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Abstract
We propose to use spatial control of the Zeeman energy shifts in an ultracold
atomic gas to engineer an interface between topologically distinct regions. This
provides an experimentally accessible means for studying the interface physics
of topological defects and textures. Using the spin-1 Bose–Einstein condensate
as an example, we find spinor wave functions that represent defects and textures
continuously connecting across the interface between polar and ferromagnetic
regions induced by spatially varying Zeeman shifts. By numerical energy-
minimization we characterize the defect core structures and determine the
energetic stability. The techniques proposed could potentially be used in the
laboratory to emulate complex interface physics arising, e.g., in cosmological
and condensed-matter contexts in both uniform and lattice systems.

Keywords: atomic spinor Bose–Einstein condensates, topological defects and
textures, topological interface

1. Introduction

The physics of topological defects, such as vortices, becomes especially intriguing at the
interface between coexisting, topologically distinct phases of a macroscopically coherent
system. Due to different broken symmetries on either side, a defect cannot perforate the
interface unchanged. Instead it must either terminate, or continuously connect across the
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boundary to an object representing a different topology. This situation arises, for example, at the
interface between the A and B phases of superfluid liquid 3He [1–3], at interfaces between
regions of different vacua in theories of the early universe [4, 5], in the physics of branes in
superstring theory [6, 7], and in exotic superconductivity [8].

The parallels [2] between cosmological objects and defects in superfluids prompted the
suggestion that analogues of cosmological phenomena can be studied in the laboratory [2, 9],
for example the formation of defects in phase transitions [10–13] or properties of cosmic
vortons (superconducting cosmic strings [14]) [15–19]. Current experimental techniques in
atomic physics allow accurate measurements and precise control and manipulation of ultracold
atomic gases by finely tuning electromagnetic fields. In spinor Bose–Einstein condensates
(BECs), where the atoms retain their spin degree of freedom, experiments have demonstrated
controlled preparation of coreless vortices and analogous non-singular textures formed by the
nematic axis [20–23]. Vortex nucleation in phase transitions [13] and dynamical formation of
spin textures [24–27] have also been experimentally observed. Simultaneously there has been a
rapidly increasing theoretical interest in the wide variety of vortices, point defects and particle-
like textures in two-component (pseudospin-1 2) [15–19, 28–31], as well as spin-1 [32–51] and
spin-2,3 [52–56] BECs. This development brings multi-component systems of ultracold atoms
to the forefront as candidate laboratories where properties of a variety of field-theoretical
solitons (see for example [14, 57–60]) may be studied.

We have previously suggested [61, 62] that spatially non-uniform manipulation of
scattering lengths by optical or microwave-induced Feshbach resonances can be used to study
the physics of topological interfaces in ultracold atomic gases with spin degree of freedom. An
example is the spinor BECs, which exhibit distinct phases of the ground-state manifold. In the
simplest case of a spin-1 BEC there are two phases, polar and FM, and the sign of the spin-
dependent interaction determines which phase is energetically favourable. We proposed that a
combination of (microwave or optical) Feshbach resonances and spatially-dependent AC-Stark
shifts can be used to enforce different signs of this interaction in different spatial regions of the
same spin-1 BEC, establishing a coherent interface between the phases. Within this system, we
formulated spinor wave functions corresponding to defect combinations that can be phase
imprinted using existing techniques. By numerical simulation we found examples of
energetically stable interface-crossing defects and complex core deformations, such as the
formation of an arch-shaped half-quantum vortex on the interface. In addition, defects at an
energetically established boundary in a two-component BEC, where in one region the two
components are miscible and in the other immiscible, have recently been studied in BECs in
[63–67].

Here we propose to employ precise spatial engineering of the Zeeman shifts to create
topologically dissimilar regions within a spinor BEC, providing an experimentally simple route
for studying defects and textures at the emerging topological interface. The ground state of the
spinor BEC generally depends on the linear and quadratic energy shifts of the Zeeman levels. In
the case of the spin-1 BEC, the Zeeman shift can cause the condensate to adopt the FM phase
even when the polar phase is favoured by the interactions, and vice versa [13, 68–72].

In particular, we demonstrate that a stable, coherent, topologically non-trivial interface
between FM and polar phases of a spin-1 BEC can be established through spatially non-uniform
linear or quadratic Zeeman shifts. Uniform ground-state solutions exist, for both polar and FM
interaction regimes, that follow the variation of the Zeeman shift; the corresponding wave
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functions continuously interpolate between the polar and FM phases. We then analytically
construct defect states that continuously connect defects and textures representing the topology
of the FM and polar phases, such that the connection is provided directly by the spatial
dependence of the Zeeman energy shifts. We show that the modulation of the Zeeman splitting
allows the preparation of a rich family of interface-crossing defect solutions, with various
combinations of singular (integer and half-quantum) and non-singular vortices, point defects,
and terminating vortices. By numerical simulation, we determine the stability properties of the
constructed solutions and determine their energy-minimizing core structures.

In the polar interaction regime, the interface is established by a varying linear Zeeman
shift. Examples of energetically stable interface-perforating defect configurations in a rotating
trap include a singly quantized FM vortex line continuously connecting to a singly quantized
polar vortex whose core splits into a pair of half-quantum vortices, as well as a polar vortex that
terminates at the interface.

For a BEC in the FM interaction regime, a spatially varying quadratic energy shift is
used to establish the interface between the polar and FM phases. We find an energetically
stable, singular FM vortex that terminates at the interface. Moreover, non-singular, coreless
vortices in the FM phase become energetically favourable, and we find energetically stable
structures where the coreless vortex continuously connects to a singly quantized vortex on
the polar side of the interface. The unusual property of the singly quantized polar vortex in
this configuration is the axially symmetric stable vortex core, in which the line singularity
is filled with atoms in the FM phase, and the core is not split into a pair of half-quantum
vortices.

The existence of stable core structures of different symmetries in atomic spinor BECs is
reminiscent of the rich vortex core symmetries encountered in superfluid liquid 3He [73]. For
example, the core of a singular B-phase vortex may analogously retain a non-zero superfluid
density by filling with the A phase, either with an axially symmetric core [74] or by breaking the
axial symmetry when forming a two-fold symmetric split core [75, 76].

In the case of both FM and polar interactions we also find stable core structures of singular
FM vortex lines terminating on a point defect in the polar phase. Such a point defect is
analogous to the ’t Hooft–Polyakov monopole [77, 78] and the combined defect configuration
of the terminating vortex line and the point defect is closely related to boojums that can exist in
superfluid liquid 3He [2, 79, 80]. The core of the point defect minimizes its energy by
deforming into a half-quantum line defect connecting at both ends to the interface. As the point
defect, or the ‘Alice arch’ line defect, does not couple to the trap rotation, the defect experiences
a trivial instability with respect to drifting out of the atom cloud as a result of the density
gradient of the harmonic trap (the order parameter bending energy of defects and textures
generally favours lower atom densities), but can be otherwise stable. Such an instability could
be overcome by creating a local density minimum close to the trap centre by an additional
optical potential [40].

The interface physics with the Zeeman shifts provides several promising experimental
scenarios. Accurate tuning of Zeeman shifts has been experimentally demonstrated in ultracold
atoms [81], and also applied to the study of spin textures [27]. On the other hand, the control of
multiple interfaces and their time-dependence could open up avenues for emulating complex
cosmological phenomena in the laboratory. For instance, in superfluid liquid 3He [82] or in a
two-component BEC system [63–66] it has been proposed that colliding interfaces or phase
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boundaries could mimic cosmic defect formation. In a spin-1 BEC we could envisage, for
instance, the following set-up: a disc of polar phase is created in an otherwise FM condensate
by locally increasing Zeeman shift. The two parallel FM-polar interfaces can then be interpreted
as analogues of string-theoretical D-branes and anti-branes arising in theories of brane inflation
[6]. Removing the local Zeeman shift causes the interfaces to collapse, simulating defect
formation in brane annihilation scenarios. Similar experiments have been performed with
colliding superfluid 3He A–B interfaces [82], where, however, observation of defects is more
difficult.

2. Effects of Zeeman energy shifts in the spin-1 BEC

Here we consider the engineering of a topological interface by manipulation of Zeeman shifts in
the context of a spin-1 BEC. In the Gross–Pitaevskii mean-field theory, the condensate wave
function is a three-component vector Ψ ζ= n , where n is the atomic density and ζ is a

normalized spinor (ζ ζ =† 1) in the basis of spin projection onto the z axis. A magnetic field in
the z direction leads to linear and quadratic energy shifts of the Zeeman sublevels, of strengths p
and q respectively. The Hamiltonian density may then be written as [83]

Ψ= ∇ + + + ˆ − ˆ + ˆ  ( )
m

V n
c

n
c

n pn F qn Fr F
2 2 2

, (1)z z

2
2 0 2 2 2

2 2

where ( )V r is the external trapping potential for the atoms. The local spin vector is given by the

expectation value of the spin operator F̂ defined as a vector of spin-1 Pauli matrices. The
contact interaction between the atoms separates into spin-independent and spin-dependent

contributions. The respective interaction strengths are π= + ( )c a a m4 2 30
2

2 0 and

π= − ( )c a a m4 32
2

2 0 , where m is the atomic mass, and a0,2 are the scattering lengths in

the spin-0, 2 channels of colliding spin-1 atoms. The interaction terms give rise to the density
and spin healing lengths

ξ ξ= = 
mc n m c n2

,
2

, (2)n F
0 2

that describe the length scales over which perturbations of the atom density and the spin
magnitudes, respectively, heal.

When the Zeeman shifts are not present ( = =p q 0), (1) is invariant under spin rotations.

The ground state of the uniform system ( =( )V r 0) then exhibits two phases depending on the

sign of c2. In the FM phase, favoured when <c 02 (e.g., in 87Rb), the spin is maximized:

ˆ =F 1 for a uniform spin texture. All physically distinguishable, degenerate, ground states

are then coupled by three-dimensional spin rotations. The family of FM spinors can therefore be
parametrized as [32]
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where α β ϕ′( ), , are Euler angles defining the spin rotation such that

α β α β βˆ = ˆ + ˆ + ˆF x y zcos sin sin sin cos . A condensate phase ϕ is absorbed by the third

Euler angle γ to form ϕ ϕ γ= −′ , and corresponds to spin rotations about the local spin
direction. The order-parameter manifold, the broken symmetry in the ground state, is therefore

( )SO 3 , which supports only two distinct classes of line defects: singular, singly quantized
vortices, and non-singular coreless vortices (see appendix A).

The polar phase with minimized spin, ˆ =F 0 in the uniform texture, is favoured when

>c 02 (e.g., in 23Na). The degenerate ground states are then characterized by a macroscopic

condensate phase ϕ and a unit vector d̂ [35, 40]:

ζ =

− +

+

ϕ
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

e
d id

d

d id
2

2 . (4)
i

x y

z

x y

p

Note that ζ ϕ ζ ϕ πˆ = + −ˆ( ) ( )d d, , . These states are therefore identified, and hence d̂ should

be understood as unoriented. The identification is reflected in the factorization by the two-

element group in the corresponding broken ground-state symmetry ×⎡⎣ ⎤⎦( )S U 12
2. This so-

called nematic order leads to the existence of half-quantum vortices [e.g., (A.6)]. While all
circulation-carrying vortices are singular in the polar phase, it is possible to form a non-singular

nematic coreless vortex [51], characterized by a fountain-like texture in d̂ (e.g. (A.7)).
Here we consider the case when either or both of the Zeeman energy contributions are non-

zero. The linear Zeeman shift in a magnetic field = ˆBB z is given by μ= −p g B
F B

, where the

Landé factor = −g 1 2
F

in the F = 1 ground-state manifold of 23Na or 87Rb. The linear shift can
be given a spatial dependence by careful engineering of the applied magnetic field B. In alkali-
metal atoms in the regime relevant to our considerations, the quadratic shift q, which can be
obtained from the Breit–Rabi formula [84], is positive and smaller than p. However, by
combining a static magnetic field with an off-resonant microwave dressing field, accurate tuning
of the quadratic energy shift can be achieved through the resulting AC-Stark shifts [81], or
could be induced by lasers [85].

When the Zeeman shifts are included, the coupled Gross–Pitaevskii equations for the
spinor components ψ ζ= n

j i ( = + −j , 0, ) derived from (1) read

Ψ Ψ∂
∂

= − ∇ + + + ˆ · ˆ − ˆ + ˆ⎡
⎣⎢

⎤
⎦⎥  ( )i

t m
V c n c n pF qFr F F

2
. (5)z z

2
2

0 2

2

In a uniform system, these may be solved analytically [70–72] to find the stationary states. The
Zeeman shifts break the spin-rotational symmetry of the FM and polar ground states. One then

finds, in addition to the purely FM state with ˆ = ± ˆF z and the polar state with ˆ = ˆd z, also the
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steady-state solution [70, 72]

ζ =

χ

χ

+

−

+

−

⎛

⎝
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⎞

⎠
⎟
⎟⎟

e P

e P

1

2
0 , (6)

i

i

where = ±±P p c n1 2 . The solution (6) is valid provided that the linear Zeeman shift is

sufficiently small, such that ⩽p c n2 . Note that the expectation value of the spin is no longer

zero, ˆ = ˆ( )p c nF z2 , and d̂ lies in the xy plane. For very weak linear Zeeman shift p, the

expression then approaches the polar state ζ = χ χ+ −( )e e2 , 0, 2i i T
. At the limit of validity,

on the other hand, it coincides with the FM solution ζ = χ+( )e , 0, 0i T
for >p 0 [ζ = χ−( )e0, 0, i T

for <p 0]. The spinor (6) also represents the lowest-energy state when >c 02 and ⩽q p c n22
2

[70, 72]. Hence in a condensate with polar interactions, such as for 23Na, (6) provides an
energetically stable solution that takes values between FM and polar phases, depending on the
linear Zeeman shift.

A further solution with variable F̂ is given by the FM-like spinor [71, 72]

ζ

ζ

= ±
− + +

=
− − − +

χ χ

χ

±
∓

( )( )

( )( )e q p
p q c nq

c nq

e
q p p q c nq

c nq

2

8
,

2

4
. (7)

i

i

2 2
2

2
3

0

2 2 2 2
2

2
3

z0

0

The solution is valid when the expressions under the square roots are positive. The
corresponding regions in the (p, q) plane are shown in figure 1. While several regions of validity
exist for both signs of c2, we note that (7) forms the ground state in the uniform system only for

<c 02 in the region defined by >q p and > −p q c nq22 2
2 . From this point on, we will

consider the solution (7) only in this parameter range. The spin vector is in general tilted with
respect to the magnetic field and for χ χ= = 0

z0
lies in the xz plane for the parameters of

interest. Then

ˆ =
− − −

ˆ +
− + +

ˆ

⎡⎣ ⎤⎦ ( )( ) ( )q p p c nq q

c nq

p p q qc n

c nq
F x z

2

2

2

2
, (8)

2 2 2
2

2 4

2
2

2 2
2

2
2

such that

ˆ =
+ − −( )q p c n q p

q c n
F

2 2

4
. (9)

2 2
2
2 2 4 4

2
2
2 2

Assuming >p 0 ( <p 0 analogous by symmetry), the limit (p = q) yields ˆ =F 1,

corresponding to the FM state ζ = ( )1, 0, 0
T
. Similarly, = −p q c nq22 2

2 yields the polar
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limit ζ = ( )0, 1, 0
T
with ˆ =F 0 and ˆ = ˆd z. From these results it follows (see also figure 1)

that varying p and/or q can continuously connect the two limits while simultaneously rotating

the spin vector from ˆ = ˆF z in the FM limit to the x direction (implying a simultaneous

rotation of d̂ from −x̂ to ẑ). For simplicity, we will here only consider variations of q for
constant p.

Together (6) and (7) thus provide us with spinor wave functions that—in the polar and FM

interaction regimes, respectively—represent solutions of different spin magnitudes F̂ ,

depending on the value of the Zeeman shifts. Here we propose to create the topological
interface between FM and polar phases by engineering the spatial dependence of the linear and
quadratic level shifts. For spatially varying Zeeman energy shifts the solutions (6) and (7)
continuously interpolate between the polar and FM phases. We will show that a stable, coherent
interface forms in the intermediate region. It then becomes possible for topological defects and
textures in the two regions of the polar and FM phases to connect continuously across the
interface. We now proceed to explicitly construct such analytic defect solutions for the two
interaction regimes separately.

3. Interface by linear Zeeman shift for c2 > 0

In order to construct defect states in the BEC with polar interactions it is beneficial to transform
the ground-state solution (6) by applying a BEC phase ϕ and a rotation [determined by the

Euler angles α β γ( ), , ] of the orthogonal vector triad ˆ ˆ ˆ × ˆ( )F d F d, , . We obtain

New J. Phys. 16 (2014) 053046 M O Borgh et al

7
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showing interpolation between FM and polar limits. Right: angle β between F̂ and ẑ.

The figure shows the case <c 02 where (7) forms the ground state for >q 0. For
>c 02 , the figures are mirrored around the origin, and the solution is never the ground

state.



ζ β=

−

− +

−

ϕ

α γ β γ β

γ γ

α γ β γ β

−
−

−
+

−
−

+

−
−

+

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )

( )
( )e

e e P e P

e P e P

e e P e P
2

2 sin cos

sin

2 cos sin

, (10)
i

i i i

i i

i i i

2
2

2
2

2
2

2
2

where we have set χ π=+ , χ =− 0 to specify ˆ = ˆd x in (6). For (10) we have

α β α β βˆ = ˆ + ˆ + ˆF F FF x y zcos sin sin sin cos , (11)

α β γ α γ

α β γ α γ β γ

ˆ = − ˆ

+ + ˆ − ˆ
( )
( )

d x

y z

cos cos cos sin sin

sin cos cos cos sin sin cos . (12)

Equation (10) represents a spinor wave function that takes values between the FM and the polar
phases while allowing the spatial variation of the orientation of the triad and the BEC phase, as
determined by ϕ α β γ( ), , , . In the absence of the Zeeman shifts, it gives all the degenerate
states. The Zeeman energy contribution can partially lift this degeneracy, but as we will
consider non-uniform defect states in a rotating trap, (10) provides the most suitable starting
point for constructing the initial states for the energy minimization.

We can now construct specific defect configurations, that connect FM and polar defects by
making appropriate choices for ϕ α β γ( ), , , . All the basic defect connections that we have
engineered are presented in table 1. The elementary defect and textures of the spin-1 system that
act as building blocks are briefly summarized in appendix A. Here we give an explicit
discussion of some representative examples. The procedure for constructing the vortex
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Table 1. Interface-crossing defects in the polar interaction regime ( >c 02 ) are con-
structed from (10) by different choices for ϕ, α, and γ (given as multiples of the
azimuthal angle φ). For states with non-constant β, its functional form is given in the
table, where β ρ( ) denotes a monotonically increasing function of the radial distance
only (see text for details). The two solutions with a Dirac monopole in the FM limit
differ by aligning the doubly quantized Dirac string with the positive and negative z
axis, respectively (cf (A.3)).

FM limit Polar limit ϕ φ α φ γ φ β

Vortex free Half-quantum vortex 1 2 0 1 2 const.
Vortex free Singly quantized vortex 1 0 1 const.
Coreless vortex Half-quantum vortex 1 2 1 −1 2 β ρ( )
Coreless vortex Singly quantized vortex 1 1 0 β ρ( )
Coreless vortex Nematic coreless vortex 0 1 −1 β ρ( )
Singular vortex Nematic coreless vortex 0 1 0 β ρ( )
Singular vortex Half-quantum vortex 1 2 1 1 2 const.
Singular vortex Half-quantum vortex 1 2 0 −1 2 const.
Singular vortex Singly quantized vortex 1 0 0 const.
Singular vortex Point defect 0 1 0 β θ= − π

2

Dirac monopole ( +z ) Singly quantized vortex −1 1 0 β θ=
Dirac monopole ( −z ) Singly quantized vortex −1 −1 0 β θ=



connections is to first identify the essential characteristics of the limiting defect states and then
the necessary parameter choices in (10).

Singly quantized vortex penetrating the interface: the phase vortex, formed by a π2
winding of the condensate phase alone, corresponds to a singular, singly quantized vortex in
both FM and polar limits (see appendix A). Hence, we may continuously connect the two across
the interface formed as p is varied by choosing ϕ φ= , where φ is the azimuthal angle in polar
coordinates, and keeping the Euler angles α, β and γ constant in (10). Making the simplifying
assumption α γ= = 0, we then have

ζ β=

−

− +

−

φ

β β

β β

− +

− +

− +

⎛

⎝

⎜
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⎜⎜
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2

2 sin cos
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2 cos sin
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i

2
2

2
2

2
2

2
2

Note that this solution is deceptively simple: a singly quantized vortex represents entirely
different objects (due to the different topology) in the two phases. More complicated vortex
states can be constructed by more elaborate choices.

Singly quantized polar vortex to FM coreless vortex: the latter is characterized by a π2
winding of the condensate phase, together with a simultaneous spin rotation represented by a π2
winding of α, as described by (A.2). Hence we choose ϕ α φ= = (γ = 0), giving

ζ β ρ=

−

− +

−

β ρ β ρ

φ

φ β ρ β ρ

− +

− +

− +
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2

2
2

2 2
2

2
2

where we also require β ρ( ) to increase monotonically with the radial distance ρ, from β = 0 on
the z axis, to form the characteristic fountain-like spin texture. In the polar limit, a π2
condensate-phase winding represents a singly quantized vortex. According to (A.5), the

remaining π2 winding in α only associates a rotation of the d̂-vector with the singly quantized
vortex. As p varies between ⩽ ⩽p c n0 2 , this singly quantized polar vortex connects across
the interface to the coreless vortex in the FM limit.

Termination of a singular FM vortex as a point defect on the interface. A point defect

in the polar phase corresponds to a radial hedgehog of the d̂ axis, analogous to the
’t Hooft–Polyakov monopole [77, 78]. The simplest example is given in (A.8). In the polar limit
of (10), we form the point defect by a π2 winding in α together with β θ π= − 2, where θ is
the polar angle in spherical coordinates. In the FM limit the same choices correspond to a
singular spin texture similar to (A.1), exhibiting a radial disgyration around the singular line.
We can thus construct a singular FM vortex that terminates as the upper half of a polar point
defect by choosing α φ= and β θ π= − 2.

Half-quantum vortex to singular FM vortex: the defining feature of a polar half-quantum

vortex (A.6) is a π winding of the condensate phase ϕ, together with a simultaneous ˆ → −ˆd d
winding of the nematic axis to keep the order parameter single-valued. However, no similar
construction is possible in the FM phase. Therefore the winding of the condensate phase must
combine with the spin rotation represented by the third Euler angle γ to make the combined
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ϕ ϕ γ= −′ in the FM limit (cf (3)) wind by a multiple of π2 . The combination ϕ γ φ= − = 2
(α = 0) connects the half-quantum vortex to a singly quantized vortex defined by ϕ φ=′ in the
FM limit.

Terminating half-quantum vortex: if we instead let γ ϕ φ= = 2, so that these enter the
spinor with the same sign, the polar limit of (10) remains a half-quantum vortex, with the

rotation of d̂ being in the opposite sense. However, in the FM limit, ϕ and γ now cancel, ϕ =′ 0,
and the order parameter represents a vortex-free state. The half-quantum vortex in the polar part
thus terminates at the interface.

As shown in table 1, we also find solutions of a terminating singly quantized polar vortex,
a half-quantum vortex connecting to a coreless vortex, a nematic coreless vortex (A.7)
connecting either to a coreless or a singular vortex, and a Dirac monopole (A.3) continuously
perforating the interface to a singly quantized polar vortex. Note that the vortex line (Dirac
string) attached to the Dirac monopole may be formed in two ways: it can be included in the FM
phase in such a way that the Dirac monopole joins the polar vortex to the FM vortex that forms
the Dirac string. Alternatively, the polar vortex itself can act as a Dirac string, so that no other
vortices need to be coupled to the monopole. In the latter case, the polar vortex terminates on
the interface to a point defect.

4. Interface by quadratic Zeeman shifts for c2 < 0

In the FM interaction regime ( <c 02 ), we proceed as in the polar case, but now transform the
spinor wave function (7) by applying a BEC phase ϕ and rotations (α β γ, , ) of the spinor to
obtain

ζ β β
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Equation (8) gives the local spin direction F0 before the spin rotation, in terms of which the
general spin texture can be expressed as
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A corresponding expression for d̂ may be derived by rotating the d̂-vector of (7). We can now
make particular choices for α, β, γ and ϕ in order to construct specific defect states. The basic
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interface-crossing defect configurations are presented in table 2. The derivation is very similar
to the polar case and we only provide a brief example and highlight the differences in the case
of half-quantum vortices.

FM coreless to singly quantized polar vortex: to form the coreless vortex (A.2) in the FM
phase, we require α φ= together with a winding ϕ ϕ γ φ= − =′ , as in the >c 02 case. Note,
however, that this equivalence between rotations of ϕ and γ holds only in the purely FM limit,
and assigning the π2 winding to ϕ or γ leads to different vortex states in the polar limit (see
table 2). In the former case, with γ = 0, we have
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Similarly to (14), monotonically increasing β ρ( ) yields the required fountain-like texture in the
FM limit. In the polar limit, the winding of the condensate phase implies that (19) reduces to

(A.5), representing a singly quantized vortex, with which a π2 winding of d̂ is associated.
Half-quantum vortices: the polar half-quantum vortices may connect across the interface to

coreless or singular vortices, or terminate at the interface, as in the polar interaction regime in
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Table 2. Interface-crossing defect configurations in the FM interaction regime ( <c 02 )
are constructed from (15) by different choices for ϕ, α, and γ (given as multiples of the
azimuthal angle φ, except for γ π= ). For states with non-constant β, its functional form
is given in the table, where β ρ( ) denotes a monotonically increasing function of the
radial distance only (see text for details). The two solutions with a Dirac monopole in
the FM limit differ by aligning the doubly quantized Dirac string with the positive and
negative z axis, respectively (cf (A.3)). Solutions involving half-quantum vortices are
omitted since they cannot be straightforwardly constructed (see text).

FM limit Polar limit ϕ φ α φ γ φ β

Vortex free Singly quantized vortex 1 0 1 const.
Coreless vortex Singly quantized vortex 1 1 0 β ρ( )
Coreless vortex Nematic coreless vortex 0 1 −1 β ρ( )
Singular vortex Singly quantized vortex 1 0 0 const.
Singular vortex Point defect 0 1 γ π= β θ=
Singular vortex Nematic coreless vortex 0 1 0 β ρ( )
Dirac monopole ( +z ) Singly quantized vortex −1 1 0 β θ=
Dirac monopole ( −z ) Singly quantized vortex −1 −1 0 β θ=



section 3. The analytic construction of these states from (15) in the FM interaction regime is less
straightforward, as the dependence on γ in this case vanishes in the polar limit. The required π

winding of d̂ must therefore instead be specified as β φ= 2, and β must then vary differently
on the opposite sides of the interface, such that the wave function remains single-valued in the
FM limit. These states will not be considered further here.

5. Preparation of vortex states

Several techniques have been proposed for controlled preparation of vortex states in BECs.
These include transfer of angular momentum using Laguerre–Gaussian laser beams [86–88],
combining mechanical rotation with coupling to an electromagnetic field [89], and rotation of
the atomic spins by inverting a magnetic axial bias field [90]. Experimental implementations
have demonstrated phase-imprinting of both singly and doubly quantized vortex lines [91–94],
and in spinor BECs also preparation of non-singular textures [20–23]. These existing techniques
could be used also to prepare defect states when an interface established by a non-uniform
Zeeman shift is present. However, the relation between the analytically constructed defect
solutions and the phase-imprinted states is different in the two interaction regimes ( ≷c 02 ).

In the polar interaction regime, the solutions of section 3 straightforwardly correspond to
spin rotations of (6). Together with the condensate phase these result in singly or doubly
quantized vortex lines in the individual spinor components, which may be directly phase
imprinted using the existing techniques. For example, the interface-penetrating singly quantized
vortex corresponds to a singly quantized vortex line in each of the spinor components. To
connect a singly quantized polar vortex to a FM coreless vortex instead, vortex lines with phase
winding of π2 and π4 respectively are imprinted in the ζ −0, components (cf (14)).

The preparation of vortex states in the FM interaction regime is less straightforward. Due
to the spin rotation implicit in the interpolating ground-state solution (7), the analytically
constructed defect solutions cannot easily be phase imprinted directly. However, phase-
imprintable defect wave functions representing the same defect states can be constructed by
considering a target defect state in the FM or polar limit [61, 62].

Consider, e.g., the singly quantized FM vortex, constructed as a π2 winding of the
condensate phase. For suitably chosen parameters, changing the sign of either of ζ± causes the

vortex wave function to switch from ˆ =F 1 to ˆ =F 0, such that it instead represents a

singly quantized polar vortex. We can thus join the singly quantized vortices of the FM and
polar phases by switching the sign of, e.g., ζ− at the position of the interface to form
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using the negative sign in the polar part of the condensate, and correspondingly the positive sign
in the FM part. Note that the change of sign exactly yields a polar wave function only for
β π= 2. However, also for any other β ≠( )sin 0, the spinor wave function exhibits the spinor-
component vortex lines required for the singly quantized vortex and quickly relaxes to the polar
phase. Physically, the sign change in ζ− corresponds to a dark soliton plane (a phase kink)
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where the density in that particular spinor component vanishes. However, the density in the
other two spinor components does not simultaneously vanish at the position of the soliton plane,
and hence the full spinor wave function remains non-vanishing and continuous.

Approximate wave functions corresponding to other defect states may be constructed
analogously. For example, when a singly quantized polar vortex is associated with a
simultaneous rotation of the nematic axis, the spinor components exhibit the same vortex
structure as the coreless FM vortex (A.2). Hence by again inserting a soliton plane in ζ−, we
obtain the interface spinor
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with the positive sign in the polar phase. With the negative sign, the wave function

approximates the coreless vortex on the FM side, and quickly relaxes to ˆ =F 1 and forms

the characteristic fountain-like spin texture.
The construction is not limited to the connection of line defects across the interface. Also

wave functions representing vortices terminating as point defects on the interface can be
engineered. For example, the polar point defect (A.8) is formed by overlapping vortex lines of
opposite winding in ζ± together with a soliton plane in ζ0. The point defect is placed on the
interface by introducing a soliton plane also in ζ+,
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such that the positive sign yields a wave function where the overlapping vortex lines
approximate the singular vortex (A.1) on the FM side. On the polar side, the radial hedgehog
ˆ = ˆd r in the nematic axis is retained.

These examples demonstrate that approximations to interface-crossing defect states may
very generally be constructed from elementary building blocks of singly and doubly quantized
vortex lines in the individual spinor components, together with a dark soliton plane (also phase-
imprinted in experiments [95, 96]) at the position of the interface. Engineering vortex
connections consisting of half-quantum vortices on the polar side is more involved. The
preparation is complicated by the fact that there are no vortex solutions exhibiting π winding of
the Euler angles that parametrize the FM order parameter. This implies that the construction will
necessitate phase-imprinting of a vortex line that terminates at a soliton plane in one of the
spinor components. Considering the connection of a half-quantum vortex (A.6) to a coreless
vortex (A.2), we may then imagine proceeding as follows: by introducing a soliton plane in ζ+

in (A.2), we again construct an interface spinor. However, on the polar side of the interface, we
can now let a vortex line in ζ+ terminate on the soliton plane. As a final step, we may use an
optical shift to deplete the ζ0 component in the polar part. The coreless vortex (A.2) then
remains in the FM part of the cloud, while the spinor on the polar side of the interface
approximates
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which represents a half-quantum vortex where d̂ exhibits a π3 winding into −d̂ as the vortex
line is encircled. The continuity of the spinor wave function across the interface can be ensured
by the ζ− component, which exhibits only a doubly quantized vortex line and no soliton plane,
and therefore does not vanish simultaneously across the entire interface.

6. Energetic stability and defect core structures

By the analytical constructions, we have demonstrated the existence of continuous wave
functions representing topologically allowed interface-perforating defect connections (in
tables 1 and 2). To determine their energetic stability, and the corresponding stable core
structures, we minimize the energy of each defect state by integrating the coupled
Gross–Pitaevskii equation (5) in imaginary time, in the frame rotating with frequency Ω. In
experiment, the condensate is trapped by a harmonic potential, which we here take to be axially
symmetric and slightly elongated along the z direction:

ω= + +⎜ ⎟⎛
⎝

⎞
⎠( )V

m
x y zr

2
1
4

. (24)
2

2 2 2

We take the spin-independent nonlinearity to be ω= ⊥Nc l100
4 3, where ω=⊥ l m is the

oscillator length in the transverse direction. We consider the experimentally relevant cases
=c c 280 2 , corresponding to 23Na [97], and = −c c 2160 2 , corresponding to 87Rb [98], in the

polar and FM regimes, respectively.
We can estimate the energy shifts required to establish the interface from (6) and (7). The

gradients in p and q are then determined by the width of the interface region. In our numerics
we have studied large widths of up to ⊥l10 and find that the qualitative features of the defect
states remain unchanged. Since the width can be varied from large values down to the healing
length scale, the possible values of the field gradient may cover a very large range of values.
The experimentally most promising method to induce the energy shifts themselves is by using
electromagnetic dressing fields, as demonstrated for the quadratic shift [81]. Potentially, similar
methods could be used to manipulate also the linear shift, which may prove experimentally
easier than using a static magnetic field.

For the case of FM interactions, we take the interface to be established by varying q at
constant p (cf figure 1). We consider the example of 87Rb and approximate the density profile by
the Thomas–Fermi solution. Then for very small ω∼ − p 10 3 , the necessary difference in q is

ω∼ 0.15 . For larger p the required change in q is smaller (while q itself is larger). For the recent
experiment [27] the induced level shift is given in terms of the Rabi frequency ΩR and detuning

δ as Ω δ= −q 4R
2 , with δ π= ×2 40 kHz. As an example, we may consider a trap frequency

ω π= ×2 50 Hz. We then find Ω Ω− ≃ 6R
polar

R
FM kHz.

In the case of polar interactions (6), F̂ depends only on the linear Zeeman shift p, and

reaches the FM phase for ⩾p c n2 . Here we consider the example of 23Na. Then the necessary
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shift in p is ω∼ 0.5 at the maximum value of the Thomas–Fermi density. Considering again the
example ω π= ×2 50 Hz, this corresponds to a field gradient on the order of 1.4–14 G/m, for
the corresponding variation 1– ⊥l10 of the interface width, if the shift is induced by a weak static
magnetic field.

6.1. Polar interactions

When the spin-dependent interaction favours the polar phase, the interface is created by a
spatially varying ⩽ ≲p c n0 2 , corresponding to the ground-state solution (6). We then take
the wave functions constructed in section 3 as initial states for the numerical energy
minimization.

Even though singly quantized vortices exhibit similar winding of the condensate phase in
both polar and FM phases, their energy-minimizing core structures are quite different [50]. In
the polar BEC, the vortex may split to form an extended core region in which the wave function
is excited out of the ground-state manifold. It reaches the FM phase on two singular half-
quantum vortex lines. This lowers the energy by allowing the core size to be determined by the
spin healing length ξF, defined in (2), which is usually larger than the size of a density-depleted
core, given by the density healing length ξn. Also in the FM phase the core of the singly
quantized vortex can avoid the density depletion. However, here the defect cannot split. Instead,
filling of the vortex core happens by local rotation of the spin vector around the vortex line. The
overall structure maintains the axial symmetry of the vortex core.

Interface-crossing singly quantized vortex: when part of the condensate is forced into the
FM phase by a linear Zeeman shift, these deformation mechanisms lead to a complex,
energetically stable vortex configuration as the energy of an interface-crossing singly quantized
vortex relaxes (figure 2, left). The splitting instability leads to the formation of two vortex lines
filled with the FM phase on the polar side of the interface. In the FM region, the vortex core fills
with the polar phase in order to lower its energy. The filling of the core is made possible by a
local rotation of the spin vector close to the vortex line. The resulting spin profile connects
smoothly to the spin vector in the FM cores of the polar vortices at the interface.

Half-quantum vortex to singular FM vortex: a similar penetration of the FM phase through
the interface to fill the singular line in the polar order parameter occurs in the energetically
stable connection of a polar half-quantum vortex to a singular FM vortex (figure 2, middle and
right). Simultaneously, the singularity in the FM phase fills with the polar phase in order to
minimize its associated gradient energy. Consequently, at the perforation of the interface the
two core structures meet and connect to the ground-state phase on the other side of the
boundary. Figure 2 also shows that the qualitative features of the defect connection is not
contingent on a sharply defined interface region, which is a general feature of our stable defect
configurations.

Singly quantized (or half-quantum) vortex to coreless vortex: in the purely FM spin-1
BEC, the singular vortex can be energetically (meta-)stable, but a lower-energy coreless vortex
generally exists for the same parameters [50]. One might therefore expect stable states to exist
where a coreless vortex connects across the FM-polar interface to a singly quantized (or half-
quantum) polar vortex. However, the linear Zeeman shift that is employed here to realize the
FM phase when >c 02 makes the fountain-like spin texture of the coreless vortex energetically
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unfavourable. As a consequence, we find all vortex connections involving a coreless vortex on
the FM side to be unstable.

Terminating polar vortices: the constructions in section 3 (table 1) demonstrate that it is
also possible for polar vortices to terminate at the interface. The terminating half-quantum
vortex is energetically stable, and the relaxed core structure is shown in figure 3 (left). In the

vortex-free FM region, the linear Zeeman energy causes F̂ to align with the z axis, and the

FM phase penetrates the interface to fill the singular core of the polar vortex. Also a terminating
singly quantized vortex results in a stable defect configuration (figure 3, right). In this case,
however, relaxation of the energy causes the singly-quantized vortex to split (preserving
topology) into a pair of half-quantum vortices, whose singular cores fill with the FM phase.

A singular FM vortex terminating as a point defect exhibits a particularly non-trivial
deformation of the defect core as the energy relaxes. In order for the core of the point defect to
fill with the FM phase, it deforms into a line defect that forms a ring-shaped vortex (figure 4)
attached to the interface [61, 62]. This is a consequence of the ‘hairy-ball theorem’: if the core
of the point defect were to fill with the FM phase, the spin vector in the core would have to be

everywhere perpendicular to the radial d̂-vector, which is not possible. After the deformation, a

disclination plane in d̂ may be identified, such that on any closed loop through the arch formed

by the defect, d̂ winds into −d̂. Hence, the line defect is a half-quantum vortex, and the charge
of the point defect is preserved away from the vortex arch. This phenomenon is closely related
to the similar deformation of a spherically symmetric point defect into a half-quantum vortex
ring—an Alice ring—in the polar spin-1 BEC [40]. The deformation of the point defect into a
semi-circular ‘Alice arch’ on the interface was analyzed also in [61, 62], and our result here
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Figure 2. Spin vector (arrows) and spin magnitude (colour gradient) in the energetically
stable connection of a singly quantized (left) or half-quantum (middle and right) polar
vortex to a singly quantized FM vortex. In the former case the core of the singly
quantized polar vortex lowers its energy by splitting into a pair of half-quantum
vortices. The singular FM vortex reduces the energy of the core by filling with the polar
phase at the singularity. Across the interface region, the linear Zeeman shift varies as

ω ω× ⩽ ⩽−  p1.0 10 0.63 , with a constant quadratic shift ω= − × − q 1.0 10 4 . The
linear shift varies between the polar and FM limits over a distance ⊥l1.0 (left and middle)
and ⊥l4.0 (right), respectively, showing that the qualitative defect structure is insensitive
to the width of the interface region. The rotation frequency of the system is Ω ω= 0.22
for the singly quantized polar vortex and Ω ω= 0.20 for the half-quantum vortex.
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Figure 3. Spin vector (arrows) and spin magnitude (colour gradient) showing an
energetically stable half-quantum (left) or singly quantized (right) polar vortex
terminating at the interface between the polar and FM parts of the condensate. Energy
relaxation causes the singly quantized vortex to split into a pair of half-quantum
vortices. The linear shift varies over ω ω× ⩽ ⩽−  p1.0 10 0.53 across an interface of
width ⊥l1.0 , with ω= − × − q 1.0 10 4 . The system rotates at Ω ω= 0.22 for the singly-
quantized polar vortex and Ω ω= 0.2 for the half-quantum vortex.

Figure 4. Left: Spin texture (arrows) and magnitude profile (colour gradient) for the
polar monopole in a polar BEC with interface created by varying linear Zeeman
splitting. Right: the order-parameter symmetry is shown by mapping ζ onto the Y m1,

spherical harmonics [83]. The function Ξ θ φ ζ θ φ= ∑( ) ( )Y, ,
m m m1, is shown on the far

right for the FM (top) and polar (bottom) phases and for intermediate F̂ , indicating

the d̂-vector. In the relaxed defect state, d̂ passes through the arch and points radially
away outside it, preserving the monopole charge. Spin magnitude indicated in grey
scale. Parameters are ω ω× ⩽ ⩽−  p1.0 10 0.33 , for ω= − × − q 1.0 10 4 in a non-
rotating system with interface width ⊥l1.0 .



demonstrates that it could be engineered by the Zeeman energy shifts. Although the defect is
stable in the bulk medium, the density gradient in the trapped condensate causes the arch-
shaped line defect to be unstable towards drifting out of the cloud, since a smaller atom density
lowers the gradient energy associated with the core. The defect could be stabilized by reversing
the density gradient with a pinning laser [40].

Other defect connections described in table 1 are found to be energetically unstable. These
include, in addition to FM coreless vortices, also connections involving nematic corelss vortices
and Dirac monopoles.

So far we have considered the energy minimization of initially prepared vortex
configurations. In a sufficiently rapidly rotating system, vortices may also nucleate. In the
polar interaction regime, at low enough rotation frequency, we observe nucleation of a single
half-quantum vortex that terminates at the interface. One might expect this to connect across the
interface to a coreless vortex in the FM phase. However, this configuration is energetically less
favourable, due to the linear Zeeman-energy cost of forming the fountain-like coreless spin
texture.

6.2. FM interactions

We now explore the stability properties and core structures in the FM interaction regime
( <c 02 ), as for 87Rb. Due to the different ground-state properties of the interpolating solutions,
the interface is now created by a non-uniform quadratic Zeeman shift that forces the condensate
into the polar phase. Correspondingly we minimize the energy of the defect solutions of
section 4 and the corresponding phase-imprinted configurations of section 5.

Coreless vortex to polar singly quantized vortex: contrary to the polar interaction regime,
we now do find an energetically stable connection of a coreless vortex on the FM side of the
interface to a polar singly quantized vortex (figure 5), as the energy of the initial state (19)
relaxes. One might again expect the singly quantized vortex in the polar phase to split into a pair
of half-quantum vortices in order to lower the energy of the core. However, the splitting is
energetically unfavourable due to the positive quadratic Zeeman shift needed to realize the polar

phase in the BEC with FM interactions, which seeks to align d̂ with the z axis, resulting in an
effective two-component regime. Accordingly, the stable configuration exhibits an axially
symmetric single core with the atoms reaching the FM phase at the line singularity. The spin
texture of the coreless vortex connects smoothly to a similar spin texture inside the core of the
polar vortex, and is qualitatively independent of the width of the interface region, as shown in
figure 5.

Previous studies of singly quantized polar vortices have shown that stable structures in the
absence of the interface would favour core structures where the vortex line is split into a pair of
half-quantum vortices [50]. Here the existence of both split and unsplit cores, with entirely
different symmetries, as stable vortex cores is reminiscent of the vortex core structures of
superfluid liquid 3He [73]. In superfluid liquid 3He, the core of a singular B-phase vortex may
retain a non-vanishing superfluid density by filling with the A phase. This may appear as an
axially symmetric core [74] at high pressure or with a broken axial symmetry [75, 76], as
experimentally observed in [99].

Interface-crossing singly quantized vortex: the connection of a singly quantized polar

vortex in a uniform d̂ texture to a singular FM vortex is not energetically stable, again in
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contrast to the case for polar interactions. Energy relaxation of the vortex formed as a π2
winding of the condensate phase everywhere causes the initially uniform spin texture in the FM
region to deform locally around the singular vortex line, allowing the condensate to avoid the
density depletion [50]. The singular vortex can then leave the cloud, nucleating a coreless
vortex in the process. Correspondingly, the singly quantized vortex in the polar part picks up a

winding of d̂, and the initial defect state decays to the connection of a coreless vortex to a singly
quantized polar vortex, similar to figure 5.

Terminating singular FM vortex: a singular FM vortex may also be written as a winding of
α alone (for some β), in which case it can terminate at the interface. The configuration relaxes to
an energetically stable vortex state whose spin texture is shown in figure 5 (right). The polar
phase then penetrates the interface to fill the core of the FM vortex, allowing the core to expand
and lower its energy. By including a winding of β, the initial defect state may also represent a
nematic coreless vortex (A.7) on the polar side (see table 2). This is, however, not stable, as the

fountain texture in d̂ unwinds due to the quadratic Zeeman shift, resulting again in a terminating
FM vortex.

Singular FM vortex terminating as a point defect: the relaxed core structure shown in
figure 6 exhibits the deformation of the point defect into an arch-shaped half-quantum vortex
attached to the interface. This reaches the FM phase at the line singularity, and connects to the
spin texture of the FM vortex. The deformation mechanism is here analogous to that discussed
in the polar case. Again, the arch-shaped half-quantum vortex maintains its structure, but is
unstable towards drifting out of the cloud.

Also in the FM interaction regime, we find that solutions involving a Dirac monopole are
energetically unstable. We further find that neither the terminating singly quantized polar vortex
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Figure 5. Left and middle: spin texture (arrows) and spin magnitude (colour gradient) of
an energetically stable coreless vortex connecting to a singly quantized polar vortex in a
system rotating at Ω ω= 0.18 . The width of the interpolating region is ⊥l2.0 (left) and

⊥l10.0 (middle), over which the quadratic energy shift varies as ω⩽ ⩽ p q 0.198 , for
ω= × − p 9.9 10 4 . The defect structure is qualitatively insensitive to the width of the

interface region. Right: a singular FM vortex that terminates at the interface in the
system rotating at Ω ω= 0.16 (remaining parameters same as in the left panel). Also the
connection of a singular FM vortex to a nematic coreless vortex relaxes to the state
shown as the quadratic Zeeman energy causes the fountain texture of the nematic axis to
be lost in the polar region.



nor the connection of a coreless vortex to a nematic coreless vortex (see table 2) are
energetically stable.

In addition to minimizing the energy of each defect state constructed in section 4, we also
performed simulations starting from the corresponding experimentally phase-imprintable defect
states constructed from vortex lines and soliton planes in section 5. In each case, the relaxed
defect state agrees with those resulting from the defect wave functions of section 4.

As in the polar interaction case, we may also start from a vortex-free configuration and
study nucleation of defects as a result of rotation. For weak rotation we here find nucleation of a
singly quantized polar vortex that connects to a coreless vortex in the FM region. The stable
polar vortex core again preserves the axial symmetry.

7. Concluding remarks

In conclusion, we propose that a stable, coherent interface between topologically dissimilar
regions of atomic spinor systems can be engineered by spatially non-uniform linear or quadratic
Zeeman shifts, which are commonly manipulated in experiments. As a particular example we
have shown how an interface can be established between FM and polar regions of a spin-1
BEC. We have derived analytic expressions for states representing continuous defect
connections across the interface, interpolating between FM and polar topology in terms of
either the linear (for >c 02 ) or quadratic (for <c 02 ) Zeeman shifts. We have demonstrated the
energetic stability of several non-trivial interface-crossing defect states.

In the present simulations we did not conserve the longitudinal condensate magnetization.
In physical systems where s-wave scattering is the dominant relaxation mechanism (compared
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Figure 6. Left: spin texture F̂ (arrows) and magnitude F̂ (colour gradient) of a

singular FM vortex connecting to a nematic monopole where the interface is induced by
quadratic Zeeman splitting. The monopole deforms into a line defect as the energy
relaxes. Right: mapping of ζ onto the Y m1, spherical harmonics (see also figure 4),

indicating the nematic axis d̂ preserving the charge of the monopole. (Away from the
interface region, d̂ tends towards ±ẑ due to the quadratic Zeeman energy.) Spin
magnitude indicated in grey scale. Parameters are ω⩽ ⩽ p q 0.198 , for

ω= × − p 9.9 10 4 in a non-rotating system with interface width ⊥l2.0 .



with, e.g., dipole–dipole interactions or collisions with high-temperature atoms), the
magnetization is preserved on experimentally relevant time scales [68, 100]. Our recent study
of coreless vortices [51], however, indicates that the conservation of magnetization only plays
an important role in situations where the initial value of the magnetization differs substantially
from the final magnetization values obtained in simulations with unconstrained magnetization.
For typical vortex states such conditions can easily be avoided.

There are several obvious possibilities for extending our study. The atomic spins generate
magnetic dipole moments. Depending on the atom, these give rise to dipole–dipole interactions
in the condensate, which may influence the structure of textures and defects [48, 55].
Simulations incorporating these dipole–dipole interactions can be performed by introducing
non-local interactions in the numerical model. On the other hand, defect formation in
annihilation of colliding interfaces could mimic brane annihilation scenarios [6, 7].
Furthermore, defects and textures can be considerably more complex in spin-2 and spin-3
systems that, for instance, have non-Abelian vortices [53, 54]. This is likely to result also in
richer interface physics. In strongly correlated scenarios, the atoms may also be confined in
optical lattices in such a way that interfaces could separate different lattice regions, each
simultaneously exhibiting a different phase of quantum magnetism.
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Appendix A. Elementary vortex solutions

In this appendix we provide for reference a brief overview of the elementary defect states of the
spin-1 BEC in the pure FM and polar phases. For a more detailed presentation, see, e.g.,
[62, 83].

In the FM phase, all degenerate, physically distinguishable spinors are related by three-
dimensional spin rotations given by Euler angles α, β and γ, where the third Euler angle is
absorbed by the condensate phase in ϕ ϕ γ= −′ . Consequently, an arbitrary FM spinor can be

constructed by applying a spin rotation to a reference spinor ζ = ( )1, 0, 0
T
to arrive at (3), with

spin vector α β α β βˆ = ˆ + ˆ + ˆF x y zcos sin sin sin cos . From this general expression, we can

construct the non-trivial representatives of the two classes of line defects supported by the
corresponding ( )SO 3 ground-state manifold.

The simplest singular vortex corresponds to a π2 winding of the condensate phase ϕ′ in a
uniform spin texture. This phase vortex is simply described by letting ϕ φ=′ , the azimuthal
angle, in (3), keeping α and β constant. However, other, topologically equivalent, singular
vortices can be constructed from the phase vortex by local spin rotations. We may, for example,
rotate the spins into a disgyration corresponding to α φ= :
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When β = 0 the spins align with the z axis, and the singular spin texture coincides with a phase
vortex. However, for β ≠ 0 the spins tilt radially away from the z axis, and at β π= 2 form a
radial spin disgyration (spin vortex) that is singular, but carries no mass circulation.

The fact that mass circulation alone is not quantized in the FM phase makes it possible for
angular momentum to be carried by non-singular coreless vortices. The prototypical coreless
vortex is characterized by a fountain-like spin texture, where the spin aligns with the z axis on
the vortex line, and tilts radially away from it with increasing radial distance ρ, corresponding to
a monotonically increasing β ρ( ). The wave function is kept non-singular everywhere by a

combined rotation of the spin and the condensate phase, α ϕ φ= =′ , to form

ζ β ρ=

β ρ

φ

φ β ρ

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( ) ( )e

e

r
1

2

2 cos

sin

2 sin

. (A.2)

( )

( )

i

i

cl

2
2

2 2
2

Similarly to the singular vortices, several non-singular vortices are possible. These are all
related to (A.2), and to the vortex-free state, by local spin rotations.

It is further possible to rotate the spins in the coreless vortex to point everywhere radially
away from the origin, resulting in a terminating, doubly quantized vortex line. This hedgehog

configuration, ˆ = ˆF r, is analogous [41, 42, 47] to the Dirac magnetic monopole [101], with

the doubly quantized vortex line corresponding to the attached Dirac string. When the Dirac
string coincides with the positive z axis, the corresponding spinor is
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where we have set α φ= and β θ= , the polar angle, to form the hedgehog texture, and chosen
ϕ φ= −′ . The Dirac string may instead be aligned with the negative z axis by instead choosing
ϕ φ=′ .

In the polar phase, the order parameter is determined by the condensate phase and rotations

of the nematic axis d̂, which may be applied to the reference state ζ = ( )0, 1, 0
T
, with ˆ = ˆd z, to

yield
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whose equivalence to (4) follows from the identification α β α βˆ = ˆ + ˆ +d x ycos sin sin sin
β ẑcos . Note that the choice of reference state corresponds to the polar limit of (7), and
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the Euler angles in (A.4) therefore acquire the same meaning as in the polar limit of
(15). [In the polar limit of (10), the spin rotation is instead applied to the spinor

ζ = −( )1 2 , 0, 1 2
T
with ˆ = ˆd x, and the relation between d̂ and the Euler angles

is modified accordingly.]
In the polar phase, all circulation-carrying vortices are singular. The simplest is again a

singly quantized vortex in a uniform d̂-texture, constructed as ϕ φ= in (A.4). However,

rotations of d̂ do not contribute to the quantized circulation, and hence a singly quantized vortex

may be accompanied by a winding of d̂ as long as ζ remains single valued. For example, the
choice ϕ α φ= = results in
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which a singly quantized vortex with a π2 winding in d̂.

Due to the nematic order ζ ϕ ζ ϕ πˆ = + − ˆ( ) ( )d d, , , the single quantum is not the

smallest unit of circulation in the polar phase. By combining a π winding of the condensate

phase with a ˆ → −ˆd d winding of the nematic axis, one can construct a vortex carrying half a

quantum of circulation. The simplest such vortex, where d̂ is confined to the xy plane, is
represented by
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In general, a half-quantum vortex may exhibit a more complicated d̂-field, provided that
ˆ → − ˆd d on any closed loop around the vortex line.

Even though circulation is quantized in the polar phase, it is possible to form a non-

singular nematic coreless vortex [51] that does not carry angular momentum. Here d̂ forms a
fountain-like texture analogous to the FM coreless vortex. This structure was recently
experimentally phase imprinted [22, 23]. From (A.4) it can be constructed by choosing α φ=
combined with β ρ( ) increasing monotonically from β =( )0 0 to form
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The polar phase also supports singular point defects (monopoles). The basic monopole

solution is the spherically symmetric ˆ = ˆd r texture, which is analogous to the
’t Hooft–Polyakov monopole in quantum field theory. It is represented by the spinor
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