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Abstract

MicroRNAs (miRs) play a pivotal role in a variety of biological processes including stem cell differentiation and function.
Human foetal femur derived skeletal stem cells (SSCs) display enhanced proliferation and multipotential capacity indicating
excellent potential as candidates for tissue engineering applications. This study has examined the expression and role of
miRs in human foetal femur derived SSC differentiation along chondrogenic and osteogenic lineages. Cells isolated from the
epiphyseal region of the foetal femur expressed higher levels of genes associated with chondrogenesis while cells from the
foetal femur diaphyseal region expressed higher levels of genes associated with osteogenic differentiation. In addition to
the difference in osteogenic and chondrogenic gene expression, epiphyseal and diaphyseal cells displayed distinct miRs
expression profiles. miR-146a was found to be expressed by human foetal femur diaphyseal cells at a significantly enhanced
level compared to epiphyseal populations and was predicted to target various components of the TGF-b pathway.
Examination of miR-146a function in foetal femur cells confirmed regulation of protein translation of SMAD2 and SMAD3,
important TGF-b and activin ligands signal transducers following transient overexpression in epiphyseal cells. The down-
regulation of SMAD2 and SMAD3 following overexpression of miR-146a resulted in an up-regulation of the osteogenesis
related gene RUNX2 and down-regulation of the chondrogenesis related gene SOX9. The current findings indicate miR-146a
plays an important role in skeletogenesis through attenuation of SMAD2 and SMAD3 function and provide further insight
into the role of miRs in human skeletal stem cell differentiation modulation with implications therein for bone reparation.
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Introduction

Skeletogensis is a multistep process consisting of mesenchymal

cell condensation, proliferation, hypertrophic differentiation of

chondrocytes, and finally, mineralization of extracellular matrix by

osteoblasts [1–3]. The process of skeletogensis is orchestrated by

various factors including transcription factors [4], micro environ-

mental signals and epigenetic cues [5,6]. Defects in the regulators

of skeletogensis results in skeletal dysplasias, growth failure [2]. A

clearer understanding of skeletal stem and bone cell formation and

function is critical to inform bone formation strategies and

subsequently restore the function of the skeletal system. The cell

responsible for bone formation, the osteoblast, is derived from a

multipotential marrow stromal stem cell termed the mesenchymal

stem cell (undifferentiated multipotent cells of the mesenchyme)

which has gained wide acceptance, however this term is non-

specific and the term skeletal stem cell (SSC) will be applied to

restrict description to stem cells from bone able to generate all

skeletal tissues.

MicroRNAs (miRs) are a class of non-protein coding small

RNA molecules of 21–25 nucleotides in length. Along with the

RNA-induce-silencing complex (RICS), they possess the ability to

regulate protein translation by inhibiting their target mRNAs

function [7]. There are cumulative evidences to suggest miRs plays

an important role in many cellular processes including cell cycle

and stem cell differentiation [8,9]. Various miRs have already

been identified to play a role in SSC differentiation, a recent

review by Lian et al have summarized the effects of 42 miRs on

osteoblast differentiation through targeting various cells signaling

pathways such as Wnt and TGF-b, transcription factors such as

RUNX2 and Osterix and epigenetic machineries such as histone

deacetylase 5 (HDAC5) [10]. Data gathered through proteomic

approach have demonstrated that a single miR can repress the

production of hundreds of proteins, however, the effect of a single

miR on protein translation is surprisingly small [11], therefore it

can be difficult to determine how a single miR is able to provoke a

detectable functional change.

Human foetal femur derived SSC have been shown to contain

stromal antigens positive cells with the potential to differentiate
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down osteogenic, chondrogenic and adipogenic lineages when

treated with appropriate culture conditions [12]. Furthermore,

foetal femur cell populations have been shown to possess enhanced

renewing, differentiation and immunoprivilege potentials, indicat-

ing their potential as a cell source for tissue engineering

applications [12,13]. However, cells isolated from the foetal femur

comprise a heterogeneous population of cells with differing affinity

and capacity for chondrogenic and osteogenic differentiation [14]

all of which has served to limit their clinical translation.

A number of growth factors, signaling molecules and transcrip-

tion factors have been shown to affect skeletal stem cell and

osteoprogenitor cell activity including members of the Wnt and

TGF-b families [15–17]. Furthermore, a number of miRs have

been reported to be involved in the regulation of osteogenesis and

chondrogenesis through their ability to regulate transcription

factors [18]. Thus, miR-140 has been identified as a cartilage

specific miR capable of promoting chondrogenic differentiation by

increasing the expression of RUNX2, a gene important in

chondrocyte hypertrophic differentiation, through down-regulat-

ing HDAC4 [19,20]. More recently, miR-138 was reported by

Eskilden and coworkers to be a negative regulator of osteogenic

differentiation through inhibition of the expression of Osterix

(OSX) via targeting focal adhesion kinase (FAK) [21]. Thus an

understanding of the interactions of specific miRs with signaling

pathways and growth factors that modulate bone cell function

offers new strategies to manipulate and modulate SSC differen-

tiation enhancing our understanding of bone physiology and

function critical in any reparative approach.

The current study has examined the expression of miRs within

human foetal femur derived diaphyseal and epiphyseal popula-

tions. Following identification of select miRs, function was

examined using transient overexpression analysis for chondrogenic

and osteogenic differentiation. We demonstrate that cells isolated

from the epiphyseal regions of the developing foetal femur

expressed higher levels of chondrogenic related genes while cells

from the diaphyseal region expressed genes associated with

osteogenesis. Using RT-qPCR methods, we have confirmed the

expression of stromal antigens CD63, ALCAM and putative stem

cell marker Nucleostemin by both epiphyseal and diaphyseal cells.

MicroRNA microarray analysis confirmed differential miR

expression in epiphyseal and diaphyseal populations. Furthermore,

putative target and functional analysis demonstrated that miR-

146a affected skeletal cell differentiation by down-regulation of

SMAD2 and SMAD3 protein translation, genes known to be

involved in the activation of chondrogenesis [22]. The current

findings indicate an important role of miR-146a, in conjunction

with other miRs already described in literature during skeletogen-

esis and will inform our understanding of bone development and

reparation.

Method

Ethics Statement
Human foetal tissue was obtained with informed and written

consent from women undergoing termination of pregnancy

procedure according to guidelines issued by the Polkinghorne

Report. Ethical approval was obtained from the Southampton &

South West Hampshire Local Research Ethics Committee (LREC

296100).

Isolation and Culture of Foetal Femur Derived Cells
Foetal femurs samples at 7–9 weeks post conception were

isolated from fetuses. Surrounding skeletal muscle and connective

tissues were removed from the collected foetal femur samples and

separated into epiphysis (region containing densely packed cells)

and diaphysis (mid shaft region containing hypertrophic cells)

sections by micro-dissection. Femurs were plated into a well of a 6-

well-plate (Costar) overnight in a-MEM (Gibco) containing 1 mg/

ml collagenase B (Roche). The cell suspension was passed through

a 70 mm filter, centrifuged and resuspended in a-MEM supple-

mented with 10% foetal calf serum (FCS) and 1% penicillin/

streptomycin mix (P/S). Cells were maintained in monolayer

culture under standard condition until 90% cell confluence was

reached before passaging using 1x Trypsin solution (Lonza). All

monolayer experiments were conducted on passage two cells.

Foetal age was determined by measuring foetal foot length and

samples classified as weeks post conception.

Osteogenic and Chondrogenic Conditions
Cells were passaged into six-well plates for osteogenic and

chondrogenic differentiation. Control cultures were refreshed with

basal medium (a-MEM supplemented 10% FCS) every 48 hours.

For osteogenic culture, cells were cultured using medium

supplemented with 10% FCS, 10 nM of dexamethasone and

100 mM of ascorbic acid 2-phosphate. For Chondrogenic culture:

a-MEM containing 5 ng/ml TGF-b3, 10 nM dexamethasone,

100 mM ascorbate, and 10 ml/ml of 100x ITS liquid media (Sigma

I3146) was used.

Alcian Blue/Sirius Red Staining
Whole foetal femurs were fixed with 4% PFA-PBS overnight at

4uC and processed through graded ethanol. Samples were

immersed in 50% chloroform/ethanol and 100% chloroform.

Samples were placed in paraffin wax at 60uC for 30 minutes to

enable full penetration of paraffin wax. Thereafter, tissues were

embedded in paraffin wax blocks for sectioning. Sections were cut

on a Microm 330 at 6 mm thick and the cut sections were

transferred onto pre-heated glass slide. Prior to staining, the

samples were processed through histoclear solution twice to

remove paraffin wax and rehydrated using reverse graded

methanol solutions (100%, 100%, 90% and 50%). To allow

visualization of the cell nucleus, Weigert’s haematoxylin solution

was prepared and added to rehydrated samples for 10 minutes.

Excess staining solution was removed with water and acid alcohol.

To stain for proteoglycans, samples were immersed in 0.5% Alcian

blue 8GX solution. Samples were placed in 1% molybdopho-

sphoric acid followed by incubation in 0.1% Sirius red F3B

solution to stain for collagen. Sections were rinsed thoroughly with

water and dehydrated in reverse graded methanol back into

histoclear before mounting in dibutyl phthalate xylene (DPX).

Image Capture and Analysis
Sample images were captured using a Zeiss Axiovert 200

inverted microscope and Zeiss Axiovision software version 4.7.

Light microscopy images were taken using an Axiocam HR

camera and fluorescent images were captured using Axiocam MR.

RNA Extraction and RT-PCR Analysis
RNA extraction was performed using mirVana RNA Isolation

System Kit (Life Technologies) according to the manufacturer’s

protocol. Briefly, cultured samples were placed on ice and washed

twice in PBS. Lysis buffer was used to release RNA and a miR

homogenizing agent was added, followed by acid phenol-

chloroform. The resultant mixture was centrifuged to allow phase

separation. The aqueous phase was removed and added to ethanol

prior to elution through a spin column. The column was washed
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three times with supplied buffer solutions and RNA eluted in

RNase free water.

For cDNA synthesis, SuperScript VILO cDNA Synthesis Kit

(Life Technologies) was used. RNA was combined with 5X VILO

reaction mix and 1 ml of 10X SuperScript enzyme and incubated

at 25uC for 10 minutes followed by 42uC for 2 hours. The reaction

was terminated by incubation at 85uC for 5 minutes. 40 ml of
water was then added to the cDNA sample to give a 1:4 dilution

and stored at 220uC or used immediately for quantitative RT-

PCR analysis. Quantitative RT-PCR was performed using SYBR-

Green PCR master mix (Life Technologies): 10 ml of SYBR-Green

master mix; 5 ml of up H2O; 2 ml of forward and reverse primers

for the gene of interest (Table 1) and 1 ml of cDNA sample. The

final mixture (20 ml) was added to each well of a 96-well-plate,

analyzed using an Applied Biosystem (Life Technologies), 7500

Real Time PCR system. Data was analyzed using the Applied

Biosystem 7500 System SDS Software, version 2.0.5. Ct value for

each sample was normalized to b-Actin, an endogenous house-

keeping gene, and fold expression levels for each target gene were

calculated using the delta-delta Ct (Cycle threshold) method.

MicroRNA Microarray Analysis
Applied Biosystems TaqMan Low Density Array system was

used to perform RT-PCR miR arrays, following the manufactur-

er’s protocol. In brief, 400 ng of total RNA was used to generate

cDNA using MegaplexRT Human Pool A (Life Technologies).

6 ml of cDNA was then combined with 450 ml of 2x TaqMan PCR

Master mix (Life Technologies) and 444 ml of water before loading
into each micro array card. An Applied Biosystems 7900

thermocycler was used to run the array. The raw data generated

were analysed using Sequence Detection System v2.4 Enterprise

edition (Applied Biosystems). Further data analysis and heat maps

were created in R (v 2.15.3). Raw expression values were pre-

processed using the R package qpcrNorm [23]. Heat maps were

generated from quantile normalized, z-transformed Ct values,

ordered by ascending ddCt of epiphysis versus diaphysis. A subset

of all expressed miRss was selected for a heat map based on

statistical evidence for differential expression according to a

permissive t-test (a=0.1).

MicroRNA Expression Analysis
MicroRNA expression was examined using TaqMan Micro-

RNA Assays (Life Technology). Each assay comprised two

primers, one for cDNA synthesis and one for TaqMan RT-

PCR. cDNA specific to each assay-specific miR was generated

using TaqMan MicroRNA Reverse Transcription Kit (Life

Technologies) from total RNA using a modified manufacturer’s

protocol. In brief, a reaction mixture containing 50 mM dNTPs,

25 units of Mutiscribe RT enzyme, 0.75 ml 10x Buffer, 1.88 units

of RNase inhibitor, 3.58 ml water, 1.5 ml of primer and 10 ng of

total RNA was prepared. The reaction mixture was mixed by

pipetting and incubated at 16uC for 30 minutes followed by 42uC

Table 1. Forward and reverse primers sequence used for RT-qPCR.

Gene Primer sequences Amplicon size

Human b- Actin F: 59 ggc atc ctc acc ctg aag ta 39 82 bp

R: 59 agg tgt ggt gcc aga ttt tc 39

Human Runx-2 F: 59 gta gat gga cct cgg gaa cc 39 78 bp

R: 59 gag gcg gtc aga gaa caa ac 39

Human ALP F: 59 gga act cct gac cct tga cc 39 86 bp

R: 59 tcc tgt tca gct cgt act gc 39

Human Col1a1 F: 59 gag tgc tgt ccc gtc tgc 39 52 bp

R: 59 ttt ctt ggt cgg tgg gtg 39

Human Type X Collagen F: 59 ccc act acc caa cac caa ga 39 95 bp

R: 59 gtg gac cag gag tac ctt gc 39

Human Osteonectin F: 59 gag gaa acc gaa gag gag g 39 95 bp

R: 59 ggg gtg ttg ttc tca tcc ag 39

Human SMAD3 F: 59 tga atc cct acc act acc aga g 39 117 bp

R: 59 gga tgg aat ggc tgt agt cg 39

Human SMAD 2 F: 59 gat cct aac aga act tcc gcc 39 146 bp

R: 59 cac ttg ttt ctc cat ctt cac tg 39

Human Sox9 F: 59 ccc ttc aac ctc cca cac ta 39 74 bp

R: 59 tgg tgg tcg gtg tag tcg ta 39

Human Col2a1 F: 59 cct ggt ccc cct ggt ctt gg 39 58 bp

R: 59 cat caa atc ctc cag cca tc 39

Human Nucleostemin F: 59 ggg aag ata acc aag cgt gtg 39 98 bp

R: 59 cct cca aga agt ttc caa agg 39

Human CD63 F: 59 gcc ctt gga att gct ttt gtc g 39 87 bp

R: 59 cat cac ctc gta gcc act tct g 39

Human ALCAM F: 59 acg atg agg cag acg aga taa gt 39 96 bp

R: 59 cag caa gga gga gac caa caa c 39

doi:10.1371/journal.pone.0098063.t001
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Figure 1. Morphology of foetal femur derived cells in whole femur and post monolayer culture with quantitative expression of
stromal antigens and putative stem cell marker by HBMSC, foetal femur epiphyseal and diaphyseal cells. Foetal femur comprised a
proteoglycan anlage (Blue) with a bone collar marked by deposition of collagen (Red) (A). Epiphyseal region contained proliferating chondrocytes (B)
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for 30 minutes. The reaction was terminated following incubation

for 5 minutes at 85uC. The cDNA sample was stored at 220uC if

not used immediately for qPCR analysis.

For the qPCR reaction, TaqMan Universal PCR Master Mix

with No AmpErase UNG (Life Technologies) was utilised. A

reaction mixture containing 5 ml TaqMan master mix, 3.335 ml of
up H2O, 0.5 ml of qPCR primer and 0.7 ml of cDNA was

prepared. The mixture was transferred into the well of a 96-well

plate and loaded into the Applied Biosystem (Life Technology,

USA), 7500 Real Time PCR system for assay. All reactions were

performed in duplicate and included a negative control lacking

cDNA. The data was analyzed using the Applied Biosystem 7500

System SDS Software, version 2.0.5 program. Ct value for each

sample was normalized to MammU6, an endogenous control for

miR and fold expression levels for each target gene was calculated

using the delta-delta Ct (Cycle threshold) method.

MicroRNA Transient Overexpression
To assess the effect of miR-146a on cultured cells, transient

over-expression of miR-146a was achieved using a miR-146a

mimic and DharmaFECT reagent (Dharmacon). Briefly, epiph-

yseal cells were expanded in culture until 80% confluent. Cells

were trypsinised and plated to each well of a 24-well plate in a-
MEM supplemented with 10% FCS and 1% P/S and cultured for

24 hours. On transfection, cells were washed with PBS and

transfection media containing DharamFECT reagent and 100 gm
of miR-146a mimic was added to cultured cells. For the control

group, cells were transfected with a scrambled miR mimic

(Dharmacon) under the same condition. RNA was then extracted

for RT-PCR analysis 48 hours and protein was obtained after 72

hours post transfection for western blot analysis.

Western Blot Analysis
Cells were lysed with RIPA buffer (750 mM NaCl, 5% IgePal

CA-630, 2.5% DOC, 0.5% SDS, 250 mM Tris (pH 8.0))

supplemented with a protease inhibitor cocktail (1:100; Sigma).

Cell lysates were centrifugation at 13000 rpm for 20 minutes at

4uC, and the supernatant collected. Protein concentration was

determined using Pierce BCA protein Assay Kit (Pierce). 20 mg of

each samples combined with DTT (Cell Signalling) and SDA

sample buffer (BioLabs) were analysed by SDS gel electrophoresis

using Any kD precast gels (Mini-PROTEAN TGX; Bio-rad) and

while diaphyseal section, comprised hypertrophic chondrocytes (C). Epiphyseal cells (D) and diaphyseal cells (E) adopt similar morphology to HBMSC
(F) upon monolayer culture. Expression of CD63 (G), ALCAM/CD166 (H) and Nucleostemin (I) by foetal femur epiphyseal cells and diaphyseal cells was
confirmed by RT-qPCR and expression levels compared to human bone marrow stromal cells (set to have expression of one). Results expressed as
mean 6 SD and n= 3. ***P,0.001 and *P,0.1 calculated using ANOVA. Scale bar = 100 mm.
doi:10.1371/journal.pone.0098063.g001

Figure 2. Relative expression (RT-qPCR) of osteogenic and chondrogenic marker genes in epiphyseal and diaphyseal cell
population following monolayer culture. Cells extracted from the diaphyseal region expressed higher levels of osteogenic marker genes;
RUNX2, ALP, Type I collagen and Osteonectin (A–D) while epiphyseal cells expressed higher level of genes associated with chondrogenesis; SOX9 and
Type II collagen (E–F). Relative expression was normalized to b-Actin with epiphyseal cell populations set to have an expression of one. Data are
represented as an average of three independent patient samples and error bars represent standard deviation. **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0098063.g002
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Figure 3. RT-PCR results showing the effect of osteogenic media on osteogenic and chondrogenic gene expression in epiphyseal
and diaphyseal cell populations. Epiphyseal cells, in osteogenic media, expressed higher levels of RUNX2, ALP and Type I collagen (A–C) whilst in
diaphyseal cell populations, only an increase in ALP expression was recorded (E–G). In epiphyseal and diaphyseal cells, the expression of the

MiRNA-146a and Skeletal Stem Cell Differentiation

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e98063



transferred onto a polyvinylidene fluoride (PVDF) immobilon-FL

transfer membrane (Millipore). Immunoblots were probed with

SMAD3 and SMAD2 antibody (1:1000; Cellsignalling), then with

anti-b-Actin-Peroxidase (1:10000; Sigma). IRDye 800CW goat

anti-rabbit (LI-COR Biosciences) and IRDye 800CW rabbit anti-

HRP (LI-COR Biosciences) were used as secondary fluorescent

antibodies respectively. The anti-b-actin-Peroxidase was used as

loading control to which protein expression across the membrane

was normalized. The blots were scanned individually on an

Odyssey Infrared Imaging System (LI-COR Biosciences), and

densitometry analyses were run calculating the signal intensity

ratio between samples and loading control. Image Studio software

(LI-COR, Biosciences) was employed to obtain the signal intensity

values which were transformed into percentages of intensity for the

statistical analysis.

Statistics
Statistical analysis was carried out using Mann-Whitney test or

One-way Analysis of Variance (ANOVA) with Tukey-Kramer

multiple comparison post-test using statistics software package

Prism version 6 (GraphPad software). Values were expressed as

mean 6 standard deviation. All experiments were performed

using at least three separate foetal samples unless otherwise stated.

Values for p#0.05 were considered statistically significance.

Results

Isolation of Osteogenic Diaphyseal and Chondrogenic
Epiphyseal Foetal Femur Cells Population
Foetal femurs were observed to comprise primarily of a cartilage

anlage with a developing bone collar marked by collagen

deposition, as evidenced by Alcian blue and Sirus red staining

(Figure 1A). Within the epiphyseal regions, cells were observed to

be smaller and densely packed (Figure 1B), while cells from the

diaphyseal region displayed a hypertrophic phenotype (Figure 1C).

Following monolayer culture, both epiphyseal and diaphyseal

derived cell populations formed distinct cell colonies displaying a

fibroblastic morphology similar to the human bone marrow

stromal cells (Figure 1D–F). RT-qPCR confirmed expression of

stromal antigens CD63 and ALCAM (Figure 1G–H) in epiphyseal

and diaphyseal cells although at a lower level in comparison to

human bone marrow stromal cells (HBMSC) (Figure 1G).

Epiphyseal cells expressed ALCAM at a similar level to HBMSC

while diaphyseal cells appeared to express lower levels of ALCAM

(Figure 1H). Nucleostemin, a putative stem cell marker, was found

to be expressed by both epiphyseal and diaphyseal cells (Figure 1I).

The expression of CD63, ALCAM and Nucleostemin by

epiphyseal and diaphyseal cells in monolayer culture, suggest

these cell populations retain mesenchymal progenitor cell-like

characteristics. We have previously published on the potential of

foetal femur derived cells to differentiated along the stromal

osteogenic, chondrogenic and adipogenic lineages [12] and this

was not re-examined here.

Epiphyseal and Diaphyseal Cells Display Distinct
Osteogenic and Chondrogenic Differentiation Potential
Epiphyseal and diaphyseal cells were isolated from three

unrelated patient samples. Following 7 days in monolayer culture

under basal condition, RNA was extracted from each individual

sample for gene expression analysis. Using RT-qPCR, diaphyseal

cells were shown to express higher levels of genes associated with

the osteoblast phenotype, namely RUNX2, ALP, Type I Collagen

and Osteonectin (Figure 2A–D). Epiphyseal cells expressed

increased level of genes associated with the chondrocyte pheno-

type, namely SOX9 and type II collagen (Figure 2E–F). Following

culture in osteogenic conditions, epiphyseal and diaphyseal cells

expressed higher levels of ALP mRNA (Figure 3B and F), while,

RUNX2 and Type I Collagen expression were only observed to be

increased in the epiphyseal cell population (Figure 3A and C),

suggesting enhanced osteogenic modulation of epiphyseal cell

populations by osteogenic media. In epiphyseal and diaphyseal

cells, SOX9, a gene associated with chondrocyte differentiation,

was reduced following osteogenic media supplementation

(Figure 3D and H).

Epiphyseal and Diaphyseal Cells Express Distinct
MicroRNAs
RT-qPCR miR array was used to examine the miR expression

profile in the chondrogenic epiphyseal cells and osteogenic

diaphyseal cells in three unrelated foetal femur samples. The

miR array expression analysis indicated 155 out of the 377

detectable miRs were expressed in the samples. Of these, 67 miRs

were found have a difference in expression of greater than 1.5 fold

between epiphyseal and diaphyseal cells with 12 miRs expressed at

an elevated level in epiphyseal cells and 55 miRs in the diaphyseal

cell population. Only 7 miRs were identified with a statistically

significant difference in expression between epiphyseal and

diaphyseal cells (Figure 4A), namely: miR-146b-5p, miR-301b

and miR-138 (higher expression in epiphyseal cells) and miR-143,

miR-145, miR-146a and miR-34a (increased expression in

diaphyseal cells). A heat map was employed to demonstrate the

difference in selected miRs expression between epiphyseal and

diaphyseal cells (Figure 4B). miR-146a was found to be expressed

at a higher level in the diaphyseal cell population and was selected

for revalidation using an individual TaqMan RT-qPCR assay.

miR-138 and miR-140, have previously been reported to have

anti-osteogenic and pro-chondrogenic properties respectively

[21,24] and were found to display a higher expression in

epiphyseal cell populations and thus selected for revalidation

using individual TaqMan RT-qPCR assay to assess the consis-

tency of data of the current study compared to current literature.

In addition, the effects of osteogenic and chondrogenic media on

the expression of miR-140, miR-138 and miR-146a were

examined. Individual TaqMan assays confirmed the expression

of the cartilage specific miR-140 and the anti-osteogenic miR-138

was higher in the epiphyseal cell populations (Figure 5A and B).

miR-146a displayed a 50-fold increase in expression in diaphyseal

cells relative to epiphyseal cells (Figure 5C). Culture in osteogenic

media failed to modulate the expression of miR-138, miR-140 and

miR-146a (Figure 5D and E). Critically, the expression of miR-

146a was markedly reduced in the presence of chondrogenic

media (Figure 5F).

MicroRNA-146a Target Analysis
A number of the miRs identified by the microarray analysis

have already been described to be involved in the differentiation of

SSC, namely; miR-146b-5p [25,26], miR-138 [7,21], miR-143

[8,9,27] and miR-145 [10,28,29]. However, the effects of miR-

chondrogenic transcription factor, SOX9, was reduced in osteogenic media (D and H). Relative expression was normalized to b-Actin with basal
condition set to an expression of one. Data represent an average of three independent patient samples and error bars represent standard deviation.
**P,0.005; ***P,0.001 calculated using Mann-Whitney test.
doi:10.1371/journal.pone.0098063.g003
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Figure 4. MicroRNA expression profile of epiphyseal and diaphyseal cells. CT values of each miR was normalized to MammU6 (dCT) and
plotted as an XY scattered chart displaying the correlation of miR expression by epiphyseal and diaphyseal cells. An unpaired t-test revealed 7 miRs
with significant differences in expression: miR-146a-5p, miR-301b and miR-138 displayed higher expression in epiphyseal cells while miR-143, miR-
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146a on bone cell function are unknown. Furthermore, through

putative target analysis using Targetscan [30], miR-146a appeared

to target various key regulators the TGF-b ligand specific pathway;

SMAD2, SMAD3 and SMAD4. SMAD2 and SMAD3 were

chosen for validation as they are known intracellular transducers

of TGF-b and activin ligands and are thought to play a critical role

in chondrogenic differentiation [11,22] whilst SMAD4 was

omitted in the analysis as the effect of miR-146a on SMAD4

function have already been described [12,31]. The putative

binding site of miR-146a to SMAD2 and SMAD3 39UTR is

shown in figure 6A and 6B respectively. To determine whether a

correlation existed between miR-146a expression and SMAD2/

SMAD3 expression in epiphyseal and diaphyseal cell populations,

RT-qPCR expression was undertaken. The increased expression

of miR-146a observed in diaphyseal cells was associated with

decreased expression of SMAD3 mRNA level however; no

correlation to the expression of SMAD2 was observed

(Figure 6C–E). Furthermore, enhanced expression of miR-146a

was associated with an increased expression of RUNX2 and ALP

(6F–G). Critically, decreased expression of SOX9 was observed

when miR-146a was highly expressed (Figure 6H).

MicroRNA-146a Regulates Skeletal Stem Cell
Differentiation by Down-regulating SMAD2 and SMAD3
Protein Translation
To validate the effect of miR-146a on SMAD2 and SMAD3

protein translation, miR-146a was transiently overexpressed in

epiphyseal cells from three independent patient samples using a

146a, miR-34a and miR-145 displayed higher expression levels in diaphyseal cells (A). A heat map of normalized CT values was generated to show the
difference in miR expression between epiphyseal and diaphyseal cell populations (B). The Heat map represents z-transformed expression, blue
represents higher level of expression and red represents lower level of expression.
doi:10.1371/journal.pone.0098063.g004

Figure 5. Relative expression (RT-qPCR) of miR-140, miR-138 and miR-146a in epiphyseal and diaphyseal cell populations (A–C) and
the effect of differentiation media on expression in diaphyseal cells (D–F). miR-140 was expressed at a higher level in epiphyseal cells (A).
miR-138, known to have anti-osteogenic effects was found to have a lower level of expression in diaphyseal cells (B). miR-146a, identified in our
microarray, was validated and shown to display a markedly increased expression level in the diaphyseal cell populations compared to epiphyseal cells
(C). The use of osteogenic media did not affect the expression levels of miR-140, miR-138 and miR-146a compared to culture in basal conditions (D–
F). Chondrogenic culture conditions resulted in increased expression of miR-140 while miR-146a expression was suppressed (D–F). Relative expression
was normalized to MAMM-U6 with epiphyseal cells (A–C) and basal condition (D–F) set to an expression of one. Data represent an average of three
independent patient samples and error bars represent standard deviation. *P,0.05; **P,0.005; ***P,0.001 calculated using Mann-Whitney (A–C)
and ANOVA test (D–F).
doi:10.1371/journal.pone.0098063.g005
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Figure 6. Predicted binding site for miR-146a in SMAD2 and SMAD3 mRNA 39UTR and the relationship between expression of miR-
146a, SMAD2, SMAD3 and Type X Collagen expression in epiphyseal and diaphyseal cell populations. SMAD2 and SMAD3 mRNA
39UTR contains a binding site for miR predicted by TargetScan (A–B). Increased expression of miR-146a in diaphyseal cell populations was correlated
with reduced expression in SMAD3 mRNA levels but not SMAD2 mRNA levels (D–E). Increased expression of miR-146a in diaphyseal cells was coupled
with an increase in expression of RUNX2 and ALP (F–G). Reduced expression of SOX9 was observed when miR-146a was highly expressed. Relative
expression was normalized to MAMM-U6 (C) and b-Actin (D–H). Data represents an average of three independent patient samples and error bars
represent standard deviation. *P,0.05, **P,0.01; ***P,0.001 calculated using Mann-Whitney test.
doi:10.1371/journal.pone.0098063.g006
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miR-146a mimic. RNA was extracted 48 hours post transfection

and protein was harvested after 72 hours. These time points were

chosen after testing the transfection agents used in a series of

optimization experiments (data not shown). 48 hours post miR-

146a over-expression; down-regulation of SMAD3 mRNA was

observed however, SMAD2 mRNA levels remained unchanged

(Figure 7A–B). Western Blot analysis showed a reduction in both

SMAD2 and SMAD3 protein translation in the presence of miR-

146a overexpression. Quantitative analysis using western blots

demonstrated miR-146a significantly reduced SMAD3 protein

expression over SMAD2 expression (65% and 35% respectively)

(Figure 7D–E). The down-regulation in SMAD2 and SMAD3 was

coupled with a down-regulation of SOX9 expression and up-

regulation of RUNX2 mRNA expression suggesting miR-146a has

a positive effect on osteogenesis (Figure 7F–G).

MicroRNA-146a/TGF-b Feedback Mechanism Regulates
Chondrocyte Hypertrophic Differentiation
Human foetal cells extracted from the epiphyseal layers undergo

hypertrophic differentiation in the presence of chondrogenic

media containing TGF-b3 (Figure 8A–B). In vitro stimulation of

epiphyseal cells with chondrogenic media containing TGF- b3
resulted in down-regulation of miR-146a (figure 8C) and a

substantial up-regulation of Type X collagen mRNA expression

(Figure 8D). To further validate the effect of miR-146a as a

negative regulator of TGF-b ligand dependent signaling pathway

through down-regulating protein translation of SMAD2 and

SMAD3, the effect of TGF-b3 on Type X Collagen in the

presence of miR-146a overexpression in basal and chondrogenic

conditions was compared. Under basal condition, overexpression

of miR-146a had no effect on the expression of Type X Collagen

(Figure 8E); however, in the presence of miR-146a overexpression,

up-regulation of Type X Collagen by TGF-b3 was reduced by

60%. These results suggesting the effects of miR-146a on the

TGF-b pathway are dependent on the presence TGF-b3 ligands

(Figure 8F).

Discussion

MicroRNAs have recently been demonstrated as important

regulators of a variety of biological processes [12,13,32] including

cell cycle, oncogenesis and stem cell differentiation [9,14,33,34].

Using TaqMan RT-qPCR MicroRNA array, epiphyseal and

diaphyseal cells were found to express a different repertoire of

miRs. Microarray data are known to be relatively noisy [15–

17,35] and together with the accepted variation inherent to

primary cells samples, any statistical analysis of microarray data

can prove challenging. miR-146a was identified to be expressed at

a higher level in diaphyseal cells compared to epiphyseal cells,

suggesting a role of miR-146a in osteogenic differentiation. Using

Targetscan release 6, potential mRNA targets of miR-146a were

identified [30]. Various components of the TGF-b pathway;

namely SMAD2, SMAD3, SMAD4, TGFB-induced factor

homeobox 1 (TGIF1), BMP and activin membrane-bound

inhibitor homolog (BAMBI) and activin A receptor type IC/I/

Type II-like 1 (ACVR1C/ACVR1B/ACVRL1) were highlighted

as potential targets of miR-146a, advocating the function of this

miR in diaphyseal cells maybe mediated via attenuation of the

TGF-b pathway [30]. miR-146 has previously been identified to

modulate myofibroblast trans-differentiation during TGF-b1
induction by targeting SMAD4 [18,36] and miR-146 may also

be an important regulator during the inflammatory state of

osteoarthritis, as IL-1b induced production of TNF-a, a pro-

inflammatory cytokine known to play a role in osteoarthritis, was

significantly reduced by miR-146 overexpression [19,20,37].

Furthermore, overexpression of miR-146a has been shown to

protect the human bronchial epithelial from apoptosis and to

promote cell proliferation through up-regulation of Bcl-XL and

STAT3 phosphorylation [21,38].

miR-146a transient overexpression in epiphyseal cells (low level

expression of miR-146a compared to diaphyseal cells under

normal culture conditions) for 48 hours resulted in a significant

down-regulation of SMAD3 at the mRNA level with reduction of

SMAD2 and SMAD3 protein level at 72 hours, evidenced by

western bolt analysis. Concomitant with the reduced SMAD2 and

SMAD3 levels observed, reduced expression of the chondrogenesis

related gene SOX9 and up-regulation of the osteogenesis related

gene RUNX2 was observed. These data suggest miR-146a is a

negative regulator of chondrogenesis through down-regulation of

SMAD2/SMAD3 and may indirectly promote osteogenic differ-

entiation. Furthermore, as over-expression of miR-146a resulted

in a significant negative effect on chondrogenesis in culture over a

48–72-hour period, the effect of miR-146a under normal

physiological conditions would appear to be significant. To

optimize our transfection protocol, miR mimics against GAPDH

were used and shown to reduce GAPDH expression by over 80%

after 48 hours post transfection. However, miR inhibitors were

found to have display a much lower efficacy. Coupled with the

high expression of miR-146a in diaphyseal cells, it proved difficult

to reproducibly demonstrate the effects of miR-146a inhibitor on

human foetal diaphyseal cells.

In the current study, we observed that cells extracted from the

epiphyseal and diaphyseal regions of a developing human foetal

femur retain their progenitor cell characteristics, evidenced by the

expression of CD63, ALCAM and Nucleostemin mRNA, but

exhibit different and distinct phenotypes and display discrete

affinities in differentiation along the osteogenic and chondrogenic

lineages. Foetal epiphyseal cells expressed higher levels of miRs

including miR-140 and miR-138 reported to promote chondro-

genesis [20–22] while diaphyseal cells expressed miRs including

miR-210 and miR-93 previously reported to promote osteogenesis

[3,23,39]. These data suggests the chondrogenic epiphyseal cell

population expressed increased levels of miRs associated with

chondrogenesis while the osteogenic diaphyseal cells expressed

miRs associated with osteogenesis.

TGF-b signaling is important for skeletogenesis. It is generally

accepted that the bone morphogenic proteins (BMPs) and their

receptors induce early cartilage formation and stimulate mesen-

chymal cells to differentiate into osteoblasts whilst TGF-b ligands

and their receptors regulate chondrocyte proliferation and

differentiation [12,40]. In the current study, the effect of TGF-

b3 stimulation in monolayer culture model were consistent with

Figure 7. Effect of miR-146a overexpression on SMAD2/SMAD3mRNA expression and protein translation and in osteogenic related
gene expression. Overexpression of miR-146a resulted in a reduction of SMAD3 mRNA expression while SMAD2 mRNA levels remained unchanged
(A–B). Protein level of both SMAD2 and SMAD3 were significantly reduced by overexpression of miR-146a as evidenced by western blot analysis (C)
with densitometry band intensity quantification (D–E). miR-146a overexpression resulted in increased RUNX2 expression and a reduction in SOX9
expression (F–G). Relative expression analysis by RT-qPCR was normalized to b-Actin. Densitometry data presented as percentage of band intensity
compared to control group (100%). Data are represented as an average of three independent patient samples and error bar represents 6 SD. *P,
0.05, **P,0.01; ***P,0.001 calculated using Mann-Whitney test.
doi:10.1371/journal.pone.0098063.g007
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Figure 8. The effect of chondrogenic media containing 4 ng/ml of TGF-b3 on morphology of cells in monolayer culture and the
expression of miR-146a and Type X Collagen mRNA. TGF-b3 addition (chondrogenic media) culminated in cells with a distinct hypertrophic
phenotype (A–B). Expression of miR-146a was reduced following culture under chondrogenic conditions (C) and a significant up-regulation of Type X
collagen was observed (D). Under basal condition, miR-146a expression did not affect the expression of Type X Collagen (E). Under chondrogenic
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current literature with TGF-b3 stimulated cells differentiating to

give hypertrophic chondrocytes coupled with a significant up-

regulation of Type X collagen mRNA expression [21,24,40].

TGF-bs signals are known to be transduced to the nuclei by the

intracellular mediators, SMADs [41]. To date, eight different

SMAD proteins have been identified, classified into three

categories based on their functions; the receptor-activated SMADs

(SMAD- 1, 2, 3, 5 and 8), common mediator SMAD (SMAD4)

and the inhibitory SMADs (SMAD6 and 7) [41]. The receptor-

activated SMADs are further divided into two groups based on

their attachment to ligand specific receptors; SMAD2 and 3

transduce signal by TGF-bs and activin ligands while SMAD1, 5

and 8 respond to BMPs stimulation [42]. As SMAD2 and SMAD3

are known to transduce TGF-b ligand signals [43], the effect of

miR-146a on the TGF-b pathway was examined through analysis

of the effects of miR-146a transient overexpression on cells

stimulated by TGF-b3. In the absence of miR-146a overexpres-

sion, TGF-b3 was observed to up-regulate the expression of Type

X collagen 2000-fold. However, following transfection with miR-

146a mimic, TGF-b3 induced up-regulation of collagen X was

reduced by over 60%. These results suggest miR-146a attenuates

the TGF-b3 ligand signal, and possibly activin signals, through

down-regulation of SMAD2 and SMAD3 protein. Interestingly,

when cells were stimulated with TGF-b3, a reduction of miR-146a

expression was observed. The current data indicate the presence of

a negative feedback mechanism between TGF-b3 stimulation and

miR-146a expression advocating the presence of an auto-

regulatory mechanism (Figure 9). Thus miR-146a may reduce

TGF-b signaling and in turn TGF-b3 stimulation may suppress

miR-146a expression. A similar auto-regulatory feedback mech-

anism has also been described for the regulation of miR-93 and

downstream Osterix expression during osteoblast mineralization

condition, miR-146a over-expression reduced the stimulatory effect of chondrogenic media on type X collagen (F). * = P,0.05, *** = P,0.001. Scale
bars represent 100 mm.
doi:10.1371/journal.pone.0098063.g008

Figure 9. Modulation of skeletal cell differentiation by miR-146a. miR-146a down-regulated SMAD2 and SMAD3 protein levels, resulting in
an attenuation of TGF-b signaling following TGF-b3 stimulation. Stimulation by TGF-b3 down-regulated the expression of miR-146a indicating a
double negative feedback loop and thus a potential auto-regulatory mechanism. Overexpression of miR-146a under basal condition revealed a
modest, but positive effect on osteogenesis related gene expression and is likely part of a miR network involved in promoting osteogenesis. The
inhibitory effect of miR-146a on SMAD4 was previously reported by Zhong et al [31] and was not reevaluated in this study.
doi:10.1371/journal.pone.0098063.g009
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[3] as well as for miR-140 on TGF-b signaling through SMAD3

suppression [44].

Various reports have already demonstrated the importance of

miRs during SSC differentiation; miR-140, a cartilage specific

miR [19], was reported as a positive effector of chondrogenesis

through PDGF signaling in zebrafish [45]. In addition, miR-140

has been linked to the regulation of SMAD3 dependent TGFb
pathway through down regulation of SMAD3 protein levels and

thus to play a role in chondrocyte development [44]. miR-138 has

been shown to inhibit osteogenic differentiation in telomerase

immortalized bone marrow derived hMSC through down-

regulation of FAK and subsequently down regulation of the

FAK downstream targets RUNX2 and Osterix [21]. These studies

demonstrate various miRs may work in concert to regulate the

complex mechanisms underlying SSC differentiation. Together

with the distinct expression patterns observed in epiphyseal and

diaphyseal cell populations, the data in this study suggests, by

extracting cells from distinct regions of the human foetal femur, a

more homogenous skeletal stem cell population can be isolated,

providing an innovative approach for identification of novo miRs

involved in skeletal stem cell differentiation and skeletogenesis.

Conclusion

This report has further characterized foetal derived SSC found

in foetal femur by assessing differentiation related gene expression

and miR expression profile in epiphyseal and diaphyseal cells.

Using miR array, miR assay and transient over-expression

analysis, we have identified miR-146a as an important regulator

of TGF-b signaling during chondrocyte development and by

extension, foetal skeletogenesis, through regulation of SMAD2 and

SMAD3 protein translation. Further functional analysis to define

the precise role of miR-146a and other miR targets identified in

the epiphyseal and diaphyseal cell populations could provide a

novel strategy to manipulate SCC differentiation in regenerative

medicine applications.
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