
Co-Simulating Event-B and Continuous Models via FMI
Vitaly Savicks Michael Butler John Colley

Department of Electronics and Computer Science
University of Southampton

United Kingdom
vs2@ecs.soton.ac.uk mjb@ecs.soton.ac.uk J.L.Colley@ecs.soton.ac.uk

Keywords: Discrete-continuous systems, formal verification
and validation, Event-B co-simulation, FMI master

Abstract
We present a generic co-simulation approach between
discrete-event models, developed in the Event-B formal
method, and continuous models, exported via the Functional
Mock-up Interface for Co-simulation standard. The concept
is implemented into a simulation extension for the Rodin
platform, thus leveraging powerful capabilities of refinement-
based modelling and deductive verification in Event-B while
introducing a continuous-time aspect and simulation-based
validation for the development of complex hybrid systems.

1. INTRODUCTION
Designing a complex hybrid system that consists of closely

interacting discrete computing and intrinsically continuous
physical processes is a challenging task [1]. A domain-
specific tool can be effective for modelling and validating a
subcomponent of a larger system, but is usually not sufficient
when it comes to the design of a highly heterogeneous sys-
tem, which requires seamless integration of a number of dif-
ferent tools and methods [2]. The Functional Mock-up Inter-
face (FMI) standard was designed to solve this problem by
providing a tool-independent open interface for the exchange
and co-simulation of dynamic models [3].

Furthermore, as complexity increases, simulation-based
analysis and bench-test solutions cannot fully guarantee sys-
tem correctness. More rigorous verification techniques are es-
sential, especially for the safety-critical domain [4]. Formal
methods, based on the sound mathematical reasoning and the-
orem proving, offer a higher degree of confidence in the re-
liability and safety of developed systems, but are often criti-
cised for the overall complexity, limited scalability and high
demand on expertise [5, 6]. The development of advanced
tools and methods tries to overcome these limitations, with
the Event-B method and its open Rodin platform serving as
a good example [7]. The latter offers automatic provers and
supports a number of refinement, decomposition and instan-
tiation techniques [8] that help to decrease model complexity
and facilitate modular development. With the aid of numerous
extensions to the platform, such as the requirements trace-
ability [9], UML integration [10], model-checking [11], code

generation [12, 13], etc., Event-B provides a comprehensive
modelling framework for development of critical systems.

The discrete nature of the Event-B language and its sim-
plified abstractions to facilitate the automatic proof, e.g. the
absence of Reals, limits its capabilities in modelling con-
tinuous dynamics and timing properties. A number of pro-
posals suggest ways to extend the language for hybrid sys-
tems [14–16]. In this work we follow a different path and
offer an integration solution that is based on the co-modelling
and co-simulation between the existing Event-B language,
well-suited for discrete-event modelling and formal verifi-
cation, and tool-independent continuous models of physical
processes. Our concept utilises the FMI for Co-simulation
standard [17] for continuous model integration with Event-
B and is implemented into an extension to the Rodin plat-
form that enables heterogeneous composition and simulation
of Event-B and FMI models.

A number of integrated approaches for hybrid systems
have been developed already. The notable examples are: the
formalism of clocked data flow in Signal, co-simulated with
continuous models in Simulink [18], the DESTECS project
that separates the discrete-event and continuous-time aspects
between the VDM and 20-sim respectively [19], the Ptolemy
II environment that focuses on the heterogeneous hierar-
chical assembly of concurrent components and the use of
well-known models of computation that govern their inter-
action [20]. The disadvantage of the mentioned approaches,
in our opinion, is the limited integration with other modelling
and verification technologies. A more generic co-modelling
and co-simulation solution that is based on a tool-independent
standard, such as the FMI, and coupled with a powerful proof-
based formalism and a rich extensible toolset, such as Event-
B/Rodin, aims to address these limitations.

The rest of the paper is structured as follows. Section 2
gives a brief introduction to the Event-B formal method. Sec-
tion 3 introduces the FMI standard architecture. In section 4
we present our concept of co-simulation, define the semantics
of discrete and continuous simulation steps, and specify the
simulation meta-model, API and a master algorithm. Section
5 demonstrates a proof of concept simulation experiment on
a voltage distribution hybrid system. Conclusions and future
directions are summarised in section 6.

mailto:vs2@ecs.soton.ac.uk
mailto:mjb@ecs.soton.ac.uk
mailto:J.L.Colley@ecs.soton.ac.uk


2. EVENT-B
Event-B is a formal method for system-level modelling

and analysis, inspired by the Action Systems [21] and B
Method [22], and based on a mathematical notation of set
theory and first-order logic to facilitate formal reasoning. Sys-
tem behaviour is modelled in Event-B as a collection of state
variables and discrete conditional events that act on variables,
while system properties are specified as invariants that can
be formally verified by deductive proof. The key mechanism
of refinement enables incremental modelling from abstraction
towards implementation and splits the complex task of veri-
fication into manageable proofs. The Rodin toolset simplifies
this task by providing automatic and interactive provers.

The main modelling constructs in Event-B are the static
contexts that define sets, constants and axioms, and dynamic
machines, which describe system properties (invariants to be
verified) and the behaviour. The following is a representative
Event-B machine that models a building access system [7]:

machine m0
sees c0
variables registered, in,out
invariants

registered ⊆USER // set of registered users
in⊆ registered // users inside the building
out ⊆ registered // users outside the building
in∩out =∅ // cannot be simultaneously in&out
registered ⊆ in∪out // reg. users are in or out

events
INIT IALISAT ION =̂
registered :=∅
in :=∅
out :=∅
end

Register =̂
any u
where u ∈USER\registered
then registered := registered∪{u}
out := out ∪{u}

end
Enter =̂
any u
where u ∈ out
then in := in∪{u}
out := out\{u}

end
end

This abstract machine models a set of registered users,
which can be either in or out. Two events model the func-
tional requirements of the system. The Register event non-
deterministically selects a non-registered user u and adds it
to the registered/out set. The Enter event models entering the
building by moving a registered/outside user to the set of in-
side users. The INIT IALISATON event is a special Event-B

event that initialises system variables to a valid state. The key
invariants of this model are the last two.

At each refinement step we may introduce new variables
and events (superposition refinement) or replace the abstract
variables with the concrete ones (data refinement), thus incor-
porating more requirements into the model. A data refinement
of the above example could be performed as follows:

machine m1
refines m0
sees c1
variables registered, in,out,status
invariants

status ∈ registered→ STATUS // user status
∀u ·u ∈ registered∧ status(u) = IN⇒ u ∈ in
∀u ·u ∈ registered∧ status(u) = OUT ⇒ u ∈ out

events
INIT IALISAT ION =̂
registered :=∅
status :=∅
end

Register =̂
refines Register
any u
where u ∈USER\registered
then registered := registered∪{u}
status(u) := OUT

end
Enter =̂
refines Enter
any u
where status(u) = OUT
then status := IN
end

end

The refinement step above represents a decision to replace
the abstract sets in and out with a database-like status struc-
ture, in this case modelled by a function. A modeller must en-
sure that the refined machine/events imply the concrete model
by relating concrete variables to their abstract counterparts.
This is performed in Event-B by adding gluing invariants,
two of which are defined in the above refined machine to re-
late the status to the sets in and out. The Rodin toolset pro-
vides model checking and automated proof features for veri-
fying that machine events preserve invariants and for verify-
ing the correctness of machine refinements.

3. FMI
The Functional Mock-up Interface1 is an industrial tool-

independent standard that defines cross-platform API for the
exchange and co-simulation of dynamic models. It comes as
a set of C header files to be implemented by an individual

1https://www.fmi-standard.org

https://www.fmi-standard.org


model and a modelDescription.xml file schema for
describing model-specific properties and state variables [23].
The implemented model code can be compiled into a dy-
namic/shared library for the target platform and bundled with
the model description file into a Functional Mock-up Unit
(FMU), which is essentially a .zip archive, ready to be used
for modelling and simulation in an FMI-compliant tool.

The standard is split into two parts: Model Exchange, for
shipping a model as an input/output block, which can be
utilised by other environments; and Co-Simulation, for cou-
pling models and simulators in a co-simulation environment,
where each subsystem, called Slave, is solved by its individ-
ual solver. The data exchange between the Slaves and the syn-
chronisation of their solvers is coordinated by a simulation
algorithm, called Master.

Figure 1. FMI master-slave architecture

A slave can represent either an exported dynamic-link li-
brary (Subsystem A in Figure 1) that may be instantiated mul-
tiple times (A1 and A2) or a coupled simulation tool that sim-
ulates a model (Subsystem B). A coupled subsystem can be
either continuous in time (described by differential equations)
or discrete (difference equations), and can be represented as a
block with inputs, outputs and internal (state) variables. Sub-
system variables, their causality (input, output, internal) and
type (Real, Integer, Boolean, String), along with the informa-
tion about the model, solver and simulation capabilities are
described in a slave-specific model description file.

Physical connections between subsystems are represented
by mathematical coupling conditions among their inputs and
outputs [24]. This information can be effectively encoded in a
component connection graph and used for the data exchange
aspect of the FMI for Co-Simulation. The synchronisation of
the simulation from time tc0 = tstart to tcN = tstop happens in
communication steps tci→ tci+1, and is the responsibility of
the master algorithm. The FMI for Co-Simulation supports
not only fixed-step algorithms, but also more sophisticated
approaches that adapt the step size to the solution behaviour,
use higher order signal extrapolation to approximate subsys-

tem inputs, or handle simulation steps sequentially such that
the intermediate results from the first subsystems may be used
to improve the approximation of subsystem inputs in the later
stages of the communication step [17, 25, 26]. The standard
is designed to support a very general class of algorithms and
gives the guidelines on the basic implementation. However, it
does not define the master algorithm itself.

4. CO-SIMULATION
This section presents the concept of a generic co-

simulation framework for Event-B, starting with a descrip-
tion of the simulation step semantics of discrete/continuous
components, followed by a simulation meta-model and a ba-
sic master algorithm. The idea has been implemented into a
prototype extension for the Rodin platform using the standard
Eclipse technologies2, ProB animator3 and JFMI Java imple-
mentation of the FMI library4.

4.1. Concept
Our concept of co-simulation between Event-B and con-

tinuous models is based on the master-slave architecture of
the FMI for Co-Simulation v1.0 standard [17], which pro-
vides an abstract fixed-step master algorithm that we have
utilised in our prototype tool. According to the FMI ar-
chitecture the simulation process is divided into simulation
steps, whose boundaries serve as synchronisation and data
exchange points. We further distinguish the simulation step
of a discrete component, represented by an Event-B machine,
and a continuous component that denotes an FMU.

The semantics of a continuous step (we call it CStep) is de-
fined within the FMI standard as a function call to its simula-
tor, which is responsible for simulating the underlying model
for a specified period of time.

The discrete simulation step (DStep) is represented either
by a single Event-B event or a number of events, executed
sequentially according to the Event-B semantics. Instead of
explicitly specifying the sequence of events that constitute a
simulation step we have introduced the notion of a Wait event,
which denotes the end of the step. Essentially, Wait must
be the only executable event(s) at synchronisation points,
whereas the sequence of events within a step can be arbitrary
and is defined by individual model’s logic. This provides a
generic simulation step solution and a flexible model of re-
finement of the discrete step.

To synchronise the simulation the master keeps the record
of the global simulation time. The state of an individual slave
can thus be defined as a function:

F : Time→V (1)
2http://projects.eclipse.org/projects/modeling
3http://www.stups.uni-duesseldorf.de/ProB
4http://ptolemy.eecs.berkeley.edu/java/jfmi/



where V is the state of the slave’s internal variables. The
evolution of each variable (and therefore each slave) over
time can be represented on a graph:

Figure 2. The state of a slave over time

where g is a state function defined over time interval
time . . . time+ t. The master only synchronises simulation at
fixed points in time, when it exchanges data between con-
nected slaves and simulates them to the next step. If we as-
sume that t equals the step period of the master, the simula-
tion semantics of each slave can be formally defined using
Event-B notation as follows:

machine C
variables F, time
event CStep =

any i, t,g
where
g ∈ [time . . . time+ t]→V
g(time) = F(time)
P(g, i,F, time, t)

then
time := time+ t
F := F ∪g

where parameter i is slave inputs and P is model properties,
or properties that g must satisfy. This formal model specifies
the semantics of continuous slaves, as it depends on time and
is based on continuous function F . For the discrete slaves of
Event-B we can derive a simpler definition that depends on
input and internal variables:

machine D
var V,O
event DStep =

any i
where
i ∈ T

then
V,O := S(V,O, i)

where i is the input, O is internal variables that are also out-
puts, and S is a discrete state function. As global time is ab-
sent in Event-B models, to synchronise them with other slaves
the master uses the Wait event as an indication of the end of
discrete simulation step. The Wait event must be an existing
Event-B machine event, which pauses further execution at the
end of a simulation cycle. The reading of inputs, on the other

hand, precedes the simulation step and therefore must be per-
formed by a single or multiple enabled events, which we de-
note as ReadInput events.

The above concepts are illustrated on a water tank exam-
ple that consists of a leaking water tank and a controller that
controls the input valve to maintain the desired water level:

Figure 3. Controlled water tank model

The plant and controller can be modelled as a continuous
and discrete slave, accordingly, that exchange a continuous
signal level and a discrete signal valve. The control flow of
the simulation can be shown as a state chart [27] in Figure 4.

Figure 4. Control flow of a discrete-continuous co-
simulation

The state chart shows that simulation steps of the controller
(DStep) and the tank (CSep) may be executed in parallel. The
DStep requires execution of a number of arbitrary events un-
til a Wait event is enabled. The CStep directly maps to an
fmiDoStep method of the FMI. Additionally, a read-write
phase is required prior to the simulation step to exchange the
signal data between two components.

4.2. Example Mapping
To demonstrate how Event-B machines map to Event-B

components, used in the simulation, we show a simple re-
finement of a water tank controller model in Event-B:

machine tankController0
variables valve
events

SwitchOn =̂ any l where l < LT then valve := on end
NoSwitch =̂ any l where l ≥ LT ∧ l ≤ HT then skip end
SwitchOff =̂ any l where l > HT then valve := off end

end

In this abstract machine all three events are ReadInput
events and Wait events. Only one of these events gets exe-
cuted in a simulation cycle, depending on the value of l that
is an input signal from the plant.

When tankController0 is refined to introduce multiple se-
quential discrete steps, then the ReadInput and Wait events



become distinct. tankController0 could be refined as a state
machine as follows:

machine tankController1 refines tankController0
variables valve, level,state
events

ReadLevel =̂ any l where state = 0 then level := l end
DecideOn =̂ where state = 1∧ level < LT then state := 2 end
DecideSkip =̂ where state = 1∧ level ≥ LT ∧ level ≤ HT
then state := 3 end

DecideOff =̂ where state = 1∧ level > HT then state := 4 end
SwitchOn refines SwitchOn =̂
witness l = level where state = 2 then valve := on end

NoSwitch refines NoSwitch =̂
witness l = level where state = 3 then skip end

SwitchOff refines SwitchOff =̂
witness l = level where state = 4 then valve := off end

end

In the refinement ReadLevel is a ReadInput event and
SwitchOn, NoSwitch and SwitchOff are Wait events. This
flexibility of indicating multiple and/or same events as Read-
Input and Wait events enables the refinement of control
events and, most importantly, verification and co-simulation
of Event-B components from the early stage of development,
which is crucial for safety-critical systems.

4.3. Meta-model and Semantics
FMI for Co-Simulation specifies the generic interface rou-

tines, or the Application Programming Interface (API), for
the communication between the master and the slaves [17].
Following the same idea we have defined an API for a generic
class Component, which is specialised by Event-B and FMI
components that denote Event-B machines and FMU models,
accordingly. This genericity greatly simplifies the master and
allows us to extend co-simulation to other types of compo-
nents without modifying the master algorithm.

All component classes and other simulation constructs,
such as component ports, for reading input signals and pro-
ducing output signals, or connectors, for connecting multi-
ple components together, have been defined in a single meta-
model5 that encodes the simulation semantics and is used for
constructing individual co-model graphs.

FMU Components implement our simulation API directly
via callback functions to the underlying FMI API. In order
to operate FMI models from Rodin we have implemented an
interface in the ProB Core using the JFMI Java wrapper.

Event-B Components implement the API according to
the discrete step semantics that has been defined earlier.
For example, the doStep method of the API executes a

5In model-driven engineering a meta-model is a model of a modelling
language, i.e. a specification of the rules and constructs for creating semantic
models [28].

sequence of the Event-B machine’s enabled events non-
deterministically until one of the Wait events is enabled. The
stepPeriod property of the Event-B Component specifies
the time duration of a single simulation step for that compo-
nent. The data exchange is performed by writeOutputs
and readInputs API methods. The latter executes Event-
B ReadInput event(s), passing them the values obtained from
the input ports. The writeOutputs method reads the
values of the corresponding Event-B variables directly and
writes them to the output ports.

4.4. Master Algorithm
Our simulation master algorithm is designed to comply

with the FMI standard (though it is not part of the standard
itself), i.e. we have developed it to reflect the recommended
use of the FMI API. The outline of the algorithm is as follows:

1. Instantiate all slaves:
Component.instantiate())

2. Initialise all slaves:
Component.initialise(startTime,
stopTime)

3. Set global time to a start time and begin the simulation
loop

4. For each slave, write all outputs:
Component.writeOutputs())

5. For each slave, read all inputs:
Component.readInputs())

6. Perform simulation step:
Component.doStep(time, stepSize))

7. Increase time by step size; if time has reached the stop
time then stop, otherwise go back to step 4

8. Terminate slaves:
Component.terminate())

The master uses the generic component API of the meta-
model from 4.3., therefore it does not rely on a particular im-
plementation of the individual component type, either Event-
B or FMU, and making it possible to extend co-simulation
capabilities by introducing other types of components with-
out the need to modify the master itself.

It is worth noting that the step size is treated differently by
two types of components, in particular, by the Event-B com-
ponent, which has an attribute for the step size, set by the
modeller. The attribute defines the duration of the simulation
step and characterises its component at the simulation master
level, i.e. an Event-B machine itself does not need to be timed
(although it can be, in which case additional mechanisms for
reading and writing time to Event-B are required). A reason-
able choice of the step size value should be no smaller than



the simulation master step size, otherwise it may be missed
by the master algorithm.

5. VOLTAGE DISTRIBUTION CONTROL
To validate our approach we have conducted a number of

simulation experiments, one of which has been taken from
the power systems domain in order to illustrate how the co-
simulation can be used in modelling and verification of smart
grid systems6. A standard electric power system consists of
the generating stations (power plants, wind turbines, solar
farms), high-voltage transmission lines, distribution networks
and residential/commercial consumption loads [29]. The fi-
nal distribution segment must step down the distribution volt-
age to a residential voltage that is safe for use by general
consumers. The task of stepping the voltage up/down is per-
formed by a transformer with a tap changer that allows the
winding ratio between the primary (input) and secondary
(output) voltage to be varied. The latest generation of the dig-
itally controlled On-Load Tap Changers (OLTC) allows au-
tomatic voltage regulation by varying the transformer ratio
under load without interruption.

In this experiment we are concerned with modelling the fi-
nal distribution segment of an electric power system, in which
a distribution voltage of 11kV is converted by an OLTC trans-
former to a consumption voltage of 230V. The system goal
is to maintain the reference voltage of 230V within a prede-
fined deadband (safe range) under any load conditions. One of
the means of achieving this is by monitoring the voltage un-
der load and controlling the OLTC position. The continuous
part of the system has been modelled in Modelica, which is
an object-oriented equation-based language, suitable for de-
scribing physical processes in a structural way [30]. The re-
sulting model, shown in Figure 5, was constructed from com-
ponents of the PowerSystems Modelica library7.

Figure 5. Distribution voltage control system in Modelica

The model consists of a constant voltage source Vgen1 that
represents a primary distribution voltage, two power lines
split by an OLTC transformer trafo, and a load zLoad that
represents a residential area. The load sinusoidally increases
five times of the nominal over the period of 30 seconds, which
leads to a corresponding voltage drop. To regulate the voltage

6The output of this works is used in a smart grid case study of the
ADVANCE project: http://www.advance-ict.eu

7https://github.com/modelica/PowerSystems

an input control signal can switch the secondary tap of the
transformer by providing an index of the tap position. There
are 21 positions defined in the transformer, with a 0.2 ra-
tio step between the two consecutive positions. A monitored
voltage from the voltage sensor Vsensor1 is sent back to the
controller.

Figure 6. Event-B state machine of the OLTC controller

The OLTC controller has been modelled in Event-B as a
state machine (Figure 6) according to [31]. The state machine
consists of three states:

• sIdle, denoting a normal operation mode where a mon-
itored voltage is within the deadband. The noChange
event indicates the end of simulation step in this mode.

• sCount, denoting a state where the voltage is outside of
the deadband, but no tap change action is yet taken. This
mode models a detection delay of the OLTC that mon-
itors the voltage for a certain amount of time in case it
goes back to normal (transition cancelCount) before tak-
ing any action. The delay is modelled in Event-B by a
decreasing counter variable dCounter. The delayAction
event is the Wait event in this mode.

• sAction, which models a mechanical delay of the tap
changer after detection delay expires (transition star-
tAction). After another counter variable mCounter, in-
volved in this state, reaches zero a corresponding tap
step up/down action is performed (transition tapUp or
tapDown, respectively). The Wait event in this mode is
delayChange.

The co-simulation settings of the OLTC/controller had a
detection delay set to 5 s, a mechanical delay of 1 s and a
deadband of 2V. The step period of the controller was set to
0.1 s and the simulation run for 50 s to observe the voltage
drop and the reaction of the tap changer, shown in Figure 7.

The simulation results demonstrate that the controller de-
tects a deviation from the deadband (vNorm < 229V) at t = 23
s and switches to the sCount state. As voltage continues to
stay outside the acceptance range for 5 s an action is taken at
t = 28 s and is completed after a mechanical delay of 1 s. The
tap position changes from 11 (middle position, denoting the
nominal ratio) to 12, i.e. a tap up is performed to step up the
secondary voltage. As a result the voltage jumps to 232V at

http://www.advance-ict.eu
https://github.com/modelica/PowerSystems


0 10 20 30 40 50

227

228

229

230

231

vNorm

0 10 20 30 40 50
11

12
tap

0 10 20 30 40 50
0

1
sCount
sAction

Figure 7. Co-simulation results of the OLTP voltage control
(simulation time = 50 s, step size = 0.1 s)

t = 29 s and becomes outside of the range, but goes back to
normal as the load continues to increase.

A more interesting scenario we would like to model in
the future is a number of different factors affecting the volt-
age (line drop, distribution generation, etc.), as well as a
more complex model of the residential load and an intelli-
gent OLTC control algorithm that minimises the number of
tap changes to minimise the wear of expensive equipment.

6. CONCLUSIONS
The proposed co-simulation approach and the correspond-

ing tool for co-simulating Event-B models and FMUs is still
under development and requires further research. However,
the obtained experimental results on a number of case stud-
ies from avionics and power systems domain have clearly
demonstrated the feasibility of developing a framework for a
general class of hybrid systems that not only facilitates tool-
independent model composition and simulation, but most
importantly integrates formal modelling and verification of
discrete-event systems, such as controllers, and co-simulation
of the latter with continuous-time physical models of envi-
ronment. With respect to the technologies used in this work,
Event-B provides the ability to derive a correct implemen-
tation of a discrete controller through refinement and Rodin
verification support. Co-simulation allows us to do closed-
loop validation of an Event-B model of a controller with a

continuous model of the plant being controlled. Among the
potential benefits of such framework is a greater degree of
reliability and safety of developed systems through the ap-
plication of rigorous analysis, a deeper understanding of the
computation-environment interaction and a stimulus for fur-
ther integration and co-development between domain-specific
tools. Our future work includes a stronger formalisation of the
co-simulation semantics, development of an adaptive master
algorithm and performance/scalability analysis of our tool on
larger case studies.

7. ACKNOWLEDGEMENT
This work is part of the ADVANCE Project (Advanced

Design and Verification Environment for Cyber-physical
System Engineering) funded by the European Commission
(http://www.advance-ict.eu).

REFERENCES
[1] Edward A. Lee. Cyber physical systems: De-

sign challenges. In International Symposium on
Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC), May 2008. Invited Paper.

[2] K. Balasubramanian, A. Gokhale, G. Karsai, J. Szti-
panovits, and S. Neema. Developing applications us-
ing model-driven design environments. Computer,
39(2):33–40, 2006.

[3] Torsten Blochwitz, M Otter, M Arnold, C Bausch,
C Clauß, H Elmqvist, A Junghanns, J Mauss, M Mon-
teiro, T Neidhold, et al. The Functional Mockup Inter-
face for tool independent exchange of simulation mod-
els. In Modelica’2011 Conference, March, pages 20–22,
2011.

[4] Stefania Gnesi and Tiziana Margaria. Formal Methods
for Industrial Critical Systems. Wiley Online Library,
2013.

[5] S. Liu and R. Adams. Limitations of formal methods
and an approach to improvement. In Software Engineer-
ing Conference, 1995. Proceedings., 1995 Asia Pacific,
pages 498–507. IEEE, 1995.

[6] A. Hall. Seven myths of formal methods. Software,
IEEE, 7(5):11–19, 1990.

[7] J.R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang,
F. Mehta, and L. Voisin. Rodin: an open toolset for mod-
elling and reasoning in Event-B. International Jour-
nal on Software Tools for Technology Transfer (STTT),
12(6):447–466, 2010.

http://www.advance-ict.eu


[8] Jean-Raymond Abrial and Stefan Hallerstede. Refine-
ment, decomposition, and instantiation of discrete mod-
els: Application to Event-B. Fundamenta Informaticae,
77(1):1–28, 2007.

[9] Michael Jastram. ProR, an open source platform for
requirements engineering based on RIF. 2010.

[10] C. Snook and M. Butler. UML-B and Event-B: an inte-
gration of languages and tools. 2008.

[11] Michael Leuschel and Michael Butler. ProB: an au-
tomated analysis toolset for the B method. Interna-
tional Journal on Software Tools for Technology Trans-
fer, 10(2):185–203, 2008.

[12] Steve Wright. Automatic generation of C from Event-
B. In Workshop on integration of model-based formal
methods and tools. Citeseer, 2009.

[13] Andrew Edmunds and Michael Butler. Tasking Event-
B: An extension to Event-B for generating concurrent
code. 2011.

[14] Jean-Raymond Abrial Wen Su and Huibiao Zhu. Com-
plementary methodologies for developing hybrid sys-
tems with Event-B, 2012.

[15] Jean-Raymond Abrial, Wen Su, and Huibiao Zhu. For-
malizing hybrid systems with Event-B. In Abstract
State Machines, Alloy, B, VDM, and Z, pages 178–193.
Springer, 2012.

[16] Richard Banach and Michael Butler. A hybrid Event-B
study of lane centering. In Complex Systems Design &
Management, pages 97–111. Springer, 2014.

[17] MODELISAR. Functional Mock-up Inter-
face for Co-Simulation, Version 1.0. https:
//svn.modelica.org/fmi/branches/
public/specifications/FMI_for_
CoSimulation_v1.0.pdf, October 2010.

[18] S. Tudoret, S. Nadjm-Tehrani, A. Benveniste, and J.E.
Strömberg. Co-simulation of hybrid systems: Signal-
Simulink. In Formal Techniques in Real-Time and
Fault-Tolerant Systems, pages 623–639. Springer, 2000.

[19] J. Fitzgerald, P. Larsen, K. Pierce, M. Verhoef, and
S. Wolff. Collaborative modelling and co-simulation
in the development of dependable embedded systems.
In Integrated Formal Methods, pages 12–26. Springer,
2010.

[20] Christopher Brooks, Edward A Lee, Xiaojun Liu, Yang
Zhao, Haiyang Zheng, Shuvra S Bhattacharyya, Elaine
Cheong, Mudit Goel, Bart Kienhuis, Jie Liu, et al.

Ptolemy II: Heterogeneous concurrent modeling and de-
sign in Java. 2005.

[21] Ralph-JR Back. Refinement calculus, part II: Paral-
lel and reactive programs. In Stepwise Refinement of
Distributed Systems Models, Formalisms, Correctness,
pages 67–93. Springer, 1990.

[22] J. Abrial, M. Lee, D. Neilson, P. Scharbach, and
I. Sørensen. The B-method. In VDM’91 Formal Soft-
ware Development Methods, pages 398–405. Springer,
1991.

[23] Torsten Blochwitz, Martin Otter, Johan Akesson, Mar-
tin Arnold, Christoph Clauss, Hilding Elmqvist, Markus
Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar
Neumerkel, et al. Functional mockup interface 2.0: The
standard for tool independent exchange of simulation
models. In 9th International Modelica Conference, Mu-
nich, 2012.

[24] R Kübler and W Schiehlen. Two methods of simula-
tor coupling. Mathematical and Computer Modelling of
Dynamical Systems, 6(2):93–113, 2000.

[25] Jens Bastian, Christoph Clauß, Susann Wolf, and Peter
Schneider. Master for co-simulation using FMI. In 8th
International Modelica Conference. Dresden, 2011.

[26] Tom Schierz, Martin Arnold, and Christoph Clauß. Co-
simulation with communication step size control in an
FMI compatible master algorithm. In 9th International
Modelica Conference. Munich, 2012.

[27] David Harel. Statecharts: A visual formalism for
complex systems. Science of computer programming,
8(3):231–274, 1987.

[28] Edwin Seidewitz. What models mean. Software, IEEE,
20(5):26–32, 2003.

[29] Birron Mathew Weedy, Brian John Cory, N Jenkins,
JB Ekanayake, and G Strbac. Electric power systems.
John Wiley & Sons, 2012.

[30] Modelica Association et al. Modelica – a unified object-
oriented language for physical systems modeling. Lan-
guage Specification, Version, 2, 2005.

[31] Mohammad Moradzadeh and René Boel. A hybrid
framework for coordinated voltage control of power
systems. In IPEC, 2010 Conference Proceedings, pages
304–309. IEEE, 2010.

https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.0.pdf

	Introduction
	Event-B
	FMI
	Co-simulation
	Concept
	Example Mapping
	Meta-model and Semantics
	Master Algorithm

	Voltage Distribution Control
	Conclusions
	Acknowledgement

