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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF SOCIAL AND HUMAN SCIENCES

Geography and Environment

Thesis for the degree of Doctor of Philosophy

ASSESSING THE VULNERABILITY OF THE RICE-WHEAT PRODUCTION SYSTEM IN THE NORTH-
WEST INDO-GANGETIC PLAINS TO CLIMATIC DRIVERS

John Duncan

This thesis explores the spatial patterns in the vulnerability of the rice-wheat production
systems of Punjab and Haryana to climate. Remote sensing monitoring is used to identify rice
and wheat crop extents and to capture dynamics of the cropping system such as length of
growing periods and cropland productivity. This remote sensing monitoring is integrated with
analysis of climate datasets and other measures of the agricultural system to 1) identify the
exposure of rice-wheat croplands to harmful climate drivers, 2) capture the sensitivity of the
rice-wheat croplands to climate and to 3) inform targeted adaptations to improve climate
resilience, ensure environmental sustainability and sufficient levels of production, the pillars of
a climate-smart landscape.

Across all India, including Punjab and Haryana, there was a fragmented spatial pattern in the
occurrence, and sign, in trends of monsoon precipitation. This highlights the need for locally
sensitive water resources management. Over 5 million ha of rice-wheat croplands in Punjab
and Haryana were exposed to unfavourable trends in facets of monsoon precipitation; this was
mainly exposure to increasing recurrence of drought years and increasing inter-annual
variability in monsoon precipitation. However, crop yield-climate regression models indicated
that precipitation is not influencing variability in rice or wheat crop production but growing
season temperatures are. Average minimum and maximum temperature during the thermo-
sensitive periods of crop development have a greater negative impact on wheat crop yield
than exceedance of critical temperatures. The negative impact of warming on wheat crop
production increased with later start-of-season dates. Through an integrated use of remote
sensing datasets the spatial patterns in the magnitude and varying nature of the vulnerability
of crop production to climate were captured. This enabled identification of location-specific
stresses, such as later sowing dates, and targeting locally optimum adaptations.
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Chapter 1: Introduction

The productivity of cereal croplands is crucial to sustaining global food security; in
2011 the cereal crops of maize, rice and wheat were ranked second, third and fourth
respectively in terms of global production of agricultural commodities and rice had the
greatest global net production value (FAO 2013). Globally croplands cover 12% of the
terrestrial land surface and together cropland and pasture are equivalent in terms of
ecosystem coverage to forests and have already exhausted the best farmland (Foley et
al. 2007; Foley et al. 2011; Fig. 1-1). The food security of large proportions of the global
population relies upon ‘“focal’ regions of intensive cropping (Fig. 1-1). For example,
China’s population of 1.37 billion (20% of the global population) is reliant on cereal
croplands covering only 9.5% of the national and, less than 1% of the global, land

surface (FAO 2013).
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Figure 1-1 Map of global croplands, showing percentage coverage of cropland within a 5 minute grid
cell in the year 2000 (Ramankutty et al. 2008).

Levels of production from cereal croplands are partly determined by climatic variables
and are linked to the pulses of climatic variation (Krishna Kumar et al. 2004; Brown et
al. 2010; Lobell et al. 2011a; Lobell et al. 2011b; Lobell et al. 2012). Changes in climate
drivers or increases in climatic variation could limit levels of cereal crop production

(Lobell et al. 2011b). Billions of people globally are vulnerable to productivity losses in
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these ‘focal’ cereal production systems. This is evidenced by the recent food price crisis
in 2008 where shortfalls in production and food price fluctuations had the greatest
impacts on the poorest segments of society (Hajkowicz et al. 2012). It is therefore
important that adaptations are implemented within cereal production systems to
increase the resilience of crop production to projected climate changes and climatic

variability (The Royal Society 2009; Teixeira et al. 2013).

However, cereal croplands are not just vulnerable to climate change and variability but
also to a range of other stresses and pressures including growing populations
increasing demands for food on limited or stagnating cultivated areas, increasing
competition for land, water and energy resources from other sectors such as
urbanisation or industry, changing diets with greater emphasis on meat products and
environmental degradation and loss of land to salinization (The Royal Society 2009;
Hanjra and Qureshi 2010 Foley et al. 2011; Foresight: The Final Project Report 2011;
Gleeson et al. 2012; Table 1-1). Table 1-1 presents a summary of the key stresses
affecting global cereal croplands. This situation has been articulated as the ‘perfect
storm’ for food security by Beddington (2009). It is important to note that the
magnitude of climate impacts on cereal crop production will vary between and within
croplands due to underlying system factors such as soil type, access to irrigation and

farmer management (Luers et al. 2003; Luers 2005).
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Table 1-1 Global stresses on cereal crop production and cereal croplands.

Stress

Impact on cereal croplands

Population growth

Income and changing diets

Competition for resources

(land and water)

Environmental degradation

Stagnating yields

Climate change and variability

The need for sustainability

Global population is projected to increase by two to three by billion by
2050 increasing crop demand by 100-110%. This is alongside feeding
the 870 million currently food insecure through undernourishment.

With rising incomes a greater proportion of the global population will
seek out meat based diets. This results in conversion of croplands to
grazing lands and an increased water and environmental footprint. It
takes 30kg of grain to produce one kg of beef.

Cereal crop production will increasingly have to compete with other
sectors, such as urbanisation, biofuels, grazing land and industry for
land and water inputs. This indicates the need to increase cereal
productivity per unit land and per unit water.

Degradation of environmental resources and regulating ecosystem
processes will limit cereal crop production. Often environmental
degradation is the result of intensive agriculture over the past 50
years.

Whilst demand for food increases the rate of increase in crop yields
has declined. Crop yields increased by 56% between 1965 and 1985,
yet by only 20% between 1985 and 2005. Growth rates in the top four
crops (maize, rice, wheat and soybean) are not sufficient to meet
expected demand.

Warming trends have already limited cereal crop production.
Projected warming, variable precipitation and increased frequency of
extreme events will limit future cereal production and suitable
croplands, especially in tropical and sub-tropical latitudes. Worryingly,
between 1985 and 2005 there was a net redistribution of global
croplands towards tropical latitudes.

There are pressures for cereal cropping to be more sustainable.
Expansion of croplands at the expense of forests and biodiversity must
be minimised, as must agricultures GHG emissions, inefficient use
irrigation water and over-use of fertilisers.

Table sources: Tillman et al. (2002); Aggarwal et al. (2004); Foley et al. (2005); Millennium Ecosystem
Assessment (2005); Easterling et al. (2007); Schmidhuber and Tubiello (2007); Thenkabail et al.
(2010); Lobell et al. (2011b); Foley (2011); Foley et al. (2011); Tillman et al. (2011); Foresight: The Final
Project Report (2011); Ray et al. (2013); Teixiera et al. (2013); Godfray and Garnett (2014).

It is emphasised both in the academic literature and in international policy that unless

cereal croplands are moved onto a climate-resilient, environmentally sustainable

trajectory whilst simultaneously increasing productivity the consequences for

humanity will be negative and focused on the global poor (Morton 2007; Vermeulen et

al. 2010; Godfray et al. 2010; World Bank 2011; Poppy et al. 2014). Cereal croplands
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must be transformed such that agricultural practices ensure sufficient and stable
production, in spite of uncertain future climate scenarios, for food security, and wider
poverty alleviating and development goals. Changes to cereal cropping practices must
aim to also preserve biodiversity, ecosystem service provision and ecological processes
and, have a limited, or mitigating, impact as a driver of climate change. These goals are
critical to the framework of ‘climate-smart’ agriculture; climate-smart agriculture
approaches are advocated as the desired sustainable and climate-resilient
development pathway by numerous international organisations (World Bank 2011;
FAO 2011b). Beddington et al. (2012a) and Beddington et al. (2012b) discuss the need
to find a ‘safe operating space’ for agricultural systems whereby they operate within
environmental limits (conceptualised as ‘planetary boundaries’ by Rockstrom et al.
(2009)), without contributing to climate change and whilst meeting the needs of a
growing population. In this context, any assessment of the vulnerability of cereal crop
production to climate change or climatic variation with the intention of informing
climate-resilient adaptations must also consider the range of stresses placed on cereal
production systems, and that agricultural practice must reduce their environmental

and climatic footprints.

The situation in India is typical of this global issue. India’s population, in excess of 1.2
billion people, with a decadal growth rate of 17.64% (DES 2011), is heavily dependent
upon, the ‘focal’ areas of cereal cropping in Punjab and Haryana in the north-west
Indo-Gangetic Plains (IGP) (Fig. 1-2). In 2011-2012, Punjab and Haryana comprised only
8.93% of the nationwide cropped area for foodgrains yet contributed significantly to
national production with the largest state-wise foodgrain yields and proportional area

under irrigation (Fig. 1-2) (DES 2011).

The dominant crops in Punjab and Haryana are kharif rice typically grown from June to
October and rabi wheat grown from November to April. Rice and wheat crop yields,
elevated using Green Revolution technologies in the 1960s and 1970s, are key to
supporting 53 million local livelihoods as well as nationwide food security through
state procurement for distribution to poor households (Aggarwal et al. 2004; Gupta
and Seth 2007; DES 2011; Perveen et al. 2012). The rice-wheat cropping system is one

of the worlds ‘focal’ cereal croplands and is typical of global croplands in being
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affected by multiple stresses simultaneously including population pressure, limited
room for expansion, environmental resource degradation, depleting water resources
and climate change (Abrol 1999; Aggarwal et al. 2004; Ambast et al. 2006; DES 2011,
Perveen et al. 2012; Mathison et al. 2013). However, the croplands are currently being
managed in a way that degrades natural resources and are threatened by future
changes in climate (Aggarwal et al. 2004; Ortiz et al. 2008; Teixeira et al. 2013;
Mathison et al. 2013).
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Figure 1-2 lllustration of Punjab and Haryana as the ‘focal’ foodgrain production centre in India; a)
state-wise foodgrain yield (kg ha-1) (DES 2011), b) state-wise area under irrigation (expressed as a
percentage of state area) (DES 2011) and, c) an index of percentage of state contribution to national
foodgrain production normalised by state area (http://lus.dacnet.nic.in/). (The index was multiplied
by one thousand to enhance figure clarity).
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This thesis assesses the vulnerability of the rice-wheat production system in the
north-west IGP to climatic drivers. An integrated remote sensing approach is used to
1) identify the spatial patterns of the exposure of rice-wheat croplands to harmful
climate drivers including trends and climatic variation, 2) capture the sensitivity of rice-
wheat crop production to variations in climate drivers and to 3) inform targeted
adaptations sensitive to local stresses to enhance the climate-resilience of cropping,

ensure environmental sustainability and sufficient levels of production.

The remainder of Chapter 1 will be broken into two sections. Section 1.1 will provide a
general discussion of the impacts of climatic changes and variability on cereal
croplands with consideration to interactions with other multiple stresses which
determine the vulnerability of crop production. Section 1.2 is a review of the rice-
wheat production systems of the north-west IGP, specifically Punjab and Haryana; it
explores the key stresses affecting rice and wheat crop production here. Chapter 2 will
discuss approaches to assess and measure vulnerability, outline the framework used to
assess vulnerability in this thesis and culminates by posing key questions addressed
through the thesis and answered in the concluding chapters. Chapters 3 to 6 represent
four analysis chapters written in the style of research papers, each with unique aims,
research questions and stand-alone conclusions but linked to the overarching theme of
assessing the vulnerability of the rice-wheat production system of Punjab and Haryana
to climate drivers. Chapter 7 provides a brief discussion of the current state of
vulnerability of rice and wheat production in Punjab and Haryana to climate drivers
and suggests some avenues for future research. Chapter 8 highlights the conclusions

drawn from this thesis addressing key questions posed at the end of Chapter 2.

1.1 Climatic changes, variability and multiple stresses on cereal

croplands

Intensification of agriculture, utilising Green Revolution advances of high yielding crop
varieties (HYV) and altered agronomic practices (increased irrigation, access to
fertilisers and increased cropping intensity) led to a dramatic increase in net
production and productivity over the past 50 years (The Royal Society 2009; Ray and

Foley; 2013). However, despite these gains, yield gaps still remain in many agricultural
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systems and food insecurity is still prevalent globally, complicated by regional and sub-
national variation; one billion people do not have enough to eat excluding those
suffering from micronutrient deficiency and over-consumption and, thus, lack a basic
human right (UN 1948; Godfray et al. 2010; Brussaard et al. 2010; Misselhorn et al.
2012; Godfray and Garnett 2014). It was often ‘subsistence’ and ‘smallholder’ farmers
who did not receive the benefits from the Green Revolution due to numerous factors
including weak governance and policy support, inability to make the transition to
market-based agriculture, poor access to research and development and, limited

integration into markets (Brussaard et al. 2010a; Hanjra and Qureshi 2010).

There are numerous interacting stresses placed on cereal cropping systems which
inhibit their ability to provide complete food security. Of these stresses, climate
change and climatic variability have a direct influence on crop productivity, yet also
influences a wider range of food system activities which determine food security
including access to, stability of and capacity to utilise food (FAO 1996; Vermeulen et al.
2012b; Wheeler and von Braun 2013). It is difficult to quantify and forecast the
impacts of climate change on crop yields due to future uncertainties in: levels of
adaptation and technological advances, community responses, projections of climate
change relevant to crop growth using Global Climate Models (GCM) and, how the
interaction of the various changing facets of the climate system will alter plant
physiology (Annamalai et al. 2007; Tubiello et al. 2007; Lobell and Gourdji 2012;
Gourdji et al. 2013a; Ramirez-Villegas et al. 2013). For example, GCM prediction and
simulation of the Indian Summer Monsoon (ISM), the key driver of rice yield in South
Asia, is poor, presenting a barrier to informed climate-resilient adaptation (Annamalai

et al. 2007; Turner and Annamalai 2012).

Despite the theoretical benefits of increased carbon dioxide (CO,) levels on crop
physiological processes it is expected that cereal crop yields will decline with a
warming climate (Easterling et al. 2007; Nelson 2010). The negative impact of warming
on crop productivity is likely to be greater in the tropics than at higher latitudes
(Easterling et al. 2007; Schmidhuber and Tubiello 2007; Vermeulen et al. 2012b).
Elevated levels of atmospheric CO, may reduce cereal crop quality with lower protein

concentrations in grains (Schmidhuber and Tubiello 2007; Vermeulen et al. 2012b).
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Globally, observed climate trends between 1980 and 2008 resulted in a loss of 3.8%
and 5.5% of maize and wheat yields, largely due to warming (Lobell et al. 2011b).
Cereal crop yields are sensitive to both seasonal warming and extreme heat events
during the reproductive development stage (Challinor et al. 2005; Jagadish et al. 2007,
Welch et al. 2010; Lobell and Burke 2010; Lobell et al. 2011a; Teixeira et al. 2013).
Significant portions of wheat, maize and rice croplands globally (83, 68 and 86%
respectively) experienced warming trends during the growing season between 1980
and 2011 and 27, 32 and 15% of these croplands experienced increasing trends in
reproductive days over critical temperatures (Gourdji et al. 2013b). GCMs project that
these trends will increase up to 2050 indicating that yields across a greater proportion
of the global croplands will be impacted by warming trends and extreme heat events
(Teixeira et al. 2013; Gourdji et al. 2013b).The latest IPCC projections suggest global
surface temperature will be 1.5°C greater than baseline temperatures from 1850-1900
for all RCP scenarios except RCP 2.6; precipitation projections are more uncertain
(IPCC, 2013). Downscaled GCM simulations suggest that by 2050 climatic changes will
cause a 51% reduction in the area suitable for high-yield wheat cropping in the IGP
with subsequent yield declines (Ortiz et al. 2008). The interaction between changes in
precipitation, temperature and CO, will influence levels of available soil moisture,
evapotranspiration and crop water use efficiency with subsequent yield impacts

(Wassmann et al. 2009; Lobell and Gourdji 2012; Gourdji et al. 2013a).

Whilst being negatively impacted by climate change a large proportion of cereal
cropping practices are also drivers of climate change emitting large quantities of
greenhouse gases (GHG) and altering radiative forcing via land cover changes
(Vermeulen et al. 2012b). Land use change in the tropics, specifically deforestation,
contributes 12% of annual anthropogenic CO, emissions (DeFries and Rosenzweig
2010; Foley et al. 2011). After fossil fuel combustion, land use change is the largest
global CO, emitter (Power 2010). Land use conversion from forest to croplands leads
to loss of above-ground biomass, a carbon sink, alongside reductions in soil carbon; for
example, residue burning of rice crops in India directly releases GHGs and also reduces
organic matter which would be reincorporated into the soil (Pathak et al. 2006; Power

2010). Anaerobic decomposition of carbon substrates in flooded rice fields contributes
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11% of global methane (CH4) emissions (IPCC 1996; Power 2010). Increasing
application of nitrogen fertilisers, an 800% increase in global applications in the last 50
years, increases the rate of nitrous oxide (N,0) emissions from soils (IPCC 2006a; Foley
et al. 2011). Whilst production contributes the largest share to agriculture’s GHG
emissions pre- and post- production activities in the food chain are also emitters;
fertiliser production is energy intensive and, thus, generates GHG emissions

(Saharawat et al. 2012; Vermeulen et al. 2012b).

Agriculture exerts a significant and often detrimental impact on the Earth’s
environment, climate and, biogeochemical cycles; in terms of ecosystem coverage
agro-ecosystems are equivalent to forest cover, consume 70% of freshwater
withdrawals and approximately 30% of global net primary productivity (NPP) is
appropriated via humans (Foley et al. 2005; Foley et al. 2007; Global Water Partnership
2013) The increase in agricultural productivity due to intensive monocropping and use
of Green Revolution technologies occurred with significant environmental costs (Foley
et al. 2007; Brussaard et al. 2010). To realise the benefits of HYVs developed during the
Green Revolution requires increased use of fertilisers, pesticides and irrigation water
leading to unsustainable use, and pollution of, land and water resources (The Royal
Society 2009). Agricultural and associated land use practices have degraded soil
resources and reduced soil quality (e.g. loss of nutrients, salinity and, topsoil erosion)
(Tilman et al. 2002; Aggarwal et al. 2004). Globally, 10 million ha of agricultural land is
lost due to salinization per year (Hanjra and Qureshi 2010). Transformation from
natural (e.g. forest) to agricultural lands increases runoff with subsequent loading of
sediment and nutrients in water sources with negative impacts on aquatic ecosystems,
both freshwater and marine (Vitousek et al. 1997). Climate change is a major driver of
land degradation, which has secondary impacts on agricultural productivity via
reducing soil and freshwater quality (Aggarwal et al. 2010). In the past 40 years there
has been a significant increase in fertiliser use such that agriculture is now the largest
source of nitrogen and phosphorus to water bodies; of nitrogen fertiliser applied to
croplands only 30-50% is utilised by crops (Tilman et al. 2002; Foley et al. 2005). The
resultant excessive nutrient loading of water bodies results in eutrophication, toxic

algal blooms, disturbance of species composition and anoxic conditions depleting fish
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stocks; it is also difficult to reverse these eutrophic conditions (Vitousek et al. 1997;

Carpenter et al. 1998; Tilman et al. 2002; Carpenter 2005).

Aside from agricultural practices leading to the declining quality of many water
sources, many cropping systems through excessive irrigation extract water beyond
renewable limits. With projected increases in population and income changing
demand, agriculture will need an extra 5600 km?® of water per year; 800 km? is
available from ‘blue water’ sources suggesting agricultural systems will need to find an
extra 4800 km? per year (Hanjra and Qureshi 2010). It should be noted there are some
uncertainties in estimating agricultural water use at a global scale; estimates range
from 6685 km? per year to 7500 km? per year (Postel 1998; Siebert and Doll 2010;
Thenkabail et al. 2010). This will compound existing issues of water scarcity, over-
extraction and, degradation and depletion of water resources (Ambast et al. 2006;
Comprehensive Assessment of Water Management in Agriculture 2007; Hanjra and
Qureshi 2010; Gleeson et al. 2012). Often agriculture’s negative environmental
impacts such as deforestation, soil erosion and degradation and, declining water
resource abundance and quality co-occur and are accentuated by positive feedbacks.
Sub-optimal agricultural practices and governance have resulted in a loss of
biodiversity and ecosystem service provision, thus, degrading the natural resource
base upon which agriculture and a wider range of livelihood options are reliant
(Millenium Ecosystem Assessment 2005; Scherr and McNeely 2008; Brussaard et al.

2010).

Projected growth in global population, to around 9 billion by 2050, will increase
demand for food from cereal crop systems with limited room for sustainable
expansion of cultivated areas (Godfray et al. 2010; Foley et al. 2011; Misselhorn et al.
2012). The Food and Agriculture Organisation of the United Nations (FAO) project a
required increase in global cereal production of 800 million tonnes by 2030 (FAO
2006). There is uncertainty regarding the accuracy of population growth and food
demand projections due to numerous factors such as disparities in regional growth
rates, changing diets and income levels and, differing levels of female education
(Foresight: Final Project Report 2011). Globally, changes in diet, with increased meat

consumption, results in more cereal crops being fed to cattle (currently 33% of global
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cereal grains) and reduced per capita availability for human consumption and
increased demand on water resources (The Royal Society 2009; Hanjra and Qureshi
2010). The impact of this reduced availability of staple cereal grains disproportionately
effects the world’s poorest populations and will increase pressure on production in

croplands devoted to human consumption (The Royal Society 2009).

Cereal croplands are vital in sustaining the livelihoods of many low-income and
developing countries where rural populations and, ‘smallholder’ and ‘subsistence’
households spend the majority of their income on staple foods; Fig. 1-3 displays the
global distribution of smallholder farming systems. Smallholder and subsistence
farmers also generate a large proportion of their income and gain nutrition from local
agricultural and cereal production systems (Morton 2007; Nelson 2010; Foresight:
Final Project Report 2011; Hajkowicz et al. 2012). Therefore, the productivity and
sustainability of production in these regions are crucial not only to achieve food
security but also a wider range of poverty alleviation and development goals (Nelson
2010; Foresight: Final Project Report 2011; Vermeulen et al. 2012a). Stable and
adequate production from cereal croplands, through increasingly globally inter-
connected markets, provide food for growing urban populations and contribute to
food stocks encouraging price stability (Hajkowicz et al. 2012). It is important to note
that in both rural and urban locations a wider range of situation-specific factors (e.g.
levels of accessibility to food, ability to utilise food) alongside levels of production
interact to determine food security outcomes (Ericksen 2008a). In developing
countries local cereal production will be of importance to rural populations due to
increasing polarity in purchasing power and volatility of prices in global crop markets
(Brown and Funk 2008). Despite the role of markets, local production is vital for food
security in the developing world where within-country production contributes 83% of
wheat consumption (Ortiz et al. 2008). It is likely climate change will accentuate the
vulnerability of rural populations reliant on cereal croplands in developing countries

through a range of direct and indirect influences (Morton 2007; Brown and Funk 2008).
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Figure 1-3 Global map of farming systems, including the distribution of smallholder farming systems.
The data is displayed at a 5 minute resolution and is derived from the Farming system classes in
developing and transition countries, 2000 dataset from the FAO
(http://www.fao.org/geonetwork/srv/en/main.home).

Climate change is expected to increase variability in weather (i.e. more droughts,
extreme heat and rain events) which may reduce stability in crop production with
subsequent impacts on crop prices (Schmidhuber and Tubiello 2007; Hajkowicz et al.
2012; Teixeira et al. 2013; Gourdji et al. 2013b). Droughts are often cited as a cause of
the 2008 spike in global wheat prices and flooding in 1998 reduced rice production in
Bangladesh with a knock-on increase in prices with the impacts exaggerated in poor
households (Hajkowicz et al. 2012). If climate change reduces the productivity of cereal
croplands it will lead to an increase in the price of crops and reduce the purchasing
power of smallholder farmers for whom agriculture is their main source of income
generation; thus, both factors contribute to a reduced capacity for smallholders to
access food and mitigate shortfalls in production with food insecurity ensuing
(Schmidhuber and Tubiello 2007). Increased climatic variability, and subsequent short-
term reductions in crop yield and stability, and changes in mean climate with long-
term declines in normal yields, are focused geographically in regions where there is the
least environmental and socio-economic resilience and where communities have the
lowest levels of adaptive capacity and least governance and policy support to cope
(Morton 2007; Schmidhuber and Tubiello 2007; Brown and Funk 2008; Foresight: Final
Project Report 2011; Hajkowicz et al. 2012).

33



The increased demand for cereal crops will be focused on already stressed land, water
and energy resources, whilst also facing increased competition for resources from
other sectors (e.g. industry, urban expansion, timber and transport) (Hanjra and
Qureshi 2010; Harvey and Pilgrim 2011; Bogdanski 2012; Uphoff 2012; Misselhorn et
al. 2012). The impacts of globalisation of the food, energy and governance sectors,
integration into global food markets, investment in technology and research and
development, cultural and gender differences and land tenure vary spatially and
temporally between and within cereal systems and, thus, contribute to differing
outcomes in terms of food security and productivity (Godfray et al. 2010; Foresight:
Final Project Report 2011; Harvey and Pilgrim 2011; Uphoff 2012). This is not an
exhaustive list of stresses and drivers determining cereal system outputs (see Table 1-1
for summary of stresses on cereal croplands). However, the key point is that there are
complex interactions and feedbacks between varying drivers, internal and external,

which control the ability of cereal systems to ensure food security.

Through contributions to both climate change and environmental degradation,
agricultural practices in cereal croplands are generating harmful positive feedbacks
(Godfray et al. 2010). These feedbacks limit the productivity and sustainability of
croplands, reduce the provision of beneficial ecosystem services and, increase the
exposure of a greater proportion of cropping systems and the human population to a
wider range of dis-benefits including food insecurity (Millenium Ecosystem Assessment
2005; Scherr and McNeely 2008; Godfray et al. 2010; FAO 2011a). Climate change
exerts a direct influence on the productivity of cereal crops largely through altering
crop physiological and yield forming processes (Tubiello et al. 2007; Lobell and Gourdiji
2012). It also interacts with and influences a wider range of drivers and stresses of
cereal systems generating positive feedbacks with negative impacts crop production
and therefore livelihoods whilst, eroding environmental resilience and societal
adaptive capacity (Morton 2007; FAO 2011a; Vermeulen et al. 2012b; Wheeler and von
Braun 2013). The anticipated negative impacts, on cereal production and food security,
projected to occur without adaptation and readjustment of food-water-energy system
interactions to account for pressures from population growth, globalisation and

climate change has been eloquently described using the “perfect storm” metaphor
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(Beddington 2009; Fig. 1-4). As climate change interacts with biophysical,
demographic and socio-economic processes retaining a holistic, integrated approach
to developing climate-resilient production within cereal systems which attempt to
yield co-benefits increasing resilience to the multitude of cross-scale, cross-sectoral
stresses and drivers which determine production and food security (Schmidhuber and
Tubiello 2007; FAO 2011a). Adapting cereal croplands to avoid a “perfect storm” of
widespread food insecurity and degradation of natural resource bases requires
multidisciplinary scientific advances (Beddington 2009; Godfray et al. 2010; Misselhorn
et al. 2012).

Increased demand of
50% by 2030

ENERGY

CLIMATE CHANGE

b

FOOD «—— WATER

Increased demand of Increased demand of
50% by 2030 30% by 2030

Figure 1-4 The "perfect storm" scenario which could occur by 2030 due to pressures within the food-
energy-water nexus and interactions with climate change (Beddington 2009; Poppy et al. 2014).

In most situations, the expansion of croplands with consequent environmental
degradation, deforestation, loss of biodiversity, increased GHG emissions, reduced
ecosystem service provision and off-farm impacts polluting water resources is deemed
unacceptable (Tillman et al. 2002; The Royal Society 2009; Brussaard et al. 2010;
Foresight: Final Project Report 2011; Foley et al. 2011). Therefore, ‘sustainable
intensification’, ‘organic agriculture, ‘integrated agro-ecological farming’, ‘genetic and
crop breeding advances’, ‘conservation agriculture’ or ‘resource-conserving’

approaches which aim to increase productivity without exceeding the renewable limits
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of natural resources are seen as the solution to increase production in an
environmentally sustainable manner (Lumpkin and Sayre 2009; The Royal Society
2009; Godfray et al. 2010; Bogdanski 2012; Uphoff 2012). Climate-smart agriculture
intersects with these approaches when in a particular system or location they
contribute to climate-resilience and realise adaptation and mitigation co-benefits (FAO
2011a; Scherr et al. 2012). While crop simulation modelling and experimental
laboratory and field experiments have enhanced understanding of climate influences
on crop physiological processes (Challinor et al. 2005; Jagadish et al. 2007; Rang et al.
2011b) there is a need to understand and monitor climate impacts on cereal crop
productivity across real agricultural systems. Such an approach, sensitive to space and
time varying climate-crop interactions, will more efficiently optimise climate-resilient
adaptations across landscapes and agricultural systems and capture spatial trade-offs
between increasing productivity and reducing agricultures environmental impact

(DeFries and Rosenzweig 2010; FAO 2012; Scherr et al. 2012).
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Table 1-2 Climate-smart adaptations for cereal croplands*.

Sufficient and climate-
resilient production

Minimal impact on
ecosystems and ecological
processes

Reduced GHG emissions
and climate change
mitigation

Close yield gaps

Mulch and
residue
retention

Zero-tillage

Alternate
wetting and
drying/System
of Rice
Intensification

Laser bed
levelling

Agroforestry

Nutrient
Management
(Leaf colour
chart,Urea Deep
Placement)

Increases production.

Long-term yield benefits,
increased resilience to
extreme heat events,
increased water use
efficiency.

Yield increases in some
cropping systems, often
long-term yield increases,
reduced water inputs.

Questionable rice yield
benefits compared to
puddled rice but reduced
water and irrigation costs
SO more economic

May increase crop
production via improving
water use efficiency and
reducing risk of water
stress.

Yields can increase as
mixture of trees within
croplands can create more
favourable and stable
conditions for crop growth.

Possible increase in yields,
reduce impact of nutrient
limitation. Reduces
farmer’s links to volatilities
in fertiliser prices.

Prevents expansion of
croplands reducing loss of
tropical forests and
biodiversity.

Preserves soil moisture,
lowers soil and canopy
temperature, reduced
evaporation, increased
infiltration, reduced run-off
and soil and wind erosion,
enhanced soil microbial
activity.

Improved water use
efficiency, reduced run-off,
reduced soil erosion,
reduced exposure of soil
organic carbon to air
preventing its rapid
oxidation, less variable soil
temperatures.

Reduced irrigation water
inputs, dry seeded so
avoids formation of
puddling pan,

Reduces run-off and
leaching from fields,
increases infiltration,
increases soil moisture
content.

Trees protect soil from
erosion, reduce run-off and
increase infiltration. N-
fixing trees can increase
soil fertility. Trees can
provide shade to crops and
soil.

Reduced fertiliser use,
reduced leaching of
fertiliser, improved soil and
water conditions (off-farm
and on-farm).

Reduced GHG emissions via
land conversion.

Increased soil organic
carbon assimilation,
reduced GHG emissions via
no residue burning.

Reduced GHG emissions via
fewer tractor passes.

Reduced CH, emissions via
less anaerobic
decomposition.

Leguminous trees reduce
need for N fertilisers
reducing N,O emissions
and also emissions from
fertiliser manufacturing.
Trees are a carbon sink.

Reduced N,0 emissions.
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* It should be noted that the climate-smart benefits derived from each of these adaptations is system
specific and may not yield optimum results in every situation. Giller et al. (2009) provide a review of
the limitations and trade-offs associated with implementing agricultural practices associated with
climate-smart benefits in smallholder farming in Africa. For example, they comment that there is a
trade-off between retaining residues on fields and removing residues for livestock feed. Also, there is
need for policy and funding to incentivise uptake of climate-smart practices (Cooper et al. 2013).

Table Sources: Gupta and Seth 2007; Erenstein and Laxmi 2008; Hobbs et al. 2008; Wassmann et al.
2009; World Bank 2011; Foley et al. 2011; FAO 2011b; Chauhan et al 2012; FAO 2013; Cooper et al.
2013.

1.2 The rice-wheat cropping systems in Punjab and Haryana, north-

west Indo-Gangetic Plains

1.2.1 Prevailing environmental, climatic and agronomic conditions in Punjab and

Haryana

This section elaborates on the discussion above; firstly the rice-wheat cropping
systems of Punjab and Haryana are introduced before a detailed discussion of the
multiple stresses placed on these croplands. The scale now shifts from a global and
generic scale to the specific study region for this research. The north-west IGP,
specifically the states of Punjab and Haryana, are a ‘focal’ cereal crop production
region for India (Fig 1-2). Fig 1-2 shows the location of Punjab and Haryana relative to
the rest of India. The cereal production system in Punjab and Haryana are commonly
termed India’s ‘breadbasket’ and provide ecosystem services (e.g. crop production)
which support the livelihoods of the state’s 53 million inhabitants (Saharawat et al.
2009; DES 2011; Chauhan et al. 2012). Cereal production in these states is also vital for
national food security efforts; the Government of India purchases large quantities of
foodgrains from Punjab and Haryana to supplement national buffer stocks and support
the Targeted Distribution Service to poor households (Perveen et al. 2012). Punjab and
Haryana supply about 50% of rice and 85% of wheat to Government stocks; the lower
proportion of rice procurement is due to production of high quality Basmati rice in
Haryana not purchased under government schemes (Singh 2000; Erenstein and Thorpe
2011; Chauhan et al. 2012). Government procurement of rice and wheat from Punjab
and Haryana exceeds levels of procurement from the neighbouring state of Uttar
Pradesh, despite Uttar Pradesh’s significantly larger area under cultivation and greater

levels of production (Fig 1-5); though yields are higher in Punjab and Haryana with a
38



greater percentage of croplands under irrigation (Fig. 1-2). It is clear that the

livelihoods and food security of millions of people, nationwide, would be vulnerable to

losses or variability in cereal production in Punjab and Haryana.
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Figure 1-5 a) State-wise procurement of rice and wheat crops from Punjab, Haryana and Uttar Pradesh

(DES, 2011), b) fraction a 5 minute grid cell covered by rice cropping (circa 2000) (Monfreda et al.

2008) and total area cropped, c) fraction of a 5 minute grid cell covered by wheat cropping (circa 2000)

(Monfreda et al. 2008) and total area cropped, d) state-wise production of rice (Million Tonnes) in

2000 and e) state-wise production of wheat in 2000.
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Typically the soils of Punjab and Haryana have a lower soil capability index score than
the other reaches of the IGP (Erenstein et al. 2007). However the central plain regions
have the highest soil capability index scores within the states of Punjab and Haryana
(Erenstein et al. 2007). The majority of precipitation in Punjab and Haryana is received
during the Indian Summer Monsoon (ISM) season, June to September (Tyagi et al.
2005). Normal ISM precipitation totals vary across Punjab and Haryana ranging from
156mm to 1091mm with large amounts of inter-annual variability (Fig. 1-6; Duncan et
al. 2013). Punjab and Haryana also experience a higher frequency of drought years
relative to the majority of other Indian states (Pai et al. 2011; Duncan et al. 2013). The
regions of Punjab and Haryana which experienced the highest levels of inter-annual
variability in precipitation, the lowest normal levels of ISM precipitation, the highest
frequency of severe drought years and increasing trends in recurrence of drought
years and inter-annual variability in ISM precipitation were located in the southern

portions of the states in the arid regions (Pai et al. 2011; Duncan et al. 2013).
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Figure 1-6 a) median Indian Summer Monsoon precipitation (June-September) from 1951-2007 and, b)
inter-quartile range in Indian Summer Monsoon precipitation between 1951 and 2007. Both
computed from the APHRODITE daily gridded precipitation dataset.
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Punjab and Haryana were focal points for Green Revolution developments from the
mid-1960’s onwards as India sought to achieve self-sufficiency in food production
(Singh 2000). Under the Green Revolution agricultural production in Punjab and
Haryana was increased via both extensification and intensification of cereal croplands
alongside shifts in cropping systems and technological advances (Singh 2000; Murgai et
al. 2001). During the initial Green Revolution developments and in the subsequent
decades a rice-wheat cropping system became dominant across both states (Singh
2000; Ambast et al. 2006; Perveen et al. 2012). Rice is grown in the monsoonal kharif
season (June to October) and wheat is grown in the dry rabi season (November to
April). The area under rice and wheat cropping in Punjab and Haryana has increased
significantly since the mid-1960’s (Ambast et al. 2006). Prior to the Green Revolution
developments rice was not a dominant kharif crop in Punjab and crops such as barja
(pearl millet), cotton and sorghum all had larger or equivalent proportions of cropped
area (Singh 2000). As well as increasing area under cereal cropping, the productivity of
rice and wheat crops increased under Green Revolution technologies. Rice and wheat
yields in Haryana were 1.06 and 1.28 Tonnes ha™ in 1965-1966 and were 2.7 and 5.03
Tonnes hain 2011-2012 respectively (Singh 2000; DES 2011).The technological and
agronomic advances which facilitated increased production and productivity of
croplands in Punjab and Haryana centred around high levels of fertiliser and irrigation

inputs applied to HYVs (Murgai et al. 2001; Erenstein 2011; Chauhan et al. 2012).

Generally Punjab and Haryana have higher levels of physical, human, social and
financial capital than other portions of the IGP (Erenstein et al. 2007). The average
farm size, herd size, irrigation capacity, levels of farm mechanisation, rural female
literacy, immunisation rate, share of villages with paved road access and, share of
villages with credit and banking facilities are higher in Punjab and Haryana than other
IGP states (Erenstein et al. 2007). This reflects the enhanced agricultural infrastructure
developed under the Green Revolution; the benefits of Green Revolution technologies
largely bypassed other portions of the IGP (e.g. Bihar and eastern Uttar Pradesh)
(Aggarwal et al. 2004; RWC 2006). The dominant holdings are classified as semi-
medium, medium and large which corresponds to average farm sizes of 2.87 ha, 6.09

ha and 17.95 ha respectively in Haryana and 2.64 ha, 5.74 ha and 14.75 ha in Punjab
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(Agricultural Census 2012). This is a reflection that the majority of farms in Punjab and
Haryana are market-orientated rather than subsistence, privately owned, with higher
levels of seasonal in-migration of agricultural labourers and use of casual labour at
specific times in the cropping calendar (Erenstein and Thorpe 2011). There is evidence
that increased financial returns due to Green Revolution advances led to greater
investment in schooling and, thus, boosted levels of education in Punjab (Murgai et al.
2001). Women in Punjab and Haryana play a limited role in crop production due to
higher levels of mechanisation and use of hired labour (Erenstein and Thorpe 2011).
There are also gender differences in wages with men receiving comparably higher
wages than women in both Punjab and Haryana (Erenstein 2011). However, the
increasing mechanisation of agriculture (e.g. tractors for ploughing and tillage,
combine harvesters for harvesting) reduces demand for labour which compounds
poverty issues in the poorest segments of the rural population (Erenstein and Thorpe

2011).

There is a lower proportion of the population below the poverty line in Punjab and
Haryana (6.4 and 8.3% respectively) compared to the rest of the IGP region (27.7 —
39.3%) reflecting the importance of agricultural development (Erenstein et al. 2007;
Erenstein and Thorpe 2011). The value of land in Punjab and Haryana is high especially
in irrigated areas or areas where the high value basmati crop is grown (Erenstein
2011). Land access is a key asset in Punjab and Haryana, over half the households in
the rice-wheat system have access to land with the remaining households often
providing agricultural labour (Erenstein 2011). Livestock in Punjab and Haryana is
predominantly Buffalo due to dietary preference for high-fat milk; crop residues from
the wheat crop provide main livestock feed and livestock dung is the fuel source
(Erenstein and Thorpe 2011). Livestock in Punjab and Haryana is stall-fed throughout
the year with very little grazing land (Erenstein 2011). Despite large ruminant density
in Punjab and Haryana being twice the national average, and over half the milk
produced being sold in markets, compared to cereal cropping, livestock activities have

a less significant role in supporting livelihoods (Erenstein and Thorpe 2011).

The development, and widespread adoption, of HYVs of rice and wheat supported by

high levels of fertiliser and irrigation inputs led to increased crop yields. In the 1960’s
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semi-dwarf wheat cultivars developed at International Maize and Wheat Improvement
Centre (CIMMYT) Mexico were introduced to Punjab and Haryana which had lower
temperature requirements for germination and tillering (Chauhan et al. 2012). This
enabled later sowing of the wheat crop subsequently lengthening the preceding kharif
cropping season encouraging development of rice cropping. The first HYV rice variety
was released in 1965 (Taichung Native 1), followed by releases of several improved
varieties over the past 45 years which focus on improving grain size, quality and yield,
shortening time to maturity and developing resistance to pests and disease (e.g.
bacterial blight) (Rang et al. 2011a). In the early 1960’s tall, low yielding basmati rice
was grown over a limited extent in Punjab and Haryana; now HYV rice varieties are
more dominant (Rang et al. 2011a). There is still significant cultivation of basmati rice
in Haryana, which is India’s leading state in exports of basmati rice (Erenstein 2011).
The semi-dwarf HYVs are typically more sensitive to fertilisers and resistant to lodging
due to their shorter stem length (Wassmann et al. 2009). The improved canopy
architecture of semi-dwarf HYVs of rice crops lowers canopy temperature, facilitates
transpiration cooling mechanisms enabling rice to be grown in warmer environments
(Wassmann et al. 2009). This was an important development for growing rice in the
semi-arid regions of Punjab and Haryana. Increases in fertiliser applications also
contributed to the success of HYVs and increased crop yields since the Green
Revolution. Fertiliser application in Haryana increased from three to 130 kg ha™
between 1970 and 2000 (Singh 2000) and in Punjab fertiliser application increased
from 33 to 155.9 kg ha™ from 1966 to 1994 (Murgai et al. 2001).

There was a limited surface irrigation infrastructure developed during the 19" century
in the IGP but the extensive irrigation development associated with the Green
Revolution in the mid to late 20" century was predominantly centred on groundwater
extraction (Erenstein 2009b). Currently irrigation in Punjab and Haryana is often a
conjunctive use of electric and diesel powered tubewells for groundwater extraction
and surface water extracted from canals (Tyagi et al. 2005; Erenstein 2009b). In
Haryana there is a large proportion of electric tubewells as the State Electricity Board
maintained a good electricity connection and electric power was subsidised (Tyagi et

al. 2005; Erenstein 2009b). In 2009-2010 98.4% of foodgrains in Punjab were irrigated
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and 89% of foodgrains in Haryana were irrigated (DES 2011). It was the access to
irrigation in Punjab and Haryana which supported puddled rice cropping in the semi-
arid environment with typically coarse and porous soils (Gajbhiye and Mandal 2000;
Erenstein 2009b; Chauhan et al. 2012). The rice-wheat double cropping system, and in
particular rice cropping, is focused in the central plain regions of Punjab and Haryana
coinciding spatially with good and marginal groundwater quality, high density of
tubewells, loamy alluvium soils, higher relative soil capability, and higher precipitation
levels than the southern arid regions (Gajbhiye and Mandal 2000; Ambast et al. 2006;
Erenstein et al. 2007; Duncan et al. 2013). Rice cropping is reliant on irrigation to
maintain anaerobic, ponded conditions with an average of 34.5 irrigations per growing
season in Haryana (Erenstein 2009b). This is 10 times more irrigations than is applied
to the subsequent wheat crop; this is partly due to rice’s higher water requirements
and also poor water management. Puddled, transplanted rice has reduced water
productivity compared to wheat crops; for example, Saharawat et al. (2010) noted
water productivity’ for rice of 2.41 kg ha™ mm™ whereas wheat had a water

productivity of 15.31 kg ha®’ mm™on an experimental farm in Haryana in 2005.

In the southern portions of Punjab and Haryana, where there is sandy desert soils,
lower precipitation levels and poor quality of groundwater, the rabi wheat crop is
typically grown in rotation with cotton, maize and pearl millet (Ambast et al. 2006). In
these regions the wheat crop is more resilient due to its salt tolerance and lower water
requirements (Ambast et al. 2006). There is increasing reliance on groundwater
sources to support the rabi wheat crop when water levels in surface canals are lower
(Erenstein 2009b). The lack of reliability and equal distribution in flows of water in
surface canals coinciding with approximately 70% of Punjab and Haryana having
shallow groundwater of good or marginal quality led to the rapid uptake tubewells
(Tyagi et al. 2005; Ambast et al. 2006). There is a ‘warabandi’, priority access,
distribution scheme in operation which allocates flows of water in surface canals (Tyagi
et al. 2005; Ambast et al. 2006). This system allocates water on a rotation principle of

seven days of flow followed by 14 days of no-flow; this system often fails to deliver

! Water productivity refers to crop yield per unit volume of water applied.
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water at key crop requirement stages and water quantities vary along the canals (Tyagi
et al. 2005). That the annual evapotranspiration of rice-wheat double cropping system
(>1400mm) exceeds annual precipitation totals highlights its dependency on reliable

irrigation (Ambast et al. 2006; Erenstein 2009b).

A supportive policy and institutional environment contributed to the uptake of Green
Revolution technologies and subsequent agricultural development and yield increases
in Punjab and Haryana. Inputs to the rice-wheat system of credit, fertiliser, power and
irrigation water were heavily subsidised by the Government of India (Murgai et al.
2001). Through Government procurement, and a minimum support price, a
guaranteed market for rice and wheat crops was provided for farmers in Punjab and
Haryana (Erenstein and Thorpe 2011; Perveen et al. 2012). This protected farmers
growing rice and wheat crops from risks associated with price fluctuations in open
markets (Erenstein and Thorpe 2011). In Haryana electricity costs for groundwater
extraction were heavily subsidised whilst in Punjab power for agriculture was free from
1997 to 2002 and since 2005 (Erenstein 2009b; Perveen et al. 2012). The price of
irrigation water is either free or heavily subsidised and the electric grid in Haryana is
maintained at acceptable levels whilst in Punjab all rural villages were electrified in the
1980s (Murgai et al. 2001; Erenstein 2009b). This contributed to farmers investing in a
low-diversity, irrigation dependent rice-wheat monoculture across much of Punjab and
Haryana. There is also a focus of agricultural research institutes and universities in
north-west India (e.g. Punjab Agricultural University which developed several HYV rice
cultivars) (Murgai et al. 2001; Rang et al. 2011a). This ensured farmers in Punjab and
Haryana were exposed to the latest technological and agronomic advances; recently
this was reflected in the more rapid uptake in zero-tillage practices in Punjab and
Haryana compared to other parts of the IGP (Erenstein and Laxmi 2008; Erenstein

2010a).

1.2.2 Multiple Stresses

Typical of agricultural landscapes globally, multiple interacting stresses and drivers
impact the cropping systems of Punjab and Haryana (Table 1-3). It is the interaction

and feedbacks between these drivers which determine levels of crop productivity,
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vulnerability and resilience to climatic variability and change; this is illustrated by the
conceptual diagram in Fig 2-3. However, recently several aspects of the rice-wheat
production system are displaying negative trends suggesting the high levels of
productivity and benefits delivered under current practices and system functioning are
unsustainable (RWC 2006; Gupta and Seth 2007). Often these negative trends (e.g.
stagnating or declining crop yields) are resultant from sub-optimal, intensive
agricultural practices degrading the natural resource base undermining the yield of
future cropping seasons (Aggarwal et al. 2004; Ambast et al. 2006; Erenstein and
Thorpe 2011; Chauhan et al. 2012). For example, it has been noted that marginal and
poor quality groundwater irrigation in Haryana has led to increased soil salinity in the
lower reaches of irrigation canal systems lowering rice yields or forcing farmers to shift
crop types (Tyagi et al. 2005). The following discussion will provide more detail on
some of these negative trends and drivers which serve to undermine sustainable levels
of crop production in the IGP. This will provide useful context for the subsequent

research papers.
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Figure 1-7 Conceptual diagram illustrating the systemic nature of rice-wheat cropping systems in
Punjab and Haryana and associated interactions and feedbacks between drivers and outcomes. Red
boxes correspond to socio-economic factors, green boxes to landscape, agronomic and environmental
factors and blue boxes to climatic and water factors.
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Table 1-3 Summary of key stresses affecting the rice-wheat production system in Punjab and Haryana

Stress Impact

Population growth and The population in Punjab and Haryana is projected to increase, as is the
demand for national population of India of which large portions are food insecure. This will place
welfare schemes increased demand on the focal croplands on Punjab and Haryana.

Stagnating productivity Whilst demand for rice and wheat production from Punjab and Haryana
increases there has been a slow down, and in some locations, a decline in
growth of crop yields.

Limited room for There is little room to expand croplands in Punjab and Haryana, either in
expansion terms of area or intensification. Worryingly some rice and wheat croplands
are being lost due to environmental degradation.

Soil degradation Intensive cropping and irrigation associated with Green Revolution

developments has degraded the quality of soil, reducing soil physical
properties, water holding capacity, nutrient and soil organic carbon status
and increases salinity.

Water availability There has been a dramatic decline in groundwater levels in Punjab and
Haryana associated with irrigation withdrawals. This trend is not
sustainable.

Water quality Increased groundwater extraction from deeper reserves has increased

salinity of water resources. Also, leaching of nutrients from fields has
polluted water sources (often downstream).

Climate change Climate change will have multiple impacts on rice-wheat cropping in Punjab
and Haryana. Cereal crops are sensitive to extreme heat events during
anthesis, and extreme heat days are projected to increase of northern India.
Warming temperatures and more variable precipitation will place greater
pressure on already stressed irrigation resources.

Table sources: Aggarwal et al. (2004); Tyagi et al. (2005); Ambast et al. (2006); Hobbs et al. (2008);

Rodell et al. (2009); Wassmann et al. (2009); DES (2011); Lobell et al. (2012); Perveen et al. (2012);

Chauhan et al. (2012).

1.2.21 Stagnating crop yields and population growth

Despite gains in productivity during the Green Revolution, recently crop yields have
stagnated and declined whilst population in Punjab and Haryana has continued to
grow; this reflects a global situation as discussed in Table 1-1 (Aggarwal et al. 2004;
Erenstein and Thorpe 2011). This situation places obvious pressure on the rice-wheat
cropping systems to arrest declining productivity to keep up with demand (RWC 2006).
Table 1-4 summarises some of the key factors limiting rice and wheat crop yields or
contributing to stagnating productivity growth. In Punjab trends in rice yield have
plateaued whereas in Haryana there has been a noted decline in rice yields, whilst
yields of wheat have increased there has been a slowdown in productivity growth
(Ambast et al. 2006). Similar trends have been observed in long-term field experiments
where both rice and wheat yields showed widespread stagnation in yield trends, but
declines in rice yield were more widespread than wheat (Ladha et al. 2003). The more

pronounced yield declines in rice compared to wheat were partly attributed to greater
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genetic gains made to wheat cultivars over the past 40 years, with little increase in the
yield potential of rice cultivars since the release of IR8 in the 1960’s (Ladha et al. 2003).
The yield improvements in wheat cultivars generated a genetic gain of 1.6% per year
due to a greater number of spikes per grain and grains per unit area (Ladha et al.
2003). Other causes for the slowdown in productivity and declining yields are
degradation of the natural resource base (e.g. soil fertility), decrease in solar radiation
and increases in minimum temperature (Pathak et al. 2003; Ladha et al. 2003;
Aggarwal et al. 2004; Chauhan et al. 2012). There has also been a recent decrease in
the total factor productivity (TFP), a ratio of inputs and outputs of a system which is a
proxy measure of technological change, in rice-wheat systems in Punjab and Haryana
(Murgai et al. 2001; Aggarwal et al. 2004). Of the cropping systems (rice-wheat, wheat-
cotton, wheat-maize) in Punjab and Haryana, the rice-wheat system had the lowest
total factor productivity growth due to intensive inputs required to deliver outputs

(crop yield) (Murgai et al. 2001; Aggarwal et al. 2004).

48



Table 1-4 List of factors which explain stagnating or declining growth of rice and wheat crop yields in

Punjab and Haryana*.

Cause

Explanation

Distance from irrigation canal

Position within watercourse

Intensive tillage in a rice-wheat
rotation (formation of puddling

pan)
Intensive tillage in tropical/sub-

tropical climate

Water quality/quantity

Nutrient depletion

Extreme heat events

Increased night-time
temperatures

Decreased solar radiation

Crop residue burning

(Lack of) Genetic gains

Observations suggest farmers closer to irrigation canals have higher
crop yields.

Farmers towards the bottom of the irrigation watercourses receive
more variable and lower quality irrigation water in canals. This
results in lower rice and wheat crop yields.

Intensive puddling of the rice crop leads to the formation of shallow
puddling pan in the soil. Shallow rice roots cannot penetrate the pan
and thus exhaust nutrients in upper soil layers.

Intensive tillage in a tropical/sub-tropical environment constantly
aerates the soil and accelerates the oxidation of already limited soil
organic matter.

Farmers irrigating with saline groundwater report lower crop yields.
Also, reduced water availability means farmers mine deeper, more
saline groundwater which has positive feedbacks on soil quality and
water availability (more water required to flush out saline soils).

There have been declines in the nutrient status of soils associated
with intensive rice-wheat cropping (including micronutrient
deficiency). Nutrient limitation has been attributed to yield declines
and stagnation in on-farm yields.

Increased extreme heat events during the wheat crop growing
season accelerate crop senescence.

Trends of warming night-time temperatures linked to declining on-
farm rice yields, warming temperatures increase photorespiration
and accelerate phenological development.

Trends of decreased solar radiation linked to declining rice yields;
solar radiation is key for photosynthesis.

Atmospheric particulates and brown clouds from crop residue
burning can impact monsoon circulation. Models suggest
atmospheric brown clouds limit rice crop production. Burning crop
residue also removes nutrients from the soil: one tonne of wheat
residue contains 4.8kg N, 0.7 kg P (phosphorus) and 9.8 kg K
(potassium).

There has been little increase in the yield potential of rice cultivars
developed since the 1960s.

*It should be noted that these factors impact crop yields over varying spatial and temporal scales (i.e.
some will be location specific such as distance to a canal, others will impact crop yields immediately
such as an extreme heat event and some factors will take a longer period of time to influence crop
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yield such as the build up of a puddling pan depleting nutrients in the upper soil layers or long-term
build up of salinity with poor quality irrigations).

Table sources: Pathak et al. (2003); Ladha et al. (2003) Aggarwal et al. (2004); Tyagi et al. (2005);
Auffhammer et al. (2006); Lobell et al. (2010); Chauhan et al. (2012); Lobell et al. (2012).

1.2.2.2 Soil Quality

The conventional agricultural practices in Punjab and Haryana, associated with Green
Revolution advances, have deteriorated the soil quality (Aggarwal et al. 2004;
Erenstein et al. 2007). Rice and wheat crops are typically grown under different soil
conditions; rice requires anaerobic soil conditions compared to wheat which favours
aerobic soil (Erenstein 2009b; Erenstein 2010b; Chauhan et al. 2012). Conventional rice
cropping requires continuous puddling with intensive tillage on ponded or submerged
fields to reduce soil aggregate sizes, reduce macro-porosity between soil particles to
achieve anaerobic conditions (Chauhan et al. 2012). This leads to increased soil
compaction due to crystallisation of ferric oxides cementing soil particles and therefore
the development of a hard pan, this increases the bulk density of the soil and reduces
hydraulic conductivity below the surface ploughed layers (Ladha et al. 2003; Chauhan
et al. 2012). The stagnating and declining rice yields may be partly caused by declines
in soil quality over time associated with puddled rice cropping on unfavourable soils.
Rice is a shallow rooting crop and is therefore sensitive to formation of surface pans
and suffers from nutrient deficiency when nutrients are depleted in the top 30 cm of
the soil (Ladha et al. 2003). Wheat cropping requires well drained, aerobic soils, thus,
requiring intensive tillage after kharif rice cropping via several tractor led ploughing,
harrowing and planking operations (Erenstein and Laxmi 2008). The hard pan
developed under puddled rice cropping can harm root growth of the subsequent
wheat crop (Chauhan et al. 2012). However, wheat is more resilient to deteriorating
soil quality having greater salt tolerance, longer roots and a longer growing season
enabling it to mine more nutrients (Ladha et al. 2003; Tyagi et al. 2005). This likely
explains why yield declines in rice have been more pronounced than in the wheat crop
(Ladha et al. 2003). The soil management operations required to shift soil from aerobic

to anaerobic has noticeable implications for soil physical and biogeochemical
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properties and is reported as one of the major contributors to observed stagnation in

crop productivity (Ladha et al. 2003; Aggarwal et al. 2004; Chauhan et al. 2012).

Soils in Punjab and Haryana are becoming increasingly depleted of soil organic carbon
and nutrients due to tillage and poor soil management and intensive cropping mining
nutrients (Singh 2000; Aggarwal et al. 2004; Chauhan et al. 2012). Intensive rice-wheat
cropping has led to declines in soil fertility in Punjab and Haryana. In Haryana the soil
areas with low phosphorus levels increased from 3.3% in 1980 to 73% in 1995 (Singh
2000), though Ladha et al. (2003) suggest that adequate amounts of phosphorus
fertiliser application can meet crop demands. Between 1967 and 1997 there have been
noted declines in soil phosphorus across both Punjab and Haryana (Pathak 2010). The
area of soils with high levels of potassium decreased from 91.1% in 1980 to 61.5% in
1995 (Singh 2000), soil potassium depletion was a contributing factor to noted yield
declines in several long-term field experiments across the IGP (Ladha et al. 2003).
Haryana has low levels of soil nitrogen, with Punjab having slightly higher levels (Singh
2000; Pathak 2010). The soils of the north-west IGP also have low organic matter and
soil carbon content, which is further reduced due to intensive tillage operations (Ladha
et al. 2003; Daughtry et al. 2006; Erenstein and Laxmi 2008). The loss of soil carbon
and organic matter reduces soil cation exchange capacity, the number of active sites
involved in nutrient transfer (Ladha et al. 2003). There is also a noted sulphur
deficiency in the coarse textured, low organic matter soils of Punjab and Haryana
(Chauhan et al. 2012) and evidence of micronutrient deficiency, especially declining
zinc levels (Aggarwal et al. 2004). Farmers are having to apply greater amounts of
fertiliser (N:P:K; nitrogen:phosphorus:potassium) for diminishing returns and account
for losses in fertiliser via leaching, run off and soil erosion (Aggarwal et al. 2004;
Chauhan et al. 2012). The nutrient usage of crops in the rice-wheat system in Punjab
and Haryana is greater than in any other state in the IGP rice-wheat cropping system

(Abrol 1999).

The development of an extensive irrigation infrastructure, especially irrigation with
poor or marginal quality saline groundwater has led to increased soil salinity across
Punjab and Haryana (Aggarwal et al. 2004; Tyagi et al. 2005; Ambast et al. 2006).

Nearly two-thirds of Haryana is underlain by deep (>40m) brackish groundwater and
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shallow groundwater is saline and of marginal quality (Tyagi et al. 2005). Deeper,
saline, groundwater is increasingly being mined by lowering centrifugal pumps into
pits, or using submersible pumps, to account for falling groundwater levels (Erenstein
2009b). This will lead to increased soil salinity problems. The porous soils of Punjab
and Haryana require constant irrigation, especially to maintain puddled rice cropping
conditions, which, thus, increases soil salinity (Ladha et al. 2003; Chauhan et al. 2012).
Increasing temperatures associated with global warming will further compound soil
salinity problems in Punjab and Haryana increasing crop evapotranspiration and, thus,
capillary action drawing saline waters to the surface (Wassmann et al. 2009). The
irregularity of surface canal water in Punjab and Haryana makes it difficult to leach
salts away from the soil surface (Tyagi et al. 2005; Wassmann et al. 2009). This is
particularly problematic for rice cropping as rice is more sensitive to saline soils than
wheat; in some instances salinity forces farmers to growing kharif barja (pearl millet) in
Haryana (Tyagi et al. 2005). A study of a rice-wheat cropping system with conjunctive
use of groundwater and surface irrigation showed salinity to be the biggest factor
reducing wheat and rice crop yield and that the quality of groundwater varies spatially

(Tyagi et al. 2005).
1.2.23 Water Resources

Evidence from satellite observations from the NASA Gravity Recovery and Climate
Experiment (GRACE) and simulations of soil-water variability showed that groundwater
extraction is greater than recharge in Punjab and Haryana, with a mean decline in
groundwater levels of 4 cm year™ between 2002 and 2008 (Rodell et al. 2009). There
are local variations in this rate of decline, between 1982 and 1987 in central Punjab
the average rate of decline was 18 cm year™ and this rose to 42 cm year™ between
1997 and 2002 (Perveen et al. 2012). This decline is attributed to extraction of
groundwater for irrigation as there was no change in precipitation and other storage
components of the hydrological cycle (soil moisture, glaciers, biomass, and surface
water including rice paddies) (Rodell et al. 2009). Most of the water lost via
groundwater extraction leaves the region via evapotranspiration or run-off (Rodell et
al. 2009). This decline in groundwater is confirmed by other studies using satellite

observations (Tiwari et al. 2009) and Central Groundwater Board monitoring in India
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reported 80% of blocks (political subdivisions) in Punjab have over-exploited
groundwater, and, state-wise groundwater availability for irrigation was deficient by
14.57 billion cubic metres (bcm) (Central Ground Water Board 2012). An assessment of
groundwater footprints (the aquifer area required to sustain groundwater use and
groundwater dependent ecosystem services) indicates that groundwater extraction in
the Upper Ganges basin is the most unsustainable of all aquifers globally (Gleeson et
al. 2012). The water table has fallen between Om to >15m over the past 20 years
through much of central and northern Punjab and Haryana, this corresponds to areas
with the greatest density of tubewells and water intensive rice-wheat cropping
(Ambast et al. 2006). In 2009 Punjab 33.97 billion cubic metres of groundwater are
extracted for irrigation compared to only 0.69 billion cubic metres for industrial and

domestic uses (Central Ground Water Board 2009).

Issues of declining groundwater quality also compound problems associated with
groundwater declines. Much of the groundwater in north-west India is saline in nature
with state-wise and local watershed gradients in levels of salinity (Tyagi et al. 2005). At
the state level groundwater quality declines (increases in salinity) towards the
southern portions of Punjab and Haryana (Abrol 1999; Ambast et al. 2006) whereas
variations in irrigation water salinity have been documented within local watersheds
and irrigation canal systems (Tyagi et al. 2005). The increasing extraction of shallow
groundwater reserves has deteriorated groundwater quality due to increasing mining
of deeper more saline groundwater (Abrol 1999; Tyagi et al. 2005). The intense use of
fertilisers and pesticides in the rice-wheat cropping system has also caused declines in
groundwater quality (Abrol 1999). It is likely that climate change (e.g. increasing
temperatures increasing crop water demand), population growth and urbanisation will
increase competition for already over-used groundwater resources (Rodell et al. 2009;

Moors et al. 2011).
1.2.24 Government Policy

Government policy and incentives encouraged and facilitated the development of the
rice-wheat cropping system and the subsequent productivity gains (Singh 2000;

Erenstein 2009b; Perveen et al. 2012). However, such policy has created a policy
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environment and agricultural system which degrades the natural resource base,
compounds yield gaps, and contributes to undermining the long-term sustainability of
agricultural production in the region (Aggarwal et al. 2004; Gupta and Seth 2007;
Erenstein 2009b; Perveen et al. 2012). A combination of the Government providing a
guaranteed market and minimum support price for the rice and wheat crops, subsidies
and low prices for irrigation water and power for irrigation extraction have led to
farmers investing their livelihoods in a rice-wheat monoculture (Murgai et al. 2001;
Erenstein 2009b; Erenstein and Thorpe 2011; Perveen et al. 2012). The resident
natural resource base (e.g. soil or water resources) cannot sustain the demands of the
rice-wheat system, exemplified by increasing reliance on fertiliser applications and
groundwater extractions (Aggarwal et al. 2004; Ambast et al. 2006; Rodell et al. 2009).
These subsidies also encourage farmers to be wasteful in their use of irrigation water
(Erenstein 2009b) There are also political issues which inhibit removal or readjustment
of policy which supports rice-wheat cropping and encourages widespread groundwater
extraction (Erenstein 2009b). For example, in Punjab farmers on small and medium
sized holdings gain the most from subsidies for irrigation and also make up the

majority of the electorate (Murgai et al. 2001).
1.2.25 Climate Change

Alongside stresses of water scarcity, degradation in the natural resource base, an
existent unsustainable agronomic infrastructure, population growth and associated
food demand the rice-wheat cropping systems will have to contend with and adapt to
climate change over the coming decades (Aggarwal et al. 2004). Linear trend analysis
applied to observational data showed statistically significant warming trends between
1971 and 2003 during winter and monsoon seasons, and annually, over north-west
India (Kothawale and Rupa Kumar 2005). Ensemble runs of regional climate models
(RCM) showed a uniform signal in warming trends over north India (Moors et al. 2011;
Mathison et al. 2013). This modelling study suggested a rise in mean temperature of
2.5-3°C by 2050 under the Special Report on Emissions Scenarios (SRES) A1B scenario
(Mathison et al. 2013). The projected warming temperatures will influence crop water
use and irrigation requirements; Doll (2002) estimate irrigation water requirements in

the Ganges basin will increase from 61.5 km? year™ to between 66.4 km? yearand
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74.6 km?® year® due to climate change. Another modelling study using the PRECIS RCM
also reported warming trends over Punjab and Haryana for the time-slice 2070-2100
under the A2 and B2 SRES scenarios (Rupa Kumar et al. 2006). Given the range of
models reporting a similar warming signal there is some certainty in forecasts of
increasing temperature over Punjab and Haryana, however the magnitude of warming
varies under different emissions scenarios (Rupa Kumar et al. 2006; Mathison et al.

2013).

GCMs suggest an increase in ISM precipitation associated with increased atmospheric
moisture content over the Indian Ocean increasing vertically integrated moisture
fluxes towards the Indian continent (Turner and Annamalai 2012). However, under A2
and B2 SRES scenarios simulated using the PRECIS RCM north-west India experienced
declines in ISM precipitation between 2070-2100, though small increases were
simulated in northern Punjab and Haryana (Rupa Kumar et al. 2006). Four models from
the CMIP3 ensemble, which best simulate the monsoon cycle, also reported slight
decreases in ISM precipitation in response to doubling atmospheric CO, in north-west
India (Turner and Annamalai 2012). The best four CMIP5 models, judged in terms of
ability to represent observed monsoon conditions, suggest slight increases in annual
and ISM precipitation over north-west India, consistent with multi-model ensemble
projections from CMIP3 models (Lee and Wang 2012). Generally in terms of
representing the annual cycle and spatial pattern of ISM precipitation CMIP5 multi-
model means have greater skill than CMIP3 multi-model means (Sperber et al. 2012).
This is likely due to improved horizontal resolution in CMIP5 models facilitating better
representation of orographic variability (Sperber et al. 2012). However, ensemble
simulations of ISM precipitation, whether using RCMs or GCMs, show considerable
uncertainty in future trends (Annamalai et al. 2007; Moors et al. 2011; Turner and
Annamalai 2012; Mathison et al. 2013). RCM ensemble simulations of ISM
precipitation over north India show little consistency in magnitude or sign of future
precipitation totals, with fragmented spatial patterns in grid cells registering increasing
trends relative to baseline levels (Moors et al. 2011; Mathison et al. 2013). Only six out
of the 18 GCMs used in the IPCC AR4 produced a reliable simulation of monsoon
conditions (Annamalai et al. 2007) and under the A1B SRES scenario the CMIP3 GCMs
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display both increasing and decreasing trends and differences in inter-annual
variability up to 2100 (Turner and Annamalai 2012). Inter-model spread in monsoon
simulation is present in the more recent range of CMIP5 models too (Lee and Wang
2012). Given the uncertainty in projections of ISM precipitation, with ensemble model
projection showing differences in signh and magnitude there is a need for flexibility in

water resources management (Mathison et al. 2013).
1.2.2.6 Conventional versus conservation agricultural practices

Conventional agricultural practices in Punjab and Haryana, which became widespread
with the adoption of Green Revolution technological advances, centre around a rice-
wheat monoculture supported by intensive fertiliser and irrigation water inputs (Singh
2000; Gupta and Seth 2007; Chauhan et al. 2012; Perveen et al. 2012). Here
conventional agricultural practices refer to agronomic practices involving tillage and
intensive inputs following the distinctions between conventional and conservation
agriculture of Hobbs et al. (2008). The kharif rice crop is transplanted onto paddy
fields, maintained in a puddled state via irrigation applied to well drained soils with
intensive tillage operations prior to sowing (Chauhan et al. 2012). Maintaining
puddled, anaerobic paddy fields for rice cropping was a mechanism to prevent weed
growth (Hobbs et al. 2008) In contrast to the rice crop, grown in anaerobic soil
conditions, the rabi wheat crop is grown on aerobic soil after harvesting the rice crop.
To achieve the turn-around between anaerobic soils for rice and aerobic soils for
wheat requires several tillage operations for ploughing, harrowing, planking and
seeding (Erenstein and Laxmi 2008). In a conventional rice-wheat system turn-around
time between rice and wheat crops varies from 2 to 45 days with up to 12 tractor
passes (Hobbs et al. 2008).The numerous tillage operations associated with
conventional rice-wheat cropping practices, require several hours of tractor use and,
thus, bear significant economic costs (e.g. petrol, machinery hire) and emit GHGs
(Erenstein and Laxmi 2008). The long turn-around time between rice and wheat, delays
wheat crop planting, and, thus, shortens the wheat growing season and exposes the

wheat crop extreme heat events (Lobell et al. 2012).
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Often rice crop residues are burnt in the north-west IGP, and wheat crop residues are
either burnt or removed for livestock feed (Badarinath et al. 2006; Pathak et al. 2006;
Erenstein and Thorpe 2011). This reflects the fact farmers do not value the use of rice
crop residue as livestock feed due to low silica content and concerns about milk quality
(Erenstein 2011). Combine harvester use is greatest in rice-wheat cropping systems,
particularly for the rice crop to achieve a quick turn-around to allow timely planting of
the succeeding wheat crop (Erenstein 2011). The increased use of combine harvesters
in Punjab and Haryana increases the amount of crop residue left on fields (Badarinath
et al. 2006; Erenstein 2009a). Combine harvesters are often followed by tractor passes
with a straw reaper during wheat crop harvest, the combine harvester cuts the crop
above ground level leaving remnant straw as stubble (Erenstein 2011). The straw
reaper extracts remnant stubble and combine harvested straw as wheat crop residue
has the greatest market value as livestock feed (Erenstein 2011). The burning, or
removal of crop residues, results in loss of soil carbon and organic matter and,
nutrients from the soil system which undermines soil fertility (Pathak et al. 2006). In
basmati rice growing areas harvesting is often manual reflecting the taller basmati
crops susceptibility to lodging and the fact it is a high value produce requiring careful

handling of grains (Erenstein 2011).

Due to observed declining productivity and stagnating crop yields and degradation of
the natural resource base associated with conventional agricultural practices there is a
growing awareness of a need to adopt sustainable yet equally productive agricultural
practices (RWC 2006; Gupta and Seth 2007; Erenstein 2011). Therefore, conservation
agriculture practices are being advocated as a sustainable alternative to conventional
rice-wheat cropping with aims of protecting natural resources and supporting
livelihoods simultaneously (RWC 2006; Gupta and Seth 2007; Jat et al. 20093;
Erenstein 2011). Conservation agriculture approaches aim to achieve dual goals of
improving farmers livelihoods and using environmental resources sustainably through
integrated management of soil, water and biological systems as defined by the FAO
(Hobbs et al. 2008)( http://www.fao.org/ag/ca/). However, there is not one clear
definition of what constitutes conservation agriculture, in different agricultural settings

a combination of agricultural practices and resource management approaches are
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applicable. However, it is generally accepted that conservation agriculture approaches
combine minimal soil disturbance (reduced or zero-tillage), permanent or semi-

permanent soil cover and crop rotations (Hobbs et al. 2008; Lumpkin and Sayre 2009).

Maintaining permanent or semi-permanent cover of residues and mulch over soils
improves water use efficiency reducing evaporation and soil erosion via wind or water
and promotes infiltration over run-off (Hobbs et al. 2008). Therefore, crop residue
cover on soils has potential to improve irrigation water productivity in cereal croplands
(Lumpkin and Sayre 2009). Retaining crop residues, as opposed to removal for
livestock feed or burning, prevents loss of nutrients, carbon and soil organic matter
(Pathak et al. 2006; Hobbs et al. 2008). There are trade-offs between the value of crop
residues for livestock feed (residue removal) and environmental and potential long
term yield benefits of residue retention (Erenstein 2011). Soil cover promotes high
levels of soil microbial biomass which is important for decomposing organic matter
and releasing nutrients (Hobbs et al. 2008). Nutrient cycling and soil organic matter
accumulation in soils is enhanced when mulch covers fields with legume cover crops
promoting microbiological activity (Hobbs et al. 2008). This enhances levels of nitrogen
fixation and, thus, reduces requirements for inorganic nitrogen fertilisers (The Royal
Society 2009). Application of rice residue to wheat crop fields has little short-term yield
impacts (1-3 years) but leads to longer term gains suggesting its importance in creating

a sustainable, high yielding agricultural system (Chauhan et al. 2012).

Zero-tillage of the wheat crop has been the most widely adopted conservation
agriculture practice in Punjab and Haryana (Erenstein and Laxmi 2008; Erenstein
2009a). The success of the uptake in zero-tillage wheat was due to farmer demand for
the benefits including earlier sowing reducing labour requirements and therefore
reduced risk of labour shortages, reduced impact of the weed Phalaris Minor and
economic savings (Erenstein and Laxmi 2008; Erenstein 2009a). Inverted T-opener
zero-tillage drills, common in Punjab and Haryana directly seed, and place fertilisers,
into a narrow slot with no or minimal prior field preparation (Gupta and Seth 2007,
Erenstein and Laxmi 2008). The seeds and fertilisers are planted at a depth of 7.5 to 10
cm and the T-opener zero-tillage drills cost around US $400 (Erenstein and Laxmi

2008). Adoption of zero-tillage is limited by farmer perceptions and awareness of the
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benefits and availability of equipment, a large proportion of zero-tillage drills are hired
(Hobbs et al. 2008; Erenstein and Laxmi 2008). Initial research on zero-tillage in India
began in the 1970’s, but it was in the 1990’s when a favourable policy and research
environment facilitated by the Rice-Wheat Consortium encouraged the development
of zero-tillage incorporating farmer feedbacks and demonstrations (Erenstein and
Laxmi 2008; Erenstein 2009a). This was in conjunction with farmers in Haryana
requiring methods to enable more timely planting of the wheat crop after the longer
maturing basmati rice crop (Erenstein and Laxmi 2008). There has since been a
dramatic increase in the area under zero-tillage in Punjab and Haryana since 2000

(Gupta and Seth 2007; Erenstein and Laxmi 2008).

Zero-tillage, with reduced tractor passes and labour requirements delivers substantial
economic savings to farmers (Erenstein and Laxmi 2008; Jat et al. 2009a). For the
wheat crop, these economic benefits are boosted by improved yield returns with
reduced input requirements (e.g. fertiliser, irrigation water) (Gupta and Seth 2007;
Erenstein and Laxmi 2008; Saharawat et al. 2012). Zero-tillage wheat can be used with
targeted crop rotations and herbicide use to reduce populations of the herbicide
resistant weed Phalaris Minor (Gupta and Seth 2007). Through reducing soil
movement zero-tillage practices provided a control mitigating Phalaris Minor
outbreaks (Erenstein and Laxmi 2008). Studies have reported an increase in broadleaf
weeds in zero-tilled wheat fields suggesting further research is required into integrated
pest and weed management (Hobbs et al. 2008; Erenstein and Laxmi 2008). However,
in general farmers perceive a reduced weed infestation due to zero-tillage, by as much
as 43% less weeds in zero-tillage fields, often due to minimal soil disturbance
promoting late emergence of weeds reducing competition with the crop (Gupta and
Seth 2007; Erenstein and Laxmi 2008). Conventional tillage leads to declines in soil
fertility, organic matter content and soil degradation (Hobbs et al. 2008). This is
despite some benefits of nutrient release due to mineralisation and oxidation of soil
organic matter after exposure to air; however in tropical environments this promotes
rapid processing of organic matter which leads to depletion of soil carbon and soil
fertility after continual intensive tillage (Hobbs et al. 2008). Experimental field studies

showed improvement in soil physical properties under zero-tillage including stability in
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soil aggregation and improved infiltration rates with penetration
resistance/compaction reduced in soils between 10 and 25 cm (Jat et al. 2009a). Zero-
tillage soils in rice-wheat systems have higher soil aggregates than contemporary
conventional tilled and puddled soils; puddled soils also increase soil compaction,
break capillary pores and form sub-surface hard pans impeding root growth (Jat et al.
2009a). It has been observed that each centimetre reduction in wheat crop root
growth, due to soil compaction caused by puddling of the preceding rice crop, reduces

yield by 0.4% (Jat et al. 2009a).

To maximise the long-term sustainability and yield gains of conservation agriculture
there is a need to address trade-offs between residue retention and residue removal
and combine residue management with zero-tillage in the IGP (Erenstein 20093;
Erenstein 2011). There is therefore a need to strengthen existing research into zero-
tillage drills which can seed through crop residue (e.g. happy seeder) as the existing
zero-tillage drills do not handle crop residue well (Erenstein 2009a; Erenstein 2011).
Research is also being undertaken to develop straw spreaders attached to combine
harvesters which evenly distribute straw over fields enhancing the performance of
zero-tillage drills (Chauhan et al. 2012). One of the key concepts of conservation
agriculture is integration of different management practices. Often crop residue
retention and zero-tillage used in conjunction leads to the greatest gains in terms of
enhanced carbon sequestration, soil organic matter content in upper soil layers,
maintenance of soil physical properties (e.g. higher aggregate stability) and nutrient
cycling (Hobbs et al. 2008). This is exemplified by the fact that conventional puddled
rice undermines environmental and soil health gains generated from zero-tillage
wheat (Erenstein 2011). This highlights the need for research and development to
focus on demonstrating and delivering increased yields under zero-tillage rice (Hobbs
et al. 2008). Research should focus on developing rice cultivars suitable for aerobic soil
and direct seeding as well as investigating options for herbicide use and cover crops to

control weeds (Hobbs et al. 2008).

The yield gains from zero-tillage wheat are evident, however the yield benefits from
zero-tillage and other resource conserving agricultural practices applied to the rice

crop are less clear (Wassmann et al. 2009; Jat et al. 2009a; Saharawat et al. 2010;
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Chauhan et al. 2012). Yield losses were reported for rice grown under saturated soil
culture, alternate wetting and drying and aerobic conditions compared to puddled rice,
but water use efficiency improved under alternate cropping practices (Wassmann et al.
2009). Experimental field studies have shown that conventional tillage or transplanted
rice with zero-tillage has a higher yield than direct seeded zero-tillage rice (Saharawat
et al. 2010). The same experiments also highlighted that transplanted zero-tillage rice
had equivalent yields but improved water savings compared to conventional tillage
rice. Crop yields were lower in direct seeded rice with higher levels of spikelet sterility
largely attributed to lower moisture content (Saharawat et al. 2010). Puddled rice
crops suppress weed crop growth, thus, reducing competition for resources at the

time of crop emergence; these benefits are not realised in direct seeded rice which
require higher rates of herbicide application (Saharawat et al. 2010). However, given
the poor water use efficiency, high water requirements and water losses via seepage
and percolation in puddled rice cropping combined with, limited and diminishing water
resources and negative impacts on soil conditions there is need for research to identify
optimal synergies between numerous resource conserving practices applicable to rice
crops. Direct seeded rice delivers water savings compared to conventional tillage,
reduced labour requirements overcoming potential labour shortages in Punjab and
Haryana and enables more timely sowing of the wheat crop (Chauhan et al. 2012). The
reduced duration of direct seeded rice allows earlier planting of the wheat crop, raising
wheat crop yields and, thus, contributing to enhanced system productivity despite
lower rice crop yields (Saharawat et al. 2010). There is a need to breed rice cultivars for
direct seeding which may generate comparable yields to conventional tilled puddled
rice; also enhanced seeding rate for direct seeding can mitigate yield losses due to the
increased exposure of seeds to pests, birds and rats (Saharawat et al. 2010; Chauhan et
al. 2012). Further research on fertiliser applications could also raise yields in direct
seeded rice, it is suggested that timing fertiliser applications closer to anthesis could

enhance assimilation into grains and, thus, improve yields (Chauhan et al. 2012).

One of the key stresses to rice-wheat cropping in the IGP is water availability. Zero-
tillage, especially when integrated with appropriate residue management can deliver

significant irrigation water savings. Water savings and increased water productivity are
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realised under both zero-tillage rice and wheat crops (Jat et al. 2009a; Saharawat et al.
2010). This can be through reduced turn-around time between rice and wheat crops
enabling residual soil moisture from rice cropping to be used productively for wheat
germination (Erenstein and Laxmi 2008). There is better infiltration in untilled soil due
to improvements in soil structure under zero-tillage, this reduces issues of water
logging and leads to 36% less water use compared to conventional tillage in wheat
crops (Gupta and Seth 2007; Erenstein and Laxmi 2008; Lumpkin and Sayre 2009).
Earlier sowing of the wheat crop also reduces the number of required end of season

irrigations (Erenstein and Laxmi 2008).

There are other resource-conserving approaches shown to have sustainability and
productivity benefits in rice-wheat cropping systems. Laser-bed levelling, when
integrated with zero-tillage, reduces the amount of irrigation water applied without
yield penalties also delivering improved soil physical properties and economic returns
(Jat et al. 2009a). The International Rice Research Institute (IRRI) has developed leaf
colour charts to enable farmers to identify the optimum time for nitrogen fertiliser
application (Gupta and Seth 2007). Cropping on furrow-irrigated permanent raised
beds is another conservation-agriculture practice which is increasingly being
implemented in the IGP (Chauhan et al. 2012). The combination of zero-tillage and
furrow-irrigation has been shown to deliver irrigation water savings (Lumpkin and
Sayre 2009). Reduced and zero-tillage on raised beds potentially delivers several
advantages including: improved soil structure and conditions as tractor activity is
limited to spaces between beds, reduced waterlogging, improved fertiliser use
efficiency as fertilisers are applied to raised-beds in the root zone, mechanical weed
control through targeted herbicide application, reduced power for irrigation and
reduced groundwater pollution (Chauhan et al. 2012). However, there is some
evidence that yield levels are not improved on raised beds, that significant effort is
required to develop and maintain the raised beds whilst in certain situations the extent
of water savings has also been questioned (Chauhan et al. 2012). Cropping on raised
beds does not show definitive yield benefits (Gupta and Seth 2007; Saharawat et al.

2012), suggesting research should focus on developing cultivars suited to raised bed
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cropping and identifying optimum furrow width-bed height relationships (Gupta and
Seth 2007; Chauhan et al. 2012).

Implementation of conservation agriculture practices in the rice-wheat cropping
system of Punjab and Haryana will also contribute to mitigating agricultures GHG
emissions. Reduced tillage and residue retention leads to enhanced levels of soil
carbon and carbon sequestration, and residue retention as opposed to residue burning
reduces emissions of GHGs and particulates (Gupta and Seth 2007; Lumpkin and Sayre
2009). Zero-tillage requires less tractor operations on fields and, thus, reduces fossil
fuel use with subsequent reductions in GHG emissions (Gupta and Seth 2007;
Erenstein and Laxmi 2008). Simulation studies show that CO, emissions from
machinery use are reduced under zero-tillage, raised bed and direct seeded rice
cropping as opposed to transplanted and conventional cropping practices (Saharawat
et al. 2012). Transplanting rice on raised beds, after zero-tillage or direct seeding
reduced CH4 emissions compared to conventional puddled rice cropping (Saharawat et
al. 2012). More efficient use of irrigation and temporary aeration of soils in rice
cropping, for example alternate wetting and drying, reduces water requirements and
also CH4 emissions (Gupta and Seth 2007; Chauhan et al. 2012). However, there was
little variation in N,O emissions between conventional and conservation agriculture
practices; this includes N,O emissions from soils and also production of fertiliser
exogenous to the farm (Saharawat et al. 2012). Several conservation agriculture
practices offer adaptive options, and enhanced resilience, to harmful climate change.
For example, better water use efficiency and reduced water requirements under zero-
tillage and aerobic rice cropping can reduce vulnerability to uncertain future
fluctuations in monsoon precipitation or evaporative demand (Lumpkin and Sayre
2009; Wassmann et al. 2009; Turner and Annamalai 2012). Inter-cropping promotes
increased cropping diversity; an increase in diversity in agricultural landscapes
increases resilience of the cropping system and incorporation of high-value
commodities reduce stress on water resources (Aggarwal et al. 2004; Perveen et al.
2012; Abson et al. 2013; Mathison et al. 2013). Residue retention lowers soil and
canopy temperature and, thus, can reduce the harmful effects of warming events on

cereal crops (Jat et al. 2009b; Chauhan et al. 2012; Teixeira et al. 2013; Gourdji et al.
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2013b). This illustrates potential climate resilience benefits gained from conservation
agriculture approaches; the wheat crop in the IGP is particularly vulnerable warming

trends (Lobell et al. 2012; Lobell et al. 2013).

The benefits of conservation and resource-conserving agricultural practices can
address the environmental concerns associated with conventional practices, mitigate
climate change and improve resilience to climate change in the rice-wheat systems of
Punjab and Haryana. However, it is clear further research is needed to determine the
optimum synergies and address trade-offs between various agricultural practices. It is
also apparent that different agricultural practices will have different benefits
depending upon the underlying environmental, climatic and socio-economic conditions
in different locations. As stated at the beginning of this chapter the overarching aim for
this thesis is to assess the vulnerability of the rice-wheat productions systems in

Punjab and Haryana to climate drivers. It is therefore important this assessment of
vulnerability is undertaken with an awareness that outcomes of cropping landscape
management should aspire to deliver the multiple goals of climate resilience (low
vulnerability) and maximum productivity without an excessive environmental or
climatic footprint. The following chapter moves on to discuss approaches to assessing
and measuring vulnerability before highlighting key research questions to be

addressed through the thesis.
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Chapter 2: Vulnerability

There are numerous definitions, conceptualisations and theories of vulnerability in the
literature stemming from the diversity of contexts from which vulnerability can be
assessed and measured (Adger 2006; Eakin and Luers 2006; Ericksen 2008b). However,
vulnerability broadly relates to susceptibility to harm, damage or losses and in the
context of climate change is defined as ‘propensity of human and ecological systems to
suffer harm and their ability to respond to stresses imposed as a result of climate
change effects’ (Adger et al. 2007, p. 720). It is well documented that the vulnerability
of human entities (e.g. individuals, households, communities and associated
livelihoods or food security) is determined largely by underlying social, economic,
political and governance structures which influence access to resources and adaptive
capacity (Adger 2006; Smit and Wandel 2006; Adger et al. 2007; Ericksen 2008b). This
research focuses on the vulnerability of a biophysical entity, crop production, to
climatic stressors; it does not examine human or societal vulnerability to a loss in crop
production. Therefore, there is an emphasis through the research papers on
understanding the relationship between crop yield and climatic drivers in a real world
cropping system and not on social, economic and governance processes. However,
analysis assessing the vulnerability of rice and wheat crop production throughout this
thesis recognises the multitude of climatic drivers and the underlying system factors
and human management practices which create differential sensitivities to climate
stressors (Luers 2005) and long and short-term environmental impacts (Millenium

Ecosystem Assessment 2005; Hobbs et al. 2008; Erenstein and Laxmi 2008).

Often vulnerability assessments use thresholds to distinguish a vulnerable state from a
non-vulnerable state (Luers et al. 2003), or develop indices of vulnerability (O’Brien et
al. 2004; Adger 2006). There are relative merits and limitations to these approaches;
for example, the choice of variables, and weighting of variables, to construct indices is
partly subjective (Luers et al. 2003; Luers 2005). The choice of a threshold to
determine a vulnerable state is also limited by subjectivity and to a particular place at a
given time. For example, the well-being threshold of 4 Tonnes ha™ used by Luers et al.

(2003) required for a farmer to ‘break-even’ in the Yaqui Valley, Mexico, in 2003 may
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not provide enough income in the future given crop price fluctuations; it is not a time-
space universal threshold (Luers 2005). Generalised measures of vulnerability do not
account for its dynamic nature (Adger 2006; Eakin and Luers 2006). An index based
approach to measuring vulnerability is limited by the purpose for which the index was
constructed (e.g. proportional vulnerability, vulnerability gap, vulnerability severity)
(Adger 2006). Vulnerability indices are useful to highlight an aspect of vulnerability of
an entity or variable at a given time for a given purpose (e.g. inform policy targeting a
given agricultural adaptation). Through their inherent simplification of a system, index
based approaches do not always reveal the holistic and complex nature of vulnerability

and its causation (Eakin and Luers 2006)>.

Several studies have highlighted the overlap between vulnerability assessments and
the literature on ecological resilience and the resilience of socio-ecological systems
(Luers et al. 2003; Adger 2006; Gallopin 2006; Eakin and Luers 2006; Ericksen 2008b).
Vulnerability can be conceptualised as the opposite of a resilient system where a
resilient system can absorb or cope with a stress or perturbation without altering
system functioning or the system can adapt (adaptive learning/capacity) or reorganise
(self-organisation) following a stress or shock to maintain outputs (Walker et al. 2004;

Folke 2006; Eakin and Luers 2006).

Utilising concepts common in assessing resilience in socio-ecological systems can offer
several advantages when assessing the vulnerability of agricultural production systems
to climate drivers and variability. Systems approaches are comfortable handling
multiple drivers, processes and feedbacks (Ericksen 2008b); such a systemic focus is
important as it enables a more holistic assessment of the vulnerability of a given
variable to a given stressor or perturbation. In the context of assessing the
vulnerability of agricultural production to climate drivers and variability, at the
simplest level there is a cause-effect relationship between climate and crop vyield.

However, the size of the effect (i.e. shifts in crop yield) relative to the cause (climate

2 In this thesis no attempt was made to generate an index or quantified measure of vulnerability. However, the four research
papers (Chapters 3-6) produce a body of work enhancing understanding of vulnerability of the agricultural production systems of
Punjab and Haryana to climatic drivers and variability, and its spatial manifestation. It is important to note the datasets generated
here have the potential to be used in a multitude of indicator based studies; this point is briefly touched upon in Chapter 5 with an
illustration of prioritising areas for targeting adaptations.
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driver) varies in space and time due to underlying system interactions and feedbacks
from past system activities. For example, it is recognised that agricultural production,
and its current level of resilience to harmful climate change or variability, is in part
determined by current levels of ecosystem services; these current levels of ecosystem
services are determined by past activities within the ecosystem and longer-term
trajectories of ecosystem drivers (Millenium Ecosystem Assessment 2005; Ericksen
2008b; Dearing et al. 2012; Hughes et al. 2013a). The vulnerability of wheat yield on all
farms in the Yaqui Valley, Mexico, increases with increasing temperatures; however,
the relative increase in vulnerability is greater on farms with poor management and
less favourable soils (Luers 2005). This highlights the importance of understanding the

system within which the variable being assessed for its level of vulnerability is situated.

A systemic approach, with a focus on processes and feedbacks as well as outcomes is
useful in highlighting that vulnerability is not a static state (Eakin and Luers 2006), and
that the system can accentuate or reduce the impacts of a perturbation or stressor and
lead to differential levels of vulnerability (Turner et al. 2003). Assessments of
resilience in complex and socio-ecological systems indicate that ‘slow processes’
undermine resilience, or increase vulnerability, without the outcome of vulnerability
being apparent (Scheffer et al. 2001; Luers 2005; Hughes et al. 2013b; Hughes et al.
2013a). In the context of vulnerability Luers (2005) highlights the importance of
monitoring processes which control, and cause gradual changes in, a systems
sensitivity increasing the likelihood a system will yield a negative outcome when
exposed to either a ‘short-term’ stochastic event (e.g. climatic extreme) or an
accumulating stressor (e.g. gradual warming). In the resilience theory and complex
systems literature an outcome of such vulnerability or loss of resilience would be a
‘regime shift’ (Scheffer et al. 2012; Hughes et al. 2013b), in the context of vulnerability
in agricultural production systems it would be a loss in crop yield, possibly below a
well-being threshold (Luers et al. 2003). Therefore, by understanding the processes
and system interactions which accentuate vulnerability, it is possible to identify
vulnerability in a system or at a given location before the negative impacts of low

resilience or high vulnerability are realised.
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The concept of resilience and, therefore, vulnerability being dynamic is inherent in
resilience theory thinking of socio-ecological systems (Luers 2005; Eakin and Luers
2006), and is conceptualised via the adaptive cycle (Holling 2001). A systemic
approach, recognising that vulnerability is dynamic, is important when assessing the
vulnerability of agricultural production, and informing adaptations to reduce
vulnerability, within the context of climate-smart agricultural production landscapes.
The vulnerability, or resilience, of agricultural production levels at a given location and
time-step is determined by historical and evolving human management decisions with
subsequent impacts and interactions with biophysical processes and outcomes. This is
of relevance to climate-smart adaptations (FAO 2011b) which in the context of this
study would aim to reduce the current vulnerability of agricultural production to
climatic drivers and variability without impeding the ecosystems ability to support
required future production levels under uncertain future climate changes. This point is
echoed by Turner et al. (2003) who comment that assessing vulnerability, and utilising
resources to reduce vulnerability, without an awareness of the ‘larger systemic

context’ could lead to unintended consequences or ‘surprises’.

The vulnerability of a system is often characterised as a function of exposure,
sensitivity and adaptive capacity/resilience. This framework has been used to assess
climate change induced vulnerability to agriculture at varying spatial scales (e.g. farm
level in Mexico (Luers et al. 2003) and district level in India (O’Brien et al. 2004)).
Exposure to climate change refers to the degree of climate stress upon a given variable
or system (O’Brien et al. 2004), Luers et al. (2003) and Luers (2005) define exposure in
similar terms as the magnitude and frequency of a stressor force a system is exposed
to. In reality exposure and sensitivity are interlinked, for example, the effect of the
exposure and, thus, its magnitude relative to the variable or system in question, is
dependent upon the sensitivity of the system or variable (Luers 2005; Smit and Wandel

2006).

Similar to the concept of resilience in a socio-ecological system sensitivity is often
defined as the amount of stress or perturbation a system can absorb or cope with
without experiencing long-term harm or change in state or structure (Luers 2005;

Adger 2006; Gallopin 2006). In the context of the vulnerability of agricultural
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production (crop vyield), Luers et al. (2003) measure sensitivity as the derivative of crop
yield relative to the stressor (e.g. climate driver). This essentially defines sensitivity as
the rate of change in the system or variable of interest relative to the rate of change in,
or degree of exposure to, the stressor (Luers et al. 2003; Gallopin 2006). It is the
sensitivity that accounts for the differential response of two systems to the same
exposure to a stressor or perturbation. As mentioned it is difficult to assess sensitivity
without acknowledging the nature of the stressor or perturbation and the system’s
exposure to it (Luers 2005; Smit and Wandel 2006). For example, sensitivity to a short
term perturbation or stochastic event (e.g. drought) is characterised by the system’s
ability to resist change (e.g. the amount of loss in crop yield) or to bounce back to
normal conditions (e.g. the time taken for the system to deliver normal crop yields)
(Luers 2005). Sensitivity to gradual change (e.g. global warming) is determined by the
rate at which the systems resilience is eroded and movement towards a state of higher
vulnerability, closer to thresholds of harm (e.g. the system cannot support break even
yield levels) (Luers 2005). Often measures of vulnerability link exposure and sensitivity;
Luers (2005) uses the coefficient of variation in crop yield as a metric of susceptibility
to harm (loss in crop yield) which incorporates exposure and sensitivity, vulnerability is
then quantified as a function of exposure and sensitivity (coefficient of variation)
relative to the proximity of the state of the system (crop yield level) to a threshold of
harm. Luers et al. (2003) apply a similar linked approach to measuring vulnerability but
guantify sensitivity as the rate of change in crop yield to a change in the stressor
(temperature); exposure is represented by the frequency distribution of the stressor.
Therefore, vulnerability is quantified as the ratio of sensitivity to the state of the
system relative to a threshold of harm multiplied by the stressor weighted by its

probability of occurrence.

Adaptive capacity or resilience is often considered to be the third component of
vulnerability (O’Brien et al. 2004; Gallopin 2006). Dependent upon the context of the
assessment there are differences in how adaptive capacity is conceptualised (Gallopin
2006). In the context of adaptive capacity to climate change vulnerabilities it is defined
as the ‘ability or potential of a system to respond successfully to climate variability and

change’ and is a ‘necessary condition for the design and implementation of effective
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adaptation strategies so as to reduce the likelihood and magnitude of harmful
outcomes resulting from climate change’ (Adger et al. 200), p. 727). In resilience
science and assessments of socio-ecological systems adaptive capacity is determined
by the capability of actors, often human, to increase resilience to stressors and
perturbations (Walker et al. 2004). Adaptive capacity in socio-ecological systems is also
linked to adaptive self-organisation and the system’s capacity for learning (Folke 2006).
Human actions are often dominant in socio-ecological systems and, thus, adaptive
capacity is inherently linked to human activity and is a social function (Walker et al.
2004). Adaptive capacity is determined by a range of context or place-specific
interactions between social, cultural, economic, political and governance processes
operating across multiple spatial and temporal scales (Smit and Wandel 2006; Adger et
al. 2007; Ojha et al. 2013). Due to the complexity of processes determining adaptive
capacity, and cross-scale linkages (e.g. national and international economic policy can
cause differential levels of intra-community adaptive capacity), levels of adaptive
capacity vary sub-nationally but also from community to community and even at
individual or household levels (O’Brien et al. 2004; Smit and Wandel 2006). If adaptive
capacity is included in vulnerability assessments it provides a measure of minimum
potential vulnerability as opposed to current or existing vulnerability (Luers et al.

2003).

2.1 Thesis Structure

Following the above review of approaches to assess and measure vulnerability this
thesis poses the following questions regarding an assessment of the vulnerability of
the rice-wheat production system of Punjab and Haryana in the north-west IGP to

climatic drivers:

1) What is the exposure the of rice-wheat crop production system to harmful climate

drivers?

2) What is the sensitivity of rice-wheat crop production to variations in climate drivers?
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3) Where are locations which can be targeted with adaptations, accounting for
location-specific stresses and thereby enhance the resilience of crop production to

climate changes and variation whilst minimising environmental impacts?

These three questions are explored through four, independent research papers each
with a unique set of aims and standalone conclusions (Chapters 3 to 6). However,
these four research papers are linked by the overarching theme of assessing the
vulnerability of the rice-wheat production system to climatic drivers. The outline for
each of these four papers is presented below including a brief description of how they

provide information relevant to the three overarching research questions.

Chapter 3: Analysing temporal trends in the Indian Summer Monsoon and its variability

at a fine spatial resolution. (Research Paper 1)

The ISM is a key driver of agricultural production across all-India (Mall et al. 2006);
inter-annual shortfalls in ISM precipitation or long-term decreasing trends will have
either negative impacts on crop production or increase pressure on already stressed
water resources. It is important to know where locations are vulnerable to variability or
harmful trends in ISM precipitation so water resources management and agricultural
practices can be adapted accordingly (RQ 1, RQ 3). This chapter applied robust trend
analysis to a gridded (0.25°) climate dataset spanning the years 1951 to 2007
highlighting locations of increasing or decreasing trends in facets of ISM precipitation
(RQ1). The facets of ISM precipitation to which trend analysis were applied included:
total ISM precipitation, recurrence of drought years, inter-annual variation in ISM
precipitation, onset date of ISM and inter-annual variation in ISM onset date. These
facets of ISM precipitation were analysed because they are of relevance for agricultural
production. The datasets generated here were subsequently integrated with satellite-
derived measures of cropping over Punjab and Haryana to highlight locations in rice-
wheat cropping landscapes which are exposed to unfavourable ‘normal’ ISM conditions
or unfavourable trends in ISM precipitation (RQ 1, RQ 3). The analysis through this
chapter was performed at a ‘fine’ spatial resolution (in terms of available gridded
climatic datasets) so as to generate local detail and to be able to inform locally

sensitive water resources management (RQ 3).
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Chapter 4: Spatio-temporal dynamics in the phenology of croplands across the Indo-

Gangetic Plains. (Research Paper 2)

Chapter 4 provides monitoring of the spatio-temporal dynamics of cropping intensity,
length of growing season and cropland productivity over the entire IGP region from
1982-1983 to 2005-2006 using the pre-processed GIMMS NDVI dataset. It
demonstrated how land surface phenology (LSP) parameters could be extracted per-
pixel and per-agricultural season to document trends in cropping over a large region for
a substantial time period. Utilising a long-term satellite data was important to capture
long-term trajectories of the dynamics of the cropping system across its landscape.
Through utilising a longer-term dataset it is possible to identify locations where crop
production and length of growing seasons are variable suggesting vulnerability to
climatic variation (RQ 1, RQ 2). This analysis enables assessment of landscape scale
trade-offs between ‘normal’ levels of crop productivity and the risk (inter-annual
variability in production) of cropping. Inter-annual variation in crop production is often
taken as a measure of the vulnerability (specifically sensitivity and exposure) of crop
production to climate (Luers 2005) (RQ 1, RQ 2). Analysing long-terms trends in the
dynamics of the wider IGP crop production system (including Uttar Pradesh and Bihar)
facilitates capturing locations where cropping could be expanded or intensified to take

pressure off the exhausted croplands of Punjab and Haryana (RQ 3).

Chapter 5: Climate-smartening India’s breadbasket. Locating vulnerability ‘hotspots’ to

target with adaptive practices. (Research Paper 3)

LSP parameters from satellite observations from MODIS data were utilised to identify
rice and wheat crop extent and provide yield estimates at a 500 m spatial resolution.
These maps were integrated with spatially explicit ancillary datasets (e.g. climatic
datasets developed in Chapter 3, groundwater levels, cropping diversity, sowing date,
locations of crop residue burning) to provide landscape scale assessments of where
crop productivity is vulnerable to prevailing climatic trends (identified in Chapter 3),
water scarcity, sub-optimal agronomic practices or where cropping is contributing to
climate change (via GHG emissions) or environmental degradation (RQ 1, RQ 2, RQ 3).

This chapter takes a holistic view of the rice-wheat cropping system enabling
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assessment of the vulnerability of the rice-wheat croplands to climate whilst retaining
awareness of other pressures and stresses. It demonstrated how integration of spatial
datasets can inform spatial targeting of adaptation and mitigation measures, capture
synergies in adaptation and mitigate trade-offs between conflicting management
goals; thus, contributing to moving the rice-wheat production system onto a trajectory
towards a climate-smart landscape (RQ 3). It specifically highlights locations where

adaptations could be targeted to address multiple stresses simultaneously.

Chapter 6: Satellite observations reveal the impact of climatic extremes and variability
on cereal croplands. (Research Paper 4)

Satellite derived estimates of rice and wheat yield derived from MODIS data and daily,
gridded temperature and precipitation datasets were used to train a crop yield-climate
regression model. This crop yield-climate model explored whether temperature
variables during key phenological development stages for crop yield formation are
currently limiting production in the rice-wheat cropping system (RQ 1, RQ 2). The
statistical framework uses fixed-effects terms in the models to account for spatial
variation in time-invariant system variables (e.g. irrigation, farmer decisions) and
omitted variable bias. The analysis reveals how sensitive rice and wheat crops are in
Punjab and Haryana to warming during key crop development stages; it also captures
how the sensitivity of crop yield varies with different sowing dates and thus can inform

climate-resilient adaptations (RQ 2, RQ 3).

A common element to the analysis performed in the four papers which constitute this
thesis is the use of spatial datasets. Remote sensing is used to monitor the extent of
rice and wheat croplands and to capture some of the dynamics of the cropping system
including length of growing seasons, cropping intensity and productivity. These remote
sensing measures are integrated with analysis of climatic datasets and other
agricultural statistics to enable landscape scale assessments of vulnerability. This
approach facilitates capturing spatial patterns of the magnitude and varying nature of
the vulnerability of crop production to climate drivers. This overcomes the limitations
of assuming levels of vulnerability are delineated by distinct boundaries, and uniform
within boundaries, which is an artefact of assessments made using data constrained to
the political unit scale (O’Brien et al. 2004).
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Monitoring cereal croplands at the landscape scale provides the opportunity to
understand how real world cereal systems actually respond to climatic drivers and,
thus, provides utilisable, situation-specific information for climate-resilient adaptation
and mitigation. Bogdanski (2012) and Scherr et al. (2012) highlight the benefits of
synthesising climate-smart approaches with integrated landscape approaches. Climate-
smart approaches focus on resilience to climate change, adaptation and mitigation
(FAO 2011b). Integrated landscape approaches recognise the multifaceted nature of
drivers which determine landscape processes, that landscapes are required to provide
socio-economic and environmental benefits to society and, that social, environmental
and economic processes at work within a landscape are dynamic and, thus, require
management sensitive to long-term uncertainties (Scherr et al. 2012). Here, the
landscape scale refers to a wider spatial extent whilst retaining local detail. The ideal
cropping practice to deliver climate-smart benefits will vary spatially and with
underlying environmental and socio-economic conditions (DeFries and Rosenzweig
2010; FAO 2011a). Thus, monitoring cereal cropland-climate interactions across a
landscape can highlight the best practice for a given locale. Assessing the vulnerability
of cereal crops to climate across a landscape inherently acknowledges the complexity
of actors and processes which determine vulnerability to climate change in real world

situations (DeFries and Rosenzweig 2010).

Approaches to assess cereal cropland vulnerability should provide integrated
monitoring of the landscape to inform on integrating climate-resilience into climate-
smart cereal cropping practices to ensure short-term societal needs are met without
hindering long-term provision of ecosystem services (Millenium Ecosystem Assessment
2005; Foley et al. 2005; Eakin and Luers 2006; FAO 2011b; Scherr et al. 2012;
Dobermann and Nelson 2013). The immediacy of implementing such approaches is
emphasised by the negative impacts of climate change on cereal production, which are
already being realised (Lobell et al. 2011b) and projections suggesting interactions
between climate change and current agricultural practices will result in a widespread
loss of suitable land to support rice and wheat crops in the IGP (Ortiz et al. 2008; Ojha
et al. 2013). An integrated spatial approach developed through this thesis is useful to

highlight location-specific stresses, target locally optimum adaptations to reduce
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vulnerability and to capture synergies and minimise trade-offs at a landscape scale
addressing the multiple goals of a climate-smart landscape (Scherr et al. 2012;

Dobermann and Nelson 2013).
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Chapter 3: Analysing temporal trends in the
Indian Summer Monsoon and its

variability at a fine spatial resolution®

3.1 Introduction

The ISM occurs from June to September, is strongest during July and August, and
contributes approximately 70% to the total annual precipitation in India (Ramesh
Kumar and Prabhu Dessai 2004). ISM precipitation is a major driver of environmental
and agricultural functioning in the sub-continent with subsequent impacts on
individual livelihoods and economic activities. India’s population is projected to rise to
nearly 1.4 billion by 2026 (DES 2009). This population growth will increase water and
food demand necessitating expansion and intensification of irrigated agricultural areas
(Moors et al. 2011). Analysis of spatial heterogeneity and temporal trends in ISM
precipitation can provide crucial information to planners charged with managing water

resources sustainably.

Simulation of monsoon precipitation was not consistent across the range of GCMs
used in the IPCC 4" Assessment Report (Annamalai et al. 2007; Christensen et al. 2007;
Moors et al. 2011). Annamalai et al. (2007) found that only six out of 18 GCMs were

able to provide an acceptable simulation of monsoon climatology; these six models

3 Duncan, J.M.A., Dash, J., & Atkinson, P.M. (2012) Analysing temporal trends in the Indian Summer Monsoon and
its variability at a fine spatial resolution. Climatic Change, 117, (1-2), 119-131. d0i:10.1007/s10584-012-0537-y

The work undertaken in chapter 3 has also led to three subsequent publications separate to my PhD research:

Duncan, J.M.A., & Biggs, E.M. (2012) Assessing the accuracy and applied use of satellite-derived precipitation
estimates over Nepal. Applied Geography, 34, 626-638. doi:10.1016/j.apgeog.2012.04.001.

Biggs, E.M., Duncan, J.M.A., Atkinson, P.M., & Dash, J. (2013) Plenty of water, not enough strategy: How inadequate
accessibility, poor governance and a volatile government can tip the balance against ensuring water security: the
case of Nepal. Environmental Science & Policy. doi:10.1016/j.envsci.2013.07.004. (In Press).

Duncan, J.M.A., Biggs, E.M., Dash, J., & Atkinson, P.M. (2013) Spatio-temporal trends in precipitation and their
implications for water resources management in climate-sensitive Nepal. Applied Geography, 43, 138-
146. doi:10.1016/j.apgeog.2013.06.011.

* Fine refers to 0.25° grid cells. This a ‘fine’ spatial resolution compared to many gridded climate products. It should
not be regarded in comparison to fine resolution gridded remote sensing data.

76


http://eprints.soton.ac.uk/339120/
http://eprints.soton.ac.uk/339120/
http://dx.doi.org/10.1016/j.apgeog.2012.04.001
http://eprints.soton.ac.uk/356297/
http://eprints.soton.ac.uk/356297/
http://eprints.soton.ac.uk/356297/
http://dx.doi.org/10.1016/j.envsci.2013.07.004
http://eprints.soton.ac.uk/355062/
http://eprints.soton.ac.uk/355062/
http://dx.doi.org/10.1016/j.apgeog.2013.06.011

failed to represent the regional variation in ISM precipitation across India and there
was inter-model variation in the timing of peak precipitation. Krishnamurthy et al.
(2009) commented that trends detected from observed data provide a useful
reference point for assessing GCM simulations. In light of the uncertainty in GCM
simulations of ISM precipitation, trend analysis from observational data provides a

reliable source of information to water resource planners.

The amount and duration of ISM precipitation varies across India (Satyanarayana and
Srinivas 2008; Ghosh et al. 2009). Recent studies have revealed spatial heterogeneity
in the occurrence of significant increasing or decreasing trends in facets of ISM
precipitation (Guhathakurta and Rajeevan 2008; Ghosh et al. 2009; Krishnamurthy et
al. 2009; Ghosh et al. 2011). Ghosh et al. (2009) highlighted limitations in identifying
temporal trends by aggregating precipitation over large areas receiving varied amounts
of rainfall (e.g. Goswami et al. 2006). Aggregating precipitation data over a region
which exhibits spatial variability in locally occurring temporal trends can lead to
identification of false trends and loss of spatial detail. Given the spatial heterogeneity
of ISM precipitation, trends in phenomena associated with ISM precipitation (e.g.
extreme rain events, local onset of ISM and occurrence of drought conditions) should

be analysed at the finest possible spatial resolution.

The spatial distribution of increasing or decreasing trends in extreme rain events
across India has been well documented using a variety of statistical methods (Ghosh et
al. 2009; Dash et al. 2009; Krishnamurthy et al. 2009; Ghosh et al. 2011). However,
temporal trends in other facets of ISM precipitation, such as drought years or local
onset date of ISM, which exert a control upon agriculture and livelihoods, have
received little attention at a suitably fine spatial resolution. This research addresses
this knowledge gap by performing trend analysis at the local scale for these variables
from 1951-2007. When viewed in conjunction with the earlier mentioned studies on
trends in extreme rain events contributes to an enhanced understanding of the
manifestation of ISM precipitation, and its variability, at a fine spatial resolution across
India. Providing such local detail is pertinent given Goal 5 of the Government of India’s

National Action Plan on Climate Change, National Water Mission to focus on basin
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level integrated water resource management to cope with variability in precipitation

(National Water Mission 2009). Specific outcomes from this research include:

1) Identifying ‘normal’ ISM conditions, inter-annual variation in ISM precipitation,
frequency of drought years, ‘normal’ onset date of ISM and inter-annual
variation in onset date of ISM at a 0.25° spatial resolution across India.

2) Developing a new method to define local onset of ISM from daily precipitation
data.

3) Performing temporal trend analysis at the local scale across all India for three
key variables: annual ISM precipitation, occurrence of severe drought years and
local onset date of ISM.

4) Identifying locations where there are trends of increasing or decreasing inter-

annual variation in ISM precipitation and local onset date of ISM.

3.2 Methods and Data

3.2.1 Precipitation Data

Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation
of the Water Resources (APHRODITE) daily 0.25°x0.25° gridded precipitation data were
obtained for all India for the period 1951-2007 (http://www.chikyu.ac.jp). The
APHRO_MA _V1003R1 data set was used in this study. The gridded precipitation data
were interpolated from station gauge data obtained from Global Telecommunication
System networks, precompiled datasets, records from national meteorological
organizations and monthly climatologies using the methodology outlined in Yatagai et
al. (2009) for the preceding APHRO_V0902 product, but with improved quality control.
A dense network of gauges across India, which passed quality control, were utilised in
the development of the APHRODITE product in every year (Yatagai et al. 2009) (see
Appendix 1 for depiction of gauges used in the generation of the APHRODITE product
and links for further information on product input datasets). The interpolation method
incorporates weighting functions to account for topographic features improving
representation of orographic precipitation and uses the WORLDCLIM dataset to

correct for bias in areas with limited station gauge coverage (Yatagai et al. 2009).
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For almost the entire extent of India, ISM precipitation from APHRODITE data and
Indian Meteorological Department (IMD) gridded data are well correlated (correlation
coefficient > 0.6) (Rajeevan and Bhate 2008). There is a smaller correlation between
the two datasets in the northern Himalayan region and the far eastern states of
Manipur and Mizoram because there are fewer rain gauges in these regions from
which the gridded datasets were developed (Rajeevan and Bhate 2008). For most
corresponding grids across India the difference between the two datasets is less than
3mm day'1 (Rajeevan and Bhate 2008). Several studies have used the IMD gridded
dataset to analyse a variety of trends in ISM precipitation across India (e.g. Rajeevan
et al. 2006; Rajeevan et al. 2008; Ghosh et al. 2009; Dash et al. 2009; Krishnamurthy et
al. 2009). The strong match between APHRODITE and such a widely used and well
validated product highlights the applicability of using APHRODITE to study trends in
ISM precipitation. The IMD gridded dataset has a 1°x1° spatial resolution compared to
the 0.25°x0.25° spatial resolution of the APHRODITE product; this suggests there is
potential to capture greater spatial detail in occurrence of trends when using the
APHRODITE data. This will be of obvious benefit to planners aiming to increase

efficiency of water resource use at the local scale.

3.2.2 Trend Analysis

The non-parametric Mann-Kendall test (Mann 1945; Kendall 1975) was used to detect
significant (p<0.05) increasing or decreasing temporal trends in examined facets of ISM
precipitation. The Mann-Kendall test has been used widely to detect the presence of
monotonic trends in climatological and hydrological time series (e.g. Partal and Kahya
2006; Modarres and de Paulo Rodrigues da Silva 2007; Bae et al. 2008; Krishnamurthy
et al. 2009; Biggs and Atkinson 2010). The Mann-Kendall test is a rank-based test not
sensitive to the data being skewed, containing extreme values, having a non-Gaussian
distribution or containing non-linear trends (Partal and Kahya 2006; Biggs and Atkinson
2010). It is therefore a robust test for trend detection in the facets of ISM precipitation

examined in this study.

The Mann-Kendall test statistic S was calculated by:
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S = Z sgn(x; — xi)

k=1 j=k+1
(1)
+1 x>0
sgn(x)={0 x=0
-1 x<0

(2)

where n is the length of the time series of data, x; is the value of the data at time /. If
the difference between x; — x is positive the sgn function assigns a value of one, a
negative difference is assigned a value of negative one. If the Mann-Kendall test S is
positive it indicates a positive or increasing trend, the opposite is true for a negative S.

Kendall (1975) proved that values of S are normally distributed and that the mean E

and variance Var of S are as follows:
E[S]=0

(3)

_n(n—2)(n2+5) - ¥_, t;()({E — 1)(2i +5)

Var[S] 18

(4)

where n is the length of the time-series, p is the number of tied values in xand t is the
number of ties of extent i. The values of Var and E enable the calculation of a Z-statistic
which follows the standard normal distribution used to determine the statistical

significance of the observed trend (Douglas et al. 2000).
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[Var]/?
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The significance level for each trend was calculated by:

p = 2[1 - o(|Z])
(6)

where @ is the standard normal distribution function (Douglas et al. 2000). If p is less
than 0.05 then the observed trend is deemed to be significant at the 95% confidence

level.

3.23 Field Significance Testing

Field or global significance addresses the question of whether the number of
independent tests for significance reporting significant trends m could have occurred
by chance (Livezey and Chen 1983). The probability of obtaining m significant (aocal)
trends from N independent tests for significance can be estimated by the binomial
distribution, where o4 is the local significance level (Livezey and Chen 1983; Wilks
2006). The field is the spatial extent over which local significance tests are performed
(Wilks 2006). The value mo must be equalled by or exceeded by the number m to
determine field significance at Ogopal (Livezey and Chen 1983; Wilks 2006). The value
myg is the threshold number of significant tests which needs to be exceeded at qocal
from N independent tests so that the probability of m observed number of significant
tests realised is a chance occurrence equal to or less than 0.05 (Livezey and Chen
1983). The global null hypothesis states that the local null hypothesis of no significance

is true for all local tests (Wilks 2006).

Positive spatial autocorrelation between data reduces the number of degrees of
freedom at the field level; this results in the global null hypothesis being rejected too
frequently if spatial autocorrelation is not accounted for (Livezey and Chen 1983; Wilks
2006). Following Livezey and Chen (1983) let ng be the minimum number of effective
degrees of freedom which the field must contain for the realised number of significant
tests auocal to be significant at agjopal. If the data within the field are spatially

autocorrelated then the field contains n<Ns;; degrees of freedom where N is the
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number of independent realisations of tests for significance (Livezey and Chen 1983). If
n is greater than ng then the field is deemed statistically significant at ogjobal. Random
resampling of the input data can be used to estimate thresholds for field significance in
spatially autocorrelated fields (Wilks 2006). Livezey and Chen (1983) determined the
threshold for field significance from the 5% tail of a histogram of percentage of grid
cells reporting statistically significant correlations ayocy With input data resampled
randomly via Monte Carlo simulations. Random resampling of the time series of input
data in a grid cell retains the spatial autocorrelation within the field without requiring

knowledge of the spatial covariance structure (Wilks 1997).

3.24 Examined Facets of ISM Precipitation
3.24.1 Annual ISM precipitation

Annual ISM precipitation (sum of June-September precipitation) was calculated for
every grid cell (0.25°) for each year from 1951-2007. The median and inter-quartile
range represent the central value and dispersion in the distribution of inter-annual ISM
precipitation, respectively, over the specified time period. These measures were used
as they are not distorted by extreme values. Locations experiencing significant (p<0.05)
increasing or decreasing trends in annual ISM precipitation were identified using the
Mann-Kendall test. To test if a location experienced increasing or decreasing trends in
the variability of annual ISM precipitation, the coefficient of variation (equation 7) was
calculated within a moving window passed through the time series of annual ISM
precipitation. Three, five, seven and nine year moving windows were used to check if
any observed trends in variation were artefacts of the size of moving window. The
moving window included an equal number of years above and below a central value
(e.g. a five year moving window for the year 1972 would include the range 1970-1974).
For the time series of the coefficient of variation calculated within a moving window
Mann-Kendall tests were applied to detect trends of increasing or decreasing

variability over time.

(7)
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where u is the mean annual ISM precipitation within the moving window and o is the

standard deviation.
3.24.2 Severe Drought Years

The standard IMD definition of a severe drought year, annual precipitation less than
50% of the long term normal (1951-2007 in this study), for a specified area was used
(Shewale and Kumar 2005). The long term normal annual mean precipitation for 1951—
2007 was obtained for each 0.25°x0.25° grid cell. If for a specific year the annual total
precipitation was less than 50% of the long-term normal it was considered a severe
drought year. In each grid cell a time series of the average number of severe drought
years in a three, five, seven and nine year moving window from 1950 —2007 was
calculated. Significant (p<0.05) increasing or decreasing trends in frequency of severe

drought years in the time series were detected using the Mann-Kendall test.
3.24.3 Local onset date of ISM

There is no uniformly accepted definition of ISM onset (Fasullo and Webster 2003; Pai
and Rajeevan 2007). Various studies, for example, Joseph et al. (2006); Pai and
Rajeevan (2007) and, Wang et al. (2009), have criticised the IMD’s subjective definition
for the onset of monsoon over Kerala, a state in South West India, based on
precipitation at selected weather stations, due to lack of a quantitative criterion and
low long-term reliability. Moreover, defining onset of ISM based on conditions over
Kerala is limited because local conditions may be misinterpreted as monsoon onset
(bogus or false onset) (Fasullo and Webster 2003; Pai and Rajeevan 2007; Wang et al.
2009). Other methods defining onset date have used conditions of the westerly low
level jet at 850 hPa (Joseph et al. 2006; Wang et al. 2009) or vertically integrated
moisture transport (Fasullo and Webster 2003). Defining ISM onset using conditions
over Kerala or circulation patterns can give an indication of whether the larger
monsoon system formation is delayed relative to an average onset date of 1* June.
However, such definitions do not identify the start date of the ISM at specific locations
across all India accurately. A delayed or early onset at Kerala does not necessarily
translate into a delayed or early onset of ISM in North India or represent variation

across the country (Bansod et al. 1991; Fasullo and Webster 2003; Pai and Rajeevan
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2007). Here, a methodology was developed which defined local onset date of ISM
across India using daily precipitation data. Such definitions are sensitive to local scale
processes (Moron et al. 2009), but attempt to capture onset of conditions
characteristic of monsoon precipitation. Detection of onset of ISM at a specific location
should not be used as an inference of large scale monsoon system conditions or

development.

The onset date of ISM was defined at a grid cell if two criteria were met. Criterion one
was that from day i a minimum of 10 of the subsequent 21 days must have a positive
daily standardised precipitation anomaly (SPA). The SPA was calculated as:

Xi —H
o

SPA =

i=123....365

(8)

where x; is precipitation on day i of year n, u is the mean daily precipitation for year n
and o is the standard deviation of daily precipitation in year n within the given grid cell.
The use of the SPA calculated individually for each grid cell means that the threshold
for detecting the increased precipitation intensity associated with monsoon conditions
is location-specific and sensitive to spatial variation in precipitation. This criterion also
prevents ISM onset from being defined by short duration local synoptic precipitation
events avoiding a false or bogus onset (Fasullo and Webster 2003; Goswami 2005). If
the first criterion was passed then criterion two should be met for day i to be defined
an onset date of the ISM. Criterion two specified that the sum of daily precipitation on
day i and the subsequent six days should be greater than 18 times the mean daily
precipitation for year n for the grid cell. The second criterion detected the
characteristic increase in precipitation associated with onset of ISM conditions (Wang
et al. 2009). If onset of ISM in a grid cell was not realised for 90% of years between

1951-2007 (51 out of 57 years) that grid cell was discounted from further analysis.

The median and inter-quartile range of ISM onset date in each grid cell was computed.

Significant (p<0.05) increasing (later) or decreasing (earlier) trends in ISM onset date
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were detected using the Mann-Kendall test. To test for trends of increasing or
decreasing inter-annual variation in ISM onset date a time series of coefficient of
variation of onset date over three, five, seven and nine year moving windows was
constructed. The Mann-Kendall test was used to test for significant (p<0.05) trends in
inter-annual variation of ISM onset date. During trend analysis if onset date was not
realised in a grid cell for a particular year it was replaced with the median onset date of
the neighbouring eight cells. This was to ensure the time series contained no missing

values.

3.25 Field Significance Methodology

To test for field significance of trends in annual ISM precipitation, severe drought years
and onset date of ISM bootstrap resampling of the input data at each grid cell was
used; similar to the methodology outlined in (Krishnamurthy et al. 2009). Bootstrap
resampling samples with replacement from the original input data and, being non-
parametric, does not require prior knowledge of the distribution of the input data
(Wilks 1997). A bootstrap sample of the time series at each grid cell was generated
and the Mann-Kendall test was applied to this bootstrap sample. The number of grid
cells with positive and negative significant trends (aoca) from the bootstrap samples
were summed across the field (i.e. the spatial extent of India). This process was
repeated 1000 times to generate histograms of the number of grid cells reporting
significant trends when the global null hypothesis of no local significance was true. The
95" percentile value of this histogram was taken as the threshold for field significance.
Generating confidence intervals based on bootstrapped percentile intervals did not
require the histogram of number of significant grid cells under bootstrap sampling to
be normally distributed (Efron and Tibshirani 1993). If the number of grid cells
reporting significant trends from the observed data was greater than the 95
percentile value then the field was deemed significant at Ogopal. In this research ayocal

and ogopal Were set equal to p<0.05.
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33 Results

3.3.1 Annual ISM precipitation

The South West Coast and North East of India received the greatest amounts of annual
ISM precipitation between 1951-2007 (Fig. 3-1a). These regions also experienced the
greatest inter-annual variation in annual ISM precipitation (Fig. 3-1b). There was a
fragmented spatial pattern across India for areas which experienced significant trends
(p<0.05) of increasing or decreasing annual ISM precipitation (Fig. 3-1c). The area on
the South West Coast of India which experienced significant trends (p<0.05) of
decreasing annual ISM precipitation corresponds to the same location as reported by
Guhathakurta and Rajeevan (2008). More grid cells reported significant trends (p<0.05)
of increasing inter-annual variation in ISM precipitation than decreasing variation
(Table 3-1; Fig. 3-1d). The magnitude of increasing or decreasing trends in annual ISM
precipitation and inter-annual variation in ISM precipitation are depicted in Fig. 3-2a.
The pattern and the spatial distribution of grid cells which reported significant trends
in inter-annual variation was consistent regardless of the size of the moving window
within which the coefficient of variation was calculated (Table 3-1). This indicates that
observed trends were real rather than artefacts of the size of moving window.
However, increasing the size of the moving window did increase slightly the number of
grid cells where significant trends in inter-annual variation were realised. This may be
expected as a larger moving window may capture more high-frequency variation
relative to the low frequency trend. Figures are presented using a five year moving
window as a balance between a three year moving window which may not be sensitive
enough to capture trends in inter-annual variability whereas a nine year moving
window may over-emphasise trends in inter-annual variability given a time series
spanning 1951-2007. The observed significant increasing and decreasing trends
(p<0.05) passed the test for field significance enabling rejection of the global null

hypothesis (Table 3-2).
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Figure 3-1 a) Median annual ISM precipitation (mm) between 1951-2007 ,b) Inter-quartile range of
annual ISM precipitation (mm) between 1951-2007, c) significant trends (p<0.05) of increasing or
decreasing annual ISM precipitation determined using the Mann-Kendall test and, d) significant trends
(p<0.05) of increasing or decreasing inter-annual variation in ISM precipitation between 1951-2007
(results show in coefficient of variation calculated over a five year moving window).
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Figure 3-2 Trend calculated as the median slope determined by the Theil-Sen method for: a) trends in
annual ISM rainfall between 1951-2007, b) trends of increasing or decreasing inter-annual variation in
ISM precipitation between 1951-2007 (results show trends in coefficient of variation calculated over a
five year moving window) and, c) trends of increasing or decreasing inter-annual variation in onset
date of ISM between 1951-2007 (results show trends in coefficient of variation calculated over a five
year moving window).

Table 3-1 Number of grid cells (out of 4475) reporting significant trends (p<0.05) in increasing or
decreasing variation in annual ISM precipitation and onset date of ISM with coefficient of variation
calculated within three, five, seven and nine year moving windows. The number of grid cells (out of
4475) reporting significant trends (p<0.05) in increasing or decreasing recurrence of severe drought
years when the time-series was contrstructed using three, five, seven and nine year moving windows.
The number in brackets refers to the number of grid-cells reporting significant trends (p<0.05) as a
percentage of the total number of cells.

Size of Annual ISM precipitation Severe Drought Years Onset date of ISM
moving
window sig. positive  sig. negative  sig. positive  sig. negative  sig. positive  sig. negative
trends trends trends trends trends trends
3 494 288 668 191 825 105
(11.04) (6.44) (14.93) (4.27) (18.44) (2.35)
5 1118 471 900 355 1308 201
(24.98) (10.53) (20.11) (7.93) (29.23) (4.49)
7 1406 610 956 430 1525 282
(31.42) (13.63) (21.36) (9.61) (34.08) (6.30)
9 1548 781 994 474 1607 356
(34.59) (17.45) (22.21) (10.59) (35.91) (7.96)
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Table 3-2 Field significance test results for significant trends (p<0.05) in annual ISM precipitation,
frequency of severe drought years and onset date of ISM.

95™ percentile of number of Number of observed grid cells
grid cells reporting significant reporting significant trends
trends from 1000 bootstrap from real data

samples generated under the
null hypothesis of no trend

Annual ISM Sig. positive 127 197
precipitation trends
Sig. negative 128 514
trends
Severe drought Sig. positive 74 900
Years trends
Sig. negative 73 355
trends
Onset date of Sig. positive 101 62 (not field significant)
ISM trends
Sig. negative 102.5 117
trends
3.3.2 Severe Drought Years

North West India experienced the greatest frequency of severe drought years between
1951-2007 (Fig. 3-3a). The majority of Central, North East and coastal South West India
experienced between zero to two severe drought years within the study period (Fig. 3-
3a). Most of North Central and North East India experienced no significant trends
(p<0.05) of increasing or decreasing frequency of severe drought years between 1951-
2007 (Fig. 3-3b). Much of the Southern Peninsula of India showed a fragmented spatial
pattern of areas experiencing significant trends (p<0.05) of increasing or decreasing
recurrence of severe drought years (Fig. 3-2b). In contrast, large portions of North
West India experienced significant trends (p<0.05) of increasing frequency of severe
drought years (Fig. 3-3b). The number of grid cells which reported significant trends
(p<0.05) of increasing frequency of severe drought years was twice that of grid cells
which reported a decreasing frequency (Table 3-1; Fig. 3-3b). The spatial pattern of
locations of significant trends and the greater number of grid cells which experienced
significant trends (p<0.05) of increasing frequency were consistent regardless of the
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size of moving window used in constructing the time series for temporal trend analysis
(Table 3-1). The observed significant trends (p<0.05) of increasing or decreasing
frequency of severe drought years were field significant (Table 3-2) indicating
observed trends were real rather than chance artefacts of performing multiple

hypothesis tests simultaneously.
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Figure 3-3 a) Number of severe drought years as defined by the IMD over the period 1951-2007 and,
b) significant trends (p<0.05) of increasing or decreasing recurrence of severe drought years
determined using the Mann-Kendall test (results from time series constructed with mean drought
years calculated over a five year moving window).

3.3.3 Onset date of ISM

Onset date of ISM defined using the above method in grid cells containing stations
which the IMD used to define onset has a strong positive correlation (rs= 0.67; p< 0.001
(Spearman’s rank correlation), RMSE: 14) with the IMD defined onset dates over
Kerala. This significant (p<0.001) correlation indicates the objective method of
detecting onset defined here captures the inter-annual variation in onset date.
Increasing the threshold in criterion one to a SPA of one inevitably increases the
number of grid cells where onset is not detected in regions which receive lower
amounts of and more scattered precipitation. The onset date detected was largely
insensitive to increasing the threshold in criterion two. Onset detected using a
threshold of total precipitation over a seven day period being greater than 18 times
mean daily precipitation for year n yielded a slightly stronger correlation and lower
RMSE to IMD declared onset dates over Kerala than 22 times mean daily precipitation

(rs= 0.59; p< 0.001, RMSE: 28). As this study focuses on inter-annual variability in onset
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date rather climatological mean onset date the subjective choice of threshold will not

influence the results (Fasullo and Webster 2003; Moron et al. 2009).

Fig. 3-4 shows grid cells where ISM onset dates from 1951-2007, determined using the
method presented here were significantly correlated (p<0.05) with ISM onset date in
grid cells containing stations from which the IMD declared onset date over Kerala.
Significant correlations (p<0.05) were realised in only 4.65% of grid cells across India
highlighting that the onset date of the ISM in Kerala is not representative of the onset
date at other locations. Significant correlations were calculated using Spearman’s rank
correlation. This method of detecting ISM onset performs well in detecting onset in
specific years and long-term normal onset at various locations across India and is not
limited to detecting onset over Kerala (Table 3-3). As can be seen in Table 3-3 this
method of detecting onset is able to detect the northward advance of the ISM across
India; later ISM onset dates were realised in the northern cities of Delhi and Lucknow

(Table 3-3).

mm Sig. correlations

-
o
z
‘Ff a
.
- ,
E—

60° E 70°E 80°E 90° E 100° E

Figure 3-4 Significant correlations (p<0.05) between the time series of onset date of ISM defined using
the methodology outlined 3.2.4 in the grid cells covering the location of the individual stations the
IMD use to define onset date of ISM and all other grid cells across India. Correlation was calculated
using Spearman’s rank correlation where a coefficient of 1 indicates perfect positive correlation and -1
indicates perfect negative correlation.
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Table 3-3 IMD declared ISM onset date and local onset date detected by method presented in section
2.4.3 for various cities/states across India in 2005, 2006, 2007 and Long-term normal onset dates. The
IMD declared long-term normal onset dates and onset dates for 2005, 2006 and 2007 were obtained
from (http://www.imd.gov.in/section/nhac/dynamic/Monsoon_framce.htm). The long-term normal
determined by local onset is the mean onset date between 1951-2007 in the grid cell containing the
city in question. *Onset in Kerala determined by the local onset method is calculated for the grid cells
containing the stations the IMD use to declare onset of ISM over Kerala.

2005 2006 2007 Long-term
normal
Lucknow IMD 175-180 177-181 169
Local Onset 174 176 188 187
Delhi IMD 181-190 177-181 180
Local Onset 175 187 194 181
Mumbai IMD 148-151 166-169 161
Local Onset 168 173 168 167
Kerala* IMD 152 146 148 152
Local Onset 148 141 153 152

This method compares favourably to the Wang and Lin (2002) method of detecting
local onset of ISM (hereafter BWLH) when applied to APHRODITE data. Onset of ISM
over Kerala, defined by the BWLH method, does not have a statistically significant
correlation with IMD defined onset dates over Kerala (rs=-0.012 (Spearman’s rank
correlation)). The BWLH method was developed to detect onset of monsoon from the
2.5°x2.5° Climate Prediction Centre Merged Analysis of Precipitation (CMAP)
Climatological Pentad Mean (CPM) precipitation dataset. It defines onset as the first
pentad when precipitation rate (RR;: equation 9) is noticeably larger than dry season
precipitation rate (precipitation rate in January), is greater than 5 mm day'1 and occurs

between May and September (Wang and LinHo, 2002).

RRi = Ri - R]an

(9)
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RR; is relative pentad mean precipitation rate, R;is pentad mean precipitation rate and

Ry.n is mean precipitation rate in January (peak dry season) for a given year.

Onset of ISM typically first occurred over the South-Western tip of India and North
East India with a median onset date of day of year 145-150 (25™-30" May) (Fig. 3-5a).
Onset date of ISM occurred later over North West India (Fig. 3-5a). Inter-annual
variation in onset date of ISM from 1951-2007 across Northern, Central and the West
Coast of India was characterised by inter-quartile ranges of onset date between 10-20
days (Fig. 3-5b). Greatest inter-annual variation in onset date of ISM occurred in
Central-South East India (Fig 3-5b). The observed significant trends (p<0.05) of later
occurring onset date were not field significant indicating that the number of observed
significant trends was not statistically significantly different (p<0.05) to what would
have occurred by chance under the global null hypothesis (Table 3-2, Fig. 3-5c). The
low number (117 grid cells out of a possible 4475) of realised significant trends
(p<0.05) in earlier occurring onset date, although field significant, has a very limited
spatial coverage indicating trends of earlier or later occurring onset date of ISM were
not evident over India between 1951-2007 (Table 3-2, Fig. 3-5c¢). However, large
portions of India experienced significant trends (p<0.05) of increasing inter-annual
variation in ISM onset date between 1951-2007 (Table 3-1; Fig. 3-5d). The magnitude
of increasing or decreasing trends in inter-annual variation in onset date of ISM are
depicted in Fig. 3-2c. Again, the size of moving window within which the coefficient of
variation of onset date of ISM was calculated did not influence the spatial distribution

of or ratio between significant positive and negative trends (p<0.05) (Table 3-1).
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Figure 3-5 a) Median onset date of ISM between 1951-2007, b) inter-quartile range of onset date of
ISM between 1951-2007, c) Significant trends (p<0.05) of increasing (later) or decreasing (earlier)
onset date of ISM using the Mann-Kendall test and, d) significant trends (p<0.05) of increasing or
decreasing inter-annual variation in onset date of ISM between 1951-2007 (results show trends in
coefficient of variation calculated over a five year moving window). Day 152 = 1* June.

Grid cells discounted from trend analysis were located in North West and South East
India; regions which received low amounts of ISM precipitation (Fig. 3-1a), explaining
why thresholds defining onset date were not met. The low amount of ISM
precipitation in South East India is due to the rain-shadow effect of the Western Ghats
and regional pressure fields which result in an annual precipitation maximum between

October and December (Gunnel 1997).

3.4 Discussion

The area in North West India where a high frequency, and increasing trends in
frequency of severe drought years were observed corresponds to the arid regions of
the Thar Desert and land cover classes of thorn scrub and desert, sparse vegetation
(hot) and salt pans as defined by the South Asia Global Land Cover 2000 (GLC 2000)

product (Agrawal et al. 2003). Frequent severe drought years would be expected in
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such arid conditions. These trends are worrying as frequently recurring drought years
on marginal and arid lands can result in top soil erosion and declining soil fertility, thus,
reinforcing or spreading the extent of desertification (Shewale and Kumar 2005). The
areas which reported frequent occurrence of severe drought years in the far north of
India (Fig. 3-3a) predominantly receive precipitation in the form of snow or rain events
associated with western disturbances during winter months (Shewale and Kumar 2005;
Guhathakurta and Rajeevan 2008). This Himalayan region is mountainous and
dominated by land cover classes of snow and alpine meadows, with poor coverage of
rain stations to report precipitation events and not dominated by ISM precipitation
(Agrawal et al. 2003; Rajeevan et al. 2006). This could explain why frequent drought
years were noted in the area when drought was defined by precipitation deficiency.
The negative impacts of drought conditions will be exacerbated by increased
temperatures, high wind and low humidity (Attri and Tyagi 2010; Pai et al. 2011). A
more comprehensive study, with a focus on the impact of droughts, should
incorporate all the above mentioned climatic factors and not just precipitation

deficiency.

Not only was India characterised by inter-annual variation (Figs. 3-1b, 3-3a and 3-5b),
but large portions of India experienced significant increasing trends in inter-annual
variation (Figs. 3-1d, 3-3b and 3-5d), in facets of ISM precipitation. The magnitude of
this inter-annual variation and the location of trends of increasing variation exhibited a
spatially heterogeneous distribution, thus, suggesting the need for local adaptive
measures to cope with such variability. This inter-annual variation and observed trends
of increasing variation are problematic for agriculture in India given the vulnerability of
agriculture to a variable climate (Faures et al. 2010). The inter-annual variation in the
ISM inhibits the use of long-term climatic normal conditions in agricultural planning.
Indian agriculture is vulnerable to ISM variability with 59% of all agriculture being
rainfed (DES 2009) and, thus, dependent on the ISM and lacking the protective buffer

provided by irrigation.

Management of water resources at a watershed or river basin level requires
knowledge generated from trend analysis of precipitation at a fine spatial resolution

(Ghosh et al. 2009). Goal 2 of the National Water Mission specifies the need for basin
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level integrated management of water resources; this is a multi-scale approach to
water resource management from small (local) spatial units within a basin to the inter-
basin level (National Water Mission 2009; Moors et al. 2011). As India exhibits fine-
scale spatial variation in ISM precipitation (Satyanarayana and Srinivas 2008; Ghosh et
al. 2009; Ghosh et al. 2011) (Fig. 3-1a); aggregating precipitation data over large
regions of India may lead to aggregate trends which have false meaning locally, and
which are of limited use to water resource planning at the local scale (Ghosh et al.
2009). The loss of local detail when performing trend analysis on precipitation data
aggregated over a region is evident when a comparison is made between Fig. 3-1c
(0.25°x0.25° grid cell resolution) and Figs. 3 in Guhathakurta and Rajeevan (2008)
where a map of subdivisions which experienced significant trends in annual ISM
precipitation is presented. While there are some similarities between the two maps,
the analysis performed in Fig. 3-1c highlights that observed trends in annual ISM
precipitation are not homogeneous across subdivisions or even larger areas. Similar
locations experiencing significant (p<0.05) increasing or decreasing trends in annual
ISM precipitation were realised when the Mann-Kendall test was applied to IMD 1°x1°
gridded precipitation dataset for 1951-2004 (results not shown). This indicates the
trends realised in the APHRODITE dataset are real and not artefacts of the method of
product generation. The fragmented spatial pattern in the location of significant trends
and spatial variation in average values illustrates the importance of undertaking this
analysis at a fine spatial resolution. This analysis has produced local detail regarding
recent (1951-2007) trends in facets of ISM precipitation complementing an established
literature observing trends in extreme events at fine spatial resolution over a similar
time frame (Ghosh et al. 2009; Krishnamurthy et al. 2009; Ghosh et al. 2011). This
contributes to widening the understanding of recent behaviour in facets ISM

precipitation which impact livelihoods and agriculture.

3.5 Conclusion

Daily gridded precipitation data at a 0.25°x0.25° spatial resolution, across all India from
1951-2007, were used to analyse the average and inter-annual variation in annual ISM

precipitation, onset date of ISM and the frequency of severe drought years. A robust
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method of estimating local onset date of ISM quantitatively from daily precipitation
data (rather than qualitative criteria) was developed. This enabled temporal trend
analysis to be performed on onset date of ISM at locations across all India for the
period 1951-2007. Non-parametric statistical analysis was performed to find locations
which experienced significant temporal trends in facets of ISM precipitation. In

summary,

e The North East and South West Coast of India experienced the greatest amount
of average annual ISM precipitation (greater than 4000mm), earliest onset date
of ISM and greatest amount of inter-annual variation in ISM precipitation (an
inter-quartile range of over 2000mm). In contrast, North West India
experienced the lowest amounts of annual ISM precipitation (less than
1000mm) and the highest frequency of severe drought years (more than 15
drought years between 1951-2007). Median ISM precipitation was 6395mm in
some locations compared to less than 800mm in others.

e Locations which experienced significant increasing or decreasing trends in
annual ISM precipitation, onset date of ISM and recurrence of drought years
were detected (Figs. 3-1c, 3-3b and 3-5c). Observation of such trends was not
the norm across India; yet these trends were shown not to be chance
occurrences by field significance testing (except in the case of trends of
increasing, i.e. later, onset date of ISM). This highlights the importance of
performing trend analysis at a fine spatial resolution to ensure that such trends
are not lost as could happen when precipitation data are aggregated over
larger regions.

o A greater expanse of the country experienced significant increasing trends of
inter-annual variation in annual ISM precipitation and onset date of ISM (Figs.
3-1d and 3-5d). Worryingly, large regions of North West India experienced

significant increasing trends in the frequency of severe drought years.
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Chapter 4: Spatio-temporal dynamics in the phenology

of croplands across the Indo-Gangetic Plains’

4.1 Introduction

Agricultural production within the IGP is vital for the region, providing food and
economic security for its 365 million inhabitants (2011 census levels) as well as
contributing to the national food supply (Saharawat et al. 2009; DES 2011; Perveen et
al. 2012). However, the agro-ecosystems of the IGP lie at the interface of environment-
human interactions and are vulnerable to climatic fluctuations (Aggarwal et al. 2004).
Thus, with a growing population increasing demand for food (DES 2009) and pressure
on environmental resources (Aggarwal et al. 2004; RWC 2006; Moors et al. 2011) and
projections of uncertain and unfavourable trends in climatic parameters (Moors et al.
2011; Mathison et al. 2013) there is a need for comprehensive monitoring of changes
in the IGP croplands. This monitoring should be specifically focused on increasing
understanding of agro-ecosystem-climate interactions, highlighting potential
vulnerabilities in the agricultural system, developing a sustainable and climate resilient
agro-ecosystem and feeding into food security assessments in the region. Spatially
explicit measures of land surface phenology (LSP) are ideally suited for this monitoring

need.

Monitoring LSP is crucial to capture vegetation feedbacks to the atmosphere-climate
system; LSP records can inform on numerous variables (e.g. land-surface albedo,
surface roughness length, photosynthetic activity) which influence fluxes of energy,
water and carbon (Richardson et al., 2013). Over the IGP, vegetation is almost
exclusively dominated by a mixture of rainfed and irrigated croplands (Thenkabail et al.
2005). In particular, long-term records of LSP parameters are crucial to identify and
understand climatic impacts and controls on agro-ecosystem functioning and, crop and
vegetation physiological processes (Brown et al. 2010; Richardson et al. 2013; Xu et al.

2013). This can inform on where agro-ecosystem functioning and service provision are

> This chapter is currently in review (Advances in Space Research).
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dependent on climatic drivers, or vulnerable to observed or projected shifts and trends
in climate. For example, (Lobell et al. 2012) used measures of length of growing season
(LGS) and start-of-season (SOS) derived from MODIS data to quantify the vulnerability
of, and yield declines in, the wheat crop to extreme heat events in North India. The
feedbacks of vegetation activity and agricultural practices across the IGP into the
climate system, often with subsequent influences at a wider spatial scale (e.g.
irrigation of croplands and crop residue burning have been shown to influence
warming trends and Indian Summer Monsoon circulation (Zickfeld et al. 2005; Douglas
et al. 2006; Knopf et al. 2008; Ramanathan and Carmichael 2008; Douglas et al. 2009)
and, the impacts of climatic variability and projected climate change on crop
productivity and yield (Lobell et al. 2012), mean generating a detailed inventory of LSP
dynamics over the IGP’s agro-ecosystem is of vital importance. This monitoring will
enhance understanding of the interaction between cropland dynamics and the climate
system, informing management of the agro-ecosystem to increase resilience to
climatic variability and mitigate the system’s negative climatic footprint. Such
information is pertinent for agricultural landscapes (e.g. the IGP) where a changing
climate may disrupt crop productivity coinciding with concerns regarding
unsustainable cropping practices and population growth increasing food demand

(Tilman et al. 2002; Aggarwal et al. 2004; Foley et al. 2011).

Monitoring LSP is now a key component of food security assessment; for example, the
Famine Early Warning System Network (FEWSNET) uses NDVI measures of vegetation
activity as part of an integrated early warning system for food security (Ross et al.
2009). Crop development and productivity, is one of a range of controlling factors for
food security within the food system (Ericksen 2008a; Vrieling et al. 2011) and, in rural
smallholder environments is a key determinant of livelihoods. Monitoring LSP over
croplands allows discrimination between crop types (Xiao et al. 2005; Xiao et al. 2006;
Thenkabail et al. 2007; Gumma et al. 2011b), provides observations which can be
assimilated into process-based crop models increasing model prediction accuracy
(Doraiswamy et al. 2004; Fang et al. 2011), to assess the impact of, and provide early
warning for drought impacts on crop yields (Rojas et al. 2011) and, be used to forecast

crop yield (Bolton and Friedl 2013). Long-term records of LSP parameters can be used
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in isolation, or integrated with climate datasets, to inform agricultural planning and
national and international responses to food shortages (Ross et al. 2009). Vrieling et
al., (2013) comment that long-term records of normal LGS and variability in LGS can be

used to identify locations suitable, or at higher risk, for different crop types.

Utilising LSP parameters to monitor and understand the dynamics of agro-ecosystem
productivity across the croplands of IGP is crucial given the importance of crop
production in supporting the livelihoods of the region’s inhabitants. Ensuring high
levels of productivity is important to national food security efforts; the Government of
India purchases large quantities of foodgrains from the IGP states (Fig. 2-1) to
supplement national buffer stocks and support the Targeted Distribution Service to
poor households (Perveen et al. 2012). Determining seasonal influences on local
productivity in croplands will become more important as local productivity will be
critical in supporting livelihoods due to increasing polarity in purchasing power and the
volatility of global food prices and markets (Brown and Funk 2008; Brown et al. 2012).
Therefore, records of LSP parameters elucidating agro-ecosystem dynamics and
productivity are key to integrated assessments of regional and national food security,
especially given uncertainty in future climatic variability and monsoon dynamics
(Annamalai et al. 2007; Brown et al. 2010; Moors et al. 2011; Turner and Annamalai

2012; Mathison et al. 2013).

Inter-annual changes in LSP in India are intrinsically linked to agro-ecosystem
functioning which supports the food security of national population of 1.26 billion
people (DES, 2011) and act as a driver in the regional climate system with feedbacks to
monsoon circulation. Thus, changes in LSP over India potentially impact livelihoods and
biophysical processes across the wider South Asia region. Despite this, there is a
paucity of studies monitoring changes in LSP parameters over India (Dash et al., 2010;
Prasad et al., 2007), let alone studies focusing on the spatio-temporal dynamics of
vegetation activity and LSP over the key agricultural landscapes of the IGP. Dash et al.,
(2010) quantified spatial variation in LSP across India for one year using MERIS MTCI
data but focused on all vegetation types rather than specifically croplands. However,
they discriminated between areas of single cropping, double cropping and triple

cropping across the IGP for one year. Lobell et al., (2012) used MODIS EVI data,
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spanning the past decade, in North-West India to quantify links between SOS, LGS and
rabi wheat crop production. Jeyaseelan et al., (2003) used GIMMS NDVI data to infer
trends in photosynthetic activity across a range of vegetation types across India.
Biradar and Xiao (2011) used MODIS data to map cropping intensity across India for
one year identifying areas of single, double or triple cropping. Cropping intensity refers
to the number of crops grown per plot of land per agricultural year. Studies have
generated long-term datasets of LSP parameters over sub-Saharan African croplands
(Vrieling et al. 2013). However, the studies exploring LSP parameters in the IGP did not
generate a dataset of long-term trends in LSP parameters across the croplands of IGP.
Thus, there still remains a need to (i) provide a comprehensive set of long-term records
of LSP parameters and, (ii) utilise a long-term dataset to capture the spatio-temporal
trends in phenology and biophysical performance over IGP croplands. We address the

above mentioned gap with two over-arching research goals:

1) To create spatially explicit time-series from 1982-2006, at a spatial resolution of 8
km across the IGP of the following LSP parameters: (i) cropping intensity, (ii) LGS and

(iii) agro-ecosystem productivity.

2) To quantify normal conditions, inter-annual variation and long-term trends in these

LSP parameters across the IGP croplands from 1982-2006.

4.2 Methods and Data

4.2.1 Data

The GIMMS NDVI dataset used in this study is composed of AVHRR data with a spatial
resolution of 4 km processed to produce bimonthly composites of global (except
Antarctica) NDVI coverage at a spatial resolution of 8 km
(http://glcf.umd.edu/data/gimms/: Tucker et al., 2005)°. Further details regarding the
GIMMS NDVI product generation can be found in Pinzon et al. (2005) and Tucker et al.

(2005). In a comprehensive comparison of four AVHRR-derived NDVI products versus

®A longer GIMMS NDVI record (GIMMS NDVI 3g) has now been processed, more information is provided
at: http://www.mdpi.com/journal/remotesensing/special_issues/monitoring_global. At the time of
analysis this dataset was available for general release.
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Landsat samples, assumed as ‘ground truth’, Beck et al., (2011) found: the GIMMS
NDVI dataset performed best in temporal change analysis, had statistically significant
(p<0.05) median NDVI values compared to other AVHRR-NDVI datasets and, similar
median NDVI values observed at the latitude relevant to this study. The GIMMS NDVI
dataset has been used in numerous studies exploring phenology dynamics across
croplands and agricultural ecosystems both globally (Brown et al. 2012) and in sub-
Saharan Africa (Brown et al. 2010; Vrieling et al. 2011). The GIMMS NDVI data
spanning the Indian states of Punjab, Haryana, Uttar Pradesh and Bihar from 1982 till

2006 were extracted from the global datasets.

4.2.2 Data Pre-Processing

The GIMMS NDVI data were reordered to match the agricultural calendar of the IGP; in
each month there is a composite corresponding to the time period: day one to 15 and
then day 16 till the end of the month (Tucker et al., 2005). Each year, therefore,
contains 24 NDVI composite images. The zaid, kharif and rabi cropping seasons span
across two calendar years (DES, 2009), thus, necessitating reordering the annual
GIMMS NDVI composites to correspond to the agricultural calendar of the IGP. Time
step 1, therefore, became the GIMMS NDVI composite for January (days 16-end of
month) in year n and time step 35 was the GIMMS NDVI composite for June (days 16-

end of month) in year n+1.

The agricultural time-series GIMMS NDVI data were fitted, with a bias towards the
upper envelope of the raw data values, using a maximum polynomial iterative fit, an
adaptation of the method used in generating the SPOT VGT4Africa phenology products
(Bartholomé et al. 2006). Including a fitting bias towards the maximum raw NDVI
values accounts for: (i) the negative bias in AVHRR NDVI data due to the sensor’s
sensitivity to water vapour in the atmosphere as a result of its wide spectral bands
(Brown et al. 2008; Atkinson et al. 2012) and (ii) drop-outs due to cloud cover which do
not follow the phenological pattern of vegetation (Chen et al. 2004). Local polynomial
fitting was used rather than fitting data to functions (e.g. double logistic, asymmetric
Gaussian) or using harmonic analysis as there can be inter-annual variation in

phenology due to shifting cropping intensity and crop type per pixel; local polynomial
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functions are better suited to capturing complex behaviour (Jénsson and Eklundh
2004; Vrieling et al. 2013). Local polynomial fitting has been used in numerous studies
for phenology parameter estimation over croplands using the GIMMS NDVI and other
AVHRR-derived datasets (Jonsson and Eklundh 2004; Brown et al. 2010; Vrieling et al.
2011; Vrieling et al. 2013).

Prior to fitting the data, composities contaminated by cloud cover or drop-outs were
detected following Vrieling et al. (2011) where an increase of 0.3 NDVI units between
composites was masked and replaced with the average NDVI value of the preceding
and following composites. The maximum polynomial iterative fit breaks the original 35
composite time-series (t,) into two 21 composite time-series with six overlapping
composites. Each time-series was fitted with a 5t degree polynomial (t,). A smoothed
time-series (t;) was generated by combining the separate t, time-series and taking
average values for the overlapping composites. The maximum envelope was then

fitted to the raw values following:

t; = max(t,,t)

(1)

This process was repeated for three iterations, rather than six as in the method applied
to the SPOT VGT4Africa data, to avoid overfitting. The final t; data were then filtered
using a Savitzky-Golay filter (2) with an 11 composite moving window and a 4t degree
polynomial. Filtering the maximum fitted NDVI dataset removes any remnant short-
term noise or fluctuations along the trend of phenological cycles, thus, increasing the
reliability of LSP estimates.

J n

(2)
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Equation (2) is the Savitzky-Golay filter where N; is the rawjth NDVI value and N*j is the
smoothed NDVI value. C;is the coefficient for the ,-th NDVI value of the filter of a size

2m+1, nis equal to 2m+1 and is 11 in this study, thus m=5.

A mask of urban, water and forested areas was generated using the GLC 2000 product
with a spatial resolution of 1 km (Bartholomé and Belward 2005). The GLC 2000 global
product was produced by synthesising regional land cover products generated using
SPOT VGT data (Bartholomé and Belward 2005; Herold et al. 2008) and was used in
numerous studies investigating land cover change and the interaction between land
cover and environmental and climatic processes (Ramankutty et al. 2008; Thenkabail
et al. 2009; Douglas et al. 2009). The regional land cover products contain more
thematic detail than the global land cover product (Bartholomé and Belward 2005);
therefore, the South Asia GLC 2000 product (Agrawal et al. 2003) was used in the
development of the urban, water and forest mask. The GLC 2000 product was upscaled
using a majority filter to match the spatial resolution of the GIMMS dataset. From the
upscaled GLC2000 data the IGP states of Punjab, Haryana, Uttar Pradesh and Bihar
were extracted and pixels which contained a majority land cover of urban, water and

forest were masked out.

4.2.3 LSP Parameter Estimation

Areas with a double cropping cycle, triple cropping cycle, single zaid cropping season,
single kharif cropping season and single rabi cropping season in the IGP have a distinct
phenology. A kharif cropping season temporal vegetation index (VI) profile is
characterised by (i) an increase in VI values from late May/early June representing SOS,
(ii) a peak VI occurring between August and September coinciding with the peak
above-ground biomass and (iii) decreasing VI values through October when the crop
senesces (Fig. 4-1). A similar pattern occurs during the rabi cropping season (Fig. 4-1)
except that the green up period occurs between November and January, peak NDVI
occurs in February with crop senescence during March and April; the zaid cropping
season is less common than kharif cropping or rabi cropping, but occurs from March
to June before the arrival of the monsoon (Fig. 4-1). Double and triple cropping cycles

incorporate the phenology profiles of a combination of zaid, kharif and rabi cropping.
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The timing of the extracted LSP parameters determined which cropping season was

detected.
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Figure 4-1 Typical phenology profile derived from vegetation indices for the three main cropping
seasons of the Indo-Gangetic Plain (zaid, kharif, rabi).

A cropping season was detected using an adapted version of Dash et al. (2010); an
algorithm was used to search the phenology profile for a peak in the growing season. If
a peak was detected the algorithm searched backwards for a SOS. If both a peak and
SOS were detected a logical condition detecting rapid green up after SOS was required
to be met for a cropping season to be identified. A peak growing season was detected
if an NDVI value was preceded by a month (two GIMMS composites) of increasing
trend in NDVI values and succeeded by a month of decreasing trend in NDVI values. A
month is a sufficient time period to ensure the noted peak is associated with a LSP
parameter rather than noise caused by anomalous fluctuations in the NDVI time-
series. The logical condition detecting a rapid green up following SOS required the
difference between SOS NDVI and peak NDVI to be greater than one fifth of the peak
NDVI. This logical condition detects the rapid growth of vegetation following
emergence common in many crops (Zhang et al. 2003) including the dominant rice
crop in this study area (Xiao et al. 2005; Xiao et al. 2006). Dash et al. (2010) used these
conditions to extract LSP parameters over India for a range of vegetation types,

including croplands, from Meris terrestrial chlorophyll index (MTCI) data.

105



Numerous approaches have been used to detect SOS. Common methods include
change in rate of curvature of VI values fitted to a logistic function (Zhang et al. 2003),
the point when the first derivative changes sign and ‘valley points’ (Sakamoto et al.
2005; Dash et al. 2010), or a percentage threshold of the amplitude of growing season
VI values (White et al. 1997; Jonsson and Eklundh 2004; Lobell et al. 2012; Vrieling et
al. 2013). Due to the difficulty of detecting specific vegetation and crop development
stages from Earth observation data the choice of method to detect SOS is partly
subjective, difficult to validate and, should be tailored towards the vegetation type in
guestion. Here, the point on the rising limb of the phenology profile when NDVI values
exceed 30% of the amplitude between minimum and peak NDVI values for a given
cropping season was defined as SOS. The minimum NDVI value was defined as the
point on the phenology profile, preceeding the peak, when the first derivative changed
sign and was preceeded by a decreasing trend in NDVI values for one month and
succeeded by an increasing trend in NDVI values for one month. The percentage
threshold method is widely used to detect SOS in agricultural lands and has been
applied to GIMMS NDVI data for a range of crop types over sub-Saharan Africa
(Vrieling et al. 2011) and wheat crops over the IGP (Lobell et al. 2012). The 30%
threshold used here gave a sensible retrieval of SOS, end-of-season (EQS) and LGS
across the IGP based on prior knowledge of dominant crop types and typical LGS. The
EOS was defined using the same method applied to the falling limb of the phenology

profile.

Numerous approaches exist to define LGS; often these approaches use climatic data.
For example, one common method, often used in crop models, is the use of growing
degree days (AGDD) defined as the cumulative sum of hourly or daily temperatures
values between crop/vegetation-specific temperature thresholds (Brown et al. 2012).
Other approaches, such as the International Institute for Applied Systems Analysis and
the FAO define LGS as the number of days per year when rainfed soil moisture
availability exceeds half the potential evapotranspiration (Fischer et al. 2002). Such
approaches are limited by the need for extensive and reliable coverage of climate data
(Vrieling et al. 2013) and in areas of double/triple cropping where dry season crops are

grown under irrigation. Therefore, in the IGP, where there is a prevalent double
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cropping system, LSP parameters estimated from time-series remote sensing data
provide a suitable method to obtain reliable LGS estimates. Here, the LGS was

computed by subtracting the SOS from EOS.

A surrogate measure of productivity of the cropping season was computed as the
cumulative sum of NDVI (cumNDVI) values from SOS to EOS. The cumulative sum or
integrated growing season NDVI is a commonly used measure of biomass and

vegetation productivity (Jonsson and Eklundh 2004; Pettorelli et al. 2005; Vrieling et al.

2011).
4.3 Results
43.1 Cropping Intensity

State-wise, the area estimated as double cropping from the GIMMS NDVI dataset has a
positive correlation (R°=0.95; Appendix 2) with Government of India land use statistics
for state-wise area cropped more than once per agricultural year (DES, 2013). This
indicates that the remote sensing derived estimates of cropping intensity here capture
the state-wise inter-annual variation in cropping intensity across the IGP’. There has
been a clear west to east spread in the area under double-cropping from 1982-83 to
2005-06 (Fig. 4-2). In 1982-83 Bihar and Eastern Uttar Pradesh were largely under
kharif single cropping; however, from 1982-83 to 2005-06 these regions experienced
an increase in cropping intensity (Fig. 4-2). Significant trends of increased area under
more intensive cropping in Bihar (p<0.01; R?=0.34) and Uttar Pradesh (p<0.01; R*=0.33)
were detected; this corresponds to an increase in area under double or tripple
cropping of 945 km?yr and 2680 km?yr, respectively (Fig. 4-3). The net area cropped
in Bihar also increased between 1982-83 and 2005-06 with an increase in the area
under kharif single cropping (Fig. 4-2). The western portion of the IGP already had a
developed intensive double cropping system in 1982-83 which has remained the
dominant cropping system; there was no significant increasing trend in area under

double cropping in Punjab (Fig. 4-3). However, in Haryana there was a significant

" Appendix 2 and section 4.4.1 provide discussion on the limitations of using GIMMS NDVI data for areal
estimates of extent under agricultural land cover.
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increasing trend in area under double cropping of 136 km?yr™ (p<0.01; R? = 0.29),
although the rate of increase was less than that observed in Bihar and Uttar Pradesh

and large portions of Haryana were under double cropping in 1982-83 (Fig. 4-2).
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Figure 4-2 Observed cropping intensity across the Indo-Gangetic Plains for three time-periods a) 1982-
83 — 1985-86 agricultural years, b) 1992-93 — 1995-96 and, c) 2002-03 — 2005-06 (maps show the
majority cropping intensity per agricultural year experienced per pixel over the four year period).
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Figure 4-3 State-wise area under double or triple cropping systems per year a) Bihar, b) Haryana, c)
Punjab and, d) Uttar Pradesh. *denotes statistical significance at p<0.01. (See Appendix 4 for
discussion of the anomaly in 1993 for Bihar).

43.2 Length of Growing Season

Most of the IGP had a mean kharif LGS between 138 and 150 days (Fig. 4-4a), with
Bihar and the southern portion of Punjab having longer mean kharif LGS. Parts of
southern Haryana and southern Uttar Pradesh had a shorter mean kharif LGS between
75-137 days. There was no clear spatial pattern in inter-annual variability in kharif LGS
across the IGP except in parts of eastern Bihar which experienced greater inter-annual
variability (Fig. 4-4b). Inter-annual variability was computed as the coefficient of
variation (CV) with years when a cropping season was not detected excluded. The
mean rabi LGS for most of the central and eastern IGP was between 168 and 185 days
with a shorter mean rabi LGS generally observed in the western portions of the IGP
(Fig. 4-5a). Again there was no dominant spatial pattern in the inter-annual variability
in rabi LGS. However, in Bihar there was a more fragmented spatial pattern in CV (Fig.
4-5b). This is largely due to the fact that fewer rabi cropping seasons were detected
here. Fig. 4-4c and 4-5c are bivariate risk maps. Bivariate risk maps are useful to
inform agricultural planning as they give a measure of the normal LGS or productivity
for a location versus the variability in the given measure. This is important as the

normal conditions inform on the suitability of the location for a given crop type or
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agronomic practice and the variability informs upon the risk of implementing a certain
crop or agronomic practice (Vrieling et al. 2013). The southern portion of Uttar
Pradesh experienced shorter mean kharif LGS and greater levels of inter-annual
variability in kharif LGS (Fig. 4-4c). Large portions of Bihar also experienced greater
levels of inter-annual variability in LGS with varying lengths of mean kharif LGS (Fig. 4-
4c). The southern portion of Uttar Pradesh and Haryana have a shorter rabi LGS
coinciding with greater inter-annual variability in rabi LGS (Fig. 4-5c). Much of Punjab
and Haryana have longer rabi LGS coinciding with lower levels of inter-annual

variability in rabi LGS (Fig. 4-5c).

Bihar, Uttar Pradesh and Haryana all experienced significant (p<0.01) increasing trends
(R°=0.37,0.31,0.28, respectively) in the number of growing days per agricultural year
(2.52, 1.96, 0.88 days yr'’, respectively) (Fig.4-6). In Bihar, this equated to
approximately 60 more growing days per agricultural year in 2005-06 than in 1982-83.
There was no significant increasing trend in the number of growing days per year in

Punjab.
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Figure 4-4 a) mean kharif LGS, b) coefficient of variation in kharif LGS and c) bivariate map of mean
kharif LGS and coefficient of variation in kharif LGS.
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Figure 4-5 a) mean rabi LGS, b) coefficient of variation in rabi LGS and c) bivariate map of mean rabi
LGS and coefficient of variation in rabi LGS.
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Figure 4-6 State-wise number of growing days (total of all cropping seasons experienced per pixel per
agricultural year) a) Bihar, b) Haryana, c) Punjab and, d) Uttar Pradesh. *denotes statistical
significance at p<0.01.

433 Productivity

The state-wise surrogate measures of agricultural productivity derived from remote
sensing observations (cumNDVI) were well correlated with state-wise totals of kharif
foodgrains (R?=0.76) and rabi foodgrains (R°=0.88) (DES, 2011) (Appendix 3). This
pseudo-validation indicates that cumNDVI computed from the GIMMS NDVI dataset
captures inter-annual and spatial variation in agricultural productivity. The greatest
levels of mean kharif productivity were found in the far north of Uttar Pradesh and the
far east of Bihar (Fig. 4-7a). Punjab, central and northern Haryana, central and
northern Uttar Pradesh and Bihar had similar levels of mean kharif productivity
(cumNDVI: 4.07-5.66) (Fig.4-7a). Lower levels of mean kharif productivity were
observed in southern Uttar Pradesh and Haryana (Fig. 4-7a). Central and northern
Punjab, Haryana and Uttar Pradesh had the lowest levels of inter-annual variation in
kharif productivity (Fig. 4-7b). Bihar experienced a fragmented spatial pattern in inter-
annual variation in kharif productivity, whilst high levels of inter-annual variation in
kharif productivity were observed in southern Haryana (Fig. 4-7b). Much of central and
northern Punjab, Haryana and Uttar Pradesh experienced high mean kharif

productivity coinciding with lower levels of inter-annual variation (Fig. 4-7c). In
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contrast the southern portions of Haryana and Uttar Pradesh experienced lower levels
of mean kharif productivity and greater levels of inter-annual variation (Fig. 4-7c). Both
Bihar and Uttar Pradesh experienced significant (p<0.01) increasing trends in kharif
cropping season productivity from 1982-83 to 2005-06 (R°=0.35 and 0.31, respectively)
(Fig. 4-8). The western IGP states of Punjab and Haryana did not experience any

significant increasing trend in kharif cropping season productivity.

Central and northern Punjab and Haryana experienced the greatest mean rabi
productivity (cumNDVI: 6.28-7.17) (Fig. 4-9a). Mean rabi productivity was consistent
across much of Uttar Pradesh and western Bihar (cumNDVI: 4.92-5.75) with pockets of
lower mean rabi productivity found in southern Haryana, Uttar Pradesh and eastern
Bihar (Fig. 4-9a). There was no clear spatial pattern in inter-annual variation in rabi
productivity: the lower levels of inter-annual variation observed in southern Bihar are
likely due to fewer rabi cropping seasons being detected (Fig. 4-9b). Parts of southern
Haryana and eastern Bihar experienced lower mean rabi productivity coinciding with
greater levels of inter-annual variability (Fig. 10c). Central and nothern Punjab had
higher mean rabi productivity coinciding with lower levels of inter-annual variation
(Fig. 4-9¢). Bihar and Haryana experienced significant (p<0.01) increasing trends in rabi
cropping season productivity (R°=0.28 and 0.6, respectively) (Fig. 4-10). Punjab and
Uttar Pradesh also experienced increasing trends in rabi cropping season productivity

with a p-value of p<0.05 (R°=0.24 and 0.22) (Fig. 4-10).
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Figure 4-7 a) mean kharif growing season productivity, b) coefficient of variation in kharif growing
season productivity and c) bivariate map of mean kharif growing season productivity and coefficient
of variation in mean kharif growing season productivity.
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Figure 4-8 State-wise mean kharif growing season productivity a) Bihar, b) Haryana, c) Punjab and d)
Uttar Pradesh. *denotes statistical significance at p<0.01.
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Figure 4-9 a) mean rabi growing season productivity, b) coefficient of variation in rabi growing season
productivity and c) bivariate map of mean rabi growing season productivity and coefficient of
variation in mean rabi growing season productivity.
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Figure 4-10 State-wise mean rabi growing season productivity a) Bihar, b) Haryana, c) Punjab and d)
Uttar Pradesh. *denotes statistical significance at p<0.01. **denotes statistical significance at p<0.05.

4.4 Discussion

Kharif single cropping is indicative of rain-fed rice crops grown during the monsoon
season and is generally not associated with a developed agricultural infrastructure. The
areas under kharif single cropping are centred in the less developed regions of the
eastern IGP, namely Bihar (Fig. 4-2). In 1982-83 agriculture in Bihar was almost solely
kharif single cropping (Fig. 4-2). The later uptake of double cropping in Bihar is due to
the intensification of agriculture associated with the Green Revolution largely
bypassing the eastern IGP (Singh et al. 2009). The greater amounts of ISM precipitation
(relative to the western IGP) create more suitable conditions for growth of the kharif
paddy rice crop which is predominant in the eastern IGP (Narang and Virmani 2001;
Duncan et al. 2013). Bihar’s population has a lower socio-economic status relative to
the other IGP states, with a greater proportion below the poverty line (RWC 2006;
Erenstein et al. 2007). There are lower levels of agricultural inputs, irrigation capacity
and farm mechanisation in Bihar due to poor economic conditions precluding
development, and, frequent flood events associated with heavier monsoon rainfall
(Erenstein et al. 2007; Singh et al. 2009). This explains the greater proportion of kharif

single cropping, lower proportion of double cropped area, fewer number of growing
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days per year and lower levels of rabi productivity in Bihar compared to the rest of the
IGP where intensive double cropping systems are more prominent (Figs. 4-2, 4-3, 4-6,

4-9, 4-10).

The western IGP, Punjab, Haryana and western Uttar Pradesh, had an intensive
cropping system already implemented by 1982-83 (Figs. 4-2 and 4-3). This was
reflected by the long-standing double cropping system, greater number of growing
days per year and high levels of kharif and rabi productivity (Figs. 4-2 - 4-10). Double
cropping systems reflect an advanced agricultural infrastructure with high levels of
fertilizer inputs, use of high yielding varieties (HYVs) and irrigation developed under

the Green Revolution (Aggarwal et al. 2004; Ladha et al. 2009).

Figs. 4-7c and 4-9c show that northern and central Punjab and Haryana have higher
levels of mean productivity and lower levels of inter-annual variability. This can partly
be explained by these areas having the most developed agricultural infrastructure
including high levels of irrigation and farm mechanisation relative to the other IGP
states (Erenstein et al. 2007) affording them some resilience to climatic variability
(Perveen et al. 2012). The southern portions of Punjab and Haryana experienced
greater inter-annual variation in kharif productivity, often coinciding with lower mean
productivity (Fig. 4-7c). These regions have a less extensive irrigation infrastructure,
with lower densities of tubewell coverage relative to the northern and central portions
of Punjab and Haryana (Ambast et al. 2006), with of increasing trends in recurrence of
drought years and inter-annual variation in monsoon precipitation and lower (relative
to the rest of the IGP) normal monsoon precipitation (Duncan et al. 2013). The
cropping systems in these regions are not rice-wheat dominated, but more fragmented
with cotton and pearl-millet crops grown (Ambast et al. 2006; Panigrahy et al. 2010).
These factors (e.g. unfavourable climate, fragmented cropping system, less access to
irrigation) contribute to explaining observed variability in productivity (similar patterns
were observed in the rabi cropping season; Fig. 4-9c). These bivariate maps are of
particular importance to agricultural planning in the IGP where there is a pressing need
to increase production in a sustainable and climate resilient manner given projected
population growth increasing food demand (Aggarwal et al. 2004; Wassmann et al.

2009).
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Whilst Green Revolution practices and intensive cropping increased agricultural
production in the western IGP (Ambast et al. 2006; DES 2011), specifically the rice and
wheat crops, there have been recently observed trends of stagnating or declining crop
yields and environmental degradation (Ladha et al. 2003; Aggarwal et al. 2004; RWC
2006). There were no observed increasing trends in kharif productivity in either Punjab
or Haryana between 1982-83 and 2005-06 (Fig. 4-8). This is further evidence
highlighting concerns about the sustainability of maintaining or increasing rice crop
yields in the north-west IGP. Attributed to the intensive cropping in the western IGP
have been noted declines in groundwater levels, decreasing groundwater quality, soil
salinity, decreasing nutrient levels and a reliance on water-intensive rice cropping in
regions which receive relatively low amounts of ISM precipitation (Abrol 1999; Ladha
et al. 2003; Aggarwal et al. 2004; RWC 2006; Ambast et al. 2006; Tiwari et al. 2009;
Central Ground Water Board 2012; Perveen et al. 2012). Thus, questions may be raised
over the current sustainability of intensive cropping and associated agricultural
practices in the western IGP. Further intensification of cropping systems in Bihar and
eastern Uttar Pradesh could relieve stresses placed on the western IGP’s agro-
ecosystems to meet the food demand of a growing population (RWC 2006). Such
intensification needs to be sustainable in the long-term and avoid the stagnating or
declining yields associated with lands intensified under the Green Revolution
(Aggarwal et al. 2004; RWC 2006). The delayed (relative to Punjab and Haryana)
increasing trend in cropping intensity and LGS in the eastern IGP suggest that this

intensification is already occurring (Figs. 4-2, 4-3, 4-6).

Obtaining LSP parameters to monitor the agro-ecosystems of the eastern IGP as they
intensify (Figs. 4-2, 4-3, 4-6) is a key facet to informing sustainable agricultural
development in the region. Monitoring of the western IGP can inform management of
the agro-ecosystems to avoid further environmental degradation and yield declines. It
is important to note that current states of ecosystem functioning are determined by
current conditions and past trajectories of ecosystem dynamics (Dearing et al. 2012).
Thus, long-term records of LSP parameters over IGP can be used to provide a more
comprehensive understanding of ecosystem functioning across a range of spatial

scales. Such data is especially useful when integrated with other time-series of agro-
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ecosystem drivers (e.g. climatic and socio-economic variables). This provides a more
comprehensive understanding of how trajectories of cropping intensity and dynamics
interact with a range of other actors across the agricultural system which determines
agricultural production, food security and environmental sustainability. In the IGP,
agricultural planners could analyse spatially explicit metrics of normals and trends in
SOS and LGS (e.g. Figs. 4-4, 4-5, 4-6) in conjunction with datasets of observed trends
(e.g. Duncan et al. 2013) or projected changes (e.g. Mathison et al. 2013) in climatic
parameters relevant to crop growth and yield, information regarding uptake of various
agronomic practices (e.g. Erenstein and Laxmi 2008) and, levels of social, financial and
physical capital (e.g. Erenstein et al. 2007). This would enable identification of location-
specific vulnerabilities in crop productivity, existing levels of adaptive capacity within
the agricultural system and potential adaptive measures. For example, in the IGP
spatially explicit measures of SOS and LGS for the rabi wheat are vital to target
adaptive conservation agriculture-zero-tillage practices (Erenstein and Laxmi 2008;
Lobell et al. 2013). Zero-tillage should be targeted in areas with a later-sown rabi crop
as later sown crop yields are impacted by exposure to extreme heat later in the crop
growing season (Lobell et al. 2012); this is especially pertinent given projected future
increases in the occurrence of extreme heat days during the rabi cropping season over

North India (Mathison et al. 2013).

4.4.1 Limitations of the GIMMS NDVI dataset

One of the limitations of monitoring cropping intensity using GIMMS NDVI data is that
the phenology measured within each 8km pixel incorporates signal from a range of
land covers, a mixed pixel problem. In the IGP the average farm size in Punjab is 337m?
and in Bihar it is 39m?; therefore, each GIMMS pixel will report the spectral signature
from a range of different farms (Agricultural Census 2012). When estimating cropped
area using coarser resolution remote sensing data some studies have multiplied full
pixel areas by fractional proportions of cropland coverage to glean sub-pixel areal
estimates (Thenkabail et al. 2007). Other approaches to addressing circumstances
where a pixel is mixed include soft or fuzzy classification techniques such as artificial

neural networks or linear mixture modelling (LMM) (Atkinson et al. 1997; Foody 2002).
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LMMs assume a linear relationship between a pixel’s spectral reflectance and the
fraction of vegetative cover. The linearity of the relationship between pixel NDVI and
proportion of agriculture was explored within the state of Bihar in an attempt to train
a LMM to obtain more accurate estimates of cropping intensity. The proportion of
agricultural area within a GIMMS pixel in 2005-06 was determined using the Globcover
2005 V2.2 global land cover product with a spatial resolution of 300 m (Bicheron et al.
2008). This was calculated as the proportion of a GIMMS pixel composed of Globcover
classes 11 and 14, which correspond to post-flooding and irrigated croplands and
rainfed croplands, respectively (Bicheron et al. 2008). There existed a non-linear
relationship between proportion of agriculture within a GIMMS pixel and mean peak
kharif growing season NDVI in 2005-06 (Fig. 4-11). Mean peak kharif growing season
NDVI was used in this case as by this time crops have developed, covering fields, and
reducing the spectral interaction of soil backgrounds with green vegetation (Jiang et al.
2006). This corresponds to the findings of Jiang et al. (2006) who observed a non-linear
relationship between the NDVI of a pixel with a coarse spatial resolution and within-

pixel vegetative fraction.
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Figure 4-11 Relationship between peak kharif GIMMS NDVI and proportion of agriculture within a
GIMMS pixel calculated using the Globcover V2.2 global land cover product for Bihar in 2005-06.

As NDVI does not vary linearly with fraction of vegetative cover, other vegetation
indices which preserve linearity needed to be estimated to derive accurate sub-pixel
fractions (Lobell and Asner 2004; Jiang et al. 2006). This requires data in individual
spectral bands, and preferably at a finer spatial resolution than the GIMMS NDVI data,
so a large number of pure agricultural pixels could be used to train the LMM. Jiang et
al. (2006) found that the Scaled Difference Vegetation Index (SDVI), calculated using
the red and NIR wavelengths, produced a linear relationship with fraction of vegetative
cover and was insensitive to variation in soil background brightness. If the study area
has a limited spatial and temporal extent, and atmospherically corrected reflectance
values for red and NIR spectral bands are available then LMM may yield more accurate
estimates of area under different cropping intensities. However, endmember
reflectance values are not transferable across time or space due to inter-annual
climatic variation, differing environmental conditions and agricultural management
inputs. This limits the applicability of using LMM to map cropping intensity across large

spatial extents and multiple years.
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There is inevitably a trade-off between level of spatial detail and loss of accuracy in
measures of productivity, LGS and cropping intensity from phenology derived from
mixed pixels and the need to generate long-term time series covering large spatial
extents efficiently. Cropping intensity can be monitored at more detailed spatial
resolutions using different sensors with sufficient temporal resolution (e.g. MODIS,
Landsat). For example, Biradar and Xiao 2011 monitored ‘double’ and ‘triple’ cropping
across India using phenology derived from one year of MODIS data and Jain et al. 2013
integrated MODIS phenology measures with ‘fine’ spatial resolution Landsat data to
map cropping intensity of smallholder farms in India. Whilst these approaches deliver
greater levels of spatial detail they are limited by a lack of long-term coverage. This
inhibits their use to inform on the long-term implications of increased cropping

intensity on crop productivity and environmental resources.

Whilst the GIMMS NDVI data set has a coarse spatial resolution, it is possible to detect
the dominant cropping intensity and inter-annual shifts in LGS and productivity
occurring within a 8km pixel in the IGP. The IGP had a dominant agricultural land cover
for at least one cropping season, this reduced negative mixed-pixel impacts and enable
discrimination of the dominant phenology of the croplands at a regional scale. Even
areas of smallholder, subsistence farming have a dominant agricultural landscape with
rice cropping mimicking the cropping calendar of the rest of the region. Except in small
isolated pockets there is not a mixed, heterogeneous landscape occurring at fine
spatial scales (e.g. agro-forestry). However, in mixed landscapes which include
smallholder farming (e.g. mountainous and hilly regions of Nepal, deltaic paddy
regions) we would expect the GIMMS product to yield less phenological information.
Patches of forested, water and urban areas were also masked out using a pre-
processed Land Cover Product (GLC 2000) to remove pixels dominated by non-
agricultural land covers throughout the time period in question. This is reflected by the
fact the GIMMS NDVI dataset represents the state-wise inter-annual variation in
cropping intensity and agricultural productivity reported in Government of India
agricultural statistics (see Appendix 2 and 3). Appendix 4 provides a more detailed
discussion of the limitations of using GIMMS NDVI data over the smallholder

dominated portions of the eastern IGP.
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Accounting for sub-pixel proportions of agricultural extent can improve estimates of
area under cropping (Thenkabail et al. 2007) or weight pixel VI values when estimating
crop productivity (Bolton and Friedl 2013) but it is difficult to un-mix the timing and
location of phenological parameters within a pixel. In other words, it is hard to reveal
sub-pixel variation in the timing of SOS, peak growing season and EOS within a pixel.
This limits the use of GIMMS NDVI data for applied monitoring of specific crop types
(e.g. wheat) due to its coarse spatial and bimonthly temporal resolution. In the IGP,
delays in SOS and LGS by a matter of days can have noticeable impacts on wheat crop
yields (Ortiz-Monastrerio et al. 1994). Both field studies and integrated Earth
observation and crop model studies have shown yield declines for the wheat crop after
an optimal sowing date in mid-November (Ortiz-Monastrerio et al. 1994; Lobell et al.
2012; Chapters 5 and 6). Monitoring SOS and LGS from sensors with increased
temporal resolution (e.g. MODIS) can provide more accurate representation of SOS
and LGS variability across the IGP. The crop-specific, applied usefulness of LSP
parameter retrieval will further increase, relative to information gleaned from GIMMS
NDVI datasets, as long-term records from sensors with increased spatial and temporal

resolutions are accumulated.

4.5 Conclusion

The ability to estimate accurate LSP parameters is vital to fully characterise vegetation-
climate interactions and inform sustainable agro-ecosystem management approaches.
Whilst remote sensing datasets have been used to report spatio-temporal trends in
LSP across sub-Saharan African croplands there has been limited focus on the IGP
croplands. Here, we present long-term records monitoring spatio-temporal trends and
dynamics of LSP parameters for the croplands of the IGP. There has been a clear west-
to-east spread in the area under double cropping from 1982-83 to 2005-06. In 1982-83
2304 km? was detected as being under double cropping in Bihar, in 2003-04 25728 km?
was detected as double cropping from the GIMMS NDVI dataset. This reflected a state-
wise increase in area under double cropping of 945 kmzyear'1 between 1982-83 and
2005-06. In Uttar Pradesh an increasing trend of area under double cropping of 2680

km? year™ was detected over the same time period. This was reflected by an increase
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in: (i) the number of growing days per year in Bihar, Uttar Pradesh and Haryana and (ii)
the productivity of kharif and rabi cropping across the IGP. For example, in Bihar and
Uttar Pradesh in 1982-83 there was a state-wise average of 159 and 243 growing days
per agricultural calendar year respectively yet in 2003-2004 the state-wise average

number of growing days per year were 215 and 297 respectively.

These data contribute to increasing our understanding of local and regional vegetation
dynamics and their interactions with climatic and anthropogenic drivers. They are also
crucial components in facilitating a holistic understanding of local and regional
agricultural and food systems and are, therefore, a useful resource for agricultural
management aiming to deliver sustainable crop production and immediate food
security. This is pertinent in the IGP considering the pressure placed on the region’s
agro-ecosystems to maintain food production in a sustainable and climate-resilient
manner to meet the food demand from a growing population. In addition to providing
information on the long-term dynamics of LSP across the IGP’s agro-ecosystem, this
dataset can be used as a reference for LSP parameters estimated from sensors with

increased spatial and temporal resolutions.
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Chapter 5: Climate-smartening India’s breadbasket.
Locating vulnerability ‘hotspots’ to target with

adaptive practices.®

5.1 Introduction

Increasing productivity and production levels from cereal croplands is critical to
meeting a growing demand for food from a global population expected to reach 9
billion by 2050 (Godfray et al. 2010; Foley et al. 2011; Misselhorn et al. 2012). The FAO
project a required increase in global cereal production of 800 million tonnes by 2030
(FAO 2006). At the same time cereal croplands will have to contend with unfavourable
climatic changes, limited room for expansion, increased competition for land and
water resources from sectors such as biofuels and grazing, declining quality in the
natural resource base limiting levels of production and suitable lands whilst also
reducing agriculture’s negative environmental and climatic footprint (Tilman et al.
2002; Tyagi et al. 2005; The Royal Society 2009; Power 2010; Hanjra and Qureshi 2010;
Foresight: Final Project Report 2011; Tilman et al. 2011; Bogdanski 2012). Plausible
management interventions and adaptations are available, which, if implemented
should increase production and resilience in cropping systems simultaneously in a
sustainable manner. Such adaptations fall under the umbrella term of climate-smart
agriculture (FAO 2011b) and often include conservation agriculture practices (Lumpkin
and Sayre 2009). Climate-smart agricultural practices and ecosystem management
approaches achieve food security whilst: i) increasing productivity and income and,
thus, enhancing livelihoods, ii) increasing ecosystem resilience to climate change and
variability and, iii) mitigating agriculture’s contribution to climate change (Pye-Smith
2011; FAO 2011b). Climate-smart approaches are being promoted by several global
institutions (e.g. FAO, World Bank, Consultative Group on International Agricultural
Research (CGIAR)). An ecosystems based approach to managing croplands, ensuring

agricultural practices have minimal harmful impacts on ecosystem services and

® This chapter is currently submitted to Remote Sensing of Environment.
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ecological processes, is a key component of climate-smart agriculture (FAO 2011b;
Scherr et al. 2012) Conservation agriculture practices increase crop productivity in an
environmentally sustainable manner, often with subsequent cost savings and profit
gains (Hobbs et al. 2008; Erenstein 2009a; Lumpkin and Sayre 2009), thus, contributing
to meeting climate-smart goals (Pye-Smith 2011; FAO 2011b). It is important to note
that a wider range of adaptations to agricultural practices can deliver climate-smart
gains than those that just meet the definitions of conservation agriculture (Hobbs et al.

2008).

To maximise the climate-smart benefits from targeted adaptations to cropping
practices requires holistic approaches that are: i) sensitive to the temporally dynamic
and systemic nature of cereal systems and, ii) able to capture spatial dynamics and
heterogeneity across the landscape. A systemic or holistic focus is important as it
retains awareness that the outcomes of climate-smart developments will be
determined by a range of interacting exogenous and endogenous drivers within cereal
croplands (FAO 2011a; Scherr et al. 2012). Remote sensing data is attractive for use in
holistic assessments of cereal croplands as it can provide multiple metrics of relevance
to the cropping system (e.g. crop type and acreage (Thenkabail et al. 2005; Wardlow et
al. 2007; Gumma et al. 2011a; Atzberger 2013), crop yield and productivity (Funk and
Budde 2009; Becker-Reshef et al. 2010; Rembold et al. 2013), cropping intensity and
growing season dynamics (Dash et al. 2010; Biradar and Xiao 2011; Vrieling et al. 2013;
Jain et al. 2013), crop health and vigour (Pinter et al. 2003), crop residue burning
(Badarinath et al. 2006) and drought impacts (Rojas et al. 2011)). Remote sensing data
can also be integrated with a range of ancillary datasets (e.g. socio-economic data
(Imran et al. 2014) or climate data (Brown et al. 2010; Lobell et al. 2012)) enhancing
the level of systemic detail captured in assessments of cereal croplands. The
repeatable coverage of remote sensing data captures temporal detail important to
fully understand cropland dynamics; for example, intra-annual monitoring of crop
phenology can be used to discriminate crop types (Thenkabail et al. 2005; Thenkabail
et al. 2007; Wardlow et al. 2007), highlight vulnerabilities due to late sowing (Lobell et
al. 2012; Lobell et al. 2013) and, identify different crop development stages (Sakamoto

et al. 2005). Inter-annual monitoring of cereal croplands captures variability in length
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of growing seasons which can pin-point ‘high risk’ locations for particular crop types
(Vrieling et al. 2013). There is clear potential to utilise remote sensing datasets to
provide agricultural managers with information sensitive to the inherent complexity
and spatial fluxes contained within cereal cropping systems which will influence the
long-term state of cropland vulnerability and the climate resilience afforded by

different adaptation/mitigation options.

To fully achieve climate-smart goals in cereal croplands requires a landscape approach
which considers spatial interactions and variation between various facets within
cropping systems (FAO 2012; Scherr et al. 2012). A more detailed discussion of the
benefits which can be gained from synthesising the multiple goals of climate-smart
approaches (resilience to climate change, adaptation and mitigation) into a landscape
approach is presented in Chapter 1. However, a brief summary is provided here;
landscape approaches inherently recognise that both societal and environmental
outcomes are important and acknowledge the spatial and dynamic interactions
between multiple processes across croplands. Given that the optimum agricultural
practice to deliver climate-smart benefits will vary spatially due to underlying
environmental and socio-economic conditions, monitoring at a landscape scale will
capture the complex systemic nature of croplands and highlight best practice for a
given locale (DeFries and Rosenzweig 2010; FAO 2011a; Scherr et al. 2012). Remote
sensing data’s synoptic and repeatable coverage and, spatial and thematic detail mean
it is ideally suited to landscape scale monitoring of cereal croplands. Here we
demonstrate an approach utilising such spatial and thematic detail in a holistic
assessment of the rice-wheat production landscape to reveal ‘hotspot’ or ‘high-
priority’ locations where the sustainability or productivity of cropping is vulnerable and
to generate information to facilitate spatial targeting to optimise the benefits of
conservation and adaptive agriculture practices across the landscape. Using remote
sensing to provide quantified spatial information can minimise spatial trade-offs and
maximise synergies in agricultural adaptations between production and sustainability

goals and adaptation and mitigation measures.

The dominant crops in Punjab and Haryana are kharif rice typically grown from June to

October and rabi wheat grown from November to April. As discussed in more detail in
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Chapters 1 and 2 the rice-wheat croplands of Punjab and Haryana are crucial in
supporting the livelihoods of several hundred million people and national food security
schemes yet are also being impacted by multiple, interacting stresses. Numerous
conservation agriculture practices are applicable to the rice-wheat croplands of Punjab
and Haryana which can deliver climate-smart benefits. These include zero-tillage,
system of rice intensification, alterations in irrigation practices, laser bed levelling,
water harvesting and groundwater recharge, and crop diversification (Ambast et al.
2006; Gupta and Seth 2007; Saharawat et al. 2010; Pathak et al. 2012; Saharawat et al.
2012). For example, zero-tillage wheat in the IGP has been shown to reduce water
input requirements, improve water productivity, reduce GHG emissions (via reduced
tractor usage) and improve economic returns (Hobbs et al. 2008; Erenstein and Laxmi
2008; Saharawat et al. 2010). Each of these practices is associated with different costs
of implementation and variation in the extent, and type, of benefit delivered; these
benefits and costs also vary in space requiring location-specific targeting (Saharawat et
al. 2010; Pathak et al. 2012). There is spatial heterogeneity in crop yields across small
distances in the north-west IGP (Lobell et al. 2010) indicating location-specific,
targeted responses are required to reduce yield gaps sustainably. Yield gaps refer to
differences between average yield or yield observed in a field and potential yield which
would be obtained without water and nutrient limitations and stress from weeds,
pests, disease or pollution (Lobell et al. 2009; van Ittersum et al. 2013). Closing yield
gaps can help meet increasing demands for food whilst addressing increased
competition for land and water resources and reducing the negative outcomes
associated with expansion of agricultural lands (e.g. biodiversity loss, increased GHG
emissions) (Foley et al. 2005; Brussaard et al. 2010; Foley et al. 2011). Thus, closing
yield gaps can contribute to meeting climate-smart goals. Given the complex, spatio-
temporal dynamic nature of cereal croplands the size and cause of yield gaps vary
across a landscape (Lobell 2013). The spatially explicit nature of remote sensing data
can capture this spatial variation and, thus, be used to inform location-specific

adaptations to close yield gaps (Lobell 2013).

A major inhibitor to the uptake of conservation agriculture and other practices

delivering climate-smart goals in the IGP is the cost of implementation and the
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cost:benefit ratio to prospective farmers (Pathak et al. 2012). The uptake of zero-
tillage, the most prominent climate-smart-conservation agriculture practice across the
IGP, was driven by the immediately realised economic gains to farmers (Erenstein
2009a). Identifying locations where farmers would receive the greatest returns from
adopting climate-smart-conservation agriculture practices will increase the cost
efficiency of implementation and increase the likelihood of uptake. Thus, it is
important to target areas in need of adaptation enabling the agricultural landscapes of
the IGP to move onto a climate-smart trajectory characterised by environmental

sustainability, climate resilience and socio-economic benefits.

To optimise uptake of agriculture practices delivering climate-smart goals requires
integration of multiple, location-specific datasets to provide holistic monitoring of the
agricultural landscapes informing optimum adaptive practices. The range of
agricultural statistics currently provided at the district level (e.g.
http://lus.dacnet.nic.in/) aggregate sub-district spatial heterogeneity in cropping
systems and mask local detail. Here, we demonstrate an approach centred on using
remote sensing data with greater local detail compared to district level statistics and
greater temporal resolutions to characterise various states (e.g. yield, cropping
intensity, planting dates) of the agricultural landscape synthesised with the thematic
resolution contained within Government of India’s agricultural statistical datasets and
gridded climate datasets. This enabled identification of locations likely to gain the
greatest climate-smart benefits from targeted agriculture adaptation. This chapter

highlights the following:

1) where prevailing agricultural practices (e.g. burning crop residue, late-sown wheat)
contribute to failure in achieving climate-smart goals such as mitigation of GHG

emissions, environmental sustainability or enhanced crop yields,
2) an estimate of the GHG emissions from crop residue burning in 2009-2010,

3) vulnerability ‘hotspots’ where unfavourable trends in ISM precipitation such as
increasing recurrence of drought years coincide in space with water-intensive

agricultural practices,
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4) the locations and magnitudes of yield gaps,

5) the cropping diversity of a locale in relation to groundwater levels and the expanse

of the rice-wheat cropping system,

6) areas where there is potential to address multiple stresses to crop production with

targeted adaptations.

5.2 Methods

Holistic, spatially explicit monitoring of the rice-wheat production system initially
requires accurate identification of the extent of the rice-wheat croplands and
guantified yield estimates from remote sensing data. This information is then
integrated with other spatial databases (e.g. climatic data, burned area products,
agricultural statistics) to provide a comprehensive characterisation of the current state
of the agricultural system across its landscape. This generates several metrics (e.g.
GHG emissions from crop residue burning, areas vulnerable to unfavourable trends in
precipitation, yield gaps) which are used to identify locations where agricultural
productivity is vulnerable, where agricultural practices are sub-optimal or un-
sustainable and, to target appropriate conservation agriculture and other adaptive
practices based on the needs of a specific locale. Fig. 5-1 displays a generalised

workflow for this process.

133



MODIS MODOSA1 Input datasets

Output datasets

QC Check & ‘gap’ filling

Outcomes
APHRODITE daily precipitation
data 1951-2007
Savitzky-Golay iterative fit }7
Compute trends:
- Precipitation tot.als' ) o Smoothing & phenology District-wise
- Inter-annual variation in precipitation generation agricultural statistics

- Droughts
- Inter-annual variation in monsoon
onset

Rice area classification Wheat area classification —

Rice and wheat yield

District wise cropping diversity

MODIS MCD45A1

Sowing date of wheat crop
Productivity vulnerable due burned area product £ B

to unfavourable climatic |

trends Areas of rice a.nd
wheat crop residue

s Rice and wheat = Quantify yield declines

yield gaps with later sown wheat
GHG emissions from crop
residue burning
|
I
‘fine’ spatial resolution, holistic, monitoring of the RWPS across the landscape

Identify:
- Sub-optimal agricultural practices Target adaptive Conservation
- Vulnerability ‘hotspots’ Agriculture practices

- Agricultural contribution to GHG emission ‘
I [
CLIMATE SMART RICE-WHEAT PRODUCTION SYSTEM

Figure 5-1 Workflow outlining processes undertaken to integrate remote sensing data, climatic data
and agricultural statistics to provide holistic monitoring of the rice-wheat production system at a
landscape scale.

5.2.1 Rice-wheat cropping area classification
5.2.1.1 Data pre-processing

Remote sensing data is commonly used to map the extent of croplands at varying
thematic and spatial resolutions using a variety of classification methods (e.g.
Doraiswamy et al. 2004; Thenkabail et al. 2005; Bartholomé and Belward 2005;
Thenkabail et al. 2009; Gumma et al. 2011b). A comprehensive review of remote
sensing techniques used to distinguish agricultural lands is beyond the scope of this
study. However, it is important to note that MODIS data products, with a 500 m?
spatial resolution, have been used to map croplands and specific crop types in this
study area (Thenkabail et al. 2005; Xiao et al. 2006) and, such approaches provide

measures of agricultural land cover with greater spatial detail compared to agricultural
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land cover statistics aggregated within administrative boundaries (district level in India
(http://lus.dacnet.nic.in/)). Areas under a kharif rice crop and rabi wheat crop were
classified using a range of techniques applied to the 8-day composite of MODIS surface
reflectance products (MOD09A1)
(https://Ipdaac.usgs.gov/products/modis_products_table/mod09al). The MOD09A1
maximum value composite products were used instead of the MODIS daily climate
model grid (CMG) 0.05° product. Whilst the MODIS CMG product has been corrected
for BRDF and provides greater temporal detail this is traded-off against a loss of spatial
detail due to its ‘coarser’ 0.05° resolution which would impede the ability to capture
landscape scale detail. The aim here was not to develop new, universally applicable
and validated land cover classification approaches or algorithms but to identify the
extent of rice and wheat croplands for an applied purpose. Therefore, existing
classification techniques which have been used, and validated, in this region were

selected for rice and wheat crop extent classification.

Four VIs were computed from the MOD09A1 data. The NDVI and Normalised
Difference Snow Index (NDSI) were computed to develop snow, water and forest
masks following Xiao et al. (2005; 2006). The EVI was computed by adjusting red band
reflectance using the blue band to account for residual atmospheric contamination
and soil background (Huete et al. 1997; Huete et al. 2002). The NDVI is a commonly
used measure of vegetation productivity; the EVI utilises advances in the MODIS
sensor to reduce limitations with NDVI data providing enhanced responsiveness to
canopy structure and not saturating as easily over areas with high levels of ‘green’
biomass (Pettorelli et al. 2005). The Land Surface Water Index (LSWI) utilises the
shortwave infrared band (SWIR 1628-1652 nm) sensitive to soil and vegetation
moisture (Xiao et al. 2005; 2006). Both the LSWI and the EVI were utilised to classify
rice and wheat croplands. Prior to classification the data was subjected to rigorous pre-
processing, removing ‘bad pixels’, selecting only ‘high-quality’ pixels using quality
assurance (QA) data included with the MODIS products; and identifying cloud
contamination not detected in the MODIS QA via the condition cloud=py,e>0.2 where
Poive is reflectance in the blue band (459-479nm) (Xiao et al. 2005) before estimating
the VI.
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‘Bad pixels’, defined using MOIDS QA flags, were replaced using the gap filling
algorithm of Peng et al. (2011):

BT = Min[Max(Bt_l, Bt—4)7 MaX(Bt+1, Bt+4)]
(1)

Where Bris the value assigned to replace the bad pixel B; located at time-step t. The VI
were then iteratively fitted to their maximum envelope using an adapted version of
Chen et al. (2004) which incorporates smoothing VI temporal profiles using a Savitzky-
Golay filter and a fitting bias towards maximum values. This removes noise and
fluctuation in temporal VI profiles due to cloud cover and atmospheric contamination
and accounts for the negative bias in reflectance received at the sensor (Chen et al.

2004).

Snow, water and forest masks were generated to avoid non-agricultural land covers
influencing the classification procedure using an adapted version of (Xiao et al. 2005;
2006). If a pixel was designated as being snow covered at any time-step, defined as
NDSI>0.4, then it was deemed not suitable for rice cropping and removed from the
classification process. Pixels covered by permanent water bodies, defined by NDVI<0.1
and NDVI<LSWI for at least 10 composites during the year were masked. Forest areas

were detected if 20 successive 8-day MODIS composites had a NDVI>0.5 and masked.
5.2.1.2 Rice crop area classification

Rice cropped areas were classified by adapting Xiao et al. (2005; 2006) and Peng et al.
(2011), assuming that rice crops display the following characteristics: i) puddling of
fields at the beginning of the growing season and ii) a rapid green up post puddling.
Puddling was detected by the condition LSWI+T 2 EVI, where t is the time-step
corresponding to the 8-day MODIS composite. A temporary inversion of LSWI relative
to EVl indicates puddling in fields (Xiao et al. 2005; Xiao et al. 2006; Peng et al. 2011);
this assumption is relaxed for improved classification accuracy in specific locations
through the threshold T (Xiao et al. 2005; Peng et al. 2011). The incorporation of T
accounts for reflectance containing signatures from a mixture of puddled water,

vegetation and soil backgrounds and sub-pixel compositions of land-cover (Xiao et al.
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2005; Sun et al. 2009). It is important to note that this classification scheme seeks to
detect the presence of rice cropping within a 500m pixel but does not estimate
proportion of rice cropping within pixels. To ensure puddling is associated with rice
crops, a rapid green up following puddling must be observed (Xiao et al. 2005). This
was defined by one of five 8-day MODIS composites after puddling being greater than
half the maximum growing season EVI (Xiao et al. 2005; Xiao et al. 2006). A universal
approach to rice crop classifications (e.g. Xiao et al. 2006) is limited due to the range of
agronomic and climatic conditions under rice cultivation (Peng et al. 2011; Gumma et
al. 2011b). Incorporating knowledge of the local crop calendar and agronomic practices
into classification procedures will improve accuracy (Sun et al. 2009; Peng et al. 2011;
Gumma et al. 2011b). The classification algorithm was focussed at the beginning of the
kharif growing season avoiding spurious misclassifications of other wetland areas (Sun

et al. 2009).
5.2.1.3 Rice cropped area validation

A range of threshold values were tested using district-wise land use statistics for rice
cropped area as validation data (http://lus.dacnet.nic.in/) with 7=0.16 being most
accurate for Punjab and Haryana (Table 5-1; Fig. 5-2a). This increased classification
accuracy, R?=0.96 when validated against district-wise land use statistics
(http://lus.dacnet.nic.in/), compared to R’=0.78 when following the threshold value
applied to all of south Asia used by Xiao et al. (2006) (Table 5-1; Fig. 5-2a). Table 5-1
shows the R?values for between district-wise rice cropped area detected from MODIS
data and district-wise rice cropped area from Government of India land use statistics

(http://lus.dacnet.nic.in/).
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Figure 5-2 District-wise Government of India cropped area statistics plotted against MODIS derived
cropped area statistics (full-pixel area) for a) rice (T=0.16) and, b) wheat (SSV=0.55). The black line is
the regression fitted to a 1:1 line. Outlier A is district Yamuna Nagar and Outlier B is district Bhiwani.
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Table 5-1 R’ values for the relationship between rice cropped area estimated from the MODIS
MODO09A1 product and Government of India’s district-wise land use statistics
(http://lus.dacnet.nic.in/) for the 2009-2010 agricultural season.

Threshold (T)
Xiao et 0.1 0.12 0.14 0.15 0.16 0.18 0.2
al. (2005)
(0.05)
R’ 0.78 0.89 0.93 0.95 0.95 0.96 0.94 0.84
5.2.14 Wheat crop area classification

Additional filtering of the maximum fitted EVI dataset using a Savitzky-Golay filter with
a2 degree polynomial and a seven time-step moving window generated a smooth
phenology profile suitable for LSP parameter extraction. Smoothing prevents residual
noise causing misclassifications and generates a phenology profile representative of
crop growth. Areas under rabi cropping were extracted using LSP parameter extraction
methods outlined in Dash et al. (2010) and Lobell et al. (2012); this increased wheat
classification accuracy reducing misclassification errors of non-croplands. Rabi crops

were defined by three LSP parameters:

i) Peak growing season detected by an increasing trend in EVI values for the preceding
four 8-day composites and a decreasing trend in the succeeding four 8-day composites

(Dash et al. 2010).

ii) SOS was defined as 10% of the amplitude between minimum and peak EVI on the
rising limb of the phenology profile. The 10% amplitude method applied to MODIS EVI
data has been previously validated using observed sowing dates in Punjab and detects

sowing data (adjusted for a three week lag) to within two days (Lobell et al. 2013).

iii) Distinct green up following SOS detected by the magnitude of difference between
SOS EVI and peak growing season EVI. The difference between EVI values at SOS and
peak growing season should be greater than one fifth of growing season maximum EVI

(Dash et al. 2010).
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The match between rabi crop phenology and ‘ideal’ wheat phenology was calculated
using spectral matching techniques, specifically the spectral similarity value (SSV)
(equation 2) (Thenkabail et al. 2007; Thenkabail et al. 2009). This approach has been
used widely to classify croplands in South Asia (Thenkabail et al. 2007; Thenkabail et al.
2009; Biradar et al. 2009; Gumma et al. 2011b; Gumma et al. 2011a). The phenology
profile for ‘ideal’ wheat pixels was generated by randomly extracting the phenology
profiles for 254 pixels identified as containing at least 80% wheat crop coverage from a
global map of wheat croplands (Monfreda et al. 2008). This map has been used widely
to delineate wheat growing areas in north-west India (Lobell et al. 2012; Lobell et al.
2013). However, it provides a proportion of cropped area within a 5-minute pixel and,
thus, is not an optimal discrimination of wheat cropped areas hence the use of a
conservative 80% threshold here as opposed to the 40% threshold used in Lobell et al.
(2012). The SSV compares the shape and magnitude of two phenology profiles
(Thenkabail et al. 2007; Thenkabail et al. 2009). The similarity in shape is calculated as
the Pearson’s Correlation Coefficient, p, between pixel phenology profile and ‘ideal’
wheat phenology profile. The SSV also incorporates a measure of magnitude between

the two phenology profiles, the Euclidian distance between corresponding points.

SSV = JE§ +(1—p)?

(2)

Where E4’is the Euclidean distance where Euclidean distance (equation 3) between

two points calculated as

Dgyclidean =

(3)

Where x; is the EVI value of a pixel with rabi cropping and A; is ‘ideal’ wheat EVI value
at time-step i. A smaller SSV value indicates greater similarity between the pixel in

guestion and ‘ideal’ wheat phenology. Classification of wheat from other croplands
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and land cover types was determined by a threshold SSV value. It is important to note
that this classification scheme considers full-pixel areas of wheat cropping and does

not provide any further information on sub-pixel proportion of wheat cropped area.
5.2.1.5 Wheat cropped area validation

A range of thresholds were tested for accuracy using the district-wise land use
statistics (http://lus.dacnet.nic.in/) for wheat cropped area as validation data. The
threshold of S5V<0.55 yielded most accurate results when compared with district-wise
land use statistics (http://lus.dacnet.nic.in/), R?=0.94 (Table 5-2; Fig. 5-2b). Table 5-2
presents the R? values describing the fit between wheat area estimated from MODIS
data and district-wise land use statistics for wheat cropped area for a range of SSV
values. That the accuracy of using SSV values higher than the optimum, does not
decrease ‘rapidly’ is likely due to non-cropland land cover being masked pre-
classification and the dominance of wheat as a rabi land cover in Punjab and Haryana.
Once the optimum wheat classification has been reached there is not likely to be large
guantities of ‘available’ pixels to be misclassified via a more lenient SSV threshold. As
an additional check that classified wheat crop corresponds to vegetative growth the
following condition must be met: peak EVI>0.2.

Table 5-2 R’ values for the relationship between wheat cropped area estimated from the MODIS

MODO09A1 product and Government of India’s district-wise land use statistics
(http://lus.dacnet.nic.in/) for the 2009-2010 agricultural season.

SSV value

0.2 025 03 035 04 045 05 0.55 0.6 065 0.7 075 0.8 0.85

2

R 05 065 076 0.84 0.89 092 0935 0937 0932 092 092 091 09 0.89

5.2.2 Estimating rice and wheat crop yield

Crop yield was estimated from EVI phenology profiles generated from the MODIS
MODOQ9A1 product. Several LSP parameters obtained from remote sensing data can be
used to estimate biomass, of which crop yield is the economically utilisable portion

(Pettorelli et al. 2005; Funk and Budde 2009; Bolton and Friedl 2013).
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Cereal crop yield is often estimated using regression models trained with maximum VI
or an average or integration of VI values over portions of the growing season
corresponding to peak growth and initial senescence (reproductive phase and grain
filling (TSP)) and agricultural crop yield measures obtained from fields and agricultural
statistics (Rojas 2007; Funk and Budde 2009; Becker-Reshef et al. 2010; Rojas et al.
2011). Such models take advantage of the correlation between spectral reflectance in
wavelengths used to compute VI and photosynthetic activity which leads to crop yield
formation (Tucker 1979; Pinter et al. 1981; Becker-Reshef et al. 2010). Funk & Budde
(2009) comment that often late to end of growing season VI values give a more
accurate estimation of crop yield as they correspond to the crop development stages
which determine utilisable yield (e.g. grain filling and reproductive stages). Three
metrics related to crop yield were tested: cumulative sum of EVI values over a 30 day
window post peak EVI (CUM-EVIsp)), cumulative sum of EVI from SOS to end EOS and,
cumulative sum of EVI from peak growing season to EOS. The 30 day window used in
the computation of CUM-EVIsp) captures the thermo-sensitive period (TSP) of cereal
crop development, namely the reproductive phase, and the beginning of the
subsequent grain filling stages (Pinter et al. 1981; Sakamoto et al. 2005; Teixeira et al.
2013). It is well established that crop yield is vulnerable to climatic extremes impacting
crop physiological processes during this period, and that VI values fluctuate according
to green biomass levels, crop stress and photosynthetic activity (Tucker 1979; Jagadish
et al. 2007; Becker-Reshef et al. 2010; Teixeira et al. 2013). Therefore, it is likely that a

sum of VI values over this period will indicate levels of final crop yield.

SOS for rice was defined as date of puddling and wheat SOS as discussed previously.
Peak growing season was defined as maximum growing season EVI and EOS was
defined in a similar manner to detecting wheat onset but the 10% threshold was
applied to the falling limb of the phenology profile. The accuracy of the crop yield
estimates were improved by masking non-rice/wheat land cover using crop maps and
discounting pre-growing season noise (Kastens et al. 2005; Funk and Budde 2009). This
is an important aspect of improving the ability to accurately estimate crop yield from
remotely sensed data as discussed in Atzberger (2013) and Funk and Budde (2009).

Bolton and Friedl (2013) compared the impact of using a ‘fine’ spatial resolution

142



cropland mask to capture sub-pixel extents of cropland and subsequently weight
MODIS 500m pixel EVI values and a 500m spatial resolution MODIS Land Cover Product
with a generic agricultural land cover class using full-pixel EVI values in crop production
estimation. They observed comparable estimates of crop production using both land
cover products and note that using a 500m land cover product to isolate cropland
spectral signals for estimating crop production is a ‘viable alternative when higher
resolution products are not available’ (Bolton and Friedl (2013), p. 78). Bolton and
Friedl (2013) also used a generic agricultural land cover class as a cropland mask; here,
rice and wheat crop extents are delineated rather than just using a generic cropland

class further minimising a noisy signal from other crop and land cover types.

Other studies have also used ‘coarse’ or ‘medium’ resolution (relative to the field
scale) land cover maps to mask non-cropland land covers when estimating crop
production from MODIS derived EVI. For example, Funk and Budde (2009) used a
1:250,000 SADC land cover dataset for Zimbabwe and obtained R’ values greater than
0.85 when estimating maize crop production from cumulative sums of EVI around peak
growing season and the beginning of crop senescence. In Punjab and Haryana Lobell et
al. (2012) created a wheat cropland mask based on the condition that a 5-minute
spatial resolution pixel contained at least 40% wheat crop coverage; the initial input
dataset for their wheat cropland mask was the global cropland map produced by
Monfreda et al. (2008). Using this wheat cropland mask, and 1km spatial resolution
MODIS EVI data, Lobell et al. (2012) detected climate impacts on wheat phenology. If
the focus here was on estimating crop production at a district or state level based on
peak growing season, or early senescence EVI values, district-wise or state-wise area
weighted EVI values could be constructed (Bolton and Friedl 2013). However, such an
approach would aggregate local variation in crop phenology and preclude capturing

landscape scale detail.

It is important to note the usefulness of a 500m level cropland mask may decline in
areas of the world with a more fragmented agricultural landscape (Bolton and Fried|
2013); however, Punjab and Haryana have a dominant agricultural land cover and
limited cropping diversity (http://apy.dacnet.nic.in/). The 500m spatial resolution can

provide useful landscape scale information over Punjab and Haryana as the region is
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dominated by a rotating rice-wheat land cover, with predominantly large and medium
sized operational holdings and larger average farm holding size relative to the national
average (Panigrahy et al. 2010; DES 2011; Agricultural Census 2012). Whilst the
footprint of a MODIS pixel is 500m?* compared to average operational holding size of
225m?in Haryana and 377m?%in Punjab, less information will be lost and landscape
complexity masked, due to mixed pixel effects than would occur over smallholder
dominated landscapes with small farm sizes (e.g. in Bihar with average holding size of
39m?) (Agricultural Census 2012). The launch of the Sentinel-2 constellation of two
satellites will provide multispectral imaging of the earth’s surface at a 10m spatial
resolution every 5 days (ESA 2010). This will enhance the level of detail (i.e. intra-farm
or individual field) which can be gleaned from remote sensing data and enable
monitoring of crop phenology with reduced mixed pixel effects. This will result in more
accurate monitoring of conditions in specific fields and reduce error in propagating
into crop production regression models. This will increase the applied value of using
remote sensing data to monitor crop production accurately in fragmented farming

landscapes.
5.2.2.1 Crop production validation

The three metrics were validated using district-wise crop production statistics
(http://apy.dacnet.nic.in/: Table 5-3). All three metrics had a strong positive
correlation with district-wise crop production statistics (Table 5-3). CUM-EVIsp) was
used from this point on as the metric to determine crop yield using linear regression
models trained using district-wise crop production totals. The use of CUM-EVIsp) was
justified given the metric performed comparably well relative to the other metrics for
both crop types in 2009-2010, the sound theoretical basis underlying the metric and, it
avoids signals introduced from early and late growing season activity not related to
crop yield formation as discussed in Rojas et al. (2011) and Funk and Budde (2009).
Using regression model developed using 2009-2010 CUM-EV/Irsp) district-wise crop
production was estimated for the 2002-2003 to the 2005-2006 growing season. For the
rice crop this model provided R? values ranging from 0.85 to 0.95 and for the wheat

crop R? values ranging from 0.80 to 0.94 (Appendix 5). This further indicates CUM-
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EVI(rsp) is @ time-invariant indicator of crop production across rice and wheat in Punjab

and Haryana. Rice yield (Tonnes ha) per pixel was estimated as:
Y = 20.041x/s
(4)

Where x is CUM-EVIrsp) and s is the scaling factor between the area of a MODIS pixel

and hectares. Wheat yield was estimated as:
Y =24.74x/s
(5)

A regression through the origin approach was used to estimate crop yield based on the
premise that cultivated areas were extracted prior to yield estimation (Eisenhauer
2003). Therefore the assumption that no crop yield reported in a district would
correspond to no cropped area and, thus, not register a VI signal associated with crop
yield was applied, thus, the assumption was also made that all cropped areas generate
some yield; under these assumptions a 1:1 regression is justified. A regression through
the origin was used by in a similar methodological framework to estimate wheat yield
from MODIS NDVI data with wheat crop masks applied in the USA and Ukraine
(Becker-Reshef et al. 2010).

Table 5-3 Correlation coefficient values for the relationship between yield estimates from EVI

phenological parameters and Government of India’s district-wise Area, Production and Yield statistics
(http://apy.dacnet.nic.in/).

Rice  Wheat
CUM-EVI1sp) 0.93 0.95
Cumulative sum of EVI from onset to end of growing season 0.93 0.9
Cumulative sum of EVI from peak growing season to end of growing season 094 0.92
5.2.3 Burning of rice and wheat crop residue and quantifying GHG emissions

The operational MODIS monthly burned area product (MCD45A1), which provides an
estimate of burning date, extent of burning and associated QA
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(https://Ipdaac.usgs.gov/products/modis_products_table/mcd45al), was used to
delineate burned areas corresponding to the end of the kharif and rabi growing
seasons. A full description of the methods for generation of the burned area product is
beyond the scope of this paper. However, Roy et al. (2008) and Roy and Boschetti
(2009) provide further details. The areal extent of kharif rice and rabi wheat crop
residue burned were extracted using maps of crop extent previously generated. The
GHG emissions from rice and wheat crop residue burning for the 2009-2010
agricultural season were estimated using the methodology recommended by the IPCC
(2006a). Inputs include maps of burned croplands generated from the MCD45A1
product, accurate maps of crop extent, remote sensing measures of crop biomass,
country and crop specific parameters from the literature and default parameters for
Tier 1 estimation from IPCC (2006a). The IPCC advocates estimation of GHG emissions

from residue burning via:
Lfire = A - MB ) Cf - Gef ) 10_3
(6)

Where Lgre is emissions (Tonnes), A is area burned (ha), M, is mass of fuel available to
be burned (Tonnes ha™), Cs is the combustion factor (dimensionless) and G is the
emission factor (g/kg'1 of dry matter burned). Crop specific default values of Cr and
GHG specific values of G, were obtained from the IPCC (IPCC 2006b) (Table 5-4). (¢
values were 0.9 for wheat and 0.8 for rice, Csrefers to the proportion of fuel (crop
residue) consumed by the fire (IPCC 2006b). A for rice and wheat crops were estimated
utilising burned area (MCD45A1) and crop extent maps already generated. M, was

estimated as:
M,=Y-D-S§S
(7)

Where Y is crop yield in (Tonnes ha™), D is dry matter content, S is the ratio of residue

mass to crop yield. S was determined using crop specific values from Webb et al.

(2009), the residue:yield ratio for wheat and rice were 1.3 and 1.4 respectively. D was

obtained from (IPCC 2006a) and had a value of 0.89 for both rice and wheat. We have
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not included a factor to account for fraction of residue removed as specified in Webb
et al. (2009) and Garg et al. (2011) as we have already detected burned sites and

incorporated them into estimates of A.

As a point of comparison emissions are computed using default Tier 1 estimates
provided by the IPCC (2006b) for M, and C;. The FAO use this methodology to estimate
global and regional emissions of CH; and N,O from residue burning on croplands
(FAOSTAT 2013). The FAO adjust estimates of residue available to be burnt on fields,
assuming 10% of crop residue is burnt (IPCC 2000; FAOSTAT 2013). These results are

presented in Table 5-5.

Table 5-4 Emission factor (G, ) for range of GHG from burning of agricultural residue (IPCC 2006b).

CO, co CH, N,O NO,
Agricultural 1515 92 2.7 0.07 2.5
Residue
5.2.3.1 Uncertainties and error in GHG estimating emissions from crop residue burning

There are uncertainties involved with the use of satellite-derived burned area products
over croplands which were used as inputs into A. This is exemplified by the differences
between MODIS burned area product (MCD45A1) and the MODIS active fire product
(MOD14A1 (Terra) and MYD14A1 (Aqua)) (Roy et al. 2008); and, by differences
between burned area products derived from different sensors (L3JRC: SPOT-
VEGETATION; GlobCarbon: SPOT-VEGETATION and ERS2-ASTR2/ENVISAT AATSR) (Roy
and Boschetti 2009). However, validation against Landsat observations of burned area
suggested the MODIS burned area product was most accurate across Southern Africa
(Roy and Boschetti 2009). Both MODIS burned area and active fire products suffer
from cloud cover obscuring detection of active burning or burned area scars on the
terrestrial land surface; the burned area product includes omission errors over
croplands if the burned area scar is small relative to the 500m? pixel whereas the active
fire product is sensitive to omission errors due to short lived fires missing sensor
overpass or if the fire temperature is not high, or spatially distributed enough (Roy et

al. 2008). The burned area product detects burning using an algorithm modelling
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temporal changes in land surface reflectance; this algorithm can be confounded over
croplands where anthropogenic agricultural management causes swift changes in land
cover after burning (Roy et al. 2008). However, integrating crop specific maps and
burnt area maps means that locations where specific crops were burnt can be
delineated. This enables use of crop specific parameters in equation 6 for estimating

emissions reducing uncertainty.

There will be error in estimates of M, due to variations in biomass left on fields due to
different harvesting techniques (e.g. manual harvesting or combine harvesting) which
will vary within and between pixels (McCarty, 2011). The distribution within a field, the
orientation of biomass and the compaction of biomass will affect resultant emissions
(Webb et al. 2009). The, distribution and compaction of residue in a field, moisture
content of the residue and nature of the fire and climatic conditions at time of burning
will also create uncertainty in the combustion factor (ratio of fuel available to be burnt
which actually combusts) (IPCC 2006b; McCarty 2011). There will also be error in M, as
a result of differences between harvest date and burning date with differential rates
of, and time periods for, decay of crop residues in fields (Webb et al. 2009; McCarty,
2011). However, we have used location specific estimates of rice and wheat crop
production in M, as opposed to applying a spatially universal value for wheat and rice
yield following Tier 1 parameters provided by the IPCC (2006b). The approach here
using location and crop specific estimates of production is a conceptual advance on
previous efforts quantifying GHG emissions from biomass burning over rice-wheat
croplands in Punjab using remote sensing; Badarinath et al. (2006) used satellite-
derived burned area maps but spatially universal values for wheat and rice biomass

obtained from the literature.

Here it is assumed that pixels where crop residue burning was detected in the MODIS
MCD45A1 product correspond to locations where farmers burnt residue in fields. This
assumption was made on the basis we have not used a generic croplands mask in A
but a burnt area cropland mask; and if proportion of residues from fields is not known
then all residues should be assumed burnt (Webb et al. 2009). However, this
assumption is limited as there is likely sub-pixel variation in farmer management

practices and proportions of intra-pixel burnt areas. At a regional scale errors of
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omission (missing fractions of burnt croplands due to a 500m? pixel not being detected
as burnt) and commission (assuming all of a 500m? pixel is burnt when in reality

portions may not be) may cancel out but mask local level uncertainty.

Here we have used G, (emissions factors) for agricultural residues consistent with the
IPCC methodology (Table 5-4). These estimates G.rare in close agreement with crop
specific emission factors reported by McCarty (2011) for CO, and CHg4; however,
McCarty (2011) note there is a considerable range of uncertainty in estimates of crop
specific values for Gz There is likely to be considerable within landscape variation GHG
emissions per amount of residue burnt due to variations in the moisture content of the
residue at the time of burning, the prevailing climatic conditions at the time of burning
the carbon and the carbon content of the residue (Yevich and Logan 2003; IPCC 2006b;
McCarty 2011). Here, we have used the same values as provided by the IPCC as they
are equivalent to crop specific emission factors for rice and wheat and enable

comparison with the FAO methodology (Table 5-5).

5.2.4 Determining the relationship between onset of wheat growing season and crop

yield

SOS was defined as 10% of the amplitude between minimum pre-growing season EVI
and peak growing season EVI and wheat crop yield was estimated using the regression
models previously mentioned. Average yield (Tonnes ha™) per SOS date, in units of 8-
day MODIS composites, was calculated to determine the effect of later sowing of the

wheat crop on yield.

5.2.5 Identifying vulnerability ‘hotspots’ to climatic trends and variability

Identifying ‘hotspots’ where rice-wheat production systems are vulnerable to climatic
trends and variability was achieved via an overlay of two datasets: i) spatio-temporal
trend analysis identifying locations experiencing unfavourable trends in facets of ISM
precipitation and, ii) rice-wheat cropping area classifications for the 2009-10

agricultural season.
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5.2.5.1 Locations of unfavourable trends in facets of ISM precipitation:

Facets of ISM precipitation with unfavourable trends experienced at locations in
Punjab and Haryana were: i) decreasing ISM precipitation, ii) increasing variability in
ISM precipitation, iii) increasing frequency of drought years, and iv) increasing
variability in onset date of ISM and, were detected utilising the datasets generated in
Duncan et al. (2013). Increasing date of onset of ISM would also undermine
agricultural productivity in the region (Moors and Siderius 2012), but such trends were
not prevalent (Duncan et al. 2013). These trends were identified per 0.25° grid cell
using non-parametric trend analysis, and robust bootstrap resampling, testing for field
significance and spatial autocorrelation, applied to APHRODITE daily gridded
precipitation products from 1951-2007; a more detailed description of the methods

and data is outlined in Duncan et al. (2013).

5.2.6 Yield Gaps

To monitor yield gaps requires estimating or defining potential yield (Y,), methods to
estimate Ypinclude use of simulation models, ‘ideal’ experiments on farms or taking
maximum vyields from real world farms; a full review and critique of these approaches
can be found in Lobell et al. (2009). Remote sensing approaches to quantifying yield
gaps correspond to the latter method where maximum yield estimated from remote
sensing data is used as a proxy of Y, within a given spatial unit (Lobell 2013). For
example, Bastiaanssen and Ali (2003) used the 95t percentile value of yield estimated
from AVHRR data in the Indus Basin in Pakistan as an estimate of Y. Lobell et al. (2010)
also the used 95™ percentile of yield values estimated from Landsat data, per-district,
in Punjab as a measure of Y. Here, yield gaps were estimated as the difference
between yield in a pixel reporting rice or wheat cropping and maximum yield, Yy,
within a 5km moving window. The same approach was repeated using a 20km moving
window to explore whether the size and spatial distribution of observed yield gaps

were artefacts of the size of moving window.
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5.2.7 Cropping Diversity

Cropping diversity per district in Punjab and Haryana was computed, from a range of
64 possible food and non-food crops, using the Shannon-Weaver diversity index for
the 2009-2010 agricultural season (Brush et al. 2003; Abebe et al. 2009). The district-
wise statistics for cropped areas were obtained from the Government of India’s land
use database (http://lus.dacnet.nic.in/). The Shannon-Weaver diversity index was

computed as:

n
H = —Z Pl-lnPi
i=i

(8)

Where H is the Shannon-Weaver diversity index, P is area under it crop cultivated in
the district and n is the total number of crops cultivated in the district. The Shannon-
Weaver diversity index incorporates a measure of evenness and also the number of

different crops cultivated, the greater the value the greater the cropping diversity.

5.3 Results

5.3.1 Water availability ‘hotspots’

Water usage, availability and governance is a key factor determining the sustainability
and productivity of the rice-wheat croplands (Abrol 1999; Ambast et al. 2006; CCAFS
2010; Moors et al. 2011; Perveen et al. 2012). Rice-wheat production systems (see
Fig. 5-7b) are water intensive, requiring 1800 mm water annually (Ambast et al. 2006),
less than the median ISM precipitation over Punjab and Haryana which ranges from
156 to 1091mm with large amounts of inter-annual variability (Duncan et al. 2013).
Facets of ISM precipitation displaying unfavourable trends include: decreasing ISM
precipitation, increasing recurrence of drought years and, increasing inter-annual
variation in ISM precipitation and ISM onset date (Duncan et al. 2013). Trends from
observational data were deemed more useful and more informative due to uncertainty
in ISM projections from climate models (Annamalai et al. 2007; Moors et al. 2011;

Turner and Annamalai 2012; Mathison et al. 2013), and adaptive climate-smart
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responses need to be implemented immediately where the time-frame of
observational data is still relevant. 2.52 million ha of the rice-wheat cropping system
experienced unfavourable trends in at least one facet of ISM precipitation, 2.53 million
ha experienced such trends in two facets of ISM precipitation and 0.24 million ha
experienced three such trends simultaneously (Fig. 5-3a). Trends of increasing
recurrence of drought years and inter-annual variation in ISM precipitation have the
greatest spatial coverage (Fig. 5-3b and c). ‘Hotspots’ were identified (Fig. 5-3a) where
observed unfavourable trends in facets of ISM precipitation limit available water
resources, thus, increasing vulnerability to reduced productivity and pressure on

already exploited groundwater reserves (Fig. 5-4).

These ‘hotspots’ (Fig. 5-3a) should be prioritised for targeting with climate-smart and
conservation agriculture approaches which reduce water requirements without
compromising livelihoods. This will increase the resilience in the most vulnerable areas
of rice-wheat cropping landscapes to increasing, unfavourable, variability in the ISM.
The majority of ‘hotspots’ were located in southern Punjab and Haryana (Fig. 5-3a, b
and c), receiving lower normal and more inter-annual variability in ISM precipitation
(Duncan et al. 2013), thus, compounding water availability issues. These regions should
be prioritised for targeting with drought resistant cultivars (Wassmann et al. 2009;
National Mission for Sustainable Agriculture 2010; Moors et al. 2011) or conservation
agriculture practices with increased water use efficiency. Such practices include laser
bed levelling, zero-tillage and residue retention (Erenstein and Laxmi 2008; Jat et al.
2009a; Saharawat et al. 2010; Chauhan et al. 2012). These ‘hotspot’ locations across
southern Punjab and Haryana also match up to locations identified as being climate
sensitive by O’Brien et al. (2004). However, as opposed to the district level spatial
resolution of the O’Brien et al. (2004) study which masks fuzzy transitions in
vulnerability the use of remote sensing derived 500m spatial resolution crop maps

here delivers greater landscape scale spatial detail.
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Figure 5-3 ‘hotspots’ where kharif rice, rabi wheat or rice-wheat double cropping systems coincide in

space with a) unfavourable trends in facets of ISM precipitation. These trends are one or more of
decreasing ISM precipitation, increasing recurrence of drought years, increasing inter-annual ISM

variation and increasing inter-annual variation in onset date of ISM, b) increasing trends of recurrence

in drought years alone and, c) increasing inter-annual variation in ISM precipitation alone.
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Figure 5-4 District-wise tubewell Density (left) and watertable rise/fall (right) reproduced from
Ambast et al. (2006).

5.3.2 Late-sown wheat crop and yield declines

Later sown wheat, exposes the wheat crop to higher temperatures later in the growing
season which has an adverse effect on several crop development processes which
determine final crop yield (Wassmann et al. 2009; Lobell et al. 2012). Both coarse grid
GCM and finer grid RCM are consistent in forecasting warming trends over north India
with greater numbers of extreme heat days (>28°C and >35°C) (Moors et al. 2011;
Mathison et al. 2013); seasonally the greatest magnitude of projected warming occurs
in the wheat growing season (Mathison et al. 2013). This implies that later sown wheat
crops are increasingly vulnerable to warming trends and extreme heat events (Lobell
et al. 2012). The spatial pattern of wheat SOS in Fig. 5-5a captures accurately the later
wheat SOS in south Punjab associated with the later harvesting dates of the kharif
cotton crop (Ambast et al. 2006; Lobell et al. 2010). Field experiments from Punjab
suggest a yield decline of ~1% day™ after the optimal sow date in mid-November
(Ortiz-Monastrerio et al. 1994). Similar trends are noted in (Fig. 5-5b and 5-5c) with the
advantage of demonstrating that trends reported in field studies are spatially explicit.
There is a consistent decline in wheat yield with later wheat crop SOS (Fig. 5-5c). It

should be noted that the date of sowing will be earlier than SOS detected from remote
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sensing data which places the remote sensing observations (Fig. 5-5b and 5-5c) in line
with existing field studies (Ortiz-Monastrerio et al. 1994; Lobell et al. 2013). This is due
to LSP parameters detecting onset of greenness, which occurs after seeds have
emerged, with a time lag from sowing date. Simulations of wheat in Punjab using the
CERES-wheat model suggest a 3 week lag between sowing and 10% amplitude of LAI
(correlated with EVI) being reached (Lobell et al. 2013). The areas of late sown wheat
should be targeted with zero-tillage practices encouraging earlier sowing of the wheat
crop (Ortiz-Monastrerio et al. 1994; Erenstein and Laxmi 2008; Lobell et al. 2013)
whilst also delivering other socio-economic and environmental benefits (Gupta and
Seth 2007; Erenstein and Laxmi 2008; Erenstein 2009a). It should be noted here that
the high wheat yields obtained on some farms in Punjab and Haryana (Aggarwal et al.
2004) are not estimated from MODIS data in Fig. 5.5b. This may be due to sub-pixel

compositions of land cover and crop productivity masking high yielding plots.

5.3.3 Crop Residue Burning

Burning crop residue is a contributor to CO,, CH4 and N,O emissions and is a positive
feedback to climate change (Aggarwal et al. 2004; Pathak et al. 2006; Bhatia et al.
2012). Residue burning lowers soil nutrient content lowering yields, unless mitigated
by fertiliser application (Pathak et al. 2006), and undermines sustainability gains by
decreasing efficiency of water use via lower infiltration rates and increased
evaporation (Lumpkin and Sayre 2009). Further negatives from residue burning include
the impacts of pollutants and aerosols on human health (Erenstein and Laxmi 2008)
and ISM circulation (Knopf et al. 2008; Ramanathan and Carmichael 2008). Detected
from remote sensing data rice and wheat residue burning occurred over 1.17 million
ha and 2.4 million ha, respectively (Fig. 5-5d). This equated to hundreds of thousands
of Tonnes of GHG emissions (e.g. over 566987 Tonnes of CO, from wheat residue
burning) which impacts both regional (e.g. ISM) and global climate systems (Table 5-5).
Targeting burnt areas with adaptive residue management, (e.g. zero-tillage drills which
can seed through residue (Erenstein 2009a)), would deliver environmental benefits,
increase resource use efficiency and mitigate climate change and deteriorating air

quality. Estimates of GHG emissions from crop residue burning generated using
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location specific estimates of crop residue burnt using MODIS data were lower than
GHG emissions estimated using default Tier 1 parameters provided by the IPCC
(2006b) and used by the FAO (FAOSTAT 2013). The default Tier 1 parameters specify a
spatially universal value of M, (crop residue mass burnt in fields) which does not
account for inter-growing season and spatial variation in levels of crop production and
biomass generation. It is possible that emissions are underestimated using as the
signal from high yielding farms maybe masked by a mixture of land covers and crop

productivity levels within 500m”MODIS pixels.
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November and after the 9th January were masked out due to few pixels reporting onset during these
periods; pixels reporting SOS on the 17th November corresponds to sowing around the 1* November
assuming a three week lag between sowing date and SOS detected by the satellite sensor. Nearly all

wheat is sown after the 1** November (Lobell et al. 2012), b) wheat yield (Tonnes ha™), c) average
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yield (Tonnes ha‘l) plotted against SOS of wheat growing season, d) areas where crop residue was
burnt for rice crop and wheat crops.

Table 5-5 Emissions of GHG from residue burning of rice and wheat crops over pixels identified as
burnt from the MODIS MCD45A1 product. Emissions were estimated using the standard IPCC
methodology (IPCC 2006b) and with location-specific model inputs provided from estimates of
cropped area and productivity from the MOD09A1 product. The final column presents emissions
estimated using globally applicable default Tier 1 estimates provided by the IPCC (2006b).

Greenhouse Gas Emissions (Tonnes) Emissions (Tonnes ha'l) Emissions estimated
following IPCC and FAO
methodology (Tonnes

ha)
CO, wheat burning 566987 0.23673 0.606
CO;rice burning 236243.770 0.20187 0.83325
CH, wheat burning 1010.479 0.00018 0.00108
CH,rice burning 421.027 0.00036 0.001485
CO wheat burning 34431.121 0.01438 0.0368
CO rice burning 14346.136 0.01226 0.0506
N,O wheat burning 26.198 0.00001 0.000028
N0 rice burning 10.916 0.00001 0.0000385
NO,wheat burning 935.627 0.00039 0.001
NOy rice burning 389.842 0.00033 0.001375

5.3.4 Yield Gaps

Fig. 5-6a and b shows the spatial locations of yield gaps greater than 0.5 Tonnes ha™, 1
Tonnes ha™ and 2 Tonnes ha™ for the rice and wheat crops. In 2009-10 it was
estimated that 965,363 ha of wheat croplands had yield gaps greater than 1 Tonnes ha’
! and 4336 ha had yield gaps greater than 2 Tonnes ha™. For rice croplands, 321,580 ha
had yield gaps greater than 1 Tonnes ha™and 3349 ha had yield gaps greater than 2
Tonnes ha™. These are priority locations within croplands which should be targeted
with sustainable adaptations to raise yield levels up to their local maximum and, thus,
reduce the need to expand cropped areas. There was not a clear spatial pattern of
locations which experienced yield gaps greater than 2 Tonnes ha™. This suggests that
that yield gaps of the largest magnitude are not explained by regional scale factors but

likely have a location specific cause. Also, it may be that the 500m pixels with largest
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magnitude yield gaps have a lower proportion of wheat cropping within the pixel
reducing the EVI values. Figs. 5-6¢ and d indicates that the spatial pattern and
magnitude of yield gaps was robust to the size of moving window Y, was computed
within. Yield gaps estimated within a 5km moving window are a more conservative
estimate than yield gaps computed within a larger moving window (e.g. 20km) (Figs. 5-
6c and d). A 5km moving window will likely sample a large enough region of farms to
capture yields performing close to Y, whilst also better representing the underlying
spatial gradients in variables (e.g. soil type, access to irrigation) which determine Y, at

a given location.
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Figure 5-6 locations where yield gaps greater than 0.5 and 1 Tonnes ha-1 were detected for a) rice
crops and, b) wheat crops. The relationship between average district-wise yield gaps computed with
5km and a 20km moving window for c) rice and, d) wheat.
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Remote sensing derived estimates of Y, are lower than the true genetic potential of
yield or Y, estimated from crop simulation models or ‘ideal’ experimental farms (Lobell
et al. 2007; Lobell et al. 2009). However, it is likely some farmers in Punjab and
Haryana approach true Y, given access to high levels of inputs (HYVs, irrigation and
fertiliser). Also, Y, estimated from remote sensing data may be a more realistic
measure of what can be achieved in real world croplands given prevailing economic
and technological limitations (Lobell and Ortiz-Monasterio 2006); for example, crop
simulation models may overestimate Y, as they do not adequately simulate the impact
of yield limiting extreme heat events on pollination processes (Lobell et al. 2009).
Computing yield gaps using remote sensing data captures spatial patterns in yield gaps
and yield variability and, thus, pin-points locations of underperformance; quantifying
both the location and size of yield gaps means areas where the size of yield gap is
greatest can be prioritised for targeting. By generating spatial patterns of yield gaps
enables integration with a range of other spatial datasets to identify adaptation
options to close yield gaps. For example, Lobell et al. (2002) used remote sensing data
to link yield gaps with soil and climate and Lobell et al. (2010) linked yield variability to

sowing date and proximity to roads and canals.

5.3.5 Integrating spatial datasets: Holistic assessments of cereal croplands

Discussed thus far are examples of how information contained within remote sensing
observations can reveal locations where agricultural productivity or sustainability are
undermined by prevailing stresses (e.g. climate) or sub-optimal agricultural practices
(e.g. residue burning). Remote sensing can provide spatially explicit information to
target appropriate conservation agriculture and other adaptive practices. However,
integrating multiple remote sensing datasets and ancillary datasets can better capture
the complex, systemic nature of cereal cropping systems and, thus, reveal more
options for adaptation. Cereal croplands represent a type of complex socio-
environmental system where outcomes span socio-economic (e.g. income, food
security, crop yield) and environmental (e.g. soil degradation) spheres. Such outcomes
are determined by interactions between socio-economic (e.g. policy, markets) and

environmental (e.g. climate) drivers. Approaches to identify and target optimum
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climate-smart practices in cereal croplands are therefore limited if they do not account
for the prevailing policy environment. The following discussion explores examples of
integrating multiple spatial datasets to inform climate-smart adaptations whilst

remaining sensitive to, and addressing the limitations of, current policy.
5.3.5.1 Water resources for cereal croplands

Integration of crop extent maps and locations experiencing unfavourable trends in ISM
precipitation highlight ‘hotspot’ locations where water intensive cereal cropping is
exposed to unreliable, or decreasing quantities of, precipitation (Fig. 5-3). These spatial
datasets can be viewed in conjunction with maps of groundwater extraction capacity
and trends in groundwater levels (Fig. 5-4) to enable more complex responses in how
to manage water resources across the landscape. The precipitation availability
‘hotspots’ were predominately located across south Punjab and Haryana which
correspond to areas with a low density of tubewells and trends of rising watertable
levels (Ambast et al. 2006) (Fig. 5-4). This suggests that managed extraction of
groundwater, supplemented through artificial recharge via recharge tubewells and
rainwater harvesting (Ambast et al. 2006) and consistent monitoring, could be utilised
as a buffer to climatic variability. This would require a policy-shift, and to be
incorporated within an Integrated Water Resource Management (IWRM) approach
recognising that the water balance is part of a dynamic hydrological regime within the
river basin linked to other watersheds by surface and sub-surface flows of water
(Moors et al. 2011). Targeting holistic approaches, in the identified vulnerable
locations (Fig. 5-3a), would contribute to meeting the goals outlined in the
Government of India’s National Action Plan on Climate Change: National Water
Mission to promote IWRM at the basin level to cope with precipitation variability,
ensure equitable distribution of water and prioritise vulnerable watersheds (National

Water Mission 2009).
5.3.5.2 Policy traps, cropping diversity and excessive groundwater extraction

Spatially explicit measures of cropping diversity (Fig. 5-7a), the extent of the rice-wheat
cropping system (Fig. 5-7b), groundwater extraction capacity (Fig. 5-4) and trends in

groundwater levels (Fig. 5-4) highlight a spatial coincidence in low levels of cropping
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diversity, declining groundwater levels and an intensive double cropping system. This
situation is an artefact of low governance diversity (e.g. subsidised electricity for
groundwater, procurement of rice and wheat) promoting a lack of diversity in farmer’s
practices and a dominant rice-wheat monoculture and a more homogenous cropping
landscape (Fig. 5-7b; Aggarwal et al. 2004; Perveen et al. 2012). Government policy
has generated a positive feedback creating ‘brittleness’ (Biggs et al. 2012) or a ‘rigidity
trap’ (Holling 2001) lowering the resilience of the rice-wheat cropping system to future

disturbances.

Fig. 5-8 is a schematic representation of the socio-ecological and climate interactions
of the rice cropping system in Punjab and Haryana. It illustrates how government
policy, which initially created an enabling environment for intensive rice cropping, has
instigated numerous positive feedbacks which accentuate environmental degradation
and harmful climate change. Fig. 5-8 illustrates a system ‘locked-in’ to a trajectory of
environmental degradation, increasing exposure to unfavourable climate change and
potentially resulting in a state when it can no longer deliver required yield levels. A
shift in government policy and the underlying political economy of the agricultural
sector is required to move the rice-wheat cropping system onto a climate-smart
trajectory, incentivising uptake of sustainable crop types and practices to break the
cycle of increasing environmental degradation and harmful climate change. However,
as a result of government policy a large proportion of the electorate’s livelihoods are
dependent upon rice cropping, unsustainable subsides for irrigation and profits
guaranteed from assured markets and minimum support prices for rice (Murgai et al.
2001; Perveen et al. 2012; Ojha et al. 2013). Therefore, there is little political willpower
to develop policies, provide incentives for, and explore more sustainable and adaptive
management of the croplands (Murgai et al. 2001; Ojha et al. 2013). This is
problematic due to the excessive water demand of the rice crop (10 times more than
other kharif crops) meaning the only way to reduce excessive groundwater extraction
and environmental degradation is to restrict the land coverage of puddled rice
cropping (Ojha et al. 2013). There is a need to overcome the institutional and political
barriers which are rigidly holding the system on an environmentally unsustainable

trajectory which contributes to its increasing exposure to harmful climate change.
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Diverse cropping maintains ecological resilience, and diversity in governance delivers
management flexibility (Ojha et al. 2013), vital to increase the adaptive capacity and
resilience of the rice-wheat cropping system to uncertain futures (e.g. ISM

precipitation) (Annamalai et al. 2007; Moors et al. 2011).

The rice-wheat double cropping system requires more water input than is received via
precipitation and rechargeable groundwater (Ambast et al. 2006; Central Ground
Water Board 2012). Altering the pricing of irrigation water would encourage
appropriate water use and diversification of cropping (Aggarwal et al. 2004). Provision
of weather-based crop insurance or subsidies are policy options which should be
applied in rice-wheat croplands to overcome farmer concerns with diversifying
cropping (Aggarwal et al. 2004). Diversification options, such as replacing conventional
puddled kharif rice with maize, delivers environmental and economic benefits with
irrigation water savings of 50-60%, a 90-100% reduction in methane emissions and a
20-25% reduction in labour and energy costs (Pathak et al. 2012). Diversifying
cropping away from the rice-wheat cropping system to cash crops can deliver win-win
situations of increased incomes and reduced environmental degradation (e.g. less
pressure on groundwater, reduced GHG emissions) (Aggarwal et al. 2004; Perveen et
al. 2012). Government incentives encouraging farmers to diversify will alleviate biotic
and abiotic problems associated with rice-wheat cropping (Chauhan et al. 2012). For
example, incorporation of legume crops in rice-wheat cropping systems increases
nitrogen use efficiency and reduces nitrate contamination of groundwater (Chauhan et
al. 2012). This indicates there is potential for a few or a single spatially targeted
adaptive measure to deliver multiple benefits simultaneously. However, currently
farmers are not keen to pursue legume cropping despite its environmental benefits as

there is no assured market and it is not as profitable as rice (Ojha et al. 2013).
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5.3.6 Capturing synergies and navigating trade-offs via targeted implementation of

agricultural adaptations

Instead of viewing a particular stress in isolation (e.g. exposure to unfavourable trends
in ISM precipitation) more holistic approaches recognise interactions between
different stresses and underlying agricultural practices within the cropping system.
Therefore holistic approaches integrating thematic detail across a landscape can
inform on capturing synergies and minimising trade-offs, inherent in implementing
agricultural adaptations, which occur spatially to maximise environmental and social

benefits and optimise use of resources for adaptation.
5.3.6.1 Capturing spatial synergies

When Figs. 5-5a, b, and c and Fig. 5-3 are viewed in conjunction it is clear that the
southern portions of Punjab and Haryana exposed to unfavourable trends in ISM
precipitation also have a wheat crop sown after the optimal window for maximum
yield returns (mid-November). Identifying such locations from integrating spatial
datasets to target with zero-tillage practices will deliver multiple benefits. Zero-tillage
wheat crops have been shown to reduce water requirements and improve water
productivity whilst also enabling timely sowing of the wheat crop with associated yield
increases (Erenstein and Laxmi 2008; Jat et al. 2009a; Saharawat et al. 2010). It is
important to note that a large proportion of the wheat crop in southern Punjab and
Haryana is grown as part of a cotton-wheat cycle (Lobell et al. 2010). Cotton matures
later that other kharif crops (e.g. rice) so economic losses from shifting to earlier
wheat SOS need to be considered alongside other climate-smart gains. This further
exemplifies the complexity of cereal croplands which can only be addressed through

holistic spatial assessments.

Groundwater levels across the district of Sangrur, Punjab, are declining at a greater or
equivalent rate to the rest of Punjab and Haryana (Fig. 5-4). This is attributed to
excessive irrigation to support a rice-wheat cropping system (Ambast et al. 2006;
Rodell et al. 2009). Conservation agriculture practices which preserve soil cover (e.g.
mulch or not burning or removing crop residues from the previous crop) reduce water

losses from the soil (reduced evaporation and increased infiltration) (Hobbs et al.
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2008). Soil cover also lowers soil and canopy temperature which will reduce the water

demand from crops (Hobbs et al. 2008; Jat et al. 2009c). Therefore, ensuring soils are

covered with residue or mulch will reduce the water requirements for crop growth

and, thus, reduce pressure on irrigation. This point is pertinent over Sangrur where

there is near complete coverage of rice and wheat crop residue burning (Fig. 5-9a)

coinciding with declining groundwater levels. Therefore incorporating residue

retention or soil cover into agronomic practices will deliver multiple benefits

simultaneously (or capture synergies) including: reduced GHG emissions from crop

burning, better water use efficiency and, thus, reduced pressure on groundwater

resources, reduced soil erosion and enhanced soil physical and biological quality and

lower canopy temperatures reducing crop exposure to extreme heat events (Hobbs et

al. 2008; Jat et al. 2009b; Lobell et al. 2012).
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Figure 5-9 a) locations where rice and wheat crop residue burning was detected in the district of
Sangrur, Punjab, which is experiencing declines in groundwater levels. The location of Sangrur relative
to the rest of Punjab and Haryana is displayed in Fig. 5-5 (It should be noted the 2006 district outline
for Sangrur is displayed here), b) spatial trade-offs to discriminate high-priority locations for targeting
with ‘zero-tillage’ technologies for the rabi wheat crop. Late-sown wheat is any pixel with a SOS after
the 11" December 2009 as detected from MODIS derived phenology profiles (there is an approximate
three week lag between SOS date and sowing).
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5.3.6.2 Trade-offs: prioritising locations for adaptation and mitigation

It is important to recognise trade-offs and costs in implementing climate-smart and
conservation agriculture practices. For example, there is a trade-off between the
environmental benefits of improved residue retention in conjunction with zero-tillage
and the costs required to develop zero-tillage drills which can seed through crop
residue (‘happy seeder’ drills) (Erenstein and Laxmi 2008; Erenstein 2009a). Through
integration of multiple spatial datasets it is possible to rank locations in order of
priority for adaptation to agricultural practices. For example, ‘highest’ priority
locations for targeting with resources to implement uptake of ‘happy seeder’ zero-
tillage drills would be those where crop residue is burnt, the wheat crop is sown late
and unfavourable trends in ISM precipitation were observed (Fig. 5-9b). Through an
integration of remote sensing derived and climatic spatial datasets 592,866 ha of the
rice-wheat cropping system were designated ‘highest-priority’ to receive supportin
implementing technologies to facilitate zero-tillage wheat with residue retention (Fig.
5-9b). The variable ‘unfavourable trends in ISM precipitation’ was then dropped (based
on the premise that the rabi wheat crop is irrigated) to illustrate how other locations
could be prioritised, but with lesser urgency or importance attached (Fig. 5-9b). A
further 1.17 million ha were identified which would benefit from zero-tillage with
residue retention but, ideally, should not be targeted above the ‘high priority’

locations.

It is recognised that greater complexity could be incorporated into this approach for
spatially resolving trade-offs on where and how to allocate resources and technological
capacity for adaptation. Advances could range from including more detail into the
existing variables (e.g. how late the wheat crop is sown, the nature of unfavourable
climatic trends), including more variables to capture a greater level of systemic detail
(e.g. groundwater levels, financial resources to fund adaptations), assigning weights of
importance to variables (e.g. via stakeholder consultation and implement multi-criteria
analysis in a GIS framework) or utilising approaches to measure the degree of spatial
vulnerability (e.g. the vulnerability surface (Luers 2005)). However, the more simplistic
approach presented here demonstrates the advantages of integrating remote sensing

and ancillary datasets to resolve trade-offs spatially, prioritising locations for targeting
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with conservation and other agriculture practices to deliver maximum climate-smart
gains whilst optimising use of available resources over a landscape (e.g. money,

machinery or environmental services).

5.4 Conclusions

Here, an approach integrating the greater local detail in remote sensing measures of
an agricultural landscape with climatic data and agricultural statistics allowing holistic,
spatially explicit, monitoring of the rice-wheat production system is demonstrated.
This can inform on ‘vulnerable’ locations and facilitate targeting of spatially optimum
conservation agriculture and adaptive practices to maximise climate-smart benefits
across the landscape. There is potential to upscale and adapt this approach to other
agricultural landscapes within South Asia, and also globally. Monitoring of food
provisioning ecosystem services often does not incorporate sufficient thematic detail
(e.g. crop type) (Crossman et al. 2013). Here, rice and wheat crop extent, and yield,
were mapped accurately9 (R°=0.96 (rice) and 0.94 (wheat) for full-pixel area extents
computed from MODIS data compared to district-wise land use statistics) (Figs. 5-2 and
5-7b). These techniques for detecting crop extents can be ‘rolled out’ to other ‘focal’
regions of agricultural productivity with minimal adjustment (e.g. Terai in Nepal). Such
detail will improve results of secondary studies requiring land use inputs, especially
studies utilising a landscape scale approach which are often limited by paucity of data
between the farm and district/regional level (e.g. quantification of GHG emissions
from agriculture; Table 5-5) (Milne et al. 2012). The local (i.e. sub-district) and
integrated thematic detail presented here demonstrates an approach which facilitates
navigation of trade-offs, and captures synergies, inherent in climate-smartening
agricultural landscapes globally (FAO 2012). This is achieved by identifying locations
which will deliver greatest returns from uptake of climate-smart practices enabling
efficient allocation of resources (either machinery or money). For example, here we

identify 592,866 ha of croplands across southern Punjab and Haryana which

% It should be noted that as full-pixel areas were accounted for here accuracy may be inflated due to
sub-pixel errors of cropland occurring within a pixel not being detected as cropped (omission) and areas
of non-cropland within a pixel detected as cropped (commission) cancelling out.
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experienced unfavourable trends in ISM precipitation, crop residue burning and later
sowing dates for the wheat crop highlighting where adoption of optimum conservation
agriculture practices can deliver multiple benefits (e.g. zero-tillage encouraging water

savings and earlier sowing dates).

In the 2009-2010 agricultural season rice and wheat crop residue burning occurred on
1.17 million ha and 2.4 million ha respectively with a range of subsequent
environmental dis-benefits including hundreds of thousands of tonnes of GHG
emissions; for example wheat crop residue burning generate 566987 Tonnes of CO,.
The SOS of the wheat cropping season, and subsequent yield declines with later
sowing dates were quantified from remote sensing data. Across Punjab and Haryana
5.3 million ha of rice and wheat croplands coincided with locations experiencing at
least one, and up to three simultaneously, unfavourable trends in facets of ISM
precipitation such as increasing recurrence of drought years. The locations of
unfavourable trends in facets of ISM precipitation were computed from daily
precipitation data from 1951-2007. Also, 965,363 ha of wheat croplands returned
yields of 1 Tonne ha™ lower than potential yields and 321,580 ha of rice croplands had
yield gaps of at least 1 Tonne ha™. The spatial distribution of these yield gaps was
captured using remote sensing data. Often the areas of rice-wheat double cropping
coincided with areas where groundwater levels were falling and the lowest cropping
diversity suggesting lower levels of ecological resilience and existent adaptive capacity
to uncertain and variable futures in ISM precipitation. These, locations were mainly in
the central districts of Punjab and Haryana, such as the district of Sangrur as

highlighted in Fig. 5-9a.
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Chapter 6: Satellite observations reveal the impact of

climatic extremes and variability on cereal croplands

6.1 Introduction

Similar to other cereal crops levels of production and productivity for rice and wheat
crops are vulnerable to a changing climate. Increases in mean growing season
temperature, an increase in the frequency of extreme heat stress events at key
phenological stages (e.g. the thermo-sensitive reproductive and grain filling periods
(TSP)), uncertain precipitation futures and increased risk of droughts and subsequent
moisture shortages all have a potentially negative impact on crop yield ( Ortiz et al.
2008; Asseng et al. 2012; Lobell and Gourdji 2012; Lobell et al. 2012; Teixeira et al.
2013; Gourdji et al. 2013b; Koehler et al. 2013).

Increases in average growing season temperatures hastens phenological development,
reducing time available for biomass accumulation and photosynthetic activity thus,
reducing final yield (Sadras and Monzon 2006; Oh-e et al. 2007; Welch et al. 2010;
Hatfield et al. 2011; Lobell et al. 2011a; Lobell et al. 2012). Different crops have also
shown different sensitivities to daily maximum or minimum temperatures; for
example, maize yield is negatively correlated with maximum temperature whereas dry
season rice yield is negatively correlated with minimum temperature (Peng et al. 2004;
Welch et al. 2010; Lobell et al. 2011a). Adequate moisture levels are also vital for crop
growth. Both rice and wheat yields in India are significantly correlated with all-India
monsoon precipitation (Krishna Kumar et al. 2004) and, negatively impacted by
drought conditions during the ISM (Auffhammer et al. 2012). Both levels of soil
moisture and atmospheric moisture (relative humidity) have the potential to exert
control on crop growth and development; soil moisture deficit is a limiting factor
negatively impacting vegetative and reproductive growth processes (Wassmann et al.

2009).

Increasing evidence is mounting highlighting that rice and wheat cereal crop

production and yield formation is sensitive to, and negatively impacted by, warming

170



during the TSP (Asseng et al. 2010; Wassmann et al. 2009; Teixeira et al., 2013). The
TSP spans crop reproductive period and subsequent grain-filling stages which largely
determine final crop yield (Teixeira et al. 2013). Remote sensing observations of
croplands have shown that spectral relectance measures during these periods of crop
development explain the largest amounts of variation in crop production (Funk and
Budde 2009; Bolton and Friedl 2013). Cereal crops are particularly sensitive to warming
during anthesis where increasing temperatures impede pollination and fertilisation
processes resulting in increased spikelet sterility and reduced final yield (Jagadish et al.
2007; Wassmann et al. 2009). Increasing temperature during grain filling accelerates
crop senescence reducing growth rates for grains which determine final yield and
production; cereal crops are also more sensitive to warming events closer to anthesis
than maturity and harvest (Asseng et al. 2010). Several studies have highlighted that
crops display a threshold temperature response to warming during the TSP; in
controlled experimental settings Jagadish et al. (2007) noted that air temperatures
greater than 35°C were terminal for rice reproductive processes. Asseng et al. (2010)
observed yield decreases with increased wheat crop exposure to heat stress events

(daily maximum temperatures greater than 34°C) during the TSP.

The presence of adequate soil moisture and lower relative humidity or higher vapour
pressure deficit facilitate transpiration cooling which helps crops escape heat stress
during the TSP (Shah et al. 2011; Lobell and Gourdji 2012; Gourdji et al. 2013a; Teixeira
et al. 2013). Under moisture stress, rice crops have shorter peduncle length and
reduced percentage of panicle exsertion (Rang et al. 2011b). The timing of dry-spells,
or drought conditions, determine the degree of crop failure; drought or moisture
shortages coinciding with the TSP have a marked negative impact on yield (Wassmann

et al. 2009; Lobell et al. 2011a; Lobell and Gourdji 2012).

Across the world’s major wheat croplands including north-west India, the thermo-
sensitive periods (TSP) of crop development for wheat crops coincide with the timing
of highest average maximum temperatures annually (Asseng et al., 2010), and growing
season temperature and extreme heat events during the TSP are projected to increase
in the next century (Gourdji et al. 2013b; Mathison et al. 2013; Teixeira et al. 2013).

Punjab and Haryana will likely experience warming trends, with increased frequency of
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extreme heat days damaging to crop growth due to climate change (Rupa Kumar et al.
2006; Mathison et al. 2013). This will coincide with observed trends of increasing inter-
annual variation in monsoon precipitation and recurrence of drought years affecting
large portions of both states. In addition, difficulty in predicting, accurately, future
monsoon conditions provides further uncertainty (Annamalai et al. 2007; Moors et al.
2011; Turner and Annamalai 2012). Climate change impacts are already limiting wheat
crop yields globally: models indicate that warming trends since 1980 led to a 5.5%
reduction in wheat production (Lobell et al. 2011b). Model projections of increased
exposure to heat stress up to 2100 suggest that suitable adaptations need to be
implemented urgently to secure climate resilient crop production. The underlying
agricultural system (e.g. access to irrigation, cultivar type, soil type and ecosystem
services), which varies within and between cropping landscapes, can increase the
sensitivity of crops to harmful climate impacts (Asseng et al. 2010; Gourdji et al. 20133;
Luers 2005; Luers et al. 2003; Teixeira et al. 2013). For example, access to sufficient
irrigation can enable transpiration which cools canopy temperatures relative to
atmospheric temperatures, reducing the potential negative impact of warming on the
crop during key physiological processes during the TSP but will lower levels of water
productivity (Asseng et al. 2010; Gourdji et al., 2013b; Teixeira et al. 2013; Wassmann
et al. 2009).

While cereal crops across the globe display similar responses to climatic variables, the
vulnerability of crops and the ability to adapt to climatic variation are determined by
location-specific factors inherent to each agricultural system (Teixeira et al. 2013).
Therefore, to understand the impacts of climatic variation on crop yields occurring in
real world cropping landscapes one requires the ability to observe and test a variety of
climatic variables through time whilst capturing the spatial variation in the underlying
agricultural system. Studies exploring the impacts of climatic variables on wheat crop
yield are more informative to climate resilient adaptation when there is a local or
regional focus because potential adaptations often include shifting dates of cropping
systems, implementing zero-tillage to avoid periods of heat stress coinciding with the

TSP, and the need to be sensitive to location-specific double/triple cropping rotations
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which can only be captured at the local scale (Lobell et al. 2012, 2013; Teixeira et al.

2013).

Crop yield-climate interactions are usually explored using either (i) crop simulation
models which aim to replicate crop physiological responses to climatic variation
(Asseng et al. 2010; Challinor et al. 2005; Koehler et al. 2013) or (ii) regression models
trained with crop yield and climate data aggregated within administrative boundaries
(Lobell and Burke 2010; Rowhani et al. 2011; Schlenker and Lobell 2010; Urban et al.
2012). Crop simulation models are often complex and require large amounts of input
data to represent the underlying complexity of the agricultural system (Welch et al.
2010; White et al. 2011); they are, therefore, limited in their application to large
spatial extents. Moreover, often crop simulation models do not capture the differential
impacts of heating events during key phenological stages, such as the TSP, well. In a
review of 221 peer-reviewed climate-crop simulation model studies only 14 partially or
fully addressed the issue of heat stress (White et al. 2011). Crop model uncertainty was
deemed a larger or equivalent source of uncertainty than that introduced through
climate models when simulating wheat yield under future climates using the Global
Large Area Model (GLAM) (Koehler et al. 2013). Uncertainty in representing thermal
time accumulation was the largest source of uncertainty in final yields (Koehler et al.
2013). In Lobell et al. (2012) it was shown that CERES and APSIM crop simulation
models underestimated the shortening of the wheat growing season when exposed to
increased warming. This suggests that climate-crop simulation models will
underestimate the true negative impacts of climate change on crop yield; this is
pertinent given projected future warming and increases in extreme heat days (Gourdiji
et al. 2013b; Mathison et al. 2013). Key interactions between climatic variables and
crop growth processes within many crop models are too simplified to adequately
provide confidence in regional projections of responses to climate change (Tubiello et
al. 2007). However, remote sensing provides the opportunity for widespread
monitoring of the response of cereal croplands to climatic variability and, thus,
validate the use of crop simulation models for capturing regional scale impacts of

climate change.

173



In contrast, crop yield-climate models trained at the administrative boundary level
aggregate the complexity of the underlying agricultural system which can be
problematic in heterogeneous agricultural landscapes. Also, crop yield-climate models
trained at the administrative boundary level cannot capture the differential impact of
climatic variables at varying phenological stages, thus, missing information to inform

optimum climate resilient adaptations.

In this chapter, we demonstrate how remote sensing data can be used to quantify the
impacts of climatic variables, particularly the influence of warming during the TSP, on
crop production in real world cropping landscapes, thus, overcoming the limitations of
the two, previously discussed approaches. Remote sensing data enables a more
appropriate representation of spatially heterogeneous agricultural systems compared
to district-wise land use and agricultural statistics. Remote sensing estimates of crop
production incorporate measures of underlying system factors within a pixel (e.g.
farmer decisions, access to irrigation, sowing date). The repeat coverage of remote
sensing enables monitoring of crop phenology across a large spatial extent. This,
therefore, enables the discrimination of climatic variables which occur at different
phenological stages such as the TSP and an assessment of their impacts on final crop

yield.

The overarching goal for this chapter is to explore the impact of temperature during
the TSP on crop production, at the landscape scale in Punjab and Haryana. This is done
by utilising the wide coverage and spatial and phenological detail in remote sensing
data to develop statistical models between climatic variables during the TSP and crop
production. This will reveal whether warming during the TSP has had a limiting impact
on rice and wheat crop yield in Punjab and Haryana. Specific questions addressed in

this chapter are:

1) what are the relative impacts of daily minimum temperature, daily maximum
temperature and extreme heat events above incrementing temperature thresholds

during the TSP on rice and wheat crop yield?

2) what is the impact of temperature variables during the TSP on crop yield in relation

to growing season average temperature, growing season precipitation and
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precipitation during the TSP by including all climatic variables in a multivariate fixed-

effects model. Precipitation predictor terms were included in the model to account for
potential transpiration cooling benefits reducing crop sensitivity to warming during the
TSP. Growing season average temperature was included as a predictor term to account

for potential crop sensitivity to temperature impacts not occurring during the TSP.

6.2 Methods

The extent, and yield, of rice and wheat croplands across Punjab and Haryana were
estimated using remote sensing data. These datasets were integrated with climatic
variables to create panel-datasets used to train linear fixed-effects crop yield-climate
models. Panel-datasets are mutli-dimensional in time and space and, thus, can capture
year-to-year variability in precipitation and also a wider range of temperatures which
exhibit greater spatial variation relative to temporal variation at one location (Lobell
and Burke 2010). Panel-regression models have shown improved performance (in
terms of both strength of association and reduced scatter) for capturing temperature-

crop vyield relationships relative to time-series models (Lobell and Burke 2010).

The temporal extent of the panel-data was restricted to five years to negate the
impact of shifting agricultural practices or technological advances on crop yield.
Several studies have incorporated linear, quadratic or cubic regression spline time
terms into crop yield-climate regression models to account for such technological
development (Schlenker and Lobell 2010; Rowhani et al. 2011; Hawkins et al. 2013).
However, this requires the assumption that the impact of developmental change on
crop yield is universal across the spatial extent of the panel. Given the spatial
variability in cropping-systems (Panigrahy et al. 2010) and levels of natural, physical,
social and financial capital, which influence uptake of agricultural practices (Erenstein
et al. 2007), across the panel, utilising a time term to capture development and
assuming its spatial universality was not justified. Crop yield-climate regression models
trained using panel-data are less sensitive to the temporal extent over which
observations were taken (Lobell and Burke 2010). For example, Welch et al. (2010)
detected the signal of minimum and maximum temperature impacts on rice yield using

panel data with observations taken over five years.
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6.2.1 Remote sensing data pre-processing

To map the extent of kharif rice and rabi wheat croplands, and estimate associated
crop yields, for each year from 2002-2003 to 2006-2007 several VI were computed
from 8-day composites of MODIS surface reflectance products (MODO09A1)
(https://Ipdaac.usgs.gov/products/modis_products_table/mod09al). Only ‘high-
quality’ pixels, determined using quality QA incorporated within the MODIS product
were retained. ‘Bad-pixels’ and potential cloud pixels (determined via the condition
Poie>0.2 where ppye is blue band reflectance (459-479nm) (Xiao et al. 2005)) were
replaced using the gap filling algorithm of Peng et al. (2011). The following VI were
computed NDVI, NDSI, EVI and the LSWI. The Vls were fitted iteratively towards their
maximum envelope using an adapted version of the method of Chen et al. (2004)
which smoothed the data using a Savitzky-Golay filter and includes a fitting bias
towards maximum values. This removes noise and fluctuation in temporal VI profiles
due to cloud cover and atmospheric contamination and accounts for the negative bias
in reflectance at the sensor (Chen et al. 2004). Snow and water masks were generated
using the NDSI, NDVI and LSWI products following Xiao et al. (2005, 2006) and forest
masks were generated following the condition that a pixel had 20 successive 8-day

MODIS composites with an NDVI>0.5.

6.2.2 Wheat and rice crop area classifications

The extents of the kharif rice crop and rabi wheat crop were mapped using a range of
classification techniques applied to crop phenology profiles derived from the EVI and
LSWI. Different classification techniques were used for each crop to generate the most
accurate maps of crop extent per year. The rice crop was classified using an adapted
version of the rice crop classification algorithm of Xiao et al. (2005, 2006) which
detects the presence of puddling in paddy fields and subsequent rapid green up
associated with crop vegetative development via LSWI-EVI inversion followed by a
rapid increase in EVI. Thus, the puddling preceding a rice crop is defined by the logical

condition:

LSWI; + T > EVI
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(1)

Where i corresponds to pixel location and T is a threshold which is adjusted inter-
annually and is optimised using district-wise agricultural land use data
(http://lus.dacnet.nic.in/). Xiao et al. (2005, 2006) used a global threshold value of
T=0.05 for all of South-Asia, however, the accuracy of this classification method can be
increased by adjusting T to account for locally varying agronomic and climatic factors
and incorporating knowledge of local cropping calendars (Sun et al. 2009; Peng et al.
2011; Gumma et al. 2011b). The impact of the threshold Tis illustrated in Fig. 6-1

where the unadjusted LSWI profile does not invert with EVI during puddling but

LSWI+T does.
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Figure 6-1 Schematic diagram illustrating the LSWI+T-EVI inversion at the time of puddling, and the
benefit of incorporating T to make the classification more sensitive to puddling of fields at the
beginning of the kharif rice season. This diagram also illustrates the thermo-sensitive period (TSP)
over which EVI values are summed to approximate final yield and includes a temporal approximation
of key rice crop development stages as stated in Wassmann et al. (2009) and Teixeira et al. (2013).

The LSWI-EVI inversion method is not suitable to map the extent of the wheat crop as
fields are not puddled at SOS. Spectral matching techniques were used to statistically

match the EVI-derived phenology profile per-pixel to an ideal wheat phenology profile.
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This approach has been used widely to classify croplands in the region, and globally,
from a range of sensors (Thenkabail et al. 2005; Thenkabail et al. 2007; Thenkabail et
al. 2009; Biradar et al. 2009; Gumma et al. 2011b). A spectral similarity value (SSV) was
computed comparing the per-pixel EVI phenology profile to an ‘ideal’ wheat phenology
profile; further details regarding classification of wheat croplands using spectral
matching techniques can be found in section 5.2.1. Phenology parameters were
computed to extract the portions of the phenology profile corresponding to rabi
cropping. SOS and EOS were defined as 10% of the amplitude between minimum and
peak EVI on the rising and falling limbs of the phenology profile. This is a common
approach to extracting phenology parameters from time-series VI and has been
previously applied to the wheat crop in North India using MODIS data (Jonsson and
Eklundh 2004; Lobell et al. 2012; Lobell et al. 2013). Focusing on only the growing
period of the rabi season ensured pre- and post-season noise did not influence the
computation of the SSV value. The SSV value is a similarity measure of the shape and
curvature (Pearson’s correlation coefficient) and, amplitude (Euclidean distance) of
two phenology profiles (Thenkabail et al. 2007). Similar to rice, a threshold SSV to
determine a match between pixel phenology profile and ideal wheat phenology profile
was optimised, per year, using district-wise land use statistics

(http://lus.dacnet.nic.in/).

Optimising the threshold values of T (for rice) and SSV (for wheat) inter-annually
ensured the most accurate (full-pixel area) crop extent maps were generated per year.
These crop extent maps were used as a binary mask to minimise the effect of non-
agricultural land covers from propagating up to the crop yield-climate models,
ensuring the models accurately captured the interaction between climatic variables
and crop yields and not a noisy signal. A discussion of the merits and limitations of
using cropland masks in crop production estimation from remote sensing data is
provided in the previous chapter (see section 5.2.1 and 5.2.2). It is worth mentioning
that an attempt was not made to generate an optimum time-independent, universal
crop area classification technique but to generate maps where presence of rice or
wheat cropping within a pixel was detected for each year to improve the wider

modelling methodology. To generate optimum areal estimates of the area under rice
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and wheat cropping using 500m spatial resolution MODIS data would require
addressing sub-pixel areal coverage of croplands (Thenkabail et al. 2007) or use of
‘fine’ spatial resolution land cover maps capturing field extents (Bolton and Fried

2013).

6.2.3 Wheat and rice yield estimation

For each pixel classified as kharif rice or rabi wheat, crop yield was estimated using a
cumulative sum of EVI values over an approximation of the TSP (CUM-EVIsp)). It is
difficult to define specific crop development stages accurately from remotely sensed
data. However the period of maximum EVI has been shown to correspond to heading
date in cereal crops (Sakamoto et al. 2005). Teixeira et al. (2013) found that a 30 day
period around the reproductive crop development phase represented the TSP and
captured extreme heat impacts on crop yield. Here, a 30 day period post maximum EVI
was taken to represent the TSP for the rice and wheat crops (Fig. 6-1). A cumulative
sum, or integration of VI values, and maximum VI values are commonly used as
surrogate measures of vegetation productivity and crop yield (Pettorelli et al. 2005;
Funk and Budde 2009; Vrieling et al. 2011; Rembold et al. 2013). VI values on the
falling limb of the phenology profile of crops often provide more accurate estimates of
crop vield as they correspond to the reproductive and grain filling development stages
of cereal crops (Funk and Budde 2009; Rojas et al. 2011). Utilising the crop extent
maps previously generated and phenology parameters for SOS and EQS per-pixel,
ensured noise was not introduced into the yield estimation from either non-rice or
wheat land covers or time-periods not-associated with the crop growing season (Funk
and Budde 2009). The same method was used to define EOS for the rice crop as was
used for the wheat crop but the LSWI-EVI inversion was used as a measure for rice

SOS.

6.2.4 Climate data

The APHRODITE (V1003R1) precipitation dataset was obtained for the 2002-2003 to
2006-2007 growing seasons. Further details regarding the product generation and

validation can be found in (Xie et al. 2007; Yatagai et al. 2009; Yatagai et al. 2012), and
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examples of its use in studies over south Asia in (Andermann et al. 2011; Duncan and

Biggs 2012; Duncan et al. 2013; Mathison et al. 2013).

The APHRODITE daily temperature product (V1204R1) provides daily mean
temperature only, which inhibits exploring the impact of minimum and maximum
temperature, and extreme temperatures, on crop yield. Therefore, Global Summary of
the Day (GSOD) stations in Punjab and Haryana with a near complete record of daily
minimum and maximum temperatures were extracted from:
http://www.ncdc.noaa.gov/. Fewer weather stations were included (five), but selected
on the basis of spatial coverage over Punjab and Haryana and completeness in
temporal coverage with minimal missing data. Conservatively selecting stations with
reliable and comprehensive temperature records was appropriate over Punjab and
Haryana as there is minimal orographic variability, especially over cultivated lands,

which would cause dramatic shifts in temperatures over short distances.

The data from these stations were used to generate gridded fields, at the same spatial
resolution as the MODIS data, using an inverse-distance weighting algorithm. GSOD
weather stations have been used as inputs in the generation of gridded climate
products (e.g. Yasutomi et al., 2011) and to assess climate impacts on crops in North
India (Lobell et al. 2012). We also applied a thin-plate spline interpolation method
following (Lobell et al. 2012); however, this method generated spurious curvatures in
the temperature surface due to the fewer number of weather stations used as inputs.
Therefore, a simple inverse-distance weighting interpolation provided a more reliable

spatial estimate of temperature.

6.2.5 Crop yield-climate regression models

All climatic variables (see Table 6-1) were regressed against the natural logarithm of
CUM-EVIrsp)(logCUM-EVIrsp)), implying a percentage or relative change in crop yield
with a given change in climatic, predictor, variables irrespective of a baseline yield level
and accounting for skewed distribution in crop yields (Lobell and Burke 2010; Lobell et
al. 2011a; Urban et al. 2012). This is a common approach in numerous statistical crop
yield-climate models (Schlenker and Roberts 2009; Schlenker and Lobell 2010; Lobell

and Burke 2010; Lobell et al. 2011a; Urban et al. 2012). The results from all regression
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models were similar whether using logCUM-EVI1sp) or CUM-EVI1sp) without a log
transformation, suggesting the climate-crop yield signal was robust to the
transformation. Panel-datasets were created and regression models were fitted for
varying SOS dates. This highlighted how SOS influenced crop exposure to extreme heat
events and climatic variables and, accounts for the fact that varying day length over a
season can influence crop development rates (Lobell et al. 2012). This is important as
shifting sowing dates and cropping calendars are a potential adaptation to reduce
exposure to extreme heat events (Teixeira et al. 2013). Regression models were fitted
for rice crops SOS on day-of-year 153, 161, 169, 177 and, 185 and wheat crops SOS on
329, 337, 345, 353 and, 361. These dates cover the majority of SOS dates for both the

rice and wheat crops across Punjab and Haryana.

Table 6-1 Description of climatic variables included in the crop yield-climate regression models.

Climatic Variable Description

Extreme degree days during the TSP. Computed
as the number of days during the TSP above a
EDDr, threshold temperature (T) per-pixel.

Average daily minimum temperature during the

TSP, computed individually per-pixel using pixel

specific heading date (peak-EVI) derived from
T(rsp) (Minimum) EVI phenology profiles.

Average daily maximum temperature during

the TSP computed individually per-pixel using

pixel specific heading date (peak-EVI) derived
Trsp) (Mmaximum) from EVI phenology profiles.

Average growing season temperature,

computed individually per-pixel using pixel

specific SOS and EOS dates derived from EVI
T phenology profiles.

Total growing season precipitation, computed
individually per-pixel using pixel specific SOS
and EOS dates derived from EVI phenology

P profiles.

Prse) Total precipitation during the TSP, computed
individually per-pixel using pixel specific
heading date (peak-EVI) derived from EVI
phenology profiles.

181



6.2.6 Extreme heat events during the TSP

Simple linear regression models with fixed-effects terms (equation 2) were fitted to
explore whether the impact of temperature and extreme heat events during the TSP
on crop yield could be detected using remote sensing data. logCUM-EVIsp)y was
regressed against average minimum, maximum and mean temperature and, extreme
degree days (EDD) during the TSP. Average daily minimum and maximum temperature
were computed separately as they have been shown to have differing impacts on crop

yield (Peng et al. 2004; Welch et al. 2010).

logCUMEV I(7spyir = Pxir +¢; + &i¢
(2)

Where i refers to pixel i and t refers to time of observation t=2002....2007. x;: is the
predictor temperature variable in pixel j at observation t, ¢; is the fixed effects term for

pixel i and gy is an error term. EDD was defined as:

0ift;<T

EDDy= » DD DD{l o =T
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(3)

Where T is the threshold temperature for which EDD is computed individually for each
temperature from 32-42°C at 1°C increments, t; is the maximum temperature on day i
and N is the number of days in the TSP (N=30). Computing EDD above a threshold
maximum temperature, increasing with 1°C intervals enabled assessment of: i)
whether declines in yield due to exceedance of critical temperatures during the TSP
can be detected from remote sensing data and ii) if such critical temperatures exist in
the reality of farmers’ fields. Including a fixed-effects term accounts for time-invariant
effects unique to each location (these effects are not specified but could include

omitted variables such as soil condition and fertiliser application). The term enables
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each pixel to have a unique constant for all observations from that pixel. On the basis
of performing a Hausman test fixed-effects terms were preferred over random-effects
term. This analysis was repeated with squared predictor terms to investigate possible
non-linear relationships. Non-linear terms did not alter the signal of the regressions,
and often yielded similar or reduced model fit (in terms of R?) suggesting linear terms
were adequate. The same sign in the relationship between climatic variable and crop
yield was obtained when using random-effects terms indicating results were not

artefacts of including fixed-effects terms.

6.2.7 Multivariate crop yield-climate models

Multivariate linear fixed-effects models were used to assess the impact of climatic

variables on rice and wheat crop yield.
logCUMEVI(rspyic = BTit + BT(rspyit + BPit + BP(rspyic + i + &t

(4)

where T is average growing season temperature, T(rsp) is either average maximum or
minimum temperature during the TSP, P is growing season total precipitation, P(rsp) is
total precipitation during the TSP, c; is a fixed-effects term for pixel i, €; is an error
term, i refers to pixel location and t refers to the year of observation (t=2002,
2003.....2007). Including precipitation terms is important to capture moisture stress
accentuated by extreme heat events, or the presence of moisture mitigating against
heat impacts (via transpiration cooling) (Wassmann et al. 2009; Lobell et al. 2011a).
Both the rice and wheat crops in Punjab and Haryana are heavily irrigated (DES 2011);
the fixed-effects term accounting for time-invariant omitted factors per pixel will
capture spatial variation in inputs and, thus, account for access to irrigation that may
mitigate the magnitude of extreme heat event impacts. Average maximum and
minimum temperature during the TSP were not included in the same model to avoid
multicolinearity among predictor variables. For all SOS dates, for both crops, average
maximum and minimum TSP temperature had the largest variance inflation factors
(VIF) out of all predictor variables; for the wheat crop the VIF was always greater than

6 and in some cases exceeded 11, an indicator of high levels of multicolinearity. Again,
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a Hausman test indicated using fixed-effects terms rather than random-effects terms
in a multivariate model although including random-effects terms did not alter the sign
from the regression model outputs. Squared predictor terms were tested to explore
for non-linear relationships between climatic predictor variables and crop yield but
these generally returned lower R’ values indicating reduced model fit. Thus, simple

linear terms with fixed-effects were deemed adequate.

6.3 Results

6.3.1 Crop area classifications and yield estimates

Utilising a per-year optimised value of T kharif rice crop extent was classified with R
values ranging from 0.96 to 0.99 between 2002-2003 and 2006-2007 when compared
with district-wise land use statistics (http://lus.dacnet.nic.in/). R? values for the
relationship between remote sensing derived wheat crop extent and district-wise land
use statistics (http://lus.dacnet.nic.in/) ranged between 0.86 and 0.92 between 2002-
2003 and 2006-2007.

CUM-EVIrsp) was significantly (p<0.01) correlated with district wise kharif rice and rabi
wheat yields between 2002-2003 and 2006-2007 (R?=0.91 and 0.84 respectively) (Fig.
6-2; http://apy.dacnet.nic.in/). This suggests CUM-EVIsp) provided an accurate
estimation of yield for both crops. Other methods of estimating crop yield were tested
including cumulative sum of EVI values from maximum EVI to EOS and just maximum
EVI values alone. The CUM-EVIsp) provided a more accurate measure of crop yield
than cumulative sum of EVI values from maximum EVI to EOS and equivalent accuracy
to maximum EVI. The cumulative sum of EVI values from maximum EVI to EOS still
maintained a large correlation with district-wise crop yield, but the association was
likely weakened due to incorporating EVI values corresponding to crop growth not
associated with yield development (Rojas et al. 2011). CUM-EVIrspy was used as a proxy
for of crop yield as it included more information than just maximum EVI (up to four EVI

values rather than one) without any penalty in accuracy.
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Figure 6-2 Relationship between remote sensing estimates of district-wise crop production (CUM-
EVlzsp)) and district-wise crop production as reported by government agricultural statistics
(http://apy.dacnet.nic.in/) for the 2002-2003 to the 2006-2007 growing seasons for a) the kharif rice
crop and, b) the rabi wheat crop. The black line is the 1:1 regression line.(Outlier A corresponds to
Amritsar district, in 2006-07 Amritsar district was split into a smaller district still named Amritsar and
a new district named Tarn Taran. The estimates of crop production from the remote sensing data
include the extent of ‘old’ district Amritsar due to the global administrative database layer not being
updated whereas the crop production statistics from http://apy.dacnet.nic.in/ do not. This explains
the over estimation of crop production from the remote sensing data. Outlier B likely reflects
erroneous reporting in the Government of India’s crop production statistics for the district of Bhiwani
in 2005-06. Production of wheat in Bhiwani was 425000, 456000, 415000 and 527000 Tonnes in 2002-
03, 2003-04, 2004-05 and 2006-07; Government statistics reporting an 39000 Tonnes for 2005-06 are
therefore likely due to an error in reporting, especially as there was not an associated drop in area
under wheat cropping (http://apy.dacnet.nic.in/)).

6.3.2 Wheat: temperature during the TSP and crop yield relationship

Average minimum and maximum TSP temperatures generally have a greater
explanatory power compared to EDD above incrementing temperature thresholds or
growing season average temperatures for the wheat crop (Figs. 6-3 and 6-4). Rate of
change in average minimum and maximum TSP temperatures and average growing
season temperatures have a greater, negative influence on wheat crop yield compared
to EDD above incrementing temperature thresholds; however it should be noted that
mean growing season temperatures explains a very small amount of variation in wheat
crop yield (Figs. 6-3, 6-5 and 6-6). With a later SOS date average minimum TSP
temperature has a greater fit (Fig. 6-3) and causes a greater rate of change wheat yield
(Fig. 6-5) compared to average maximum TSP temperature. Generally, an increase in
temperature threshold above which EDD is computed registers a greater negative
influence on wheat crop yield (slope coefficient) (Fig. 6-6). However, a temperature
threshold of 35°C had a noticeable larger R? compared to all other temperature

thresholds (Fig. 6-4), there was also an increase in the size of the slope coefficient at
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35°C compared to lower temperature thresholds (Fig. 6-6). The negative impact of
temperature during the TSP, determined by both the value of the slope coefficient and
the fit of the model, increased with later SOS dates (Figs. 6-3 - 6-6). The negative
impact of exposure to heating events greater than 35°C during the TSP also increased

with later SOS dates (Fig. 6-4 and 6.6).

a) 08+ b) 0814
0.7 4 074
0.6+ 0.6
0.5 054
B 04

0.3 1

0.2

0.14

0.0+ -
min(TSP) max(TSP) mean(GS) min(TSP) max(TSP) mean(GS)

0.8+
0.74
0.6 4

0.54

min(TSP) max(TSP) mean(GS) min(TSP) max(TSP) mean(GS)

e)

min(TSP) max(TSP) mean(GS)

Figure 6-3 The R’ values for average minimum and maximum TSP temperature and, average growing
season temperature when regressed against wheat crop yield (logCUM-EVIsp)) for SOS dates: a) 329,
b) 337, c) 345, d) 353 and, e) 361. Only statistically significant (p<0.001) relationships are presented.
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Figure 6-4 The R values for EDD when regressed against wheat crop yield (logCUM-EVIsp)) for SOS
dates: a) 329, b) 337, c) 345, d) 353 and, e) 361. Only statistically significant (p<0.001) relationships are

presented.
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Figure 6-5 The slope coefficients for average minimum and maximum TSP temperature and, average
growing season temperature determining rate of change in wheat crop yield (logCUM-EVI;sp)) for SOS
dates: a) 329, b) 337, c) 345, d) 353 and, e) 361. Only statistically significant (p<0.001) slope
coefficients are presented.
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6.3.3

Rice: temperature during the TSP and crop yield relationship

Similar to the wheat crop, average minimum and maximum TSP temperatures explain

a greater amount of variation in rice crop yield compared to EDD computed above
incrementing temperature thresholds (Figs. 6-7 and 6-8). However, the sign of this

relationship is positive rather than negative as in the wheat crop. Growing season

average temperature was negatively correlated with rice crop yield (Figs. 6-7 and 6-9).

EDD, regardless of the temperature threshold except for 38°C, showed a positive, but

small, association with rice crop yield (Figs. 6-8 and 6-10).
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Table 6-2 Slope coefficients and R2 values for multivariate fixed-effects crop yield (logCUM-EVI(TSP))-
climate models for the wheat crop. All terms significant at (p<0.001) except * denoting significance at

(p<0.01).
SOS date T Tirsp) (Minimum) Prse)
329 -0.03617 -0.02287 -0.00223 0.40958
337 -0.04562 -0.02936 0.00044 -0.00248 0.46383
345 -0.05229 -0.03723 0.00080 -0.00234 0.49770
353 -0.03906 -0.04509 0.00051 -0.00146 0.55196
361 -0.02854 -0.04794 -0.00022 -0.00012* 0.55724
T(rsp) (maximum)
329 0.00207 -0.01710 -0.00039 -0.00198 0.42496
337 -0.00111 -0.02121 -0.00001 -0.00221 0.46005
345 -0.02420 0.00013 -0.00214 0.45283
353 0.01432 -0.02641 -0.00014 -0.00148 0.45974
361 0.02828 -0.02911 -0.00147 0.00059 0.47467
6.3.4 Multivariate crop yield-climate model

In the multivariate models average minimum and maximum TSP temperatures often

had the greatest influence on crop yield, though the sign of this influence was negative

for wheat and positive for rice (Table 6-2 and 6-3). The slope coefficient values for

average minimum TSP temperature were greater than average maximum TSP

temperature for the wheat crop and increased with later SOS, similar to when the

variables were regressed as a sole climatic predictor (Table 6-2; Fig. 6-5). This suggests

that this signal is robust and not a statistical artefact. Change in totals of growing

season precipitation and TSP precipitation caused minimal changes in crop yield with

small slope coefficient values (Table 6-2 and 6-3). The multivariate models for wheat,

either with average minimum or maximum TSP temperature included as predictor

terms had R? values between 0.41 and 0.58 indicating that climatic variables explain a

large proportion of the variation in crop yield (Table 6-2). The multivariate models for

rice also explain a large proportion of variation in crop yield (R%:0.27 — 0.54). The rice

crop multivariate models with average minimum TSP temperatures have a greater
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explanatory power than models including average maximum TSP temperature (Table

6-3).
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Figure 6-7 The R? values for average minimum and maximum TSP temperature and, average growing
season temperature when regressed against rice crop yield (logCUM-EVI;sp)) for SOS dates: a) 153, b)
161, c) 169, d) 177 and, e) 185. Only statistically significant (p<0.001) relationships are presented.
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Figure 6-8 The R? values for EDD when regressed against rice crop yield (logCUM-EV| ;sp)) for SOS
dates: a) 153, b) 161, c) 169, d) 177 and, e) 185. Only statistically significant (p<0.001) relationships are
presented.
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Figure 6-9 The slope coefficients for average minimum and maximum TSP temperature and, average
growing season temperature determining rate of change in rice crop yield (logCUM-EVIysp)) for SOS
dates: a) 153, b) 161, c) 169, d) 177 and, e) 185. Only statistically significant (p<0.001) slope
coefficients are presented.
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Figure 6-10 The slope coefficients for EDD determining rate of change in rice crop yield (logCUM-
EVirsp)) for SOS dates: a) 153, b) 161, c) 169, d) 177 and, e) 185. Only statistically significant (p<0.001)
slope coefficients are presented.
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Table 6-3 Slope coefficients and R2 values for multivariate fixed-effects crop yield (logCUM-EVI(TSP))-
climate models for the rice crop.

SOS date T Trsp) (Minimum) P Pirse) R

153 -0.0632 0.0794 0.0009 -0.0023 0.54
161 -0.0600 0.0708 0.0010 -0.0018 0.51
169 -0.0744 0.0632 0.0008 -0.0014 0.49
177 -0.0722 0.0549 0.0016 -0.0014 0.49
185 -0.0920 0.0453 -0.0005 0.43

Tirsp) (maximum)

153 -0.0704 0.0783 0.0014 -0.0009 0.38
161 -0.0651 0.0653 0.0013 -0.0004 0.32
169 -0.0804 0.0481 0.0008 -0.0001 0.27
177 -0.0767 0.0526 0.0018 -0.0009 0.31
185 -0.0968 0.0553 0.0005 -0.0006 0.29

6.4 Discussion

Average minimum and maximum TSP temperature have the greatest influence on
wheat crop yield explaining a greater amount of yield variation compared to mean
growing season temperature (Figs. 6-3; Table 6-2). The TSP approximates the
reproductive and the beginning of the grain filling development stages; that warming
during the TSP impacted wheat yield is consistent with analysis in Asseng et al. (2010)
showing that heat events closer to maturity have less impact on final wheat yield.
While several studies focus on the impacts of daily maximum temperature or daytime
temperatures above a critical threshold (Asseng et al. 2010; Lobell et al. 2012; Teixeira
et al. 2013; Gourdji et al. 2013b; Koehler et al. 2013), it is shown here that minimum

temperature during the TSP has an equivalent if not greater negative impact on wheat
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yields (Figs. 6-3 and 6-5; Table 6-2). It is important for further research to contribute to
a better understanding of the differential impacts of daily minimum and maximum
temperature, and associated physiological processes, given an observed (1970-2005)
trend of increasing ‘hot nights’ in northwest India during the pre-monsoon season
(Kothawale et al. 2010) and an observed (1970-2003) increasing trend in winter
minimum temperatures (Kothawale and Rupa Kumar 2005). These results also suggest
that the negative influence of average growing season temperature may be due to it
capturing heating events during the TSP and, that adaptive efforts to increase wheat

crop resilience to warming, should focus on the TSP.

Regressing EDD above incrementing temperature thresholds showed the expected
negative impact of increasing temperature during the TSP on wheat crop yield (Figs. 6-
4 and 6-6). These results suggest wheat yields in Punjab and Haryana are more
sensitive to daily maximum temperatures greater than 35 °C than the crop-specific
critical temperature, often reported as 34 °C for wheat (Hatfield et al. 2011; Lobell et
al. 2012; Gourdji et al. 2013b). The impact of cumulative exceedance of 35 °C during
the TSP on wheat yield also varied with SOS date (Figs. 6-4 and 6.6); this is consistent
with a range of other observational and crop simulation studies which did not reveal a
uniform yield response to heating events greater than 34 °C (Fig. 4b and Fig.8 in Asseng
et al. (2010)). It is worth noting that average minimum and maximum TSP temperature
cause a greater, negative, rate of change in wheat yields than exceedance of the 35 °C
threshold. This indicates the presence of a critical temperature threshold is less
pronounced in real world cereal cropping systems compared to more controlled,
experimental environments or modelling frameworks where the critical temperature
signal can be isolated (Jagadish et al. 2007; Asseng et al. 2010; Teixeira et al. 2013).
There is likely spatial variation in genotype, irrigation and vapour pressure deficit
during the TSP across Punjab and Haryana which will alter wheat crop response to
extreme heat events masking a critical temperature threshold (Asseng et al. 2010;
Gourdji et al. 2013a; Teixeira et al. 2013). It is worth noting that observations were
taken over five years and there may be too few extreme heat events, coinciding with
the TSP, in the distribution of daily maximum temperatures to detect a critical

temperature accurately.
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The negative influence of average TSP temperature on final wheat yield increased with
later SOS dates. This trend is consistent with observations by Lobell et al. (2012) who
observed declines in wheat growing season length associated with later SOS dates in
North India; this was attributed to increased exposure to extreme heat days (>34 °C)
later in the rabi growing season. These results (Figs. 6-3 — 6-6, Table 6-2) suggest that
climatic events, namely warming during the TSP, are limiting potential wheat yields in
Punjab and Haryana. For wheat crops with a later SOS earlier sowing may be an
escape route reducing exposure to damaging heat events and, thus, closing existing
yield gaps. Widespread adoption of zero-tillage represents a suitable adaptive, climate-
resilient, management strategy with earlier SOS reducing TSP exposure to extreme
heat events with subsequent environmental and socio-economic benefits and, no yield
penalty (Erenstein and Laxmi 2008; Jat et al. 2009a). However, even wheat crops with
a SOS of day-of-year 329, were still negatively impacted by warming during the TSP
(Figs. 6-3 — 6-6). This indicates that alongside reducing later sown wheat crops
exposure to higher temperatures (avoidance strategies) adaptations need to be
explored which increase wheat crop tolerance to warming during the TSP to reduce
temperature induced yield gaps (e.g. develop wheat varieties tolerant to extreme
temperatures (Gourdji et al. 2013a)). Implementing such adaptations are important
given i) current temperatures are limiting wheat yield and, ii) projected future trends
of rabi growing season warming and increased frequency of extreme heat days which
would further limit wheat yields (Mathison et al. 2013; Gourdji et al. 2013b). Such
adaptations could have important, future, food security implications given coincidental
pressures of increased demand for food being placed on these croplands due to
population growth (Aggarwal et al. 2004), alongside unfavourable warming (Mathison

et al. 2013; Gourdji et al. 2013b).

The negative influence of mean growing season temperature on crop yield was
observed when regressed as a single predictor variable against crop yield for all SOS
dates for both crops and, when included as a variable in multivariate models (except
when including average maximum TSP temperature for the wheat crop as a predictor
variable) (Table 6-2 and 6-3, Figs. 6-3, 6-5, 6-7 and, 6-9). This is an expected response

consistent with observations from statistical models for a variety of cereal crops
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(Schlenker and Lobell 2010; Lobell and Burke 2010; Lobell et al. 2011a; Rowhani et al.
2011; Lobell et al. 2012; Gourdji et al. 2013a).

For all SOS dates average growing season temperature has limited explanatory power
(R?) for wheat crop yield (e.g. R?=0.13 for SOS on day-of-year 345 and R?=0.06 for SOS
on day-of-year 361) (Fig. 6-3). For later SOS dates (day-of-year 353 and 361) average
minimum temperature during the TSP has a large slope coefficient value in both
univariate and multivariate regression models (Fig. 6-5; Table 6-2). In the multivariate
regression models average maximum temperature during the TSP has a larger slope
coefficient value than average growing season temperature, and in the univariate
regression models average maximum temperature during the TSP explains a much
greater proportion of variation in wheat yield than average growing season
temperature (Fig. 6-3). This may indicate that the lack of negative influence of average
growing season temperature on wheat crop yield when average maximum TSP
temperature was included as a predictor term is an artefact of the multivariate
statistical model and the fact that average growing season temperature explains a very
low proportion of the variation in wheat yield (Table 6-2). The precipitation terms have
little influence on crop yield relative to the temperature terms for both crops (Table 6-
2 and 6-3). This is probably due to the region being extensively irrigated allowing

mitigation against shortfalls in precipitation (DES 2011; Teixeira et al. 2013).

Table 6-3 and Figs. 6-7, 6-8, 6-9 and 6-10 show that increased temperature, either
average minimum or maximum temperature or EDD during the TSP, did not cause a
decrease in rice crop yield. This contrasts with experimental field and laboratory
studies which have shown that exposure to high temperatures negatively impacts
physiological processes during the reproductive phase of rice crops (Jagadish et al.
2007; Rang et al. 2011b). However, an observational study of rice farms across Asia
showed that changes in neither minimum nor maximum temperature during the
reproductive phase of rice crop development impacted final yield (Welch et al. 2010).
However, the same study showed that warming minimum temperatures during the
vegetative and ripening development stages negatively impacted final yield (the
opposite signal was observed for maximum temperatures) (Welch et al. 2010). The lack

of negative signal from temperature impacts on rice yield during the TSP observed
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from remote sensing monitoring can be explained by several factors. The critical
temperature negatively affecting the rice reproductive phase varies in the literature,
and with genotype; it is often reported as an air temperature of 35°C (Jagadish et al.
2007; Hatfield et al. 2011; Teixeira et al. 2013). Rice crops are sensitive to exposure to
extreme heat events (>33.7 °C canopy temperature, ~35°C air temperature) for less
than an hour during anthesis (Jagadish et al. 2007). Therefore, using an approximation
of the TSP from MODIS data with a coarser temporal resolution (8 days) may not be

sufficient to capture heat impacts on the reproductive phase.

Rice crops in hot, dry environments with sufficient moisture, lower relative humidity
and, higher vapour pressure deficit can take advantage of transpiration cooling,
lowering canopy temperature, as an escape from extreme heat events (Wassmann et
al. 2009). Semi-dwarf HYV of the rice crop enhance transpiration cooling mechanisms
through improved canopy architecture with panicles surrounded by leaves (Wassmann
et al. 2009). Relative to other rice growing regions across South and South-East Asia,
Punjab and Haryana have a hot, drier climate (Rupa Kumar et al. 2006; Duncan et al.
2013), with widespread irrigation (DES 2011) and access to HYVs (Aggarwal et al. 2004;
Rang et al. 2011a) suggesting that transpiration cooling may mitigate the negative heat
impacts on the reproductive phase of the rice crop. Transpiration cooling can result in
canopy temperatures several degrees lower than air temperature (measured in this
study) thus, reducing the impact of harmful warming events (Asseng et al. 2010). It is
shown here that exposure to temperature greater than 38 °C had a negative impact on
rice yield (Fig. 6-10). This suggests that it takes warming of this magnitude, which has a
low frequency of occurrence, to overcome the benefits of transpiration cooling in well
irrigated rice croplands. If irrigation, enabling transpiration cooling, is the mechanism
protecting rice crops from heating during the TSP then the climate resilience of rice
yields in Punjab and Haryana must be questioned given concerns regarding the
sustainability of current irrigation water management practices (Ambast et al. 2006;

Perveen et al. 2012).

Remote sensing observations (Lobell et al. 2012) and (Figs. 6-3-6-10) and field
experiments (Jagadish et al. 2007) both reveal intra-growing season variability in crop

sensitivity to climatic conditions. Increased temporal resolution in remote sensing data
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facilitates enhanced detail in detecting occurrence of phenological development stages
providing increased observations during such stages and, thus, capturing intra-growing
season variability in sensitivity to climate. This is in direct contrast to crop yield-climate
models trained with yield data aggregated to administrative boundary units which
masks all phenological detail and preclude detailed assessment of intra-growing
season variation in sensitivity to climatic drivers. However, it is important that the
spatial resolution of remote sensing data is data is of sufficient spatial resolution to
prevent informational gains from an increased temporal resolution being lost through
aggregation into larger spatial units. For example, a single 8km? GIMMS pixel would
provide a single date of heading (peak VI; beginning of TSP) masking significant sub-
pixel variation in crop phenology; this is illustrated in the inset in Fig. 6-11. As
exemplified over the district of Bathinda, Punjab, aggregation, of spectral detail within
coarse spatial resolution pixels or political boundaries, can lead to masking both
phenological and spatial detail and is therefore not suitable to approximate the timing
of climate sensitive crop development stages (Fig. 6-11). Remote sensing data with
sufficient spatio-temporal resolution can capture intra-growing season response to
climate drivers and, thus, be used to monitor the response of real cropping systems to

climatic events.
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Figure 6-11Heading date across Bahtinda district, Punjab, for the rabi wheat crop as detected from
MODIS MODO09A1 products, the black gridlines correspond to the pixel footprint of the 8km GIMMS
NDVI product. The inset exemplifies the pattern displayed across the image where local spatial
variation in the timing of key phenological events mean it is inappropriate to aggregate such
measures up to coarse spatial units.

6.5 Conclusion

Multivariate fixed-effects models trained using panel-data derived from remote
sensing observations and gridded climate datasets capture a large proportion of
variation in rice and wheat crop yields. The panel-datasets used here capture the
impacts of climate variables on crop yields as they occur in real world cropping
systems, accounting for spatial variation in system specific factors (e.g. access to
irrigation, farmer decisions) and can also account for intra-growing season variation in
the impacts of climate on crop yields. It is important to note that no loss of explanatory

power was observed using panel-datasets of remote sensing data to train crop yield-
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climate models compared to models in the literature which used district-wise yield

statistics. The key findings are highlighted below:

e Previous studies have used remote sensing data to demonstrate the impact of
increased warm days above 34 °C during the entire growing season on
shortening growing season lengths for wheat crops in north-west India (Lobell
et al. 2012). Here, we have utilised the phenological detail in remote sensing
data to isolate the impact of temperature during the TSP (the reproductive and
grain-filling stages when final yield is set) on final crop yields for both rice and

wheat crops in north-west India.

e Warming average minimum temperatures during the TSP have a greater
negative impact on wheat crop yield than warming maximum temperatures
during the TSP (e.g. R2=0.53(Min(1’5p)) and 0.38(Maxrsp)) and slope coefficient
values in units of logCUM-EVIsp) of -0.049(Min(rsp)) and -0.022(Maxrsp)) for
wheat crops sown on day-of-year 353). This suggests that studies which focus
on the negative warming impacts of extreme heat events and maximum
temperatures on anthesis, crop reproductive process and grain-filling should
not neglect the impact of warming minimum temperatures during the TSP. This
is pertinent given observed trends of warming night-time and minimum

temperatures in northern India.

e Warming temperatures during the TSP are currently limiting wheat crop
production in Punjab and Haryana. The negative impact of warming
temperature during the TSP increases with later SOS dates. This suggests that
earlier sowing for late sown wheat may mitigate some temperature induced
shortfalls in production. However, given that earlier sown wheat is still
negatively impacted by warming during the TSP (slope coefficient values in
units of logCUM-EVIrsp) of -0.027(Minrsp))) it suggests there is a need for heat

tolerant varieties to prevent temperature induced yield gaps.

e For both rice and wheat crops average growing season temperature had a
negative impact on crop production. This suggests that crop production in the

region is vulnerable to observed and projected warming trends.
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Warming during the TSP did not have a negative impact on rice crop yield, this
could be explained by an extensive irrigation infrastructure enabling
transpiration cooling mechanisms to mitigate heat stress at key phenological
stages. However, given projected warming trends which will increase
evaporative demand coinciding with increasing pressure to use water resources
more sustainably there may be a future reduction in transpiration cooling
capacity. This would have a negative temperature impact on rice crop yields or

reduce levels of water productivity to maintain current levels of production.

Experimental and simulation studies often report 34°C as a critical temperature
threshold for wheat crop growth. However, remote sensing observations
accounting for the complexity of a real world cereal cropping landscape do not
show a uniform yield response after threshold exceedance but do reveal a
more pronounced negative impact on wheat yield with increased warming

events above 35°C.

Temperature only had a negative impact on rice yield after crops were exposed
to temperatures greater than 38 °C during the TSP; given the irrigation capacity
in Punjab and Haryana transpiration cooling may be mitigating the negative

yield impacts of warming events on rice crops.

Growing season precipitation, and precipitation during the TSP had little impact

on either rice or wheat crop yield.
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Chapter 7: Discussion: The vulnerability of the rice-

wheat production system to climatic drivers.

This discussion will synthesise the conclusions from the separate research papers
(Chapters 3 — 6) around the central theme of the thesis: an assessment of the
vulnerability of the rice-wheat production systems in the north-west IGP to climatic
drivers. It does so by addressing the three research questions posed at the end of

Chapter 2.

7.1 What is the exposure the of rice-wheat crop production system

to harmful climate drivers?

Abundance of water resources is considered a limiting factor for crop yield (van
Ittersum et al. 2013), in India the main climate driven water resource for agriculture is
the ISM (Krishna Kumar et al. 2004; Mall et al. 2006). Levels of ISM precipitation exert
a statistically significant level of control on rice and wheat yields in India, and are
correlated with foodgrain yields in Punjab and Haryana (Krishna Kumar et al. 2004).
Exposure to lower relative normal levels of ISM precipitation, higher relative levels of
variability in ISM precipitation, and increasing trends in, or frequency of recurrence in
unfavourable facets of ISM precipitation will have a negative impact on agricultural
production systems either limiting yield or increasing pressure on the system to buffer
against precipitation shortfalls (e.g. increase groundwater irrigation). Analysis in
Chapters 3 and 5 reveal the extent of exposure of rice-wheat croplands in Punjab and

Haryana to unfavourable and harmful ISM conditions.

It was shown in Chapter 3 that normal levels of ISM precipitation over the period from
1951 to 2007 were lower relative to the rest of India, and also to the water
requirements of a rice-wheat cropping system placing pressure and reliance upon
groundwater irrigation (Ambast et al. 2006). Fig. 3-1a shows the spatial patterns of
normal ISM precipitation totals across all of India and Fig. 1-6a presents a zoomed-in
version of this for Punjab and Haryana. Fig. 3-3a shows that parts of Punjab and

Haryana have a higher frequency of occurrence of drought years relative to large
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portions of India, and also a later onset date of ISM placing pressure on the length of

growing season supported by a renewable water resource (Fig. 3-5a).

The above mentioned precipitation datasets were integrated with maps of rice and
wheat crop extent, generated at a 500 m spatial resolution using remote sensing data,
in Chapter 5 to reveal that 2.52 million ha of rice or wheat croplands in Punjab and
Haryana were exposed to unfavourable trends in at least one facet of ISM
precipitation, a further 2.53 million ha experienced unfavourable trends in two facets
of ISM precipitation and, 0.24 million ha experienced unfavourable trends in three
facets of ISM precipitation (Fig. 5-3a). Trends of increasing recurrence of drought years
and increasing variability in ISM precipitation intersecting in space with rice-wheat
croplands had the largest spatial coverage in Punjab and Haryana (Fig. 5-3b and c). The
spatial coverage of increasing trends in recurrence of drought years intersecting with
rice-wheat croplands was focussed across southern and central Punjab and Haryana
(Fig. 5-3b); the corresponding spatial coverage of increasing trends in variation in ISM
precipitation over rice-wheat croplands occurred in south-west Punjab, southern and

central Haryana and patches of northern Haryana (Fig. 5-3c).

In Chapter 6 it was shown that exposure to increased temperatures during the TSP of
crop development had a negative impact on wheat yields. The TSP of crop
development corresponds to the reproductive and grain filling phenological stages.
Exposure to increasing daily minimum (night time) temperatures had a greater
negative impact on wheat yields than exposure to increasing daily maximum (day time)
temperatures. Exposure to daily maximum temperatures greater than 35°C for wheat
and 38°C for rice during the TSP registered a marked decrease in crop yield. GCM and
RCMs predict an increase in warming over Punjab and Haryana with an increase in
extreme heat days (Rupa Kumar et al. 2006; Moors et al. 2011; Mathison et al. 2013)
suggesting future increases in exposure to harmful warming. Exposure to warming

growing season temperatures has a negative impact on both rice and wheat crops.

Exposure can be considered as a function of external processes to the system (e.g.
climatic processes) and also the relationship and feedbacks between internal system

factors and the external processes controlling the perturbation or stress (Gallopin
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2006). This is of relevance to the agricultural production systems of Punjab and
Haryana, where crop residue burning has a direct influence on climate processes with
short-term impacts on agriculture (e.g. monsoon circulation interrupted by
atmospheric particulates and brown clouds (Zickfeld et al. 2005; Auffhammer et al.
2006; Knopf et al. 2008; Ramanathan and Carmichael 2008)), but also increasing GHG
concentrations influencing the slower process of atmospheric warming. Thus, when
viewed through a systems perspective crop residue burning is a positive feedback
increasing the exposure of the agricultural production system to harmful climate
changes which if sensitivity and adaptive capacity are kept constant would increase
vulnerability. The extent of crop residue burning for the rice and wheat crops were
estimated using remote sensing data in Chapter 5 (Fig. 5-5d) and the associated GHG

emissions were computed (Table 5-5).

7.2 What is the sensitivity of rice-wheat crop production to variations

in climate drivers?

Viewing the outputs of Chapters 5 and 6 in conjunction highlights the importance of
not assessing the exposure and sensitivity of a system in isolation. Chapter 5
highlighted that large portions of the rice-wheat production landscape were exposed
to unfavourable trends in ISM precipitation (e.g. increasing recurrence of drought
years, increasing variation in ISM precipitation; Fig. 5-3). However, fixed-effects
multivariate crop yield-climate models in Chapter 6 showed that neither rice nor
wheat crop yields were sensitive to reduced ISM precipitation. This indicates that other
factors within the system are reducing crop production sensitivity to variation in
precipitation; this is likely a factor of the widespread irrigation (both groundwater and
surface canal) subsidised by the state government (Murgai et al. 2001; Aggarwal et al.

2004; Tyagi et al. 2005; Ambast et al. 2006; DES 2011; Perveen et al. 2012).

Internal system factors can create space-time differences in the sensitivity of the
system or variable to similar climatic stresses or perturbations (Luers 2005). In Chapter
6 it was demonstrated that the sensitivity of wheat crop yields to warming (both
minimum and maximum temperatures) during the TSP was not uniform for SOS dates,

but increased with later SOS dates (Fig. 6-3, 6-4, 6-5 and 6.6; Table 6-2). The modelling
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framework employed in Chapter 6 accounted for endogenous system processes (e.g.
farmer decisions, access to irrigation, soil type) and other omitted variables using
fixed-effects terms to isolate the crop yield-climate signal. This approach recognised
that remote sensing observations are not only a direct measure of crop response to
climate drivers but of all other system processes influencing crop growth and yield. The
difference in SOS dates for the wheat crop could be explained by numerous factors
exogenous to the system; for example, the temperature distribution of the preceding
kharif rice growing season which determines time till crop maturity and the temporal
distribution of extreme heat events during the rabi wheat growing season (Lobell et al.

2012).

However a range of endogenous factors to the system determine the SOS date for the
wheat crop and, thus, cause differential sensitivity and vulnerability of wheat crop
yield to temperature such as: the rice variety grown during preceding kharif season
(some varieties are shorter duration where as others such as basmati are longer
duration (Rang et al. 2011a)), the crop type grown during the preceding kharif season
(kharif cotton is longer duration than rice (Lobell et al. 2013)), the perception of
farmers of the need for conventional tillage practices with repeated ploughing of fields
after harvest of the rice crop, awareness of conservation tillage practices and access
to, and ability to use and procure, zero-tillage drills (Erenstein and Laxmi 2008;
Erenstein 2009a; Ojha et al. 2013). This illustrates the importance retaining an
awareness of the underlying system when assessing the vulnerability of crop yields to
climate drivers. It is likely other endogenous system factors will cause differential

vulnerability in crop yields such as management practices or soil type (Luers 2005).

Contrary to expected theory, and laboratory and controlled field experiments, there
was no decrease in rice yield associated with increased warming during the TSP
(Jagadish et al. 2007; Wassmann et al. 2009). It was only when temperatures exceeded
38°C during the TSP that there was a negative influence on rice yield. This is likely a
system specific (lack of) sensitivity to warming during the TSP associated with the
extensive irrigation infrastructure enabling transpiration cooling to lower canopy
temperatures when exposed to increasing air temperatures (Wassmann et al. 2009;

DES 2011; Teixeira et al. 2013). Currently rice crop yields do not appear to be sensitive
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to exposure to warming temperatures during the TSP. However, much of the rice
croplands are reliant upon groundwater irrigation (Ambast et al. 2006), associated with
rapidly declining groundwater levels (Ambast et al. 2006; Rodell et al. 2009; Tiwari et
al. 2009), with extraction levels far exceeding renewable limits (Central Ground Water
Board 2012; Gleeson et al. 2012) and, with large areas exposed to unfavourable trends
in ISM precipitation and a high frequency of drought years (Fig. 5-4; Pai et al. 2011;
Duncan et al. 2013). This is coupled with a growing awareness of a need to use
irrigation water resources more sustainably and concerns that water resources cannot
indefinitely meet the demands of the rice cropping system (Perveen et al. 2012; Ojha
et al. 2013), that normal levels of precipitation are well below water requirements for
rice cropping (Fig. 2-2) and, uncertainty in projections of future levels of ISM
precipitation due to long term climate changes (Annamalai et al. 2007; Moors et al.
2011; Turner and Annamalai 2012; Mathison et al. 2013) and atmospheric particulates
and brown clouds with a shorter residency time in the atmosphere (Ramanathan and
Carmichael 2008). Decreasing soil quality and increasing soil salinity require excess
irrigation water to return the soil to a quality acceptable for crop growth (Tyagi et al.

2005).

This is illustrative of the need to understand system processes for a comprehensive
assessment of the vulnerability of crop yields to climate change. Whilst rice crop yields
are not currently displaying outcomes of vulnerability to warming temperatures during
the TSP the trajectories in underlying system processes and ecosystem services
indicate the system may not be able to continue mitigating against warming events in
the TSP. This is pertinent as it highlights that the rice cropping system is vulnerable to
climate even if it does not appear to be so, and the likelihood of outcomes of
vulnerability (a decrease in yield) being realised will increase due to the confluence of
warming trends (Kothawale and Rupa Kumar 2005; Rupa Kumar et al. 2006; Moors et
al. 2011; Mathison et al. 2013) and indicators that the system will not be able to

continue supplying such high levels of irrigation water.

As mentioned, Luers (2005) measured the vulnerability of agricultural production by its
location in vector space defined by variables on the x axis (sensitivity and exposure:

coefficient of variation in crop yield) and the y axis (the state of the system: crop yield,
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normalised by a threshold of well-being). This is similar to the bivariate maps produced
in chapter 4 where the value assigned to each location is a function of coefficient of
variation and normal (mean) conditions for the variable of interest. The variables
assessed in this manner in chapter 4 were kharif and rabi LGS and kharif and rabi
productivity (Figs. 4-4, 4-5, 4-7 and 4-9). These bivariate maps can be used to assess
the relative risk of cropping in a location, normal conditions (either average LGS or
productivity) inform on the suitability of a location for a given cropping practice
whereas the coefficient of variation is an indicator of the risk of implementing such a
cropping practice (Vrieling et al. 2013). Applying the framework of Luers (2005) to the
bivariate maps, low normal conditions and a high coefficient of variation would imply
high vulnerability. In Chapter 4 GIMMS NDVI data were used to assess long-term
(1982-2006) normal, coefficient of variation and trends in kharif and rabi productivity
and produce bivariate plots. Taking vulnerability as defined by Luers (2005) the most
vulnerable regions in Punjab and Haryana were the southern and south-central
portions (Fig. 4-7 and Fig. 4-9). There is a clear spatial overlap between these regions
of high vulnerability and low normal ISM precipitation (Fig. 2-2), high frequency of
drought years (Fig. 3-3a), increasing recurrence of drought years (Fig. 3-3b and Fig. 5-
3b), increasing variation in ISM precipitation (Fig. 5-3c) and later onset date of ISM (Fig.
3-5). It is in these southern portions of Punjab and Haryana that the wheat crop has
the latest SOS (Fig. 5-3b), which increases sensitivity to harmful increases in
temperature (Chapter 6) and the lowest density of tubewells (proxy for irrigation
capacity) (Fig. 5-4; Ambast et al. 2006). This suggests that agricultural productivity,
long-term, in the absence of infrastructural capacity is sensitive to prevailing climatic

conditions.

7.3 Where are locations which can be targeted with adaptations,
accounting for location-specific stresses and thereby enhance the
resilience of crop production to climate changes and variation

whilst minimising environmental impacts?

As discussed in Chapter 1 it is now accepted that any assessments of vulnerability of

croplands to climate change and potential adaptations to reduce vulnerability are
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limited if they are not nested within a holistic understanding of the underlying system
and also contribute to reducing agriculture’s environmental and climatic footprint
(Tilman et al. 2002; The Royal Society 2009; Foresight: Final Project Report 2011; Foley
et al. 2011). There are therefore inherent trade-offs in agricultural production systems
between competing goals of maximising production, reducing vulnerability to climate
change, reducing negative impacts on environmental resources and supporting a range
of ecosystem services (FAO 2011a; FAO 2011b; FAO 2012; Dobermann and Nelson
2013). Often these trade-offs occur spatially, where a landscape must support multiple
social and economic systems and agricultural production and land use practices must
be traded-off with environmental sustainability goals (Scherr et al. 2012; Dobermann
and Nelson 2013). Therefore, there is a research need to identify adaptations, and
locations where these adaptations can be targeted in a landscape, to minimise trade-
offs and capture synergies between the various climate-smart goals. Outcomes
generated through these four papers contribute to identifying locations where these
synergies exist and where trade-offs can be minimised. This delivers an advance in
knowledge to system managers and the policy environment on where and what
adaptations to implement to reduce the vulnerability of agricultural production to
climate change whilst also delivering other climate-smart development goals (FAO

2011b).

The locations of 592,866 ha of cropland across Punjab and Haryana exposed to
unfavourable trends in monsoon precipitation, where the wheat crop was sown late
and so sensitive to increased warming during the TSP and where crop residue was
burnt were highlighted. In this situation, such locations could be targeted with zero-
tillage drills which can seed through residue delivering multiple benefits of earlier
sown wheat with increased yields and reduced sensitivity to warming but also
improved water use productivity and reduced GHG emissions (Erenstein and Laxmi
2008; Jat et al. 2009a). It is important to note zero-tillage has been shown to deliver
other environmental benefits contributing to climate-smart goals including improved

soil quality (Hobbs et al. 2008; Erenstein and Laxmi 2008).

In 2009-2010 the locations where rice and wheat yield gaps occurred were detected

and using longer-term measures from the GIMMS datasets locations where production
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had greater levels of inter-annual variation were identified. Closing these yield gaps or
creating more stable levels of production will reduce pressure to expand croplands

with subsequent environmental benefits.

Across all India, and in Punjab and Haryana, there was a fragmented spatial pattern in
the occurrence of trends in facets of ISM precipitation which could impact agricultural
production, or necessitate extra irrigation withdrawals. By applying trend analysis to
daily precipitation data for a long time-period (1951-2007) it was possible to detect
locations experiencing unfavourable trends and avoid masking local detail by
aggregating data up to larger spatial units. This analysis was important in highlighting
the need for locally sensitive water resources management and also in targeting
locations in need of adaptation for water management practices. In the context of
croplands, it can highlight cropland locations which would benefit from adapting to
more water efficient practices such as residue retention, laser bed levelling or shifting
crop type (e.g. from rice to wheat or maize) (Hobbs et al. 2008; Jat et al. 2009a
Saharawat et al. 2010).

The ability to quantify landscape scale GHG emissions from residue burning, and track
year on year variability in burning within and across a landscape, moves farmers closer
to receiving financial benefits from carbon markets (Milne et al. 2012). Access to these
financial benefits would have obvious economic benefits to farmers enhancing their
adaptive capacity. Using remote sensing data as inputs GHG emissions from crop
residue burning were quantified using the standard IPCC methodology (IPCC 2006b).
Using phenology to distinguish between crop types meant that crop specific
combustion factors could be used to more accurately estimate emissions from
different crop types. Satellite-derived estimates of GHG emissions from residue
burning, complements the need for landscape scale quantification of GHG emissions,
targeting ‘hotspot’ sources of GHGs and improving the efficiency of resources available
for mitigation (Milne et al. 2012). There are uncertainties which need to be quantified
before this approach can be used to inform payment for carbon credits and, thus,
deliver any enhancement to farmer’s adaptive capacity (see section 5.2.3.1). The use of
optical remote sensing datasets and burned area products here only monitors GHG

emissions from crop residue burning and does not address the whole range of
211



emissions from cereal cropping (e.g. N,O emissions from fertiliser application or CH,
emissions from anaerobic decomposition in rice cropping systems (Power 2010;

DeFries and Rosenzweig 2010)).
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Chapter 8: Conclusions and future work

To conclude a list of key findings drawn from the four research papers are presented.
These findings are all key to understanding the vulnerability of the rice-wheat

production system of the north-west Indo-Gangetic Plains to climate drivers.

e Locations experiencing unfavourable trends for agricultural production in facets
in ISM precipitation (decreasing ISM precipitation, increasing variation in ISM
precipitation, increasing recurrence of drought years, later onset date and
increasing variation in onset date) were generated by performing trend analysis
at a 0.25° spatial resolution. This analysis highlighted that at a national, and
sub-national, level there was a fragmented spatial pattern in locations
experiencing negative or positive trends in facets of ISM precipitation. This
suggests there is a need, nationally, to manage water resources at the local
level.

¢ A new method of identifying location-specific onset date of ISM was developed
and validated; characterising spatial patterns and trends in onset date of the
ISM is important to identify locations where the timing or length of the ISM
season can impact the length of growing season. This has important
implications for regions with a high cropping intensity and limited amounts of
renewable water resources, as occurs across most of Punjab and Haryana.

e Agricultural systems in southern Punjab and Haryana have the greatest inter-
annual variability in productivity and length-of-growing season suggesting these
regions are particularly vulnerable to climatic drivers.

e 5.3 million ha of rice-wheat croplands experienced at least one, and up to
three, unfavourable trends (between 1951 and 2007) in facets of ISM
precipitation. In Punjab and Haryana it was predominantly cropland exposure
to increasing frequency of occurrence of drought years and increasing variation
in ISM precipitation.

e Using a combination of location-specific remote sensing metrics, rice and
wheat crop residue burning over 1.17 million and 2.4 million ha respectively
during the 2009-2010 growing season was detected. The associated GHG
emissions from the crop residue burning were estimated using the standard
IPCC methodology.

e |n 2009-2010, 965,363 ha of wheat croplands had yield gaps greater than 1
Tonne ha' and 4336 ha had yield gaps greater than 2 Tonnes ha™; 321,580 ha of
rice croplands had yield gaps greater than 1 Tonne ha™ and 3349 ha had yield
gaps greater than 2 Tonnes ha™’. This suggests potential to increase production
without expanding cropland areas.
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e 592,866 ha of rice-wheat croplands were detected as priority locations for
targeting with zero-tillage and residue retention. These were locations exposed
to unfavourable trends in ISM precipitation, where the wheat crop was sown
late increasing sensitivity to warming during the TSP and crop residue was
burnt emitting GHGs and reducing soil water holding capacity.

e |t was shown here that the phenological detail in remote sensing datasets can
reveal the impact of temperature events during the TSP periods of crop
development on final yield. Warming minimum and maximum temperatures
during the TSP had a negative impact on wheat crop production. This negative
impact increased with later planting dates for the wheat crop.

e Warming during the TSP did not have a negative impact on rice crop
production, though warmer average growing season temperatures did. The lack
of negative impact of warming during the TSP period may be due to irrigation
enabling transpiration cooling.

e There was not a clear crop critical threshold above which warming events
during the TSP had a terminal impact on crop production. However, increased
frequency of warming events during the TSP above 35°C and 38°C, for wheat
and rice respectively, resulted in a noticeable decrease in yield. These values
differ from those reported in experimental studies suggesting cropland system
factors create crop differential sensitivity to warming.

8.1 Concluding Remarks

The rice-wheat production systems of Punjab and Haryana are key to supporting the
livelihoods and food security of several hundred million people, are vulnerable to
climatic change and variability, and current agricultural practices are unsustainable
degrading the ecosystem services upon which agricultural production relies. In
response to this situation there is a need to adapt the rice-wheat cropping systems so
that they are less vulnerable to climatic drivers whilst also attempting to meet other
climate-smart development goals. Alongside their unique conclusions and
contributions, the four research papers which constitute this thesis provide a body of
work assessing the vulnerability of the rice-wheat production system to climatic drivers
and provide information to target adaptations spatially to deliver climate-smart goals
and enhanced climate resilience. It was shown through this research that remote
sensing can be used to monitor how individual crops, within their unique geographical

location and underlying agricultural system, respond to climatic variables and can
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identify optimum adaptations to capture synergies between multiple development

goals. This enables adaptive responses to be location- and system-sensitive.
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Appendix

8.1 Appendix 1

Al. Rain gauges used in the computation of the APRHODITE daily precipitation product
(http://www.chikyu.ac.jp/precip/products/index.html). Red gauges correspond to national meteorological
organisation collections, blue dots correspond to Global Telecommunications System (GTS) data and
other dots correspond to a range of precompiled datasets listed in:
file:///C:/Users/jmd1v13/Downloads/5_137_2.pdf and file:///C:/Users/jmd1vi3/Downloads/5_137_1.pdf.
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8.2 Appendix 2

80000

60000

Government statistics for state-wise
area cropped more than once (km?)

T T T

T T T T
0 50000 100000 150000 200000

GIMMS NDVI derived estimates for double-cropped
areas (km?)

A2. The relationship between state-wise area detected as double cropping from GIMMS NDVI data
and Government of India land-use statistics for area cropped more than once for Punjab, Haryana,
Bihar and Uttar Pradesh (1998-99 to 2005-06). The R’ value is likely inflated due to including Uttar
Pradesh in the analysis, which corresponds to the collection of points in the upper right of the plot.
However discounting Uttar Pradesh from the analysis still yields an R? of 0.68. This indicates the
GIMMS NDVI data captures the state-wise inter-annual variation in cropping intensity though may be
sub-optimal for exact areal estimates. That the GIMMS NDVI data tends to overestimate area cropped
more than once relative to the Government of India estimates is likely due to it considering full-pixel
areas not accounting for sub-pixel proportions (Thenkabail et al. 2007). However, the purpose of this
study is not to provide accurate, census-style, estimates of land-use but to capture spatial and
temporal patterns in the change in LSP across an agricultural landscape at a regional scale. Given the
dominant agricultural land cover across the IGP the GIMMS dataset is suitable for this purpose (please
see section 4.4.1 for a more detailed discussion of the limitations of the GIMMS NDVI dataset). The
red dotted line is a 1:1 fit.
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8.3 Appendix 3
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A3.1 State-wise kharif cumNDVI plotted against state-wise foodgrain production statistics for Punjab,
Haryana, Uttar Pradesh and Bihar (1982-83 to 1994-95). Excluding Uttar Pradesh from the analysis
(upper right collection of points on the plot which inflates the R? value) yields an R? value of 0.56. The
red dotted line is a 1:1 fit. It should be noted this is not a perfect validation, no attempt has been
made to discriminate between crop types using the GIMMS NDVI dataset, cumNDVI is taken as a
proxy for agricultural production over the landscape and is not an exact or validated measure of
foodgrain production. We have chosen to validate against foodgrain production as it covers a range of
crop types. This provides an indication the cumNDVI captures broad inter-annual and spatial patterns
in agricultural production.
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A3.2 State-wise rabi cumNDVI plotted against state-wise foodgrain production statistics for Punjab,
Haryana, Uttar Pradesh and Bihar (1982-83 to 1994-95). Excluding Uttar Pradesh from the analysis
(upper right collection of points on the plot which inflates the R value) yields an R? value of 0.72. The
red dotted line is a 1:1 fit. It should be noted this is not a perfect validation, no attempt has been
made to discriminate between crop types using the GIMMS NDVI dataset, cumNDVI is taken as a
proxy for agricultural production over the landscape and is not an exact or validated measure of
foodgrain production. We have chosen to validate against foodgrain production as it covers a range of
crop types. This provides an indication the cumNDVI captures broad inter-annual and spatial patterns
in agricultural production.

244



8.4 Appendix 4
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NDVI Phenology profiles for GIMMS NDVI pixel at 29.95 N and 85.67 E (Bihar).
In 1993 it met threshold green up requirements for rabi cropping but in 1994 it
did not.

AA4. Areas under double cropping from 1990 through to 1996. It illustrates the larger area under
double cropping detected in 1993 compared to other years across the eastern portions of the IGP. This
was particularly pronounced in Bihar in 1993 (see Fig. 4-3 and Fig. 4-6). This anomaly is an artefact of
using GIMMS NDVI data with an 8 km spatial resolution in areas of the IGP where there are a larger
proportion of smallholder farmers (Bihar has an average farm size of 39 m’ (Agricultural Census
2012)). Fig. 6-11 illustrated that there was a large variation in the timing of phenological events
occurring within a GIMMS NDVI pixel in Punjab, this variation will be more pronounced in more
fragmented smallholder landscapes in Bihar. This will result in large within pixel variations in timing of
SOS dates, EOS dates, peak growing dates and the levels of biomass in fields at different times. This
will create a mixed spectral signal averaged out as a GIMMS NDVI value at an 8 km spatial resolution
masking phenological detail and making it harder to discriminate between growing seasons. For
example, the phenology profile for the pixel displayed above in 1994 suggests some rabi cropping is
occurring as the second small peak is anomalous to the natural cycle of vegetation in a monsoonal
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climate. However, there is not a clear EOS for the kharif crop and SOS for the rabi crop in the
phenology profile of GIMMS NDVI data which precludes meeting the threshold requirements for
detecting green up associated with agricultural growth. However, in 1993 the difference between SOS
NDVI and peak NDVI was large enough to meet the threshold green up requirements. Whilst the
GIMMS NDVI dataset captures the eastward advance of double cropping between 1982-83 and 2005-
06 at a regional scale a lot of local detail is missed or masked out at the 8 km spatial resolution,
especially in the smallholder agricultural regions of the eastern IGP. As such, these estimates of area
should not be considered as accurate areal extents. The release of Sentinel-2 in 2015 witha 10 m
spatial resolution and 5 day revisit period will increase the accuracy, and level, of phenological detail
over smallholder and fragmented agricultural landscapes (ESA 2010).

8.5 Appendix 5

A5. Table showing the R?values estimates of district-wise rice and wheat crop production using CUM-
EVI:sp) for the 2002-2003 to the 2006-2007 growing seasons using regression coefficients derived from
the 2009-2010 growing season. That these regression coefficients enable accurate estimates of rice
and wheat production across multiple years suggests CUM-EV|;sp) is a time-invariant indicator of crop
production.

Year Rice Wheat
2002-2003 0.95 0.94
2003-2004 0.94 0.81
2004-2005 0.95 0.87
2005-2006 0.94 0.89
2006-2007 0.85 0.80
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