
Experimental and numerical study of nonlinear dynamic
behaviour of an aerofoil

S. Fichera 1, S. Jiffri 1, X. Wei 1, A. Da Ronch 2, N. Tantaroudas 1 and J. E. Mottershead 1

1 University of Liverpool,
Liverpool, L69 3GH, United Kingdom

2 University of Southampton,
Southampton, SO17 1BJ, United Kingdom

Abstract
The paper describes the experimental and numerical investigations on a plunge-pitch aeroelastic system with
a hardening nonlinearity. The goals of this work are to achieve a better understanding of the behaviour of the
model while it undergoes Limit Cycle Oscillations and to tune the numerical model to reproduce both linear
and nonlinear aeroelastic response observed in the aeroelastic system. Moreover, this work is part of an
overall project, which final aims are to test various control strategies for flutter suppression on the nonlinear
aeroealstic system. The experimental model consists of a rigid wing supported by adjustable vertical and
torsional leaf springs provided with a trailing edge control surface. In the present work the rig is extended
to include a nonlinearity introduced by connecting the plunge degree of freedom to a perpendicular pre-
tensioned cable. The numerical model is a 2 dof reduced order model representing the dynamics properties
of the real system, the nonlinearity is incorporated in the state space equations by adding the cubic and
fifth order terms in the stiffness matrix; the unsteady aerodynamic is modelled with strip theory and the
incompressible two-dimensional classical theory of Theodorsen. In addition to provide a comparison with
the experimental results, the numerical model has been used during the course of the project as an interactive
tool to guide the choice of the stiffness stetting of the system. A comparison between experimental and
numerical results is provided as well; for the linear model, they show a good agreement in the linear case,
albeit not so much with the damping ratios. Once the nonlinearity is added, good agreement is achieved with
the plunge LCO, but there still is room for improvement with pitch LCO. An in-depth investigation will be
carried out to improve model tuning with respect to all parameters of the model.

1 Introduction

The research on nonlinear aeroelasticity has been a subject of high interest for the last two decades due to
many events (Croft [4]) that occurred as a consequence of it. The well known aero-servo-elastic aspects are
coupled with structural and/or aerodynamic nonlinearity giving rise to a nonlinear aeroelastic behaviour and,
usually, its related Limit Cycle Oscillations (LCO).

The LCO [6] is a non-diverging, self-sustained, fixed-frequency structural oscillation. It can have a major
deteriorating effects on the handling qualities of the aircraft, can cause fatigue in the long term and can
prevent the release of armaments from the aircraft due to high amplitude oscillations. The result of LCO
often places a restriction on the airplane flight envelope. Yet sometimes, this oscillation is welcome because,
without it, the LCO would instead be replaced by catastrophic flutter leading to the loss of the flight vehicle.

Woolston et al. [12] investigated nonlinearities in structural stiffness and control surfaces linkages. They



created several models with freeplay, hysteresis, cubic-hardening and cubic-softening nonlinearities in the
torsion mode. For general wing motion, they observed that the flutter velocity decreased as the initial dis-
turbance increased, and that the stability of the system was highly dependent on the initial condition. A
cubic-softening spring stiffness lowered the flutter velocity. They also noted that cubic hardening caused
limit cycle oscillations rather than flutter at velocities above the open-loop flutter velocity.

Todd et al. [8] designed and studied the aeroelastic response of a rigid wing supported by nonlinear springs
(NATA). Their analytical results are in good agreement with that of Woolston et al. [12] and the results from
experimental studies utilizing the test apparatus.

For these reasons, at the University of Liverpool (UoL) during the last few years, has been developed and
validated (see Papatheou et al. [10, 9]) firstly an experimental model of a linear two degrees of freedom
(dof ) aerofoil, schematically shown in Figure 1, to which has been added recently a hardening nonlinearity
at the plunge dof.

Figure 1: Schematic of a two-degree of freedom aeroelastic system.

The goals of this work are:

• to achieve a better understanding of the behaviour of the described configuration,

• to verify and tune the numerical model in order to have a suitable environment for the development of
different LCO control algorithms.

This paper will present firstly the description of the linear experimental rig and the approach used to introduce
the nonlinearity in an experiment. Then the numerical model will be depicted and a comparison between the
numerical and the experimental results will be shown.

2 Description of the Experimental Rig

The wind tunnel experimental rig consists of a rigid wing section of a NACA 0018 aerofoil, with a chord
(c) of 0.35 m and a span (b) of 1.2 m, supported by adjustable vertical and torsional leaf springs from each
side, as shown in Figure 2. A high-stiffness torque tube connect externally the tips of the wing ensuring the
absence of wing twist. The total mass of the model, including the external structure, is 6.5 kg. The aerofoil
is provided with a single trailing edge central control surface (chord = 25% c, span = 35% b), see Figure 2b,
driven by a V-stack piezoelectric actuator [1], that allows a maximum deflection of ±7 ◦ with a bandwidth of
15Hz.1 Preliminary tests were made to guarantee that the flexible modes of the wing, i.e. spanwise bending
and torsion modes, are well above the pitch and plunge frequencies, and a separation of over one order of

1When not used, the control surface is restrained by a tape to the rest of the wing.



magnitude was found. More details on the (linear) baseline aeroelastic wind tunnel model were presented in
Ref. [9].

The model was tested in the University of Liverpool low-speed, open-loop wind tunnel; this facility has a
maximum operating speed of 18 m/s and a test section of 1.2 m x 0.4 m x 1.0 m. Two laser sensors were
mounted externally to the working section to measure the displacements of two points attached to the aerofoil
shaft. The pitch and plunge degrees of freedom are readily available from these measurements.

(a) Experimental rig. (b) V-Stack actuator and rigid wing internal
structure.

Figure 2: Schematic view of the experimental setup of the aeroelastic model in the University of Liverpool.

2.1 Description of the nonlinearity

The experimental rig just introduced was modified to introduce a concentrated hardening nonlinearity in the
plunge degree of freedom [2]. The nonlinearity in the restoring force on each tip of the wing is realised by a
clamped cable under tension, which acts as a hardening spring. Figure 3 shows the system of cables used to
introduce the nonlinearity in the wind tunnel rig.

As known, the linear coefficient of the wire nonlinear restoring force is dependent only from the amount
of pretension, while the cubic and the fifth order terms are dominated by the length of the wire, its elastic
modulus and cross section.

Figure 4b shows the measured points for the nonlinear case along with a polynomial fit. The nonlinear rela-
tion between vertical force and plunge displacement is formulated as shown in eq. (1) where the constants,
Table 4a, were calculated by a least-squares fit on experimental data.

Fnl = (Kξ1 +Kξ)h+Kξ3h
3 +Kξ5h

5 (1)

3 Description of the numerical model

A numerical aeroelastic model has been used alongside the wind tunnel experiments in this work. The model
has served the following purposes:

• Guiding the choice of pitch and plunge stiffness values in the aerofoil rig that ensure sufficient separa-
tion between pitch and plunge modes, and also give rise to a flutter speed that is adequately below the
maximum achievable airspeed in the wind tunnel.



Figure 3: Schematic view of the system of cables used to introduce a nonlinearity in the wind tunnel test rig.

coefficient value

Kξ1 1.986700e−01 N
mm

Kξ3 1.065701e−01 N
mm3

Kξ5 1.276006e−03 N
mm5

(a) Hardening nonlinearity coefficients.
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(b) Nonlinear polynomial curve fitted.

Figure 4: Hardening nonlinearity.

• Guiding the choice of parameters describing the hardening nonlinearity.

• Simulating time-domain nonlinear response and comparing LCO frequency and amplitude.

A brief description of the model is now presented.

3.1 Unsteady pitch-plunge aeroelastic model

The numerical model used by Da Ronch et al. [5] is employed in the present work. The linear, non-
dimensional model is expressed by
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With the aerodynamic lift and moment terms CL, Cm substituted for, a 12-state model including 4 structural
and 8 aerodynamic states is obtained. Detailed expressions (including the nonlinearity) and the definition
of the model parameters may be found in Edwards et al. [7]; only a brief description is provided here. The
structural states are pitch and plunge displacements and velocities (α, ξ, α′, ξ′ respectively). The aerody-
namic states reproduce the role of the integro-differential terms appearing in the original model formulation,
and enable representation of the overall model as a first-order linear differential equation. Any system non-
linearities (such as the plunge structural nonlinearity considered in this work) are included at this stage. All
unsteady aerodynamic and gust effects are preserved and no approximations are introduced.



3.2 Interactive use of numerical model and experimental rig

The parameters of the numerical model take the form often encountered in the literature (e.g. [3, 7]). In the
present numerical model, these have been tuned to reproduce dynamics that are representative of the aerofoil
rig. The numerical values of the tuned parameters are provided in Table 1.

Table 1: Parameters of linear aeroelastic system

parameter value parameter value parameter value

ωα 28.061 (rad/s) xα 0.09 ζα 0.015
ωξ 16.629 (rad/s) ah -0.333 b 0.175 (m)
rα 0.40 ζξ 0.015 µ 69.0

In order to achieve the first objective stated at the beginning of this section, the plots in Figure 5 showing
the variation of natural frequencies and damping ratios with respect to changes in pitch and plunge stiffness
were utilised.
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Figure 5: damped natural frequencies and damping ratios for various kα, kξ

A similar plot showing the variation of flutter speed was also used. The horizontal axes in these plots show
multiples with respect to the starting value of the respective stiffness in the experimental rig. Thus, one
is able estimate (and subsequently implement) the required change in these parameters in order to achieve
a desired combination of ωα, ωξ and linear flutter speed. Since the maximum achievable airspeed in the
wind tunnel is around 18 m/s, a linear flutter speed of around 14-15 m/s was desirable. Sufficient spacing
between the two vibration modes was necessary, so as to ensure good quality fits to experimental FRF data
especially at higher airspeeds; a minimum of separation requirement of 1 Hz was decided upon.

4 Experimental/Numerical Results Comparison

In this section, experimental observations from the aeroelastic rig are compared against predictions from
numerical simulations. This is done in the frequency domain for the linear system and in the time-domain
for the nonlinear system. The comparison between both sets of results will enable determination of the
suitability of the numerical model in pursuing further aeroelastic experiments (e.g. active control problems).



4.1 Linear system - frequency domain

This section initially presents the experimental approach followed in acquiring the relevant data, and is
followed by a discussion of the results.

4.1.1 Experimental Procedure

Two separate sets of FRF data were acquired - one resulting from control surface excitation and the other
from shaker excitation of the plunge degree of freedom. The main motivation behind using shaker excitation
was the inability of the control surface to apply sufficient excitation in the plunge mode, as observed from
preliminary FRF data. Tests were conducted at many speeds ranging from 0 m/s up to the numerically
predicted flutter speed of 15.28m/s.

4.1.2 Data processing and comparison of results

Plots of the damped natural frequency and damping ratios against airspeed are a common means of repre-
senting aeroelastic behaviour of a linear system. Figure 6 shows these plots obtained from the numerical
model, with corresponding experimental data also shown.
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Figure 6: V-ωd and V-ζ plots

The solid lines depict numerical results, whereas the circles and plus signs depict experimental results ex-
tracted from LMS Polymax [11] fits to frequency response data. From the first plot, it can be seen from the
experimental data that there is good agreement between flap and shaker results. The only exceptions are for
the plunge mode at airspeeds close to zero and for both modes close to the flutter speed (indicated by the
vertical dashed line). At the lower airspeeds, the shaker results are more reliable for the reason mentioned
above. Furthermore, the numerical prediction for plunge matches more closely the points generated by the
shaker tests. In the pitch mode, there is excellent agreement between numerical predictions and both flap and
shaker experimental results. With the damping ratios, obtaining a good quality match proved more difficult.
This was exacerbated by the inability to extract meaningful data from FRF tests conducted at the vicinity of
the flutter speed, an expected obstacle arising from the coalescence of the pitch and plunge modes. However,
one is able to recognise clearly the similarity in the variation trends of the damping ratios between numerical
and experimental results.

The final values of the parameters given in Table 1 (especially ωα, ωξ, ζα, ζξ ) were arrived at after many
interactive runs between experimental tests and numerical simulations. The comparison between numerical
and experimental results enabled fine-tuning of the model parameters to minimise the difference between the
experimental and numerically predicted dynamics.

4.2 Nonlinear system - time domain

As before, this section commences with the experimental approach, followed by a discussion of results.



4.2.1 Experimental Procedure

A standard procedure was followed to conduct the experiments; the model was placed in the wind tunnel
with zero angle of attack, the nonlinearity was implemented and fixed tightly in position and the test was run
for a specific freestream velocity. Once recorded the data, the nonlinearity was un-tightened and re-tightened
before perform the test for a different speed. The switching on of LCO was achieved by introducing a
perturbation to the steady condition of the model. The data were recorded, after all transients were decayed,
for a generic 10 seconds window. The aerofoil rig begins to exhibit LCO at approximately 10.8 m/s, while
the corresponding value from the numerical model is around 13.5 m/s.

4.2.2 Data processing and comparison of results

The acquired laser signal data were low-pass filtered at 30 Hz in order to remove the high frequency noise
of the sensors and to emphasize the 2 dof dynamics respect to the flexible modes that the rig shows for
frequencies higher than 40 Hz, as mentioned in Ref. [10].

The plunge nonlinearity expressed by equation eq. (1) was incorporated into the linear model, with the
coefficients given in Table 4a. Results generated by the nonlinear numerical model at 15 m/s are plotted
against the corresponding experimental observations in the following figures.
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Figure 7: One period, displacement and velocity diagrams, 15m/s.

The LCO fundamental frequency in both cases are given by the highest peaks in Figures 9. The odd harmon-
ics expected in an LCO spectrum are also visible in both cases. In the experimental result, there also appear
to be small levels of the even harmonic. Evidently, the numerical value of the fundamental LCO frequency
appears to be slightly higher.

LCO response data at 15m/s are shown in Figure 7. It is evident from plot 7a that the plunge displacements
and velocities are in good agreement. Plot 7b reveals a substantial over-prediction of pitch response in the
numerical model. These observations are visible more clearly from the phase-portrait diagrams in Figure 8.
The trends mentioned here are similar at other airspeeds. Figure 10 shows the variation of LCO pitch and
plunge amplitude and frequency for various airspeeds (normalised with respect to the linear flutter speed).
Evidently, the discrepancy in displacement magnitude in plunge is much smaller than in pitch. The exper-
imental plunge amplitude appears to remain constant, in contrast to the increase predicted numerically. In
the pitch displacement, the variation trend appears to be the same in both cases. The LCO frequency values
(for both pitch and plunge) are adequately close between the experimental and numerical cases. Here also, a
difference in trend is evident. It was observed during the experiment that LCO ceased at approximately 10.7
m/s. Further tests will be carried out in order to understand more clearly these observations.
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Figure 8: Phase diagrams, 15m/s.
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Figure 9: FFT, 15m/s.
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Figure 10: LCOs amplitude and frequency vs velocity.



Attempts to tune the nonlinearity coefficients and linear stiffness values without compromising the high
quality tuning of the linear model (evident in Figure 6) proved inadequate in limiting the disparity between
numerical and experimental pitch response. Thus, it was concluded that simultaneous tuning of the linear
and nonlinear models to a high standard would initially require an investigation into the effect of all other
parameters on the response, followed by the application of a methodical tuning exercise.

5 Conclusions and Remarks

The paper presented the experimental results for a 2-D, 2 dof nonlinear aeroelastic model, while it was un-
dergoing LCO, for different airstream speeds, compared with numerical simulations. In the first part the
experimental linear rig and its nonlinear element were described; later on, the numerical model and how it
was iteratively used to achieve the best plunge/pitch values was presented. A comparison between the exper-
imental and numerical result for the nonlinear configuration was shown as well. The overall behaviour of the
two models shows a good agreement even though a more precise tuning of the nonlinear numerical model
was found to be necessary; however this first comparison allowed a better understanding of the phenomena
that dominates the system. This work is part of a bigger project whose final goals are to develop and test
control algorithms for flutter suppression in linear and nonlinear system.
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