
!
!
!
!
!

Proceedings!of!the!5th!Rodin!User!
and!Developer!Workshop,!2014!

!
June!2@3!2014,!Toulouse!

!
Michael!Butler,!Stefan!Hallerstede,!(Eds.)!

!
!
!

!
!
!
!

!

!
! !

!
Proceedings!of!the!5th!Rodin!User!and!Developer!Workshop,!2014!
!
June!2@3!2014,!Toulouse!
!
Michael!Butler,!Stefan!Hallerstede,!(Eds.),!!
!
!
!
Abstract:!
!
Event'B!is!a!formal!method!for!system'level!modelling!and!analysis.!The!Rodin!
Platform!is!an!Eclipse'based!toolset!for!Event'B!that!provides!effective!support!
for!modelling!and!automated!proof.!The!platform!is!open!source!and!is!further!
extendable!with!plug'ins.!A!range!of!plug'ins!have!already!been!developed!
including!ones!that!support!animation,!model!checking!and!UML'B.!While!much!
of!the!development!and!use!of!Rodin!takes!place!within!EU!FP7!Projects!(RODIN,!
DEPLOY,!ADVANCE),!there!is!a!growing!group!of!users!and!plug'in!developers!
outside!these!projects.!!
!
The!purpose!of!the!5th!Rodin!User!and!Developer!Workshop!was!to!bring!
together!existing!and!potential!users!and!developers!of!the!Rodin!toolset!and!to!
foster!a!broader!community!of!Rodin!users!and!developers.!For!Rodin!users!the!
workshop!provided!an!opportunity!to!share!tool!experiences!and!to!gain!an!
understanding!of!on'going!tool!developments.!For!plug'in!developers!the!
workshop!provided!an!opportunity!to!showcase!their!tools!and!to!achieve!better!
coordination!of!tool!development!effort.!!
!
The!two!day!programme!consisted!of!a!half!day!of!tutorial!on!theory!
development!for!Event'B!followed!by!a!day!and!a!half!of!presentations!on!theory,!
tool!development!and!tool!usage.!This!volume!contains!the!abstracts!of!the!
tutorials!and!presentations!at!the!Rodin!workshop!on!June!10!–!11,!2013.!
!
The!workshop!was!held!at!the!ENSEEIHT!Engineering!School!in!Tolouse.!The!
Rodin!Workshop!was!supported!by!the!University!of!Southampton,!Aarhus!
University!and!the!FP7!ADVANCE!Project!!www.advance'ict.eu,!!
!
Organisers:!
Michael(Butler,(University(of(Southampton(
Stefan(Hallerstede,(Aarhus(University(
Thierry(Lecomte,(ClearSy(
Michael(Leuschel,(University(of(Düsseldorf(
Alexander(Romanovsky,(Newcastle(University(
Laurent(Voisin,(Systerel(
Marina(Walden,(Åbo(Akademi(University!
! !

List!of!Presentations!
!
Practical!Theory!Extension!Tutorial!session!1!
Asieh!Salehi,!Jean'Raymond!Abrial,!Michael!Butler!
!
Modeling!a!Safe!Interlocking!Using!the!Event'B!Theory!Plug'in!
Thang!Khuu,!Laurent!Voisin,!Fernando!Mejia!
!
Unlocking!the!Mysteries!of!a!Formal!Model!of!an!Interlocking!System!
Michael!Leuschel,!Jens!Bendisposto!and!Dominik!Hansen!
!
Run'time!Management!of!Many'core!Systems!using!Rodin!
Asieh!Salehi,!Colin!Snook,!Michael!Butler!
!
An!Experiment!in!Modeling!Satellite!Flight!Formation!in!Event'B!
Inna!Pereverzeva,!Anton!Tarasyuk,!Elena!Troubitsyna!
!
Developing!and!Proving!a!Complicated!System!Model!with!Rodin!
A.!V.!Khoroshilov,!I.!V.!Shchepetkov!
!
Formalisation!of!Self'Organizing!Multi'Agent!Systems!with!Event'B!and!Design!
Patterns!
Zeineb!Graja,!Frederic!Migeon,!Christine!Maurel,!Marie'Pierre!Gleizes,!Ahmed!
Hadj!Kacem!
!
Generating!Tests!for!COTS!Components!with!Event'B!and!STPA!
Toby!Wilkinson,!Michael!Butler,!John!Colley,!Colin!Snook!
!
Towards!Verified!Implementation!of!Event'B!Models!in!Dafny!
Mohammadsadegh!Dalvandi,!Michael!Butler!
!
!
A!Practical!Approach!for!Validation!with!Rodin!Theories!
Daniel!Plagge,!Michael!Leuschel!
!
Toolbox!for!penetration!testing!based!on!Rodin!and!ProB!
Aymerick!Savary,!Marc!Frappier,!Jean'Louis!Lanet!
!
iUML'B!Statemachines!
Colin!Snook!
!
EB2RC:!A!Rodin!plug'in!for!visualising!Event'B!models!and!code!generation!
Zheng!Cheng,!Dominique!Mery,!Rosemary!Monahan!
!
Composition!Operators!for!Event'B.!CO4EB!Rodin!plugin!
Idir!Ait'Sadoune,!Yamine!Ait'!Ameur!
!
CODA!Update:!New!Features!for!2014!
Neil!Evans,!Helen!Marshall,!James!Sharp,!Michael!Butler,!John!Colley,!Colin!Snook!

!
Rodin!Multi'Simulation!Plug'in!
Vitaly!Savicks,!Michael!Butler,!John!Colley,!Jens!Bendisposto!
!
Code!Generation!–!Tool!Developments!
Andy!Edmunds!
!
Smart!Grids:!Multi'Simulation,!An!Application!
Brett!Bicknell,!Karim!Kanso,!Jose!Reis!
!
Formal!Methods,!Requirements!and!Software!Engineering!
Ken!Robinson!
!
Applying!and!Extending!the!Event!Refinement!Structure!Approach!to!Workflow!
Modelling!
Dana!Dghaym,!Michael!Butler,!and!Asieh!Salehi!Fathabadi!
!
Incorporating!"operation!calls"!in!Event'B!and!Rodin!(by!means!of!Guarded!
Events)!
Jean'Raymond!Abrial!
!
Program!Development!in!Event'B!with!Proof!Outlines!
Stefan!Hallerstede!
!
Responsiveness!and!Event'B!
James!Sharp,!John!Colley,!Helen!Marshall,!Neil!Evans,!Michael!Butler,!Colin!Snook!
!
Towards!Patterns!for!Statemachine!Modelling!under!Timing!Constraints!
Gintautas!Sulskus,!Michael!Poppleton,!Abdolbaghi!Rezazadeh!
!
From!Untimed!Specification!to!Cycle'Accurate!Implementation!'!Cyber'Physical!
System!Model!Refinement!with!Event'B!
John!Colley,!Michael!Butler!
!
Event'B!for!Safety!Analysis!of!Critical!Systems!
Matthias!Gudemann!and!Marielle!Petit'Doche!
!
Modelling!Of!Systems!Of!Systems!'!An!Event'B!Perspective!Of!a!VDM!Project!
Stefan!Hallerstede!,!Klaus!Kristensen,!Peter!Gorm!Larsen!

Modeling a Safe Interlocking Using the Event-B

Theory Plug-in

Minh-Thang Khuu and Laurent Voisin⇤

Systerel, Aix-en-Provence, France
{minh-thang.khuu,laurent.voisin}@systerel.fr

Luis-Fernando Mejia
Alstom Transport Information Solutions, Saint-Ouen, France

luis-fernando.mejia@transport.alstom.com

June 2-3, 2014

Abstract

Interlocking (IXL) is a railway signaling sub-system. Its principal role

is controlling the movement of points, the change of signal aspect and

setting up tra�c directions on a railway network. These controls are

performed via commands on signaling system devices. The main issue

of IXL concerns the safety of commands, or more precisely, properties

preventing risks of train collision and derailment. This paper presents

an Event-B model of a safe IXL in which IXL commands are filtered to

ensure safety properties.

In the model, railway terms are expressed with the Theory plug-in

datatypes and operators. This approach has a two-fold advantage. Firstly,

the model is lighter. In fact, complex mathematical expressions are held

separately in Theory plug-in operators. Moreover, proof rules defined in

Theories reduce the e↵ort of proving activities. Secondly, domain specific

terms are defined and reusable.

The model is illustrated by an animation using the ProB plug-in.

References

[1] I. Maamria and M. Butler. Practical Theory Extension in Event-B. Theories

of Programming and Formal Methods. 2013.

[2] I. Maamria and M. Butler. The Theory plug-in and its applications. Rodin

User and Developer Workshop. Fontainebleau, 2012

[3] J.R Abrial. Modeling in Event B: System and Software Engineering. Cam-

bridge University Press. 2010.

[4] The Rodin platform is available from http://www.event-b.org.

⇤
This work was partly funded by the FP7 ADVANCE Project (ICT-287563), see

http://www.advance-ict.eu.

[5] The Theory plug-in is available from http://rodin-b-sharp.sf.net/

updates.

[6] ProB is available from http://www.stups.uni-duesseldorf.de/prob_

updates.

Unlocking the Mysteries of a Formal Model of

an Interlocking System

Michael Leuschel, Jens Bendisposto and Dominik Hansen

Institut für Informatik, Universität Düsseldorf??

Universitätsstr. 1, D-40225 Düsseldorf
leuschel@cs.uni-duesseldorf.de

Abstract. In his book on Event-B, Abrial presents a model of a railway
interlocking system. While this model is an academic model intended for
teaching Event-B, it has a lot of features in common with real-life in-
terlockings and formal models thereof. In this paper we show how we
used animation, model checking and constraint-based checking to un-
cover various interesting aspects about this specifications. In particular,
we uncover an error which allows points to be “magically” connected
to unrelated track segments. We also delve upon the exhaustive model
checking of the relatively small topology from the book. This turned out
to be surprisingly di�cult, but allows us to present various methods and
techniques to get a handle on the state explosion problem. Finally, we
relate this work to validation of real, industrial interlockings.

1 Summary

The most prominent industrial uses of the B-method have been within the rail-
way domain [2, 3]. It is thus not surprising that Abrial’s book [1] on the Event-B
method contains a railway system case study. More precisely, chapter 17 contains
a formal development of a railway interlocking system. The role of an interlock-
ing is to safely operate signals and points within an area of the train network
(usually a station). This means that the interlocking controller has to ensure
that trains do not collide, that points are not moved while a train is driving over
them, and that trains reach their desired destination.

In this talk we use this model, which is hopefully already familiar to some
readers, to highlight a variety of related points:

– we show the usefulness of animation to better understand the model. We
also describe how one can use Rodin’s refinement mechanism to animate a
generic model for various concrete topologies.

– we show that constraint solving has uncovered a flaw in the fourth refinement
of the fully proven model,

?? Part of this research has been sponsored by the EU funded FP7 project 287563
(ADVANCE).

2

– we show that, even for the simple topology in the book, exhaustive model
checking is surprisingly di�cult. Indeed, for the simple topology from page
524 [1] with 5 signals, 5 points, one crossing and 14 tracks segments, the first
refinement of the model has has over 61 million distinct states and over 445
million transitions (aka events). Through the use of a manual partial order
reduction combined with either the use of parallelisation (within ProB [5] or
using our translation to TLC from [4]) we have managed to cut verification
time from more than four days down to minutes.

– we provide an overview of various attempts to scale up validation of the
model to larger topologies, and more realistic settings with hundreds of sig-
nals and points.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. D. Dollé, D. Essamé, and J. Falampin. B dans le tranport ferroviaire. L’expérience
de Siemens Transportation Systems. Technique et Science Informatiques, 22(1):11–
32, 2003.

3. D. Essamé and D. Dollé. B in large-scale projects: The Canarsie line CBTC ex-
perience. In J. Julliand and O. Kouchnarenko, editors, Proceedings B’2007, LNCS
4355, pages 252–254, Besancon, France, 2007. Springer-Verlag.

4. D. Hansen and M. Leuschel. Translating B to TLA+ for validation with TLC.
Technical Report STUPS/2013, Institut für Informatik, Heinrich-Heine-Universität
Düsseldorf, 2013.

5. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185–203, 2008.

Run-time Management of Many-core Systems

using Rodin

Asieh Salehi, Colin Snook, and Michael Butler

University of Southampton
{asf08r, cfs, mjb}@ecs.soton.ac.uk

As electronic fabrication techniques approach the limit of atomic dimension,
increases in performance can no longer be obtained from a single core with rel-
ative ease. Even at current scales, wear-out due to physical phenomena such as
electromigration has become a significant factor. Interest in recent years, there-
fore, has increasingly focused on many core devices. Managing the use of a large
collection of cores to achieve a given computing task with adequate performance
in an energy e�cient manner while minimising wear-out is a challenging prob-
lem, which is being tackled by the PRiME project [1] . A Run-Time Management

(RTM) system that is aware of application requirements and able to save energy
by sacrificing performance when it will have negligible impact on user experi-
ence is required. Furthermore we require such a system for disparate operating
systems and hardware platforms.

Our approach is to developed formal models using Rodin and plug-ins so that
we obtain a precise specification from which we can generate variants and subse-
quently code for di↵erent platforms. Here we summarise our initial exploration
of the problem by describing the models and modelling techniques we used to
specify a temperature aware RTM for Dynamic Voltage and Frequency Scaling

(DVFS) of a media display application. The RTM learns from the application
when it can scale back voltage and frequency to save energy without missing
too many frame deadlines. We also model thread scheduling and the resultant
heating e↵ects in the cores.

We use the Event Refinement Structure (ERS) approach [2, 3] to visualise and
build the abstract level of the DVFS control as an Event-B model. ERS augments
Event-B methodology with a diagrammatic notation that is capable of explicit
representation of control flows. Providing such diagrams aids understanding and
analysing the control flow requirements without getting involved with complexity
of the mathematical formal language notation.

We use Model Decomposition [4, 5] to divide the DVFS control model into
two sub-models: Controller and Environment. The controller sub-model consists
of variables/events describing the SW layer properties whereas the environment
sub-model consists of variables/events describing the properties of the user and
the HW layer.

We use iUML-B Statemachines [6, 7] to model the thread scheduling process
of the operating system under the influence of the RTM. State-machines provide
excellent visualisation of mode-oriented problems and are animated for validation
in synchronisation with BMotionStudio [8] visualisations of other parts of the
model.

We developed a continuous model of the thermal properties of a core depend-
ing on voltage and frequency using the Modellica [9] language. The continuous
model is simulated in conjunction with ProB simulation of the Event-B RTM.
This is achieved via tools for mixed-simulation [10] which are under development
in the Advance project [11] .

Executable code was generated using the Code Generation plug-in [12]. The
code generation feature provides support for the generation of code from refined
Event-B models. To this end a multi-tasking approach has been added to the
Event-B methodology. Tasks are modelled by an extension to Event-B, called
tasking machines which are an extension of the existing Event-B machine com-
ponent. The code generation plug-in provides the ability to translate to C and
Java in addition to Ada source code. We adapted the code generation plug-in
and used it to generate a Java implementation of the DVFS RTM system.

References

1. PRiME: Power-e�cient, Reliable, Many-core Embedded systems. http://www.

prime-project.org

2. Butler, M.: Decomposition Structures for Event-B. In Leuschel, M., Wehrheim,
H., eds.: Integrated Formal Methods. Volume 5423 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2009) 20–38

3. Fathabadi, A.S., Butler, M., Rezazadeh, A.: A Systematic Approach to Atomicity
Decomposition in Event-B. In: SEFM. (2012) 78–93

4. Silva, R., Pascal, C., Hoang, T.S., Butler, M.: Decomposition tool for event-B.
Softw., Pract. Exper. 41(2) (2011) 199–208

5. Hoang, T.S., Iliasov, A., Silva, R., Wei, W.: A Survey on Event-B Decomposition.
ECEASST 46 (2011)

6. Snook, C.: Modelling Control Process and Control Mode with Synchronising Or-
thogonal Statemachines. In: B2011, Limerick. (2011)

7. Savicks, V., Snook, C.: A Framework for Diagrammatic Modelling Extensions in
Rodin. In: Rodin Workshop 2012, Fontainbleau. (2012)

8. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B Models with
B-Motion Studio. In: FMICS’2009. Lecture Notes in Computer Science, Verlag
(2009) 202–204

9. Fritzson, P., Engelson, V.: ModelicaA unified object-oriented language for system
modeling and simulation. In: ECOOP98Object-Oriented Programming. Springer
(1998) 67–90

10. Savicks, V., Butler, M., Bendisposto, J., Colley, J.: Co-simulation of Event-B and
Continuous Models in Rodin. In: Rodin Workshop 2013, Turku. (2012)

11. ADVANCE: Advanced Design and Verification Environment for Cyber-physical
System Engineering . http://www.advance-ict.eu/

12. Edmunds, A., Butler, M.: Tasking Event-B: An Extension to Event-B for Gener-
ating Concurrent Code. In: PLACES. (2011)

An�Experiment�in�Modeling�Satellite�Flight�Formation�in�EventǦB�
�

����������������ǡ���������������ǡ�������������������
%���������������������ǡ�	�������

�
��Ȃ�������������������������
����������������Ǥ��Ǥ�
�������ǡ��
���� ������������� �������Ǥ� ��������ǡ� ������ ���� ��������������� ������������ ���
���������������������������������ǡ��� ���
����������Ǥ� ����� ����� �� ������������ ������� ��� ���� ������������ ���� �������������
������������Ǥ��
�
���
��� ����������� ��� �����Ǧ�Ǥ� ���� ����� ����� ��� ���� ������������ ���� ����� ���
��������� ��������� ���� ���������� �������� ����������� ����� �����������ǡ� ������
���������� ���� ����������� �������������Ǥ� � ������ �������� ���� ���� ��������
��Ǥ��������ǡ��������������������������
��� ����� ��� ����ǡ� ����� ����� ���������� ���� �������� �������� ��� ����� �����Ǥ� � ����
�����������ǡ� ���� ����������� ��� ���������� ��������� ���������������������� �����
���� ����������� ������� ��������� ��� ������� ��� ���� ��������� ������������� ���
����������Ǥ�
�
��� ���������������ǡ��������� �������� �������� ��������� �����������������������
����������� ��������Ǥ�������������� �������������������������� ��������������������
����������������Ǥ��
���Ǥ�
�
���
����Ǥ� ���� �������� ��� ������������ �������� ��������� �������������� ������������
��������� ����� ������ ���� ����������� �������������� ��� ����� ������ �������� ����
��Ǥ�������������������������������������
����� ���� �������������� ����� �������� ���� ����������� ��� ������ǡ� ���� �����������
���
��������������������Ǥ�
�
����� �������������������������ǡ�������������������������������� ����������������
������������� ��� ���� ���������� ������ǡ� ����������� �������� ���� �����Ǧ����������
�� ������������������
���������������������Ǥ�
�
���Ǥ����������������������������
������Ǧ���
������������������������Ǥ�
��

Developing and Proving a Complicated System Model

with Rodin

A. V. Khoroshilov, I. V. Shchepetkov
Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia

{khoroshilov,shchepetkov}@ispras.ru

We used the Rodin toolset for modeling a system with a large number of dependences
between its objects, and also with many restrictions imposed on them. Although a

resulting model size of this system is not very large (approximately 1700 lines, see Table 1
for details), we encountered with some challenges at both modeling and proving stages.

We would like to present these challenges and to discuss possible ways of their solution.
At the modeling stage we used several Rodin plugins, namely the Camille text

editor, animator and model checker ProB, Atelier B Provers, and SMT Solvers. Camille
provides a user friendly environment for model development. However with increasing a

model size Camille started to consume gigabytes of RAM and a computer stalled. ProB
helped us to perform quick checks of a model consistency until the model size reached

~400 lines (~20 state variables). So we left with Atelier B Provers and SMT Solvers that
we used to prove correctness of our model and these plugins work well except for some

obstacles discussed below.

Number Lines of code

Contexts
 Sets

 Constants
 Axioms

1
9

22
18

57
10

7
39

Machines

 Variables
 Sets

 Functions
 Invariants

 Type invariants
 State invariants

 Events
 The largest event

 The smallest event
 An average event

 Proof obligations

1

37
7

30
100

37
63

35
-

-
-

1226

1669

1
1

1
288

45
243

1375
241

8
40

-

Table 1. Model's statistic.

There are many complicated logical expressions duplicated in various parts of the
model. It would be natural to define them once and to use everywhere else by reference.

Event-B allows to define a constant of a functional type with a lambda expression. But
such a functional constant can not be used in this situation as far as Event-B does not

support (λp·P E) lambda expressions where E is a predicate (our massive and complicated∣
logical expression) and lambda(p)=E(p) (the output of this lambda expression is a BOOL

value).
At the proving stage we found that Rodin adds a large number of axioms to the

proving perspective. In most cases it greatly complicates both automatic and manual
proofs. We suggest to add an ability to choose a way for adding axioms: manually by the

user, automatically add a minimal set of axioms, and the approach used currently. For that
approach we would like to discuss ways to sample required axioms more intelligently.

There are proof obligations in our model that require up to 2 days for their
proving. Considering the total number of proof obligations (~1200), it makes this task

challenging. Unfortunately Rodin and its plugins are not friendly for team verification. A
file with proofs for our model occupies more than 200 megabytes that makes difficult to

use traditional collaboration tools such as version control systems. It would be interesting
to experiment with splitting of files with proofs into several small files – one event per a

file, or even one proof obligation per a file.
Despite all these issues Rodin helped us to reveal a number of inaccuracies in the

initial system description and to prove correctness of quite a complicated model for this
system. We hope that discussion of our experience with Rodin community helps to make

the toolset more usable for such kind of tasks out of box.

Formalisation of Self-Organizing Multi-Agent
Systems with Event-B and Design Patterns

(Tool usage)

Zeineb Graja12, Frédéric Migeon2, Christine Maurel2,
Marie-Pierre Gleizes2, and Ahmed Hadj Kacem1

1 ReDCAD laboratory, University of Sfax, Tunisia
zeineb.graja@redcad.org, ahmed.hadjkacem@fsegs.rnu.tn

2 IRIT, Paul Sabatier University, Toulouse, France
{zeineb.graja,frederic.migeon,christine.maurel,marie-pierre.gleizes}@irit.fr

With the growing complexity of today’s applications, Self-Organizing Multi-
Agent Systems (SOMAS) are becoming widely used as a paradigm for software
design. A SOMAS is defined as a set of autonomous entities called agents, hav-
ing a local knowledge about their environment and interacting together in order
to achieve a given task. The global behavior of the overall system emerges from
the interactions between the entities and their interaction with the environment.
According to the framework proposed by Serugendo in [1], three types of prop-
erties need to be questioned when developping a SOMAS: invariants, robustness
and resilience. Invariants are properties that must hold at any time during the
system execution. Robustness focuses on the ability of the system to converge to
its goal (convergence) and to maintain it (stability) in the absence of perturba-
tions. While resilience evaluates the ability of the self-organization mechanism
to adapt the system to perturbations and changes. In order to verify these prop-
erties, SOMAS designers usually make use of simulation as well as stochastic
model checking. In this presentation, we focus on formal assurances about ro-
bustness and resilience. For the moment, we suppose that these properties can
be observed at the macro level after simulation or runtime execution. Our goal
is then to formalise the SOMAS by means of the Event-B language in order to
prove them by theorem provers under the Rodin tool.

Our modelling framework is guided by the use of patterns which enable us to
take advantage from reuse of both the refinement and proofs which are defined
in the patterns. More precisely, we define three patterns described as follows.
- The Agent Pattern (AgP): It describes a stepwise refinement strategy allowing
to design a correct local behavior of the agents which guarantee the deadlock
freeness in each step of their execution cycle. This refinement strategy begins
with a very abstract model depicting a set of agents executing according to a cy-
cle of three steps: perceive, decide and act. The refinement steps allows to model
gradually the actions, then the decisions and finally the necessary operations for
updating the agents perceptions.
- The Global Behavior Pattern (GBP): This proof pattern guides the designer
in order to prove the convergence of the system. GBP represents an interpreta-
tion in Event-B for the following temporal formula: ⌃ ⇤ taskAchieved, where

taskAchieved describes the state where the system converges to its goal. This
interpretation is given based on the framework proposed in [2].
- The Self-Organization Pattern (SOP): This proof pattern guides the designer
in order to prove the ability of the self-organization mechanism to adapt the
system when perturbations occur. It represents an interpretation of the follow-
ing temporal formula: ⇤(perturb) ⌃SuccessSO), where perturb describes the
system state after a perturbation or a change and SuccessSO describes a state
where the system has succeeded to recover from the perturbation. The pattern
SOP is also defined based on the framework proposed in [2].

The proposed patterns were applied for the foraging ants case study by means
of the Pattern plug-in described in [3]. This plug-in allows to instantiate the
generic models without an explicit enumeration of the concrete sets’ elements.
The case study describes the behavior of a foraging ants colony. The properties
to be proved are the following:
-For robustness: The property RB Ants given below indicates that the ants
are able to bring all the food to the nest.

RB Ants b= ⌃(⇤(QuantityFood(Nest) = TotalFood(InitDistFood)^
8 loc.loc 2 Locations\{Nest}) QuantityFood(loc) = 0)).

-For resilience:We define two properties for the resilience. The first one (SO1 Ants)
indicates that when a source of food is detected, the ants are able to focus on
its exploitation.

SO1 Ants b= ⇤(8 loc.loc 2 Locations\{Nest} ^Detected(loc)) ⌃(QuantityFood(loc) = 0)).

The second (SO2 Ants) indicates that the ants continue the environment explo-
ration and detect new food when the source of food they are exploiting disap-
pears.

SO2 Ants b= ⇤((9l.l 2 Locations ^QuantityFood(l) > 0)^
(8 loc1.loc1 2 Locations\{Nest} ^ EntirelyExploited(loc1)))
⌃(9loc2. loc2 6= loc1 ^QuantityFood(loc2) 6= 0 ^Detected(loc2)).

Our experience with the use of these patterns shows an interesting help for
novice designers especially about the manner to do proofs with Event-B. We
plan now to reduce the e↵ort which remains for the designer to instantiate the
patterns and to do the proofs.

References

1. G. Di Marzo Serugendo, Robustness and dependability of self-organizing systems - a
safety engineering perspective, in Proceedings of the 11th International Symposium
on Stabilization, Safety, and Security of Distributed Systems. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 254–268.

2. T. S. Hoang and J.-R. Abrial, Reasoning about liveness properties in Event-B, in
ICFEM, 2011, pp. 456–471.

3. T.S. Hoang, A. Frst, J.-R. Abrial, Event-B patterns and their tool support, in Hung,
D.V., Krishnan, P. (eds.) SEFM, pp. 210219. IEEE Computer Society, USA (2009)

Generating Tests for COTS Components with
Event-B and STPA

Toby Wilkinson, Michael Butler, John Colley, and Colin Snook

University of Southampton, UK
{stw08r, mjb, J.L.Colley, cfs}@ecs.soton.ac.uk

Abstract. We describe ongoing work combining Event-B with System
Theoretic Process Analysis (STPA), a hazard analysis technique devel-
oped by Leveson at MIT, to the generation of test suites for COTS
components.

Increasingly in industry bespoke systems are incorporating large numbers of
third party, o↵ the shelf, components. The reason is simple, with the increasing
complexity and sophistication of modern systems, it is not economically possible
to re-implement bespoke versions of these components. However, such third party
components may come with little or no formal guarantee of their correctness,
and indeed, sometimes the only indicators of quality might be anecdotal evidence
from other users. In many applications this is not acceptable.

The solution is to develop an independent test suite for a third party compo-
nent, that can be used to verify the suitability of the component, in the specific
context into which it is to be deployed as part of a larger system. Such a test
suite does not aim to test all the functionality of such a component, but only
that functionality that is required in the context into which the component will
be deployed. It is the minimum standard to which the component must be mea-
sured. In some safety-critical contexts this may not be su�cient, and it may be
required that it be shown that the component has no additional functionality
beyond that covered by the test suite, or that in the given deployment context,
that any additional functionality remains disabled.

The technique we have chosen to employ, is to build from the requirements of
the target system, a model of the third party component in the specific context of
the target system. Then we apply System Theoretic Process Analysis (STPA) [2]
to discover the di↵erent hazards, and their possible causes, that could result from
the interaction of the component and the target context. The resulting closed-
system model of the component, target context, and the safety constraints that
the hazard analysis identified, is formalised in Event-B [3]. The construction of
this model is typically an iterative process, with the formal modelling in Event-B
feeding back greater understanding of the components interaction with the target
context through invariant violations identified by the ProB model checker, and
STPA identifying new hazards that must be mitigated or eliminated.

Through careful use of refinement, an initially highly abstract model of the
component in the context of the system can be refined to a concrete model that

2 Toby Wilkinson, Michael Butler, John Colley, and Colin Snook

accurately describes the interface between the component and the target system,
the assumptions the component can make about its deployment context, and the
guarantees that are required of the component in that context. Decomposition of
the resulting Event-B machine along the interface between the component and
its context, yields two Event-B machines, one that represents an abstract model
of what we require of the component, and another that embodies all that the
component may assume about its context.

A case study derived from a synthetic model of the FADEC (Full Authority
Digital Engine Control) system of a hypothetical helicopter has been developed,
and an Event-B model constructed for a subset of the functionality, an Anti-
Ice Bleed Valve (AIBV). STPA hazard analysis has been applied to the AIBV,
and safety constraints discovered and modelled in Event-B. The resulting closed-
system model has been decomposed into a model that embodies the actual AIBV
valve, actuators, sensors, and the rest of the environment, and a model that
describes the functionality required of the AIBV controller for the safe operation
of the AIBV.

The next step in our work is to use the formal model of the AIBV controller
to generate test cases that could be used to verify that any potential implemen-
tation of the AIBV controller was safe. Indeed, for the purposes of this work we
have used the code generation abilities of the Rodin toolset to generate an im-
plementation of the AIBV controller from the Event-B model. We intend to use
this implementation to assess the e↵ectiveness of the test cases that we generate
from the same model.

Time allowing, we hope to expand the model to include a larger subset of
the FADEC functionality, and explore the scalability of our approach, and also,
again time allowing, we hope to explore how our models can be validated using
the co-simulation techniques developed in the ADVANCE project [1].

References

1. ADVANCE: An FP7 project. Website http://www.advance-ict.eu.
2. Leveson, N. G.: Engineering a Safer World. MIT Press. Free download available

from http://mitpress.mit.edu/books/engineering-safer-world (2012)
3. Rodin: The Event-B toolset. Available from http://www.event-b.org.

http://www.advance-ict.eu
http://mitpress.mit.edu/books/engineering-safer-world
http://www.event-b.org

Towards Verified Implementation of Event-B Models in Dafny

Mohammadsadegh Dalvandi, Michael Butler

University of Southampton

{md5g11,mjb}@ecs.soton.ac.uk

Ideally the development process of software systems with Event-B and Rodin platform should lead to
implementation and executables. The Event-B language and Rodin in their basic form do not have any
facility to support this. To bridge this gap, some research has been carried out and several plugins have
been developed to provide facilities for the Rodin platform to make code generation possible. While the
specification and modelling phase of the system can be proved by automatic and interactive provers in
Event-B and Rodin, the generated code by most of the existing code generators is not verified. One way
to tackle this issue is to verify the generated code with a static program verifier. A static program verifier
proves the correctness of a code with regards to a well-defined formal specification. Using this approach
to generate verifiable code from Event-B models requires the generation of not only the code itself but
also verification assertions from the Event-B.

The focus of this research is on linking Event-B models and their implementation in Dafny [1]. Dafny
is a programming language and program verifier based on the Z3 SMT-solver. Dafny has proved to
be a powerful program verifier by verifying a number of challenging problems [2]. By providing formal
specifications for a Dafny program, the verifier proves the correctness (or incorrectness) of the code with
regards to its specifications. The specifications includes pre- and post-conditions, loop invariants, and
variable framing. The language also supports specification-only updateable ghost variables and functions
which can be used recursively. Ghost entities (ghost variables, functions and etc.) are only used for
verification purposes and do not form part of the compiled code.

To identify the di↵erences and similarities between Event-B models and Dafny specifications and
programs, implementation of a map abstract data type was taken from [2] for a case study and modelled
in Event-B. The Map ADT is implemented in Dafny by a linked-list and specified by two sequences:
one for storing keys and the other for storing associated values. In Event-B, the map is modelled by
an abstract model following by two successive refinements. In the abstract level the map is modelled
simply by the use of a partial function where keys are in domain and values are in range. Sequences are
introduced in first refinement and the linked-list is added in the second level.

To decrease the distance between Event-B and Dafny syntax, the standard Event-B may be extended
by Theory Plug-in [3] and new data-types and operators may be defined. For modelling maps in Event-
B, several new operators, inference rules and rewrite rules have been added to the existing theory of
sequences. Without using the theory plugin there will be a huge syntactic gap between Event-B and
Dafny.

Although Dafny does not have any special object invariant construct, this can be easily done by
defining a validity function and using it as both pre- and post-conditions of every method. This can be
seen equivalent to Event-B invariants. Therefore all invariants of the Event-B model can be placed within
the body of the validity function and vice versa. The precondition of methods in the map implementations
is only the validity function. Apart from the validity function, which must be placed in the post-condition
of all methods, other post-conditions are needed to specify the desirable and exact behaviour of a method.
This is essential because of Dafnys modular verification approach. The Dafny verifier only looks at the
specification (pre- and post-conditions) of the other methods to understand their behaviour when it is
verifying a method. Modelling the map data structure in Event-B shows that the required post-conditions
can be inferred from guards and actions of each event. One or more events in an Event-B model may

1

be equivalent to a method in a Dafny program. Related events can be translated to a single method in
Dafny and each event will translate to a conditional statement within that method. Guards of each event
will be conditions and actions will be consequence of that conditional statement so each event regarding
to its guards will perform a possible action by the method.

The following code snippets show an Event-B event and its equivalent implementation in Dafny. The
event models the way in which a new key and its value is added to the map. The Dafny code contains
both implementation and specification which describes the desirable behaviour of the method:

Add1
any k , v
where

@grd1 : k ran (keys)
then

@act1 : keys := seqPrepend (keys , k)
@act2 : va lue s := seqPrepend (values , v)

end

method Add(k : KEY, v : VALUE)
. . .
ensure s k ! in o ld (keys) ==> keys == [k] + old (keys)

&& va lue s == [v] + old (va lue s) ;
{

. . .
i f (k ! in keys){

keys := [k] + keys ;
va lue s := [v] + va lue s ;

}
. . .

}

There are some important issues about linking Event-B models with Dafny implementations which
should be addressed and are subject of this ongoing research. There is a considerable syntactic gap
between Event-B and Dafny. Event-B language with the help of the Theory Plug-in can be extended.
This very interesting feature can help to decrease the gap. Although this gives rise to the problem of
how translating newly defined operators to Dafny implementations where they dont have an equivalent
in Dafny. Another issue to be investigated is refinement. Answering the question that how and which
refinement levels should be used for generating specification and code is important. Is there a specific
guideline that should be followed during modelling phase in order to be able to generate specification and
code from the Event-B models is another valid question. After answering these questions and proposing
a comprehensive approach to generate Dafny specification and code from the models, developing a tool
for automation of the code generation process should be planned.

References

[1] K. R. M. Leino, “Dafny: An automatic program verifier for functional correctness,” in Logic for

Programming, Artificial Intelligence, and Reasoning. Springer, Conference Proceedings, pp. 348–
370.

[2] K. R. M. Leino and R. Monahan, “Dafny meets the verification benchmarks challenge,” pp. 112–126,
2010.

[3] M. Butler and I. Maamria, “Practical theory extension in event-b,” in Theories of Programming and

Formal Methods. Springer, 2013, pp. 67–81.

2

A Practical Approach for

Validation with Rodin Theories

Daniel Plagge and Michael Leuschel

Institut für Informatik, Universität Düsseldorf??

Universitätsstr. 1, D-40225 Düsseldorf
leuschel@cs.uni-duesseldorf.de

1 Introduction

The Theory plug-in [2] provides the ability to append new data types and oper-
ators to Event-B’s mathematical toolkit and extend Rodin’s proof rules.

E.g. the railway sector case study [1] makes use of the Theory plug-in to
define new mathematical operators and to facilitate the proofs.

We give a brief overview about how operators can be defined in a theory
and how ProB can deal with that kind of definition. In the next paragraphs,
we illustrate which ways the Theory plug-in o↵ers to define new data types
and operators and how ProB can handle them automatically. We also show the
limitations of the approach and how ProB will be able to handle problematic
operators by adding annotations manually.

2 Datatypes

The Theory plug-in allows to define recursive data types similar to algebraic
data types known from functional programming languages. We take the theory
of inductive lists as an example. A list is either empty or has a first element
connected to the rest of the list which again is a list. We have two constructors:

– nil returns the empty list.
– cons(head, tail) constructs the list which has head as first element followed

by the list tail.

Both constructors constitute a new operator in Event-B. The data type List

itself is also an operator which returns the set of all lists over a given set.
Lists makes also use of parametric polymorphism, another feature of theories.

E.g. for the list example, we have a generic type parameter T to allow lists for
arbitrary sets. The argument head of the operator cons is of type T , the argument
tail of type List(T).

The datatypes of the Theory plug-in are similar to the free types of the
Z notation. In a previous project [3] to support the Z notation by ProB we

?? Part of this research has been sponsored by the EU funded FP7 project 287563
(ADVANCE).

2

implemented an internal representation of free types. To re-use this e↵ort we
adapted the implementation in a way that it now also supports type parameters.
For animation the constructors and destructors are directly replaced by the
internal syntax constructs for free type constructors and destructors.

We can also encounter the situation that the type argument of a list is not
only a type. E.g. the expression List(1..9) specifies the set of lists whose elements
can be integers between 1 und 9. Internally we use comprehension sets like

List(1 .. 9) = { l · l 2 List(Z) ^
(l = cons(h, t)) h 2 1 .. 9 ^ t 2 List(1 .. 9)) }

Note that this definition is recursive, in the comprehension set, we refer again to
List(1 .. 9). We explain the consequences of this in more detail below in section
4.

3 Directly defined operators

Directly defined operators can directly expressed by another predicate or ex-
pression. Let’s take the theory of sequences as functions as an example. The set
of sequences over a set S is defined by the operator Seq(S). Seq(S) is directly
defined by the expression {n 7! f | n 2 N ^ f 2 1 .. n! S}. Thus, a sequence is
a pair whose first element is the size of the sequence, and its second element is
a total function which defines the elements at each position. Another example
for a directly defined operator is the operator seqIsEmpty(s) to check whether
a sequence s is empty. It is defined by the predicate prj1(s) = 0.

We can animate the behaviour of such an operator by just replacing the
operator with the given definition.

4 Recursively defined operators

Recursively defined operators are defined by a distinction of cases for an operator
argument. E.g. the size listSize(l) of an inductive list can be defined recursively
by:

listSize(nil) = 0
listSize(cons(head, tail)) = 1 + listSize(tail)

We implemented recursive operators by translating an application of the operator
to an B/Event-B function application with the particularity that the function is
recursively defined:

listSize(l) = { a, r · a = nil) r = 0 ^
a = cons(head, tail)) r = 1 + listSize(tail) }(l)

Please note that we omitted existential quantifiers in the formula above to make
it more readable. If an operator defines a predicate instead of an expression, we
replace the application of the operator by a membership test.

3

ProB’s support for recursive functions was limited to global functions that
depend not on a current state. But the theory plug-in’s datatypes can be used
in a more general style. E.g. the expression List(X) specifies a the set of lists
whose elements in the set X. But X can be a variable of the machine or even
a parameter of an operation. Thus we needed a more flexible way to specify
recursive functions. We introduced a new element recursive(I, S) in the internal
abstract syntax tree of ProB that allows us to define an identifier I that refers to
the specified comprehension set S. We had to adapt the internal datastructure
that represents symbolic sets such that the recursive definition is respected when
evaluating the set.

The translation of e 2 List(X) with X beeing a set of integers is now

e 2 recursive(L, { l · l 2 List(Z) ^
(l = cons(h, t)) h 2 X ^ t 2 L) }).

5 Axiomatic defined operators

The most flexible approach to define the behaviour of an operator is to specify
a set of axioms. We currently do not see any feasible way to provide generic
support for expressions that use these operators.

An example for an axiomatic definitions is the summation operator, whose
behaviour is defined by the following three axioms:

axm1 SUM(?) = 0
axm2 8t, x·t 2 T ^ x 2 Z) SUM({t 7! x}) = x

axm3 8s, t·s 2 T 7! Z ^ t 2 T 7! Z ^ s \ t = ?
)SUM(s [t) = SUM(s) + SUM(t)

6 Annotations for ProB

In the previous sections, we explained how operators can be animated by analysing
their definition. For practical purposes it can be more e↵ective to instruct ProB
directly how an operator should be handled. We give two examples where an
alternative to the standard behaviour described above is preferred.

6.1 Transitive closure

The closure operator which returns the transitive closure of a relation r is defined
by using a direct definition:

closure(r) = fix(�s·s 2 S $ S | r [(s; r))

The fixpoint operator fix is also defined by a direct definition

fix(f) = inter({s|f(s) ✓ s}).

4

In summary, the operator could theoretically be handled automatically by ProB
by replacing closure(r) with the expression

inter({s|r [(s; r) ✓ s}).

In practice, the number of possibilities for the quantified variable s in the expres-
sion becomes large very fast. If s is of type T $ T , s has 2|T |2 possible values.
For |T | = 4, ProB must check 65536 sets, for |T | = 5 already more than 33
million sets. Thus for most models, ProB is not capable of handling this direct
definition e↵ectively.

On the other hand, ProB has already built-in support for classical B’s closure1
operator. To handle the closure operator e↵ectively, we have added an annota-
tion to the operator definition that instructs ProB to use its built-in closure
support (rather than the direct definition). The built-in closure support has no
problem dealing with large relations, as the following transcript from ProB’s
REPL (Read-Eval-Print-Loop) shows:

>>> f=closure1(%x.(x:1..5000|x*x)) & f[{2}] = r

Existentially Quantified Predicate over f,r is TRUE

Solution:

f = #5077:{(1|->1),(2|->4),...,(4999|->24990001),(5000|->25000000)} &

r = {4,16,256,65536}

>>> g=closure1(%x.(x:1..5000000|x*x)) & g[{2}] = r

Existentially Quantified Predicate over f,r is TRUE

Solution:

g = closure1(%x.(x : (1 .. 5000000)|x * x)) &

r = {4,16,256,65536,4294967296}

>>> h=closure1(%x.(x:NATURAL|x/2)) & h[{2**40}] = r

Existentially Quantified Predicate over h,r is TRUE

Solution:

h = closure1(%x.(x : NATURAL|x / 2)) &

r = {0,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,

65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,

33554432,67108864,134217728,268435456,536870912,1073741824,

2147483648,4294967296,8589934592,17179869184,34359738368,

68719476736,137438953472,274877906944,549755813888}

The first expression shows that the transitive closure f of a 5000 element
relation can be computed quickly (in about 50 ms). The last two expressions
show that, for large or infinite relations, ProB reverts to computing the closure
lazily on demand. The computation is instantaneous (10 ms or less).

6.2 Sum and Product

The sum operator as described above cannot be animated by ProB without addi-
tional information because axiomatic definitions are not supported. By explicitly

5

instructing ProB we can compute the sum operator by using the classical B sum
operator ⌃:

SUM(s) = (⌃t, x·t 7! x 2 s|x)

Currently, ProB supports a theory with the sum operator together with a
product operator (Fig. 1). We have added an annotation that instructs ProB to
use its built-in support for sum and product.

6.3 Implementation of the Annotation Mechanism

ProB checks if there exists a file with the name ⌧theory name�.ptm in the
same directory of the theory and reads its content. A first version only allows
tags that show ProB that this is an operator with an alternative implementation.
E.g. “SUM is the summation operator”.

We examine upcoming theories to check whether a more flexible approach is
beneficial. E.g. the file could contain instructions how the value of an operator
can be computed e↵ectively. We currently do not see a need to provide this
feature for the theories known to us.

Fig. 1. Screenshot of an animation using the theory of sum and product

6

7 Theorems in Theories

A theory might also contain arbitrary theorems. They are usually provided to
facilitate proofs. ProB completely ignores the theorems because it is currently
not our goal to check the correctness of the theory but to animate the models
that use it.

In future, it could be interesting to provide support for checking theories,
too. This would be especially helpful for users who define their own theories.

8 Pretty printing

Currently we support the operators above by replacing an occurence of an op-
erator directly in the syntax tree by its definition.

One drawback of this approach is that it is not obvious anymore what the
original expression in the syntax tree was. This aspect is usually not so important
as long the expressions are evaluated in ProB, but it might irritate the user
when we present parts of the specification to him. To make the pretty-printed
expressions more readable, we add annotations for the pretty-printer. Instead
of printing the e.g. comprehension set defining a recursive function, the original
expression will be shown.

Fig. 2. Screenshot of a pretty-print showing the internal representation

The current implementation of this approach still has some rough edges.
Figure 2 shows a screeshot of ProB where the invariant of an animated model
shown. We can see an expression mk iNAT(x) where mk iNAT is an operator
defined in a theory of natural numbers. Internally, the operator call is a function
application with x as argument and a recursive comprehension set as function.
The code that allows the user to analyse expressions currently ignores the an-
notations for the pretty-printer and shows both the recursive comprehension set
and x as sub-expressions. Thus we can see the internal representation:

{x, opresult 4 · (x 2 Z ^ opresult 4 2 iNAT)
((x = 0) opresult 4 = iZero)^
(x > 0) opresult 4 = iSucc(recursive 5(x� 1)))) }

7

This expression is not a valid Event-B expression because the definition of the
recursive identifier recursive 5 is not visible to the user. Internally it is denotes
the comprehension set.

9 Currently supported standard theories

The developers of the Theory plug-in contributed a project with a set of theories.
These are candidates for standard theories when the next version of the plug-in
will be released.

All operators defined in these standard theories are now supported by
ProB:

– “Sum and Product” defines operators to compute the sum or product of
integer sets. It is fully supported by specific tagged operators as explained
above (6.2).

– “Binary Tree” defines a new polymorphic data type to represent binary trees
and operators on these. The structure is very similar to the “List” theory. It
uses recursively defined operators, all operators are supported.

– “Bool Ops” defines operators on Boolean values (AND, OR, NOT). It uses
direct operator definitions, all operators are supported.

– “Fix Point” uses a direct operator definition, is theoretically supported but
usually to complex to animate.

– “List” defines a polymorphic datatype and operators on lists. The operators
are all recursively defined, all operators are supported.

– “Main” contains no operators, just theorems and proof rules which is not
relevant for animation.

– “Seq” is a theory over sequences. All operators are defined by direct defini-
tions and are supported (see 3).

– “closure” is a theory which defines an operator that yields the transitive
closure of a relation. It supported by a specific tagged operator (see 6.1).

– “Natural” is a theory of natural numbers where

There is some demand within the Advance project to support a theory of real
numbers. (This would allow to express certain models in Event-B rather than
requiring co-simulation with continuous models.) This would, however, require
considerable implementation e↵ort to extend the ProB kernel for real numbers
and the associated operators.

References

1. J. Colley. ADVANCE Deliverable D1.2, Proof of Concept Application in Railway
Domain. Technical report, 2012.

2. I. Maamria, M. Butler, A. Edmunds, and A. Rezazadeh. On an Extensible Rule-
based Prover for Event-B. In ABZ2010, February 2010.

3. D. Plagge and M. Leuschel. Validating Z Specifications using the ProB Animator
and Model Checker. In J. Davies and J. Gibbons, editors, Integrated Formal Meth-

ods, volume 4591 of Lecture Notes in Computer Science, pages 480–500. Springer-
Verlag, 2007.

Toolbox for penetration testing

based on Rodin and ProB

Aymerick Savary1,2, Marc Frappier1, and Jean-Louis Lanet2

1
University of Sherbrooke

2
University of Limoges

Penetration testing is used to find security weaknesses. These tests can be obtained using
specification mutation and model-based testing. In our research, we propose to use Rodin and
ProB to generate these penetration tests. The Vulnerability Tests Generator (VTG) [2] is the
implementation of our methodology. Its input is a Rodin project representing the accepted
behaviour of a SUT (System Under Test). Abstract penetration tests are produced and they
verify the rejection by SUT of rejectable behaviours (w.r.t. to the specification). This is achieved
by negating some parts of a guard or axioms in the original specification.

The first version of VTG [1] permitted to discover security failures on some smart cards.
However, its architecture made it di�cult to adapt to methodology improvements. The new
version 2.0 is based on components architecture. It makes it easier to add, remove or improve
components.

The VTG is a generic program that be used to test arbitrary systems. In addition to the
VTG, a program for generating initial models and another one for generating concrete tests
from abstract tests are required. These programs are specific to a given system. Figure 1 shows
the major steps of our methodology and they will be described in the next sections.

Initial
Model

Generator

Vulnerability
Tests

Generator

Concrete
Tests

Generator

Rodin
project

Concrete
test
suite

Fig. 1. Toolbox groups

We have used this methodology to generate vulnerability tests for the Java Card byte code
verifier (JCBCV). JCBCV is responsible for verifying an applet wrt to the static constraints
described in the Java Card virtual machine specification. Verification is split in two processes:
structure verification and type verification. The structure verification will be represented by
Event-B contexts and type verification by Event-B machines.

1 Initial Model Generator

Multiple transformations are made on the input Rodin project. It is necessary to keep a copy
before processing. The CloneRodinProject plugin duplicates a Rodin project.

An event has a guard, itself composed of parts. We distinguish two types of them, those
used for penetration testing and those not used. The plug-in GuardConcatenator concatenates
used parts into a single one, and not tested parts into another one. Thus, after concatenation,
each event has a guard consisting of only two parts: one used for penetration testing and one
not used.

For the structure verification process, we use a model composed of three contexts: structure,
constraints and values. The CAP2Rodin plugin provides the value context by compiling a CAP
file (Converted APplet), which is an optimized version of a Java Card Class file. All these steps
are illustrated in Figure 2.

Clone
Rodin
Project

Rodin
project

Rodin
project'

GuardConcatenator

CAP2RodinCAP
Rodin
project''

Rodin
project''

Fig. 2. Initial Model Generation plugins

2 Vulnerability Tests Generator

VTG is split into two main parts, ModelDerivator and AbstractTestsGenerator, which corre-
spond respectively to specification mutation and model-based testing. The model derivation is
also divided into two steps: FormulaNegator and ModelNegator.

For the FormulaNegator plugin, we have reused the grammar provided by Rodin. This
grammar is based on the API TOM and can easily be integrated into a Java program. The
formulas to negate are axioms and guards. To apply our rules of negation to a formula, we have
implemented a TOM analyzer and a Java rewriter class. To save mutations, we have extended
the Rodin database and its viewers.

The mutant contexts are obtained by replacing each axiom by one of its negations. The
number of mutated axioms per mutant context is a parameter set by the user, according to
his/her requirement. In the mutant machines, the guard of the Event Under Test (EUT) is
replaced by its mutation. Conservation of the original event, the EUT action or the number of
possible executions of the EUT, are also parameters. These transformations are performed by
ModelNegator plugin.

For the generation of test suites, the AbstractTestsGenerator plugin uses the model checker
ProB. For contexts, we generate a set of values to satisfy the constraints. For the machines, we
generate traces that reach the EUT, i.e. preambles of the tests. The implementation of our tests
generator is based on the command line interface of ProB. It is therefore di�cult to precisely
define our test criteria and the information we want to extract. To better control this process,
it would be interesting to use the ProB API. All these steps are illustrated in Figure 3.

Rodin
project

ModelDerivator

Formula
Negator

Model
Negator

Abstract
Tests

Generator

Abstract
test
suite

Fig. 3. Vulnerability Tests Generator plugins

3 Concrete Tests Generator

The concretization of abstract tests is currently based on a prototype. The Rodin2CAP plugin
will be helpful to transform abstract tests into CAP file format. These tests will be easily sent
to a smart card in order to verify it’s resistance against attacks.

4 Conclusion

The Rodin platform allows us to implement our methodology and apply it to real cases. The
new architecture makes our tools more generic and therefore applicable to various problems.

References

1. A. Savary, J.-L Lanet, M. Frappier, T. Razafindralambo, J.D.: VTG - Vulnerability Test Generator, a Plug-in

for Rodin. Workshop Deploy 2012 (2012)

2. Savary, A., Frappier, M., Lanet, J.: Detecting Vulnerabilities in Java-Card Bytecode Verifiers Using Model-

Based Testing. Integrated Formal Methods (2013)

2

iUML-B Statemachines

New Features and Usage Examples

Colin Snook

University of Southampton
cfs@ecs.soton.ac.uk

iUML-B is an integrated form of the classical UML-B graphical front-end for
Event-B[1] . iUML-B consists of a collection of diagrammatic modelling notations
and tools, which can be used to augment Event-B models. Currently a state-
machine modelling plug-in has been released and a class diagram plug-in is under
development. iUML-B is based on the generic Diagram Extensions framework for
Event-B, which is in turn based on the Event-B EMF Extensions and Event-B
EMF frameworks[2]. iUML-B was initially developed within the Deploy project1

and is now being continued under the Advance project2.

A new version of the iUML-B State-machines plug-in has recently been re-
leased. The new version introduces additional diagrammatic notations in re-
sponse to user-driven modelling experiences. It provides significant other en-
hancements including more flexible options for generating Event-B. In this talk,
we will illustrate both the previous and the new enhanced features of the iUML-
B State-machine tool via a series of small abstract examples that use a variety
of modelling styles. The material developed for this talk will form a new user
manual for the iUML-B State-machines which will thereafter be available on
the Event-B wiki and via the Rodin handbook. The new features that will be
covered are briefly summarised below:

Transitions may own event features

Transitions may now have the same kinds of children as events (i.e. parame-
ters, witnesses, guards and actions). Hence it is no longer necessary to edit the
events of a machine directly. This reduces the amount of switching between edi-
tors. If several events are elaborated by a transition, any parameters, witnesses,
guards or actions of the transition will automatically be replicated into each
elaborated event.

Junctions for compound transitions

Junctions allow compound transitions to be formed that have a disjunctive
source (i.e. the transition is enabled when in any one of several source states). To
avoid conditional actions, only guards may be attached to transition segments
that target a junction. Several transitions may also exit a junction so that the
same guard disjunction is contributed to each outgoing transition. (c.f. UML:
http://www.omg.org/spec/UML/2.4.1/)

1 DEPLOY: EU Project IP-214158, www.deploy-project.eu
2 ADVANCE: EU Project IP-287563, www.advance-ict.eu

Forks and Joins for entering/leaving parallel nested state-machines

When entering or leaving a state with several parallel nested state-machines,
it is necessary to indicate the target or source states, respectively, in the nested
state-machines. A fork-join pseudo-state is now available to help specify this.
(c.f. UML: http:// www.omg.org/ spec/UML/2.4.1/).

Multiple instances of State-machines

In classical UML-B, classes could own state machines so that there were
many instances which could be in di↵erent states at any time. The new version
now provides a way to lift state-machines to a set of instances by specifying an
INSTANCES set for the state-machine. When the new iUML-B class diagram
plug-in is released, placing a state-machine inside a class will cause this property
to be configured to the class instances. However, the INSTANCES property can
also be used independently of class diagrams in order to provide state-machine
lifting.

State-machine elaboration of data representation

The previous version always generated a new enumeration for every state-
machine. Sometimes it is more convenient to have several state-machines with
the same type or to utilise an existing enumeration for type. A special case of
this is a 2-state state-machine that is most naturally represented as a single
Boolean value. The new version allows a state-machine to be linked to existing
variables instead of generating a new one. (The variables type must correspond
to an enumeration provided by the state-machine’s states). This approach also
allows a state-machine to be split into several overlaid diagrams, for example, to
segregate some kinds of transitions.

Improvements to State-machine Animation

The state-machine animation has been updated to support these new features
as well as having an important enhancement of its own. When an state-machine
is animated, any other state-machines in the same model that are currently
opened for editing are also linked to the same animation. If a BMotionStudio
visualisation is open for the same machine, it too is animated in the same ani-
mation. This allows BMotionStudio visualisations and multiple state-machines
to be simultaneously animated for validation.

References

1. Snook, C., Butler, M.: UML-B and Event-B: an integration of languages and
tools. In: The IASTED International Conference on Software Engineering - SE2008.
(February 2008)

2. Savicks, V., Snook, C.: A Framework for Diagrammatic Modelling Extensions in
Rodin. In: Rodin Workshop 2012, Fontainbleau. (2012)

3. Snook, C.: Modelling Control Process and Control Mode with Synchronising Or-
thogonal Statemachines. In: B2011, Limerick. (2011)

EB2RC: A Rodin plug-in for visualising Event-B

models and code generation

A tool development presentation

Zheng Cheng2, Dominique Méry1, and Rosemary Monahan2

1 LORIA, Université de Lorraine, Campus Scientifique, BP 70239, 54506
Vandœuvre-lès-Nancy, France

2 Computer Science Department, National University of Ireland Maynooth, Ireland.

We present EB2RC, a plug-in for the Rodin platform, that reads in an Event-B

[1] project and uses the control framework introduced during its refinement to gen-
erate both a graphical representation of the executable algorithm, and a recursive
algorithm3. The transformations involved in generating the executable code and the
proof of their correctness are presented in [3]. These are (a) the transformation from
an Event-B specification into a concrete recursive algorithm and (b) the transfor-
mation from the recursive algorithm into its equivalent iterative version.

Our plug-in is written in Java and targets the Rodin platform (v2.7), interacting
with the Rodin API to generate the recursive algorithm corresponding to the input.
This recursive algorithm is used to generate LaTeX, text and graph representations
which help the user understand the algorithm (see Figure 1).

Fig. 1: Overview of EB2RC Plugin

The first step in using EB2RC to translate an Event-B model into its graphical
representation and a corresponding recursive algorithm, is to read in the Event-B

model and a user-defined configuration file. For reasons of e�ciency, EB2RC stores
this information in a data structure which we refer to as bEventObject. To assist
the generation of a recursive implementation from the Event B model, a textual
representation of the algorithm is constructed via a pretty-print-procedure which we
implemented in Java. The generated algorithm has a C# like syntax that can easily
be translated to the language for the target platform langauge.

3 We acknowledge the Irish Research Council and Campus France for the joint funding of
this research collaboration via the Ulysses scheme 2013.

To produce the graphical representation, the EB2RC tool automatically formats
the information in the bEventObject data structure into input for the Dot graph
visualisation tool of GraphViz 4, drawing a circle to present each label, and a directed
edge between two circular nodes to indicate that an event occurs. The guards of
each event label the arrows, and the actions of the event are indicated in the text of
the rectangular node belonging to each arrow. This graphical representation of the
algorithm, as in Fig 2, supports a clearer understanding of the algorithm, and is a
prerequisite for modularizing complex algorithms.

Fig. 2: Visualized Representation of the Binary Search Algorithm

Our work builds on a method for code generation that is detailed in [2, ?]. In this
tool develoment presentation we will decribe how our tool generates its outputs: a
graphical representation of the models algorithm and a concrete recursive implemen-
tation in C# like code. We will also illustrate the e↵ect of our technique through case
studies and their analysis.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge Uni-
versity Press, 2010.

2. Dominique Méry. A simple refinement-based method for constructing algorithms. ACM

SIGCSE Bulletin, 41(2):51–59, 2009-06.
3. Dominique Méry and Rosemary Monahan. Transforming event b models into verified

c# implementations. In Alexei Lisitsa and Andrei P. Nemytykh, editors, VPT@CAV,
volume 16 of EPiC Series, pages 57–73. EasyChair, 2013.

4 http://www.graphviz.org/

Composition Operators for Event-B.
CO4EB Rodin plugin.

Idir Ait-Sadoune* and Yamine Ait-Ameur**

SUPELEC, Gif-Sur-Yvette, France*
idir.aitsadoune@supelec.fr

IRIT - ENSEEIHT, Toulouse, France**
yamine@enseeiht.fr

1 The proposed approach
Our approach of modelling composition operations of a process algebra in Event-
B follows the formal modelling rules formally defined in [1]. We propose to
encode these operators in Event-B, using an explicit variant to encode the events
order and successive refinements. Each process algebra expression defined by the
rule A

0

::= A
1

OP A
2

is modelled by two Event-B models. The first one is
associated with the left hand side of the rule and contains only one event evtA0

associated with the action A
0

. The second model is a refinement of the first one
and corresponds to the right hand side of this rule. Two new events evtA1

and
evtA2

associated with the actions A
1

and A
2

are added in the refinement. These
events carry the semantics of the OP operator and of the right hand side of the
expression. The firing order of the events is determined by introducing an explicit
decreasing variant. The new events are fired and when they are completed, the
refined event evtA0

is fired.

2 The Event-B formalisation
To illustrate our approach, we show the Event-B templates associated to the
expression A

0

::= A
1

|| A
2

(concurrency operator) with A
2

defined by the ex-
pression A

2

::= A
21

>> A
22

(sequence operator) (A
0

::= A
1

|| (A
21

>> A
22

)).
The associated semantics is interleaving, imposes to describe all the possible
behaviours (all the possible traces). It uses the interleaving of Event-B events.

Three events evtA2

, evtA21

and evtA22

formalizing the three actions A
2

,
A

21

and A
22

are defined in the Event-B Machine formalizing the sequence op-
erator (figure 1). This Machine uses a variant expressed by the varSeq variable
initialized to the value 2. The evtA21

and evtA22

events are declared ”conver-
gent” and once the guard of A

21

is evaluated to ”true” (varSeq = 2), the event
is fired and the variant is decreased. The evtA22

event can be fired after evtA21

event, when its guard is evaluated to true (varSeq = 1), and the value of varSeq
is set to 0. The evtA2

event ends the sequence operation of A
21

and A
22

actions
(varSeq = 0).

The same Machine contains two others events evtA0

and evtA1

corresponding
to the two actions A

0

and A
1

. This part of this Event-B machine formalises the
concurrency operator and uses a variant expressed by the sum of varPar

1

and
varPar

2

variables that are both initialized to the value 1. evtA1

and evtA2

events are declared ”convergent”. Thank to the variant and if the three events
evtA1

, evtA21

and evtA22

have their guard evaluated to ”true”, they are fired

2 CO4EB: Composition Operators for Event-B.

in parallel in an interleaving manner. The animation of this example with ProB
animator [2] gives the following traces evtA1

>> evtA21

>> evtA22

, evtA21

>>
evtA1

>> evtA22

and evtA21

>> evtA22

>> evtA1

. As the evtA2

event ends
the sequence of the events evtA21

and evtA22

, the evtA0

event ends the parallel
operation of evtA1

and evtA2

events.

MACHINE M1
VARIABLES

var1 varPar1 varPar2 varSeq
INVARIANTS

inv1 : I (var1)
inv2 : varPar1 2 {0 , 1} ^ varPar2 2 {0 , 1}
inv3 : varSeq 2 {0 , 1 , 2}

VARIANT
varPar1 + varPar2 + varSeq

EVENTS
Initialisation

begin
act1 : Init(var1)
act2 : varPar1 , varPar2 , varSeq := 1 , 1 , 2

end
Event evtA0 b=

when
grd1 : G0

(var1)
grd2 : varPar1 = 0
grd3 : varPar2 = 0

then
act : A0

(w)

end

Event evtA1 b=
Status convergent

when
grd1 : G1 (var1)
grd2 : varPar1 = 1

then
act1 : A1 (var1)
act2 : varPar1 :=

varPar1 � 1
end

Event evtA2 b=
Status convergent

when
grd1 : G2 (var1)
grd2 : varPar2 = 1
grd3 : varSeq = 0

then
act1 : A2 (var1)
act2 : varPar2 :=

varPar2 � 1
end

Event evtA21 b=
Status convergent

when
grd1 : G21 (var1)
grd2 : varSeq = 2
grd3 : varPar2 = 1

then
act1 : A21 (var1)
act2 : varSeq :=

varSeq � 1
end

Event evtA22 b=
Status convergent

when
grd1 : G22 (var1)
grd2 : varSeq = 1
grd3 : varPar2 = 1

then
act1 : A22 (var1)
act2 : varSeq :=

varSeq � 1
end

Fig. 1. Encoding concurrency and sequence operators in Event-B

3 The CO4EB plugin
The Event-B based approach, proposed for formal modelling and verification
systems [1], defines di↵erent transformation rules from a composition operator
definition to an Event-B model. We have automated this transformation process
in the CO4EB plugin1. This plugin builds a RODIN project from process algebra
expression of the form A

0

::= A
1

OP A
2

following the approach defined in the
previous section. A video showing how the CO4EB plugin can be used is available
in this link2.

References

1. Ait-Ameur, Y., Baron, M., Kamel, N., Mota, J.M.: Encoding a process algebra
using the Event B method. International Journal on Software Tools for Technology
Transfer (STTT) 11(Number 3), 239–253 (2009)

2. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Formal Methods, In-
ternational Symposium of Formal Methods Europe (FME’03). LNCS, vol. 2805, pp.
855–874 (2003)

1 CO4EB update site: http://idir.aitsadoune.free.fr/tools/updatesite
2 CO4EB video: http://www.youtube.com/watch?v=oQwsu8CQFOw

CODA Update: New Features for 2014

Neil Evans1, Helen Marshall1, James Sharp1,
Michael Butler2, John Colley2, Colin Snook2

1 AWE plc, Aldermaston, RG7 4PR, UK
2 The University of Southampton, SO17 1BJ, UK

CODA is a framework for designing embedded systems that comprise software and digital
electronic hardware that has been developed through a collaboration between AWE plc and
the University of Southampton. A CODA model comprises components that interact via
communication over connectors, and is provided through a graphical environment plug-in
(Component Diagrams) within the Rodin tool. The CODA meta-model is the foundation on
which the graphical environment plug-in is built: it represents the various CODA constructs in
the tool-set and facilitates the translation of CODA models to Event-B. The CODA tooling and
methodology are currently being exercised on an example at AWE and this work is
highlighting further possible enhancements to the framework.

Extensive use is made of the underlying Rodin engine, and several of the existing Rodin plug-
ins support the (also evolving) CODA methodology – in particular:

• iUML-B state machines are used to model behaviour of individual CODA
components, and state machine animation is used to validate models;

• ProB is used to animate and model check the translated Event-B to give confidence
that the system will not deadlock and that specified properties will not be violated;

• the Proof Obligation Generator (POG) and Rodin’s theorem proving capabilities are
used to demonstrate correctness of translated Event-B models.

At the previous Rodin Workshop, in 2013, several updates and features of CODA were
unveiled; these included the following:

• CODA operations (PortWake, SelfWake, External, Method, and Transition).
Operations represent the different methods of communication between components
within a system and can be introduced through the Component Diagrams palette, and
morphed (elaborated) into another operation through the Component Diagrams
properties pane. Rules have been implemented in the plug-in to translate these
different CODA operations to Event-B.

• A validation check prior to translation to Event-B. This ensures that a valid design is
provided within the Component Diagrams view, e.g., ensuring that the data type of
information passed over a connector adheres to the type specified within the
connector definition.

• CODA Simulator. This is essentially an additional ProB view which is “aware” of the
components in the model and hence enables the user to simulate the design (cf. a
hardware simulator). It allocates and displays the events performed to the relevant
components and provides features such as defining the number of time increments
with which to advance the simulation. It also enables the external recording (to file) of
the results (trace) of a simulation run.

Since the last Rodin Workshop, CODA has been exercised and further developed through its
application at AWE. These further developments are summarised below:

• SelfWake queues and refinement – Through exercising the CODA tool-set it was
realised that the implementation of the SelfWake queue was too restrictive with
respect to the underpinning Event-B concept of refinement, specifying a discrete point
in time when the wake action should occur. It was deemed appropriate to alter this
definition of the SelfWake queue to enable event refinement to take place through the
introduction of a time window instead of a discrete point in time. By specifying a time
window (through a minimum and maximum value) in which the component could
respond at the abstract level, it is now possible to refine Skip or wake events and
hence introduce a finer granularity of timed behaviour within the model (as long as
the time window is only ever reduced).

• Colour selection for CODA components – A recent piece of work evaluating the
use of CODA to assess the safety theme of a system has demonstrated the need to
visually distinguish different collections of CODA components. Moreover, it has given
a suitable basis on which ideas relating to nested components can be formed; a
feature that is currently under review and may become realised in the near future.

• Co-Design Intermediary Notation (CODIN) – At the previous Rodin Workshop it

was highlighted that a move towards a Hardware Description Language (HDL) output,
more specifically the Very High Speed Integrated Circuit (VHSIC) HDL (VHDL), was
the intended next step for CODA. In order to follow refinement through its natural
course, from the ‘bird’s eye view’ of a system, through to a concrete model, and down
to the implementation level, the semantics of the target language must be introduced,
and the model verified with regards to these additional semantics. Only once the
system behaviour and language semantics are verified within the Rodin environment
can the target language representation be generated and the resultant HDL
description be guaranteed valid. The integration of CODIN within CODA provides this
crucial link, allowing the transition from a concrete to an implementation ready design.
This is possible within the Component Diagrams view through the morphing of either
an Asynchronous or Synchronous state machine to a Process state machine, which
results in the addition of HDL semantics, through code generation to Event-B, to a
concrete CODA design. These HDL semantics currently support a direct translation to
either VHDL or SystemC.

Current Application – In addition to these developments to the CODA tool-set, both Event-B
refinement and the CODA methodology have been used in the assessment of a sizeable
industrial problem, providing refinement from a ‘true’ abstraction through to a CODA, and then
a CODIN level, to provide a cycle-accurate HDL design. It is felt that this investigation has
pushed Rodin’s capabilities, exploiting the newly introduced SMT solvers to aid in the
automated verification of some 1,127 proofs of a total 1,140 proofs over twelve refinement
layers. This percentage (98%) of automatically discharged proofs (through some setting
adjustments and re-styling of invariants) is considered an impressive result.

CODA’s development is set to continue for the next two years with a focus on simulation and
validation of CODA based models. These formal models will be used to add further rigour to
the current industry development processes. These enhancements have been identified as
follows:

• CODIN to VHDL – the final stage necessary to enable a translation from an Event-B
CODIN model to a VHDL representation. Such a VHDL model may then be used
within a verification domain, providing a formally correct definition of the functional
behaviour of a hardware component(s) upon which verification may be made with a
manually produced VHDL implementation of the same component(s).

• Refinement Refactoring – removing the onus on the developer of tracing property
changes within the Component Diagrams view of CODA, and thus removing human
induced errors.

• Transition to ProB2 for the CODA Simulator – enabling CODA to leverage the new
model checking features within ProB2, and benefit from the flexibility of the Groovy
scripting for the verification of a CODA model’s responsiveness.

• Generation of suitable VHDL test bench stimuli and PSL assertions – to drive the
verification of manually implemented VHDL designs against the automatically
generated, formally verified, VHDL model within EDA tools such as Mentor Graphics’
Questa.

As alluded to, the application of CODA to AWE projects is becoming more prominent, and the
CODA methodology will continue to be developed as the tool-set is applied to the technical
challenges provided within these AWE projects, and the enhancements (both present and
planned) exploited. The Southampton group continue to provide great insights into what is
possible in modelling functional and safety requirements. These insights (based on System
Theoretic Process Analysis) and the experiences of the users of the tool-set continue to drive
the development of both the CODA methodology and its associated tool-set.

Rodin Multi-Simulation Plug-in

Vitaly Savicks, Michael Butler, John Colley
University of Southampton

Jens Bendisposto
Heinrich-Heine-Universität Düsseldorf

In this work we introduce a plug-in extension to Rodin that enables co-
simulation of Event-B models and continuous-time models in the Functional
Mock-up Unit (FMU) format. The plug-in aims at overcoming the lack
of continuous time modelling capabilities in the current version of Event-B
by leveraging the Functional Mock-up Interface (FMI) standard for tool-
independent physical model exchange and co-simulation [1]. That makes it
possible to carry out a standard formal development of discrete-event subsys-
tems in Event-B and compose them for the simulation-based analysis with
continuous-time models of environment, which can be designed in any FMI-
compliant modelling tool1.

The simulation semantics is loosely based on the concept of a simula-
tion master algorithm from the FMI standard that splits the simulation
time interval [t

start

, t
stop

] into discrete communication steps [tc
i

, tc
i+1], where

0 < i  N, tc
i

 tc
i+1, tc0 = t

start

, tc
N

= t
stop

, at which the data exchange
between the co-simulated interacting components is performed. The simula-
tion of individual component is performed in steps of the size hc

i

= tc
i+1�tc

i

.
Our implementation of the master algorithm is generic, i.e. allows any num-
ber and composition configuration of the simulated components, and uses a
fixed size communication step hc

i

. The simulation of FMU components is
performed by the master via the FMI interface, while the Event-B compo-
nents are executed using an experimental version of the ProB animator [2].

The Rodin Multi-Simulation plug-in provides a component diagram editor
(see Figure 1) that allows to import and configure Event-B machines and

1
According to https://www.fmi-standard.org, over 35 tools have some support of

the FMI standard.

1

FMUs as components with input and output ports, which can be composed
on the diagram via connectors. The simulation is performed on the diagram
model, and the values of variables can be either plotted in real-time using a
special Display component, or analysed later from a generated .csv file.

Figure 1: RMS component diagram in Rodin (co-simulates an Event-B ma-
chine m0 and FMUs LandingGear.Cockpit and LandingGear.Plant)

As a work in progress we consider implementing an adaptive (variable
step size) master algorithm, optimising tool’s performance and validating it
against the existing simulation-based approaches on a real-scale case study.

Acknowledgement: This work is funded by the FP7 ADVANCE Project
(http://www.advance-ict.eu).

References

[1] Torsten Blochwitz, M Otter, M Arnold, C Bausch, C Clauß, H Elmqvist,
A Junghanns, J Mauss, M Monteiro, T Neidhold, et al. The Functional
Mockup Interface for tool independent exchange of simulation models. In
Modelica’2011 Conference, March, pages 20–22, 2011.

[2] Michael Leuschel and Michael Butler. ProB: an automated analysis
toolset for the B method. International Journal on Software Tools for

Technology Transfer, 10(2):185–203, 2008.

2

Code Generation – Tool Developments:

Andy Edmunds
University of Southampton

ae2@ecs.soton.ac.uk

[1] Industrial Experience.
We collaborated on an industry-led assessment of Rodin/Event-B, and Tasking
Event-B for code generation, with Thales Deutschland. The feasibility study
involved modelling controller software, and the operating environment, of a
simple fan controller. The aim of the study was to evaluate the complete
Event-B methodology, from abstract speci0cation to Java implementation.
During the project various tool enhancements were completed. A list of
'signi0cant' (Code Generation) feature requests was submitted, from
suggestions made by Thales' engineers. They consider these features
necessary for the tool to be useful in a production environment. The list could
be used to guide future research and development.

[2] Java Translation Improvements.
The tool was updated (Sept 2013) largely driven by the activities of [1].
Improvements were made to the translators for generating Java code, including
bug-0xes, and enhancements aimed at improving usability. Such as setting up
the project with a Java Nature, and generating code in the current project. We
added automatic :attening of invariants, and events; and automatic inference
of typing, and parameter direction annotations. We also added environment
interfaces, which simpli0es the process of specifying interactions with driver
software in the environment. The enhancements mean that a developer has to
perform fewer steps, to generate code from an appropriately constructed
model. The generated code can often be run in the same project as a Java
application, with very little further con0guration.

[3] C Translation: for Co-simulation with FMI.
The Functional Mock-up Interface (FMI) is a framework supporting co-simulation
of distinct Functional Mock-up Units (FMUs). Recent work allows Event- B
models to be co-simulated with FMUs, using ProB2. Existing code generation for
Event-B supports generation of embedded controller implementations. We
adapted the existing Event-B code generators, to produce code for use in FMUs.
Controller code, generated from Tasking Event-B, can be compiled and
packaged in an FMU. This allows generated controller code to be tested with a
continuous model of the environment (in ProB2). Alternatively, it can be
imported into a 3rd party simulator.

This work has been funded by the FP7 ADVANCE Project (http://www.advance-ict.eu).

[4] Templates for Con0guration and re-use.
This work arose from a feature request in [1]. The template-driven approach is
a partial solution for tailoring code to be deployed on a speci0c target platform.
The templates contain ‘boilerplate’ code, which would otherwise need to be
hard-coded in the translator. We developed a tool to merge the code templates
with code generated from the formal model.

We developed a lightweight approach, where tags (i.e. tagged mark-up) can be
placed in the source templates. A 'generator' interface can be implemented to
generate code, or additional information, when a tag is encountered. The
template-processors may be of use to other plug-in developers, when wishing
to merge an annotated text 0le with some automatically generated output.

[5] Theories for implementable Sets and Functions.
Code generation involving Event-B sets and functions has largely been avoided,
in our work, until now. We have recently been looking at this issue, and have
created Theories for implementable sets and functions, using polymorphic type
parameters to describe implementations involving generic (parametrised) sets
and maps.

For sets, we introduce operators for typing, and initialisation. We support a
number of set operations (such as union/subtraction/intersection) and
introduce new operators to facilitate code generation. A translation, to Java, of
the new implementable type and operators is also de0ned in the theory. This is
supported by a Java implementation of a set, which is intended to be a
re0nement of the model.

Functions are similar in that we introduce operators for typing, and
initialisation, and a Java translation. We also add update and lookup operators.
The translation to Java is backed by an implementation using a HashMap to
store the domain and range values, as key-value pairs.

Smart Grids: Multi-Simulation, An Application

Brett Bicknell, Karim Kanso, Jose Reis
Critical Software Technologies, UK

Abstract:

Smart grids are an emergent technology that have the potential to provide
substantial benefits to both energy producers and consumers, and have a
typical system-of-systems architecture. In recent years, with the addition of
micro-generation, electric vehicles and second life batteries, the traditional
top-down power management infrastructure within power distribution networks
has proven to be ineffectual in responding to these new technologies,
resulting in the inability to keep supplied voltages within required limits. With
the increased uptake of new technology in the future, this will only become
worse.

Within the FP7 ADVANCE project, Critical Software Technologies have been
exploring and applying the Rodin toolset within the smart grid domain, with
particular focus on the stable control of the low voltage network. Verifying the
control systems for the low voltage network is an interesting case study for the
Rodin toolset as it exercises both its formal capabilities as well as its
simulation capabilities (including multi-simulation). The formal framework of
Rodin and Event-B is used to develop and verify models of the control
devices, as well as the communications network and sensor units. The
simulation used is twofold, first, animation is used to validate the formal
models, and secondly, multi-simulation is applied to validate the composed
system within a realistic continuous environment. The formal models are
defined using Event-B and state machines through the UML-B tool, and the
continuous models are defined using the modelling language Modelica. This
talk discusses the modelling strategy including both the Event-B and Modelica
models, with a special focus on our experiences and results from using the
multi-simulation environment for complex systems engineering.

This work was funded by the FP7 ADVANCE Project (ICT-287563),
www.advance-ict.eu.
!

Reflections on Formal Methods, Requirements

and Software Engineering

Does Software Engineering exist?

Ken Robinson

School of Computer Science & Engineering

UNSW Australia

ABZ2014 Workshop

This talk probably di↵ers from other workshop talks in that it is concerned
with the use of Event-B in the development of software engineers and raises
the question “what is software engineering, especially in contrast to computer
science?”. As an academic in the School of Computer Science and Engineering
at UNSW I gained experience in the teaching of formal methods commencing
with the work of Dijkstra and continuing with Z, Morgan’s refinement calculus
and Abrial and Sorensen’s B Method using the B-Toolkit. The B-Toolkit was
used for quite elaborate software projects(commencing around 2000) and Thai
Son Huang developed a framework that provided a means of adding an interface
to the execution of the models. On the way I also became interested in the dis-
cipline of Software Engineering. It is quite alarming that the concept and name
of software engineering, identified at the 1968 NATO conference has progressed
so little from that time.

Event-B was a significant game-changer and an important contribution to
software engineering, a contribution that seems to be frequently unappreciated
within computer science. I often hear the statement that formal methods should
be used for software development, and while not disagreeing with the intention,
it is not enough. An important part of any engineering design and implemen-
tation exercise is requirements analysis. If the implementation does not satisfy
the requirements then the project has failed. Something like 80% of large soft-
ware projects fail due to requirements failures. With many formal methods,
requirements verification is very di�cult and here the contrast of Event-B with
the B-method and many other formal methods is dramatic. Unfortunately re-
quirements verification cannot be achieved completely formally. At some stage
the verification of whether a formal action satisfies an informal requirement is
an informal judgement. The simple structure of an Event-B event: parameters,
guards, actions and invariants makes such a determination much easier and
more reliable.

In the Software Engineering program at UNSW, software engineering stu-
dents take a series of workshops in which they progress from a study of re-
quirements in which they devise a set of requirements for a given project to
the next workshop in which they concurrently undertake a course in Event-B
and and map their project requirements into Event-B. They spend considerable

1

time informally verifying their formal statements of the requirements and for-
mally verifying the Event-B model. In this part of the exercise they also use
animation to informally verify scenarios. In the third and final workshop the
students manually translate the Event-B model into an appropriate program-
ming language, for example Scala. This has been done informally but it has
been my intention to develop decompositions to formally model the structure
of the implementation.

The above workshops and Event-B lecture were managed by myself and a
colleague, Peter Ho. In 2012 Peter and I ceased teaching and subsequently the
workshops have dropped Event-B and the current formal content consists of
what I would describe as computer science formal methods for programming.

The reason for raising the above at this workshop is to hear about the expe-
riences and achievements of others in the distinction between what I would call
software engineering formal methods and computer science formal methods.

I am also interested in getting an idea of how many universities are using
Event-B in undergraduate software engineering programs. I get the impres-
sion that the answer might be not many. I believe that UNSW was the only
university in Australia to be doing so and now it also has dropped it.

The following issues concerned with the understanding of software engineer-
ing will be raised at the workshop.

• Programming models versus engineering models.

• Is Software Engineering engineering?

• Are there di↵erences between “conventional” engineering and software en-
gineering, apart from, or perhaps because of, the implementation using
software?

2

Applying and Extending the Event Refinement

Structure Approach to Workflow Modelling

Dana Dghaym

1
, Michael Butler

2
, and Asieh Salehi Fathabadi

3

University of Southampton, UK

dd4g12

1
,mjb

2
,asf08r

3
@ecs.soton.ac.uk

The Event Refinement Structure approach (ERS) is a diagrammatic notation

that aims at structuring the Event-B refinement. Its tree like structure, inspired

by Jackson Structure Diagrams (JSD), explicitly represents the relationship be-

tween the event at the abstract level and the corresponding concrete events,

which decompose its atomicity during refinement. ERS supports the complex

refinement in Event-B by defining di↵erent refinement patterns. These patterns

are divided into four categories:

1. Sequencing Pattern

2. Logical Constructor Patterns: and, or, xor

3. Loop Pattern

4. Replicator Pattern: all, some, one

In addition to structuring the Event-B refinement, ERS explicitly describes

the ordering of events, addressing another Event-B weakness where control flow

is implicitly modelled via variables and event guards.

We focus on applying the ERS approach in modelling workflows, using the fire

dispatch case study. While modelling the fire dispatch workflow, we encountered

some restrictions with the current ERS patterns. We try to overcome these

limitations by suggesting some extensions to the existing ERS constructs and

defining a new construct to support unbounded replication.

We are planning to integrate our suggested ERS extenstions into the atom-

icity decomposition plug-in, a tool supporting the ERS approach in Rodin. The

atomicity decomposition plug-in provides an automatic generation of part of the

Event-B model related to the ordering of events and their relationships at di↵er-

ent refinement levels. The ERS language is defined using the Eclipse Modelling

Framework (EMF) meta-model, and then transformed into an Event-B EMF

meta-model. The transformation is done using the Epsilon Transformation Lan-

guage (ETL), which is a rule based model to model transformation language.

Introducing Pre-conditioned Operations in
Event-B

(by means of Guarded Events)

Jean-Raymond Abrial

Event-B is based on events restricted by some guards. In this presentation,

we explain how we can transform some guarded events into pre-conditioned

operations.

We remind the reader that in a refinement, guards and pre-conditions behave

in different ways: guards are strengthen while pre-conditions are weakened. Their

operational behaviors are also different. A guarded event possibly occurs (can be

observed) when its guard holds, whereas a pre-conditioned operation is executed

when it is called and when its pre-condition holds. A guarded event with a false

guard just wait (no execution), whereas a pre-conditioned operation called with

a false pre-condition results in a crash.

The usage of pre-conditioned operations is important when we are asked to

develop and prove some programs dealing with procedures and procedure calls

(operations and operation calls).

An operation P is specified by means of a pre-condition (defined on the formal

parameters of P) and an action (its post-condition), not by means of a guard

and an action like events are. Moreover, in case of a call to an operation P, the

actual pre-condition has to be proved. The actual pre-condition is the predicate

obtained by substituting the actual parameters of the call to occurrences of

formal parameters that are present in the operation pre-condition.

In conclusion, and in view of these differences between the two, it seems com-

pletely impossible to define operations by means of events. This is the challenge

we solve in this presentation. Notice that we do not want to modify Event-B in

any way. We want to define a design pattern to obtain our desired goal.

The outcome of this allows one to establish a connection between Event-B

and Classical-B. After explaining the theoretical aspect of this question, some

interesting examples illustrates this approach.

Program Development in Event-B
with Proof Outlines

Stefan Hallerstede

8 April 2014

Abstract

Proof outlines are a notation that combines programs with proof information.
They consist of assertions that specify properties that hold at di↵erent program
locations during the execution of a program. We discuss how Event-B can be
used for program development using proof outlines to shape the program as it
is constructed by refinement. The method is based on the program develop-
ment approach of Event-B using anticipated events. Commands have the shape
“ant • evt” where evt is the “current transition” and ant are the “anticipated
transitions” that may occur beforehand. The control structures for the program
notation are unconventional. In particular, loop and conditional statement are
mixed “LOOP body OR branch END”. This is a consequence of the using the
refinement method of Event-B. However, the common control structures like loops
and conditional can be recovered by simple transformations.

An additional proof rule is needed to introduce fresh intermediate states. This
is based on the sequential composition rule of Morgan’s refinement calculus.

1

Responsiveness and Event-B

James Sharp1, John Colley2, Helen Marshall1,
Neil Evans1, Michael Butler2, Colin Snook2

1 AWE plc, Aldermaston, RG7 4PR, UK
2 The University of Southampton, SO17 1BJ, UK

Within the digital hardware domain it is becoming apparent that constrained random testing is
no longer considered adequate for high-consequence systems. In order to provide the
required level of confidence there is now a need to evaluate total path coverage (the
exploration of every path through the system). However, for this total path coverage, the
question should be asked: “Which of the total paths within a design actually pertain to the
expected behaviour; and which are unwanted; and more specifically, does the design always
respond in the way it should?” Event-B provides a partial solution to this question, providing
reasoning about safety and functional requirements, but to our knowledge it does not provide
a clear solution on assessing a system’s ability to always respond in the correct and expected
way to external stimuli. We call this property responsiveness. We therefore suggest an initial
approach towards developing a suitable methodology for determining and assessing the
responsiveness of a formal design by utilising the tools already available within Event-B, and
by reasoning about a system with respect to its expected total possible and impossible paths.

During an application of Event-B to a high-integrity component by AWE and the University of
Southampton, we discovered a need to reason about the responsiveness of a system. In our
initial work we adopted a somewhat laborious approach to verifying total path coverage and,
in the process, developed a method with which to reason about responsiveness. Our
approach requires a specification upon which a composite technique, both manual and
automatic, can be performed to determine the possible and impossible paths through the
system, and provide confidence in the identified paths.

Alongside the development of the formal model within Event-B, two diagrammatic
specifications captured two key refinement levels: the initial abstract level and the concrete
level. In our case, the abstract diagrammatic specification identified a total of 12 paths
through the system all of which were possible, and the concrete diagrammatic specification
identified a total of 9067 paths (both possible and impossible). These specifications of the
system behaviour formed the basis of our approach to responsiveness verification.

By using the abstract specification to partition the concrete specification into more
manageable sections, the possible paths of the system can be determined through manual
identification; that is, each sequence of events considered to be valid was walked through and
recorded. From this manual identification, rules regarding the system became apparent,
succinctly describing the bad behaviour that should not occur as a result of particular events,
and thus capturing the groupings of the impossible paths. These manually identified possible
paths, along with the rules regarding impossible paths formed the first element of our
composite approach.

The second element of our composite approach utilised the concrete level specification and
the MALvern Program Analysis Suite (MALPAS) to identify the total paths of the system, both
the possible and impossible. The rules identified within the manual approach were then
applied to the MALPAS output (using common Linux tools within a bash script) to remove the
impossible paths. From the resultant possible paths of both approaches, a comparison was
made between the results. As a consequence of this comparison stage, further rules
identifying impossible paths for the automated approach were introduced until a point was
reached where: the set of possible paths derived automatically was almost equivalent to the
set of possible paths derived manually. Those paths available within the automatically derived
set that were not amongst those manually identified, were evaluated and determined to be
those omitted (through human error) in the manually derived possible paths. Thus the
automatically deduced possible paths could be considered valid and used for assessing the
responsiveness of the system.

This composite approach was deemed necessary because the automated technique relied on
the identification of rules to reduce the number of paths to those that were possible, whilst the
manual approach provided only verified possible paths and therefore was likely to identify a
subset of the possible paths (human error meant that possible paths were missed). Indeed,
through our experience it was discovered that from a total 9067 paths within the system, 304
possible paths were manually identified, and after several iterations of comparison between
the automated and manually determined possible paths, a resultant 320 possible paths were
identified as providing complete path coverage.

From these paths, model checking (using ProB) can be performed to verify the
responsiveness of the formal model. Whilst laborious, walking through these possible paths
within ProB provides the essential arguments about responsiveness that are needed to
validate the high-integrity systems required in our industrial setting. It is suggested that a
suitable plug-in, utilising ProB2 through a Groovy script, could be developed to automate the
verification of the existence of these possible paths to reduce the manual effort in the future.

These possible paths not only inform and validate the formal model, but in our work will form
the basis of the stimuli needed to drive VHDL test benches to ensure complete coverage of
the possible paths is achieved in the verification of the implemented design.

The rules used to discover the possible paths of the system in the automated approach lend
themselves to LTL and PSL definitions that can be used as assertions, against the formal
model and the implemented design respectively.

Whilst people may argue that the derivation of the rules required to remove the impossible
paths, and that therefore result in the complete set of possible paths, could have been
performed without the need to determine the possible paths of the system, our experience
has been that their manual identification provided the means to reason about the output from
the automated approach. Without this manual step, there would be no means with which to
guide or sanity check the number and style of the automatically produced possible paths; in
essence each approach for determining the possible paths taken validated the other.

In other formal techniques, e.g. Communicating Sequential Processes (CSP), there exist
approaches that evaluate a formal model and ensure not only that ‘good behaviour cannot be
refused’ (Failures refinement), but also verify properties of responsiveness (the CSP Revivals
refinement model). However, even within these other formal techniques, it is not always clear
whether the definition used to validate and reason about the responsiveness of a formal
model is the correct one, or if it allows additional unwanted behaviour. Hence, it is essential,
even in approaches such as CSP’s Revivals model, that an independent, manual evaluation
is performed to validate the specification used in the automatic verification of a design.

From this recent work we have concluded that in developing a high-integrity system safety is
only half the battle. When developing high-integrity systems responsiveness is just as
important; the system must be verified to perform as expected, ‘to always do something
good’, as well as ensure ‘nothing bad happens’. More significantly, we believe that the
verification of responsiveness within a formal model must always include some manual effort
in determining the valid paths, since without completely exploring the specification and
understanding the full behaviour of the system invalid paths can easily be identified as
possible.

In summary, it is clear to us that there is a definite need to formally evaluate a high-
consequence system’s responsiveness to its environment. We have proposed an initial
approach to capturing and assessing the expected responsiveness of a system, but it is by no
means a polished solution. A more efficient, tool focused solution in Rodin would enhance
Event-B to become a ‘de-facto’ language for providing the confidence that is essential for
qualifying high-integrity systems.

Towards Patterns for Statemachine Modelling

under Timing Constraints

Gintautas Sulskus

⇤
, Michael Poppleton

†
and Abdolbaghi Rezazadeh

‡

University of Southampton

This paper is inspired by our work on the case study of a dual chamber car-
diac pacemaker. The pacemaker is a demanding real-time embedded application
that interacts with a non-deterministic environment (the heart) via sensors and
actuators.

Our implementation involves state based sequencing and timing aspects. We
use the Rodin tool to formally model the pacemaker in Event-B. State based se-
quencing with concurrency elements is generated with iUML [2] – a UML-aided
visual formal modelling tool. The part of pacemaker’s core functionality – a
number of interdependent cyclic timing constraints – is implemented following
Sarshogh’s patterns for discrete timing [1]. We aim to improve modelling tech-
niques, identify the applicability and constraints of used approaches, provide
workarounds for identified limitations and suggest new prototype patterns.

Sarshogh defines three types of timing constraints: deadline (Figure 1) –
response event must occur within time t of trigger event occurring; delay (Figure
2) – response event cannot occur within time t of trigger event occurring; expiry
(Figure 3) – response event cannot occur after time t of trigger event occurring.

Figure 1: Deadline Figure 2: Delay

Figure 3: Expiry

In this paper we provide a prototype pattern solution, inspired by limitations
found in the pacemaker case study. We extend Sarshogh’s work by introducing
a redefined timing notation (1), a concept of interval and interrupt event.

We define interval as timing entity that has timing constraints as its prop-
erties and can be manipulated by events.

Interval({T1...Ti

}, {R1...Rj

}, {I1...Ik}, {TC1(t1)[,TC2(t2)]}) (1)

The interval is manipulated by three kinds of events: one of a set of trigger
events T 2 {T

i

...T
i

} initiates the interval; a response event R 2 {R
i

...R
j

}
terminates the interval; an interrupt event I 2 {I

i

...I
i

} interrupts the interval.

⇤
gs6g10@ecs.soton.ac.uk

†
mrp@ecs.soton.ac.uk

‡
ra3@ecs.soton.ac.uk

1

The interval must have either one or two timing constraints TC
x

(t
x

), where
t is the duration of the associated timing constraint and “[]” denotes optional
TC.

As a simple example, consider a Lower Rate Interval (2). LRI is the longest
time interval that is allowed between consecutive heart contractions. The inter-
val is triggered by either intrinsic or artificial electrical stimulus {sense, pace}.
It must be responded by the pacemaker stimulus {pace} within Deadline(t2)
time, but no earlier than Delay(t1). If intrinsic heart activity {sense} occurs,
interval is interrupted.

LRI ({sense, pace}, {pace}, {sense}, {Delay(t1),Deadline(t2)}) (2)

In contrast to the original Sarshogh’s patterns, our prototype is independent
of event sequencing, therefore can be applied on any Event-B model. The pro-
totype pattern has a modular design: a standard template code of T , R and I

events is instantiated and injected into the target Event-B model as invariants,
guards and actions to implement the timing constraints. The template is unaf-
fected by target Event-B model contents. Supported event overloading enables
event to serve as T and R or I for multiple intervals at the same time. Proof
obligations are automatically discharged with the help of external provers.

Our future plan is to verify that our prototype supports Sarshogh’s refine-
ment and decomposition patterns; consider variable timing constraint duration
t ; perform more case studies; develop a plugin for Event-B code generation (Fig-
ure 4); add visualisation support for iUML plug-in and investigate – Event-B
timing to code generation.

Figure 4: The workflow of the plug-in to generate Event-B timing code

Bibliography

[1] Mohammad Reza Sarshogh. Extending Event-B with Discrete Timing Prop-

erties. PhD thesis, 2013.

[2] Colin Snook and Michael Butler. UML-B: Formal modelling and design aided
by UML. ACM Transactions on Software Engineering and Methodology,
15(1):92–122, January 2006.

2

From Untimed Specification to Cycle-Accurate

Implementation - Cyber-Physical System Model

Refinement with Event-B

John Colley Michael Butler

Electronics and Computer Science, University of Southampton

{j.l.colley, mjb}@ecs.soton.ac.uk

April 9, 2014

Abstract
Cyber-physical systems (CPS) are integrations of computing and phys-

ical mechanisms engineered to provide physical services including trans-
portation, energy distribution, manufacturing, medical care and manage-
ment of critical infrastructure. Such hybrid systems, although amenable to
Event-B formal proof, must also be verified in a mixed continuous/discrete
simulation environment such as that defined in the Functional Mock-up
Interface (FMI) Standard. A major challenge that CPS present to systems
modelling is that a well-developed notion of time needs to be introduced
[Lee and Seshia, 2011], and often this is necessary quite early in the model
refinement process. On the other hand, introducing a too detailed repre-
sentation of time at the abstract level can complicate and constrain the
model unnecessarily.

In this work, we present a methodical approach to timing in CPS
modelling with Event-B which allows the notions of synchronisation and
communication to be introduced in a lightweight manner at the higher
levels of abstraction to target specific timing issues and then subsequently
refined to the point that a concrete, synchronous, cycle-accurate model of
the system controller can be developed.

The approach presented is based on the Synchronous Calculus of Com-
municating Systems (SCCS), of which asynchronous systems can be con-
sidered a sub-class [Milner, 1983]. Although CPS can often be modelled
synchronously, this approach does not preclude the modelling of asyn-
chronous behaviour.

In the early stages of CPS specification refinement with Event-B, a
simple, untimed model of the system is usually appropriate. As refine-
ment proceeds and a component-based view of the system emerges, it
can be necessary to introduce the notion of synchronisation, especially
when modelling the safety aspects of the system. System Theoretic Pro-
cess Analysis (STPA) [Leveson, 2012] is a technique for Hazard Analysis
which can be applied at an early stage of CPS development. In an STPA-
based development of a CPS controller, the controller itself has a process

1

model of the system that it is controlling. Typically, the controller issues
commands on its outputs, waits and then checks the values on its inputs
against the internal process model to verify that the state of the process
that it is controlling is consistent with the state that the controller ex-
pects. If it is not consistent, the controller has detected a hazard and
can issue safe commands to mitigate that hazard. To describe this be-
haviour correctly, it is necessary to model the synchronisation between
the controller and its environment at the point that the controller waits.
In our approach, we only introduce su�cient synchronisation to e↵ect the
rendezvous between controller and environment.

As the CPS model is further refined and a more concrete component
view of the system emerges, it is necessary to ensure that the synchronisa-
tion and communication between multiple components is more precisely
modelled to prevent race conditions. The Event-B events associated with
a particular process Pn are encapsulated between an entry point event
PnEvaluate and a suspending event PnWait. At each synchronous tick of
the clock, this set of events is evaluated in turn for each process before
a tick event, Update, advances time. The inter-process communication of
data values is modelled in such a way that the new value is only available
at the next tick, thereby avoiding race. At this stage the tick is still just
an abstraction of time which can subsequently be refined to represent the
clock period of the controller. The behaviour of each process Pn between
PnEvaluate and PnWait can also be abstract and non-deterministic. How-
ever, with this synchronisation and communication mechanism in place it
is feasible to execute the abstract component models in a hybrid, contin-
uous/discrete co-simulation at an early stage of CPS development.

Further refinement of the CPS controller component process intro-
duces the ordering and determinism necessary for implementation, while
the components that model the controller environment can remain non-
deterministic to model potential hazard scenarios. At each stage of the
refinement, formal proof, model checking and simulation-based testing can
be used to verify the development. The final, concrete controller model
has a synchronous, cycle-accurate representation which can be mapped
directly to an implementation in a language such as VHDL, C, Bluespec
or Esterel.

This work is funded by the FP7 project ADVANCE(287563), Ad-
vanced Design and Verification Environment for Cyber-Physical System
Engineering (http://www.advance-ict.eu/).

References

Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to embedded

systems: A cyber-physical systems approach. Lee & Seshia, 2011.

N.G. Leveson. Engineering a safer world: Systems thinking applied to safety.

MIT Press (MA), 2012.

Robin Milner. Calculi for synchrony and asynchrony. Theoretical computer

science, 25(3):267–310, 1983.

2

Event-B for Safety Analysis of Critical Systems

Matthias Güdemann and Marielle Petit-Doche?

{matthias.gudemann, marielle.petit-doche}@systerel.fr
Systerel — Les portes de l’Arbois, bâtiment A — 1090, rue Descartes

13857 Aix-en-Provence CEDEX 3, France

1 Introduction

In safety-critical domains, it is of very high importance to (i) increase the safety
of a developed system and to (ii) provide convincing evidence to certification
authorities that adequate means to construct a safe system have been taken.

Empirical research showed that many, if not most, of the major errors already
originate from the system design phase and their early elimination therefore
would be much more cost-e↵ective [4]. The Event-B language [1] and its associated
modeling approach aim at achieving this by providing means to formally prove
abstract system-level models wrt. specifications.

For the moment however, despite some first approaches [3,2], formal meth-
ods are rarely involved on safety activities in the railway industry. We propose
to extend the use of Event-B to support such activities; we show how Event-
B supports safety analysis early in the development of critical systems, using
formally verified and validated models of formalized safety requirements. The
formal model provides strong feedback to the safety analysis about how safety is
ensured. We apply the proposed approach to the European Train Control System
(ETCS) within the context of the openETCS project.

2 Formal System Analysis with Event-B

Within safety activities, we propose first to construct a formal model of the
system which correctly implements the high-level functional specification, e.g.,
its intended observable behavior. This model is augmented with formalized safety
requirements, which are implemented in the model, traced in a requirements
management tool and their correctness is proven. Afterwards, we use model
simulation in order to validate the intended behavior of the system and of the risk
mitigation measures. The advantages of such a formal model is (i) a mathematical
reasoning associated to the safety analysis, (ii) an unambiguous model, which
can be simulated, (iii) a model that is reusable and easy to update according to
some maintenance process, (iv) a model that focuses on the analysis of the core
functionality and (v) a model which provides the formal properties to validate
on the vital software (via formal proof on the model or via functional test).

? This work was funded by the “Direction Générale de la compétitivité, de l’industrie et
des services” (DGCIS) (Grant No. 112930309) within the ITEA2 project openETCS.

Fig. 1: Event-B in Process for Safety analysis

Fig. 1 details the proposed process to support safety activities. The first
step on the left side describes preparatory work which is common to all design
activities. It represents the initial construction of a functional model whose
correctness is shown wrt. the functional requirements of the specification. The
right hand side details the necessary steps for safety activities.

The second step consists of taking the results from a preceding external, in-
formal safety analysis, in this case the failure mode and e↵ects analysis (FMEA),
and to make these results available to formal analysis. In general, these safety
requirements will be of di↵erent levels of abstraction. Low level requirements
often describe implementation details, e.g., redundant calculation chains or pro-
gramming diversity, which are not captured at the system level. In an analysis
based on Event-B, only system / high level requirements are applicable.

The third step consists of an iterative process. First, one formalizes the safety
requirements (often as invariants and guards, buts other methods are possible).
Then one tries to formally verify the safety properties on the system. If this is
successful, the functional system model already verifies the safety properties and
one can proceed. If the safety requirements do not hold, the model is adapted in
order to correctly integrate them. This is done by creating a refinement from the
functional system model and by using the feedback from the unsuccessful proof
attempts as insight. These insights represent potential non-safe system behavior
of the system and are important test cases for the later implementation phase.

The fourth step finally validates that the correct functioning of the system
is preserved even after the integration of the safety requirements. This consists
of animating the system using a model animation plug-in, and allows to analyze
the e↵ects of sequences of events. This facilitates the validation of the possibility
to execute the intended use cases of the model and the observation that safety
is ensured in the intended way. It is also possible to detect problems within the
safety requirements using this process. In this case, there is feedback from the
fourth step to the external safety analysis (not represented in Fig. 1).

3 Conclusion

Using the Event-B approach and the Rodin tool provides several benefits for
supporting safety activities:

– it constructs a strong link between the formalized specification and the formal
system model. The process of formalizing a specification helps to detect
ambiguously formulated requirements, and proving the specification wrt. a
functional system model provides insight into the completeness and coverage
of the specification. These aspects allow for important constructive feedback
which enhances the specification and eliminates errors already in early phases
of system development. Writing a formal model associated with a safety
analysis, allows to highlight the key elements of the system related to safety
and to elicit formal properties to enhance the safety analysis. These properties
can be directly reused during the design to validate the software, e.g., in the
case where the software is formally designed with the B method, by proving
them on the correct-by-construction model.

– Secondly, the possibility to simulate the formal model, and to observe its state
at each time-step allows for validation of correct implementation of the risk
mitigation of the safety requirements. This increases the confidence in the
arguments of the safety case which explain the identified hazard causes and
the intended risk mitigation techniques. As this is an important document
for the certification of safety-critical system, augmenting and strengthening
its arguments is therefore an important task in the development cycle of
critical systems.

– Thirdly, the integration of Rodin into the Eclipse platform provides col-
laboration possibilities with third party plug-ins. One example is the close
integration of the ProR requirements management tool, which allows to link
Event-B artifacts requirement documents in the standardized ReqIf format,
supporting transparent requirements tracing and interoperability with other
tools. Thus fully open-source tool support for the early stage of the system
safety analysis is available.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. 1st edn.
Cambridge University Press, New York, NY, USA (2010)

2. Prokhorova, Y., Troubitsyna, E.: Linking modelling in event-b with safety cases.
In: Proceedings of the 4th International Conference on Software Engineering for
Resilient Systems. SERENE’12, Berlin, Heidelberg, Springer-Verlag (2012) 47–62

3. Prokhorova, Y., Troubitsyna, E., Laibinis, L.: Supporting Formal Modelling in Event-
B with Safety Cases. In: Proceedings of the 4th Rodin User and Developer Workshop.
TUCS Lecture Notes (2013)

4. Westland, J.C.: The cost of errors in software development: Evidence from industry.
Journal of Systems and Software 62(1) (2002)

MODELLING OF SYSTEMS OF SYSTEMS
AN EVENT-B PERSPECTIVE OF A VDM PROJECT

STEFAN HALLERSTEDE AND KLAUS KRISTENSEN AND PETER GORM LARSEN

1. Introduction

A system of systems (SoS) is a system that is it self composed of systems,
called constituent systems. Modelling of systems of systems poses some notational
and methodological challenges on the modelling approach taken. In general, SoS
models need to take into account:

• stakeholders and confidentiality,
• distribution and communication,
• continual evolution,
• dynamicity and adaptation.

The di�culty of modelling SoS stems from having to address all of these together.
In the COMPASS project a combination of VDM [1] and CSP [3] called CML
[4] has been used as SoS modelling notation and an accompanying SoS modelling
methodology devised. A surprising result of the work is that in oder to deal with
the complexity introduced by the modelling challenges only a reduced subset of
VDM and CSP is used. This reduced subset appears to be easily transferable to
Event-B using a simple CSP-based communication mechanism.

The purpose of this paper is to show how the results we have attained can be
interpreted in Event-B and suggest modelling styles and extensions that would
make Event-B an SoS modelling notation.

Some of the results are rather suprising in that we had expected that most
problems would be amenable to “syntactic solutions”: with the right syntax and
expressive enough modelling notation all challenges can be met. However, this
turns out to be wrong. And the answer to why this is the case lies in the place
such models take in the life-cycle of large scale-engineering projects and the kinds
of collaborations involved stakeholders may engage in.

2. The Challenges and Our Solutions

Stakeholders and Confidentiality. At first it appears that di↵erent parts
of models could be supplied with information concerning stakeholder ownership
and confidentiality. As a result of such an annotated model di↵erent stakeholders
would be given di↵erent “views” of the model in some cases only getting very

Date: 8 April 2014.
1

MODELLING OF SYSTEMS OF SYSTEMS 2

abstract views. This approach that the stakeholders are willingly collaborating
to produce an SoS with a set of emerging behaviours reaching beyond behaviours
attainable by the constituent systems. However, in practice commercial interestes

get in the way of producing and sharing such models and there is no syntactical
cure for that. Each stakeholder will usually have their own model and maintain
information about stakeholders classifying them in categories such as “collabora-
tive” or “hostile”. Such information can be used to determine which emergent
behaviours can be achieved and which architecture can facilitate this. As a conse-
quence, the model will contain results of a market analysis and future projections.
It is unlikely that commercial enterprises will share such information even with
contractors. The models are useful in a very di↵erent way than what we expected.

Distribution and Communication. In order to model a distributed system it
would appear reasonable to modularise a model and let the modules communicate
by way of CSP channels. In practice, a decision has to be made either for a CSP
model containing a little VDM or a VDM model containing a little CSP. The
second alternative bears advantages, in particular, with respect to the two points
below dealing with evolution and dynamicity. The state-based model using VDM
and a little CSP is more flexible.

We also found that using CSP meant introducing many channels and having to
cope with a multitude of channels names and renamings. Even in rather small-
sized SoS models with only a few constituent systems this turned out to be a
problem to the level that understanding the model became di�cult.

Finally, an important insight is not to modularise and to introduce a dedicated
networking constituent system by means of which all other constituent systems
communicate. This has reduced the number of CSP channels to two. All con-
stituent systems are composed by interleaving and the result is synchronised with
the network over the two channels. Using many channels it can get quite intricate
to find the right combination of interleaving and synchronisation. Having only
one module that contains all constituent systems as abstractions of their state also
permits to represent the architecture of the SoS model with mathematical means:
it can be analysed and it can be modified from within the model itself. A side
e↵ect of the very limited use of CSP is that it can be used for a di↵erent purpose:
we can now introduce dedicated channels for model testing where CSP expressions
are used to specify expected behaviour that can be verified against the SoS model.

Continual Evolution. SoS evolve continually. Their development can never be
considered finished. Much of this takes place on the level of constituent systems.
As a consequence many basic assumptions that can be made in a closed system
about its components do not apply. On a low level constituent systems have some
di↵erences in the data-types and communication protocols they use. And we also

MODELLING OF SYSTEMS OF SYSTEMS 3

have to say which unexpected and unwanted behaviour can arise by connecting
them. This is sometimes referred to as negative emergent behaviour. On a higher
level one has to deal with varying services being o↵ered and requested. This makes
predicting or even verifying the actual behaviour of SoS di�cult. What one can
do is to analyse certain configurations of constituent systems that fulfil known
specifications and then derive information about on which level the SoS perform
on a scale such as: none, degraded, full. In general this scale will be finer and
more tree shaped. And more than one model needs to be maintained to deal with
new and changing constituent systems and their behaviour.

Dynamicity and Adaptation. When connecting many constituent systems us-
ing CSP channels it would appear “obvious” to declare CSP channels for all the
di↵erent constituent systems and protocol stages. However, in an SoS constituent
systems enter and leave the SoS continually. The approach relying heavily on CSP
channels deals well with static architectures but gets very complicated when deal-
ing with dynamic architectures. This is one of the reasons why the core model of
the SoS only contains two channels: one to send a message to a network and one
to receive from the network. Constituent have a number, their ID, in the SoS that
are maintained in a data structure representing the architecture. Numbers can be
easily generated and the data structure easily manipulated. Because there is only
one module this is not di�cult to realise.

3. Discussion

During the modelling of SoS there was a tendency to start with powerful con-
structs and subsequently to reduce them to a set of quite basic ones. A lot of the
modelling power that we thought was needed is not used in this way. It turns
out that for writing an SoS model we can live with VDM-SL, a subset of VDM,
very few CSP concepts and only two CSP channels. Only for model testing we
use some more CSP channels but still the same subset of CSP constructs. In the
VDM-SL parts preconditions are used in a pattern that corresponds just to guards
in Event-B. This is why we think that most of our work and results apply to
Event-B (with those concepts of CSP added).

We belive that the kind of model that we produced will also make the modelling
of faults easier. Problems such as message loss are easily incorporated into the
network constituent system and apply to communications in the SoS. Compared
to modifying many CSP expressions in many constituent systems the e↵ort is
negligible. Had we a sized-down concept of inheritance for VDM-SL we could also
use the well-established VDM approach to fault modelling [2].

Acknowledgement. This work is supported by EU Framework 7 Integrated
Project “Comprehensive Modelling for Advanced Systems of Systems” (COM-
PASS, Grant Agreement 287829).

For more information see http://www.compass-research.eu.

http://www.compass-research.eu

MODELLING OF SYSTEMS OF SYSTEMS 4

References

[1] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques

in Software Development. Cambridge University Press, The Edinburgh Building, Cambridge
CB2 2RU, UK, Second edition, 2009. ISBN 0-521-62348-0.

[2] Ken Pierce, John Fitzgerald, and Carl Gamble. Modelling faults and fault tolerance mech-
anisms in a paper pinch co- model. In Proceedings of the ERCIM/EWICS/Cyber-physical

Systems Workshop at SafeComp 2011, Naples, Italy (to appear). ERCIM, September 2011.
[3] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of Concurrency.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.
[4] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and S. Perry. Features

of CML: a Formal Modelling Language for Systems of Systems. In Proceedings of the 7th

International Conference on System of System Engineering. IEEE, July 2012.

