is different. Thus, we will have to sum the probabilities over
K! permutations, which is computationally expensive. In order to
use this proposal distribution, we thus need to approximate the value
of this probability. In our experiments, we use an approximation that
assumes that each permutation has roughly the same probability as
the probability for the order we have actually sampled. This proba-
bility is easy to keep track of during sampling.

4. THE ALGORITHM

This leads to the following algorithm to draws S different Impor-
tance samples

• Initialise x̃0
s = 0 for s ∈ {1, 2, . . . , S}

• Iterate for n = 0, n+ +, n ≤ Nmax

– Iterate for s = 1, s+ +, s ≤ S

∗ gn = ΦT (y −Φx̃n
s )

∗ µn =
gT

ΓngΓn

gT
ΓnΦT

ΓnΦΓngΓn

∗ an+1 = (xn + µngn),
∗ u ∼ π(u|an+1)

∗ xn+1
s ∼ π(an+1|xn

s ,u)

∗ calculate the weight wn+1
s using equation (25)

– ŵn+1
s = wn+1

s /
∑

s w
n+1
s

– draw {x̃n+1
s }s from {xn+1

s }s, with probability ŵn+1
s

• x = 1/S
∑

s x̃s

As with all Monte Carlo estimates, it is difficult to decide how
many samples to draw. In addition, we here also have the added
complexity of the Markov Chain, which we can, again, terminate at
any iteration. This will not have any influence on the convergence of
the estimate in the limit of infinitely many samples, but will influence
the variance and bias of any finite sample estimate.
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Fig. 1. Fixed sparsity prior. Convergence of the Importance sam-
pling algorithm with iteration by iteration bootstrap re-sampling
(left) and the Randomised IHT algorithm (RIHT - right).

5. INITIAL RESULTS

In this section we simulate a small compressed sensing recovery
problem. Each instance is constructed by generating a real matrix
Φ ∈ R64×128 with i.i.d zero mean and unit variance normal entries,
followed by a normalisation step in which the columns of Φ were
normalised to unit length. We either use a fixed sparsity level of
K = 10 or draw indicator variables from a Bernoulli distribution.
Non-zero x are drawn from a zero mean unit variance normal. Gaus-
sian noise is added to the observations y, again with zero mean, but
with standard deviation of 0.1. Results are reported in terms of the
normalised mean squared error (as well as in terms of SNR in dB).

NMSE =
‖x− x̂‖2

‖x‖2 , (27)

where x is the true sparse signal and x̂ its estimate.
Where used, the IHT algorithm was stopped as soon as∣∣‖y −Φxn−1‖/‖y‖ − ‖y −Φxn‖/‖y‖

∣∣ ≤ 10−6. (28)

5.1. Known sparsity with uniform prior

Using Proposal Distribution 1, we compared the Randomised IHT
algorithm of [9] to an Importance estimate in which the same sam-
pling scheme is used, but where we also calculated and used an ap-
proximation to the importance weights to resample the ”particles” in
each iteration. For a single instance of the measurement system and
sparse signal, we run the algorithms 10 times, each for 100 iterations,
drawing 20 sample in each run. In each iteration, we calculated the
SNR value between the sample mean and the true value. The SNR
per iteration is plotted in Figure 1.

It is clear from this figure that the re-sampling step based on
the importance weights introduced in our method leads to a signifi-
cantly faster convergence of the method. The Randomised IHT algo-
rithm on the other hand converges much slower and, for the example
shown here, does not seem to reach the stationary distribution after
100 iterations. This convergence increase however also comes at the
cost of an increase in the variance in the estimate. The normalised
RMS values achieved after 100 iterations is shown in Figure 2.
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Fig. 2. Fixed sparsity prior. Normalised RMS error for the Im-
portance IHT algorithm (magenta diamond), the Randomised IHT
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and an oracle estimate that assumes knowledge of the sparse support
(black square). Results are averaged over 100 problem realisations.
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Fig. 3. Bernoulli prior. Convergence of the Importance sampling
algorithm with iteration by iteration bootstrap re-sampling (left) and
the Randomised IHT algorithm (RIHT - right).

5.2. Unknown sparsity with i.i.d. Bernoulli prior

In our second experiment, we draw the true sparse vector using Pro-
posal Distribution 2, so that the expected number of non-zero ele-
ments is equal to that in the previous experiment (i.e. 10). We then
repeated the experiment above, with the variation that we now used
Proposal Distribution 2 in the algorithm, that is, the indicator vari-
ables were drawn from Bernoulli distributions, with the probability
of un+1

i depending on ani .
The convergence of the Importance sampling based IHT algo-

rithm (i.e. the algorithm that uses bootstrapping based on importance
weights) and the Randomised IHT algorithm are shown in Figure 3.
In this example, there is no appreciable difference in the convergence
speed of the two methods, but a clear improvement is evident in the
mean SNR for the Importance sampling scheme, even though this
has again a significantly higher variance.

6. CONCLUSION

Randomisation of the sparse selection step in several greedy sparse
approximation/recovery problems can be used to find better esti-



mates in terms of expected mean squared error. We have here eval-
uated two possible approaches to calculate samples and appropriate
importance weights and compared the results to those obtained with-
out importance weighting.

From our experience here, for the small number of samples fea-
sible here, the choice of the proposal distribution seems significantly
more important than the use of the appropriate importance weights.

As with other full Bayesian approaches, a clear drawback is the
increase in computing resources required. Instead of running a single
instance of the Iterative Hard Thresholding algorithm, one instance
has to be run for each sample, so that the computational burden in-
creases linearly with the sample number. However, individual iter-
ations are paralelisable and so, the use of highly parallel computing
architectures, such as those of GPU based processors, can make ran-
domised algorithms feasible alternatives in certain applications.
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