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ABSTRACT 
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Geography and Environment 

Thesis for the degree of Doctor of Philosophy 

ASSESSING THE VULNERABILITY OF THE RICE-WHEAT PRODUCTION SYSTEM IN THE NORTH-

WEST INDO-GANGETIC PLAINS TO CLIMATIC DRIVERS 

John Duncan 

This thesis explores the spatial patterns in the vulnerability of the rice-wheat production 
systems of Punjab and Haryana to climate. Remote sensing monitoring is used to identify rice 
and wheat crop extents and to capture dynamics of the cropping system such as length of 
growing periods and cropland productivity. This remote sensing monitoring is integrated with 
analysis of climate datasets and other measures of the agricultural system to 1) identify the 
exposure of rice-wheat croplands to harmful climate drivers, 2) capture the sensitivity of the 
rice-wheat croplands to climate and to 3) inform targeted adaptations to improve climate 
resilience, ensure environmental sustainability and sufficient levels of production, the pillars of 
a climate-smart landscape.  

Across all India, including Punjab and Haryana, there was a fragmented spatial pattern in the 
occurrence, and sign, in trends of monsoon precipitation. This highlights the need for locally 
sensitive water resources management. Over 5 million ha of rice-wheat croplands in Punjab 
and Haryana were exposed to unfavourable trends in facets of monsoon precipitation; this was 
mainly exposure to increasing recurrence of drought years and increasing inter-annual 
variability in monsoon precipitation. However, crop yield-climate regression models indicated 
that precipitation is not influencing variability in rice or wheat crop production but growing 
season temperatures are. Average minimum and maximum temperature during the thermo-
sensitive periods of crop development have a greater negative impact on wheat crop yield 
than exceedance of critical temperatures. The negative impact of warming on wheat crop 
production increased with later start-of-season dates. Through an integrated use of remote 
sensing datasets the spatial patterns in the magnitude and varying nature of the vulnerability 
of crop production to climate were captured. This enabled identification of location-specific 
stresses, such as later sowing dates, and targeting locally optimum adaptations.   
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AGDD – Accumulated Growing Degree Days 

APHRODITE – Asian Precipitation – Highly-Resolved Observational Data Integration Towards 
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FAO – Food and Agriculture Organisation of the United Nations 

FEWSNET – Famine Early Warning System Network 

GCM – Global Climate Model 

GHG – Greenhouse Gas 

GIMMS – Global Inventory Mapping and Modelling Studies 

GLAM – Global Large Area Model 

GLC2000 – Global Land Cover 2000 

GRACE – Gravity Recovery and Climate Experiment 

GSOD – Global Summary of the day 

HYV- High Yielding Variety 

IGP – Indo-Gangetic Plain 

IMD – Indian Meteorological Department 

IRRI – International Rice Research Institute 



ISM – Indian Summer Monsoon 

IWRM –Integrated Water Resources Management 

LGS – Length of Growing Season 

Log(CUM-EVI(TSP)) – natural logarithm of CUM-EVI(TSP) 

LSP – Land Surface Phenology 

LSWI – Land Surface Water Index 

MTCI – Meris Terrestrial Chlorophyll Index 

N2O – Nitrous Oxide 

NDSI - Normalised Difference Snow Index 

NDVI – Normalised Difference Vegetation Index 

NPP – Net Primary Productivity 

O3 – Ozone 

QA – Quality Assurance 

RCM – Regional Climate Model 

SOS – Start-of-Season 

SPA – Standardised Precipitation Anomaly 

SRES – Special Report on Emissions Scenario 

SSV – Spectral Similarity Value 

TFP – Total Factor Productivity 

TSP – Thermo-Sensitive Period 

VI – Vegetation Index 

VIF –Variance Inflation Factor 

Yp – Potential Yield 

 

 



Chapter 1:  Introduction 

The productivity of cereal croplands is crucial to sustaining global food security; in 

2011 the cereal crops of maize, rice and wheat were ranked second, third and fourth 

respectively in terms of global production of agricultural commodities and rice had the 

greatest global net production value (FAO 2013). Globally croplands cover 12% of the 

terrestrial land surface and together cropland and pasture are equivalent in terms of 

ecosystem coverage to forests and have already exhausted the best farmland (Foley et 

al. 2007; Foley et al. 2011; Fig. 1-1). The food security of large proportions of the global 

population relies upon ‘focal’ regions of intensive cropping (Fig. 1-1). For example, 

China’s population of 1.37 billion (20% of the global population)  is reliant on cereal 

croplands covering only 9.5% of the national and, less than 1% of the global, land 

surface (FAO 2013).  

 

Figure ‎1-1 Map of global croplands, showing percentage coverage of cropland within a 5 minute grid 
cell in the year 2000 (Ramankutty et al. 2008).  

Levels of production from cereal croplands are partly determined by climatic variables 

and are linked to the pulses of climatic variation (Krishna Kumar et al. 2004; Brown et 

al. 2010; Lobell et al. 2011a; Lobell et al. 2011b; Lobell et al. 2012). Changes in climate 

drivers or increases in climatic variation could limit levels of cereal crop production 

(Lobell et al. 2011b). Billions of people globally are vulnerable to productivity losses in 



these ‘focal’ cereal production systems. This is evidenced by the recent food price crisis 

in 2008 where shortfalls in production and food price fluctuations had the greatest 

impacts on the poorest segments of society (Hajkowicz et al. 2012). It is therefore 

important that adaptations are implemented within cereal production systems to 

increase the resilience of crop production to projected climate changes and climatic 

variability (The Royal Society 2009; Teixeira et al. 2013).  

However, cereal croplands are not just vulnerable to climate change and variability but 

also to a range of other stresses and pressures including growing populations 

increasing demands for food on limited or stagnating cultivated areas, increasing 

competition for land, water and energy resources from other sectors such as 

urbanisation or industry, changing diets with greater emphasis on meat products and 

environmental degradation and loss of land to salinization (The Royal Society 2009; 

Hanjra and Qureshi 2010 Foley et al. 2011; Foresight: The Final Project Report 2011; 

Gleeson et al. 2012; Table 1-1). Table 1-1 presents a summary of the key stresses 

affecting global cereal croplands. This situation has been articulated as the ‘perfect 

storm’ for food security by Beddington (2009). It is important to note that the 

magnitude of climate impacts on cereal crop production will vary between and within 

croplands due to underlying system factors such as soil type, access to irrigation and 

farmer management (Luers et al. 2003; Luers 2005).  

 

 

 

 

 

 

 

 



Table ‎1-1 Global stresses on cereal crop production and cereal croplands. 

Stress Impact on cereal croplands 

Population growth Global population is projected to increase by two to three by billion by 
2050 increasing crop demand by 100-110%. This is alongside feeding 
the 870 million currently food insecure through undernourishment.  

Income and changing diets With rising incomes a greater proportion of the global population will 
seek out meat based diets. This results in conversion of croplands to 
grazing lands and an increased water and environmental footprint. It 
takes 30kg of grain to produce one kg of beef.  

Competition for resources 
(land and water) 

Cereal crop production will increasingly have to compete with other 
sectors, such as urbanisation, biofuels, grazing land and industry for 
land and water inputs. This indicates the need to increase cereal 
productivity per unit land and per unit water.   

Environmental degradation Degradation of environmental resources and regulating ecosystem 
processes will limit cereal crop production. Often environmental 
degradation is the result of intensive agriculture over the past 50 
years.  

Stagnating yields Whilst demand for food increases the rate of increase in crop yields 
has declined. Crop yields increased by 56% between 1965 and 1985, 
yet by only 20% between 1985 and 2005. Growth rates in the top four 
crops (maize, rice, wheat and soybean) are not sufficient to meet 
expected demand. 

Climate change and variability Warming trends have already limited cereal crop production. 
Projected warming, variable precipitation and increased frequency of 
extreme events will limit future cereal production and suitable 
croplands, especially in tropical and sub-tropical latitudes. Worryingly, 
between 1985 and 2005 there was a net redistribution of global 
croplands towards tropical latitudes. 

The need for sustainability There are pressures for cereal cropping to be more sustainable. 
Expansion of croplands at the expense of forests and biodiversity must 
be minimised, as must agricultures GHG emissions, inefficient use 
irrigation water and over-use of fertilisers. 

Table sources: Tillman et al. (2002); Aggarwal et al. (2004); Foley et al. (2005); Millennium Ecosystem 
Assessment (2005); Easterling et al. (2007);  Schmidhuber and Tubiello (2007); Thenkabail et al. 
(2010); Lobell et al. (2011b); Foley (2011); Foley et al. (2011); Tillman et al. (2011); Foresight: The Final 
Project Report (2011); Ray et al. (2013); Teixiera et al. (2013); Godfray and Garnett (2014). 

It is emphasised both in the academic literature and in international policy that unless 

cereal croplands are moved onto a climate-resilient, environmentally sustainable 

trajectory whilst simultaneously increasing productivity the consequences for 

humanity will be negative and focused on the global poor (Morton 2007; Vermeulen et 

al. 2010; Godfray et al. 2010; World Bank 2011; Poppy et al. 2014). Cereal croplands 



must be transformed such that agricultural practices ensure sufficient and stable 

production, in spite of uncertain future climate scenarios, for food security, and wider 

poverty alleviating and development goals. Changes to cereal cropping practices must 

aim to also preserve biodiversity, ecosystem service provision and ecological processes 

and, have a limited, or mitigating, impact as a driver of climate change. These goals are 

critical to the framework of ‘climate-smart’ agriculture; climate-smart agriculture 

approaches are advocated as the desired sustainable and climate-resilient 

development pathway by numerous international organisations (World Bank 2011; 

FAO 2011b). Beddington et al. (2012a) and Beddington et al. (2012b) discuss the need 

to find a ‘safe operating space’ for agricultural systems whereby they operate within 

environmental limits (conceptualised as ‘planetary boundaries’ by Rockstrom et al. 

(2009)), without contributing to climate change and whilst meeting the needs of a 

growing population. In this context, any assessment of the vulnerability of cereal crop 

production to climate change or climatic variation with the intention of informing 

climate-resilient adaptations must also consider the range of stresses placed on cereal 

production systems, and that agricultural practice must reduce their environmental 

and climatic footprints. 

The situation in India is typical of this global issue. India’s population, in excess of 1.2 

billion people, with a decadal growth rate of 17.64% (DES 2011), is heavily dependent 

upon, the ‘focal’ areas of cereal cropping in Punjab and Haryana in the north-west 

Indo-Gangetic Plains (IGP) (Fig. 1-2). In 2011-2012, Punjab and Haryana comprised only 

8.93% of the nationwide cropped area for foodgrains yet contributed significantly to 

national production with the largest state-wise foodgrain yields and proportional area 

under irrigation (Fig. 1-2) (DES 2011).  

The dominant crops in Punjab and Haryana are kharif rice typically grown from June to 

October and rabi wheat grown from November to April. Rice and wheat crop yields, 

elevated using Green Revolution technologies in the 1960s and 1970s, are key to 

supporting 53 million local livelihoods as well as nationwide food security through 

state procurement for distribution to poor households (Aggarwal et al. 2004; Gupta 

and Seth 2007; DES 2011; Perveen et al. 2012). The rice-wheat cropping system is one 

of the worlds ‘focal’ cereal croplands and is typical of global croplands in being 



affected by multiple stresses simultaneously including population pressure, limited 

room for expansion, environmental resource degradation, depleting water resources 

and climate change (Abrol 1999; Aggarwal et al. 2004; Ambast et al. 2006; DES 2011; 

Perveen et al. 2012; Mathison et al. 2013). However, the croplands are currently being 

managed in a way that degrades natural resources and are threatened by future 

changes in climate (Aggarwal et al. 2004; Ortiz et al. 2008; Teixeira et al. 2013; 

Mathison et al. 2013). 



 

Figure ‎1-2 Illustration of Punjab and Haryana as the ‘focal’ foodgrain production centre in India; a) 
state-wise foodgrain yield (kg ha-1) (DES 2011), b) state-wise area under irrigation (expressed as a 
percentage of state area) (DES 2011) and, c) an index of percentage of state contribution to national 
foodgrain production normalised by state area (http://lus.dacnet.nic.in/). (The index was multiplied 
by one thousand to enhance figure clarity). 



This thesis assesses the vulnerability of the rice-wheat production system in the 

north-west IGP to climatic drivers. An integrated remote sensing approach is used to 

1) identify the spatial patterns of the exposure of rice-wheat croplands to harmful 

climate drivers including trends and climatic variation, 2) capture the sensitivity of rice-

wheat crop production to variations in climate drivers and to 3) inform targeted 

adaptations sensitive to local stresses to enhance the climate-resilience of cropping, 

ensure environmental sustainability and sufficient levels of production.  

The remainder of Chapter 1 will be broken into two sections. Section 1.1 will provide a 

general discussion of the impacts of climatic changes and variability on cereal 

croplands with consideration to interactions with other multiple stresses which 

determine the vulnerability of crop production. Section 1.2 is a review of the rice-

wheat production systems of the north-west IGP, specifically Punjab and Haryana; it 

explores the key stresses affecting rice and wheat crop production here. Chapter 2 will 

discuss approaches to assess and measure vulnerability, outline the framework used to 

assess vulnerability in this thesis and culminates by posing key questions addressed 

through the thesis and answered in the concluding chapters. Chapters 3 to 6 represent 

four analysis chapters written in the style of research papers, each with unique aims, 

research questions and stand-alone conclusions but linked to the overarching theme of 

assessing the vulnerability of the rice-wheat production system of Punjab and Haryana 

to climate drivers. Chapter 7 provides a brief discussion of the current state of 

vulnerability of rice and wheat production in Punjab and Haryana to climate drivers 

and suggests some avenues for future research. Chapter 8 highlights the conclusions 

drawn from this thesis addressing key questions posed at the end of Chapter 2.  

1.1 Climatic changes, variability and multiple stresses on cereal 

croplands 

Intensification of agriculture, utilising Green Revolution advances of high yielding crop 

varieties (HYV) and altered agronomic practices (increased irrigation, access to 

fertilisers and increased cropping intensity) led to a dramatic increase in net 

production and productivity over the past 50 years (The Royal Society 2009; Ray and 

Foley; 2013). However, despite these gains, yield gaps still remain in many agricultural 



systems and food insecurity is still prevalent globally, complicated by regional and sub-

national variation; one billion people do not have enough to eat excluding those 

suffering from micronutrient deficiency and over-consumption and, thus, lack a basic 

human right (UN 1948; Godfray et al. 2010; Brussaard et al. 2010; Misselhorn et al. 

2012; Godfray and Garnett 2014). It was often ‘subsistence’ and ‘smallholder’ farmers 

who did not receive the benefits from the Green Revolution due to numerous factors 

including weak governance and policy support, inability to make the transition to 

market-based agriculture, poor access to research and development and, limited 

integration into markets (Brussaard et al. 2010a; Hanjra and Qureshi 2010).  

There are numerous interacting stresses placed on cereal cropping systems which 

inhibit their ability to provide complete food security. Of these stresses, climate 

change and climatic variability have a direct influence on crop productivity, yet also 

influences a wider range of food system activities which determine food security 

including access to, stability of and capacity to utilise food (FAO 1996; Vermeulen et al. 

2012b; Wheeler and von Braun 2013). It is difficult to quantify and forecast the 

impacts of climate change on crop yields due to future uncertainties in: levels of 

adaptation and technological advances, community responses, projections of climate 

change relevant to crop growth using Global Climate Models (GCM) and, how the 

interaction of the various changing facets of the climate system will alter plant 

physiology (Annamalai et al. 2007; Tubiello et al. 2007; Lobell and Gourdji 2012; 

Gourdji et al. 2013a; Ramirez-Villegas et al. 2013). For example, GCM prediction and 

simulation of the Indian Summer Monsoon (ISM), the key driver of rice yield in South 

Asia, is poor, presenting a barrier to informed climate-resilient adaptation (Annamalai 

et al. 2007; Turner and Annamalai 2012).  

Despite the theoretical benefits of increased carbon dioxide (CO2) levels on crop 

physiological processes it is expected that cereal crop yields will decline with a 

warming climate (Easterling et al. 2007; Nelson 2010). The negative impact of warming 

on crop productivity is likely to be greater in the tropics than at higher latitudes 

(Easterling et al. 2007; Schmidhuber and Tubiello 2007; Vermeulen et al. 2012b). 

Elevated levels of atmospheric CO2 may reduce cereal crop quality with lower protein 

concentrations in grains (Schmidhuber and Tubiello 2007; Vermeulen et al. 2012b). 



Globally, observed climate trends between 1980 and 2008 resulted in a loss of 3.8% 

and 5.5% of maize and wheat yields, largely due to warming (Lobell et al. 2011b). 

Cereal crop yields are sensitive to both seasonal warming and extreme heat events 

during the reproductive development stage (Challinor et al. 2005; Jagadish et al. 2007; 

Welch et al. 2010; Lobell and Burke 2010; Lobell et al. 2011a; Teixeira et al. 2013). 

Significant portions of wheat, maize and rice croplands globally (83, 68 and 86% 

respectively) experienced warming trends during the growing season between 1980 

and 2011 and 27, 32 and 15% of these croplands experienced increasing trends in 

reproductive days over critical temperatures (Gourdji et al. 2013b). GCMs project that 

these trends will increase up to 2050 indicating that yields across a greater proportion 

of the global croplands will be impacted by warming trends and extreme heat events 

(Teixeira et al. 2013; Gourdji et al. 2013b).The latest IPCC projections suggest global 

surface temperature will be 1.5˚C greater than baseline temperatures from 1850-1900 

for all RCP scenarios except RCP 2.6; precipitation projections are more uncertain 

(IPCC, 2013). Downscaled GCM simulations suggest that by 2050 climatic changes will 

cause a 51% reduction in the area suitable for high-yield wheat cropping in the IGP 

with subsequent yield declines (Ortiz et al. 2008). The interaction between changes in 

precipitation, temperature and CO2 will influence levels of available soil moisture, 

evapotranspiration and crop water use efficiency with subsequent yield impacts 

(Wassmann et al. 2009; Lobell and Gourdji 2012; Gourdji et al. 2013a).  

Whilst being negatively impacted by climate change a large proportion of cereal 

cropping practices are also drivers of climate change emitting large quantities of 

greenhouse gases (GHG) and altering radiative forcing via land cover changes 

(Vermeulen et al. 2012b). Land use change in the tropics, specifically deforestation, 

contributes 12% of annual anthropogenic CO2 emissions (DeFries and Rosenzweig 

2010; Foley et al. 2011). After fossil fuel combustion, land use change is the largest 

global CO2 emitter (Power 2010). Land use conversion from forest to croplands leads 

to loss of above-ground biomass, a carbon sink, alongside reductions in soil carbon; for 

example, residue burning of rice crops in India directly releases GHGs and also reduces 

organic matter which would be reincorporated into the soil (Pathak et al. 2006; Power 

2010). Anaerobic decomposition of carbon substrates in flooded rice fields contributes 



11% of global methane (CH4) emissions (IPCC 1996; Power 2010). Increasing 

application of nitrogen fertilisers, an 800% increase in global applications in the last 50 

years, increases the rate of nitrous oxide (N2O) emissions from soils (IPCC 2006a; Foley 

et al. 2011). Whilst production contributes the largest share to agriculture’s GHG 

emissions pre- and post- production activities in the food chain are also emitters; 

fertiliser production is energy intensive and, thus, generates GHG emissions 

(Saharawat et al. 2012; Vermeulen et al. 2012b).  

Agriculture exerts a significant and often detrimental impact on the Earth’s 

environment, climate and, biogeochemical cycles; in terms of ecosystem coverage 

agro-ecosystems are equivalent to forest cover, consume 70% of freshwater 

withdrawals and approximately 30% of global net primary productivity (NPP) is 

appropriated via humans (Foley et al. 2005; Foley et al. 2007; Global Water Partnership 

2013)  The increase in agricultural productivity due to intensive monocropping and use 

of Green Revolution technologies occurred with significant environmental costs (Foley 

et al. 2007; Brussaard et al. 2010). To realise the benefits of HYVs developed during the 

Green Revolution requires increased use of fertilisers, pesticides and irrigation water 

leading to unsustainable use, and pollution of, land and water resources (The Royal 

Society 2009). Agricultural and associated land use practices have degraded soil 

resources and reduced soil quality (e.g. loss of nutrients, salinity and, topsoil erosion) 

(Tilman et al. 2002; Aggarwal et al. 2004). Globally, 10 million ha of agricultural land is 

lost due to salinization per year (Hanjra and Qureshi 2010). Transformation from 

natural (e.g. forest) to agricultural lands increases runoff with subsequent loading of 

sediment and nutrients in water sources with negative impacts on aquatic ecosystems, 

both freshwater and marine (Vitousek et al. 1997). Climate change is a major driver of 

land degradation, which has secondary impacts on agricultural productivity via 

reducing soil and freshwater quality (Aggarwal et al. 2010). In the past 40 years there 

has been a significant increase in fertiliser use such that agriculture is now the largest 

source of nitrogen and phosphorus to water bodies; of nitrogen fertiliser applied to 

croplands only 30-50% is utilised by crops (Tilman et al. 2002; Foley et al. 2005). The 

resultant excessive nutrient loading of water bodies results in eutrophication, toxic 

algal blooms, disturbance of species composition and anoxic conditions depleting fish 



stocks; it is also difficult to reverse these eutrophic conditions (Vitousek et al. 1997; 

Carpenter et al. 1998; Tilman et al. 2002; Carpenter 2005).  

Aside from agricultural practices leading to the declining quality of many water 

sources, many cropping systems through excessive irrigation extract water beyond 

renewable limits. With projected increases in population and income changing 

demand, agriculture will need an extra 5600 km3 of water per year; 800 km3 is 

available from ‘blue water’ sources suggesting agricultural systems will need to find an 

extra 4800 km3 per year (Hanjra and Qureshi 2010). It should be noted there are some 

uncertainties in estimating agricultural water use at a global scale; estimates range 

from 6685 km3 per year to 7500 km3 per year (Postel 1998; Siebert and Doll 2010; 

Thenkabail et al. 2010). This will compound existing issues of water scarcity, over-

extraction and, degradation and depletion of water resources (Ambast et al. 2006; 

Comprehensive Assessment of Water Management in Agriculture 2007; Hanjra and 

Qureshi 2010; Gleeson et al. 2012). Often agriculture’s negative environmental 

impacts such as deforestation, soil erosion and degradation and, declining water 

resource abundance and quality co-occur and are accentuated by positive feedbacks. 

Sub-optimal agricultural practices and governance have resulted in a loss of 

biodiversity and ecosystem service provision, thus, degrading the natural resource 

base upon which agriculture and a wider range of livelihood options are reliant 

(Millenium Ecosystem Assessment 2005; Scherr and McNeely 2008; Brussaard et al. 

2010).  

Projected growth in global population, to around 9 billion by 2050, will increase 

demand for food from cereal crop systems with limited room for sustainable 

expansion of cultivated areas (Godfray et al. 2010; Foley et al. 2011; Misselhorn et al. 

2012). The Food and Agriculture Organisation of the United Nations (FAO) project a 

required increase in global cereal production of 800 million tonnes by 2030 (FAO 

2006). There is uncertainty regarding the accuracy of population growth and food 

demand projections due to numerous factors such as disparities in regional growth 

rates, changing diets and income levels and, differing levels of female education 

(Foresight: Final Project Report 2011). Globally, changes in diet, with increased meat 

consumption, results in more cereal crops being fed to cattle (currently 33% of global 



cereal grains) and reduced per capita availability for human consumption and 

increased demand on water resources (The Royal Society 2009; Hanjra and Qureshi 

2010). The impact of this reduced availability of staple cereal grains disproportionately 

effects the world’s poorest populations and will increase pressure on production in 

croplands devoted to human consumption (The Royal Society 2009).  

Cereal croplands are vital in sustaining the livelihoods of many low-income and 

developing countries where rural populations and, ‘smallholder’ and ‘subsistence’ 

households spend the majority of their income on staple foods; Fig. 1-3 displays the 

global distribution of smallholder farming systems. Smallholder and subsistence 

farmers also generate a large proportion of their income and gain nutrition from local 

agricultural and cereal production systems (Morton 2007; Nelson 2010; Foresight: 

Final Project Report 2011; Hajkowicz et al. 2012).  Therefore, the productivity and 

sustainability of production in these regions are crucial not only to achieve food 

security but also a wider range of poverty alleviation and development goals (Nelson 

2010; Foresight: Final Project Report 2011; Vermeulen et al. 2012a). Stable and 

adequate production from cereal croplands, through increasingly globally inter-

connected markets, provide food for growing urban populations and contribute to 

food stocks encouraging price stability (Hajkowicz et al. 2012). It is important to note 

that in both rural and urban locations a wider range of situation-specific factors (e.g. 

levels of accessibility to food, ability to utilise food) alongside levels of production 

interact to determine food security outcomes (Ericksen 2008a). In developing 

countries local cereal production will be of importance to rural populations due to 

increasing polarity in purchasing power and volatility of prices in global crop markets 

(Brown and Funk 2008). Despite the role of markets, local production is vital for food 

security in the developing world where within-country production contributes 83% of 

wheat consumption (Ortiz et al. 2008). It is likely climate change will accentuate the 

vulnerability of rural populations reliant on cereal croplands in developing countries 

through a range of direct and indirect influences (Morton 2007; Brown and Funk 2008). 



 

Figure ‎1-3 Global map of farming systems, including the distribution of smallholder farming systems. 
The data is displayed at a 5 minute resolution and is derived from the Farming system classes in 
developing and transition countries, 2000 dataset from the FAO 
(http://www.fao.org/geonetwork/srv/en/main.home). 

Climate change is expected to increase variability in weather (i.e. more droughts, 

extreme heat and rain events) which may reduce stability in crop production with 

subsequent impacts on crop prices (Schmidhuber and Tubiello 2007; Hajkowicz et al. 

2012; Teixeira et al. 2013; Gourdji et al. 2013b). Droughts are often cited as a cause of 

the 2008 spike in global wheat prices and flooding in 1998 reduced rice production in 

Bangladesh with a knock-on increase in prices with the impacts exaggerated in poor 

households (Hajkowicz et al. 2012). If climate change reduces the productivity of cereal 

croplands it will lead to an increase in the price of crops and reduce the purchasing 

power of smallholder farmers for whom agriculture is their main source of income 

generation; thus, both factors contribute to a reduced capacity for smallholders to 

access food and mitigate shortfalls in production with food insecurity ensuing 

(Schmidhuber and Tubiello 2007). Increased climatic variability, and subsequent short-

term reductions in crop yield and stability, and changes in mean climate with long-

term declines in normal yields, are focused geographically in regions where there is the 

least environmental and socio-economic resilience and where communities have the 

lowest levels of adaptive capacity and least governance and policy support to cope 

(Morton 2007; Schmidhuber and Tubiello 2007; Brown and Funk 2008; Foresight: Final 

Project Report 2011; Hajkowicz et al. 2012).   



The increased demand for cereal crops will be focused on already stressed land, water 

and energy resources, whilst also facing increased competition for resources from 

other sectors (e.g. industry, urban expansion, timber and transport) (Hanjra and 

Qureshi 2010; Harvey and Pilgrim 2011; Bogdanski 2012; Uphoff 2012; Misselhorn et 

al. 2012).  The impacts of globalisation of the food, energy and governance sectors, 

integration into global food markets, investment in technology and research and 

development, cultural and gender differences and land tenure vary spatially and 

temporally between and within cereal systems and, thus, contribute to differing 

outcomes in terms of food security and productivity (Godfray et al. 2010; Foresight: 

Final Project Report 2011; Harvey and Pilgrim 2011; Uphoff 2012). This is not an 

exhaustive list of stresses and drivers determining cereal system outputs (see Table 1-1 

for summary of stresses on cereal croplands). However, the key point is that there are 

complex interactions and feedbacks between varying drivers, internal and external, 

which control the ability of cereal systems to ensure food security. 

Through contributions to both climate change and environmental degradation, 

agricultural practices in cereal croplands are generating harmful positive feedbacks 

(Godfray et al. 2010). These feedbacks limit the productivity and sustainability of 

croplands, reduce the provision of beneficial ecosystem services and, increase the 

exposure of a greater proportion of cropping systems and the human population to a 

wider range of dis-benefits including food insecurity (Millenium Ecosystem Assessment 

2005; Scherr and McNeely 2008; Godfray et al. 2010; FAO 2011a). Climate change 

exerts a direct influence on the productivity of cereal crops largely through altering 

crop physiological and yield forming processes (Tubiello et al. 2007; Lobell and Gourdji 

2012). It also interacts with and influences a wider range of drivers and stresses of 

cereal systems generating positive feedbacks with negative impacts crop production 

and therefore livelihoods whilst, eroding environmental resilience and societal 

adaptive capacity (Morton 2007; FAO 2011a; Vermeulen et al. 2012b; Wheeler and von 

Braun 2013). The anticipated negative impacts, on cereal production and food security, 

projected to occur without adaptation and readjustment of food-water-energy system 

interactions to account for pressures from population growth, globalisation and 

climate change has been eloquently described using the “perfect storm” metaphor 



(Beddington 2009; Fig. 1-4).  As climate change interacts with biophysical, 

demographic and socio-economic processes retaining a holistic, integrated approach 

to developing climate-resilient production within cereal systems which attempt to 

yield co-benefits increasing resilience to the multitude of cross-scale, cross-sectoral 

stresses and drivers which determine production and food security (Schmidhuber and 

Tubiello 2007; FAO 2011a). Adapting cereal croplands to avoid a “perfect storm” of 

widespread food insecurity and degradation of natural resource bases requires 

multidisciplinary scientific advances (Beddington 2009; Godfray et al. 2010; Misselhorn 

et al. 2012).  

 

Figure ‎1-4 The "perfect storm" scenario which could occur by 2030 due to pressures within the food-
energy-water nexus and interactions with climate change (Beddington 2009; Poppy et al. 2014). 

In most situations, the expansion of croplands with consequent environmental 

degradation, deforestation, loss of biodiversity, increased GHG emissions, reduced 

ecosystem service provision and off-farm impacts polluting water resources is deemed 

unacceptable (Tillman et al. 2002; The Royal Society 2009; Brussaard et al. 2010; 

Foresight: Final Project Report 2011; Foley et al. 2011). Therefore, ‘sustainable 

intensification’, ‘organic agriculture, ‘integrated agro-ecological farming’, ‘genetic and 

crop breeding advances’, ‘conservation agriculture’ or ‘resource-conserving’ 

approaches which aim to increase productivity without exceeding the renewable limits 



of natural resources are seen as the solution to increase production in an 

environmentally sustainable manner (Lumpkin and Sayre 2009; The Royal Society 

2009; Godfray et al. 2010; Bogdanski 2012; Uphoff 2012). Climate-smart agriculture 

intersects with these approaches when in a particular system or location they 

contribute to climate-resilience and realise adaptation and mitigation co-benefits (FAO 

2011a; Scherr et al. 2012). While crop simulation modelling and experimental 

laboratory and field experiments have enhanced understanding of climate influences 

on crop physiological processes (Challinor et al. 2005; Jagadish et al. 2007; Rang et al. 

2011b) there is a need to understand and monitor climate impacts on cereal crop 

productivity across real agricultural systems. Such an approach, sensitive to space and 

time varying climate-crop interactions, will more efficiently optimise climate-resilient 

adaptations across landscapes and agricultural systems and capture spatial trade-offs 

between increasing productivity and reducing agricultures environmental impact 

(DeFries and Rosenzweig 2010; FAO 2012; Scherr et al. 2012).  

 

 

 

 

 

 

 

 

 

 

 

 



Table ‎1-2 Climate-smart adaptations for cereal croplands*. 

 Sufficient and climate-
resilient production 

Minimal impact on 
ecosystems and ecological 
processes 

Reduced GHG emissions 
and climate change 
mitigation 

Close yield gaps Increases production. Prevents expansion of 
croplands reducing loss of 
tropical forests and 
biodiversity. 

Reduced GHG emissions via 
land conversion. 

Mulch and 
residue 
retention 

Long-term yield benefits, 
increased resilience to 
extreme heat events, 
increased water use 
efficiency. 

Preserves soil moisture, 
lowers soil and canopy 
temperature, reduced 
evaporation, increased 
infiltration, reduced run-off 
and soil and wind erosion, 
enhanced soil microbial 
activity. 

Increased soil organic 
carbon assimilation, 
reduced GHG emissions via 
no residue burning. 

Zero-tillage Yield increases in some 
cropping systems, often 
long-term yield increases, 
reduced water inputs. 

Improved water use 
efficiency, reduced run-off, 
reduced soil erosion, 
reduced exposure of soil 
organic carbon to air 
preventing its rapid 
oxidation, less variable soil 
temperatures. 

Reduced GHG emissions via 
fewer tractor passes. 

Alternate 
wetting and 
drying/System 
of Rice 
Intensification  

Questionable rice yield 
benefits compared to 
puddled rice but reduced 
water and irrigation costs 
so more economic 

Reduced irrigation water 
inputs, dry seeded so 
avoids formation of 
puddling pan,  

Reduced CH4 emissions via 
less anaerobic 
decomposition. 

Laser bed 
levelling 

May increase crop 
production via improving 
water use efficiency and 
reducing risk of water 
stress. 

Reduces run-off and 
leaching from fields, 
increases infiltration, 
increases soil moisture 
content. 

 

Agroforestry Yields can increase as 
mixture of trees within 
croplands can create more 
favourable and stable 
conditions for crop growth. 

Trees protect soil from 
erosion, reduce run-off and 
increase infiltration. N-
fixing trees can increase 
soil fertility. Trees can 
provide shade to crops and 
soil.  

Leguminous trees reduce 
need for N fertilisers 
reducing N2O emissions 
and also emissions from 
fertiliser manufacturing. 
Trees are a carbon sink.  

Nutrient 
Management 
(Leaf colour 
chart,Urea Deep 
Placement) 

Possible increase in yields, 
reduce impact of nutrient 
limitation. Reduces 
farmer’s links to volatilities 
in fertiliser prices.  

Reduced fertiliser use, 
reduced leaching of 
fertiliser, improved soil and 
water conditions (off-farm 
and on-farm). 

Reduced N2O emissions.  



* It should be noted that the climate-smart benefits derived from each of these adaptations is system 
specific and may not yield optimum results in every situation. Giller et al. (2009) provide a review of 
the limitations and trade-offs associated with implementing agricultural practices associated with 
climate-smart benefits in smallholder farming in Africa. For example, they comment that there is a 
trade-off between retaining residues on fields and removing residues for livestock feed. Also, there is 
need for policy and funding to incentivise uptake of climate-smart practices (Cooper et al. 2013). 

Table Sources: Gupta and Seth 2007; Erenstein and Laxmi 2008; Hobbs et al. 2008; Wassmann et al. 
2009; World Bank 2011; Foley et al. 2011; FAO 2011b; Chauhan et al 2012; FAO 2013; Cooper et al. 
2013. 

1.2 The rice-wheat cropping systems in Punjab and Haryana, north-

west Indo-Gangetic Plains 

1.2.1 Prevailing environmental, climatic and agronomic conditions in Punjab and 

Haryana 

This section elaborates on the discussion above; firstly the rice-wheat cropping 

systems of Punjab and Haryana are introduced before a detailed discussion of the 

multiple stresses placed on these croplands. The scale now shifts from a global and 

generic scale to the specific study region for this research. The north-west IGP, 

specifically the states of Punjab and Haryana, are a ‘focal’ cereal crop production 

region for India (Fig 1-2). Fig 1-2 shows the location of Punjab and Haryana relative to 

the rest of India. The cereal production system in Punjab and Haryana are commonly 

termed India’s ‘breadbasket’ and provide ecosystem services (e.g. crop production) 

which support the livelihoods of the state’s 53 million inhabitants (Saharawat et al. 

2009; DES 2011; Chauhan et al. 2012). Cereal production in these states is also vital for 

national food security efforts; the Government of India purchases large quantities of 

foodgrains from Punjab and Haryana to supplement national buffer stocks and support 

the Targeted Distribution Service to poor households (Perveen et al. 2012). Punjab and 

Haryana supply about 50% of rice and 85% of wheat to Government stocks; the lower 

proportion of rice procurement is due to production of high quality Basmati rice in 

Haryana not purchased under government schemes (Singh 2000; Erenstein and Thorpe 

2011; Chauhan et al. 2012). Government procurement of rice and wheat from Punjab 

and Haryana exceeds levels of procurement from the neighbouring state of Uttar 

Pradesh, despite Uttar Pradesh’s significantly larger area under cultivation and greater 

levels of production (Fig 1-5); though yields are higher in Punjab and Haryana with a 



greater percentage of croplands under irrigation (Fig. 1-2). It is clear that the 

livelihoods and food security of millions of people, nationwide, would be vulnerable to 

losses or variability in cereal production in Punjab and Haryana.  

 

Figure ‎1-5 a) State-wise procurement of rice and wheat crops from Punjab, Haryana and Uttar Pradesh 
(DES, 2011), b) fraction a 5 minute grid cell covered by rice cropping (circa 2000) (Monfreda et al. 
2008) and total area cropped, c) fraction of a 5 minute grid cell covered by wheat cropping (circa 2000) 
(Monfreda et al. 2008) and total area cropped, d) state-wise production of rice (Million Tonnes) in 
2000 and e) state-wise production of wheat in 2000.  



Typically the soils of Punjab and Haryana have a lower soil capability index score than 

the other reaches of the IGP (Erenstein et al. 2007). However the central plain regions 

have the highest soil capability index scores within the states of Punjab and Haryana 

(Erenstein et al. 2007). The majority of precipitation in Punjab and Haryana is received 

during the Indian Summer Monsoon (ISM) season, June to September (Tyagi et al. 

2005). Normal ISM precipitation totals vary across Punjab and Haryana ranging from 

156mm to 1091mm with large amounts of inter-annual variability (Fig. 1-6; Duncan et 

al. 2013). Punjab and Haryana also experience a higher frequency of drought years 

relative to the majority of other Indian states (Pai et al. 2011; Duncan et al. 2013). The 

regions of Punjab and Haryana which experienced the highest levels of inter-annual 

variability in precipitation, the lowest normal levels of ISM precipitation, the highest 

frequency of severe drought years and increasing trends in recurrence of drought 

years and inter-annual variability in ISM precipitation were located in the southern 

portions of the states in the arid regions (Pai et al. 2011; Duncan et al. 2013). 

 

Figure ‎1-6 a) median Indian Summer Monsoon precipitation (June-September) from 1951-2007 and, b) 
inter-quartile range in Indian Summer Monsoon precipitation between 1951 and 2007. Both 
computed from the APHRODITE daily gridded precipitation dataset. 



Punjab and Haryana were focal points for Green Revolution developments from the 

mid-1960’s onwards as India sought to achieve self-sufficiency in food production 

(Singh 2000). Under the Green Revolution agricultural production in Punjab and 

Haryana was increased via both extensification and intensification of cereal croplands 

alongside shifts in cropping systems and technological advances (Singh 2000; Murgai et 

al. 2001). During the initial Green Revolution developments and in the subsequent 

decades a rice-wheat cropping system became dominant across both states (Singh 

2000; Ambast et al. 2006; Perveen et al. 2012). Rice is grown in the monsoonal kharif 

season (June to October) and wheat is grown in the dry rabi season (November to 

April). The area under rice and wheat cropping in Punjab and Haryana has increased 

significantly since the mid-1960’s (Ambast et al. 2006). Prior to the Green Revolution 

developments rice was not a dominant kharif crop in Punjab and crops such as barja 

(pearl millet), cotton and sorghum all had larger or equivalent proportions of cropped 

area (Singh 2000). As well as increasing area under cereal cropping, the productivity of 

rice and wheat crops increased under Green Revolution technologies. Rice and wheat 

yields in Haryana were 1.06 and 1.28 Tonnes ha-1 in 1965-1966 and were 2.7 and 5.03 

Tonnes ha-1 in 2011-2012 respectively (Singh 2000; DES 2011).The technological and 

agronomic advances which facilitated increased production and productivity of 

croplands in Punjab and Haryana centred around high levels of fertiliser and irrigation 

inputs applied to HYVs (Murgai et al. 2001; Erenstein 2011; Chauhan et al. 2012).  

Generally Punjab and Haryana have higher levels of physical, human, social and 

financial capital than other portions of the IGP (Erenstein et al. 2007). The average 

farm size, herd size, irrigation capacity, levels of farm mechanisation, rural female 

literacy, immunisation rate, share of villages with paved road access and, share of 

villages with credit and banking facilities are higher in Punjab and Haryana than other 

IGP states (Erenstein et al. 2007). This reflects the enhanced agricultural infrastructure 

developed under the Green Revolution; the benefits of Green Revolution technologies 

largely bypassed other portions of the IGP (e.g. Bihar and eastern Uttar Pradesh) 

(Aggarwal et al. 2004; RWC 2006). The dominant holdings are classified as semi-

medium, medium and large which corresponds to average farm sizes of 2.87 ha, 6.09 

ha and 17.95 ha respectively in Haryana and 2.64 ha, 5.74 ha and 14.75 ha in Punjab 



(Agricultural Census 2012). This is a reflection that the majority of farms in Punjab and 

Haryana are market-orientated rather than subsistence, privately owned, with higher 

levels of seasonal in-migration of agricultural labourers and use of casual labour at 

specific times in the cropping calendar (Erenstein and Thorpe 2011). There is evidence 

that increased financial returns due to Green Revolution advances led to greater 

investment in schooling and, thus, boosted levels of education in Punjab (Murgai et al. 

2001). Women in Punjab and Haryana play a limited role in crop production due to 

higher levels of mechanisation and use of hired labour (Erenstein and Thorpe 2011). 

There are also gender differences in wages with men receiving comparably higher 

wages than women in both Punjab and Haryana (Erenstein 2011). However, the 

increasing mechanisation of agriculture (e.g. tractors for ploughing and tillage, 

combine harvesters for harvesting) reduces demand for labour which compounds 

poverty issues in the poorest segments of the rural population (Erenstein and Thorpe 

2011).  

There is a lower proportion of the population below the poverty line in Punjab and 

Haryana (6.4 and 8.3% respectively) compared to the rest of the IGP region (27.7 – 

39.3%) reflecting the importance of agricultural development (Erenstein et al. 2007; 

Erenstein and Thorpe 2011). The value of land in Punjab and Haryana is high especially 

in irrigated areas or areas where the high value basmati crop is grown (Erenstein 

2011). Land access is a key asset in Punjab and Haryana, over half the households in 

the rice-wheat system have access to land with the remaining households often 

providing agricultural labour (Erenstein 2011). Livestock in Punjab and Haryana is 

predominantly Buffalo due to dietary preference for high-fat milk; crop residues from 

the wheat crop provide main livestock feed and livestock dung is the fuel source 

(Erenstein and Thorpe 2011). Livestock in Punjab and Haryana is stall-fed throughout 

the year with very little grazing land (Erenstein 2011). Despite large ruminant density 

in Punjab and Haryana being twice the national average, and over half the milk 

produced being sold in markets, compared to cereal cropping, livestock activities have 

a less significant role in supporting livelihoods (Erenstein and Thorpe 2011). 

The development, and widespread adoption, of HYVs of rice and wheat supported by 

high levels of fertiliser and irrigation inputs led to increased crop yields. In the 1960’s 



semi-dwarf wheat cultivars developed at International Maize and Wheat Improvement 

Centre (CIMMYT) Mexico were introduced to Punjab and Haryana which had lower 

temperature requirements for germination and tillering (Chauhan et al. 2012). This 

enabled later sowing of the wheat crop subsequently lengthening the preceding kharif 

cropping season encouraging development of rice cropping. The first HYV rice variety 

was released in 1965 (Taichung Native 1), followed by releases of several improved 

varieties over the past 45 years which focus on improving grain size, quality and yield, 

shortening time to maturity and developing resistance to pests and disease (e.g. 

bacterial blight) (Rang et al. 2011a). In the early 1960’s tall, low yielding basmati rice 

was grown over a limited extent in Punjab and Haryana; now HYV rice varieties are 

more dominant (Rang et al. 2011a). There is still significant cultivation of basmati rice 

in Haryana, which is India’s leading state in exports of basmati rice (Erenstein 2011). 

The semi-dwarf HYVs are typically more sensitive to fertilisers and resistant to lodging 

due to their shorter stem length (Wassmann et al. 2009). The improved canopy 

architecture of semi-dwarf HYVs of rice crops lowers canopy temperature, facilitates 

transpiration cooling mechanisms enabling rice to be grown in warmer environments 

(Wassmann et al. 2009). This was an important development for growing rice in the 

semi-arid regions of Punjab and Haryana. Increases in fertiliser applications also 

contributed to the success of HYVs and increased crop yields since the Green 

Revolution. Fertiliser application in Haryana increased from three to 130 kg ha-1 

between 1970 and 2000 (Singh 2000) and in Punjab fertiliser application increased 

from 33 to 155.9 kg ha-1 from 1966 to 1994 (Murgai et al. 2001). 

There was a limited surface irrigation infrastructure developed during the 19th century 

in the IGP but the extensive irrigation development associated with the Green 

Revolution in the mid to late 20th century was predominantly centred on groundwater 

extraction (Erenstein 2009b). Currently irrigation in Punjab and Haryana is often a 

conjunctive use of electric and diesel powered tubewells for groundwater extraction 

and surface water extracted from canals (Tyagi et al. 2005; Erenstein 2009b). In 

Haryana there is a large proportion of electric tubewells as the State Electricity Board 

maintained a good electricity connection and electric power was subsidised (Tyagi et 

al. 2005; Erenstein 2009b). In 2009-2010 98.4% of foodgrains in Punjab were irrigated 



and 89% of foodgrains in Haryana were irrigated (DES 2011). It was the access to 

irrigation in Punjab and Haryana which supported puddled rice cropping in the semi-

arid environment with typically coarse and porous soils (Gajbhiye and Mandal 2000; 

Erenstein 2009b; Chauhan et al. 2012). The rice-wheat double cropping system, and in 

particular rice cropping, is focused in the central plain regions of Punjab and Haryana 

coinciding spatially with good and marginal groundwater quality, high density of 

tubewells, loamy alluvium soils, higher relative soil capability, and higher precipitation 

levels than the southern arid regions (Gajbhiye and Mandal 2000; Ambast et al. 2006; 

Erenstein et al. 2007; Duncan et al. 2013). Rice cropping is reliant on irrigation to 

maintain anaerobic, ponded conditions with an average of 34.5 irrigations per growing 

season in Haryana (Erenstein 2009b). This is 10 times more irrigations than is applied 

to the subsequent wheat crop; this is partly due to rice’s higher water requirements 

and also poor water management. Puddled, transplanted rice has reduced water 

productivity compared to wheat crops; for example, Saharawat et al. (2010) noted 

water productivity1 for rice of 2.41 kg ha-1 mm-1 whereas wheat had a water 

productivity of 15.31 kg ha-1 mm-1 on an experimental farm in Haryana in 2005.  

In the southern portions of Punjab and Haryana, where there is sandy desert soils, 

lower precipitation levels and poor quality of groundwater, the rabi wheat crop is 

typically grown in rotation with cotton, maize and pearl millet (Ambast et al. 2006). In 

these regions the wheat crop is more resilient due to its salt tolerance and lower water 

requirements (Ambast et al. 2006). There is increasing reliance on groundwater 

sources to support the rabi wheat crop when water levels in surface canals are lower 

(Erenstein 2009b). The lack of reliability and equal distribution in flows of water in 

surface canals coinciding with approximately 70% of Punjab and Haryana having 

shallow groundwater of good or marginal quality led to the rapid uptake tubewells 

(Tyagi et al. 2005; Ambast et al. 2006). There is a ‘warabandi’, priority access, 

distribution scheme in operation which allocates flows of water in surface canals (Tyagi 

et al. 2005; Ambast et al. 2006). This system allocates water on a rotation principle of 

seven days of flow followed by 14 days of no-flow; this system often fails to deliver 

1
 Water productivity refers to crop yield per unit volume of water applied.  



water at key crop requirement stages and water quantities vary along the canals (Tyagi 

et al. 2005). That the annual evapotranspiration of rice-wheat double cropping system 

(>1400mm) exceeds annual precipitation totals highlights its dependency on reliable 

irrigation (Ambast et al. 2006; Erenstein 2009b).  

A supportive policy and institutional environment contributed to the uptake of Green 

Revolution technologies and subsequent agricultural development and yield increases 

in Punjab and Haryana. Inputs to the rice-wheat system of credit, fertiliser, power and 

irrigation water were heavily subsidised by the Government of India (Murgai et al. 

2001). Through Government procurement, and a minimum support price, a 

guaranteed market for rice and wheat crops was provided for farmers in Punjab and 

Haryana (Erenstein and Thorpe 2011; Perveen et al. 2012). This protected farmers 

growing rice and wheat crops from risks associated with price fluctuations in open 

markets (Erenstein and Thorpe 2011). In Haryana electricity costs for groundwater 

extraction were heavily subsidised whilst in Punjab power for agriculture was free from 

1997 to 2002 and since 2005 (Erenstein 2009b; Perveen et al. 2012). The price of 

irrigation water is either free or heavily subsidised and the electric grid in Haryana is 

maintained at acceptable levels whilst in Punjab all rural villages were electrified in the 

1980s (Murgai et al. 2001; Erenstein 2009b). This contributed to farmers investing in a 

low-diversity, irrigation dependent rice-wheat monoculture across much of Punjab and 

Haryana. There is also a focus of agricultural research institutes and universities in 

north-west India (e.g. Punjab Agricultural University which developed several HYV rice 

cultivars) (Murgai et al. 2001; Rang et al. 2011a). This ensured farmers in Punjab and 

Haryana were exposed to the latest technological and agronomic advances; recently 

this was reflected in the more rapid uptake in zero-tillage practices in Punjab and 

Haryana compared to other parts of the IGP (Erenstein and Laxmi 2008; Erenstein 

2010a). 

1.2.2 Multiple Stresses 

Typical of agricultural landscapes globally, multiple interacting stresses and drivers 

impact the cropping systems of Punjab and Haryana (Table 1-3). It is the interaction 

and feedbacks between these drivers which determine levels of crop productivity, 



vulnerability and resilience to climatic variability and change; this is illustrated by the 

conceptual diagram in Fig 2-3. However, recently several aspects of the rice-wheat 

production system are displaying negative trends suggesting the high levels of 

productivity and benefits delivered under current practices and system functioning are 

unsustainable (RWC 2006; Gupta and Seth 2007). Often these negative trends (e.g. 

stagnating or declining crop yields) are resultant from sub-optimal, intensive 

agricultural practices degrading the natural resource base undermining the yield of 

future cropping seasons (Aggarwal et al. 2004; Ambast et al. 2006; Erenstein and 

Thorpe 2011; Chauhan et al. 2012). For example, it has been noted that marginal and 

poor quality groundwater irrigation in Haryana has led to increased soil salinity in the 

lower reaches of irrigation canal systems lowering rice yields or forcing farmers to shift 

crop types (Tyagi et al. 2005). The following discussion will provide more detail on 

some of these negative trends and drivers which serve to undermine sustainable levels 

of crop production in the IGP. This will provide useful context for the subsequent 

research papers. 

 

Figure ‎1-7 Conceptual diagram illustrating the systemic nature of rice-wheat cropping systems in 
Punjab and Haryana and associated interactions and feedbacks between drivers and outcomes. Red 
boxes correspond to socio-economic factors, green boxes to landscape, agronomic and environmental 
factors and blue boxes to climatic and water factors.  

 

 



Table ‎1-3 Summary of key stresses affecting the rice-wheat production system in Punjab and Haryana 

Stress Impact 

Population growth and 
demand for national 
welfare schemes 

The population in Punjab and Haryana is projected to increase, as is the 
population of India of which large portions are food insecure. This will place 
increased demand on the focal croplands on Punjab and Haryana. 

Stagnating productivity Whilst demand for rice and wheat production from Punjab and Haryana 
increases there has been a slow down, and in some locations, a decline in 
growth of crop yields. 

Limited room for 
expansion 

There is little room to expand croplands in Punjab and Haryana, either in 
terms of area or intensification. Worryingly some rice and wheat croplands 
are being lost due to environmental degradation. 

Soil degradation  Intensive cropping and irrigation associated with Green Revolution 
developments has degraded the quality of soil, reducing soil physical 
properties, water holding capacity, nutrient and soil organic carbon status 
and increases salinity. 

Water availability There has been a dramatic decline in groundwater levels in Punjab and 
Haryana associated with irrigation withdrawals. This trend is not 
sustainable.  

Water quality Increased groundwater extraction from deeper reserves has increased 
salinity of water resources. Also, leaching of nutrients from fields has 
polluted water sources (often downstream). 

Climate change Climate change will have multiple impacts on rice-wheat cropping in Punjab 
and Haryana. Cereal crops are sensitive to extreme heat events during 
anthesis, and extreme heat days are projected to increase of northern India. 
Warming temperatures and more variable precipitation will place greater 
pressure on already stressed irrigation resources.  

Table sources: Aggarwal et al. (2004); Tyagi et al. (2005); Ambast et al. (2006); Hobbs et al. (2008); 
Rodell et al. (2009); Wassmann et al. (2009); DES (2011); Lobell et al. (2012); Perveen et al. (2012); 
Chauhan et al. (2012). 

1.2.2.1 Stagnating crop yields and population growth 

Despite gains in productivity during the Green Revolution, recently crop yields have 

stagnated and declined whilst population in Punjab and Haryana has continued to 

grow; this reflects a global situation as discussed in Table 1-1 (Aggarwal et al. 2004; 

Erenstein and Thorpe 2011). This situation places obvious pressure on the rice-wheat 

cropping systems to arrest declining productivity to keep up with demand (RWC 2006). 

Table 1-4 summarises some of the key factors limiting rice and wheat crop yields or 

contributing to stagnating productivity growth.  In Punjab trends in rice yield have 

plateaued whereas in Haryana there has been a noted decline in rice yields, whilst 

yields of wheat have increased there has been a slowdown in productivity growth 

(Ambast et al. 2006). Similar trends have been observed in long-term field experiments 

where both rice and wheat yields showed widespread stagnation in yield trends, but 

declines in rice yield were more widespread than wheat (Ladha et al. 2003). The more 

pronounced yield declines in rice compared to wheat were partly attributed to greater 



genetic gains made to wheat cultivars over the past 40 years, with little increase in the 

yield potential of rice cultivars since the release of IR8 in the 1960’s (Ladha et al. 2003). 

The yield improvements in wheat cultivars generated a genetic gain of 1.6% per year 

due to a greater number of spikes per grain and grains per unit area (Ladha et al. 

2003). Other causes for the slowdown in productivity and declining yields are 

degradation of the natural resource base (e.g. soil fertility), decrease in solar radiation 

and increases in minimum temperature (Pathak et al. 2003; Ladha et al. 2003; 

Aggarwal et al. 2004; Chauhan et al. 2012). There has also been a recent decrease in 

the total factor productivity (TFP), a ratio of inputs and outputs of a system which is a 

proxy measure of technological change, in rice-wheat systems in Punjab and Haryana 

(Murgai et al. 2001; Aggarwal et al. 2004). Of the cropping systems (rice-wheat, wheat-

cotton, wheat-maize) in Punjab and Haryana, the rice-wheat system had the lowest 

total factor productivity growth due to intensive inputs required to deliver outputs 

(crop yield) (Murgai et al. 2001; Aggarwal et al. 2004).  

 

 

 

 

 

 

 

 

 

 

 

 



Table ‎1-4 List of factors which explain stagnating or declining growth of rice and wheat crop yields in 
Punjab and Haryana*. 

Cause Explanation 

Distance from irrigation canal Observations suggest farmers closer to irrigation canals have higher 
crop yields.  

Position within watercourse Farmers towards the bottom of the irrigation watercourses receive 
more variable and lower quality irrigation water in canals. This 
results in lower rice and wheat crop yields.  

Intensive tillage in a rice-wheat 
rotation (formation of puddling 
pan) 

Intensive puddling of the rice crop leads to the formation of shallow 
puddling pan in the soil. Shallow rice roots cannot penetrate the pan 
and thus exhaust nutrients in upper soil layers.  

Intensive tillage in tropical/sub-
tropical climate 

Intensive tillage in a tropical/sub-tropical environment constantly 
aerates the soil and accelerates the oxidation of already limited soil 
organic matter.  

Water quality/quantity Farmers irrigating with saline groundwater report lower crop yields. 
Also, reduced water availability means farmers mine deeper, more 
saline groundwater which has positive feedbacks on soil quality and 
water availability (more water required to flush out saline soils).  

Nutrient depletion There have been declines in the nutrient status of soils associated 
with intensive rice-wheat cropping (including micronutrient 
deficiency). Nutrient limitation has been attributed to yield declines 
and stagnation in on-farm yields.  

Extreme heat events Increased extreme heat events during the wheat crop growing 
season accelerate crop senescence.  

Increased night-time 
temperatures 

Trends of warming night-time temperatures linked to declining on-
farm rice yields, warming temperatures increase photorespiration 
and accelerate phenological development.  

Decreased solar radiation Trends of decreased solar radiation linked to declining rice yields; 
solar radiation is key for photosynthesis.  

Crop residue burning Atmospheric particulates and brown clouds from crop residue 
burning can impact monsoon circulation. Models suggest 
atmospheric brown clouds limit rice crop production. Burning crop 
residue also removes nutrients from the soil: one tonne of wheat 
residue contains 4.8kg N, 0.7 kg P (phosphorus) and 9.8 kg K 
(potassium).   

(Lack of) Genetic gains There has been little increase in the yield potential of rice cultivars 
developed since the 1960s. 

*It should be noted that these factors impact crop yields over varying spatial and temporal scales (i.e. 
some will be location specific such as distance to a canal, others will impact crop yields immediately 
such as an extreme heat event and some factors will take a longer period of time to influence crop 



yield such as the build up of a puddling pan depleting nutrients in the upper soil layers or long-term 
build up of salinity with poor quality irrigations). 

Table sources: Pathak et al. (2003); Ladha et al. (2003)  Aggarwal et al. (2004); Tyagi et al. (2005); 
Auffhammer et al. (2006); Lobell et al. (2010); Chauhan et al. (2012); Lobell et al. (2012). 

 

1.2.2.2 Soil Quality 

The conventional agricultural practices in Punjab and Haryana, associated with Green 

Revolution advances, have deteriorated the soil quality (Aggarwal et al. 2004; 

Erenstein et al. 2007). Rice and wheat crops are typically grown under different soil 

conditions; rice requires anaerobic soil conditions compared to wheat which favours 

aerobic soil (Erenstein 2009b; Erenstein 2010b; Chauhan et al. 2012). Conventional rice 

cropping requires continuous puddling with intensive tillage on ponded or submerged 

fields to reduce soil aggregate sizes, reduce macro-porosity between soil particles to 

achieve anaerobic conditions (Chauhan et al. 2012). This leads to increased soil 

compaction due to crystallisation of ferric oxides cementing soil particles and therefore 

the development of a hard pan, this increases the bulk density of the soil and reduces 

hydraulic conductivity below the surface ploughed layers (Ladha et al. 2003; Chauhan 

et al. 2012). The stagnating and declining rice yields may be partly caused by declines 

in soil quality over time associated with puddled rice cropping on unfavourable soils. 

Rice is a shallow rooting crop and is therefore sensitive to formation of surface pans 

and suffers from nutrient deficiency when nutrients are depleted in the top 30 cm of 

the soil (Ladha et al. 2003). Wheat cropping requires well drained, aerobic soils, thus, 

requiring intensive tillage after kharif rice cropping via several tractor led ploughing, 

harrowing and planking operations (Erenstein and Laxmi 2008). The hard pan 

developed under puddled rice cropping can harm root growth of the subsequent 

wheat crop (Chauhan et al. 2012). However, wheat is more resilient to deteriorating 

soil quality having greater salt tolerance, longer roots and a longer growing season 

enabling it to mine more nutrients (Ladha et al. 2003; Tyagi et al. 2005). This likely 

explains why yield declines in rice have been more pronounced than in the wheat crop 

(Ladha et al. 2003). The soil management operations required to shift soil from aerobic 

to anaerobic has noticeable implications for soil physical and biogeochemical 



properties and is reported as one of the major contributors to observed stagnation in 

crop productivity (Ladha et al. 2003; Aggarwal et al. 2004; Chauhan et al. 2012). 

Soils in Punjab and Haryana are becoming increasingly depleted of soil organic carbon 

and nutrients due to tillage and poor soil management and intensive cropping mining 

nutrients (Singh 2000; Aggarwal et al. 2004; Chauhan et al. 2012). Intensive rice-wheat 

cropping has led to declines in soil fertility in Punjab and Haryana. In Haryana the soil 

areas with low phosphorus levels increased from 3.3% in 1980 to 73% in 1995 (Singh 

2000), though Ladha et al. (2003) suggest that adequate amounts of phosphorus 

fertiliser application can meet crop demands. Between 1967 and 1997 there have been 

noted declines in soil phosphorus across both Punjab and Haryana (Pathak 2010). The 

area of soils with high levels of potassium decreased from 91.1% in 1980 to 61.5% in 

1995 (Singh 2000), soil potassium depletion was a contributing factor to noted yield 

declines in several long-term field experiments across the IGP (Ladha et al. 2003). 

Haryana has low levels of soil nitrogen, with Punjab having slightly higher levels (Singh 

2000; Pathak 2010). The soils of the north-west IGP also have low organic matter and 

soil carbon content, which is further reduced due to intensive tillage operations (Ladha 

et al. 2003; Daughtry et al. 2006; Erenstein and Laxmi 2008). The loss of soil carbon 

and organic matter reduces soil cation exchange capacity, the number of active sites 

involved in nutrient transfer (Ladha et al. 2003). There is also a noted sulphur 

deficiency in the coarse textured, low organic matter soils of Punjab and Haryana 

(Chauhan et al. 2012) and evidence of micronutrient deficiency, especially declining 

zinc levels (Aggarwal et al. 2004). Farmers are having to apply greater amounts of 

fertiliser (N:P:K; nitrogen:phosphorus:potassium) for diminishing returns and account 

for losses in fertiliser via leaching, run off and soil erosion (Aggarwal et al. 2004; 

Chauhan et al. 2012). The nutrient usage of crops in the rice-wheat system in Punjab 

and Haryana is greater than in any other state in the IGP rice-wheat cropping system 

(Abrol 1999).  

The development of an extensive irrigation infrastructure, especially irrigation with 

poor or marginal quality saline groundwater has led to increased soil salinity across 

Punjab and Haryana (Aggarwal et al. 2004; Tyagi et al. 2005; Ambast et al. 2006). 

Nearly two-thirds of Haryana is underlain by deep (>40m) brackish groundwater and 



shallow groundwater is saline and of marginal quality (Tyagi et al. 2005). Deeper, 

saline, groundwater is increasingly being mined by lowering centrifugal pumps into 

pits, or using submersible pumps, to account for falling groundwater levels (Erenstein 

2009b). This will lead to increased soil salinity problems. The porous soils of Punjab 

and Haryana require constant irrigation, especially to maintain puddled rice cropping 

conditions, which, thus, increases soil salinity (Ladha et al. 2003; Chauhan et al. 2012). 

Increasing temperatures associated with global warming will further compound soil 

salinity problems in Punjab and Haryana increasing crop evapotranspiration and, thus, 

capillary action drawing saline waters to the surface (Wassmann et al. 2009). The 

irregularity of surface canal water in Punjab and Haryana makes it difficult to leach 

salts away from the soil surface (Tyagi et al. 2005; Wassmann et al. 2009). This is 

particularly problematic for rice cropping as rice is more sensitive to saline soils than 

wheat; in some instances salinity forces farmers to growing kharif barja (pearl millet) in 

Haryana (Tyagi et al. 2005). A study of a rice-wheat cropping system with conjunctive 

use of groundwater and surface irrigation showed salinity to be the biggest factor 

reducing wheat and rice crop yield and that the quality of groundwater varies spatially 

(Tyagi et al. 2005). 

1.2.2.3 Water Resources 

Evidence from satellite observations from the NASA Gravity Recovery and Climate 

Experiment (GRACE) and simulations of soil-water variability showed that groundwater 

extraction is greater than recharge in Punjab and Haryana, with a mean decline in 

groundwater levels of 4 cm year-1 between 2002 and 2008 (Rodell et al. 2009). There 

are local variations in this rate of decline, between 1982 and 1987 in central Punjab 

the average rate of decline was 18 cm year-1 and this rose to 42 cm year-1  between 

1997 and 2002 (Perveen et al. 2012). This decline is attributed to extraction of 

groundwater for irrigation as there was no change in precipitation and other storage 

components of the hydrological cycle (soil moisture, glaciers, biomass, and surface 

water including rice paddies) (Rodell et al. 2009). Most of the water lost via 

groundwater extraction leaves the region via evapotranspiration or run-off (Rodell et 

al. 2009). This decline in groundwater is confirmed by other studies using satellite 

observations (Tiwari et al. 2009) and Central Groundwater Board monitoring in India 



reported 80% of blocks (political subdivisions) in Punjab have over-exploited 

groundwater, and, state-wise groundwater availability for irrigation was deficient by 

14.57 billion cubic metres (bcm) (Central Ground Water Board 2012). An assessment of 

groundwater footprints (the aquifer area required to sustain groundwater use and 

groundwater dependent ecosystem services) indicates that groundwater extraction in 

the Upper Ganges basin is the most unsustainable of all aquifers globally (Gleeson et 

al. 2012). The water table has fallen between 0m to >15m over the past 20 years 

through much of central and northern Punjab and Haryana, this corresponds to areas 

with the greatest density of tubewells and water intensive rice-wheat cropping 

(Ambast et al. 2006). In 2009 Punjab 33.97 billion cubic metres of groundwater are 

extracted for irrigation compared to only 0.69 billion cubic metres for industrial and 

domestic uses (Central Ground Water Board 2009).  

Issues of declining groundwater quality also compound problems associated with 

groundwater declines. Much of the groundwater in north-west India is saline in nature 

with state-wise and local watershed gradients in levels of salinity (Tyagi et al. 2005). At 

the state level groundwater quality declines (increases in salinity) towards the 

southern portions of Punjab and Haryana (Abrol 1999; Ambast et al. 2006) whereas 

variations in irrigation water salinity have been documented within local watersheds 

and irrigation canal systems (Tyagi et al. 2005). The increasing extraction of shallow 

groundwater reserves has deteriorated groundwater quality due to increasing mining 

of deeper more saline groundwater (Abrol 1999; Tyagi et al. 2005). The intense use of 

fertilisers and pesticides in the rice-wheat cropping system has also caused declines in 

groundwater quality (Abrol 1999). It is likely that climate change (e.g. increasing 

temperatures increasing crop water demand), population growth and urbanisation will 

increase competition for already over-used groundwater resources (Rodell et al. 2009; 

Moors et al. 2011).  

1.2.2.4 Government Policy 

Government policy and incentives encouraged and facilitated the development of the 

rice-wheat cropping system and the subsequent productivity gains (Singh 2000; 

Erenstein 2009b; Perveen et al. 2012). However, such policy has created a policy 



environment and agricultural system which degrades the natural resource base, 

compounds yield gaps, and contributes to undermining the long-term sustainability of 

agricultural production in the region (Aggarwal et al. 2004; Gupta and Seth 2007; 

Erenstein 2009b; Perveen et al. 2012). A combination of the Government providing a 

guaranteed market and minimum support price for the rice and wheat crops, subsidies 

and low prices for irrigation water and power for irrigation extraction have led to 

farmers investing their livelihoods in a rice-wheat monoculture (Murgai et al. 2001; 

Erenstein 2009b; Erenstein and Thorpe 2011; Perveen et al. 2012). The resident 

natural resource base (e.g. soil or water resources) cannot sustain the demands of the 

rice-wheat system, exemplified by increasing reliance on fertiliser applications and 

groundwater extractions (Aggarwal et al. 2004; Ambast et al. 2006; Rodell et al. 2009). 

These subsidies also encourage farmers to be wasteful in their use of irrigation water 

(Erenstein 2009b) There are also political issues which inhibit removal or readjustment 

of policy which supports rice-wheat cropping and encourages widespread groundwater 

extraction (Erenstein 2009b). For example, in Punjab farmers on small and medium 

sized holdings gain the most from subsidies for irrigation and also make up the 

majority of the electorate (Murgai et al. 2001).  

1.2.2.5 Climate Change 

Alongside stresses of water scarcity, degradation in the natural resource base, an 

existent unsustainable agronomic infrastructure, population growth and associated 

food demand the rice-wheat cropping systems will have to contend with and adapt to 

climate change over the coming decades (Aggarwal et al. 2004). Linear trend analysis 

applied to observational data showed statistically significant warming trends between 

1971 and 2003 during winter and monsoon seasons, and annually, over north-west 

India (Kothawale and Rupa Kumar 2005).  Ensemble runs of regional climate models 

(RCM) showed a uniform signal in warming trends over north India (Moors et al. 2011; 

Mathison et al. 2013). This modelling study suggested a rise in mean temperature of 

2.5-3°C by 2050 under the Special Report on Emissions Scenarios (SRES) A1B scenario 

(Mathison et al. 2013). The projected warming temperatures will influence crop water 

use and irrigation requirements; Doll (2002) estimate irrigation water requirements in 

the Ganges basin will increase from 61.5 km3 year-1 to between 66.4 km3 year-1 and 



74.6 km3 year-1 due to climate change.  Another modelling study using the PRECIS RCM 

also reported warming trends over Punjab and Haryana for the time-slice 2070-2100 

under the A2 and B2 SRES scenarios (Rupa Kumar et al. 2006). Given the range of 

models reporting a similar warming signal there is some certainty in forecasts of 

increasing temperature over Punjab and Haryana, however the magnitude of warming 

varies under different emissions scenarios (Rupa Kumar et al. 2006; Mathison et al. 

2013).  

GCMs suggest an increase in ISM precipitation associated with increased atmospheric 

moisture content over the Indian Ocean increasing vertically integrated moisture 

fluxes towards the Indian continent (Turner and Annamalai 2012). However, under A2 

and B2 SRES scenarios simulated using the PRECIS RCM north-west India experienced 

declines in ISM precipitation between 2070-2100, though small increases were 

simulated in northern Punjab and Haryana (Rupa Kumar et al. 2006). Four models from 

the CMIP3 ensemble, which best simulate the monsoon cycle, also reported slight 

decreases in ISM precipitation in response to doubling atmospheric CO2 in north-west 

India (Turner and Annamalai 2012). The best four CMIP5 models, judged in terms of 

ability to represent observed monsoon conditions, suggest slight increases in annual 

and ISM precipitation over north-west India, consistent with multi-model ensemble 

projections from CMIP3 models (Lee and Wang 2012). Generally in terms of 

representing the annual cycle and spatial pattern of ISM precipitation CMIP5 multi-

model means have greater skill than CMIP3 multi-model means (Sperber et al. 2012). 

This is likely due to improved horizontal resolution in CMIP5 models facilitating better 

representation of orographic variability (Sperber et al. 2012). However, ensemble 

simulations of ISM precipitation, whether using RCMs or GCMs, show considerable 

uncertainty in future trends (Annamalai et al. 2007; Moors et al. 2011; Turner and 

Annamalai 2012; Mathison et al. 2013). RCM ensemble simulations of ISM 

precipitation over north India show little consistency in magnitude or sign of future 

precipitation totals, with fragmented spatial patterns in grid cells registering increasing 

trends relative to baseline levels (Moors et al. 2011; Mathison et al. 2013). Only six out 

of the 18 GCMs used in the IPCC AR4 produced a reliable simulation of monsoon 

conditions (Annamalai et al. 2007) and under the A1B SRES scenario the CMIP3 GCMs 



display both increasing and decreasing trends and differences in inter-annual 

variability up to 2100 (Turner and Annamalai 2012). Inter-model spread in monsoon 

simulation is present in the more recent range of CMIP5 models too (Lee and Wang 

2012). Given the uncertainty in projections of ISM precipitation, with ensemble model 

projection showing differences in sign and magnitude there is a need for flexibility in 

water resources management (Mathison et al. 2013).  

1.2.2.6 Conventional versus conservation agricultural practices 

Conventional agricultural practices in Punjab and Haryana, which became widespread 

with the adoption of Green Revolution technological advances, centre around a rice-

wheat monoculture supported by intensive fertiliser and irrigation water inputs (Singh 

2000; Gupta and Seth 2007; Chauhan et al. 2012; Perveen et al. 2012). Here 

conventional agricultural practices refer to agronomic practices involving tillage and 

intensive inputs following the distinctions between conventional and conservation 

agriculture of Hobbs et al. (2008). The kharif rice crop is transplanted onto paddy 

fields, maintained in a puddled state via irrigation applied to well drained soils with 

intensive tillage operations prior to sowing (Chauhan et al. 2012). Maintaining 

puddled, anaerobic paddy fields for rice cropping was a mechanism to prevent weed 

growth (Hobbs et al. 2008) In contrast to the rice crop, grown in anaerobic soil 

conditions, the rabi wheat crop is grown on aerobic soil after harvesting the rice crop. 

To achieve the turn-around between anaerobic soils for rice and aerobic soils for 

wheat requires several tillage operations for ploughing, harrowing, planking and 

seeding (Erenstein and Laxmi 2008). In a conventional rice-wheat system turn-around 

time between rice and wheat crops varies from 2 to 45 days with up to 12 tractor 

passes (Hobbs et al. 2008).The numerous tillage operations associated with 

conventional rice-wheat cropping practices, require several hours of tractor use and, 

thus, bear significant economic costs (e.g. petrol, machinery hire) and emit GHGs 

(Erenstein and Laxmi 2008). The long turn-around time between rice and wheat, delays 

wheat crop planting, and, thus, shortens the wheat growing season and exposes the 

wheat crop extreme heat events (Lobell et al. 2012).  



Often rice crop residues are burnt in the north-west IGP, and wheat crop residues are 

either burnt or removed for livestock feed (Badarinath et al. 2006; Pathak et al. 2006; 

Erenstein and Thorpe 2011). This reflects the fact farmers do not value the use of rice 

crop residue as livestock feed due to low silica content and concerns about milk quality 

(Erenstein 2011). Combine harvester use is greatest in rice-wheat cropping systems, 

particularly for the rice crop to achieve a quick turn-around to allow timely planting of 

the succeeding wheat crop (Erenstein 2011). The increased use of combine harvesters 

in Punjab and Haryana increases the amount of crop residue left on fields (Badarinath 

et al. 2006; Erenstein 2009a). Combine harvesters are often followed by tractor passes 

with a straw reaper during wheat crop harvest, the combine harvester cuts the crop 

above ground level leaving remnant straw as stubble (Erenstein 2011). The straw 

reaper extracts remnant stubble and combine harvested straw as wheat crop residue 

has the greatest market value as livestock feed (Erenstein 2011). The burning, or 

removal of crop residues, results in loss of soil carbon and organic matter and, 

nutrients from the soil system which undermines soil fertility (Pathak et al. 2006). In 

basmati rice growing areas harvesting is often manual reflecting the taller basmati 

crops susceptibility to lodging and the fact it is a high value produce requiring careful 

handling of grains (Erenstein 2011).  

Due to observed declining productivity and stagnating crop yields and degradation of 

the natural resource base associated with conventional agricultural practices there is a 

growing awareness of a need to adopt sustainable yet equally productive agricultural 

practices (RWC 2006; Gupta and Seth 2007; Erenstein 2011). Therefore, conservation 

agriculture practices are being advocated as a sustainable alternative to conventional 

rice-wheat cropping with aims of protecting natural resources and supporting 

livelihoods simultaneously (RWC 2006; Gupta and Seth 2007; Jat et al. 2009a; 

Erenstein 2011). Conservation agriculture approaches aim to achieve dual goals of 

improving farmers livelihoods and using environmental resources sustainably through 

integrated management of soil, water and biological systems as defined by the FAO 

(Hobbs et al. 2008)( http://www.fao.org/ag/ca/). However, there is not one clear 

definition of what constitutes conservation agriculture, in different agricultural settings 

a combination of agricultural practices and resource management approaches are 

http://www.fao.org/ag/ca/


applicable. However, it is generally accepted that conservation agriculture approaches 

combine minimal soil disturbance (reduced or zero-tillage), permanent or semi-

permanent soil cover and crop rotations (Hobbs et al. 2008; Lumpkin and Sayre 2009).   

Maintaining permanent or semi-permanent cover of residues and mulch over soils 

improves water use efficiency reducing evaporation and soil erosion via wind or water 

and promotes infiltration over run-off (Hobbs et al. 2008). Therefore, crop residue 

cover on soils has potential to improve irrigation water productivity in cereal croplands 

(Lumpkin and Sayre 2009). Retaining crop residues, as opposed to removal for 

livestock feed or burning, prevents loss of nutrients, carbon and soil organic matter 

(Pathak et al. 2006; Hobbs et al. 2008). There are trade-offs between the value of crop 

residues for livestock feed (residue removal) and environmental and potential long 

term yield benefits of residue retention (Erenstein 2011). Soil cover promotes high 

levels of soil microbial biomass which is important for decomposing organic matter 

and releasing nutrients (Hobbs et al. 2008). Nutrient cycling and soil organic matter 

accumulation in soils is enhanced when mulch covers fields with legume cover crops 

promoting microbiological activity (Hobbs et al. 2008). This enhances levels of nitrogen 

fixation and, thus, reduces requirements for inorganic nitrogen fertilisers (The Royal 

Society 2009). Application of rice residue to wheat crop fields has little short-term yield 

impacts (1-3 years) but leads to longer term gains suggesting its importance in creating 

a sustainable, high yielding agricultural system (Chauhan et al. 2012).  

Zero-tillage of the wheat crop has been the most widely adopted conservation 

agriculture practice in Punjab and Haryana (Erenstein and Laxmi 2008; Erenstein 

2009a). The success of the uptake in zero-tillage wheat was due to farmer demand for 

the benefits including earlier sowing reducing labour requirements and therefore 

reduced risk of labour shortages, reduced impact of the weed Phalaris Minor and 

economic savings (Erenstein and Laxmi 2008; Erenstein 2009a). Inverted T-opener 

zero-tillage drills, common in Punjab and Haryana directly seed, and place fertilisers, 

into a narrow slot with no or minimal prior field preparation (Gupta and Seth 2007; 

Erenstein and Laxmi 2008). The seeds and fertilisers are planted at a depth of 7.5 to 10 

cm and the T-opener zero-tillage drills cost around US $400 (Erenstein and Laxmi 

2008). Adoption of zero-tillage is limited by farmer perceptions and awareness of the 



benefits and availability of equipment, a large proportion of zero-tillage drills are hired 

(Hobbs et al. 2008; Erenstein and Laxmi 2008). Initial research on zero-tillage in India 

began in the 1970’s, but it was in the 1990’s when a favourable policy and research 

environment facilitated by the Rice-Wheat Consortium encouraged the development 

of zero-tillage incorporating farmer feedbacks and demonstrations (Erenstein and 

Laxmi 2008; Erenstein 2009a). This was in conjunction with farmers in Haryana 

requiring methods to enable more timely planting of the wheat crop after the longer 

maturing basmati rice crop (Erenstein and Laxmi 2008). There has since been a 

dramatic increase in the area under zero-tillage in Punjab and Haryana since 2000 

(Gupta and Seth 2007; Erenstein and Laxmi 2008).  

Zero-tillage, with reduced tractor passes and labour requirements delivers substantial 

economic savings to farmers (Erenstein and Laxmi 2008; Jat et al. 2009a). For the 

wheat crop, these economic benefits are boosted by improved yield returns with 

reduced input requirements (e.g. fertiliser, irrigation water) (Gupta and Seth 2007; 

Erenstein and Laxmi 2008; Saharawat et al. 2012). Zero-tillage wheat can be used with 

targeted crop rotations and herbicide use to reduce populations of the herbicide 

resistant weed Phalaris Minor (Gupta and Seth 2007). Through reducing soil 

movement zero-tillage practices provided a control mitigating Phalaris Minor 

outbreaks (Erenstein and Laxmi 2008). Studies have reported an increase in broadleaf 

weeds in zero-tilled wheat fields suggesting further research is required into integrated 

pest and weed management (Hobbs et al. 2008; Erenstein and Laxmi 2008). However, 

in general farmers perceive a reduced weed infestation due to zero-tillage, by as much 

as 43% less weeds in zero-tillage fields, often due to minimal soil disturbance 

promoting late emergence of weeds reducing competition with the crop (Gupta and 

Seth 2007; Erenstein and Laxmi 2008). Conventional tillage leads to declines in soil 

fertility, organic matter content and soil degradation (Hobbs et al. 2008). This is 

despite some benefits of nutrient release due to mineralisation and oxidation of soil 

organic matter after exposure to air; however in tropical environments this promotes 

rapid processing of organic matter which leads to depletion of soil carbon and soil 

fertility after continual intensive tillage (Hobbs et al. 2008). Experimental field studies 

showed improvement in soil physical properties under zero-tillage including stability in 



soil aggregation and improved infiltration rates with penetration 

resistance/compaction reduced in soils between 10 and 25 cm (Jat et al. 2009a). Zero-

tillage soils in rice-wheat systems have higher soil aggregates than contemporary 

conventional tilled and puddled soils; puddled soils also increase soil compaction, 

break capillary pores and form sub-surface hard pans impeding root growth (Jat et al. 

2009a). It has been observed that each centimetre reduction in wheat crop root 

growth, due to soil compaction caused by puddling of the preceding rice crop, reduces 

yield by 0.4% (Jat et al. 2009a).  

To maximise the long-term sustainability and yield gains of conservation agriculture 

there is a need to address trade-offs between residue retention and residue removal 

and combine residue management with zero-tillage in the IGP (Erenstein 2009a; 

Erenstein 2011). There is therefore a need to strengthen existing research into zero-

tillage drills which can seed through crop residue (e.g. happy seeder) as the existing 

zero-tillage drills do not handle crop residue well (Erenstein 2009a; Erenstein 2011). 

Research is also being undertaken to develop straw spreaders attached to combine 

harvesters which evenly distribute straw over fields enhancing the performance of 

zero-tillage drills (Chauhan et al. 2012). One of the key concepts of conservation 

agriculture is integration of different management practices. Often crop residue 

retention and zero-tillage used in conjunction leads to the greatest gains in terms of 

enhanced carbon sequestration, soil organic matter content in upper soil layers, 

maintenance of soil physical properties (e.g. higher aggregate stability) and nutrient 

cycling (Hobbs et al. 2008). This is exemplified by the fact that conventional puddled 

rice undermines environmental and soil health gains generated from zero-tillage 

wheat (Erenstein 2011). This highlights the need for research and development to 

focus on demonstrating and delivering increased yields under zero-tillage rice (Hobbs 

et al. 2008). Research should focus on developing rice cultivars suitable for aerobic soil 

and direct seeding as well as investigating options for herbicide use and cover crops to 

control weeds (Hobbs et al. 2008).  

The yield gains from zero-tillage wheat are evident, however the yield benefits from 

zero-tillage and other resource conserving agricultural practices applied to the rice 

crop are less clear (Wassmann et al. 2009; Jat et al. 2009a; Saharawat et al. 2010; 



Chauhan et al. 2012). Yield losses were reported for rice grown under saturated soil 

culture, alternate wetting and drying and aerobic conditions compared to puddled rice, 

but water use efficiency improved under alternate cropping practices (Wassmann et al. 

2009). Experimental field studies have shown that conventional tillage or transplanted 

rice with zero-tillage has a higher yield than direct seeded zero-tillage rice (Saharawat 

et al. 2010). The same experiments also highlighted that transplanted zero-tillage rice 

had equivalent yields but improved water savings compared to conventional tillage 

rice. Crop yields were lower in direct seeded rice with higher levels of spikelet sterility 

largely attributed to lower moisture content (Saharawat et al. 2010). Puddled rice 

crops suppress weed crop growth, thus, reducing competition for resources at the 

time of crop emergence; these benefits are not realised in direct seeded rice which 

require higher rates of herbicide application (Saharawat et al. 2010). However, given 

the poor water use efficiency, high water requirements and water losses via seepage 

and percolation in puddled rice cropping combined with, limited and diminishing water 

resources and negative impacts on soil conditions there is need for research to identify 

optimal synergies between numerous resource conserving practices applicable to rice 

crops. Direct seeded rice delivers water savings compared to conventional tillage, 

reduced labour requirements overcoming potential labour shortages in Punjab and 

Haryana and enables more timely sowing of the wheat crop (Chauhan et al. 2012). The 

reduced duration of direct seeded rice allows earlier planting of the wheat crop, raising 

wheat crop yields and, thus, contributing to enhanced system productivity despite 

lower rice crop yields (Saharawat et al. 2010). There is a need to breed rice cultivars for 

direct seeding which may generate comparable yields to conventional tilled puddled 

rice; also enhanced seeding rate for direct seeding can mitigate yield losses due to the 

increased exposure of seeds to pests, birds and rats (Saharawat et al. 2010; Chauhan et 

al. 2012). Further research on fertiliser applications could also raise yields in direct 

seeded rice, it is suggested that timing fertiliser applications closer to anthesis could 

enhance assimilation into grains and, thus, improve yields (Chauhan et al. 2012).  

One of the key stresses to rice-wheat cropping in the IGP is water availability. Zero-

tillage, especially when integrated with appropriate residue management can deliver 

significant irrigation water savings. Water savings and increased water productivity are 



realised under both zero-tillage rice and wheat crops (Jat et al. 2009a; Saharawat et al. 

2010). This can be through reduced turn-around time between rice and wheat crops 

enabling residual soil moisture from rice cropping to be used productively for wheat 

germination (Erenstein and Laxmi 2008). There is better infiltration in untilled soil due 

to improvements in soil structure under zero-tillage, this reduces issues of water 

logging and leads to 36% less water use compared to conventional tillage in wheat 

crops (Gupta and Seth 2007; Erenstein and Laxmi 2008; Lumpkin and Sayre 2009). 

Earlier sowing of the wheat crop also reduces the number of required end of season 

irrigations (Erenstein and Laxmi 2008).  

There are other resource-conserving approaches shown to have sustainability and 

productivity benefits in rice-wheat cropping systems. Laser-bed levelling, when 

integrated with zero-tillage, reduces the amount of irrigation water applied without 

yield penalties also delivering improved soil physical properties and economic returns 

(Jat et al. 2009a). The International Rice Research Institute (IRRI) has developed leaf 

colour charts to enable farmers to identify the optimum time for nitrogen fertiliser 

application (Gupta and Seth 2007). Cropping on furrow-irrigated permanent raised 

beds is another conservation-agriculture practice which is increasingly being 

implemented in the IGP (Chauhan et al. 2012). The combination of zero-tillage and 

furrow-irrigation has been shown to deliver irrigation water savings (Lumpkin and 

Sayre 2009). Reduced and zero-tillage on raised beds potentially delivers several 

advantages including: improved soil structure and conditions as tractor activity is 

limited to spaces between beds, reduced waterlogging, improved fertiliser use 

efficiency as fertilisers are applied to raised-beds in the root zone, mechanical weed 

control through targeted herbicide application, reduced power for irrigation and 

reduced groundwater pollution (Chauhan et al. 2012). However, there is some 

evidence that yield levels are not improved on raised beds, that significant effort is 

required to develop and maintain the raised beds whilst in certain situations the extent 

of water savings has also been questioned (Chauhan et al. 2012). Cropping on raised 

beds does not show definitive yield benefits (Gupta and Seth 2007; Saharawat et al. 

2012), suggesting research should focus on developing cultivars suited to raised bed 



cropping and identifying optimum furrow width-bed height relationships (Gupta and 

Seth 2007; Chauhan et al. 2012). 

Implementation of conservation agriculture practices in the rice-wheat cropping 

system of Punjab and Haryana will also contribute to mitigating agricultures GHG 

emissions. Reduced tillage and residue retention leads to enhanced levels of soil 

carbon and carbon sequestration, and residue retention as opposed to residue burning 

reduces emissions of GHGs and particulates (Gupta and Seth 2007; Lumpkin and Sayre 

2009). Zero-tillage requires less tractor operations on fields and, thus, reduces fossil 

fuel use with subsequent reductions in GHG emissions (Gupta and Seth 2007; 

Erenstein and Laxmi 2008). Simulation studies show that CO2 emissions from 

machinery use are reduced under zero-tillage, raised bed and direct seeded rice 

cropping as opposed to transplanted and conventional cropping practices (Saharawat 

et al. 2012). Transplanting rice on raised beds, after zero-tillage or direct seeding 

reduced CH4 emissions compared to conventional puddled rice cropping (Saharawat et 

al. 2012). More efficient use of irrigation and temporary aeration of soils in rice 

cropping, for example alternate wetting and drying, reduces water requirements and 

also CH4 emissions (Gupta and Seth 2007; Chauhan et al. 2012). However, there was 

little variation in N2O emissions between conventional and conservation agriculture 

practices; this includes N2O emissions from soils and also production of fertiliser 

exogenous to the farm (Saharawat et al. 2012). Several conservation agriculture 

practices offer adaptive options, and enhanced resilience, to harmful climate change. 

For example, better water use efficiency and reduced water requirements under zero-

tillage and aerobic rice cropping can reduce vulnerability to uncertain future 

fluctuations in monsoon precipitation or evaporative demand (Lumpkin and Sayre 

2009; Wassmann et al. 2009; Turner and Annamalai 2012). Inter-cropping promotes 

increased cropping diversity; an increase in diversity in agricultural landscapes 

increases resilience of the cropping system and incorporation of high-value 

commodities reduce stress on water resources (Aggarwal et al. 2004; Perveen et al. 

2012; Abson et al. 2013; Mathison et al. 2013). Residue retention lowers soil and 

canopy temperature and, thus, can reduce the harmful effects of warming events on 

cereal crops (Jat et al. 2009b; Chauhan et al. 2012; Teixeira et al. 2013; Gourdji et al. 



2013b). This illustrates potential climate resilience benefits gained from conservation 

agriculture approaches; the wheat crop in the IGP is particularly vulnerable warming 

trends (Lobell et al. 2012; Lobell et al. 2013). 

The benefits of conservation and resource-conserving agricultural practices can 

address the environmental concerns associated with conventional practices, mitigate 

climate change and improve resilience to climate change in the rice-wheat systems of 

Punjab and Haryana. However, it is clear further research is needed to determine the 

optimum synergies and address trade-offs between various agricultural practices. It is 

also apparent that different agricultural practices will have different benefits 

depending upon the underlying environmental, climatic and socio-economic conditions 

in different locations. As stated at the beginning of this chapter the overarching aim for 

this thesis is to assess the vulnerability of the rice-wheat productions systems in 

Punjab and Haryana to climate drivers. It is therefore important this assessment of 

vulnerability is undertaken with an awareness that outcomes of cropping landscape 

management should aspire to deliver the multiple goals of climate resilience (low 

vulnerability) and maximum productivity without an excessive environmental or 

climatic footprint. The following chapter moves on to discuss approaches to assessing 

and measuring vulnerability before highlighting key research questions to be 

addressed through the thesis. 

 

 

 

 

 

 

 

 



Chapter 2:  Vulnerability 

There are numerous definitions, conceptualisations and theories of vulnerability in the 

literature stemming from the diversity of contexts from which vulnerability can be 

assessed and measured (Adger 2006; Eakin and Luers 2006; Ericksen 2008b). However, 

vulnerability broadly relates to susceptibility to harm, damage or losses and in the 

context of climate change is defined as ‘propensity of human and ecological systems to 

suffer harm and their ability to respond to stresses imposed as a result of climate 

change effects’ (Adger et al. 2007, p. 720). It is well documented that the vulnerability 

of human entities (e.g. individuals, households, communities and associated 

livelihoods or food security) is determined largely by underlying social, economic, 

political and governance structures which influence access to resources and adaptive 

capacity (Adger 2006; Smit and Wandel 2006; Adger et al. 2007; Ericksen 2008b). This 

research focuses on the vulnerability of a biophysical entity, crop production, to 

climatic stressors; it does not examine human or societal vulnerability to a loss in crop 

production. Therefore, there is an emphasis through the research papers on 

understanding the relationship between crop yield and climatic drivers in a real world 

cropping system and not on social, economic and governance processes. However, 

analysis assessing the vulnerability of rice and wheat crop production throughout this 

thesis recognises the multitude of climatic drivers and the underlying system factors 

and human management practices which create differential sensitivities to climate 

stressors (Luers 2005) and long and short-term environmental impacts (Millenium 

Ecosystem Assessment 2005; Hobbs et al. 2008; Erenstein and Laxmi 2008).  

Often vulnerability assessments use thresholds to distinguish a vulnerable state from a 

non-vulnerable state (Luers et al. 2003), or develop indices of vulnerability (O’Brien et 

al. 2004; Adger 2006). There are relative merits and limitations to these approaches; 

for example, the choice of variables, and weighting of variables, to construct indices is 

partly subjective (Luers et al. 2003; Luers 2005). The choice of a threshold to 

determine a vulnerable state is also limited by subjectivity and to a particular place at a 

given time. For example, the well-being threshold of 4 Tonnes ha-1 used by Luers et al. 

(2003) required for a farmer to ‘break-even’ in the Yaqui Valley, Mexico, in 2003 may 



not provide enough income in the future given crop price fluctuations; it is not a time-

space universal threshold (Luers 2005). Generalised measures of vulnerability do not 

account for its dynamic nature (Adger 2006; Eakin and Luers 2006). An index based 

approach to measuring vulnerability is limited by the purpose for which the index was 

constructed (e.g. proportional vulnerability, vulnerability gap, vulnerability severity) 

(Adger 2006). Vulnerability indices are useful to highlight an aspect of vulnerability of 

an entity or variable at a given time for a given purpose (e.g. inform policy targeting a 

given agricultural adaptation). Through their inherent simplification of a system, index 

based approaches do not always reveal the holistic and complex nature of vulnerability 

and its causation (Eakin and Luers 2006)2.   

Several studies have highlighted the overlap between vulnerability assessments and 

the literature on ecological resilience and the resilience of socio-ecological systems 

(Luers et al. 2003; Adger 2006; Gallopín 2006; Eakin and Luers 2006; Ericksen 2008b). 

Vulnerability can be conceptualised as the opposite of a resilient system where a 

resilient system can absorb or cope with a stress or perturbation without altering 

system functioning or the system can adapt (adaptive learning/capacity) or reorganise 

(self-organisation) following a stress or shock to maintain outputs (Walker et al. 2004; 

Folke 2006; Eakin and Luers 2006).  

Utilising concepts common in assessing resilience in socio-ecological systems can offer 

several advantages when assessing the vulnerability of agricultural production systems 

to climate drivers and variability. Systems approaches are comfortable handling 

multiple drivers, processes and feedbacks (Ericksen 2008b); such a systemic focus is 

important as it enables a more holistic assessment of the vulnerability of a given 

variable to a given stressor or perturbation. In the context of assessing the 

vulnerability of agricultural production to climate drivers and variability, at the 

simplest level there is a cause-effect relationship between climate and crop yield. 

However, the size of the effect (i.e. shifts in crop yield) relative to the cause (climate 

2
 In this thesis no attempt was made to generate an index or quantified measure of vulnerability. However, the four research 

papers (Chapters 3-6) produce a body of work enhancing understanding of vulnerability of the agricultural production systems of 
Punjab and Haryana to climatic drivers and variability, and its spatial manifestation. It is important to note the datasets generated 
here have the potential to be used in a multitude of indicator based studies; this point is briefly touched upon in Chapter 5 with an 
illustration of prioritising areas for targeting adaptations. 



driver) varies in space and time due to underlying system interactions and feedbacks 

from past system activities. For example, it is recognised that agricultural production, 

and its current level of resilience to harmful climate change or variability, is in part 

determined by current levels of ecosystem services; these current levels of ecosystem 

services are determined by past activities within the ecosystem and longer-term 

trajectories of ecosystem drivers (Millenium Ecosystem Assessment 2005; Ericksen 

2008b; Dearing et al. 2012; Hughes et al. 2013a). The vulnerability of wheat yield on all 

farms in the Yaqui Valley, Mexico, increases with increasing temperatures; however, 

the relative increase in vulnerability is greater on farms with poor management and 

less favourable soils (Luers 2005). This highlights the importance of understanding the 

system within which the variable being assessed for its level of vulnerability is situated.  

A systemic approach, with a focus on processes and feedbacks as well as outcomes is 

useful in highlighting that vulnerability is not a static state (Eakin and Luers 2006), and 

that the system can accentuate or reduce the impacts of a perturbation or stressor and 

lead to differential levels of vulnerability (Turner et al. 2003).  Assessments of 

resilience in complex and socio-ecological systems indicate that ‘slow processes’ 

undermine resilience, or increase vulnerability, without the outcome of vulnerability 

being apparent (Scheffer et al. 2001; Luers 2005; Hughes et al. 2013b; Hughes et al. 

2013a). In the context of vulnerability Luers (2005) highlights the importance of 

monitoring processes which control, and cause gradual changes in, a systems 

sensitivity increasing the likelihood a system will yield a negative outcome when 

exposed to either a ‘short-term’ stochastic event (e.g. climatic extreme) or an 

accumulating stressor (e.g. gradual warming). In the resilience theory and complex 

systems literature an outcome of such vulnerability or loss of resilience would be a 

‘regime shift’ (Scheffer et al. 2012; Hughes et al. 2013b), in the context of vulnerability 

in agricultural production systems it would be a loss in crop yield, possibly below a 

well-being threshold (Luers et al. 2003). Therefore, by understanding the processes 

and system interactions which accentuate vulnerability, it is possible to identify 

vulnerability in a system or at a given location before the negative impacts of low 

resilience or high vulnerability are realised.  



The concept of resilience and, therefore, vulnerability being dynamic is inherent in 

resilience theory thinking of socio-ecological systems (Luers 2005; Eakin and Luers 

2006), and is conceptualised via the adaptive cycle (Holling 2001). A systemic 

approach, recognising that vulnerability is dynamic, is important when assessing the 

vulnerability of agricultural production, and informing adaptations to reduce 

vulnerability, within the context of climate-smart agricultural production landscapes. 

The vulnerability, or resilience, of agricultural production levels at a given location and 

time-step is determined by historical and evolving human management decisions with 

subsequent impacts and interactions with biophysical processes and outcomes. This is 

of relevance to climate-smart adaptations (FAO 2011b) which in the context of this 

study would aim to reduce the current vulnerability of agricultural production to 

climatic drivers and variability without impeding the ecosystems ability to support 

required future production levels under uncertain future climate changes. This point is 

echoed by Turner et al. (2003) who comment that assessing vulnerability, and utilising 

resources to reduce vulnerability, without an awareness of the ‘larger systemic 

context’ could lead to unintended consequences or ‘surprises’.  

The vulnerability of a system is often characterised as a function of exposure, 

sensitivity and adaptive capacity/resilience. This framework has been used to assess 

climate change induced vulnerability to agriculture at varying spatial scales (e.g. farm 

level in Mexico (Luers et al. 2003) and district level in India (O’Brien et al. 2004)). 

Exposure to climate change refers to the degree of climate stress upon a given variable 

or system (O’Brien et al. 2004), Luers et al. (2003) and Luers (2005) define exposure in 

similar terms as the magnitude and frequency of a stressor force a system is exposed 

to. In reality exposure and sensitivity are interlinked, for example, the effect of the 

exposure and, thus, its magnitude relative to the variable or system in question, is 

dependent upon the sensitivity of the system or variable (Luers 2005; Smit and Wandel 

2006). 

Similar to the concept of resilience in a socio-ecological system sensitivity is often 

defined as the amount of stress or perturbation a system can absorb or cope with 

without experiencing long-term harm or change in state or structure (Luers 2005; 

Adger 2006; Gallopín 2006). In the context of the vulnerability of agricultural 



production (crop yield), Luers et al. (2003) measure sensitivity as the derivative of crop 

yield relative to the stressor (e.g. climate driver). This essentially defines sensitivity as 

the rate of change in the system or variable of interest relative to the rate of change in, 

or degree of exposure to, the stressor (Luers et al. 2003; Gallopín 2006). It is the 

sensitivity that accounts for the differential response of two systems to the same 

exposure to a stressor or perturbation. As mentioned it is difficult to assess sensitivity 

without acknowledging the nature of the stressor or perturbation and the system’s 

exposure to it (Luers 2005; Smit and Wandel 2006). For example, sensitivity to a short 

term perturbation or stochastic event (e.g. drought) is characterised by the system’s 

ability to resist change (e.g. the amount of loss in crop yield) or to bounce back to 

normal conditions (e.g. the time taken for the system to deliver normal crop yields) 

(Luers 2005). Sensitivity to gradual change (e.g. global warming) is determined by the 

rate at which the systems resilience is eroded and movement towards a state of higher 

vulnerability, closer to thresholds of harm (e.g. the system cannot support break even 

yield levels) (Luers 2005). Often measures of vulnerability link exposure and sensitivity; 

Luers (2005) uses the coefficient of variation in crop yield as a metric of susceptibility 

to harm (loss in crop yield) which incorporates exposure and sensitivity, vulnerability is 

then quantified as a function of exposure and sensitivity (coefficient of variation) 

relative to the proximity of the state of the system (crop yield level) to a threshold of 

harm. Luers et al. (2003) apply a similar linked approach to measuring vulnerability but 

quantify sensitivity as the rate of change in crop yield to a change in the stressor 

(temperature); exposure is represented by the frequency distribution of the stressor. 

Therefore, vulnerability is quantified as the ratio of sensitivity to the state of the 

system relative to a threshold of harm multiplied by the stressor weighted by its 

probability of occurrence. 

Adaptive capacity or resilience is often considered to be the third component of 

vulnerability (O’Brien et al. 2004; Gallopín 2006). Dependent upon the context of the 

assessment there are differences in how adaptive capacity is conceptualised (Gallopín 

2006). In the context of adaptive capacity to climate change vulnerabilities it is defined 

as the ‘ability or potential of a system to respond successfully to climate variability and 

change’ and is a ‘necessary condition for the design and implementation of effective 



adaptation strategies so as to reduce the likelihood and magnitude of harmful 

outcomes resulting from climate change’ (Adger et al. 200), p. 727). In resilience 

science and assessments of socio-ecological systems adaptive capacity is determined 

by the capability of actors, often human, to increase resilience to stressors and 

perturbations (Walker et al. 2004). Adaptive capacity in socio-ecological systems is also 

linked to adaptive self-organisation and the system’s capacity for learning (Folke 2006). 

Human actions are often dominant in socio-ecological systems and, thus, adaptive 

capacity is inherently linked to human activity and is a social function (Walker et al. 

2004). Adaptive capacity is determined by a range of context or place-specific 

interactions between social, cultural, economic, political and governance processes 

operating across multiple spatial and temporal scales (Smit and Wandel 2006; Adger et 

al. 2007; Ojha et al. 2013). Due to the complexity of processes determining adaptive 

capacity, and cross-scale linkages (e.g. national and international economic policy can 

cause differential levels of intra-community adaptive capacity), levels of adaptive 

capacity vary sub-nationally but also from community to community and even at 

individual or household levels (O’Brien et al. 2004; Smit and Wandel 2006). If adaptive 

capacity is included in vulnerability assessments it provides a measure of minimum 

potential vulnerability as opposed to current or existing vulnerability (Luers et al. 

2003). 

2.1 Thesis Structure 

Following the above review of approaches to assess and measure vulnerability this 

thesis poses the following questions regarding an assessment of the vulnerability of 

the rice-wheat production system of Punjab and Haryana in the north-west IGP to 

climatic drivers: 

1) What is the exposure the of rice-wheat crop production system to harmful climate 

drivers?  

2) What is the sensitivity of rice-wheat crop production to variations in climate drivers?  



3) Where are locations which can be targeted with adaptations, accounting for 

location-specific stresses and thereby enhance the resilience of crop production to 

climate changes and variation whilst minimising environmental impacts?  

These three questions are explored through four, independent research papers each 

with a unique set of aims and standalone conclusions (Chapters 3 to 6). However, 

these four research papers are linked by the overarching theme of assessing the 

vulnerability of the rice-wheat production system to climatic drivers. The outline for 

each of these four papers is presented below including a brief description of how they 

provide information relevant to the three overarching research questions.  

Chapter 3: Analysing temporal trends in the Indian Summer Monsoon and its variability 

at a fine spatial resolution. (Research Paper 1) 

The ISM is a key driver of agricultural production across all-India (Mall et al. 2006); 

inter-annual shortfalls in ISM precipitation or long-term decreasing trends will have 

either negative impacts on crop production or increase pressure on already stressed 

water resources. It is important to know where locations are vulnerable to variability or 

harmful trends in ISM precipitation so water resources management and agricultural 

practices can be adapted accordingly (RQ 1, RQ 3). This chapter applied robust trend 

analysis to a gridded (0.25˚) climate dataset spanning the years 1951 to 2007 

highlighting locations of increasing or decreasing trends in facets of ISM precipitation 

(RQ1). The facets of ISM precipitation to which trend analysis were applied included: 

total ISM precipitation, recurrence of drought years, inter-annual variation in ISM 

precipitation, onset date of ISM and inter-annual variation in ISM onset date. These 

facets of ISM precipitation were analysed because they are of relevance for agricultural 

production. The datasets generated here were subsequently integrated with satellite-

derived measures of cropping over Punjab and Haryana to highlight locations in rice-

wheat cropping landscapes which are exposed to unfavourable ‘normal’ ISM conditions 

or unfavourable trends in ISM precipitation (RQ 1, RQ 3). The analysis through this 

chapter was performed at a ‘fine’ spatial resolution (in terms of available gridded 

climatic datasets) so as to generate local detail and to be able to inform locally 

sensitive water resources management (RQ 3). 



Chapter 4: Spatio-temporal dynamics in the phenology of croplands across the Indo-

Gangetic Plains. (Research Paper 2) 

Chapter 4 provides monitoring of the spatio-temporal dynamics of cropping intensity, 

length of growing season and cropland productivity over the entire IGP region from 

1982-1983 to 2005-2006 using the pre-processed GIMMS NDVI dataset. It 

demonstrated how land surface phenology (LSP) parameters could be extracted per-

pixel and per-agricultural season to document trends in cropping over a large region for 

a substantial time period. Utilising a long-term satellite data was important to capture 

long-term trajectories of the dynamics of the cropping system across its landscape. 

Through utilising a longer-term dataset it is possible to identify locations where crop 

production and length of growing seasons are variable suggesting vulnerability to 

climatic variation (RQ 1, RQ 2). This analysis enables assessment of landscape scale 

trade-offs between ‘normal’ levels of crop productivity and the risk (inter-annual 

variability in production) of cropping. Inter-annual variation in crop production is often 

taken as a measure of the vulnerability (specifically sensitivity and exposure) of crop 

production to climate (Luers 2005) (RQ 1, RQ 2). Analysing long-terms trends in the 

dynamics of the wider IGP crop production system (including Uttar Pradesh and Bihar) 

facilitates capturing locations where cropping could be expanded or intensified to take 

pressure off the exhausted croplands of Punjab and Haryana (RQ 3).  

Chapter 5: Climate-smartening India’s breadbasket. Locating vulnerability ‘hotspots’ to 

target with adaptive practices. (Research Paper 3) 

LSP parameters from satellite observations from MODIS data were utilised to identify 

rice and wheat crop extent and provide yield estimates at a 500 m spatial resolution. 

These maps were integrated with spatially explicit ancillary datasets (e.g. climatic 

datasets developed in Chapter 3, groundwater levels, cropping diversity, sowing date, 

locations of crop residue burning) to provide landscape scale assessments of where 

crop productivity is vulnerable to prevailing climatic trends (identified in Chapter 3), 

water scarcity, sub-optimal agronomic practices or where cropping is contributing to 

climate change (via GHG emissions) or environmental degradation (RQ 1, RQ 2, RQ 3). 

This chapter takes a holistic view of the rice-wheat cropping system enabling 



assessment of the vulnerability of the rice-wheat croplands to climate whilst retaining 

awareness of other pressures and stresses. It demonstrated how integration of spatial 

datasets can inform spatial targeting of adaptation and mitigation measures, capture 

synergies in adaptation and mitigate trade-offs between conflicting management 

goals; thus, contributing to moving the rice-wheat production system onto a trajectory 

towards a climate-smart landscape (RQ 3). It specifically highlights locations where 

adaptations could be targeted to address multiple stresses simultaneously. 

Chapter 6: Satellite observations reveal the impact of climatic extremes and variability 
on cereal croplands. (Research Paper 4) 

Satellite derived estimates of rice and wheat yield derived from MODIS data and daily, 

gridded temperature and precipitation datasets were used to train a crop yield-climate 

regression model. This crop yield-climate model explored whether temperature 

variables during key phenological development stages for crop yield formation are 

currently limiting production in the rice-wheat cropping system (RQ 1, RQ 2). The 

statistical framework uses fixed-effects terms in the models to account for spatial 

variation in time-invariant system variables (e.g. irrigation, farmer decisions) and 

omitted variable bias. The analysis reveals how sensitive rice and wheat crops are in 

Punjab and Haryana to warming during key crop development stages; it also captures 

how the sensitivity of crop yield varies with different sowing dates and thus can inform 

climate-resilient adaptations (RQ 2, RQ 3). 

A common element to the analysis performed in the four papers which constitute this 

thesis is the use of spatial datasets. Remote sensing is used to monitor the extent of 

rice and wheat croplands and to capture some of the dynamics of the cropping system 

including length of growing seasons, cropping intensity and productivity. These remote 

sensing measures are integrated with analysis of climatic datasets and other 

agricultural statistics to enable landscape scale assessments of vulnerability. This 

approach facilitates capturing spatial patterns of the magnitude and varying nature of 

the vulnerability of crop production to climate drivers. This overcomes the limitations 

of assuming levels of vulnerability are delineated by distinct boundaries, and uniform 

within boundaries, which is an artefact of assessments made using data constrained to 

the political unit scale (O’Brien et al. 2004).    



Monitoring cereal croplands at the landscape scale provides the opportunity to 

understand how real world cereal systems actually respond to climatic drivers and, 

thus, provides utilisable, situation-specific information for climate-resilient adaptation 

and mitigation. Bogdanski (2012) and Scherr et al. (2012) highlight the benefits of 

synthesising climate-smart approaches with integrated landscape approaches. Climate-

smart approaches focus on resilience to climate change, adaptation and mitigation 

(FAO 2011b). Integrated landscape approaches recognise the multifaceted nature of 

drivers which determine landscape processes, that landscapes are required to provide 

socio-economic and environmental benefits to society and, that social, environmental 

and economic processes at work within a landscape are dynamic and, thus, require 

management sensitive to long-term uncertainties (Scherr et al. 2012). Here, the 

landscape scale refers to a wider spatial extent whilst retaining local detail. The ideal 

cropping practice to deliver climate-smart benefits will vary spatially and with 

underlying environmental and socio-economic conditions (DeFries and Rosenzweig 

2010; FAO 2011a). Thus, monitoring cereal cropland-climate interactions across a 

landscape can highlight the best practice for a given locale. Assessing the vulnerability 

of cereal crops to climate across a landscape inherently acknowledges the complexity 

of actors and processes which determine vulnerability to climate change in real world 

situations (DeFries and Rosenzweig 2010).  

Approaches to assess cereal cropland vulnerability should provide integrated 

monitoring of the landscape to inform on integrating climate-resilience into climate-

smart cereal cropping practices to ensure short-term societal needs are met without 

hindering long-term provision of ecosystem services (Millenium Ecosystem Assessment 

2005; Foley et al. 2005; Eakin and Luers 2006; FAO 2011b; Scherr et al. 2012; 

Dobermann and Nelson 2013). The immediacy of implementing such approaches is 

emphasised by the negative impacts of climate change on cereal production, which are 

already being realised (Lobell et al. 2011b) and projections suggesting interactions 

between climate change and current agricultural practices will result in a widespread 

loss of suitable land to support rice and wheat crops in the IGP (Ortiz et al. 2008; Ojha 

et al. 2013). An integrated spatial approach developed through this thesis is useful to 

highlight location-specific stresses, target locally optimum adaptations to reduce 



vulnerability and to capture synergies and minimise trade-offs at a landscape scale 

addressing the multiple goals of a climate-smart landscape (Scherr et al. 2012; 

Dobermann and Nelson 2013). 

 

 

 

 

 

 

 

 



Chapter 3:  
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3.1 Introduction 

The ISM occurs from June to September, is strongest during July and August, and 

contributes approximately 70% to the total annual precipitation in India (Ramesh 

Kumar and Prabhu Dessai 2004). ISM precipitation is a major driver of environmental 

and agricultural functioning in the sub-continent with subsequent impacts on 

individual livelihoods and economic activities. India’s population is projected to rise to 

nearly 1.4 billion by 2026 (DES 2009). This population growth will increase water and 

food demand necessitating expansion and intensification of irrigated agricultural areas 

(Moors et al. 2011). Analysis of spatial heterogeneity and temporal trends in ISM 

precipitation can provide crucial information to planners charged with managing water 

resources sustainably.  

Simulation of monsoon precipitation was not consistent across the range of GCMs 

used in the IPCC 4th Assessment Report (Annamalai et al. 2007; Christensen et al. 2007; 

Moors et al. 2011). Annamalai et al. (2007) found that only six out of 18 GCMs were 

able to provide an acceptable simulation of monsoon climatology; these six models 

3
 Duncan, J.M.A., Dash, J., & Atkinson, P.M. (2012) Analysing temporal trends in the Indian Summer Monsoon and 

its variability at a fine spatial resolution. Climatic Change, 117, (1-2), 119-131. doi:10.1007/s10584-012-0537-y 

The work undertaken in chapter 3 has also led to three subsequent publications separate to my PhD research:  
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Biggs, E.M., Duncan, J.M.A., Atkinson, P.M., & Dash, J. (2013) Plenty of water, not enough strategy: How inadequate 
accessibility, poor governance and a volatile government can tip the balance against ensuring water security: the 
case of Nepal. Environmental Science & Policy. doi:10.1016/j.envsci.2013.07.004. (In Press). 
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failed to represent the regional variation in ISM precipitation across India and there 

was inter-model variation in the timing of peak precipitation. Krishnamurthy et al. 

(2009) commented that trends detected from observed data provide a useful 

reference point for assessing GCM simulations.  In light of the uncertainty in GCM 

simulations of ISM precipitation, trend analysis from observational data provides a 

reliable source of information to water resource planners.  

The amount and duration of ISM precipitation varies across India (Satyanarayana and 

Srinivas 2008; Ghosh et al. 2009). Recent studies have revealed spatial heterogeneity 

in the occurrence of significant increasing or decreasing trends in facets of ISM 

precipitation (Guhathakurta and Rajeevan 2008; Ghosh et al. 2009; Krishnamurthy et 

al. 2009; Ghosh et al. 2011). Ghosh et al. (2009) highlighted limitations in identifying 

temporal trends by aggregating precipitation over large areas receiving varied amounts 

of rainfall (e.g. Goswami et al. 2006). Aggregating precipitation data over a region 

which exhibits spatial variability in locally occurring temporal trends can lead to 

identification of false trends and loss of spatial detail. Given the spatial heterogeneity 

of ISM precipitation, trends in phenomena associated with ISM precipitation (e.g. 

extreme rain events, local onset of ISM and occurrence of drought conditions) should 

be analysed at the finest possible spatial resolution.   

The spatial distribution of increasing or decreasing trends in extreme rain events 

across India has been well documented using a variety of statistical methods (Ghosh et 

al. 2009; Dash et al. 2009; Krishnamurthy et al. 2009; Ghosh et al. 2011). However, 

temporal trends in other facets of ISM precipitation, such as drought years or local 

onset date of ISM, which exert a control upon agriculture and livelihoods, have 

received little attention at a suitably fine spatial resolution. This research addresses 

this knowledge gap by performing trend analysis at the local scale for these variables 

from 1951-2007. When viewed in conjunction with the earlier mentioned studies on 

trends in extreme rain events contributes to an enhanced understanding of the 

manifestation of ISM precipitation, and its variability, at a fine spatial resolution across 

India. Providing such local detail is pertinent given Goal 5 of the Government of India’s 

National Action Plan on Climate Change, National Water Mission to focus on basin 



level integrated water resource management to cope with variability in precipitation 

(National Water Mission 2009).   Specific outcomes from this research include:  

1) Identifying ‘normal’ ISM conditions, inter-annual variation in ISM precipitation, 

frequency of drought years, ‘normal’ onset date of ISM and inter-annual 

variation in onset date of ISM at a 0.25˚ spatial resolution across India. 

2) Developing a new method to define local onset of ISM from daily precipitation 

data.  

3) Performing temporal trend analysis at the local scale across all India for three 

key variables: annual ISM precipitation, occurrence of severe drought years and 

local onset date of ISM.  

4) Identifying locations where there are trends of increasing or decreasing inter-

annual variation in ISM precipitation and local onset date of ISM.  

3.2 Methods and Data 

3.2.1 Precipitation Data  

Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation 

of the Water Resources (APHRODITE) daily 0.25°x0.25° gridded precipitation data were 

obtained for all India for the period 1951-2007 (http://www.chikyu.ac.jp). The 

APHRO_MA_V1003R1 data set was used in this study. The gridded precipitation data 

were interpolated from station gauge data obtained from Global Telecommunication 

System networks, precompiled datasets, records from national meteorological 

organizations and monthly climatologies using the methodology outlined in Yatagai et 

al. (2009) for the preceding APHRO_V0902 product, but with improved quality control. 

A dense network of gauges across India, which passed quality control, were utilised in 

the development of the APHRODITE product in every year (Yatagai et al. 2009) (see 

Appendix 1 for depiction of gauges used in the generation of the APHRODITE product 

and links for further information on product input datasets).  The interpolation method 

incorporates weighting functions to account for topographic features improving 

representation of orographic precipitation and uses the WORLDCLIM dataset to 

correct for bias in areas with limited station gauge coverage (Yatagai et al. 2009).  



For almost the entire extent of India, ISM precipitation from APHRODITE data and 

Indian Meteorological Department (IMD) gridded data are well correlated (correlation 

coefficient > 0.6) (Rajeevan and Bhate 2008). There is a smaller correlation between 

the two datasets in the northern Himalayan region and the far eastern states of 

Manipur and Mizoram because there are fewer rain gauges in these regions from 

which the gridded datasets were developed (Rajeevan and Bhate 2008). For most 

corresponding grids across India the difference between the two datasets is less than 

3mm day-1 (Rajeevan and Bhate 2008). Several studies have used the IMD gridded 

dataset to analyse a variety of trends in ISM precipitation across India  (e.g. Rajeevan 

et al. 2006; Rajeevan et al. 2008; Ghosh et al. 2009; Dash et al. 2009; Krishnamurthy et 

al. 2009). The strong match between APHRODITE and such a widely used and well 

validated product highlights the applicability of using APHRODITE to study trends in 

ISM precipitation. The IMD gridded dataset has a 1°x1° spatial resolution compared to 

the 0.25°x0.25° spatial resolution of the APHRODITE product; this suggests there is 

potential to capture greater spatial detail in occurrence of trends when using the 

APHRODITE data. This will be of obvious benefit to planners aiming to increase 

efficiency of water resource use at the local scale. 

3.2.2 Trend Analysis 

The non-parametric Mann-Kendall test (Mann 1945; Kendall 1975) was used to detect 

significant (p<0.05) increasing or decreasing temporal trends in examined facets of ISM 

precipitation. The Mann-Kendall test has been used widely to detect the presence of 

monotonic trends in climatological and hydrological time series (e.g. Partal and Kahya 

2006; Modarres and de Paulo Rodrigues da Silva 2007; Bae et al. 2008; Krishnamurthy 

et al. 2009; Biggs and Atkinson 2010). The Mann-Kendall test is a rank-based test not 

sensitive to the data being skewed, containing extreme values, having a non-Gaussian 

distribution or containing non-linear trends (Partal and Kahya 2006; Biggs and Atkinson 

2010). It is therefore a robust test for trend detection in the facets of ISM precipitation 

examined in this study. 

The Mann-Kendall test statistic S was calculated by: 
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where n is the length of the time series of data, xi is the value of the data at time i. If 

the difference between xj – xk is positive the sgn function assigns a value of one, a 

negative difference is assigned a value of negative one. If the Mann-Kendall test S is 

positive it indicates a positive or increasing trend, the opposite is true for a negative S. 

Kendall (1975) proved that values of S are normally distributed and that the mean E 

and variance Var of S are as follows: 
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where n is the length of the time-series, p is the number of tied values in x and t  is the 

number of ties of extent i. The values of Var and E enable the calculation of a Z-statistic 

which follows the standard normal distribution used to determine the statistical 

significance of the observed trend (Douglas et al. 2000).  
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The significance level for each trend was calculated by: 
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where   is the standard normal distribution function (Douglas et al. 2000). If p is less 

than 0.05 then the observed trend is deemed to be significant at the 95% confidence 

level.  

3.2.3 Field Significance Testing 

Field or global significance addresses the question of whether the number of 

independent tests for significance reporting significant trends m could have occurred 

by chance (Livezey and Chen 1983). The probability of obtaining m significant (αlocal) 

trends from N independent tests for significance can be estimated by the binomial 

distribution, where αlocal is the local significance level (Livezey and Chen 1983; Wilks 

2006). The field is the spatial extent over which local significance tests are performed 

(Wilks 2006). The value m0 must be equalled by or exceeded by the number m to 

determine field significance at αglobal (Livezey and Chen 1983; Wilks 2006). The value 

m0 is the threshold number of significant tests which needs to be exceeded at αlocal 

from N independent tests so that the probability of m observed number of significant 

tests realised is a chance occurrence equal to or less than 0.05  (Livezey and Chen 

1983). The global null hypothesis states that the local null hypothesis of no significance 

is true for all local tests (Wilks 2006).    

Positive spatial autocorrelation between data reduces the number of degrees of 

freedom at the field level; this results in the global null hypothesis being rejected too 

frequently if spatial autocorrelation is not accounted for (Livezey and Chen 1983; Wilks 

2006). Following Livezey and Chen (1983) let  n0 be the minimum number of effective 

degrees of freedom which the field must contain for the realised number of significant 

tests αlocal to be significant at αglobal. If the data within the field are spatially 

autocorrelated then the field contains n<Nsig degrees of freedom where Nsig is the 



number of independent realisations of tests for significance (Livezey and Chen 1983). If 

n is greater than n0 then the field is deemed statistically significant at αglobal. Random 

resampling of the input data can be used to estimate thresholds for field significance in 

spatially autocorrelated fields (Wilks 2006). Livezey and Chen (1983) determined the 

threshold for field significance from the 5% tail of a histogram of percentage of grid 

cells reporting statistically significant correlations αlocal with input data resampled 

randomly via Monte Carlo simulations. Random resampling of the time series of input 

data in a grid cell retains the spatial autocorrelation within the field without requiring 

knowledge of the spatial covariance structure (Wilks 1997).  

3.2.4 Examined Facets of ISM Precipitation 

3.2.4.1 Annual ISM precipitation 

Annual ISM precipitation (sum of June-September precipitation) was calculated for 

every grid cell (0.25˚) for each year from 1951-2007. The median and inter-quartile 

range represent the central value and dispersion in the distribution of inter-annual ISM 

precipitation, respectively, over the specified time period. These measures were used 

as they are not distorted by extreme values. Locations experiencing significant (p<0.05) 

increasing or decreasing trends in annual ISM precipitation were identified using the 

Mann-Kendall test. To test if a location experienced increasing or decreasing trends in 

the variability of annual ISM precipitation, the coefficient of variation (equation 7) was 

calculated within a moving window passed through the time series of annual ISM 

precipitation. Three, five, seven and nine year moving windows were used to check if 

any observed trends in variation were artefacts of the size of moving window. The 

moving window included an equal number of years above and below a central value 

(e.g. a five year moving window for the year 1972 would include the range 1970-1974). 

For the time series of the coefficient of variation calculated within a moving window 

Mann-Kendall tests were applied to detect trends of increasing or decreasing 

variability over time.  

   
 

 
 

(7) 



where µ is the mean annual ISM precipitation within the moving window and σ is the 

standard deviation. 

3.2.4.2 Severe Drought Years 

The standard IMD definition of a severe drought year, annual precipitation less than 

50% of the long term normal (1951–2007 in this study), for a specified area was used 

(Shewale and Kumar 2005). The long term normal annual mean precipitation for 1951–

2007 was obtained for each 0.25°x0.25° grid cell. If for a specific year the annual total 

precipitation was less than 50% of the long-term normal it was considered a severe 

drought year. In each grid cell a time series of the average number of severe drought 

years in a three, five, seven and nine year moving window from 1950 –2007 was 

calculated. Significant (p<0.05) increasing or decreasing trends in frequency of severe 

drought years in the time series were detected using the Mann-Kendall test.  

3.2.4.3 Local onset date of ISM 

There is no uniformly accepted definition of ISM onset (Fasullo and Webster 2003; Pai 

and Rajeevan 2007). Various studies, for example, Joseph et al. (2006); Pai and 

Rajeevan (2007) and, Wang et al. (2009), have criticised the IMD’s subjective definition 

for the onset of monsoon over Kerala, a state in South West India, based on 

precipitation at selected weather stations, due to lack of a quantitative criterion and 

low long-term reliability. Moreover, defining onset of ISM based on conditions over 

Kerala is limited because local conditions may be misinterpreted as monsoon onset 

(bogus or false onset) (Fasullo and Webster 2003; Pai and Rajeevan 2007; Wang et al. 

2009). Other methods defining onset date have used conditions of the westerly low 

level jet at 850 hPa (Joseph et al. 2006; Wang et al. 2009) or vertically integrated 

moisture transport (Fasullo and Webster 2003). Defining ISM onset using conditions 

over Kerala or circulation patterns can give an indication of whether the larger 

monsoon system formation is delayed relative to an average onset date of 1st June. 

However, such definitions do not identify the start date of the ISM at specific locations 

across all India accurately. A delayed or early onset at Kerala does not necessarily 

translate into a delayed or early onset of ISM in North India or represent variation 

across the country (Bansod et al. 1991; Fasullo and Webster 2003; Pai and Rajeevan 



2007).  Here, a methodology was developed which defined local onset date of ISM 

across India using daily precipitation data. Such definitions are sensitive to local scale 

processes (Moron et al. 2009), but attempt to capture onset of conditions 

characteristic of monsoon precipitation. Detection of onset of ISM at a specific location 

should not be used as an inference of large scale monsoon system conditions or 

development.  

The onset date of ISM was defined at a grid cell if two criteria were met. Criterion one 

was that from day i a minimum of 10 of the subsequent 21 days must have a positive 

daily standardised precipitation anomaly (SPA). The SPA was calculated as: 
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where xi  is precipitation on day i of year n, µ is the mean daily precipitation for year n 

and σ is the standard deviation of daily precipitation in year n within the given grid cell. 

The use of the SPA calculated individually for each grid cell means that the threshold 

for detecting the increased precipitation intensity associated with monsoon conditions 

is location-specific and sensitive to spatial variation in precipitation. This criterion also 

prevents ISM onset from being defined by short duration local synoptic precipitation 

events avoiding a false or bogus onset (Fasullo and Webster 2003; Goswami 2005).  If 

the first criterion was passed then criterion two should be met for day i to be defined 

an onset date of the ISM. Criterion two specified that the sum of daily precipitation on 

day i and the subsequent six days should be greater than 18 times the mean daily 

precipitation for year n for the grid cell. The second criterion detected the 

characteristic increase in precipitation associated with onset of ISM conditions (Wang 

et al. 2009). If onset of ISM in a grid cell was not realised for 90% of years between 

1951-2007 (51 out of 57 years) that grid cell was discounted from further analysis.  

The median and inter-quartile range of ISM onset date in each grid cell was computed. 

Significant (p<0.05) increasing (later) or decreasing (earlier) trends in ISM onset date 



were detected using the Mann-Kendall test. To test for trends of increasing or 

decreasing inter-annual variation in ISM onset date a time series of coefficient of 

variation of onset date over three, five, seven and nine year moving windows was 

constructed. The Mann-Kendall test was used to test for significant (p<0.05) trends in 

inter-annual variation of ISM onset date. During trend analysis if onset date was not 

realised in a grid cell for a particular year it was replaced with the median onset date of 

the neighbouring eight cells. This was to ensure the time series contained no missing 

values.  

3.2.5 Field Significance Methodology 

To test for field significance of trends in annual ISM precipitation, severe drought years 

and onset date of ISM bootstrap resampling of the input data at each grid cell was 

used; similar to the methodology outlined in (Krishnamurthy et al. 2009). Bootstrap 

resampling samples with replacement from the original input data and, being non-

parametric, does not require prior knowledge of the distribution of the input data 

(Wilks 1997).  A bootstrap sample of the time series at each grid cell was generated 

and the Mann-Kendall test was applied to this bootstrap sample. The number of grid 

cells with positive and negative significant trends (αlocal) from the bootstrap samples 

were summed across the field (i.e. the spatial extent of India). This process was 

repeated 1000 times to generate histograms of the number of grid cells reporting 

significant trends when the global null hypothesis of no local significance was true. The 

95th percentile value of this histogram was taken as the threshold for field significance. 

Generating confidence intervals based on bootstrapped percentile intervals did not 

require the histogram of number of significant grid cells under bootstrap sampling to 

be normally distributed (Efron and Tibshirani 1993). If the number of grid cells 

reporting significant trends from the observed data was greater than the 95th 

percentile value then the field was deemed significant at αglobal. In this research αlocal 

and αglobal were set equal to p<0.05. 



3.3 Results  

3.3.1 Annual ISM precipitation 

The South West Coast and North East of India received the greatest amounts of annual 

ISM precipitation between 1951-2007 (Fig. 3-1a). These regions also experienced the 

greatest inter-annual variation in annual ISM precipitation (Fig. 3-1b).  There was a 

fragmented spatial pattern across India for areas which experienced significant trends 

(p<0.05) of increasing or decreasing annual ISM precipitation (Fig. 3-1c). The area on 

the South West Coast of India which experienced significant trends (p<0.05) of 

decreasing annual ISM precipitation corresponds to the same location as reported by 

Guhathakurta and Rajeevan (2008). More grid cells reported significant trends (p<0.05) 

of increasing inter-annual variation in ISM precipitation than decreasing variation 

(Table 3-1; Fig. 3-1d). The magnitude of increasing or decreasing trends in annual ISM 

precipitation and inter-annual variation in ISM precipitation are depicted in Fig. 3-2a. 

The pattern and the spatial distribution of grid cells which reported significant trends 

in inter-annual variation was consistent regardless of the size of the moving window 

within which the coefficient of variation was calculated (Table 3-1). This indicates that 

observed trends were real rather than artefacts of the size of moving window. 

However, increasing the size of the moving window did increase slightly the number of 

grid cells where significant trends in inter-annual variation were realised. This may be 

expected as a larger moving window may capture more high-frequency variation 

relative to the low frequency trend. Figures are presented using a five year moving 

window as a balance between a three year moving window which may not be sensitive 

enough to capture trends in inter-annual variability whereas a nine year moving 

window may over-emphasise trends in inter-annual variability given a time series 

spanning 1951-2007. The observed significant increasing and decreasing trends 

(p<0.05) passed the test for field significance enabling rejection of the global null 

hypothesis (Table 3-2).  



 

Figure ‎3-1 a) Median annual ISM precipitation (mm) between 1951-2007 ,b) Inter-quartile range of 
annual ISM precipitation (mm) between 1951-2007, c) significant trends (p<0.05) of increasing or 
decreasing annual ISM precipitation determined using the Mann-Kendall test and, d) significant trends 
(p<0.05) of increasing or decreasing inter-annual variation in ISM precipitation between 1951-2007 
(results show in coefficient of variation calculated over a five year moving window). 

 



Figure ‎3-2 Trend calculated as the median slope determined by the Theil-Sen method for: a) trends in 
annual ISM rainfall between 1951-2007, b) trends of increasing or decreasing inter-annual variation in 
ISM precipitation between 1951-2007 (results show trends in coefficient of variation calculated over a 
five year moving window) and, c) trends of increasing or decreasing inter-annual variation in onset 
date of ISM between 1951-2007 (results show trends in coefficient of variation calculated over a five 
year moving window). 

Table ‎3-1 Number of grid cells (out of 4475) reporting significant trends (p<0.05) in increasing or 
decreasing variation in annual ISM precipitation and onset date of ISM with coefficient of variation 
calculated within three, five, seven and nine year moving windows. The number of grid cells (out of 
4475) reporting significant trends (p<0.05) in increasing or decreasing recurrence of severe drought 
years when the time-series was contrstructed using three, five, seven and nine year moving windows. 
The number in brackets refers to the number of grid-cells reporting significant trends (p<0.05) as a 
percentage of the total number of cells.  

Size of 
moving 
window  

Annual ISM precipitation Severe Drought Years Onset date of ISM 

sig. positive 
trends 

sig. negative 
trends 

sig. positive 
trends 

sig. negative 
trends 

sig. positive 
trends 

sig. negative 
trends 

3 494   
(11.04) 

288      
(6.44) 

668   
(14.93) 

191      
(4.27) 

825   
(18.44) 

105      
(2.35) 

5 1118 
(24.98) 

471    
(10.53) 

900   
(20.11) 

355      
(7.93) 

1308 
(29.23) 

201      
(4.49) 

7 1406 
(31.42) 

610    
(13.63) 

956   
(21.36) 

430      
(9.61) 

1525 
(34.08) 

282      
(6.30) 

9 1548 
(34.59) 

 

781    
(17.45) 

994   
(22.21) 

474    
(10.59) 

1607 
(35.91) 

356      
(7.96) 

 

 

 

 

 

 

 

 

 



Table ‎3-2 Field significance test results for significant trends (p<0.05) in annual ISM precipitation, 
frequency of severe drought years and onset date of ISM. 

 95
th

 percentile of number of 
grid cells reporting significant 
trends from 1000 bootstrap 
samples generated under the 
null hypothesis of no trend 

Number of observed grid cells 
reporting significant trends 
from real data 

Annual ISM 
precipitation 

Sig. positive 
trends 

127 197 

Sig. negative 
trends 

128 514 

Severe drought 
Years 

Sig. positive 
trends 

74 900 

Sig. negative 
trends 

73 355 

Onset date of 
ISM 

Sig. positive 
trends 

101 62 (not field significant) 

Sig. negative 
trends 

102.5 117 

 

3.3.2 Severe Drought Years 

North West India experienced the greatest frequency of severe drought years between 

1951-2007 (Fig. 3-3a). The majority of Central, North East and coastal South West India 

experienced between zero to two severe drought years within the study period (Fig. 3-

3a). Most of North Central and North East India experienced no significant trends 

(p<0.05) of increasing or decreasing frequency of severe drought years between 1951-

2007 (Fig. 3-3b). Much of the Southern Peninsula of India showed a fragmented spatial 

pattern of areas experiencing significant trends (p<0.05) of increasing or decreasing 

recurrence of severe drought years (Fig. 3-2b). In contrast, large portions of North 

West India experienced significant trends (p<0.05) of increasing frequency of severe 

drought years (Fig. 3-3b). The number of grid cells which reported significant trends 

(p<0.05) of increasing frequency of severe drought years was twice that of grid cells 

which reported a decreasing frequency (Table 3-1; Fig. 3-3b). The spatial pattern of 

locations of significant trends and the greater number of grid cells which experienced 

significant trends (p<0.05) of increasing frequency were consistent regardless of the 



size of moving window used in constructing the time series for temporal trend analysis 

(Table 3-1). The observed significant trends (p<0.05) of increasing or decreasing 

frequency of severe  drought years were field significant (Table 3-2) indicating 

observed trends were real rather than chance artefacts of performing multiple 

hypothesis tests simultaneously.  

 

Figure ‎3-3 a) Number of severe drought years as defined by the IMD over the period 1951-2007 and, 
b) significant trends (p<0.05) of increasing or decreasing recurrence of severe drought years 
determined using the Mann-Kendall test (results from time series constructed with mean drought 
years calculated over a five year moving window). 

3.3.3 Onset date of ISM 

Onset date of ISM defined using the above method in grid cells containing stations 

which the IMD used to define onset has a strong positive correlation (rs= 0.67; p< 0.001 

(Spearman’s rank correlation), RMSE: 14) with the IMD defined onset dates over 

Kerala. This significant (p<0.001) correlation indicates the objective method of 

detecting onset defined here captures the inter-annual variation in onset date. 

Increasing the threshold in criterion one to a SPA of one inevitably increases the 

number of grid cells where onset is not detected in regions which receive lower 

amounts of and more scattered precipitation. The onset date detected was largely 

insensitive to increasing the threshold in criterion two. Onset detected using a 

threshold of total precipitation over a seven day period being greater than 18 times 

mean daily precipitation for year n yielded a slightly stronger correlation and lower 

RMSE to IMD declared onset dates over Kerala than 22 times mean daily precipitation 

(rs= 0.59; p< 0.001, RMSE: 28). As this study focuses on inter-annual variability in onset 



date rather climatological mean onset date the subjective choice of threshold will not 

influence the results (Fasullo and Webster 2003; Moron et al. 2009). 

Fig. 3-4 shows grid cells where ISM onset dates from 1951-2007, determined using the 

method presented here were significantly correlated (p<0.05) with ISM onset date in 

grid cells containing stations from which the IMD declared onset date over Kerala. 

Significant correlations (p<0.05) were realised in only 4.65% of grid cells across India 

highlighting that the onset date of the ISM in Kerala is not representative of the onset 

date at other locations. Significant correlations were calculated using Spearman’s rank 

correlation. This method of detecting ISM onset performs well in detecting onset in 

specific years and long-term normal onset at various locations across India and is not 

limited to detecting onset over Kerala (Table 3-3). As can be seen in Table 3-3 this 

method of detecting onset is able to detect the northward advance of the ISM across 

India; later ISM onset dates were realised in the northern cities of Delhi and Lucknow 

(Table 3-3).    

 

Figure ‎3-4 Significant correlations (p<0.05) between the time series of onset date of ISM defined using 
the methodology outlined 3.2.4 in the grid cells covering the location of the individual stations the 
IMD use to define onset date of ISM and all other grid cells across India. Correlation was calculated 
using Spearman’s rank correlation where a coefficient of 1 indicates perfect positive correlation and -1 
indicates perfect negative correlation. 

 

 

 

 



Table ‎3-3 IMD declared ISM onset date and local onset date detected by method presented in section 
2.4.3 for various cities/states across India in 2005, 2006, 2007 and Long-term normal onset dates. The 
IMD declared long-term normal onset dates and onset dates for 2005, 2006 and 2007 were obtained 
from (http://www.imd.gov.in/section/nhac/dynamic/Monsoon_framce.htm). The long-term normal 
determined by local onset is the mean onset date between 1951-2007 in the grid cell containing the 
city in question. *Onset in Kerala determined by the local onset method is calculated for the grid cells 
containing the stations the IMD use to declare onset of ISM over Kerala. 

  2005 2006 2007 Long-term 
normal 

Lucknow IMD  175-180 177-181 169 

 Local Onset 174 176 188 187 

Delhi IMD  181-190 177-181 180 

 Local Onset 175 187 194 181 

Mumbai IMD  148-151 166-169 161 

 Local Onset 168 173 168 167 

Kerala* IMD 152 146 148 152 

 Local Onset 148 141 153 152 

 

This method compares favourably to the Wang and Lin (2002) method of detecting 

local onset of ISM (hereafter BWLH) when applied to APHRODITE data. Onset of ISM 

over Kerala, defined by the BWLH method, does not have a statistically significant 

correlation with IMD defined onset dates over Kerala (rs= -0.012 (Spearman’s rank 

correlation)). The BWLH method was developed to detect onset of monsoon from the 

2.5°x2.5° Climate Prediction Centre Merged Analysis of Precipitation (CMAP) 

Climatological Pentad Mean (CPM) precipitation dataset. It defines onset as the first 

pentad when precipitation rate (RRi: equation 9) is noticeably larger than dry season 

precipitation rate (precipitation rate in January), is greater than 5 mm day-1 and occurs 

between May and September (Wang and LinHo, 2002).  

            

          

(9) 



RRi is relative pentad mean precipitation rate, Ri is pentad mean precipitation rate and 

RJan is mean precipitation rate in January (peak dry season) for a given year.  

Onset of ISM typically first occurred over the South-Western tip of India and North 

East India with a median onset date of day of year 145-150 (25th-30th May) (Fig. 3-5a). 

Onset date of ISM occurred later over North West India (Fig. 3-5a). Inter-annual 

variation in onset date of ISM from 1951-2007 across Northern, Central and the West 

Coast of India was characterised by inter-quartile ranges of onset date between 10-20 

days (Fig. 3-5b). Greatest inter-annual variation in onset date of ISM occurred in 

Central-South East India (Fig 3-5b). The observed significant trends (p<0.05) of later 

occurring onset date were not field significant indicating that the number of observed 

significant trends was not statistically significantly different (p<0.05) to what would 

have occurred by chance under the global null hypothesis (Table 3-2, Fig. 3-5c). The 

low number (117 grid cells out of a possible 4475) of realised significant trends 

(p<0.05) in earlier occurring onset date, although field significant, has a very limited 

spatial coverage indicating trends of earlier or later occurring onset date of ISM were 

not evident over India between 1951-2007 (Table 3-2, Fig. 3-5c). However, large 

portions of India experienced significant trends (p<0.05) of increasing inter-annual 

variation in ISM onset date between 1951-2007 (Table 3-1; Fig. 3-5d). The magnitude 

of increasing or decreasing trends in inter-annual variation in onset date of ISM are 

depicted in Fig. 3-2c. Again, the size of moving window within which the coefficient of 

variation of onset date of ISM was calculated did not influence the spatial distribution 

of or ratio between significant positive and negative trends (p<0.05) (Table 3-1). 



 

Figure ‎3-5 a) Median onset date of ISM between 1951-2007, b) inter-quartile range of onset date of 
ISM between 1951-2007, c) Significant trends (p<0.05) of increasing (later) or decreasing (earlier) 
onset date of ISM using the Mann-Kendall test and, d) significant trends (p<0.05) of increasing or 
decreasing inter-annual variation in onset date of ISM between 1951-2007 (results show trends in 
coefficient of variation calculated over a five year moving window). Day 152 = 1

st
 June. 

Grid cells discounted from trend analysis were located in North West and South East 

India; regions which received low amounts of ISM precipitation (Fig. 3-1a), explaining 

why thresholds defining onset date were not met. The low amount of ISM 

precipitation in South East India is due to the rain-shadow effect of the Western Ghats 

and regional pressure fields which result in an annual precipitation maximum between 

October and December (Gunnel 1997).  

3.4 Discussion  

The area in North West India where a high frequency, and increasing trends in 

frequency of severe drought years were observed corresponds to the arid regions of 

the Thar Desert and land cover classes of thorn scrub and desert, sparse vegetation 

(hot) and salt pans as defined by the South Asia Global Land Cover 2000 (GLC 2000) 

product (Agrawal et al. 2003). Frequent severe drought years would be expected in 



such arid conditions. These trends are worrying as frequently recurring drought years 

on marginal and arid lands can result in top soil erosion and declining soil fertility, thus, 

reinforcing or spreading the extent of desertification (Shewale and Kumar 2005). The 

areas which reported frequent occurrence of severe drought years in the far north of 

India (Fig. 3-3a) predominantly receive precipitation in the form of snow or rain events 

associated with western disturbances during winter months (Shewale and Kumar 2005; 

Guhathakurta and Rajeevan 2008). This Himalayan region is mountainous and 

dominated by land cover classes of snow and alpine meadows, with poor coverage of 

rain stations to report precipitation events and not dominated by ISM precipitation 

(Agrawal et al. 2003; Rajeevan et al. 2006). This could explain why frequent drought 

years were noted in the area when drought was defined by precipitation deficiency. 

The negative impacts of drought conditions will be exacerbated by increased 

temperatures, high wind and low humidity (Attri and Tyagi 2010; Pai et al. 2011). A 

more comprehensive study, with a focus on the impact of droughts, should 

incorporate all the above mentioned climatic factors and not just precipitation 

deficiency.   

Not only was India characterised by inter-annual variation (Figs. 3-1b, 3-3a and 3-5b), 

but large portions of India experienced significant increasing trends in inter-annual 

variation (Figs. 3-1d, 3-3b and 3-5d), in facets of ISM precipitation. The magnitude of 

this inter-annual variation and the location of trends of increasing variation exhibited a 

spatially heterogeneous distribution, thus, suggesting the need for local adaptive 

measures to cope with such variability. This inter-annual variation and observed trends 

of increasing variation are problematic for agriculture in India given the vulnerability of 

agriculture to a variable climate (Faures et al. 2010). The inter-annual variation in the 

ISM inhibits the use of long-term climatic normal conditions in agricultural planning. 

Indian agriculture is vulnerable to ISM variability with 59% of all agriculture being 

rainfed (DES 2009) and, thus, dependent on the ISM and lacking the protective buffer 

provided by irrigation.  

Management of water resources at a watershed or river basin level requires 

knowledge generated from trend analysis of precipitation at a fine spatial resolution 

(Ghosh et al. 2009). Goal 2 of the National Water Mission specifies the need for basin 



level integrated management of water resources; this is a multi-scale approach to 

water resource management from small (local) spatial units within a basin to the inter-

basin level (National Water Mission 2009; Moors et al. 2011). As India exhibits fine-

scale spatial variation in ISM precipitation (Satyanarayana and Srinivas 2008; Ghosh et 

al. 2009; Ghosh et al. 2011) (Fig. 3-1a); aggregating precipitation data over large 

regions of India may lead to aggregate trends which have false meaning locally, and 

which are of limited use to water resource planning at the local scale (Ghosh et al. 

2009). The loss of local detail when performing trend analysis on precipitation data 

aggregated over a region is evident when a comparison is made between Fig. 3-1c 

(0.25°x0.25° grid cell resolution) and Figs. 3 in Guhathakurta and Rajeevan (2008) 

where a map of subdivisions which experienced significant trends in annual ISM 

precipitation is presented. While there are some similarities between the two maps, 

the analysis performed in Fig. 3-1c highlights that observed trends in annual ISM 

precipitation are not homogeneous across subdivisions or even larger areas. Similar 

locations experiencing significant (p<0.05) increasing or decreasing trends in annual 

ISM precipitation were realised when the Mann-Kendall test was applied to IMD 1°x1° 

gridded precipitation dataset for 1951-2004 (results not shown). This indicates the 

trends realised in the APHRODITE dataset are real and not artefacts of the method of 

product generation. The fragmented spatial pattern in the location of significant trends 

and spatial variation in average values illustrates the importance of undertaking this 

analysis at a fine spatial resolution. This analysis has produced local detail regarding 

recent (1951-2007) trends in facets of ISM precipitation complementing an established 

literature observing trends in extreme events at fine spatial resolution over a similar 

time frame (Ghosh et al. 2009; Krishnamurthy et al. 2009; Ghosh et al. 2011). This 

contributes to widening the understanding of recent behaviour in facets ISM 

precipitation which impact livelihoods and agriculture. 

3.5 Conclusion 

Daily gridded precipitation data at a 0.25°x0.25° spatial resolution, across all India from 

1951-2007, were used to analyse the average and inter-annual variation in annual ISM 

precipitation, onset date of ISM and the frequency of severe drought years. A robust 



method of estimating local onset date of ISM quantitatively from daily precipitation 

data (rather than qualitative criteria) was developed. This enabled temporal trend 

analysis to be performed on onset date of ISM at locations across all India for the 

period 1951-2007. Non-parametric statistical analysis was performed to find locations 

which experienced significant temporal trends in facets of ISM precipitation. In 

summary,  

 The North East and South West Coast of India experienced the greatest amount 

of average annual ISM precipitation (greater than 4000mm), earliest onset date 

of ISM and greatest amount of inter-annual variation in ISM precipitation (an 

inter-quartile range of over 2000mm). In contrast, North West India 

experienced the lowest amounts of annual ISM precipitation (less than 

1000mm) and the highest frequency of severe drought years (more than 15 

drought years between 1951-2007). Median ISM precipitation was 6395mm in 

some locations compared to less than 800mm in others.  

 Locations which experienced significant increasing or decreasing trends in 

annual ISM precipitation, onset date of ISM and recurrence of drought years 

were detected (Figs. 3-1c, 3-3b and 3-5c). Observation of such trends was not 

the norm across India; yet these trends were shown not to be chance 

occurrences by field significance testing (except in the case of trends of 

increasing, i.e. later, onset date of ISM). This highlights the importance of 

performing trend analysis at a fine spatial resolution to ensure that such trends 

are not lost as could happen when precipitation data are aggregated over 

larger regions.  

 A greater expanse of the country experienced significant increasing trends of 

inter-annual variation in annual ISM precipitation and onset date of ISM (Figs. 

3-1d and 3-5d). Worryingly, large regions of North West India experienced 

significant increasing trends in the frequency of severe drought years.  

 

 



Chapter 4:  Spatio-temporal dynamics in the phenology 

of croplands across the Indo-Gangetic Plains5 

4.1 Introduction 

Agricultural production within the IGP is vital for the region, providing food and 

economic security for its 365 million inhabitants (2011 census levels) as well as 

contributing to the national food supply (Saharawat et al. 2009; DES 2011; Perveen et 

al. 2012). However, the agro-ecosystems of the IGP lie at the interface of environment-

human interactions and are vulnerable to climatic fluctuations (Aggarwal et al. 2004). 

Thus, with a growing population increasing demand for food (DES 2009) and pressure 

on environmental resources (Aggarwal et al. 2004; RWC 2006; Moors et al. 2011) and 

projections of uncertain and unfavourable trends in climatic parameters (Moors et al. 

2011; Mathison et al. 2013) there is a need for comprehensive monitoring of changes 

in the IGP croplands. This monitoring should be specifically focused on increasing 

understanding of agro-ecosystem-climate interactions, highlighting potential 

vulnerabilities in the agricultural system, developing a sustainable and climate resilient 

agro-ecosystem and feeding into food security assessments in the region. Spatially 

explicit measures of land surface phenology (LSP) are ideally suited for this monitoring 

need. 

Monitoring LSP is crucial to capture vegetation feedbacks to the atmosphere-climate 

system; LSP records can inform on numerous variables (e.g. land-surface albedo, 

surface roughness length, photosynthetic activity) which influence fluxes of energy, 

water and carbon (Richardson et al., 2013). Over the IGP, vegetation is almost 

exclusively dominated by a mixture of rainfed and irrigated croplands (Thenkabail et al. 

2005). In particular, long-term records of LSP parameters are crucial to identify and 

understand climatic impacts and controls on agro-ecosystem functioning and, crop and 

vegetation physiological processes (Brown et al. 2010; Richardson et al. 2013; Xu et al. 

2013). This can inform on where agro-ecosystem functioning and service provision are 

5
 This chapter is currently in review (Advances in Space Research). 



dependent on climatic drivers, or vulnerable to observed or projected shifts and trends 

in climate. For example, (Lobell et al. 2012) used measures of length of growing season 

(LGS) and start-of-season (SOS) derived from MODIS data to quantify the vulnerability 

of, and yield declines in, the wheat crop to extreme heat events in North India. The 

feedbacks of vegetation activity and agricultural practices across the IGP into the 

climate system, often with subsequent influences at a wider spatial scale (e.g. 

irrigation of croplands and crop residue burning have been shown to influence 

warming trends and Indian Summer Monsoon circulation (Zickfeld et al. 2005; Douglas 

et al. 2006; Knopf et al. 2008; Ramanathan and Carmichael 2008; Douglas et al. 2009) 

and, the impacts of climatic variability and projected climate change on crop 

productivity and yield (Lobell et al. 2012), mean generating a detailed inventory of LSP 

dynamics over the IGP’s agro-ecosystem is of vital importance. This monitoring will 

enhance understanding of the interaction between cropland dynamics and the climate 

system, informing management of the agro-ecosystem to increase resilience to 

climatic variability and mitigate the system’s negative climatic footprint. Such 

information is pertinent for agricultural landscapes (e.g. the IGP) where a changing 

climate may disrupt crop productivity coinciding with concerns regarding 

unsustainable cropping practices and population growth increasing food demand 

(Tilman et al. 2002; Aggarwal et al. 2004; Foley et al. 2011).  

Monitoring LSP is now a key component of food security assessment; for example, the 

Famine Early Warning System Network (FEWSNET) uses NDVI measures of vegetation 

activity as part of an integrated early warning system for food security (Ross et al. 

2009). Crop development and productivity, is one of a range of controlling factors for 

food security within the food system (Ericksen 2008a; Vrieling et al. 2011) and, in rural 

smallholder environments is a key determinant of livelihoods.  Monitoring LSP over 

croplands allows discrimination between crop types (Xiao et al. 2005; Xiao et al. 2006; 

Thenkabail et al. 2007; Gumma et al. 2011b), provides observations which can be 

assimilated into process-based crop models increasing model prediction accuracy 

(Doraiswamy et al. 2004; Fang et al. 2011), to assess the impact of, and provide early 

warning for drought impacts on crop yields (Rojas et al. 2011) and, be used to forecast 

crop yield (Bolton and Friedl 2013). Long-term records of LSP parameters can be used 



in isolation, or integrated with climate datasets, to inform agricultural planning and 

national and international responses to food shortages (Ross et al. 2009). Vrieling et 

al., (2013) comment that long-term records of normal LGS and variability in LGS can be 

used to identify locations suitable, or at higher risk, for different crop types. 

Utilising LSP parameters to monitor and understand the dynamics of agro-ecosystem 

productivity across the croplands of IGP is crucial given the importance of crop 

production in supporting the livelihoods of the region’s inhabitants. Ensuring high 

levels of productivity is important to national food security efforts; the Government of 

India purchases large quantities of foodgrains from the IGP states (Fig. 2-1) to 

supplement national buffer stocks and support the Targeted Distribution Service to 

poor households (Perveen et al. 2012). Determining seasonal influences on local 

productivity in croplands will become more important as local productivity will be 

critical in supporting livelihoods due to increasing polarity in purchasing power and the 

volatility of global food prices and markets (Brown and Funk 2008; Brown et al. 2012). 

Therefore, records of LSP parameters elucidating agro-ecosystem dynamics and 

productivity are key to integrated assessments of regional and national food security, 

especially given uncertainty in future climatic variability and monsoon dynamics 

(Annamalai et al. 2007; Brown et al. 2010; Moors et al. 2011; Turner and Annamalai 

2012; Mathison et al. 2013).  

Inter-annual changes in LSP in India are intrinsically linked to agro-ecosystem 

functioning which supports the food security of national population of 1.26 billion 

people (DES, 2011) and act as a driver in the regional climate system with feedbacks to 

monsoon circulation. Thus, changes in LSP over India potentially impact livelihoods and 

biophysical processes across the wider South Asia region.  Despite this, there is a 

paucity of studies monitoring changes in LSP parameters over India (Dash et al., 2010; 

Prasad et al., 2007), let alone studies focusing on the spatio-temporal dynamics of 

vegetation activity and LSP over the key agricultural landscapes of the IGP. Dash et al., 

(2010) quantified spatial variation in LSP across India for one year using MERIS MTCI 

data but focused on all vegetation types rather than specifically croplands. However, 

they discriminated between areas of single cropping, double cropping and triple 

cropping across the IGP for one year. Lobell et al., (2012) used MODIS EVI data, 



spanning the past decade, in North-West India to quantify links between SOS, LGS and 

rabi wheat crop production. Jeyaseelan et al., (2003) used GIMMS NDVI data to infer 

trends in photosynthetic activity across a range of vegetation types across India. 

Biradar and Xiao (2011) used MODIS data to map cropping intensity across India for 

one year identifying areas of single, double or triple cropping. Cropping intensity refers 

to the number of crops grown per plot of land per agricultural year. Studies have 

generated long-term datasets of LSP parameters over sub-Saharan African croplands 

(Vrieling et al. 2013). However, the studies exploring LSP parameters in the IGP did not 

generate a dataset of long-term trends in LSP parameters across the croplands of IGP. 

Thus, there still remains a need to (i) provide a comprehensive set of long-term records 

of LSP parameters and, (ii) utilise a long-term dataset to capture the spatio-temporal 

trends in phenology and biophysical performance over IGP croplands. We address the 

above mentioned gap with two over-arching research goals:  

1) To create spatially explicit time-series from 1982-2006, at a spatial resolution of 8 

km across the IGP of the following LSP parameters: (i) cropping intensity, (ii) LGS and 

(iii) agro-ecosystem productivity.  

2) To quantify normal conditions, inter-annual variation and long-term trends in these 

LSP parameters across the IGP croplands from 1982-2006. 

4.2 Methods and Data 

4.2.1 Data 

The GIMMS NDVI dataset used in this study is composed of AVHRR data with a spatial 

resolution of 4 km processed to produce bimonthly composites of global (except 

Antarctica) NDVI coverage at a spatial resolution of 8 km 

(http://glcf.umd.edu/data/gimms/: Tucker et al., 2005)6. Further details regarding the 

GIMMS NDVI product generation can be found in Pinzon et al. (2005) and Tucker et al. 

(2005). In a comprehensive comparison of four AVHRR-derived NDVI products versus 

6
 A longer GIMMS NDVI record (GIMMS NDVI 3g) has now been processed, more information is provided 

at: http://www.mdpi.com/journal/remotesensing/special_issues/monitoring_global. At the time of 
analysis this dataset was available for general release.  

http://glcf.umd.edu/data/gimms/
http://www.mdpi.com/journal/remotesensing/special_issues/monitoring_global


Landsat samples, assumed as ‘ground truth’, Beck et al., (2011) found: the GIMMS 

NDVI dataset performed best in temporal change analysis, had statistically significant 

(p<0.05) median NDVI values compared to other AVHRR-NDVI datasets and, similar 

median NDVI values observed at the latitude relevant to this study. The GIMMS NDVI 

dataset has been used in numerous studies exploring phenology dynamics across 

croplands and agricultural ecosystems both globally (Brown et al. 2012) and in sub-

Saharan Africa (Brown et al. 2010; Vrieling et al. 2011). The GIMMS NDVI data 

spanning the Indian states of Punjab, Haryana, Uttar Pradesh and Bihar from 1982 till 

2006 were extracted from the global datasets. 

4.2.2 Data Pre-Processing 

The GIMMS NDVI data were reordered to match the agricultural calendar of the IGP; in 

each month there is a composite corresponding to the time period: day one to 15 and 

then day 16 till the end of the month (Tucker et al., 2005). Each year, therefore, 

contains 24 NDVI composite images. The zaid, kharif and rabi cropping seasons span 

across two calendar years (DES, 2009), thus, necessitating reordering the annual 

GIMMS NDVI composites to correspond to the agricultural calendar of the IGP. Time 

step 1, therefore, became the GIMMS NDVI composite for January (days 16-end of 

month) in year n and time step 35 was the GIMMS NDVI composite for June (days 16-

end of month) in year n+1.  

The agricultural time-series GIMMS NDVI data were fitted, with a bias towards the 

upper envelope of the raw data values, using a maximum polynomial iterative fit, an 

adaptation of the method used in generating the SPOT VGT4Africa phenology products 

(Bartholomé et al. 2006). Including a fitting bias towards the maximum raw NDVI 

values accounts for: (i) the negative bias in AVHRR NDVI data due to the sensor’s 

sensitivity to water vapour in the atmosphere as a result of its wide spectral bands 

(Brown et al. 2008; Atkinson et al. 2012) and (ii) drop-outs due to cloud cover which do 

not follow the phenological pattern of vegetation (Chen et al. 2004). Local polynomial 

fitting was used rather than fitting data to functions (e.g. double logistic, asymmetric 

Gaussian) or using harmonic analysis as there can be inter-annual variation in 

phenology due to shifting cropping intensity and crop type per pixel; local polynomial 



functions are better suited to capturing complex behaviour (Jönsson and Eklundh 

2004; Vrieling et al. 2013). Local polynomial fitting has been used in numerous studies 

for phenology parameter estimation over croplands using the GIMMS NDVI and other 

AVHRR-derived datasets (Jönsson and Eklundh 2004; Brown et al. 2010; Vrieling et al. 

2011; Vrieling et al. 2013). 

Prior to fitting the data, composities contaminated by cloud cover or drop-outs were 

detected following Vrieling et al. (2011) where an increase of 0.3 NDVI units between 

composites was masked and replaced with the average NDVI value of the preceding 

and following composites. The maximum polynomial iterative fit breaks the original 35 

composite time-series (tr) into two 21 composite time-series with six overlapping 

composites. Each time-series was fitted with a 5th degree polynomial (tp). A smoothed 

time-series (ts) was generated by combining the separate tp  time-series and taking 

average values for the overlapping composites. The maximum envelope was then 

fitted to the raw values following: 

     (1) 

 

This process was repeated for three iterations, rather than six as in the method applied 

to the SPOT VGT4Africa data, to avoid overfitting. The final ti data were then filtered 

using a Savitzky-Golay filter (2) with an 11 composite moving window and a 4th degree 

polynomial. Filtering the maximum fitted NDVI dataset removes any remnant short-

term noise or fluctuations along the trend of phenological cycles, thus, increasing the 

reliability of LSP estimates.  

 

 (2) 



Equation (2) is the Savitzky-Golay filter where Nj is the raw jth NDVI value and N*
j is the 

smoothed NDVI value. Ci is the coefficient for the i
th NDVI value of the filter of a size 

2m+1, n is equal to 2m+1 and is 11 in this study, thus m=5.   

A mask of urban, water and forested areas was generated using the GLC 2000 product 

with a spatial resolution of 1 km (Bartholomé and Belward 2005). The GLC 2000 global 

product was produced by synthesising regional land cover products generated using 

SPOT VGT data (Bartholomé and Belward 2005; Herold et al. 2008) and  was used in 

numerous studies investigating land cover change and the interaction between land 

cover and environmental and climatic processes (Ramankutty et al. 2008; Thenkabail 

et al. 2009; Douglas et al. 2009). The regional land cover products contain more 

thematic detail than the global land cover product (Bartholomé and Belward 2005); 

therefore, the South Asia GLC 2000 product (Agrawal et al. 2003) was used in the 

development of the urban, water and forest mask. The GLC 2000 product was upscaled 

using a majority filter to match the spatial resolution of the GIMMS dataset. From the 

upscaled GLC2000 data the IGP states of Punjab, Haryana, Uttar Pradesh and Bihar 

were extracted and pixels which contained a majority land cover of urban, water and 

forest were masked out. 

4.2.3 LSP Parameter Estimation 

Areas with a double cropping cycle, triple cropping cycle, single zaid cropping season, 

single  kharif cropping season and single rabi cropping season in the IGP have a distinct 

phenology. A kharif cropping season temporal vegetation index (VI) profile is 

characterised by (i) an increase in VI values from late May/early June representing SOS, 

(ii) a peak VI occurring between August and September coinciding with the peak 

above-ground biomass and (iii) decreasing VI values through October when the crop 

senesces (Fig. 4-1). A similar pattern occurs during the rabi cropping season (Fig. 4-1) 

except that the green up period occurs between November and January, peak NDVI 

occurs in February with crop senescence during March and April; the zaid cropping 

season is less common than kharif  cropping or rabi cropping, but occurs from March 

to June before the arrival of the monsoon (Fig. 4-1). Double and triple cropping cycles 

incorporate the phenology profiles of a combination of zaid, kharif and rabi cropping.  



The timing of the extracted LSP parameters determined which cropping season was 

detected.  

 

Figure ‎4-1 Typical phenology profile derived from vegetation indices for the three main cropping 
seasons of the Indo-Gangetic Plain (zaid, kharif, rabi). 

A cropping season was detected using an adapted version of Dash et al. (2010); an 

algorithm was used to search the phenology profile for a peak in the growing season. If 

a peak was detected the algorithm searched backwards for a SOS. If both a peak and 

SOS were detected a logical condition detecting rapid green up after SOS was required 

to be met for a cropping season to be identified. A peak growing season was detected 

if an NDVI value was preceded by a month (two GIMMS composites) of increasing 

trend in NDVI values and succeeded by a month of decreasing trend in NDVI values. A 

month is a sufficient time period to ensure the noted peak is associated with a LSP 

parameter rather than noise caused by anomalous fluctuations in the NDVI time-

series. The logical condition detecting a rapid green up following SOS required the 

difference between SOS NDVI and peak NDVI to be greater than one fifth of the peak 

NDVI. This logical condition detects the rapid growth of vegetation following 

emergence common in many crops (Zhang et al. 2003) including the dominant rice 

crop in this study area (Xiao et al. 2005; Xiao et al. 2006). Dash et al. (2010) used these 

conditions to extract LSP parameters over India for a range of vegetation types, 

including croplands, from Meris terrestrial chlorophyll index (MTCI) data.  



Numerous approaches have been used to detect SOS. Common methods include 

change in rate of curvature of VI values fitted to a logistic function (Zhang et al. 2003), 

the point when the first derivative changes sign and ‘valley points’ (Sakamoto et al. 

2005; Dash et al. 2010), or a percentage threshold of the amplitude of growing season 

VI values (White et al. 1997; Jönsson and Eklundh 2004; Lobell et al. 2012; Vrieling et 

al. 2013). Due to the difficulty of detecting specific vegetation and crop development 

stages from Earth observation data the choice of method to detect SOS is partly 

subjective, difficult to validate and, should be tailored towards the vegetation type in 

question. Here, the point on the rising limb of the phenology profile when NDVI values 

exceed 30% of the amplitude between minimum and peak NDVI values for a given 

cropping season was defined as SOS. The minimum NDVI value was defined as the 

point on the phenology profile, preceeding the peak, when the first derivative changed 

sign and was preceeded by a decreasing trend in NDVI values for one month and 

succeeded by an increasing trend in NDVI values for one month. The percentage 

threshold method is widely used to detect SOS in agricultural lands and has been 

applied to GIMMS NDVI data for a range of crop types over sub-Saharan Africa 

(Vrieling et al. 2011) and wheat crops over the IGP (Lobell et al. 2012). The 30% 

threshold used here gave a sensible retrieval of SOS, end-of-season (EOS) and LGS 

across the IGP based on prior knowledge of dominant crop types and typical LGS. The 

EOS was defined using the same method applied to the falling limb of the phenology 

profile.   

Numerous approaches exist to define LGS; often these approaches use climatic data. 

For example, one common method, often used in crop models, is the use of growing 

degree days (AGDD) defined as the cumulative sum of hourly or daily temperatures 

values between crop/vegetation-specific temperature thresholds (Brown et al. 2012). 

Other approaches, such as the International Institute for Applied Systems Analysis and 

the FAO define LGS as the number of days per year when rainfed soil moisture 

availability exceeds half the potential evapotranspiration (Fischer et al. 2002). Such 

approaches are limited by the need for extensive and reliable coverage of climate data 

(Vrieling et al. 2013) and in areas of double/triple cropping where dry season crops are 

grown under irrigation. Therefore, in the IGP, where there is a prevalent double 



cropping system, LSP parameters estimated from time-series remote sensing data 

provide a suitable method to obtain reliable LGS estimates. Here, the LGS was 

computed by subtracting the SOS from EOS.  

A surrogate measure of productivity of the cropping season was computed as the 

cumulative sum of NDVI (cumNDVI) values from SOS to EOS. The cumulative sum or 

integrated growing season NDVI is a commonly used measure of biomass and 

vegetation productivity (Jönsson and Eklundh 2004; Pettorelli et al. 2005; Vrieling et al. 

2011).  

4.3 Results  

4.3.1 Cropping Intensity 

State-wise, the area estimated as double cropping from the GIMMS NDVI dataset has a 

positive correlation (R2=0.95; Appendix 2) with Government of India land use statistics 

for state-wise area cropped more than once per agricultural year (DES, 2013). This 

indicates that the remote sensing derived estimates of cropping intensity here capture 

the state-wise inter-annual variation in cropping intensity across the IGP7. There has 

been a clear west to east spread in the area under double-cropping from 1982-83 to 

2005-06 (Fig. 4-2). In 1982-83 Bihar and Eastern Uttar Pradesh were largely under 

kharif single cropping; however, from 1982-83 to 2005-06 these regions experienced 

an increase in cropping intensity (Fig. 4-2). Significant trends of increased area under 

more intensive cropping in Bihar (p<0.01; R2=0.34) and Uttar Pradesh (p<0.01; R2=0.33) 

were detected; this corresponds to an increase in area under double or tripple 

cropping of 945 km2 yr-1 and 2680 km2 yr-1, respectively (Fig. 4-3). The net area cropped 

in Bihar also increased between 1982-83 and 2005-06 with an  increase in the area 

under kharif single cropping (Fig. 4-2). The western portion of the IGP already had a 

developed intensive double cropping system in 1982-83 which has remained the 

dominant cropping system; there was no significant increasing trend in area under 

double cropping in Punjab (Fig. 4-3). However, in Haryana there was a significant 

7
 Appendix 2 and section 4.4.1 provide discussion on the limitations of using GIMMS NDVI data for areal 

estimates of extent under agricultural land cover. 



increasing trend in area under double cropping of 136 km2 yr-1 (p<0.01; R2 = 0.29), 

although the rate of increase was less than that observed in Bihar and Uttar Pradesh 

and large portions of Haryana were under double cropping in 1982-83 (Fig. 4-2). 



 

Figure ‎4-2 Observed cropping intensity across the Indo-Gangetic Plains for three time-periods a) 1982-
83 – 1985-86 agricultural years, b) 1992-93 – 1995-96 and, c) 2002-03 – 2005-06 (maps show the 
majority cropping intensity per agricultural year experienced per pixel over the four year period). 



 

Figure ‎4-3 State-wise area under double or triple cropping systems per year a) Bihar, b) Haryana, c) 
Punjab and, d) Uttar Pradesh. *denotes statistical significance at p<0.01. (See Appendix 4 for 
discussion of the anomaly in 1993 for Bihar).  

4.3.2 Length of Growing Season 

Most of the IGP had a mean kharif  LGS between 138 and 150 days (Fig. 4-4a), with 

Bihar and the southern portion of Punjab having longer mean kharif  LGS. Parts of 

southern Haryana and southern Uttar Pradesh had a shorter mean kharif  LGS between 

75-137 days. There was no clear spatial pattern in inter-annual variability in kharif  LGS 

across the IGP except in parts of eastern Bihar which experienced greater inter-annual 

variability (Fig. 4-4b). Inter-annual variability was computed as the coefficient of 

variation (CV) with years when a cropping season was not detected excluded. The 

mean rabi LGS for most of the central and eastern IGP was between 168 and 185 days 

with a shorter mean rabi LGS generally observed in the western portions of the IGP 

(Fig. 4-5a). Again there was no dominant spatial pattern in the inter-annual variability 

in rabi LGS. However, in Bihar there was a more fragmented spatial pattern in CV (Fig. 

4-5b). This is largely due to the fact that fewer rabi cropping seasons were detected 

here.  Fig. 4-4c and 4-5c are bivariate risk maps. Bivariate risk maps are useful to 

inform agricultural planning as they give a measure of the normal LGS or productivity 

for a location versus the variability in the given measure. This is important as the 

normal conditions inform on the suitability of the location for a given crop type or 



agronomic practice and the variability informs upon the risk of implementing a certain 

crop or agronomic practice (Vrieling et al. 2013). The southern portion of Uttar 

Pradesh experienced shorter mean kharif  LGS and greater levels of inter-annual 

variability in kharif LGS (Fig. 4-4c). Large portions of Bihar also experienced greater 

levels of inter-annual variability in LGS with varying lengths of mean kharif LGS (Fig. 4-

4c). The southern portion of Uttar Pradesh and Haryana have a shorter rabi LGS 

coinciding with greater inter-annual variability in rabi LGS (Fig. 4-5c). Much of Punjab 

and Haryana have longer rabi LGS coinciding with lower levels of inter-annual 

variability in rabi LGS (Fig. 4-5c). 

 

Bihar, Uttar Pradesh and Haryana all experienced significant (p<0.01) increasing trends 

(R2 = 0.37, 0.31, 0.28, respectively) in the number of growing days per agricultural year 

(2.52, 1.96, 0.88 days yr-1, respectively) (Fig.4-6). In Bihar, this equated to 

approximately 60 more growing days per agricultural year in 2005-06 than in 1982-83. 

There was no significant increasing trend in the number of growing days per year in 

Punjab.  



 

Figure ‎4-4 a) mean kharif LGS, b) coefficient of variation in kharif LGS and c) bivariate map of mean 
kharif LGS and coefficient of variation in kharif LGS. 



 

Figure ‎4-5 a) mean rabi LGS, b) coefficient of variation in rabi LGS and c) bivariate map of mean rabi 
LGS and coefficient of variation in rabi LGS. 



 

Figure ‎4-6 State-wise number of growing days (total of all cropping seasons experienced per pixel per 
agricultural year) a) Bihar, b) Haryana, c) Punjab and, d) Uttar Pradesh. *denotes statistical 
significance at p<0.01. 

4.3.3 Productivity 

The state-wise surrogate measures of agricultural productivity derived from remote 

sensing observations (cumNDVI) were well correlated with state-wise totals of kharif 

foodgrains (R2=0.76) and rabi foodgrains (R2=0.88) (DES, 2011) (Appendix 3). This 

pseudo-validation indicates that cumNDVI computed from the GIMMS NDVI dataset 

captures inter-annual and spatial variation in agricultural productivity.  The greatest 

levels of mean kharif productivity were found in the far north of Uttar Pradesh and the 

far east of Bihar (Fig. 4-7a). Punjab, central and northern Haryana, central and 

northern Uttar Pradesh and Bihar had similar levels of mean kharif productivity 

(cumNDVI: 4.07-5.66) (Fig.4-7a). Lower levels of mean kharif productivity were 

observed in southern Uttar Pradesh and Haryana (Fig. 4-7a). Central and northern 

Punjab, Haryana and Uttar Pradesh had the lowest levels of inter-annual variation in 

kharif productivity (Fig. 4-7b). Bihar experienced a fragmented spatial pattern in inter-

annual variation in kharif productivity, whilst high levels of inter-annual variation in 

kharif productivity were observed in southern Haryana (Fig. 4-7b). Much of central and 

northern Punjab, Haryana and Uttar Pradesh experienced high mean kharif 

productivity coinciding with lower levels of inter-annual variation (Fig. 4-7c). In 



contrast the southern portions of Haryana and Uttar Pradesh experienced lower levels 

of mean kharif productivity and greater levels of inter-annual variation (Fig. 4-7c). Both 

Bihar and Uttar Pradesh experienced significant (p<0.01) increasing trends in kharif 

cropping season productivity from 1982-83 to 2005-06 (R2=0.35 and 0.31, respectively) 

(Fig. 4-8). The western IGP states of Punjab and Haryana did not experience any 

significant increasing trend in kharif cropping season productivity.  

Central and northern Punjab and Haryana experienced the greatest mean rabi 

productivity (cumNDVI: 6.28-7.17) (Fig. 4-9a). Mean rabi productivity was consistent 

across much of Uttar Pradesh and western Bihar (cumNDVI: 4.92-5.75) with pockets of 

lower mean rabi productivity found in southern Haryana, Uttar Pradesh and eastern 

Bihar (Fig. 4-9a). There was no clear spatial pattern in inter-annual variation in rabi 

productivity: the lower levels of inter-annual variation observed in southern Bihar are 

likely due to fewer rabi cropping seasons being detected (Fig. 4-9b). Parts of southern 

Haryana and eastern Bihar experienced lower mean rabi productivity coinciding with 

greater levels of inter-annual variability (Fig. 10c). Central and nothern Punjab had 

higher mean rabi productivity coinciding with lower levels of inter-annual variation 

(Fig. 4-9c). Bihar and Haryana experienced significant (p<0.01) increasing trends in rabi 

cropping season productivity (R2=0.28 and 0.6, respectively) (Fig. 4-10). Punjab and 

Uttar Pradesh also experienced increasing trends in rabi cropping season productivity 

with a p-value of p<0.05 (R2=0.24 and 0.22) (Fig. 4-10). 



 

Figure ‎4-7 a) mean kharif growing season productivity, b) coefficient of variation in kharif growing 
season productivity and c) bivariate map of mean kharif growing season productivity and coefficient 
of variation in mean kharif growing season productivity. 



 

Figure ‎4-8 State-wise mean kharif growing season productivity a) Bihar, b) Haryana, c) Punjab and d) 
Uttar Pradesh. *denotes statistical significance at p<0.01. 



 

Figure ‎4-9 a) mean rabi growing season productivity, b) coefficient of variation in rabi growing season 
productivity and c) bivariate map of mean rabi growing season productivity and coefficient of 
variation in mean rabi growing season productivity. 



 

Figure ‎4-10 State-wise mean rabi growing season productivity a) Bihar, b) Haryana, c) Punjab and d) 
Uttar Pradesh. *denotes statistical significance at p<0.01. **denotes statistical significance at p<0.05. 

4.4 Discussion 

Kharif single cropping is indicative of rain-fed rice crops grown during the monsoon 

season and is generally not associated with a developed agricultural infrastructure. The 

areas under kharif single cropping are centred in the less developed regions of the 

eastern IGP, namely Bihar (Fig. 4-2). In 1982-83 agriculture in Bihar was almost solely 

kharif single cropping (Fig. 4-2). The later uptake of double cropping in Bihar is due to 

the intensification of agriculture associated with the Green Revolution largely 

bypassing the eastern IGP (Singh et al. 2009). The greater amounts of ISM precipitation 

(relative to the western IGP) create more suitable conditions for growth of the kharif 

paddy rice crop which is predominant in the eastern IGP (Narang and Virmani 2001; 

Duncan et al. 2013). Bihar’s population has a lower socio-economic status relative to 

the other IGP states, with a greater proportion below the poverty line (RWC 2006; 

Erenstein et al. 2007). There are lower levels of agricultural inputs, irrigation capacity 

and farm mechanisation in Bihar due to poor economic conditions precluding 

development, and, frequent flood events associated with heavier monsoon rainfall 

(Erenstein et al. 2007; Singh et al. 2009). This explains the greater proportion of kharif 

single cropping, lower proportion of double cropped area, fewer number of growing 



days per year and lower levels of rabi productivity in Bihar compared to the rest of the 

IGP where intensive double cropping systems are more prominent (Figs. 4-2, 4-3, 4-6, 

4-9, 4-10).  

The western IGP, Punjab, Haryana and western Uttar Pradesh, had an intensive 

cropping system already implemented by 1982-83 (Figs. 4-2 and 4-3). This was 

reflected by the long-standing double cropping system, greater number of growing 

days per year and high levels of kharif and rabi productivity (Figs. 4-2 - 4-10). Double 

cropping systems reflect an advanced agricultural infrastructure with high levels of 

fertilizer inputs, use of high yielding varieties (HYVs) and irrigation developed under 

the Green Revolution (Aggarwal et al. 2004; Ladha et al. 2009). 

Figs. 4-7c and 4-9c show that northern and central Punjab and Haryana have higher 

levels of mean productivity and lower levels of inter-annual variability. This can partly 

be explained by these areas having the most developed agricultural infrastructure 

including high levels of irrigation and farm mechanisation relative to the other IGP 

states (Erenstein et al. 2007) affording them some resilience to climatic variability 

(Perveen et al. 2012).  The southern portions of Punjab and Haryana experienced 

greater inter-annual variation in kharif productivity, often coinciding with lower mean 

productivity (Fig. 4-7c). These regions have a less extensive irrigation infrastructure, 

with lower densities of tubewell coverage relative to the northern and central portions 

of Punjab and Haryana (Ambast et al. 2006), with of increasing trends in recurrence of 

drought years and inter-annual variation in monsoon precipitation and lower (relative 

to the rest of the IGP) normal monsoon precipitation (Duncan et al. 2013). The 

cropping systems in these regions are not rice-wheat dominated, but more fragmented 

with cotton and pearl-millet crops grown (Ambast et al. 2006; Panigrahy et al. 2010). 

These factors (e.g. unfavourable climate, fragmented cropping system, less access to 

irrigation) contribute to explaining observed variability in productivity (similar patterns 

were observed in the rabi cropping season; Fig. 4-9c). These bivariate maps are of 

particular importance to agricultural planning in the IGP where there is a pressing need 

to increase production in a sustainable and climate resilient manner given projected 

population growth increasing food demand (Aggarwal et al. 2004; Wassmann et al. 

2009).  



Whilst Green Revolution practices and intensive cropping increased agricultural 

production in the western IGP (Ambast et al. 2006; DES 2011), specifically the rice and 

wheat crops, there have been recently observed trends of stagnating or declining crop 

yields and environmental degradation (Ladha et al. 2003; Aggarwal et al. 2004; RWC 

2006). There were no observed increasing trends in kharif productivity in either Punjab 

or Haryana between 1982-83 and 2005-06 (Fig. 4-8). This is further evidence 

highlighting concerns about the sustainability of maintaining or increasing rice crop 

yields in the north-west IGP.  Attributed to the intensive cropping in the western IGP 

have been noted declines in groundwater levels, decreasing groundwater quality, soil 

salinity, decreasing nutrient levels and a reliance on water-intensive rice cropping in 

regions which receive relatively low amounts of ISM precipitation (Abrol 1999; Ladha 

et al. 2003; Aggarwal et al. 2004; RWC 2006; Ambast et al. 2006; Tiwari et al. 2009; 

Central Ground Water Board 2012; Perveen et al. 2012). Thus, questions may be raised 

over the current sustainability of intensive cropping and associated agricultural 

practices in the western IGP. Further intensification of cropping systems in Bihar and 

eastern Uttar Pradesh could relieve stresses placed on the western IGP’s agro-

ecosystems to meet the food demand of a growing population (RWC 2006). Such 

intensification needs to be sustainable in the long-term and avoid the stagnating or 

declining yields associated with lands intensified under the Green Revolution 

(Aggarwal et al. 2004; RWC 2006). The delayed (relative to Punjab and Haryana) 

increasing trend in cropping intensity and LGS in the eastern IGP suggest that this 

intensification is already occurring (Figs. 4-2, 4-3, 4-6).  

Obtaining LSP parameters to monitor the agro-ecosystems of the eastern IGP as they 

intensify (Figs. 4-2, 4-3, 4-6) is a key facet to informing sustainable agricultural 

development in the region. Monitoring of the western IGP can inform management of 

the agro-ecosystems to avoid further environmental degradation and yield declines. It 

is important to note that current states of ecosystem functioning are determined by 

current conditions and past trajectories of ecosystem dynamics (Dearing et al. 2012). 

Thus, long-term records of LSP parameters over IGP can be used to provide a more 

comprehensive understanding of ecosystem functioning across a range of spatial 

scales. Such data is especially useful when integrated with other time-series of agro-



ecosystem drivers (e.g. climatic and socio-economic variables). This provides a more 

comprehensive understanding of how trajectories of cropping intensity and dynamics 

interact with a range of other actors across the agricultural system which determines 

agricultural production, food security and environmental sustainability. In the IGP, 

agricultural planners could analyse spatially explicit metrics of normals and trends in 

SOS and LGS (e.g. Figs. 4-4, 4-5, 4-6) in conjunction with datasets of observed trends 

(e.g. Duncan et al. 2013) or projected changes (e.g. Mathison et al. 2013) in climatic 

parameters relevant to crop growth and yield, information regarding uptake of various 

agronomic practices (e.g. Erenstein and Laxmi 2008) and, levels of social, financial and 

physical capital (e.g. Erenstein et al. 2007). This would enable identification of location-

specific vulnerabilities in crop productivity, existing levels of adaptive capacity within 

the agricultural system and potential adaptive measures. For example, in the IGP 

spatially explicit measures of SOS and LGS for the rabi wheat are vital to target 

adaptive conservation agriculture-zero-tillage practices (Erenstein and Laxmi 2008; 

Lobell et al. 2013). Zero-tillage should be targeted in areas with a later-sown rabi crop 

as later sown crop yields are impacted by exposure to extreme heat later in the crop 

growing season (Lobell et al. 2012); this is especially pertinent given projected future 

increases in the occurrence of extreme heat days during the rabi cropping season over 

North India (Mathison et al. 2013).  

4.4.1 Limitations of the GIMMS NDVI dataset 

One of the limitations of monitoring cropping intensity using GIMMS NDVI data is that 

the phenology measured within each 8km pixel incorporates signal from a range of 

land covers, a mixed pixel problem. In the IGP the average farm size in Punjab is 337m2 

and in Bihar it is 39m2; therefore, each GIMMS pixel will report the spectral signature 

from a range of different farms (Agricultural Census 2012). When estimating cropped 

area using coarser resolution remote sensing data some studies have multiplied full 

pixel areas by fractional proportions of cropland coverage to glean sub-pixel areal 

estimates (Thenkabail et al. 2007). Other approaches to addressing circumstances 

where a pixel is mixed include soft or fuzzy classification techniques such as artificial 

neural networks or linear mixture modelling (LMM) (Atkinson et al. 1997; Foody 2002). 



LMMs assume a linear relationship between a pixel’s spectral reflectance and the 

fraction of vegetative cover. The linearity of the relationship between pixel NDVI and 

proportion of agriculture was explored within the state of Bihar in an attempt to train 

a LMM to obtain more accurate estimates of cropping intensity. The proportion of 

agricultural area within a GIMMS pixel in 2005-06 was determined using the Globcover 

2005 V2.2 global land cover product with a spatial resolution of 300 m (Bicheron et al. 

2008). This was calculated as the proportion of a GIMMS pixel composed of Globcover 

classes 11 and 14, which correspond to post-flooding and irrigated croplands and 

rainfed croplands, respectively (Bicheron et al. 2008). There existed a non-linear 

relationship between proportion of agriculture within a GIMMS pixel and mean peak 

kharif growing season NDVI in 2005-06 (Fig. 4-11). Mean peak kharif growing season 

NDVI was used in this case as by this time crops have developed, covering fields, and 

reducing the spectral interaction of soil backgrounds with green vegetation (Jiang et al. 

2006). This corresponds to the findings of Jiang et al. (2006) who observed a non-linear 

relationship between the NDVI of a pixel with a coarse spatial resolution and within-

pixel vegetative fraction.  



 

Figure ‎4-11 Relationship between peak kharif GIMMS NDVI and proportion of agriculture within a 
GIMMS pixel calculated using the Globcover V2.2 global land cover product for Bihar in 2005-06. 

As NDVI does not vary linearly with fraction of vegetative cover, other vegetation 

indices which preserve linearity needed to be estimated to derive accurate sub-pixel 

fractions (Lobell and Asner 2004; Jiang et al. 2006). This requires data in individual 

spectral bands, and preferably at a finer spatial resolution than the GIMMS NDVI data, 

so a large number of pure agricultural pixels could be used to train the LMM. Jiang et 

al. (2006) found that the Scaled Difference Vegetation Index (SDVI), calculated using 

the red and NIR wavelengths, produced a linear relationship with fraction of vegetative 

cover and was insensitive to variation in soil background brightness. If the study area 

has a limited spatial and temporal extent, and atmospherically corrected reflectance 

values for red and NIR spectral bands are available then LMM may yield more accurate 

estimates of area under different cropping intensities. However, endmember 

reflectance values are not transferable across time or space due to inter-annual 

climatic variation, differing environmental conditions and agricultural management 

inputs. This limits the applicability of using LMM to map cropping intensity across large 

spatial extents and multiple years.  



There is inevitably a trade-off between level of spatial detail and loss of accuracy in 

measures of productivity, LGS and cropping intensity from phenology derived from 

mixed pixels and the need to generate long-term time series covering large spatial 

extents efficiently. Cropping intensity can be monitored at more detailed spatial 

resolutions using different sensors with sufficient temporal resolution (e.g. MODIS, 

Landsat). For example, Biradar and Xiao 2011 monitored ‘double’ and ‘triple’ cropping 

across India using phenology derived from one year of MODIS data and Jain et al. 2013 

integrated MODIS phenology measures with ‘fine’ spatial resolution Landsat data to 

map cropping intensity of smallholder farms in India. Whilst these approaches deliver 

greater levels of spatial detail they are limited by a lack of long-term coverage. This 

inhibits their use to inform on the long-term implications of increased cropping 

intensity on crop productivity and environmental resources.  

Whilst the GIMMS NDVI data set has a coarse spatial resolution, it is possible to detect 

the dominant cropping intensity and inter-annual shifts in LGS and productivity 

occurring within a 8km pixel in the IGP. The IGP had a dominant agricultural land cover 

for at least one cropping season, this reduced negative mixed-pixel impacts and enable 

discrimination of the dominant phenology of the croplands at a regional scale. Even 

areas of smallholder, subsistence farming have a dominant agricultural landscape with 

rice cropping mimicking the cropping calendar of the rest of the region. Except in small 

isolated pockets there is not a mixed, heterogeneous landscape occurring at fine 

spatial scales (e.g. agro-forestry). However, in mixed landscapes which include 

smallholder farming (e.g. mountainous and hilly regions of Nepal, deltaic paddy 

regions) we would expect the GIMMS product to yield less phenological information. 

Patches of forested, water and urban areas were also masked out using a pre-

processed Land Cover Product (GLC 2000) to remove pixels dominated by non-

agricultural land covers throughout the time period in question. This is reflected by the 

fact the GIMMS NDVI dataset represents the state-wise inter-annual variation in 

cropping intensity and agricultural productivity reported in Government of India 

agricultural statistics (see Appendix 2 and 3). Appendix 4 provides a more detailed 

discussion of the limitations of using GIMMS NDVI data over the smallholder 

dominated portions of the eastern IGP. 



Accounting for sub-pixel proportions of agricultural extent can improve estimates of 

area under cropping (Thenkabail et al. 2007) or weight pixel VI values when estimating 

crop productivity (Bolton and Friedl 2013) but it is difficult to un-mix the timing and 

location of phenological parameters within a pixel. In other words, it is hard to reveal 

sub-pixel variation in the timing of SOS, peak growing season and EOS within a pixel. 

This limits the use of GIMMS NDVI data for applied monitoring of specific crop types 

(e.g. wheat) due to its coarse spatial and bimonthly temporal resolution. In the IGP, 

delays in SOS and LGS by a matter of days can have noticeable impacts on wheat crop 

yields (Ortiz-Monastrerio et al. 1994). Both field studies and integrated Earth 

observation and crop model studies have shown yield declines for the wheat crop after 

an optimal sowing date in mid-November (Ortiz-Monastrerio et al. 1994; Lobell et al. 

2012; Chapters 5 and 6). Monitoring SOS and LGS from sensors with increased 

temporal resolution (e.g. MODIS) can provide more accurate representation of SOS 

and LGS variability across the IGP. The crop-specific, applied usefulness of LSP 

parameter retrieval will further increase, relative to information gleaned from GIMMS 

NDVI datasets, as long-term records from sensors with increased spatial and temporal 

resolutions are accumulated.  

4.5 Conclusion 

The ability to estimate accurate LSP parameters is vital to fully characterise vegetation-

climate interactions and inform sustainable agro-ecosystem management approaches. 

Whilst remote sensing datasets have been used to report spatio-temporal trends in 

LSP across sub-Saharan African croplands there has been limited focus on the IGP 

croplands. Here, we present long-term records monitoring spatio-temporal trends and 

dynamics of LSP parameters for the croplands of the IGP. There has been a clear west-

to-east spread in the area under double cropping from 1982-83 to 2005-06. In 1982-83 

2304 km2 was detected as being under double cropping in Bihar, in 2003-04 25728 km2 

was detected as double cropping from the GIMMS NDVI dataset. This reflected a state-

wise increase in area under double cropping of 945 km2 year-1 between 1982-83 and 

2005-06. In Uttar Pradesh an increasing trend of area under double cropping of 2680 

km2 year-1 was detected over the same time period.  This was reflected by an increase 



in: (i) the number of growing days per year in Bihar, Uttar Pradesh and Haryana and (ii) 

the productivity of kharif and rabi cropping across the IGP. For example, in Bihar and 

Uttar Pradesh in 1982-83 there was a state-wise average of 159 and 243 growing days 

per agricultural calendar year respectively yet in 2003-2004 the state-wise average 

number of growing days per year were 215 and 297 respectively.  

These data contribute to increasing our understanding of local and regional vegetation 

dynamics and their interactions with climatic and anthropogenic drivers. They are also 

crucial components in facilitating a holistic understanding of local and regional 

agricultural and food systems and are, therefore, a useful resource for agricultural 

management aiming to deliver sustainable crop production and immediate food 

security. This is pertinent in the IGP considering the pressure placed on the region’s 

agro-ecosystems to maintain food production in a sustainable and climate-resilient 

manner to meet the food demand from a growing population. In addition to providing 

information on the long-term dynamics of LSP across the IGP’s agro-ecosystem, this 

dataset can be used as a reference for LSP parameters estimated from sensors with 

increased spatial and temporal resolutions.  

 

 

 

 

 

 

 

 

 

 



Chapter 5:  Climate-smartening India’s breadbasket. 

Locating vulnerability ‘hotspots’ to target with 

adaptive practices.8 

5.1 Introduction 

Increasing productivity and production levels from cereal croplands is critical to 

meeting a growing demand for food from a global population expected to reach 9 

billion by 2050 (Godfray et al. 2010; Foley et al. 2011; Misselhorn et al. 2012). The FAO 

project a required increase in global cereal production of 800 million tonnes by 2030 

(FAO 2006). At the same time cereal croplands will have to contend with unfavourable 

climatic changes, limited room for expansion, increased competition for land and 

water resources from sectors such as biofuels and grazing, declining quality in the 

natural resource base limiting levels of production and suitable lands whilst also 

reducing agriculture’s negative environmental and climatic footprint (Tilman et al. 

2002; Tyagi et al. 2005; The Royal Society 2009; Power 2010; Hanjra and Qureshi 2010; 

Foresight: Final Project Report 2011; Tilman et al. 2011; Bogdanski 2012). Plausible 

management interventions and adaptations are available, which, if implemented 

should increase production and resilience in cropping systems simultaneously in a 

sustainable manner. Such adaptations fall under the umbrella term of climate-smart 

agriculture (FAO 2011b) and often include conservation agriculture practices (Lumpkin 

and Sayre 2009). Climate-smart agricultural practices and ecosystem management 

approaches achieve food security whilst: i) increasing productivity and income and, 

thus, enhancing livelihoods, ii) increasing ecosystem resilience to climate change and 

variability and, iii) mitigating agriculture’s contribution to climate change (Pye-Smith 

2011; FAO 2011b). Climate-smart approaches are being promoted by several global 

institutions (e.g. FAO, World Bank, Consultative Group on International Agricultural 

Research (CGIAR)). An ecosystems based approach to managing croplands, ensuring 

agricultural practices have minimal harmful impacts on ecosystem services and 

8
 This chapter is currently submitted to Remote Sensing of Environment. 



ecological processes, is a key component of climate-smart agriculture (FAO 2011b; 

Scherr et al. 2012)  Conservation agriculture practices increase crop productivity in an 

environmentally sustainable manner, often with subsequent cost savings and profit 

gains (Hobbs et al. 2008; Erenstein 2009a; Lumpkin and Sayre 2009), thus, contributing 

to meeting climate-smart goals (Pye-Smith 2011; FAO 2011b). It is important to note 

that a wider range of adaptations to agricultural practices can deliver climate-smart 

gains than those that just meet the definitions of conservation agriculture (Hobbs et al. 

2008).  

To maximise the climate-smart benefits from targeted adaptations to cropping 

practices requires holistic approaches that are: i) sensitive to the temporally dynamic 

and systemic nature of cereal systems and, ii) able to capture spatial dynamics and 

heterogeneity across the landscape. A systemic or holistic focus is important as it 

retains awareness that the outcomes of climate-smart developments will be 

determined by a range of interacting exogenous and endogenous drivers within cereal 

croplands (FAO 2011a; Scherr et al. 2012). Remote sensing data is attractive for use in 

holistic assessments of cereal croplands as it can provide multiple metrics of relevance 

to the cropping system (e.g. crop type and acreage (Thenkabail et al. 2005; Wardlow et 

al. 2007; Gumma et al. 2011a; Atzberger 2013), crop yield and productivity (Funk and 

Budde 2009; Becker-Reshef et al. 2010; Rembold et al. 2013), cropping intensity and 

growing season dynamics (Dash et al. 2010; Biradar and Xiao 2011; Vrieling et al. 2013; 

Jain et al. 2013), crop health and vigour (Pinter et al. 2003), crop residue burning 

(Badarinath et al. 2006) and drought impacts (Rojas et al. 2011)). Remote sensing data 

can also be integrated with a range of ancillary datasets (e.g. socio-economic data 

(Imran et al. 2014) or climate data (Brown et al. 2010; Lobell et al. 2012)) enhancing 

the level of systemic detail captured in assessments of cereal croplands. The 

repeatable coverage of remote sensing data captures temporal detail important to 

fully understand cropland dynamics; for example, intra-annual monitoring of crop 

phenology can be used to discriminate crop types (Thenkabail et al. 2005; Thenkabail 

et al. 2007; Wardlow et al. 2007), highlight vulnerabilities due to late sowing (Lobell et 

al. 2012; Lobell et al. 2013) and, identify different crop development stages (Sakamoto 

et al. 2005). Inter-annual monitoring of cereal croplands captures variability in length 



of growing seasons which can pin-point ‘high risk’ locations for particular crop types 

(Vrieling et al. 2013).  There is clear potential to utilise remote sensing datasets to 

provide agricultural managers with information sensitive to the inherent complexity 

and spatial fluxes contained within cereal cropping systems which will influence the 

long-term state of cropland vulnerability and the climate resilience afforded by 

different adaptation/mitigation options.  

To fully achieve climate-smart goals in cereal croplands requires a landscape approach 

which considers spatial interactions and variation between various facets within 

cropping systems (FAO 2012; Scherr et al. 2012). A more detailed discussion of the 

benefits which can be gained from synthesising the multiple goals of climate-smart 

approaches (resilience to climate change, adaptation and mitigation) into a landscape 

approach is presented in Chapter 1. However, a brief summary is provided here; 

landscape approaches inherently recognise that both societal and environmental 

outcomes are important and acknowledge the spatial and dynamic interactions 

between multiple processes across croplands. Given that the optimum agricultural 

practice to deliver climate-smart benefits will vary spatially due to underlying 

environmental and socio-economic conditions, monitoring at a landscape scale will 

capture the complex systemic nature of croplands and highlight best practice for a 

given locale (DeFries and Rosenzweig 2010; FAO 2011a; Scherr et al. 2012). Remote 

sensing data’s synoptic and repeatable coverage and, spatial and thematic detail mean 

it is ideally suited to landscape scale monitoring of cereal croplands. Here we 

demonstrate an approach utilising such spatial and thematic detail in a holistic 

assessment of the rice-wheat production landscape to reveal ‘hotspot’ or ‘high-

priority’ locations where the sustainability or productivity of cropping is vulnerable and 

to generate information to facilitate spatial targeting to optimise the benefits of 

conservation and adaptive agriculture practices across the landscape. Using remote 

sensing to provide quantified spatial information can minimise spatial trade-offs and 

maximise synergies in agricultural adaptations between production and sustainability 

goals and adaptation and mitigation measures.  

The dominant crops in Punjab and Haryana are kharif rice typically grown from June to 

October and rabi wheat grown from November to April. As discussed in more detail in 



Chapters 1 and 2 the rice-wheat croplands of Punjab and Haryana are crucial in 

supporting the livelihoods of several hundred million people and national food security 

schemes yet are also being impacted by multiple, interacting stresses. Numerous 

conservation agriculture practices are applicable to the rice-wheat croplands of Punjab 

and Haryana which can deliver climate-smart benefits. These include zero-tillage, 

system of rice intensification, alterations in irrigation practices, laser bed levelling, 

water harvesting and groundwater recharge, and crop diversification (Ambast et al. 

2006; Gupta and Seth 2007; Saharawat et al. 2010; Pathak et al. 2012; Saharawat et al. 

2012). For example, zero-tillage wheat in the IGP has been shown to reduce water 

input requirements, improve water productivity, reduce GHG emissions (via reduced 

tractor usage) and improve economic returns (Hobbs et al. 2008; Erenstein and Laxmi 

2008; Saharawat et al. 2010). Each of these practices is associated with different costs 

of implementation and variation in the extent, and type, of benefit delivered; these 

benefits and costs also vary in space requiring location-specific targeting (Saharawat et 

al. 2010; Pathak et al. 2012). There is spatial heterogeneity in crop yields across small 

distances in the north-west IGP (Lobell et al. 2010) indicating location-specific, 

targeted responses are required to reduce yield gaps sustainably. Yield gaps refer to 

differences between average yield or yield observed in a field and potential yield which 

would be obtained without water and nutrient limitations and stress from weeds, 

pests, disease or pollution (Lobell et al. 2009; van Ittersum et al. 2013). Closing yield 

gaps can help meet increasing demands for food whilst addressing increased 

competition for land and water resources and reducing the negative outcomes 

associated with expansion of agricultural lands (e.g. biodiversity loss, increased GHG 

emissions) (Foley et al. 2005; Brussaard et al. 2010; Foley et al. 2011). Thus, closing 

yield gaps can contribute to meeting climate-smart goals. Given the complex, spatio-

temporal dynamic nature of cereal croplands the size and cause of yield gaps vary 

across a landscape (Lobell 2013). The spatially explicit nature of remote sensing data 

can capture this spatial variation and, thus, be used to inform location-specific 

adaptations to close yield gaps (Lobell 2013).  

A major inhibitor to the uptake of conservation agriculture and other practices 

delivering climate-smart goals in the IGP is the cost of implementation and the 



cost:benefit ratio to prospective farmers (Pathak et al. 2012). The uptake of zero-

tillage, the most prominent climate-smart-conservation agriculture practice across the 

IGP, was driven by the immediately realised economic gains to farmers (Erenstein 

2009a).  Identifying locations where farmers would receive the greatest returns from 

adopting climate-smart-conservation agriculture practices will increase the cost 

efficiency of implementation and increase the likelihood of uptake. Thus, it is 

important to target areas in need of adaptation enabling the agricultural landscapes of 

the IGP to move onto a climate-smart trajectory characterised by environmental 

sustainability, climate resilience and socio-economic benefits. 

To optimise uptake of agriculture practices delivering climate-smart goals requires 

integration of multiple, location-specific datasets to provide holistic monitoring of the 

agricultural landscapes informing optimum adaptive practices. The range of 

agricultural statistics currently provided at the district level (e.g. 

http://lus.dacnet.nic.in/) aggregate sub-district spatial heterogeneity in cropping 

systems and mask local detail. Here, we demonstrate an approach centred on using 

remote sensing data with greater local detail compared to district level statistics and 

greater temporal resolutions to characterise various states (e.g. yield, cropping 

intensity, planting dates) of the agricultural landscape synthesised with the thematic 

resolution contained within Government of India’s agricultural statistical datasets and 

gridded climate datasets. This enabled identification of locations likely to gain the 

greatest climate-smart benefits from targeted agriculture adaptation. This chapter 

highlights the following: 

1) where prevailing agricultural practices (e.g. burning crop residue, late-sown wheat) 

contribute to failure in achieving climate-smart goals such as mitigation of GHG 

emissions, environmental sustainability or enhanced crop yields,  

2) an estimate of the GHG emissions from crop residue burning in 2009-2010, 

3) vulnerability ‘hotspots’ where unfavourable trends in ISM precipitation such as 

increasing recurrence of drought years coincide in space with water-intensive 

agricultural practices,  



4) the locations and magnitudes of yield gaps,  

5) the cropping diversity of a locale in relation to groundwater levels and the expanse 

of the rice-wheat cropping system,  

6) areas where there is potential to address multiple stresses to crop production with 

targeted adaptations.   

5.2 Methods 

Holistic, spatially explicit monitoring of the rice-wheat production system initially 

requires accurate identification of the extent of the rice-wheat croplands and 

quantified yield estimates from remote sensing data. This information is then 

integrated with other spatial databases (e.g. climatic data, burned area products, 

agricultural statistics) to provide a comprehensive characterisation of the current state 

of the agricultural system across its landscape. This generates several metrics (e.g. 

GHG emissions from crop residue burning, areas vulnerable to unfavourable trends in 

precipitation, yield gaps) which are used to identify locations where agricultural 

productivity is vulnerable, where agricultural practices are sub-optimal or un-

sustainable and, to target appropriate conservation agriculture and other adaptive 

practices based on the needs of a specific locale. Fig. 5-1 displays a generalised 

workflow for this process.  



 

Figure ‎5-1 Workflow outlining processes undertaken to integrate remote sensing data, climatic data 
and agricultural statistics to provide holistic monitoring of the rice-wheat production system at a 
landscape scale. 

5.2.1 Rice-wheat cropping area classification 

5.2.1.1 Data pre-processing 

Remote sensing data is commonly used to map the extent of croplands at varying 

thematic and spatial resolutions using a variety of classification methods (e.g. 

Doraiswamy et al. 2004; Thenkabail et al. 2005; Bartholomé and Belward 2005; 

Thenkabail et al. 2009; Gumma et al. 2011b).  A comprehensive review of remote 

sensing techniques used to distinguish agricultural lands is beyond the scope of this 

study. However, it is important to note that MODIS data products, with a 500 m2 

spatial resolution, have been used to map croplands and specific crop types in this 

study area (Thenkabail et al. 2005; Xiao et al. 2006) and, such approaches provide 

measures of agricultural land cover with greater spatial detail compared to agricultural 



land cover statistics aggregated within administrative boundaries (district level in India 

(http://lus.dacnet.nic.in/)).  Areas under a kharif rice crop and rabi wheat crop were 

classified using a range of techniques applied to the 8-day composite of MODIS surface 

reflectance products (MOD09A1) 

(https://lpdaac.usgs.gov/products/modis_products_table/mod09a1). The MOD09A1 

maximum value composite products were used instead of the MODIS daily climate 

model grid (CMG) 0.05° product. Whilst the MODIS CMG product has been corrected 

for BRDF and provides greater temporal detail this is traded-off against a loss of spatial 

detail due to its ‘coarser’ 0.05° resolution which would impede the ability to capture 

landscape scale detail. The aim here was not to develop new, universally applicable 

and validated land cover classification approaches or algorithms but to identify the 

extent of rice and wheat croplands for an applied purpose. Therefore, existing 

classification techniques which have been used, and validated, in this region were 

selected for rice and wheat crop extent classification.  

Four VIs were computed from the MOD09A1 data. The NDVI and Normalised 

Difference Snow Index (NDSI) were computed to develop snow, water and forest 

masks following Xiao et al. (2005; 2006). The EVI was computed by adjusting red band 

reflectance using the blue band to account for residual atmospheric contamination 

and soil background (Huete et al. 1997; Huete et al. 2002). The NDVI is a commonly 

used measure of vegetation productivity; the EVI utilises advances in the MODIS 

sensor to reduce limitations with NDVI data providing enhanced responsiveness to 

canopy structure and not saturating as easily over areas with high levels of ‘green’ 

biomass (Pettorelli et al. 2005).  The Land Surface Water Index (LSWI) utilises the 

shortwave infrared band (SWIR 1628-1652 nm) sensitive to soil and vegetation 

moisture (Xiao et al. 2005; 2006).  Both the LSWI and the EVI were utilised to classify 

rice and wheat croplands. Prior to classification the data was subjected to rigorous pre-

processing, removing ‘bad pixels’, selecting only ‘high-quality’ pixels using quality 

assurance (QA) data included with the MODIS products; and identifying cloud 

contamination not detected in the MODIS QA via the condition cloud=ρblue>0.2 where 

ρblue is reflectance in the blue band (459-479nm) (Xiao et al. 2005) before estimating 

the VI.  

https://lpdaac.usgs.gov/products/modis_products_table/mod09a1)


‘Bad pixels’, defined using MOIDS QA flags, were replaced using the gap filling 

algorithm of Peng et al. (2011): 

      [                                 ] 

(1) 

Where BT is the value assigned to replace the bad pixel Bt located at time-step t. The VI 

were then iteratively fitted to their maximum envelope using an adapted version of 

Chen et al. (2004) which incorporates smoothing VI temporal profiles using a Savitzky-

Golay filter and a fitting bias towards maximum values. This removes noise and 

fluctuation in temporal VI profiles due to cloud cover and atmospheric contamination 

and accounts for the negative bias in reflectance received at the sensor (Chen et al. 

2004).  

Snow, water and forest masks were generated to avoid non-agricultural land covers 

influencing the classification procedure using an adapted version of (Xiao et al. 2005; 

2006).  If a pixel was designated as being snow covered at any time-step, defined as 

NDSI>0.4, then it was deemed not suitable for rice cropping and removed from the 

classification process. Pixels covered by permanent water bodies, defined by NDVI<0.1 

and NDVI<LSWI for at least 10 composites during the year were masked. Forest areas 

were detected if 20 successive 8-day MODIS composites had a NDVI>0.5 and masked. 

5.2.1.2 Rice crop area classification 

Rice cropped areas were classified by adapting Xiao et al. (2005; 2006) and Peng et al. 

(2011), assuming that rice crops display the following characteristics: i) puddling of 

fields at the beginning of the growing season and ii) a rapid green up post puddling. 

Puddling was detected by the condition LSWIt+T ≥ EVIt where t is the time-step 

corresponding to the 8-day MODIS composite. A temporary inversion of LSWI relative 

to EVI indicates puddling in fields (Xiao et al. 2005; Xiao et al. 2006; Peng et al. 2011); 

this assumption is relaxed for improved classification accuracy in specific locations 

through the threshold T (Xiao et al. 2005; Peng et al. 2011). The incorporation of T 

accounts for reflectance containing signatures from a mixture of puddled water, 

vegetation and soil backgrounds and sub-pixel compositions of land-cover (Xiao et al. 



2005; Sun et al. 2009). It is important to note that this classification scheme seeks to 

detect the presence of rice cropping within a 500m pixel but does not estimate 

proportion of rice cropping within pixels. To ensure puddling is associated with rice 

crops, a rapid green up following puddling must be observed (Xiao et al. 2005). This 

was defined by one of five 8-day MODIS composites after puddling being greater than 

half the maximum growing season EVI (Xiao et al. 2005; Xiao et al. 2006). A universal 

approach to rice crop classifications (e.g. Xiao et al. 2006) is limited due to the range of 

agronomic and climatic conditions under rice cultivation (Peng et al. 2011; Gumma et 

al. 2011b). Incorporating knowledge of the local crop calendar and agronomic practices 

into classification procedures will improve accuracy (Sun et al. 2009; Peng et al. 2011; 

Gumma et al. 2011b). The classification algorithm was focussed at the beginning of the 

kharif growing season avoiding spurious misclassifications of other wetland areas (Sun 

et al. 2009).  

5.2.1.3 Rice cropped area validation 

A range of threshold values were tested using district-wise land use statistics for rice 

cropped area as validation data (http://lus.dacnet.nic.in/) with T=0.16 being most 

accurate for Punjab and Haryana (Table 5-1; Fig. 5-2a). This increased classification 

accuracy, R2=0.96 when validated against district-wise land use statistics 

(http://lus.dacnet.nic.in/), compared to R2=0.78 when following the threshold value 

applied to all of south Asia used by Xiao et al. (2006) (Table 5-1; Fig. 5-2a).  Table 5-1 

shows the R2 values for between district-wise rice cropped area detected from MODIS 

data and district-wise rice cropped area from Government of India land use statistics 

(http://lus.dacnet.nic.in/).  



 

Figure ‎5-2 District-wise Government of India cropped area statistics plotted against MODIS derived 
cropped area statistics (full-pixel area) for a) rice (T=0.16) and, b) wheat (SSV=0.55). The black line is 
the regression fitted to a 1:1 line. Outlier A is district Yamuna Nagar and Outlier B is district Bhiwani.  

 

 

 



Table ‎5-1 R
2 

values for the relationship between rice cropped area estimated from the MODIS 
MOD09A1 product and Government of India’s district-wise land use statistics 
(http://lus.dacnet.nic.in/) for the 2009-2010 agricultural season. 

 Threshold (T) 

 Xiao et 
al. (2005) 
(0.05) 

0.1 0.12 0.14 0.15 0.16 0.18 0.2 

R
2
 0.78 0.89 0.93 0.95 0.95 0.96 0.94 0.84 

 

5.2.1.4 Wheat crop area classification 

Additional filtering of the maximum fitted EVI dataset using a Savitzky-Golay filter with 

a 2nd degree polynomial and a seven time-step moving window generated a smooth 

phenology profile suitable for LSP parameter extraction. Smoothing prevents residual 

noise causing misclassifications and generates a phenology profile representative of 

crop growth. Areas under rabi cropping were extracted using LSP parameter extraction 

methods outlined in Dash et al. (2010) and Lobell et al. (2012); this increased wheat 

classification accuracy reducing misclassification errors of non-croplands. Rabi crops 

were defined by three LSP parameters: 

i) Peak growing season detected by an increasing trend in EVI values for the preceding 

four 8-day composites and a decreasing trend in the succeeding four 8-day composites 

(Dash et al. 2010). 

ii) SOS was defined as 10% of the amplitude between minimum and peak EVI on the 

rising limb of the phenology profile. The 10% amplitude method applied to MODIS EVI 

data has been previously validated using observed sowing dates in Punjab and detects 

sowing data (adjusted for a three week lag) to within two days (Lobell et al. 2013).    

iii) Distinct green up following SOS detected by the magnitude of difference between 

SOS EVI and peak growing season EVI. The difference between EVI values at SOS and 

peak growing season should be greater than one fifth of growing season maximum EVI 

(Dash et al. 2010).  



The match between rabi crop phenology and ‘ideal’ wheat phenology was calculated 

using spectral matching techniques, specifically the spectral similarity value (SSV) 

(equation 2) (Thenkabail et al. 2007; Thenkabail et al. 2009). This approach has been 

used widely to classify croplands in South Asia (Thenkabail et al. 2007; Thenkabail et al. 

2009; Biradar et al. 2009; Gumma et al. 2011b; Gumma et al. 2011a). The phenology 

profile for ‘ideal’ wheat pixels was generated by randomly extracting the phenology 

profiles for 254 pixels identified as containing at least 80% wheat crop coverage from a 

global map of wheat croplands (Monfreda et al. 2008). This map has been used widely 

to delineate wheat growing areas in north-west India (Lobell et al. 2012; Lobell et al. 

2013). However, it provides a proportion of cropped area within a 5-minute pixel and, 

thus, is not an optimal discrimination of wheat cropped areas hence the use of a 

conservative 80% threshold here as opposed to the 40% threshold used in Lobell et al. 

(2012). The SSV compares the shape and magnitude of two phenology profiles 

(Thenkabail et al. 2007; Thenkabail et al. 2009). The similarity in shape is calculated as 

the Pearson’s Correlation Coefficient, p, between pixel phenology profile and ‘ideal’ 

wheat phenology profile. The SSV also incorporates a measure of magnitude between 

the two phenology profiles, the Euclidian distance between corresponding points.  

    √  
         

 (2) 

Where Ed
2

 is the Euclidean distance where Euclidean distance (equation 3) between 

two points calculated as 

           √∑        
 

   

 

(3) 

Where xi is the EVI value of a pixel with rabi cropping and Ai is ‘ideal’ wheat EVI value 

at time-step i. A smaller SSV value indicates greater similarity between the pixel in 

question and ‘ideal’ wheat phenology. Classification of wheat from other croplands 



and land cover types was determined by a threshold SSV value. It is important to note 

that this classification scheme considers full-pixel areas of wheat cropping and does 

not provide any further information on sub-pixel proportion of wheat cropped area. 

5.2.1.5 Wheat cropped area validation  

A range of thresholds were tested for accuracy using the district-wise land use 

statistics (http://lus.dacnet.nic.in/) for wheat cropped area as validation data. The 

threshold of SSV≤0.55 yielded most accurate results when compared with district-wise 

land use statistics (http://lus.dacnet.nic.in/), R2=0.94 (Table 5-2; Fig. 5-2b). Table 5-2 

presents the R2 values describing the fit between wheat area estimated from MODIS 

data and district-wise land use statistics for wheat cropped area for a range of SSV 

values. That the accuracy of using SSV values higher than the optimum, does not 

decrease ‘rapidly’ is likely due to non-cropland land cover being masked pre-

classification and the dominance of wheat as a rabi land cover in Punjab and Haryana. 

Once the optimum wheat classification has been reached there is not likely to be large 

quantities of ‘available’ pixels to be misclassified via a more lenient SSV threshold. As 

an additional check that classified wheat crop corresponds to vegetative growth the 

following condition must be met: peak EVI>0.2.  

Table ‎5-2 R
2
 values for the relationship between wheat cropped area estimated from the MODIS 

MOD09A1 product and Government of India’s district-wise land use statistics 
(http://lus.dacnet.nic.in/) for the 2009-2010 agricultural season. 

   SSV value 

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 

R
2 

0.5 0.65 0.76 0.84 0.89 0.92 0.935 0.937 0.932 0.92 0.92 0.91 0.9 0.89 

 

5.2.2 Estimating rice and wheat crop yield 

Crop yield was estimated from EVI phenology profiles generated from the MODIS 

MOD09A1 product. Several LSP parameters obtained from remote sensing data can be 

used to estimate biomass, of which crop yield is the economically utilisable portion 

(Pettorelli et al. 2005; Funk and Budde 2009; Bolton and Friedl 2013).  



Cereal crop yield is often estimated using regression models trained with maximum VI 

or an average or integration of VI values over portions of the growing season 

corresponding to peak growth and initial senescence (reproductive phase and grain 

filling (TSP)) and agricultural crop yield measures obtained from fields and agricultural 

statistics (Rojas 2007; Funk and Budde 2009; Becker-Reshef et al. 2010; Rojas et al. 

2011). Such models take advantage of the correlation between spectral reflectance in 

wavelengths used to compute VI and photosynthetic activity which leads to crop yield 

formation (Tucker 1979; Pinter et al. 1981; Becker-Reshef et al. 2010). Funk & Budde 

(2009) comment that often late to end of growing season VI values give a more 

accurate estimation of crop yield as they correspond to the crop development stages 

which determine utilisable yield (e.g. grain filling and reproductive stages). Three 

metrics related to crop yield were tested: cumulative sum of EVI values over a 30 day 

window post peak EVI (CUM-EVI(TSP)), cumulative sum of EVI from SOS to end EOS and, 

cumulative sum of EVI from peak growing season to EOS. The 30 day window used in 

the computation of CUM-EVI(TSP) captures the thermo-sensitive period (TSP) of cereal 

crop development, namely the reproductive phase, and the beginning of the 

subsequent grain filling stages (Pinter et al. 1981; Sakamoto et al. 2005; Teixeira et al. 

2013). It is well established that crop yield is vulnerable to climatic extremes impacting 

crop physiological processes during this period, and that VI values fluctuate according 

to green biomass levels, crop stress and photosynthetic activity (Tucker 1979; Jagadish 

et al. 2007; Becker-Reshef et al. 2010; Teixeira et al. 2013). Therefore, it is likely that a 

sum of VI values over this period will indicate levels of final crop yield.  

SOS for rice was defined as date of puddling and wheat SOS as discussed previously. 

Peak growing season was defined as maximum growing season EVI and EOS was 

defined in a similar manner to detecting wheat onset but the 10% threshold was 

applied to the falling limb of the phenology profile. The accuracy of the crop yield 

estimates were improved by masking non-rice/wheat land cover using crop maps and 

discounting pre-growing season noise (Kastens et al. 2005; Funk and Budde 2009). This 

is an important aspect of improving the ability to accurately estimate crop yield from 

remotely sensed data as discussed in Atzberger (2013) and Funk and Budde (2009). 

Bolton and Friedl (2013) compared the impact of using a ‘fine’ spatial resolution 



cropland mask to capture sub-pixel extents of cropland and subsequently weight 

MODIS 500m pixel EVI values and a 500m spatial resolution MODIS Land Cover Product 

with a generic agricultural land cover class using full-pixel EVI values in crop production 

estimation. They observed comparable estimates of crop production using both land 

cover products and note that using a 500m land cover product to isolate cropland 

spectral signals for estimating crop production is a ‘viable alternative when higher 

resolution products are not available’ (Bolton and Friedl (2013), p. 78). Bolton and 

Friedl (2013) also used a generic agricultural land cover class as a cropland mask; here, 

rice and wheat crop extents are delineated rather than just using a generic cropland 

class further minimising a noisy signal from other crop and land cover types.  

Other studies have also used ‘coarse’ or ‘medium’ resolution (relative to the field 

scale) land cover maps to mask non-cropland land covers when estimating crop 

production from MODIS derived EVI. For example, Funk and Budde (2009) used a 

1:250,000 SADC land cover dataset for Zimbabwe and obtained R2 values greater than 

0.85 when estimating maize crop production from cumulative sums of EVI around peak 

growing season and the beginning of crop senescence. In Punjab and Haryana Lobell et 

al. (2012) created a wheat cropland mask based on the condition that a 5-minute 

spatial resolution pixel contained at least 40% wheat crop coverage; the initial input 

dataset for their wheat cropland mask was the global cropland map produced by 

Monfreda et al. (2008). Using this wheat cropland mask, and 1km spatial resolution 

MODIS EVI data, Lobell et al. (2012) detected climate impacts on wheat phenology. If 

the focus here was on estimating crop production at a district or state level based on 

peak growing season, or early senescence EVI values, district-wise or state-wise area 

weighted EVI values could be constructed (Bolton and Friedl 2013). However, such an 

approach would aggregate local variation in crop phenology and preclude capturing 

landscape scale detail.  

It is important to note the usefulness of a 500m level cropland mask may decline in 

areas of the world with a more fragmented agricultural landscape (Bolton and Friedl 

2013); however, Punjab and Haryana have a dominant agricultural land cover and 

limited cropping diversity (http://apy.dacnet.nic.in/). The 500m spatial resolution can 

provide useful landscape scale information over Punjab and Haryana as the region is 



dominated by a rotating rice-wheat land cover, with predominantly large and medium 

sized operational holdings and larger average farm holding size relative to the national 

average (Panigrahy et al. 2010; DES 2011; Agricultural Census 2012). Whilst the 

footprint of a MODIS pixel is 500m2 compared to average operational holding size of 

225m2 in Haryana and 377m2 in Punjab, less information will be lost and landscape 

complexity masked, due to mixed pixel effects than would occur over smallholder 

dominated landscapes with small farm sizes (e.g. in Bihar with average holding size of 

39m2) (Agricultural Census 2012). The launch of the Sentinel-2 constellation of two 

satellites will provide multispectral imaging of the earth’s surface at a 10m spatial 

resolution every 5 days (ESA 2010). This will enhance the level of detail (i.e. intra-farm 

or individual field) which can be gleaned from remote sensing data and enable 

monitoring of crop phenology with reduced mixed pixel effects. This will result in more 

accurate monitoring of conditions in specific fields and reduce error in propagating 

into crop production regression models. This will increase the applied value of using 

remote sensing data to monitor crop production accurately in fragmented farming 

landscapes. 

5.2.2.1 Crop production validation 

The three metrics were validated using district-wise crop production statistics 

(http://apy.dacnet.nic.in/: Table 5-3). All three metrics had a strong positive 

correlation with district-wise crop production statistics (Table 5-3). CUM-EVI(TSP) was 

used from this point on as the metric to determine crop yield using linear regression 

models trained using district-wise crop production totals. The use of CUM-EVI(TSP) was 

justified given the metric performed comparably well relative to the other metrics for 

both crop types in 2009-2010, the sound theoretical basis underlying the metric and, it 

avoids signals introduced from early and late growing season activity not related to 

crop yield formation as discussed in Rojas et al. (2011) and Funk and Budde (2009). 

Using regression model developed using 2009-2010 CUM-EVI(TSP) district-wise crop 

production was estimated for the 2002-2003 to the 2005-2006 growing season. For the 

rice crop this model provided R2 values ranging from 0.85 to 0.95 and for the wheat 

crop R2 values ranging from 0.80 to 0.94 (Appendix 5). This further indicates CUM-



EVI(TSP) is a time-invariant indicator of crop production across rice and wheat in Punjab 

and Haryana.  Rice yield (Tonnes ha-1) per pixel was estimated as: 

            

(4) 

Where x is CUM-EVI(TSP) and s is the scaling factor between the area of a MODIS pixel 

and hectares. Wheat yield was estimated as: 

           

(5) 

A regression through the origin approach was used to estimate crop yield based on the 

premise that cultivated areas were extracted prior to yield estimation (Eisenhauer 

2003). Therefore the assumption that no crop yield reported in a district would 

correspond to no cropped area and, thus, not register a VI signal associated with crop 

yield was applied, thus, the assumption was also made that all cropped areas generate 

some yield; under these assumptions a 1:1 regression is justified. A regression through 

the origin was used by in a similar methodological framework to estimate wheat yield 

from MODIS NDVI data with wheat crop masks applied in the USA and Ukraine 

(Becker-Reshef et al. 2010).  

Table ‎5-3 Correlation coefficient values for the relationship between yield estimates from EVI 
phenological parameters and Government of India’s district-wise Area, Production and Yield statistics 
(http://apy.dacnet.nic.in/). 

 Rice Wheat 

CUM-EVI(TSP) 0.93 0.95 

Cumulative sum of EVI from onset to end of growing season 0.93 0.94 

Cumulative sum of EVI from peak growing season to end of growing season 0.94 0.92 

 

5.2.3 Burning of rice and wheat crop residue and quantifying GHG emissions 

The operational MODIS  monthly burned area product (MCD45A1), which provides an 

estimate of burning date, extent of burning and associated QA 



(https://lpdaac.usgs.gov/products/modis_products_table/mcd45a1), was used to 

delineate burned areas corresponding to the end of the kharif and rabi growing 

seasons. A full description of the methods for generation of the burned area product is 

beyond the scope of this paper. However, Roy et al. (2008) and Roy and Boschetti 

(2009) provide further details. The areal extent of kharif rice and rabi wheat crop 

residue burned were extracted using maps of crop extent previously generated. The 

GHG emissions from rice and wheat crop residue burning for the 2009-2010 

agricultural season were estimated using the methodology recommended by the IPCC 

(2006a). Inputs include maps of burned croplands generated from the MCD45A1 

product, accurate maps of crop extent, remote sensing measures of crop biomass, 

country and crop specific parameters from the literature and default parameters for 

Tier 1 estimation from IPCC (2006a). The IPCC advocates estimation of GHG emissions 

from residue burning via: 

                       

(6) 

Where Lfire is emissions (Tonnes), A is area burned (ha), Mb is mass of fuel available to 

be burned (Tonnes ha-1), Cf  is the combustion factor (dimensionless) and Gef is the 

emission factor (g/kg-1 of dry matter burned). Crop specific default values of Cf  and 

GHG specific values of Gef  were obtained from the IPCC (IPCC 2006b) (Table 5-4). Cf  

values were 0.9 for wheat and 0.8 for rice, Cf refers to the proportion of fuel (crop 

residue) consumed by the fire (IPCC 2006b). A for rice and wheat crops were estimated 

utilising burned area (MCD45A1) and crop extent maps already generated. Mb was 

estimated as: 

         

(7) 

Where Y is crop yield in (Tonnes ha-1), D is dry matter content, S is the ratio of residue 

mass to crop yield. S was determined using crop specific values from Webb et al. 

(2009), the residue:yield ratio for wheat and rice were 1.3 and 1.4 respectively. D was 

obtained from (IPCC 2006a) and had a value of 0.89 for both rice and wheat. We have 

https://lpdaac.usgs.gov/products/modis_products_table/mcd45a1


not included a factor to account for fraction of residue removed as specified in Webb 

et al. (2009) and Garg et al. (2011) as we have already detected burned sites and 

incorporated them into estimates of A.  

As a point of comparison emissions are computed using default Tier 1 estimates 

provided by the IPCC (2006b) for Mb and Cf. The FAO use this methodology to estimate 

global and regional emissions of CH4 and N2O from residue burning on croplands 

(FAOSTAT 2013). The FAO adjust estimates of residue available to be burnt on fields, 

assuming 10% of crop residue is burnt (IPCC 2000; FAOSTAT 2013). These results are 

presented in Table 5-5. 

Table ‎5-4 Emission factor (Gef ) for range of GHG from burning of agricultural residue (IPCC 2006b). 

 CO2 CO CH4 N2O NOx 

Agricultural 
Residue 

1515 92 2.7 0.07 2.5 

 

5.2.3.1 Uncertainties and error in GHG estimating emissions from crop residue burning 

There are uncertainties involved with the use of satellite-derived burned area products 

over croplands which were used as inputs into A. This is exemplified by the differences 

between MODIS burned area product (MCD45A1) and the MODIS active fire product 

(MOD14A1 (Terra) and MYD14A1 (Aqua)) (Roy et al. 2008); and, by differences 

between burned area products derived from different sensors (L3JRC: SPOT-

VEGETATION; GlobCarbon: SPOT-VEGETATION and ERS2-ASTR2/ENVISAT AATSR) (Roy 

and Boschetti 2009). However, validation against Landsat observations of burned area 

suggested the MODIS burned area product was most accurate across Southern Africa 

(Roy and Boschetti 2009). Both MODIS burned area and active fire products suffer 

from cloud cover obscuring detection of active burning or burned area scars on the 

terrestrial land surface; the burned area product includes omission errors over 

croplands if the burned area scar is small relative to the 500m2 pixel whereas the active 

fire product is sensitive to omission errors due to short lived fires missing sensor 

overpass or if the fire temperature is not high, or spatially distributed enough (Roy et 

al. 2008). The burned area product detects burning using an algorithm modelling 



temporal changes in land surface reflectance; this algorithm can be confounded over 

croplands where anthropogenic agricultural management causes swift changes in land 

cover after burning (Roy et al. 2008). However, integrating crop specific maps and 

burnt area maps means that locations where specific crops were burnt can be 

delineated. This enables use of crop specific parameters in equation 6 for estimating 

emissions reducing uncertainty. 

There will be error in estimates of Mb due to variations in biomass left on fields due to 

different harvesting techniques (e.g. manual harvesting or combine harvesting) which 

will vary within and between pixels (McCarty, 2011). The distribution within a field, the 

orientation of biomass and the compaction of biomass will affect resultant emissions 

(Webb et al. 2009). The, distribution and compaction of residue in a field, moisture 

content of the residue and nature of the fire and climatic conditions at time of burning 

will also create uncertainty in the combustion factor (ratio of fuel available to be burnt 

which actually combusts) (IPCC 2006b; McCarty 2011). There will also be error in Mb as 

a result of differences between harvest date and burning date with differential rates 

of, and time periods for, decay of crop residues in fields (Webb et al. 2009; McCarty, 

2011). However, we have used location specific estimates of rice and wheat crop 

production in Mb as opposed to applying a spatially universal value for wheat and rice 

yield following Tier 1 parameters provided by the IPCC (2006b). The approach here 

using location and crop specific estimates of production is a conceptual advance on 

previous efforts quantifying GHG emissions from biomass burning over rice-wheat 

croplands in Punjab using remote sensing; Badarinath et al. (2006) used satellite-

derived burned area maps but spatially universal values for wheat and rice biomass 

obtained from the literature. 

Here it is assumed that pixels where crop residue burning was detected in the MODIS 

MCD45A1 product correspond to locations where farmers burnt residue in fields. This 

assumption was made on the basis we have not used a generic croplands mask in A 

but a burnt area cropland mask; and if proportion of residues from fields is not known 

then all residues should be assumed burnt (Webb et al. 2009). However, this 

assumption is limited as there is likely sub-pixel variation in farmer management 

practices and proportions of intra-pixel burnt areas. At a regional scale errors of 



omission (missing fractions of burnt croplands due to a 500m2 pixel not being detected 

as burnt) and commission (assuming all of a 500m2 pixel is burnt when in reality 

portions may not be) may cancel out but mask local level uncertainty.  

 Here we have used Gef  (emissions factors) for agricultural residues consistent with the 

IPCC methodology (Table 5-4). These estimates Gef are in close agreement with crop 

specific emission factors reported by McCarty (2011) for CO2 and CH4; however, 

McCarty (2011) note there is a considerable range of uncertainty in estimates of crop 

specific values for Gef. There is likely to be considerable within landscape variation GHG 

emissions per amount of residue burnt due to variations in the moisture content of the 

residue at the time of burning, the prevailing climatic conditions at the time of burning  

the carbon and the carbon content of the residue (Yevich and Logan 2003; IPCC 2006b; 

McCarty 2011). Here, we have used the same values as provided by the IPCC as they 

are equivalent to crop specific emission factors for rice and wheat and enable 

comparison with the FAO methodology (Table 5-5).  

5.2.4 Determining the relationship between onset of wheat growing season and crop 

yield 

SOS was defined as 10% of the amplitude between minimum pre-growing season EVI 

and peak growing season EVI and wheat crop yield was estimated using the regression 

models previously mentioned. Average yield (Tonnes ha-1) per SOS date, in units of 8-

day MODIS composites, was calculated to determine the effect of later sowing of the 

wheat crop on yield. 

5.2.5 Identifying vulnerability ‘hotspots’ to climatic trends and variability 

Identifying ‘hotspots’ where rice-wheat production systems are vulnerable to climatic 

trends and variability was achieved via an overlay of two datasets: i) spatio-temporal 

trend analysis identifying locations experiencing unfavourable trends in facets of ISM 

precipitation and, ii) rice-wheat cropping area classifications for the 2009-10 

agricultural season.  



5.2.5.1 Locations of unfavourable trends in facets of ISM precipitation: 

Facets of ISM precipitation with unfavourable trends experienced at locations in 

Punjab and Haryana were: i) decreasing ISM precipitation, ii) increasing variability in 

ISM precipitation, iii) increasing frequency of drought years, and iv) increasing 

variability in onset date of ISM and, were detected utilising the datasets generated in 

Duncan et al. (2013). Increasing date of onset of ISM would also undermine 

agricultural productivity in the region (Moors and Siderius 2012), but such trends were 

not prevalent (Duncan et al. 2013). These trends were identified per 0.25˚ grid cell 

using non-parametric trend analysis, and robust bootstrap resampling, testing for field 

significance and spatial autocorrelation, applied to APHRODITE daily gridded 

precipitation products from 1951-2007; a more detailed description of the methods 

and data is outlined in Duncan et al. (2013).  

5.2.6 Yield Gaps 

To monitor yield gaps requires estimating or defining potential yield (Yp), methods to 

estimate YP include use of simulation models, ‘ideal’ experiments on farms or taking 

maximum yields from real world farms; a full review and critique of these approaches 

can be found in Lobell et al. (2009). Remote sensing approaches to quantifying yield 

gaps correspond to the latter method where maximum yield estimated from remote 

sensing data is used as a proxy of Yp within a given spatial unit (Lobell 2013). For 

example, Bastiaanssen and Ali (2003) used the 95th percentile value of yield estimated 

from AVHRR data in the Indus Basin in Pakistan as an estimate of Yp. Lobell et al. (2010) 

also the used 95th percentile of yield values estimated from Landsat data, per-district, 

in Punjab as a measure of Yp. Here, yield gaps were estimated as the difference 

between yield in a pixel reporting rice or wheat cropping and maximum yield, Yp, 

within a 5km moving window. The same approach was repeated using a 20km moving 

window to explore whether the size and spatial distribution of observed yield gaps 

were artefacts of the size of moving window.  



5.2.7 Cropping Diversity 

Cropping diversity per district in Punjab and Haryana was computed, from a range of 

64 possible food and non-food crops, using the Shannon-Weaver diversity index for 

the 2009-2010 agricultural season (Brush et al. 2003; Abebe et al. 2009). The district-

wise statistics for cropped areas were obtained from the Government of India’s land 

use database (http://lus.dacnet.nic.in/). The Shannon-Weaver diversity index was 

computed as:    

   ∑       

 

   
 

(8) 

Where H is the Shannon-Weaver diversity index, P is area under ith crop cultivated in 

the district and n is the total number of crops cultivated in the district. The Shannon-

Weaver diversity index incorporates a measure of evenness and also the number of 

different crops cultivated, the greater the value the greater the cropping diversity. 

5.3 Results  

5.3.1 Water availability ‘hotspots’ 

Water usage, availability and governance is a key factor determining the sustainability 

and productivity of the rice-wheat croplands (Abrol 1999; Ambast et al. 2006; CCAFS 

2010; Moors et al. 2011; Perveen et al. 2012).   Rice-wheat production systems (see 

Fig. 5-7b) are water intensive, requiring 1800 mm water annually (Ambast et al. 2006), 

less than the median ISM precipitation over Punjab and Haryana which ranges from 

156 to 1091mm with large amounts of inter-annual variability (Duncan et al. 2013). 

Facets of ISM precipitation displaying unfavourable trends include: decreasing ISM 

precipitation, increasing recurrence of drought years and, increasing inter-annual 

variation in ISM precipitation and ISM onset date (Duncan et al. 2013).  Trends from 

observational data were deemed more useful and more informative due to uncertainty 

in ISM projections from climate models (Annamalai et al. 2007; Moors et al. 2011; 

Turner and Annamalai 2012; Mathison et al. 2013), and adaptive climate-smart 



responses need to be implemented immediately where the time-frame of 

observational data is still relevant. 2.52 million ha of the rice-wheat cropping system 

experienced unfavourable trends in at least one facet of ISM precipitation, 2.53 million 

ha experienced such trends in two facets of ISM precipitation and 0.24 million ha 

experienced three such trends simultaneously (Fig. 5-3a). Trends of increasing 

recurrence of drought years and inter-annual variation in ISM precipitation have the 

greatest spatial coverage (Fig. 5-3b and c).  ‘Hotspots’ were identified (Fig. 5-3a) where 

observed unfavourable trends in facets of ISM precipitation limit available water 

resources, thus, increasing vulnerability to reduced productivity and pressure on 

already exploited groundwater reserves (Fig. 5-4).  

These ‘hotspots’ (Fig. 5-3a) should be prioritised for targeting with climate-smart and 

conservation agriculture approaches which reduce water requirements without 

compromising livelihoods. This will increase the resilience in the most vulnerable areas 

of rice-wheat cropping landscapes to increasing, unfavourable, variability in the ISM. 

The majority of ‘hotspots’ were located in southern Punjab and Haryana (Fig. 5-3a, b 

and c), receiving lower normal and more inter-annual variability in ISM precipitation 

(Duncan et al. 2013), thus, compounding water availability issues. These regions should 

be prioritised for targeting with drought resistant cultivars (Wassmann et al. 2009; 

National Mission for Sustainable Agriculture 2010; Moors et al. 2011) or conservation 

agriculture practices with increased water use efficiency. Such practices include laser 

bed levelling, zero-tillage and residue retention (Erenstein and Laxmi 2008; Jat et al. 

2009a; Saharawat et al. 2010; Chauhan et al. 2012). These ‘hotspot’ locations across 

southern Punjab and Haryana also match up to locations identified as being climate 

sensitive by O’Brien et al. (2004). However, as opposed to the district level spatial 

resolution of the O’Brien et al. (2004) study which masks fuzzy transitions in 

vulnerability the use of remote sensing derived 500m spatial resolution crop maps 

here delivers greater landscape scale spatial detail.  



 

Figure ‎5-3 ‘hotspots’ where kharif rice, rabi wheat or rice-wheat double cropping systems coincide in 
space with a) unfavourable trends in facets of ISM precipitation. These trends are one or more of 
decreasing ISM precipitation, increasing recurrence of drought  years, increasing inter-annual ISM 
variation and increasing inter-annual variation in onset date of ISM, b) increasing trends of recurrence 
in drought years alone and, c) increasing inter-annual variation in ISM precipitation alone.  



 

Figure ‎5-4 District-wise tubewell Density (left) and watertable rise/fall (right) reproduced from 
Ambast et al. (2006). 

5.3.2 Late-sown wheat crop and yield declines 

Later sown wheat, exposes the wheat crop to higher temperatures later in the growing 

season which has an adverse effect on several crop development processes which 

determine final crop yield (Wassmann et al. 2009; Lobell et al. 2012). Both coarse grid 

GCM and finer grid RCM are consistent in forecasting warming trends over north India 

with greater numbers of extreme heat days (>28°C  and >35°C) (Moors et al. 2011; 

Mathison et al. 2013); seasonally the greatest magnitude of projected warming occurs 

in the wheat growing season (Mathison et al. 2013). This implies that later sown wheat 

crops are increasingly vulnerable to warming trends and extreme heat events (Lobell 

et al. 2012). The spatial pattern of wheat SOS in Fig. 5-5a captures accurately the later 

wheat SOS in south Punjab associated with the later harvesting dates of the kharif 

cotton crop (Ambast et al. 2006; Lobell et al. 2010). Field experiments from Punjab 

suggest a yield decline of ~1% day-1 after the optimal sow date in mid-November 

(Ortiz-Monastrerio et al. 1994). Similar trends are noted in (Fig. 5-5b and 5-5c) with the 

advantage of demonstrating that trends reported in field studies are spatially explicit. 

There is a consistent decline in wheat yield with later wheat crop SOS (Fig. 5-5c). It 

should be noted that the date of sowing will be earlier than SOS detected from remote 



sensing data which places the remote sensing observations (Fig. 5-5b and 5-5c) in line 

with existing field studies (Ortiz-Monastrerio et al. 1994; Lobell et al. 2013). This is due 

to LSP parameters detecting onset of greenness, which occurs after seeds have 

emerged, with a time lag from sowing date. Simulations of wheat in Punjab using the 

CERES-wheat model suggest a 3 week lag between sowing and 10% amplitude of LAI 

(correlated with EVI) being reached (Lobell et al. 2013). The areas of late sown wheat 

should be targeted with zero-tillage practices encouraging earlier sowing of the wheat 

crop (Ortiz-Monastrerio et al. 1994; Erenstein and Laxmi 2008; Lobell et al. 2013) 

whilst also delivering other socio-economic and environmental benefits (Gupta and 

Seth 2007; Erenstein and Laxmi 2008; Erenstein 2009a). It should be noted here that 

the high wheat yields obtained on some farms in Punjab and Haryana (Aggarwal et al. 

2004) are not estimated from MODIS data in Fig. 5.5b. This may be due to sub-pixel 

compositions of land cover and crop productivity masking high yielding plots.  

5.3.3 Crop Residue Burning 

Burning crop residue is a contributor to CO2, CH4 and N2O emissions and is a positive 

feedback to climate change (Aggarwal et al. 2004; Pathak et al. 2006; Bhatia et al. 

2012). Residue burning lowers soil nutrient content lowering yields, unless mitigated 

by fertiliser application (Pathak et al. 2006), and undermines sustainability gains by 

decreasing efficiency of water use via lower infiltration rates and increased 

evaporation (Lumpkin and Sayre 2009). Further negatives from residue burning include 

the impacts of pollutants and aerosols on human health (Erenstein and Laxmi 2008) 

and ISM circulation (Knopf et al. 2008; Ramanathan and Carmichael 2008). Detected 

from remote sensing data rice and wheat residue burning occurred over 1.17 million 

ha and 2.4 million ha, respectively (Fig. 5-5d). This equated to hundreds of thousands 

of Tonnes of GHG emissions (e.g. over 566987 Tonnes of CO2 from wheat residue 

burning) which impacts both regional (e.g. ISM) and global climate systems (Table 5-5). 

Targeting burnt areas with adaptive residue management, (e.g. zero-tillage drills which 

can seed through residue (Erenstein 2009a)), would deliver environmental benefits, 

increase resource use efficiency and mitigate climate change and deteriorating air 

quality. Estimates of GHG emissions from crop residue burning generated using 



location specific estimates of crop residue burnt using MODIS data were lower than 

GHG emissions estimated using default Tier 1 parameters provided by the IPCC 

(2006b) and used by the FAO (FAOSTAT 2013). The default Tier 1 parameters specify a 

spatially universal value of Mb (crop residue mass burnt in fields) which does not 

account for inter-growing season and spatial variation in levels of crop production and 

biomass generation. It is possible that emissions are underestimated using  as the 

signal from high yielding farms maybe masked by a mixture of land covers and crop 

productivity levels within 500m2 MODIS pixels.  



 

Figure ‎5-5 a) SOS date for the 2009-2010 wheat rabi crop. SOS dates detected prior to the 17th of 
November and after the 9th January were masked out due to few pixels reporting onset during these 
periods; pixels reporting SOS on the 17th November corresponds to sowing around the 1

st
 November 

assuming a three week lag between sowing date and SOS detected by the satellite sensor. Nearly all 
wheat is sown after the 1

st
 November (Lobell et al. 2012), b) wheat yield (Tonnes ha

-1
), c) average 



yield (Tonnes ha
-1

) plotted against SOS of wheat growing season, d) areas where crop residue was 
burnt for rice crop and wheat crops. 

Table ‎5-5 Emissions of GHG from residue burning of rice and wheat crops over pixels identified as 
burnt from the MODIS MCD45A1 product. Emissions were estimated using the standard IPCC 
methodology (IPCC 2006b) and with location-specific model inputs provided from estimates of 
cropped area and productivity from the MOD09A1 product. The final column presents emissions 
estimated using globally applicable default Tier 1 estimates provided by the IPCC (2006b).  

Greenhouse Gas Emissions (Tonnes) Emissions (Tonnes ha
-1

) Emissions estimated 
following IPCC and FAO 
methodology (Tonnes 
ha

-1
) 

CO2 wheat burning 566987 0.23673 0.606 

CO2 rice burning 236243.770 0.20187 0.83325 

CH4 wheat burning 1010.479 0.00018 0.00108 

CH4 rice burning 421.027 0.00036 0.001485 

CO wheat burning 34431.121 0.01438 0.0368 

CO rice burning 14346.136 0.01226 0.0506 

N2O wheat burning 26.198 0.00001 0.000028 

N2O rice burning 10.916 0.00001 0.0000385 

NOx wheat burning 935.627 0.00039 0.001 

NOx rice burning 389.842 0.00033 0.001375 

5.3.4 Yield Gaps 

Fig. 5-6a and b shows the spatial locations of yield gaps greater than 0.5 Tonnes ha-1, 1 

Tonnes ha-1 and 2 Tonnes ha-1
 for the rice and wheat crops. In 2009-10 it was 

estimated that 965,363 ha of wheat croplands had yield gaps greater than 1 Tonnes ha-

1 and 4336 ha had yield gaps greater than 2 Tonnes ha-1. For rice croplands, 321,580 ha 

had yield gaps greater than 1 Tonnes ha-1 and 3349 ha had yield gaps greater than 2 

Tonnes ha-1. These are priority locations within croplands which should be targeted 

with sustainable adaptations to raise yield levels up to their local maximum and, thus, 

reduce the need to expand cropped areas. There was not a clear spatial pattern of 

locations which experienced yield gaps greater than 2 Tonnes ha-1. This suggests that 

that yield gaps of the largest magnitude are not explained by regional scale factors but 

likely have a location specific cause. Also, it may be that the 500m pixels with largest 



magnitude yield gaps have a lower proportion of wheat cropping within the pixel 

reducing the EVI values. Figs. 5-6c and d indicates that the spatial pattern and 

magnitude of yield gaps was robust to the size of moving window Yp was computed 

within. Yield gaps estimated within a 5km moving window are a more conservative 

estimate than yield gaps computed within a larger moving window (e.g. 20km) (Figs. 5-

6c and d).  A 5km moving window will likely sample a large enough region of farms to 

capture yields performing close to Yp whilst also better representing the underlying 

spatial gradients in variables (e.g. soil type, access to irrigation) which determine Yp at 

a given location.  

 

Figure ‎5-6 locations where yield gaps greater than 0.5 and 1 Tonnes ha-1 were detected for a) rice 
crops and, b) wheat crops. The relationship between average district-wise yield gaps computed with 
5km and a 20km moving window for c) rice and, d) wheat. 



Remote sensing derived estimates of Yp are lower than the true genetic potential of 

yield or Yp estimated from crop simulation models or ‘ideal’ experimental farms (Lobell 

et al. 2007; Lobell et al. 2009). However, it is likely some farmers in Punjab and 

Haryana approach true Yp given access to high levels of inputs (HYVs, irrigation and 

fertiliser). Also, Yp estimated from remote sensing data may be a more realistic 

measure of what can be achieved in real world croplands given prevailing economic 

and technological limitations (Lobell and Ortiz-Monasterio 2006); for example, crop 

simulation models may overestimate Yp as they do not adequately simulate the impact 

of yield limiting extreme heat events on pollination processes (Lobell et al. 2009). 

Computing yield gaps using remote sensing data captures spatial patterns in yield gaps 

and yield variability and, thus, pin-points locations of underperformance; quantifying 

both the location and size of yield gaps means areas where the size of yield gap is 

greatest can be prioritised for targeting. By generating spatial patterns of yield gaps 

enables integration with a range of other spatial datasets to identify adaptation 

options to close yield gaps. For example, Lobell et al. (2002) used remote sensing data 

to link yield gaps with soil and climate and Lobell et al. (2010) linked yield variability to 

sowing date and proximity to roads and canals.  

5.3.5 Integrating spatial datasets: Holistic assessments of cereal croplands 

Discussed thus far are examples of how information contained within remote sensing 

observations can reveal locations where agricultural productivity or sustainability are 

undermined by prevailing stresses (e.g. climate) or sub-optimal agricultural practices 

(e.g. residue burning). Remote sensing can provide spatially explicit information to 

target appropriate conservation agriculture and other adaptive practices. However, 

integrating multiple remote sensing datasets and ancillary datasets can better capture 

the complex, systemic nature of cereal cropping systems and, thus, reveal more 

options for adaptation. Cereal croplands represent a type of complex socio-

environmental system where outcomes span socio-economic (e.g. income, food 

security, crop yield) and environmental (e.g. soil degradation) spheres. Such outcomes 

are determined by interactions between socio-economic (e.g. policy, markets) and 

environmental (e.g. climate) drivers. Approaches to identify and target optimum 



climate-smart practices in cereal croplands are therefore limited if they do not account 

for the prevailing policy environment. The following discussion explores examples of 

integrating multiple spatial datasets to inform climate-smart adaptations whilst 

remaining sensitive to, and addressing the limitations of, current policy.  

5.3.5.1 Water resources for cereal croplands 

Integration of crop extent maps and locations experiencing unfavourable trends in ISM 

precipitation highlight ‘hotspot’ locations where water intensive cereal cropping is 

exposed to unreliable, or decreasing quantities of, precipitation (Fig. 5-3). These spatial 

datasets can be viewed in conjunction with maps of groundwater extraction capacity 

and trends in groundwater levels (Fig. 5-4) to enable more complex responses in how 

to manage water resources across the landscape. The precipitation availability 

‘hotspots’ were predominately located across south Punjab and Haryana which 

correspond to areas with a low density of tubewells and trends of rising watertable 

levels (Ambast et al. 2006) (Fig. 5-4). This suggests that managed extraction of 

groundwater, supplemented through artificial recharge via recharge tubewells and 

rainwater harvesting (Ambast et al. 2006) and consistent monitoring, could be utilised 

as a buffer to climatic variability. This would require a policy-shift, and to be 

incorporated within an Integrated Water Resource Management (IWRM) approach 

recognising that the water balance is part of a dynamic hydrological regime within the 

river basin linked to other watersheds by surface and sub-surface flows of water 

(Moors et al. 2011). Targeting holistic approaches, in the identified vulnerable 

locations (Fig. 5-3a), would contribute to meeting the goals outlined in the 

Government of India’s National Action Plan on Climate Change: National Water 

Mission to promote IWRM at the basin level to cope with precipitation variability, 

ensure equitable distribution of water and prioritise vulnerable watersheds (National 

Water Mission 2009). 

5.3.5.2 Policy traps, cropping diversity and excessive groundwater extraction 

Spatially explicit measures of cropping diversity (Fig. 5-7a), the extent of the rice-wheat 

cropping system (Fig. 5-7b), groundwater extraction capacity (Fig. 5-4) and trends in 

groundwater levels (Fig. 5-4) highlight a spatial coincidence in low levels of cropping 



diversity, declining groundwater levels and an intensive double cropping system. This 

situation is an artefact of low governance diversity (e.g. subsidised electricity for 

groundwater, procurement of rice and wheat) promoting a lack of diversity in farmer’s 

practices and a dominant rice-wheat monoculture and a more homogenous cropping 

landscape (Fig. 5-7b; Aggarwal et al. 2004; Perveen et al. 2012).  Government policy 

has generated a positive feedback creating ‘brittleness’ (Biggs et al. 2012) or a ‘rigidity 

trap’ (Holling 2001) lowering the resilience of the rice-wheat cropping system to future 

disturbances.  

Fig. 5-8 is a schematic representation of the socio-ecological and climate interactions 

of the rice cropping system in Punjab and Haryana. It illustrates how government 

policy, which initially created an enabling environment for intensive rice cropping, has 

instigated numerous positive feedbacks which accentuate environmental degradation 

and harmful climate change. Fig. 5-8 illustrates a system ‘locked-in’ to a trajectory of 

environmental degradation, increasing exposure to unfavourable climate change and 

potentially resulting in a state when it can no longer deliver required yield levels.  A 

shift in government policy and the underlying political economy of the agricultural 

sector is required to move the rice-wheat cropping system onto a climate-smart 

trajectory, incentivising uptake of sustainable crop types and practices to break the 

cycle of increasing environmental degradation and harmful climate change. However, 

as a result of government policy a large proportion of the electorate’s livelihoods are 

dependent upon rice cropping, unsustainable subsides for irrigation and profits 

guaranteed from assured markets and minimum support prices for rice (Murgai et al. 

2001; Perveen et al. 2012; Ojha et al. 2013). Therefore, there is little political willpower 

to develop policies, provide incentives for, and explore more sustainable and adaptive 

management of the croplands (Murgai et al. 2001; Ojha et al. 2013). This is 

problematic due to the excessive water demand of the rice crop (10 times more than 

other kharif crops) meaning the only way to reduce excessive groundwater extraction 

and environmental degradation is to restrict the land coverage of puddled rice 

cropping (Ojha et al. 2013). There is a need to overcome the institutional and political 

barriers which are rigidly holding the system on an environmentally unsustainable 

trajectory which contributes to its increasing exposure to harmful climate change. 



Diverse cropping maintains ecological resilience, and diversity in governance delivers 

management flexibility (Ojha et al. 2013), vital to increase the adaptive capacity and 

resilience of the rice-wheat cropping system to uncertain futures (e.g. ISM 

precipitation) (Annamalai et al. 2007; Moors et al. 2011).  

The rice-wheat double cropping system requires more water input than is received via 

precipitation and rechargeable groundwater (Ambast et al. 2006; Central Ground 

Water Board 2012). Altering the pricing of irrigation water would encourage 

appropriate water use and diversification of cropping (Aggarwal et al. 2004). Provision 

of weather-based crop insurance or subsidies are policy options which should be 

applied in rice-wheat croplands to overcome farmer concerns with diversifying 

cropping (Aggarwal et al. 2004). Diversification options, such as replacing conventional 

puddled kharif rice with maize, delivers environmental and economic benefits with 

irrigation water savings of 50-60%, a 90-100% reduction in methane emissions and a 

20-25% reduction in labour and energy costs (Pathak et al. 2012).  Diversifying 

cropping away from the rice-wheat cropping system to cash crops can deliver win-win 

situations of increased incomes and reduced environmental degradation (e.g. less 

pressure on groundwater, reduced GHG emissions) (Aggarwal et al. 2004; Perveen et 

al. 2012). Government incentives encouraging farmers to diversify will alleviate biotic 

and abiotic problems associated with rice-wheat cropping (Chauhan et al. 2012). For 

example, incorporation of legume crops in rice-wheat cropping systems increases 

nitrogen use efficiency and reduces nitrate contamination of groundwater (Chauhan et 

al. 2012). This indicates there is potential for a few or a single spatially targeted 

adaptive measure to deliver multiple benefits simultaneously. However, currently 

farmers are not keen to pursue legume cropping despite its environmental benefits as 

there is no assured market and it is not as profitable as rice (Ojha et al. 2013).  



 

Figure ‎5-7 a) district-wise cropping diversity (Shannon-Weaver Diversity Index) computed from the 
Government of India district-wise land use datasets (http://lus.dacnet.nic.in/), lower values 
correspond to lower cropping diversity and, b) areas under kharif rice (0.5 million ha), rabi wheat (3.4 
million ha) and rice-wheat double cropping (5.1 million ha) cultivation during the 2009-2010 
agricultural season detected from MODIS MOD09A1 data. 

 

Figure ‎5-8 Schematic representation of the socio-ecological-climate processes, interactions and 
feedbacks of the rice-wheat cropping system in Punjab and Haryana. 



5.3.6 Capturing synergies and navigating trade-offs via targeted implementation of 

agricultural adaptations 

Instead of viewing a particular stress in isolation (e.g. exposure to unfavourable trends 

in ISM precipitation) more holistic approaches recognise interactions between 

different stresses and underlying agricultural practices within the cropping system. 

Therefore holistic approaches integrating thematic detail across a landscape can 

inform on capturing synergies and minimising trade-offs, inherent in implementing 

agricultural adaptations, which occur spatially to maximise environmental and social 

benefits and optimise use of resources for adaptation. 

5.3.6.1 Capturing spatial synergies 

When Figs. 5-5a, b, and c and Fig. 5-3 are viewed in conjunction it is clear that the 

southern portions of Punjab and Haryana exposed to unfavourable trends in ISM 

precipitation also have a wheat crop sown after the optimal window for maximum 

yield returns (mid-November). Identifying such locations from integrating spatial 

datasets to target with zero-tillage practices will deliver multiple benefits. Zero-tillage 

wheat crops have been shown to reduce water requirements and improve water 

productivity whilst also enabling timely sowing of the wheat crop with associated yield 

increases (Erenstein and Laxmi 2008; Jat et al. 2009a; Saharawat et al. 2010). It is 

important to note that a large proportion of the wheat crop in southern Punjab and 

Haryana is grown as part of a cotton-wheat cycle (Lobell et al. 2010). Cotton matures 

later that other kharif crops (e.g. rice) so economic losses from shifting to earlier 

wheat SOS need to be considered alongside other climate-smart gains. This further 

exemplifies the complexity of cereal croplands which can only be addressed through 

holistic spatial assessments. 

Groundwater levels across the district of Sangrur, Punjab, are declining at a greater or 

equivalent rate to the rest of Punjab and Haryana (Fig. 5-4). This is attributed to 

excessive irrigation to support a rice-wheat cropping system (Ambast et al. 2006; 

Rodell et al. 2009). Conservation agriculture practices which preserve soil cover (e.g. 

mulch or not burning or removing crop residues from the previous crop) reduce water 

losses from the soil (reduced evaporation and increased infiltration) (Hobbs et al. 



2008). Soil cover also lowers soil and canopy temperature which will reduce the water 

demand from crops (Hobbs et al. 2008; Jat et al. 2009c). Therefore, ensuring soils are 

covered with residue or mulch will reduce the water requirements for crop growth 

and, thus, reduce pressure on irrigation. This point is pertinent over Sangrur where 

there is near complete coverage of rice and wheat crop residue burning (Fig. 5-9a) 

coinciding with declining groundwater levels. Therefore incorporating residue 

retention or soil cover into agronomic practices will deliver multiple benefits 

simultaneously (or capture synergies) including: reduced GHG emissions from crop 

burning, better water use efficiency and, thus, reduced pressure on groundwater 

resources, reduced soil erosion and enhanced soil physical and biological quality and 

lower canopy temperatures reducing crop exposure to extreme heat events (Hobbs et 

al. 2008; Jat et al. 2009b; Lobell et al. 2012). 

 

Figure ‎5-9  a) locations where rice and wheat crop residue burning was detected in the district of 
Sangrur, Punjab, which is experiencing declines in groundwater levels. The location of Sangrur relative 
to the rest of Punjab and Haryana is displayed in Fig. 5-5 (It should be noted the 2006 district outline 
for Sangrur is displayed here), b) spatial trade-offs to discriminate high-priority locations for targeting 
with ‘zero-tillage’ technologies for the rabi wheat crop. Late-sown wheat is any pixel with a SOS after 
the 11

th
 December 2009 as detected from MODIS derived phenology profiles (there is an approximate 

three week lag between SOS date and sowing). 



5.3.6.2 Trade-offs: prioritising locations for adaptation and mitigation 

It is important to recognise trade-offs and costs in implementing climate-smart and 

conservation agriculture practices. For example, there is a trade-off between the 

environmental benefits of improved residue retention in conjunction with zero-tillage 

and the costs required to develop zero-tillage drills which can seed through crop 

residue (‘happy seeder’ drills) (Erenstein and Laxmi 2008; Erenstein 2009a). Through 

integration of multiple spatial datasets it is possible to rank locations in order of 

priority for adaptation to agricultural practices. For example, ‘highest’ priority 

locations for targeting with resources to implement uptake of ‘happy seeder’ zero-

tillage drills would be those where crop residue is burnt, the wheat crop is sown late 

and unfavourable trends in ISM precipitation were observed (Fig. 5-9b). Through an 

integration of remote sensing derived and climatic spatial datasets 592,866 ha of the 

rice-wheat cropping system were designated ‘highest-priority’ to receive support in 

implementing technologies to facilitate zero-tillage wheat with residue retention (Fig. 

5-9b). The variable ‘unfavourable trends in ISM precipitation’ was then dropped (based 

on the premise that the rabi wheat crop is irrigated) to illustrate how other locations 

could be prioritised, but with lesser urgency or importance attached (Fig. 5-9b). A 

further 1.17 million ha were identified which would benefit from zero-tillage with 

residue retention but, ideally, should not be targeted above the ‘high priority’ 

locations.   

It is recognised that greater complexity could be incorporated into this approach for 

spatially resolving trade-offs on where and how to allocate resources and technological 

capacity for adaptation. Advances could range from including more detail into the 

existing variables (e.g. how late the wheat crop is sown, the nature of unfavourable 

climatic trends), including more variables to capture a greater level of systemic detail 

(e.g. groundwater levels, financial resources to fund adaptations), assigning weights of 

importance to variables (e.g. via stakeholder consultation and implement multi-criteria 

analysis in a GIS framework) or utilising approaches to measure the degree of spatial 

vulnerability (e.g. the vulnerability surface (Luers 2005)). However, the more simplistic 

approach presented here demonstrates the advantages of integrating remote sensing 

and ancillary datasets to resolve trade-offs spatially, prioritising locations for targeting 



with conservation and other agriculture practices to deliver maximum climate-smart 

gains whilst optimising use of available resources over a landscape (e.g. money, 

machinery or environmental services). 

5.4 Conclusions 

Here, an approach integrating the greater local detail in remote sensing measures of 

an agricultural landscape with climatic data and agricultural statistics allowing holistic, 

spatially explicit, monitoring of the rice-wheat production system is demonstrated. 

This can inform on ‘vulnerable’ locations and facilitate targeting of spatially optimum 

conservation agriculture and adaptive practices to maximise climate-smart benefits 

across the landscape. There is potential to upscale and adapt this approach to other 

agricultural landscapes within South Asia, and also globally.  Monitoring of food 

provisioning ecosystem services often does not incorporate sufficient thematic detail 

(e.g. crop type) (Crossman et al. 2013). Here, rice and wheat crop extent, and yield, 

were mapped accurately9 (R2=0.96 (rice) and 0.94 (wheat) for full-pixel area extents 

computed from MODIS data compared to district-wise land use statistics) (Figs. 5-2 and 

5-7b). These techniques for detecting crop extents can be ‘rolled out’ to other ‘focal’ 

regions of agricultural productivity with minimal adjustment (e.g. Terai in Nepal). Such 

detail will improve results of secondary studies requiring land use inputs, especially 

studies utilising a landscape scale approach which are often limited by paucity of data 

between the farm and district/regional level (e.g. quantification of GHG emissions 

from agriculture; Table 5-5) (Milne et al. 2012).  The local (i.e. sub-district) and 

integrated thematic detail presented here demonstrates an approach which facilitates 

navigation of trade-offs, and captures synergies, inherent in climate-smartening 

agricultural landscapes globally (FAO 2012). This is achieved by identifying locations 

which will deliver greatest returns from uptake of climate-smart practices enabling 

efficient allocation of resources (either machinery or money). For example, here we 

identify 592,866 ha of croplands across southern Punjab and Haryana which 

9
 It should be noted that as full-pixel areas were accounted for here accuracy may be inflated due to 

sub-pixel errors of cropland occurring within a pixel not being detected as cropped (omission) and areas 
of non-cropland within a pixel detected as cropped (commission) cancelling out. 



experienced unfavourable trends in ISM precipitation, crop residue burning and later 

sowing dates for the wheat crop highlighting where adoption of optimum conservation 

agriculture practices can deliver multiple benefits (e.g. zero-tillage encouraging water 

savings and earlier sowing dates). 

In the 2009-2010 agricultural season rice and wheat crop residue burning occurred on 

1.17 million ha and 2.4 million ha respectively with a range of subsequent 

environmental dis-benefits including hundreds of thousands of tonnes of GHG 

emissions; for example wheat crop residue burning generate 566987 Tonnes of CO2. 

The SOS of the wheat cropping season, and subsequent yield declines with later 

sowing dates were quantified from remote sensing data. Across Punjab and Haryana 

5.3 million ha of rice and wheat croplands coincided with locations experiencing at 

least one, and up to three simultaneously, unfavourable trends in facets of ISM 

precipitation such as increasing recurrence of drought years. The locations of 

unfavourable trends in facets of ISM precipitation were computed from daily 

precipitation data from 1951-2007. Also, 965,363 ha of wheat croplands returned 

yields of 1 Tonne ha-1 lower than potential yields and 321,580 ha of rice croplands had 

yield gaps of at least 1 Tonne ha-1. The spatial distribution of these yield gaps was 

captured using remote sensing data. Often the areas of rice-wheat double cropping 

coincided with areas where groundwater levels were falling and the lowest cropping 

diversity suggesting lower levels of ecological resilience and existent adaptive capacity 

to uncertain and variable futures in ISM precipitation. These, locations were mainly in 

the central districts of Punjab and Haryana, such as the district of Sangrur as 

highlighted in Fig. 5-9a. 

 

 

 

 

 



Chapter 6:  Satellite observations reveal the impact of 

climatic extremes and variability on cereal croplands 

6.1 Introduction 

Similar to other cereal crops levels of production and productivity for rice and wheat 

crops are vulnerable to a changing climate. Increases in mean growing season 

temperature, an increase in the frequency of extreme heat stress events at key 

phenological stages (e.g. the thermo-sensitive reproductive and grain filling periods 

(TSP)), uncertain precipitation futures and increased risk of droughts and subsequent 

moisture shortages all have a potentially negative impact on crop yield ( Ortiz et al. 

2008; Asseng et al. 2012; Lobell and Gourdji 2012; Lobell et al. 2012; Teixeira et al. 

2013; Gourdji et al. 2013b; Koehler et al. 2013).  

Increases in average growing season temperatures hastens phenological development, 

reducing time available for biomass accumulation and photosynthetic activity thus, 

reducing final yield (Sadras and Monzon 2006; Oh-e et al. 2007; Welch et al. 2010; 

Hatfield et al. 2011; Lobell et al. 2011a; Lobell et al. 2012). Different crops have also 

shown different sensitivities to daily maximum or minimum temperatures; for 

example, maize yield is negatively correlated with maximum temperature whereas dry 

season rice yield is negatively correlated with minimum temperature (Peng et al. 2004; 

Welch et al. 2010; Lobell et al. 2011a). Adequate moisture levels are also vital for crop 

growth. Both rice and wheat yields in India are significantly correlated with all-India 

monsoon precipitation (Krishna Kumar et al. 2004) and, negatively impacted by 

drought conditions during the ISM (Auffhammer et al. 2012). Both levels of soil 

moisture and atmospheric moisture (relative humidity) have the potential to exert 

control on crop growth and development; soil moisture deficit is a limiting factor 

negatively impacting vegetative and reproductive growth processes (Wassmann et al. 

2009).    

Increasing evidence is mounting highlighting that rice and wheat cereal crop 

production and yield formation is sensitive to, and negatively impacted by, warming 



during the TSP (Asseng et al. 2010; Wassmann et al. 2009; Teixeira et al., 2013). The 

TSP spans crop reproductive period and subsequent grain-filling stages which largely 

determine final crop yield (Teixeira et al. 2013). Remote sensing observations of 

croplands have shown that spectral relectance measures during these periods of crop 

development explain the largest amounts of variation in crop production (Funk and 

Budde 2009; Bolton and Friedl 2013). Cereal crops are particularly sensitive to warming 

during anthesis where increasing temperatures impede pollination and fertilisation 

processes resulting in increased spikelet sterility and reduced final yield (Jagadish et al. 

2007; Wassmann et al. 2009). Increasing temperature during grain filling accelerates 

crop senescence reducing growth rates for grains which determine final yield and 

production; cereal crops are also more sensitive to warming events closer to anthesis 

than maturity and harvest (Asseng et al. 2010). Several studies have highlighted that 

crops display a threshold temperature response to warming during the TSP; in 

controlled experimental settings Jagadish et al. (2007) noted that air temperatures 

greater than 35˚C were terminal for rice reproductive processes. Asseng et al. (2010) 

observed yield decreases with increased wheat crop exposure to heat stress events 

(daily maximum temperatures greater than 34˚C) during the TSP.  

The presence of adequate soil moisture and lower relative humidity or higher vapour 

pressure deficit facilitate transpiration cooling which helps crops escape heat stress 

during the TSP (Shah et al. 2011; Lobell and Gourdji 2012; Gourdji et al. 2013a; Teixeira 

et al. 2013). Under moisture stress, rice crops have shorter peduncle length and 

reduced percentage of panicle exsertion (Rang et al. 2011b). The timing of dry-spells, 

or drought conditions, determine the degree of crop failure; drought or moisture 

shortages coinciding with the TSP have a marked negative impact on yield (Wassmann 

et al. 2009; Lobell et al. 2011a; Lobell and Gourdji 2012).  

Across the world’s major wheat croplands including north-west India, the thermo-

sensitive periods (TSP) of crop development for wheat crops coincide with the timing 

of highest average maximum temperatures annually (Asseng et al., 2010), and growing 

season temperature and extreme heat events during the TSP are projected to increase 

in the next century (Gourdji et al. 2013b; Mathison et al. 2013; Teixeira et al. 2013). 

Punjab and Haryana will likely experience warming trends, with increased frequency of 



extreme heat days damaging to crop growth due to climate change (Rupa Kumar et al. 

2006; Mathison et al. 2013). This will coincide with observed trends of increasing inter-

annual variation in monsoon precipitation and recurrence of drought years affecting 

large portions of both states. In addition, difficulty in predicting, accurately, future 

monsoon conditions provides further uncertainty (Annamalai et al. 2007; Moors et al. 

2011; Turner and Annamalai 2012). Climate change impacts are already limiting wheat 

crop yields globally: models indicate that warming trends since 1980 led to a 5.5% 

reduction in wheat production (Lobell et al. 2011b). Model projections of increased 

exposure to heat stress up to 2100 suggest that suitable adaptations need to be 

implemented urgently to secure climate resilient crop production. The underlying 

agricultural system (e.g. access to irrigation, cultivar type, soil type and ecosystem 

services), which varies within and between cropping landscapes, can increase the 

sensitivity of crops to harmful climate impacts (Asseng et al. 2010; Gourdji et al. 2013a; 

Luers 2005; Luers et al. 2003; Teixeira et al. 2013). For example, access to sufficient 

irrigation can enable transpiration which cools canopy temperatures relative to 

atmospheric temperatures, reducing the potential negative impact of warming on the 

crop during key physiological processes during the TSP but will lower levels of water 

productivity (Asseng et al. 2010; Gourdji et al., 2013b; Teixeira et al. 2013; Wassmann 

et al. 2009).  

While cereal crops across the globe display similar responses to climatic variables, the 

vulnerability of crops and the ability to adapt to climatic variation are determined by 

location-specific factors inherent to each agricultural system (Teixeira et al. 2013). 

Therefore, to understand the impacts of climatic variation on crop yields occurring in 

real world cropping landscapes one requires the ability to observe and test a variety of 

climatic variables through time whilst capturing the spatial variation in the underlying 

agricultural system. Studies exploring the impacts of climatic variables on wheat crop 

yield are more informative to climate resilient adaptation when there is a local or 

regional focus because potential adaptations often include shifting dates of cropping 

systems, implementing zero-tillage to avoid periods of heat stress coinciding with the 

TSP, and the need to be sensitive to location-specific double/triple cropping rotations 



which can only be captured at the local scale (Lobell et al. 2012, 2013; Teixeira et al. 

2013).  

Crop yield-climate interactions are usually explored using either (i) crop simulation 

models which aim to replicate crop physiological responses to climatic variation 

(Asseng et al. 2010; Challinor et al. 2005; Koehler et al. 2013) or (ii) regression models 

trained with crop yield and climate data aggregated within administrative boundaries 

(Lobell and Burke 2010; Rowhani et al. 2011; Schlenker and Lobell 2010; Urban et al. 

2012). Crop simulation models are often complex and require large amounts of input 

data to represent the underlying complexity of the agricultural system (Welch et al. 

2010; White et al. 2011); they are, therefore, limited in their application to large 

spatial extents. Moreover, often crop simulation models do not capture the differential 

impacts of heating events during key phenological stages, such as the TSP, well. In a 

review of 221 peer-reviewed climate-crop simulation model studies only 14 partially or 

fully addressed the issue of heat stress (White et al. 2011). Crop model uncertainty was 

deemed a larger or equivalent source of uncertainty than that introduced through 

climate models when simulating wheat yield under future climates using the Global 

Large Area Model (GLAM) (Koehler et al. 2013). Uncertainty in representing thermal 

time accumulation was the largest source of uncertainty in final yields (Koehler et al. 

2013). In Lobell et al. (2012) it was shown that CERES and APSIM crop simulation 

models underestimated the shortening of the wheat growing season when exposed to 

increased warming. This suggests that climate-crop simulation models will 

underestimate the true negative impacts of climate change on crop yield; this is 

pertinent given projected future warming and increases in extreme heat days (Gourdji 

et al. 2013b; Mathison et al. 2013). Key interactions between climatic variables and 

crop growth processes within many crop models are too simplified to adequately 

provide confidence in regional projections of responses to climate change (Tubiello et 

al. 2007). However, remote sensing provides the opportunity for widespread 

monitoring of the response of cereal croplands to climatic variability and, thus, 

validate the use of crop simulation models for capturing regional scale impacts of 

climate change.  



In contrast, crop yield-climate models trained at the administrative boundary level 

aggregate the complexity of the underlying agricultural system which can be 

problematic in heterogeneous agricultural landscapes. Also, crop yield-climate models 

trained at the administrative boundary level cannot capture the differential impact of 

climatic variables at varying phenological stages, thus, missing information to inform 

optimum climate resilient adaptations.  

In this chapter, we demonstrate how remote sensing data can be used to quantify the 

impacts of climatic variables, particularly the influence of warming during the TSP, on 

crop production in real world cropping landscapes, thus, overcoming the limitations of 

the two, previously discussed approaches. Remote sensing data enables a more 

appropriate representation of spatially heterogeneous agricultural systems compared 

to district-wise land use and agricultural statistics. Remote sensing estimates of crop 

production incorporate measures of underlying system factors within a pixel (e.g. 

farmer decisions, access to irrigation, sowing date). The repeat coverage of remote 

sensing enables monitoring of crop phenology across a large spatial extent. This, 

therefore, enables the discrimination of climatic variables which occur at different 

phenological stages such as the TSP and an assessment of their impacts on final crop 

yield.  

The overarching goal for this chapter is to explore the impact of temperature during 

the TSP on crop production, at the landscape scale in Punjab and Haryana. This is done 

by utilising the wide coverage and spatial and phenological detail in remote sensing 

data to develop statistical models between climatic variables during the TSP and crop 

production. This will reveal whether warming during the TSP has had a limiting impact 

on rice and wheat crop yield in Punjab and Haryana. Specific questions addressed in 

this chapter are:  

1) what are the relative impacts of daily minimum temperature, daily maximum 

temperature and extreme heat events above incrementing temperature thresholds 

during the TSP on rice and wheat crop yield?  

2) what is the impact of temperature variables during the TSP on crop yield in relation 

to growing season average temperature, growing season precipitation and 



precipitation during the TSP by including all climatic variables in a multivariate fixed-

effects model. Precipitation predictor terms were included in the model to account for 

potential transpiration cooling benefits reducing crop sensitivity to warming during the 

TSP. Growing season average temperature was included as a predictor term to account 

for potential crop sensitivity to temperature impacts not occurring during the TSP. 

6.2 Methods 

The extent, and yield, of rice and wheat croplands across Punjab and Haryana were 

estimated using remote sensing data. These datasets were integrated with climatic 

variables to create panel-datasets used to train linear fixed-effects crop yield-climate 

models. Panel-datasets are mutli-dimensional in time and space and, thus, can capture 

year-to-year variability in precipitation and also a wider range of temperatures which 

exhibit greater spatial variation relative to temporal variation at one location (Lobell 

and Burke 2010). Panel-regression models have shown improved performance (in 

terms of both strength of association and reduced scatter) for capturing temperature-

crop yield relationships relative to time-series models (Lobell and Burke 2010).  

The temporal extent of the panel-data was restricted to five years to negate the 

impact of shifting agricultural practices or technological advances on crop yield. 

Several studies have incorporated linear, quadratic or cubic regression spline time 

terms into crop yield-climate regression models to account for such technological 

development (Schlenker and Lobell 2010; Rowhani et al. 2011; Hawkins et al. 2013). 

However, this requires the assumption that the impact of developmental change on 

crop yield is universal across the spatial extent of the panel. Given the spatial 

variability in cropping-systems (Panigrahy et al. 2010) and levels of natural, physical, 

social and financial capital, which influence uptake of agricultural practices (Erenstein 

et al. 2007), across the panel, utilising a time term to capture development and 

assuming its spatial universality was not justified. Crop yield-climate regression models 

trained using panel-data are less sensitive to the temporal extent over which 

observations were taken (Lobell and Burke 2010). For example, Welch et al. (2010) 

detected the signal of minimum and maximum temperature impacts on rice yield using 

panel data with observations taken over five years. 



6.2.1 Remote sensing data pre-processing 

To map the extent of kharif rice and rabi wheat croplands, and estimate associated 

crop yields, for each year from 2002-2003 to 2006-2007 several VI were computed 

from 8-day composites of MODIS surface reflectance products (MOD09A1) 

(https://lpdaac.usgs.gov/products/modis_products_table/mod09a1). Only ‘high-

quality’ pixels, determined using quality QA incorporated within the MODIS product 

were retained. ‘Bad-pixels’ and potential cloud pixels (determined via the condition 

ρblue>0.2 where ρblue is blue band reflectance (459-479nm) (Xiao et al. 2005)) were 

replaced using the gap filling algorithm of Peng et al. (2011). The following VI were 

computed NDVI, NDSI, EVI and the LSWI. The VIs were fitted iteratively towards their 

maximum envelope using an adapted version of the method of Chen et al. (2004) 

which smoothed the data using a Savitzky-Golay filter and includes a fitting bias 

towards maximum values. This removes noise and fluctuation in temporal VI profiles 

due to cloud cover and atmospheric contamination and accounts for the negative bias 

in reflectance at the sensor (Chen et al. 2004). Snow and water masks were generated 

using the NDSI, NDVI and LSWI products following Xiao et al. (2005, 2006) and forest 

masks were generated following the condition that a pixel had 20 successive 8-day 

MODIS composites with an NDVI>0.5.  

6.2.2 Wheat and rice crop area classifications 

The extents of the kharif rice crop and rabi wheat crop were mapped using a range of 

classification techniques applied to crop phenology profiles derived from the EVI and 

LSWI. Different classification techniques were used for each crop to generate the most 

accurate maps of crop extent per year. The rice crop was classified using an adapted 

version of the rice crop classification algorithm of Xiao et al. (2005, 2006) which 

detects the presence of puddling in paddy fields and subsequent rapid green up 

associated with crop vegetative development via LSWI-EVI inversion followed by a 

rapid increase in EVI. Thus, the puddling preceding a rice crop is defined by the logical 

condition: 

              



(1) 

Where i corresponds to pixel location and T is a threshold which is adjusted inter-

annually and is optimised using district-wise agricultural land use data 

(http://lus.dacnet.nic.in/). Xiao et al. (2005, 2006) used a global threshold value of 

T=0.05 for all of South-Asia, however, the accuracy of this classification method can be 

increased by adjusting T to account for locally varying agronomic and climatic factors 

and incorporating knowledge of local cropping calendars (Sun et al. 2009; Peng et al. 

2011; Gumma et al. 2011b). The impact of the threshold T is illustrated in Fig. 6-1 

where the unadjusted LSWI profile does not invert with EVI during puddling but 

LSWI+T does.  

 

Figure ‎6-1 Schematic diagram illustrating the LSWI+T-EVI inversion at the time of puddling, and the 
benefit of incorporating T to make the classification more sensitive to puddling of fields at the 
beginning of the kharif rice season. This diagram also illustrates the thermo-sensitive period (TSP) 
over which EVI values are summed to approximate final yield and includes a temporal approximation 
of key rice crop development stages as stated in Wassmann et al. (2009) and Teixeira et al. (2013). 

The LSWI-EVI inversion method is not suitable to map the extent of the wheat crop as 

fields are not puddled at SOS. Spectral matching techniques were used to statistically 

match the EVI-derived phenology profile per-pixel to an ideal wheat phenology profile. 



This approach has been used widely to classify croplands in the region, and globally, 

from a range of sensors (Thenkabail et al. 2005; Thenkabail et al. 2007; Thenkabail et 

al. 2009; Biradar et al. 2009; Gumma et al. 2011b). A spectral similarity value (SSV) was 

computed comparing the per-pixel EVI phenology profile to an ‘ideal’ wheat phenology 

profile; further details regarding classification of wheat croplands using spectral 

matching techniques can be found in section 5.2.1. Phenology parameters were 

computed to extract the portions of the phenology profile corresponding to rabi 

cropping. SOS and EOS were defined as 10% of the amplitude between minimum and 

peak EVI on the rising and falling limbs of the phenology profile. This is a common 

approach to extracting phenology parameters from time-series VI and has been 

previously applied to the wheat crop in North India using MODIS data (Jönsson and 

Eklundh 2004; Lobell et al. 2012; Lobell et al. 2013). Focusing on only the growing 

period of the rabi season ensured pre- and post-season noise did not influence the 

computation of the SSV value. The SSV value is a similarity measure of the shape and 

curvature (Pearson’s correlation coefficient) and, amplitude (Euclidean distance) of 

two phenology profiles (Thenkabail et al. 2007).  Similar to rice, a threshold SSV to 

determine a match between pixel phenology profile and ideal wheat phenology profile 

was optimised, per year, using district-wise land use statistics 

(http://lus.dacnet.nic.in/).  

Optimising the threshold values of T (for rice) and SSV (for wheat) inter-annually 

ensured the most accurate (full-pixel area) crop extent maps were generated per year. 

These crop extent maps were used as a binary mask to minimise the effect of non-

agricultural land covers from propagating up to the crop yield-climate models, 

ensuring the models accurately captured the interaction between climatic variables 

and crop yields and not a noisy signal. A discussion of the merits and limitations of 

using cropland masks in crop production estimation from remote sensing data is 

provided in the previous chapter (see section 5.2.1 and 5.2.2). It is worth mentioning 

that an attempt was not made to generate an optimum time-independent, universal 

crop area classification technique but to generate maps where presence of rice or 

wheat cropping within a pixel was detected for each year to improve the wider 

modelling methodology. To generate optimum areal estimates of the area under rice 



and wheat cropping using 500m spatial resolution MODIS data would require 

addressing sub-pixel areal coverage of croplands (Thenkabail et al. 2007) or use of 

‘fine’ spatial resolution land cover maps capturing field extents (Bolton and Fried 

2013). 

6.2.3 Wheat and rice yield estimation 

For each pixel classified as kharif rice or rabi wheat, crop yield was estimated using a 

cumulative sum of EVI values over an approximation of the TSP (CUM-EVI(TSP)). It is 

difficult to define specific crop development stages accurately from remotely sensed 

data. However the period of maximum EVI has been shown to correspond to heading 

date in cereal crops (Sakamoto et al. 2005). Teixeira et al. (2013) found that a 30 day 

period around the reproductive crop development phase represented the TSP and 

captured extreme heat impacts on crop yield. Here, a 30 day period post maximum EVI 

was taken to represent the TSP for the rice and wheat crops (Fig. 6-1). A cumulative 

sum, or integration of VI values, and maximum VI values are commonly used as 

surrogate measures of vegetation productivity and crop yield (Pettorelli et al. 2005; 

Funk and Budde 2009; Vrieling et al. 2011; Rembold et al. 2013). VI values on the 

falling limb of the phenology profile of crops often provide more accurate estimates of 

crop yield as they correspond to the reproductive and grain filling development stages 

of cereal crops (Funk and Budde 2009; Rojas et al. 2011). Utilising the crop extent 

maps previously generated and phenology parameters for SOS and EOS per-pixel, 

ensured noise was not introduced into the yield estimation from either non-rice or 

wheat land covers or time-periods not-associated with the crop growing season (Funk 

and Budde 2009). The same method was used to define EOS for the rice crop as was 

used for the wheat crop but the LSWI-EVI inversion was used as a measure for rice 

SOS.  

6.2.4 Climate data 

The APHRODITE (V1003R1) precipitation dataset was obtained for the 2002-2003 to 

2006-2007 growing seasons. Further details regarding the product generation and 

validation can be found in (Xie et al. 2007; Yatagai et al. 2009; Yatagai et al. 2012), and 



examples of its use in studies over south Asia in (Andermann et al. 2011; Duncan and 

Biggs 2012; Duncan et al. 2013; Mathison et al. 2013). 

The APHRODITE daily temperature product (V1204R1) provides daily mean 

temperature only, which inhibits exploring the impact of minimum and maximum 

temperature, and extreme temperatures, on crop yield. Therefore, Global Summary of 

the Day (GSOD) stations in Punjab and Haryana with a near complete record of daily 

minimum and maximum temperatures were extracted from: 

http://www.ncdc.noaa.gov/. Fewer weather stations were included (five), but selected 

on the basis of spatial coverage over Punjab and Haryana and completeness in 

temporal coverage with minimal missing data. Conservatively selecting stations with 

reliable and comprehensive temperature records was appropriate over Punjab and 

Haryana as there is minimal orographic variability, especially over cultivated lands, 

which would cause dramatic shifts in temperatures over short distances.  

The data from these stations were used to generate gridded fields, at the same spatial 

resolution as the MODIS data, using an inverse-distance weighting algorithm. GSOD 

weather stations have been used as inputs in the generation of gridded climate 

products (e.g. Yasutomi et al., 2011) and to assess climate impacts on crops in North 

India (Lobell et al. 2012). We also applied a thin-plate spline interpolation method 

following (Lobell et al. 2012); however, this method generated spurious curvatures in 

the temperature surface due to the fewer number of weather stations used as inputs. 

Therefore, a simple inverse-distance weighting interpolation provided a more reliable 

spatial estimate of temperature.  

6.2.5 Crop yield-climate regression models 

All climatic variables (see Table 6-1)  were regressed against the natural logarithm of 

CUM-EVI(TSP)(logCUM-EVI(TSP)), implying a percentage or relative change in crop yield 

with a given change in climatic, predictor, variables irrespective of a baseline yield level 

and accounting for skewed distribution in crop yields (Lobell and Burke 2010; Lobell et 

al. 2011a; Urban et al. 2012). This is a common approach in numerous statistical crop 

yield-climate models (Schlenker and Roberts 2009; Schlenker and Lobell 2010; Lobell 

and Burke 2010; Lobell et al. 2011a; Urban et al. 2012). The results from all regression 



models were similar whether using logCUM-EVI(TSP) or CUM-EVI(TSP) without a log 

transformation, suggesting the climate-crop yield signal was robust to the 

transformation. Panel-datasets were created and regression models were fitted for 

varying SOS dates. This highlighted how SOS influenced crop exposure to extreme heat 

events and climatic variables and, accounts for the fact that varying day length over a 

season can influence crop development rates (Lobell et al. 2012). This is important as 

shifting sowing dates and cropping calendars are a potential adaptation to reduce 

exposure to extreme heat events (Teixeira et al. 2013). Regression models were fitted 

for rice crops SOS on day-of-year 153, 161, 169, 177 and, 185 and wheat crops SOS on 

329, 337, 345, 353 and, 361. These dates cover the majority of SOS dates for both the 

rice and wheat crops across Punjab and Haryana.  

Table ‎6-1 Description of climatic variables included in the crop yield-climate regression models. 

Climatic Variable Description 

EDD(T) 

Extreme degree days during the TSP. Computed 
as the number of days during the TSP above a 
threshold temperature (T) per-pixel. 

T(TSP) (minimum) 

Average daily minimum temperature during the 
TSP, computed individually per-pixel using pixel 
specific heading date (peak-EVI) derived from 
EVI phenology profiles. 

T(TSP) (maximum) 

Average daily maximum temperature during 
the TSP computed individually per-pixel using 
pixel specific heading date (peak-EVI) derived 
from EVI phenology profiles. 

T 

Average growing season temperature, 
computed individually per-pixel using pixel 
specific SOS and EOS dates derived from EVI 
phenology profiles. 

P 

Total growing season precipitation, computed 
individually per-pixel using pixel specific SOS 
and EOS dates derived from EVI phenology 
profiles. 

P(TSP)
 

Total precipitation during the TSP, computed 
individually per-pixel using pixel specific 
heading date (peak-EVI) derived from EVI 
phenology profiles. 

 



6.2.6 Extreme heat events during the TSP 

Simple linear regression models with fixed-effects terms (equation 2) were fitted to 

explore whether the impact of temperature and extreme heat events during the TSP 

on crop yield could be detected using remote sensing data. logCUM-EVI(TSP) was 

regressed against  average minimum, maximum and mean temperature and, extreme 

degree days (EDD) during the TSP. Average daily minimum and maximum temperature 

were computed separately as they have been shown to have differing impacts on crop 

yield (Peng et al. 2004; Welch et al. 2010).  

 

                              

(2) 

Where i refers to pixel i and t refers to time of observation t=2002….2007. xit is the 

predictor temperature variable in pixel i at observation t, ci is the fixed effects term for 

pixel i and ɛit is an error term. EDD was defined as: 
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(3) 

Where T is the threshold temperature for which EDD is computed individually for each 

temperature from 32-42˚C at 1˚C increments, ti is the maximum temperature on day i 

and N is the number of days in the TSP (N=30). Computing EDD above a threshold 

maximum temperature, increasing with 1˚C intervals enabled assessment of: i) 

whether declines in yield due to exceedance of critical temperatures during the TSP 

can be detected from remote sensing data and ii) if such critical temperatures exist in 

the reality of farmers’ fields. Including a fixed-effects term accounts for time-invariant 

effects unique to each location (these effects are not specified but could include 

omitted variables such as soil condition and fertiliser application). The term enables 



each pixel to have a unique constant for all observations from that pixel. On the basis 

of performing a Hausman test fixed-effects terms were preferred over random-effects 

term. This analysis was repeated with squared predictor terms to investigate possible 

non-linear relationships. Non-linear terms did not alter the signal of the regressions, 

and often yielded similar or reduced model fit (in terms of R2) suggesting linear terms 

were adequate. The same sign in the relationship between climatic variable and crop 

yield was obtained when using random-effects terms indicating results were not 

artefacts of including fixed-effects terms.  

6.2.7 Multivariate crop yield-climate models 

Multivariate linear fixed-effects models were used to assess the impact of climatic 

variables on rice and wheat crop yield.  

                                                      

(4) 

where T is average growing season temperature, T(TSP) is either average maximum or 

minimum temperature during the TSP, P is growing season total precipitation, P(TSP) is 

total precipitation during the TSP, ci is a fixed-effects term for pixel  i, εit is an error 

term, i refers to pixel location and t refers to the year of observation (t=2002, 

2003…..2007). Including precipitation terms is important to capture moisture stress 

accentuated by extreme heat events, or the presence of moisture mitigating against 

heat impacts (via transpiration cooling) (Wassmann et al. 2009; Lobell et al. 2011a).  

Both the rice and wheat crops in Punjab and Haryana are heavily irrigated (DES 2011); 

the fixed-effects term accounting for time-invariant omitted factors per pixel will 

capture spatial variation in inputs and, thus, account for access to irrigation that may 

mitigate the magnitude of extreme heat event impacts. Average maximum and 

minimum temperature during the TSP were not included in the same model to avoid 

multicolinearity among predictor variables. For all SOS dates, for both crops, average 

maximum and minimum TSP temperature had the largest variance inflation factors 

(VIF) out of all predictor variables; for the wheat crop the VIF was always greater than 

6 and in some cases exceeded 11, an indicator of high levels of multicolinearity.  Again, 



a Hausman test indicated using fixed-effects terms rather than random-effects terms 

in a multivariate model although including random-effects terms did not alter the sign 

from the regression model outputs. Squared predictor terms were tested to explore 

for non-linear relationships between climatic predictor variables and crop yield but 

these generally returned lower R2 values indicating reduced model fit. Thus, simple 

linear terms with fixed-effects were deemed adequate.  

6.3 Results 

6.3.1 Crop area classifications and yield estimates 

Utilising a per-year optimised value of T kharif rice crop extent was classified with R2 

values ranging from 0.96 to 0.99 between 2002-2003 and 2006-2007 when compared 

with district-wise land use statistics (http://lus.dacnet.nic.in/). R2 values for the 

relationship between remote sensing derived wheat crop extent and district-wise land 

use statistics (http://lus.dacnet.nic.in/) ranged between 0.86 and 0.92 between 2002-

2003 and 2006-2007.  

CUM-EVI(TSP) was significantly (p<0.01) correlated with district wise kharif rice and rabi 

wheat yields between 2002-2003 and 2006-2007 (R2=0.91 and 0.84 respectively) (Fig. 

6-2; http://apy.dacnet.nic.in/). This suggests CUM-EVI(TSP) provided an accurate 

estimation of yield for both crops. Other methods of estimating crop yield were tested 

including cumulative sum of EVI values from maximum EVI to EOS and just maximum 

EVI values alone. The CUM-EVI(TSP) provided a more accurate measure of crop yield 

than cumulative sum of EVI values from maximum EVI to EOS and equivalent accuracy 

to maximum EVI. The cumulative sum of EVI values from maximum EVI to EOS still 

maintained a large correlation with district-wise crop yield, but the association was 

likely weakened due to incorporating EVI values corresponding to crop growth not 

associated with yield development (Rojas et al. 2011). CUM-EVI(TSP) was used as a proxy 

for of crop yield as it included more information than just maximum EVI (up to four EVI 

values rather than one) without any penalty in accuracy.  



 

Figure ‎6-2 Relationship between remote sensing estimates of district-wise crop production (CUM-
EVI(TSP)) and district-wise crop production as reported by government agricultural statistics 
(http://apy.dacnet.nic.in/) for the 2002-2003 to the 2006-2007 growing seasons for a) the kharif rice 
crop and, b) the rabi wheat crop. The black line is the 1:1 regression line.(Outlier A corresponds to 
Amritsar district, in 2006-07 Amritsar district was split into a smaller district still named Amritsar and 
a new district named Tarn Taran. The estimates of crop production from the remote sensing data 
include the extent of ‘old’ district Amritsar due to the global administrative database layer not being 
updated whereas the crop production statistics from http://apy.dacnet.nic.in/ do not. This explains 
the over estimation of crop production from the remote sensing data. Outlier B likely reflects 
erroneous reporting in the Government of India’s crop production statistics for the district of Bhiwani 
in 2005-06. Production of wheat in Bhiwani was 425000, 456000, 415000 and 527000 Tonnes in 2002-
03, 2003-04, 2004-05 and 2006-07; Government statistics reporting an 39000 Tonnes for 2005-06 are 
therefore likely due to an error in reporting, especially as there was not an associated drop in area 
under wheat cropping (http://apy.dacnet.nic.in/)).  

6.3.2 Wheat: temperature during the TSP and crop yield relationship 

Average minimum and maximum TSP temperatures generally have a greater 

explanatory power compared to EDD above incrementing temperature thresholds or 

growing season average temperatures for the wheat crop (Figs. 6-3 and 6-4).  Rate of 

change in average minimum and maximum TSP temperatures and average growing 

season temperatures have a greater, negative influence on wheat crop yield compared 

to EDD above incrementing temperature thresholds; however it should be noted that 

mean growing season temperatures explains a very small amount of variation in wheat 

crop yield (Figs. 6-3, 6-5 and 6-6). With a later SOS date average minimum TSP 

temperature has a greater fit (Fig. 6-3) and causes a greater rate of change wheat yield 

(Fig. 6-5) compared to average maximum TSP temperature.  Generally, an increase in 

temperature threshold above which EDD is computed registers a greater negative 

influence on wheat crop yield (slope coefficient) (Fig. 6-6). However, a temperature 

threshold of 35°C had a noticeable larger R2
 compared to all other temperature 

thresholds (Fig. 6-4), there was also an increase in the size of the slope coefficient at 



35°C compared to lower temperature thresholds (Fig. 6-6). The negative impact of 

temperature during the TSP, determined by both the value of the slope coefficient and 

the fit of the model, increased with later SOS dates (Figs. 6-3 - 6-6). The negative 

impact of exposure to heating events greater than 35°C during the TSP also increased 

with later SOS dates (Fig. 6-4 and 6.6).  

 

Figure ‎6-3 The R
2
 values for average minimum and maximum TSP temperature and, average growing 

season temperature when regressed against wheat crop yield (logCUM-EVI(TSP)) for SOS dates: a) 329, 
b) 337, c) 345, d) 353 and, e) 361. Only statistically significant (p<0.001) relationships are presented. 



 

Figure ‎6-4 The R
2
 values for EDD when regressed against wheat crop yield (logCUM-EVI(TSP)) for SOS 

dates: a) 329, b) 337, c) 345, d) 353 and, e) 361. Only statistically significant (p<0.001) relationships are 
presented. 



 

Figure ‎6-5 The slope coefficients for average minimum and maximum TSP temperature and, average 
growing season temperature determining rate of change in wheat crop yield (logCUM-EVI(TSP)) for SOS 
dates: a) 329, b) 337, c) 345, d) 353 and, e) 361. Only statistically significant (p<0.001) slope 
coefficients are presented. 



 

Figure ‎6-6 The slope coefficients for EDD determining rate of change in wheat crop yield (logCUM-
EVI(TSP)) for SOS dates: a) 329, b) 337, c) 345, d) 353 and, e) 361. Only statistically significant (p<0.001) 
slope coefficients are presented.  

6.3.3 Rice: temperature during the TSP and crop yield relationship 

Similar to the wheat crop, average minimum and maximum TSP temperatures explain 

a greater amount of variation in rice crop yield compared to EDD computed above 

incrementing temperature thresholds (Figs. 6-7 and 6-8). However, the sign of this 

relationship is positive rather than negative as in the wheat crop. Growing season 

average temperature was negatively correlated with rice crop yield (Figs. 6-7 and 6-9). 

EDD, regardless of the temperature threshold except for 38°C, showed a positive, but 

small, association with rice crop yield (Figs. 6-8 and 6-10). 



Table ‎6-2 Slope coefficients and R2 values for multivariate fixed-effects crop yield (logCUM-EVI(TSP))-
climate models for the wheat crop. All terms significant at (p<0.001) except * denoting significance at 
(p<0.01). 

SOS date T T(TSP) (minimum) P P(TSP) R
2 

329 -0.03617 -0.02287  -0.00223 0.40958 

337 -0.04562 -0.02936 0.00044 -0.00248 0.46383 

345 -0.05229 -0.03723 0.00080 -0.00234 0.49770 

353 -0.03906 -0.04509 0.00051 -0.00146 0.55196 

361 -0.02854 -0.04794 -0.00022 -0.00012* 0.55724 

  T(TSP) (maximum)    

329 0.00207 -0.01710 -0.00039 -0.00198 0.42496 

337 -0.00111 -0.02121 -0.00001 -0.00221 0.46005 

345  -0.02420 0.00013 -0.00214 0.45283 

353 0.01432 -0.02641 -0.00014 -0.00148 0.45974 

361 0.02828 -0.02911 -0.00147 0.00059 0.47467 

6.3.4 Multivariate crop yield-climate model 

In the multivariate models average minimum and maximum TSP temperatures often 

had the greatest influence on crop yield, though the sign of this influence was negative 

for wheat and positive for rice (Table 6-2 and 6-3). The slope coefficient values for 

average minimum TSP temperature were greater than average maximum TSP 

temperature for the wheat crop and increased with later SOS, similar to when the 

variables were regressed as a sole climatic predictor (Table 6-2; Fig. 6-5). This suggests 

that this signal is robust and not a statistical artefact. Change in totals of growing 

season precipitation and TSP precipitation caused minimal changes in crop yield with 

small slope coefficient values (Table 6-2 and 6-3). The multivariate models for wheat, 

either with average minimum or maximum TSP temperature included as predictor 

terms had R2 values between 0.41 and 0.58 indicating that climatic variables explain a 

large proportion of the variation in crop yield (Table 6-2). The multivariate models for 

rice also explain a large proportion of variation in crop yield (R2: 0.27 – 0.54). The rice 

crop multivariate models with average minimum TSP temperatures have a greater 



explanatory power than models including average maximum TSP temperature (Table 

6-3).   

 

Figure ‎6-7 The R
2
 values for average minimum and maximum TSP temperature and, average growing 

season temperature when regressed against rice crop yield (logCUM-EVI(TSP)) for SOS dates: a) 153, b) 
161, c) 169, d) 177 and, e) 185. Only statistically significant (p<0.001) relationships are presented. 



 

Figure ‎6-8 The R
2
 values for EDD when regressed against rice crop yield (logCUM-EVI(TSP)) for SOS 

dates: a) 153, b) 161, c) 169, d) 177 and, e) 185. Only statistically significant (p<0.001) relationships are 
presented. 



 

Figure ‎6-9 The slope coefficients for average minimum and maximum TSP temperature and, average 
growing season temperature determining rate of change in rice crop yield (logCUM-EVI(TSP)) for SOS 
dates: a) 153, b) 161, c) 169, d) 177 and, e) 185. Only statistically significant (p<0.001) slope 
coefficients are presented. 



 

Figure ‎6-10 The slope coefficients for EDD determining rate of change in rice crop yield (logCUM-
EVI(TSP)) for SOS dates: a) 153, b) 161, c) 169, d) 177 and, e) 185. Only statistically significant (p<0.001) 
slope coefficients are presented. 

 

 

 

 

 

 

 



 

Table ‎6-3 Slope coefficients and R2 values for multivariate fixed-effects crop yield (logCUM-EVI(TSP))-
climate models for the rice crop. 

SOS date T T(TSP) (minimum) P P(TSP) R
2 

153 -0.0632 0.0794 0.0009 -0.0023 0.54 

161 -0.0600 0.0708 0.0010 -0.0018 0.51 

169 -0.0744 0.0632 0.0008 -0.0014 0.49 

177 -0.0722 0.0549 0.0016 -0.0014 0.49 

185 -0.0920 0.0453  -0.0005 0.43 

  
T(TSP) (maximum)

    

153 -0.0704 0.0783 0.0014 -0.0009 0.38 

161 -0.0651 0.0653 0.0013 -0.0004 0.32 

169 -0.0804 0.0481 0.0008 -0.0001 0.27 

177 -0.0767 0.0526 0.0018 -0.0009 0.31 

185 -0.0968 0.0553 0.0005 -0.0006 0.29 

 

6.4 Discussion 

Average minimum and maximum TSP temperature have the greatest influence on 

wheat crop yield explaining a greater amount of yield variation compared to mean 

growing season temperature (Figs. 6-3; Table 6-2). The TSP approximates the 

reproductive and the beginning of the grain filling development stages; that warming 

during the TSP impacted wheat yield is consistent with analysis in Asseng et al. (2010) 

showing that heat events closer to maturity have less impact on final wheat yield. 

While several studies focus on the impacts of daily maximum temperature or daytime 

temperatures above a critical threshold (Asseng et al. 2010; Lobell et al. 2012; Teixeira 

et al. 2013; Gourdji et al. 2013b; Koehler et al. 2013), it is shown here that minimum 

temperature during the TSP has an equivalent if not greater negative impact on wheat 



yields (Figs. 6-3 and 6-5; Table 6-2). It is important for further research to contribute to 

a better understanding of the differential impacts of daily minimum and maximum 

temperature, and associated physiological processes, given an observed (1970-2005) 

trend of increasing ‘hot nights’ in northwest India during the pre-monsoon season 

(Kothawale et al. 2010) and an observed (1970-2003) increasing trend in winter 

minimum temperatures (Kothawale and Rupa Kumar 2005). These results also suggest 

that the negative influence of average growing season temperature may be due to it 

capturing heating events during the TSP and, that adaptive efforts to increase wheat 

crop resilience to warming, should focus on the TSP.  

Regressing EDD above incrementing temperature thresholds showed the expected 

negative impact of increasing temperature during the TSP on wheat crop yield (Figs. 6-

4 and 6-6). These results suggest wheat yields in Punjab and Haryana are more 

sensitive to daily maximum temperatures greater than 35 ˚C than the crop-specific 

critical temperature, often reported as 34 ˚C for wheat (Hatfield et al. 2011; Lobell et 

al. 2012; Gourdji et al. 2013b). The impact of cumulative exceedance of 35 ˚C during 

the TSP on wheat yield also varied with SOS date (Figs. 6-4 and 6.6); this is consistent 

with a range of other observational and crop simulation studies which did not reveal a 

uniform yield response to heating events greater than 34 ˚C (Fig. 4b and Fig.8 in Asseng 

et al. (2010)). It is worth noting that average minimum and maximum TSP temperature 

cause a greater, negative, rate of change in wheat yields than exceedance of the 35 ˚C 

threshold. This indicates the presence of a critical temperature threshold is less 

pronounced in real world cereal cropping systems compared to more controlled, 

experimental environments or modelling frameworks where the critical temperature 

signal can be isolated (Jagadish et al. 2007; Asseng et al. 2010; Teixeira et al. 2013). 

There is likely spatial variation in genotype, irrigation and vapour pressure deficit 

during the TSP across Punjab and Haryana which will alter wheat crop response to 

extreme heat events masking a critical temperature threshold (Asseng et al. 2010; 

Gourdji et al. 2013a; Teixeira et al. 2013). It is worth noting that observations were 

taken over five years and there may be too few extreme heat events, coinciding with 

the TSP, in the distribution of daily maximum temperatures to detect a critical 

temperature accurately.  



The negative influence of average TSP temperature on final wheat yield increased with 

later SOS dates. This trend is consistent with observations by Lobell et al. (2012) who 

observed declines in wheat growing season length associated with later SOS dates in 

North India; this was attributed to increased exposure to extreme heat days (>34 ˚C) 

later in the rabi growing season.  These results (Figs. 6-3 – 6-6, Table 6-2) suggest that 

climatic events, namely warming during the TSP, are limiting potential wheat yields in 

Punjab and Haryana.  For wheat crops with a later SOS earlier sowing may be an 

escape route reducing exposure to damaging heat events and, thus, closing existing 

yield gaps. Widespread adoption of zero-tillage represents a suitable adaptive, climate-

resilient, management strategy with earlier SOS reducing TSP exposure to extreme 

heat events with subsequent environmental and socio-economic benefits and, no yield 

penalty (Erenstein and Laxmi 2008; Jat et al. 2009a).  However, even wheat crops with 

a SOS of day-of-year 329, were still negatively impacted by warming during the TSP 

(Figs. 6-3 – 6-6). This indicates that alongside reducing later sown wheat crops 

exposure to higher temperatures (avoidance strategies) adaptations need to be 

explored which increase wheat crop tolerance to warming during the TSP to reduce 

temperature induced yield gaps (e.g. develop wheat varieties tolerant to extreme 

temperatures (Gourdji et al. 2013a)). Implementing such adaptations are important 

given i) current temperatures are limiting wheat yield and, ii) projected future trends 

of rabi growing season warming and increased frequency of extreme heat days which 

would further limit wheat yields (Mathison et al. 2013; Gourdji et al. 2013b). Such 

adaptations could have important, future, food security implications given coincidental 

pressures of increased demand for food being placed on these croplands due to 

population growth (Aggarwal et al. 2004), alongside unfavourable warming (Mathison 

et al. 2013; Gourdji et al. 2013b).  

The negative influence of mean growing season temperature on crop yield was 

observed when regressed as a single predictor variable against crop yield for all SOS 

dates for both crops and, when included as a variable in multivariate models (except 

when including average maximum TSP temperature for the wheat crop as a predictor 

variable) (Table 6-2 and 6-3, Figs. 6-3, 6-5, 6-7 and, 6-9). This is an expected response 

consistent with observations from statistical models for a variety of cereal crops 



(Schlenker and Lobell 2010; Lobell and Burke 2010; Lobell et al. 2011a; Rowhani et al. 

2011; Lobell et al. 2012; Gourdji et al. 2013a).  

For all SOS dates average growing season temperature has limited explanatory power 

(R2) for wheat crop yield (e.g. R2=0.13 for SOS on day-of-year 345 and R2=0.06 for SOS 

on day-of-year 361) (Fig. 6-3). For later SOS dates (day-of-year 353 and 361) average 

minimum temperature during the TSP has a large slope coefficient value in both 

univariate and multivariate regression models (Fig. 6-5; Table 6-2). In the multivariate 

regression models average maximum temperature during the TSP has a larger slope 

coefficient value than average growing season temperature, and in the univariate 

regression models average maximum temperature during the TSP explains a much 

greater proportion of variation in wheat yield than average growing season 

temperature (Fig. 6-3). This may indicate that the lack of negative influence of average 

growing season temperature on wheat crop yield when average maximum TSP 

temperature was included as a predictor term is an artefact of the multivariate 

statistical model and the fact that average growing season temperature explains a very 

low proportion of the variation in wheat yield (Table 6-2). The precipitation terms have 

little influence on crop yield relative to the temperature terms for both crops (Table 6-

2 and 6-3). This is probably due to the region being extensively irrigated allowing 

mitigation against shortfalls in precipitation (DES 2011; Teixeira et al. 2013).  

Table 6-3 and Figs. 6-7, 6-8, 6-9 and 6-10 show that increased temperature, either 

average minimum or maximum temperature or EDD during the TSP, did not cause a 

decrease in rice crop yield. This contrasts with experimental field and laboratory 

studies which have shown that exposure to high temperatures negatively impacts 

physiological processes during the reproductive phase of rice crops (Jagadish et al. 

2007; Rang et al. 2011b). However, an observational study of rice farms across Asia 

showed that changes in neither minimum nor maximum temperature during the 

reproductive phase of rice crop development impacted final yield (Welch et al. 2010). 

However, the same study showed that warming minimum temperatures during the 

vegetative and ripening development stages negatively impacted final yield (the 

opposite signal was observed for maximum temperatures) (Welch et al. 2010). The lack 

of negative signal from temperature impacts on rice yield during the TSP observed 



from remote sensing monitoring can be explained by several factors. The critical 

temperature negatively affecting the rice reproductive phase varies in the literature, 

and with genotype; it is often reported as an air temperature of 35˚C (Jagadish et al. 

2007; Hatfield et al. 2011; Teixeira et al. 2013). Rice crops are sensitive to exposure to 

extreme heat events (>33.7 ˚C canopy temperature, ~35˚C air temperature) for less 

than an hour during anthesis (Jagadish et al. 2007). Therefore, using an approximation 

of the TSP from MODIS data with a coarser temporal resolution (8 days) may not be 

sufficient to capture heat impacts on the reproductive phase.  

Rice crops in hot, dry environments with sufficient moisture, lower relative humidity 

and, higher vapour pressure deficit can take advantage of transpiration cooling, 

lowering canopy temperature, as an escape from extreme heat events (Wassmann et 

al. 2009). Semi-dwarf HYV of the rice crop enhance transpiration cooling mechanisms 

through improved canopy architecture with panicles surrounded by leaves (Wassmann 

et al. 2009). Relative to other rice growing regions across South and South-East Asia, 

Punjab and Haryana have a hot, drier climate (Rupa Kumar et al. 2006; Duncan et al. 

2013), with widespread irrigation (DES 2011) and access to HYVs (Aggarwal et al. 2004; 

Rang et al. 2011a) suggesting that transpiration cooling may mitigate the negative heat 

impacts on the reproductive phase of the rice crop. Transpiration cooling can result in 

canopy temperatures several degrees lower than air temperature (measured in this 

study) thus, reducing the impact of harmful warming events (Asseng et al. 2010). It is 

shown here that exposure to temperature greater than 38 ˚C had a negative impact on 

rice yield (Fig. 6-10). This suggests that it takes warming of this magnitude, which has a 

low frequency of occurrence, to overcome the benefits of transpiration cooling in well 

irrigated rice croplands. If irrigation, enabling transpiration cooling, is the mechanism 

protecting rice crops from heating during the TSP then the climate resilience of rice 

yields in Punjab and Haryana must be questioned given concerns regarding the 

sustainability of current irrigation water management practices (Ambast et al. 2006; 

Perveen et al. 2012).  

Remote sensing observations (Lobell et al. 2012) and (Figs. 6-3-6-10) and field 

experiments (Jagadish et al. 2007) both reveal intra-growing season variability in crop 

sensitivity to climatic conditions. Increased temporal resolution in remote sensing data 



facilitates enhanced detail in detecting occurrence of phenological development stages 

providing increased observations during such stages and, thus, capturing intra-growing 

season variability in sensitivity to climate. This is in direct contrast to crop yield-climate 

models trained with yield data aggregated to administrative boundary units which 

masks all phenological detail and preclude detailed assessment of intra-growing 

season variation in sensitivity to climatic drivers. However, it is important that the 

spatial resolution of remote sensing data is data is of sufficient spatial resolution to 

prevent informational gains from an increased temporal resolution being lost through 

aggregation into larger spatial units. For example, a single 8km2 GIMMS pixel would 

provide a single date of heading (peak VI; beginning of TSP) masking significant sub-

pixel variation in crop phenology; this is illustrated in the inset in Fig. 6-11. As 

exemplified over the district of Bathinda, Punjab, aggregation, of spectral detail within 

coarse spatial resolution pixels or political boundaries, can lead to masking both 

phenological and spatial detail and is therefore not suitable to approximate the timing 

of climate sensitive crop development stages (Fig. 6-11). Remote sensing data with 

sufficient spatio-temporal resolution can capture intra-growing season response to 

climate drivers and, thus, be used to monitor the response of real cropping systems to 

climatic events.  



 

Figure ‎6-11Heading date across Bahtinda district, Punjab, for the rabi wheat crop as detected from 
MODIS MOD09A1 products, the black gridlines correspond to the pixel footprint of the 8km GIMMS 
NDVI product. The inset exemplifies the pattern displayed across the image where local spatial 
variation in the timing of key phenological events mean it is inappropriate to aggregate such 
measures up to coarse spatial units. 

6.5 Conclusion 

Multivariate fixed-effects models trained using panel-data derived from remote 

sensing observations and gridded climate datasets capture a large proportion of 

variation in rice and wheat crop yields. The panel-datasets used here capture the 

impacts of climate variables on crop yields as they occur in real world cropping 

systems, accounting for spatial variation in system specific factors (e.g. access to 

irrigation, farmer decisions) and can also account for intra-growing season variation in 

the impacts of climate on crop yields. It is important to note that no loss of explanatory 

power was observed using panel-datasets of remote sensing data to train crop yield-



climate models compared to models in the literature which used district-wise yield 

statistics. The key findings are highlighted below: 

 Previous studies have used remote sensing data to demonstrate the impact of 

increased warm days above 34 ˚C during the entire growing season on 

shortening growing season lengths for wheat crops in north-west India (Lobell 

et al. 2012). Here, we have utilised the phenological detail in remote sensing 

data to isolate the impact of temperature during the TSP (the reproductive and 

grain-filling stages when final yield is set) on final crop yields for both rice and 

wheat crops in north-west India. 

 Warming average minimum temperatures during the TSP have a greater 

negative impact on wheat crop yield than warming maximum temperatures 

during the TSP (e.g. R2=0.53(Min(TSP)) and 0.38(Max(TSP)) and slope coefficient 

values in units of logCUM-EVI(TSP) of -0.049(Min(TSP))  and -0.022(Max(TSP)) for 

wheat crops sown on day-of-year 353). This suggests that studies which focus 

on the negative warming impacts of extreme heat events and maximum 

temperatures on anthesis, crop reproductive process and grain-filling should 

not neglect the impact of warming minimum temperatures during the TSP. This 

is pertinent given observed trends of warming night-time and minimum 

temperatures in northern India.  

 Warming temperatures during the TSP are currently limiting wheat crop 

production in Punjab and Haryana. The negative impact of warming 

temperature during the TSP increases with later SOS dates. This suggests that 

earlier sowing for late sown wheat may mitigate some temperature induced 

shortfalls in production. However, given that earlier sown wheat is still 

negatively impacted by warming during the TSP (slope coefficient values in 

units of logCUM-EVI(TSP) of -0.027(Min(TSP))) it suggests there is a need for heat 

tolerant varieties to prevent temperature induced yield gaps.   

 For both rice and wheat crops average growing season temperature had a 

negative impact on crop production. This suggests that crop production in the 

region is vulnerable to observed and projected warming trends.  



 Warming during the TSP did not have a negative impact on rice crop yield, this 

could be explained by an extensive irrigation infrastructure enabling 

transpiration cooling mechanisms to mitigate heat stress at key phenological 

stages. However, given projected warming trends which will increase 

evaporative demand coinciding with increasing pressure to use water resources 

more sustainably there may be a future reduction in transpiration cooling 

capacity. This would have a negative temperature impact on rice crop yields or 

reduce levels of water productivity to maintain current levels of production. 

 Experimental and simulation studies often report 34˚C as a critical temperature 

threshold for wheat crop growth. However, remote sensing observations 

accounting for the complexity of a real world cereal cropping landscape do not 

show a uniform yield response after threshold exceedance but do reveal a 

more pronounced negative impact on wheat yield with increased warming 

events above 35˚C. 

 Temperature only had a negative impact on rice yield after crops were exposed 

to temperatures greater than 38 ˚C during the TSP; given the irrigation capacity 

in Punjab and Haryana transpiration cooling may be mitigating the negative 

yield impacts of warming events on rice crops. 

 Growing season precipitation, and precipitation during the TSP had little impact 

on either rice or wheat crop yield.  

 

 

 

 

 

 

 

 



Chapter 7:  Discussion: The vulnerability of the rice-

wheat production system to climatic drivers. 

This discussion will synthesise the conclusions from the separate research papers 

(Chapters 3 – 6) around the central theme of the thesis: an assessment of the 

vulnerability of the rice-wheat production systems in the north-west IGP to climatic 

drivers. It does so by addressing the three research questions posed at the end of 

Chapter 2. 

7.1 What is the exposure the of rice-wheat crop production system 

to harmful climate drivers? 

Abundance of water resources is considered a limiting factor for crop yield (van 

Ittersum et al. 2013), in India the main climate driven water resource for agriculture is 

the ISM (Krishna Kumar et al. 2004; Mall et al. 2006). Levels of ISM precipitation exert 

a statistically significant level of control on rice and wheat yields in India, and are 

correlated with foodgrain yields in Punjab and Haryana (Krishna Kumar et al. 2004). 

Exposure to lower relative normal levels of ISM precipitation, higher relative levels of 

variability in ISM precipitation, and increasing trends in, or frequency of recurrence in 

unfavourable facets of ISM precipitation will have a negative impact on agricultural 

production systems either limiting yield or increasing pressure on the system to buffer 

against precipitation shortfalls (e.g. increase groundwater irrigation). Analysis in 

Chapters 3 and 5 reveal the extent of exposure of rice-wheat croplands in Punjab and 

Haryana to unfavourable and harmful ISM conditions.  

It was shown in Chapter 3 that normal levels of ISM precipitation over the period from 

1951 to 2007 were lower relative to the rest of India, and also to the water 

requirements of a rice-wheat cropping system placing pressure and reliance upon 

groundwater irrigation (Ambast et al. 2006). Fig. 3-1a shows the spatial patterns of 

normal ISM precipitation totals across all of India and Fig. 1-6a presents a zoomed-in 

version of this for Punjab and Haryana. Fig. 3-3a shows that parts of Punjab and 

Haryana have a higher frequency of occurrence of drought years relative to large 



portions of India, and also a later onset date of ISM placing pressure on the length of 

growing season supported by a renewable water resource (Fig. 3-5a).  

The above mentioned precipitation datasets were integrated with maps of rice and 

wheat crop extent, generated at a 500 m spatial resolution using remote sensing data, 

in Chapter 5 to reveal that 2.52 million ha of rice or wheat croplands in Punjab and 

Haryana were exposed to unfavourable trends in at least one facet of ISM 

precipitation, a further 2.53 million ha experienced unfavourable trends in two facets 

of ISM precipitation and, 0.24 million ha experienced unfavourable trends in three 

facets of ISM precipitation (Fig. 5-3a). Trends of increasing recurrence of drought years 

and increasing variability in ISM precipitation intersecting in space with rice-wheat 

croplands had the largest spatial coverage in Punjab and Haryana (Fig. 5-3b and c). The 

spatial coverage of increasing trends in recurrence of drought years intersecting with 

rice-wheat croplands was focussed across southern and central Punjab and Haryana 

(Fig. 5-3b); the corresponding spatial coverage of increasing trends in variation in ISM 

precipitation over rice-wheat croplands occurred in south-west Punjab, southern and 

central Haryana and patches of northern Haryana (Fig. 5-3c).  

In Chapter 6 it was shown that exposure to increased temperatures during the TSP of 

crop development had a negative impact on wheat yields. The TSP of crop 

development corresponds to the reproductive and grain filling phenological stages. 

Exposure to increasing daily minimum (night time) temperatures had a greater 

negative impact on wheat yields than exposure to increasing daily maximum (day time) 

temperatures. Exposure to daily maximum temperatures greater than 35˚C for wheat 

and 38˚C for rice during the TSP registered a marked decrease in crop yield. GCM and 

RCMs predict an increase in warming over Punjab and Haryana with an increase in 

extreme heat days (Rupa Kumar et al. 2006; Moors et al. 2011; Mathison et al. 2013) 

suggesting future increases in exposure to harmful warming. Exposure to warming 

growing season temperatures has a negative impact on both rice and wheat crops.  

Exposure can be considered as a function of external processes to the system (e.g. 

climatic processes) and also the relationship and feedbacks between internal system 

factors and the external processes controlling the perturbation or stress (Gallopín 



2006). This is of relevance to the agricultural production systems of Punjab and 

Haryana, where crop residue burning has a direct influence on climate processes with 

short-term impacts on agriculture (e.g. monsoon circulation interrupted by 

atmospheric particulates and brown clouds (Zickfeld et al. 2005; Auffhammer et al. 

2006; Knopf et al. 2008; Ramanathan and Carmichael 2008)), but also increasing GHG 

concentrations influencing the slower process of atmospheric warming. Thus, when 

viewed through a systems perspective crop residue burning is a positive feedback 

increasing the exposure of the agricultural production system to harmful climate 

changes which if sensitivity and adaptive capacity are kept constant would increase 

vulnerability. The extent of crop residue burning for the rice and wheat crops were 

estimated using remote sensing data in Chapter 5 (Fig. 5-5d) and the associated GHG 

emissions were computed (Table 5-5). 

7.2 What is the sensitivity of rice-wheat crop production to variations 

in climate drivers? 

Viewing the outputs of Chapters 5 and 6 in conjunction highlights the importance of 

not assessing the exposure and sensitivity of a system in isolation. Chapter 5 

highlighted that large portions of the rice-wheat production landscape were exposed 

to unfavourable trends in ISM precipitation (e.g. increasing recurrence of drought 

years, increasing variation in ISM precipitation; Fig. 5-3). However, fixed-effects 

multivariate crop yield-climate models in Chapter 6 showed that neither rice nor 

wheat crop yields were sensitive to reduced ISM precipitation. This indicates that other 

factors within the system are reducing crop production sensitivity to variation in 

precipitation; this is likely a factor of the widespread irrigation (both groundwater and 

surface canal) subsidised by the state government (Murgai et al. 2001; Aggarwal et al. 

2004; Tyagi et al. 2005; Ambast et al. 2006; DES 2011; Perveen et al. 2012).  

Internal system factors can create space-time differences in the sensitivity of the 

system or variable to similar climatic stresses or perturbations (Luers 2005). In Chapter 

6 it was demonstrated that the sensitivity of wheat crop yields to warming (both 

minimum and maximum temperatures) during the TSP was not uniform for SOS dates, 

but increased with later SOS dates (Fig. 6-3, 6-4, 6-5 and 6.6; Table 6-2). The modelling 



framework employed in Chapter 6 accounted for endogenous system processes (e.g. 

farmer decisions, access to irrigation, soil type) and other omitted variables using 

fixed-effects terms to isolate the crop yield-climate signal. This approach recognised 

that remote sensing observations are not only a direct measure of crop response to 

climate drivers but of all other system processes influencing crop growth and yield. The 

difference in SOS dates for the wheat crop could be explained by numerous factors 

exogenous to the system; for example, the temperature distribution of the preceding 

kharif rice growing season which determines time till crop maturity and the temporal 

distribution of extreme heat events during the rabi wheat growing season (Lobell et al. 

2012).  

However a range of endogenous factors to the system determine the SOS date for the 

wheat crop and, thus, cause differential sensitivity and vulnerability of wheat crop 

yield to temperature such as: the rice variety grown during preceding kharif season 

(some varieties are shorter duration where as others such as basmati are longer 

duration (Rang et al. 2011a)), the crop type grown during the preceding kharif season 

(kharif cotton is longer duration than rice (Lobell et al. 2013)), the perception of 

farmers of the need for conventional tillage practices with repeated ploughing of fields 

after harvest of the rice crop, awareness of conservation tillage practices and access 

to, and ability to use and procure, zero-tillage drills (Erenstein and Laxmi 2008; 

Erenstein 2009a; Ojha et al. 2013). This illustrates the importance retaining an 

awareness of the underlying system when assessing the vulnerability of crop yields to 

climate drivers. It is likely other endogenous system factors will cause differential 

vulnerability in crop yields such as management practices or soil type (Luers 2005).  

Contrary to expected theory, and laboratory and controlled field experiments, there 

was no decrease in rice yield associated with increased warming during the TSP 

(Jagadish et al. 2007; Wassmann et al. 2009). It was only when temperatures exceeded 

38˚C during the TSP that there was a negative influence on rice yield. This is likely a 

system specific (lack of) sensitivity to warming during the TSP associated with the 

extensive irrigation infrastructure enabling transpiration cooling to lower canopy 

temperatures when exposed to increasing air temperatures (Wassmann et al. 2009; 

DES 2011; Teixeira et al. 2013). Currently rice crop yields do not appear to be sensitive 



to exposure to warming temperatures during the TSP. However, much of the rice 

croplands are reliant upon groundwater irrigation (Ambast et al. 2006), associated with 

rapidly declining groundwater levels (Ambast et al. 2006; Rodell et al. 2009; Tiwari et 

al. 2009), with extraction levels far exceeding renewable limits (Central Ground Water 

Board 2012; Gleeson et al. 2012) and, with large areas exposed to unfavourable trends 

in ISM precipitation and a high frequency of drought years (Fig. 5-4; Pai et al. 2011; 

Duncan et al. 2013). This is coupled with a growing awareness of a need to use 

irrigation water resources more sustainably and concerns that water resources cannot 

indefinitely meet the demands of the rice cropping system (Perveen et al. 2012; Ojha 

et al. 2013), that normal levels of precipitation are well below water requirements for 

rice cropping (Fig. 2-2) and, uncertainty in projections of future levels of ISM 

precipitation due to long term climate changes (Annamalai et al. 2007; Moors et al. 

2011; Turner and Annamalai 2012; Mathison et al. 2013) and atmospheric particulates 

and brown clouds with a shorter residency time in the atmosphere (Ramanathan and 

Carmichael 2008). Decreasing soil quality and increasing soil salinity require excess 

irrigation water to return the soil to a quality acceptable for crop growth (Tyagi et al. 

2005).  

This is illustrative of the need to understand system processes for a comprehensive 

assessment of the vulnerability of crop yields to climate change. Whilst rice crop yields 

are not currently displaying outcomes of vulnerability to warming temperatures during 

the TSP the trajectories in underlying system processes and ecosystem services 

indicate the system may not be able to continue mitigating against warming events in 

the TSP. This is pertinent as it highlights that the rice cropping system is vulnerable to 

climate even if it does not appear to be so, and the likelihood of outcomes of 

vulnerability (a decrease in yield) being realised will increase due to the confluence of 

warming trends (Kothawale and Rupa Kumar 2005; Rupa Kumar et al. 2006; Moors et 

al. 2011; Mathison et al. 2013) and indicators that the system will not be able to 

continue supplying such high levels of irrigation water. 

As mentioned, Luers (2005) measured the vulnerability of agricultural production by its 

location in vector space defined by variables on the x axis (sensitivity and exposure: 

coefficient of variation in crop yield) and the y axis (the state of the system: crop yield, 



normalised by a threshold of well-being). This is similar to the bivariate maps produced 

in chapter 4 where the value assigned to each location is a function of coefficient of 

variation and normal (mean) conditions for the variable of interest. The variables 

assessed in this manner in chapter 4 were kharif and rabi LGS and kharif and rabi 

productivity (Figs. 4-4, 4-5, 4-7 and 4-9). These bivariate maps can be used to assess 

the relative risk of cropping in a location, normal conditions (either average LGS or 

productivity) inform on the suitability of a location for a given cropping practice 

whereas the coefficient of variation is an indicator of the risk of implementing such a 

cropping practice  (Vrieling et al. 2013). Applying the framework of Luers (2005) to the 

bivariate maps, low normal conditions and a high coefficient of variation would imply 

high vulnerability. In Chapter 4 GIMMS NDVI data were used to assess long-term 

(1982-2006) normal, coefficient of variation and trends in kharif and rabi productivity 

and produce bivariate plots. Taking vulnerability as defined by Luers (2005) the most 

vulnerable regions in Punjab and Haryana were the southern and south-central 

portions (Fig. 4-7 and Fig. 4-9). There is a clear spatial overlap between these regions 

of high vulnerability and low normal ISM precipitation (Fig. 2-2), high frequency of 

drought years (Fig. 3-3a), increasing recurrence of drought years (Fig. 3-3b and Fig. 5-

3b), increasing variation in ISM precipitation (Fig. 5-3c) and later onset date of ISM (Fig. 

3-5). It is in these southern portions of Punjab and Haryana that the wheat crop has 

the latest SOS (Fig. 5-3b), which increases sensitivity to harmful increases in 

temperature (Chapter 6) and the lowest density of tubewells (proxy for irrigation 

capacity) (Fig. 5-4; Ambast et al. 2006). This suggests that agricultural productivity, 

long-term, in the absence of infrastructural capacity is sensitive to prevailing climatic 

conditions.  

7.3 Where are locations which can be targeted with adaptations, 

accounting for location-specific stresses and thereby enhance the 

resilience of crop production to climate changes and variation 

whilst minimising environmental impacts? 

As discussed in Chapter 1 it is now accepted that any assessments of vulnerability of 

croplands to climate change and potential adaptations to reduce vulnerability are 



limited if they are not nested within a holistic understanding of the underlying system 

and also contribute to reducing agriculture’s environmental and climatic footprint 

(Tilman et al. 2002; The Royal Society 2009; Foresight: Final Project Report 2011; Foley 

et al. 2011). There are therefore inherent trade-offs in agricultural production systems 

between competing goals of maximising production, reducing vulnerability to climate 

change, reducing negative impacts on environmental resources and supporting a range 

of ecosystem services (FAO 2011a; FAO 2011b; FAO 2012; Dobermann and Nelson 

2013). Often these trade-offs occur spatially, where a landscape must support multiple 

social and economic systems and agricultural production and land use practices must 

be traded-off with environmental sustainability goals (Scherr et al. 2012; Dobermann 

and Nelson 2013). Therefore, there is a research need to identify adaptations, and 

locations where these adaptations can be targeted in a landscape, to minimise trade-

offs and capture synergies between the various climate-smart goals. Outcomes 

generated through these four papers contribute to identifying locations where these 

synergies exist and where trade-offs can be minimised. This delivers an advance in 

knowledge to system managers and the policy environment on where and what 

adaptations to implement to reduce the vulnerability of agricultural production to 

climate change whilst also delivering other climate-smart development goals (FAO 

2011b).  

The locations of 592,866 ha of cropland across Punjab and Haryana exposed to 

unfavourable trends in monsoon precipitation, where the wheat crop was sown late 

and so sensitive to increased warming during the TSP and where crop residue was 

burnt were highlighted. In this situation, such locations could be targeted with zero-

tillage drills which can seed through residue delivering multiple benefits of earlier 

sown wheat with increased yields and reduced sensitivity to warming but also 

improved water use productivity and reduced GHG emissions (Erenstein and Laxmi 

2008; Jat et al. 2009a). It is important to note zero-tillage has been shown to deliver 

other environmental benefits contributing to climate-smart goals including improved 

soil quality (Hobbs et al. 2008; Erenstein and Laxmi 2008).  

In 2009-2010 the locations where rice and wheat yield gaps occurred were detected 

and using longer-term measures from the GIMMS datasets locations where production 



had greater levels of inter-annual variation were identified. Closing these yield gaps or 

creating more stable levels of production will reduce pressure to expand croplands 

with subsequent environmental benefits.  

Across all India, and in Punjab and Haryana, there was a fragmented spatial pattern in 

the occurrence of trends in facets of ISM precipitation which could impact agricultural 

production, or necessitate extra irrigation withdrawals. By applying trend analysis to 

daily precipitation data for a long time-period (1951-2007) it was possible to detect 

locations experiencing unfavourable trends and avoid masking local detail by 

aggregating data up to larger spatial units. This analysis was important in highlighting 

the need for locally sensitive water resources management and also in targeting 

locations in need of adaptation for water management practices. In the context of 

croplands, it can highlight cropland locations which would benefit from adapting to 

more water efficient practices such as residue retention, laser bed levelling or shifting 

crop type (e.g. from rice to wheat or maize) (Hobbs et al. 2008; Jat et al. 2009a 

Saharawat et al. 2010).  

The ability to quantify landscape scale GHG emissions from residue burning, and track 

year on year variability in burning within and across a landscape, moves farmers closer 

to receiving financial benefits from carbon markets (Milne et al. 2012). Access to these 

financial benefits would have obvious economic benefits to farmers enhancing their 

adaptive capacity. Using remote sensing data as inputs GHG emissions from crop 

residue burning were quantified using the standard IPCC methodology (IPCC 2006b). 

Using phenology to distinguish between crop types meant that crop specific 

combustion factors could be used to more accurately estimate emissions from 

different crop types. Satellite-derived estimates of GHG emissions from residue 

burning, complements the need for landscape scale quantification of GHG emissions, 

targeting ‘hotspot’ sources of GHGs and improving the efficiency of resources available 

for mitigation (Milne et al. 2012). There are uncertainties which need to be quantified 

before this approach can be used to inform payment for carbon credits and, thus, 

deliver any enhancement to farmer’s adaptive capacity (see section 5.2.3.1). The use of 

optical remote sensing datasets and burned area products here only monitors GHG 

emissions from crop residue burning and does not address the whole range of 



emissions from cereal cropping (e.g.  N2O emissions from fertiliser application or CH4 

emissions from anaerobic decomposition in rice cropping systems (Power 2010; 

DeFries and Rosenzweig 2010)).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8:  Conclusions and future work 

To conclude a list of key findings drawn from the four research papers are presented. 

These findings are all key to understanding the vulnerability of the rice-wheat 

production system of the north-west Indo-Gangetic Plains to climate drivers. 

 Locations experiencing unfavourable trends for agricultural production in facets 

in ISM precipitation (decreasing ISM precipitation, increasing variation in ISM 

precipitation, increasing recurrence of drought years, later onset date and 

increasing variation in onset date) were generated by performing trend analysis 

at a 0.25˚ spatial resolution. This analysis highlighted that at a national, and 

sub-national, level there was a fragmented spatial pattern in locations 

experiencing negative or positive trends in facets of ISM precipitation. This 

suggests there is a need, nationally, to manage water resources at the local 

level. 

 A new method of identifying location-specific onset date of ISM was developed 

and validated; characterising spatial patterns and trends in onset date of the 

ISM is important to identify locations where the timing or length of the ISM 

season can impact the length of growing season. This has important 

implications for regions with a high cropping intensity and limited amounts of 

renewable water resources, as occurs across most of Punjab and Haryana. 

 Agricultural systems in southern Punjab and Haryana have the greatest inter-

annual variability in productivity and length-of-growing season suggesting these 

regions are particularly vulnerable to climatic drivers.  

 5.3 million ha of rice-wheat croplands experienced at least one, and up to 

three, unfavourable trends (between 1951 and 2007) in facets of ISM 

precipitation. In Punjab and Haryana it was predominantly cropland exposure 

to increasing frequency of occurrence of drought years and increasing variation 

in ISM precipitation. 

 Using a combination of location-specific remote sensing metrics, rice and 

wheat crop residue burning over 1.17 million and 2.4 million ha respectively 

during the 2009-2010 growing season was detected. The associated GHG 

emissions from the crop residue burning were estimated using the standard 

IPCC methodology.  

 In 2009-2010, 965,363 ha of wheat croplands had yield gaps greater than 1 

Tonne ha1 and 4336 ha had yield gaps greater than 2 Tonnes ha-1; 321,580 ha of 

rice croplands had yield gaps greater than 1 Tonne ha-1 and 3349 ha had yield 

gaps greater than 2 Tonnes ha-1. This suggests potential to increase production 

without expanding cropland areas.  



 592,866 ha of rice-wheat croplands were detected as priority locations for 

targeting with zero-tillage and residue retention. These were locations exposed 

to unfavourable trends in ISM precipitation, where the wheat crop was sown 

late increasing sensitivity to warming during the TSP and crop residue was 

burnt emitting GHGs and reducing soil water holding capacity.  

 It was shown here that the phenological detail in remote sensing datasets can 

reveal the impact of temperature events during the TSP periods of crop 

development on final yield. Warming minimum and maximum temperatures 

during the TSP had a negative impact on wheat crop production. This negative 

impact increased with later planting dates for the wheat crop.  

 Warming during the TSP did not have a negative impact on rice crop 

production, though warmer average growing season temperatures did. The lack 

of negative impact of warming during the TSP period may be due to irrigation 

enabling transpiration cooling.  

 There was not a clear crop critical threshold above which warming events 

during the TSP had a terminal impact on crop production. However, increased 

frequency of warming events during the TSP above 35˚C and 38˚C, for wheat 

and rice respectively, resulted in a noticeable decrease in yield. These values 

differ from those reported in experimental studies suggesting cropland system 

factors create crop differential sensitivity to warming.  

8.1 Concluding Remarks 

The rice-wheat production systems of Punjab and Haryana are key to supporting the 

livelihoods and food security of several hundred million people, are vulnerable to 

climatic change and variability, and current agricultural practices are unsustainable 

degrading the ecosystem services upon which agricultural production relies. In 

response to this situation there is a need to adapt the rice-wheat cropping systems so 

that they are less vulnerable to climatic drivers whilst also attempting to meet other 

climate-smart development goals. Alongside their unique conclusions and 

contributions, the four research papers which constitute this thesis provide a body of 

work assessing the vulnerability of the rice-wheat production system to climatic drivers 

and provide information to target adaptations spatially to deliver climate-smart goals 

and enhanced climate resilience. It was shown through this research that remote 

sensing can be used to monitor how individual crops, within their unique geographical 

location and underlying agricultural system, respond to climatic variables and can 



identify optimum adaptations to capture synergies between multiple development 

goals. This enables adaptive responses to be location- and system-sensitive.  
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Appendix 

8.1 Appendix 1 

 

A1. Rain gauges used in the computation of the APRHODITE daily precipitation product 
(http://www.chikyu.ac.jp/precip/products/index.html). Red gauges correspond to national meteorological 
organisation collections, blue dots correspond to Global Telecommunications System (GTS) data and 
other dots correspond to a range of precompiled datasets listed in: 
file:///C:/Users/jmd1v13/Downloads/5_137_2.pdf and file:///C:/Users/jmd1v13/Downloads/5_137_1.pdf.  



8.2 Appendix 2 

 

A2. The relationship between state-wise area detected as double cropping from GIMMS NDVI data 
and Government of India land-use statistics for area cropped more than once for Punjab, Haryana, 
Bihar and Uttar Pradesh (1998-99 to 2005-06). The R

2
 value is likely inflated due to including Uttar 

Pradesh in the analysis, which corresponds to the collection of points in the upper right of the plot. 
However discounting Uttar Pradesh from the analysis still yields an R

2 
of 0.68. This indicates the 

GIMMS NDVI data captures the state-wise inter-annual variation in cropping intensity though may be 
sub-optimal for exact areal estimates. That the GIMMS NDVI data tends to overestimate area cropped 
more than once relative to the Government of India estimates is likely due to it considering full-pixel 
areas not accounting for sub-pixel proportions (Thenkabail et al. 2007). However, the purpose of this 
study is not to provide accurate, census-style, estimates of land-use but to capture spatial and 
temporal patterns in the change in LSP across an agricultural landscape at a regional scale. Given the 
dominant agricultural land cover across the IGP the GIMMS dataset is suitable for this purpose (please 
see section 4.4.1 for a more detailed discussion of the limitations of the GIMMS NDVI dataset). The 
red dotted line is a 1:1 fit. 

 



8.3 Appendix 3 

 

A3.1 State-wise kharif cumNDVI plotted against state-wise foodgrain production statistics for Punjab, 
Haryana, Uttar Pradesh and Bihar (1982-83 to 1994-95). Excluding Uttar Pradesh from the analysis 
(upper right collection of points on the plot which inflates the R

2
 value) yields an R

2
 value of 0.56. The 

red dotted line is a 1:1 fit. It should be noted this is not a perfect validation, no attempt has been 
made to discriminate between crop types using the GIMMS NDVI dataset, cumNDVI is taken as a 
proxy for agricultural production over the landscape and is not an exact or validated measure of 
foodgrain production. We have chosen to validate against foodgrain production as it covers a range of 
crop types. This provides an indication the cumNDVI captures broad inter-annual and spatial patterns 
in agricultural production.  



 

A3.2 State-wise rabi cumNDVI plotted against state-wise foodgrain production statistics for Punjab, 
Haryana, Uttar Pradesh and Bihar (1982-83 to 1994-95). Excluding Uttar Pradesh from the analysis 
(upper right collection of points on the plot which inflates the R

2
 value) yields an R

2
 value of 0.72. The 

red dotted line is a 1:1 fit. It should be noted this is not a perfect validation, no attempt has been 
made to discriminate between crop types using the GIMMS NDVI dataset, cumNDVI is taken as a 
proxy for agricultural production over the landscape and is not an exact or validated measure of 
foodgrain production. We have chosen to validate against foodgrain production as it covers a range of 
crop types. This provides an indication the cumNDVI captures broad inter-annual and spatial patterns 
in agricultural production. 



8.4 Appendix 4  

 

A4. Areas under double cropping from 1990 through to 1996. It illustrates the larger area under 
double cropping detected in 1993 compared to other years across the eastern portions of the IGP. This 
was particularly pronounced in Bihar in 1993 (see Fig. 4-3 and Fig. 4-6). This anomaly is an artefact of 
using GIMMS NDVI data with an 8 km spatial resolution in areas of the IGP where there are a larger 
proportion of smallholder farmers (Bihar has an average farm size of 39 m

2
 (Agricultural Census 

2012)). Fig. 6-11 illustrated that there was a large variation in the timing of phenological events 
occurring within a GIMMS NDVI pixel in Punjab, this variation will be more pronounced in more 
fragmented smallholder landscapes in Bihar. This will result in large within pixel variations in timing of 
SOS dates, EOS dates, peak growing dates and the levels of biomass in fields at different times. This 
will create a mixed spectral signal averaged out as a GIMMS NDVI value at an 8 km spatial resolution 
masking phenological detail and making it harder to discriminate between growing seasons. For 
example, the phenology profile for the pixel displayed above in 1994 suggests some rabi cropping is 
occurring as the second small peak is anomalous to the natural cycle of vegetation in a monsoonal 



climate. However, there is not a clear EOS for the kharif crop and SOS for the rabi crop in the 
phenology profile of GIMMS NDVI data which precludes meeting the threshold requirements for 
detecting green up associated with agricultural growth. However, in 1993 the difference between SOS 
NDVI and peak NDVI was large enough to meet the threshold green up requirements. Whilst the 
GIMMS NDVI dataset captures the eastward advance of double cropping between 1982-83 and 2005-
06 at a regional scale a lot of local detail is missed or masked out at the 8 km spatial resolution, 
especially in the smallholder agricultural regions of the eastern IGP. As such, these estimates of area 
should not be considered as accurate areal extents. The release of Sentinel-2 in 2015 with a 10 m 
spatial resolution and 5 day revisit period will increase the accuracy, and level, of phenological detail 
over smallholder and fragmented agricultural landscapes (ESA 2010).  

8.5 Appendix 5 

A5. Table showing the R
2 

values estimates of district-wise rice and wheat crop production using CUM-
EVI(TSP) for the 2002-2003 to the 2006-2007 growing seasons using regression coefficients derived from 
the 2009-2010 growing season. That these regression coefficients enable accurate estimates of rice 
and wheat production across multiple years suggests CUM-EVI(TSP) is a time-invariant indicator of crop 
production.  

Year Rice Wheat 

2002-2003 0.95 0.94 

2003-2004 0.94 0.81 

2004-2005 0.95 0.87 

2005-2006 0.94 0.89 

2006-2007 0.85 0.80 

 

 


