HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Institute of Sound and Vibration Research

The effects of cubic damping on vibration isolation

by

Nuttarut Panananda

Thesis for the degree of Doctor of Philosophy

June 2014






UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF ENGINEERING AND THE ENVIRONMENT

Institute of Sound and Vibration Research

Thesis for the degree of Doctor of Philosophy

THE EFFECTS OF CUBIC DAMPING ON VIBRATION ISOLATION
by Nuttarut Panananda

Vibration isolators are often assumed to possess linear viscous damping which
has well known consequences for their performance. However, damping may be
designed to be or prove to be nonlinear. This study investigates the effect of cubic
damping, as an example of damping nonlinearity, in a single degree of freedom (SDOF)
vibration isolation system. The response behaviour due to two excitation types, namely
harmonic and broadband excitations, was examined.

For harmonic excitation, the Harmonic Balance Method (HBM) was applied to
yield approximate closed form solutions and simplified analytical expressions implicitly
show the influence of cubic damping for particular frequency regions. The HBM
solutions were verified using direct numerical integration. The presence of cubic
damping proves to be beneficial for the force excited case. It reduces response amplitude
around the resonance frequency and has similar response to an undamped system in the
isolation region. In contrast, for base excitation, the cubic damping is detrimental at high
excitation frequencies as the base excitation and isolated mass move almost together. The
effect becomes more pronounced for larger excitation amplitudes.

The case of base excitation was then considered for broadband excitation. The
responses using direct numerical integration were presented using power spectral
densities. In contrast to harmonic excitation, the amplitude of the response does not
appear to approach that of the input. Instead, a higher effective cubic damping results in a
higher vibration level of the isolated mass at frequencies below the resonance frequency.
It also does not reduce explicitly the response amplitude around the resonance frequency
unlike the linear viscous damping. For a constant displacement amplitude random
excitation, the excitation frequency bandwidth is found to be a significant factor in the
level of effective cubic damping. A broader excitation bandwidth results in a higher level
of cubic damping force.

The theoretical and numerical results for both harmonic and broadband excitation
were validated experimentally. The experimental investigation was performed using a
SDOF base excited vibration isolation system possessing a simple velocity feedback
control active damper to reproduce the nonlinear damping force. The predictions were
shown to be in good agreement with measurements thereby verifying the effects of cubic
damping on a SDOF system undergoing harmonic and broadband base excitation.
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Chapter 1  Introduction

1.1 Background and motivation

Vibration isolation is typically introduced into a mechanical system in order to
reduce the severity of disturbance caused from vibration sources, for example, the
application of an automotive vehicle suspension system or a machinery mounting.

A simple model of the vibration isolation system is usually considered using a single
degree of freedom (SDOF) system which consists of a rigid mass, linear viscous damper
and a linear isolation stiffness as shown in figures 1.1 (a) and (b). Vibration can be
either the transmission of any dynamic forces from a vibrating mass to a support
structure, see figure 1.1 (a), or a motion from the vibrating support structure to the

isolated mass, see figure 1.1 (b).

The stiffness and damping represent the physical isolation elements and are
commonly both assumed to be massless and linear. However, the assumption of isolator
linearity is limited, and in some instances the isolator might exhibit nonlinear
characteristics. In some scenarios, the nonlinearity could be triggered by high excitation
amplitudes, beyond which the linear assumption breaks down and the predictions

obtained from the linear model are not valid.

Nonlinear characteristics of vibration isolation can be found in any practical
isolation system. For example, the telescopic shock absorber applied in automotive
vehicle suspensions has nonlinear force-velocity characteristic due to the fluid flow
through the valves [1]. A rubber mounting is another example with a nonlinear
characteristic which has practical application. It is identified to possess a nonlinear
restoring force [2]. Therefore, the assumption of linear isolation system is not sufficient
to get insight into the characteristic of many practical systems.

In addition, isolation performance can be indicated using transmissibility
function. It represents the ratio of the amplitude between two quantities, i.e. the input
and the response amplitude, as a function of excitation frequency. The two quantities
can be either the ratio between the amplitudes of force-force, force-displacement or

displacement-displacement, for example. The nonlinear systems are known to result in
1
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significant differences between the force and motion transmissibility. This is unlike
those for a linear isolation system for which force and motion transmissibility are
identical. The transmissibility for the linear system can be obtained using various
fundamental mathematical approaches, e.g. Laplace transform or Fourier transform.
The amplitude of both force and motion transmissibility are well known to be related to

the damping ratio.

Figure 1.1 (c) shows the transmissibility function for either the force or base

excited linear isolation system which is simply given by

IT.|= ( (1.1)

where ¢, is a non-dimensional linear viscous damping ratio which is given by

¢, =—=*—. Q is normalised excitation frequency, i.e. Q = /@, with w, the

c
2Jkm
undamped natural frequency and given by @, =/k/m.

At the excitation frequencies well below the resonance frequency, Q <1 shown
by zone (i) in figure 1.1 (c), the system exhibits the so-called quasi-static response
where the amplitude and phase of the output coincide with the input. It is seen in zone
(it), around the resonance frequency, Q =1, that greater values of damping ratio yield a
reduction in the transmissibility amplitude around resonance as given by

11 (1.2)

Tr| = = 2
Q=1 (24/1)
For the linear vibration isolation system, the amplitude of transmissibility at

excitation frequency Q = J2 , shown by (iii) in figure 1.1 (c), equals unity. This
frequency marks the beginning of the isolation region for the linear systems. The

amplitudes of transmissibility in the isolation region, i.e. for excitation frequencies well

above JE in zone (iv), are seen to increase directly with the value of damping ratio as
given by the following approximation

~Z (L.3)
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For some aspects, the assumption of system nonlinearity can reduce the
aforementioned disadvantages of the linear damping. Therefore it is essential to
introduce the nonlinear characteristics within the theoretical model, in order to
understand their effects. Understanding the effect of the nonlinearity could potentially
help to improve the isolation performance or avoid any negative effect on the isolation

performance.

There have been a variety of nonlinear characteristics previously examined and
proposed. The nonlinearities might or might not be identifiable or approximated using a
simple or a specific mathematical function. Also the method to get the exact analytical
solutions is not generally available. For example, the method of superposition or the
application of the frequency domain approaches applied for the linear system are not
valid for nonlinear systems. In recent years, new methods for solving nonlinear
problems have been proposed. Relevant previous studies and publications on the
nonlinear vibration isolation are summarised and reviewed in the following sections.
However, this study focuses particularly on a power law damping characteristic. This is
one of the most common nonlinear damping characteristics considered and was chosen
here as an example nonlinear isolator. Also one particular analytical method, Harmonic

Balance Method (HBM), was chosen to solve nonlinear problems throughout this thesis.

1.2 Literature review

The topic of nonlinear vibration isolation has received wide interest in recent
years. The isolator can sometimes be considered to possess either nonlinear stiffness,

nonlinear damping or both. Some studies are reviewed and summarised here.

1.2.1 A passive nonlinear stiffness vibration isolator

A passive nonlinear stiffness of a vibration isolator can produce undesirable
effects. For example, the well-known jump phenomenon can be observed for the
harmonically forced Duffing oscillator, as seen in the response curves of the normalised
displacement of the mass for a force excited isolation system with cubic stiffness shown
in figure 1.2 [3]. The non-dimensional form for the Duffing’s equation under harmonic

excitation is given by
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y'+24Y +y+ay® =cos(Qr) (1.4)
where £ is the linear viscous damping ratio. « is a non-dimensional cubic stiffness
and is given by a =k,xZ /k, , with k; and k, the linear and cubic stiffness coefficients
and x, the amplitude of the isolated mass, defined as x, = F/k, for k, =0and » =0.

y", y" and y are functions of non-dimensional time, =, representing normalised

acceleration, velocity and displacement of the system mass respectively.

The jump phenomenon is a result of having a cubic stiffness and is known to
occur around the resonance frequency where multiple solutions are obtained. Such a
phenomenon can feature jump up or jump down depending on whether excitation
frequency is decreasing or increasing, illustrated using the normalized displacement
response curve in figure 1.2. The resulting response curve bends towards either the low
or high excitation frequency depending on whether a softening or hardening cubic
stiffness is applied. This phenomenon is also dependent upon the excitation amplitude.
A critical forcing amplitude and the jump frequencies can be determined as reported in
[4] where the method of multiple scales was applied. The basic theory, solutions and
description of the Duffing oscillator can be found in many text books, e.g. [5-7].

The Duffing oscillator can be examined in different ways. For example,
Worden [8] approximated the frequency response curves of the Duffing oscillator using
the HBM. The resulting response curves were compared to the exact solutions provided
in the study of Friswell and Penny [9]. The occurrence of jump phenomena in [8] and
[9] were found to be in very good agreement. Peng et al. [10] solved the Duffing
oscillator response using the HBM. The result was compared to that obtained using the
method of nonlinear output frequency response functions. The performance of these two
approaches was examined by employing the observed difference in the jump
phenomena. Carrella et al. [11] included the cubic stiffness in the SDOF force excited
isolation model which was considered as possessing a high-static-low-dynamic-
stiffness. Analytical expressions for the maximum amplitude and jump frequencies were

obtained from their study.

In automotive applications, the linear plus cubic stiffness model has also been of
interest. For example, Verros and Natsiavas [12] applied the Duffing type nonlinearity
to a tyre model, for which an enhanced accuracy of the model was produced. Litak and

4
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Borowiec [13] also applied the linear plus hardening cubic stiffness to a suspension

system of a SDOF quarter-car model to investigate chaotic response.

Apart from nonlinear cubic stiffness, Klein [14] and Kirk [15] introduced the
tangent elasticity characteristic as an alternative nonlinear stiffness for which the force-
deflection characteristic is given by

F(x)= 2kd tan [Z—;j c—d<x<d (1.5)

T
where k; is the initial spring rate and d is the maximum deflection obtainable with

infinite force. Figure 1.3 shows the comparison of the force-deflection characteristic
between the cubic hardening and the elasticity stiffness. The force-deflection for the
linear stiffness is also plotted as for comparison. The theoretical deflection obtained
from a cubic hardening spring can increase indefinitely with force. In reality, the
deflection of a spring cannot increase or decrease beyond a certain value. Therefore the
tangent stiffness was introduced to present a physical limitation of the spring deflection,

shown by the vertical lines at —d and d in figure 1.3.

However, nonlinear stiffness has not been considered here and the focus is on
nonlinear damping. Therefore the assumption of linear isolator stiffness has been
applied throughout this study. It should be very useful for future work to include other
nonlinearities once the effects of nonlinear damping have been determined and
understood.

1.2.2 A passive nonlinear damping vibration isolator

A nonlinear damping characteristic can be introduced to an isolation model in
many ways. For example, in references [1] and [16], the damping characteristic in the
application of an automotive suspension was modelled using piecewise linear damping,.
The damping force-velocity characteristic of the piecewise linear damping is unequal
between the bounce and rebound strokes. Such a damping characteristic was also
mentioned in the studies of Wallaschek [17] and Surace et al. [18]. The asymmetric
force-velocity characteristic was realised in practice using different valve sizes for these

two strokes.
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The application of asymmetric damping in an automotive vehicle suspension in
the study of Rajalingham et al. [19] showed that, under harmonic base excitation, the
isolated mass oscillates about a new mean value, which shifts the equilibrium position
towards the stroke with lower damping. Natsiavas and Verros [20] included Coulomb
friction in addition to the piecewise linear damping model. There appeared a
discontinuity in the characteristic diagram at the end of each stroke where the velocity
across the damper equals zero. The response for such a damping characteristic under
harmonic excitation was found to exhibit a so-called stick-slip phenomenon.

The damping component can also be characterised using a polynomial power

expansion in terms of the velocity. It is known as power law damping or velocity-nth

- Q _ ) . -
power, i.e. f, (x) :Zcp>'<|>‘<|p " where ¢, is the damping coefficient for the power law
p=0

damping with exponent p . The force and velocity diagrams for p =0 to 5 are shown
individually in figure 1.4. The absolute amplitude of velocity, |%|, is introduced to

ensure that the direction of the damping force opposes the motion when pis an even
value (for p > 0). The damping force velocity characteristic for this damping type is

anti-symmetric. As such, the damping force for the bounce and rebound strokes are

equal.

The damping becomes Coulomb friction when p = Q=0, blue line in figurel.4,

and only the one term is included in the series. Coulomb friction is one of the common
nonlinear damping characteristics found in mechanical systems. The force generated
from the kinetic or sliding friction is a constant amplitude, independent of the relative
velocity but in the opposite direction to the velocity. Its magnitude is dependent upon
the friction coefficient and the normal force. One well known effect of Coulomb friction
is the stick-slip behaviour as mentioned previously. The slip motion is considered when
the relative velocity is not equal to zero. It happens when the sum of the inertia, stiffness
and external force is sufficient to overcome the static friction force. Otherwise, stick or

zero relative motion between two surfaces is considered.

Levitan [21] considered a support-excited isolation system for aircraft-installed
equipment. The damping considered comprised linear viscous damping and Coulomb
friction. The author assumed that no stick behaviour occurred for steady-state
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oscillations due to harmonic excitation. It was apparent that the transmissibility

amplitude around the resonance frequency could be reduced by increasing the friction.

The presence of Coulomb friction for base excitation was also reported by
Schlesinger [22]. The Coulomb damper was the only damping characteristic present in
the model. Two damper mounting configurations were considered, i.e. rigidly and
elastically mounted. The author concluded that the amplitude of the resonance peak in
the transmissibility at the break-out frequency, the frequency where slipping occurs,
was controlled directly by the level of friction. The optimum level of friction could be
determined for different values of the intermediate stiffness.

Crede and Ruzicka [23] provided a comparison of the transmissibility for base
excitation for four different damping characteristics. The transmissibility with Coulomb
friction showed an infinitely high amplitude at the resonance frequency. However, it
showed that Coulomb friction worked well at high frequencies as the displacement
transmissibility decreased inversely with the excitation frequency squared.

There are also many studies which have considered a combination of nonlinear
damping in a model in order to improve the predicted results. For example,
Wallaschek [17] and Surace et al. [18] applied Coulomb friction plus linear and
quadratic damping to the model of an automotive shock absorber, i.e. the combination

of p=0, p=1and p=2 respectively. However, some of the applied nonlinear

damping characteristics were not very accurate compared to experimental results. The
characteristics of a real damper exhibit an asymmetric force, whereas the polynomial
form characteristic does not provide this in general. Despite this fact, a nonlinear
polynomial characteristic for the damping force is still acceptable for study into the

effect of nonlinear damping in some instances.

Ravindra and Mallik [24] examined the performance of a nonlinear vibration
isolator subjected to both harmonic force and base excitation. The isolator model
included both a nonlinear stiffness and nonlinear damping. The stiffness restoring force
was considered separately for two different cases, i.e. symmetric and asymmetric. The
power exponents of the velocity being 1, 1.5, 2 and 3 were also applied separately to the
model. The authors concluded that the bandwidth of the jJump phenomenon resulting

from the cubic stiffness was narrower for an increasing value of damping coefficient.
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In addition, increasing the value of the exponent power of damping could reduce the

jump width. Thus the unstable zone was reduced.

Ho et al. [25] also reported that the application of cubic viscous damping, p =3,

on a hardening cubic stiffness Duffing-type force excited isolation reduced the
amplitude of force transmissibility around the resonance frequency. As a result, the
occurrence of the jump phenomenon could be eliminated without any effect on the
isolation performance at high excitation frequencies compared to those with linear

viscous damping.

Jing et al. [26] applied a power law damping with p =1 and 3 into a SDOF

force excited isolation model. A frequency domain analysis was carried out using a
Volterra series expansion and was verified by simulation. The authors concluded that
cubic damping provided a significant reduction in the response at the natural frequency,
but has no effect on the response at high excitation frequencies. The results are in
accordance with the study of Peng et al. [27] where polynomial type damping with an

odd power of velocity with p =1, 3 and 5 was applied on the same model. The effect

of such damping was considered to be beneficial, since the response around resonance

was lower whereas the response in the isolation region was not amplified.

Cubic damping was implemented for force isolation by Laalej et al. [28].
Electrodynamic shakers were employed on a hexapod or Stewart platform style subject
to force excitation as the experimental rig shown in figure 1.5. The Stewart platform is a
six degree of freedom parallel manipulator with variable link length [29]. The
experimental results were compared to a theoretical study in [26] and [27]. A beneficial
effect of the nonlinear viscous damping was found in and above the resonance region.
Increasing the value of cubic damping reduces the level of the force transmissibility

when compared to that for linear damping.

Laalej et al. [30] also implemented a nonlinear cubic damping characteristic
using a magneto-rheological (MR) damper. The focus was to explore the beneficial
effect of the nonlinear cubic damping for a pitch plane suspension system subject to
force excitation. The model represented a physical model of a vehicle seat suspension.
The authors configured the MR damper as the damping component, rather than the

actuator in the feedback control system, so there was no energy input into the system.
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The cubic damping characteristic was controlled by the current sent to the MR damper.
The results showed a lower level of transmissibility for the system with nonlinear
damping compared to that using linear damping. The results were also in a good
agreement with the analytical results reported in references [26-28].

Guo et al. [31] applied power law damping in the study of force and
displacement transmissibility. The exponent of the velocity was chosen arbitrarily. The
analytical results were obtained using the Ritz-Galerkin method. The authors concluded
that a different velocity exponent provided different results in both the force and
displacement transmissibility. A power of the velocity greater than unity can be

beneficial to force transmissibility but be detrimental for the motion transmissibility.

To this end, one might see that power law damping has been beneficial, giving
an improvement in the force transmissibility. In this thesis, cubic damping was chosen
as an example of power law damping for base excited isolation. Studies into the effect
of cubic damping for base excitation isolation are reviewed and reported in the next

section.

1.2.3 Cubic damping for base excited vibration isolation

Over recent years, the effect of cubic damping on base excited vibration isolation
has been reported in many publications. Shekhar et al. [32] studied a variety of isolator
and absorber models. All of the models included linear plus cubic viscous damping.
Different shapes of shock base excitations were applied. The authors concluded that the
inclusion of cubic damping is beneficial for shock isolation in some of the models

considered but not others.

Kovacic et al. [33] were also interested in the displacement transmissibility for
harmonic base excited isolation possessing cubic damping. The method of averaging
was used to obtain the analytical results. They discovered that pure cubic damping has a
detrimental effect on the absolute displacement transmissibility in the isolation region as
shown in figure 1.6. The level of absolute displacement transmissibility is higher
tending to unity (0 dB) as the excitation frequency increases. Milovanovic et al. [34]
also examined the displacement transmissibility of the same model. They observed that,
for the system with pure cubic damping, the response for high excitation frequencies
was greater than that for linear damping indicating a poor isolation performance.

9



Chapter 1

The recent study by Peng et al. [35] examined both the force and base excited
isolation model possessing the linear plus cubic damping using the HBM. The influence
of cubic damping has been found to be dependent on the amplitude of the excitation
input, i.e. constant and independent of the excitation frequency or proportional related
to the excitation frequency squared. Regarding the responses in the isolation region, i.e.
Q > 1, the authors concluded that the effect of cubic damping on both force and
absolute displacement transmissibility is negligible when a constant force is applied. In
contrast, for the case which excitation amplitude is proportional to the excitation
frequency squared, for example an imbalance force resulting from the rotating machine,
increasing cubic damping could increase the level of force transmissibility whereas the

displacement transmissibility for such a system could be slightly lowered.

It is seen in general that cubic damping causes a higher vibration amplitude in
the isolation region for base excitation. For some systems where cubic damping cannot
be eliminated, awareness of the high response amplitude should be raised. Alternatively,
the isolation capability might be improved using a higher order vibration isolation
model. The Zener vibration isolation and the two-stage vibration isolation models were
chosen here to deal with the detrimental effect of cubic damping. Some studies into

these higher order models were reviewed and reported in sections 1.2.4 and 1.2.5.

1.2.4 Base excited Zener isolation model

The Zener base excited isolation system is introduced in this thesis in order to
reduce the detrimental effects resulting from cubic damping. A brief introduction to the
Zener model is given here. It consists of an additional relaxation spring which is
working in series with the damping component and in parallel with a primary spring as
the model shown in figure 1.7. For the assumed massless springs and damper, the
relaxation spring and the damper can be considered as experiencing the same force.
There is an additional first order equation of the equilibrium force resulting from these
components. The Zener model may therefore be considered as a one and a half degree
of freedom system (1¥2-DOF) [36]. It has also been called many names, for example, an
elastically supported damper [23,37,38], a three-element mounting [39,40] or an
elastically coupled damping [41]. However, it is referred to here as the Zener isolation
model.

10
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Crede and Ruzicka [23] also mentioned the application of the Zener model using
linear viscous damping in comparison with three other isolation models. Ruzicka [37]
compared the harmonic responses for the passive base excited Zener isolation model
having a linear viscous damper to that of a rigidly connected linear viscous damper. It
was shown that having a stiffness ratio” close to zero resulted in a higher level for the
absolute transmissibility around the resonance frequency. However, it produced a lower
level at excitation frequencies well above the resonance frequency. The author
concluded that if a relatively small increase around resonance was acceptable, then

improved isolation could be obtained using the Zener model.

Snowdon [39] referred to the Zener model as a three-element mounting. The
investigation was carried out for the model comprising linear viscous damping subject
to harmonic and transient base excitation. The responses for the Zener model were
compared to those of the classical SDOF isolation having a rigidly mounted damper.
For harmonic excitation, the Zener model produced displacement transmissibility at
high frequencies of lower amplitude than that of the rigidly mounted damper. It also
reduced the displacement amplitude of the isolated mass due to shock excitation.
Snowdon summarised overall that the application of the Zener model provided better

vibration isolation.

The performance of the three-element shock isolator was also investigated by
Shekhar et al. [32]. The damping component was defined as the combination of linear
and cubic viscous damping. For relatively low excitation severity, the presence of cubic
damping did not make any significant difference compared to that of SDOF linear or
linear plus cubic damping. A better isolation capability of the three-element isolation
model possessing linear plus cubic damping was noticeable when the severity of the
shock excitation was relatively high. They also concluded that cubic damping should be

mounted elastically and the optimum value of stiffness ratio should be about unity.

The performance of the base excited Zener isolation comprising linear viscous
damping was also discussed in the study of Ledezma-Ramirez et al. [42]. The level of
the displacement transmissibility for the Zener isolation model in the isolation region

decreased by 40 dB per decade, whereas that of the SDOF system with a rigidly

“ Stiffness ratio refers to the ratio of the stiffness values between the relaxation spring and primary spring.
11
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connected linear damping had a roll off rate at 20 dB per decade. However, it was found
that the responses due to shock excitation between the two systems were not different.
The authors concluded that the Zener isolation model might be suitable for the system

subject to either transient or harmonic excitation.

The free vibration and forced harmonic response of the Zener isolation model
were also studied by Brennan et al. [43]. The authors found that critical damping could
not be obtained for a stiffness ratio less than a specific value of 8. Therefore, the
stiffness of the relaxation spring should be stiffer compared to that of the primary
spring. The authors concluded that the application of Zener isolation model does not

provide a significant advantage over the SDOF model for the case of free vibration.

In this thesis, the Zener model was applied only for harmonic base isolation. The
isolation capability of the Zener model possessing cubic damping was studied alongside

the cubically damped SDOF model.

1.2.5 Two-stage base excited vibration isolation

Two-stage vibration isolation is also introduced here in the expectation that is
might be applicable to reduce the detrimental effect caused by cubic damping for the
SDOF isolation under base excitation. The model consists of two sets of vibration
isolators as shown in figure 1.8, i.e. primary and secondary stage isolator. These sets of
isolators are separated by an additional mass, known as an intermediate mass. The use
of two-stage linear vibration isolators was theoretically shown to reduce the level of the
transmissibility in the isolation region, with a steeper roll-off rate compared to the
single-stage linear model [44]. However, the presence of the intermediate mass results

in a second resonance at a higher frequency.

The two-stage isolation model was introduced as a compound mounting system
by Snowdon [40]. Although a second resonance appears because of the presence of the
intermediate mass and hence the system becomes a two degree of freedom system, the
level of transmissibility at high excitation frequencies was found to reduce at 24 dB per
octave independent of the value of stiffness and damping. Snowdon identified that the

second resonance frequency should be located as close to the primary resonance as

12
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possible, which can be achieved by choosing the optimum value of the stiffness ratio’.
This observation is also in agreement with Fu et al. [45] who stated that a stiffness ratio
which provides a relatively low secondary resonance should be considered.

Shekhar et al. [32] showed the effect of cubic damping on the two-stage shock
isolator, where cubic damping was included in addition to the linear viscous damping on
both the first and second stage isolators. The shock response for this model was
compared to that for the single-stage isolation possessing linear plus cubic damping.
The authors concluded that the two-stage isolation possessing cubic damping on both
stages was more preferable for shock isolation than other shock isolations considered in

their study.

Similar to the case of the Zener isolation model, the application of two-stage
isolation in this thesis concerns only the case of harmonic base excitation. This is to
illustrate the possible solution to reduce or eliminate the detrimental effect of cubic

damping for base isolation.

1.2.6 Alternative models of nonlinear vibration isolation involving

cubic damping

Publications reviewed in this sub-section refer to alternative nonlinear vibration
isolation system. For example, Tang and Brennan [46,47] oriented the damping
component horizontally, perpendicular to the system’s spring as shown in figure 1.9.
Such a damper orientation results in the damping force in the moving direction

(direction of stiffness) becoming a function of the angle, i.e.

F, :—cl(% a2+x(t)2)sin(0(t)) (L6)

where ¢, is the linear damping coefficient and a is the length of the damper measured

horizontally. It could also be defined geometrically as a function of displacement

squared and velocity. As such the equation of motion for the isolated mass is given by

2

MX+C,———5X+kx=0 (1.7)

a +X

" Stiffness ratio for the two-stage vibration isolation model refers to the ratio of stiffness between the first
and second stage isolators.
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where xand x are displacement and velocity of the isolated mass. The authors
compared the geometrical nonlinear damping to the form of quadratic and cubic
damping. The free vibration response and harmonic response were reported in [46] and
[47] respectively. The authors concluded that, in general, such a system provided better
vibration isolation for base excitation compared to the case of cubic damping.

Sun et al. [48] reported similar work where the damping component was also
perpendicular to the stiffness and the motion of the isolated motion. The mass of the
base excitation was also considered and was treated as an unconstrained two degree of

freedom system. The damping force for the model mentioned was given by

n+l
z y L .
2c, [LJ Hi "7 where zand ? are the relative displacement and velocity

across the damper in the moving direction and n is the exponent. The averaging
method was applied to obtain an approximate solution for the harmonic excitation. The
authors concluded that a high isolation performance could be achieved using the optimal

valueof n,i.e. 0<n<04.

A more recent study by Xiao et al. [49] proposed a nonlinear damping
component which was defined as a product of displacement squared and velocity, i.e.
x’X. The new damping model was added to the original linear viscous damping for both
force and base excited isolation. The responses under harmonic excitation were
compared to those having only linear plus cubic damping. The presence of the proposed
damping was found to reduce the amplitude of force and displacement transmissibility
for both around the resonance and in the isolation regions. The authors concluded that
the proposed damping provided better performance over just cubic damping, which is
purely dependent on the relative velocity.

Lu et al. [50] studied a nonlinear effect from the stiffness geometry on a two-
stage vibration isolation. Two 90 degree oriented springs were added to the sets of
vertical stiffness and damping. Each horizontal spring connected the mass for each stage
to the supporting structure. The horizontal spring in the second stage was found to
provide better isolation. They also found that the force transmissibility at high excitation

frequencies can be reduced by the larger intermediate mass.
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1.3 Objectives and scope of this study

The application of nonlinear damping reported in the literature was shown to be
favourable for harmonic force excitation of a SDOF system. It reduced the transmitted
force amplitude so as to be similar to that of an undamped linear system. In contrast, for
harmonic base excitation, nonlinear damping resulted in poor isolation performance
compared to linear viscous damping. This contrary effect of nonlinear damping
motivated the main objective of this thesis, i.e. to investigate and describe the possible
reasons behind such effects. Cubic damping was chosen as an example of damping
nonlinearity. By understanding the physical cause, it is feasible either to improve the
isolation benefits of cubic damping or prevent such a system from poor isolation
performance. The base excited Zener and the two-stage vibration isolation models were
then introduced in order to eliminate the disadvantages from the presence of cubic

damping.

The responses due to harmonic excitation for both base and force excitation are
reported separately in comparison to the linear viscous damping case. The examination
into the harmonic response is first presented using three methodologies, i.e. a
mathematical approximation, numerical simulation and finally experimentally. The
effect of cubic damping on a SDOF vibration isolation system subject to broadband
base excitation was also investigated and is reported here. The responses due to
broadband excitation were carried out using numerical simulation and experimental
study with subsequent statistical and spectral post processing. Note that, the
experimental investigations were implemented only for the case of a SDOF base excited

vibration isolation system.

The numerical simulations carried out here were slightly different from those
previously published by others. Most of the studies in the literature assigned the
comparable level of nonlinear damping to that for linear viscous damping. This would
not be appropriate for some situations. Since the characteristics for linear and nonlinear
damping are different, using a comparable damping level for both the linear and cubic

damping might result in improper conclusions.

The levels of nonlinear damping considered in this study were determined in
order to maintain chosen values of the response amplitude around the resonance

frequency. Thus the distinction between linear and nonlinear damping for the excitation
15
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frequencies high above resonance is expected to be observed. A similar strategy of
maintaining the response around the resonance frequency was also applied to the
experimental study, which has not been found in the literature. The levels of the
responses around the resonance frequency for both linear and nonlinear damping were
thus comparable for the predictions and the experiments. The latter then was applicable

in validating the theoretical and numerical findings.

1.4 The contributions of the thesis

This work has produced some original understanding and knowledge in the area
of the effect of nonlinear damping in isolation systems. The original contributions that

have been identified are listed as follows:

i) The underlying physical causes for the detrimental effect of cubic damping for

base excited isolation are explained.

i) Approximate closed form solutions for a force and base excited SDOF
isolation system possessing cubic damping have been obtained using the Harmonic
Balance method. These solutions have been simplified in order to provide insight and
understanding into the positive and negative effects of cubic damping for particular
frequency regions. Previously the approximate expressions had been obtained using the
Averaging Method.

1ii) The applications of higher order base isolation models, i.e. the Zener and
two-stage isolation models were proposed in order to eliminate the detrimental effects
of cubic damping on a SDOF base excited vibration isolation model. The negative
effects of the cubic damping have been removed using the application of the Zener
isolation model. The application of the two-stage isolation system with cubic damping
in the secondary stage isolator produces even better isolation performance than that with

linear viscous damping.

iv) Concerning broadband random excitation, the effects of cubic damping for a
base excited isolation system have not been found reported in the literature. Distinctive
and different response characteristics due to harmonic and broadband excitation were
found.
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v) The theoretical results showing the detrimental effects of cubic damping were
confirmed experimentally. The nonlinear damping was reproduced using a simple
velocity feedback for both harmonic and broadband base excitation. In principle, this
velocity feedback could be further developed to reproduce any nonlinear damping
configuration. The experimental results for both excitation scenarios are in good

agreement with theoretical predictions.

1.5 Thesis outline

The study began with the numerical simulation for the application of the integer
power law damping. The exponent power was initially ranged from 1 to 5 in order to
justify the further examination into the effect of nonlinear damping and is given in
Chapter 2. Cubic damping was found to be a good example, showing the beneficial and
detrimental effects of power law damping.

The effect of cubic damping on vibration isolation was then examined
analytically and numerically and reported in Chapter 3. The key evidence showing the
advantages and disadvantages from the presence of cubic damping was found.
Chapter 4 reports the application of higher order base excited vibration isolation
models, i.e. the Zener and two-stage isolation models. These two models were
introduced to minimise the negative effect of cubic damping and to increase the
isolation capability. The effect of cubic damping for the broadband excitation was
performed only for the case of base excitation, which is reported in Chapter 5 using

numerical simulation as no analytical solution is available.

Chapter 6 reports the experimental study, which was performed for both
harmonic and broadband excitations on the base excited isolation system for model
validation. Finally, a general discussion and conclusions of this work are provided in
Chapter 7.
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Figure 1.1 SDOF linear vibration isolation models and the corresponding transmissibility
function showing the relation between the amplitude and the linear viscous
damping ratio.

(a) Force excited vibration isolation model
(b) Base excited vibration isolation model
(c) Transmissibility for either force or base excited linear vibration isolation model

C
with §; = ——.
2\/km
(i) Quasi static response occurs at excitation frequencies well below the
resonance frequency.
(i) Amplitude decreases as for the greater linear viscous damping.
(iii) The beginning of the isolation region for linear vibration isolation system,

i.e.Q=\/§.

(iv) Amplitude increases as for the greater linear viscous damping.
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Figure 1.2 The normalised displacement response curves for the system mass of Duffing
oscillator subject to harmonic force excitation in comparison to the response for the
linear system , figure reproduced from [3].
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Figure 1.5 Stewart platform style experimental rig employed in the study of Laalej et al. [28]
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Figure 1.6  Absolute displacement transmissibility for a harmonic base excited vibration
isolation system with pure cubic damping &, * figure reproduced from [33].
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Figure 1.7 Zener base excited isolation.

i &, denotes non-dimensional cubic damping as used in the reference. Non-dimensional cubic damping is

denoted later using &, elsewhere throughout this thesis.
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Figure 1.8 Two-stage base excited isolation with undamped primary stage isolator.
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Figure 1.9 Base excited vibration isolation possessing linear viscous damping oriented
horizontally and perpendicularly to the system’s spring and moving direction of the
isolated mass
(a) The isolated mass is at the equilibrium position.

(b) The isolated mass moving upwards results in an angle & with respect to the
horizontal axis.
where a is a length of damper measured horizontally.
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Chapter 2  Vibration isolation possessing

power-law damping

2.1 Introduction

Damping is often assumed to be linear, either where the response is justifiably
small or simply for convenience. However the application of the assumed linear
damping is limited for some aspects. This is because the physical damping mechanisms
are generally nonlinear, e.g. the automotive vehicle shock absorber etc. The nonlinearity
of damping components can be advantageous or disadvantageous. Therefore the

consideration of nonlinear damping is required.

The nonlinear damping characteristic is not unique. The attention of this chapter
is focused on examining power law damping as an example of damping nonlinearity.
This is because applications of power law damping have proved successful, in some
cases, for reducing the vibration amplitude in the isolation region. However, it has not
been effective for some scenarios and it might exhibit unexpected disadvantages.

This chapter reports the effect of five individual power law damping
characteristics on a single degree of freedom (SDOF) isolation system. Two different
excitation scenarios, namely force excited and base excited isolation, are applied. The
aim of this chapter is to illustrate the effect of the integer exponent power law damping
by presenting numerical results. The outcome of this investigation is to provide
understanding of the effects produced. It can lead to the further exploration into the

basis of such effects whether negative or positive benefits occur.

2.2 Single degree of freedom isolation with nonlinear damping

The model of the SDOF isolation considered here is illustrated in figure 2.1 for
two different excitation cases. The isolated mass is assumed to be rigid and is centrally
attached to the isolator. As such, only vertical translation from the static equilibrium

position is considered. The isolators for both cases comprise a linear stiffness and a
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damping component acting in parallel. The damping is assumed to be related to the

relative velocity by a power law, the details for which are given in section 2.3.

2.2.1 Equation of motion

Figure 2.1 (a) represents the system subject to force excitation. The excitation
force fe is partly transmitted to the supporting structure via the isolator. The capability

of the isolator can be examined in terms of the ratio between the amplitudes of the force
being transmitted and the exciting force. A good isolation should transmit less force and
so the amplitude ratio is lower. The system in figure 2.1 (b) represents the system
undergoing base excitation. The role of the isolator in this scenario is to isolate the
motion from the base to the isolated mass. The isolation capability is quantified by the
ratio of the motion amplitudes between the isolated mass and the base excitation. This
guantity can be considered in terms of displacement, velocity or acceleration. Similarly
to the case of force excitation, a lower level of the ratio means a better isolator.

The governing equation of motion for the models shown in figure 2.1 is given by

mz(t)+ f, (z,t)+kz(t) = f, (1) (2.1)
where mand k are the mass of the rigid body and the assumed linear stiffness. fe is the

dimensional input excitation ( fe =—m¥, is considered for the base motion excitation).

f, is a function representing the dimensional restoring force due to damping. 7, z and

z are the relative motions, i.e. acceleration, velocity and displacement as a function of

dimensional time t. The relative displacement is given by

Z=X—X, (2.2)
where x is the absolute displacement of the rigid body and ¥, is the base displacement

excitation. For the case of force excitation, X, is equal to zero, therefore z = x . However,

for simplicity, the relative motion z is applied for both cases as they share the same
expression. In addition to the equation of motion, for the case of force excitation the

equation for the transmitted force has to be defined, i.e.

f (t)=f, (2,t)+kz(t) (2.3)
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2.2.2 Harmonic excitation assumption

The excitation applied in this chapter is assumed to be harmonic excitation, i.e.
f, = F, cos(at) for the force case and f, = ma® X, cos(wt) for the base excitation case.
Equations (2.1) and (2.3) can be normalised using the quantity ma?X where X is the

displacement amplitude of the rigid body resulting from the excitation at zero frequency

and is given by

X :% and X =X, (2.4)

for the case of force and base excitation respectively. The other non-dimensional terms

applied for the normalisation are defined as follows.
(@) Frequency ratio

The frequency ratio is defined as the ratio between the angular excitation

frequency o and the undamped natural frequency @, , i.e.

=2 (2.5)
,

The undamped natural frequency is given by o, = \/% where k is the linear stiffness
and m is the mass.
(b) Non-dimensional time

Non-dimensional time is defined by

r=ot (2.6)

n

The first and the second derivatives with respect to  are denoted by (+)" and (+)’

respectively. The assumed harmonic excitation also becomes a function of non-

. @
I—7

dimensional time 7, i.e. €“= e = ",

(¢) Normalised response variables

The variable representing relative displacement between the rigid mass and the

base excitation is normalised by the amplitude at zero frequency, X . Thus one obtains
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the normalised variables for the relative displacement, velocity and acceleration as

follows;

Z=Xu, Z=w@,Xu" and Z =@’ Xu" (2.7)
where u”, u’ and u are the normalised relative motions with respect to non-dimensional

time 7. By substituting these variables into equation (2.1) and dividing by the quantity

me’ X one obtains the non-dimensional form as

u"(z)+ fy (u',7)+u(r)=F,cos(Qr) (2.8)
where f, is the normalised restoring force due to damping. F, is the normalised

amplitude of excitation force which for force excitation F,.=1 and F, = Q* for the base

excitation. The normalised form for the transmitted force shown in equation (2.3) is

given by

f(r)=f,(u,7)+u(z) (2.9)
The non-dimensional form given in equations (2.8) and (2.9) will be solved later using

numerical integration and will be examined in section 2.5.

2.3 Power-law damping and its equivalence

The characteristics of power law damping applied in this study are described
here. Its effects are examined in comparison to linear viscous damping, for which the
exponent is equal to unity. The equivalent values, under certain assumptions, for linear

damping with these nonlinear damping characteristics are also presented.

2.3.1 Power law damping characteristic

The power law damping characteristic considered here can be given in

dimensional form by

f(2t)=c,2(t)|z(t)" (2.10)
where c is the dimensional damping coefficient assumed constant and p is the

exponent of the power law damping which, in this study, ranges from 1 to 5. The linear
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viscous damping is considered when p =1 for which the damping force is proportional

to the relative velocity with the exponent of unity.

The normalised damping force can also be obtained by dividing equation (2.10)

by the quantity me’ X , i.e.

C -1
f (U, 7)=—2—(a Xu)|w Xu'l’ 2.11
o (U 7) = (Xl (211)
with 2 =@, Xu'". Equation (2.11) can be rewritten as
fo(u,z)=guul™” for p >1 (2.12)

where ¢ is the non-dimensional power law damping term which is the outcome of

equation (2.11) and is given by

C
£y="tal "X (2.13)

Note that, for p =1, the normalised linear damping force is given by

fo(u',7) =250 (2.14)

as a result of the linear damping ratio, ¢, = > ' The further descriptions and the
o)

examples for the other types of power law damping are given in the following
sub-sections with the damping force characteristics shown in figure 2.2 for exponent
p=0to5.

(a) Even exponent power law damping

The even exponent power law damping characteristics applied in this study are
quadratic and quartic damping, i.e. p =2 and 4. The force characteristics for these two
damping models are symmetric on the relative velocity by definition. Therefore the use
of absolute value or a sign function is needed to convert the damping force
characteristic to be anti-symmetric and to ensure that the damping force always opposes

the motion.

The quadratic damping, p = 2, is often associated with turbulent fluid flow and

is also commonly used in the study of automotive shock absorbers, for example in
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references [17,18,38]. It was also examined for the case of base excited isolation, for
example [51-53] for which approximate closed form solutions were provided. However,
in this study only numerical simulations are considered to enable comparison with the

other power law damping types.

The use of quartic damping, p = 4, has not been generally found for vibration

isolation. However, it is applied in this study to illustrate the effect of the higher

power-law damping characteristic in the damping force expression.
(b) Odd exponent power law damping

The effects of odd exponent power law damping with p =3 and 5 are considered
here. Cubic damping, p =3, became a damping characteristic of interest in recent years.

There have been number of publications considering it, for example those reported in
[28,30,32-34]. A cubic damping characteristic produces an anti-symmetric
force-velocity diagram, as for linear viscous damping. An example of the application for

the quintic damping, p =5, can be found in [27]. The fifth power exponent was
considered in combination with both the linear and cubic damping, i.e. p=1and p=3.

In this thesis, the response for each power exponent was examined individually.

To recap, the characteristic diagrams for power law damping are shown here

again in figure 2.2. It is seen that the level of power law damping forces with p > 1 are

much lower than for linear viscous damping at low relative velocity (|u’|< 1) and higher
for |u’|> 1. The force-velocity characteristics of the power law damping with p =2t0 5

are qualitatively similar. So, one might anticipate similar effects from these power law
damping types on the isolation performance.

2.3.2 Equivalent linear viscous damping

The equivalent value of the linear damping coefficient for the other types of
power law damping can be approximated by equating the energy dissipated over a full
cycle of steady-state nonlinear response to that for linear viscous damping. The
non-dimensional dissipated energy is calculated by the integral over a cycle of vibration

assuming a harmonic response, i.e.
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27/Q
Eg= [ f,(u.7)udr (2.15)
0

where € is the excitation frequency ratio. Equation (2.15) can be applied for the

steady-state harmonic relative velocity, i.e. u'=QU sin(Qr—¢u) where U is a

normalised amplitude of the relative displacement and ¢, is phase lag of the relative

displacement with respect to the base excitation.

The relative velocity for the power law damping with p =5 subject to force and
base excitation at the undamped natural frequency, i.e. Q= 1, were evaluated as an
example of an extreme case. The values of non-dimensional damping . = 0.1 and 0.3
were chosen initially. The time histories for the linear viscous damping producing a
similar amplitude of the relative velocity were also determined for a comparison. The
resulting relative velocity time histories are shown in figure 2.3 for a non-dimensional

time period of T =27 .

These plots illustrate that the relative velocity for the power law damping p=5

are distorted. This is known to be a result of the existence of response at other
harmonics due to the nonlinearity. Despite the harmonic distortion, the appearance of

relative velocity can be considered periodic and dominated by the excitation frequency.

Therefore the non-dimensional damping value for other power law damping
models can be estimated using the non-dimensional energy dissipated by a linear

viscous damping which is given by

E, = 2£,7QU°? (2.16)
The non-dimensional damping values for power law damping with p =2 to 5 for this
instance are estimated at Q=1 for ¢; = 0.1, 0.2 and 0.3. The equivalent values of linear

viscous damping are listed in table 2.1. By applying these values the response
amplitudes for the power law damping at Q =1 are expected to be similar to the linear
case. The responses for the power law damping and the existence of the responses at

higher harmonics will be discussed in section 2.5.
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2.4 ODE solutions and spectral analysis

The ordinary differential equation given in equation (2.8) was solved
numerically using direct numerical integration. The ODEA45 solver provided in Matlab
was chosen as for general purpose ODE solutions. The chosen solver is based on a
fourth and fifth order Runge-Kutta method with an automatic step size adjustment [54].
The large or small step-size is applied depending upon the characteristic of the function
[55], i.e. the larger step size is applied for low frequency functions and vice versa for
the high frequency functions. In order to obtain the time response at a desired time step,
it is suggested to apply a one dimensional interpolation, ‘interpl’, to the obtained result

[56]. An example for using ODEA45 is given in Appendix A.

The applied numerical time and frequency resolutions are described here as well
as the excitation characteristic in the time domain. The time domain numerical results
obtained were transformed into the frequency domain and analysed using spectral

analysis, which is also described in this section.

2.4.1 Solution procedure

The input for numerical simulations was specified as a set of discrete frequency
sinusoidal excitations. The frequency range of interest ranged from Q= 0.1 to 100. The
input excitation amplitude was gradually increased from zero to the maximum of unity

for each frequency input considered, i.e.

a(r)=1{7, TR (2.17)

1 1Ty STST

max

where a is the shape function for the signal amplitude. 7, is the ramp time which is

given by 7, =7,, /2. The response only in the second half of the simulation was

max
employed for subsequent frequency domain analysis. By doing this the effect of any
transient response was reduced. However, for the lightly damped systems, the longer
duration for the ramp input can be considered. In addition, the application of ramp input
can help to avoid transient response resulting from nonlinearity. This is to ensure that
only the steady-state response is obtained.
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The non-dimensional maximum time length was set at 7, = 256 time units. This

7. allowed four complete cycles of the sinusoidal signal for the lowest excitation

frequency considered, i.e. Q=0.1. Thus there were two complete cycles at the

maximum amplitude at this frequency. The normalised sampling frequency was set at
Q.= 32768 where Q, =27 f_/w, . The value of Q, was set to avoid the occurrence of

aliasing from higher harmonics in the response. These harmonic responses are expected
to be negligible beyond around five times the maximum excitation frequency for power

law damping with p =5.

2.4.2 Transmissibility and amplitude ratio

The response characteristic of vibration isolation is usually presented as a
transmissibility function. It shows the ratio of the amplitude between the response and
the input with the same physical quantity [7] as a function of the excitation frequency
[57]. For example, the ratio between the force transmitted to the supporting structure
and the applied force forms the force transmissibility. The ratio between the motion of
the isolated mass and the base excitation is the motion transmissibility [58].

For the linear system, the transmissibility function can represent completely the
isolation capability. This is because a single frequency excitation only produces the
response at the same frequency and it is independent of excitation amplitude. On the
other hand, for nonlinear system, the single frequency excitation can produce response
at frequencies other than the excitation frequency. The responses at other frequencies
are ignored by means of transmissibility and the term transmissibility is not suitable.
Thus, in this study, the term amplitude ratio is used instead which represents the ratio of
the amplitude between the input and response at only the fundamental excitation

frequency.

The amplitude ratio can usually be constructed using either the ratio of the root
mean square (RMS) values or the ratio of the Fourier coefficients at the excitation
frequencies between the output and the input. There should be small difference between
these two amplitude ratios if the response at the excitation frequency is not strongly
affected by the responses at harmonic frequencies. The existence of the responses at
other harmonics can distort and affect the time domain response. By using only the

33



Chapter 2

Fourier coefficients at the excitation frequencies, the nonlinear responses at the higher
harmonics are disregarded. As such, the amplitude ratio constructed using Fourier
coefficients would not in general be the same as that constructed using RMS values.
The discussion of amplitude ratios constructed from these two quantities is given in

section 2.5.2.

2.4.3 Frequency domain analysis

The frequency domain analysis was carried out by means of the amplitude ratio.
The amplitude ratio is constructed using either the Fourier coefficients or the RMS
values of the time histories obtained from direct numerical integration of the equation of
motion. The discrete value of the Fourier coefficient was calculated using the

exponential form of the Fourier series [59], i.e.

NI (2.18)

where q(n) is the discrete time response, h is the harmonic of the excitation frequency

and N is the number of discrete data points. The RMS values are calculated from

N -

|_‘

_2_

¢ (n (2.19)

=0

1
N

>

The difference in the amplitude ratio constructed from these two quantities is that the
amplitude ratio obtained from RMS value includes the effect of higher harmonics
whereas that for Fourier coefficient considers only the response at the excitation
frequency. The responses at higher harmonics are examined by means of the total

harmonic distortion.

However, the application of the RMS value does not provide the phase

information. It can be obtained by using Fourier coefficients and can be given by

(p)=2c (9)-2c (9) (2.20)
where ¢ is the discrete frequency, cil) and C)((? are Fourier coefficients at excitation

frequency for the response and excitation respectively.
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2.4.4 Total harmonic distortion

Total harmonic distortion (THD) is a measurement of the distortion of the
harmonic signal. The THD indicates the effect of the responses at other harmonics
occurring in the signal. It is defined as the ratio or percentage of the sum of the power at
all harmonics to the power in the fundamental harmonic and is given by

(2.21)

where c" is the Fourier coefficient of x at the h™ harmonic and P is the number of

harmonics considered. This expression can be found, for example, in references [60]
and [61].

2.5 Numerical results and discussion

The input excitation was taken to be a normalised amplitude for either harmonic

force or displacement base excitation, i.e. F, = 1 for force excitation and F, = Q’for

base excitation. At Q =1 the relative displacement for the system with linear damping

between these two cases are identical and given by

U=—"0 (2.22)

The calculated relative displacement amplitude for ¢;=0.1, 0.2 and 0.3 obtaining from

equation (2.22) are 14 dB, 8 dB and 4 dB. These values were used to estimate the
equivalent values of linear viscous damping for the power law damping which are listed
in table 2.1.

2.5.1 The response in the isolation region

The numerical results are presented using the amplitude ratio and are shown for
both force and base excitation in figure 2.4 for £;=0.1, 0.2 and 0.3. It is seen that for
every case the level of the peak amplitude can be reduced by increasing the non-

dimensional damping term. The difference among the cases occurs in the frequency

region well above the resonance frequency, i.e. Q>1.
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For the case of force excitation with an exponent p greater than unity,
figures 2.4 (a)-(c) in the first column, the force amplitude ratio at high frequencies is
seen to follow the mass line of the undamped system, as shown by the asymptote line of
40 dB per decade. It also appears that the amplitude ratios decrease regardless of either

the damping ¢ or the exponent p . One might presume that the power law damping can

produce a behaviour similar to the undamped response in the isolation region.

On the other hand for base excitation, shown in the second column of figure 2.4,
the response amplitudes in the high frequency region are considerably higher than that

for linear viscous damping. Increasing the value of damping, £, causes a higher level

for the displacement amplitude ratio. The response amplitude in this region for p=2is
constant, whereas the curves for p > 2 tend towards the amplitude of the base

excitation. It is anticipated that at excitation frequencies well above the resonance
frequency the isolated mass is moving almost together with the base excitation.

In addition, figure 2.5 shows the phase between the response and the excitation
which is defined from the Fourier coefficients at the excitation frequency. It reveals, for
the force case, that the transmitted force in the high frequency region is out of phase

with the excitation for power law damping with p > 1. This is consistent with an

undamped system. In contrast, for the base excitation, the phase information shows a
diminishing phase lag between the isolated mass and the base. This supports the
argument that the isolated mass is moving almost in unison with the base as the
excitation frequency increases. One might assume that at high excitation frequencies the

damping component is acting almost like a rigid link.

To this end, one might consider that the application of power law damping with
an integer exponent p > 1 is beneficial to the case of force excitation and is detrimental
for base excitation. Although the application of a greater damping term or higher
exponent has provided some noticeable isolation advantages for force isolation, it might
produce a negative effect, for example harmonic distortion. Further discussion on

harmonic distortion is discussed in the next sub-section.
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Vibration isolation possessing power-law damping
2.5.2 The response at higher harmonics

The level of total harmonic distortion (THD) shown in figure 2.6 reveals the
response amplitude at higher harmonic frequencies other than the excitation frequency.
The higher level of THD indicates the higher response amplitude at other harmonics
compared to the amplitude at the fundamental frequency. It is seen that either a larger

exponent value p or a greater damping value produces a higher THD level for the case

of either force or base excitation.

It is noticeable that, for the case of force excitation with p > 2, the level of THD

Is highest around the resonance frequency and is almost zero at higher frequencies. On
the other hand, the level of THD for base excitation in the high frequency region is
noticeably inversely related to the level of displacement amplitude ratio as shown in
figure 2.4. The THD tends to zero as the displacement amplitude ratio tends towards
unity. Such behaviour can be thought to be a result of the damping component
becoming almost rigid. Since the isolated mass and the base are thought to be moving
together the relative velocity across the damper is approaching zero. Hence the effect of
nonlinearity is reduced. Thus the response at the excitation frequency becomes

dominant.

The THD level for the case of force excitation with p =5 around Q =1, see
figure 2.6 (c), is highest at about 28%. This high THD level might result in a difference
between the force amplitude ratios constructed using the Fourier coefficients and the
RMS values around the corresponding frequencies. However, as shown in figure 2.7 (),
comparison of the force amplitude ratios constructed using these two quantities for the

power law damping with exponent p =5 and ;= 0.124 are very slightly different. This

result suggests that the nonlinear response amplitude ratio constructed using Fourier
coefficients at the excitation frequency is comparable to that using RMS values.
Therefore the application of an approximate analytical method which considers only the
response at the excitation frequency is suitable, for example the Harmonic Balance

method.
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2.6 Conclusions

The application of power law damping with an integer exponent p ranging from

1 to 5 has been examined numerically for force and base excitation. The response
amplitudes for the power law damping with p > 1 were examined in comparison to that
with linear damping, p = 1. By maintaining the response amplitude around the
resonance frequency at a similar level as for the linearly damped response, the
distinctive effect of the power law damping can be noticeable in the isolation region.
The application of power law damping with p > 1 for force excitation results in a lower
level of transmitted force. However, the application of a higher integer exponent causes
the increasing of response amplitude at higher harmonics when the excitation frequency

is around the resonance frequency.

In contrast, for base excitation the power law damping with p > 2 causes an
increase in the vibration amplitude of the isolated mass compared to linear damping for
excitation frequencies well above the resonance frequency. The displacement amplitude
of the isolated mass can approach that of the base. At this stage the phase lag is close to
zero. One might consider that the damping element locks the isolated mass and base

together.

It is interesting to find out the reason why power law damping is beneficial for
one excitation but is detrimental for the other. Thus in the next chapter cubic damping,
p = 3, is chosen as an example to investigate the above mentioned effects. This is
because the numerical results obtained in this chapter show that the application of a
higher integer exponent in power law damping, i.e. p=4and p =5, does not
significantly change the response characteristics at high frequencies. An analytical

investigation will be performed alongside a numerical study.
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Table 2.1  Non-dimensional damping coefficients for power law damping and its linear
equivalence at undamped natural frequency (€2 = 1).

Non-dimensional . . . .
damping term Equivalent values of linear viscous damping
¢, 0.1 0.2 0.3
3
¢, = é’le 0.047 0.189 0.424
8
= cjl@ 0.011 0.085 0.288
1
Co=C, %% 0.002 0.038 0.191
16
¢ = §15U—4 0.0005 0.016 0.124
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Figure 2.1 Illustrative models for single degree of freedom vibration isolation
(a) Force excited isolation
(b) Base motion excited isolation

where m is arigid mass. k is an assumed linear stiffness. C, is adamping

coefficient of power law damping. fe and ﬁ are the excitation and transmitted

forces. x and X, are the displacement for the mass and base excitation
respectively.
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damping.
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Chapter 3  Analysis of a vibration isolator with

cubic damping under harmonic excitation

3.1 Introduction

The numerical simulation results given in Chapter 2 showed that power law
damping can be both beneficial and detrimental to isolation. For the case of force
excitation, the beneficial effect of the integer power law damping is noticeable when

p = 2 or higher. On the other hand, the application of power law damping with the

integer exponent higher than unity reduces the effectiveness of base isolation.

In this chapter, the analysis will concentrate solely on power law damping with

the exponent p = 3 (cubic damping). This is because the application of higher integer

exponents does not provide any significant difference in terms of the response levels at
excitation frequencies well above the resonance frequency, as shown in Chapter 2. This
chapter aims to discover the underlying reasons for the conflicting effects on a single
degree of freedom (SDOF) system. Two different scenarios were also considered here

namely force excited isolation and base excited isolation.

The investigation is conducted using an analytical method in conjunction with
the numerical simulation. The former is the Harmonic Balance method (HBM). The
HBM is usually applied to obtain approximate closed form solutions for nonlinear
systems under harmonic excitation. The results of the method is expected to reveal
insights into the effects of cubic damping on the considered isolation model. The
application of the numerical approach is expected to validate the analytical examination.
The advantageous and disadvantageous effects of cubic damping on the SDOF isolation

subject to harmonic excitation will be reported.

Further investigation is performed for base excitation using a harmonic velocity
input whose amplitude is constant with frequency. The exploration in the effects of
cubic damping on the SDOF isolation might contribute explicit understanding and

further consideration to the application of cubic damping in other isolation systems.
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3.2 The Harmonic Balance Method

Approximate closed form solutions for the response of nonlinear isolation can be
obtained using a variety of approaches. For example, the application of a VVolterra series
approximation with the concept of Generalised Frequency Response Function (GFRF)
was applied in the studies of Jing et al. [26] and Lang et al. [62]. It was applied to
analyse the force excitation isolation with third-order polynomial damping. Peng et al.
[27] and Lang et al. [63] applied the concept of Output Frequency Response Functions
(OFRF), which was proposed by the authors to obtain a frequency domain analysis.
Kovacic et al. [33] and Milovanovic et al. [34] approximated the relative displacement
and absolute displacement transmissibility for the base excited isolation possessing
linear plus cubic damping using the averaging method. Guo et al. [31] applied the Ritz-
Galerkin method to evaluate the force and displacement transmissibility for SDOF
isolation with nonlinear viscous damping. Among these approaches, the Harmonic
Balance Method (HBM) was also applied [24,35] to obtain approximate closed form
solutions and is applied here.

For harmonic excitation, the HBM provides comparable theoretical
approximations to experimental results [64]. The advantages and limitations of HBM
were discussed by Mickens [65]. One useful result of using HBM is that the method is
not restricted to weakly nonlinear problems. The limitation for its application is that the
response must be dominated by the excitation frequency. In other words, the amplitude
of other harmonics of the excitation frequency must be relatively small. From earlier
observation in Chapter 2, this shows that it is suitable for solving the problems in this
study. The numerical results showed that the level of THD for force excitation with

exponent p = 3 and damping equivalent to ¢, = 0.3 is less than about 20% which is

considered relatively small.

The principle of the HBM is to assume a steady-state periodic response for a
harmonic input which can be expected in the form of

q(t):hZ:Qh cos(h(awt—¢)) (3.1)

where Qis the amplitude, h is the harmonic of the excitation frequency and P is the

number of harmonic frequencies included. The application of the HBM in this study
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only determines the amplitude of the response at the excitation frequency, i.e. h=1.
This was achieved by integrating the product between the response given in equation
(3.1) and the trigonometric functions at excitation frequency over one period, the super
harmonics included in the response are eliminated as a result of the orthogonality
properties.

3.3 Governing equation of motion and analytical solution

The equations of motion, given in equations (2.8) and (2.9), are employed again,

only with p=1and 3, and are rewritten in non-dimensional form as
U"+24U'+ &, (U') +u=F, cos(Qr) (3.2)

ft(r):zglu’+§3(u')3+u (3.3)

where F, is the normalised excitation amplitude, f,(7) is the normalised transmitted

force as a function of non-dimensional time z. u, u"and u” are normalised relative
displacement, velocity and acceleration. The normalised relative displacement is
defined by

u=w-w, (3.4)
where w and w, are the normalised absolute displacement of the isolated mass and
base respectively.

Later the cases of p =1 and 3 are examined separately and discussed

comparatively. The non-dimensional damping term for the power law damping given in

equation (2.13) is also employed here for p = 3. Thus one obtains

£=2a X (3.5)
m

The expected harmonic responses for the relative motions are given by

u=Ucos(Qr—¢,), u'=—QUsin(Qr—¢,) and u"=-Q°U cos(Qr—¢,) (3.6)
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where U is the normalised amplitude of the relative displacement and ¢, is the phase

lag between the relative displacement and the base excitation. Substituting the harmonic

excitation and the responses into equation (3.2) yields

(1-Q%)U cos(Qz—¢,)—25,QU sin(Qz - ¢, ) - £,Q%U°sin® (Qr — ¢, ) = F, cos (Qr)

(3.7)

For simplicity, equation (3.7) is written as
AU cos(Qr—¢,)-BU sin(Qr—¢u)—%CU3sin3(Qr—¢u )=F,cos(Qz) (3.8)
where the expressions for A, B and C are given by
A=1-Q? B=2{Q and C = %QQS’ (3.9)

Then apply the orthogonality by integrating the product of the terms in the left

and right sides of equation (3.8) with the trigonometric functions at the excitation

frequency over a period of 27/ . This yields

2

9T AU cos(Qr7 —¢,)sin(Qr)dz = AUsin(¢,) (3.10)
T 0
Q T AU cos(Q7 —¢,)cos(Qr)dr = AU cos (g, ) (3.11)
T 0
Q T [BU sin(Qr—¢u)+%CU3sin3(Qr—¢u)}sin(Qr)dr:(BU +CU?)cos(4,)
7 0
(3.12)
QT{BU sin(Qr—¢u)+%Cu3sin3(Qr—¢u )}cos(Qr)dr:—(BU +CU?)sin(4,)
4 0
(3.13)
Q%ﬂ .
;I F, cos(Qrz)sin(Qr)dzr =0 (3.14)
.
;I F, cos(Qr)cos(Qr)dr =F, (3.15)
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As a result, equation (3.8) can be written using terms resulting from equations
(3.10), (3.12) and (3.14) to form

AU sin(4,)—(BU +CU®)cos(4,) =0 (3.16)
and terms resulting from equations (3.11), (3.13) and (3.15) to form

AU cos(4,)+(BU +CU®)sin(g,) = F, (3.17)

Squaring and adding equations (3.16) and (3.17) gives
C’U°®+2BCU" +(A*+B*)U* =F; (3.18)

The phase lag of the relative motion to the excitation is obtained from equation (3.16)

and is given by
2
4, =tan™ [—B fu J (3.19)

Later, equation (3.18) is examined separately for linear and cubic damping. For
the case of linear viscous damping, with ¢ = 0, equations (3.18) and (3.19) are rewritten

respectively as

(A*+B*)U? =F/ (3.20)

e

and
(B
¢u = tan (Xj (321)

For the case of pure cubic damping then B =0, equation (3.18) becomes
CU°+AU? =F? (3.22)

The solution of U? for equation (3.22) consists of one real and a pair of complex
conjugates since the coefficient of U* is equal to zero. (see Appendix B for the roots of
a cubic polynomial equation.) Therefore only the real solution of U? is employed to
determine either the force amplitude ratio or absolute displacement amplitude ratio for

the system with pure cubic damping. The phase lag given in equation (3.19) becomes
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L[ CU?
¢, =tan [ y j (3.23)

The analytical solutions resulting from solving equations (3.20) and (3.22) are presented
respectively in sections 3.3.1 and 3.3.2 for the force and the displacement excitations.

3.3.1 Transmitted force amplitude ratio to the rigid base

For the case of force excitation, the normalised amplitude F, equals unity thus

equations (3.20) and (3.22) become

(A?+B?)U? = (3.24)
and

CU®+AU?=1 (3.25)

The frequency response for the transmitted force is obtained by substituting the assumed

harmonic responses into equation (3.3) which yields
F cos(Qr - ¢, ) =U cos(Qr—¢,)-BU sin(Qr—¢u)—§CU3sin3 (Qr-¢,) (3.26)

where ¢, is the phase lag between the transmitted and the excitation force. The

application of orthogonality properties of the excitation frequency and the consequent

manipulation of equation (3.26) yields
F?=C°U°+2BCU* +(1+B%)U° (3.27)
The phase lag between the excitation and transmitted force is obtained from

((:u2+B)Q2
(CU2 + B)2 +A

¢, =tan™’ (3.28)
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For the case of linear damping system for which ¢ = 0, the algebraic

manipulation of equations (3.24) and (3.27) yields

R’ = Alz%BBZZ (3.29)
The phase lag between the forces for the case of linear damping is given by
¢ = tanl{ BQ: ] (3.30)
A+B
For the case of pure cubic damping, equation (3.27) becomes
F2=C%U°+U? (3.31)

The force amplitude ratio, F,, for the case of pure cubic damping can be obtained by

substituting the solution of U ?obtained from equation (3.25) into equation (3.31). The

expression of U ? for force excitation is given by

, 1 (108C +12+/12A° +81C? )3 ~12A7

uz== (3.32)

6 C (108C +12+/12A° +81C? )3

The resulting closed form solution for the force amplitude ratio is too complicated to

understand the effect of cubic damping. Equations (3.25) and (3.31) were simply

examined for four specific frequency regions, namely Q <1, Q~1, Q~+/2 and

Q>1. These frequency regions represent respectively an excitation frequency well

below the undamped natural frequency @, , around @, , the beginning of the isolation
region for the linear damping system \/Ea)n and a frequency region much higher than

o, . The simplified expressions for these frequency regions are examined and discussed

in detail later in section 3.5 alongside numerical verification. The details of the

simplification for each frequency region are presented in Appendix C.
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3.3.2 Absolute displacement amplitude ratio

The absolute displacement harmonic response is determined from the relative

motion given in equation (3.4), i.e. w=Ww, +Uu. Equation (3.18) is employed again here
with F, = Q? which yields

C’U°+2BCU* +(A*+B*)U? = Q' (3.33)
Using the assumption of harmonic excitation, equation (3.4) can be written as

W cos(Qz -4, ) =cos(Q7)+U cos(Qz—¢,) (3.34)

where ¢, is the phase lag between the isolated mass and the base excitation. The

application of orthogonality and the consequent manipulation transforms
equation (3.34) to

W2 =U?+2U cos(g,)+1 (3.35)

The phase lag between the base excitation and isolated mass is given by

(B+CU2)U

¢, =tan™ (3.36)

AU +\/A2+(B+CU2)2

Similarly to the case of force excitation, an examination of the case of linear and
cubic damping is carried out separately. For the system with linear damping, one sets

C = 0 thus equations (3.33) becomes
(A*+B*)U?=0Q' (3.37)

After algebraic manipulation, the absolute displacement amplitude ratio squared is

given by

_ 1+B°

Wi=——_
A® + B?

(3.38)
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Equation (3.38) is identical to that given in equation (3.29). For simplicity,
equations (3.29) and (3.38) are given in a common form, equal to the transmissibility

squared for the linear system,

1+(26,QY
T?= (2 Q) - (3.39)
(1-9°) +(25,9)
The phase lag between the isolated mass and base excitation for the case of linear
viscous damping is given by
¢, =tan™ BOY (3.40)
" A+ B? '

For the case of pure cubic damping, one has B = 0 so equation (3.33) becomes
CU®+AU*=Q* (3.41)

Equation (3.41) has one real solution and a pair of complex conjugates solutions. The

only real solution for base excitation is given by

g (108(24C +12412A° +810°C? ) _12A2
u?== ; (3.42)
6 ¢ (1OBQ4C +1212A° +810°C? )

The amplitude ratio for the absolute displacement can be obtained by substituting U?
from equation (3.42) into equation (3.35). Similarly to the case of force excitation, the
closed form solution does not explicitly show the effect of cubic damping. Thus
equations (3.35) and (3.41) are also examined for four specific frequency regions. The

simplification, assumptions and procedure are given in Appendix C.

3.4 Numerical simulations for harmonic excitation

The numerical simulations were carried out by direct numerical integration using
the Matlab ODEA45 solver [66]. It was applied to the differential equations given in
equations (3.2) and (3.3) for force excitation system. For base excitation, equation (3.2)

was rewritten using the absolute displacement and the base excitation which is given by
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W+ 26, (W =W )+ & (W = ) +(w—w, ) =0 (3.43)

The choice in the values of non-dimensional damping terms, i.e. ¢, and ¢,, are

described in section 3.4.1. The description of the excitations applied for the simulation

is presented in section 3.4.2.

3.4.1 Non-dimensional damping value selection

The values of cubic damping used for the numerical simulation in Chapter 2
were estimated based on the equivalent rate of energy dissipation of linear viscous
damping at the undamped natural frequency, Q =1. As a result, the levels of the force
and absolute displacement amplitude ratios for the nonlinear damping at this frequency
were about the same as those for linear viscous damping, see figure 2.4. It is noticed
that, for cubic damping (dashed line), the actual resonance frequencies are slightly
lower than the undamped natural frequency and are not the same as those for linear
damping. This frequency could not be explicitly identified using analysis but could be
estimated numerically using the approximate closed form HBM solutions.

The values of non-dimensional linear, ¢£;, and cubic damping, ¢, are assigned

in the range from 0.01 to 1. The relationship between the peak amplitude and value of
non-dimensional damping is shown in figure 3.1 (a), whilst figure 3.1 (b) shows the
relationship between the resonance frequency and the value of non-dimensional
damping. In order to investigate the effect of cubic damping in the high frequency
region, the amplitude ratio at the resonance frequency for the system with cubic
damping was fixed at the same level as that for the system with linear damping. Linear
viscous damping ratio values of 0.1, 0.2 and 0.3 were used. The levels of the amplitude

ratio for the system with linear damping are explicitly obtained from

1+(2£9,)

Tri = 2
(1_ Qse ) + (Zglgre )2

(3.44)

where Q. is the frequency of resonance and is given by

1

Q, :%(Ju 8¢ —1)E (3.45)

1
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for 0 <&, <1 [7]. The corresponding levels of the absolute displacement amplitude

ratios for ¢, = 0.1, 0.2 and 0.3 are 14 dB, 9 dB and 6 dB respectively. Considering the
peak level of amplitude ratio which linear damping produces, the corresponding non-

dimensional cubic damping ¢,, which produces a similar level of peak response, can be

obtained. The corresponding values of £, are listed in table 3.1 and were applied in the

numerical simulations.

The corresponding resonance frequencies could be obtained from the intersection
of the lines shown in figure 3.1 (b). It is seen that the resonance frequency with cubic
damping is lower than that for linear damping provided one has a similar resonance

peak level.

3.4.2 Numerical excitations and responses

The numerical excitations applied have the same characteristics as those in
Chapter 2, i.e. harmonic with either constant amplitude of force or constant amplitude of
base displacement. The frequency components of the time histories for both cases were
found using Fourier coefficients. Only the Fourier coefficients at the excitation
frequencies were considered for constructing the amplitude ratios. The Fourier
coefficients for the higher harmonics were employed for evaluating the THD.

3.5 Analytical and numerical analyses for specific frequency regions

The analysis into the effect of cubic damping on the vibration isolation is
performed using numerical simulation and the HBM. The numerical plots for the HBM
are obtained by numerical substitution into equations (3.31) and (3.32) as well as

equations (3.35) and (3.42) for the cases of force and base excitation respectively.

The numerical values for ¢, given in table 3.1 are used for each case.

Figure 3.2 shows comparisons of the force amplitude ratio for the force excited
systems with cubic damping. The numerical results obtained using HBM approximation
(dashed line) are compared to the results obtained using numerical simulation (cross
markers). It is seen that the plots of the force amplitude ratio between the HBM and

numerical integration results are similar. The exact solutions of force amplitude ratio for
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the system with linear damping (dotted lines) are also shown in figure 3.2 for

comparison.

Also, shown in figure 3.3 are the displacement amplitude ratios for the base
excited isolation systems with cubic damping. The results obtained using the HBM
approximation (solid line) are compared to those obtained using numerical simulation
(cross makers). It is noticed that there is almost no difference between these two plots

and the approximate HBM expressions are confirmed.

Therefore the subsequent examination given in the following sections are
performed based solely on the numerical plots obtained using the HBM solutions and
the simplified expressions listed in table 3.2. The examination and discussion present

the responses for four frequency regions, i.e. Q <1, Q~1, Q~+/2 and Q>1

respectively.

3.5.1 Excitation frequencies well below the undamped natural frequency

The plots of the force amplitude ratios are given in figures 3.2 (a) to (c). The
levels of these ratios at Q@ <1 for both linear and cubic damping are similar at about
unity. The displacement amplitude ratios in this frequency region for base excitation
shown in figures 3.3 are also at about the level of unity. The resulting HBM
simplifications for both linear and cubic damping listed in row (a) of table 3.2 also are

in accordance with this behaviour.

In addition, the plots of phase lag show that the phase in this frequency region is
approximately zero. This is typically referred to as quasi-static behaviour. As a result,
the relative velocity across the damper is close to zero. Hence there is no contribution to
either the transmitted force or motion via the damping component in this frequency
region. As such, at this stage, one might conclude that the damper does not have a

significant effect at these low frequencies.

3.5.2 The response around the undamped natural frequency

The analysis for this frequency region, i.e. Q =1, aims to reveal the capability of
cubic damping to suppress the amplitude in the amplification zone. Note that the value

of non-dimensional cubic damping for either the case of force or base excitation was
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chosen to produce the equivalent level of amplitude ratio for the linear system.
Therefore, the amplitudes of resonance peaks in either figures 3.2 (a) to (c), for the force
case, or figures 3.3 (a) to (c), for the base case, are similar to those for the cases of

linear damping systems.

It can be seen that the greater the value of cubic damping for either case results
in a lower level of the peak response. These results are consistent with the simplified
expressions listed in row (b) of table 3.2. It is apparent that the level of the amplitude
ratio contains a term which is inversely related to the value of the damping. Therefore it
is in accordance of the numerical results that increasing the level of either linear or

cubic damping reduces the level of both the force and displacement amplitude ratio.

One might expect to estimate the value of non-dimensional cubic damping by
equating the simplified expressions given in row (b) of table 3.2 for linear and cubic

damping. As a result, one obtains
4 3
Cx5(240) (3.46)

Note that, the value of non-dimensional cubic damping calculated from equation (3.46)
will only produce comparable response amplitude to that for linear damping at the
undamped natural frequency, i.e. Q= 1. It does not produce comparable response
amplitude ratio at the actual resonance frequency. In addition, equation (3.46) gives the
same value of non-dimensional cubic damping obtained using equivalent value of linear

viscous damping as shown in table 2.1.

3.5.3 The behaviour in lower frequencies of the isolation zone

for the linear system

It is commonly known that the start of the isolation region for a SDOF system

with linear viscous damping is at the non-dimensional frequency Q =+/2 . The level of

either force or displacement transmissibility at this frequency can be obtained exactly by
substituting Q =+/2 into equation (3.39) and is equal to unity. For the nonlinear system

the isolation region might or might not start exactly at Q =~/2 depending on level of
nonlinearity. However, the approximate solutions obtained using HBM, as shown in

figure 3.2 for force excitation and figure 3.3 for base excitation, are in fairly good
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agreement to the numerical simulation results. The figures show that the levels of

amplitude ratio at Q =~/2 are about unity.

Further investigation into the response amplitude at higher harmonics of this
excitation frequency, figure 3.4, found that the response amplitudes of other harmonics
are relatively small compared to that at the excitation frequency. For example,
figure 3.4 (c) shows the force amplitude of the third harmonic at around 15 dB lower
than that at the excitation frequency (around 17% of the amplitude at the fundamental

harmonic) and even smaller for the fifth and seventh harmonics.

So using only the Fourier coefficient at the excitation frequency is acceptable for
this instance. For that reason, the HBM approximation is also acceptable. The resulting
simplifications for the amplitude ratio for nonlinear systems at this frequency are about
unity, as seen in row (c) of table 3.2.

3.5.4 The excitation frequency much above the undamped natural frequency

The isolation zone can be considered as when the excitation frequency is much
higher than the natural frequency, i.e. Q> 1. For a SDOF system with linear viscous
damping the amplitude ratio is known to reduce inversely proportional to the excitation
frequency, i.e. -20 dB per decade. A higher value of linear damping causes a detrimental

higher level of response in this frequency region.

The force amplitude ratios for the system with pure cubic damping in this
frequency region shown in figure 3.2 are seen to be rolling off at -40 dB per decade.
The plots of phase lag between the transmitted and excitation force for the system with
cubic damping are constant at around —z radians. The plots of force amplitude ratios in
this frequency region appear consistent with the simplified expression given in row (d)
of table 3.2. For the case of force excitation, it is seen that the force amplitude ratio
decreases in proportion to the excitation frequency squared, i.e.-40 dB per decade,

independently of the cubic damping value.

One can consider that this is a preferable characteristic for vibration isolation at
high frequencies, i.e. less force being transmitted via isolator. These results are also

consistent with the results reported in the literature, e.g. [26] and [35], that the cubic
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damping is beneficial for the case of force excitation. The reason for this beneficial

effect from the cubic damping is discussed in section 3.6.1.

In contrast, the isolator with cubic damping under base excitation does not
perform as well as that for the force excitation case. The level of absolute displacement
amplitude ratio in this frequency region tends towards the level of unity as shown in
figure 3.3. Also the phase lag of the isolated mass with respect to the base excitation
tends to zero as excitation frequency increases. As such, for Q>1, it is not just the
equality in the level of displacement amplitude but the isolated mass and the base tend
to be moving together. It is also noticeable from figure 3.3 (c) that a greater value of
cubic damping causes the level of the amplitude ratio in the isolation region to tend

towards 0 dB at a lower frequency compared to that in figure 3.3 (a).

The simplified expression for the displacement amplitude ratio for base
excitation given in row (d) of table 3.2 also shows that an increase in excitation
frequency results in the level of displacement amplitude ratio being close to unity.
Increasing the value of cubic damping increases the amplitude ratio which rises towards
unity sooner. This means that the displacement amplitude of the isolated mass is going
to be equal to that of the base excitation at high frequencies. This is consistent with the

plot shown in figure 3.3.

To this end, the cubic damping on a base excited vibration isolation system can
be considered as a rigid connection at high frequencies. As such it does not allow any
significant relative motion to occur as seen from the relative displacement amplitude
ratio for the base excitation with cubic damping given in row (e) of table 3.2. These
results appear to be in accordance with those reported in the literature, e.g. [33] to [35]
and [47].

However, the consideration that the damping is acting as a rigid connection is not
strictly correct. This is because the damping would never be rigid and the relative
velocity across the damper would never be zero. Such consideration is discussed in

detail again in section 3.6.1.
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3.6  Further discussion and analysis into the effect of cubic damping

The results shown in the previous section are about the outcome in terms of the
amplitude ratio and the phase lag. The presence of cubic damping appears useful for
force isolation. In the isolation region it produces lower amplitude of the transmitted
force than that for linear damping. On the other hand, it would not be preferable for the
case of base excitation because the displacement amplitude ratio in the isolation region
increases and becomes close to unity. It is interesting to establish the reason why the

cubic damping can be beneficial for one system and detrimental for another.

The reason for such occurrences is investigated and reported here in this section
by means of the relative velocity and damping force. The existence of the response at
higher harmonics is also presented here using the THD. In addition, the effect of cubic
damping when the base excitation is specified to have a constant velocity amplitude at
all frequencies is examined. This latter case corresponds to the input base displacement

having an amplitude inversely proportional to the excitation frequency.

3.6.1 An investigation by means of the damping force

The damping force is the key feature to display the physical influence of the
cubic damping since it is a result of a nonlinear function. The amplitude of the damping
force can indicate the isolation performance. It should be higher around the resonance
frequency in order to suppress the motion of the system mass. On the other hand, for an
ideal isolator, it should be minimised in the isolation region, so replicating an undamped

system.

The investigation was introduced by considering the level of damping force only
in the isolation region, Q > 1, for which the different effect of cubic damping is
apparent. The analytical expression for the damping force can be obtained from the
corresponding product of the relative displacement and the pre-defined expression
B or C, given in equation (3.9). As a result, the damping forces for the case of

force excitation are obtained respectively for linear and cubic damping by
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28
Fdl =BU f1 = Ql (3.47)
3¢
F.=CU3 ~=22 3.48
d3 f3 4 Qs ( )

where U, and U, are the relative displacement for linear damping and cubic damping

respectively for the force case, listed in row (e) of table 3.2. It is seen that the linear
damping force decreases inversely proportionally to the excitation frequency, i.e. at

20 dB per decade, whereas the cubic damping force decreases inversely proportional to
the excitation frequency cubed, i.e. at 60 dB per decade. These approximate expressions
are included in the numerical plots shown in figure 3.5. The amplitude of the cubic

damping force can be considerably lower than the linear damping force for a specific

excitation frequency high above @, . In other words, there is almost no force transmitted

via the damping component. So this is the background reason for the beneficial effect of
cubic damping on the force excited system.

The damping forces for base excitation systems possessing separately linear and

cubic damping can be determined respectively from
Fy =BU,, =24,Q (3.49)
F,,=CU:, ~Q? (3.50)

where U, and U, represent the relative displacement for linear and cubic damping
respectively and is given in row (e) of table 3.2 for the base case. The damping forces
for this case appear in contrast to those for the case of force excitation. The linear
damping force increases directly proportionally to the excitation frequency. The cubic
damping force increases proportionally to the excitation frequency squared regardless of

the value of cubic damping.

The expressions for damping force for 2 >1 given in equations (3.49) and
(3.50) are in agreement with the numerical results and shown in figure 3.6. It is apparent

that the cubic damping forces at high excitation frequencies increase by 40 dB per
decade. Thus at the very much higher excitation frequencies above @, , the damping

component becomes responsible for transmitting the motion of the base to the isolated
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mass. The level of displacement amplitude ratio approaches unity which is detrimental.
Note that the cubic damping force increases with Q® only when Q1. As frequency
increases then the level of amplitude ratio asymptotes to unity and damping force
asymptotes to infinity.

Mitigation of the higher level of cubic damping force at high excitation
frequencies might be achieved by alternative higher order isolation models, for
example, the Zener or the two-stage base excited isolation system. The effect of cubic

damping on these two models is presented in Chapter 4.

In addition, the non-dimensional cubic damping given in equation (3.5) is a
function of the excitation amplitude squared. Thus a higher excitation amplitude can
result in a higher value of cubic damping. Therefore, awareness should be raised of the
effect excitation level applied, especially for the system for which the input amplitude

could not be identified.

3.6.2 Total Harmonic Distortion analysis

As mentioned in section 2.4.4, the response of the nonlinear system exhibits
harmonic frequencies apart from the excitation frequency. The waveform of the
response at the excitation frequency could be distorted due to the appearance of higher
harmonics. The harmonics considered here were the 2" to 7" harmonics. The higher
harmonics are neglected because the impact on the distortion of the signal is

comparatively small.

Figure 3.7 shows the THD of the 2™ to 7" harmonics obtained from the
numerical integration. The highest amplitude of the THD for the case of force

excitation, dashed line, is about 20% at around Q= 1, figure 3.7 (c). It means that
increasing the value of ¢, increase the transmitted force at the odd harmonics of the
excitation frequencies, which could result in the response at the resonance frequency.
For example, the response at Q = 1 is the fifth harmonic for the excitation frequency at
Q =0.2. Therefore, one should be aware of such instances and should consider the use

of cubic damping by regarding the influence of the responses at higher harmonics.

On the other hand, the plots of THD for the case of base excitation at the

frequency around resonance are much lower compared to that for the case of force
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excitation. Figure 3.7 (c) shows that the value of THD for the case of base excitation is
lower than 5% and reduces in inverse proportion to the level of cubic damping force, i.e.
the higher cubic damping force corresponds to the lower level of the THD. This
occurrence supports the notion that the damping is acting almost rigidly at the high

excitation frequencies which results in the lower nonlinearity effect.

Moreover, the analysis of THD does not only inform one about the occurrence of
harmonics in the response but also improves the confidence of the analytical and
numerical results. These results support the assumptions of the HBM namely that the
response is dominated harmonically at the excitation frequency and the use of Fourier

coefficients at the excitation frequency is reasonably acceptable.

3.6.3 The effect of cubic damping on a base isolation subject to a constant

amplitude harmonic velocity excitation

This section gives a further analysis of the effect of cubic damping on the base
excited isolation when the amplitude of displacement base excitation reduces in
proportion to the excitation frequency. Such an excitation characteristic can be
considered as a harmonic velocity which has a constant amplitude. The velocity of the

base displacement excitation for this instance is given by
X, (1) =—wX,sin(ot) (3.51)

For the constant velocity amplitude, the product of X, is kept constant for all

frequencies, i.e.
1% ()] = |oX,sin(at) = ,0X, (3.52)

where @ = @,€2. Thus, one has the amplitude of displacement excitation decreases in

inverse proportion to the excitation frequency, i.e.

X, = (3.53)

Using the amplitude of displacement excitation given in equation (3.53), the non-
dimensional cubic damping term given in equation (3.5) becomes inversely proportional

to the excitation frequency squared and is given by
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.12

C, 2 _ G |X0|
-3 —_3 IOl 3.54
s m o Jkm Q2 (3549

Equation (3.54) shows that for a constant input velocity amplitude the value of cubic

damping tends to zero as the excitation frequency increases, §, -0 as Q — . The

expression of C given in equation (3.9) becomes
C= %;@3 = %QQ (3.55)

~ C .
where &, = ——|%|.
vkm

Substituting the expression of C given in equation (3.55) into equation (3.41)
results in an approximation of relative displacement at the excitation frequencies well
above resonance, Q> 1, becoming U ~1. As a result, an approximation of the

absolute displacement amplitude ratio at this frequency region is given by
LS (3.56)

Equation (3.56) reveals that the absolute displacement amplitude ratio at QQ >1 due to
harmonic excitation with constant velocity amplitude decreases inversely proportional
to the excitation frequency. The analytical approximation for the constant amplitude

harmonic velocity excitation is also described in Appendix C.

The numerical responses due to the constant velocity amplitude are shown in
figure 3.8. The figure evidently shows a reduction in the displacement amplitude ratio at
high excitation frequencies in comparison to those for linear viscous damping.
However, the response in the isolation region is directly related with the value of the
non-dimensional cubic damping. Thus the system with a very high value of cubic
damping does not provide excellent vibration isolation compared to that with lower
value. However, the application of cubic damping on the constant velocity base excited
vibration isolation model as shown in figures 3.8 (a) and (b) is particularly beneficial.
This is because the system with linear damping does not get any benefit from the

reduction of the input displacement amplitude. This is one of the possible advantages
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obtained from the presence of cubic damping characteristic on the base excitation

system for the constant amplitude harmonic velocity input.

3.7 Conclusions

Cubic damping was introduced into the SDOF isolation system which is subject
to either force or base excitation. The effect of cubic damping was examined using two
techniques, i.e. the HBM analysis and numerical simulations. The effects of cubic
damping for each excitation scenario were contrasted as well as being compared to the

system with linear viscous damping.

An analytical examination of the amplitude ratio was considered for four specific
frequency regions, i.e. Q <1, Q~1, Q~+/2 and Q> 1. These correspond to

excitation frequencies well below @, , around @, , at the frequency when the isolation

occurs for the linear isolation and well above @,. The numerical plots obtained from the

approximate closed form solutions are in good agreement with the numerical results
obtained using ODE45.

The responses in the isolation region were of primary concern, as the cubic
damping performed differently for the force and base excitation. It reduces remarkably
the level of the force amplitude ratio for the former compared to the level caused by
linear damping in the isolation. On the other hand, a high vibration level for the isolated
mass occurs with cubic damping for base excitation. This is because the relative
velocity across the damper is increasing proportional to the excitation frequency. This is
the opposite of what happens for the force excitation. As a result, the damping forces for
these two systems appear very different. It is apparent that the level of cubic damping
force for the base excited system increases proportionally to the excitation frequency

squared. This results in a high vibration amplitude of the isolated mass.

The application of base excited vibration isolation possessing cubic damping is
more preferable when the excitation is velocity constant. For some particular values of
cubic damping, the system produces better isolation performance over the linear
damping system. However, it is important to be reminded that the effect of cubic
damping for either case is directly related to the excitation amplitude squared.

Therefore, the detrimental effect of cubic damping on the base isolation system could be
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more pronounced for the larger excitation amplitude. Thus for the practical situations
where cubic damping cannot be eliminated and the excitation amplitude is not known,

care must be taken to avoid possible damage to the system.

However, since the source of the detrimental behaviour has been discovered, the
isolator modification or improvement can be contributed using this knowledge. As the
cubic damping force for the base excited isolation is known to increase proportionally to
the excitation frequency squared thus at high frequencies well above undamped natural
frequency it locks the isolated mass to the base excitation becoming unity. To isolate
such a combined unit using an additional spring could be expected. For example, in next
chapter, the application of higher order base excitation models including an additional
spring are introduced in order to reduce the detrimental effect caused from the cubic

damping or even turn it into a benefit for base isolation.
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Table 3.1

The values of non-dimensional cubic damping for the numerical simulation which
produce the similar level of peak amplitude to the linear viscous damping.

£,=01 £,=02 £,=03
Force excitation $,~0.011 $,~0.092 $,~0.325
Base excitation $,~0.013 $,~0.152 $,~0.787

Table 3.2  Approximate expressions for the amplitude ratio over four frequency regions for
force and base excitation, comparison of the system response with cubic damping
to linear damping.

Row Linear viscous Cubic damping Cubic damping
index damping for the case _of for the c-ase-of

Frequency force excitation base excitation

region
Amplitude ratio for the transmitted force and absolute displacement
QO«x1 (a) T =1 W =1
1
Q=1 O | ="z
(2)
Q~J2 | © T =1 F ~1
2 1
(d) T 2% Fr~—
Q Q
Amplitude ratio for the relative displacement
between the isolated mass and base at Q >1
Q>1 —
Force excitation:
T 1 3
(e) "o Usc— U,.=~ 4
T Q w3
Base excitation: 35,Q
le ~ 1
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Figure 3.2 Force amplitude ratio and the phase lag for the SDOF isolation possessing cubic
damping in comparison to the exact solution of linear viscous damping for the case

of force excitation.
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for the case of base excitation.
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——- Asymptote line for the slope of F,, =2£,/Q
——— Asymptote line for the slope of F,, = 3¢,/4Q°
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Figure 3.6 Normalised damping force for the case of base excitation.
(@ ¢, =0.1and &, =0.013

(b) ¢, =0.2and ¢, =0.152
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-------- Linear viscous damping force
—— Cubic damping force obtained using HBM
X Cubic damping force obtained using numerical integration
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Figure 3.7 Total Harmonic Distortion for the cubically damped responses obtained using
numerical integration.

(a) £3=0.011 for the force case and &, = 0.013 for the base case
(b) ¢,=10.092 for the force case and £, = 0.152 for the base case

(c) 3= 0.325 for the force case and &, = 0.787 for the base case

Force excited response
—— Base excited response
The vertical dotted lines below Q = 1 represent the excitation frequencies which

the resonance frequency, Q= 1, is one of their harmonics, i.e. +Q, +Q, $+Q,
7Q, 1Q and $Q respectively.
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Figure 3.8 Displacement amplitude ratio for the case of base excitation due to constant
velocity amplitude excitation.

(@) ¢, =0.1and £, =0.013
(b) ¢, =0.2and £, =0.152
(c) £,=03and £,=0.787

-------- Linear viscous damping response
—— Cubically damped response obtained using HBM
X Cubically damped response obtained using numerical integration

— . — Asymptote line for the slope of W =~ 2, /Q when Q1
— —- Asymptote line for the slope of W = 353/4(2 when Q>>1
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Chapter 4 Higher order vibration isolation models

possessing cubic damping

4.1 Introduction

Theoretical results previously reported in Chapter 3 revealed that the presence of
cubic damping in a base excited single degree of freedom (SDOF) isolation system
causes high vibration amplitudes of the isolated mass at excitation frequencies high
above resonance. This is because the relative velocity amplitude increases with
frequency which results in an increase of cubic damping force, unlike the force excited
case. The focus of this chapter is to deal with this undesirable effect for only the case of
displacement base excitation. The applications of two higher order isolation models are

considered here.

Firstly, the one and a half degree of freedom (1 ¥2-DOF) Zener isolation model
subject to the harmonic base excitation is introduced. The damper in this model is
supported elastically using a relaxation spring. In previous studies, a linearly damped
Zener model has proved to be effective in reducing the response amplitude in the
isolation region. The response in the isolation region decreases by ~12 dB per octave
(40 dB per decade) [23]. As a result, the levels of displacement transmissibility for the
Zener isolation at high frequencies are much lower than that for a system with a rigidly

connected linear viscous damper.

The application of the Zener model possessing linear plus cubic damping subject
to shock excitation has also shown an impressive shock isolation performance [32]. The
severity caused by the presence of cubic damping was reduced by mounting the
damping component elastically. Thus one might expect a similar mitigation by

elastically mounting a cubic damper for the case of harmonic excitation.

Subsequently another higher order isolation model is considered, namely
two-stage isolation. The undamped response due to harmonic excitation at frequencies
high above the secondary resonance is well known to decrease by ~24 dB per octave
(80 dB per decade) [40]. The roll-off rate is greater than that of the undamped SDOF
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system which the roll off rate is 40 dB per decade. Shekhar et al. [32] also reported that
the isolation performance of the two-stage shock isolator possessing linear plus cubic
damping is better than the SDOF system having linear plus cubic damping and is even
better than other isolation models considered in the cited paper. Thus the two-stage
vibration isolation has been adopted here, with the expectation of reducing the large

vibration amplitude in the isolation region for the case of harmonic excitation.

The effect of cubic damping on these two isolation models is explored
analytically using the Harmonic Balance Method (HBM). Numerical integration is also
performed using the ODEA45 solver under a constant displacement harmonic base
excitation. The analytical and numerical analyses are expected to show the advantage of
the application of these higher order models. The outcome of the investigation for these
isolation models might contribute to improving the isolation capability of systems
possessing a cubic damping characteristic.

4.2 A base excited Zener model

The model is shown in figures 4.1 (a) and (b). The damping component is
working in series with the relaxation spring, K, . This spring can either be inserted
between the base and the damper, figure 4.1 (a), or inserted between the damper and the
isolated mass, as shown in figure 4.1 (b). Theoretically, when the relaxation spring and
the damping component are assumed massless, these two components experience the
same force in either case. There is no difference in the response of the isolated mass due
to the location of the relaxation spring. Thus the model shown in figure 4.1 (a) was

chosen here for examination.

4.2.1 Governing equations of motion and non-dimensional quantities

Figure 4.1 (a) shows the series combination of the cubic damper and relaxation
spring working in parallel with the primary spring, k. The governing equation of

motion for the mass is given by
MK+ C, (X=X )+ Cy (X% ) +k(x=%)=0 (4.1)

where m is the isolated mass. ¢, and c, are the linear and cubic damping coefficients

respectively. x, x and X are the displacement, velocity and acceleration of the isolated
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mass. x.and X are the displacement and velocity at the junction of the damper with the

relaxation spring. X, is the displacement base excitation.

In addition to equilibrium of the mass, the junction between the relaxation spring
and the damper must also be in equilibrium. Since the junction is massless the damping

force has to balance the spring force, i.e.

c (X—%)+c (x=%) =k (% —%) (4.2)
This additional first order equation makes the Zener isolation model being considered as

a one and a half degree of freedom (1 ¥%2-DOF). Therefore in this chapter, the SDOF

system refers to a rigidly connected damping as examined previously in Chapter 3.

There are two frequency limits for the natural frequency, referred to here as

lower and upper bound frequencies. The first frequency occurs when both damping

coefficients ¢, and c, are zero. This is the lower bound on the natural frequency of the

system and is defined by

, = £ (4.3
m

It is identical to the undamped natural frequency for the SDOF system. The upper
bound on the natural frequency occurs when either of the damping coefficients ¢, or c,
are infinitely large. Thus the mass is supported on the two springs, primary spring k and

relaxation spring K, . This corresponds to the undamped natural frequency which is

0, = [k (4.4)
m

The non-dimensional time for the case of the Zener model is defined by

given by

considering the lower bound natural frequency, i.e.

=t (4.5)

The frequency ratio is also defined using the lower bound natural frequency, i.e.

=2 (4.6)

@,
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It is convenient to define the stiffness ratio which is the ratio of the spring stiffness k,
with respect to the primary spring k, i.e.

K, =— (4.7)

Note that, only a positive relaxation stiffness is considered here, i.e. x, >0. A stiffness

ratio of zero corresponds to the undamped SDOF system whereas a stiffness ratio of
infinity corresponds to a rigidly connected damper SDOF system.

For harmonic base excitation x, = X, cos(«t), the normalised variables are

defined by
W=, W= .:_( ca=2"% and g =X2X (4.8)
X @ X X @, X

where X is the displacement amplitude of the isolated mass and the base excitation at
zero frequency. U and U’ are the normalised relative displacement and velocity between
the isolated mass and the junction of the relaxation spring and damper. w represents the
normalised absolute displacement of the isolated mass. (+) and (+)" are the first and

second derivatives with respect to the non-dimensional time z . Substituting the
quantities given in equation (4.8) into equations (4.1) and (4.2), then dividing by

quantity me’ X produces

W+ W =W, — 28,0 - &, (0') (4.9)
and
26,0+ &, (0) +x,0 =, (W—w,) (4.10)
The resulting non-dimensional cubic damping term is an outcome and is given by

& =2 o, X? (4.11)
m

Equation (4.11) is identical to that given in equation (3.5) which is dependent upon the
excitation amplitude squared. Later, equations (4.9) and (4.10) will be solved
analytically using the HBM and numerically using ODEA45. The resulting cubically
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damped Zener model will be examined in comparison to the base excitation systems

with rigidly connected linear and cubic damping.

In addition, it is also convenient to define the ratio of the lower and upper bound

frequencies, i.e.

Do =k, +1 (4.12)

As the excitation frequency approaches a,, large vibration amplitude can occur for a
system with high value of viscous damping. It was also reported in Ruzicka [37] that,
for a particular value of the stiffness ratio, increasing the value of linear viscous
damping from O to o results in the resonance peak shifting from @, to @, as shown in
figure 4.2.1t is seen that the peak amplitude of absolute displacement transmissibility for
the linear viscous damping, ¢;, of 0.5 is lowest among the others. Thus the optimum

value of linear viscous damping, which produces the minimum peak response for a

specific value of stiffness ratio, was expected and determined.

However, the study here did not aim to find the optimum value of damping.
Instead, the level of damping was kept constant at particular values and the value of
stiffness ratio was varied. One might anticipate different amplitudes of the peak
response resulting from different values of stiffness ratio. Therefore, in contrast to the
previous study, the optimum value of stiffness ratio, which produces the minimum peak
amplitude for a particular damping level, was to be determined.

4.2.2 Analytical solution using the Harmonic Balance method
Only the case of pure cubic damping is examined analytically here, i.e. the linear

viscous damping ratio ¢, is set to zero. Thus equations (4.9) and (4.10) reduce to

W+ w=wy — &, (0) (4.13)
and

& () + 0=k, (W—w,) (4.14)
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The normalised harmonic base excitation given by w, = cos(Qr) is expected to

produce harmonic absolute and relative displacements in forms of

w=W cos(Qzr—4¢,)and G=U cos(Qzr—4,) (4.15)

where W and U are the normalised amplitudes of the absolute and relative displacement.
¢, and ¢, are phase lags of the absolute and relative motion with respect to the base
excitation. Note that U is the relative displacement across the damper or between the

junction and isolated mass. In other words, it is not the relative displacement between

the isolated mass and base excitation.

Substitution of the excitation and responses into equations (4.13) and (4.14)
produces respectively

(1-Q°)W cos(Qz - g, ) = cos(Qr) + £,QU°sin* (Qr - ¢ (4.16)
and
~£,QU%sin® (Qr -4, )+ xU cos(Qr — g, ) = kW cos(Qr —¢,) -k, cos(Qz)  (4.17)
By integrating the product of the terms in left and right sides of equations (4.16) and
(4.17) with the trigonometric functions over a period of 27r/Q , the same process as
those given in Chapter 3, i.e.

Q
T

g(z)sin(Qr)dz and Q
T

g(7)cos(Qz)dr (4.18)

ool
O'—.D‘S’

where g (r) represents functions of non-dimensional time given in equations (4.16) and

(4.17). As aresult, equations (4.16) and (4.17) can be rearranged to form

AW sin(g,)=CU® cos( ) (4.19)
AW cos(, ) =1-CU’sin(4,) (4.20)
U sin(g,)-CU*cos(g,) =W sin(g, ) (4.21)
rc,U cos (¢, )+CU?sin(g, )= x,W cos(g, ) -, (4.22)

where A=1-Q% and C :%QQS. Squaring and adding equations (4.19) to (4.22)
eliminates W and hence
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(x,+A) CU° +(x,A)'U? = 20" (4.23)

Equation (4.23) is a cubic polynomial in U?. The three solutions of equation (4.23)

comprise one real and two complex conjugates because the coefficient of U* is zero.

The real solution of equation (4.23) is given by

z

2
(108ng4 (x, + A)C +12,/12(1, A)° +8LcQ? (i, + A)’ C )3 ~12(x,A)
(4.24)

gi-1
6

W

(x,+A)C (108;<§Q4 (1, + A)C +12,/12(1, A)° +8Lic*Q® (i, + A)’ C )

Equation (4.24) is the square of the amplitude ratio for the relative displacement
between the isolated mass and the junction. The square of the absolute displacement

amplitude ratio of the isolated mass is given by

2 Kk +(x, +l)2 cu*

KA +(A+x,) CU* (429

Equations (4.24) and (4.25) do not explicitly show the effect of cubic damping,
thus equation (4.23) is examined for three frequency regions, i.e. Q <1, Q~Q, and
Q >1 to obtain approximate simplified expressions for the responses. The frequency
ratioat Q~Q, (Q, = M) is of interest since it is the upper bound for the natural
frequency of the mass vibrating on the two parallel springs. Its relevance was explained
previously for the system with high damping level. The detailed derivations of the
approximations for the three frequency regions are given in Appendix C. The resulting

simplified expressions are listed in table 4.1 in comparison to those for the SDOF

system with pure cubic damping reported in Chapter 3.

4.2.3 Numerical procedure and solutions

Numerical simulations were carried out to solve equations (4.9) and (4.10) for
the case of linear and cubic damping. The values of non-dimensional damping chosen

were the same as those applied for the SDOF system presented in Chapter 3, i.e.

¢, =0.1,0.2,0.3and ¢, =0.013, 0.152, 0.787.
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The values of the stiffness ratio x, chosen were 1, 8, 48 and 99. These stiffness

ratios correspond to the frequency ratio of €2, = \/E , 3, 7.and 10. The responses for
these stiffness values are shown in comparison to those for the SDOF base excitation as

in Chapter 3, which corresponds to the limitas x, — .

The Fourier coefficients at the excitation frequencies were estimated to construct
the amplitude ratios between the isolated mass and the base excitation. The motion of
the junction between the damping and relaxation spring is not presented here. The
numerical results for the cubically damped system is examined and discussed later in
conjunction with the analytical results.

4.2.4 Performance of a linearly damped Zener model

The performance of the linearly damped Zener model is briefly provided here to
illustrate the basic idea. The numerical results for the amplitude ratios are shown in

figure 4.3 for different values of stiffness ratio with a specific value of damping. The
responses for the SDOF system (x, = o0 ) with the same value of damping are also

plotted in the figure using a solid thin line.

It is seen that a softer stiffness ratio and heavier damping, see figures 4.3 (b) and
(c), result in the peak response shifted to the right, which is noticeable clearly from the

response for x, =1 (blue solid lines). The softer relaxation spring also produces the
lower displacement amplitude ratio at high frequencies. The response in the isolation
region for x, =1 follows the mass line of the undamped SDOF system, i.e. 40 dB per
decade. As such, the detrimental effect of the linear damper in the isolation region can
be circumvented by increasing the flexibility of the relaxation spring. Therefore, one

might hypothesise that employing a relaxation spring in series with a cubic damper

might produce a similar effect.

4.2.5 Performance of a cubically damped Zener model and discussion

A numerical examination is conducted using figure 4.4, which shows numerical

integration results for the amplitude ratios for the Zener model with cubic damping.

Also shown are results for the cubically damped SDOF system ( x, = o) using a solid
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thin line. These plots show that the application of the heavy damping results in a higher

peak at the excitation frequency around /@, =, as shown in figure 4.4 (c). It shows
that the level of the peak for x, = 8 is the lowest amongst the chosen values of stiffness

ratio. The peak in the amplitude ratio appears highest for x, =1 and 99. The chosen

values of stiffness ratio also shift the frequency of resonance for the system with high
damping level corresponding to the frequency given in equation (4.12). However, the
numerical results show that the application of the Zener model can reduce the
detrimental effect of cubic damping in the isolation region compared to the SDOF

response.

An analytical examination is conducted using the simplified expressions for the
absolute displacement amplitude ratio given in table 4.1, which provide insight into the
effect of cubic damping in the Zener model. The simplified expressions for the cubically
damped SDOF system are also listed for comparison. Considering firstly the low
frequency region, for which Q < 1, the levels of estimated amplitude ratios for both
systems are about unity. This is due to the so-called quasi-static behaviour. It indicates

that the neither type of damping affects the response at these frequencies.

When the excitation frequency is around Q= €, , the isolated mass will

experience a high vibration amplitude. Figures 4.4 (b) and (c), for which the responses

with high damping level are presented, show the high response amplitude at the
excitation frequency corresponding to Q, =/x, +1. The corresponding simplified

expression for the amplitude ratio, given in row (b) of table 4.1, is given by

4

KZ

W~ G;sjw (4.26)

In order to explicitly show the influence of stiffness ratio on the level of absolute

displacement amplitude ratio, one might assume that the stiffness ratio is large and

finite, i.e. x, > 1. Thus the level of absolute displacement amplitude ratio is directly

dependent upon the values of the damping and square root of stiffness ratio. Therefore
the higher value of either damping or stiffness ratio can result in higher response

amplitude at Q, . This is in better agreement with numerical results for the responses

for higher damping, shown in figures 4.4 (b) and (c) using the circle markers.
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An optimum value of x, which produces a minimum amplitude ratio at the

corresponding €2, can be obtained numerically for fixed values of damping as shown in

figure 4.5. It shows the relationship between the level of the amplitude and stiffness
ratios obtained from the solution given in equation (4.25). The minimum level of the
amplitude ratio for different value of cubic damping can be found at the intersection of
the dot-dashed blue line. At this point, the optimum value of stiffness ratio for different

value of cubic damping can be found. For high cubic damping, the minimum level of

amplitude ratio can be obtained for a stiffness ratio of around x, = 8.

The optimum value of «, for high cubic damping, for which resonance occurs at
2, , can also be obtained by taking the derivative of the simplified expression given in

equation (4.26) with respect to x, and equating it to zero, i.e.

9
d d [(3,\(x,+1)2
—W=—vo |2 L =0 4.27
dx dx (4§3j K (4.27)

z Z

After solving equation (4.27) for x,, one obtains x, = 8 which produces the minimum

amplitude irrespective of the level of cubic damping. Thus for the high cubic damping
Zener model using x, = 8, the resonance peak at an upper bound frequency of €, =3 is

anticipated.

The value of stiffness ratio also controls the amplitude ratio at high excitation
frequencies, i.e. Q>1. Figure 4.4 also shows that the response amplitude ratio at these
frequencies reduces as excitation frequency increases whereas that for the SDOF
increasing towards unity. The simplified expression for the Zener model given in
row (c) of table 4.1 shows that the level of amplitude ratio decreases proportionally to
the excitation frequency squared (40 dB per decade) regardless of the value of damping

but dependent on the stiffness ratio, i.e.

W~ ";;1 (4.28)

The asymptotes obtained from equation (4.28) are plotted in figure 4.4 using dashed
lines which are colour-coded according to the stiffness ratio. These asymptotes are in

good agreement to the numerical results.
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Also notice that a larger value of x, not only increases the level of the amplitude

ratio but also shifts the isolation region higher in frequency. Thus the stiffness ratio
should be kept low to maximise the bandwidth of the isolation region. In addition, the
expression given in equation (4.28) can be compared to the simplified expression of the

SDOF system with rigidly connected cubic damping which is given by

(4.29)

As seen previously in Chapter 3, at high excitation frequencies, cubic damping produces
a response of the mass in the SDOF system similar to the base input. Therefore,
supporting the cubic damping elastically helps to reduce the mass response in the

isolation region.

To this end, one might conclude that it is preferable to mount the damping
component in series with a relaxation spring. The flexibility of the relaxation spring can
be chosen to maximise the isolation capability for the base isolation system exhibiting a

cubic damping characteristic.

4.3 A two-stage passive isolation possessing cubic damping

The two-stage base excited vibration isolation is the other higher order vibration
isolation model discussed in this study. Its isolation effectiveness is reported to be better
than the single stage or SDOF system in the case of a linear damper [40,44]. The model
of two-stage passive vibration isolation for this study is shown in figure 4.1 (c). It
comprises two sets of isolators which are separated by an intermediate mass. In this

study, the damping component is inserted only between the isolated mass m and the

intermediate mass m, which is referred to here as the second stage isolation. There is
only an assumed linear isolator stiffness k  present between the intermediate mass and

the base. This stiffness forms the first or the primary stage isolation.
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4.3.1 Governing equations of motion and non-dimensionalisation
The governing equations of motion for the mass m and the intermediate mass m,
are given respectively by
M+, (X—% )+ ¢ (X—% ) +k(x-x)=0 (4.30)

and

m,X, +cl(>'<t—>'<)+cs(>'<t—>'<)3+k(xt—x)+kp(>q—xo):0 (4.31)

where k_ is the linear stiffness of the primary stage isolator. x, X, and X, are the

displacement, velocity and acceleration of the intermediate mass.

By considering the model as two uncoupled isolation systems, one can define the

uncoupled undamped natural frequencies which are given by

k k
o, = ‘/— and o, = |+ (4.32)
m \'m,

where @, is the uncoupled undamped natural frequency of the second stage isolation.
, is the uncoupled undamped natural frequency of the mass m, supported on the
stiffness k. The non-dimensional time and the frequency ratio for this case are defined

based on @,, i.e. 7=w,t and Q= w/®, . The non-dimensional parameters introduced

for this model are the mass ratio,

= (4.33)
m
and the stiffness ratio,
kp
K, = " (4.34)

In the case when m, is negligible compared to the mass m, and/or k, is infinitely stiff

compared to k, the two-stage system reduces to a simple SDOF isolation model.
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The disadvantage of the two-stage vibration isolation is the appearance of a
secondary resonance above the primary resonance [44]. It is a result of having the
intermediate mass. To obtain the isolation benefit from this model, the secondary
resonance should be located as close to the primary resonance as possible to broaden the
isolation zone despite the impracticality for some applications. This can be achieved
using the optimum value of the stiffness ratio, introduced in references [40,67] and

given by

K, =4 +1 (4.35)
It is seen from equation (4.35) that the mass ratio , and the stiffness ratio x, become
interdependent when chosen in this optimal way.

One might normalise the response variables using the amplitude of the harmonic

base excitation X and the natural frequency @, . The normalised variables chosen are

) - . .
=22, W=, W=, = @ =X ang g 200 (4.36)
X X @, X X @, X w; X

n n

where w, is the normalised base displacement.w and w" are the normalised absolute

displacement and acceleration of the isolated mass. U, 0" and 0" are the normalised
relative displacement, velocity and acceleration between the isolated mass m and the

intermediate mass m, across the second-stage isolator.

Substituting the normalised variables and dividing by the quantity me? X

produce

W'+ 24,0+ &, (0) +0=0 (4.37)

,thW” + KW= ,utl]” + 24/16’ + 4/3 (G,)3 T (lut + 2) 0+ KiWo (4.38)

Similarly to the previous cases, the non-dimensional cubic damping obtained from the

normalisation is given by

£ =30 X? (4.39)
m

It is also identical to that for the SDOF isolator given in equation (3.5).
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The isolation capability of the two-stage model is also examined analytically
using the HBM and numerically using direct integration. The capability of a two stage
isolation system with cubic damping is compared to the corresponding linear damping

system.

4.3.2 Analytical solution using the Harmonic Balance method

The harmonic responses due to the harmonic base excitation, w, =cos(Q7) are

expected as

w=W cos(Qz—4¢,)and G=U cos(Qzr—4,) (4.40)
where ¢, and ¢, are the phase lags for the isolated mass m and the relative motion
with respect to the base excitation.

After substitution of these quantities into equations (4.37) and (4.38), and the

application of orthogonality, see the application as shown in equation (4.18), this yields

four equations as follows:

QW sin(g, ) =Usin (g, )—BU cos(4, ) —CU* cos(¢,) (4.41)
QW cos(g,)=U ( ¢,)+BUsin(¢,)+CU%sin(4,) (4.42)
AW sin (g, )= DU sin (g, )—BU cos(¢, ) —CU*cos(d, ) (4.43)
AW cos (4, ) = DU cos (¢, )+BUsin(g,)+CU%sin (4, ) +x, (4.44)

where A=(1-Q%)u +1, B=24,Q, czggsgf and D =(1-Q%) g +2.

Algebraic manipulation of equations (4.41) to (4.44) produces
Q'W?=C%* +2BCU* +(1+B%)U? (4.45)
and

(A-QD)'U? +(A-Q%) (BU +CU?) =x20* (4.46)
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For the case of linear viscous damping, i.e. C =0, the solutions of equations (4.45) and
(4.46) are given by
Q!

uz= t 4.47
(A-0?D) +(A-Q?) B? (447

K7 (1+8?)
(A-Q?D) +(A-0?) B

w2 = (4.48)

For the case of pure cubic damping, i.e. B=0, equations (4.45) and (4.46) become

cU+U?=Q'W? (4.49)
(A-0?) ¢ +(A-QD) U2 =} (4.50)
The amplitude ratio for the relative displacement amplitude ratio squared, U?,
can be obtained by solving equation (4.50), which is a cubic polynomial in U?. The
coefficient of U* is zero so the solutions for U? are one real and two complex

conjugates. The real solution for this case is too complicated to gain any insight into the

effects of cubic damping. Thus it has been omitted here. The absolute displacement

amplitude ratio for the isolated mass can be obtained by substituting for U? in
equation (4.49).

For simplicity, the solution of the two-stage vibration isolation model is analysed
for two frequency regions, i.e. Q <1 and Q>1. These frequency regions represent the
excitation frequency much lower and much greater than the uncoupled undamped
natural frequency o, respectively. The region of excitation frequency well above the
resonance frequency, Q >>1, is also considered to be much greater than the secondary
resonance. The simplified expressions for the absolute displacement are listed in
table 4.2 for both linear and cubic damping. The detailed description for the
simplification is given in Appendix C.

4.3.3 Numerical simulation procedure and solutions

The numerical integration for the two-stage isolation system was carried out to

illustrate the response for different values of the mass ratio z , by solving
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equations (4.37) and (4.38). Values of linear viscous damping ¢, of 0.1, 0.2 and 0.3,

and values of non-dimensional cubic damping ¢, of 0.013, 0.152 and 0.787 were

considered.

Three values of the mass ratios, i.e. & =0.1, 4 =0.5and g =1.0 have been

investigated. For particular aspect, a system where a value of mass ratio greater than
unity, i.e. the intermediate mass bigger than the isolated mass, is not considered in this
study. Therefore only these lower values of mass ratios were chosen to investigate its

effect of it on the displacement amplitude ratio.

4.3.4 Isolation performance for linear and cubic damping

The performance of the two-stage vibration isolation is examined first using the
numerical results shown in figure 4.6. The responses for different mass ratios are plotted
for comparison. It is seen that, for both the linear and cubic damping systems, the
smaller g, shifts the frequency of the secondary resonance further from the primary
resonance. The occurrence of the secondary resonance can be observed more easily

when damping is low, e.g. in figure 4.6 (a).

One might also notice that the magnitude of the primary resonance can be

reduced by increasing the value of either the linear or cubic damping. However, in the
response for high cubic damping, shown in figure 4.6 (c) with g, =1 (green dashed-

dotted line), it is noticeable that the primary resonance for the system with cubic

damping moves towards a frequency ratio of unity. This can be a result from that the

isolated mass and the intermediate mass move almost as a combined unit m+m, on a
spring k, and the relative velocity across the damper tends to zero. The undamped

frequency for the combined mass on a spring k, can be given by

?, =—2 (4.51)

Considering the definitions of the stiffness ratio and the mass ratio, i.e. x, =k, /k and

4, =m,/m, equation (4.51) can be given by
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2 K,
Oy =——— (4.52)
m(,ut +1)

Strictly for the optimum value of stiffness ratio given in equation (4.35), i.e. k, = 4, +1,

equation (4.51) becomes
=, (4.53)

This means that, once the isolated mass and the intermediate mass are joined together,

the system behaves like undamped vibration at the uncoupled undamped natural

frequency of the second stage isolator @, .

The analytical examination is achieved using the simplified expressions listed in
table 4.2. The expressions for the cubically damped system are compared to those for
linear viscous damping. Consider the low frequency region, i.e. Q < 1. In both cases
the amplitude ratios are about unity, i.e. quasi-static behaviour, similar to the SDOF and

Zener models. As such the effect of any damping is negligible in this frequency region.

At frequencies well above the primary and secondary resonance, i.e. Q>1, the
approximate expressions are listed in row (b) of table 4.2. The cubically damped
response is more interesting in that the approximate expression for displacement
amplitude decreases by 80 dB per decade independent of the value of cubic damping. Its
roll-off rate is much steeper than that for linear viscous damping, which is 60 dB per
decade. The levels of amplitude ratio in the isolation region obtained from the analytical
expressions are shown by the asymptote lines in figure 4.6, which are in good

agreement with the numerical results.

The rolling-off in the isolation region (Q >>1), can be investigated using the
relative displacement between the isolated and intermediate mass, which is listed in row
(c) of table 4.2 for linear and cubic damping. The expressions for both damping systems
at Q> 1are identical and are given by

Uz’ut-i-l

4.54
e (4.54)

Thus one might expect similar plots of the relative velocity in this frequency region as
shown in figure 4.7 in which the relative velocity decreases inversely proportional to the
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excitation frequency, i.e. 20 dB per decade. By having a similar level of the relative
velocity, the level of cubic damping force is expected to be lower than for linear
damping force for small relative velocity much less than unity. This is because it is a
result of the relative velocity cubed.

The damping forces are obtained by multiplying the relative velocity and relative
velocity cubed by the terms B and C given in section 4.3.2 respectively. The
dependences B and C are given here again, i.e.

3 o3
B=2JQ and C = ZQQ (4.55)

The linear damping force for Q>1 is then

1+l _, . (4+1)
2¢,Q =2, ~—= (4.56)
( ' ) 0 H ' Qu,
whereas the corresponding cubic damping force is
3 1) 3, (s +1)
Fo~| 2g00 || A1) 22, 457
d3 (4 413 j( QZ,Ut ] 4 4,3 Qsﬂt3 ( )

By considering that the linear and cubic damping produce a similar level of peak
response, then it is considerable that the cubic damping force given in equation (4.57) is
much lower than the linear damping force given in equation (4.56). The damping force
can become negligible at the very high excitation frequencies as shown in figure 4.8.

Therefore the mass of the rigid body is isolated with the negligible restoring force due

to stiffness k at high frequencies as presented by U given in equation (4.54).

Since the relative displacement between the intermediate and isolated mass tends
to zero as excitation frequency increases, one might expect a reduction in absolute
displacement for the intermediate mass at high frequencies similar to the isolated mass.
Figure 4.9 shows the absolute displacement for the intermediate and isolated mass for

both linear and cubic damping. Note that only the responses for ;= 0.3 and £,=0.787

are chosen to be shown in figure 4.9. Figure 4.9 (b) shows that the absolute
displacement for the intermediate mass for both linear and cubic damping decreases as

excitation frequency increases by 40 dB per decade.
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The relative displacement between the intermediate mass and the base excitation
is also shown in figure 4.9 (c). It is seen in the high frequency region that the amplitude
of relative displacement at high frequency is constant at the magnitude of unity which is
the amplitude of base excitation. This means that at the high excitation frequencies, the
intermediate mass is almost not moving. As a result there is almost no transmitted

motion via the secondary stage isolation.

To this end, one can conclude that supporting the SDOF cubic damping system
in a two-stage configuration can reduce the detrimental effect seen previously in the
SDOF model. In addition, the isolation capability for the cubically damped system is

much better than that for the linearly damped two-stage system.

4.4 Conclusions

In this chapter cubic damping was applied to two higher order isolation models,
namely Zener and two-stage models. The analysis shows that the application of higher
order isolation models possessing cubic damping can significantly remove the
detrimental effect of the cubic damping under base excitation in the isolation region

compared to the cubically damped SDOF system.

For the Zener model, the cubic damping element is supported elastically on a
relaxation spring. The cubically damped response in the isolation region decreases by
40 dB per decade as the excitation frequency increases. It is also found that the value of
the stiffness ratio equal to 8 is optimal for a system with high cubic damping. It
produces a minimum level for the second resonance peak at the corresponding
frequency Q = 3, especially for systems with high damping. One can conclude that it is
preferable to elastically support the cubic damping component for a vibration isolation

system exhibiting a cubic damping characteristic.

The isolation performance for the cubically damped two-stage isolation is more
effective than that of the Zener model. The two-stage isolation is arranged by supporting
the SDOF cubically damped isolation system on an undamped mass-spring system
which forms the primary stage isolation. The SDOF cubic damping isolation then
becomes a second stage isolation. The mass of primary stage or intermediate mass is
considered as a ratio with respect to the isolated mass or secondary stage mass. It is

found that a larger mass ratio provides a lower isolation frequency whereas the smaller
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mass ratio shifts the isolation frequency further towards high frequencies. However, the
application of the smaller mass ratio for the system with high value of cubic damping
can result in high level of peak amplitude. Therefore the mass ratio should be chosen
carefully to optimise the limitations. .

The existence of cubic damping in the second stage isolation is also found to
improve the isolation capability compared to the linear damping. The level of the
isolated mass response, e.g. the amplitude ratio, in the isolation zone decreases
dramatically compared to the linear damping system. Therefore, it is more desirable to
apply the cubic damping in the second-stage isolator of the two-stage model, strictly

with the optimum stiffness ratio.

To this end, it can be concluded that these two higher order base excited
vibration isolation models eliminate the detrimental effect of cubic damping as present
in the SDOF system. The application of these two models also increases the isolation
performance, especially for the two-stage vibration. Therefore, it is recommended to
apply either model in preference to the SDOF isolation system under harmonic

excitation where a cubic damping characteristic is incorporated.
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Table 4.1

Approximate expressions for the amplitude ratio for base excited Zener isolation
possessing cubic damping in comparison to those for the SDOF rigidly connected
cubic damping.

Frequency Cubic damping SDOF system Cubic damping Zener model
region K, ® K, <0
(a) Ol W =1 W =1
9
+1)2
(b) |Q=yr, +1 - Wz(§§3j(’(z 4 )
4 K,
§ K, +1
(©) Q>1 Wa | 2 Wz(gz)2 )
36,Q2

Table 4.2  Approximate expressions of the absolute displacement amplitude ratio for
two-stage base excited isolation model possessing cubic damping in comparison to
linear viscous damping.

Frequ_ency Linear viscous damping Cubic damping

region
Absolute displacement amplitude ratio
(@) Q<1 W~1 W ~1

ﬂt"'l) 1 (/Jt+1) 1
b O>1 W ~(2 ( — W ~ —_—
®) > ( é,l) Hy Q° Hy Q*

Relative displacement amplitude ratio at high frequencies
~ +1) 1 ~ +1) 1
Mo Q Ho Q

Note that U represents the relative motion between the isolated mass and intermediate mass.
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(c)

Figure 4.1 The higher order isolation models possessing cubic damping.
(a) Zener isolation with relaxation spring inserted between
the damping and base excitation
(b) Zener isolation with relaxation spring inserted between
the damping and isolated mass
(c) Two-stage isolation with undamped primary stage isolator

10

Absolute displacement transmissibility
=

1
0.5 1 1.5
Frequency ratio [m/con]

©
=

Figure 4.2  Absolute displacement transmissibility for Zener isolation model with stiffness
ratio, x, = 3, and different levels of linear viscous damping, figure reproduced
from [37].
Arrow illustrates that the natural frequency shifts from @, to @, as value of
viscous damping increases.
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(@) 30—

Reducing K,

Amplitude ratio [dB re 1]

(b) 30 e

KR
[6)]
T

&
o
T

Amplitude ratio [dB re 1]

45 I - Ilo 1 2
10 10 10 10
Frequency ratio [Q2 = u)/mn]

© 30—

Reducing K,

Amplitude ratio [dB re 1]

10 10° 10" 10°
Frequency ratio [Q2 = co/con]

Figure 4.3  Absolute displacement amplitude ratio of the isolated mass for the Zener base
excited isolation possessing linear viscous damping obtained from numerical
integration.

(@ ¢, =0.1,(b) {;=0.2and (c) ¢, =0.3.
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Figure 4.4  Absolute displacement amplitude ratio of the isolated mass for the Zener base
excited isolation possessing cubic damping

(a) {3 =0.013, (b) ¢,=0.152 and (c) &, =0.787.
— K,=1l==== K, = 8, e k,=48and - - - k,=99.
—— Cubically damped SDOF model (k =)
O Markers respectively represent the amplitude ratio at Q =Q, = \/m

which are listed in row (b) of table 4.1

——— The asymptote lines with the slope of (x.+1) for cubic damping at
QZ
Q > 1 with colours corresponding to the stiffness ratios
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of cubic damping
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Stiffness ratio [, ]

Figure 4.5 Relationship between the value of the stiffness ratio x, and the absolute

displacement amplitude ratio, W , for the cubic damping Zener isolation model at a
particular frequency ratio of Q= /x, +1 using HBM approximation.

- — indicates the optimum value of stiffness ratio which produces the minimum
level of the amplitude ratio resulting from the application for each value of ¢,
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Figure 4.6  Absolute displacement amplitude ratio of the isolated mass for the two-stage base
excited isolation obtained from numerical integration.
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Figure 4.7 Normalised relative velocity across the damper for linearly and cubically damped
responses obtained from numerical integration.
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Figure 4.8 Normalised damping force for the secondary stage isolation.
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Figure 4.9 Displacement amplitude ratios for the two-stage isolation in comparison between
the linear damping system with £, = 0.3 and cubic damping system with

¢, = 0.787.
(a) Absolute displacement for the isolated mass, |W |

(b) Absolute displacement for the intermediate mass, [\Nt|

(c) Relative displacement between the intermediate mass and the base excitation,
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Chapter 5 Simulation of a cubically damped
vibration isolation system subject to

broadband excitation

5.1 Introduction

Previously a theoretical examination into cubically damped isolation subject to
harmonic excitation was given in Chapter 3. The cubic damping proved to be beneficial
in reducing the transmitted force from the excited structure to a supporting structure for
excitation frequencies well above resonance. On the other hand, for base excitation,
cubic damping causes an increased transmitted displacement at the same frequency
region, unless a relaxation spring or an intermediate mass is introduced, as seen in
Chapter 4.

In this chapter, the focus is on broadband random base excitation for the single
degree of freedom (SDOF) system. It aims to explore whether the same detrimental
effect happens as for harmonic excitation. In many practical instances broadband
excitation can occur, e.g. road vehicles travelling over rough surfaces, ground vibration
from railways, etc. The road surface roughness, for example, can usually be assumed as
broadband excitation. Any unevenness of the road surface causes a base input to the
automotive vehicle suspension. Such roughness is transmitted as vertical vibration to the
passengers. The characteristic of the broadband random excitation for typical road
vehicles applications is described later in section 5.4. Automotive dampers are nonlinear
by design. One possibility is that the isolation system could be modelled as, or designed
to exhibit, a cubic damping characteristic.

Generally, the nonlinear response due to broadband excitation cannot be easily
predicted using analytical approaches. Instead, numerical integration is typically applied
and this has been employed here. Numerical integration provides results in terms of
time histories, which can be processed by means of statistical analysis or spectral
analysis. The simulations produced in this chapter were mainly obtained using the
ODEA45 routine provided in Matlab [66].
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This chapter reveals that cubic damping also produces the detrimental effects on
the SDOF broadband base excitation. However, the effects are different from those
resulting from harmonic excitation. The possible physical reasons for such effects are
reported in this chapter. The obtained results show that the existence of nonlinear cubic
damping on the broadband base excited isolation system has detrimental effects. Having
this information can lead to further improvement of the SDOF broadband base

excitation vibration isolation system in order to minimise possible severity.

5.2 Governing equation of motion

The model under investigation in this chapter was previously given in
figure 2.1 (b) for which the governing equation of motion is equation (2.1) and given

here again, i.e.

mz(t)+ f, (2,t)+ke(t) = f, () (5.1)
where mand k are the mass of the rigid body and the assumed linear stiffness. f, is the

dimensional base excitation for which f, =—mx,. f, is a function representing the

dimensional restoring force due to damping and given by

= RPN
fo(2.t)= cpz(t)|z(t)| (5.2)
Z, zand z are the relative motion, i.e. acceleration, velocity and displacement as a

function of dimensional time t. p is the exponent of the power law damping.

However, it is more convenient in this chapter to solve the equation of motion

using the absolute displacement of the isolated mass, x, for which is obtained from

Z=X-X, (5.3)
where X, is the base displacement excitation. Linear and cubic viscous damping are

only the damping components considered here, i.e. p=1and 3. Thus, equation (5.1)

can be rewritten as

MK+, (X— % ) +Cy (X—%, ) +k(x—%)=0 (5.4)
where X, and X, are the corresponding broadband base excitation velocity and
displacement. X, X and x are the random responses.
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The effects of cubic damping are evaluated by comparison with the case of linear
viscous damping. Thus the system and the equation of motion given in equation (5.4) is
considered for two separate cases, i.e.

(1) linear viscous damping :

mX+c, (X—%,)+k(x—%,)=0 (5.5)
(ii) pure cubic damping:
MK+ C, (X — % ) +k(x=%)=0 (5.6)
Note that the numerical simulations for the case of broadband excitation are
carried out using dimensional quantities, as stated in the governing equations of motion
given in equations (5.5) and (5.6). This is unlike the case of harmonic excitation, where
a non-dimensional set of quantities were defined. This is because for broadband

excitation there is no single appropriate choice of non-dimensionalisation and

introducing several forms would be unhelpful and ambiguous.

5.3 Analysis approaches

The broadband excitations applied here were assumed to be Gaussian random
processes and stationary, i.e. mean and variance are independent of time. The response
Is anticipated to have the same property. An assumed stationary random time variable
can usually be represented in terms of a statistical approach using either time domain or
spectral analysis. Since the statistical properties for the assumed stationary random
process do not change with time it is possible to investigate the effect of nonlinearity
present in the broadband response using the time average instead of ensemble average
[68]. Some relevant analysis approaches applied in this study are briefly described here.

5.3.1 Probability density function

A probability density function (PDF) is defined by a first order derivative of a

probability distribution function, i.e.

p(x)= ) (5.7)
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where P(x) is the probability distribution function. Some useful properties of the PDF

are that it is always equal or greater than zero, p(x) >0, and the area under its curve

equals unity, .[ p(x)dx =1 [69].

The assumed input PDF used in this study was the Gaussian or Normal

distribution which is given by

p(x)= e (5.8)

where u,, o, and o’ are mean value, standard deviation and variance of the random

variable x respectively. The PDF of the Gaussian distribution has a bell shape as shown

in figure 5.1.

5.3.2 Expected values and moments of random variables

An expected value of a random variable x is written as E [x] . It is sometimes

called a mean or an average value of x, g, . The mean value is usually defined as a first

moment of random variable and is given by

u,=E[x]= j xp(x)dx (5.9)

A second moment of random variables refers to the mean square value which is given

by

E[xz]: ]E X’ p(x)dx (5.10)

The second moment about the mean value is referred to as a central moment. It is called

the variance and is given by

o? = E[(x-s)"]= [ (x=, p(x)x (5.11)

The positive square root of the variance is called the standard deviation. For an assumed
zero mean signal, x, =0, the standard deviation is equivalent to the root mean square

(RMS) value.
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5.3.3 Histogram and distribution

A histogram is one of the statistical methods used to represent the distribution of

random data. It represents the random data by counting the number of times that a

particular value, X, was found and putting that number into an interval or a bin. The

width and the number of bins are interdependent. A greater number of bins can be
obtained as a result of using narrower bins which produces a smoother curve for the
histogram as shown in figure 5.1. Therefore the selection of the width and the number

of bins depends upon the amount and quality of the data.

In addition, the height of the histogram is proportional to the amount of data in
the bin. Therefore, to obtain a histogram which is comparable to that using PDF, the
area underneath the histogram should be equal to unity. This can be achieved by
normalising the area of the bins with the total area of the histogram. Thus the total
normalised area of the histogram is equal to unity and the height of the histogram is

comparable to the PDF of a Gaussian distribution as also shown in figure 5.1.

5.3.4 Spectral analysis

The analysis of broadband random can also be achieved using spectral analysis
i.e. the power spectral density (PSD). The PSD can be estimated from the Fourier
transformed [59], i.e.
|2

Su(9)= %IX (¢) (5.12)

where X (¢) is the discrete Fourier transform (DFT) of a sequence data x(n) and is

given by
N-1 _jhﬂ
X(p)=> x(n)e N (5.13)
n=0

Similarly, the cross power spectrum density (CPSD) between the time signals x

and y can also be estimated using the Fourier transformed of these two signals. The

time histories of two signals are processed in the same way. The CPSD for truncated
data can be obtained from
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1

Sy (9)=5X(0)Y (9) (5.14)

S

where asterisk * denotes the complex conjugate.

5.3.5 Window function and data overlapping

The estimated PSD can also be obtained using the application of the so called
Welch’s method [70]. The method requires sets of truncated time histories. There might
be discontinuities at the beginning and the end of the truncated data as a result of
assumed periodicity. The discontinuity in the time domain signal can cause leakage in

the frequency domain analysis.

To eliminate leakage, the time domain signal should be smoothly increased and
decreased from and back to zero. This can be achieved by applying a window function
to the truncated time data. A Hanning window is one of commonly applied windows.
One of the advantages of the Hanning window is a rapidly decreasing side lobe in the
frequency domain compared to the others. The rate of decreasing is about 60 dB per
decade [68].

The application of the Hanning window results in lost or discounted data.
However, it can be recovered by overlapping windows. The overlap is considered as a
percentage of a period of the acquisition time. Figure 5.2 shows the plot of the Hanning
window and its averaged power with an overlap of 0%, 50%, 66.67%, 75% and 80% of
the period T . There are r sets of Hanning window in the length of T. r also represents

the overlap factor, i.e.

1

Wooyertay = (1— —j x100 (5.15)
r

In the acquisition period of N T, the number of complete sets of Hanning

windows can be determined from
N, =(N,-1)r+1 (5.16)
where N is a number of acquisition periods, N, is the number of the complete

window(s) in the period N T . The averaged power of the Hanning window as shown in

figure 5.2 is given by

114



Simulation of a cubically damped vibration isolation system subject to broadband excitation

W, (t) (5.17)

15w
riz
where w is the Hanning window.

It is seen from figures 5.2 (a) and (b) that an overlap of 50 % or lower produces a
non-uniform weighting for the averaged power. There appears a ripple of about half
(3 dB) of the maximum power [59]. A uniform weighting for the averaged power can be
obtained for integer values of r > 3 [68] regarding equation (5.15) as shown in

figures 5.2 (c) to (e). The overlap with r = 4 was chosen here, i.e. 75% overlap.

Finally, the estimated PSDs of the truncated data are averaged and given by

S.(») =%Zq) S, () (5.18)

i=1

where ¢ is the number of averaging PSDs and S, is the estimated PSD of the truncated

data X, which is calculated using equation (5.12).

5.4 Generation of broadband random excitation

Broadband random excitation applied in this study was defined by referring to a
displacement PSD. Two displacement base excitation characteristics were employed for
the numerical examination, namely a white and a non-white random excitation. The
displacement PSD for the white random is defined ideally to be constant over all
frequencies. As a result, the ideal white random process has an infinite mean square
value and the signal is not realistic. Therefore the term white random does not reflect
the excitation characteristic applied here. This is because a finite frequency bandwidth
was applied. Later, the term constant displacement amplitude random (CDR) excitation
is used instead. The CDR excitation characteristic is introduced for comparison to the
harmonic responses obtained from Chapter 3, for which a constant displacement

amplitude was applied.

The other applied excitation for the base isolation is a white-velocity random
excitation [71]. It is so called because the PSD level of the excitation velocity is
constant for all excitation frequencies. Thus a corresponding displacement PSD is
inversely proportional to the frequency squared. This excitation characteristic

represented the non-white displacement broadband excitation applied here. Similarly to
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the CDR excitation a limited frequency range was applied, so the term white-velocity
random is also not suitable here. It is termed a constant velocity amplitude random
(CVR) excitation as a substitute.

5.4.1 Constant displacement amplitude random excitation

A time history of the CDR excitation was generated by taking an inverse discrete
Fourier transform (IDFT) [72] of

X, (p) = X &/ %) L 9=1,2,.. N (5.19)
where X, ((p) is a complex number representing the signal at the discrete frequency,

X, s a constant real number representing the displacement amplitude in terms of

discrete frequency. f, is the discrete frequency and is defined by f = Af o with Af
the frequency resolution. ¢, is a uniformly distributed random phase and has a value
between 0 and 27 . The constant amplitude of X can be chosen in order that the

excitation signal has the required displacement PSD level, i.e.

X, =T.S, (5.20)

where S, is the constant level of displacement PSD in the frequency bandwidth of

interest. T, is the period of acquisition time length and is defined by

T,=—=— (5.21)

where N is the total number of data and fis the sampling frequency. The time history

for the corresponding velocity can also be determined using the IDFT of

Vo (@)= i@, X, (9) (5.22)

The implementation of the CDR is described in detail in section 5.6.

5.4.2 Constant velocity amplitude random excitation

The CVR excitation considered in this study has a PSD of the corresponding
displacement that decreases inversely proportional to the frequency squared. The
example for such excitation characteristic is sometimes representative of the surface
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roughness excitation. The displacement PSD of a surface roughness is usually
considered in terms of the wavenumber, i.e. spatial circular frequency, and is given by
[59,73]

G(Q)= G(QO)(QJW (5.23)

where G is a one-sided PSD. Q denotes a spatial frequency and is given by Q =2~
with A4 a wavelength. Q, is a reference wave number value. wis the waviness of the

road surface for which the value recommended in ISO 6808 is equal to 2 [71,73].
Therefore, by having the displacement PSD inversely proportional to the excitation
frequency squared, the excitation considered here has the same displacement spectral
shape as the commonly adopted surface roughness model. However, its amplitude has
not been chosen to be comparable to typical road roughness levels. The definition of

surface roughness is given here only an example and is not included in the study.

The time domain signal for the CVR excitation applied in this study is obtained
by taking the IDFT of the frequency domain amplitude given by

V, () =V, ') (5.24)
where V_ is a constant real number representing a velocity amplitude at the discrete
frequency f . The constant velocity amplitude V, can also be obtained using

equation (5.12) similarly to the constant displacement. The frequency domain amplitude

for the corresponding displacement excitation is determined by

X, () :ﬁv‘) () (5.25)

By taking the IDFT of equation (5.25), one obtains the displacement based excitation

time history for the CVVR excitation. The detailed description for this excitation is also

given in section 5.6.

5.5 Numerical simulation implementation and system parameters

The numerical examination was implemented using numerical integration
obtained from the ODEA45 solver in Matlab. One needs to specify the time and

frequency resolutions to cover the investigating conditions. The physical parameters for
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the isolation system are also required. The parameters assumed in this section are only
for illustrative purpose of the effect of cubic damping on a SDOF base excited isolation
system subject to the specified broadband random excitation.

5.5.1 Time and frequency resolution

The choice of time and frequency resolutions for the numerical integration is
discussed here. The frequency resolution was determined using the application of a half
power bandwidth criterion. For a SDOF system with known value of linear viscous
damping, the half power bandwidth can be obtained from the transmissibility function,
ie.

1o 1+(269) (5.26)

(1-02) +(260)

where Q is a frequency ratio and is given by Q = /w, with @, the undamped natural

frequency.

In this instance the frequency resolution was chosen to be sufficient for a system

with linear viscous damping of ¢, =0.01. The transmissibility for such the system is
shown in figure 5.3. A bandwidth of 0.02 f_ was obtained after the application of a half

power bandwidth criterion as shown in figure 5.3 (b), where f_ is the natural frequency
in Hz . To ensure an accurate reproduction of the peak response, the half power
bandwidth was divided into 20 spectral lines which yielded a frequency resolution

Af =0.001 f, .

The frequency bandwidth of the excitation for the simulation was initially chosen
to range from 1-1000 Hz. The lowest excitation frequency of 1 Hz was set to avoid an
extremely low frequency oscillation due to nonlinearity. The maximum frequency of
1000 Hz was set to ensure that the effects of cubic damping at high frequencies become
apparent. The undamped natural frequency of the system was chosen as f, =10 Hz.
Thus the excitation range covered one decade lower and two decades higher than the
natural frequency. Therefore ideally, for the linear case at least, from the given
information that f, =10 Hz and Af =0.001 f_, the frequency resolution should not be

bigger than 0.01 Hz, i.e. Af <0.01 Hz .
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The discrete FFT was applied to analyse a set of sampled data. The frequency
resolution can also be specified using the number of data points N and sampling

frequency f, as given in equation (5.21), i.e. Af =N/f, . Itis also recommended to
assign N and f; in the base-2 format for the calculation of the Fourier transform using

the FFT algorithm, i.e. 2" where n is a positive integer. For the maximum frequency
resolution of 0.01 Hz, the lower nearest base-2 value is 2”'or 0.0078 Hz which produces

a single sample time interval of 128 s.

Since the maximum excitation frequency, f__, was set at 1000 Hz, there

responses are expected at the odd harmonics resulting from the nonlinear cubic damping
at frequencies higher than 1000 Hz. To avoid possible signal aliasing, the sampling
frequency was set at 2 Hz (16384 Hz or 0.016 ms). This yields the total number of

data points to be 22! points for the time interval of 2’ s.

However, for the analysis of a random process, averaging is needed in order to
reduce the variance in the level of the estimated PSD when it is assumed stationary. An
appropriate time length can be determined from an effective bandwidth (B ) and total
acquisition time length (T ) product or BT product. It is recommended that the BT
product should be much greater than unity [68]. The effective bandwidth is determined
from the bandwidth of an applied spectral window [68]. It is sometimes called the 3 dB

bandwidth. For instance, the 3 dB bandwidth for the Hanning window is given by [59]

B =1.44Ti (5.27)

S

The effective bandwidth B for this instance was approximately equal to

1.44/128 ~ 0.011 Hz. In this instance, the total acquisition time was extended to 2048 s,
2* times the original set of data. This yields a total number of data point of 2% points,
i.e. N =fAf =(2" Hz)(2" s). Thus the BT product is approximately equal to 22.5 and
is high enough to expect that the statistical variation in the estimated PSDs would be

minimal and not significant.

5.5.2 System mass and stiffness

There are choices in the values of mass and stiffness to match the chosen natural
frequency, i.e. 10 Hz. The value of the mass also influences the effective system
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damping. This can be seen from the definitions of the linear viscous damping ratio and

the non-dimensional cubic damping parameters for the case of harmonic excitation

C C
L and Qzﬁconxz.

which are respectively given by, ¢, = >
M,

For simplicity, the mass m was chosen to be unity, i.e.m =1 kg. This yields the

corresponding value of isolator stiffness equal to 3.95 kNm™. The selected values of the

damping coefficients ¢, and c, are given in the next section.

5.5.3 Damping coefficients

The value of cubic damping coefficient was defined referring to the linearly
damped response for ;= 0.2. The dimensional linear damping coefficient (c,) can be
obtained from ¢, = 2m¢, @, . According to the specified natural frequency, f, =10 Hz
and the mass m = 1 kg, the resulting value of ¢, is equal to 25.13 Nsm™. The resulting

level of peak response around resonance for the normalised absolute displacement

transmissibility is about 9 dB.

The corresponding value of ¢, which provides a similar level of peak response

for the CDR base excitation was 0.33 Ns’m™ and ¢, = 133 Ns®m™ was applied for the

CVR excitation. Note that the values for the damping coefficients chosen here are only

to demonstrate the effect of cubic damping for this numerical study. The procedure to

obtain the value of c; is omitted.

5.6 Influence of broadband excitation on the level of effective
damping
The responses due to four excitation characteristics are reported and examined in

this section. The descriptions of the applied excitation characteristics are given as

follows.

(i) The CDR excitation with fixed excitation bandwidth of 1-1000 Hz.

The displacement PSD, S, , level was varied to achieve displacement RMS
values of 0.25 mm, 1.25 mm and 2.5 mm, see figure 5.4 (a).
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(i)

The CDR excitation with fixed displacement PSD level.

The level of S, was fixed so as to give an RMS value of 1.25 mm for an

excitation bandwidth of 1-1000 Hz. Two additional frequency bandwidths
were introduced, i.e. 1-500 Hz and 1-100 Hz, see figure 5.4 (b). As a result,
the displacement RMS value was reduced to 0.88mm and 0.39 mm

respectively.

(iii) The CDR excitation with fixed displacement RMS value at 1.25 mm.

(iv)

Three excitation bandwidths were introduced, i.e. 1-1000 Hz, 1-500 Hz and
1-100 Hz each with a displacement RMS value fixed at 1.25 mm. Thus the

level of S, is higher as a result of the narrower bandwidth, see

figure 5.4 (c).

The CVR excitation with fixed velocity PSD level.

The velocity PSD, S,, , level was fixed whilst the excitation bandwidth was

varied, i.e. 1-1000 Hz, 1-500 Hz and 1-100 Hz as shown in figure 5.4 (d).

The corresponding level of estimated displacement excitation PSD, S, ,

decreases with excitation frequency squared as shown in figure 5.4 (e). It is

seen from figure 5.4 (e) that the level of S,, at high frequencies is

considerably lower than that at low frequencies. As a result it is mostly low
frequency excitation that contributes to the displacement RMS value. Thus
the displacement RMS for narrower bandwidths applied in this study is not
significantly different from that of 1-1000 Hz and it is around 1.25 mm.

However, the difference in the velocity RMS values is significant.

These excitations were introduced in order to investigate the response characteristics
due to different excitations. One might expect to synthesise and distinguish the

influence of the broadband input on the effect of cubic damping.

The examination for the first three excitation scenarios given in this section will

be carried out using the absolute displacement PSD for the isolated mass. The responses
due to the last excitation scenario, case (iv), are examined using the absolute velocity
PSD for the isolated mass. The linear and cubic damping force PSDs are also
considered in conjunction with the estimate PSDs of the motion of the isolated mass.
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The corresponding standard deviations of the mentioned quantities are also presented

for some examinations.

Later, for the linear damping case, the displacement PSD, the velocity PSD and
the linear damping force PSD are represented by S, , S,.and S, respectively. Those
for the cubically damped response are denoted respectively by S, , S, and S, . The
corresponding standard deviations for the absolute displacement for the isolated mass
and damping force are denoted by o, and o for the linear case, o, and o for the

cubic case.

5.6.1 Different displacement PSD level with fixed bandwidth

The responses due to CDR excitations with fixed bandwidth of 1-1000 Hz,

case (i), are examined. The estimated input displacement PSD, S, , is shown again in
figure 5.5 using dashed lines. The levels of S, shown in figures 5.5 (a) to (c) are about

-22 dB, -28 dB and -42 dB respectively. The response displacement PSDs and damping

force PSDs for both linear and cubic damping are also shown in figure 5.5.

Considering first the linearly damped responses (dotted lines), the estimate PSDs

of the displacement responses, S, , as shown in figures 5.5 (a) to (c), are seen to scale

simply with excitation level. This is also noticeable from the values of displacement

standard deviation, o, , annotated in the graphs, which scale with the RMS of the

displacement excitation.

In contrast, in the same figures, the plots of the estimate displacement PSDs for

the cubically damped response, S, , (solid lines) are totally different among the cubic

damping cases and also different from the linear responses. The difference in excitation
level does not only affect the level of the response but also changes the response
characteristic. In the case of a high excitation amplitude, figures 5.5 (a) and (b), the
presence of cubic damping causes significant amplification to the response especially at

low frequencies. It contributes significantly to the standard deviation value for the

system with cubic damping, o,, . For the system with lower excitation level,

figure 5.5 (c), the response at low frequencies is similar to the input, as is also the case

for a linearly damped system.
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The appearances of peak responses are also noticeably different. The higher
excitation level, figure 5.5 (a), causes the response characteristic of a linearly heavily
damped system, i.e. there is no obvious frequency which the peak occurs. The peak
response due to the lower excitation level, figure 5.5 (c), is more obvious and is

consistent with a linearly lightly damped system.

By considering the estimate damping force PSDs as shown in figures 5.5 (d) to

(), the estimated linear damping force PSDs, S, , are also seen to scale by the level of
excitation. The amplitude of excitation only effects the level of S, and not the

spectrum characteristic. In contrast, the excitation level has significant influence on both

the level and characteristic of estimated cubic damping force PSDs, S, . The cubic

damping force for the low excitation level, figure 5.5 (f), is considerably negligible
compared to the linear damping force. This occurrence results in the very lightly

damped response as seenin S, .

From the given results, the level of the effective cubic damping is shown to be
dependent upon the level of displacement excitation which can be related to the
excitation RMS value. However, the excitation RMS value is in turn dependent upon
the excitation bandwidth. In the next section, the effect of cubic damping is investigated

for different excitation bandwidths whilst the level of S, is fixed.

Note that the occurrence of the responses outside the excitation bandwidth at low

and high frequency regions for both S, and S, is examined and discussed later in

section 5.8.

5.6.2 Fixed displacement PSD level but different bandwidth

Figure 5.6 show the estimated PSDs of the displacement and damping force
when the excitations have a fixed level of displacement excitation PSD at about -28 dB
and different bandwidths (case ii). The PSDs of the displacement excitation are also

shown in the figure using dashed lines and the corresponding RMS values are annotated

in the figures, simply denoted by o, . It is seen that a reduction in the excitation

bandwidth yields a reduction in the excitation RMS value. As such, considering the
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knowledge obtained from the examination in section 5.6.1, one might anticipate a

reduction in the effective cubic damping for the excitation with a smaller RMS value.

Figures 5.6 (a) to (c) show that the characteristics of the displacement response
PSDs for the system with linear damping are not significantly different due to the
reduction of the excitation bandwidth. It is noticeable only the absence of the response
at high frequencies which corresponds directly to the excitation frequency. This is in

contrast with the displacement response PSDs for the system with cubic damping, S, .
The characteristics of S, are totally different. The effect of cubic damping can be
noticeable from the level of S, at low frequencies below the resonance frequency. It is
more profound for the excitation with broader bandwidth. The S, is consistent to the

very lightly damped system for the narrower excitation bandwidth.

The standard deviation of the displacement response for the system with linear
damping, o, , is essentially constant at 0.26 mm. This can be interpreted that the linear
response at high frequencies produces a negligible contribution to the overall value.
Therefore, the value of o, is contributed to mostly by the response at frequencies

below and around the resonance frequency. The reduction of the excitation bandwidth
does not affect the absolute displacement for linear system provided that the excitation

frequencies around the resonance frequency are included.

In contrast, the value of o, is neither constant nor changing monotonically with
the change in excitation RMS. The plots of S, in figures 5.6 (a) to (c) show that o,

can be contributed to by the response at either the low frequencies, figure 5.6 (a), or

around the resonance frequency, figure 5.6 (c).

For the linear damping force, it is well-known for the linear isolation system that
the excitation at one particular frequency can only produce a response at that frequency.
Therefore there exhibit the linear damping force PSDs, displayed by the dotted lines in
figure 5.6 (d) to (e), corresponding to the excitation bandwidth. However, the value of

o, Is influenced mostly by the damping force at high frequencies.

Although the cubic damping force standard deviation, o , is also directly

related to the excitation bandwidth, the cubic damping force at a particular frequency
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can be influenced by excitation at other frequencies. Thus the estimated cubic damping
force PSDs are very different for both levels and characteristics. The excitation with
narrower bandwidth results in almost negligible level of damping force compared to that
for the broader excitation bandwidth.

Therefore, given the results obtained from this and previous simulation
scenarios, the reduction in the cubic damping force is believed to be a result of the
reduction in the excitation RMS value. However, the presence or absence of
displacement excitation at high frequencies might also be a contribution in the cubic
damping force. So the next investigation scenario was conducted by maintaining the

RMS value of excitation whilst the excitation bandwidth is reduced.

5.6.3 Fixed displacement excitation RMS but different bandwidth

The excitations applied in this section were introduced in order to investigate
whether the reduction in cubic damping force is influenced by the displacement
excitation at high frequencies. The displacement excitation RMS was kept constant at
1.25 mm whilst the bandwidth was altered (case iii). As a result of these two constraints,

the level of estimate displacement excitation PSD, S, , for the narrower excitation
bandwidth is higher as previously shown in figure 5.4 (c). The levels of S,_ for

excitation bandwidth of 1-1000 Hz, 1-500 Hz and 1-100 Hz are about -28 dB, -25 dB
and -18 dB respectively. These excitations are shown here again in figures 5.7 (a) to (c)
using dashed lines.

The results obtained from section 5.6.1 lead one to believe that a higher
excitation level results in a lower peak response, whilst the observations in section 5.6.2
show that narrowing the excitation bandwidth reduces the effective damping. As such
one might expect opposing effects on the level of damping from the increased level of

S,, and the reduced bandwidth.

Unexpectedly, figures 5.7 (a) to (c) show that the estimated displacement PSDs
for the system with cubic damping, solid lines, are similar to those reported in
section 5.6.2. The response for the excitation with reduced bandwidth still has the

lightly damping response characteristic as shown in figure 5.7 (c), despite the increased
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excitation level. The estimate cubic damping force PSDs in figure 5.7 (f) also decreases

unevenly similar to that in the previous section,

One might set the hypothesis from these results that the effect of cubic damping
is partially influenced by the excitation RMS value but mostly affected by the frequency
content of the excitation, especially the high frequencies. To verify this hypothesis and
continue the investigation into the influence of the displacement amplitude at high

frequencies, the level of S, for the next simulation was reduced in proportion to the

excitation frequency squared or in other words constant velocity PSD or the CVR

excitation.

5.6.4 Fixed excitation velocity PSD level but different bandwidth

The plots of the excitation with constant velocity PSD (case iv) are shown again
in figure 5.8 using dashed lines. It is understood for the excitation with constant velocity
PSD that the level of displacement PSD reduces with the excitation frequency squared.
The excitation displacement RMS value is mostly contributed to by the displacement
excitation amplitude at low frequencies. For this instance, it was approximately equal to

1.25 mm for different excitation bandwidth.

The estimated velocity PSDs are shown in figures 5.8 (a) to (c). The response
characteristics for the system with linear damping (dotted lines) are similar. Also the

values of velocity standard deviation, o, are similar at about 52.4 mm/s. This is

because it is mostly contributed to by the response at low frequencies and around the
resonance frequency. The amplitudes of response at excitation frequencies high above
the resonance frequency are considerably negligible.

The estimated velocity PSDs for the system with cubic damping, shown by solid
lines in figures 5.8 (a) to (c), are seen to be influenced by excitation bandwidth similarly
to those reported in sections 5.6.2 and 5.6.3. The narrower excitation bandwidth results
in a lightly damped response. However, the response amplitude at excitation frequencies
below the resonance frequency is different from those subject to the CDR excitation. It
has similar amplitude with the excitation. This is believed to be a result of lower
amplitude displacement excitation at high frequencies. The level of estimated cubic

damping force PSD in figures 5.8 (f) is also considered very low compared to the linear
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damping force. This is similar to previous two scenarios that, for the cubic damping
system, the excitation with the absence of high frequencies results in a lightly damped

response.

In addition, figures 5.8 (a) to (c) reveal that the low displacement excitation
amplitude at high frequencies of the CVVR also results in a lower level of the response
outside the excitation bandwidth compared to those due to the CDR excitation. This
occurrence also supports the argument that the displacement amplitude at high

frequencies has a significant influence on the level of the cubic damping force.

However, one might not be able to conclude firmly that the excitation at high
frequencies is the main contributor to the effect of cubic damping. Therefore, the next
section reports the effect of cubic damping due to the special broadband excitation

characteristics.

5.7 Influence of two pass-band excitation

In addition to the excitations applied in section 5.6, input excitations in this
section were considered that have two pass bands. Whilst idealistic, it was introduced in
order to verify that displacement excitation at high frequencies is the most significant

contribution to the effect of cubic damping.

The first pass band was 1-250 Hz in all cases; the second pass band was chosen
as 250-500 Hz (i.e. one continuous pass-band), 500-750 Hz and 750-1000 Hz as shown
in figure 5.9. For the CDR excitation, figures 5.9 (a) to (c), the displacement RMS
values for these excitations are similar at about 1.25 mm. This is because the level of
estimated displacement excitation PSD was fixed and the total frequency bandwidth for
every case was the same. The estimated excitation with constant velocity PSDs are
shown figures 5.9 (d) to (f) whereas those in figures 5.9 (g) to (i) are the corresponding
excitation displacement PSDs. The displacement RMS value for the CVR excitation,
figure was also approximately equal to 1.25 mm since it was contributed to mostly by

the excitation at low frequencies.

Figure 5.9 shows that these excitations include different frequency contents
whilst sharing other characteristics, i.e. the total frequency bandwidth, the PSD level

(either displacement or velocity) and the displacement RMS value. Therefore, any
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difference in the broadband response can be identifiable as a result from the frequency

content of the excitation.

The responses due to these excitations are examined separately for the case of
constant displacement and constant velocity. Similarly to the previous section, the
examination will be carried out using the estimate PSDs of the absolute motion of the
isolated mass (either displacement or velocity) and the damping force. The results
obtained in this section will also be studied to highlight the influence of displacement

amplitude excitation at high frequencies later discussed in section 5.8.2.

5.7.1 Constant displacement amplitude random excitation

The displacement PSDs for these excitations are shown again in figure 5.10
using the dashed lines. The displacement PSDs for the responses are shown in
figures 5.10 (a) to (c) and cubic damping force PSDs are also shown in figures 5.10 (d)
to (). It reveals the noticeable difference especially at low frequencies below resonance.
The excitation with the absence of high frequency content produces a lower response
level at this frequency region, figure 5.10 (a). The response levels at these frequencies

are higher when excitation contains the higher frequency content, figure 5.10 (c).

The estimated cubic damping force PSDs show that the existence of high
excitation frequencies produces a higher level of damping force across all frequencies.

The value of o, is contributed to mostly by the damping force at high frequencies.

This occurrence is investigated and reported in detail in section 5.8 where the possible
reason for the effect on the level of damping is discussed. From the provided
information, the existence of displacement amplitude at high frequencies plays a
significant role in the effect of cubic damping. However, the next excitation scenario
with the same pass bands but using constant velocity was introduced in order to ensure
that this hypothesis is true.

5.7.2 Constant velocity amplitude random excitation

The estimated excitation velocity PSDs are shown in figure 5.11 using the
dashed lines. The estimated response velocity PSDs for the system with linear and cubic
damping are shown in figures 5.11 (a) to (c). The differences in the levels of velocity

PSDs and the values of response velocity standard deviation, o,, and o, , are
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considerably negligible. There is also no significant difference in the level of the
estimated linear and cubic damping force PSDs as shown in figures 5.11 (d) to (f).
There is no change in the response level due to the change of excitation bandwidth.
There is also no noticeable difference for the level of cubic damping forces and the

corresponding standard deviation among the cases.

This shows that, when the excitation is a constant velocity spectrum, changing
the bandwidth of high excitation frequencies does not significantly affect the overall
response. This is because the influence of displacement excitation at high frequency is
very small compared to those at low frequencies. This is in contrast to that for the CDR
excitation, where the displacement amplitude at high excitation frequencies plays a vital
role in the level of damping. A further examination and discussion into the effect of

cubic damping is also given in detail in section 5.8.

5.8 Analysis and further discussion on the effect of cubic damping

due to broadband excitation

There are two main concerns regarding the presence of cubic damping. The first
is the influence of the excitation displacement at high frequencies on the level of the
cubic damping force. The investigation for this is presented in sections 5.8.1 and 5.8.2.
The second is the occurrence of either the displacement response or damping force at
low frequencies outside the excitation bandwidth. This issue is presented in
section 5.8.3.

5.8.1 The response due to a displacement excitation at high frequencies

The examination in this section is introduced to verify that the displacement
excitation at high frequencies is a significant contribution to the level of effective cubic
damping. It is performed by using some results obtained from the previous sections
which include the responses due to:

(i) the CDR having fixed RMS with bandwidth of 1-100 Hz (section 5.6.3),
(if) the CDR with bandwidth of 1-250 Hz and 750-1000 Hz (section 5.7.1) and
(iii) the CDR having the bandwidth of 1-1000 Hz and RMS of 1.25 mm.
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The responses due to these excitations are chosen because the excitations share the same
RMS value of 1.25 mm whereas the frequency contents are different. The displacement
PSD and the damping force PSD for both linearly and cubically damped responses due
to these excitations are shown together again in figure 5.12. Note that the estimated
displacement excitation PSDs are different in level as a result of having the same RMS

value.

The figure shows that the frequency content in the excitation influences the peak
amplitude of estimate displacement response PSDs at around the resonance frequency.
The excitation with less frequency produces response similarly with the linearly lightly
damped response disregarding the excitation RMS value. It is clearer by considering the
estimate cubic damping PSD. It appears that the level of cubic damping force is directly
related with frequency content in the excitation. The excitation with high frequencies

and higher level, figure 5.12 (e), results in higher value of oy, compared to that with an

absence of high frequencies, figure 5.12 (d), or with high frequencies but lower level,
figure 5.12 (f).

Time histories for the responses due to the mentioned excitations are shown in
figure 5.13. The oscillations of both linearly and cubically damped response are seen
majorly at around the resonance frequency of 10 Hz, illustrated by dashed line. The
cubically damped responses are at a higher amplitude compared to the linearly damped
responses. The excitation with narrower bandwidth is found to produce negligible
amplitude of cubic damping force compared to the linear damping force, figure 5.13 (d).
It is in contrast to those due to excitations having broader frequency range,
figures 5.13 (e) and ().

To this end, one can conclude that the effective cubic damping is mainly
influenced by the displacement excitation at high frequencies. The absence of excitation
at high frequencies results in weak cubic damping. A possible reason for this

phenomenon is examined and reported in the next sub-section.

5.8.2 Analysis of the influence of high frequency content in the excitation

An examination into the influence of high frequencies carried out in this sub-
section was conducted into two parts. The first part was carried out using the numerical

responses due to the two pass bands excitations obtained from sections 5.7.1 and 5.7.2.
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Statistical analysis was employed to examine the relative velocity. The second part was
performed using theoretical expressions for the assumed random time response. Insight
into the effect of excitation at high frequencies is expected.

The responses from sections 5.7.1 and 5.7.2 are chosen for the first examination
because the excitation amplitude for each case was fixed to be the same, only the
excitation bandwidth was modified. The total number of frequencies in the excitation is
also comparable. Then the influence of excitation amplitude and number of frequencies

can be removed and only the influence of the frequency content can be observed.

The responses for the case of CDR are first examined. The significance of the
displacement excitation at high frequencies can be seen from the histograms shown in
figure 5.14. The difference of high frequencies results in different distribution and the

standard deviation for the relative velocity, o,,. The excitation with lower frequencies

produces a higher peak and histogram with narrower tails, figure 5.14 (a), compared to
that having higher frequencies, figure 5.14 (c). It can be implied that the existence of
displacement excitation at high frequencies causes a higher amplitude of relative
velocity. As a result, the density around the mean value is reduced and the tails are

wider.

In contrast, when an excitation with constant velocity spectrum is applied, there
is almost no difference in the histograms of the relative velocity, see figure 5.15. The
values of o, are similar and constant for this latter case. The distribution of relative
velocity is denser around the mean value with narrower tails compared to those for the
CDR excitation. This is identifiable as a result of the low amplitude of the displacement
excitation at high frequencies compared to those at low frequencies. As such, for the
CVR excitation, the presence or absence of displacement excitation at high frequencies

Is not so important and does not cause any difference to the value of o,,. However, this

is strictly valid only when the low frequency content is the same and produces the

comparable displacement excitation RMS value.

In addition, it is noticeable that the histograms for relative velocity are very
similar for the cases of linear and cubic damping, for the same excitation bandwidth and
characteristic, as shown in figures 5.14 and 5.15. Therefore, it is possible to determine

the relative velocity at which the linear and cubic damping forces are at the same level.
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By considering that the relative velocity for linear damping is equivalent to that for

cubic damping, one obtains

vl

AX=+ |
C3

(5.28)

The relative velocity given in equation (5.28) is plotted in figures 5.14 and 5.15 using
the vertical dashed lines. These lines are also displayed for both cases, CDR and CVR

in figure 5.16 which shows the force-velocity characteristics.

The force-velocity characteristic shows that the amplitude of cubic damping
force resulting from the CDR excitation is much higher than that for the CVR
excitation. The cubic damping for the broader bandwidth CDR excitation is even higher
as seen in figure 5.16 (c). This can imply that the broader excitation bandwidth results
in a higher level of cubic damping force. This can also cause the high amplitude of

spike as shown in figure 5.13 (e).

One can see that, when the CDR excitation was applied, the displacement

amplitudes at high frequencies play the vital role to the value of o,,. The presence or

absence and the amplitude of displacement excitation at high frequencies are important
consideration. However, the histogram does not clearly show how the existence of
displacement amplitude at high frequencies results in the different level damping

especially for cubic damping.

Therefore, for the second part, one can examine the effect of high frequencies on
the expression of relative velocity. The relative velocity resulting from the broadband

frequency excitation can be given by

A)’(=ZN:a)iZi sin(ot+4) (5.29)

where Z is the amplitude of the relative displacement as a function of frequency and ¢

is the phase lag of the relative response. N represents the number of frequencies inside

the excitation bandwidth.

The linear damping force at a particular excitation frequency can be obtained
directly from the product of ¢, and Ax. Therefore the amplitude of the linear damping
force is a scaled quantity of the relative velocity. In addition, the damping force at one
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particular frequency is only produced by excitation at the same frequency. The cubic
damping force can be obtained from the product of ¢, and (A)‘()3. The expansion of the

relative velocity cubed can be given by

(AX)° = ZN:{ga)iZi (iwfzfj—%a)fzf]sin(witwi,)

i=1 i=1

: (5.30)
_%zwfzf sin (3wt +3¢ )+ £(t)

i=1
where g(t) represents the responses at other frequencies resulting from the cubic

exponent apart from the first two frequency orders @, and 3w, .

The first term on the right hand side of equation (5.30) shows that the amplitude
of the relative velocity at a frequency i is contributed to by the amplitude of the relative
velocity at all N frequencies inside the bandwidth. The amplitude of cubic damping
force at a particular frequency is a consequence of this summation. The greater number
of high frequency content can cause a much higher level for the cubic damping force.
This is the difference from what happens for linear damping force.

To this end, one can conclude in general for cubic damping system that the
amount and amplitude of high frequency content can result in significant differences in
the level of the relative velocity cubed. The cubic damping force is as a result obtained
from this expansion. This is in contrast to the linear damping case where the linear

damping force amplitude at a particular frequency is obtained directly from the product

of ¢,wZ;. Thus the appearance of the cubic damping force for each excitation

bandwidth is noticeably different.

5.8.3 The response at low frequencies outside the excitation bandwidth

The occurrence of high amplitudes of the response outside the excitation
bandwidth for the cubic damping system is more noticeable when the broader excitation
bandwidth was applied. A result of exciting with the broader bandwidth is the
significantly higher amplitude of damping force as discussed in the previous section.
This high level of damping force can occur in the form of spikes or impulsive forces as

seen by the red lines in figures 5.13 () and (f).
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It is well known that an impulsive force can produce a broadband frequency
characteristic which reasonably flat over all frequencies. A shorter duration of pulse
produces a broader frequency spectrum and vice versa. The pulses occurring can have
different durations which can give different high frequency responses but always the
same or similar low frequency response. Therefore, large spikes of damping force can

result in the vibration response at low frequencies outside the excitation bandwidth.

Figures 5.17 (a) and (b) show levels for the relative velocity PSDs between the
linear and cubic damping responses due to the CDR and CVR excitation with the
excitation bandwidth of 1-1000 Hz respectively. The differences at the lower
frequencies below resonance inside the excitation bandwidth are apparent. This
occurrence can be identifiable as a result of impulsive force resulting from relative
velocity cubed. The occurrence of forces at these additional frequencies can be acting
on the isolated mass apart from the force from base excitation. These forces yield the
higher amplitude of isolated mass which results in response amplitude greater than the
amplitude of excitation at these frequencies. As a result, the velocity amplitude of
isolated mass is higher than that for excitation. It also yields the higher relative velocity

at low frequency region.

5.9 Conclusions

In this chapter the effect of cubic damping on a SDOF base excited vibration
isolation system was investigated using a variety of broadband excitations. Two
different random excitation characteristics, namely constant displacement amplitude
(CDR) and constant velocity amplitude (CVR) excitations were applied. The numerical
results were carried out using direct numerical integration. The excitation characteristics

were altered in terms of the amplitude and bandwidth.

The responses for the base excited vibration isolator possessing cubic damping
subject to either the CDR or CVR excitation is clearly dominated mainly by the input
displacement amplitude at high frequencies. Greater displacement amplitude at high
frequencies produces a higher level of damping force. Therefore, the base excited
vibration isolator with the cubic damping characteristic can encounter a detrimental
effect. It is considered detrimental since the result of cubic damping can cause higher
vibration amplitude for the isolated mass at low frequencies below the resonance as well
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as in the expected isolation region. The absence of displacement input at high
frequencies also results in the low level of cubic damping force which also results in a
high peak amplitude around resonance.

Although the existence of displacement at high frequency increases the level of
cubic damping force, it does not significantly reduce the peak response around
resonance but increases the response at lower frequencies as mentioned earlier. The
high vibration response level at low frequencies outside excitation bandwidth is
identifiable as being a result of impulsive damping force. Such the force is a consequent
result of taking the relative velocity to the power of three. It can be concluded that the
occurrence of responses at low frequencies outside the excitation bandwidth are due to

these impulsive damping forces.

To this end, the investigation into the effect of cubic damping due to broadband
excitation reflects some behaviour that might happen for the nonlinear damping base
excited vibration isolation. Therefore, consideration of the amplitude and bandwidth of
the input excitation has to be taken into account.

The effect of cubic damping has proved theoretically detrimental on the base
excited isolation system due to either harmonic or broadband excitation. The level of
cubic damping force has been found to be a possible reason. However, to ensure that the
theoretical results are acceptable and reliable, the next chapter is about to report the
experimental results for both harmonic and broadband random excitation.
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Figure 5.9 Estimate PSD for the two pass-band excitations.

Bandwidths for the constant displacement amplitude excitation are

(a) 1-500 Hz, (b) 1-250 Hz plus 500-750 Hz and (c) 1-250 Hz plus 750-1000 Hz.
The similar bandwidths are also applied to the constant velocity amplitude
excitation which are presented using velocity PSD in figure (d) to (f) respectively.
Figures (g) to (i) respectively present the corresponding displacement PSD for the
CVR excitations.
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The vertical dashed lines represent the relative velocity where the linear and cubic
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two pass-band excitation frequency for both CDR and CVR excitations.
e Linear damping force
e  Cubic damping force
Vertical dashed lines represent the relative velocity which the amplitudes of linear
and cubic damping forces are equal, i.e. AX=8.785 m/s for the case of CDR
excitation and AX = 0.435 m/s for the case of CVR excitation.

152



Simulation of a cubically damped vibration isolation system subject to broadband excitation

Constant displacement amplitude Constant velocity amplitude
random excitation random excitation
(a) -10 (b) -10
20 1 20
[a) = o —
¢ 2 1 o ¥ 30 1
> O > O \
= un i = 2 _ | |
3 E 8 ™
g E g E
o - 1 o — -50f
= Z @
© ©
g8 R
-70 citati i ] -707 Excitation bandwidth 1
g E:x0|t?1t|on bandwidth >\ /( : >
-80 0 : i1 2 3 -80 “":o I ”m“il I ””“”2 0 3
10 10 10 10 10 10 10 10
Frequency [Hz] Frequency [Hz]
Relative velocity PSD
(©) 20 = (d) 20
¥ g
o 10t E 10t
; —
— S 9
o 0 2 of
= =)
@ -10f 2 10} N ]
s |1 e % f M,L
5 -20} ! :
8 S -20t :
(@] (= :
c o >
8 .30t : g £
£ Excitation bandwidth | g 30y st _ 1
a) I > 3 < EXxcitation bandwidth y,;
40 Lol . a] s i
10° 10" 10° 10° 40 = ) 2 3
Frequency [Hz] 10 10 10 10

Frequency [Hz]

Damping force PSD

Figure 5.17 Plots of the PSD of the relative velocity and damping force in comparison for the
response subject to a constant displacement amplitude and constant velocity
amplitude random excitation.

(a) and (b) Estimate PSDs for the relative velocity
(c) and (d) Estimate PSDs for the damping force
-------- Linearly damped response

—— Cubically damped response

—-—- Excitation bandwidth

————— Excitation frequency at around resonance

153






Chapter 6 Experimental validation and analysis

6.1 Introduction

From the preceding chapters, the degree to which cubic damping influences the
level of effective damping of the system was found to be dependent upon both the
amplitude and bandwidth of the excitation. It proved to be detrimental for a constant
displacement amplitude harmonic base excitation where an increased response occurred
in the isolation region. It is also detrimental for broadband excitation for which high
response was witnessed at low frequencies even outside the excitation bandwidth. These
cubic damping effects are examined experimentally here.

The experimental study was implemented using an electrodynamic shaker. The
rig was designed to exhibit a SDOF response characteristic under base excitation. Cubic
damping was implemented using active damping with a simple velocity feedback. Two
base excitation characteristics namely harmonic and broadband excitation were
employed. The focus of this chapter is to examine and report the effects of cubic
damping in comparison to the theoretical results. The responses for system with cubic

damping are also examined in comparison to that with linear damping.

The experimental results obtained confirm the detrimental effects of cubic
damping on a base excited SDOF isolation system. They are consistent with those
reported theoretically. The physical reasons for the detrimental effect due to the
presence of cubic damping for base isolation are also reported. These results show

significant contribution of cubic damping to the detrimental effects.

6.2 Design and considerations of experimental rig

The key design parameters were the natural frequency and mode of vibration of
an experimental rig. The experimental rig should exhibit an obvious single resonance
frequency as assumed theoretically. In addition, there should be sufficient frequency
separation of the first resonance frequency and subsequent modes. According to the

theoretical approximation for harmonic excitation, the detrimental effect for a particular
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value of cubic damping can be seen at a frequency around ten times higher than the
fundamental resonance frequency. So, higher modes should be at frequencies higher
than this. For practical instrumentation reasons the natural frequency of the rig should
not be too low due to the ability of the available exciters and instrumentation.

A vertical realisation was chosen, to possess only a vertical vibration mode. The
occurrence of other possible modes, for example rotating or pitching modes, should be
eliminated or minimised. The components used in the experiment should also be
consistent with the theoretical assumptions, for example the assumptions of linear
massless springs and massless damping. These basic requirements led to the design of

the rig which is described in detail in the following section.

6.2.1 Rig design and set up

The design of the rig was based on an assumption of a SDOF simple mass,
spring and damper system. The damping component in the isolation was implemented
using an electrodynamic shaker which also formed part of the isolated mass. A drawing
of the experimental rig is given in figure 6.1. An active damper was introduced using an
LDS electrodynamic shaker (model VV101). It has a mass of 0.91 kg with an axial
suspension stiffness of 3.15 kN/m as informed in technical specification. The shaker
was mounted on an aluminium plate of mass 0.5 kg and led to a total mass of 1.41 kg.
The combined unit of shaker, aluminium plate and force transducers A and B formed

the isolated mass which was supported by two helical springs.

Since the system mass was supported by two helical springs, an existence of a
pitching mode of the rig rotating about its centre can be anticipated. To reduce the effect
of any pitching mode, the pitching frequency was designed to be lower than the bounce
mode frequency and this was achieved by reducing the distance between the two
isolator springs. The rig natural frequency was initially chosen to be close to 10 Hz. A
pitching frequency was initially set at 4 Hz. This yielded the distance between two
helical springs to be 93 mm, symmetrically positioned about the centre of the plate.
Later for manufacturing convenience, this distance was simplified to 80 mm as shown

in figure 6.1 and resulted in a new calculated pitching frequency of about 3.45 Hz.

As the rig natural frequency of 10 Hz was chosen, a total value of the
corresponding vertical stiffness should be 5.53 kN/m. Therefore the total stiffness of
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two the helical springs should be equal to 2.42 kN/m or 1.21 kN/m each. It is assumed
that the properties and geometry of these two helical springs were identical. However,
the practical value of the total stiffness of the two helical springs was measured. The
measured data are plotted as the load-deflection characteristic shown in figure 6.2 using
circle markers. The method of linear regression was applied to the measured data and
the total stiffness was found to be 1.94 kN/m. Thus the total vertical stiffness of the
isolation was 5.09 kN/m. Hence the natural frequency of the bounce mode should
presumably be 9.56 Hz.

After manufacturing and assembly, the actual isolated mass was found to be
1.50 kg approximately. Thus the undamped natural frequency of the system becomes
9.27 Hz. This also resulted in a static deflection of the two helical springs, with no
stinger connection, of 7.6 mm. The static deflection was greater than the displacement
limitation of the shaker, which is 2.5 mm. Therefore the springs are always in
compression. The stinger was then inserted to connect the shaker and the base at this

static equilibrium position. Thus the shaker does not have to take the static load.

Figure 6.3 shows a schematic physical model. The schematic illustrates that the
isolated mass is physically supported by the two helical springs and the passive

suspension of the shaker. The damping force was obtained from the electromagnetic

force, F,, which was acting between the permanent magnetic (shaker body) and the

armature. The armature was considered very light compared to the isolated mass and
was connected to the force transducer C by a stinger. This connection was assumed
infinitely stiff in the vertical direction compared to the axial suspension stiffness. Thus

one might anticipate the damping force F, transmitted to the force transducer C is not

affected by the armature mass.

6.2.2 Experimental rig characterisation

The experimental rig, with no active damping implementation, was initially
tested under white noise random base excitation. The excitation signal was generated
using the B&K Noise Generator type 1405 with a 20 kHz frequency bandwidth. Both
excitation and response signals were acquired and processed using a DataPhysics
Dynamic Signal Analyser. The upper frequency of the analyser was set to 400 Hz with a
sampling frequency of 1024 Hz automatically chosen by the analyser (2.56 times of the
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upper frequency). A frequency resolution was set to 0.25 Hz, corresponding to a record
length of 4 s. A Hanning window was applied to the acquired signals with 75% overlap

and 300 averages for the spectral estimates.

The acceleration responses of both the base and the isolated mass were captured
using the B&K charge type piezoelectric accelerometers model 4375 and B&K Charge
Amplifiers Type 2635. A transmissibility function for the system is shown in figure 6.4.
It appears to resemble fairly well a SDOF system over a frequency range of 7-100 Hz,
shown by the dashed lines in figure 6.4 (a), with an obvious resonance peak around
11 Hz. Figure 6.4 (b) shows the comparison of the phase between the base excitation
and the isolated mass. The theoretical prediction fits fairly well in the frequency region

below and around the resonance frequency. The prediction tends to — /2 radians at

higher frequencies whereas that for experimental data is constant at around —~ radians.
This may be a result of hysteretic damping of the passive system. The coherence
function shown in figure 6.4 (c) also appears reasonably acceptable for this frequency

range.

Other resonances appear at frequencies approximately equal to 211, 222, 300 and
340 Hz. The first two frequencies were identifiable as the internal resonances of the
isolator springs, the detail of which is given in section 6.2.4. The latter two frequencies
could be the higher modes of the rig. Hence a suitable frequency range for investigating

the effect of cubic damping on this rig was about 7-100 Hz.

The bounce mode natural frequency and damping ratio were estimated from the
measured transfer functions. These parameters were calculated and compared using two
different tools, i.e. a circle fit method [74] and a MATLAB function ‘invfreqgs’ [75,76].
In order to do the modal fit, the measured motion transmissibility was rearranged to

form the receptance of the system when it is clamped to the base, i.e.

H (a)):iz{m—l} (6.1)

@’ | X, (o)

where o is an excitation frequency, X (w)and X, (w) are the measured displacement

amplitude of the isolated mass and the base excitation respectively. Equation (6.1) has

the form of the receptance scaled by the system mass.
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Details of the circle fit method and the MATLAB function “invfreqs’ are
described in Appendix D. The estimated results from these two techniques appeared
similar and consistent. A natural frequency of 11 Hz and the corresponding passive
linear viscous damping ratio of 0.04 were obtained. A plot shown by a dashed line in
figure 6.4 (a) reveals that the estimated linear lightly damped SDOF system fits the

experimental data reasonably well.

6.2.3 Implementation of active damping

The active damping was implemented using an electrodynamic shaker with a
simple velocity feedback. Note that, the active damper in this study was only
implemented to represent a linear or nonlinear damping characteristic. The implemented

active damper was not intended to act as a control strategy.

The vertical damping force was produced as a result of the feedback signal to the
shaker and the desired level was achieved by adjusting the shaker amplifier gain. The
role of the variable gain of the shaker amplifier is to adjust the damping coefficient. It is
a factor multiplying the amplitude of a processed signal (relative velocity or relative
velocity cubed). The processed signal was obtained by processing the acquired velocity

of the base and isolated mass with the control schematic shown in figure 6.5.

The velocity was obtained by integrating the measured acceleration using the
charge amplifiers where the low cut-off frequency was set at 1 Hz. The data processing
unit produced the relative velocity determined from the difference in the velocities. Any
arbitrary damping configuration, for this instance, the linear and cubic damping
configurations can be reproduced. The processed signal was fed to the shaker amplifier

to produce the desired damping force level by the shaker.

6.2.4 Internal resonance of helical spring

Theoretically, the isolator was assumed to comprise a massless spring. Also, the
geometry of the spring was not considered. However, practically the mass of the spring
cannot be neglected and the geometry of the spring is important. One possible behaviour
of the actual helical spring is the internal resonance of the spring itself which is

dependent on its physical mass and geometry. The h™ internal axial resonance frequency
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of a spring, placed between two flat and parallel surfaces, can be determined from
[77,78]

f, L h=12,.. (6.2)
2 mhs

where k. and m, are the stiffness and the mass of the helical spring respectively. The

stiffness and the mass of the spring can be determined from its geometrical and material

properties which are respectively given by

Gd*
k = 6.3
hs 8D3Na ( )
72 pN.Dd?
m, - 2NDd 6.4

where G is the shear modulus, d is the wire diameter, D is the outer diameter of the
spring, N, and N, are the number of active and total coils respectively. p is the density

of the spring material. The predicted internal resonance frequency for the helical springs
used was about 206 Hz. Therefore the appearance of two resonance peaks around 211
and 222 Hz were identifiable as a result of internal resonances of the springs, assuming

a slight variation between them.

6.2.5 Spectral analysis of the experimental results

The experimental results for the two excitations under study, i.e. harmonic and
broadband excitation, are analysed by means of spectral analysis. For the case of
harmonic responses, the Fourier coefficients at the fundamental frequencies were
determined from the time histories of both the base excitation and the isolated mass
response. Then these quantities were employed to construct the amplitude ratio. The

methodology to obtain the Fourier coefficients was given in section 2.4.3.

For the case of broadband excitation, the amplitude spectrum and hence the
power spectral density (PSD) were obtained from the analyser. Then the estimated

transfer function can be obtained. In this study, the experimental data was acquired only
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in the form of auto-PSDs then the estimated transfer function H, was applied which is
given by

Sy

H,| = (6.5)

XX

where S and S, are the averaged auto-PSDs for the response and excitation

respectively. In addition, the estimated transfer function H, and H, are not considered
here. This is because they are suitable to estimate a transfer function for the system
which the output and input are linearly related. This is because the estimator H,
disregards the effects of nonlinearity present in the output. Similarly, the estimator H,

disregards the input which is not linearly related to the output.

6.3 Harmonic excitation

The experiment covered the frequency range of 7-100 Hz. A sampling frequency
of 1024 Hz was chosen to avoid aliasing from higher odd harmonics in the response due

to the non-linearity.

6.3.1 Choice of amplitude for harmonic base excitation

The level of excitation amplitude was chosen considering the relative
displacement between the isolated mass and the base for which was limited to 1.25 mm

peak due to the 2.5 mm stroke of the shaker.

The amplitude of the relative displacement between the isolated mass and the
base input can be calculated from

Z = \[X?—2XX, cos(g)+ X2 (6.6)

where Z is the amplitude of the relative displacement, X and X, are the displacement
amplitude of the isolated mass and base excitation respectively. ¢ is the phase lag

between the isolated mass and the base which was assumed to be 90° for the response

around the resonance frequency. Therefore equation (6.6) is simplified to
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Z2=X?+ X2 (6.7)

The amplitude of base excitation was initially considered using the response of

the passive system as shown in figure 6.4 (a). The peak amplitude of the transmissibility

is about 20 dB ( X =10X,). The peak amplitude of 20 dB was assumed as the worst

case scenario for the passive system (without active damping configuration). The peak
amplitude was lower when the active damping was applied. The relative displacement,
Z =0.625 mm ,was also chosen initially to determine the excitation amplitude. Hence

an amplitude of the base excitation, X,=0.062 mm, was obtained from equation (6.7).

For simplicity, the desired levels of the constant displacement excitation were
assigned to be 0.060 mm and 0.040 mm for high and low excitation amplitude. The
relative displacements around the resonance frequency for these excitation levels were
expected to be about 0.603 mm and 0.402 mm respectively. In order to achieve these
excitation levels, the amplifier gain for base excitation was manually adjusted until the
desired excitation level was obtained. Also to minimise the effect of transient response,
the system was allowed to be excited around 60 seconds before the start of signal

acquiring process.

In addition, the relative displacement for the system was expected to be lower
when the active damping was applied. However, the input displacement with constant
amplitude of 0.060 mm could not be achieved for the excitation frequencies above 80
Hz. This was limited by the shaker capability. So the maximum excitation frequency for

the harmonic base excitation with amplitude of 0.060 mm was set to 80 Hz.

The other scenario considered for harmonic excitation was to apply a constant
velocity amplitude excitation. The amplitude of excitation velocity at 11 Hz (the
resonance frequency) corresponding to the displacement excitation of 0.060 mm was
considered. It was about 4.147 mm/s or 4 mm/s for simplicity. This excitation amplitude
was assigned to be the low excitation amplitude. The high excitation amplitude was set

to have velocity amplitude of 6 mm/s.

The experimental responses for harmonic excitation were carried out with linear
and cubic damping implementations. There were two scenarios applied for either

damping case. The first scenario was to excite the system with different excitation levels
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for a fixed feedback gain. The second scenario was to fix the excitation amplitude

whilst different levels of damping were applied.

6.3.2 Implementation of linear damping

The experiment on the linear damping configuration was carried out to ensure
consistency of the experimental and theoretical results. It could also show reliability of
the experimental rig. For the first scenario, the excitation amplitude of 0.04 mm was
initially applied. The level of feedback gain was adjusted to result in a peak amplitude
ratio of about 10 dB and was kept at this position. Then the excitation amplitudes of
0.06 mm, 4 mm/s and 6 mm/s were applied sequentially for which the results are shown

using an amplitude response in figure 6.6.

Theoretically, the amplitude ratio for a particular linear system should be
identical and independent of the excitation characteristics. Consistently, figure 6.7
shows that the corresponding amplitude ratios for the four excitations are in excellent
agreement with the theoretical linear transmissibility (solid lines). Note that, the
theoretical plot was calculated using the estimated value of the damping ratio,

¢,= 0.17, and natural frequency, 11 Hz. These values were also obtained by applying

either the circle fit method or Matlab function “invfreq’ to the measured data when

active damping with linear damping configuration was applied.

The second experiment for linear damping implementation was carried out by
exciting the system only with the displacement excitation amplitude of 0.04 mm. The
level of feedback gain was adjusted to result in an amplification peak amplitude of
15 dB and 10 dB respectively. The resulting amplitude ratios in figure 6.8 are consistent
with the theoretical transmissibility for a linear system. These results reveal that the

different levels of damping did not affect the linearity of the experimental rig.

Note that, the experimental responses for the linear damping configuration
shown in figures 6.6 to 6.8 show amplitude variation at the excitation frequency around
20 Hz. These occurrences were identified to be a result of system asymmetry. An
investigation showed that the translation of the isolated mass was not perfectly vertical.
Such behaviour occurred between the excitation frequencies of around 14 to 24 Hz. It
was possible to minimise this behaviour by adding the counter mass or by adjusting the
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location of an accelerometer. However, this behaviour was found not to affect the

response at high frequencies as shown in the figures.

To this end, for the linear damping configuration, changing either the level of the
input excitation or value of damping did not cause any significant difference between
the experimental and theoretical results. There was no nonlinear characteristic within
the frequency range of interest when the linear damping configuration was assigned.
Therefore, the experimental rig had an acceptable performance to continue the

experiment on cubic damping implementation with some confidence.

6.4 The cubic damping implementation for harmonic excitation

The theoretical approximations for harmonic excitation in Chapter 3 showed that
the value of non-dimensional cubic damping term is dependent upon the excitation
amplitude squared. Higher excitation amplitude results in a greater value for the non-
dimensional cubic damping. The higher cubic damping causes the response amplitude in
the isolation region to rise up towards the excitation amplitude at lower frequencies. In
contrast, theoretically, the presence of cubic damping proved more beneficial when the
input is a constant velocity amplitude. Thus there were three main issues to be validated
regarding the effects of cubic damping for harmonic excitation:

i) the excitation amplitude dependence property of cubic damping,

i) the occurrence of a high response level in the isolation region for constant
displacement amplitude excitation and

iii) the beneficial effect of cubic damping for a constant velocity amplitude
excitation.

The experimental investigation was conducted into two base excitation scenarios,
the same as those applied for linear damping implementation. The cubic damping
configuration was implemented by taking the relative velocity to the power of three

which was accomplished by the data processing unit.
6.4.1 Influence of excitation amplitude on the effect of cubic damping
(fixed feedback gain and different excitation levels)

The four different excitations previously mentioned were sequentially applied

with a fixed level of feedback gain for cubic damping. The level of feedback gain was
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initially chosen to achieve a 15 dB peak amplitude ratio for the excitation amplitude of
0.04 mm. Later, the level of feedback gain was kept at this position for the other

excitation levels and characteristics.

The amplitude response for the inputs shown by solid lines in figure 6.9 are seen
to produce different response characteristics. It is more noticeable for the responses due
to a constant displacement amplitude excitation. This is unlike the linear damping case
where the response characteristics are similar and only different in terms of level,
figures 6.6 (a) and (b). It is more convenient to present these responses using an
amplitude ratio as shown in figure 6.10 where the displacement of the isolated mass is

normalised by that of the input.

The amplitude ratios reveal that the change in either the level or the
characteristic of the input influences the level of effective cubic damping and hence the
response characteristic. The corresponding amplitude ratios show an agreement with the
definition of non-dimensional cubic damping given in equation (3.5) and given here

again, i.e.

£y =20 X (6.8)
m

This shows that the level of non-dimensional cubic damping is directly proportional to
the excitation amplitude squared. It appears in figure 6.10 that the level of the resonance
peak is lower when higher excitation amplitude was applied. An interpretation of a
lower level of peak response can be referred to as a higher level of damping. Thus the
experimental appearances are consistent with the theoretical definition given in

equation (6.8).

In addition, the amplitude ratios for the cubically damped responses due to
different constant velocity excitation amplitude are shown in figure 6.10 (b). These are
unlike the linearly damped response which is independent of excitation characteristic.
Different excitation level produces different cubic damping responses around the
resonance frequency whereas the amplitude ratio at high excitation frequencies appears
to be independent of excitation amplitude. This is because the corresponding
displacement amplitude, for a constant amplitude velocity input, drops with increasing

frequency by 20 dB per decade, a lower level of damping results, given by equation
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(6.8) and hence a lower cubic damping force. This is also in agreement to the HBM

conclusions presented in Chapter 3.

6.4.2 Response for different cubic damping levels
(fixed excitation level and different feedback gains)

For this scenario, the system was excited only by a displacement amplitude of
0.04 mm. The feedback gain was adjusted to achieve the peak response as in the linear
case, i.e. around 15 dB and 10 dB for low and high level of damping respectively. By
doing this, the effect of cubic damping for the frequencies above resonance could be
distinguished from the linear case.

The comparison of the amplitude ratios for these experiments and theory (HBM)
are shown in figure 6.11. It is seen that the theoretical approximations (using dotted
line) appear similar to the experiment results, especially the increasing response at high
frequencies. When a higher level of damping was applied the frequency at which the
amplitude ratio increases is lower. The appearance of such behaviour is consistent with
the theoretical approximation for excitation frequencies much higher than resonance,

i.e. Q>1, as given in table 3.2 and here again by

(6.9)

The theoretical approximation shows that a greater value of non-dimensional cubic

damping results in a lower frequency for the turning point.

The appearance of the higher response level, when Q >1 for the constant
displacement excitation was described theoretically in terms of a damping force given

by equation (3.44), i.e.

F,~Q? (6.10)
This damping force increases proportionally to the excitation frequency squared and

supported using numerical simulations shown in figure 3.6.

The consideration of the cubic damping force was also investigated
experimentally. The experimental rig was designed to capture the isolation force acting

on the isolated mass. Force transducers A and B, figure 6.1, captured the restoring
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forces which were a result of the helical springs. The force transducer C in the middle
captured the force produced from the active damper. The force acquired from transducer
C was the summation of the internal passive actuator restoring force and the active
damping force and is given by

fr=c (X—% ) +k (X=%)+f (6.11)

a

where f; is a summation of the forces produced by the active damper or the shaker.
¢, and k; are the passive damping coefficient and stiffness of the shaker suspension. f,

is the additional damping force.

For this instance, the mass of the force transducers are not negligible with respect
to the mass of the system. So an inertia force resulting from the transducers must be
considered. This means that the force acquired from the transducer C included the
inertia force resulting from its own mass. The measured forces for the case of linear and
cubic damping obtained from the transducer C are shown in figure 6.12. This figure
shows that the force in the isolation region for the case of cubic damping increases at a
more rapid rate compared to that for the linear case. This is in accordance with the

theoretical approximation.

The level of damping force increases to higher levels for high frequency
excitation. From these experimental results, the results using the HBM approximation
made in Chapter 3 are reasonably acceptable and validated. The detrimental effect of
cubic damping for base excitation is considered physically as the result of the high level
of damping force being produced at high excitation frequencies. One can conclude that
the theoretical results showing the effect of cubic damping are validated experimentally.

6.5 Experimental setup for random broadband excitation

6.5.1 Time and frequency resolution

The experiment on broadband excitation was also conducted using a sampling
frequency of 1024 Hz and a frequency resolution of 0.125 Hz. A corresponding Fourier
transform of 8 s of data was a result. The Hanning window with 75% overlap and 300
averages were applied to the recorded data in order to minimise the leakage and recover

the data lost after the application of the Hanning window. A total recording time of
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600 seconds was obtained as a result of these configurations. The corresponding BT

product was equal to (1.44/8)(600) = 108 which is considerably larger than unity.

Therefore, the statistical deviation in either the estimated power spectral density (PSD)

or the amplitude spectrum is expected to be minimal.

6.5.2 Interpretation of the broadband random excitation

The base excitation was defined to be random broadband with the frequency
bandwidth of 7-100 Hz. The random broadband excitation was implemented and
controlled using the LMS Test.Lab (12A) Random Control workbook where the
excitation profiles were assigned. The closed-loop control using acceleration feedback
was applied to control the level and profile of base excitation. Two excitation
characteristics were considered following the theoretical investigation given in
Chapter 5, i.e. the constant displacement amplitude random (CDR) and constant
velocity amplitude random (CVR) excitations. The linear and cubic damping
characteristics were implemented using the same conditions as those applied for the

experiment on harmonic excitation.

The broadband excitation amplitude was set in accordance to the displacement
excitation RMS value for the case of harmonic excitation for which the maximum
displacement amplitude was equal to 0.060 mm. The displacement RMS value for such
excitation was about 0.042 mm. Thus the displacement RMS value for the random
excitation with the bandwidth of 7-100 Hz was chosen initially to be about 0.042 mm
for both CDR and CVR excitations.

However, the practical values for the excitation RMS values were about
0.044 mm for CDR and 0.046 mm for CVR excitations. The displacement amplitude
spectra for these excitations are plotted using the solid lines in figures 6.13 (a) and (b)
respectively for CDR and CVR. The displacement spectrum level for the CDR
excitation appears to be about -50 dB re 1 mm (0.003 mm). The amplitude spectrum for
the CVR is also presented using the displacement amplitude spectrum which can be
converted to the velocity amplitude spectrum. The corresponding velocity amplitude for
the displacement RMS value of 0.046 mm is about -7 dB re 1 mm/s (0.45 mm/s). The
excitations at these levels were assigned to be the reference levels for each excitation

scenario.
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Three investigation scenarios were conducted regarding the theoretical study

reported in Chapter 5 and are given as follows.

Case (i) Two additional amplitude levels of excitation, i.e. 3 dB higher and lower
than the reference levels, were applied in order to examine the influence of excitation
amplitude on the effect of cubic damping. These excitation levels are shown in
figures 6.13 (a) and (b) using dotted lines.

Case (ii) The excitation bandwidth was reduced to 7-75 Hz, 7-50 Hz and
7-25 Hz as shown using dotted lines in figures 6.14 (a) and (b) for the CDR and CVR
excitations respectively. This excitation scenario was performed in order to determine
the influence of the frequency content. The excitations with the bandwidth of 7-100 Hz

defined as the reference level in case (i) are also displayed by the solid lines.

Case (iii) Additional high frequency contents with the bandwidth of 25 Hz were
added to the excitation frequency of 7-25 Hz as shown in figure 6.15. The additional
bandwidths were 50-75 Hz and 75-100 Hz. These excitation characteristics were
introduced in order to examine the influence of the high frequencies. The responses for
these excitation bandwidths are examined in comparison to those for the excitation
bandwidth of 7-50 Hz (which consists of two consecutive bandwidths, i.e.7-25 Hz and
25-50 Hz). These excitations share the similar displacement excitation RMS value of
about 0.031 mm for CDR excitation and 0.042 mm for CVR excitation.

Note that, in figure 6.15, a noticeable spike appears at 50 Hz for the figures for
excitation bandwidth of 7-25 Hz plus 75-100 Hz. This spike can be identified as the
effect of interfere from electric power supply which has the frequency at
50 Hz. As a result, there appears a second harmonic at 100 Hz in the figures for
excitation bandwidth less than 100 Hz. However the amplitudes at these frequencies due
to interfere were very small compared to the amplitude of the excitation signal.
Therefore, there would not be any significant effect to the characteristic of the

responses.
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6.6 Broadband responses and discussions

The experiment on random broadband excitation was conducted in order to
confirm the theoretical findings, i.e.

i) the occurrence of high response level at low frequencies outside excitation
bandwidth,

il) the excitation amplitude dependence and

i) the influence of excitation on the level of effective cubic damping.
The broadband responses due to four experimental scenarios were carried out. The first
scenario involved exciting the system using a fixed excitation amplitude and is reported
in section 6.6.1. The other three scenarios were to maintain the level of the damping
coefficient (feedback gain) at a certain level whilst the different excitations mentioned
in section 6.5.2 were applied. The broadband responses for these excitations are
reported in sections 6.6.2 to 6.6.4.

6.6.1 The influence of feedback gain on the level of effective damping

The linear and cubic damping responses reported in this section were obtained
from the application of the CDR excitation with a RMS value of 0.044 mm and
bandwidth of 7-100 Hz. The feedback gain, which represented the physical damping

coefficient, was adjusted to produce a peak amplitude of H; around 15 dB and 10 dB

for low and high damping levels respectively. Note that, the feedback gain is referred to

hereafter as the damping coefficient.

The linearly and cubically damped responses for different damping coefficients
are shown in figure 6.16 using the amplitude spectra. The corresponding estimated
transfer functions are also shown in the figure. It is apparent that the response
characteristics for both linear and cubic damping are similar. There is no significant
difference within the excitation bandwidth. The level of response spectra at high
frequencies does not increase as for harmonic excitation. One can also see that
increasing the value of either the linear or cubic damping coefficient reduces the

response around the resonance frequency.

However, the difference between linearly and cubically damped responses is

noticeable at low frequencies outside the excitation bandwidth. The level of cubically
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damped response in this frequency region is higher compared to the linear damping case
and seems to be dependent upon the value of cubic damping coefficient. This
characteristic appeared consistently in the results obtained from numerical simulation
shown in Chapter 5 and is identifiable as a result of raising the relative velocity to the
power of three. Therefore, the theoretical numerical results obtained in Chapter 5 are
experimentally validated where cubic damping produces response at low frequencies
outside the excitation bandwidth. Thus, one should be aware of such detrimental
behaviour for the practical systems where the value of damping nonlinearity could not
be identified.

6.6.2 The effect of the excitation level on the effective damping

The numerical simulations in Chapter 5 showed that the level of excitation
resulted in different levels of effective damping. It was concluded that the effect of
cubic damping is mostly contributed to by the amplitude of displacement excitation.

Therefore, the investigation into the influence of excitation level was then implemented.

Three excitation amplitudes given in section 6.5.2 case (i) were applied. Only the
high level of damping coefficient was applied for this experimental scenario. By
considering the response for the CDR excitation, shown in figure 6.17, one can see the
difference in the levels of the peak between the linear (dotted line) and cubic (solid line)
responses. It is shown in the graphs of H, that the peak amplitude for the linearly
damped responses are almost at the desired amplitude of 10 dB. In contrast, the peak
amplitude for the cubically damped response appears inversely related to the excitation
level. A higher peak amplitude occurs for a lower excitation level and vice versa for a
higher excitation level.

The responses for the CVR excitation are shown in figure 6.18. Similar to the
case of CDR, the peak amplitude in the graphs of H, for the system with cubic damping
due to excitation with RMS displacement of 0.046 mm was tuned to be around 10 dB.
Then the level of cubic damping coefficient was kept fixed for the other excitation

amplitudes which were +3 dB from the reference level.

It was observed for the cubically damped system that to obtain the peak response

around 10 dB, the cubic damping coefficient was increased by orders of magnitude

171



Chapter 6

compared to the case of CDR. This is different to linear damping where the damping

coefficient is unaltered. This is also consistent with numerical simulations in Chapter 5,
where the values of ¢, for CDR and CVR to produce the same level of resonance peak

are very different.

To recap, the response for this experimental scenario appeared as expected.
There should be a higher peak ratio for the lower excitation level and a lower peak ratio
for higher excitation level. This is consistent with the theoretical results interpreted in
Chapter 5.

6.6.3 The effect of the excitation bandwidth on the effective damping

Chapter 5 showed that the presence or absence of displacement input at high
frequencies contributed to the level of effective cubic damping. Four excitation

bandwidths mentioned in section 6.5.2 case (ii) were applied. Similarly to before, where
only a single high damping level was applied, the peak amplitude in H, for the

excitation at a reference level, i.e. excitation with bandwidth of 7-100 Hz, was chosen to
be around 10 dB.

The results for the CDR excitations are shown in figure 6.19. It is seen that the
response for the narrower bandwidth excitation exhibits a higher peak level. This
indicates a lightly damped response. This is due to the absence of displacement

excitation at high frequencies which is also consistent to comments in Chapter 5.

The results for the CVR excitations are shown in figure 6.20. The narrower
excitation bandwidth, i.e. 7-25 Hz, also resulted in a higher peak response level. A
broader excitation bandwidth produced a higher level of effective damping. However, in
this case (CVR compared to CDR) the excitation at high frequencies is less significant.

When the amplitude spectra for the CDR excitation, figure 6.19, and CVR
excitation, figure 6.20, are compared the differences at low frequencies outside the
excitation bandwidth are noticeable. Considering for the same excitation bandwidth,
those for the CDR excitation are considerably higher than those for the CVR excitation.
Hence the presence or absence of displacement excitation at high frequencies not only
contributes to the peak response level, but also the response at low frequencies. These
results also validate the numerical simulations presented in Chapter 5.
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6.6.4 The effect of the displacement excitation at high frequencies

The excitations given in section 6.5.2 case (iii) were applied. The obtained
results are shown in figure 6.21 for the CDR excitation. It is seen in figure 6.21 (c) that
the level of peak response for the excitation with higher frequencies is lower (the levels
are indicated by horizontal dashed lines). In contrast, for the CVR excitation, as shown
in figure 6.22, the peak amplitudes are almost at the same level. This is because the
amplitudes of the high frequency displacement content included in the excitation are
relatively small compared to those at low frequencies. This is also shown by the

standard deviation for the displacement, o, , and velocity, o,, , annotated in the

figures. The values of standard deviation for both the displacement and velocity are not

significantly different amongst the cases.

To this end, it could be concluded for this experimental scenario that the
presence of the high displacement amplitude at high frequencies has a strong
contribution to the level of effective cubic damping. A low displacement amplitude at
high frequencies does not influence the level of effective cubic damping very much.

6.6.5 General discussion and conclusion on the effect of cubic damping for

random excitation

The experiment on broadband base excitation revealed that the effect of cubic
damping is mostly a result of the magnitude of the base displacement amplitude at high
frequencies. The presence or absence of the displacement input at high frequencies
governs the peak response level and also the occurrence of the response at low
frequencies outside the excitation bandwidth. For the case of the CVR excitation, where
the displacement amplitude is inversely proportional to the excitation frequency, the
influence of the displacement amplitude at high frequencies is limited. This is because
the input displacement amplitudes at high frequencies for the CVR excitation are
relatively small compared to those at low frequencies. Thus the effect of nonlinearity is

minimised and a lightly damped response can be expected. Therefore to maintain a level

of peak response one needs to increase the value of c,.

In conclusion, one should be aware that the effect of cubic damping is dependent

on the excitation amplitude. Damping can be reduced when the displacement excitation
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contains less significant amplitude at high frequency and that can cause a high response
amplitude around resonance. On the other hand, the response at low frequency outside
the bandwidth can occur due to the presence of the relatively high displacement
amplitude at high frequencies. This occurrence can result in excessive vibration at low

frequencies, although a lower peak response can be obtained.

6.7 General conclusions

The experimental study was implemented to investigate the effect of cubic
damping on the SDOF base excited vibration isolation system. The effect of cubic
damping was observed to be consistent with the results obtained from the theoretical
analyses. Under harmonic excitation, cubic damping can cause the response of the
isolated mass to increase at high excitation frequencies, tending towards the amplitude
of the excitation. This behaviour is identifiable as a result of a high level of the cubic
damping force. It is also found that the effect of cubic damping is controlled directly by
the excitation amplitude. A higher excitation amplitude produces a stronger effect of

cubic damping.

The effect of cubic damping on the responses due to the random broadband
excitation also appeared to be excitation dependent. It is slightly different from that for
the harmonic case as the excitation dependence for the broadband response can be
defined by either the excitation amplitude or excitation bandwidth. However, both
theoretical and experimental results showed that the main contribution of the effect of
cubic damping comes from the displacement amplitude at high frequencies. The high
displacement amplitude at high frequencies, provided by either the excitation amplitude
or the excitation bandwidth, can result in a greater effect of cubic damping especially at
resonance. Therefore, cubic damping on the system with unknown excitation amplitude

can cause the detrimental effects to the response.

The greater effect of cubic damping for the broadband excitation can cause the
occurrence of the response at low frequencies outside the excitation bandwidth. That
can result in a large amplitude low frequency response. The effect of cubic damping can
be reduced by reducing the significant displacement amplitude at high frequencies.
However, by doing so the isolated mass might experience high vibration amplitude

around resonance.
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Figure 6.5 Schematic diagram of the feedback loop with lines representing the signal paths
% and x, are the accelerations of the isolated mass and the base input

x and x, are the velocities of the isolated mass and the base input
a is the gain from the charge amplifier
A is the feedback gain from the amplifier for controlling the shaker
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Figure 6.6 Displacement amplitude for response and harmonic base excitations with a fixed

feedback gain for linear damping.

(a) 0.04 mm constant displacement input

(b) 0.06 mm constant displacement input

(c) 4 mm/s constant velocity input

(d) 6 mm/s constant velocity input

—— Amplitude of base excitation

Markers represent the amplitude of isolated mass responses
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Figure 6.7 Displacement amplitude ratios for a fixed level of feedback gain for linear damping
under different harmonic base excitation characteristics (corresponding to the
responses and excitation in figure 6.6).

(a) 0.04 mm constant displacement input
(b) 0.06 mm constant displacement input

(c) 4 mm/s constant velocity input
(d) 6 mm/s constant velocity input

Markers represent the ratios of measured data
Theoretical transmissibility for linear damping system
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Figure 6.9 Displacement amplitude for response and harmonic base excitation characteristics

with fixed feedback gain for cubic damping.

(a) 0.04 mm constant displacement input

(b) 0.06 mm constant displacement input

(c) 4 mm/s constant velocity input
(d) 6 mm/s constant velocity input
—— Amplitude of base excitations
Markers represent the experimental data for the isolated mass responses
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Figure 6.10 Amplitude ratios for a fixed feedback gain for cubic damping under different

harmonic excitation characteristics (corresponding to the responses and excitation
in figure 6.9).
() constant displacement amplitude base excitation
(b) constant velocity amplitude base excitation
e constant displacement of 0.04 mm
o constant displacement of 0.06 mm
o constant velocity of 4 mm/s
x  constant velocity of 6 mm/s
Dotted lines represent predicted results obtained using HBM approximation.
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Figure 6.11 Measured and predicted amplitude ratios for the harmonic responses for different
damping levels (linear and cubic) under a constant displacement amplitude
harmonic base excitation of 0.04 mm.
(a) Lower value of cubic damping
(b) Higher value of cubic damping
o  Experimental data for linear damping configuration
e  Experimental data for lower cubic damping configuration
x  Experimental data for higher cubic damping configuration
Theoretical transmissibility for linear damping system
-------- Predicted results obtained using HBM approximation for cubic damping
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Figure 6.12 The measured secondary actuator force for isolation due to harmonic base
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Figure 6.15 Displacement amplitude spectra for two pass-band broadband random excitation.
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Figure 6.16 Displacement amplitude spectra and estimated transfer function H, for the linearly

damped and cubically damped responses subject to a constant displacement RMS
amplitude random excitation of 0.04 mm
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Figure 6.18 Displacement amplitude spectra and estimated transfer function H, for the
cubically damped responses subject to a constant velocity amplitude random
excitation at three different excitation amplitudes and fixed C,.
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Chapter 7 Conclusions and future work

7.1 General conclusions

The aim of this study was to investigate the effects of power law damping on
vibration isolation. The effects of such nonlinear damping were examined here in
comparison to that for the linear isolation system. For the latter the force and motion

transmissibility are identical. This is not the case for nonlinear systems.

In the literature, the advantages and disadvantages for the application of power
law damping on the isolation system were reported. The presence of power law
damping is beneficial for the case of force excitation whereas it is detrimental for the
case of base excitation. A particular case was investigated in this study, where cubic
damping was chosen as an example to replace the linear viscous damping. The focus of
the examination was on the base isolation possessing cubic damping for different

excitation, namely harmonic and broadband.

For the case of harmonic excitation, the cubically damped responses due to force
excitation were carried out for comparison with the case of base excitation.
Consideration focused on the responses at the excitation frequencies well above
resonance frequency where cubic damping exhibited different effects. On one hand for
force excitation, the presence of cubic damping produced a transmitted force which
follows the mass line of the undamped linear system. On the other hand for base
excitation, it caused a higher transmitted motion for a constant displacement amplitude
base excitation. At frequencies well above the resonance frequency, the isolated mass is

moving almost in-phase with the base and at a similar amplitude.

The study reveals that the damping force is a key factor for this phenomenon.
For the case of force excitation, the cubic damping force in the high frequency region
was found to decrease at a rate approximately proportional to the excitation frequency
cubed. In contrast, the damping force was found to increase at a rate proportional to the
excitation frequency squared for base excitation and this was validated experimentally.
The experimental damping implementation was achieved using a simple velocity

feedback and electrodynamic shaker (active damping). The acquired cubic damping
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force was found to be in agreement with the theoretical conclusions that the level of the
cubic damping force at excitation frequencies well above the resonance frequency is
much higher than that for linear viscous damping.

This disadvantage of cubic damping for base isolation was overcome using
higher order isolation models namely the Zener and two-stage isolation systems. The
application of Zener base isolation, for which a relaxation spring was inserted, proved to
reduce the absolute displacement of the isolated mass compared to that for the cubically
damped SDOF system. The high level of cubic damping force produced an absolute
displacement amplitude ratio which followed the mass line of the undamped system.
Thus one might consider supporting the cubic damping element elastically to reduce the

disadvantageous effects that occur at high frequencies.

The application of the two-stage isolation possessing cubic damping produces an
even better response compared to that with the same two-stage model possessing linear
damping. The response for the system with cubic damping at high excitation
frequencies decreased at 80 dB per decade whereas that with linear damping produces a
roll off rate at 60 dB per decade. It is also much better compared to that for the SDOF
cubic damping. Note that, this beneficial effect of cubic damping shown in this study is

valid when the optimum value of stiffness ratio is considered.

For broadband excitation, the effect of cubic damping under base excitation was
investigated using numerical and experimental results. The response due to a constant
displacement PSD showed that the level of effective damping is dependent upon the
excitation amplitude and bandwidth. Higher damping is produced for larger excitation
amplitude or broader excitation bandwidth. The investigation revealed that the main
contribution to the level of damping is due to the presence or absence of the excitation
content at high frequencies. The excitation at high frequencies also results in a high
response level at low frequencies outside the excitation bandwidth. This was identifiable
as a result of the power law, i.e. relative velocity cubed, which yields a cubic damping
force. It was found that taking the relative velocity cubed produces responses at other
than the pre-defined frequencies, both inside and outside the excitation bandwidth,

which also contribute to the damping force.

Overall, it is concluded that the introduction of cubic damping into SDOF

isolation for harmonic base excitation produces a detrimental high level damping force
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at high excitation frequencies well above the resonance frequency. This negative effect
can be eliminated by the application of the Zener model where the damping component
is elastically supported. Cubic damping turns out to be more beneficial when a two-
stage isolation configuration is chosen. The detrimental effect is also revealed for a

constant displacement PSD broadband excitation but at low frequencies.

The given information shows that the presence of cubic damping is problematic
for the base excited isolation system. The response for the base isolation system with
cubic damping is sensitive to the excitation amplitude. One should be reminded that
only known excitation amplitudes were applied. For practical situations, it might not be
convenient to identify the excitation amplitude and specification. One should also
consider that knowing the value or the characteristic of damping might not be practical.
The response may vary depending on the excitation amplitude. The application of cubic
damping might not be always applicable for some cases. This study provides
information for the resulting effects of cubic damping. Therefore, one needs to be

selective when dealing with base excited isolation possessing cubic damping.

7.2 Future work

The inclusion of nonlinear damping in an isolation system results in force and
absolute displacement amplitude ratios in the isolation region that are not only
quantitatively but sometimes qualitatively very different. Also, the absolute
displacement amplitude ratios for harmonic and broadband base excitation are not
comparable unlike the case of linear viscous damping. Moreover, the theoretical
assumption made here is that the isolated mass and the base are rigid. Therefore, there
are interesting points for future work contributed from this study which can be listed as

follows.

- The application of the Zener and two-stage isolation showed theoretically the
possibility of reducing the detrimental effect of cubic damping for harmonic excited
base isolation. It might be very useful to explore such behaviour experimentally and
validate these findings. It would also be very interesting to extend the study of such the

models for broadband random base excitation.

- The case of broadband force excited vibration isolation possessing cubic

damping is also interesting to be examined. High vibration amplitude at low frequencies
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outside the excitation bandwidth similar to the case of base excitation can be expected
in the response. This can be a result of the spike of the very high damping forces
resulting from taking relative velocity cubed. Thus higher transmitted forces at
frequencies below the resonance frequency are anticipated.

- The simplified SDOF rigid body might not be valid to represent the effects of
cubic damping on a highly flexible isolated mass or base excitation system, for which
multi-resonance frequencies occur [79][80]. This is because the detrimental effects of
cubic damping on a SDOF base excitation are apparent at frequencies well above the
fundamental resonance frequency. The system which exhibits multi-resonance
frequencies can be undergoing such detrimental effects. This would result in higher

response amplitude at higher frequencies where multi-resonance frequencies occur.
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Appendix A Example of MATLAB routine to solve an ODE problem

The first step for solving ODE problem is to create an ODE function in script or m file.

function yp = isolatorb(tspan,y,t,Y0,V0,damp)

% A function for linear base excited isolator

% tspan is a time step used by thee ODE solver.

% y is time dependent being solved.

% t is a desired time step for interpolation.

% YO is displacement excitation as a function of tspan.

% VO is corresponding velocity excitation as a function of tspan.

yp = zeros(2,1);

y0 = interpl(t,YO,tspan);
% yO is displacement excitation interpolated to the step of tspan.

vO = interpl(t,VO0,tspan);
% vO is velocity excitation interpolated to the step of tspan.

yp(1) = y(2);
yp(2) = -(2*damp*(y(2)-v0)+(y(1)-y0));
yp = yp(:);

% To assure that the answer is in the form of column vector.

Then call the ODE solver, for example here is ODE45. The command is for solving the
ODE function created previously.

[~,ytmp] = oded45(@(tm,x) isolatorb(tspan,y,t,Y0,V0,damp),t,[0 O0]);

% where [0 0] at the end are the initial conditions.

x = ytmp(:,1); % Vector of resulting displacement at desired time
step, t.

v = ytmp(:,2); % Vector of resulting velocity at desired time step, t.
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Appendix B Nature of roots for cubic polynomial

The general form of cubic polynomial is given by
a,x° +a,x* +a,x+a, = f (x) (B.1)

where a,, a,, & and &, are the real coefficients with a, # 0. For f (x)=0, the roots of

equation (B.1) can be determined. There are definitely three roots for as for the cubic
polynomial. The possible roots can be considered either; three distinct real roots, real
multiple roots or a real and two complex conjugate roots. The way of checking whether
the roots are real or complex, the so-called discriminant of the polynomial is applied.
The discriminant of the polynomial is a function of the coefficients. The nature of the
roots of the polynomials is revealed by this function. The discriminant of the
polynomial is given by

Azlﬂ[(ri—rj)2 (B.2)

i<j

where 1, and r; are known roots of the polynomial. For the cubic polynomial, equation

(B.2) can be written as

A=(I‘1—I’2)2(i’l—l’3)2(t’2—l’3)2 (B.3)

By having the known roots of the polynomial, the discriminant can be identified. One

can summarise the nature of the roots as follows [81],
A >0 : All roots are real and distinct
A =0 : All roots are real and at least two roots are equal
A <0 : There are one real and two complex conjugate roots

However, without the knowledge of the roots, one can determine the
discriminant of the polynomial by using the coefficients of the polynomial. The
discriminant of the generic cubic polynomial can be determined alternatively [82] by

A=alal —4aa’ —4aja, —27ajal +18a,a,a,a, (B.4)
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For the cubic polynomial equation having a, =0, equation (B.4) is reduced to
A=-(4aa] +27aa}) (B.5)

For the assumptions of a, >0, a, >0 and a, >0, one obtains the discriminant which is

always less than zero. Thus the solution for equation (B.1) with a, =0 consists of one

real and two complex conjugates.
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Appendix C Simplified expressions for the Harmonic Balance
approximations

The simplified expressions reported in this appendix are obtained from the
application of the Harmonic Balance approximation. Only the simplified expressions for
the case of cubic damping are presented here, i.e. the dependence B =0 is applied for
every case. There are four vibration isolation models considered in this appendix, i.e.
the SDOF force excited, the SDOF base excited, the Zener base excited and the two-
stage base excited vibration isolation. The simplified expressions are presented for four
excitation frequency regions. Note that, the frequency regions for the SDOF systems,
the Zener model and the two-stage model are slightly different. The dependence A and

C for the first three models are given here again by
2 3 3
A=1-0Q°and C :ZQQ

C.1 The SDOF force excited vibration isolation system

The expansion of the Harmonic Balance approximation for the case of force
excitation can be obtained by employing equations (3.25) and (3.31) which are

respectively given by
CU+AU%*=1 (C.1)
F*=C?U°+U? (C.2)

The simplification of equations (C.1) and (C.2) for the four frequency region are given

as follows.

a) For Q<1 yields A~1. Then equations (C.1) and (C.2) are identical. This

leads to

F?~1 (C.3)
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b) For Q~1,o0nehas A0 andC =~ %g“g . This leads to equation (C.1)

becomes
CU® ~1

Substitute U 2 :1/0% into equation (C.2), one obtains

(C.49)
c) For Q= J2 , yields A~ —1. This condition is the same as that for the case of

Q < 1. Thus equations (C.1) and (C.2) are equal. That results in
F’~1 (C.5)

d) For Q>1leadsto A~—-Q* and C>1 when 0« ¢, <1. These

approximations lead to equation (C.1) becomes
C2 U +U%~0 (C.6)

with C = %é . Substituting this into equation (C.2) results in

F2r— (C.7)

C.2 The SDOF base excited vibration isolation system

Equations (3.35) and (3.41) are employed here for the Harmonic Balance

approximation for the case of base excitation. The equation (3.41) is given by
CU+AU=Q" (C.8)
and equation (3.35) is given by

W?=U?+2U cos(g,)+1 (C.9)
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Simplified expressions for the Harmonic Balance approximations

The algebraic manipulation yields the simplification of cos(¢,), i.e.

A

o) T A

The phase lag between the isolated mass and base excitation is given by

I cu®
A =tan [umm (€11)

The simplification expressions for four frequency regions are obtained by the

(C.10)

approximation of equations (C.8) to (C.11) which are given as follows.

a) For Q <1, yields A~1 and C <« 1. The resulted approximation of

equation (C.8) for this frequency region is obtained by
U2~0 (C.12)
which yields equation (C.9) becomes

W2 ~1 (C.13)

b) For Q=1 leadsto A~0 and C z%(S.Then equation (C.8) becomes

3 2
(Zggj Ut=1 (C.14)
Substituting equation (C.14) into equation (C.9), one obtains

2 _ ig
W ~1+£3§3) (C.15)

c) For Qz\/E, Aand C can be approximated as A~-1 and C zg\/ig“s.

Thus equation (C.8) becomes

CU°+U2=4 (C.16)
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To simplify equation (C.16), the value of cubic damping is assumed to be ¢, <1. The

assumption yields the equation (C.16) can be simplified as

U2~0 (C.17)
which yields the amplitude of the isolated mass in equation (C.9) becomes

W2 ~1 (C.18)

d) For Q>>1, the further assumptions made are A~ —Q?. Equation (C.8)

becomes
CQUs+U% =1 (C.19)

with C = %g”s . The further simplification of equation (C.19) yields

Uze— L (C.20)
(o)
Substituting equation (C.20) into equation (C.9) yields
2 1
W r1l-——— (C.21)
(ac)
The simplification of the phase angle is given by
¢, ~—tan™ (LJ% (C.22)
w QC"’ .

For the case that amplitude of displacement excitation drops as the excitation
frequency increases or the constant velocity amplitude harmonic excitation, the
displacement amplitude of the isolated mass is different from that given in
equation (C.21). The cubic damping given in equation (3.54) is inversely proportional to

the excitation frequency squared. This can be alternatively written as
Q —é C.23
6() (C.23)

=5
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where 53 = . Replacing equation (C.23) into the variable C, one can have

C3 |X |2
Jkm "
C =%§~SQ or C =CQ. Thus equation (C.8) becomes
CU +QU? = (C.24)

As the excitation frequency tends to infinity and C<1, the approximated relative

displacement is given by

U’~1 (C.25)
Thus the displacement of the isolated mass can be obtained from the Taylor’s series of
the resulted expression of equation (C.9) which yields approximation as

W53 (C.26)

C.3  The Zener base excited vibration isolation system

The expansion of Harmonic Balance approximation for the Zener base excited
vibration isolation model can be obtained by using the equations (4.23) and (4.25).

These are respectively given here again by
(x,+A) CU° +(x,A) U? = 20Q° (C.27)

W2 = K'ZZ +(KZ +1)2 cu*

and = o
k:A*+(A+k,) CU*

(C.28)

The four excitation frequency regions for the Zener model are Q@ <1, Q~+x+1 and

Q>1 where «x, is the stiffness ratio between the primary stiffness and the relaxation
spring.

a) For Q <1, the dependences A and C become Ax~1and C~0.The

simplified relative displacement and the absolute displacement can be obtained by

U2~ Q) (C.29)
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and W?~1 (C.30)
b) For Q~,/x, +1, the dependences A and C become A~ -k, and

3
C =%§3 (, +1)2. The simplified relative displacement and the absolute displacement

can be obtained by

2
U2~ % (C.31)
9
and W2~ C? (Kzl;l) (C.32)

where C :%gg.

¢) For O >1, the dependences A and C become A~-Q° and C ~CQ°. By
assuming additionally that Q > «, , the simplified relative displacement and the

absolute displacement can be obtained by

~ 3 1
U2~ (%js = (C.33)
and
, (x,+1)
Wt (C.34)

C.4 The two-stage base excited vibration isolation system

The simplified expressions for the two-stage base excited vibration isolation
system obtained from the approximate closed form solution using Harmonic Balance
are achieved by employing equations (4.49) and (4.50) which are given by

cUt+U2=Q'W? (C.35)

2 ~

(A-0?) ¢ +(A-Q?D) U2 = k20" (C.36)
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The four excitation frequency regions for the two-stage vibration isolation are Q <« 1
and Q> 1. The equations (C.35) and (C.36) can be simplified for these frequency

regions regarding the assumptions of {;and g, i.e. 0<d, <land 0 < g, . The
dependences A, C and D are given here again, i.e. A:(l—Qz),ut +1, C :24393
and D =(1-Q%) 4 +2.

a) For Q <1, the dependences A, C and D become A~y +1~k,, C~0 and

D~ u, +2. The simplified relative displacement can be obtained from equation (C.36) ,

e

u’~q (C.37)
Then one obtains the simplified absolute displacement W , i.e.

W?~1 (C.38)

b) For Q> 1, the dependence A, C and D become Ax-Q%u, C>1 and

D ~-Q%u ~ A. Equation (C.36) can be reduced to

2

U2~ ;ﬁ;z“ (C.39)
t

Thus the resulted simplified expression for the absolute displacement can be given by

K_2

W?x—t C.40
/JtZQ8 ( :
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Appendix D Modal parameters estimation methods

The modal parameters are the parameters which represent the physical
characteristic of the system. The modal parameters are usually considered as the natural
frequency and damping ratio. These parameters for the experimental data are obtained

in two ways, i.e. using a circle fit method and a MatLab function ‘invfregs’.
D.1  Circle fit method

The circle fit method is based on a Nyquist plot of frequency response for a
SDOF system. The real and imaginary terms of the responses around resonance
frequency are plotted in a complex plane which should be a circle-like. The plot is fitted
with the calculated circle which the diameter and location of centre are known. The
modal parameters are determined from this circle. The principle of the circle fit method
can be found in reference [74], for example. However a brief explanation can be made
by considering an equation of motion for a SDOF subject to the force excitation which

is given by
mX +cx +kx = f (t) (D.1)
The frequency response function (FRF) for equation (D.1) can be written as

X (o) 1

H = =
(a)) F(a)) k—ma® + jcw

(D.2)

Equation (D.2) forms a receptance of a system when it is clamped to the base. One can

produce the Nyquist plot by extracting the real and imaginary of H (). Then estimate

a circle plot to fit the data. The natural frequency can be obtained by the intersection of
the line from origin as shown in figure D.1. The damping ratio is estimated by

2 2
, — o, 1

n= 2 (D.3)
@ tan % +tan %
2 2

where 7 is the structural damping loss factor and is given by 7=2¢ . @, and o, are

the known frequency above and below the resonance respectively. o, is the frequency
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of resonance. 6, and 6, are the corresponding angles of the known frequencies with

respect to the frequency of resonance.
D.2 MatLab function ‘invfregs’

The MatLab function “invfregs’ is an analogue filter which returns the numerator
and denominator of the polynomial for the frequency response. The parameters obtained
are used in the mathematical model of the frequency response. The example of using
this function can be found in references [75] and [76], for example. The simple syntax

of the function is
[b,a] = invfregs(H,w,n,m)

where b is the vector of numerator, a is the vector of denominator, H is the vector of
frequency response from the experimental data, w is the vector of corresponding

frequency, n and m are the desired order of numerator and denominator respectively.

After getting the numerator and denominator are obtained, one can construct the

transfer function as

n n-1
H (s)= bs"+b,s"" +---+b,

D.4
as"+a,s"t +ta,, (D-4)

To determine the modal parameters using “'invfregs’, the value of numerator, n, and

denominator, m, need to be 0 and 2 respectively. Equation (D.4) becomes

H (s)—L (D.5)

~as’+a,s+a,
By doing this, the modal parameters can be determined from coefficients a,, a, and a,.

D.3  Transfer function for the base excited isolation

Thus, to determine the modal parameters for the case of base exited isolation
using both methods mentioned, the FRF is needed to be rearranged. The relative
response between the base excitation and the isolated mass is considered. The equation

of motion for the relative motion is given by

mZ +Cz+kz =-m¥, (D.6)
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where z is the relative motion and is given by z=X-Xx,, x and X,are the

displacement of the isolated mass and base excitation

The frequency response frunction for equation (D.6) can be written as

Z(w) ma®

X, (@) (k —mw2)+ jco
One can consider equation (D.7) as

(@) m

X(wz)— _

XO
o’ X, (@) (k—mw2)+jcw

Equation (D.8) can be written alternatively as

%K((aa))))‘l} (k_mwn;)+ joo

(D.7)

(D.8)

(D.9)

Equation (D.9) can be inferred as a scaled receptance of a system which is clamped to

the base. Then, the frequency response function obtained from the experimental data

which is suitable for both method should be in the form as
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Imaginary

The Circle fit illustration obtained from the Nyquist plot of the experimental data

with lines and marks represent

O Experimental data
== Estimated circle to fit the experimental data

=== Diameter drawn from the origin
===== Angles of @, and @, with respectto o,

+ Centre of the circle
* Location of resonance frequency

Figure D.1
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