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a b s t r a c t

In this paper, a generalized low-complexity beamspace approach is proposed for two-
dimensional localization of incoherently distributed sources with a uniform cylindrical array
(UCyA) in large scale/massive multiple-input multiple-output (MIMO) systems. The received
signal vectors in the antenna-element space are transformed into the beamspace by employing
beamforming vectors. As a beneficial result, the total dimensions of the received signal vectors
are significantly reduced. In addition, it is shown that the error introduced by the transfor-
mation decreases as the number of UCyA antennas increases. The UCyA is composed of mul-
tiple uniform circular arrays (UCAs), and the beamspace array response matrices of adjacent
UCAs are linearly related. Then, the linear relation is exploited to estimate the nominal ele-
vation direction-of-arrivals (DOAs) directly and the nominal azimuth DOAs based on a low-
complexity search algorithm. In contrast, the linear relation in the traditional approach is based
on approximations and the associated search algorithm is more complicated. Numerical results
demonstrate that the proposed approach outperforms the existing approach in terms of both
performance and complexity in the context of massive MIMO systems.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Multiple-input multiple-output (MIMO) techniques are
capable of providing a flexible tradeoff between multi-
plexing gain and diversity gain, which may significantly
improve both the spectral efficiency and the link reliability
of wireless communication systems [1]. Recently, massive
MIMO, which is also called large-scale MIMO, has been
shown to achieve extremely high spectral efficiency [2,3].
In massive MIMO systems, the base station (BS) is equip-
ped with a hundred or a few hundred antennas, serving
tens of user terminals (UTs) simultaneously. However, the
performance of these systems degrades when the angular
. Gao),
spreads are not wide enough, hence a beamforming
approach is proposed to achieve directional antenna gain
[4]. Meanwhile, the large number of antennas have
become feasible due to the employment of multi-
dimensional antenna arrays, such as uniform rectangular
array (URA) and uniform cylindrical array (UCyA). As a
result, the beamforming might be implemented not only
in the azimuth direction, but also in the elevation direction
[2]. This is known as the three-dimensional (3-D) beam-
forming [5,6] that can improve spectral efficiency. The 3-D
beamforming requires the position knowledge of the UTs,
which corresponds to the two-dimensional (2-D), i.e.,
angular parameters, azimuth and elevation. Therefore, 2-D
localization for 3-D beamforming in massive MIMO sys-
tems, which is the focus of this paper, constitutes an
important problem.

The localization of point sources has been extensively
investigated till now [7]. The point source model is
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suitable for line-of-sight transmission scenario, in which
the signal of each source impinges on the array from a
single angle [8]. When the signal of one source arrives
from an angular region, the source is modeled as a dis-
tributed source, which is suitable for the multipath
transmission scenario [9]. Moreover, the distributed sour-
ces may be categorized into coherently distributed (CD)
and incoherently distributed (ID) sources [10], which are
appropriate for slowly time-varying and rapidly time-
varying channels, respectively. The cellular wireless
channels are usually rapidly time-varying, thus the UTs of
cellular wireless systems are regarded as ID sources.

The localization of CD sources has been tackled by the
classical approaches conceived for point sources [8,10–12],
while the localization of ID sources is generally more
challenging [13–34]. Although most of the existing ID
source localization methods are proposed for one-
dimensional (1-D) scenarios, where only the azimuth
parameters have to be estimated, some of them can be
extended to 2-D scenarios. Among the existing approaches
for 2-D localization of ID sources, the maximum likelihood
(ML) approach [17], the approximate-ML approach [18],
and the least-squares (LS)-based covariance matching
approach [17,26,27] can achieve optimal or near optimal
performance. However, the search dimensions of these
methods are too high for practical implementation, espe-
cially in the context of massive MIMO systems.

The high computational complexity is the main problem
for 2-D localization of ID sources in massive MIMO systems,
for which the existing approaches are not suitable. By
introducing a simplified signal model, the search dimensions
of the above-mentioned approximate-ML and LS-based
approaches may be significantly reduced [15,20–25], but
these modified approaches are limited to the single-source
case. On the other hand, by generalizing the multiple signal
classification (MUSIC) [35] and beamforming approaches to
ID sources [28–32], the computational complexity can be
reduced in comparison with the ML-based [17] and the LS-
based approaches [17,26,27]. However, the search of the 2-D
nominal direction-of-arrivals (DOAs) and angular spreads
still results in high computational complexity. Meanwhile,
the estimation of signal parameters via rotational invariance
technique (ESPRIT) [36–38] has also been generalized for
estimating the 2-D nominal DOAs with two uniform circular
arrays (UCAs), and only the nominal azimuth DOAs have to
be estimated by searching [34]. Hence, the computational
complexity of this approach is lower than that of the above-
mentioned other methods [17,18,26–32]. Unfortunately, the
computational complexity of the ESPRIT based approach [34]
remains proportional to the cubic of the number of BS
antennas. Additionally, the approximations for deriving the
linear relation in this approach are in fact unnecessary. The
ESPRIT approach has also been extended to estimate both the
2-D nominal DOAs and the angular spreads of ID sources in
massive MIMO systems, imposing a low computational
complexity [39], but this approach can only be employed
with URAs. Furthermore, in contrast to the above-mentioned
methods that are all based on the antenna-element space,
the beamspace based approach was shown to be capable of
achieving low computational complexity [40], hence it has
been employed to improve the conventional element-spaced
based ESPRIT in [41,42]. However, these beamspace ESPRIT
approaches were limited to point sources in small- or
medium-dimension systems. Therefore, low-complexity 2-D
localization algorithms need to be investigated for ID sources
in the context of massive MIMO systems.

In this paper, a generalized beamspace approach is pro-
posed for 2-D localization of ID sources in the context of
massive MIMO systems that rely on a large UCyA composed
of multiple UCAs. It is worth emphasizing that while the
traditional beamspace approaches in [40–42] were con-
ceived for point sources in small- or medium-dimension
systems, and it is well known that the localization of point
sources is quite different from that of ID sources. We trans-
form the received signal vectors in the element space to the
beamspace by employing beamforming vectors, and this is
known as the beamspace transform [43]. Then, the linear
relation between the beamspace array response matrices of
the UCAs is exploited to estimate nominal elevation DOAs.
Subsequently, the nominal azimuth DOAs are estimated by
performing 1-D search. Finally, the 2-D angular spreads can
be estimated with the aid of these previous attained esti-
mates. For the purpose of clarity, the main contributions of
this paper are summarized as follows:

(1) A beamspace approach with significantly lower com-
putational complexity than the traditional element
space method [34] is proposed. The dimensions of the
received signal vectors are significantly reduced after
the beamspace transform. As a result, the computa-
tional complexity of the proposed approach is linearly
proportional to the number of BS antennas. Moreover,
it is shown that the error introduced by the beam-
space transform tends to zero as the number of BS
antennas tends to infinity.

(2) A new search criterion for estimating nominal azimuth
DOAs is conceived. Consequently, the performance of
the proposed approach is better than that of [34], and
is closed to the approximate Cramér–Rao bound (CRB).

(3) We prove that the approximations in [34] are not
necessary. The linear relation between the element
space array response matrices of adjacent UCAs is
derived without the approximations in [34].

This paper is organized as follows. In Section 2, a
detailed description of the system is presented. The
beamspace transform for large UCAs is derived in Section
3. In Section 4, the derivation of the proposed channel
estimator is expounded. The theoretical analysis regarding
the proposed approach is presented in Section 5. In Section
6, simulation results and further discussions are provided.
Finally, conclusions are drawn in Section 7.

Notations: Lower-case (upper-case) boldface symbols
denote vectors (matrices); IK represents the K � K identity
matrix, and 0M�K represents an M � K zero matrix; diagð�Þ
denotes a diagonal matrix and the values in the parentheses
constitute its diagonal elements; ð�Þ�, ð�ÞT , ð�ÞH , ð�Þ†, and Ef�g
denote the conjugate, the transpose, the conjugate trans-
pose, the pseudoinverse, and the expectation, respectively;
½��j;k and �j jj jF represent the (j,k)th entry and the Frobenius
norm of a matrix, respectively; � is the Hadamard product
operator; ½��j is the jth element of a vector; ⌈ ⌉ gives the



Fig. 1. The UCyA geometry considered. The array is composed of L ver-
tically aligned and concentric UCAs. Each UCA is composed of N elements,
and the total number of elements is M¼NL. The radius of each UCA is r,
and the vertical spacing between adjacent UCAs is d. The nominal azi-
muth DOA and elevation DOA of the kth UT are θk and ϕk , respectively.
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smallest integer that is greater than the value; i is the
imaginary unit; finally, δð�Þ denotes the Kronecker delta
function.
1 For the azimuth angle θk;jðtÞ and elevation angle ϕk;jðtÞ, the differ-
ence between the received signal phase at the mth antenna
and the received signal phase at the origin is μ r sin ðϕk;jðtÞÞ cos

�
ðθk;jðtÞ�ϑnÞ�dðl�1Þ cos ðϕk;jðtÞÞ�, cf. (2).
2. System description

The geometry of the UCyA at the BS is depicted in Fig. 1.
The array is composed of L vertically aligned and concentric
UCAs. Each UCA is composed of N antenna elements, and
the total number of antenna elements is M¼NL. The radius
of each UCA is r, and the vertical spacing between any two
adjacent UCAs is d. In this case, the height of the UCyA is
dðL�1Þ. The UCA at the top lies on the xy-plane, and the
center of this UCA is also the origin of the coordinates. The
vertical axis of the UCyA is aligned with the z-axis. The
elevation angle is measured downward from the z-axis, and
the azimuth angle is measured counterclockwise from the
x-axis. Additionally, the geometry of the UCA at the top is
depicted in Fig. 2. As shown in both Figs. 1 and 2, the N
antennas of a given UCA are uniformly distributed over the
circumference of a circle of a radius r. Hence, the position of
the nth antenna element of a given UCA is represented by
the angle ϑn ¼ 2πðn�1Þ=N;n¼ 1;2;…;N, which is mea-
sured counterclockwise from the x-axis. The antenna ele-
ments of the other UCAs are positioned in the same man-
ner, so that the M antenna elements constitute N vertical
columns, and each column consists of L antenna elements.

We consider that there are K single-antenna UTs
transmitting signals to the BS, and these signals propagate
through multipaths before impinging on the UCyA. As
shown in Fig. 1, it is assumed that the reflectors are near to
the UTs. Thus, the signals received at the BS from the kth
UT can be regarded as a spatially distributed cluster, and
the UTs can be regarded as distributed sources. At the tth
time instant, the received signal vector at the UCyA is
modeled as

xðtÞ ¼
XK
k ¼ 1

skðtÞ
XNk

j ¼ 1

γk;jðtÞaðθk;jðtÞ;ϕk;jðtÞÞþnðtÞACM�1; ð1Þ

where sk(t) is the signal from the kth UT; Nk is the number
of multipaths associated with the kth UT; γk;jðtÞ, θk;jðtÞ, and
ϕk;jðtÞ are the complex-valued gain, the azimuth DOA and
the elevation DOA of the jth multipath of the signal sent
from the kth UT, respectively; nðtÞACM�1 is the complex-
valued received noise vector. Additionally, aðθk;jðtÞ;ϕk;jðtÞÞA
CM�1 is the array steering vector having the form

½aðθk;jðtÞ;ϕk;jðtÞÞ�m ¼ exp
�
iμ r sin ðϕk;jðtÞÞ � cos ðθk;jðtÞ�ϑnÞ
�

�dðl�1Þ cos ðϕk;jðtÞÞ
��

; ð2Þ

where m¼Nðl�1Þþn; n¼ 1;2;…;N; l¼ 1;2;…; L, μ¼ 2π
=λ is the wavenumber, and λ is the wavelength. Note that
in the definition of the array steering vector aðθk;jðtÞ;ϕk;jðtÞÞ,
the received signal phase1 at the origin of the coordinates
is taken as the reference phase. The ranges of the azimuth
DOA θk;jðtÞ and elevation DOA ϕk;jðtÞ are 0rθk;jðtÞo2π and
0rϕk;jðtÞrπ=2, respectively, which means that the UCyA
can provide 3601 azimuth coverage and 901 elevation
coverage. Though the UCyA can provide 1801 elevation
coverage in practice, the array is placed above the UTs, and
the range of elevation is only 01 to 901. Hence, we assume
that the range of the elevation DOA is 0rϕk;jðtÞrπ=2. The
azimuth DOA θk;jðtÞ and elevation DOA ϕk;jðtÞ are expressed
as [27]

θk;jðtÞ ¼ θkþ ~θk;jðtÞ
and

ϕk;jðtÞ ¼ ϕkþ ~ϕk;jðtÞ;

respectively, where θk and ϕk are the means of θk;jðtÞ and
ϕk;jðtÞ, respectively, i.e., they are the nominal azimuth DOA
and nominal elevation DOA of the kth UT, as shown in
Fig. 1; additionally, the angular deviations ~θk;jðtÞ and ~ϕk;jðtÞ
are zero-mean random variables with variances σ2θk and
σ2ϕk

, respectively. To elaborate a little further, σθk and σϕk
are

known as the azimuth and elevation angular spreads,
respectively. It should be noted that the task of 2-D
localization is to estimate the angular parameters
θk;ϕk; σθk ; and σϕk

; k¼ 1;2;…;K , with the aid of the
received signal snapshots xðtÞ; t ¼ 1;2;…; T , where T is the
number of received signal snapshots. Then, the estimated
2-D angular parameters can be used in the 3-D beam-
forming, which is capable of increasing the signal-to-
interference ratios of the UTs.This paper focuses on the
2-D localization of multiple ID sources.

In this paper, the following initial assumptions are
considered.

(1) The angular deviations, ~θk;jðtÞ and ~ϕk;jðtÞ, k¼
1;2;…;K , j¼ 1;2;…;Nk, t ¼ 1;2;…; T , are temporally



n

Fig. 2. The constituent UCA geometry considered. The array is composed
of N elements, and the radius of the UCA is r. The nth element of the UCA
is positioned at an angle ϑn ¼ 2πðn�1Þ=N;n¼ 1;2;…;N which is mea-
sured by turning counterclockwise from the x-axis.
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independent and identically distributed (i.i.d.) Gaussian
random variables with covariances

E ~θk;jðtÞ ~θ ~k ;~j ð~t Þ
n o

¼ σ2θkδðk� ~kÞδðj� ~jÞδðt� ~t Þ ð3Þ

and

E ~ϕk;jðtÞ ~ϕ ~k ;~j ð~t Þ
n o

¼ σ2ϕk
δðk� ~kÞδðj� ~jÞδðt� ~t Þ; ð4Þ

respectively. Note that the Gaussian distribution is
assumed [49] for the sake of simplicity in the subsequent
analysis. In fact, we can change this assumption and use
the Uniform, the Laplacian or the Von-Mises distributions,
since the proposed approach is independent of the specific
distributions of the angular deviations.

(2) The path gains, γk;jðtÞ, k¼ 1;2;…;K , j¼ 1;2;…;Nk,
t ¼ 1;2;…; T , are temporally i.i.d. complex circularly sym-
metric zero-mean Gaussian random variables, whose
covariance is

E γk;jðtÞγ�~k ;~j ð~t Þ
n o

¼
σ2γk
Nk

δ k� ~k
� �

δ j� ~j
� �

δ t� ~t
� 	

: ð5Þ

It can be seen from (5) that the path gain factors of dif-
ferent paths are uncorrelated, which corresponds to the
rapidly time-varying channels. Consequently, the UTs are
regarded as ID sources by the UCyA at the BS [10]. More-
over, in addition to the small-scale Rayleigh fading, the
path gains also include the path loss and the shadow
fading, which remain invariant during a single estimation
period and influence the covariance σ2γk .

Note that as an example, in what follows we consider
the case that each UT has only one pair of nominal DOAs,
i.e., the nominal azimuth DOA and the nominal elevation
DOA. However, when each UT has more than one pair of
nominal DOAs, we can equivalently regard each UT as
multiple ID sources obeying this assumption. Thus, the
multiple pairs of nominal DOAs of each UT can also be
estimated using the method proposed in this paper.

(3) The noise, nðtÞ, t ¼ 1;2;…; T , are composed of tem-
porally and spatially i.i.d. complex circularly symmetric
zero-mean Gaussian variables, whose covariance matrix is
given by

E nðtÞnHð~t Þ
 �¼ σ2nIMδðt� ~t Þ: ð6Þ
(4) The signals, skðtÞ; k¼ 1;2;…;K , t ¼ 1;2;…; T , are

temporally i.i.d. zero-mean random variables with finite
amplitudes and covariance

E skðtÞs ~k ð~t Þ

 �¼ σ2skδðk� ~kÞδðt� ~t Þ: ð7Þ

Note that σ2sk also represents the transmitted power of
the kth UT. In addition, the signals are uncorrelated to
the noise.

(5) The array is calibrated, which means the response of
the array, i.e., the array steering vector aðθk;jðtÞ;ϕk;jðtÞÞ
characterized in (2) for any given θk;jðtÞ and ϕk;jðtÞ is known
a priori.

(6) The distance between any two adjacent antenna
elements in the same UCA or in the same antenna column
is less than or equal to λ=2, which means rrλ=ð4 sin ðπ=NÞÞ
and drλ=2. This assumption assures that the received
signal phases as well as the nominal DOAs, cf. (2), can be
estimated without ambiguity.
3. Beamspace transform

The large number of BS antennas in massive MIMO sys-
tems entails high-dimensional received signal vectors. Thus,
the computational complexity imposed is excessive. In this
section, we first describe the phase mode excitation principle
[40], which shows that the dimension of the array steering
vector can be reduced when a phase-specific beamforming
vector is employed. Then, we introduce the beamspace
transform, which uses the phase mode excitation principle to
reduce the dimensions of the received signal vectors. It is
worth noting that the proposed approach can also be applied
to other scenarios by exploiting the rotational invariance
property of the antenna array's structure, such as uniform
linear arrays (ULAs) and URAs.

3.1. Phase mode excitation principle

When the array is excited by a beamforming weight
vector with a phase, the output of the array is related to
this phase, and phase mode excitation principle is the
relation between the output and the phase. We first con-
sider the lth UCA. According to (2), the array steering
vector of the lth UCA alðθk;jðtÞ;ϕk;jðtÞÞACN�1 is given by

½alðθk;jðtÞ;ϕk;jðtÞÞ�n ¼ ½aðθk;jðtÞ;ϕk;jðtÞÞ�Nðl�1Þþn; ð8Þ
where n¼ 1;2;…;N. It can be seen that the array steering
vector of the lth UCA, alðθk;jðtÞ;ϕk;jðtÞÞ, is constituted by N
consecutive elements of the array steering vector of the
UCyA, aðθk;jðtÞ;ϕk;jðtÞÞ. Here, the N elements begin from
½aðθk;jðtÞ;ϕk;jðtÞÞ�Nðl�1Þþ1. Consider a beamforming weight
vector

wp ¼
1
N
exp ipϑ1ð Þ; exp ipϑ2ð Þ;…; exp ipϑNð Þ½ �HACN�1; ð9Þ

where p¼ �P; �Pþ1;…; P is named the phase mode. The
phase mode p determines the phases pϑn;n¼ 1;2;…;N, in
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the vector wp. The value of the highest phase mode P will
be given later. Obviously, there are P0 ¼ 2Pþ1 realizations
of the beamforming weight vectorwp. When the lth UCA is
excited with the beamforming weight vector wp, the out-
put of the array is named as the array pattern, and is
expressed as

f p;lðθk;jðtÞ;ϕk;jðtÞÞ ¼wH
p alðθk;jðtÞ;ϕk;jðtÞÞ: ð10Þ

In this paper, alðθk;jðtÞ;ϕk;jðtÞÞ and xlðtÞ are in the element
space, while wH

p alðθk;jðtÞ;ϕk;jðtÞÞ and wH
p xlðtÞ are in the

beamspace. Therefore, the beamforming weight vector wp

essentially performs the transform from the element space
to the beamspace. For any phase mode p that satisfies
jpjoN, the array pattern can be further written as [40,43]

f p;lðθk;jðtÞ;ϕk;jðtÞÞ ¼ ipJpðζk;jðtÞÞexp ipθk;jðtÞ
� 	þεpðζk;jðtÞ; θk;jðtÞÞ

h i
�exp � iμdðl�1Þ cos ðϕk;jðtÞÞ

� 	
; ð11Þ

where ζk;jðtÞ ¼ μr sin ðϕk;jðtÞÞ, Jpð�Þ is the Bessel function of
the first kind of order p, ipJpðζk;jðtÞÞexpðipθk;jðtÞÞ is the
principle term, and

εpðζk;jðtÞ; θk;jðtÞÞ ¼
X1
q ¼ 1

igJgðζk;jðtÞÞexp � igθk;jðtÞ
� 	h

þ ihJhðζk;jðtÞÞexp ihθk;jðtÞ
� 	i

is the residual term, in which g¼Nq�p and h¼Nqþp.
In massive MIMO systems, the number of antennas of

each UCA, N, is very large. When P4μr and N42P are
satisfied,2 the residual term εpðζk;jðtÞ; θk;jðtÞÞ is much smal-
ler than the principal term ipJpðζk;jðtÞÞexp ipθk;jðtÞ

� 	
for any

azimuth DOA θk;jðtÞ and elevation DOA ϕk;jðtÞ [40].
Obviously, when N42P and P4μr, the array pattern
f p;lðθk;jðtÞ;ϕk;jðtÞÞ and its partial derivatives can be
approximated by neglecting the residual term as

f p;lðθk;jðtÞ;ϕk;jðtÞÞ � ipJpðζk;jðtÞÞexp ipθk;jðtÞ
� 	

� exp � iμdðl�1Þ cos ðϕk;jðtÞÞ
� 	

; ð12Þ

∂f p;lðθk;jðtÞ;ϕk;jðtÞÞ
∂θk;jðtÞ

� ipþ1pJp ζk;j tð Þ
� 	

exp ipθk;jðtÞ
� 	

� exp � iμdðl�1Þ cos ðϕk;jðtÞÞ
� 	

; ð13Þ
and

∂f p;lðθk;jðtÞ;ϕk;jðtÞÞ
∂ϕk;jðtÞ

� ip Jp�1ðζk;jðtÞÞ� Jpþ1ðζk;jðtÞÞ
� �

� exp ipθk;jðtÞ
� 	

exp � iμdðl�1Þ cos ðϕk;jðtÞÞ
� 	

cos ϕk;j tð Þ
� 	

� 1
2
μrþ f p;l θk;j tð Þ;ϕk;j tð Þ

� 	
iμd l�1ð Þ sin ϕk;j tð Þ

� 	
;

ð14Þ
respectively. It is known that there are P0 different reali-
zations of f p;lðθk;jðtÞ;ϕk;jðtÞÞ, while there are N elements in
the array steering vector alðθk;jðtÞ;ϕk;jðtÞÞ. This means that
2 Since μ¼ 2π=λ, we have μr¼ 2πr=λ. In wireless communication
systems, the radius of the UCA, r, changes in accordance with the
wavelength, λ. For example, in the macrocell scenario, the wavelength
and the radius are long; while in the future small cell scenario, the
wavelength and the radius are short. Thus, the number of UCA antennas,
N, can satisfy N42P and P4μr in massive MIMO systems.
the dimension N of the array steering vector of each UCA
in the element space N is changed to the dimension P0 in
the beamspace. Therefore, the beamspace transform is
capable of remarkably reducing the dimension of the array
steering vector in the context of massive MIMO systems.

Relying on the above-mentioned properties of the
phase mode excitation, in what follows we will proceed to
transform the received signal vectors from the element
space into the beamspace, and will develop a beamspace
approach for estimating 2-D angular parameters in mas-
sive MIMO systems.

3.2. Beamspace transform for the UCyA

The phase mode excitation principle may be employed
to transform the received signal vectors from the element
space into the beamspace, and the corresponding trans-
formation is known as the beamspace transform; thus, the
dimensions of the received signal vectors can also be sig-
nificantly reduced in massive MIMO systems. According to
(1), the received signal vector of the lth UCA is given by

xlðtÞ ¼
XK
k ¼ 1

skðtÞ
XNk

j ¼ 1

γk;jðtÞalðθk;jðtÞ;ϕk;jðtÞÞþnlðtÞACN�1;

ð15Þ
where alðθk;jðtÞÞ is defined in (8), and the received noise
vector nlðtÞACN�1 of the lth UCA is characterized by
½nlðtÞ�n ¼ ½nðtÞ�Nðl�1Þþn; where n¼ 1;2;…;N.

According to (10), we can transform the received signal
vector xlðtÞ from the element space into the beamspace,
namely we have

~x lðtÞ ¼ FHe xlðtÞ ¼
XK
k ¼ 1

skðtÞ
XNk

j ¼ 1

γk;jðtÞblðθk;jðtÞ;ϕk;jðtÞÞ

þ ~n lðtÞACP0�1; ð16Þ
where

Fe ¼
ffiffiffiffi
N

p
i�Pw�P ; i

�Pþ1w�Pþ1;…; iPwP

h i
ACN�P0 ð17Þ

is the beamforming matrix as defined in [40]; blðθk;jðtÞ;
ϕk;jðtÞÞACP0�1 is the beamspace array steering vector of the
lth UCA, and it is defined as

½blðθk;jðtÞ;ϕk;jðtÞÞ�pþPþ1 ¼
ffiffiffiffi
N

p
i�pf p;lðθk;jðtÞ;ϕk;jðtÞÞ; ð18Þ

p¼ �P; �Pþ1;…; P; and ~n lðtÞ ¼ FHe nlðtÞACP0�1 is the
beamspace received noise vector of the lth UCA. Compar-
ing (8) and (18), we can see that the array steering vector
of the lth UCA, alðθk;jðtÞ;ϕk;jðtÞÞ, is completely different from
the beamspace array steering vector of the lth UCA,
blðθk;jðtÞ;ϕk;jðtÞÞ. According to the definitions of wp in (9)
and Fe in (17), we have FHe Fe ¼ IP0 . Hence, the noise vectors
~n lðtÞ; l¼ 1;2;…; L, in the beamspace are also spatially and
temporally white zero-mean Gaussian noise vectors with
covariance matrix σ2nIP0 .

Then, the beamspace received signal vectors of all the L
UCAs are stacked into a vector, which is defined as the
beamspace received signal vector of the UCyA, and is given
by

~xðtÞ ¼ ½ ~xT
1ðtÞ; ~xT

2ðtÞ;…; ~xT
L ðtÞ�T
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¼
XK
k ¼ 1

skðtÞ
XNk

j ¼ 1

γk;jðtÞbðθk;jðtÞ;ϕk;jðtÞÞþ ~nðtÞ ð19Þ

~xðtÞACM0�1; ð20Þ
where M0 ¼ P0L is the dimension of the beamspace
received signal vector of the UCyA, and

bðθk;jðtÞ;ϕk;jðtÞÞ ¼ bT
1ðθk;jðtÞ;ϕk;jðtÞÞ;bT

2ðθk;jðtÞ;ϕk;jðtÞÞ;…;
h
bT
L ðθk;jðtÞ;ϕk;jðtÞÞ

iT
ACM0�1

is the beamspace array steering vector of the UCyA. Since
the array steering vector of the lth UCA is completely dif-
ferent from the beamspace array steering vector of the lth
UCA, the array steering vector of the UCyA given by (2) is
also completely different from the beamspace array
steering vector of the UCyA defined here. It should be
noticed that the total dimension of the received signal
vector of the UCyA in the beamspace is M0, and is sig-
nificantly smaller than the total dimension M¼NL of the
received signal vector of the UCyA in the element space.
Hence, for large N, the total dimensions of the received
signal vectors of the UCyA are greatly reduced after using
the beamspace transform, which facilitates employing
localization algorithms in massive MIMO systems. In the
next section, the beamspace received signal vectors given
by (20) will be invoked to estimate 2-D angular
parameters.
3 The angular spreads of the sources as seen from the base station are
small in most circumstances [50,51]. Therefore, only the small angular
spreads are considered in this paper. The scenario where sources have
large angular spread will be addressed in our future work.
4. The generalized beamspace approach

The existing method in [34] estimates angular para-
meters in the element space. The large dimensions of
received signal vectors in massive MIMO systems make
this method excessively complicated. Hence, in this sec-
tion, a generalized beamspace ESPRIT approach and a
generalized beamspace MUSIC approach are proposed for
estimating nominal elevation and azimuth DOAs, respec-
tively. As a beneficial result of the beamspace transform,
the proposed methods enjoy significantly lower compu-
tational complexity than the existing element space
method in [34].

4.1. Estimation of nominal elevation DOAs: generalized
beamspace ESPRIT

The classical ESPRIT approach [36–38] has lower com-
putational complexity than the other existing approaches
conceived for 2-D localization of ID sources, such as the ML
approach, the approximated ML approach, and the LS-
based covariance matching approach. However, the search
dimensions of all these methods remain too high for
practical implementation, especially in the context of
massive MIMO systems. Notably, by exploiting beamspace
transform, the computational complexity of 2-D localiza-
tion of ID sources can be further reduced compared to that
of using the conventional element-space based ESPRIT
approach. Relying on the beamspace received signal vec-
tors, the nominal elevation DOAs can be estimated by
generalizing the ESPRIT approach to 2-D ID sources. Thus,
the computational complexity of the estimation of nom-
inal elevation DOAs is very low.

Since we only have the knowledge of the received
signal vector and aim to estimate the 2-D nominal DOAs,
the relation between the received signal vector and the 2-
D nominal DOAs will be derived. For small angular
deviations ~θk;jðtÞ and ~ϕk;jðtÞ, the beamspace array steering
vector bðθk;jðtÞ;ϕk;jðtÞÞ of the UCyA may be expressed by the
Taylor series expansion as

b θk;j tð Þ;ϕk;j tð Þ
� 	¼ b θk;ϕk

� 	þ∂bðθk;ϕkÞ
∂θk

~θk;j tð Þ

þ∂bðθk;ϕkÞ
∂ϕk

~ϕk;j tð Þþϵk;j tð Þ; ð21Þ

where ϵk;jðtÞ is the least significant term. Here we omit this
term ϵk;jðtÞ, and the error introduced is negligible for small
angular deviations.3 According to (20), the beamspace
received signal vector of the UCyA can be expressed as

~x tð Þ ¼
XK
k ¼ 1

b θk;ϕk
� 	

ck;1þ
∂bðθk;ϕkÞ

∂θk
ck;2þ

∂bðθk;ϕkÞ
∂ϕk

ck;3

� �

þ ~nðtÞ;
where we have ck;1ðtÞ ¼ skðtÞ

PNk
j ¼ 1 γk;jðtÞ, ck;2ðtÞ ¼ skðtÞPNk

j ¼ 1 γk;jðtÞ ~θk;jðtÞ, and ck;3ðtÞ ¼ skðtÞ
PNk

j ¼ 1 γk;jðtÞ ~ϕk;jðtÞ. For
the sake of clarity, the beamspace received signal vector of
the UCyA is reformulated in a compact matrix form as

~xðtÞ ¼AcðtÞþ ~nðtÞ; ð22Þ
where

A¼ b θ1;ϕ1
� 	

;b θ2;ϕ2
� 	

;…;b θK ;ϕK
� 	

;
∂bðθ1;ϕ1Þ

∂θ1
;



∂bðθ2;ϕ2Þ

∂θ2
;…;

∂bðθK ;ϕK Þ
∂θK

;
∂bðθ1;ϕ1Þ

∂ϕ1
;

∂bðθ2;ϕ2Þ
∂ϕ2

;…;
∂bðθK ;ϕK Þ

∂ϕK

�
ACM0�3K ð23Þ

is named as the beamspace array response matrix, and the
elements of

cðtÞ ¼ c1;1ðtÞ; c2;1ðtÞ;…; cK;1ðtÞ; c1;2ðtÞ; c2;2ðtÞ;…;
�
cK ;2ðtÞ; c1;3ðtÞ; c2;3ðtÞ;…; cK;3ðtÞ

�T AC3K�1

are functions of the transmitted signal, the path gains, and
the angular deviations.

From the above analysis, it can be seen that the
received signal vector is related to both the 2-D nominal
DOAs and some random variables. Thus, the relation given
by (22) cannot be directly employed to estimate the
nominal DOAs. Inspired by the fact that the randomness
can be removed with expectation, we derive the covar-
iance matrix of the beamspace received signal vector of
the UCyA, which is given by

R ~x ¼ E ~xðtÞ ~xHðtÞ
n o

¼AΛcA
Hþσ2nIM0 ACM0�M0

; ð24Þ
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where Λc ¼ E cðtÞcHðtÞ
 �
AC3K�3K . Based on the properties

of ~θk;jðtÞ; ~ϕk;jðtÞ; γk;jðtÞ, and sk(t) given in (3)–(5) and (7), we
can see that Λc is a diagonal matrix with ½Λc�k;k ¼ σ2skσ

2
γk
,

½Λc�Kþk;Kþk ¼ ½Λc�k;kσ2θk , and ½Λc�2Kþk;2Kþk ¼ ½Λc�k;kσ2ϕk
, k¼

1;2;…;K . According to (24), we obtain the eigenvalue-
decomposition (EVD) of R ~x as follows:

R ~x ¼ EsΣsEH
s þσ2nEnEH

n ; ð25Þ
where EsACM0�3K corresponds to the signal subspace of
the UCyA, EnACM0�ðM0 �3KÞ corresponds to the noise sub-
space of the UCyA, and ΣsAR3K�3K is a diagonal matrix
whose diagonal elements are the largest 3K eigenvalues of
R ~x . Obviously, the linear relation

Es ¼AT ð26Þ
can be obtained, where TAC3K�3K is a matrix of full rank.
It can be seen that this linear relation is much simpler than
that given by (22). However, T in (26) is not known. Hence,
the relation of (26) cannot be immediately used to esti-
mate the nominal DOAs.

In order to get rid of the impact of T on the estimation,
we will derive the linear relation amongst the submatrices
of A, and the submatrices of A are related to the 2-D
nominal DOAs. First, we derive the expressions of the
elements of A, then we derive the linear relation between
submatrices of A.

Proposition 1. When P, namely the value of the highest
phase mode, satisfies μroPoN=2, the linear recurrence
relation between the beamspace array response matrices of
each pair of UCAs can be expressed as

Al0 þ1 ¼Al0Φ; ð27Þ
where

Al ¼ JlAACP0�P0 ð28Þ
is the beamspace array response matrix of the l0th UCA and it
is a submatrix of A, while

Jl ¼ 0P0�P0 ðl�1Þ; IP0 ;0P0�P0 ðL� lÞ
� �

ARP0�M0

is the corresponding selection matrix that selects P0 rows
from A to construct Al. (27) is obtained by exploiting the
Taylor series expansion and the beamspace transform. In
addition,

Φ¼
Λ0 0K�K Λ1

0K�K Λ0 0K�K

0K�K 0K�K Λ0

2
64

3
75AC3K�3K ð29Þ

is an upper triangular matrix, in which

Λ0 ¼ diag exp � iμd cos ðϕ1Þ
� 	

; exp � iμd cos ðϕ2Þ
� 	

;…;
�

exp � iμd cos ðϕK Þ
� 		

ACK�K ð30Þ
and

Λ1 ¼ iμd diag sin ðϕ1Þ; sin ðϕ2Þ;…; sin ðϕK Þ
� 	

Λ0ACK�K :

Proof. See Appendix A.

Remark 1. Λ1 in (29) was approximated as a zero matrix
in [34]. By contrast, in this paper, the linear relation in (27)
is derived rigorously without omitting Λ1. Relying on (27),
we can employ (26) to construct a similar linear relation
amongst the submatrices of the signal subspace matrix Es,
and this relation may be obtained from the beamspace
received signal vectors of the UCyA. As a result, we can
estimate the nominal elevation DOAs by invoking the lin-
ear relation amongst the submatrices of Es.

From (26) and (28), the submatrix of the signal sub-
space matrix Es of the UCyA is given by

El ¼ JlEs ð31Þ

El ¼AlTACP0�3K : ð32Þ
Substituting (27) into (32) yields

El0 þ1 ¼Al0ΦT¼ El0T
�1ΦT; ð33Þ

where the second equation is based on Al0 ¼ El0T
�1.

From the definition of El in (32), it is known that the
rank of El is the smaller value between P0 and 3K . As long
as P0Z3K , Ψ¼ T�1ΦTAC3K�3K can be estimated from
El0 þ1 and El0 by employing the well-known total least-
squares (TLS) criterion [38], and the estimate is denoted as
Ψ̂ l0 ; l

0 ¼ 1;2;…; L�1. Since the eigenvalues of an upper
triangular matrix are also the diagonal elements of this
matrix, the sorted eigenvalues of Ψ̂ l0 , which are denoted as
λl0 ;k0 ; k

0 ¼ 1;2;…;3K , are taken as the estimates of the
diagonal elements of Φ. Because there are ðL�1Þ different
estimates of the matrix Ψ, i.e., Ψ̂ l0 ; l

0 ¼ 1;2;…; L�1, there
are ðL�1Þ different estimates for each diagonal element of
Φ, thus there are 3ðL�1Þ different estimates for each
diagonal element of Λ0. According to (30), the nominal
elevation DOA of the kth UT is estimated as

ϕ̂ k ¼
1

3ðL�1Þ
XL�1

l0 ¼ 1

X3k
k0 ¼ 3k�2

arccos
i ln λl0 ;k0

μd

� �
: ð34Þ

It can be seen that the nominal elevation DOAs are esti-
mated by using the linear relation in (27). Hence, the
approximations in [34] for omitting Λ1 in (29) are not
necessary.

It can be seen that the beamspace transform is used to
derive linear relations, which are critical to the employ-
ment of the ESPRIT approach. Note that no direct deriva-
tion of these linear relations was available in the open
literature. After the estimates of the nominal elevation
DOAs have been obtained, they can be used to estimate
nominal azimuth DOAs. In Section 4.2, the proposed search
algorithm will be detailed.

4.2. Estimation of nominal azimuth DOAs: generalized
beamspace MUSIC

From the previous derivation, we can see that the linear
relation of (27) is crucial to estimating the nominal eleva-
tion DOAs with the generalized beamspace ESPRIT. How-
ever, it can be easily found that there is no similar relation
for the nominal azimuth DOAs. Thus, we cannot proceed to
estimate the nominal azimuth DOAs with the generalized
beamspace ESPRIT. Fortunately, the beamspace MUSIC
method [40] has been shown to achieve good performance
for point sources at the expense of slightly higher compu-
tational complexity than the beamspace ESPRIT. Hence, the
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beamspace MUSIC for point sources can be generalized for
estimating nominal azimuth DOAs of ID sources.

In order to reduce computational complexity, only the
beamspace received signal vector of the first UCA, i.e., ~x1ðtÞ
in (19), is used for estimation. From (19) and (24), it can be
seen that the covariance matrix of ~x1ðtÞ corresponds to the
P0 � P0 submatrix in the upper left corner of R ~x , and is
denoted as R ~x1

ACP0�P0
here. Then, we have

R ~x1
¼ A1ΛcA

H
1 þσ2nIP0 ; ð35Þ

where A1 is defined in (28). Similar to (25), the EVD of R ~x1

is expressed as

R ~x1
¼ Es1Σs1E

H
s1 þσ2nEn1E

H
n1
; ð36Þ

where Es1 ACP0�3K and En1 ACP0�ðP0 �3KÞ correspond to the
signal subspace and noise subspace of the first UCA,
respectively, and Σs1 AR3K�3K is a diagonal matrix whose
diagonal elements are the largest 3K eigenvalues of R ~x1

.
Obviously, we have

Es1 ¼A1T1;

where T1AC3K�3K is a matrix of full rank. Then, the
orthogonality between the columns of Es1 and that of En1 ,
or equivalently the orthogonality between the columns of
A1 and that of En1 , can be exploited to derive the gen-
eralized beamspace MUSIC spectrum

Q θ; ϕ̂ k

� �
¼ 1������EH

n1
qðθ ; ϕ̂ kÞ

������2
F

; ð37Þ

where

qðθ ; ϕ̂ kÞ ¼ b1ðθ ; ϕ̂ kÞ; ∂b1ðθ; ϕ̂ kÞ=∂θ ; ∂b1ðθ ; ϕ̂ kÞ=∂ϕ̂ k�ACP0�3
h

is calculated by using (46), (48), and (50), and θ is the
azimuth DOA that will be estimated by search. With this
spectrum, the nominal azimuth DOA of the kth UT is
estimated by using the 1-D search as

θ̂ k ¼ arg max
θ

Q ðθ ; ϕ̂ kÞ: ð38Þ

It can be seen from (38) that only 1-D search is required
for estimating the nominal azimuth DOA, and the com-
putational complexity imposed is lower than that of the
generalized MUSIC (GMUSIC) approach in [34] due to the
employment of the beamspace transform.4

4.3. Estimation of angular spreads

2-D angular spreads of the K UTs can be estimated after
the nominal azimuth and elevation DOAs have been
obtained. According to (35), the estimator of Λc is for-
mulated as

Λ̂c ¼ Â
†

1 R ~x1
� σ̂2

nIP0
� �

Â
H
1

� �†
AC3K�3K ; ð39Þ

where Â1ACP0�3K is obtained by replacing θk and ϕk in A1,
cf. (23) and (28), with θ̂ k and ϕ̂ k, respectively. From the
definition of En1 below (36), it is known that the noise
4 The dimensions of a1ðθ ; ϕ̂ kÞ here are P0 and 3, while the dimensions
of a1ðθ ; ϕ̂ kÞ in [34] are M and 3, and M⪢P0 .
subspace exists only when P043K is satisfied. As long as
P043K , the estimate of the variance σ̂2

n of the noise is
obtained by averaging the smallest P0 �3K eigenvalues of
R ~x1

. According to the definition of the elements of Λc given
below (24), the angular spreads can be estimated as

σ̂ θk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Λ̂c�Kþk;Kþk

½Λ̂c�k;k

vuut ð40Þ

and

σ̂ϕk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Λ̂c�2Kþk;2Kþk

½Λ̂c�k;k

vuut ; ð41Þ

respectively.
In practice, based on the ergodicity, the covariance

matrix R ~x in (24) can be estimated as

R̂ ~x ¼ 1
T

XT
t ¼ 1

~x tð Þ ~xH tð ÞACM0�M0
: ð42Þ

Similarly, the P0 � P0 submatrix in the upper left corner of
R̂ ~x , which is denoted as R̂ ~x1

, is taken as the estimate of R ~x1

in (36).
For the sake of clarity, the proposed generalized

beamspace estimation approach, including the generalized
ESPRIT, the generalized MUSIC, and the estimation of
angular spreads, is summarized as follows.

Algorithm 1. Estimating the nominal DOAs and the
angular spreads.
Step 1) Transform the received signal vectors from element space to

beamspace and obtain ~xðtÞ by (16) and (19).

Step 2) Calculate the sample covariance matrix, R̂x , according to (42).

Step 3) Perform EVD on R̂x according to (25) and divide the signal
subspace matrix Es of the UCyA into El ; l¼ 1;2;…; L, according to
(31), then employ the TLS criterion to estimate

Ψ̂ l0 ; l
0 ¼ 1;2;…; L�1.

Step 4) Perform EVD on Ψ̂ l0 ; l
0 ¼ 1;2;…; L�1, and obtain

λl0 ;k0 ; k
0 ¼ 1;2;…;3K , then estimate ϕ̂ k; k¼ 1;2;…;K using (34).

Step 5) Perform EVD on R ~x1
according to (36), and estimate

θ̂ k ; k¼ 1;2;…;K , with 1-D search using (38).

Step 6) Estimate Λ̂c by (39), then estimate σ̂ θk and σ̂ ϕk
using (40) and

(41), respectively.

Remark 2. As opposed to the traditional element space
approaches, such as the LS-based [17,26,27] and the ML-
based [17,18] approaches, as well as the existing GMUSIC
approach [34], the proposed method estimate angular
parameters in the beamspace rather than in the element
space. Since the received signal vectors in the beamspace
are of much lower dimensions, the proposed method
exhibits significantly lower computational complexity
than the element space approaches.

According to the statement P04μr above (12), and the
statements P0Z3K and P043K below (33) and (39), the
dimension P0 of the beamspace signal vectors is only
required to be larger than both 2μrþ1 and 3K , thus P0 is
much smaller than the number of antennas of any large
UCA. The computational complexity of the proposed
approach and of the existing GMUSIC method will be
analyzed in more detail in the next section.
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5. Analysis of the proposed approach

In this section, first the error introduced by the beam-
space transform is analyzed. Then, the CRB of the proposed
approach is derived, which is more tight than the CRB
derived in [34]. Finally, the computational complexity of
the proposed approach is analyzed, and compared with
that of the existing GMUSIC method.

5.1. Analysis of error in the beamspace transform

Due to the approximations in (12)–(14), the beamspace
transform expounded in Section 3 inevitably introduces
model transformation error, hence it is crucial to analyze the
impact of this type of error on the performance of the pro-
posed beamspace estimation approach. But the error intro-
duced, i.e. εpðζk;jðtÞ; θk;jðtÞÞ in (11), has the asymptotic property

εpðζk;jðtÞ; θk;jðtÞÞ-0 as N-1: ð43Þ

A detailed proof is given in Appendix B.

Remark 3. For the lth UCA, the error caused by ignoring
the residual term εpðζk;jðtÞ; θk;jðtÞÞ and its partial derivatives
in (12)–(14) tends to zero as N-1. In other words, the
error introduced by the beamspace transform tends to
zero as the number of UCyA antennas tends to infinity.

5.2. Approximate Cramér–Rao bound

The approximate CRB derived in [34] is based on only
one UCA, which is not a realistic bound for the scenario
where the BS is equipped with L UCAs. Hence, a more
realistic CRB is derived here. For the proposed estimator,
the approximate CRB concerning the covariance matrix of
the error of the estimated signal parameter vector u is
given by

C¼ Ju;u�Ju;vJ
�1
v;v J

T
u;v

� ��1
AR4K�4K ; ð44Þ
Table 1
Parameters in the simulations.

Number of UCAs L 2
Number of antennas in each UCA N 50
Number of UTs K 6
Nominal azimuth DOAs θk 101;501;801,

1401;1801;2701
Nominal elevation DOAs ϕk 301;401;501,

601;701;801
Azimuth angular spreads σθk 11
Elevation angular spreads σϕk

11
Distance between adjacent UCAs d 0:5λ
Radius of each UCA r 2λ
Number of multipaths from the kth UT Nk 50
Variances of the path gains σ2γk

1

Variance of the received noise σ2n 1
Number of received snapshots T 500
Search precision of azimuth DOA 0:021
Number of simulation trials 200

The 2-D nominal DOAs θk , ϕk are sorted in ascending order of k; the 2-D
angular spreads σθk , σϕk

, the numbers of multipaths Nk, and the variances
of the path gains σ2γk are the same for all the UTs.
which implies

E ðû�uÞðû�uÞT
n o

ZC: ð45Þ

A detailed derivation of (44) and the definitions of the
variables used in (44) and (45) are offered in Appendix C.

Remark 4. Because the received signal is approximated by
the Taylor series expansion, we can only derive the approx-
imate Fisher information matrix (FIM) and the approximate
CRB. The approximate CRB derived is an important metric for
evaluating the performance of the proposed estimator . More
specifically, this metric is viable for demonstrating the rela-
tive advantage (rather than the absolute performance) of the
proposed estimator over the existing benchmark schemes. In
the simulation results of Section 6, the approximate CRB is
plotted as a reference to show that the proposed estimator
outperforms the estimator of 34.

5.3. Complexity analysis

In this subsection, the computational complexity of the
proposed approach is analyzed, and it is compared with that
of the existing GMUSIC method of [34] and subspace based
approach of [31]. It is shown that the computational com-
plexity of the proposed approach is significantly lower than
that of the GMUSIC method and subspace based approach.

In this paper, the notation O(n) means that the compu-
tational complexity of the arithmetic operations entailed is
linear in nARþ [44, p. 5]. The number of snapshots T is
fixed, and the computational complexity of the repre-
sentative algorithm considered is compared in the asymp-
totic sense as N-1. In addition, the number of UCAs L is
set to 2 in the comparison with the existing approach. The
computational complexities of these approaches for other
values of L may be compared in a similar way.

The computational complexities of Step 1, Step 2 and
Step 5 in Algorithm 1 are OðP0NTÞ, OðP02TÞ, and
OðP03þP02KDÞ, respectively, where D is the search dimen-
sion for estimating the nominal azimuth DOA of a single
UT. The complexity of other steps in Algorithm 1 is
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10 logarithm of the computational complexity in big O notation.
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Fig. 4. Comparison of “RMSEs versus the average received SNR from each UT” for the estimation of different angular parameters of six UTs when using
different estimation methods. (a), (b), (c), and (d) correspond to the estimation of the nominal azimuth DOA, the nominal elevation DOA, the azimuth
angular spread, and the elevation angular spread, respectively.
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OðK3þP03Þ. As a result, the computational complexity of
the proposed approach is OðNP0TþP

02
TþP

03 þK3þ
P

02
KDÞ-OðNP0TÞ as N-1. The computational complexity

of the GMUSIC approach of [34] can be calculated in a
similar manner, which is OðN2TþN3þK3þN2KDÞ-OðN3Þ
as N-1. Moreover, the computational complexity of the
subspace based approach of [31] is OðN2TþN3D0Þ-OðN3D0Þ
as N-1, where D0 is the search dimension for estimating
the nominal DOAs and the angular spreads of a single UT,
and D0⪢D.

From the above analysis, we can observe that the
computational complexity of the proposed approach is
remarkably lower than that of the existing GMUSIC and
subspace based methods for large N.
6. Numerical results

In this section, numerical results are presented to show
the performance and computational complexity of the
proposed approach, the GMUSIC approach of [34], and the
subspace based approach of [31]. Note that the subspace
based approach of [31] is expected to exhibit better
performance than these lower computational complexity
approaches, such as the proposed approach and the
GMUSIC approach. In addition, the performance is com-
pared with the approximate CRB.

The parameters of the system are given in Table 1. Note
that some of the parameters, such as the numbers of
multipaths Nk, are set the same for all users in most of our
simulations just for simplicity. However, the scenario that
each user has a different Nk is also evaluated in what fol-
lows. The dimension of the beamspace received signal
vector of each UCA, P0, is chosen to be the larger value
between ⌈2μrþ2⌉ and 3Kþ1. The transmitted signals
skðtÞ; k¼ 1;2;…;K; are BPSK modulated with covariances
σ2sk . It can be seen that the average received signal-to-noise
ratio (SNR) of each BS antenna from the kth UT is σ2sk . The
search range of the nominal azimuth DOA of the kth UT is
½θk�0:981; θkþ11�. The search is restricted in this range,
because the peak of the spectrum, cf. (37), cannot reach
the maximum by taking values out of this range. For the
subspace based approach of [31], the search range of the
nominal DOA is ½θ�0:11; θþ0:11�, where θ is the nominal
DOA; and the search range of the angular spread is
½σθ�0:11; σθþ0:11�, where σθ is the angular spread. The
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Fig. 5. Comparison of “RMSEs versus the average received SNR from each UT” for the estimation of different angular parameters of six UTs when using
different estimation methods. The numbers of multipaths are random variables. (a), (b), (c), and (d) correspond to the estimation of the nominal azimuth
DOA, the nominal elevation DOA, the azimuth angular spread, and the elevation angular spread, respectively.
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performance of these estimators is evaluated by the metric
of root mean square error (RMSE), which is averaged over
all the trials and all the UTs.

Subject to these estimation parameters, the computa-
tional complexities of the estimation approaches analyzed
in Section 5.3 can be compared explicitly. D¼
ð1�ð�0:98ÞÞ=0:02þ1¼ 102 is the number of searched
angles for estimating the nominal azimuth DOA.
D0 ¼ 114 ¼ 1:4641� 104 is the search dimension of the
angular parameters of one UT in the subspace based
approach, where 11¼ ð0:1�ð�0:1ÞÞ=0:02þ1 corresponds
to the search of the angular parameter. Meanwhile, we
have ⌈2μrþ2⌉¼ 28 and 3Kþ1¼ 19, thus the dimension of
the beamspace received signal vector of each UCA is
P0 ¼ 28. When N¼100, the computational complexity of
the proposed approach is OðNP0TþP02TþP03þK3þP02KD
Þ ¼ Oð2:3� 106Þ, the computational complexity of the
GMUSIC approach in [34] is OðN2TþN3þK3þ N2KDÞ
¼Oð1:2� 107Þ, and the computational complexity of the
subspace based approach in [31] is OðN2Tþ N3D0Þ
¼Oð1:4� 1010Þ. Obviously, the computational complexity
of the proposed approach is significantly lower than that
of the methods of [34,31]. Therefore, the proposed
approach is more favorable for implementation in massive
MIMO systems. In Fig. 3, the computational complexity
versus the number of UCA antennas is shown. It is clear
that the proposed approach is of much lower computa-
tional complexity than the existing GMUSIC approach and
subspace based approach for large UCAs. Since the com-
putational complexity of the subspace based approach in
[31] is very high, we only compare the proposed approach
with this approach in Fig. 4, which shows the performance
penalty of the proposed approach relative to the subspace
based approach of [31].

In Fig. 4, RMSEs of the estimated nominal DOAs and
angular spreads versus the average received SNR from each
UT are shown. This figure shows that the RMSEs of the
proposed approach are close to that of the GMUSIC in [34].
The RMSEs of the subspace based approach in [31] are
almost invariant with the SNR. This is because the subspace



50 100 150 200 250 300
10−2

10−1

100

The number of BS antennas

R
M

SE
 o

f θ
 e

st
im

at
e 

 (d
eg

re
es

)

50 100 150 200 250 300
10−2

10−1

100

101

The number of BS antennas

R
M

SE
 o

f φ
 e

st
im

at
e 

 (d
eg

re
es

)

50 100 150 200 250 300
10−2

10−1

100

101

The number of BS antennas

R
M

SE
 o

f σ
θ e

st
im

at
e 

 (d
eg

re
es

)

50 100 150 200 250 300
10−2

10−1

100

101

102

103

The number of BS antennas

R
M

SE
 o

f σ
φ e

st
im

at
e 

 (d
eg

re
es

)

GMUSIC [34]
Proposed
CRB (71)
Subspace [31]

GMUSIC [34]
Proposed
CRB (71)
Subspace [31]

GMUSIC [34]
Proposed
CRB (71)
Subspace [31]

GMUSIC [34]
Proposed
CRB (71)
Subspace [31]

Fig. 6. Comparison of “RMSEs versus the number of BS antennas M” for the estimation of different angular parameters of six UTs when using different
estimation methods. (a), (b), (c), and (d) correspond to the estimation of the nominal azimuth DOA, the nominal elevation DOA, the azimuth angular
spread, and the elevation angular spread, respectively.
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based approach does not need high SNR to achieve its best
performance. This result coincides with the simulation
result in [31]. For the nominal azimuth DOA and the angular
spreads, the RMSEs of the proposed approach are smaller
than that of the subspace based approach in the high SNR
region. For the nominal elevation DOA, the RMSE of the
proposed approach gets close to that of the subspace based
approach as the SNR increases. In addition, the RMSEs of
the angular spread estimates of the proposed approach get
close to the approximate CRB as the SNR increases. These
results demonstrate that the proposed approach performs
better than the approach of [31] and performs close to the
approach of [34] in massive MIMO systems.

In Fig. 5, we evaluate the RMSEs versus the average
received SNR from each UT when assuming that each UT has
a different number of multipaths. The number of multipaths
of the kth user, Nk, is an independent random variable in the
interval [1, 100]. We can see that the RMSEs of the DOA
parameters estimated by the proposed approach and the
GMUSIC approach of [34] decrease when the SNR increases,
while the RMSEs resulted by using the subspace based
approach of [31] slowly increase. These results demonstrate
that if each UT has a different number of multipaths, the
proposed approach exhibits a better performance than that
of [31] when the SNR is high, and it performs close to that of
[34] in the entire SNR region considered.

In Fig. 6, RMSEs of the estimated nominal DOAs and
angular spreads versus the number of UCA antennas are
shown, where the average received SNR from each UT is set
to 10 dB. We observe that the RMSE performance of the
proposed approach is worse than that of [34,31] when the
number of UCA antennas is less than 100. However, the
RMSEs of the proposed approach decrease faster than that
of [34] as the number of UCA antennas increases, and
become lower than that of [34] when the number of UCA
antennas is larger than 100. Meanwhile, the RMSEs of these
DOA parameters estimated by the subspace based approach
of [31] are almost invariant when the number of UCA
antennas increases, which implies that the subspace based
approach has roughly its best possible performance when
the number of UCA antennas is not large. These results
indicate that the estimation error caused by ignoring the
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Fig. 7. Comparison of “RMSEs versus the number of UTs” for the estimation of different angular parameters of multiple UTs when using different esti-
mation methods. (a), (b), (c), and (d) correspond to the estimation of the nominal azimuth DOA, the nominal elevation DOA, the azimuth angular spread,
and the elevation angular spread, respectively.
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residual term in (11) is large when the number of UCA
antennas is small, and this estimation error decreases as the
number of UCA antennas increases, which in turn improves
the performance of the proposed approach. As a result, the
proposed approach tends to outperform that of [34,31] as
the number of UCA antennas increases. It is widely expec-
ted that the number of antennas can be a hundred or a few
hundred in LSASs [45,46]. Thus, the proposed approach is
more attractive than the GMUSIC and Subspace approach in
future massive MIMO systems.

In Fig. 7, RMSEs of the estimated nominal DOAs and
angular spreads versus the number of UTs are shown. We
assume that two more UTs send signals to the BS, thus
there are eight UTs send signals to the BS. Additionally, the
nominal azimuth DOAs are θ7 ¼ 2401; θ8 ¼ 2701, and the
nominal elevation DOAs are ϕ7 ¼ 101;ϕ8 ¼ 201. From Fig. 7
we can see that the RMSEs of the proposed approach and
of the GMUSIC approach of [34] increase when the number
of UTs is increased. This is because increasing of the UTs
augments of the remainder of the Taylor series in (21).
As a result, the performance of the proposed approach
degrades as the number of the UTs increases. In contrast,
the RMSEs of the subspace based approach of [31] increase
slowly when the number of the UTs is increased since the
nominal DOAs of the UTs are estimated by only searching
around the true values in the subspace based approach.
The extension of the proposed approach to support more
UTs is our future work.
7. Conclusions

In this paper, a generalized low-complexity generalized
beamspace approach is proposed for 2-D localization of ID
sources in the context of massive MIMO systems that rely on
systems which use a large-scale UCyA. The problem con-
sidered entails estimating nominal azimuth and elevation
DOAs and the corresponding angular spreads of multiple
UTs. As a beneficial result of transforming the received signal
vectors from the element space into the beamspace, the
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dimensions of the received signal vectors are reduced.
Additionally, for benchmarking purpose, the ESPRIT and
MUSIC based methods are extended to the considered sce-
nario of the 2-D localization of ID sources. Compared with
the generalized MUSIC approach which is the simplest
among the traditional methods, the proposed approach not
only has better performance, though marginally, but also
imposes significantly lower computational complexity up to
several orders of magnitude in the considered massive
MIMO systems. Only small angular spread is considered in
our paper. The extension of the proposed approach to the
scenario where sources having large angular spreads may be
addressed in our future work.
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Appendix A
Proof of the Proposition 1. By substituting (12) into (18)
and replacing θk;jðtÞ;ϕk;jðtÞ with θk;ϕk, we obtain

½blðθk;ϕkÞ�pþPþ1 ¼ αp;k exp � iμdðl�1Þ cos ðϕkÞ
� 	

; ð46Þ

where αp;k ¼
ffiffiffiffi
N

p
JpðζkÞ exp ipθk

� 	
and ζk ¼ μr sin ðϕkÞ. Obvi-

ously, the following linear recurrence relation:

bl0 þ1ðθk;ϕkÞ ¼ bl0 ðθk;ϕkÞ exp � iμd cos ðϕkÞ
� 	 ð47Þ

holds true for l0 ¼ 1;2;…; L�1. Similarly, from (13) and
(18), we have

∂½blðθk;ϕkÞ�pþPþ1

∂θk
¼ ipαp;k exp � iμdðl�1Þ cos ðϕkÞ

� 	 ð48Þ

and the linear recurrence relation

∂bl0 þ1ðθk;ϕkÞ
∂θk

¼ ∂bl0 ðθk;ϕkÞ
∂θk

exp � iμd cos ðϕkÞ
� 	

: ð49Þ

Furthermore, similar to the derivation of (46), from (14)
and (18), we obtain the relation

∂½blðθk;ϕkÞ�pþPþ1

∂ϕk
¼ βp;kexp � iμdðl�1Þ cos ðϕkÞ

� 	
þ iμdαp;k sin ðϕkÞðl�1Þexp � iμdðl�1Þ cos ðϕkÞ

� 	
; ð50Þ

where

βp;k ¼
ffiffiffiffi
N

p
Jp�1ðζkÞ� Jpþ1ðζkÞ
� �

exp ipθk
� 	 1

2
μr cos ϕk

� 	� �
:

Consequently, the linear relation

∂bl0 þ1ðθk;ϕkÞ
∂ϕk

¼ ∂bl0 ðθk;ϕkÞ
∂ϕk

exp � iμd cos ðϕkÞ
� 	

þ iμd sin ðϕkÞαp;kexp � iμdl0 cos ðϕkÞ
� 	 ð51Þ
is established. Substituting (46) into (51), we obtain

∂bl0 þ1ðθk;ϕkÞ
∂ϕk

¼ ∂bl0 ðθk;ϕkÞ
∂ϕk

þbl0 θk;ϕk
� 	

iμd sin ϕk
� 	� �

�exp � iμd cos ðϕkÞ
� 	

: ð52Þ

For the sake of conciseness, the linear recurrence relations
in (47), (49) and (52) can be reformulated into the matrix
form of Proposition 1.
Appendix B. Proof of the asymptotic property

Substituting (2), (8), and (9), into (10), we have

f p;l θk;j tð Þ;ϕk;j tð Þ
� 	¼ 1

N

XN
n ¼ 1

exp ipϑnð Þ

�exp iμr sin ðϕk;jðtÞÞ cos ðθk;jðtÞ�ϑnÞ
� 	

�exp � iμdðl�1Þ cos ðϕk;jðtÞÞ
� 	

: ð53Þ

When the number of antennas in each UCA tends to infi-
nity, i.e., N-1, (53) is reformulated as

f p;l θk;j tð Þ;ϕk;j tð Þ
� 	

-
1
2π

Z 2π

0
exp ipϑð Þ

�exp iμr sin ðϕk;jðtÞÞ cos ðθk;jðtÞ�ϑÞ� 	
�exp � iμdðl�1Þ cos ðϕk;jðtÞÞ

� 	
dϑ

¼ ipJpðζk;jðtÞÞexp ipθk;jðtÞ
� 	

�exp � iμdðl�1Þ cos ðϕk;jðtÞÞ
� 	

: ð54Þ

Comparing (11) with (54), we get the asymptotic property
εpðζk;jðtÞ; θk;jðtÞÞ-0 as N-1.
Appendix C. Derivation of the approximate CRB

First, the array manifold, cf. (2), for θk;jðtÞ and ϕk;jðtÞ, is
approximated by

aðθk;jðtÞ;ϕk;jðtÞ
� �

m � expðiμ½r sin ðϕkÞ cos ðθk�ϑnÞ
�dðl�1Þ cos ðϕkÞ�Þ
�exp iμ ~ϕk;jðtÞ r cos ðϕkÞ cos ðθk�ϑnÞ

��
þdðl�1Þ sin ðϕkÞ

��
�exp iμ ~θk;jðtÞ �r sin ðϕkÞ sin ðθk�ϑnÞ

� �� 	
;

ð55Þ
where m;n; l are defined in (2). This approximation is
similar to that of [27]. According to (55), the covariance
matrix Rx of the received signal vector xðtÞ in (1) is given
by

Rx � E xðtÞxHðtÞ
 �¼ XK
k ¼ 1

σ2kΞkþσ2nIM ; ð56Þ

where σ2k ¼ σ2skσ
2
γk
. Furthermore, Ξk can be written as

Ξk ¼ aðθk;ϕkÞaHðθk;ϕkÞ
� 	 � Bk ¼DkBkD

H
k ; ð57Þ

where Dk ¼ diagðaðθk;ϕkÞÞACM�M , and each entry of
BkARM�M equals

½Bk�m1 ;m2
¼ exp �1

2
μ2 η2k;m1 ;m2

þρ2k;m1 ;m2

� �� �
;
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in which ηk;m1 ;m2
¼ σϕk

r cos ðϕkÞð cos ðθk�ϑn1 Þ� cos
�

ðθk�ϑn2 ÞÞþ dðl1� l2Þ sin ðϕkÞ�, ρk;m1 ;m2
¼ σθk r sin ðϕkÞð sin ðθk

�ϑn1 Þ� sin ðθk�ϑn2 ÞÞ, m1 ¼Nðl1�1Þþn1, and m2 ¼Nðl2
�1Þþn2. Here we have n1 ¼ 1;2;…;N;n2 ¼ 1;2;…
;N; l1 ¼ 1;2;…; L, and l2 ¼ 1;2;…; L.

In Section 2, we have already verified that the received
signal xðtÞ is a zero-mean circularly symmetric complex-
valued Gaussian vector. Typically, the FIM is required for
deriving the CRB. Because the received signal is approxi-
mated with the aid of (55), we can only derive the
approximate FIM and the approximate CRB. This explains
why we introduced the term “approximate CRB”. Let us
define u¼ ½uT

θ
;uT

ϕ
;uT

σθ
;uT

σϕ
�T AR4K�1, v¼ ½σ21; σ22;…; σ2K ;

σ2n�T ARðKþ1Þ�1, and ξ¼ ½uT ; vT �T ARð5Kþ1Þ�1, where
uθ ¼ ½θ1; θ2;…; θK �T ARK�1, uϕ ¼ ½ϕ1;ϕ2;…;ϕK �T ARK�1,
uσθ ¼ ½σθ1 ; σθ2 ;…; σθK �T ARK�1, and uσϕ ¼ ½σϕ1

; σϕ2
;…; σϕK

�T
ARK�1, then the approximate (finite-sample) Fisher
information matrix (FIM) Jξ;ξARð5Kþ1Þ�ð5Kþ1Þ is expressed
as [47, p. 525]

½Jξ;ξ�q;q0 ¼ T tr R�1
x

∂Rx

∂½ξ�q
R�1
x

∂Rx

∂½ξ�q0

 !
; ð58Þ

where q¼ 1;2;…;5Kþ1; q0 ¼ 1;2;…;5Kþ1, and T is the
number of received signal snapshots. From (56) and (57),
the following partial derivatives can be obtained, which
are

∂Rx

∂θk
� σ2k Dθk

DkBkD
H
k �DkBkD

H
k Dθk

þDk Bk � Bθk

� �
DH

k

� �
;

∂Rx

∂ϕk
� σ2k Dϕk

DkBkD
H
k �DkBkD

H
k Dϕk

þDk Bk � Bϕk

� �
DH

k

� �
;

∂Rx

∂σθk
� σ2k DkðBk � Bσθ ;kÞDH

k

� �
;

∂Rx

∂σϕk

� σ2k DkðBk � Bσϕ ;kÞDH
k

� �
;

∂Rx

∂σ2k
�DkBkD

H
k ;

∂Rx

∂σ2n
� IM ;

where Dθk
ACM�M , Dϕk

ACM�M , Bθk
ACM�M , Bϕk

ACM�M ,
Bσθ ;kACM�M , and Bσϕ ;kACM�M are defined as

½Dθk
�m;m ¼ � iμr sin ϕk

� 	
sin θk�ϑn
� 	

;

½Dϕk
�m;m ¼ iμ r cos ϕk

� 	
cos θk�ϑn

� 	þd l�1ð Þ sin ϕk
� 	� �

;

½Bθk
�m1 ;m2

¼ �ηk;m1 ;m2
μ2σϕk

r cos ϕk
� 	� � sin θk�ϑn1

� 	�
þ sin θk�ϑn2

� 		�ρk;m1 ;m2
μ2σθk r sin ϕk

� 	
cos θk�ϑn1

� 	� cos θk�ϑn2
� 	� 	

;

½Bϕk
�m1 ;m2

¼ �ηk;m1 ;m2
μ2σϕk

� �r sin ðϕkÞð cos ðθk�ϑn1 Þ
�

� cos ðθk�ϑn2 ÞÞþdðl1� l2Þ cos ðϕkÞ
�

�ρk;m1 ;m2
μ2σθk r cos ϕk

� 	
� sin θk�ϑn1

� 	� sin θk�ϑn2
� 	� 	

;

½Bσθ ;k�m1 ;m2
¼ � μ2

σθk
ρ2k;m1 ;m2

;

and

½Bσϕ ;k�m1 ;m2
¼ � μ2

σϕk

η2k;m1 ;m2
;

respectively. Note that Dθk
;Dϕk

are diagonal matrices.
Similar to (58), Ju;uAR4K�4K , Ju;vAR4K�ðKþ1Þ, and Jv;vA
RðKþ1Þ�ðKþ1Þ can be defined, and they are related to Jξ;ξ by

Jξ;ξ ¼
Ju;u Ju;v
JTu;v Jv;v

" #
: ð59Þ

Finally, invoking the simple block matrix inversion lemma
[48], the CRB concerning the covariance matrix of the
estimation error of the angular parameter vector u is
obtained as (44) and (45).
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