
A Provenance-based Policy Control Framework
for Cloud Services

Mufajjul Ali1 and Luc Moreau2

1 Orange Labs, London UK,
2 University of Southampton

Abstract. In the context of software, provenance holds the key to re-
taining a mirror instance of the lifespan of a service, which can be re-
played/reproduced from the beginning. This entails the nature of in-
vocations that took place, how/where the data were created, modified,
updated and the user’s engagement with the service. With such an ency-
clopedia of information, it opens up a diversity of value-added features
(compliance control, accountability) that can improve the usability of a
service.

In this paper, we extend our previous work on the provenance-based
policy language (cProvl) and model (cProv) by proposing a preliminary
policy control framework. The framework provides the necessary build-
ing blocks for integrating and developing services that are able to gen-
erate and use provenance data for provenance-based compliance control,
which runs on a XACML engine. We demonstrate the capability of the
framework by applying it to a service case, and conduct benchmarks to
determine its scalability and performance.

Keywords: Provenance, XACML, cProv, Prov, cProvl, Share, Cloud

1 Introduction

Cloud computing is built on top of many existing technologies, to support fea-
tures such as the dynamic scaling, resource pooling, pay-per usage and on-
demand self-services. While cloud computing adoption is gaining momentum
in the industry, the compliance and accountability remain its main Achilles heel
[1]. One approach to addressing this problem is through the use of provenance [2].
Provenance is a well understood area in art and digital-libraries, where lineage,
pedigree and source plays a major role in understanding how things have been
derived, and in determining the collection’s authenticity and value [3]. Prove-
nance helps in answering questions such as: What processes were involved in
transforming the data? Did the processes conform to all necessary regulations?
Where in the actual physical location within the cloud has the execution of data
taken place? Answering these questions are pivotal to achieving compliance in
the cloud environment.

2 Mufajjul Ali1 and Luc Moreau2

In additional to provenance, a policy control mechanism is required to define
the compliance requirements, and to be acted upon if a violation occurs. XACML
[4], an industry wide standard is deployed by many organizations as standard
policy-based control for their services. Organizations are looking to migrate their
existing services to the cloud. Having the ability to use the existing policy control
would minimize the cost of migration, reduce deployment effort, and mitigating
the risk of using unproven technology. Its architecture is modular and provides
scope for extensibility. However, it does not cater for provenance data.

In our previous work [5], we have defined a provenance ontology that extends
the Prov model [6] for cloud-based services, and a provenance-based policy lan-
guage that can be mapped to the XACML policy language. This allows us to
express questions and conditions in the form of policies, and execute them using
the ontology via the extended XACML engine.

The contributions of this paper are as follows: First, we propose a policy
control framework that leverages on the XACML architecture and the Prov
standard for industrial cloud-based applications. Secondly, the framework is in-
tegrated with a cloud-based service (a Telco’s file sharing service) to support its
compliance requirements. Finally, we perform benchmarks on the framework’s
integration with the service to evaluate its scalability and performance.

2 A Telco Service

ConfidenShare is a cloud service developed by a Telco Operator for the sharing
of sensitive and non-sensitive information such as a file, meeting data and other
data with users within the cloud environment. It uses Proxy re-encryption [7], a
cryptographic technique that allows the sharing of all or part of user’s data with
one or more parties. ConfidenShare is interoperable with many existing cloud
providers, and can meet varying country-specific cloud strategies. While the file
sharing mechanism is secure, it does not have the necessary means of declaring
constraints, capturing requirements and compliance control for them.

2.1 Service Requirements

Files are typically categorized as ‘confidential’, ‘restricted’ or ‘general’.
A ‘confidential’ file is the most restricted and only the originator (creator of

the document) is allowed to initiate the share.
A ‘restricted’ file, is where an originator can share with one or more recipi-

ents. Any changes or modifications can only be shared with the originator and
recipients of the original document only.

A ‘general’ file can be shared with any users, and there are no explicit re-
strictions on the re-sharing. A further restriction can be added to the ‘general’
category to indicate if the file shared is modifiable, if it isn’t it can only be shared
unmodified.

Any user no longer registered with the service, all traceable files associated
with that user cannot be shared, and should be removed. This is in accordance

A Provenance-based Policy Control Framework for Cloud Services 3

to the “EU:Right to erasure” legislation [8]. Unless explicit permission has been
given by the user to allow the retention of data they have already shared with
other users.

In all cases the provenance of the documents are intact. From the service
requirements, we can derive policies such as:

Policy 1 - If a file (fileA) is marked as ‘confidential’, only the originator is allowed
to share it with another user (userB), re-sharing by userB is not allowed.

The provenance data contains information related to when the file was cre-
ated, by whom, where, and other information that can be used to determine if
it is in compliance with this policy or not.

Policy 2 - If a user (userA) is ‘removed’ from the service, any shared files (file
X) by this user cannot be shared further (userB).

When a user is deleted, by law, all the data associated with the user must be
deleted, this includes all the shared files. Provenance data can be used to check
for the origin of a file. If the originator of the file is no longer with the system,
then any derived or shared copy of the file can be identified from the provenance
data and prevent further shares.

In order to fulfil these requirements, the following is necessary:

– Integration of the provenance capabilities to the ‘ConfidenShare’ service. The
generated provenance data can be used to check for compliance breaches,
which are fundamental to service level agreements.

– Declaration of requirements as policies, which are to run in a compliance
control engine to determine and act upon the compliance status (this will
require the generated provenance data).

2.2 Background

A number of provenance-based frameworks have been proposed [9], [10]. Kepler
is a provenance framework designed to work with workflow management for
collecting, and processing of provenance data. It provides three APIs: recording,
query and management for handling such task, as well as algorithms for tracking
and finding files. While their solution works well for workflows, it is not generic
enough [9]. Karma is also a workflow-based framework [11] similar to Kepler,
but does not have the additional processing algorithms and neither incorporates
any support for provenance-based policy control.

Tsai, W.-T. et al. [12] discusses issues related to the data provenance in
SOA; focusing on the security, reliability and integrity of the data. They also
propose a SOA data-provenance framework [13], which is a more advanced ver-
sion proposed earlier by Rajbhandari, S et al. [14]. This framework is based on
the non-standard provenance model, and entails functionalities such as multiple
data provenance classification (minimal provenance, time-based, event-based,
etc.), data collection (actor-based and time-based), dynamic analysis (security

4 Mufajjul Ali1 and Luc Moreau2

policy checking service (SPEC), integration estimation service) and others. The
checking source SPEC appears to have some degree of correlation with our work.
However, no information is supplied in relation to the language used, supported
features, limitations, and how it operates on the provenance data.

Aldeco-Perez, R et al. [3] proposes a provenance-based compliance frame-
work, based on the Open Provenance Model. The framework provides a process-
ing view (represented as a provenance graph for a specific execution time) and
usage policy definition (UPD). It uses the UPD to validate against the processing
view for compliance. The framework lacks the integration with the commercial
applications and policy standard such as XACML.

K.K. Muniswamy-Reddy et al. [15], [16] aims to address automation of prove-
nance collection, by proposing three protocols for storing provenance for their
existing cloud service. The provenance data is collected using their existing sys-
tem called PASS (Provenance aware storage system) [17]. Any objects stored in
the system automatically extracts the provenance data related to it, for example
a system call read, write, etc. However their solution is proprietary.

In regards to policy, Cheney, J. [18] gives a formal model for security con-
trol for provenance, and Martin, A et al. [19] provides pertinent details of the
applicability of provenance as a security control. PAPEL [20] is a provenance-
based policy language which attempts to integrate with XACML with limited
expressibility on the provenance data.

C.Dai et al. [18], proposes a confidence policy compliance query evaluation,
that restricts or grant based on a certain confidence level. Howver the policy
language is fairly restricted.

Much of these works are complementary to our previous work [5], on the
provenance-based policy language, but they lack any real mapping and inte-
gration with the commercial standard such the Prov and XACML. Our focus
is on using standardised policy language and model to be used in commercial
applications.

3 Policy Control Framework

It is imperative for the framework to provide ease of integration of the provenance
model cProv and policy language (cProvl). In order to support the provenance-
based compliance control, with the existing and new commercial cloud-based
services. For this purpose, we have leveraged two industrial standards: Prov and
XACML architecture, that forms the backbone of the framework’s stacks (figure
1).

3.1 Client Side Stack

The client stack handles operations such as the integration and generation of
provenance data, as well as the request for provenance-based compliance con-
trol. More concretely, it is structured as a six layered stack (left image of figure 1).

A Provenance-based Policy Control Framework for Cloud Services 5

Client Stack

Server Stack

Services
cProv	

Client	API
cProvl	

Client	API

Converter
cProvl	

XML/cProv	
Schema

cProvl	
XML/cProvl	
Schema

Event	Listener

Connector

Modules

cProv	
REST	
API

cProvl		REST	API

cProvl	
Provenance	Store

mySQL ExistDB HBase

cProvl
Policy	Store

StoreController

Extended	XACML	
Engine

cProvl	to	
XACML	policy	
converter

cProvl	to	
XACML	req/
res	converter

cProvl	
Policy	Language

b

b
Extendedbmodulesb
Se.g.bclassifier)b

APIsbforbhandlingb
policy/requestb

Handlingbofb
Provenancebdatab

Provenanceb
storebforbholdingb
allbtheb
traceabilitybdatab

Povenanceb
enabledbXACMLb
engineb

Provenance-awareb
policyblanguageb

Convertersb forb
cProvl/XACMLb

Handlesb
interactionsbwithb
thebstoresb

Policybstore,b
containingballbtheb
policiesb

PhysicalbStorageb

Fig. 1. Framework Stacks

Layer 1 - Defines the actual integration with a service. This is where one
or more services are modified to provide provenance capability (this has been
applied to the ConfidenShare service (section 2)).

Layer 2 - Provides two APIs (provenance and policy) that assist the genera-
tion of the provenance data, and declaration of a request for compliance control.

Layer 3 - Defines a list of converters (native to XML provenance and cProvl
XML policy request).

Layer 4 - Provides the underlying schemas for cProv provenance model and
cProvl policy request for their XML representations.

Layer 5 - Handles the generated provenance statements via the event han-
dler, statements are placed in a temporary queue for permanent storage.

Layer 6 - Transfers the provenance statements to permanent storage and
sends the policy request to the policy controller.

3.2 Server Side Stack

The server side stack defines operations for storing, querying and updating the
provenance store. For compliance control, it provides the mechanism for handling
policy requests, translation and execution in the extended XACML policy engine.

It contains five layers (right image of figure 1).

Layer 1 - Builds modules for extending functionalities, such as a classifier
(not discussed in this paper).

Layer 2 - Provides the server side integration. It has two core APIs (cProv
REST API and cProvl REST API). One for handling the provenance data and
the other for compliance control. This layer also supplies converters (cProvl to
XACML, and XACML to cProvl) for interacting with the XACML engine.

6 Mufajjul Ali1 and Luc Moreau2

Layer 3 - Provides the mechanism for interfacing with the provenance and
policy store.

Layer 4 - Defines the hierarchical storage structure. It contains the prove-
nance and policy store, which consists of one or more services.

Layer 5 - The actual underlying storage (currently the framework uses the
eXist DB).

By adopting these standards (prov, XACML), the framework is likely to be
more compatible with the existing software development processes, tools and
infrastructure.

XACML does not have any support for provenance, we have addressed this
deficiency by extending its core architecture to provide provenance support using
our cProvl policy language.

3.3 Extended XACML architecture

Figure 2 shows how the five core XACML components: PEP (Policy Enforcement
Point), PDP (Policy Decision Point), context handler, PAP (Policy Administra-
tion Point) and PIP (Policy Information Point) [4] were extended to support the
provenance-based compliance control.

PAP (writes XACML policies and makes then available to PDP) module has
been extended to allow the creation of cProvl policies, and provides a mapping
from cProvl policies to XACML policies, as well as providing storage for these
policies.

The PEP (handles the initial incoming service specific request typically from
an application) module has been extended to cater for a service request to be
translated into cProvl request and stored in the policy store with its provenance.
The service response is treated in the same manner.

The context handler is responsible for converting a service request into an
XACML request. We provide the support for a cProvl request to be translated
into an XACML request. The request is then transferred to the PDP module.

The PDP module determines the outcome of a request. We have introduced
new functions to accommodate the handling of provenance data (used by the
translated XACML polices). Before making a decision, it may request the context
handler for additional attributes via the PIP module (in our case, attribute
references to provenance statements).

The PIP module has been extended to interface with the provenance store.
It returns the necessary statements requested by the PDP module for decision
making.

The context handler receives an XACML response from the PDP module.
We have also added the support for an XACML response translated to a cProvl
response (stored in the policy store), which is then sent to the PEP module.
The PEP translates it to service specific response and enforces the control, i.e.
Permit/Deny (detailed mapping is discussed in our previous paper [5]).

A Provenance-based Policy Control Framework for Cloud Services 7

PEP

Heading

ContextyHandler

PDP

PAP PIP

cProvyXML
Request

Resourcey
Request

cProvyRequest
Generator

Httpy
Gateway

Httpy
Gateway

generateReq

XACMLyXML
Request

Resourcey
Controller

2/yaccessyrequesty

4/byconvert

3/ayreadyrequest

02/ayconvert

3/yrequest

2/ayconvertytoycProvyreq

Policyy
Controller

Policy
Converter

cProvStorecProvStore

Provenancey
Handler

02/cyresponse

2/cystore
request

cProvy
policyStore

cProvy
policyStore

Policy
Handler

XACMLytoycProv
resyconverter

cProvlytoyNative
Converter

Dynamicy
Policy

0/ypolicy

0/dystorePolicy
0/ayconvertyto

XACML

6/ayattributeyquery

0/cycreate
policy

cProvytoyXACMLy
reqyconverter

5/yattributeyquires

00/yresponseycontext

Resource
Handler

4/aygenyXACML
req

4/cyuseyXACML
req

8/yattribute

6/yget
provenance

8/yprovenance
data

serviceStoreserviceStore

9/yresourcey
content

cProvyXML
Response

generateRes

02/bystore
response

2/dystored

02/bystore
response0/bystaticVdynamic

Variableyref

4/d/yrequestynotification

0f/yattributes

Fig. 2. XACML Extended Architecture to Support Provenance

To our knowledge, this is the only framework that enables ease of integra-
tion of the extended Prov provenance model with the XACML architecture for
cloud-based services. The benefit we can see in using this framework is that only
the high level APIs can be utilised without the developers requiring knowledge
of the underlying complexity of extended XACML architecture or the prove-
nance model. This can save integration and development time, is less prone to
errors, and minimizes the integration complexities, which ultimately will allow
developers to focus their efforts on the business logic.

4 Framework Service Integration

We have successfully integrated the framework with the ConfidenShare ser-
vice (section 2). The service is able to generate provenance data, and apply
provenance-based control.

8 Mufajjul Ali1 and Luc Moreau2

ConfidenShare0– Share0Operation0

Agent:Bob ConfidenShare FileStore ProvenanceStore

shareFile
getResource

validateProv

ProvenanceHandler

storeProv

2010created

ok

createSucessfully

PolicyControllerRequestHandler

genDynamicReq

genCprovlReq
storeCprovlReq

storeXACMLReq

XACMLReq

genXACMLreq

authroizationReq

validate

status
responseMsg

3010redirect

validateProv storeTracebility

2010created
createSucessfully

genProv

genProv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Fig. 3. Framework Integration with the ConfidenShare Service

The sequence diagram (figure 3) demonstrates the interactions between the
framework’s components with the service. It shows a user, Bob, invoking a re-
source share request on the ConfidenShare web client (line 1-3). The client (using
cProv client API) generates provenance data for this invocation and interacts
with the ‘ProvenanceHandler’ for translating it to XML Prov elements, then
storing it using the cProv server API (line 4-8).

The next sequence (line 9) on the diagram is the ConfidenShare service gen-
erating and initiating a request (using the cProvl Client API) to validate against
the service requirements for compliance (as defined in section 2.1). The policy
controller executes the request using the defined cProvl policy (section 2.1) in
the XACML engine (cProvl to XACML translation/mapping is discussed in the
previous paper [5]) (line 14-16). If the response is granted, then the resource
share is permitted, and the provenance record is updated (line 17-22).

An example of a dynamic request using the Client Stack (cProvl Client API)
for a share request is as follows:

// service provenance-based control request integration
dpr.constructRequest(session.get(SESSION_USER_NAME), false, filename.getName(), false,

null, ‘a-share’, true, null); //generates a cProvl request (see below)

This example can be read as a ‘ConfidenShare’ session user (‘Bob’) is request-
ing for authorization to share a file (document1). This request gets automatically
translated into an cProvl request, as follows.

<cprovl:PolicyRequest> <cprovl:Agent isRef="false" prov:id="confidenshare:ag-Bob"/>
<cprovl:Entity prov:id="confidenshare:e-document1">

A Provenance-based Policy Control Framework for Cloud Services 9

<cprovl:reqField>cprovd:Resource</cprovl:reqField>
<cprovl:fieldValue isRef="false">confidenshare:e-document1 </cprovl:fieldValue>

</cprovl:Entity> ...
</cprovl:PolicyRequest>

An XACML equivalent of this request is as follows.

<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 ... CombinedDecision="false">
<Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">

<Attribute ... AttributeId="urn:oasis:names:tc:xacml:3.0:subject-id">
<AttributeValue DataType="urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression"
XPathCategory="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">ex:ag-Bob
</AttributeValue> </Attribute> ...

</Attributes>...
</Request>

This request is used by the extended XACML engine to determine if it is
compliant with the defined policies (section 2.1) using the ‘ConfidenShare’ ser-
vice’s provenance data.

By making use of the APIs, major alterations to the service and business logic
were avoided when integrating the framework with the ConfidenShare service.
This will ultimately increase the level of trust using provenance-based compliance
control in order to empower the user to verify the compliance of SLAs of cloud-
based services.

5 Evaluation of Performance

Following is an evaluation of our integration of the framework with the Con-
fidensShare service in terms of performance and scalability. Our interest is in
the provenance model, compliance control engine and policy statements. The
machine used is an Intel (R) Core (TM) i7-2820QM CPU @2.30 GHZ, with 6Gb
of RAM and 600Gb of disk space.

Hypothesis 1 (Service Statements) The integration of the cProv provenance
model with the ‘ConfidenShare’ service generates and stores provenance data at
a relatively constant time in relation to the running of the service.

Method We generate and store the provenance statements using the cProv client
API, and cProv REST API. Policy one requires a minimum of 10 statements to
execute, while 20 statements for policy two. This process is repeated 1000 times
and added to the existing provenance graph. This produces two graphs of 10,000
and 20,000 statements. The time it takes between the creation and storage of
statements are recorded as a unit of 10 statements in the first graph and 20 in
the second (resulting in 1000 measurements).

Analysis Figure 4 shows a good correlation between the provenance entries
(generation & insertion) and the time. For every statement, on average, it re-
quired 34.371ms. On average per unit it took 314ms in graph one and 746ms in
graph two. This indicates the provenance store performance for both policies are
linear and in theory the store is scalable. The 34.371ms overhead for provenance
integration is favorable for the ‘ConfidenShare’ service.

10 Mufajjul Ali1 and Luc Moreau2

0

500000

1000000

1500000

0 250 500 750 1000
Items

ti
m

e
 i
n

 m
s
 (

1
/1

0
0

0
)

cProv graph one

cProv graph two

cProvl policy one

cProvl policy two

cProvl Policy and cProv Provenance Store Performance

Fig. 4. Policy and Provenance Store Result

Hypothesis 2 (Compliance Control) The cProvl policies related to the ‘Con-
fidenShare’ runs in a XACML engine to support compliance control. It is likely
to add some overhead costs relative to the number of provenance statements that
are required in the policy execution.

Method We use the static cProvl policy one and two of the ConfidenShare ser-
vice (section 2). The requests for policies are generated dynamically using cProvl
client API, which are then translated into an XACML equivalent and executed
in a extended XACML engine. The engine uses the provenance data obtained
based on the previous method to evaluate each policy. This process is repeated
100 times and the start/finish times are recorded.

Analysis From figure 4, we can also see policy one’s execution took on average
time of 731.99ms (386.37ms without prov generation/storage time) per execu-
tion and for policy two it took 1265.22ms (518.77 without cProv). The addition
of the provenance compliance control almost doubles the overhead cost. This
may be due to the complex architecture (see fig 2), however, the performance is
still relatively good.

Hypothesis 3 (Policy Statements) The number of statements within a pol-
icy determines the execution time. Target statements are likely to take less time
to execute compared to the conditional statements, but both should have a rela-
tively constant execution time.

Method Policy one(section 2) contains four targets and three conditional state-
ments (see our previous paper [5] for further explanation). A new policy state-
ment (resource related) is added incrementally to the existing policy per execu-
tion. This process is repeated 100 times, first with conditional statements, and
then with target statements. The time it takes to execute a policy, from the re-
quest to the response and excluding the policy update time, is recorded. A total
of 200 measurements (100 target statements and 100 conditional statements).
Analysis - As it can be seen from figure 5, with each addition of a policy state-
ment, there is proportional increase in the time it takes to execute the policy,

A Provenance-based Policy Control Framework for Cloud Services 11

0e+00

1e+05

2e+05

0 25 50 75 100
Policy Statements

ti
m

e
 i
n

 m
s
 (

1
/1

0
0

0
)

policy target performance

policy target scalability

policy condition performance

policy condition scalability

Policy Statements Scalability

Fig. 5. Policy Statements Scalability Result

which is linear. We can see the condition statements take longer to execute than
the target statements. This is as expected because conditional statements are
multi-valued and contain dynamic variable references, whereas targets are typi-
cally single valued statements.

6 Conclusion

In this paper, we have presented a provenance-aware policy control framework
that provides client and server stacks for integrating provenance model and
provenance-based compliance control seamlessly.

We have successfully integrated the framework with the ‘ConfidenShare’ ser-
vice, and have been able to run few benchmarks. The results show a good linear
relationship between the generation and storage of provenance statements with
an average of 34.3ms per statement. The integration of policy language based on
the policies adds between 1 to 1.5s. Both, in theory, are scalable. In regards to
policy statements, with each additional statement, the execution time increases
by around 30ms.

We can conclude from the benchmark results, the integration of the frame-
work with the ‘ConfidenShare’, can add between 1-2 seconds to support compli-
ance based control, which is reasonable and encouraging. However, for a commer-
cial deployment, we would need to take into account the network lag, bandwidth,
distribution of the service components, and other factors to get a true value of
the overhead cost of adopting provenance based policy control.

Acknowledgments. The first author would like to thank Rafel Uddin, Kashif
Chawdhry, Tansir Ahmed and other members of Orange Labs for the on going
support of the work.

References

1. Pearson, S.: Toward accountability in the cloud. Internet Computing, IEEE 15
(2011) 64–69

12 Mufajjul Ali1 and Luc Moreau2

2. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Suss-
man, G.J.: Information accountability. Communications of the ACM 51 (2008)
82–87

3. Aldeco-Perez, R., Moreau, L.: Information accountability supported by a
provenance-based compliance framework. (2009)

4. Rissanen, E.: extensible access control markup language (xacml) version 3.0.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

(2010)
5. Ali, M., Moreau, L.: A provenance-aware policy language (cprovl) and a data

traceability model (cprov) for the cloud. In: Cloud and Green Computing (CGC),
2013 Third International Conference on. (2013) 479–486

6. Moreau, L., Missier, P., et al.: Prov-dm: The prov data model. W3c recommenda-
tion 30 april 2013, W3C (2013)

7. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
Topics in Cryptology–CT-RSA 2009. Springer (2009) 279–294

8. Ambrose, M.L., Ausloos, J.: The right to be forgotten across the pond. Journal of
Information Policy 3 (2013)

9. Mouallem, P., Barreto, R., Klasky, S., Podhorszki, N., Vouk, M.: Tracking files in
the kepler provenance framework. In: Scientific and Statistical Database Manage-
ment, Springer (2009) 273–282

10. Simmhan, Y.L., Plale, B., Gannon, D., Marru, S.: Performance evaluation of the
karma provenance framework for scientific workflows. In: Provenance and Anno-
tation of Data. Springer (2006) 222–236

11. Simmhan, Y., Plale, B., Gannon, D.: A framework for collecting provenance in
data-centric scientific workflows. In: Web Services, 2006. ICWS ’06. International
Conference on. (2006) 427–436

12. Tsai, W., Wei, X., Chen, Y., Paul, R., Chung, J.Y., Zhang, D.: Data provenance
in soa: security, reliability, and integrity. Service Oriented Computing and Appli-
cations 1 (2007) 223–247

13. Tsai, W.T., Wei, X., Zhang, D., Paul, R., Chen, Y., Chung, J.Y.: A new soa data-
provenance framework. In: Autonomous Decentralized Systems, 2007. ISADS ’07.
Eighth International Symposium on. (2007) 105–112

14. Rajbhandari, S., Walker, D.: Incorporating provenance in service oriented archi-
tecture. In: Next Generation Web Services Practices, 2006. NWeSP 2006. Interna-
tional Conference on. (2006) 33–40

15. Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.: Making a cloud provenance-
aware. In: First Workshop on on Theory and Practice of Provenance. TAPP’09,
Berkeley, CA, USA, USENIX Association (2009) 12:1–12:10

16. Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.: Provenance for the cloud. In:
Proceedings of the 8th USENIX Conference on File and Storage Technologies.
FAST’10, Berkeley, CA, USA, USENIX Association (2010) 15–14

17. Seltzer, M., Muniswamy-Reddy, K., Holland, D., Braun, U., Ledlie, J.: Provenance-
aware storage systems. In: Proceedings of the USENIX Annual Technical Confer-
ence (USENIX06). (2006)

18. Cheney, J.: A formal framework for provenance security. In: Computer Security
Foundations Symposium (CSF), 2011 IEEE 24th. (2011) 281–293

19. Martin, A., Lyle, J., Namilkuo, C.: Provenance as a security control. TaPP.
USENIX (2012)

20. Ringelstein, C., Staab, S.: Papel: a language and model for provenance-aware
policy definition and execution. Business Process Management (2010) 195–210

