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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
FACULTY OF ENGINEERING AND THE ENVIRONMENT 

Institute of Sound and Vibration Research 

Thesis for the degree of Doctor of Philosophy 

THE EFFECTS OF CUBIC DAMPING ON VIBRATION ISOLATION 

 by Nuttarut Panananda 

Vibration isolators are often assumed to possess linear viscous damping which 
has well known consequences for their performance. However, damping may be 
designed to be or prove to be nonlinear. This study investigates the effect of cubic 
damping, as an example of damping nonlinearity, in a single degree of freedom (SDOF) 
vibration isolation system. The response behaviour due to two excitation types, namely 
harmonic and broadband excitations, was examined.  

For harmonic excitation, the Harmonic Balance Method (HBM) was applied to 
yield approximate closed form solutions and simplified analytical expressions implicitly 
show the influence of cubic damping for particular frequency regions. The HBM 
solutions were verified using direct numerical integration. The presence of cubic 
damping proves to be beneficial for the force excited case. It reduces response amplitude 
around the resonance frequency and has similar response to an undamped system in the 
isolation region. In contrast, for base excitation, the cubic damping is detrimental at high 
excitation frequencies as the base excitation and isolated mass move almost together. The 
effect becomes more pronounced for larger excitation amplitudes.  

The case of base excitation was then considered for broadband excitation. The 
responses using direct numerical integration were presented using power spectral 
densities. In contrast to harmonic excitation, the amplitude of the response does not 
appear to approach that of the input. Instead, a higher effective cubic damping results in a 
higher vibration level of the isolated mass at frequencies below the resonance frequency. 
It also does not reduce explicitly the response amplitude around the resonance frequency 
unlike the linear viscous damping. For a constant displacement amplitude random 
excitation, the excitation frequency bandwidth is found to be a significant factor in the 
level of effective cubic damping. A broader excitation bandwidth results in a higher level 
of cubic damping force. 

The theoretical and numerical results for both harmonic and broadband excitation 
were validated experimentally. The experimental investigation was performed using a 
SDOF base excited vibration isolation system possessing a simple velocity feedback 
control active damper to reproduce the nonlinear damping force. The predictions were 
shown to be in good agreement with measurements thereby verifying the effects of cubic 
damping on a SDOF system undergoing harmonic and broadband base excitation.   
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Chapter 1 Introduction 

 

1.1 Background and motivation 

 Vibration isolation is typically introduced into a mechanical system in order to 

reduce the severity of disturbance caused from vibration sources, for example, the 

application of an automotive vehicle suspension system or a machinery mounting.  

A simple model of the vibration isolation system is usually considered using a single 

degree of freedom (SDOF) system which consists of a rigid mass, linear viscous damper 

and a linear isolation stiffness as shown in figures 1.1 (a) and (b). Vibration can be 

either the transmission of any dynamic forces from a vibrating mass to a support 

structure, see figure 1.1 (a), or a motion from the vibrating support structure to the 

isolated mass, see figure 1.1 (b).  

 The stiffness and damping represent the physical isolation elements and are 

commonly both assumed to be massless and linear. However, the assumption of isolator 

linearity is limited, and in some instances the isolator might exhibit nonlinear 

characteristics. In some scenarios, the nonlinearity could be triggered by high excitation 

amplitudes, beyond which the linear assumption breaks down and the predictions 

obtained from the linear model are not valid.  

 Nonlinear characteristics of vibration isolation can be found in any practical 

isolation system. For example, the telescopic shock absorber applied in automotive 

vehicle suspensions has nonlinear force-velocity characteristic due to the fluid flow 

through the valves [1]. A rubber mounting is another example with a nonlinear 

characteristic which has practical application. It is identified to possess a nonlinear 

restoring force [2]. Therefore, the assumption of linear isolation system is not sufficient 

to get insight into the characteristic of many practical systems. 

 In addition, isolation performance can be indicated using transmissibility 

function. It represents the ratio of the amplitude between two quantities, i.e. the input 

and the response amplitude, as a function of excitation frequency. The two quantities 

can be either the ratio between the amplitudes of force-force, force-displacement or 

displacement-displacement, for example. The nonlinear systems are known to result in 
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significant differences between the force and motion transmissibility. This is unlike 

those for a linear isolation system for which force and motion transmissibility are 

identical. The transmissibility for the linear system can be obtained using various 

fundamental mathematical approaches, e.g. Laplace transform or Fourier transform.  

The amplitude of both force and motion transmissibility are well known to be related to 

the damping ratio. 

  Figure 1.1 (c) shows the transmissibility function for either the force or base 

excited linear isolation system which is simply given by 

 ( )
( ) ( )

2
1

2 22
1

1 2

1 2
rT

ζ

ζ

+ Ω
=

− Ω + Ω
  (1.1) 

where 1ζ  is a non-dimensional linear viscous damping ratio which is given by 

1
1 2

c
km

ζ = . Ω  is normalised excitation frequency, i.e. nω ωΩ =  with nω  the 

undamped natural frequency and given by n k mω = . 

 At the excitation frequencies well below the resonance frequency, 1Ω  shown 

by zone (i) in figure 1.1 (c), the system exhibits the so-called quasi-static response 

where the amplitude and phase of the output coincide with the input. It is seen in zone 

(ii), around the resonance frequency, 1Ω = , that greater values of damping ratio yield a 

reduction in the transmissibility amplitude around resonance as given by 

 
( )21

1

11
2rT
ζΩ=

= +   (1.2) 

 For the linear vibration isolation system, the amplitude of transmissibility at 

excitation frequency Ω  = 2 , shown by (iii) in figure 1.1 (c), equals unity. This 

frequency marks the beginning of the isolation region for the linear systems. The 

amplitudes of transmissibility in the isolation region, i.e. for excitation frequencies well 

above 2  in zone (iv), are seen to increase directly with the value of damping ratio as 

given by the following approximation 

 1
1

2
rT ζ

Ω
≈

Ω

  (1.3) 
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 For some aspects, the assumption of system nonlinearity can reduce the 

aforementioned disadvantages of the linear damping. Therefore it is essential to 

introduce the nonlinear characteristics within the theoretical model, in order to 

understand their effects. Understanding the effect of the nonlinearity could potentially 

help to improve the isolation performance or avoid any negative effect on the isolation 

performance.  

 There have been a variety of nonlinear characteristics previously examined and 

proposed. The nonlinearities might or might not be identifiable or approximated using a 

simple or a specific mathematical function. Also the method to get the exact analytical 

solutions is not generally available. For example, the method of superposition or the 

application of the frequency domain approaches applied for the linear system are not 

valid for nonlinear systems. In recent years, new methods for solving nonlinear 

problems have been proposed. Relevant previous studies and publications on the 

nonlinear vibration isolation are summarised and reviewed in the following sections. 

However, this study focuses particularly on a power law damping characteristic. This is 

one of the most common nonlinear damping characteristics considered and was chosen 

here as an example nonlinear isolator. Also one particular analytical method, Harmonic 

Balance Method (HBM), was chosen to solve nonlinear problems throughout this thesis. 

1.2 Literature review 

 The topic of nonlinear vibration isolation has received wide interest in recent 

years. The isolator can sometimes be considered to possess either nonlinear stiffness, 

nonlinear damping or both. Some studies are reviewed and summarised here. 

1.2.1 A passive nonlinear stiffness vibration isolator 

 A passive nonlinear stiffness of a vibration isolator can produce undesirable 

effects. For example, the well-known jump phenomenon can be observed for the 

harmonically forced Duffing oscillator, as seen in the response curves of the normalised 

displacement of the mass for a force excited isolation system with cubic stiffness shown 

in figure 1.2 [3]. The non-dimensional form for the Duffing’s equation under harmonic 

excitation is given by 
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 ( )3
12 cosy y y yζ α τ′′ ′+ + + = Ω   (1.4) 

where 1ζ  is the linear viscous damping ratio. α  is a non-dimensional cubic stiffness 

and is given by 2
3 0 1k x kα = , with 1k  and 3k  the linear and cubic stiffness coefficients 

and 0x  the amplitude of the isolated mass, defined as 0 1x F k=  for 3k  = 0 and ω  = 0. 

y′′ , y′  and y  are functions of non-dimensional time, τ , representing normalised 

acceleration, velocity and displacement of the system mass respectively. 

 The jump phenomenon is a result of having a cubic stiffness and is known to 

occur around the resonance frequency where multiple solutions are obtained. Such a 

phenomenon can feature jump up or jump down depending on whether excitation 

frequency is decreasing or increasing, illustrated using the normalized displacement 

response curve in figure 1.2. The resulting response curve bends towards either the low 

or high excitation frequency depending on whether a softening or hardening cubic 

stiffness is applied. This phenomenon is also dependent upon the excitation amplitude. 

A critical forcing amplitude and the jump frequencies can be determined as reported in 

[4] where the method of multiple scales was applied. The basic theory, solutions and 

description of the Duffing oscillator can be found in many text books, e.g. [5-7].  

 The Duffing oscillator can be examined in different ways. For example, 

Worden [8] approximated the frequency response curves of the Duffing oscillator using 

the HBM. The resulting response curves were compared to the exact solutions provided 

in the study of Friswell and Penny [9]. The occurrence of jump phenomena in [8] and 

[9] were found to be in very good agreement. Peng et al. [10] solved the Duffing 

oscillator response using the HBM. The result was compared to that obtained using the 

method of nonlinear output frequency response functions. The performance of these two 

approaches was examined by employing the observed difference in the jump 

phenomena. Carrella et al. [11] included the cubic stiffness in the SDOF force excited 

isolation model which was considered as possessing a high-static-low-dynamic-

stiffness. Analytical expressions for the maximum amplitude and jump frequencies were 

obtained from their study. 

 In automotive applications, the linear plus cubic stiffness model has also been of 

interest. For example, Verros and Natsiavas [12] applied the Duffing type nonlinearity 

to a tyre model, for which an enhanced accuracy of the model was produced. Litak and 
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Borowiec [13] also applied the linear plus hardening cubic stiffness to a suspension 

system of a SDOF quarter-car model to investigate chaotic response.  

 Apart from nonlinear cubic stiffness, Klein [14] and Kirk [15] introduced the 

tangent elasticity characteristic as an alternative nonlinear stiffness for which the force-

deflection characteristic is given by 

 ( ) 12 tan
2

k d xF x
d

π
π

 =  
 

  ; d x d− < <   (1.5) 

where 1k  is the initial spring rate and d  is the maximum deflection obtainable with 

infinite force. Figure 1.3 shows the comparison of the force-deflection characteristic 

between the cubic hardening and the elasticity stiffness. The force-deflection for the 

linear stiffness is also plotted as for comparison. The theoretical deflection obtained 

from a cubic hardening spring can increase indefinitely with force. In reality, the 

deflection of a spring cannot increase or decrease beyond a certain value. Therefore the 

tangent stiffness was introduced to present a physical limitation of the spring deflection, 

shown by the vertical lines at d−  and d  in figure 1.3. 

 However, nonlinear stiffness has not been considered here and the focus is on 

nonlinear damping. Therefore the assumption of linear isolator stiffness has been 

applied throughout this study. It should be very useful for future work to include other 

nonlinearities once the effects of nonlinear damping have been determined and 

understood.  

1.2.2 A passive nonlinear damping vibration isolator 

 A nonlinear damping characteristic can be introduced to an isolation model in 

many ways. For example, in references [1] and [16], the damping characteristic in the 

application of an automotive suspension was modelled using piecewise linear damping,. 

The damping force-velocity characteristic of the piecewise linear damping is unequal 

between the bounce and rebound strokes. Such a damping characteristic was also 

mentioned in the studies of Wallaschek [17] and Surace et al. [18]. The asymmetric 

force-velocity characteristic was realised in practice using different valve sizes for these 

two strokes.  
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 The application of asymmetric damping in an automotive vehicle suspension in 

the study of Rajalingham et al. [19] showed that, under harmonic base excitation, the 

isolated mass oscillates about a new mean value, which shifts the equilibrium position 

towards the stroke with lower damping. Natsiavas and Verros [20] included Coulomb 

friction in addition to the piecewise linear damping model. There appeared a 

discontinuity in the characteristic diagram at the end of each stroke where the velocity 

across the damper equals zero. The response for such a damping characteristic under 

harmonic excitation was found to exhibit a so-called stick-slip phenomenon.  

 The damping component can also be characterised using a polynomial power 

expansion in terms of the velocity. It is known as power law damping or velocity-nth 

power, i.e. ( ) 1

0

Q
p

d p
p

f x c x x −

=

= ∑

    where pc  is the damping coefficient for the power law 

damping with exponent p . The force and velocity diagrams for p = 0 to 5 are shown 

individually in figure 1.4. The absolute amplitude of velocity, x , is introduced to 

ensure that the direction of the damping force opposes the motion when p is an even 

value (for p > 0). The damping force velocity characteristic for this damping type is 

anti-symmetric. As such, the damping force for the bounce and rebound strokes are 

equal. 

 The damping becomes Coulomb friction when p = Q = 0, blue line in figure1.4, 

and only the one term is included in the series. Coulomb friction is one of the common 

nonlinear damping characteristics found in mechanical systems. The force generated 

from the kinetic or sliding friction is a constant amplitude, independent of the relative 

velocity but in the opposite direction to the velocity. Its magnitude is dependent upon 

the friction coefficient and the normal force. One well known effect of Coulomb friction 

is the stick-slip behaviour as mentioned previously. The slip motion is considered when 

the relative velocity is not equal to zero. It happens when the sum of the inertia, stiffness 

and external force is sufficient to overcome the static friction force. Otherwise, stick or 

zero relative motion between two surfaces is considered.  

 Levitan [21] considered a support-excited isolation system for aircraft-installed 

equipment. The damping considered comprised linear viscous damping and Coulomb 

friction. The author assumed that no stick behaviour occurred for steady-state 
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oscillations due to harmonic excitation. It was apparent that the transmissibility 

amplitude around the resonance frequency could be reduced by increasing the friction. 

 The presence of Coulomb friction for base excitation was also reported by 

Schlesinger [22]. The Coulomb damper was the only damping characteristic present in 

the model. Two damper mounting configurations were considered, i.e. rigidly and 

elastically mounted. The author concluded that the amplitude of the resonance peak in 

the transmissibility at the break-out frequency, the frequency where slipping occurs, 

was controlled directly by the level of friction. The optimum level of friction could be 

determined for different values of the intermediate stiffness. 

 Crede and Ruzicka [23] provided a comparison of the transmissibility for base 

excitation for four different damping characteristics. The transmissibility with Coulomb 

friction showed an infinitely high amplitude at the resonance frequency. However, it 

showed that Coulomb friction worked well at high frequencies as the displacement 

transmissibility decreased inversely with the excitation frequency squared. 

 There are also many studies which have considered a combination of nonlinear 

damping in a model in order to improve the predicted results. For example, 

Wallaschek [17] and Surace et al. [18] applied Coulomb friction plus linear and 

quadratic damping to the model of an automotive shock absorber, i.e. the combination 

of 0p = , 1p =  and 2p =  respectively. However, some of the applied nonlinear 

damping characteristics were not very accurate compared to experimental results. The 

characteristics of a real damper exhibit an asymmetric force, whereas the polynomial 

form characteristic does not provide this in general. Despite this fact, a nonlinear 

polynomial characteristic for the damping force is still acceptable for study into the 

effect of nonlinear damping in some instances.  

 Ravindra and Mallik [24] examined the performance of a nonlinear vibration 

isolator subjected to both harmonic force and base excitation. The isolator model 

included both a nonlinear stiffness and nonlinear damping. The stiffness restoring force 

was considered separately for two different cases, i.e. symmetric and asymmetric. The 

power exponents of the velocity being 1, 1.5, 2 and 3 were also applied separately to the 

model. The authors concluded that the bandwidth of the jump phenomenon resulting 

from the cubic stiffness was narrower for an increasing value of damping coefficient.  

7 



Chapter 1 

In addition, increasing the value of the exponent power of damping could reduce the 

jump width. Thus the unstable zone was reduced. 

 Ho et al. [25] also reported that the application of cubic viscous damping, p  = 3, 

on a hardening cubic stiffness Duffing-type force excited isolation reduced the 

amplitude of force transmissibility around the resonance frequency. As a result, the 

occurrence of the jump phenomenon could be eliminated without any effect on the 

isolation performance at high excitation frequencies compared to those with linear 

viscous damping. 

 Jing et al. [26] applied a power law damping with p  = 1 and 3 into a SDOF 

force excited isolation model. A frequency domain analysis was carried out using a 

Volterra series expansion and was verified by simulation. The authors concluded that 

cubic damping provided a significant reduction in the response at the natural frequency, 

but has no effect on the response at high excitation frequencies. The results are in 

accordance with the study of Peng et al. [27] where polynomial type damping with an 

odd power of velocity with p  = 1, 3 and 5 was applied on the same model. The effect 

of such damping was considered to be beneficial, since the response around resonance 

was lower whereas the response in the isolation region was not amplified. 

 Cubic damping was implemented for force isolation by Laalej et al. [28]. 

Electrodynamic shakers were employed on a hexapod or Stewart platform style subject 

to force excitation as the experimental rig shown in figure 1.5. The Stewart platform is a 

six degree of freedom parallel manipulator with variable link length [29]. The 

experimental results were compared to a theoretical study in [26] and [27]. A beneficial 

effect of the nonlinear viscous damping was found in and above the resonance region. 

Increasing the value of cubic damping reduces the level of the force transmissibility 

when compared to that for linear damping. 

 Laalej et al. [30] also implemented a nonlinear cubic damping characteristic 

using a magneto-rheological (MR) damper. The focus was to explore the beneficial 

effect of the nonlinear cubic damping for a pitch plane suspension system subject to 

force excitation. The model represented a physical model of a vehicle seat suspension. 

The authors configured the MR damper as the damping component, rather than the 

actuator in the feedback control system, so there was no energy input into the system. 
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The cubic damping characteristic was controlled by the current sent to the MR damper. 

The results showed a lower level of transmissibility for the system with nonlinear 

damping compared to that using linear damping. The results were also in a good 

agreement with the analytical results reported in references [26-28].  

 Guo et al. [31] applied power law damping in the study of force and 

displacement transmissibility. The exponent of the velocity was chosen arbitrarily. The 

analytical results were obtained using the Ritz-Galerkin method. The authors concluded 

that a different velocity exponent provided different results in both the force and 

displacement transmissibility. A power of the velocity greater than unity can be 

beneficial to force transmissibility but be detrimental for the motion transmissibility. 

 To this end, one might see that power law damping has been beneficial, giving 

an improvement in the force transmissibility. In this thesis, cubic damping was chosen 

as an example of power law damping for base excited isolation. Studies into the effect 

of cubic damping for base excitation isolation are reviewed and reported in the next 

section. 

1.2.3 Cubic damping for base excited vibration isolation 

 Over recent years, the effect of cubic damping on base excited vibration isolation 

has been reported in many publications. Shekhar et al. [32] studied a variety of isolator 

and absorber models. All of the models included linear plus cubic viscous damping. 

Different shapes of shock base excitations were applied. The authors concluded that the 

inclusion of cubic damping is beneficial for shock isolation in some of the models 

considered but not others. 

 Kovačić et al. [33] were also interested in the displacement transmissibility for 

harmonic base excited isolation possessing cubic damping. The method of averaging 

was used to obtain the analytical results. They discovered that pure cubic damping has a 

detrimental effect on the absolute displacement transmissibility in the isolation region as 

shown in figure 1.6. The level of absolute displacement transmissibility is higher 

tending to unity (0 dB) as the excitation frequency increases. Milovanović et al. [34] 

also examined the displacement transmissibility of the same model. They observed that, 

for the system with pure cubic damping, the response for high excitation frequencies 

was greater than that for linear damping indicating a poor isolation performance. 
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 The recent study by Peng et al. [35] examined both the force and base excited 

isolation model possessing the linear plus cubic damping using the HBM. The influence 

of cubic damping has been found to be dependent on the amplitude of the excitation 

input, i.e. constant and independent of the excitation frequency or proportional related 

to the excitation frequency squared. Regarding the responses in the isolation region, i.e. 

1Ω , the authors concluded that the effect of cubic damping on both force and 

absolute displacement transmissibility is negligible when a constant force is applied. In 

contrast, for the case which excitation amplitude is proportional to the excitation 

frequency squared, for example an imbalance force resulting from the rotating machine, 

increasing cubic damping could increase the level of force transmissibility whereas the 

displacement transmissibility for such a system could be slightly lowered. 

 It is seen in general that cubic damping causes a higher vibration amplitude in 

the isolation region for base excitation. For some systems where cubic damping cannot 

be eliminated, awareness of the high response amplitude should be raised. Alternatively, 

the isolation capability might be improved using a higher order vibration isolation 

model. The Zener vibration isolation and the two-stage vibration isolation models were 

chosen here to deal with the detrimental effect of cubic damping. Some studies into 

these higher order models were reviewed and reported in sections 1.2.4 and 1.2.5. 

1.2.4 Base excited Zener isolation model 

 The Zener base excited isolation system is introduced in this thesis in order to 

reduce the detrimental effects resulting from cubic damping. A brief introduction to the 

Zener model is given here. It consists of an additional relaxation spring which is 

working in series with the damping component and in parallel with a primary spring as 

the model shown in figure 1.7. For the assumed massless springs and damper, the 

relaxation spring and the damper can be considered as experiencing the same force. 

There is an additional first order equation of the equilibrium force resulting from these 

components. The Zener model may therefore be considered as a one and a half degree 

of freedom system (1½-DOF) [36]. It has also been called many names, for example, an 

elastically supported damper [23,37,38], a three-element mounting [39,40] or an 

elastically coupled damping [41]. However, it is referred to here as the Zener isolation 

model.  
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 Crede and Ruzicka [23] also mentioned the application of the Zener model using 

linear viscous damping in comparison with three other isolation models. Ruzicka [37] 

compared the harmonic responses for the passive base excited Zener isolation model 

having a linear viscous damper to that of a rigidly connected linear viscous damper. It 

was shown that having a stiffness ratio* close to zero resulted in a higher level for the 

absolute transmissibility around the resonance frequency. However, it produced a lower 

level at excitation frequencies well above the resonance frequency. The author 

concluded that if a relatively small increase around resonance was acceptable, then 

improved isolation could be obtained using the Zener model. 

 Snowdon [39] referred to the Zener model as a three-element mounting. The 

investigation was carried out for the model comprising linear viscous damping subject 

to harmonic and transient base excitation. The responses for the Zener model were 

compared to those of the classical SDOF isolation having a rigidly mounted damper. 

For harmonic excitation, the Zener model produced displacement transmissibility at 

high frequencies of lower amplitude than that of the rigidly mounted damper. It also 

reduced the displacement amplitude of the isolated mass due to shock excitation. 

Snowdon summarised overall that the application of the Zener model provided better 

vibration isolation.  

 The performance of the three-element shock isolator was also investigated by 

Shekhar et al. [32]. The damping component was defined as the combination of linear 

and cubic viscous damping. For relatively low excitation severity, the presence of cubic 

damping did not make any significant difference compared to that of SDOF linear or 

linear plus cubic damping. A better isolation capability of the three-element isolation 

model possessing linear plus cubic damping was noticeable when the severity of the 

shock excitation was relatively high. They also concluded that cubic damping should be 

mounted elastically and the optimum value of stiffness ratio should be about unity. 

 The performance of the base excited Zener isolation comprising linear viscous 

damping was also discussed in the study of Ledezma-Ramirez et al. [42]. The level of 

the displacement transmissibility for the Zener isolation model in the isolation region 

decreased by 40 dB per decade, whereas that of the SDOF system with a rigidly 

* Stiffness ratio refers to the ratio of the stiffness values between the relaxation spring and primary spring.  
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connected linear damping had a roll off rate at 20 dB per decade. However, it was found 

that the responses due to shock excitation between the two systems were not different. 

The authors concluded that the Zener isolation model might be suitable for the system 

subject to either transient or harmonic excitation. 

 The free vibration and forced harmonic response of the Zener isolation model 

were also studied by Brennan et al. [43]. The authors found that critical damping could 

not be obtained for a stiffness ratio less than a specific value of 8. Therefore, the 

stiffness of the relaxation spring should be stiffer compared to that of the primary 

spring. The authors concluded that the application of Zener isolation model does not 

provide a significant advantage over the SDOF model for the case of free vibration.  

 In this thesis, the Zener model was applied only for harmonic base isolation. The 

isolation capability of the Zener model possessing cubic damping was studied alongside 

the cubically damped SDOF model. 

1.2.5 Two-stage base excited vibration isolation 

 Two-stage vibration isolation is also introduced here in the expectation that is 

might be applicable to reduce the detrimental effect caused by cubic damping for the 

SDOF isolation under base excitation. The model consists of two sets of vibration 

isolators as shown in figure 1.8, i.e. primary and secondary stage isolator. These sets of 

isolators are separated by an additional mass, known as an intermediate mass. The use 

of two-stage linear vibration isolators was theoretically shown to reduce the level of the 

transmissibility in the isolation region, with a steeper roll-off rate compared to the 

single-stage linear model [44]. However, the presence of the intermediate mass results 

in a second resonance at a higher frequency.  

 The two-stage isolation model was introduced as a compound mounting system 

by Snowdon [40]. Although a second resonance appears because of the presence of the 

intermediate mass and hence the system becomes a two degree of freedom system, the 

level of transmissibility at high excitation frequencies was found to reduce at 24 dB per 

octave independent of the value of stiffness and damping. Snowdon identified that the 

second resonance frequency should be located as close to the primary resonance as 
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possible, which can be achieved by choosing the optimum value of the stiffness ratio†. 

This observation is also in agreement with Fu et al. [45] who stated that a stiffness ratio 

which provides a relatively low secondary resonance should be considered.  

 Shekhar et al. [32] showed the effect of cubic damping on the two-stage shock 

isolator, where cubic damping was included in addition to the linear viscous damping on 

both the first and second stage isolators. The shock response for this model was 

compared to that for the single-stage isolation possessing linear plus cubic damping. 

The authors concluded that the two-stage isolation possessing cubic damping on both 

stages was more preferable for shock isolation than other shock isolations considered in 

their study. 

 Similar to the case of the Zener isolation model, the application of two-stage 

isolation in this thesis concerns only the case of harmonic base excitation. This is to 

illustrate the possible solution to reduce or eliminate the detrimental effect of cubic 

damping for base isolation.  

1.2.6 Alternative models of nonlinear vibration isolation involving  

cubic damping 

 Publications reviewed in this sub-section refer to alternative nonlinear vibration 

isolation system. For example, Tang and Brennan [46,47] oriented the damping 

component horizontally, perpendicular to the system’s spring as shown in figure 1.9. 

Such a damper orientation results in the damping force in the moving direction 

(direction of stiffness) becoming a function of the angle, i.e. 

 ( ) ( )( )22
1 sind

dF c a x t t
dt

θ = − + 
 

  (1.6) 

where 1c  is the linear damping coefficient and a  is the length of the damper measured 

horizontally. It could also be defined geometrically as a function of displacement 

squared and velocity. As such the equation of motion for the isolated mass is given by 

 
2

1 2 2 0xmx c x kx
a x

+ + =
+

    (1.7) 

† Stiffness ratio for the two-stage vibration isolation model refers to the ratio of stiffness between the first 
and second stage isolators. 
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where x and x are displacement and velocity of the isolated mass. The authors 

compared the geometrical nonlinear damping to the form of quadratic and cubic 

damping. The free vibration response and harmonic response were reported in [46] and 

[47] respectively. The authors concluded that, in general, such a system provided better 

vibration isolation for base excitation compared to the case of cubic damping. 

 Sun et al. [48] reported similar work where the damping component was also 

perpendicular to the stiffness and the motion of the isolated motion. The mass of the 

base excitation was also considered and was treated as an unconstrained two degree of 

freedom system. The damping force for the model mentioned was given by 
1

1

2 2
2

n
n

n

z
c z z

a z

+
− 

 
+ 

   where z and z are the relative displacement and velocity 

across the damper in the moving direction and n  is the exponent. The averaging 

method was applied to obtain an approximate solution for the harmonic excitation. The 

authors concluded that a high isolation performance could be achieved using the optimal 

value of n , i.e. 0 0.4n≤ ≤ .  

 A more recent study by Xiao et al. [49] proposed a nonlinear damping 

component which was defined as a product of displacement squared and velocity, i.e. 
2x x . The new damping model was added to the original linear viscous damping for both 

force and base excited isolation. The responses under harmonic excitation were 

compared to those having only linear plus cubic damping. The presence of the proposed 

damping was found to reduce the amplitude of force and displacement transmissibility 

for both around the resonance and in the isolation regions. The authors concluded that 

the proposed damping provided better performance over just cubic damping, which is 

purely dependent on the relative velocity. 

 Lu et al. [50] studied a nonlinear effect from the stiffness geometry on a two-

stage vibration isolation. Two 90 degree oriented springs were added to the sets of 

vertical stiffness and damping. Each horizontal spring connected the mass for each stage 

to the supporting structure. The horizontal spring in the second stage was found to 

provide better isolation. They also found that the force transmissibility at high excitation 

frequencies can be reduced by the larger intermediate mass. 
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1.3 Objectives and scope of this study 

 The application of nonlinear damping reported in the literature was shown to be 

favourable for harmonic force excitation of a SDOF system. It reduced the transmitted 

force amplitude so as to be similar to that of an undamped linear system. In contrast, for 

harmonic base excitation, nonlinear damping resulted in poor isolation performance 

compared to linear viscous damping. This contrary effect of nonlinear damping 

motivated the main objective of this thesis, i.e. to investigate and describe the possible 

reasons behind such effects. Cubic damping was chosen as an example of damping 

nonlinearity. By understanding the physical cause, it is feasible either to improve the 

isolation benefits of cubic damping or prevent such a system from poor isolation 

performance. The base excited Zener and the two-stage vibration isolation models were 

then introduced in order to eliminate the disadvantages from the presence of cubic 

damping.  

 The responses due to harmonic excitation for both base and force excitation are 

reported separately in comparison to the linear viscous damping case. The examination 

into the harmonic response is first presented using three methodologies, i.e. a 

mathematical approximation, numerical simulation and finally experimentally. The 

effect of cubic damping on a SDOF vibration isolation system subject to broadband 

base excitation was also investigated and is reported here. The responses due to 

broadband excitation were carried out using numerical simulation and experimental 

study with subsequent statistical and spectral post processing. Note that, the 

experimental investigations were implemented only for the case of a SDOF base excited 

vibration isolation system. 

 The numerical simulations carried out here were slightly different from those 

previously published by others. Most of the studies in the literature assigned the 

comparable level of nonlinear damping to that for linear viscous damping. This would 

not be appropriate for some situations. Since the characteristics for linear and nonlinear 

damping are different, using a comparable damping level for both the linear and cubic 

damping might result in improper conclusions.  

 The levels of nonlinear damping considered in this study were determined in 

order to maintain chosen values of the response amplitude around the resonance 

frequency. Thus the distinction between linear and nonlinear damping for the excitation 
15 
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frequencies high above resonance is expected to be observed. A similar strategy of 

maintaining the response around the resonance frequency was also applied to the 

experimental study, which has not been found in the literature. The levels of the 

responses around the resonance frequency for both linear and nonlinear damping were 

thus comparable for the predictions and the experiments. The latter then was applicable 

in validating the theoretical and numerical findings. 

1.4 The contributions of the thesis 

 This work has produced some original understanding and knowledge in the area 

of the effect of nonlinear damping in isolation systems. The original contributions that 

have been identified are listed as follows: 

 i)  The underlying physical causes for the detrimental effect of cubic damping for 

base excited isolation are explained. 

 ii)  Approximate closed form solutions for a force and base excited SDOF 

isolation system possessing cubic damping have been obtained using the Harmonic 

Balance method. These solutions have been simplified in order to provide insight and 

understanding into the positive and negative effects of cubic damping for particular 

frequency regions. Previously the approximate expressions had been obtained using the 

Averaging Method. 

 iii)  The applications of higher order base isolation models, i.e. the Zener and 

two-stage isolation models were proposed in order to eliminate the detrimental effects 

of cubic damping on a SDOF base excited vibration isolation model. The negative 

effects of the cubic damping have been removed using the application of the Zener 

isolation model. The application of the two-stage isolation system with cubic damping 

in the secondary stage isolator produces even better isolation performance than that with 

linear viscous damping. 

 iv)  Concerning broadband random excitation, the effects of cubic damping for a 

base excited isolation system have not been found reported in the literature. Distinctive 

and different response characteristics due to harmonic and broadband excitation were 

found.  
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 v)  The theoretical results showing the detrimental effects of cubic damping were 

confirmed experimentally. The nonlinear damping was reproduced using a simple 

velocity feedback for both harmonic and broadband base excitation. In principle, this 

velocity feedback could be further developed to reproduce any nonlinear damping 

configuration. The experimental results for both excitation scenarios are in good 

agreement with theoretical predictions. 

1.5 Thesis outline 

 The study began with the numerical simulation for the application of the integer 

power law damping. The exponent power was initially ranged from 1 to 5 in order to 

justify the further examination into the effect of nonlinear damping and is given in 

Chapter 2. Cubic damping was found to be a good example, showing the beneficial and 

detrimental effects of power law damping. 

 The effect of cubic damping on vibration isolation was then examined 

analytically and numerically and reported in Chapter 3. The key evidence showing the 

advantages and disadvantages from the presence of cubic damping was found. 

Chapter 4 reports the application of higher order base excited vibration isolation 

models, i.e. the Zener and two-stage isolation models. These two models were 

introduced to minimise the negative effect of cubic damping and to increase the 

isolation capability. The effect of cubic damping for the broadband excitation was 

performed only for the case of base excitation, which is reported in Chapter 5 using 

numerical simulation as no analytical solution is available.  

 Chapter 6 reports the experimental study, which was performed for both 

harmonic and broadband excitations on the base excited isolation system for model 

validation. Finally, a general discussion and conclusions of this work are provided in 

Chapter 7. 
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Figure 1.1 SDOF linear vibration isolation models and the corresponding transmissibility 

function showing the relation between the amplitude and the linear viscous 
damping ratio. 

 (a)  Force excited vibration isolation model 
 (b)  Base excited vibration isolation model 

(c)  Transmissibility for either force or base excited linear vibration isolation model 

with 1
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ζ = . 

(i) Quasi static response occurs at excitation frequencies well below the 
resonance frequency. 

(ii) Amplitude decreases as for the greater linear viscous damping. 
(iii) The beginning of the isolation region for linear vibration isolation system, 

i.e. Ω  = 2 . 
(iv) Amplitude increases as for the greater linear viscous damping. 
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Figure 1.2 The normalised displacement response curves for the system mass of Duffing 
oscillator subject to harmonic force excitation in comparison to the response for the 
linear system , figure reproduced from [3]. 

  Linear spring system 
  Softening spring system 
  Hardening spring system 
 Dashed lines denote unstable solutions 
 Arrows illustrate jump up and jump down phenomena  
 Note that the horizontal axis is in log scale. 
 
 

 
 

Figure 1.3 Force-deflection diagrams for different stiffness characteristics 
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Figure 1.4  Power law damping force characteristics obtained from ( ) 1p

d pf x c x x −=

   . 
  Coulomb damping, p = 0 
  Linear viscous damping, p = 1 
  Quadratic damping, p = 2 
  Cubic damping, p = 3 
  Quartic damping, p = 4 
  Quintic damping, p = 5 
 
 
 

 
 

Figure 1.5 Stewart platform style experimental rig employed in the study of Laalej et al. [28] 
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Figure 1.6 Absolute displacement transmissibility for a harmonic base excited vibration 

isolation system with pure cubic damping ‡, figure reproduced from [33]. 

  = 0.01 

  = 0.1 

  = 0.2 

  = 0.5 
 Arrows show the level of response amplitudes at around the resonance frequency 

and high excitation frequencies due to increasing in the level of cubic damping. 
 
 
 
 
 

 
 
Figure 1.7   Zener base excited isolation. 
 

‡ denotes non-dimensional cubic damping as used in the reference. Non-dimensional cubic damping is 

denoted later using elsewhere throughout this thesis. 
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Figure 1.8   Two-stage base excited isolation with undamped primary stage isolator. 
 

 

   
 

 (a) (b)  
 
 
Figure 1.9 Base excited vibration isolation possessing linear viscous damping oriented 

horizontally and perpendicularly to the system’s spring and moving direction of the 
isolated mass 

 (a)  The isolated mass is at the equilibrium position. 
 (b)  The isolated mass moving upwards results in an angle θ  with respect to the 

horizontal axis. 
 where a  is a length of damper measured horizontally. 
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Chapter 2 Vibration isolation possessing  

power-law damping 

 

2.1 Introduction 

 Damping is often assumed to be linear, either where the response is justifiably 

small or simply for convenience. However the application of the assumed linear 

damping is limited for some aspects. This is because the physical damping mechanisms 

are generally nonlinear, e.g. the automotive vehicle shock absorber etc. The nonlinearity 

of damping components can be advantageous or disadvantageous. Therefore the 

consideration of nonlinear damping is required.  

 The nonlinear damping characteristic is not unique. The attention of this chapter 

is focused on examining power law damping as an example of damping nonlinearity. 

This is because applications of power law damping have proved successful, in some 

cases, for reducing the vibration amplitude in the isolation region. However, it has not 

been effective for some scenarios and it might exhibit unexpected disadvantages.  

 This chapter reports the effect of five individual power law damping 

characteristics on a single degree of freedom (SDOF) isolation system. Two different 

excitation scenarios, namely force excited and base excited isolation, are applied. The 

aim of this chapter is to illustrate the effect of the integer exponent power law damping 

by presenting numerical results. The outcome of this investigation is to provide 

understanding of the effects produced. It can lead to the further exploration into the 

basis of such effects whether negative or positive benefits occur.  

2.2 Single degree of freedom isolation with nonlinear damping 

 The model of the SDOF isolation considered here is illustrated in figure 2.1 for 

two different excitation cases. The isolated mass is assumed to be rigid and is centrally 

attached to the isolator. As such, only vertical translation from the static equilibrium 

position is considered. The isolators for both cases comprise a linear stiffness and a 
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damping component acting in parallel. The damping is assumed to be related to the 

relative velocity by a power law, the details for which are given in section 2.3.  

2.2.1 Equation of motion 

 Figure 2.1 (a) represents the system subject to force excitation. The excitation 

force ef  is partly transmitted to the supporting structure via the isolator. The capability 

of the isolator can be examined in terms of the ratio between the amplitudes of the force 

being transmitted and the exciting force. A good isolation should transmit less force and 

so the amplitude ratio is lower. The system in figure 2.1 (b) represents the system 

undergoing base excitation. The role of the isolator in this scenario is to isolate the 

motion from the base to the isolated mass. The isolation capability is quantified by the 

ratio of the motion amplitudes between the isolated mass and the base excitation. This 

quantity can be considered in terms of displacement, velocity or acceleration. Similarly 

to the case of force excitation, a lower level of the ratio means a better isolator.  

 The governing equation of motion for the models shown in figure 2.1 is given by 

 ( ) ( ) ( ) ( ),d emz t f z t kz t f t+ + = 

   (2.1) 

where m and k  are the mass of the rigid body and the assumed linear stiffness. ef  is the 

dimensional input excitation ( 0ef mx= −

  is considered for the base motion excitation). 

df  is a function representing the dimensional restoring force due to damping. z , z  and 

z  are the relative motions, i.e. acceleration, velocity and displacement as a function of 

dimensional time t . The relative displacement is given by 

 0z x x= −  (2.2) 

where x  is the absolute displacement of the rigid body and 0x  is the base displacement 

excitation. For the case of force excitation, 0x is equal to zero, therefore z x= . However, 

for simplicity, the relative motion z  is applied for both cases as they share the same 

expression. In addition to the equation of motion, for the case of force excitation the 

equation for the transmitted force has to be defined, i.e. 

 ( ) ( ) ( ),t df t f z t kz t= + 

  (2.3) 
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2.2.2 Harmonic excitation assumption 

 The excitation applied in this chapter is assumed to be harmonic excitation, i.e. 

( )cose ef F tω=   for the force case and ( )2
0 cosef m X tω ω=  for the base excitation case. 

Equations (2.1) and (2.3) can be normalised using the quantity 2
nm Xω  where X  is the 

displacement amplitude of the rigid body resulting from the excitation at zero frequency 

and is given by 

 eFX
k

=


 and  0X X=  (2.4) 

for the case of force and base excitation respectively. The other non-dimensional terms 

applied for the normalisation are defined as follows. 

(a) Frequency ratio 

 The frequency ratio is defined as the ratio between the angular excitation 

frequency ω  and the undamped natural frequency nω  , i.e. 

 
n

ω
ω

Ω =  (2.5) 

The undamped natural frequency is given by n
k
m

ω =  where k  is the linear stiffness 

and m is the mass. 

(b) Non-dimensional time 

 Non-dimensional time is defined by 

 ntτ ω=  (2.6) 

The first and the second derivatives with respect to τ are denoted by ( )′  and ( )′′  

respectively. The assumed harmonic excitation also becomes a function of non-

dimensional timeτ , i.e. i te ω ≡ n
i

e
ω τ
ω ≡ ie τΩ . 

(c) Normalised response variables 

 The variable representing relative displacement between the rigid mass and the 

base excitation is normalised by the amplitude at zero frequency, X . Thus one obtains 
27 



Chapter 2 

the normalised variables for the relative displacement, velocity and acceleration as 

follows; 

 z Xu= , nz Xuω ′=  and 2
nz Xuω ′′=  (2.7) 

where u′′ , u′  and u are the normalised relative motions with respect to non-dimensional 

time τ . By substituting these variables into equation (2.1) and dividing by the quantity 
2
nm Xω  one obtains the non-dimensional form as  

 ( ) ( ) ( ) ( ), cosd eu f u u Fτ τ τ τ′′ ′+ + = Ω  (2.8) 

where df  is the normalised restoring force due to damping. eF  is the normalised 

amplitude of excitation force which for force excitation eF = 1 and 2
eF = Ω  for the base 

excitation. The normalised form for the transmitted force shown in equation (2.3) is 

given by 

 ( ) ( ) ( ),t df f u uτ τ τ′= +  (2.9) 

The non-dimensional form given in equations (2.8) and (2.9) will be solved later using 

numerical integration and will be examined in section 2.5.  

2.3 Power-law damping and its equivalence 

 The characteristics of power law damping applied in this study are described 

here. Its effects are examined in comparison to linear viscous damping, for which the 

exponent is equal to unity. The equivalent values, under certain assumptions, for linear 

damping with these nonlinear damping characteristics are also presented.  

2.3.1 Power law damping characteristic 

 The power law damping characteristic considered here can be given in 

dimensional form by 

 ( ) ( ) ( ) 1
,

p
d pf z t c z t z t

−
=

    (2.10) 

where pc  is the dimensional damping coefficient assumed constant and p  is the 

exponent of the power law damping which, in this study, ranges from 1 to 5. The linear 
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viscous damping is considered when 1p =  for which the damping force is proportional 

to the relative velocity with the exponent of unity.  

 The normalised damping force can also be obtained by dividing equation (2.10) 

by the quantity 2
nm Xω , i.e. 

 ( ) ( ) 1
2, pp

d n n
n

c
f u Xu Xu

m X
τ ω ω

ω
−′ ′ ′=   (2.11) 

with nz Xuω ′= . Equation (2.11) can be rewritten as 

 ( ) 1, p
d pf u u uτ ζ −′ ′ ′=   for p  > 1 (2.12) 

where pζ  is the non-dimensional power law damping term which is the outcome of 

equation (2.11) and is given by 

 2 1p p p
p n

c
X

m
ζ ω − −=  (2.13) 

Note that, for p = 1, the normalised linear damping force is given by 

 ( ) 1, 2df u uτ ζ′ ′=   (2.14) 

as a result of the linear damping ratio, 1
1 2 n

c
m

ζ
ω

= . The further descriptions and the 

examples for the other types of power law damping are given in the following  

sub-sections with the damping force characteristics shown in figure 2.2 for exponent  

p  = 0 to 5. 

(a) Even exponent power law damping 

 The even exponent power law damping characteristics applied in this study are 

quadratic and quartic damping, i.e. p = 2 and 4. The force characteristics for these two 

damping models are symmetric on the relative velocity by definition. Therefore the use 

of absolute value or a sign function is needed to convert the damping force 

characteristic to be anti-symmetric and to ensure that the damping force always opposes 

the motion.  

 The quadratic damping, p = 2, is often associated with turbulent fluid flow and 

is also commonly used in the study of automotive shock absorbers, for example in 
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references [17,18,38]. It was also examined for the case of base excited isolation, for 

example [51-53] for which approximate closed form solutions were provided. However, 

in this study only numerical simulations are considered to enable comparison with the 

other power law damping types.  

 The use of quartic damping, p = 4, has not been generally found for vibration 

isolation. However, it is applied in this study to illustrate the effect of the higher  

power-law damping characteristic in the damping force expression. 

(b) Odd exponent power law damping 

 The effects of odd exponent power law damping with p = 3 and 5 are considered 

here. Cubic damping, p = 3, became a damping characteristic of interest in recent years. 

There have been number of publications considering it, for example those reported in 

[28,30,32-34]. A cubic damping characteristic produces an anti-symmetric  

force-velocity diagram, as for linear viscous damping. An example of the application for 

the quintic damping, p = 5, can be found in [27]. The fifth power exponent was 

considered in combination with both the linear and cubic damping, i.e. p = 1 and p = 3. 

In this thesis, the response for each power exponent was examined individually. 

 To recap, the characteristic diagrams for power law damping are shown here 

again in figure 2.2. It is seen that the level of power law damping forces with p > 1 are 

much lower than for linear viscous damping at low relative velocity ( u′ < 1) and higher 

for u′ > 1. The force-velocity characteristics of the power law damping with p  = 2 to 5 

are qualitatively similar. So, one might anticipate similar effects from these power law 

damping types on the isolation performance. 

2.3.2 Equivalent linear viscous damping 

 The equivalent value of the linear damping coefficient for the other types of 

power law damping can be approximated by equating the energy dissipated over a full 

cycle of steady-state nonlinear response to that for linear viscous damping. The  

non-dimensional dissipated energy is calculated by the integral over a cycle of vibration 

assuming a harmonic response, i.e. 
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 ( )
2

0

,d dE f u u d
π

τ τ
Ω

′ ′= ∫  (2.15) 

where Ω  is the excitation frequency ratio. Equation (2.15) can be applied for the 

steady-state harmonic relative velocity, i.e. ( )sin uu U τ φ′ = Ω Ω −  where U is a 

normalised amplitude of the relative displacement and uφ is phase lag of the relative 

displacement with respect to the base excitation.  

 The relative velocity for the power law damping with p = 5 subject to force and 

base excitation at the undamped natural frequency, i.e. Ω = 1, were evaluated as an 

example of an extreme case. The values of non-dimensional damping 5ζ  = 0.1 and 0.3 

were chosen initially. The time histories for the linear viscous damping producing a 

similar amplitude of the relative velocity were also determined for a comparison. The 

resulting relative velocity time histories are shown in figure 2.3 for a non-dimensional 

time period of T = 2π .  

 These plots illustrate that the relative velocity for the power law damping p = 5 

are distorted. This is known to be a result of the existence of response at other 

harmonics due to the nonlinearity. Despite the harmonic distortion, the appearance of 

relative velocity can be considered periodic and dominated by the excitation frequency.  

 Therefore the non-dimensional damping value for other power law damping 

models can be estimated using the non-dimensional energy dissipated by a linear 

viscous damping which is given by 

 2
12dE Uζ π= Ω  (2.16) 

The non-dimensional damping values for power law damping with p = 2 to 5 for this 

instance are estimated at Ω = 1 for 1ζ  = 0.1, 0.2 and 0.3. The equivalent values of linear 

viscous damping are listed in table 2.1. By applying these values the response 

amplitudes for the power law damping at Ω = 1 are expected to be similar to the linear 

case. The responses for the power law damping and the existence of the responses at 

higher harmonics will be discussed in section 2.5. 
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2.4 ODE solutions and spectral analysis 

 The ordinary differential equation given in equation (2.8) was solved 

numerically using direct numerical integration. The ODE45 solver provided in Matlab 

was chosen as for general purpose ODE solutions. The chosen solver is based on a 

fourth and fifth order Runge-Kutta method with an automatic step size adjustment [54]. 

The large or small step-size is applied depending upon the characteristic of the function 

[55], i.e. the larger step size is applied for low frequency functions and vice versa for 

the high frequency functions. In order to obtain the time response at a desired time step, 

it is suggested to apply a one dimensional interpolation, ‘interp1’, to the obtained result 

[56]. An example for using ODE45 is given in Appendix A. 

 The applied numerical time and frequency resolutions are described here as well 

as the excitation characteristic in the time domain. The time domain numerical results 

obtained were transformed into the frequency domain and analysed using spectral 

analysis, which is also described in this section. 

2.4.1 Solution procedure 

 The input for numerical simulations was specified as a set of discrete frequency 

sinusoidal excitations. The frequency range of interest ranged from Ω = 0.1 to 100. The 

input excitation amplitude was gradually increased from zero to the maximum of unity 

for each frequency input considered, i.e. 

 ( )
max

;

1 ;

sl
sl

sl

a
τ τ τ
ττ

τ τ τ

 ≤= 
 ≤ ≤

 (2.17) 

where a  is the shape function for the signal amplitude. slτ  is the ramp time which is 

given by max 2slτ τ= . The response only in the second half of the simulation was 

employed for subsequent frequency domain analysis. By doing this the effect of any 

transient response was reduced. However, for the lightly damped systems, the longer 

duration for the ramp input can be considered. In addition, the application of ramp input 

can help to avoid transient response resulting from nonlinearity. This is to ensure that 

only the steady-state response is obtained. 
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 The non-dimensional maximum time length was set at maxτ = 256 time units. This 

maxτ  allowed four complete cycles of the sinusoidal signal for the lowest excitation 

frequency considered, i.e. Ω = 0.1. Thus there were two complete cycles at the 

maximum amplitude at this frequency. The normalised sampling frequency was set at 

sΩ = 32768 where 2s s nfπ ωΩ = . The value of sΩ  was set to avoid the occurrence of 

aliasing from higher harmonics in the response. These harmonic responses are expected 

to be negligible beyond around five times the maximum excitation frequency for power 

law damping with p = 5. 

2.4.2 Transmissibility and amplitude ratio 

 The response characteristic of vibration isolation is usually presented as a 

transmissibility function. It shows the ratio of the amplitude between the response and 

the input with the same physical quantity [7] as a function of the excitation frequency 

[57]. For example, the ratio between the force transmitted to the supporting structure 

and the applied force forms the force transmissibility. The ratio between the motion of 

the isolated mass and the base excitation is the motion transmissibility [58].  

 For the linear system, the transmissibility function can represent completely the 

isolation capability. This is because a single frequency excitation only produces the 

response at the same frequency and it is independent of excitation amplitude. On the 

other hand, for nonlinear system, the single frequency excitation can produce response 

at frequencies other than the excitation frequency. The responses at other frequencies 

are ignored by means of transmissibility and the term transmissibility is not suitable. 

Thus, in this study, the term amplitude ratio is used instead which represents the ratio of 

the amplitude between the input and response at only the fundamental excitation 

frequency. 

 The amplitude ratio can usually be constructed using either the ratio of the root 

mean square (RMS) values or the ratio of the Fourier coefficients at the excitation 

frequencies between the output and the input. There should be small difference between 

these two amplitude ratios if the response at the excitation frequency is not strongly 

affected by the responses at harmonic frequencies. The existence of the responses at 

other harmonics can distort and affect the time domain response. By using only the 
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Fourier coefficients at the excitation frequencies, the nonlinear responses at the higher 

harmonics are disregarded. As such, the amplitude ratio constructed using Fourier 

coefficients would not in general be the same as that constructed using RMS values. 

The discussion of amplitude ratios constructed from these two quantities is given in 

section 2.5.2. 

2.4.3 Frequency domain analysis 

 The frequency domain analysis was carried out by means of the amplitude ratio. 

The amplitude ratio is constructed using either the Fourier coefficients or the RMS 

values of the time histories obtained from direct numerical integration of the equation of 

motion. The discrete value of the Fourier coefficient was calculated using the 

exponential form of the Fourier series [59], i.e. 

 ( ) ( )
21

0

1 hnN jh N
q

n
c q n e

N

π− −

=

= ∑  (2.18) 

where ( )q n  is the discrete time response, h  is the harmonic of the excitation frequency 

and N  is the number of discrete data points. The RMS values are calculated from 

 ( )
1

2 2

0

1 N

n
q q n

N

−

=

= ∑   (2.19) 

The difference in the amplitude ratio constructed from these two quantities is that the 

amplitude ratio obtained from RMS value includes the effect of higher harmonics 

whereas that for Fourier coefficient considers only the response at the excitation 

frequency. The responses at higher harmonics are examined by means of the total 

harmonic distortion.  

 However, the application of the RMS value does not provide the phase 

information. It can be obtained by using Fourier coefficients and can be given by  

 ( ) ( ) ( ) ( ) ( )
0

1 1
x xc cφ ϕ ϕ ϕ= ∠ − ∠   (2.20) 

where ϕ is the discrete frequency, ( )1
xc  and ( )

0

1
xc  are Fourier coefficients at excitation 

frequency for the response and excitation respectively. 
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2.4.4 Total harmonic distortion 

 Total harmonic distortion (THD) is a measurement of the distortion of the 

harmonic signal. The THD indicates the effect of the responses at other harmonics 

occurring in the signal. It is defined as the ratio or percentage of the sum of the power at 

all harmonics to the power in the fundamental harmonic and is given by 

 ( )
( ) ( )

( ) ( )

2

2
21

P
h

x
h

x

c
THD

c

ϕ
ϕ

ϕ
==

∑
 (2.21) 

where ( )h
xc  is the Fourier coefficient of x  at the thh  harmonic and P  is the number of 

harmonics considered. This expression can be found, for example, in references [60] 

and [61]. 

2.5 Numerical results and discussion 

 The input excitation was taken to be a normalised amplitude for either harmonic 

force or displacement base excitation, i.e. eF  = 1 for force excitation and 2
eF = Ω for 

base excitation. At Ω  = 1 the relative displacement for the system with linear damping 

between these two cases are identical and given by 

 
1

1
2

U
ζ

=  (2.22) 

The calculated relative displacement amplitude for 1ζ = 0.1, 0.2 and 0.3 obtaining from 

equation (2.22)  are 14 dB, 8 dB and 4 dB. These values were used to estimate the 

equivalent values of linear viscous damping for the power law damping which are listed 

in table 2.1. 

2.5.1 The response in the isolation region 

 The numerical results are presented using the amplitude ratio and are shown for 

both force and base excitation in figure 2.4 for 1ζ = 0.1, 0.2 and 0.3. It is seen that for 

every case the level of the peak amplitude can be reduced by increasing the non-

dimensional damping term. The difference among the cases occurs in the frequency 

region well above the resonance frequency, i.e. 1Ω .  
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 For the case of force excitation with an exponent p  greater than unity, 

figures 2.4 (a)-(c) in the first column, the force amplitude ratio at high frequencies is 

seen to follow the mass line of the undamped system, as shown by the asymptote line of 

40 dB per decade. It also appears that the amplitude ratios decrease regardless of either 

the damping pζ  or the exponent p . One might presume that the power law damping can 

produce a behaviour similar to the undamped response in the isolation region. 

   On the other hand for base excitation, shown in the second column of figure 2.4, 

the response amplitudes in the high frequency region are considerably higher than that 

for linear viscous damping. Increasing the value of damping, pζ , causes a higher level 

for the displacement amplitude ratio. The response amplitude in this region for p = 2 is 

constant, whereas the curves for p > 2 tend towards the amplitude of the base 

excitation. It is anticipated that at excitation frequencies well above the resonance 

frequency the isolated mass is moving almost together with the base excitation. 

 In addition, figure 2.5 shows the phase between the response and the excitation 

which is defined from the Fourier coefficients at the excitation frequency. It reveals, for 

the force case, that the transmitted force in the high frequency region is out of phase 

with the excitation for power law damping with p > 1. This is consistent with an 

undamped system. In contrast, for the base excitation, the phase information shows a 

diminishing phase lag between the isolated mass and the base. This supports the 

argument that the isolated mass is moving almost in unison with the base as the 

excitation frequency increases. One might assume that at high excitation frequencies the 

damping component is acting almost like a rigid link. 

 To this end, one might consider that the application of power law damping with 

an integer exponent p > 1 is beneficial to the case of force excitation and is detrimental 

for base excitation. Although the application of a greater damping term or higher 

exponent has provided some noticeable isolation advantages for force isolation, it might 

produce a negative effect, for example harmonic distortion. Further discussion on 

harmonic distortion is discussed in the next sub-section. 
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2.5.2 The response at higher harmonics 

 The level of total harmonic distortion (THD) shown in figure 2.6 reveals the 

response amplitude at higher harmonic frequencies other than the excitation frequency. 

The higher level of THD indicates the higher response amplitude at other harmonics 

compared to the amplitude at the fundamental frequency. It is seen that either a larger 

exponent value p  or a greater damping value produces a higher THD level for the case 

of either force or base excitation. 

 It is noticeable that, for the case of force excitation with p > 2, the level of THD 

is highest around the resonance frequency and is almost zero at higher frequencies. On 

the other hand, the level of THD for base excitation in the high frequency region is 

noticeably inversely related to the level of displacement amplitude ratio as shown in 

figure 2.4. The THD tends to zero as the displacement amplitude ratio tends towards 

unity. Such behaviour can be thought to be a result of the damping component 

becoming almost rigid. Since the isolated mass and the base are thought to be moving 

together the relative velocity across the damper is approaching zero. Hence the effect of 

nonlinearity is reduced. Thus the response at the excitation frequency becomes 

dominant. 

 The THD level for the case of force excitation with p = 5 around Ω = 1, see 

figure 2.6 (c), is highest at about 28%. This high THD level might result in a difference 

between the force amplitude ratios constructed using the Fourier coefficients and the 

RMS values around the corresponding frequencies. However, as shown in figure 2.7 (a), 

comparison of the force amplitude ratios constructed using these two quantities for the 

power law damping with exponent p = 5 and 5ζ = 0.124 are very slightly different. This 

result suggests that the nonlinear response amplitude ratio constructed using Fourier 

coefficients at the excitation frequency is comparable to that using RMS values. 

Therefore the application of an approximate analytical method which considers only the 

response at the excitation frequency is suitable, for example the Harmonic Balance 

method. 
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2.6 Conclusions 

 The application of power law damping with an integer exponent p ranging from 

1 to 5 has been examined numerically for force and base excitation. The response 

amplitudes for the power law damping with p  > 1 were examined in comparison to that 

with linear damping, p  = 1. By maintaining the response amplitude around the 

resonance frequency at a similar level as for the linearly damped response, the 

distinctive effect of the power law damping can be noticeable in the isolation region. 

The application of power law damping with p  > 1 for force excitation results in a lower 

level of transmitted force. However, the application of a higher integer exponent causes 

the increasing of response amplitude at higher harmonics when the excitation frequency 

is around the resonance frequency. 

 In contrast, for base excitation the power law damping with p  > 2 causes an 

increase in the vibration amplitude of the isolated mass compared to linear damping for 

excitation frequencies well above the resonance frequency. The displacement amplitude 

of the isolated mass can approach that of the base. At this stage the phase lag is close to 

zero. One might consider that the damping element locks the isolated mass and base 

together.  

 It is interesting to find out the reason why power law damping is beneficial for 

one excitation but is detrimental for the other. Thus in the next chapter cubic damping, 

p = 3, is chosen as an example to investigate the above mentioned effects. This is 

because the numerical results obtained in this chapter show that the application of a 

higher integer exponent in power law damping, i.e. p = 4 and p = 5, does not 

significantly change the response characteristics at high frequencies. An analytical 

investigation will be performed alongside a numerical study.
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Table 2.1   Non-dimensional damping coefficients for power law damping and its linear 
equivalence at undamped natural frequency ( Ω  = 1). 

 
Non-dimensional 

damping term Equivalent values of linear viscous damping 

1ζ  0.1 0.2 0.3 

2 1
3
4 U

πζ ζ≡
 

0.047 0.189 0.424 

3 1 2

8
3U

ζ ζ≡
 

0.011 0.085 0.288 

4 1 3

15
16 U

πζ ζ≡
 

0.002 0.038 0.191 

5 1 4

16
5U

ζ ζ≡
 

0.0005 0.016 0.124 
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(b) 

 
 

 
 
Figure 2.1 Illustrative models for single degree of freedom vibration isolation 
 (a)  Force excited isolation 
 (b)  Base motion excited isolation 
 where m  is a rigid mass. k  is an assumed linear stiffness. pc  is a damping 

coefficient of power law damping. ef and tf  are the excitation and transmitted 

forces. x  and 0x  are the displacement for the mass and base excitation 
respectively. 

 
 

 
 
Figure 2.2  Power law damping force characteristics obtained from ( ) 1p

d pf u u uζ −′ ′ ′=   

in comparison to the linear damping force ( ) 12df u uζ′ ′= . 
  Linear viscous damping, p = 1 
  Quadratic damping, p = 2 
  Cubic damping, p = 3 
  Quartic damping, p = 4 
  Quintic damping, p = 5 
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 Force excitation Base excitation 

(a) 
 
 
 
 
 
 
 
 
 
 

  
 
(b) 
 
 
 
 
 
 
 
 
 
 

  
 
 
Figure 2.3   Time responses for the relative velocity of the SDOF isolation system possessing 

power law damping p = 5 in comparison to that for linear viscous damping p = 1 
with a non-dimensional time period of T = 2π . 

 (a) 5ζ = 0.1 and 1ζ = 0.29 

 (b) 5ζ = 0.3 and 1ζ = 0.36 
  Linear viscous damping 
  Quintic damping force excitation 
  Quintic damping base excitation 
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 Force excitation Base excitation 

(a) 
 
 
 
 
 
 
 
 
 
 

  

(b) 
 
 
 
 
 
 
 
 
 
 

  

(c) 

  
 
Figure 2.4   The amplitude ratios for a SDOF isolation system possessing power law damping. 
 (a) pζ  equivalent to 1ζ  = 0.1 

 (b) pζ  equivalent to 1ζ  = 0.2 

 (c) pζ  equivalent to 1ζ  = 0.3 
  Linear viscous damping, p = 1 
  Quadratic damping, p = 2 
  Cubic damping, p = 3 
  Quartic damping, p = 4 
  Quintic damping, p = 5 
  -20 dB/decade slope 
  -40 dB/decade slope 
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          Force excitation Base excitation 

(a) 
 
 
 
 
 
 
 
 
 
   

(b) 
 
 
 
 
 
 
 
 
 
   

(c) 

  
 
Figure 2.5  The phase lag of the response with respect to the excitation for the SDOF isolation 

possessing power law damping. 
 (a) pζ  equivalent to 1ζ  = 0.1 

 (b) pζ  equivalent to 1ζ  = 0.2 

 (c) pζ  equivalent to 1ζ  = 0.3 
  Linear viscous damping, p = 1 
  Quadratic damping, p = 2 
  Cubic damping, p = 3 
  Quartic damping, p = 4 
  Quintic damping, p = 5 
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          Force excitation Base excitation 

(a) 
 
 
 
 
 
 
 
 

  
(b) 
 
 
 
 
 
 
 

  

(c) 

  
 
Figure 2.6   The total harmonic distortion for the SDOF isolation possessing power law 

damping. 
 (a) pζ  equivalent to 1ζ  = 0.1 

 (b) pζ  equivalent to 1ζ  = 0.2 

 (c) pζ  equivalent to 1ζ  = 0.3 
  Linear viscous damping, p = 1 
  Quadratic damping, p = 2 
  Cubic damping, p = 3 
  Quartic damping, p = 4 
  Quintic damping, p = 5 
 The vertical dash-dot lines represent the excitation frequencies which the resonance 

frequency, Ω = 1, is one of their harmonics, i.e. 1
7 Ω , 1

6 Ω , 1
5 Ω , 1

4 Ω , 1
3 Ω  and 

1
2 Ω  respectively. 
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(a) 

 
(b) 

 
 
Figure 2.7 Difference of force amplitude ratio due to the total harmonic distortion for the 

power law damping with p = 5 and 5ζ = 0.124. 
 (a) Force amplitude ratio 
 (b) Total harmonic distortion 
  Constructed using RMS values 
  Constructed using Fourier coefficients at excitation frequency 
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Chapter 3 Analysis of a vibration isolator with  

cubic damping under harmonic excitation 

 

3.1 Introduction 

 The numerical simulation results given in Chapter 2 showed that power law 

damping can be both beneficial and detrimental to isolation. For the case of force 

excitation, the beneficial effect of the integer power law damping is noticeable when 

p = 2 or higher. On the other hand, the application of power law damping with the 

integer exponent higher than unity reduces the effectiveness of base isolation.  

 In this chapter, the analysis will concentrate solely on power law damping with 

the exponent p = 3 (cubic damping). This is because the application of higher integer 

exponents does not provide any significant difference in terms of the response levels at 

excitation frequencies well above the resonance frequency, as shown in Chapter 2. This 

chapter aims to discover the underlying reasons for the conflicting effects on a single 

degree of freedom (SDOF) system. Two different scenarios were also considered here 

namely force excited isolation and base excited isolation. 

 The investigation is conducted using an analytical method in conjunction with 

the numerical simulation. The former is the Harmonic Balance method (HBM). The 

HBM is usually applied to obtain approximate closed form solutions for nonlinear 

systems under harmonic excitation. The results of the method is expected to reveal 

insights into the effects of cubic damping on the considered isolation model. The 

application of the numerical approach is expected to validate the analytical examination. 

The advantageous and disadvantageous effects of cubic damping on the SDOF isolation 

subject to harmonic excitation will be reported.  

 Further investigation is performed for base excitation using a harmonic velocity 

input whose amplitude is constant with frequency. The exploration in the effects of 

cubic damping on the SDOF isolation might contribute explicit understanding and 

further consideration to the application of cubic damping in other isolation systems. 
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3.2 The Harmonic Balance Method 

 Approximate closed form solutions for the response of nonlinear isolation can be 

obtained using a variety of approaches. For example, the application of a Volterra series 

approximation with the concept of Generalised Frequency Response Function (GFRF) 

was applied in the studies of Jing et al. [26] and Lang et al. [62]. It was applied to 

analyse the force excitation isolation with third-order polynomial damping. Peng et al. 

[27] and Lang et al. [63] applied the concept of Output Frequency Response Functions 

(OFRF), which was proposed by the authors to obtain a frequency domain analysis. 

Kovacic et al. [33] and Milovanovic et al. [34] approximated the relative displacement 

and absolute displacement transmissibility for the base excited isolation possessing 

linear plus cubic damping using the averaging method. Guo et al. [31] applied the Ritz-

Galerkin method to evaluate the force and displacement transmissibility for SDOF 

isolation with nonlinear viscous damping. Among these approaches, the Harmonic 

Balance Method (HBM) was also applied [24,35] to obtain approximate closed form 

solutions and is applied here. 

 For harmonic excitation, the HBM provides comparable theoretical 

approximations to experimental results [64]. The advantages and limitations of HBM 

were discussed by Mickens [65]. One useful result of using HBM is that the method is 

not restricted to weakly nonlinear problems. The limitation for its application is that the 

response must be dominated by the excitation frequency. In other words, the amplitude 

of other harmonics of the excitation frequency must be relatively small. From earlier 

observation in Chapter 2, this shows that it is suitable for solving the problems in this 

study. The numerical results showed that the level of THD for force excitation with 

exponent p = 3 and damping equivalent to 1ζ = 0.3 is less than about 20% which is 

considered relatively small.  

 The principle of the HBM is to assume a steady-state periodic response for a 

harmonic input which can be expected in the form of  

 ( ) ( )( )
1

cos
P

h
h

q t Q h tω φ
=

= −∑   (3.1) 

where Q is the amplitude, h is the harmonic of the excitation frequency and P is the 

number of harmonic frequencies included. The application of the HBM in this study 
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only determines the amplitude of the response at the excitation frequency, i.e. h = 1. 

This was achieved by integrating the product between the response given in equation 

(3.1) and the trigonometric functions at excitation frequency over one period, the super 

harmonics included in the response are eliminated as a result of the orthogonality 

properties.  

3.3 Governing equation of motion and analytical solution 

 The equations of motion, given in equations (2.8) and (2.9), are employed again, 

only with p = 1 and 3, and are rewritten in non-dimensional form as 

 ( ) ( )3
1 32 coseu u u u Fζ ζ τ′′ ′ ′+ + + = Ω  (3.2) 

 ( ) ( )3
1 32tf u u uτ ζ ζ′ ′= + +  (3.3) 

where eF  is the normalised excitation amplitude, ( )tf τ  is the normalised transmitted 

force as a function of non-dimensional time τ . u , u′ and u′′  are normalised relative 

displacement, velocity and acceleration. The normalised relative displacement is 

defined by 

 0u w w= −  (3.4) 

where w  and 0w  are the normalised absolute displacement of the isolated mass and 

base respectively.  

 Later the cases of p = 1 and 3 are examined separately and discussed 

comparatively. The non-dimensional damping term for the power law damping given in 

equation (2.13) is also employed here for p = 3. Thus one obtains 

 23
3 n

c X
m

ζ ω=  (3.5) 

The expected harmonic responses for the relative motions are given by 

 ( )cos uu U τ φ= Ω − , ( )sin uu U τ φ′ = −Ω Ω −  and ( )2 cos uu U τ φ′′ = −Ω Ω −  (3.6) 
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where U  is the normalised amplitude of the relative displacement and uφ  is the phase 

lag between the relative displacement and the base excitation. Substituting the harmonic 

excitation and the responses into equation (3.2) yields 

( ) ( ) ( ) ( ) ( )2 3 3 3
1 31 cos 2 sin sin cosu u u eU U U Fτ φ ζ τ φ ζ τ φ τ− Ω Ω − − Ω Ω − − Ω Ω − = Ω   

  (3.7) 

For simplicity, equation (3.7) is written as 

 ( ) ( ) ( ) ( )3 34cos sin sin cos
3u u u eAU BU CU Fτ φ τ φ τ φ τΩ − − Ω − − Ω − = Ω  (3.8) 

where the expressions for A , B  and C  are given by 

 21A = − Ω , 12B ζ= Ω  and 3
3

3
4

C ζ= Ω  (3.9) 

 Then apply the orthogonality by integrating the product of the terms in the left 

and right sides of equation (3.8) with the trigonometric functions at the excitation 

frequency over a period of 2π Ω . This yields 

 ( ) ( ) ( )
2

0

cos sin sinu uAU d AU

π

τ φ τ τ φ
π

ΩΩ
Ω − Ω =∫  (3.10) 

 ( ) ( ) ( )
2

0

cos cos cosu uAU d AU

π

τ φ τ τ φ
π

ΩΩ
Ω − Ω =∫  (3.11) 

( ) ( ) ( ) ( ) ( )
2

3 3 3

0

4sin sin sin cos
3u u uBU CU d BU CU

π

τ φ τ φ τ τ φ
π

ΩΩ  Ω − + Ω − Ω = +  ∫  

  (3.12) 

( ) ( ) ( ) ( ) ( )
2

3 3 3

0

4sin sin cos sin
3u u uBU CU d BU CU

π

τ φ τ φ τ τ φ
π

ΩΩ  Ω − + Ω − Ω = − +  ∫   

  (3.13) 

 ( ) ( )
2

0

cos sin 0eF d

π

τ τ τ
π

ΩΩ
Ω Ω =∫   (3.14) 

 ( ) ( )
2

0

cos cose eF d F

π

τ τ τ
π

ΩΩ
Ω Ω =∫   (3.15) 
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  As a result, equation (3.8) can be written using terms resulting from equations 

(3.10), (3.12) and (3.14) to form 

 ( ) ( ) ( )3sin cos 0u uAU BU CUφ φ− + =  (3.16) 

and terms resulting from equations (3.11), (3.13) and (3.15) to form 

 ( ) ( ) ( )3cos sinu u eAU BU CU Fφ φ+ + =  (3.17) 

Squaring and adding equations (3.16) and (3.17) gives 

 ( )2 6 4 2 2 2 22 eC U BCU A B U F+ + + =  (3.18) 

The phase lag of the relative motion to the excitation is obtained from equation (3.16) 

and is given by 

 
2

1tanu
B CU

A
φ −  +

=  
 

 (3.19) 

 Later, equation (3.18) is examined separately for linear and cubic damping. For 

the case of linear viscous damping, with C = 0, equations (3.18) and (3.19) are rewritten 

respectively as 

 ( )2 2 2 2
eA B U F+ =  (3.20) 

and 

 1tanu
B
A

φ −  =  
 

 (3.21) 

For the case of pure cubic damping then B = 0, equation (3.18) becomes 

 2 6 2 2 2
eC U A U F+ =  (3.22) 

The solution of 2U  for equation (3.22) consists of one real and a pair of complex 

conjugates since the coefficient of 4U  is equal to zero. (see Appendix B for the roots of 

a cubic polynomial equation.) Therefore only the real solution of 2U  is employed to 

determine either the force amplitude ratio or absolute displacement amplitude ratio for 

the system with pure cubic damping. The phase lag given in equation (3.19) becomes 
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2

1tanu
CU

A
φ −  

=  
 

 (3.23) 

The analytical solutions resulting from solving equations (3.20) and (3.22) are presented 

respectively in sections 3.3.1 and 3.3.2 for the force and the displacement excitations.  

3.3.1 Transmitted force amplitude ratio to the rigid base 

 For the case of force excitation, the normalised amplitude eF  equals unity thus 

equations (3.20) and (3.22) become 

 ( )2 2 2 1A B U+ =  (3.24) 

and 

 2 6 2 2 1C U A U+ =  (3.25) 

The frequency response for the transmitted force is obtained by substituting the assumed 

harmonic responses into equation (3.3) which yields 

( ) ( ) ( ) ( )3 34cos cos sin sin
3t f u u uF U BU CUτ φ τ φ τ φ τ φΩ − = Ω − − Ω − − Ω −  (3.26) 

where fφ  is the phase lag between the transmitted and the excitation force. The 

application of orthogonality properties of the excitation frequency and the consequent 

manipulation of equation (3.26) yields 

 ( )2 2 6 4 2 22 1tF C U BCU B U= + + +  (3.27) 

The phase lag between the excitation and transmitted force is obtained from 

 
( )

( )

2 2
1

22
tanf

CU B

CU B A
φ −

 + Ω =
 + + 

 (3.28) 
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 For the case of linear damping system for which C = 0, the algebraic 

manipulation of equations (3.24) and (3.27) yields  

 
2

2
2 2

1
t

BF
A B

+
=

+
 (3.29) 

The phase lag between the forces for the case of linear damping is given by 

 
2

1
2tanf

B
A B

φ −  Ω
=  + 

 (3.30) 

For the case of pure cubic damping, equation (3.27) becomes 

 2 2 6 2
tF C U U= +  (3.31) 

The force amplitude ratio, tF , for the case of pure cubic damping can be obtained by 

substituting the solution of 2U obtained from equation (3.25) into equation (3.31). The 

expression of 2U  for force excitation is given by 

 
( )

( )

2
3

1
3

6 2 2

2

6 2

108 12 12 81 121
6 108 12 12 81

C A C A
U

C C A C

+ + −
=

+ +
 (3.32) 

The resulting closed form solution for the force amplitude ratio is too complicated to 

understand the effect of cubic damping. Equations (3.25) and (3.31) were simply 

examined for four specific frequency regions, namely 1Ω , 1Ω ≈ , 2Ω ≈  and 

1Ω . These frequency regions represent respectively an excitation frequency well 

below the undamped natural frequency nω , around nω , the beginning of the isolation 

region for the linear damping system 2 nω  and a frequency region much higher than 

nω . The simplified expressions for these frequency regions are examined and discussed 

in detail later in section 3.5 alongside numerical verification. The details of the 

simplification for each frequency region are presented in Appendix C. 
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3.3.2 Absolute displacement amplitude ratio 

 The absolute displacement harmonic response is determined from the relative 

motion given in equation (3.4), i.e. 0w w u= + . Equation (3.18) is employed again here 

with 2
eF = Ω  which yields 

 ( )2 6 4 2 2 2 42C U BCU A B U+ + + = Ω  (3.33) 

Using the assumption of harmonic excitation, equation (3.4) can be written as 

 ( ) ( ) ( )cos cos cosw uW Uτ φ τ τ φΩ − = Ω + Ω −  (3.34) 

where wφ  is the phase lag between the isolated mass and the base excitation. The 

application of orthogonality and the consequent manipulation transforms 

equation (3.34) to 

 ( )2 2 2 cos 1uW U U φ= + +  (3.35) 

The phase lag between the base excitation and isolated mass is given by 

 
( )

( )

2
1

22 2
tanw

B CU U

AU A B CU
φ −

 
+ =  

 + + + 

 (3.36) 

 Similarly to the case of force excitation, an examination of the case of linear and 

cubic damping is carried out separately. For the system with linear damping, one sets  

C = 0 thus equations (3.33) becomes 

 ( )2 2 2 4A B U+ = Ω  (3.37) 

After algebraic manipulation, the absolute displacement amplitude ratio squared is 

given by 

 
2

2
2 2

1 BW
A B

+
=

+
 (3.38) 
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Equation (3.38) is identical to that given in equation (3.29). For simplicity, 

equations (3.29) and (3.38) are given in a common form, equal to the transmissibility 

squared for the linear system, 

 ( )
( ) ( )

2
12

2 22
1

1 2

1 2
rT

ζ

ζ

+ Ω
=

− Ω + Ω
 (3.39) 

The phase lag between the isolated mass and base excitation for the case of linear 

viscous damping is given by 

 
2

1
2tanw

B
A B

φ −  Ω
=  + 

 (3.40) 

 For the case of pure cubic damping, one has B = 0 so equation (3.33) becomes 

 2 6 2 2 4C U A U+ = Ω  (3.41) 

Equation (3.41) has one real solution and a pair of complex conjugates solutions. The 

only real solution for base excitation is given by 

 
( )

( )

2
3

1
3

4 6 8 2 2

2

4 6 8 2

108 12 12 81 121
6 108 12 12 81

C A C A
U

C C A C

Ω + + Ω −
=

Ω + + Ω
 (3.42) 

The amplitude ratio for the absolute displacement can be obtained by substituting 2U  

from equation (3.42) into equation (3.35). Similarly to the case of force excitation, the 

closed form solution does not explicitly show the effect of cubic damping. Thus 

equations (3.35) and (3.41) are also examined for four specific frequency regions. The 

simplification, assumptions and procedure are given in Appendix C. 

3.4 Numerical simulations for harmonic excitation 

 The numerical simulations were carried out by direct numerical integration using 

the Matlab ODE45 solver [66]. It was applied to the differential equations given in 

equations (3.2) and (3.3) for force excitation system. For base excitation, equation (3.2) 

was rewritten using the absolute displacement and the base excitation which is given by 

55 



Chapter 3 

 ( ) ( ) ( )3
1 0 3 0 02 0w w w w w w wζ ζ′′ ′ ′ ′ ′+ − + − + − =  (3.43) 

The choice in the values of non-dimensional damping terms, i.e. 1ζ  and 3ζ , are 

described in section 3.4.1. The description of the excitations applied for the simulation 

is presented in section 3.4.2. 

3.4.1 Non-dimensional damping value selection 

 The values of cubic damping used for the numerical simulation in Chapter 2 

were estimated based on the equivalent rate of energy dissipation of linear viscous 

damping at the undamped natural frequency, 1Ω = . As a result, the levels of the force 

and absolute displacement amplitude ratios for the nonlinear damping at this frequency 

were about the same as those for linear viscous damping, see figure 2.4. It is noticed 

that, for cubic damping (dashed line), the actual resonance frequencies are slightly 

lower than the undamped natural frequency and are not the same as those for linear 

damping. This frequency could not be explicitly identified using analysis but could be 

estimated numerically using the approximate closed form HBM solutions.  

 The values of non-dimensional linear, 1ζ , and cubic damping, 3ζ , are assigned 

in the range from 0.01 to 1. The relationship between the peak amplitude and value of 

non-dimensional damping is shown in figure 3.1 (a), whilst figure 3.1 (b) shows the 

relationship between the resonance frequency and the value of non-dimensional 

damping. In order to investigate the effect of cubic damping in the high frequency 

region, the amplitude ratio at the resonance frequency for the system with cubic 

damping was fixed at the same level as that for the system with linear damping. Linear 

viscous damping ratio values of 0.1, 0.2 and 0.3 were used. The levels of the amplitude 

ratio for the system with linear damping are explicitly obtained from 
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( ) ( )

2
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2 22
1

1 2
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re re

T
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ζ

+ Ω
=

− Ω + Ω
 (3.44) 

where reΩ  is the frequency of resonance and is given by 

 ( )
1
22

1
1

1 1 8 1
2re ζ
ζ

Ω = + −  (3.45) 

56 



Analysis of a vibration isolator with cubic damping under harmonic excitation 

for 10 1ζ< <  [7]. The corresponding levels of the absolute displacement amplitude 

ratios for 1ζ  = 0.1, 0.2 and 0.3 are 14 dB, 9 dB and 6 dB respectively. Considering the 

peak level of amplitude ratio which linear damping produces, the corresponding non-

dimensional cubic damping 3ζ , which produces a similar level of peak response, can be 

obtained. The corresponding values of 3ζ  are listed in table 3.1 and were applied in the 

numerical simulations. 

 The corresponding resonance frequencies could be obtained from the intersection 

of the lines shown in figure 3.1 (b). It is seen that the resonance frequency with cubic 

damping is lower than that for linear damping provided one has a similar resonance 

peak level. 

3.4.2 Numerical excitations and responses 

 The numerical excitations applied have the same characteristics as those in 

Chapter 2, i.e. harmonic with either constant amplitude of force or constant amplitude of 

base displacement. The frequency components of the time histories for both cases were 

found using Fourier coefficients. Only the Fourier coefficients at the excitation 

frequencies were considered for constructing the amplitude ratios. The Fourier 

coefficients for the higher harmonics were employed for evaluating the THD.  

3.5 Analytical and numerical analyses for specific frequency regions 

 The analysis into the effect of cubic damping on the vibration isolation is 

performed using numerical simulation and the HBM. The numerical plots for the HBM 

are obtained by numerical substitution into equations (3.31) and (3.32) as well as 

equations (3.35) and (3.42) for the cases of force and base excitation respectively.  

The numerical values for 3ζ  given in table 3.1 are used for each case. 

 Figure 3.2 shows comparisons of the force amplitude ratio for the force excited 

systems with cubic damping. The numerical results obtained using HBM approximation 

(dashed line) are compared to the results obtained using numerical simulation (cross 

markers). It is seen that the plots of the force amplitude ratio between the HBM and 

numerical integration results are similar. The exact solutions of force amplitude ratio for 
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the system with linear damping (dotted lines) are also shown in figure 3.2 for 

comparison.  

 Also, shown in figure 3.3 are the displacement amplitude ratios for the base 

excited isolation systems with cubic damping. The results obtained using the HBM 

approximation (solid line) are compared to those obtained using numerical simulation 

(cross makers). It is noticed that there is almost no difference between these two plots 

and the approximate HBM expressions are confirmed.  

 Therefore the subsequent examination given in the following sections are 

performed based solely on the numerical plots obtained using the HBM solutions and 

the simplified expressions listed in table 3.2. The examination and discussion present 

the responses for four frequency regions, i.e. 1Ω , 1Ω ≈ , 2Ω ≈  and 1Ω  

respectively. 

3.5.1 Excitation frequencies well below the undamped natural frequency 

 The plots of the force amplitude ratios are given in figures 3.2 (a) to (c). The 

levels of these ratios at 1Ω  for both linear and cubic damping are similar at about 

unity. The displacement amplitude ratios in this frequency region for base excitation 

shown in figures 3.3 are also at about the level of unity. The resulting HBM 

simplifications for both linear and cubic damping listed in row (a) of table 3.2 also are 

in accordance with this behaviour.  

 In addition, the plots of phase lag show that the phase in this frequency region is 

approximately zero. This is typically referred to as quasi-static behaviour. As a result, 

the relative velocity across the damper is close to zero. Hence there is no contribution to 

either the transmitted force or motion via the damping component in this frequency 

region. As such, at this stage, one might conclude that the damper does not have a 

significant effect at these low frequencies. 

3.5.2 The response around the undamped natural frequency 

 The analysis for this frequency region, i.e. 1Ω ≈ , aims to reveal the capability of 

cubic damping to suppress the amplitude in the amplification zone. Note that the value 

of non-dimensional cubic damping for either the case of force or base excitation was 
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chosen to produce the equivalent level of amplitude ratio for the linear system. 

Therefore, the amplitudes of resonance peaks in either figures 3.2 (a) to (c), for the force 

case, or figures 3.3 (a) to (c), for the base case, are similar to those for the cases of 

linear damping systems.  

 It can be seen that the greater the value of cubic damping for either case results 

in a lower level of the peak response. These results are consistent with the simplified 

expressions listed in row (b) of table 3.2. It is apparent that the level of the amplitude 

ratio contains a term which is inversely related to the value of the damping. Therefore it 

is in accordance of the numerical results that increasing the level of either linear or 

cubic damping reduces the level of both the force and displacement amplitude ratio. 

 One might expect to estimate the value of non-dimensional cubic damping by 

equating the simplified expressions given in row (b) of table 3.2 for linear and cubic 

damping. As a result, one obtains 

 ( )3
3 1

4 2
3

ζ ζ≈  (3.46) 

Note that, the value of non-dimensional cubic damping calculated from equation (3.46) 

will only produce comparable response amplitude to that for linear damping at the 

undamped natural frequency, i.e. Ω ≈ 1. It does not produce comparable response 

amplitude ratio at the actual resonance frequency. In addition, equation (3.46) gives the 

same value of non-dimensional cubic damping obtained using equivalent value of linear 

viscous damping as shown in table 2.1.  

3.5.3 The behaviour in lower frequencies of the isolation zone 

for the linear system 

 It is commonly known that the start of the isolation region for a SDOF system 

with linear viscous damping is at the non-dimensional frequency 2Ω = . The level of 

either force or displacement transmissibility at this frequency can be obtained exactly by 

substituting 2Ω =  into equation (3.39) and is equal to unity. For the nonlinear system 

the isolation region might or might not start exactly at 2Ω =  depending on level of 

nonlinearity. However, the approximate solutions obtained using HBM, as shown in 

figure 3.2 for force excitation and figure 3.3 for base excitation, are in fairly good 

59 



Chapter 3 

agreement to the numerical simulation results. The figures show that the levels of 

amplitude ratio at 2Ω =  are about unity. 

 Further investigation into the response amplitude at higher harmonics of this 

excitation frequency, figure 3.4, found that the response amplitudes of other harmonics 

are relatively small compared to that at the excitation frequency. For example, 

figure 3.4 (c) shows the force amplitude of the third harmonic at around 15 dB lower 

than that at the excitation frequency (around 17% of the amplitude at the fundamental 

harmonic) and even smaller for the fifth and seventh harmonics.  

 So using only the Fourier coefficient at the excitation frequency is acceptable for 

this instance. For that reason, the HBM approximation is also acceptable. The resulting 

simplifications for the amplitude ratio for nonlinear systems at this frequency are about 

unity, as seen in row (c) of table 3.2.  

3.5.4 The excitation frequency much above the undamped natural frequency 

 The isolation zone can be considered as when the excitation frequency is much 

higher than the natural frequency, i.e. 1Ω . For a SDOF system with linear viscous 

damping the amplitude ratio is known to reduce inversely proportional to the excitation 

frequency, i.e. -20 dB per decade. A higher value of linear damping causes a detrimental 

higher level of response in this frequency region. 

 The force amplitude ratios for the system with pure cubic damping in this 

frequency region shown in figure 3.2 are seen to be rolling off at -40 dB per decade. 

The plots of phase lag between the transmitted and excitation force for the system with 

cubic damping are constant at around π− radians. The plots of force amplitude ratios in 

this frequency region appear consistent with the simplified expression given in row (d) 

of table 3.2. For the case of force excitation, it is seen that the force amplitude ratio 

decreases in proportion to the excitation frequency squared, i.e.-40 dB per decade, 

independently of the cubic damping value.  

 One can consider that this is a preferable characteristic for vibration isolation at 

high frequencies, i.e. less force being transmitted via isolator. These results are also 

consistent with the results reported in the literature, e.g. [26] and [35], that the cubic 
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damping is beneficial for the case of force excitation. The reason for this beneficial 

effect from the cubic damping is discussed in section 3.6.1. 

 In contrast, the isolator with cubic damping under base excitation does not 

perform as well as that for the force excitation case. The level of absolute displacement 

amplitude ratio in this frequency region tends towards the level of unity as shown in 

figure 3.3. Also the phase lag of the isolated mass with respect to the base excitation 

tends to zero as excitation frequency increases. As such, for 1Ω , it is not just the 

equality in the level of displacement amplitude but the isolated mass and the base tend 

to be moving together. It is also noticeable from figure 3.3 (c) that a greater value of 

cubic damping causes the level of the amplitude ratio in the isolation region to tend 

towards 0 dB at a lower frequency compared to that in figure 3.3 (a). 

 The simplified expression for the displacement amplitude ratio for base 

excitation given in row (d) of table 3.2 also shows that an increase in excitation 

frequency results in the level of displacement amplitude ratio being close to unity. 

Increasing the value of cubic damping increases the amplitude ratio which rises towards 

unity sooner. This means that the displacement amplitude of the isolated mass is going 

to be equal to that of the base excitation at high frequencies. This is consistent with the 

plot shown in figure 3.3.  

 To this end, the cubic damping on a base excited vibration isolation system can 

be considered as a rigid connection at high frequencies. As such it does not allow any 

significant relative motion to occur as seen from the relative displacement amplitude 

ratio for the base excitation with cubic damping given in row (e) of table 3.2. These 

results appear to be in accordance with those reported in the literature, e.g. [33] to [35] 

and [47].  

 However, the consideration that the damping is acting as a rigid connection is not 

strictly correct. This is because the damping would never be rigid and the relative 

velocity across the damper would never be zero. Such consideration is discussed in 

detail again in section 3.6.1.  
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3.6 Further discussion and analysis into the effect of cubic damping 

 The results shown in the previous section are about the outcome in terms of the 

amplitude ratio and the phase lag. The presence of cubic damping appears useful for 

force isolation. In the isolation region it produces lower amplitude of the transmitted 

force than that for linear damping. On the other hand, it would not be preferable for the 

case of base excitation because the displacement amplitude ratio in the isolation region 

increases and becomes close to unity. It is interesting to establish the reason why the 

cubic damping can be beneficial for one system and detrimental for another.  

 The reason for such occurrences is investigated and reported here in this section 

by means of the relative velocity and damping force. The existence of the response at 

higher harmonics is also presented here using the THD. In addition, the effect of cubic 

damping when the base excitation is specified to have a constant velocity amplitude at 

all frequencies is examined. This latter case corresponds to the input base displacement 

having an amplitude inversely proportional to the excitation frequency. 

3.6.1 An investigation by means of the damping force 

 The damping force is the key feature to display the physical influence of the 

cubic damping since it is a result of a nonlinear function. The amplitude of the damping 

force can indicate the isolation performance. It should be higher around the resonance 

frequency in order to suppress the motion of the system mass. On the other hand, for an 

ideal isolator, it should be minimised in the isolation region, so replicating an undamped 

system.  

 The investigation was introduced by considering the level of damping force only 

in the isolation region, 1Ω , for which the different effect of cubic damping is 

apparent. The analytical expression for the damping force can be obtained from the 

corresponding product of the relative displacement and the pre-defined expression  

B  or C , given in equation (3.9). As a result, the damping forces for the case of  

force excitation are obtained respectively for linear and cubic damping by 
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 1
1 1

2
d fF BU ζ

= =
Ω

 (3.47) 

 3 3
3 3 3

3
4d fF CU ζ

= ≈
Ω

 (3.48) 

where 1fU  and 3fU  are the relative displacement for linear damping and cubic damping 

respectively for the force case, listed in row (e) of table 3.2. It is seen that the linear 

damping force decreases inversely proportionally to the excitation frequency, i.e. at  

20 dB per decade, whereas the cubic damping force decreases inversely proportional to 

the excitation frequency cubed, i.e. at 60 dB per decade. These approximate expressions 

are included in the numerical plots shown in figure 3.5. The amplitude of the cubic 

damping force can be considerably lower than the linear damping force for a specific 

excitation frequency high above nω . In other words, there is almost no force transmitted 

via the damping component. So this is the background reason for the beneficial effect of 

cubic damping on the force excited system. 

 The damping forces for base excitation systems possessing separately linear and 

cubic damping can be determined respectively from  

 1 1 12d wF BU ζ= = Ω  (3.49) 

 3 2
3 3d wF CU= ≈ Ω  (3.50) 

where 1wU  and 3wU  represent the relative displacement for linear and cubic damping 

respectively and is given in row (e) of table 3.2 for the base case. The damping forces 

for this case appear in contrast to those for the case of force excitation. The linear 

damping force increases directly proportionally to the excitation frequency. The cubic 

damping force increases proportionally to the excitation frequency squared regardless of 

the value of cubic damping.  

 The expressions for damping force for 1Ω  given in equations (3.49) and 

(3.50) are in agreement with the numerical results and shown in figure 3.6. It is apparent 

that the cubic damping forces at high excitation frequencies increase by 40 dB per 

decade. Thus at the very much higher excitation frequencies above nω , the damping 

component becomes responsible for transmitting the motion of the base to the isolated 
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mass. The level of displacement amplitude ratio approaches unity which is detrimental. 

Note that the cubic damping force increases with 2Ω  only when 1Ω . As frequency 

increases then the level of amplitude ratio asymptotes to unity and damping force 

asymptotes to infinity. 

 Mitigation of the higher level of cubic damping force at high excitation 

frequencies might be achieved by alternative higher order isolation models, for 

example, the Zener or the two-stage base excited isolation system. The effect of cubic 

damping on these two models is presented in Chapter 4. 

 In addition, the non-dimensional cubic damping given in equation (3.5) is a 

function of the excitation amplitude squared. Thus a higher excitation amplitude can 

result in a higher value of cubic damping. Therefore, awareness should be raised of the 

effect excitation level applied, especially for the system for which the input amplitude 

could not be identified. 

3.6.2 Total Harmonic Distortion analysis 

 As mentioned in section 2.4.4, the response of the nonlinear system exhibits 

harmonic frequencies apart from the excitation frequency. The waveform of the 

response at the excitation frequency could be distorted due to the appearance of higher 

harmonics. The harmonics considered here were the 2nd to 7th harmonics. The higher 

harmonics are neglected because the impact on the distortion of the signal is 

comparatively small. 

 Figure 3.7 shows the THD of the 2nd to 7th harmonics obtained from the 

numerical integration. The highest amplitude of the THD for the case of force 

excitation, dashed line, is about 20% at around Ω = 1, figure 3.7 (c). It means that 

increasing the value of 3ζ  increase the transmitted force at the odd harmonics of the 

excitation frequencies, which could result in the response at the resonance frequency. 

For example, the response at Ω = 1 is the fifth harmonic for the excitation frequency at 

Ω  = 0.2. Therefore, one should be aware of such instances and should consider the use 

of cubic damping by regarding the influence of the responses at higher harmonics.  

 On the other hand, the plots of THD for the case of base excitation at the 

frequency around resonance are much lower compared to that for the case of force 
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excitation. Figure 3.7 (c) shows that the value of THD for the case of base excitation is 

lower than 5% and reduces in inverse proportion to the level of cubic damping force, i.e. 

the higher cubic damping force corresponds to the lower level of the THD. This 

occurrence supports the notion that the damping is acting almost rigidly at the high 

excitation frequencies which results in the lower nonlinearity effect. 

 Moreover, the analysis of THD does not only inform one about the occurrence of 

harmonics in the response but also improves the confidence of the analytical and 

numerical results. These results support the assumptions of the HBM namely that the 

response is dominated harmonically at the excitation frequency and the use of Fourier 

coefficients at the excitation frequency is reasonably acceptable. 

3.6.3 The effect of cubic damping on a base isolation subject to a constant 

amplitude harmonic velocity excitation 

 This section gives a further analysis of the effect of cubic damping on the base 

excited isolation when the amplitude of displacement base excitation reduces in 

proportion to the excitation frequency. Such an excitation characteristic can be 

considered as a harmonic velocity which has a constant amplitude. The velocity of the 

base displacement excitation for this instance is given by 

 ( ) ( )0 0 sinx t X tω ω= −  (3.51) 

For the constant velocity amplitude, the product of 0Xω  is kept constant for all 

frequencies, i.e. 

 ( ) ( )0 0 0sin nx t X t Xω ω ω= = Ω  (3.52) 

where nω ω= Ω . Thus, one has the amplitude of displacement excitation decreases in 

inverse proportion to the excitation frequency, i.e. 

 0
0

n

x
X

ω
=

Ω



 (3.53) 

Using the amplitude of displacement excitation given in equation (3.53), the non-

dimensional cubic damping term given in equation (3.5) becomes inversely proportional 

to the excitation frequency squared and is given by 
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 (3.54) 

Equation (3.54) shows that for a constant input velocity amplitude the value of cubic 

damping tends to zero as the excitation frequency increases, 3 0ζ →  as Ω → ∞ . The 

expression of C  given in equation (3.9) becomes 

 3
3 3

3 3
4 4

C ζ ζ= Ω = Ω   (3.55) 

where 23
3 0

c x
km

ζ =  .  

 Substituting the expression of C  given in equation (3.55) into equation (3.41) 

results in an approximation of relative displacement at the excitation frequencies well 

above resonance, 1Ω , becoming 1U ≈ . As a result, an approximation of the 

absolute displacement amplitude ratio at this frequency region is given by 

 33
4

W ζ
≈

Ω



 (3.56)  

Equation (3.56) reveals that the absolute displacement amplitude ratio at 1Ω  due to 

harmonic excitation with constant velocity amplitude decreases inversely proportional 

to the excitation frequency. The analytical approximation for the constant amplitude 

harmonic velocity excitation is also described in Appendix C.  

 The numerical responses due to the constant velocity amplitude are shown in 

figure 3.8. The figure evidently shows a reduction in the displacement amplitude ratio at 

high excitation frequencies in comparison to those for linear viscous damping. 

However, the response in the isolation region is directly related with the value of the 

non-dimensional cubic damping. Thus the system with a very high value of cubic 

damping does not provide excellent vibration isolation compared to that with lower 

value. However, the application of cubic damping on the constant velocity base excited 

vibration isolation model as shown in figures 3.8 (a) and (b) is particularly beneficial. 

This is because the system with linear damping does not get any benefit from the 

reduction of the input displacement amplitude. This is one of the possible advantages 
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obtained from the presence of cubic damping characteristic on the base excitation 

system for the constant amplitude harmonic velocity input.  

3.7 Conclusions 

 Cubic damping was introduced into the SDOF isolation system which is subject 

to either force or base excitation. The effect of cubic damping was examined using two 

techniques, i.e. the HBM analysis and numerical simulations. The effects of cubic 

damping for each excitation scenario were contrasted as well as being compared to the 

system with linear viscous damping.  

 An analytical examination of the amplitude ratio was considered for four specific 

frequency regions, i.e. 1Ω , 1Ω ≈ , 2Ω ≈  and 1Ω . These correspond to 

excitation frequencies well below nω , around nω , at the frequency when the isolation 

occurs for the linear isolation and well above nω . The numerical plots obtained from the 

approximate closed form solutions are in good agreement with the numerical results 

obtained using ODE45.  

 The responses in the isolation region were of primary concern, as the cubic 

damping performed differently for the force and base excitation. It reduces remarkably 

the level of the force amplitude ratio for the former compared to the level caused by 

linear damping in the isolation. On the other hand, a high vibration level for the isolated 

mass occurs with cubic damping for base excitation. This is because the relative 

velocity across the damper is increasing proportional to the excitation frequency. This is 

the opposite of what happens for the force excitation. As a result, the damping forces for 

these two systems appear very different. It is apparent that the level of cubic damping 

force for the base excited system increases proportionally to the excitation frequency 

squared. This results in a high vibration amplitude of the isolated mass.  

 The application of base excited vibration isolation possessing cubic damping is 

more preferable when the excitation is velocity constant. For some particular values of 

cubic damping, the system produces better isolation performance over the linear 

damping system. However, it is important to be reminded that the effect of cubic 

damping for either case is directly related to the excitation amplitude squared. 

Therefore, the detrimental effect of cubic damping on the base isolation system could be 
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more pronounced for the larger excitation amplitude. Thus for the practical situations 

where cubic damping cannot be eliminated and the excitation amplitude is not known, 

care must be taken to avoid possible damage to the system. 

 However, since the source of the detrimental behaviour has been discovered, the 

isolator modification or improvement can be contributed using this knowledge. As the 

cubic damping force for the base excited isolation is known to increase proportionally to 

the excitation frequency squared thus at high frequencies well above undamped natural 

frequency it locks the isolated mass to the base excitation becoming unity. To isolate 

such a combined unit using an additional spring could be expected. For example, in next 

chapter, the application of higher order base excitation models including an additional 

spring are introduced in order to reduce the detrimental effect caused from the cubic 

damping or even turn it into a benefit for base isolation.
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Table 3.1   The values of non-dimensional cubic damping for the numerical simulation which 
produce the similar level of peak amplitude to the linear viscous damping. 

 
 1ζ = 0.1 1ζ = 0.2 1ζ = 0.3 

Force excitation 3ζ ≈ 0.011 3ζ ≈ 0.092 3ζ ≈ 0.325 

Base excitation 3ζ ≈ 0.013 3ζ ≈ 0.152 3ζ ≈ 0.787 

 

 
Table 3.2   Approximate expressions for the amplitude ratio over four frequency regions for 

force and base excitation, comparison of the system response with cubic damping 
to linear damping. 

 

Frequency 
region 

Row 
index 

Linear viscous 
damping 

Cubic damping  
for the case of  

force excitation  

Cubic damping  
for the case of  
base excitation  

Amplitude ratio for the transmitted force and absolute displacement 

1Ω  (a) 1rT ≈  1tF ≈  1W ≈  

1Ω ≈  (b) 
( )2
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≈ +  

 
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(d) 12
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Ω

 2

1
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Ω
 

2
3

3

41
3

W
ζ

 
≈ −  Ω 

 

Amplitude ratio for the relative displacement  
between the isolated mass and base at 1Ω  

(e) 

Force excitation:  

1 2

1
fU ≈

Ω
 

Base excitation: 

1 1wU ≈  

3 2

1
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Ω
 

1
3

3
3

4
3wU
ζ

 
≈  Ω 
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(a) 

 
 
(b) 

 
 
Figure 3.1   The relationship between the non-dimensional damping terms to the corresponding 

level of amplitude ratio and resonance frequency. 
 (a)  Relationship between Non-dimensional damping and Amplitude ratio 
 (b)  Relationship between Non-dimensional damping and Frequency ratio 
  Linear viscous damping obtained from equations (3.44) and (3.45) 
  Cubic damping for the force excited isolation model 
  Cubic damping for the base excited isolation model 
  Linearly damped response with 1ζ  = 0.2 

  Force excitation with 3ζ  = 0.092 

  Base excitation with 3ζ  = 0.152 
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 Amplitude ratio Phase 
(a) 

  
(b) 

  
(c) 

  
 
Figure 3.2   Force amplitude ratio and the phase lag for the SDOF isolation possessing cubic 

damping in comparison to the exact solution of linear viscous damping for the case 
of force excitation. 

 (a)  1ζ  = 0.1 and 3ζ  = 0.011 

 (b)  1ζ  = 0.2 and 3ζ  = 0.092 

 (c)  1ζ = 0.3 and  3ζ = 0.325 
  Linear viscous damping 
  Cubically damped response obtained using HBM 
    ×  Cubically damped response obtained using numerical integration 
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 Amplitude ratio Phase 
(a) 

  
(b) 

  
(c) 

  
 
Figure 3.3   Absolute displacement amplitude ratio and the phase lag for the SDOF isolation 

possessing cubic in comparison to the exact solution of the linear viscous damping 
for the case of base excitation. 

 (a)  1ζ  = 0.1 and 3ζ  = 0.013 

 (b)  1ζ  = 0.2 and 3ζ  = 0.152 

 (c)  1ζ  = 0.3 and 3ζ = 0.787 
  Linear viscous damping 
  Cubically damped response obtained using HBM 
    ×  Cubically damped response obtained using numerical integration 
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(a) 

 
(b) 

 
(c) 

 
 
Figure 3.4 Fourier coefficients of the absolute displacement amplitude ratio at 2Ω ≈  

obtained from numerical integration for force and base excitation. 
 (a) 3ζ = 0.011 for force case and 3ζ  = 0.013 for base case 

 (b) 3ζ = 0.092 for force case and 3ζ  = 0.152 for base case 

 (c) 3ζ = 0.325 for force case and 3ζ  = 0.787 for base case 
      represents responses due to force excitation 
     represents responses due to base excitation 
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(a) 

 
(b) 

 
(c) 

 
 
Figure 3.5   Normalised damping force for the case of force excitation. 
 (a)  1ζ  = 0.1 and 3ζ  = 0.011 

 (b)  1ζ  = 0.2 and 3ζ  = 0.092 

 (c)  1ζ = 0.3 and  3ζ = 0.325 
  Linear viscous damping force 
  Cubic damping force obtained using HBM 
     Cubic damping force obtained using numerical integration  

 Asymptote line for the slope of 1 12dF ζ= Ω  

  Asymptote line for the slope of 3
3 33 4dF ζ= Ω  
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(a) 

 
(b) 

 
(c) 

 
 
Figure 3.6 Normalised damping force for the case of base excitation. 
 (a)  1ζ  = 0.1 and 3ζ  = 0.013 

 (b)  1ζ  = 0.2 and 3ζ  = 0.152 

 (c)  1ζ = 0.3 and  3ζ = 0.787 
  Linear viscous damping force 
  Cubic damping force obtained using HBM 
    Cubic damping force obtained using numerical integration 
  Asymptote line for the slope of 1 12dF ζ= Ω  

  Asymptote line for the slope of 2
3dF = Ω  
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(a) 

 
(b) 

 
(c) 

 
 
Figure 3.7 Total Harmonic Distortion for the cubically damped responses obtained using 

numerical integration. 
 (a) 3ζ = 0.011 for the force case and 3ζ  = 0.013 for the base case 

 (b) 3ζ = 0.092 for the force case and 3ζ  = 0.152 for the base case 

 (c) 3ζ = 0.325 for the force case and 3ζ  = 0.787 for the base case 
  Force excited response 
  Base excited response 
 The vertical dotted lines below Ω = 1 represent the excitation frequencies which 

the resonance frequency, Ω = 1, is one of their harmonics, i.e. 1
7 Ω , 1

6 Ω , 1
5 Ω , 

1
4 Ω , 1

3 Ω  and 1
2 Ω  respectively. 
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(a) 

 
(b) 

 
(c) 

 
 
Figure 3.8 Displacement amplitude ratio for the case of base excitation due to constant 

velocity amplitude excitation. 
 (a)  1ζ  = 0.1 and 3ζ  = 0.013 

 (b)  1ζ  = 0.2 and 3ζ  = 0.152 

 (c)  1ζ = 0.3 and  3ζ = 0.787 
  Linear viscous damping response 
  Cubically damped response obtained using HBM 
       Cubically damped response obtained using numerical integration 
  Asymptote line for the slope of 12W ζ≈ Ω  when 1Ω   

  Asymptote line for the slope of 33 4W ζ≈ Ω  when 1Ω  
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Chapter 4 Higher order vibration isolation models 

possessing cubic damping 

 

4.1 Introduction 

 Theoretical results previously reported in Chapter 3 revealed that the presence of 

cubic damping in a base excited single degree of freedom (SDOF) isolation system 

causes high vibration amplitudes of the isolated mass at excitation frequencies high 

above resonance. This is because the relative velocity amplitude increases with 

frequency which results in an increase of cubic damping force, unlike the force excited 

case. The focus of this chapter is to deal with this undesirable effect for only the case of 

displacement base excitation. The applications of two higher order isolation models are 

considered here.  

 Firstly, the one and a half degree of freedom (1 ½-DOF) Zener isolation model 

subject to the harmonic base excitation is introduced. The damper in this model is 

supported elastically using a relaxation spring. In previous studies, a linearly damped 

Zener model has proved to be effective in reducing the response amplitude in the 

isolation region. The response in the isolation region decreases by ∼12 dB per octave 

(40 dB per decade) [23]. As a result, the levels of displacement transmissibility for the 

Zener isolation at high frequencies are much lower than that for a system with a rigidly 

connected linear viscous damper.  

 The application of the Zener model possessing linear plus cubic damping subject 

to shock excitation has also shown an impressive shock isolation performance [32]. The 

severity caused by the presence of cubic damping was reduced by mounting the 

damping component elastically. Thus one might expect a similar mitigation by 

elastically mounting a cubic damper for the case of harmonic excitation. 

 Subsequently another higher order isolation model is considered, namely  

two-stage isolation. The undamped response due to harmonic excitation at frequencies 

high above the secondary resonance is well known to decrease by ∼24 dB per octave 

(80 dB per decade) [40]. The roll-off rate is greater than that of the undamped SDOF 
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system which the roll off rate is 40 dB per decade. Shekhar et al. [32] also reported that 

the isolation performance of the two-stage shock isolator possessing linear plus cubic 

damping is better than the SDOF system having linear plus cubic damping and is even 

better than other isolation models considered in the cited paper. Thus the two-stage 

vibration isolation has been adopted here, with the expectation of reducing the large 

vibration amplitude in the isolation region for the case of harmonic excitation. 

 The effect of cubic damping on these two isolation models is explored 

analytically using the Harmonic Balance Method (HBM). Numerical integration is also 

performed using the ODE45 solver under a constant displacement harmonic base 

excitation. The analytical and numerical analyses are expected to show the advantage of 

the application of these higher order models. The outcome of the investigation for these 

isolation models might contribute to improving the isolation capability of systems 

possessing a cubic damping characteristic. 

4.2 A base excited Zener model 

 The model is shown in figures 4.1 (a) and (b). The damping component is 

working in series with the relaxation spring, rk . This spring can either be inserted 

between the base and the damper, figure 4.1 (a), or inserted between the damper and the 

isolated mass, as shown in figure 4.1 (b). Theoretically, when the relaxation spring and 

the damping component are assumed massless, these two components experience the 

same force in either case. There is no difference in the response of the isolated mass due 

to the location of the relaxation spring. Thus the model shown in figure 4.1 (a) was 

chosen here for examination. 

4.2.1 Governing equations of motion and non-dimensional quantities 

 Figure 4.1 (a) shows the series combination of the cubic damper and relaxation 

spring working in parallel with the primary spring, k . The governing equation of 

motion for the mass is given by 

 ( ) ( ) ( )3
1 3 0 0r rmx c x x c x x k x x+ − + − + − =      (4.1) 

where m  is the isolated mass. 1c  and 3c  are the linear and cubic damping coefficients 

respectively. x , x  and x  are the displacement, velocity and acceleration of the isolated 
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mass. rx and rx  are the displacement and velocity at the junction of the damper with the 

relaxation spring. 0x  is the displacement base excitation.  

 In addition to equilibrium of the mass, the junction between the relaxation spring 

and the damper must also be in equilibrium. Since the junction is massless the damping 

force has to balance the spring force, i.e. 

 ( ) ( ) ( )3
1 3 0r r r rc x x c x x k x x− + − = −     (4.2) 

This additional first order equation makes the Zener isolation model being considered as 

a one and a half degree of freedom (1 ½-DOF). Therefore in this chapter, the SDOF 

system refers to a rigidly connected damping as examined previously in Chapter 3. 

 There are two frequency limits for the natural frequency, referred to here as 

lower and upper bound frequencies. The first frequency occurs when both damping 

coefficients 1c  and 3c  are zero. This is the lower bound on the natural frequency of the 

system and is defined by 

 n
k
m

ω =  (4.3) 

It is identical to the undamped natural frequency for the SDOF system. The upper 

bound on the natural frequency occurs when either of the damping coefficients 1c  or 3c  

are infinitely large. Thus the mass is supported on the two springs, primary spring k and 

relaxation spring rk . This corresponds to the undamped natural frequency which is 

given by 

 r
u

k k
m

ω +
=  (4.4) 

 The non-dimensional time for the case of the Zener model is defined by 

considering the lower bound natural frequency, i.e. 

 ntτ ω=  (4.5) 

The frequency ratio is also defined using the lower bound natural frequency, i.e. 

 
n

ω
ω

Ω =  (4.6) 

81 



Chapter 4 

It is convenient to define the stiffness ratio which is the ratio of the spring stiffness rk  

with respect to the primary spring k , i.e. 

 r
z

k
k

κ =  (4.7) 

Note that, only a positive relaxation stiffness is considered here, i.e. 0zκ ≥ . A stiffness 

ratio of zero corresponds to the undamped SDOF system whereas a stiffness ratio of 

infinity corresponds to a rigidly connected damper SDOF system.  

 For harmonic base excitation ( )0 0 cosx X tω= , the normalised variables are 

defined by 

 xw
X

= , 2
n

xw
Xω

′′ =
 , rx xu

X
−

=  and  r

n

x xu
Xω

−′ =
 

  (4.8) 

where X  is the displacement amplitude of the isolated mass and the base excitation at 

zero frequency. u  and u′  are the normalised relative displacement and velocity between 

the isolated mass and the junction of the relaxation spring and damper. w represents the 

normalised absolute displacement of the isolated mass. ( )′  and ( )′′  are the first and 

second derivatives with respect to the non-dimensional time τ . Substituting the 

quantities given in equation (4.8) into equations (4.1) and (4.2), then dividing by 

quantity 2
nm Xω  produces 

 ( )3
0 1 32w w w u uζ ζ′′ ′ ′+ = − −   (4.9) 

and 

 ( ) ( )3
1 3 02 z zu u u w wζ ζ κ κ′ ′+ + = −    (4.10) 

The resulting non-dimensional cubic damping term is an outcome and is given by  

 23
3 n

c X
m

ζ ω=  (4.11) 

Equation (4.11) is identical to that given in equation (3.5) which is dependent upon the 

excitation amplitude squared. Later, equations (4.9) and (4.10) will be solved 

analytically using the HBM and numerically using ODE45. The resulting cubically 
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damped Zener model will be examined in comparison to the base excitation systems 

with rigidly connected linear and cubic damping. 

 In addition, it is also convenient to define the ratio of the lower and upper bound 

frequencies, i.e. 

 1u
b z

n

ω κ
ω

= Ω = +  (4.12) 

As the excitation frequency approaches uω , large vibration amplitude can occur for a 

system with high value of viscous damping. It was also reported in Ruzicka [37] that, 

for a particular value of the stiffness ratio, increasing the value of linear viscous 

damping from 0 to ∞ results in the resonance peak shifting from nω  to uω  as shown in 

figure 4.2.It is seen that the peak amplitude of absolute displacement transmissibility for 

the linear viscous damping, 1ζ , of 0.5 is lowest among the others. Thus the optimum 

value of linear viscous damping, which produces the minimum peak response for a 

specific value of stiffness ratio, was expected and determined.  

 However, the study here did not aim to find the optimum value of damping. 

Instead, the level of damping was kept constant at particular values and the value of 

stiffness ratio was varied. One might anticipate different amplitudes of the peak 

response resulting from different values of stiffness ratio. Therefore, in contrast to the 

previous study, the optimum value of stiffness ratio, which produces the minimum peak 

amplitude for a particular damping level, was to be determined.  

4.2.2 Analytical solution using the Harmonic Balance method 

 Only the case of pure cubic damping is examined analytically here, i.e. the linear 

viscous damping ratio 1ζ  is set to zero. Thus equations (4.9) and (4.10) reduce to 

 ( )3
0 3w w w uζ′′ ′+ = −   (4.13) 

and 

 ( ) ( )3
3 0z zu u w wζ κ κ′ + = −   (4.14) 
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The normalised harmonic base excitation given by ( )0 cosw τ= Ω  is expected to 

produce harmonic absolute and relative displacements in forms of 

 ( )cos ww W τ φ= Ω − and ( )cos uu U τ φ= Ω −




   (4.15) 

where W and U are the normalised amplitudes of the absolute and relative displacement. 

wφ  and uφ


 are phase lags of the absolute and relative motion with respect to the base 

excitation. Note that U is the relative displacement across the damper or between the 

junction and isolated mass. In other words, it is not the relative displacement between 

the isolated mass and base excitation. 

 Substitution of the excitation and responses into equations (4.13) and (4.14) 

produces respectively 

 ( ) ( ) ( ) ( )2 3 3 3
31 cos cos sinw uW Uτ φ τ ζ τ φ− Ω Ω − = Ω + Ω Ω −



  (4.16) 

and 

( ) ( ) ( ) ( )3 3 3
3 sin cos cos cosu z u z w zU U Wζ τ φ κ τ φ κ τ φ κ τ− Ω Ω − + Ω − = Ω − − Ω

 

   (4.17) 

By integrating the product of the terms in left and right sides of equations (4.16) and 

(4.17) with the trigonometric functions over a period of 2π Ω  , the same process as 

those given in Chapter 3, i.e. 

 ( ) ( )
2

0

sing d

π

τ τ τ
π

ΩΩ
Ω∫   and ( ) ( )

2

0

cosg d

π

τ τ τ
π

ΩΩ
Ω∫  (4.18) 

where ( )g τ  represents functions of non-dimensional time given in equations (4.16) and 

(4.17). As a result, equations (4.16) and (4.17) can be rearranged to form 

 ( ) ( )3sin cosw uAW CUφ φ=


  (4.19) 

   ( ) ( )3cos 1 sinw uAW CUφ φ= −


  (4.20) 

  ( ) ( ) ( )3sin cos sinz u u z wU CU Wκ φ φ κ φ− =


   (4.21) 

  ( ) ( ) ( )3cos sin cosz u u z w zU CU Wκ φ φ κ φ κ+ = −
 

   (4.22) 

where 21A = − Ω  and 3
3

3
4

C ζ= Ω . Squaring and adding equations (4.19) to (4.22) 

eliminates W  and hence 
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 ( ) ( )2 22 6 2 2 4
z z zA C U A Uκ κ κ+ + = Ω   (4.23) 

Equation (4.23) is a cubic polynomial in 2U . The three solutions of equation (4.23) 

comprise one real and two complex conjugates because the coefficient of 4U  is zero. 

The real solution of equation (4.23) is given by 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

2
36 2 22 4 4 8 2

2
1
36 22 4 4 8 2

108 12 12 81 121
6

108 12 12 81

z z z z z z

z z z z z z

A C A A C A
U

A C A C A A C

κ κ κ κ κ κ

κ κ κ κ κ κ

Ω + + + Ω + −
=

+ Ω + + + Ω +

  (4.24) 

Equation (4.24) is the square of the amplitude ratio for the relative displacement 

between the isolated mass and the junction. The square of the absolute displacement 

amplitude ratio of the isolated mass is given by 

 ( )
( )

22 2 4
2

22 2 2 4

1z z

z z

C U
W

A A C U
κ κ

κ κ

+ +
=

+ +





 (4.25) 

 Equations (4.24) and (4.25) do not explicitly show the effect of cubic damping, 

thus equation (4.23) is examined for three frequency regions, i.e. 1Ω , bΩ ≈ Ω  and 

1Ω  to obtain approximate simplified expressions for the responses. The frequency 

ratio at bΩ ≈ Ω  ( 1b zκΩ = + ) is of interest since it is the upper bound for the natural 

frequency of the mass vibrating on the two parallel springs. Its relevance was explained 

previously for the system with high damping level. The detailed derivations of the 

approximations for the three frequency regions are given in Appendix C. The resulting 

simplified expressions are listed in table 4.1 in comparison to those for the SDOF 

system with pure cubic damping reported in Chapter 3. 

4.2.3 Numerical procedure and solutions 

 Numerical simulations were carried out to solve equations (4.9) and (4.10) for 

the case of linear and cubic damping. The values of non-dimensional damping chosen 

were the same as those applied for the SDOF system presented in Chapter 3, i.e. 

1ζ  = 0.1, 0.2,0.3 and 3ζ  = 0.013, 0.152, 0.787.  
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 The values of the stiffness ratio zκ  chosen were 1, 8, 48 and 99. These stiffness 

ratios correspond to the frequency ratio of bΩ = 2 , 3, 7 and 10. The responses for 

these stiffness values are shown in comparison to those for the SDOF base excitation as 

in Chapter 3, which corresponds to the limit as zκ → ∞ .  

 The Fourier coefficients at the excitation frequencies were estimated to construct 

the amplitude ratios between the isolated mass and the base excitation. The motion of 

the junction between the damping and relaxation spring is not presented here. The 

numerical results for the cubically damped system is examined and discussed later in 

conjunction with the analytical results. 

4.2.4 Performance of a linearly damped Zener model 

 The performance of the linearly damped Zener model is briefly provided here to 

illustrate the basic idea. The numerical results for the amplitude ratios are shown in 

figure 4.3 for different values of stiffness ratio with a specific value of damping. The 

responses for the SDOF system ( zκ = ∞ ) with the same value of damping are also 

plotted in the figure using a solid thin line.  

 It is seen that a softer stiffness ratio and heavier damping, see figures 4.3 (b) and 

(c), result in the peak response shifted to the right, which is noticeable clearly from the 

response for zκ = 1 (blue solid lines). The softer relaxation spring also produces the 

lower displacement amplitude ratio at high frequencies. The response in the isolation 

region for zκ = 1 follows the mass line of the undamped SDOF system, i.e. 40 dB per 

decade. As such, the detrimental effect of the linear damper in the isolation region can 

be circumvented by increasing the flexibility of the relaxation spring. Therefore, one 

might hypothesise that employing a relaxation spring in series with a cubic damper 

might produce a similar effect. 

4.2.5 Performance of a cubically damped Zener model and discussion 

 A numerical examination is conducted using figure 4.4, which shows numerical 

integration results for the amplitude ratios for the Zener model with cubic damping. 

Also shown are results for the cubically damped SDOF system ( zκ = ∞ ) using a solid 
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thin line. These plots show that the application of the heavy damping results in a higher 

peak at the excitation frequency around n bω ω = Ω  as shown in figure 4.4 (c). It shows 

that the level of the peak for zκ = 8 is the lowest amongst the chosen values of stiffness 

ratio. The peak in the amplitude ratio appears highest for zκ = 1 and 99. The chosen 

values of stiffness ratio also shift the frequency of resonance for the system with high 

damping level corresponding to the frequency given in equation (4.12). However, the 

numerical results show that the application of the Zener model can reduce the 

detrimental effect of cubic damping in the isolation region compared to the SDOF 

response. 

 An analytical examination is conducted using the simplified expressions for the 

absolute displacement amplitude ratio given in table 4.1, which provide insight into the 

effect of cubic damping in the Zener model. The simplified expressions for the cubically 

damped SDOF system are also listed for comparison. Considering firstly the low 

frequency region, for which 1Ω , the levels of estimated amplitude ratios for both 

systems are about unity. This is due to the so-called quasi-static behaviour. It indicates 

that the neither type of damping affects the response at these frequencies. 

 When the excitation frequency is around bΩ ≈ Ω , the isolated mass will 

experience a high vibration amplitude. Figures 4.4 (b) and (c), for which the responses 

with high damping level are presented, show the high response amplitude at the 

excitation frequency corresponding to 1b zκΩ = + . The corresponding simplified 

expression for the amplitude ratio, given in row (b) of table 4.1, is given by 

 ( )
9
2

3 4

13
4

z

z

W
κ

ζ
κ
+ ≈  

 
  (4.26) 

In order to explicitly show the influence of stiffness ratio on the level of absolute 

displacement amplitude ratio, one might assume that the stiffness ratio is large and 

finite, i.e. 1zκ  . Thus the level of absolute displacement amplitude ratio is directly 

dependent upon the values of the damping and square root of stiffness ratio. Therefore 

the higher value of either damping or stiffness ratio can result in higher response 

amplitude at bΩ . This is in better agreement with numerical results for the responses 

for higher damping, shown in figures 4.4 (b) and (c) using the circle markers.  
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 An optimum value of zκ  which produces a minimum amplitude ratio at the 

corresponding bΩ can be obtained numerically for fixed values of damping as shown in 

figure 4.5. It shows the relationship between the level of the amplitude and stiffness 

ratios obtained from the solution given in equation (4.25). The minimum level of the 

amplitude ratio for different value of cubic damping can be found at the intersection of 

the dot-dashed blue line. At this point, the optimum value of stiffness ratio for different 

value of cubic damping can be found. For high cubic damping, the minimum level of 

amplitude ratio can be obtained for a stiffness ratio of around zκ ≈ 8.  

 The optimum value of zκ  for high cubic damping, for which resonance occurs at 

bΩ , can also be obtained by taking the derivative of the simplified expression given in 

equation (4.26) with respect to zκ  and equating it to zero, i.e. 

 ( )
9
2

3 4

13 0
4

z

z z z

d dW
d d

κ
ζ

κ κ κ

 +  = =    
 

 (4.27) 

After solving equation (4.27) for zκ , one obtains zκ = 8 which produces the minimum 

amplitude irrespective of the level of cubic damping. Thus for the high cubic damping 

Zener model using zκ = 8, the resonance peak at an upper bound frequency of bΩ = 3 is 

anticipated.  

 The value of stiffness ratio also controls the amplitude ratio at high excitation 

frequencies, i.e. 1Ω . Figure 4.4 also shows that the response amplitude ratio at these 

frequencies reduces as excitation frequency increases whereas that for the SDOF 

increasing towards unity. The simplified expression for the Zener model given in 

row (c) of table 4.1 shows that the level of amplitude ratio decreases proportionally to 

the excitation frequency squared (40 dB per decade) regardless of the value of damping 

but dependent on the stiffness ratio, i.e. 

 2

1zW κ +
≈

Ω
 (4.28) 

The asymptotes obtained from equation (4.28) are plotted in figure 4.4 using dashed 

lines which are colour-coded according to the stiffness ratio. These asymptotes are in 

good agreement to the numerical results. 
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 Also notice that a larger value of zκ  not only increases the level of the amplitude 

ratio but also shifts the isolation region higher in frequency. Thus the stiffness ratio 

should be kept low to maximise the bandwidth of the isolation region. In addition, the 

expression given in equation (4.28) can be compared to the simplified expression of the 

SDOF system with rigidly connected cubic damping which is given by 

 

2
3

3

41
3

W
ζ

 
≈ −  Ω 

 (4.29) 

As seen previously in Chapter 3, at high excitation frequencies, cubic damping produces 

a response of the mass in the SDOF system similar to the base input. Therefore, 

supporting the cubic damping elastically helps to reduce the mass response in the 

isolation region. 

 To this end, one might conclude that it is preferable to mount the damping 

component in series with a relaxation spring. The flexibility of the relaxation spring can 

be chosen to maximise the isolation capability for the base isolation system exhibiting a 

cubic damping characteristic. 

4.3 A two-stage passive isolation possessing cubic damping 

 The two-stage base excited vibration isolation is the other higher order vibration 

isolation model discussed in this study. Its isolation effectiveness is reported to be better 

than the single stage or SDOF system in the case of a linear damper [40,44]. The model 

of two-stage passive vibration isolation for this study is shown in figure 4.1 (c). It 

comprises two sets of isolators which are separated by an intermediate mass. In this 

study, the damping component is inserted only between the isolated mass m  and the 

intermediate mass tm  which is referred to here as the second stage isolation. There is 

only an assumed linear isolator stiffness pk  present between the intermediate mass and 

the base. This stiffness forms the first or the primary stage isolation. 
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4.3.1 Governing equations of motion and non-dimensionalisation 

 The governing equations of motion for the mass m and the intermediate mass tm  

are given respectively by 

 ( ) ( ) ( )3
1 3 0t t tmx c x x c x x k x x+ − + − + − =      (4.30) 

and 

 ( ) ( ) ( ) ( )3
1 3 0 0t t t t t p tm x c x x c x x k x x k x x+ − + − + − + − =      (4.31) 

where pk  is the linear stiffness of the primary stage isolator. tx , tx  and tx  are the 

displacement, velocity and acceleration of the intermediate mass. 

 By considering the model as two uncoupled isolation systems, one can define the 

uncoupled undamped natural frequencies which are given by 

 n
k
m

ω =  and p
p

t

k
m

ω =  (4.32) 

where nω  is the uncoupled undamped natural frequency of the second stage isolation. 

pω  is the uncoupled undamped natural frequency of the mass tm  supported on the 

stiffness pk . The non-dimensional time and the frequency ratio for this case are defined 

based on nω , i.e. ntτ ω=  and nω ωΩ = . The non-dimensional parameters introduced 

for this model are the mass ratio, 

  t
t

m
m

µ =   (4.33) 

and the stiffness ratio, 

  p
t

k
k

κ =   (4.34) 

In the case when tm  is negligible compared to the mass m , and/or pk  is infinitely stiff 

compared to k , the two-stage system reduces to a simple SDOF isolation model.  
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 The disadvantage of the two-stage vibration isolation is the appearance of a 

secondary resonance above the primary resonance [44]. It is a result of having the 

intermediate mass. To obtain the isolation benefit from this model, the secondary 

resonance should be located as close to the primary resonance as possible to broaden the 

isolation zone despite the impracticality for some applications. This can be achieved 

using the optimum value of the stiffness ratio, introduced in references [40,67] and 

given by 

 1t tκ µ= +  (4.35) 

It is seen from equation (4.35) that the mass ratio tµ  and the stiffness ratio tκ  become 

interdependent when chosen in this optimal way. 

 One might normalise the response variables using the amplitude of the harmonic 

base excitation X  and the natural frequency nω . The normalised variables chosen are  

0
0

xw
X

= , xw
X

= , 2
n

xw
Xω

′′ =
 , tx xu

X
−

= , t

n

x xu
Xω

−′ =
 

 ,  and 2
t

n

x xu
Xω

−′′ =
 

   (4.36) 

where 0w  is the normalised base displacement. w  and w′′  are the normalised absolute 

displacement and acceleration of the isolated mass. u , u′  and u′′  are the normalised 

relative displacement, velocity and acceleration between the isolated mass m  and the 

intermediate mass tm  across the second-stage isolator.  

 Substituting the normalised variables and dividing by the quantity 2
nm Xω  

produce 

 ( )3
1 32 0w u u uζ ζ′′ ′ ′+ + + =    (4.37) 

 ( ) ( )3
1 3 02 2t t t t tw w u u u u wµ κ µ ζ ζ µ κ′′ ′′ ′ ′+ = + + + + +     (4.38) 

Similarly to the previous cases, the non-dimensional cubic damping obtained from the 

normalisation is given by 

 23
3 n

c X
m

ζ ω=  (4.39) 

It is also identical to that for the SDOF isolator given in equation (3.5). 
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 The isolation capability of the two-stage model is also examined analytically 

using the HBM and numerically using direct integration. The capability of a two stage 

isolation system with cubic damping is compared to the corresponding linear damping 

system.  

4.3.2 Analytical solution using the Harmonic Balance method 

 The harmonic responses due to the harmonic base excitation, ( )0 cosw τ= Ω  are 

expected as 

 ( )cos ww W τ φ= Ω − and ( )cos uu U τ φ= Ω −




   (4.40) 

where wφ  and uφ


 are the phase lags for the isolated mass m  and the relative motion 

with respect to the base excitation. 

 After substitution of these quantities into equations (4.37) and (4.38), and the 

application of orthogonality, see the application as shown in equation (4.18), this yields 

four equations as follows: 

 ( ) ( ) ( ) ( )2 3sin sin cos cosw u u uW U BU CUφ φ φ φΩ = − −
  

    (4.41) 

 ( ) ( ) ( ) ( )2 3cos cos sin sinw u u uW U BU CUφ φ φ φΩ = + +
  

    (4.42) 

 ( ) ( ) ( ) ( )3sin sin cos cosw u u uAW DU BU CUφ φ φ φ= − −
  

    (4.43) 

 ( ) ( ) ( ) ( )3cos cos sin sinw u u u tAW DU BU CUφ φ φ φ κ= + + +
  

    (4.44) 

where ( )21 1tA µ= − Ω + , 12B ζ= Ω , 3
3

3
4

C ζ= Ω  and ( )21 2tD µ= − Ω + . 

Algebraic manipulation of equations (4.41) to (4.44) produces 

 ( )4 2 2 6 4 2 22 1W C U BCU B UΩ = + + +    (4.45) 

and 

 ( ) ( ) ( )22 22 2 2 3 2 4
tA D U A BU CU κ− Ω + − Ω + = Ω    (4.46) 
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For the case of linear viscous damping, i.e. 0C = , the solutions of equations (4.45) and 

(4.46) are given by 

 
( ) ( )

2 4
2

2 22 2 2

tU
A D A B

κ Ω
=

− Ω + − Ω
  (4.47) 

 
( )

( ) ( )

2 2
2

2 22 2 2

1t B
W

A D A B

κ +
=

− Ω + − Ω
 (4.48) 

For the case of pure cubic damping, i.e. 0B = , equations (4.45) and (4.46) become 

 2 6 2 4 2C U U W+ = Ω   (4.49) 

 ( ) ( )2 22 2 6 2 2 4 2
tA C U A D U κ− Ω + − Ω = Ω   (4.50) 

 The amplitude ratio for the relative displacement amplitude ratio squared, 2U , 

can be obtained by solving equation (4.50), which is a cubic polynomial in 2U . The 

coefficient of 4U  is zero so the solutions for 2U  are one real and two complex 

conjugates. The real solution for this case is too complicated to gain any insight into the 

effects of cubic damping. Thus it has been omitted here. The absolute displacement 

amplitude ratio for the isolated mass can be obtained by substituting for 2U  in 

equation (4.49).  

 For simplicity, the solution of the two-stage vibration isolation model is analysed 

for two frequency regions, i.e. 1Ω  and 1Ω . These frequency regions represent the 

excitation frequency much lower and much greater than the uncoupled undamped 

natural frequency nω  respectively. The region of excitation frequency well above the 

resonance frequency, 1Ω , is also considered to be much greater than the secondary 

resonance. The simplified expressions for the absolute displacement are listed in 

table 4.2 for both linear and cubic damping. The detailed description for the 

simplification is given in Appendix C.  

4.3.3 Numerical simulation procedure and solutions 

 The numerical integration for the two-stage isolation system was carried out to 

illustrate the response for different values of the mass ratio tµ , by solving 
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equations (4.37) and (4.38). Values of linear viscous damping 1ζ  of 0.1, 0.2 and 0.3, 

and values of non-dimensional cubic damping 3ζ  of 0.013, 0.152 and 0.787 were 

considered.  

 Three values of the mass ratios, i.e. tµ  = 0.1, tµ  = 0.5 and tµ  = 1.0 have been 

investigated. For particular aspect, a system where a value of mass ratio greater than 

unity, i.e. the intermediate mass bigger than the isolated mass, is not considered in this 

study. Therefore only these lower values of mass ratios were chosen to investigate its 

effect of it on the displacement amplitude ratio.  

4.3.4 Isolation performance for linear and cubic damping 

 The performance of the two-stage vibration isolation is examined first using the 

numerical results shown in figure 4.6. The responses for different mass ratios are plotted 

for comparison. It is seen that, for both the linear and cubic damping systems, the 

smaller tµ  shifts the frequency of the secondary resonance further from the primary 

resonance. The occurrence of the secondary resonance can be observed more easily 

when damping is low, e.g. in figure 4.6 (a).  

 One might also notice that the magnitude of the primary resonance can be 

reduced by increasing the value of either the linear or cubic damping. However, in the 

response for high cubic damping, shown in figure 4.6 (c) with tµ = 1 (green dashed-

dotted line), it is noticeable that the primary resonance for the system with cubic 

damping moves towards a frequency ratio of unity. This can be a result from that the 

isolated mass and the intermediate mass move almost as a combined unit tm m+  on a 

spring pk  and the relative velocity across the damper tends to zero. The undamped 

frequency for the combined mass on a spring pk  can be given by 

 2 p
new

t

k
m m

ω =
+

 (4.51) 

Considering the definitions of the stiffness ratio and the mass ratio, i.e. t pk kκ =  and

t tm mµ = , equation (4.51) can be given by 
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( )

2

1
t

new
t

k
m

κω
µ

=
+

 (4.52) 

Strictly for the optimum value of stiffness ratio given in equation (4.35), i.e. 1t tκ µ= + , 

equation (4.51) becomes 

 2 2
new n

k
m

ω ω= =  (4.53) 

This means that, once the isolated mass and the intermediate mass are joined together, 

the system behaves like undamped vibration at the uncoupled undamped natural 

frequency of the second stage isolator nω . 

 The analytical examination is achieved using the simplified expressions listed in 

table 4.2. The expressions for the cubically damped system are compared to those for 

linear viscous damping. Consider the low frequency region, i.e. 1Ω . In both cases 

the amplitude ratios are about unity, i.e. quasi-static behaviour, similar to the SDOF and 

Zener models. As such the effect of any damping is negligible in this frequency region. 

 At frequencies well above the primary and secondary resonance, i.e. 1Ω , the 

approximate expressions are listed in row (b) of table 4.2. The cubically damped 

response is more interesting in that the approximate expression for displacement 

amplitude decreases by 80 dB per decade independent of the value of cubic damping. Its 

roll-off rate is much steeper than that for linear viscous damping, which is 60 dB per 

decade. The levels of amplitude ratio in the isolation region obtained from the analytical 

expressions are shown by the asymptote lines in figure 4.6, which are in good 

agreement with the numerical results. 

 The rolling-off in the isolation region ( 1Ω ), can be investigated using the 

relative displacement between the isolated and intermediate mass, which is listed in row 

(c) of table 4.2 for linear and cubic damping. The expressions for both damping systems 

at 1Ω are identical and are given by 

 2

1t

t

U µ
µ
+

≈
Ω

   (4.54) 

Thus one might expect similar plots of the relative velocity in this frequency region as 

shown in figure 4.7 in which the relative velocity decreases inversely proportional to the 
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excitation frequency, i.e. 20 dB per decade. By having a similar level of the relative 

velocity, the level of cubic damping force is expected to be lower than for linear 

damping force for small relative velocity much less than unity. This is because it is a 

result of the relative velocity cubed. 

 The damping forces are obtained by multiplying the relative velocity and relative 

velocity cubed by the terms B  and C  given in section 4.3.2 respectively. The 

dependences B  and C  are given here again, i.e. 

 12B ζ= Ω  and 3
3

3
4

C ζ= Ω    (4.55) 

The linear damping force for 1Ω  is then 

 ( ) ( ) ( )
1 1 12

1 1
2 2t t

d
t t

F
µ µ

ζ ζ
µ µ
+ +

= Ω =
Ω Ω

 (4.56) 

whereas the corresponding cubic damping force is 

 ( )3 3
3

3 3 32 3 3

113 3
4 4

tt
d

t t

F
µµζ ζ

µ µ
+ + ≈ Ω =   Ω Ω  

 (4.57) 

By considering that the linear and cubic damping produce a similar level of peak 

response, then it is considerable that the cubic damping force given in equation (4.57) is 

much lower than the linear damping force given in equation (4.56). The damping force 

can become negligible at the very high excitation frequencies as shown in figure 4.8. 

Therefore the mass of the rigid body is isolated with the negligible restoring force due 

to stiffness k  at high frequencies as presented by U  given in equation (4.54). 

 Since the relative displacement between the intermediate and isolated mass tends 

to zero as excitation frequency increases, one might expect a reduction in absolute 

displacement for the intermediate mass at high frequencies similar to the isolated mass. 

Figure 4.9 shows the absolute displacement for the intermediate and isolated mass for 

both linear and cubic damping. Note that only the responses for 1ζ = 0.3 and 3ζ = 0.787 

are chosen to be shown in figure 4.9. Figure 4.9 (b) shows that the absolute 

displacement for the intermediate mass for both linear and cubic damping decreases as 

excitation frequency increases by 40 dB per decade.  
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 The relative displacement between the intermediate mass and the base excitation 

is also shown in figure 4.9 (c). It is seen in the high frequency region that the amplitude 

of relative displacement at high frequency is constant at the magnitude of unity which is 

the amplitude of base excitation. This means that at the high excitation frequencies, the 

intermediate mass is almost not moving. As a result there is almost no transmitted 

motion via the secondary stage isolation.  

 To this end, one can conclude that supporting the SDOF cubic damping system 

in a two-stage configuration can reduce the detrimental effect seen previously in the 

SDOF model. In addition, the isolation capability for the cubically damped system is 

much better than that for the linearly damped two-stage system. 

4.4 Conclusions 

 In this chapter cubic damping was applied to two higher order isolation models, 

namely Zener and two-stage models. The analysis shows that the application of higher 

order isolation models possessing cubic damping can significantly remove the 

detrimental effect of the cubic damping under base excitation in the isolation region 

compared to the cubically damped SDOF system.  

 For the Zener model, the cubic damping element is supported elastically on a 

relaxation spring. The cubically damped response in the isolation region decreases by 

40 dB per decade as the excitation frequency increases. It is also found that the value of 

the stiffness ratio equal to 8 is optimal for a system with high cubic damping. It 

produces a minimum level for the second resonance peak at the corresponding 

frequency Ω  = 3, especially for systems with high damping. One can conclude that it is 

preferable to elastically support the cubic damping component for a vibration isolation 

system exhibiting a cubic damping characteristic. 

 The isolation performance for the cubically damped two-stage isolation is more 

effective than that of the Zener model. The two-stage isolation is arranged by supporting 

the SDOF cubically damped isolation system on an undamped mass-spring system 

which forms the primary stage isolation. The SDOF cubic damping isolation then 

becomes a second stage isolation. The mass of primary stage or intermediate mass is 

considered as a ratio with respect to the isolated mass or secondary stage mass. It is 

found that a larger mass ratio provides a lower isolation frequency whereas the smaller 
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mass ratio shifts the isolation frequency further towards high frequencies. However, the 

application of the smaller mass ratio for the system with high value of cubic damping 

can result in high level of peak amplitude. Therefore the mass ratio should be chosen 

carefully to optimise the limitations. .  

 The existence of cubic damping in the second stage isolation is also found to 

improve the isolation capability compared to the linear damping. The level of the 

isolated mass response, e.g. the amplitude ratio, in the isolation zone decreases 

dramatically compared to the linear damping system. Therefore, it is more desirable to 

apply the cubic damping in the second-stage isolator of the two-stage model, strictly 

with the optimum stiffness ratio. 

 To this end, it can be concluded that these two higher order base excited 

vibration isolation models eliminate the detrimental effect of cubic damping as present 

in the SDOF system. The application of these two models also increases the isolation 

performance, especially for the two-stage vibration. Therefore, it is recommended to 

apply either model in preference to the SDOF isolation system under harmonic 

excitation where a cubic damping characteristic is incorporated. 
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Table 4.1   Approximate expressions for the amplitude ratio for base excited Zener isolation 
possessing cubic damping in comparison to those for the SDOF rigidly connected 
cubic damping. 

 

 Frequency 
region 

Cubic damping SDOF system 

zκ ≈ ∞  
Cubic damping Zener model 

zκ ∞  

(a) 1Ω  1W ≈  1W ≈  

(b) 1zκΩ ≈ +  - 
( )

9
2

3 4

13
4

z

z

W
κ

ζ
κ
+ ≈  

 
 

(c) 1Ω  
2
3

3

41
3

W
ζ

 
≈ −  Ω 

 
( )

2

1zW
κ +

≈
Ω

 

 

Table 4.2   Approximate expressions of the absolute displacement amplitude ratio for  
two-stage base excited isolation model possessing cubic damping in comparison to 
linear viscous damping. 

 
 Frequency 

region Linear viscous damping Cubic damping 

 
Absolute displacement amplitude ratio 

(a) 1Ω  1W ≈  1W ≈  

(b) 1Ω  ( ) ( )
1 3

1 12 t

t

W
µ

ζ
µ
+

≈
Ω

 ( )
4

1 1t

t

W
µ

µ
+

≈
Ω

 

 
Relative displacement amplitude ratio at high frequencies 

(c) 1Ω  
( )

2

1 1t

t

U
µ

µ
+

≈
Ω

  
( )

2

1 1t

t

U
µ

µ
+

≈
Ω

  

 
Note that U  represents the relative motion between the isolated mass and intermediate mass. 
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(a) (b) 

 

 
(c) 

 
Figure 4.1   The higher order isolation models possessing cubic damping. 
 (a)  Zener isolation with relaxation spring inserted between         
        the damping and base excitation 
 (b)  Zener isolation with relaxation spring inserted between 
        the damping and isolated mass 
 (c)  Two-stage isolation with undamped primary stage isolator 
 
 

 
 
Figure 4.2 Absolute displacement transmissibility for Zener isolation model with stiffness 

ratio, zκ = 3, and different levels of linear viscous damping, figure reproduced 
from [37]. 

 Arrow illustrates that the natural frequency shifts from nω  to uω as value of 
viscous damping increases. 
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 (a) 

 
(b) 

 
(c) 

 
 
Figure 4.3   Absolute displacement amplitude ratio of the isolated mass for the Zener base 

excited isolation possessing linear viscous damping obtained from numerical 
integration. 

 (a) 1ζ  = 0.1, (b) 1ζ = 0.2 and (c) 1ζ  = 0.3.  

  zκ =1,  zκ = 8, zκ = 48 and   zκ = 99.  
  response for the SDOF model (κ = ∞ ) 
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(a) 

 
(b) 

 
(c) 

 
 
Figure 4.4   Absolute displacement amplitude ratio of the isolated mass for the Zener base 

excited isolation possessing cubic damping  
 (a) 3ζ  = 0.013, (b) 3ζ = 0.152 and (c) 3ζ  = 0.787.  

  zκ = 1, zκ = 8, zκ = 48 and   zκ = 99.  
  Cubically damped SDOF model (κ = ∞ ) 
      Markers respectively represent the amplitude ratio at 1b zκΩ = Ω = +  

 which are listed in row (b) of table 4.1 
  The asymptote lines with the slope of ( )

2

1zκ +
Ω

 for cubic damping at 

 1Ω  with colours corresponding to the stiffness ratios 
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Figure 4.5 Relationship between the value of the stiffness ratio zκ  and the absolute 

displacement amplitude ratio, W , for the cubic damping Zener isolation model at a 
particular frequency ratio of 1zκΩ = +  using HBM approximation. 

   indicates the optimum value of stiffness ratio which produces the minimum 
level of the amplitude ratio resulting from the application for each value of 3ζ  
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 Linearly damped response Cubically damped response 

(a) 

  
(b) 

  
(c) 

  
 
Figure 4.6   Absolute displacement amplitude ratio of the isolated mass for the two-stage base 

excited isolation obtained from numerical integration. 
 (a) 1ζ  = 0.1, 3ζ  = 0.013, (b) 1ζ  = 0.2, 3ζ  = 0.152  and (c) 1ζ  = 0.3, 3ζ  = 0.787 

  tµ  = 1,       tµ  = 0.5,   tµ  = 0.1     

        Markers represent the cubically response levels at rΩ ≈ Ω   
  Asymptote lines for the slope given in row (c) of table 4.3 
  Arrows show the direction of reducing the value of tµ  

 Note that the colours of markers and lines corresponding to tµ  
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 Linearly damped response Cubically damped response 

(a) 

  
(b) 

  
(c) 

  
 
Figure 4.7 Normalised relative velocity across the damper for linearly and cubically damped 

responses obtained from numerical integration. 
 (a) 1ζ  = 0.1 and 3ζ  = 0.013 

 (b) 1ζ  = 0.2 and 3ζ  = 0.152 

 (c) 1ζ  = 0.3 and 3ζ  = 0.787 

  tµ = 1,       tµ  = 0.5,   tµ  = 0.1 
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 Linearly damped response Cubically damped response 

(a) 

  
(b) 

  
(c) 

  
 
Figure 4.8 Normalised damping force for the secondary stage isolation. 
 (a) 1ζ  = 0.1 and 3ζ  = 0.013 

 (b) 1ζ  = 0.2 and 3ζ  = 0.152 

 (c) 1ζ  = 0.3 and 3ζ  = 0.787 

  tµ = 1,       tµ  = 0.5,   tµ  = 0.1 
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 Linearly damped response Cubically damped response 

(a) 

  
(b) 

  
(c) 

  
 
Figure 4.9 Displacement amplitude ratios for the two-stage isolation in comparison between 

the linear damping system with 1ζ  = 0.3 and cubic damping system with 

3ζ  = 0.787. 

 (a)  Absolute displacement for the isolated mass, W   

 (b)  Absolute displacement for the intermediate mass, tW   
 (c)  Relative displacement between the intermediate mass and the base excitation, 

1 tW−   

  tµ = 1,       tµ  = 0.5,   tµ  = 0.1 
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Chapter 5 Simulation of a cubically damped 

vibration isolation system subject to 

broadband excitation 

 

5.1 Introduction 

 Previously a theoretical examination into cubically damped isolation subject to 

harmonic excitation was given in Chapter 3. The cubic damping proved to be beneficial 

in reducing the transmitted force from the excited structure to a supporting structure for 

excitation frequencies well above resonance. On the other hand, for base excitation, 

cubic damping causes an increased transmitted displacement at the same frequency 

region, unless a relaxation spring or an intermediate mass is introduced, as seen in 

Chapter 4.  

 In this chapter, the focus is on broadband random base excitation for the single 

degree of freedom (SDOF) system. It aims to explore whether the same detrimental 

effect happens as for harmonic excitation. In many practical instances broadband 

excitation can occur, e.g. road vehicles travelling over rough surfaces, ground vibration 

from railways, etc. The road surface roughness, for example, can usually be assumed as 

broadband excitation. Any unevenness of the road surface causes a base input to the 

automotive vehicle suspension. Such roughness is transmitted as vertical vibration to the 

passengers. The characteristic of the broadband random excitation for typical road 

vehicles applications is described later in section 5.4. Automotive dampers are nonlinear 

by design. One possibility is that the isolation system could be modelled as, or designed 

to exhibit, a cubic damping characteristic.  

 Generally, the nonlinear response due to broadband excitation cannot be easily 

predicted using analytical approaches. Instead, numerical integration is typically applied 

and this has been employed here. Numerical integration provides results in terms of 

time histories, which can be processed by means of statistical analysis or spectral 

analysis. The simulations produced in this chapter were mainly obtained using the 

ODE45 routine provided in Matlab [66].  
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 This chapter reveals that cubic damping also produces the detrimental effects on 

the SDOF broadband base excitation. However, the effects are different from those 

resulting from harmonic excitation. The possible physical reasons for such effects are 

reported in this chapter. The obtained results show that the existence of nonlinear cubic 

damping on the broadband base excited isolation system has detrimental effects. Having 

this information can lead to further improvement of the SDOF broadband base 

excitation vibration isolation system in order to minimise possible severity. 

5.2 Governing equation of motion 

 The model under investigation in this chapter was previously given in 

figure 2.1 (b) for which the governing equation of motion is equation (2.1) and given 

here again, i.e. 

 ( ) ( ) ( ) ( ),d emz t f z t kz t f t+ + = 

    (5.1) 

where m and k  are the mass of the rigid body and the assumed linear stiffness. ef  is the 

dimensional base excitation for which 0ef mx= −

 . df  is a function representing the 

dimensional restoring force due to damping and given by 

 ( ) ( ) ( ) 1
,

p
d pf z t c z t z t

−
=

     (5.2) 

z , z and z  are the relative motion, i.e. acceleration, velocity and displacement as a 

function of dimensional time t . p  is the exponent of the power law damping.  

 However, it is more convenient in this chapter to solve the equation of motion 

using the absolute displacement of the isolated mass, x , for which is obtained from 

 0z x x= −  (5.3) 

where 0x  is the base displacement excitation. Linear and cubic viscous damping are 

only the damping components considered here, i.e. p = 1 and 3. Thus, equation (5.1) 

can be rewritten as 

 ( ) ( ) ( )3
1 0 3 0 0 0mx c x x c x x k x x+ − + − + − =      (5.4) 

where 0x  and 0x  are the corresponding broadband base excitation velocity and 

displacement. x , x  and x  are the random responses. 
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 The effects of cubic damping are evaluated by comparison with the case of linear 

viscous damping. Thus the system and the equation of motion given in equation (5.4) is 

considered for two separate cases, i.e. 

(i) linear viscous damping :  

 ( ) ( )1 0 0 0mx c x x k x x+ − + − =     (5.5) 

(ii) pure cubic damping:   

 ( ) ( )3
3 0 0 0mx c x x k x x+ − + − =     (5.6) 

 Note that the numerical simulations for the case of broadband excitation are 

carried out using dimensional quantities, as stated in the governing equations of motion 

given in equations (5.5) and (5.6). This is unlike the case of harmonic excitation, where 

a non-dimensional set of quantities were defined. This is because for broadband 

excitation there is no single appropriate choice of non-dimensionalisation and 

introducing several forms would be unhelpful and ambiguous. 

5.3 Analysis approaches 

 The broadband excitations applied here were assumed to be Gaussian random 

processes and stationary, i.e. mean and variance are independent of time. The response 

is anticipated to have the same property. An assumed stationary random time variable 

can usually be represented in terms of a statistical approach using either time domain or 

spectral analysis. Since the statistical properties for the assumed stationary random 

process do not change with time it is possible to investigate the effect of nonlinearity 

present in the broadband response using the time average instead of ensemble average 

[68]. Some relevant analysis approaches applied in this study are briefly described here. 

5.3.1 Probability density function 

 A probability density function (PDF) is defined by a first order derivative of a 

probability distribution function, i.e. 

 ( ) ( )dP x
p x

dx
=  (5.7) 
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where ( )P x  is the probability distribution function. Some useful properties of the PDF 

are that it is always equal or greater than zero, ( ) 0p x ≥ , and the area under its curve 

equals unity, ( ) 1p x dx
∞

−∞

=∫  [69]. 

 The assumed input PDF used in this study was the Gaussian or Normal 

distribution which is given by 

 ( ) ( ) ( )2 221
2

x xx

x

p x e µ σ

σ π
− −

=  (5.8) 

where xµ , xσ  and 2
xσ  are mean value, standard deviation and variance of the random 

variable x  respectively. The PDF of the Gaussian distribution has a bell shape as shown 

in figure 5.1.  

5.3.2 Expected values and moments of random variables 

 An expected value of a random variable x  is written as [ ]E x . It is sometimes 

called a mean or an average value of x , xµ . The mean value is usually defined as a first 

moment of random variable and is given by 

 [ ] ( )x E x xp x dxµ
∞

−∞

= = ∫   (5.9) 

A second moment of random variables refers to the mean square value which is given 

by 

 ( )2 2E x x p x dx
∞

−∞

  =  ∫  (5.10) 

The second moment about the mean value is referred to as a central moment. It is called 

the variance and is given by 

 ( ) ( ) ( )2 22
x x xE x x p x dxσ µ µ

∞

−∞

 = − = −  ∫  (5.11) 

The positive square root of the variance is called the standard deviation. For an assumed 

zero mean signal, xµ  = 0, the standard deviation is equivalent to the root mean square 

(RMS) value. 
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5.3.3 Histogram and distribution 

 A histogram is one of the statistical methods used to represent the distribution of 

random data. It represents the random data by counting the number of times that a 

particular value, ix , was found and putting that number into an interval or a bin. The 

width and the number of bins are interdependent. A greater number of bins can be 

obtained as a result of using narrower bins which produces a smoother curve for the 

histogram as shown in figure 5.1. Therefore the selection of the width and the number 

of bins depends upon the amount and quality of the data. 

 In addition, the height of the histogram is proportional to the amount of data in 

the bin. Therefore, to obtain a histogram which is comparable to that using PDF, the 

area underneath the histogram should be equal to unity. This can be achieved by 

normalising the area of the bins with the total area of the histogram. Thus the total 

normalised area of the histogram is equal to unity and the height of the histogram is 

comparable to the PDF of a Gaussian distribution as also shown in figure 5.1. 

5.3.4 Spectral analysis  

 The analysis of broadband random can also be achieved using spectral analysis 

i.e. the power spectral density (PSD). The PSD can be estimated from the Fourier 

transformed [59], i.e. 

 ( ) ( ) 21
xx

s

S X
T

ϕ ϕ=  (5.12) 

where ( )X ϕ  is the discrete Fourier transform (DFT) of a sequence data ( )x n  and is 

given by 

 ( ) ( )
21

0

nN j
N

n
X x n e

π ϕ

ϕ
− −

=

= ∑  (5.13) 

 Similarly, the cross power spectrum density (CPSD) between the time signals x  

and y  can also be estimated using the Fourier transformed of these two signals. The 

time histories of two signals are processed in the same way. The CPSD for truncated 

data can be obtained from  
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 ( ) ( ) ( )*1
xy

s

S X Y
T

ϕ ϕ ϕ=  (5.14) 

where asterisk * denotes the complex conjugate.  

5.3.5 Window function and data overlapping 

 The estimated PSD can also be obtained using the application of the so called 

Welch’s method [70]. The method requires sets of truncated time histories. There might 

be discontinuities at the beginning and the end of the truncated data as a result of 

assumed periodicity. The discontinuity in the time domain signal can cause leakage in 

the frequency domain analysis.  

 To eliminate leakage, the time domain signal should be smoothly increased and 

decreased from and back to zero. This can be achieved by applying a window function 

to the truncated time data. A Hanning window is one of commonly applied windows. 

One of the advantages of the Hanning window is a rapidly decreasing side lobe in the 

frequency domain compared to the others. The rate of decreasing is about 60 dB per 

decade [68]. 

 The application of the Hanning window results in lost or discounted data. 

However, it can be recovered by overlapping windows. The overlap is considered as a 

percentage of a period of the acquisition time. Figure 5.2 shows the plot of the Hanning 

window and its averaged power with an overlap of 0%, 50%, 66.67%, 75% and 80% of 

the period T . There are r  sets of Hanning window in the length of T . r  also represents 

the overlap factor, i.e. 

 1% 1 100Overlap r
 = − × 
 

 (5.15) 

 In the acquisition period of pN T , the number of complete sets of Hanning 

windows can be determined from 

 ( )1 1h pN N r= − +  (5.16) 

where pN  is a number of acquisition periods, hN  is the number of the complete 

window(s) in the period pN T . The averaged power of the Hanning window as shown in 

figure 5.2 is given by 
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 ( ) ( )2 2

1

1 hN

a i
i

w t w t
r =

= ∑  (5.17) 

where w  is the Hanning window. 

 It is seen from figures 5.2 (a) and (b) that an overlap of 50 % or lower produces a 

non-uniform weighting for the averaged power. There appears a ripple of about half  

(3 dB) of the maximum power [59]. A uniform weighting for the averaged power can be 

obtained for integer values of r ≥ 3 [68] regarding equation (5.15) as shown in 

figures 5.2 (c) to (e). The overlap with r = 4 was chosen here, i.e. 75% overlap. 

 Finally, the estimated PSDs of the truncated data are averaged and given by 

 ( ) ( )
1

1
Ti

q

x x
i

S S
q

ϕ ϕ
=

= ∑  (5.18) 

where q  is the number of averaging PSDs and 
TxS is the estimated PSD of the truncated 

data Tx  which is calculated using equation (5.12). 

5.4 Generation of broadband random excitation 

 Broadband random excitation applied in this study was defined by referring to a 

displacement PSD. Two displacement base excitation characteristics were employed for 

the numerical examination, namely a white and a non-white random excitation. The 

displacement PSD for the white random is defined ideally to be constant over all 

frequencies. As a result, the ideal white random process has an infinite mean square 

value and the signal is not realistic. Therefore the term white random does not reflect 

the excitation characteristic applied here. This is because a finite frequency bandwidth 

was applied. Later, the term constant displacement amplitude random (CDR) excitation 

is used instead. The CDR excitation characteristic is introduced for comparison to the 

harmonic responses obtained from Chapter 3, for which a constant displacement 

amplitude was applied.  

 The other applied excitation for the base isolation is a white-velocity random 

excitation [71]. It is so called because the PSD level of the excitation velocity is 

constant for all excitation frequencies. Thus a corresponding displacement PSD is 

inversely proportional to the frequency squared. This excitation characteristic 

represented the non-white displacement broadband excitation applied here. Similarly to 
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the CDR excitation a limited frequency range was applied, so the term white-velocity 

random is also not suitable here. It is termed a constant velocity amplitude random 

(CVR) excitation as a substitute.  

5.4.1 Constant displacement amplitude random excitation 

 A time history of the CDR excitation was generated by taking an inverse discrete 

Fourier transform (IDFT) [72] of  

 ( ) ( )2
0

j f tX X e ϕ ϕπ φ
ϕϕ +=  ; ϕ = 1, 2, … N  (5.19) 

where ( )0X ϕ  is a complex number representing the signal at the discrete frequency, 

Xϕ  is a constant real number representing the displacement amplitude in terms of 

discrete frequency. fϕ  is the discrete frequency and is defined by f fϕ ϕ= ∆  with f∆  

the frequency resolution. ϕφ  is a uniformly distributed random phase and has a value 

between 0 and 2π . The constant amplitude of Xϕ  can be chosen in order that the 

excitation signal has the required displacement PSD level, i.e. 

 s xxX T Sϕ =  (5.20) 

where xxS  is the constant level of displacement PSD in the frequency bandwidth of 

interest. sT  is the period of acquisition time length and is defined by 

 1
s

s

NT
f f

= =
∆

  (5.21) 

where N is the total number of data and sf is the sampling frequency. The time history 

for the corresponding velocity can also be determined using the IDFT of 

 ( ) ( )0 0V j Xϕϕ ω ϕ=  (5.22) 

The implementation of the CDR is described in detail in section 5.6.  

5.4.2 Constant velocity amplitude random excitation 

 The CVR excitation considered in this study has a PSD of the corresponding 

displacement that decreases inversely proportional to the frequency squared. The 

example for such excitation characteristic is sometimes representative of the surface 
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roughness excitation. The displacement PSD of a surface roughness is usually 

considered in terms of the wavenumber, i.e. spatial circular frequency, and is given by 

[59,73] 

 ( ) ( )0
0

w

G G
−

 Ω
Ω = Ω  Ω 

 (5.23) 

where G  is a one-sided PSD. Ω  denotes a spatial frequency and is given by 2π
λΩ =  

with λ  a wavelength. 0Ω is a reference wave number value. w is the waviness of the 

road surface for which the value recommended in ISO 6808 is equal to 2 [71,73]. 

Therefore, by having the displacement PSD inversely proportional to the excitation 

frequency squared, the excitation considered here has the same displacement spectral 

shape as the commonly adopted surface roughness model. However, its amplitude has 

not been chosen to be comparable to typical road roughness levels. The definition of 

surface roughness is given here only an example and is not included in the study. 

 The time domain signal for the CVR excitation applied in this study is obtained 

by taking the IDFT of the frequency domain amplitude given by 

 ( ) ( )2
0

j f tV V e ϕ ϕπ φ
ϕϕ +=  (5.24) 

where Vϕ  is a constant real number representing a velocity amplitude at the discrete 

frequency fϕ . The constant velocity amplitude Vϕ  can also be obtained using 

equation (5.12) similarly to the constant displacement. The frequency domain amplitude 

for the corresponding displacement excitation is determined by 

 ( ) ( )0 0
1X V

j ϕ

ϕ ϕ
ω

=  (5.25) 

By taking the IDFT of equation (5.25), one obtains the displacement based excitation 

time history for the CVR excitation. The detailed description for this excitation is also 

given in section 5.6. 

5.5 Numerical simulation implementation and system parameters 

 The numerical examination was implemented using numerical integration 

obtained from the ODE45 solver in Matlab. One needs to specify the time and 

frequency resolutions to cover the investigating conditions. The physical parameters for 
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the isolation system are also required. The parameters assumed in this section are only 

for illustrative purpose of the effect of cubic damping on a SDOF base excited isolation 

system subject to the specified broadband random excitation. 

5.5.1 Time and frequency resolution 

 The choice of time and frequency resolutions for the numerical integration is 

discussed here. The frequency resolution was determined using the application of a half 

power bandwidth criterion. For a SDOF system with known value of linear viscous 

damping, the half power bandwidth can be obtained from the transmissibility function, 

i.e. 

 
( )

( ) ( )

2
12

2 22
1

1 2

1 2
rT

ζ

ζ

+ Ω
=

− Ω + Ω
 (5.26) 

where Ω  is a frequency ratio and is given by nω ωΩ =  with nω  the undamped natural 

frequency.  

 In this instance the frequency resolution was chosen to be sufficient for a system 

with linear viscous damping of 1ζ = 0.01. The transmissibility for such the system is 

shown in figure 5.3. A bandwidth of 0.02 nf  was obtained after the application of a half 

power bandwidth criterion as shown in figure 5.3 (b), where nf  is the natural frequency 

in Hz . To ensure an accurate reproduction of the peak response, the half power 

bandwidth was divided into 20 spectral lines which yielded a frequency resolution  

f∆ = 0.001 nf .  

 The frequency bandwidth of the excitation for the simulation was initially chosen 

to range from 1–1000 Hz. The lowest excitation frequency of 1 Hz was set to avoid an 

extremely low frequency oscillation due to nonlinearity. The maximum frequency of 

1000 Hz was set to ensure that the effects of cubic damping at high frequencies become 

apparent. The undamped natural frequency of the system was chosen as nf  = 10 Hz. 

Thus the excitation range covered one decade lower and two decades higher than the 

natural frequency. Therefore ideally, for the linear case at least, from the given 

information that nf = 10 Hz and f∆ = 0.001 nf , the frequency resolution should not be 

bigger than 0.01 Hz, i.e. 0.01f∆ ≤  Hz . 
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 The discrete FFT was applied to analyse a set of sampled data. The frequency 

resolution can also be specified using the number of data points N  and sampling 

frequency sf  as given in equation (5.21), i.e. sf N f∆ = . It is also recommended to 

assign N and sf  in the base-2 format for the calculation of the Fourier transform using 

the FFT algorithm, i.e. 2n where n  is a positive integer. For the maximum frequency 

resolution of 0.01 Hz, the lower nearest base-2 value is 2-7or 0.0078 Hz which produces 

a single sample time interval of 128 s. 

 Since the maximum excitation frequency, maxf , was set at 1000 Hz, there 

responses are expected at the odd harmonics resulting from the nonlinear cubic damping 

at frequencies higher than 1000 Hz. To avoid possible signal aliasing, the sampling 

frequency was set at 214 Hz (16384 Hz or 0.016 ms). This yields the total number of 

data points to be 221 points for the time interval of 27 s. 

 However, for the analysis of a random process, averaging is needed in order to 

reduce the variance in the level of the estimated PSD when it is assumed stationary. An 

appropriate time length can be determined from an effective bandwidth ( B ) and total 

acquisition time length (T ) product or BT product. It is recommended that the BT  

product should be much greater than unity [68]. The effective bandwidth is determined 

from the bandwidth of an applied spectral window [68]. It is sometimes called the 3 dB 

bandwidth. For instance, the 3 dB bandwidth for the Hanning window is given by [59] 

 11.44
s

B
T

=  (5.27) 

The effective bandwidth B for this instance was approximately equal to  

1.44/128 ≈ 0.011 Hz. In this instance, the total acquisition time was extended to 2048 s, 

24 times the original set of data. This yields a total number of data point of 225 points, 

i.e. sN f f= ∆ = (214 Hz)(211 s). Thus the BT  product is approximately equal to 22.5 and 

is high enough to expect that the statistical variation in the estimated PSDs would be 

minimal and not significant. 

5.5.2 System mass and stiffness 

 There are choices in the values of mass and stiffness to match the chosen natural 

frequency, i.e. 10 Hz. The value of the mass also influences the effective system 
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damping. This can be seen from the definitions of the linear viscous damping ratio and 

the non-dimensional cubic damping parameters for the case of harmonic excitation 

which are respectively given by , 1
1 2 n

c
m

ζ
ω

=  and 23
3 n

c X
m

ζ ω= .  

 For simplicity, the mass m  was chosen to be unity, i.e. m = 1 kg. This yields the 

corresponding value of isolator stiffness equal to 3.95 -1kNm . The selected values of the 

damping coefficients 1c  and 3c  are given in the next section. 

5.5.3 Damping coefficients 

 The value of cubic damping coefficient was defined referring to the linearly 

damped response for 1ζ = 0.2. The dimensional linear damping coefficient ( 1c ) can be 

obtained from 1 12 nc mζ ω= . According to the specified natural frequency, nf = 10 Hz 

and the mass m = 1 kg, the resulting value of 1c  is equal to 25.13 Nsm-1. The resulting 

level of peak response around resonance for the normalised absolute displacement 

transmissibility is about 9 dB. 

 The corresponding value of 3c which provides a similar level of peak response 

for the CDR base excitation was 0.33 Ns3m-3 and 3c  = 133 Ns3m-3 was applied for the 

CVR excitation. Note that the values for the damping coefficients chosen here are only 

to demonstrate the effect of cubic damping for this numerical study. The procedure to 

obtain the value of 3c  is omitted. 

5.6 Influence of broadband excitation on the level of effective 

damping 

 The responses due to four excitation characteristics are reported and examined in 

this section. The descriptions of the applied excitation characteristics are given as 

follows. 

 (i)  The CDR excitation with fixed excitation bandwidth of 1-1000 Hz. 

The displacement PSD, 
0xS , level was varied to achieve displacement RMS 

values of 0.25 mm, 1.25 mm and 2.5 mm, see figure 5.4 (a).  

120 



Simulation of a cubically damped vibration isolation system subject to broadband excitation 

 (ii)  The CDR excitation with fixed displacement PSD level.  

The level of 
0xS was fixed so as to give an RMS value of 1.25 mm for an 

excitation bandwidth of 1-1000 Hz. Two additional frequency bandwidths 

were introduced, i.e. 1-500 Hz and 1-100 Hz, see figure 5.4 (b). As a result, 

the displacement RMS value was reduced to 0.88mm and 0.39 mm 

respectively.  

 (iii)  The CDR excitation with fixed displacement RMS value at 1.25 mm.  

Three excitation bandwidths were introduced, i.e. 1-1000 Hz, 1-500 Hz and  

1-100 Hz each with a displacement RMS value fixed at 1.25 mm. Thus the 

level of 
0xS is higher as a result of the narrower bandwidth, see 

figure 5.4 (c). 

 (iv) The CVR excitation with fixed velocity PSD level. 

The velocity PSD, 
0xS ′ , level was fixed whilst the excitation bandwidth was 

varied, i.e. 1-1000 Hz, 1-500 Hz and 1-100 Hz as shown in figure 5.4 (d). 

The corresponding level of estimated displacement excitation PSD, 
0xS , 

decreases with excitation frequency squared as shown in figure 5.4 (e). It is 

seen from figure 5.4 (e) that the level of 
0xS at high frequencies is 

considerably lower than that at low frequencies. As a result it is mostly low 

frequency excitation that contributes to the displacement RMS value. Thus 

the displacement RMS for narrower bandwidths applied in this study is not 

significantly different from that of 1-1000 Hz and it is around 1.25 mm. 

However, the difference in the velocity RMS values is significant. 

These excitations were introduced in order to investigate the response characteristics 

due to different excitations. One might expect to synthesise and distinguish the 

influence of the broadband input on the effect of cubic damping. 

 The examination for the first three excitation scenarios given in this section will 

be carried out using the absolute displacement PSD for the isolated mass. The responses 

due to the last excitation scenario, case (iv), are examined using the absolute velocity 

PSD for the isolated mass. The linear and cubic damping force PSDs are also 

considered in conjunction with the estimate PSDs of the motion of the isolated mass. 
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The corresponding standard deviations of the mentioned quantities are also presented 

for some examinations. 

 Later, for the linear damping case, the displacement PSD, the velocity PSD and 

the linear damping force PSD are represented by 
1x

S , 
1x

S ′ and 
1df

S respectively. Those 

for the cubically damped response are denoted respectively by 
3xS , 

3xS ′ and 
3df

S . The 

corresponding standard deviations for the absolute displacement for the isolated mass 

and damping force are denoted by 
1x

σ and 
1df

σ for the linear case, 
3xσ and 

3df
σ for the 

cubic case. 

5.6.1 Different displacement PSD level with fixed bandwidth 

 The responses due to CDR excitations with fixed bandwidth of 1-1000 Hz, 

case (i), are examined. The estimated input displacement PSD, 
0xS , is shown again in 

figure 5.5 using dashed lines. The levels of 
0xS shown in figures 5.5 (a) to (c) are about  

-22 dB, -28 dB and -42 dB respectively. The response displacement PSDs and damping 

force PSDs for both linear and cubic damping are also shown in figure 5.5.  

 Considering first the linearly damped responses (dotted lines), the estimate PSDs 

of the displacement responses, 
1x

S , as shown in figures 5.5 (a) to (c), are seen to scale 

simply with excitation level. This is also noticeable from the values of displacement 

standard deviation,
1x

σ , annotated in the graphs, which scale with the RMS of the 

displacement excitation.  

 In contrast, in the same figures, the plots of the estimate displacement PSDs for 

the cubically damped response, 
3xS , (solid lines) are totally different among the cubic 

damping cases and also different from the linear responses. The difference in excitation 

level does not only affect the level of the response but also changes the response 

characteristic. In the case of a high excitation amplitude, figures 5.5 (a) and (b), the 

presence of cubic damping causes significant amplification to the response especially at 

low frequencies. It contributes significantly to the standard deviation value for the 

system with cubic damping, 
3xσ . For the system with lower excitation level, 

figure 5.5 (c), the response at low frequencies is similar to the input, as is also the case 

for a linearly damped system. 
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 The appearances of peak responses are also noticeably different. The higher 

excitation level, figure 5.5 (a), causes the response characteristic of a linearly heavily 

damped system, i.e. there is no obvious frequency which the peak occurs. The peak 

response due to the lower excitation level, figure 5.5 (c), is more obvious and is 

consistent with a linearly lightly damped system.  

 By considering the estimate damping force PSDs as shown in figures 5.5 (d) to 

(f), the estimated linear damping force PSDs, 
1df

S , are also seen to scale by the level of 

excitation. The amplitude of excitation only effects the level of 
1df

S and not the 

spectrum characteristic. In contrast, the excitation level has significant influence on both 

the level and characteristic of estimated cubic damping force PSDs, 
3df

S . The cubic 

damping force for the low excitation level, figure 5.5 (f), is considerably negligible 

compared to the linear damping force. This occurrence results in the very lightly 

damped response as seen in 
3xS . 

 From the given results, the level of the effective cubic damping is shown to be 

dependent upon the level of displacement excitation which can be related to the 

excitation RMS value. However, the excitation RMS value is in turn dependent upon 

the excitation bandwidth. In the next section, the effect of cubic damping is investigated 

for different excitation bandwidths whilst the level of 
0xS is fixed.  

 Note that the occurrence of the responses outside the excitation bandwidth at low 

and high frequency regions for both 
3xS and 

3df
S is examined and discussed later in 

section 5.8. 

5.6.2 Fixed displacement PSD level but different bandwidth 

 Figure 5.6 show the estimated PSDs of the displacement and damping force 

when the excitations have a fixed level of displacement excitation PSD at about -28 dB 

and different bandwidths (case ii). The PSDs of the displacement excitation are also 

shown in the figure using dashed lines and the corresponding RMS values are annotated 

in the figures, simply denoted by 
0xσ . It is seen that a reduction in the excitation 

bandwidth yields a reduction in the excitation RMS value. As such, considering the 
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knowledge obtained from the examination in section 5.6.1, one might anticipate a 

reduction in the effective cubic damping for the excitation with a smaller RMS value.  

 Figures 5.6 (a) to (c) show that the characteristics of the displacement response 

PSDs for the system with linear damping are not significantly different due to the 

reduction of the excitation bandwidth. It is noticeable only the absence of the response 

at high frequencies which corresponds directly to the excitation frequency. This is in 

contrast with the displacement response PSDs for the system with cubic damping, 
3xS . 

The characteristics of 
3xS are totally different. The effect of cubic damping can be 

noticeable from the level of 
3xS at low frequencies below the resonance frequency. It is 

more profound for the excitation with broader bandwidth. The 
3xS is consistent to the 

very lightly damped system for the narrower excitation bandwidth. 

 The standard deviation of the displacement response for the system with linear 

damping, 
1x

σ , is essentially constant at 0.26 mm. This can be interpreted that the linear 

response at high frequencies produces a negligible contribution to the overall value. 

Therefore, the value of 
1x

σ  is contributed to mostly by the response at frequencies 

below and around the resonance frequency. The reduction of the excitation bandwidth 

does not affect the absolute displacement for linear system provided that the excitation 

frequencies around the resonance frequency are included. 

 In contrast, the value of 
3xσ  is neither constant nor changing monotonically with 

the change in excitation RMS. The plots of 
3xS in figures 5.6 (a) to (c) show that 

3xσ  

can be contributed to by the response at either the low frequencies, figure 5.6 (a), or 

around the resonance frequency, figure 5.6 (c). 

 For the linear damping force, it is well-known for the linear isolation system that 

the excitation at one particular frequency can only produce a response at that frequency. 

Therefore there exhibit the linear damping force PSDs, displayed by the dotted lines in 

figure 5.6 (d) to (e), corresponding to the excitation bandwidth. However, the value of 

1df
σ  is influenced mostly by the damping force at high frequencies.  

 Although the cubic damping force standard deviation, 
3df

σ , is also directly 

related to the excitation bandwidth, the cubic damping force at a particular frequency 
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can be influenced by excitation at other frequencies. Thus the estimated cubic damping 

force PSDs are very different for both levels and characteristics. The excitation with 

narrower bandwidth results in almost negligible level of damping force compared to that 

for the broader excitation bandwidth.  

 Therefore, given the results obtained from this and previous simulation 

scenarios, the reduction in the cubic damping force is believed to be a result of the 

reduction in the excitation RMS value. However, the presence or absence of 

displacement excitation at high frequencies might also be a contribution in the cubic 

damping force. So the next investigation scenario was conducted by maintaining the 

RMS value of excitation whilst the excitation bandwidth is reduced.  

5.6.3 Fixed displacement excitation RMS but different bandwidth 

 The excitations applied in this section were introduced in order to investigate 

whether the reduction in cubic damping force is influenced by the displacement 

excitation at high frequencies. The displacement excitation RMS was kept constant at 

1.25 mm whilst the bandwidth was altered (case iii). As a result of these two constraints, 

the level of estimate displacement excitation PSD,
0xS , for the narrower excitation 

bandwidth is higher as previously shown in figure 5.4 (c). The levels of 
0xS for 

excitation bandwidth of 1-1000 Hz, 1-500 Hz and 1-100 Hz are about -28 dB, -25 dB 

and -18 dB respectively. These excitations are shown here again in figures 5.7 (a) to (c) 

using dashed lines.  

 The results obtained from section 5.6.1 lead one to believe that a higher 

excitation level results in a lower peak response, whilst the observations in section 5.6.2 

show that narrowing the excitation bandwidth reduces the effective damping. As such 

one might expect opposing effects on the level of damping from the increased level of 

0xS  and the reduced bandwidth.  

 Unexpectedly, figures 5.7 (a) to (c) show that the estimated displacement PSDs 

for the system with cubic damping, solid lines, are similar to those reported in 

section 5.6.2. The response for the excitation with reduced bandwidth still has the 

lightly damping response characteristic as shown in figure 5.7 (c), despite the increased 
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excitation level. The estimate cubic damping force PSDs in figure 5.7 (f) also decreases 

unevenly similar to that in the previous section,  

 One might set the hypothesis from these results that the effect of cubic damping 

is partially influenced by the excitation RMS value but mostly affected by the frequency 

content of the excitation, especially the high frequencies. To verify this hypothesis and 

continue the investigation into the influence of the displacement amplitude at high 

frequencies, the level of 
0xS for the next simulation was reduced in proportion to the 

excitation frequency squared or in other words constant velocity PSD or the CVR 

excitation. 

5.6.4 Fixed excitation velocity PSD level but different bandwidth 

 The plots of the excitation with constant velocity PSD (case iv) are shown again 

in figure 5.8 using dashed lines. It is understood for the excitation with constant velocity 

PSD that the level of displacement PSD reduces with the excitation frequency squared. 

The excitation displacement RMS value is mostly contributed to by the displacement 

excitation amplitude at low frequencies. For this instance, it was approximately equal to 

1.25 mm for different excitation bandwidth.  

 The estimated velocity PSDs are shown in figures 5.8 (a) to (c). The response 

characteristics for the system with linear damping (dotted lines) are similar. Also the 

values of velocity standard deviation, 
1x

σ ′ , are similar at about 52.4 mm/s. This is 

because it is mostly contributed to by the response at low frequencies and around the 

resonance frequency. The amplitudes of response at excitation frequencies high above 

the resonance frequency are considerably negligible. 

 The estimated velocity PSDs for the system with cubic damping, shown by solid 

lines in figures 5.8 (a) to (c), are seen to be influenced by excitation bandwidth similarly 

to those reported in sections 5.6.2 and 5.6.3. The narrower excitation bandwidth results 

in a lightly damped response. However, the response amplitude at excitation frequencies 

below the resonance frequency is different from those subject to the CDR excitation. It 

has similar amplitude with the excitation. This is believed to be a result of lower 

amplitude displacement excitation at high frequencies. The level of estimated cubic 

damping force PSD in figures 5.8 (f) is also considered very low compared to the linear 
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damping force. This is similar to previous two scenarios that, for the cubic damping 

system, the excitation with the absence of high frequencies results in a lightly damped 

response.  

 In addition, figures 5.8 (a) to (c) reveal that the low displacement excitation 

amplitude at high frequencies of the CVR also results in a lower level of the response 

outside the excitation bandwidth compared to those due to the CDR excitation. This 

occurrence also supports the argument that the displacement amplitude at high 

frequencies has a significant influence on the level of the cubic damping force. 

 However, one might not be able to conclude firmly that the excitation at high 

frequencies is the main contributor to the effect of cubic damping. Therefore, the next 

section reports the effect of cubic damping due to the special broadband excitation 

characteristics. 

5.7 Influence of two pass-band excitation 

 In addition to the excitations applied in section 5.6, input excitations in this 

section were considered that have two pass bands. Whilst idealistic, it was introduced in 

order to verify that displacement excitation at high frequencies is the most significant 

contribution to the effect of cubic damping. 

 The first pass band was 1-250 Hz in all cases; the second pass band was chosen 

as 250-500 Hz (i.e. one continuous pass-band), 500-750 Hz and 750-1000 Hz as shown 

in figure 5.9. For the CDR excitation, figures 5.9 (a) to (c), the displacement RMS 

values for these excitations are similar at about 1.25 mm. This is because the level of 

estimated displacement excitation PSD was fixed and the total frequency bandwidth for 

every case was the same. The estimated excitation with constant velocity PSDs are 

shown figures 5.9 (d) to (f) whereas those in figures 5.9 (g) to (i) are the corresponding 

excitation displacement PSDs. The displacement RMS value for the CVR excitation, 

figure was also approximately equal to 1.25 mm since it was contributed to mostly by 

the excitation at low frequencies. 

  Figure 5.9 shows that these excitations include different frequency contents 

whilst sharing other characteristics, i.e. the total frequency bandwidth, the PSD level 

(either displacement or velocity) and the displacement RMS value. Therefore, any 
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difference in the broadband response can be identifiable as a result from the frequency 

content of the excitation. 

 The responses due to these excitations are examined separately for the case of 

constant displacement and constant velocity. Similarly to the previous section, the 

examination will be carried out using the estimate PSDs of the absolute motion of the 

isolated mass (either displacement or velocity) and the damping force. The results 

obtained in this section will also be studied to highlight the influence of displacement 

amplitude excitation at high frequencies later discussed in section 5.8.2. 

5.7.1 Constant displacement amplitude random excitation 

 The displacement PSDs for these excitations are shown again in figure 5.10 

using the dashed lines. The displacement PSDs for the responses are shown in 

figures 5.10 (a) to (c) and cubic damping force PSDs are also shown in figures 5.10 (d) 

to (f). It reveals the noticeable difference especially at low frequencies below resonance. 

The excitation with the absence of high frequency content produces a lower response 

level at this frequency region, figure 5.10 (a). The response levels at these frequencies 

are higher when excitation contains the higher frequency content, figure 5.10 (c). 

 The estimated cubic damping force PSDs show that the existence of high 

excitation frequencies produces a higher level of damping force across all frequencies. 

The value of 
3df

σ is contributed to mostly by the damping force at high frequencies. 

This occurrence is investigated and reported in detail in section 5.8 where the possible 

reason for the effect on the level of damping is discussed. From the provided 

information, the existence of displacement amplitude at high frequencies plays a 

significant role in the effect of cubic damping. However, the next excitation scenario 

with the same pass bands but using constant velocity was introduced in order to ensure 

that this hypothesis is true. 

5.7.2 Constant velocity amplitude random excitation 

 The estimated excitation velocity PSDs are shown in figure 5.11 using the 

dashed lines. The estimated response velocity PSDs for the system with linear and cubic 

damping are shown in figures 5.11 (a) to (c). The differences in the levels of velocity 

PSDs and the values of response velocity standard deviation, 
1x

σ ′  and 
3xσ ′ , are 
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considerably negligible. There is also no significant difference in the level of the 

estimated linear and cubic damping force PSDs as shown in figures 5.11 (d) to (f). 

There is no change in the response level due to the change of excitation bandwidth. 

There is also no noticeable difference for the level of cubic damping forces and the 

corresponding standard deviation among the cases. 

 This shows that, when the excitation is a constant velocity spectrum, changing 

the bandwidth of high excitation frequencies does not significantly affect the overall 

response. This is because the influence of displacement excitation at high frequency is 

very small compared to those at low frequencies. This is in contrast to that for the CDR 

excitation, where the displacement amplitude at high excitation frequencies plays a vital 

role in the level of damping. A further examination and discussion into the effect of 

cubic damping is also given in detail in section 5.8. 

5.8 Analysis and further discussion on the effect of cubic damping 

due to broadband excitation 

 There are two main concerns regarding the presence of cubic damping. The first 

is the influence of the excitation displacement at high frequencies on the level of the 

cubic damping force. The investigation for this is presented in sections 5.8.1 and 5.8.2. 

The second is the occurrence of either the displacement response or damping force at 

low frequencies outside the excitation bandwidth. This issue is presented in 

section 5.8.3.  

5.8.1 The response due to a displacement excitation at high frequencies 

 The examination in this section is introduced to verify that the displacement 

excitation at high frequencies is a significant contribution to the level of effective cubic 

damping. It is performed by using some results obtained from the previous sections 

which include the responses due to: 

 (i)  the CDR having fixed RMS with bandwidth of 1-100 Hz (section 5.6.3), 

 (ii)  the CDR with bandwidth of 1-250 Hz and 750-1000 Hz (section 5.7.1) and 

 (iii)  the CDR having the bandwidth of 1-1000 Hz and RMS of 1.25 mm. 
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The responses due to these excitations are chosen because the excitations share the same 

RMS value of 1.25 mm whereas the frequency contents are different. The displacement 

PSD and the damping force PSD for both linearly and cubically damped responses due 

to these excitations are shown together again in figure 5.12. Note that the estimated 

displacement excitation PSDs are different in level as a result of having the same RMS 

value. 

 The figure shows that the frequency content in the excitation influences the peak 

amplitude of estimate displacement response PSDs at around the resonance frequency. 

The excitation with less frequency produces response similarly with the linearly lightly 

damped response disregarding the excitation RMS value. It is clearer by considering the 

estimate cubic damping PSD. It appears that the level of cubic damping force is directly 

related with frequency content in the excitation. The excitation with high frequencies 

and higher level, figure 5.12 (e), results in higher value of 
3df

σ compared to that with an 

absence of high frequencies, figure 5.12 (d), or with high frequencies but lower level, 

figure 5.12 (f). 

 Time histories for the responses due to the mentioned excitations are shown in 

figure 5.13. The oscillations of both linearly and cubically damped response are seen 

majorly at around the resonance frequency of 10 Hz, illustrated by dashed line. The 

cubically damped responses are at a higher amplitude compared to the linearly damped 

responses. The excitation with narrower bandwidth is found to produce negligible 

amplitude of cubic damping force compared to the linear damping force, figure 5.13 (d). 

It is in contrast to those due to excitations having broader frequency range, 

figures 5.13 (e) and (f). 

 To this end, one can conclude that the effective cubic damping is mainly 

influenced by the displacement excitation at high frequencies. The absence of excitation 

at high frequencies results in weak cubic damping. A possible reason for this 

phenomenon is examined and reported in the next sub-section. 

5.8.2 Analysis of the influence of high frequency content in the excitation 

 An examination into the influence of high frequencies carried out in this sub-

section was conducted into two parts. The first part was carried out using the numerical 

responses due to the two pass bands excitations obtained from sections 5.7.1 and 5.7.2. 
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Statistical analysis was employed to examine the relative velocity. The second part was 

performed using theoretical expressions for the assumed random time response. Insight 

into the effect of excitation at high frequencies is expected.  

 The responses from sections 5.7.1 and 5.7.2 are chosen for the first examination 

because the excitation amplitude for each case was fixed to be the same, only the 

excitation bandwidth was modified. The total number of frequencies in the excitation is 

also comparable. Then the influence of excitation amplitude and number of frequencies 

can be removed and only the influence of the frequency content can be observed.  

 The responses for the case of CDR are first examined. The significance of the 

displacement excitation at high frequencies can be seen from the histograms shown in 

figure 5.14. The difference of high frequencies results in different distribution and the 

standard deviation for the relative velocity, xσ ∆ . The excitation with lower frequencies 

produces a higher peak and histogram with narrower tails, figure 5.14 (a), compared to 

that having higher frequencies, figure 5.14 (c). It can be implied that the existence of 

displacement excitation at high frequencies causes a higher amplitude of relative 

velocity. As a result, the density around the mean value is reduced and the tails are 

wider.  

 In contrast, when an excitation with constant velocity spectrum is applied, there 

is almost no difference in the histograms of the relative velocity, see figure 5.15. The 

values of xσ ∆  are similar and constant for this latter case. The distribution of relative 

velocity is denser around the mean value with narrower tails compared to those for the 

CDR excitation. This is identifiable as a result of the low amplitude of the displacement 

excitation at high frequencies compared to those at low frequencies. As such, for the 

CVR excitation, the presence or absence of displacement excitation at high frequencies 

is not so important and does not cause any difference to the value of xσ ∆ . However, this 

is strictly valid only when the low frequency content is the same and produces the 

comparable displacement excitation RMS value. 

 In addition, it is noticeable that the histograms for relative velocity are very 

similar for the cases of linear and cubic damping, for the same excitation bandwidth and 

characteristic, as shown in figures 5.14 and 5.15. Therefore, it is possible to determine 

the relative velocity at which the linear and cubic damping forces are at the same level. 
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By considering that the relative velocity for linear damping is equivalent to that for 

cubic damping, one obtains 

 1

3

cx
c

∆ = ±   (5.28) 

The relative velocity given in equation (5.28) is plotted in figures 5.14 and 5.15 using 

the vertical dashed lines. These lines are also displayed for both cases, CDR and CVR 

in figure 5.16 which shows the force-velocity characteristics. 

 The force-velocity characteristic shows that the amplitude of cubic damping 

force resulting from the CDR excitation is much higher than that for the CVR 

excitation. The cubic damping for the broader bandwidth CDR excitation is even higher 

as seen in figure 5.16 (c). This can imply that the broader excitation bandwidth results 

in a higher level of cubic damping force. This can also cause the high amplitude of 

spike as shown in figure 5.13 (e).  

 One can see that, when the CDR excitation was applied, the displacement 

amplitudes at high frequencies play the vital role to the value of xσ ∆ . The presence or 

absence and the amplitude of displacement excitation at high frequencies are important 

consideration. However, the histogram does not clearly show how the existence of 

displacement amplitude at high frequencies results in the different level damping 

especially for cubic damping.  

 Therefore, for the second part, one can examine the effect of high frequencies on 

the expression of relative velocity. The relative velocity resulting from the broadband 

frequency excitation can be given by 

 ( )
1

sin
N

i i i i
i

x Z tω ω φ
=

∆ = +∑  (5.29) 

where Z  is the amplitude of the relative displacement as a function of frequency and φ  

is the phase lag of the relative response. N  represents the number of frequencies inside 

the excitation bandwidth.  

 The linear damping force at a particular excitation frequency can be obtained 

directly from the product of 1c  and x∆ . Therefore the amplitude of the linear damping 

force is a scaled quantity of the relative velocity. In addition, the damping force at one 
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particular frequency is only produced by excitation at the same frequency. The cubic 

damping force can be obtained from the product of 3c  and ( )3x∆ . The expansion of the 

relative velocity cubed can be given by 

 
( ) ( )

( ) ( )

3 2 2 3 3

1 1

3 3

1

3 3 sin
2 4

1 sin 3 3
4

N N

i i j j i i i i
i j

N

i i i i
i

x Z Z Z t

Z t t

ω ω ω ω φ

ω ω φ ε

= =

=

  
∆ = − +     

− + +

∑ ∑

∑



 (5.30) 

where ( )tε  represents the responses at other frequencies resulting from the cubic 

exponent apart from the first two frequency orders iω  and 3 iω .  

 The first term on the right hand side of equation (5.30) shows that the amplitude 

of the relative velocity at a frequency i  is contributed to by the amplitude of the relative 

velocity at all N  frequencies inside the bandwidth. The amplitude of cubic damping 

force at a particular frequency is a consequence of this summation. The greater number 

of high frequency content can cause a much higher level for the cubic damping force. 

This is the difference from what happens for linear damping force. 

 To this end, one can conclude in general for cubic damping system that the 

amount and amplitude of high frequency content can result in significant differences in 

the level of the relative velocity cubed. The cubic damping force is as a result obtained 

from this expansion. This is in contrast to the linear damping case where the linear 

damping force amplitude at a particular frequency is obtained directly from the product 

of 1 i ic Zω . Thus the appearance of the cubic damping force for each excitation 

bandwidth is noticeably different.  

5.8.3 The response at low frequencies outside the excitation bandwidth 

 The occurrence of high amplitudes of the response outside the excitation 

bandwidth for the cubic damping system is more noticeable when the broader excitation 

bandwidth was applied. A result of exciting with the broader bandwidth is the 

significantly higher amplitude of damping force as discussed in the previous section. 

This high level of damping force can occur in the form of spikes or impulsive forces as 

seen by the red lines in figures 5.13 (e) and (f). 
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 It is well known that an impulsive force can produce a broadband frequency 

characteristic which reasonably flat over all frequencies. A shorter duration of pulse 

produces a broader frequency spectrum and vice versa. The pulses occurring can have 

different durations which can give different high frequency responses but always the 

same or similar low frequency response. Therefore, large spikes of damping force can 

result in the vibration response at low frequencies outside the excitation bandwidth. 

  Figures 5.17 (a) and (b) show levels for the relative velocity PSDs between the 

linear and cubic damping responses due to the CDR and CVR excitation with the 

excitation bandwidth of 1-1000 Hz respectively. The differences at the lower 

frequencies below resonance inside the excitation bandwidth are apparent. This 

occurrence can be identifiable as a result of impulsive force resulting from relative 

velocity cubed. The occurrence of forces at these additional frequencies can be acting 

on the isolated mass apart from the force from base excitation. These forces yield the 

higher amplitude of isolated mass which results in response amplitude greater than the 

amplitude of excitation at these frequencies. As a result, the velocity amplitude of 

isolated mass is higher than that for excitation. It also yields the higher relative velocity 

at low frequency region. 

5.9 Conclusions  

 In this chapter the effect of cubic damping on a SDOF base excited vibration 

isolation system was investigated using a variety of broadband excitations. Two 

different random excitation characteristics, namely constant displacement amplitude 

(CDR) and constant velocity amplitude (CVR) excitations were applied. The numerical 

results were carried out using direct numerical integration. The excitation characteristics 

were altered in terms of the amplitude and bandwidth. 

 The responses for the base excited vibration isolator possessing cubic damping 

subject to either the CDR or CVR excitation is clearly dominated mainly by the input 

displacement amplitude at high frequencies. Greater displacement amplitude at high 

frequencies produces a higher level of damping force. Therefore, the base excited 

vibration isolator with the cubic damping characteristic can encounter a detrimental 

effect. It is considered detrimental since the result of cubic damping can cause higher 

vibration amplitude for the isolated mass at low frequencies below the resonance as well 
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as in the expected isolation region. The absence of displacement input at high 

frequencies also results in the low level of cubic damping force which also results in a 

high peak amplitude around resonance.  

 Although the existence of displacement at high frequency increases the level of 

cubic damping force, it does not significantly reduce the peak response around 

resonance but increases the response at lower frequencies as mentioned earlier. The 

high vibration response level at low frequencies outside excitation bandwidth is 

identifiable as being a result of impulsive damping force. Such the force is a consequent 

result of taking the relative velocity to the power of three. It can be concluded that the 

occurrence of responses at low frequencies outside the excitation bandwidth are due to 

these impulsive damping forces.   

 To this end, the investigation into the effect of cubic damping due to broadband 

excitation reflects some behaviour that might happen for the nonlinear damping base 

excited vibration isolation. Therefore, consideration of the amplitude and bandwidth of 

the input excitation has to be taken into account. 

 The effect of cubic damping has proved theoretically detrimental on the base 

excited isolation system due to either harmonic or broadband excitation. The level of 

cubic damping force has been found to be a possible reason. However, to ensure that the 

theoretical results are acceptable and reliable, the next chapter is about to report the 

experimental results for both harmonic and broadband random excitation. 
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(b) 

 
(c) 

 
 
Figure 5.1 Probability distribution functions of the Gaussian distribution with 

xµ = 0 and xσ = 1. 
 (a) 10 bins,  (b) 20 bins and (c) 30 bins 
  Gaussian distribution 
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 Amplitude Averaged power 

(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

  
 
Figure 5.2 Amplitude and the resulting averaged power of overlapping Hanning windows in 

the period of acquisition time of 2T . 
 (a) 0% overlap, (b) 50% overlap, (c) 66.67% overlap, (d) 75% overlap and  

(e) 80% overlap. 
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(a) 

 
(b) 

 
 
Figure 5.3 Transmissibility function for a lightly linearly damped base excited vibration 

isolation model with 1ζ = 0.01. 
 (a) A frequency range of 0.1- 100 times the natural frequency and 
 (b) around the resonance frequency. 
  peak response level 
  half power level 
  half power frequencies 
  transmissibility function 
     spectral lines at intervals of 0.001 nf  
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 (a) (b) (c) 

         

Displacement estimated PSD for the constant displacement random excitation (CDR) 
 

 
 (d) (e) 

     
 

Constant velocity random excitation (CVR) 
 

Figure 5.4 Estimate PSD for the applied broadband random excitation 
 (a) A CDR excitation with fixed bandwidth at 1-1000 Hz 
 (b) A CDR excitation with fixed displacement PSD level 
 (c) A CDR excitation with fixed displacement RMS at 1.25 mm 
 (d) A velocity PSD for the CVR excitation 
 (e) A corresponding displacement PSD for the CVR excitation 
  Excitation PSD level 
  Excitation bandwidth of 1-1000 Hz 
 
 

 

 

 

 

10
0

10
1

10
2

10
3

-50

-40

-30

-20

-10

Frequency [Hz]

D
is

pl
ac

em
en

t P
S

D
[d

B
 re

 1
 m

m
2 /

H
z]

10
0

10
1

10
2

10
3

-50

-40

-30

-20

-10

Frequency [Hz]
D

is
pl

ac
em

en
t P

S
D

[d
B

 re
 1

 m
m

2 /
H

z]

10
0

10
1

10
2

10
3

-50

-40

-30

-20

-10

Frequency [Hz]

D
is

pl
ac

em
en

t P
S

D
[d

B
 re

 1
 m

m
2 /

H
z]

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

V
el

oc
ity

 P
S

D
[d

B
 re

 1
 (m

m
/s

)2 /
H

z]

Frequency [Hz]
10

0
10

1
10

2
10

3
-70

-60

-50

-40

-30

-20

-10

0

10

Frequency [Hz]

D
is

pl
ac

em
en

t P
S

D
[d

B
 re

 1
 m

m
2 /

H
z]

140 



Simulation of a cubically damped vibration isolation system subject to broadband excitation 

 Displacement PSD  Damping force PSD 

(a) 

 

(d) 

 
(b) 

 

(e) 

 
(c) 

 

(f) 

 
 
Figure 5.5 Responses for linear viscous damping and cubic damping subject to different 

excitation levels of a constant displacement amplitude random excitation with 
bandwidth of 1-1000 Hz. 

 (a) and (d) response for displacement excitation RMS = 2.5 mm 
 (b) and (e) response for displacement excitation RMS = 1.25 mm  
 (c) and (f) response for displacement excitation RMS = 0.25 mm 
  Linearly damped response 
  Cubically damped response 
  Displacement excitation 
  Excitation bandwidth of 1-1000 Hz 
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 Displacement PSD  Damping force PSD 

(a) 

 

(d) 
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Figure 5.6 Responses for linear viscous damping and cubic damping subject to different 

excitation bandwidth of a constant displacement amplitude random excitation with 
fixed excitation levels. 

 (a) and (d) response for excitation bandwidth = 1-1000 Hz 
 (b) and (e) response for excitation bandwidth = 1-500 Hz 
 (c) and (f) response for excitation bandwidth = 1-100 Hz 
  Linearly damped response 
  Cubically damped response 
  Displacement excitation 
  Excitation bandwidth of 1-1000 Hz 
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 Displacement PSD  Damping force PSD 

(a) 
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Figure 5.7 Responses for linear viscous damping and cubic damping subject to different 

excitation bandwidth of a constant displacement amplitude random excitation with 
fixed displacement excitation RMS of 1.25 mm. 

 (a) and (d) response for excitation bandwidth = 1-1000 Hz 
 (b) and (e) response for excitation bandwidth = 1-500 Hz 
 (c) and (f) response for excitation bandwidth = 1-100 Hz 
  Linearly damped response 
  Cubically damped response 
  Displacement excitation 
  Excitation bandwidth of 1-1000 Hz 
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 Velocity PSD  Damping force PSD 

(a) 

 

(d) 

 
(b) 

 

(e) 

 
(c) 

 

(f) 

 
 
Figure 5.8 Responses for linear viscous damping and cubic damping subject to different 

excitation bandwidth of a constant velocity amplitude random excitation with fixed 
displacement excitation RMS of about 1.25 mm and fixed velocity PSD. 

 (a) and (d) response for excitation bandwidth = 1-1000 Hz 
 (b) and (e) response for excitation bandwidth = 1-500 Hz 
 (c) and (f) response for excitation bandwidth = 1-100 Hz 
  Linearly damped response 
  Cubically damped response 
  Displacement excitation 
  Excitation bandwidth of 1-1000 Hz 
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Simulation of a cubically damped vibration isolation system subject to broadband excitation 

 (a) (b) (c) 

     
 

Constant displacement random excitation (CDR) 
 
 
 (d) (e) (f) 

     
 

Constant velocity random excitation (CVR) 
 
 
 (g) (h) (i) 

     
 

Corresponding displacement PSD for the CVR excitations shown above 
 
Figure 5.9 Estimate PSD for the two pass-band excitations.  
 Bandwidths for the constant displacement amplitude excitation are  
 (a) 1-500 Hz, (b) 1-250 Hz plus 500-750 Hz and (c) 1-250 Hz plus 750-1000 Hz. 
 The similar bandwidths are also applied to the constant velocity amplitude 

excitation which are presented using velocity PSD in figure (d) to (f) respectively. 
 Figures (g) to (i) respectively present the corresponding displacement PSD for the 

CVR excitations. 
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Chapter 5 

(a) 

 

(d) 

 
Bandwidth 1-250 Hz and 250-500 Hz 

(b) 

 

(e) 

 
Bandwidth 1-250 Hz and 500-750 Hz 

(c) 

 

(f) 

 
Bandwidth 1-250 Hz and 750-1000 Hz 

 
Figure 5.10 Responses for linear viscous damping and cubic damping subject to two pass-band 

random excitation having constant displacement amplitude. 
  Linearly damped response 
  Cubically damped response 
  Displacement excitation 
  Excitation bandwidth of 1-1000 Hz 
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Simulation of a cubically damped vibration isolation system subject to broadband excitation 

 Velocity PSD  Damping force PSD 

(a) 

 

(d) 

 
Bandwidth 1-250 Hz and 250-500 Hz 

(b) 

 

(e) 

 
Bandwidth 1-250 Hz and 500-750 Hz 

(c) 

 

(f) 

 
Bandwidth 1-250 Hz and 750-1000 Hz 

 
Figure 5.11 Responses for linear viscous damping and cubic damping subject to two pass-band 

random excitation having a constant velocity amplitude. 
  Linearly damped response 
  Cubically damped response 
  Displacement excitation 
  Excitation bandwidth of 1-1000 Hz 
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 Displacement PSD  Damping force PSD 

(a) 

 

(d) 

 
(b) 

 

(e) 

 
(c) 

 

(f) 

 
 
Figure 5.12 Estimate displacement PSD and damping force PSD for the constant displacement 

amplitude random excitation having the RMS value equals 1.25 mm 
 (a) and (d) excitation bandwidth of 1-100 Hz 
 (b) and (e) excitation bandwidth of 1-250 Hz plus 750-1000 Hz 
 (c) and (f) excitation bandwidth of 1-1000 Hz 
  Linearly damped response 
  Cubically damped response 
  Displacement excitation 
  Excitation bandwidth of 1-1000 Hz 
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Simulation of a cubically damped vibration isolation system subject to broadband excitation 

Absolute displacement for isolated mass Damping force 

(a) 

 

(d) 

 
Bandwidth of 1-100 Hz with displacement excitation RMS = 1.25 mm 

(b) 

 

(e) 

 
Bandwidth of 1-250 Hz and 750-1000 Hz with displacement excitation RMS = 1.25 mm 

(c) 

 

(f) 

 
Bandwidth of 1-1000 Hz with displacement excitation RMS = 1.25 mm 

 
Figure 5.13 Time histories of the broadband responses due to constant displacement amplitude 

random excitations (CDR). 
  Linearly damped response 
  Cubically damped response 
  Sinusoidal at 10 Hz (resonance frequency) 
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 Linear damping   Cubic damping 

(a) 

 

(d) 

 
Bandwidth 1-250 Hz and 250-500 Hz 

(b) 

 

(e) 

 
Bandwidth 1-250 Hz and 500-750 Hz 

(c) 

 

(f) 

 
Bandwidth 1-250 Hz and 750-1000 Hz 

 
Figure 5.14 Probability density function of the relative velocity for the responses subject to two 

pass-band random excitations having constant displacement amplitude with the 
RMS displacement excitation of around 1.25 mm. 

  Gaussian distribution 
 The vertical dashed lines represent the relative velocity where linear and cubic 

damping forces are equal, i.e. x∆ = 8.785 m/s for the case of CDR excitation. 
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Simulation of a cubically damped vibration isolation system subject to broadband excitation 

 Linear damping   Cubic damping 

(a) 

 

(d) 

 
Bandwidth 1-250 Hz and 250-500 Hz 

(b) 

 

(e) 

 
Bandwidth 1-250 Hz and 500-750 Hz 

(c) 

 

(f) 

 
Bandwidth 1-250 Hz and 750-1000 Hz 

 
Figure 5.15 Probability density function of the relative velocity for the responses subject to two 

pass-band random excitations having constant velocity amplitude with the RMS 
displacement excitation of around 1.25 mm. 

  Gaussian distribution 
 The vertical dashed lines represent the relative velocity where the linear and cubic 

damping forces are equal, i.e. x∆ = 0.435 m/s for the case of CVR excitation. 
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 Constant Displacement Random (CDR)   Constant Velocity Random (CVR) 

(a) 

 

(d) 

 
Bandwidth 1-250 Hz and 250-500 Hz 

(b) 

 

(e) 

 
Bandwidth 1-250 Hz and 500-750 Hz 

(c) 

 

(f) 

 
Bandwidth 1-250 Hz and 750-1000 Hz 

 
Figure 5.16 Force-velocity characteristic for the linear and cubic damping system subject to 

two pass-band excitation frequency for both CDR and CVR excitations. 
    • Linear damping force 
    • Cubic damping force 
 Vertical dashed lines represent the relative velocity which the amplitudes of linear 

and cubic damping forces are equal, i.e. x∆ = 8.785 m/s for the case of CDR 
excitation and  x∆ = 0.435 m/s for the case of CVR excitation. 
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Simulation of a cubically damped vibration isolation system subject to broadband excitation 

Constant displacement amplitude 
random excitation 

Constant velocity amplitude 
random excitation 

(a) 

 

(b) 

 

 Relative velocity PSD 

(c) 

 

(d) 

 

 Damping force PSD 

 
Figure 5.17 Plots of the PSD of the relative velocity and damping force in comparison for the 

response subject to a constant displacement amplitude and constant velocity 
amplitude random excitation. 

 (a) and (b) Estimate PSDs for the relative velocity 
 (c) and (d) Estimate PSDs for the damping force 
  Linearly damped response 
  Cubically damped response 
  Excitation bandwidth 
  Excitation frequency at around resonance 
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Chapter 6 Experimental validation and analysis 

 

6.1 Introduction 

 From the preceding chapters, the degree to which cubic damping influences the 

level of effective damping of the system was found to be dependent upon both the 

amplitude and bandwidth of the excitation. It proved to be detrimental for a constant 

displacement amplitude harmonic base excitation where an increased response occurred 

in the isolation region. It is also detrimental for broadband excitation for which high 

response was witnessed at low frequencies even outside the excitation bandwidth. These 

cubic damping effects are examined experimentally here. 

 The experimental study was implemented using an electrodynamic shaker. The 

rig was designed to exhibit a SDOF response characteristic under base excitation. Cubic 

damping was implemented using active damping with a simple velocity feedback. Two 

base excitation characteristics namely harmonic and broadband excitation were 

employed. The focus of this chapter is to examine and report the effects of cubic 

damping in comparison to the theoretical results. The responses for system with cubic 

damping are also examined in comparison to that with linear damping.  

 The experimental results obtained confirm the detrimental effects of cubic 

damping on a base excited SDOF isolation system. They are consistent with those 

reported theoretically. The physical reasons for the detrimental effect due to the 

presence of cubic damping for base isolation are also reported. These results show 

significant contribution of cubic damping to the detrimental effects. 

6.2 Design and considerations of experimental rig 

 The key design parameters were the natural frequency and mode of vibration of 

an experimental rig. The experimental rig should exhibit an obvious single resonance 

frequency as assumed theoretically. In addition, there should be sufficient frequency 

separation of the first resonance frequency and subsequent modes. According to the 

theoretical approximation for harmonic excitation, the detrimental effect for a particular 
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value of cubic damping can be seen at a frequency around ten times higher than the 

fundamental resonance frequency. So, higher modes should be at frequencies higher 

than this. For practical instrumentation reasons the natural frequency of the rig should 

not be too low due to the ability of the available exciters and instrumentation.   

 A vertical realisation was chosen, to possess only a vertical vibration mode. The 

occurrence of other possible modes, for example rotating or pitching modes, should be 

eliminated or minimised. The components used in the experiment should also be 

consistent with the theoretical assumptions, for example the assumptions of linear 

massless springs and massless damping. These basic requirements led to the design of 

the rig which is described in detail in the following section. 

6.2.1 Rig design and set up 

 The design of the rig was based on an assumption of a SDOF simple mass, 

spring and damper system. The damping component in the isolation was implemented 

using an electrodynamic shaker which also formed part of the isolated mass. A drawing 

of the experimental rig is given in figure 6.1. An active damper was introduced using an 

LDS electrodynamic shaker (model V101). It has a mass of 0.91 kg with an axial 

suspension stiffness of 3.15 kN/m as informed in technical specification. The shaker 

was mounted on an aluminium plate of mass 0.5 kg and led to a total mass of 1.41 kg. 

The combined unit of shaker, aluminium plate and force transducers A and B formed 

the isolated mass which was supported by two helical springs.  

 Since the system mass was supported by two helical springs, an existence of a 

pitching mode of the rig rotating about its centre can be anticipated. To reduce the effect 

of any pitching mode, the pitching frequency was designed to be lower than the bounce 

mode frequency and this was achieved by reducing the distance between the two 

isolator springs. The rig natural frequency was initially chosen to be close to 10 Hz. A 

pitching frequency was initially set at 4 Hz. This yielded the distance between two 

helical springs to be 93 mm, symmetrically positioned about the centre of the plate. 

Later for manufacturing convenience, this distance was simplified to 80 mm as shown 

in figure 6.1 and resulted in a new calculated pitching frequency of about 3.45 Hz.  

 As the rig natural frequency of 10 Hz was chosen, a total value of the 

corresponding vertical stiffness should be 5.53 kN/m. Therefore the total stiffness of 
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two the helical springs should be equal to 2.42 kN/m or 1.21 kN/m each. It is assumed 

that the properties and geometry of these two helical springs were identical. However, 

the practical value of the total stiffness of the two helical springs was measured. The 

measured data are plotted as the load-deflection characteristic shown in figure 6.2 using 

circle markers. The method of linear regression was applied to the measured data and 

the total stiffness was found to be 1.94 kN/m. Thus the total vertical stiffness of the 

isolation was 5.09 kN/m. Hence the natural frequency of the bounce mode should 

presumably be 9.56 Hz.  

 After manufacturing and assembly, the actual isolated mass was found to be  

1.50 kg approximately. Thus the undamped natural frequency of the system becomes 

9.27 Hz. This also resulted in a static deflection of the two helical springs, with no 

stinger connection, of 7.6 mm. The static deflection was greater than the displacement 

limitation of the shaker, which is 2.5 mm. Therefore the springs are always in 

compression. The stinger was then inserted to connect the shaker and the base at this 

static equilibrium position. Thus the shaker does not have to take the static load.  

 Figure 6.3 shows a schematic physical model. The schematic illustrates that the 

isolated mass is physically supported by the two helical springs and the passive 

suspension of the shaker. The damping force was obtained from the electromagnetic 

force, dF , which was acting between the permanent magnetic (shaker body) and the 

armature. The armature was considered very light compared to the isolated mass and 

was connected to the force transducer C by a stinger. This connection was assumed 

infinitely stiff in the vertical direction compared to the axial suspension stiffness. Thus 

one might anticipate the damping force dF  transmitted to the force transducer C is not 

affected by the armature mass. 

6.2.2 Experimental rig characterisation  

 The experimental rig, with no active damping implementation, was initially 

tested under white noise random base excitation. The excitation signal was generated 

using the B&K Noise Generator type 1405 with a 20 kHz frequency bandwidth. Both 

excitation and response signals were acquired and processed using a DataPhysics 

Dynamic Signal Analyser. The upper frequency of the analyser was set to 400 Hz with a 

sampling frequency of 1024 Hz automatically chosen by the analyser (2.56 times of the 
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upper frequency). A frequency resolution was set to 0.25 Hz, corresponding to a record 

length of 4 s. A Hanning window was applied to the acquired signals with 75% overlap 

and 300 averages for the spectral estimates. 

 The acceleration responses of both the base and the isolated mass were captured 

using the B&K charge type piezoelectric accelerometers model 4375 and B&K Charge 

Amplifiers Type 2635. A transmissibility function for the system is shown in figure 6.4. 

It appears to resemble fairly well a SDOF system over a frequency range of 7–100 Hz, 

shown by the dashed lines in figure 6.4 (a), with an obvious resonance peak around 

11 Hz. Figure 6.4 (b) shows the comparison of the phase between the base excitation 

and the isolated mass. The theoretical prediction fits fairly well in the frequency region 

below and around the resonance frequency. The prediction tends to 2π−  radians at 

higher frequencies whereas that for experimental data is constant at around π−  radians. 

This may be a result of hysteretic damping of the passive system. The coherence 

function shown in figure 6.4 (c) also appears reasonably acceptable for this frequency 

range.  

 Other resonances appear at frequencies approximately equal to 211, 222, 300 and 

340 Hz. The first two frequencies were identifiable as the internal resonances of the 

isolator springs, the detail of which is given in section 6.2.4. The latter two frequencies 

could be the higher modes of the rig. Hence a suitable frequency range for investigating 

the effect of cubic damping on this rig was about 7–100 Hz.  

 The bounce mode natural frequency and damping ratio were estimated from the 

measured transfer functions. These parameters were calculated and compared using two 

different tools, i.e. a circle fit method [74] and a MATLAB function ‘invfreqs’ [75,76]. 

In order to do the modal fit, the measured motion transmissibility was rearranged to 

form the receptance of the system when it is clamped to the base, i.e. 

 ( ) ( )
( )2

0

1 1
X

H
X

ω
ω

ω ω
 

= − 
 

 (6.1) 

where ω  is an excitation frequency, ( )X ω and ( )0X ω  are the measured displacement 

amplitude of the isolated mass and the base excitation respectively. Equation (6.1) has 

the form of the receptance scaled by the system mass. 
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 Details of the circle fit method and the MATLAB function ‘invfreqs’ are 

described in Appendix D. The estimated results from these two techniques appeared 

similar and consistent. A natural frequency of 11 Hz and the corresponding passive 

linear viscous damping ratio of 0.04 were obtained. A plot shown by a dashed line in 

figure 6.4 (a) reveals that the estimated linear lightly damped SDOF system fits the 

experimental data reasonably well.  

6.2.3 Implementation of active damping 

 The active damping was implemented using an electrodynamic shaker with a 

simple velocity feedback. Note that, the active damper in this study was only 

implemented to represent a linear or nonlinear damping characteristic. The implemented 

active damper was not intended to act as a control strategy. 

 The vertical damping force was produced as a result of the feedback signal to the 

shaker and the desired level was achieved by adjusting the shaker amplifier gain. The 

role of the variable gain of the shaker amplifier is to adjust the damping coefficient. It is 

a factor multiplying the amplitude of a processed signal (relative velocity or relative 

velocity cubed). The processed signal was obtained by processing the acquired velocity 

of the base and isolated mass with the control schematic shown in figure 6.5. 

 The velocity was obtained by integrating the measured acceleration using the 

charge amplifiers where the low cut-off frequency was set at 1 Hz. The data processing 

unit produced the relative velocity determined from the difference in the velocities. Any 

arbitrary damping configuration, for this instance, the linear and cubic damping 

configurations can be reproduced. The processed signal was fed to the shaker amplifier 

to produce the desired damping force level by the shaker. 

6.2.4 Internal resonance of helical spring 

 Theoretically, the isolator was assumed to comprise a massless spring. Also, the 

geometry of the spring was not considered. However, practically the mass of the spring 

cannot be neglected and the geometry of the spring is important. One possible behaviour 

of the actual helical spring is the internal resonance of the spring itself which is 

dependent on its physical mass and geometry. The hth internal axial resonance frequency 
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of a spring, placed between two flat and parallel surfaces, can be determined from 

[77,78]    

 
2

hs
h

hs

khf
m

=  1, 2,...h =  (6.2) 

where hsk and hsm  are the stiffness and the mass of the helical spring respectively. The 

stiffness and the mass of the spring can be determined from its geometrical and material 

properties which are respectively given by  
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=  (6.4) 

where G  is the shear modulus, d  is the wire diameter, D is the outer diameter of the 

spring, aN  and tN  are the number of active and total coils respectively. ρ  is the density 

of the spring material. The predicted internal resonance frequency for the helical springs 

used was about 206 Hz. Therefore the appearance of two resonance peaks around 211 

and 222 Hz were identifiable as a result of internal resonances of the springs, assuming 

a slight variation between them. 

6.2.5 Spectral analysis of the experimental results 

 The experimental results for the two excitations under study, i.e. harmonic and 

broadband excitation, are analysed by means of spectral analysis. For the case of 

harmonic responses, the Fourier coefficients at the fundamental frequencies were 

determined from the time histories of both the base excitation and the isolated mass 

response. Then these quantities were employed to construct the amplitude ratio. The 

methodology to obtain the Fourier coefficients was given in section 2.4.3. 

 For the case of broadband excitation, the amplitude spectrum and hence the 

power spectral density (PSD) were obtained from the analyser. Then the estimated 

transfer function can be obtained. In this study, the experimental data was acquired only 
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in the form of auto-PSDs then the estimated transfer function 0H  was applied which is 

given by 

 2
0

yy

xx

S
H

S
=  (6.5) 

where yyS  and xxS  are the averaged auto-PSDs for the response and excitation 

respectively. In addition, the estimated transfer function 1H  and 2H  are not considered 

here. This is because they are suitable to estimate a transfer function for the system 

which the output and input are linearly related. This is because the estimator 1H  

disregards the effects of nonlinearity present in the output. Similarly, the estimator 2H  

disregards the input which is not linearly related to the output. 

6.3 Harmonic excitation 

 The experiment covered the frequency range of 7-100 Hz. A sampling frequency 

of 1024 Hz was chosen to avoid aliasing from higher odd harmonics in the response due 

to the non-linearity. 

6.3.1 Choice of amplitude for harmonic base excitation 

 The level of excitation amplitude was chosen considering the relative 

displacement between the isolated mass and the base for which was limited to 1.25 mm 

peak due to the 2.5 mm stroke of the shaker.  

 The amplitude of the relative displacement between the isolated mass and the 

base input can be calculated from 

 ( )2 2
0 02 cosZ X XX Xφ= − +  (6.6) 

where Z  is the amplitude of the relative displacement, X and 0X  are the displacement 

amplitude of the isolated mass and base excitation respectively. φ  is the phase lag 

between the isolated mass and the base which was assumed to be 90° for the response 

around the resonance frequency. Therefore equation (6.6) is simplified to 
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 2 2 2
0Z X X= +  (6.7) 

 The amplitude of base excitation was initially considered using the response of 

the passive system as shown in figure 6.4 (a). The peak amplitude of the transmissibility 

is about 20 dB ( 010X X= ). The peak amplitude of 20 dB was assumed as the worst 

case scenario for the passive system (without active damping configuration). The peak 

amplitude was lower when the active damping was applied. The relative displacement, 

Z = 0.625 mm ,was also chosen initially to determine the excitation amplitude. Hence 

an amplitude of the base excitation, 0X = 0.062 mm, was obtained from equation (6.7).  

 For simplicity, the desired levels of the constant displacement excitation were 

assigned to be 0.060 mm and 0.040 mm for high and low excitation amplitude. The 

relative displacements around the resonance frequency for these excitation levels were 

expected to be about 0.603 mm and 0.402 mm respectively. In order to achieve these 

excitation levels, the amplifier gain for base excitation was manually adjusted until the 

desired excitation level was obtained. Also to minimise the effect of transient response, 

the system was allowed to be excited around 60 seconds before the start of signal 

acquiring process.  

 In addition, the relative displacement for the system was expected to be lower 

when the active damping was applied. However, the input displacement with constant 

amplitude of 0.060 mm could not be achieved for the excitation frequencies above 80 

Hz. This was limited by the shaker capability. So the maximum excitation frequency for 

the harmonic base excitation with amplitude of 0.060 mm was set to 80 Hz.  

 The other scenario considered for harmonic excitation was to apply a constant 

velocity amplitude excitation. The amplitude of excitation velocity at 11 Hz (the 

resonance frequency) corresponding to the displacement excitation of 0.060 mm was 

considered. It was about 4.147 mm/s or 4 mm/s for simplicity. This excitation amplitude 

was assigned to be the low excitation amplitude. The high excitation amplitude was set 

to have velocity amplitude of 6 mm/s.  

 The experimental responses for harmonic excitation were carried out with linear 

and cubic damping implementations. There were two scenarios applied for either 

damping case. The first scenario was to excite the system with different excitation levels 
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for a fixed feedback gain. The second scenario was to fix the excitation amplitude 

whilst different levels of damping were applied.  

6.3.2 Implementation of linear damping 

 The experiment on the linear damping configuration was carried out to ensure 

consistency of the experimental and theoretical results. It could also show reliability of 

the experimental rig. For the first scenario, the excitation amplitude of 0.04 mm was 

initially applied. The level of feedback gain was adjusted to result in a peak amplitude 

ratio of about 10 dB and was kept at this position. Then the excitation amplitudes of 

0.06 mm, 4 mm/s and 6 mm/s were applied sequentially for which the results are shown 

using an amplitude response in figure 6.6.  

 Theoretically, the amplitude ratio for a particular linear system should be 

identical and independent of the excitation characteristics. Consistently, figure 6.7 

shows that the corresponding amplitude ratios for the four excitations are in excellent 

agreement with the theoretical linear transmissibility (solid lines). Note that, the 

theoretical plot was calculated using the estimated value of the damping ratio, 

1ζ = 0.17 , and natural frequency, 11 Hz. These values were also obtained by applying 

either the circle fit method or Matlab function ‘invfreq’ to the measured data when 

active damping with linear damping configuration was applied. 

 The second experiment for linear damping implementation was carried out by 

exciting the system only with the displacement excitation amplitude of 0.04 mm. The 

level of feedback gain was adjusted to result in an amplification peak amplitude of 

15 dB and 10 dB respectively. The resulting amplitude ratios in figure 6.8 are consistent 

with the theoretical transmissibility for a linear system. These results reveal that the 

different levels of damping did not affect the linearity of the experimental rig.  

 Note that, the experimental responses for the linear damping configuration 

shown in figures 6.6 to 6.8 show amplitude variation at the excitation frequency around 

20 Hz. These occurrences were identified to be a result of system asymmetry. An 

investigation showed that the translation of the isolated mass was not perfectly vertical. 

Such behaviour occurred between the excitation frequencies of around 14 to 24 Hz. It 

was possible to minimise this behaviour by adding the counter mass or by adjusting the 
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location of an accelerometer. However, this behaviour was found not to affect the 

response at high frequencies as shown in the figures. 

 To this end, for the linear damping configuration, changing either the level of the 

input excitation or value of damping did not cause any significant difference between 

the experimental and theoretical results. There was no nonlinear characteristic within 

the frequency range of interest when the linear damping configuration was assigned. 

Therefore, the experimental rig had an acceptable performance to continue the 

experiment on cubic damping implementation with some confidence. 

6.4 The cubic damping implementation for harmonic excitation 

 The theoretical approximations for harmonic excitation in Chapter 3 showed that 

the value of non-dimensional cubic damping term is dependent upon the excitation 

amplitude squared. Higher excitation amplitude results in a greater value for the non-

dimensional cubic damping. The higher cubic damping causes the response amplitude in 

the isolation region to rise up towards the excitation amplitude at lower frequencies. In 

contrast, theoretically, the presence of cubic damping proved more beneficial when the 

input is a constant velocity amplitude. Thus there were three main issues to be validated 

regarding the effects of cubic damping for harmonic excitation:  

 i)  the excitation amplitude dependence property of cubic damping,  

 ii)  the occurrence of a high response level in the isolation region for constant 

displacement amplitude excitation and 

 iii)  the beneficial effect of cubic damping for a constant velocity amplitude 

excitation. 

 The experimental investigation was conducted into two base excitation scenarios, 

the same as those applied for linear damping implementation. The cubic damping 

configuration was implemented by taking the relative velocity to the power of three 

which was accomplished by the data processing unit. 

6.4.1 Influence of excitation amplitude on the effect of cubic damping 

(fixed feedback gain and different excitation levels) 

 The four different excitations previously mentioned were sequentially applied 

with a fixed level of feedback gain for cubic damping. The level of feedback gain was 
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initially chosen to achieve a 15 dB peak amplitude ratio for the excitation amplitude of 

0.04 mm. Later, the level of feedback gain was kept at this position for the other 

excitation levels and characteristics.  

 The amplitude response for the inputs shown by solid lines in figure 6.9 are seen 

to produce different response characteristics. It is more noticeable for the responses due 

to a constant displacement amplitude excitation. This is unlike the linear damping case 

where the response characteristics are similar and only different in terms of level, 

figures 6.6 (a) and (b). It is more convenient to present these responses using an 

amplitude ratio as shown in figure 6.10 where the displacement of the isolated mass is 

normalised by that of the input. 

 The amplitude ratios reveal that the change in either the level or the 

characteristic of the input influences the level of effective cubic damping and hence the 

response characteristic. The corresponding amplitude ratios show an agreement with the 

definition of non-dimensional cubic damping given in equation (3.5) and given here 

again, i.e. 

 23
3 n

c X
m

ζ ω=   (6.8) 

This shows that the level of non-dimensional cubic damping is directly proportional to 

the excitation amplitude squared. It appears in figure 6.10 that the level of the resonance 

peak is lower when higher excitation amplitude was applied. An interpretation of a 

lower level of peak response can be referred to as a higher level of damping. Thus the 

experimental appearances are consistent with the theoretical definition given in 

equation (6.8). 

 In addition, the amplitude ratios for the cubically damped responses due to 

different constant velocity excitation amplitude are shown in figure 6.10 (b). These are 

unlike the linearly damped response which is independent of excitation characteristic. 

Different excitation level produces different cubic damping responses around the 

resonance frequency whereas the amplitude ratio at high excitation frequencies appears 

to be independent of excitation amplitude. This is because the corresponding 

displacement amplitude, for a constant amplitude velocity input, drops with increasing 

frequency by 20 dB per decade, a lower level of damping results, given by equation 
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(6.8) and hence a lower cubic damping force. This is also in agreement to the HBM 

conclusions presented in Chapter 3.  

6.4.2 Response for different cubic damping levels  

(fixed excitation level and different feedback gains) 

 For this scenario, the system was excited only by a displacement amplitude of 

0.04 mm. The feedback gain was adjusted to achieve the peak response as in the linear 

case, i.e. around 15 dB and 10 dB for low and high level of damping respectively. By 

doing this, the effect of cubic damping for the frequencies above resonance could be 

distinguished from the linear case.  

 The comparison of the amplitude ratios for these experiments and theory (HBM) 

are shown in figure 6.11. It is seen that the theoretical approximations (using dotted 

line) appear similar to the experiment results, especially the increasing response at high 

frequencies. When a higher level of damping was applied the frequency at which the 

amplitude ratio increases is lower. The appearance of such behaviour is consistent with 

the theoretical approximation for excitation frequencies much higher than resonance, 

i.e. 1Ω , as given in table 3.2 and here again by  

 

2
3

3

41
3

W
ζ

 
≈ −  Ω 

  (6.9) 

The theoretical approximation shows that a greater value of non-dimensional cubic 

damping results in a lower frequency for the turning point.  

 The appearance of the higher response level, when 1Ω  for the constant 

displacement excitation was described theoretically in terms of a damping force given 

by equation (3.44), i.e. 

 2
3dF ≈ Ω   (6.10) 

This damping force increases proportionally to the excitation frequency squared and 

supported using numerical simulations shown in figure 3.6.  

 The consideration of the cubic damping force was also investigated 

experimentally. The experimental rig was designed to capture the isolation force acting 

on the isolated mass. Force transducers A and B, figure 6.1, captured the restoring 
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forces which were a result of the helical springs. The force transducer C in the middle 

captured the force produced from the active damper. The force acquired from transducer 

C was the summation of the internal passive actuator restoring force and the active 

damping force and is given by 

 ( ) ( )0 0T s s af c x x k x x f= − + − +   (6.11) 

where Tf  is a summation of the forces produced by the active damper or the shaker. 

sc  and sk  are the passive damping coefficient and stiffness of the shaker suspension. af  

is the additional damping force. 

 For this instance, the mass of the force transducers are not negligible with respect 

to the mass of the system. So an inertia force resulting from the transducers must be 

considered. This means that the force acquired from the transducer C included the 

inertia force resulting from its own mass. The measured forces for the case of linear and 

cubic damping obtained from the transducer C are shown in figure 6.12. This figure 

shows that the force in the isolation region for the case of cubic damping increases at a 

more rapid rate compared to that for the linear case. This is in accordance with the 

theoretical approximation. 

 The level of damping force increases to higher levels for high frequency 

excitation. From these experimental results, the results using the HBM approximation 

made in Chapter 3 are reasonably acceptable and validated. The detrimental effect of 

cubic damping for base excitation is considered physically as the result of the high level 

of damping force being produced at high excitation frequencies. One can conclude that 

the theoretical results showing the effect of cubic damping are validated experimentally. 

6.5 Experimental setup for random broadband excitation 

6.5.1 Time and frequency resolution 

 The experiment on broadband excitation was also conducted using a sampling 

frequency of 1024 Hz and a frequency resolution of 0.125 Hz. A corresponding Fourier 

transform of 8 s of data was a result. The Hanning window with 75% overlap and 300 

averages were applied to the recorded data in order to minimise the leakage and recover 

the data lost after the application of the Hanning window. A total recording time of 
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600 seconds was obtained as a result of these configurations. The corresponding BT

product was equal to ( )( )1.44 8 600  = 108 which is considerably larger than unity. 

Therefore, the statistical deviation in either the estimated power spectral density (PSD) 

or the amplitude spectrum is expected to be minimal. 

6.5.2 Interpretation of the broadband random excitation 

 The base excitation was defined to be random broadband with the frequency 

bandwidth of 7-100 Hz. The random broadband excitation was implemented and 

controlled using the LMS Test.Lab (12A) Random Control workbook where the 

excitation profiles were assigned. The closed-loop control using acceleration feedback 

was applied to control the level and profile of base excitation. Two excitation 

characteristics were considered following the theoretical investigation given in 

Chapter 5, i.e. the constant displacement amplitude random (CDR) and constant 

velocity amplitude random (CVR) excitations. The linear and cubic damping 

characteristics were implemented using the same conditions as those applied for the 

experiment on harmonic excitation.  

 The broadband excitation amplitude was set in accordance to the displacement 

excitation RMS value for the case of harmonic excitation for which the maximum 

displacement amplitude was equal to 0.060 mm. The displacement RMS value for such 

excitation was about 0.042 mm. Thus the displacement RMS value for the random 

excitation with the bandwidth of 7-100 Hz was chosen initially to be about 0.042 mm 

for both CDR and CVR excitations.  

 However, the practical values for the excitation RMS values were about 

0.044 mm for CDR and 0.046 mm for CVR excitations. The displacement amplitude 

spectra for these excitations are plotted using the solid lines in figures 6.13 (a) and (b) 

respectively for CDR and CVR. The displacement spectrum level for the CDR 

excitation appears to be about -50 dB re 1 mm (0.003 mm). The amplitude spectrum for 

the CVR is also presented using the displacement amplitude spectrum which can be 

converted to the velocity amplitude spectrum. The corresponding velocity amplitude for 

the displacement RMS value of 0.046 mm is about -7 dB re 1 mm/s (0.45 mm/s). The 

excitations at these levels were assigned to be the reference levels for each excitation 

scenario.  
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 Three investigation scenarios were conducted regarding the theoretical study 

reported in Chapter 5 and are given as follows.  

 Case (i) Two additional amplitude levels of excitation, i.e. 3 dB higher and lower 

than the reference levels, were applied in order to examine the influence of excitation 

amplitude on the effect of cubic damping. These excitation levels are shown in 

figures 6.13 (a) and (b) using dotted lines. 

 Case (ii) The excitation bandwidth was reduced to 7-75 Hz, 7-50 Hz and  

7-25 Hz as shown using dotted lines in figures 6.14 (a) and (b) for the CDR and CVR 

excitations respectively. This excitation scenario was performed in order to determine 

the influence of the frequency content. The excitations with the bandwidth of 7-100 Hz 

defined as the reference level in case (i) are also displayed by the solid lines. 

 Case (iii) Additional high frequency contents with the bandwidth of 25 Hz were 

added to the excitation frequency of 7-25 Hz as shown in figure 6.15. The additional 

bandwidths were 50-75 Hz and 75-100 Hz. These excitation characteristics were 

introduced in order to examine the influence of the high frequencies. The responses for 

these excitation bandwidths are examined in comparison to those for the excitation 

bandwidth of 7-50 Hz (which consists of two consecutive bandwidths, i.e.7-25 Hz and 

25-50 Hz). These excitations share the similar displacement excitation RMS value of 

about 0.031 mm for CDR excitation and 0.042 mm for CVR excitation.  

 Note that, in figure 6.15, a noticeable spike appears at 50 Hz for the figures for 

excitation bandwidth of 7-25 Hz plus 75-100 Hz. This spike can be identified as the 

effect of interfere from electric power supply which has the frequency at  

50 Hz. As a result, there appears a second harmonic at 100 Hz in the figures for 

excitation bandwidth less than 100 Hz. However the amplitudes at these frequencies due 

to interfere were very small compared to the amplitude of the excitation signal. 

Therefore, there would not be any significant effect to the characteristic of the 

responses. 
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6.6 Broadband responses and discussions 

 The experiment on random broadband excitation was conducted in order to 

confirm the theoretical findings, i.e.  

 i)  the occurrence of high response level at low frequencies outside excitation 

bandwidth,  

 ii)  the excitation amplitude dependence and  

 iii)  the influence of excitation on the level of effective cubic damping.  

The broadband responses due to four experimental scenarios were carried out. The first 

scenario involved exciting the system using a fixed excitation amplitude and is reported 

in section 6.6.1. The other three scenarios were to maintain the level of the damping 

coefficient (feedback gain) at a certain level whilst the different excitations mentioned 

in section 6.5.2 were applied. The broadband responses for these excitations are 

reported in sections 6.6.2 to 6.6.4. 

6.6.1 The influence of feedback gain on the level of effective damping 

 The linear and cubic damping responses reported in this section were obtained 

from the application of the CDR excitation with a RMS value of 0.044 mm and 

bandwidth of 7-100 Hz. The feedback gain, which represented the physical damping 

coefficient, was adjusted to produce a peak amplitude of 0H  around 15 dB and 10 dB 

for low and high damping levels respectively. Note that, the feedback gain is referred to 

hereafter as the damping coefficient. 

 The linearly and cubically damped responses for different damping coefficients 

are shown in figure 6.16 using the amplitude spectra. The corresponding estimated 

transfer functions are also shown in the figure. It is apparent that the response 

characteristics for both linear and cubic damping are similar. There is no significant 

difference within the excitation bandwidth. The level of response spectra at high 

frequencies does not increase as for harmonic excitation. One can also see that 

increasing the value of either the linear or cubic damping coefficient reduces the 

response around the resonance frequency.  

 However, the difference between linearly and cubically damped responses is 

noticeable at low frequencies outside the excitation bandwidth. The level of cubically 
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damped response in this frequency region is higher compared to the linear damping case 

and seems to be dependent upon the value of cubic damping coefficient. This 

characteristic appeared consistently in the results obtained from numerical simulation 

shown in Chapter 5 and is identifiable as a result of raising the relative velocity to the 

power of three. Therefore, the theoretical numerical results obtained in Chapter 5 are 

experimentally validated where cubic damping produces response at low frequencies 

outside the excitation bandwidth. Thus, one should be aware of such detrimental 

behaviour for the practical systems where the value of damping nonlinearity could not 

be identified. 

6.6.2 The effect of the excitation level on the effective damping 

 The numerical simulations in Chapter 5 showed that the level of excitation 

resulted in different levels of effective damping. It was concluded that the effect of 

cubic damping is mostly contributed to by the amplitude of displacement excitation. 

Therefore, the investigation into the influence of excitation level was then implemented. 

 Three excitation amplitudes given in section 6.5.2 case (i) were applied. Only the 

high level of damping coefficient was applied for this experimental scenario. By 

considering the response for the CDR excitation, shown in figure 6.17, one can see the 

difference in the levels of the peak between the linear (dotted line) and cubic (solid line) 

responses. It is shown in the graphs of 0H  that the peak amplitude for the linearly 

damped responses are almost at the desired amplitude of 10 dB. In contrast, the peak 

amplitude for the cubically damped response appears inversely related to the excitation 

level. A higher peak amplitude occurs for a lower excitation level and vice versa for a 

higher excitation level. 

 The responses for the CVR excitation are shown in figure 6.18. Similar to the 

case of CDR, the peak amplitude in the graphs of 0H  for the system with cubic damping 

due to excitation with RMS displacement of 0.046 mm was tuned to be around 10 dB. 

Then the level of cubic damping coefficient was kept fixed for the other excitation 

amplitudes which were ±3 dB from the reference level.  

 It was observed for the cubically damped system that to obtain the peak response 

around 10 dB, the cubic damping coefficient was increased by orders of magnitude 
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compared to the case of CDR. This is different to linear damping where the damping 

coefficient is unaltered. This is also consistent with numerical simulations in Chapter 5, 

where the values of 3c  for CDR and CVR to produce the same level of resonance peak 

are very different. 

 To recap, the response for this experimental scenario appeared as expected. 

There should be a higher peak ratio for the lower excitation level and a lower peak ratio 

for higher excitation level. This is consistent with the theoretical results interpreted in 

Chapter 5.  

6.6.3 The effect of the excitation bandwidth on the effective damping 

 Chapter 5 showed that the presence or absence of displacement input at high 

frequencies contributed to the level of effective cubic damping. Four excitation 

bandwidths mentioned in section 6.5.2 case (ii) were applied. Similarly to before, where 

only a single high damping level was applied, the peak amplitude in 0H  for the 

excitation at a reference level, i.e. excitation with bandwidth of 7-100 Hz, was chosen to 

be around 10 dB. 

 The results for the CDR excitations are shown in figure 6.19. It is seen that the 

response for the narrower bandwidth excitation exhibits a higher peak level. This 

indicates a lightly damped response. This is due to the absence of displacement 

excitation at high frequencies which is also consistent to comments in Chapter 5. 

 The results for the CVR excitations are shown in figure 6.20. The narrower 

excitation bandwidth, i.e. 7-25 Hz, also resulted in a higher peak response level. A 

broader excitation bandwidth produced a higher level of effective damping. However, in 

this case (CVR compared to CDR) the excitation at high frequencies is less significant.  

 When the amplitude spectra for the CDR excitation, figure 6.19, and CVR 

excitation, figure 6.20, are compared the differences at low frequencies outside the 

excitation bandwidth are noticeable. Considering for the same excitation bandwidth, 

those for the CDR excitation are considerably higher than those for the CVR excitation. 

Hence the presence or absence of displacement excitation at high frequencies not only 

contributes to the peak response level, but also the response at low frequencies. These 

results also validate the numerical simulations presented in Chapter 5. 
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6.6.4 The effect of the displacement excitation at high frequencies 

 The excitations given in section 6.5.2 case (iii) were applied. The obtained 

results are shown in figure 6.21 for the CDR excitation. It is seen in figure 6.21 (c) that 

the level of peak response for the excitation with higher frequencies is lower (the levels 

are indicated by horizontal dashed lines). In contrast, for the CVR excitation, as shown 

in figure 6.22, the peak amplitudes are almost at the same level. This is because the 

amplitudes of the high frequency displacement content included in the excitation are 

relatively small compared to those at low frequencies. This is also shown by the 

standard deviation for the displacement, 
0xσ , and velocity, 

0xσ ′ , annotated in the 

figures. The values of standard deviation for both the displacement and velocity are not 

significantly different amongst the cases.  

 To this end, it could be concluded for this experimental scenario that the 

presence of the high displacement amplitude at high frequencies has a strong 

contribution to the level of effective cubic damping. A low displacement amplitude at 

high frequencies does not influence the level of effective cubic damping very much. 

6.6.5 General discussion and conclusion on the effect of cubic damping for 

random excitation 

 The experiment on broadband base excitation revealed that the effect of cubic 

damping is mostly a result of the magnitude of the base displacement amplitude at high 

frequencies. The presence or absence of the displacement input at high frequencies 

governs the peak response level and also the occurrence of the response at low 

frequencies outside the excitation bandwidth. For the case of the CVR excitation, where 

the displacement amplitude is inversely proportional to the excitation frequency, the 

influence of the displacement amplitude at high frequencies is limited. This is because 

the input displacement amplitudes at high frequencies for the CVR excitation are 

relatively small compared to those at low frequencies. Thus the effect of nonlinearity is 

minimised and a lightly damped response can be expected. Therefore to maintain a level 

of peak response one needs to increase the value of 3c . 

 In conclusion, one should be aware that the effect of cubic damping is dependent 

on the excitation amplitude. Damping can be reduced when the displacement excitation 
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contains less significant amplitude at high frequency and that can cause a high response 

amplitude around resonance. On the other hand, the response at low frequency outside 

the bandwidth can occur due to the presence of the relatively high displacement 

amplitude at high frequencies. This occurrence can result in excessive vibration at low 

frequencies, although a lower peak response can be obtained. 

6.7 General conclusions 

 The experimental study was implemented to investigate the effect of cubic 

damping on the SDOF base excited vibration isolation system. The effect of cubic 

damping was observed to be consistent with the results obtained from the theoretical 

analyses. Under harmonic excitation, cubic damping can cause the response of the 

isolated mass to increase at high excitation frequencies, tending towards the amplitude 

of the excitation. This behaviour is identifiable as a result of a high level of the cubic 

damping force. It is also found that the effect of cubic damping is controlled directly by 

the excitation amplitude. A higher excitation amplitude produces a stronger effect of 

cubic damping. 

 The effect of cubic damping on the responses due to the random broadband 

excitation also appeared to be excitation dependent. It is slightly different from that for 

the harmonic case as the excitation dependence for the broadband response can be 

defined by either the excitation amplitude or excitation bandwidth. However, both 

theoretical and experimental results showed that the main contribution of the effect of 

cubic damping comes from the displacement amplitude at high frequencies. The high 

displacement amplitude at high frequencies, provided by either the excitation amplitude 

or the excitation bandwidth, can result in a greater effect of cubic damping especially at 

resonance. Therefore, cubic damping on the system with unknown excitation amplitude 

can cause the detrimental effects to the response. 

 The greater effect of cubic damping for the broadband excitation can cause the 

occurrence of the response at low frequencies outside the excitation bandwidth. That 

can result in a large amplitude low frequency response. The effect of cubic damping can 

be reduced by reducing the significant displacement amplitude at high frequencies. 

However, by doing so the isolated mass might experience high vibration amplitude 

around resonance.
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 Drawing of the experimental rig   Photo of the experimental rig 
 
Figure 6.1 Experimental rig for a SDOF base excited vibration isolation 
  LDS Shaker model V101 (active damper)   Aluminium plate to fit the shaker 
  Helical isolator springs   Aluminium plate to fit the excitation unit 
  Stinger A, B and C the force transducers 

 
 

  
Figure 6.2 Load-deflection characteristic for the measured data and the estimation of the total 

stiffness for the two helical spring, hek  using linear regression. 
 

 

 
Figure 6.3 The physical representation for mass, spring and damper model for the 

experimental rig 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

Figure 6.4 Transmissibility of the SDOF base excited isolation system for 20 kHz bandwidth 
white noise with no damping control 

 (a) Magnitude 
 (b) Phase 
 (c) Coherence function 
  Experimental results 
  A fit to the data using a SDOF linearly damped model 
  Frequency range of 7-100 Hz 
  Resonance frequency (around 11 Hz) 
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Figure 6.5 Schematic diagram of the feedback loop with lines representing the signal paths 
  and  are the accelerations of the isolated mass and the base input 

  and  are the velocities of the isolated mass and the base input 
  is the gain from the charge amplifier  
  is the feedback gain from the amplifier for controlling the shaker 
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 (a) 

 

(b) 

 

(c) 

 

(d) 

 

 
Figure 6.6 Displacement amplitude for response and harmonic base excitations with a fixed 

feedback gain for linear damping. 
 (a)  0.04 mm constant displacement input  
 (b)  0.06 mm constant displacement input 
 (c)  4 mm/s constant velocity input  
 (d)  6 mm/s constant velocity input 
  Amplitude of base excitation 
 Markers represent the amplitude of isolated mass responses 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 
Figure 6.7 Displacement amplitude ratios for a fixed level of feedback gain for linear damping 

under different harmonic base excitation characteristics (corresponding to the 
responses and excitation in figure 6.6). 

 (a)  0.04 mm constant displacement input  
 (b)  0.06 mm constant displacement input 
 (c)  4 mm/s constant velocity input  
 (d)  6 mm/s constant velocity input 
 Markers represent the ratios of measured data 
  Theoretical transmissibility for linear damping system 
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Figure 6.8 Displacement amplitude ratio for linear damping with a constant displacement 

harmonic base excitation of 0.04 mm  
    • the experimental data for lower damping 
   the linear system estimation for lower damping  
     the experimental data for higher damping 
  the linear system estimation for higher damping 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 
Figure 6.9 Displacement amplitude for response and harmonic base excitation characteristics 

with fixed feedback gain for cubic damping. 
 (a)  0.04 mm constant displacement input  
 (b)  0.06 mm constant displacement input  
 (c)  4 mm/s constant velocity input  
 (d)  6 mm/s constant velocity input 
     Amplitude of base excitations 
 Markers represent the experimental data for the isolated mass responses 

10
1

-70

-60

-50

-40

-30

-20

-10

0

A
m

pl
itu

de
 s

pe
ct

ru
m

 [d
B

 re
 1

 m
m

]

Frequency [Hz]
10

1
-70

-60

-50

-40

-30

-20

-10

0

Frequency [Hz]

A
m

pl
itu

de
 s

pe
ct

ru
m

 [d
B

 re
 1

 m
m

]

10
1

-70

-60

-50

-40

-30

-20

-10

0

Frequency [Hz]

A
m

pl
itu

de
 s

pe
ct

ru
m

 [d
B

 re
 1

 m
m

]

10
1

-70

-60

-50

-40

-30

-20

-10

0

Frequency [Hz]

A
m

pl
itu

de
 s

pe
ct

ru
m

 [d
B

 re
 1

 m
m

]

181 



Chapter 6 

(a) 

 

(b) 

 

 
Figure 6.10 Amplitude ratios for a fixed feedback gain for cubic damping under different 

harmonic excitation characteristics (corresponding to the responses and excitation 
in figure 6.9). 

 (a)  constant displacement amplitude base excitation  
 (b)  constant velocity amplitude base excitation 
    • constant displacement of 0.04 mm 
     constant displacement of 0.06 mm 
     constant velocity of 4 mm/s 
    × constant velocity of 6 mm/s 
 Dotted lines represent predicted results obtained using HBM approximation. 
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(a) 

 

(b) 

 

Figure 6.11 Measured and predicted amplitude ratios for the harmonic responses for different 
damping levels (linear and cubic) under a constant displacement amplitude 
harmonic base excitation of 0.04 mm. 

 (a)  Lower value of cubic damping  
 (b)  Higher value of cubic damping 

    Experimental data for linear damping configuration 
    • Experimental data for lower cubic damping configuration  
    × Experimental data for higher cubic damping configuration 
   Theoretical transmissibility for linear damping system  
   Predicted results obtained using HBM approximation for cubic damping  
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(a) 

 

(b) 

 

 
Figure 6.12 The measured secondary actuator force for isolation due to harmonic base 

excitation with an approximate peak displacement amplitude ratio of about 10 dB. 
 (a) Linear damping 
 (b) Cubic damping 
  •  The measured forces  
  The theoretical force Tf  evaluated using equation (6.11)  
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(a) 

 

(b) 

 

 
Figure 6.13 Displacement amplitude spectra for broadband excitation with different excitation 

levels 
 (a)  Constant displacement amplitude random excitation 
 (b)  Constant velocity amplitude random excitation 
  Excitations defined as the reference level 
  Excitations with the amplitude of ±3 dB from the reference level 
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(a) 

 

(b) 

 

 
Figure 6.14 Displacement amplitude spectra for broadband excitation with different excitation 

bandwidths 
 (a)  Constant displacement amplitude random excitation 
 (b)  Constant velocity amplitude random excitation 
  Excitations defined as the reference level 
  Excitations with the bandwidth of 7-25 Hz, 7-50 Hz and 7-75 Hz. 
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Constant displacement amplitude random Constant velocity amplitude random 

  
Bandwidth of 7-50 Hz 

 

  
Bandwidth of 7-25 Hz and 50-75 Hz 

 

  
Bandwidth of 7-25 Hz and 75-100 Hz 

 
 
Figure 6.15 Displacement amplitude spectra for two pass-band broadband random excitation. 
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 Amplitude spectra Estimated transfer function 
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Figure 6.16 Displacement amplitude spectra and estimated transfer function 0H  for the linearly 

damped and cubically damped responses subject to a constant displacement RMS 
amplitude random excitation of 0.04 mm 

  Linearly damped response 
  Cubically damped response 
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 Amplitude spectra Estimated transfer function 
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Figure 6.17 Displacement amplitude spectra and estimated transfer function 0H  for the linearly 

damped and cubically damped responses subject to a constant displacement 
amplitude random excitation at three different amplitudes and fixed 3c . 

  Linearly damped response 
  Cubically damped response 
  Peak amplitude ratio for linearly damped system 
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Figure 6.18 Displacement amplitude spectra and estimated transfer function 0H  for the 

cubically damped responses subject to a constant velocity amplitude random 
excitation at three different excitation amplitudes and fixed 3c . 
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Figure 6.19 Displacement amplitude spectra and estimated transfer function 0H  for the linearly 

damped and cubically damped responses subject to a constant displacement 
amplitude random excitation at four different excitation bandwidths and fixed  3c . 

  Linearly damped response 
  Cubically damped response 
  Peak amplitude ratio for linearly damped system 
 

10
1

10
2

-80

-70

-60

-50

-40

-30

Frequency [Hz]

Am
pl

itu
de

 s
pe

ct
ru

m
[d

B 
re

 1
 m

m
]

10
1

10
2

-30

-20

-10

0

10

20

Frequency [Hz]

Es
tim

at
ed

 tr
an

sf
er

 fu
nc

tio
n

H 0 [d
B 

re
 1

]

10
1

10
2

-80

-70

-60

-50

-40

-30

Frequency [Hz]

Am
pl

itu
de

 s
pe

ct
ru

m
[d

B 
re

 1
 m

m
]

10
1

10
2

-30

-20

-10

0

10

20

Frequency [Hz]
Es

tim
at

ed
 tr

an
sf

er
 fu

nc
tio

n
H 0 [d

B 
re

 1
]

10
1

10
2

-80

-70

-60

-50

-40

-30

Frequency [Hz]

Am
pl

itu
de

 s
pe

ct
ru

m
[d

B 
re

 1
 m

m
]

10
1

10
2

-30

-20

-10

0

10

20

Frequency [Hz]

Es
tim

at
ed

 tr
an

sf
er

 fu
nc

tio
n

H 0 [d
B 

re
 1

]

10
1

10
2

-80

-70

-60

-50

-40

-30

Frequency [Hz]

Am
pl

itu
de

 s
pe

ct
ru

m
[d

B 
re

 1
 m

m
]

10
1

10
2

-30

-20

-10

0

10

20

Frequency [Hz]

Es
tim

at
ed

 tr
an

sf
er

 fu
nc

tio
n

H 0 [d
B 

re
 1

]

191 



Chapter 6 
 Amplitude spectra Estimated transfer function 

(a) 

  

7-
10

0 
H

z 

(b) 

  

7-
75

 H
z 

(c) 

  

7-
50

 H
z 

(d) 

  

7-
25

 H
z 

 
Figure 6.20 Displacement amplitude spectra and estimated transfer function 0H  for the 

cubically damped responses subject to a constant velocity amplitude random 
excitation at four different excitation bandwidths and fixed 3c . 
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Figure 6.21 Displacement amplitude spectra and estimated transfer function 0H  for the 

cubically damped responses subject to two pass-band random excitation having a 
constant displacement amplitude with fixed  3c . 
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Figure 6.22 Displacement amplitude spectra and estimated transfer function 0H  for the 

cubically damped responses subject to two pass-band random excitation having a 
constant velocity amplitude with fixed 3c .
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Chapter 7 Conclusions and future work 

 

7.1 General conclusions 

 The aim of this study was to investigate the effects of power law damping on 

vibration isolation. The effects of such nonlinear damping were examined here in 

comparison to that for the linear isolation system. For the latter the force and motion 

transmissibility are identical. This is not the case for nonlinear systems.  

 In the literature, the advantages and disadvantages for the application of power 

law damping on the isolation system were reported. The presence of power law 

damping is beneficial for the case of force excitation whereas it is detrimental for the 

case of base excitation. A particular case was investigated in this study, where cubic 

damping was chosen as an example to replace the linear viscous damping. The focus of 

the examination was on the base isolation possessing cubic damping for different 

excitation, namely harmonic and broadband.  

 For the case of harmonic excitation, the cubically damped responses due to force 

excitation were carried out for comparison with the case of base excitation. 

Consideration focused on the responses at the excitation frequencies well above 

resonance frequency where cubic damping exhibited different effects. On one hand for 

force excitation, the presence of cubic damping produced a transmitted force which 

follows the mass line of the undamped linear system. On the other hand for base 

excitation, it caused a higher transmitted motion for a constant displacement amplitude 

base excitation. At frequencies well above the resonance frequency, the isolated mass is 

moving almost in-phase with the base and at a similar amplitude. 

 The study reveals that the damping force is a key factor for this phenomenon. 

For the case of force excitation, the cubic damping force in the high frequency region 

was found to decrease at a rate approximately proportional to the excitation frequency 

cubed. In contrast, the damping force was found to increase at a rate proportional to the 

excitation frequency squared for base excitation and this was validated experimentally. 

The experimental damping implementation was achieved using a simple velocity 

feedback and electrodynamic shaker (active damping). The acquired cubic damping 
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force was found to be in agreement with the theoretical conclusions that the level of the 

cubic damping force at excitation frequencies well above the resonance frequency is 

much higher than that for linear viscous damping.  

 This disadvantage of cubic damping for base isolation was overcome using 

higher order isolation models namely the Zener and two-stage isolation systems. The 

application of Zener base isolation, for which a relaxation spring was inserted, proved to 

reduce the absolute displacement of the isolated mass compared to that for the cubically 

damped SDOF system. The high level of cubic damping force produced an absolute 

displacement amplitude ratio which followed the mass line of the undamped system. 

Thus one might consider supporting the cubic damping element elastically to reduce the 

disadvantageous effects that occur at high frequencies. 

 The application of the two-stage isolation possessing cubic damping produces an 

even better response compared to that with the same two-stage model possessing linear 

damping. The response for the system with cubic damping at high excitation 

frequencies decreased at 80 dB per decade whereas that with linear damping produces a 

roll off rate at 60 dB per decade. It is also much better compared to that for the SDOF 

cubic damping. Note that, this beneficial effect of cubic damping shown in this study is 

valid when the optimum value of stiffness ratio is considered.  

 For broadband excitation, the effect of cubic damping under base excitation was 

investigated using numerical and experimental results. The response due to a constant 

displacement PSD showed that the level of effective damping is dependent upon the 

excitation amplitude and bandwidth. Higher damping is produced for larger excitation 

amplitude or broader excitation bandwidth. The investigation revealed that the main 

contribution to the level of damping is due to the presence or absence of the excitation 

content at high frequencies. The excitation at high frequencies also results in a high 

response level at low frequencies outside the excitation bandwidth. This was identifiable 

as a result of the power law, i.e. relative velocity cubed, which yields a cubic damping 

force. It was found that taking the relative velocity cubed produces responses at other 

than the pre-defined frequencies, both inside and outside the excitation bandwidth, 

which also contribute to the damping force. 

 Overall, it is concluded that the introduction of cubic damping into SDOF 

isolation for harmonic base excitation produces a detrimental high level damping force 
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at high excitation frequencies well above the resonance frequency. This negative effect 

can be eliminated by the application of the Zener model where the damping component 

is elastically supported. Cubic damping turns out to be more beneficial when a two-

stage isolation configuration is chosen. The detrimental effect is also revealed for a 

constant displacement PSD broadband excitation but at low frequencies.  

 The given information shows that the presence of cubic damping is problematic 

for the base excited isolation system. The response for the base isolation system with 

cubic damping is sensitive to the excitation amplitude. One should be reminded that 

only known excitation amplitudes were applied. For practical situations, it might not be 

convenient to identify the excitation amplitude and specification. One should also 

consider that knowing the value or the characteristic of damping might not be practical. 

The response may vary depending on the excitation amplitude. The application of cubic 

damping might not be always applicable for some cases. This study provides 

information for the resulting effects of cubic damping. Therefore, one needs to be 

selective when dealing with base excited isolation possessing cubic damping.   

7.2 Future work 

 The inclusion of nonlinear damping in an isolation system results in force and 

absolute displacement amplitude ratios in the isolation region that are not only 

quantitatively but sometimes qualitatively very different. Also, the absolute 

displacement amplitude ratios for harmonic and broadband base excitation are not 

comparable unlike the case of linear viscous damping. Moreover, the theoretical 

assumption made here is that the isolated mass and the base are rigid. Therefore, there 

are interesting points for future work contributed from this study which can be listed as 

follows. 

 -  The application of the Zener and two-stage isolation showed theoretically the 

possibility of reducing the detrimental effect of cubic damping for harmonic excited 

base isolation. It might be very useful to explore such behaviour experimentally and 

validate these findings. It would also be very interesting to extend the study of such the 

models for broadband random base excitation. 

 -  The case of broadband force excited vibration isolation possessing cubic 

damping is also interesting to be examined. High vibration amplitude at low frequencies 
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outside the excitation bandwidth similar to the case of base excitation can be expected 

in the response. This can be a result of the spike of the very high damping forces 

resulting from taking relative velocity cubed. Thus higher transmitted forces at 

frequencies below the resonance frequency are anticipated.  

 -  The simplified SDOF rigid body might not be valid to represent the effects of 

cubic damping on a highly flexible isolated mass or base excitation system, for which 

multi-resonance frequencies occur [79][80]. This is because the detrimental effects of 

cubic damping on a SDOF base excitation are apparent at frequencies well above the 

fundamental resonance frequency. The system which exhibits multi-resonance 

frequencies can be undergoing such detrimental effects. This would result in higher 

response amplitude at higher frequencies where multi-resonance frequencies occur.  
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Appendix A Example of MATLAB routine to solve an ODE problem 

 

The first step for solving ODE problem is to create an ODE function in script or m file. 

function yp = isolatorb(tspan,y,t,Y0,V0,damp) 
% A function for linear base excited isolator 
% tspan is a time step used by thee ODE solver. 
% y is time dependent being solved. 
% t is a desired time step for interpolation. 
% Y0 is displacement excitation as a function of tspan. 
% V0 is corresponding velocity excitation as a function of tspan. 
 
yp = zeros(2,1); 
 
y0 = interp1(t,Y0,tspan); 
% y0 is displacement excitation interpolated to the step of tspan. 
 
v0 = interp1(t,V0,tspan); 
% v0 is velocity excitation interpolated to the step of tspan. 
  
yp(1) = y(2); 
yp(2) = -(2*damp*(y(2)-v0)+(y(1)-y0)); 
  
yp = yp(:); 
% To assure that the answer is in the form of column vector. 
 
 
Then call the ODE solver, for example here is ODE45. The command is for solving the 
ODE function created previously. 
 
[~,ytmp] = ode45(@(tm,x) isolatorb(tspan,y,t,Y0,V0,damp),t,[0 0]); 
% where [0 0] at the end are the initial conditions.  
x = ytmp(:,1); % Vector of resulting displacement at desired time 
step, t. 
v = ytmp(:,2); % Vector of resulting velocity at desired time step, t. 
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Appendix B Nature of roots for cubic polynomial 

 

 The general form of cubic polynomial is given by 

 ( )3 2
3 2 1 0a x a x a x a f x+ + + =  (B.1) 

where 3a , 2a , 1a  and 0a  are the real coefficients with 3 0a ≠ . For ( ) 0f x = , the roots of 

equation (B.1) can be determined. There are definitely three roots for as for the cubic 

polynomial. The possible roots can be considered either; three distinct real roots, real 

multiple roots or a real and two complex conjugate roots. The way of checking whether 

the roots are real or complex, the so-called discriminant of the polynomial is applied. 

The discriminant of the polynomial is a function of the coefficients. The nature of the 

roots of the polynomials is revealed by this function. The discriminant of the 

polynomial is given by 

 ( )2n

i j
i j

r r
<

∆ = −Π  (B.2) 

where ir  and jr  are known roots of the polynomial. For the cubic polynomial, equation 

(B.2) can be written as 

 ( ) ( ) ( )2 2 2
1 2 1 3 2 3r r r r r r∆ = − − −  (B.3) 

By having the known roots of the polynomial, the discriminant can be identified. One 

can summarise the nature of the roots as follows [81], 

 0∆ >  : All roots are real and distinct 

 0∆ =  : All roots are real and at least two roots are equal 

 0∆ <  : There are one real and two complex conjugate roots 

 However, without the knowledge of the roots, one can determine the 

discriminant of the polynomial by using the coefficients of the polynomial. The 

discriminant of the generic cubic polynomial can be determined alternatively [82] by 

 2 2 3 3 2 2
2 1 3 1 2 0 3 0 3 2 1 04 4 27 18a a a a a a a a a a a a∆ = − − − +  (B.4) 
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For the cubic polynomial equation having 2 0a ≡ , equation (B.4) is reduced to 

 ( )3 2 2
3 1 3 04 27a a a a∆ = − +  (B.5) 

For the assumptions of 0 0a > , 1 0a >  and 3 0a > , one obtains the discriminant which is 

always less than zero. Thus the solution for equation (B.1) with 2 0a ≡  consists of one 

real and two complex conjugates. 
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Appendix C Simplified expressions for the Harmonic Balance 
approximations 

 

 The simplified expressions reported in this appendix are obtained from the 

application of the Harmonic Balance approximation. Only the simplified expressions for 

the case of cubic damping are presented here, i.e. the dependence B = 0 is applied for 

every case. There are four vibration isolation models considered in this appendix, i.e. 

the SDOF force excited, the SDOF base excited, the Zener base excited and the two-

stage base excited vibration isolation. The simplified expressions are presented for four 

excitation frequency regions. Note that, the frequency regions for the SDOF systems, 

the Zener model and the two-stage model are slightly different. The dependence A  and 

C  for the first three models are given here again by  

  21A = − Ω  and 3
3

3
4

C ζ= Ω  

C.1 The SDOF force excited vibration isolation system 

 The expansion of the Harmonic Balance approximation for the case of force 

excitation can be obtained by employing equations (3.25) and (3.31) which are 

respectively given by 

 2 6 2 2 1C U A U+ =  (C.1) 

 2 2 6 2
tF C U U= +  (C.2) 

The simplification of equations (C.1) and (C.2) for the four frequency region are given 

as follows. 

 a) For 1Ω  yields 1A ≈ . Then equations (C.1) and (C.2) are identical. This 

leads to 

 2 1tF ≈  (C.3) 
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 b) For 1Ω ≈ , one has 0A ≈  and 3
3
4

C ζ≈ . This leads to equation (C.1) 

becomes 

 2 6 1C U ≈   

Substitute 2
32 1U C=  into equation (C.2), one obtains 

 2
3

2 11tF
C

≈ +  (C.4) 

 c) For 2Ω ≈ , yields 1A ≈ − . This condition is the same as that for the case of 

1Ω . Thus equations (C.1) and (C.2) are equal. That results in 

 2 1tF ≈  (C.5) 

 d) For 1Ω  leads to 2A ≈ −Ω  and 1C   when 30 1ζ < . These 

approximations lead to equation (C.1) becomes 

 2 2 6 2 0C U UΩ + ≈  (C.6) 

with 3
3
4

C ζ=  . Substituting this into equation (C.2) results in 

 2
4

1
tF ≈

Ω
 (C.7) 

C.2 The SDOF base excited vibration isolation system 

 Equations (3.35) and (3.41) are employed here for the Harmonic Balance 

approximation for the case of base excitation. The equation (3.41) is given by 

 2 6 2 2 4C U A U+ = Ω  (C.8) 

and equation (3.35) is given by 

 ( )2 2 2 cos 1uW U U φ= + +  (C.9) 

 

 
206 



Simplified expressions for the Harmonic Balance approximations 

The algebraic manipulation yields the simplification of ( )cos uφ , i.e. 

 ( )
2 4 2

cos u
A

C U A
φ =

+
 (C.10) 

The phase lag between the isolated mass and base excitation is given by 

 
3

1

2 4 2
tanw

CU
UA C U A

φ −  
=  

+ + 
 (C.11) 

The simplification expressions for four frequency regions are obtained by the 

approximation of equations (C.8) to (C.11) which are given as follows. 

 a)  For 1Ω , yields 1A ≈  and 1C  . The resulted approximation of 

equation (C.8) for this frequency region is obtained by  

 2 0U ≈  (C.12) 

which yields equation (C.9) becomes 

 2 1W ≈  (C.13) 

 b) For 1Ω ≈  leads to 0A ≈  and 3
3
4

C ζ≈ . Then equation (C.8) becomes 

 
2

6
3

3 1
4

Uζ  ≈ 
 

 (C.14) 

Substituting equation (C.14) into equation (C.9), one obtains 

 

2
3

2

3

41
3

W
ζ

 
≈ +  

 
 (C.15) 

 c) For 2Ω ≈ , A and C  can be approximated as 1A ≈ −  and 3
3 2
2

C ζ≈ . 

Thus equation (C.8) becomes 

 2 6 2 4C U U+ =  (C.16) 

207 



Appendix C 

To simplify equation (C.16), the value of cubic damping is assumed to be 3 1ζ  . The 

assumption yields the equation (C.16) can be simplified as 

 2 0U ≈  (C.17) 

which yields the amplitude of the isolated mass in equation (C.9) becomes 

 2 1W ≈  (C.18) 

 d) For 1Ω , the further assumptions made are 2A ≈ −Ω . Equation (C.8) 

becomes 

 2 2 6 2 1C U UΩ + =  (C.19) 

with 3
3
4

C ζ= . The further simplification of equation (C.19) yields 

 
( )

2
3

2 1U
C

≈
Ω 

 (C.20) 

Substituting equation (C.20) into equation (C.9) yields 

 
( )

2
3

2 11W
C

≈ −
Ω 

 (C.21) 

The simplification of the phase angle is given by 

 
1
3

1 1tanw C
φ −  ≈ −  Ω 

 (C.22) 

 For the case that amplitude of displacement excitation drops as the excitation 

frequency increases or the constant velocity amplitude harmonic excitation, the 

displacement amplitude of the isolated mass is different from that given in 

equation (C.21). The cubic damping given in equation (3.54) is inversely proportional to 

the excitation frequency squared. This can be alternatively written as 

 ( ) 3
3 2

ζζ Ω =
Ω



 (C.23) 
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where 23
3 0

c x
km

ζ =  . Replacing equation (C.23) into the variable C , one can have 

3
3
4

C ζ= Ω  or C C= Ω . Thus equation (C.8) becomes 

 2 6 2 2 2C U U+ Ω = Ω  (C.24) 

As the excitation frequency tends to infinity and 1C < , the approximated relative 

displacement is given by 

 2 1U ≈  (C.25) 

Thus the displacement of the isolated mass can be obtained from the Taylor’s series of 

the resulted expression of equation (C.9) which yields approximation as 

 33
4

W ζ
≈

Ω



 (C.26) 

C.3 The Zener base excited vibration isolation system 

 The expansion of Harmonic Balance approximation for the Zener base excited 

vibration isolation model can be obtained by using the equations (4.23) and (4.25). 

These are respectively given here again by 

 ( ) ( )2 22 6 2 2 4
z z zA C U A Uκ κ κ+ + = Ω   (C.27) 

and ( )
( )

22 2 4
2

22 2 2 4

1z z

z z

C U
W

A A C U
κ κ

κ κ

+ +
=

+ +





 (C.28) 

The four excitation frequency regions for the Zener model are 1Ω , 1κΩ ≈ +  and 

1Ω  where zκ  is the stiffness ratio between the primary stiffness and the relaxation 

spring.  

 a)  For 1Ω , the dependences A  and C  become  1A ≈  and 0C ≈ . The 

simplified relative displacement and the absolute displacement can be obtained by 

 2 2U ≈ Ω  (C.29) 
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and 2 1W ≈  (C.30) 

 b)  For 1zκΩ ≈ + , the dependences A  and C  become zA κ≈ −  and 

( )
3
2

3
3 1
4 zC ζ κ= + . The simplified relative displacement and the absolute displacement 

can be obtained by 

 ( )2
2

2

1z

z

U
κ

κ
+

≈  (C.31) 

and ( )9
2 2

8

1z

z

W C
κ

κ
+

≈   (C.32) 

where 3
3
4

C ζ= . 

 c)  For 1Ω , the dependences A  and C  become 2A ≈ −Ω  and 3C C≈ Ω . By 

assuming additionally that zκΩ , the simplified relative displacement and the 

absolute displacement can be obtained by 

 

2
32

2

1zU
C
κ ≈   Ω 





 (C.33) 

and 

 
( )2

2
4

1zW
κ +

≈
Ω

 (C.34) 

C.4 The two-stage base excited vibration isolation system 

 The simplified expressions for the two-stage base excited vibration isolation 

system obtained from the approximate closed form solution using Harmonic Balance 

are achieved by employing equations (4.49) and (4.50) which are given by 

 2 6 2 4 2C U U W+ = Ω   (C.35) 

 ( ) ( )2 22 2 6 2 2 2 4
tA C U A D U κ− Ω + − Ω = Ω   (C.36) 
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The four excitation frequency regions for the two-stage vibration isolation are 1Ω

and 1Ω . The equations (C.35) and (C.36) can be simplified for these frequency 

regions regarding the assumptions of 3ζ and tµ , i.e. 30 1ζ< < and 0 tµ< . The 

dependences A , C  and D  are given here again, i.e. ( )21 1tA µ= − Ω + , 3
3

3
4

C ζ= Ω  

and ( )21 2tD µ= − Ω + . 

 a)  For 1Ω , the dependences A , C  and D  become 1t tA µ κ≈ + ≈ , 0C ≈  and 

2tD µ≈ + . The simplified relative displacement can be obtained from equation (C.36) , 

i.e. 

 2 4U ≈ Ω  (C.37) 

Then one obtains the simplified absolute displacement W , i.e. 

 2 1W ≈  (C.38) 

 b)  For 1Ω , the dependence A , C  and D  become 2
tA µ≈ −Ω , 1C   and 

2
tD Aµ≈ −Ω ≈ . Equation (C.36) can be reduced to 

 
2

2
2 4

t

t

U κ
µ

≈
Ω

  (C.39) 

Thus the resulted simplified expression for the absolute displacement can be given by 

 
2

2
2 8

t

t

W κ
µ

≈
Ω

 (C.40) 
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Appendix D Modal parameters estimation methods 

 

 The modal parameters are the parameters which represent the physical 

characteristic of the system. The modal parameters are usually considered as the natural 

frequency and damping ratio. These parameters for the experimental data are obtained 

in two ways, i.e. using a circle fit method and a MatLab function ‘invfreqs’.  

D.1 Circle fit method 

 The circle fit method is based on a Nyquist plot of frequency response for a 

SDOF system. The real and imaginary terms of the responses around resonance 

frequency are plotted in a complex plane which should be a circle-like. The plot is fitted 

with the calculated circle which the diameter and location of centre are known. The 

modal parameters are determined from this circle. The principle of the circle fit method 

can be found in reference [74], for example. However a brief explanation can be made 

by considering an equation of motion for a SDOF subject to the force excitation which 

is given by 

 ( )mx cx kx f t+ + =   (D.1) 

 The frequency response function (FRF) for equation (D.1) can be written as 

 ( ) ( )
( ) 2

1X
H

F k m jc
ω

ω
ω ω ω

= =
− +

 (D.2) 

Equation (D.2) forms a receptance of a system when it is clamped to the base. One can 

produce the Nyquist plot by extracting the real and imaginary of ( )H ω . Then estimate 

a circle plot to fit the data. The natural frequency can be obtained by the intersection of 

the line from origin as shown in figure D.1. The damping ratio is estimated by 

 
2 2

2

1

tan tan
2 2

a b

a br

ω ωη
θ θω

−
= ⋅

   +   
   

 (D.3) 

where η  is the structural damping loss factor and is given by 2η ζ= . aω  and bω  are 

the known frequency above and below the resonance respectively. rω  is the frequency 

213 



Appendix D 

of resonance. aθ  and bθ  are the corresponding angles of the known frequencies with 

respect to the frequency of resonance. 

D.2 MatLab function ‘invfreqs’ 

 The MatLab function ‘invfreqs’ is an analogue filter which returns the numerator 

and denominator of the polynomial for the frequency response. The parameters obtained 

are used in the mathematical model of the frequency response. The example of using 

this function can be found in references [75] and [76], for example. The simple syntax 

of the function is 

 [b,a] = invfreqs(H,w,n,m) 

where b is the vector of numerator, a is the vector of denominator, H is the vector of 

frequency response from the experimental data, w is the vector of corresponding 

frequency, n and m are the desired order of numerator and denominator respectively. 

 After getting the numerator and denominator are obtained, one can construct the 

transfer function as 

 ( )
1

1 2 1
1

1 2 1

n n
n

m m
m

b s b s bH s
a s a s a

−
+

−
+

+ + +
=

+ + +




 (D.4) 

To determine the modal parameters using ‘'invfreqs’, the value of numerator, n , and 

denominator, m , need to be 0 and 2 respectively. Equation (D.4) becomes 

 ( ) 1
2

1 2 3

bH s
a s a s a

=
+ +

 (D.5) 

By doing this, the modal parameters can be determined from coefficients 1a , 2a  and 3a . 

D.3 Transfer function for the base excited isolation 

 Thus, to determine the modal parameters for the case of base exited isolation 

using both methods mentioned, the FRF is needed to be rearranged. The relative 

response between the base excitation and the isolated mass is considered. The equation 

of motion for the relative motion is given by 

 0mz cz kz mx+ + = −    (D.6) 
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where z  is the relative motion and is given by 0z x x= − , x  and 0x are the 

displacement of the isolated mass and base excitation 

 The frequency response frunction for equation (D.6) can be written as 

 ( )
( ) ( )

2

2
0

Z m
X k m jc

ω ω
ω ω ω

=
− +

 (D.7) 

One can consider equation (D.7) as 

 ( ) ( )
( ) ( )

0
2 2

0

X X m
X k m jc

ω ω
ω ω ω ω

−
=

− +
 (D.8) 

Equation (D.8) can be written alternatively as 

 ( )
( ) ( )2 2

0

1 1
X m
X k m jc

ω
ω ω ω ω

 
− = 

− + 
 (D.9) 

Equation (D.9) can be inferred as a scaled receptance of a system which is clamped to 

the base. Then, the frequency response function obtained from the experimental data 

which is suitable for both method should be in the form as 

 ( ) ( )
( )2

0

1 1
X

H
X

ω
ω

ω ω
 

= − 
 

 (D.10) 
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Figure D.1  The Circle fit illustration obtained from the Nyquist plot of the experimental data 
with lines and marks represent 

     Experimental data 
   Estimated circle to fit the experimental data 
   Diameter drawn from the origin 
   Angles of aω  and bω  with respect to rω  
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