Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution
Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution
Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50nm hot-spots in the magnetic recording layer using a laser source operating at 473nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.
6428-6437
Yuan, Guanghui
d7af6f06-7da9-41ef-b7f9-cfe09e55fcaa
Rogers, Edward T.F.
b92cc8ab-0d91-4b2e-b5c7-8a2f490a36a2
Roy, Tapashree
094726f3-177b-468a-be7a-f299d6c4fef5
Shen, Zexiang
f17e56a3-2976-4d8c-aac0-d7e7422216ed
Zheludev, Nikolay I.
32fb6af7-97e4-4d11-bca6-805745e40cc6
24 March 2014
Yuan, Guanghui
d7af6f06-7da9-41ef-b7f9-cfe09e55fcaa
Rogers, Edward T.F.
b92cc8ab-0d91-4b2e-b5c7-8a2f490a36a2
Roy, Tapashree
094726f3-177b-468a-be7a-f299d6c4fef5
Shen, Zexiang
f17e56a3-2976-4d8c-aac0-d7e7422216ed
Zheludev, Nikolay I.
32fb6af7-97e4-4d11-bca6-805745e40cc6
Yuan, Guanghui, Rogers, Edward T.F., Roy, Tapashree, Shen, Zexiang and Zheludev, Nikolay I.
(2014)
Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution.
Optics Express, 22 (6), .
(doi:10.1364/OE.22.006428).
Abstract
Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50nm hot-spots in the magnetic recording layer using a laser source operating at 473nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.
Text
oe-22-6-6428.pdf
- Version of Record
Available under License Other.
More information
e-pub ahead of print date: 12 March 2014
Published date: 24 March 2014
Organisations:
Optoelectronics Research Centre
Identifiers
Local EPrints ID: 364870
URI: http://eprints.soton.ac.uk/id/eprint/364870
ISSN: 1094-4087
PURE UUID: 1aedc665-719b-404b-9a53-99a00af82337
Catalogue record
Date deposited: 15 May 2014 10:48
Last modified: 15 Mar 2024 02:44
Export record
Altmetrics
Contributors
Author:
Guanghui Yuan
Author:
Edward T.F. Rogers
Author:
Tapashree Roy
Author:
Zexiang Shen
Author:
Nikolay I. Zheludev
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics