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INTRODUCTION

In the permanently stratified waters of the oligo -
trophic ocean, primary production is limited or co-
 limited by the availability of nitrogen (Smith et al.
1986, Moore et al. 2013). At the base of the euphotic
zone, however, a number of studies have reported en -
hanced rates of nitrate uptake indicative of algal
growth on a deep nitrate (NO3

−) reservoir (King &
Devol 1979, Le Bouteiller 1986, Lewis et al. 1986,
Eppley & Koeve 1990, Painter et al. 2007). Infrequent
observation of this NO3

− uptake maximum has not
prevented recognition of a deep perennial layer of
new production in the subtropical ocean (Ward et al.
1989, Harrison 1990). This layer has also been linked
to the export of organic material to the ocean interior
(Coale & Bruland 1987, Small et al. 1987, Kemp et al.
2000) and with a distinct phytoplankton assemblage
(the ‘shade flora’; Venrick 1982, 1988).

The depth of the nitracline oscillates vertically
on seasonal timescales, being deepest in the sum-
mer months and shallowest during winter (Letelier
et al. 2004). This vertical migration is primarily
driven by changes in irradiance, promoting a bio-
logical response that varies over the same
timescale. Yet, despite general descriptions of a
deep layer of new production having been avail-
able for over 20 years, identification of the respon-
sible organisms and explanations for the fate of
the consumed NO3

− remain equivocal. This is in
part driven by our limited understanding of how
factors other than slowly changing irradiance
intensities impact the lower reaches of the euphotic
zone (Letelier et al. 2004, Dore et al. 2008, Dave &
Lozier 2010), but also by limited understanding of
picoplankton community structure at depth (Fuller
et al. 2006, Worden & Not 2008, Grob et al. 2011,
Kirkham et al. 2013).
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ABSTRACT: We investigated the relationship between picoeukaryote phytoplankton (<2 µm) and
the deep layer of new production (NO3

− uptake) in the nitracline of the eastern subtropical North
Atlantic Ocean. Indices of NO3

− uptake kinetics obtained within the lower 15% of the euphotic
zone demonstrate that subsurface NO3

− uptake maxima are coincident with localised peaks in
maximum uptake rates (Vmax) and, crucially, with maximum picoeukaryote abundance. The mean
rate of NO3

− utilization at the nitracline is typically 10-fold higher than in surface waters despite
much lower in situ irradiance. These observations confirm a high affinity for NO3

−, most likely by
the resident picoeukaryote community, and we conservatively estimate mean cellular uptake
rates of between 0.27 and 1.96 fmol NO3

− cell−1 h−1. Greater scrutiny of the taxonomic composition
of the picoeukaryote group is required to further understand this deep layer of new production
and its importance for nitrogen cycling and export production, given longstanding assumptions
that picoplankton do not contribute directly to export fluxes.
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Suggestions for the fate of the consumed NO3
−

include the production of dissolved organic nitrogen
(DON) (Bronk et al. 1994, Bronk & Ward 2000), lux-
ury uptake (or intracellular storage) by vertically
migrating species (Villareal et al. 1993, 1996, 1999) or
increased intracellular storage in non-migratory spe-
cies (i.e. the rate of nutrient transport into the cell
exceeds the rate of NO3

− reduction to NO2
−; Collos &

Slawyk 1980). In addition, the partial reduction of
NO3

− to NO2
− and excretion to the surrounding water

under conditions of light limitation (Raimbault 1986,
reviewed by Lomas & Lipschultz 2006) may be an
alternative sink for NO3

−. Importantly, these pro-
cesses may occur with a variable C:N stoichiometry
or without associated organic carbon synthesis, lead-
ing to discrepancies in the interpretation of produc-
tion and NO3

− uptake rates. To this list of explana-
tions may be added heterotrophic bacterial NO3

−

uptake (Wheeler & Kirchman 1986, Kirchman 1994,
2000, Fouilland et al. 2007) which, as well as acting
as a sink for NO3

− in the absence of photosynthetic
production, has important implications when subse-
quent bacterivory is considered (Zubkov & Tarran
2008, Hartmann et al. 2012). However, it is far from
clear whether heterotrophic bacterial NO3

− uptake is
widespread in the ocean. Thus, whilst we can be con-
fident that enhanced rates of NO3

− uptake do occur at
the nitracline, multiple potential mechanisms pre-
vent a simple explanation for the fate of this nitrogen
from being identified.

Correct diagnosis ultimately depends on the cor-
rect identification of the responsible organisms. It
is now well established that primary production
in subtropical waters is dominated by picoplank-
ton (<2 µm), including the numerically abundant
cyanobacteria Prochlorococcus spp. (Chisholm et
al. 1988, Partensky et al. 1999) and Synechococcus
spp. (Waterbury et al. 1979), which together often
ac count for >50% of primary production in these
waters (Agawin et al. 2000, Paerl 2000). A signifi-
cant contribution (>40%) to total primary produc-
tion and biomass is also made by less numerous
eukaryotic phytoplankton (Li 1994, Zubkov et al.
2003, Jardillier et al. 2010). The numerical domi-
nance of Prochlorococcus in surface waters has
been linked to a preference for recycled or organic
nutrient forms (Zubkov et al. 2003) and studies
have re vealed high rates of urea utilization associ-
ated with this organism (Casey et al. 2007, Painter
et al. 2008). Furthermore, an in ability to utilize
NO3

− within cultured ecotypes (Moore et al. 2002,
Scanlan & Post 2008, Partensky & Garczarek 2010)
suggests, as assumed in this study, that this organ-

ism can be excluded from consideration as a cause
of deep NO3

− uptake maxima. However, there
have been reports that wild populations of the low
light ecotype of Prochlorococcus may be capable
of NO3

− assimilation or responsive to NO3
− concen-

trations, so this exclusion remains subjective pend-
ing definitive confirmation (Casey et al. 2007, Mar-
tiny et al. 2009a,b, Malmstrom et al. 2010). The
closely related species Synechococcus is known to
utilise NO3

− (Glover et al. 1988a), but at low irradi-
ances Synechococcus is outcompeted by photosyn-
thetically more efficient eukaryote phytoplankton
adapted to blue-violet spectral wavelengths (Wood
1985, Glover et al. 1986, 1987, Prezelin et al.
1989). Consequently, Synechococcus typically as -
sumes a shallower abundance maximum compared
to some eukaryotic phytoplankton, which can be
noticeably shallower than the nitracline (Murphy &
Haugen 1985). This suggests that Synechococcus
can also be excluded from consideration as a cause
of deep NO3

− uptake maxima, though it should be
stressed that Synechococcus responds strongly to
near- surface eutrophication events (Glover et al.
1988a).

Eukaryotic phytoplankton are less abundant but
more geographically widespread than their pro -
karyotic counterparts. It has long been known that
eukaryotes form a characteristic maximum at the
base of the euphotic zone coincident with the nitra-
cline and deep chlorophyll maximum (Cullen 1982,
Venrick 1982, Glover et al. 1988b). This maximum
is now known to be mainly composed of small
(<2 µm) (pico) eukaryote cells that are well adapted
to conditions of low irradiance and elevated nutri-
ent concentrations. Picoeukaryotes, therefore, are a
key candidate group for influencing both the sea-
sonal migration of the nitracline and for causing the
widespread deep NO3

− uptake maximum. Recently,
Fawcett et al. (2011) presented compelling evidence
that wild populations of prokaryotic and eukaryotic
phytoplankton could be distinguished isotopically,
indicating that different plankton groups favour
different nutrient reservoirs. In particular, the find-
ing that eukaryotic cells appear isotopically similar
to deep ocean NO3

− suggests that the deep NO3
−

uptake maximum is linked to picoeukaryote com-
munities. In this study, we present results from a
series of experiments conducted across the lower
15% of the euphotic zone of the eastern subtropical
North At lantic in conjunction with observations of
the picoplankton community to investigate the
potential role of picoeukaryotes in NO3

– uptake at
the nitracline.
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MATERIALS AND METHODS

Cruise overview and environmental setting

All samples were collected in August and Septem-
ber 2011 during a cruise to the eastern North Atlantic
Subtropical Gyre. The main working area was nomi-
nally located at 26.2° N, 31.1° W and broadly defined
by a box approximately 160 × 160 km in size (see
Fig. 1). The environmental setting for our observa-
tions was that of a typical subtropical location with a
shallow surface mixed layer and a deep euphotic
zone. The mixed layer depth (±1 SD; SD used through-
out), calculated following de Boyer Montegut et al.
(2004), averaged 28 ± 15 m (n = 90). The depth of the
euphotic zone (0.1% of surface irradiance) was deter-
mined from measurements of the water column
attenuation coefficient (kd), which were obtained
from vertical irradiance profiles measured around
local noon. The average kd for the cruise was 0.044 ±
0.002 m−1 (range 0.041− 0.048; n = 17) and the mean
depth of the 0.1% iso lume was 158 ± 7 m. Water sam-
ples for the measurement of nutrient concentrations,
picoplankton enu me ra tion, NO3

− uptake rates and
general environmental characterisation were collected
with a Seabird 9/11+ CTD-Niskin rosette package.

Nutrient and chlorophyll  measurements

Nitrate (NO3
− + NO2

−) concentrations were meas-
ured using sensitive liquid waveguide capillary tech-
niques providing nanomolar sensitivity with a detec-
tion limit of 0.5 nmol l−1 (Patey et al. 2008, 2010), and
with standard auto analyser techniques with a de -
tection limit of ~0.05 µmol l−1 (Kirkwood 1996). Both
datasets were carefully analysed before being merged.
In situations where measurements were available
from both instruments (typically the upper nitracline)
preference was given to the nanomolar measure-
ments due to the greater sensitivity and precision of
the analyses. In this study we de fined the nitracline
as the depth where NO3

− concentration equalled
100 nmol l−1. This depth was obtained from each indi-
vidual nutrient profile via linear interpolation where
necessary.

Discrete chlorophyll concentrations were measured
fluorometrically from 250 ml or 500 ml seawater sam-
ples collected from CTD Niskin bottles and filtered
onto 25 mm (~0.7 µm pore size) glass fibre filters fol-
lowing Welsch meyer (1994). All chlorophyll extrac-
tions were made in 90% acetone at 4°C overnight
with extracts measured using a Turner Trilogy fluo-

rometer calibrated against a pure chlorophyll a stan-
dard (spinach extract from Sigma Aldrich). CTD
chlorophyll fluorescence profiles were linearly cali-
brated against discrete chlorophyll measurements
using the calibration equation y = 2.5766x − 0.0124
(R2 = 0.93, n= 196), where y is the calibrated chloro-
phyll fluorescence profile (mg m−3) and x the meas-
ured chlorophyll concentration (mg m−3). No attempt
to account for surface quenching of the fluorescence
profiles was made.

Primary production and nitrate uptake

Nitrate and carbon uptake rates were measured
with the stable isotopes 15N and 13C using a dual iso-
topic labelling approach (e.g. Slawyk et al. 1977). Wa-
ter samples were collected from 6 depths representing
supra-nitracline, nitracline and sub-nitracline waters.
We focussed upon depths nominally representing
15% (~50 m), 10% (~60 m), 5% (~80 m), deep chloro-
phyll maximum (~125 m), 0.5% (~140 m) and 0.1%
(~160 m) of surface irradiance. Post-cruise analysis in-
dicated that sampling depths were gen erally appro-
priate but that in some cases sampling was deeper
than expected. Thus, in reality our samples spanned
13 to 0.01% (50 to 200 m) of surface irradiance.

At each depth, a 2 l volume of seawater was care-
fully measured and added to a clean acid-rinsed poly -
carbonate bottle. To each bottle, we added 105 µmol
l−1 of 13C-labelled sodium bicarbonate (Cambridge
Isotope Laboratories; 4.205 g per 100 ml deionised
water, pH adjusted with NaOH), in addition to a vari-
able concentration of 15N-labelled KNO3

− (Cambridge
Isotope Laboratories; 5.266 mg per 100 ml deionised
water), with additions that ranged from 1 nmol l−1 at
supra-nitracline depths to 50 nmol l−1 for samples
within the nitracline. 13C additions were made at a
level representing 5% of the dissolved inorganic car-
bon (DIC) pool (~2100 µmol l−1). Efforts were made to
keep 15N spike additions to an absolute minimum to
avoid promoting or skewing uptake rates, and the
average tracer addition represented just 11% of the
ambient NO3

− concentration. All samples were incu-
bated for 4 to 6 h using a Fytoscope FS130 plant
growth chamber (Photon Systems Instruments, www.
psi .cz), which provided precise control over tempera-
tures and irradiance levels using cool white LEDs. To
provide a graduated light range, sample bottles were
still shielded using optical light filters (Lee Filters)
and stacked vertically within the growth chamber
with the deepest sample at the bottom to provide
additional shading. The ambient irradiance level was
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set to 170 µmol photons m−2 s−1, equivalent to the typ-
ical irradiance intensity at a depth of 59 m. The incu-
bation temperature was held constant for each incu-
bation and set according to the temperature profile
on the day of sampling. Typically, there was a 4 to
5°C decrease in temperature between the sea surface
(>24°C) and the sampled depths: hence, 20°C was
often appropriate for sample incubation. After incu-
bation, all samples were gently filtered onto ashed
(450°C, >6 h) 25 mm GF/F filters, rinsed with a weak
(1%) HCl solution to remove inorganic carbon and
residual incubation  water enriched in15N/13C and
frozen at −20°C. Upon return to shore, all filters were
oven-dried (40°C) overnight and pelleted into tin

capsules using a laboratory press, then
analysed for carbon and nitrogen
abundance and isotopic content on a
GV Isoprime mass spectrometer cou-
pled to a Eurovector elemental ana -
lyser. All analyses were conducted
using a laboratory elemental and iso-
topic standard (tyrosine) to monitor for
instrumental drift. Uptake rates were
calculated using the equations of Dug-
dale & Wilkinson (1986). The natural
abundance of 13C as measured from
independent particulate samples was
set to 1.079% (δ13CVPDB = −29.01‰).
Estimates of daily rates were calcu-
lated from hourly uptake rates by mul-
tiplying carbon fixation rates by 12
and NO3

− uptake rates by 18 to
account for dark uptake at a rate 50%
that of daytime rates (Mulholland &
Lomas 2008).

Pico- and nanoplankton enumeration 
and classification

Water samples for photosynthetic
pico- and nanoplankton enumeration
were collected from CTD Niskin bottles
and analysed by flow cytometry (FAC-
Sort Becton-Dickinson) as de scribed
by Zubkov et al. (1998) and Tarran et
al. (2006). Briefly, seawater samples
were collected in clean 250 ml polycar-
bonate bottles without fixative and
analysed within 3 h of collection. Sam-
ples were refrigerated in the dark at
4°C until analysed. Unstained samples
were counted at a calibrated flow rate

for 3 to 4 min using known concentrations of Beck-
man Coulter Flowset fluoro spheres. Prochlorococcus,
Synecho co ccus, pico euka ryote (<2 µm) and nano -
eukaryote (approx. 2 to 12 µm) cells were identified
based upon group- specific side scattering and
orange (585 ± 21 nm) and red (>650 nm) autofluores-
cence properties. Size classes were determined by
filtration as de scribed in Tarran et al. (2006).

Community growth rates

Community growth rates (μ) were estimated using
the approach suggested by Marañón (2005) where 
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and where PB is the rate of carbon fixed per unit
chlorophyll a (mg C [mg chl a]−1 d−1) and the C:chl a
ratio (mg C [mg chl a]−1) is determined as follows.
Cell counts of Prochlorococcus, Synechococcus, nano -
eu ka ryotes and picoeukaryotes were first converted
to carbon biomass estimates using the cell conversion
factors reported by Zubkov et al. (2000a,c), Perez et
al. (2006) and Tarran et al. (2006); 32 fg C cell−1 for
Prochlorocccus, 103 fg C cell−1 for Synecho coccus,
1496 fg C cell−1 for pico eukaryotes and 3350 fg C
cell−1 for nanoeukaryotes. C:chl a ratios were sub se -
quently calculated from estimates of total carbon bio -
mass and corresponding chlorophyll measurements.

RESULTS

Chlorophyll and nutrient concentrations

Chlorophyll concentrations were typically 0.05 mg
m−3 at the surface but increased to between 0.15 and
0.35 mg m−3 at the deep chlorophyll maximum. The
depth of the chlorophyll maximum varied from 105 to
159 m with a cruise mean depth of 129 ± 11 m
(n = 90), which was 25 m deeper than the mean depth
of the traditional euphotic zone (1% isolume; 105 ±
4 m). Using the cruise mean attenuation coefficient
we calculated that the deep chlorophyll maximum
was located at a mean irradiance intensity of 0.39%
of surface irradiance.

The mean NO3
− concentration across the upper

100 m of the water column was 7.1 ± 1.8 nmol l−1

(n = 495). The mean nitracline depth was 129 ± 13 m
(n = 89) with individual determinations ranging from
95 to 160 m depth (Fig. 1b). The mean depth of the
nitracline was also clearly deeper than the 1% light
level and located at a depth equivalent to 0.41% of
surface irradiance; thus, the deep chlorophyll maxi-
mum and the nitracline were coincident. A north−
south gradient in nitracline depth was evident across
our study site with the nitracline being deeper in the
north than in the south (Fig. 1b).

Pico- and nanoplankton distribution

The distribution of pico- and nanoplankton groups
is shown in Fig. 2. A clear layered vertical structure
was apparent with notable associations between dif-
ferent plankton groups and prominent biogeochemi-

cal features. Prochlorococcus, Synechococcus and the
nanoeukaryotes were all broadly distributed over the
upper 150 m of the water column. The depth of max-
imum abundance for each group was located within
the upper 100 m and peak abundances were located
at 84 m, 68 m and 34 m for Prochlorococcus, Syne-
chococcus and the nanoeukaryotes, respectively. In
contrast, the peak abundance of pico eukaryotes was
located deeper in the water column at 120 m.

The depth of maximum Prochlorococcus abundance
(typically 2 × 105 to 3 × 105 cells ml−1) was coincident
with the pronounced subsurface oxygen maximum
that is characteristic of the subtropical ocean (Hay-
ward 1994, Riser & Johnson 2008). Although notice-
ably shallower, peak Synechococcus abundance
(2500 to 4000 cells ml−1) was also closely associated
with the upper slope of the oxygen maximum. The
deep chlorophyll maximum was clearly deeper than
the depth of peak abundance in Pro chlo ro coc cus,
Synechococcus and nanoeukaryotic phytoplankton
but was coincident with maximum picoeukaryote
abundance (>2000 cells ml−1). Picoeukaryotes there-
fore appeared predominately responsible for the
presence of a deep chlorophyll maximum. Maximum
picoeukaryote abundance was also more closely
related to the depth of the nitracline than was the
case for Prochlorococcus, Synechococcus or the larger
nanoeukaryote group. The data does indicate how-
ever, that a proportion of the Prochlorococcus com-
munity, representing the low light ecotype, was also
located at the nitracline.

Prochlorococcus cell abundance dominated at all
depths and generally represented >96% of total
 photo synthetic cell abundance (Prochlorococcus +
Synechococcus + nanoeukaryotes + picoeukaryotes).
Consequently, the mean contribution made by Syne-
chococcus, nanoeukaryote and picoeukaryote cells
was generally low (<4%), though there were notable
vertical patterns. The mean contribution made by
Synechococcus reduced 5-fold from 2.1 ± 0.8% in the
upper 50 m to 0.38 ± 0.43% between 100 and 150 m,
with typical contributions of less than 0.1% at 150 m.
In contrast the mean contribution made by pico -
eukaryotes increased 7-fold with depth from 0.7 ±
0.35% in the upper 100 m, to 1.8 ± 1.3% between 100
and 150 m and finally to 5 ± 3.3% between 150 and
200 m. Larger nanoeukaryotes cells were a small
component of the total photosynthetic cell abun-
dance at all depths with mean contributions of 0.14 ±
0.08% between 0 and 50 m, 0.06 ± 0.03% between 75
and 125 m and 0.26 ± 0.45% between 150 and 200 m.

The mean contribution made to total photosyn-
thetic biomass by each group within the upper 100 m

P
C : chl

B

μ =
a
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was 4.1 ± 1.2% for Synechococcus, 9.5 ± 3.2% for
nanoeukaryotes, 21.4 ± 5.6% for picoeukaryotes and
67.5 ± 8.9% for Prochlorococcus. The contributions
made by both Synechococcus and the nanoeukary-
otes to total biomass decreased only slightly with
depth, whereas the dominance shown by pico eu ka -
ryotes versus Prochlorococcus switched. In the 100 to
150 m depth range, picoeukaryotes represented 38.8
± 17.8% and Prochlorococcus 56.7 ± 17.6% of total
biomass; there were strong gradients in this region
and by 150 m depth photosynthetic biomass was
dominated by picoeukaryote cells. Between 150 and
200 m picoeukaryotes represented 63.5 ± 7.5% of the

biomass whilst Prochlorococcus, as the next most
dominant contributor, represented 29.7 ± 8.3%.

Primary production and NO3
− uptake

Vertical profiles of NO3
− uptake (ρNO3

−), carbon
fixation and chlorophyll fluorescence are presented
in Fig. 3. Rates of NO3

− uptake ranged from 0.03
to 2.35 nmol N l−1 h−1, with one extreme value
of 7.29 nmol N l−1 h−1 measured at Station 11. This
extreme result was coincident with a shallower than
normal nitracline (102 m) and correspondingly high
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NO3
− concentrations (~1.3 µmol l−1) at a relatively

high position in the water column and therefore
under a relatively high irradiance. Although this
result is not representative of the bulk of our observa-
tions it does give some indication of the potential for
rapid NO3

− utilization following the uplift of the nitr-
acline into shallower waters (Goldman & McGillicuddy
2003, Karl et al. 2003). The maximum NO3

− uptake
rate for a given profile was located within the nitra-
cline, though differences in the depth of the nitra-
cline between stations resulted in a variable depth of
the uptake maximum. NO3

− uptake rates from supra-
nitracline depths (<100 m) were generally the lowest
measured (<0.3 nmol N l−1 h−1) and reflective of the
low ambient NO3

− concentrations found at these
shallower depths.

Rates of carbon fixation ranged from 0.52 to
24.99 nmol C l−1 h−1 (equivalent to 0.006 to 0.3 mmol
C m−3 d−1). However, the purposeful omission of shal-
low (<50 m) production measurements from our
experimental design accentuates the presence of a
subsurface maximum in carbon fixation between 50
and 150 m in all profiles. This maximum ranged from
14.1 to 25 nmol C l−1 h−1 (0.17 to 0.3 mmol C m−3 d−1)
on individual profiles with an average rate of 19.8 ±
4.1 nmol C l−1 h−1 (0.24 ± 0.05 mmol C m−3 d−1). Rates
decreased towards zero at greater depths. Though
there is evidently some variability in the depth of this
deep production maximum, there does not appear to
be any consistent relationship to the corresponding
NO3

− uptake profiles and it is not the case that high
carbon fixation and high NO3

− uptake occur at the
same depth.

The corresponding profiles of chlorophyll fluores-
cence are also presented in Fig. 3c. Comparison to
both the nitracline depth and to the profiles of NO3

−

uptake indicated that the deep chlorophyll maximum
was occasionally, but not always, associated with a
peak in NO3

− uptake, suggesting that simply using
chlorophyll fluorescence to indicate where maximum
NO3

− uptake is likely to occur can be inappropriate.
In Table 1 we present carbon and NO3

− uptake
rates, and chlorophyll and NO3

− concentrations inte-
grated (trapezoidal method) between 50 and 180 m;
i.e. the specific part of the water column that includes
the transition from high light/low nutrient to low
light/high nutrient conditions and the processes that
occur within it. Integrated chlorophyll concentrations
calculated from trapezoidal integrations of discrete
bottle chlorophyll samples were broadly similar
between stations, ranging from 21.85 to 29.73 mg m−2

with a mean of 24.69 ± 2.6 mg m−2. Integrated NO3
−

concentrations varied almost 23-fold between sta-
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tions, with values of 10.7 to 250 mmol NO3
− m−2. This

variability was driven by undulations in NO3
− con-

tours within the lower reaches of the water column
examined here. The mean integrated NO3

− concen-
tration was 109 ± 75 mmol m−2. Integrated production
rates varied almost 2-fold and ranged from 14.6 to
27 mmol C m−2 d−1 with a mean production rate of 20
± 3.5 mmol C m−2 d−1. Given that a significant fraction
of the euphotic zone was omitted, we still captured a
significant proportion of the production (as typical
productivity rates for these waters are in the range of
5 to 40 mmol C m−2 d−1; Marañón et al. 2000, Perez
et al. 2006, Poulton et al. 2006). Inte-
grated NO3

− uptake rates varied 8-
fold between stations, from 0.58 to
4.79 mmols N m−2 d−1 with a mean of
1.5 ± 1.1 mmol N m−2 d−1. Depth-inte-
grated values of NO3

− uptake and
NO3

− concentration were significantly
correlated (Spearman R = 0.58, p ≤
0.05). It is noteworthy that the variabil-
ity in production was substantially
lower than the variability in NO3

−

uptake or NO3
− concentration, which

suggests that NO3
− uptake was decou-

pled from production.

Relationship between irradiance and
NO3

− uptake

Spatial and temporal variability is
likely to influence our dataset; thus, to
more broadly interpret the results we
pooled the data and plotted key vari-
ables against irradiance (Fig. 4). In so
doing, a fundamental difference in the
pattern of NO3

− versus carbon uptake
emerged. In the case of carbon, both
the specific uptake rates (v) (Fig. 4a) and
the absolute up take rates (ρ) (Fig. 4e)
indicated a carbon uptake maximum
above the nitracline at approximately
the 1% irradiance level and a steady
decrease towards zero at lower irradi-
ance levels. In contrast, NO3

− specific
uptake rates increased with depth into
the nitracline (Fig. 4b), and in terms of
absolute uptake rates, NO3

− uptake in -
creased almost 10-fold from ~0.2 nmol
N l−1 h−1 to nearly 2 nmol N l−1 h−1

(Fig. 4f), though in both cases there
was an increase in variability within

the datasets at lower irradiance levels. The presence
of a carbon up take maximum at ~1% irradiance level
ap peared as a pronounced and consistent feature in
our data, caused by greater carbon fixation per unit
biomass rather than an increase in biomass (which
de creased only slightly with reducing irradiance
intensity, i.e. depth). The absence of a similar peak in
NO3

− uptake coincident with the carbon fixation
maximum indicated that this productivity maximum
was fuelled by nutrients other than NO3

−, most likely
recycled nitrogen, and supports the conclusion that
production and NO3

− uptake are decoupled.
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Profiles of POC and PON concentration both
showed a steady decrease with depth, from values of
~5 µmol C l−1 and ~0.4 µmol N l−1 at the shallowest
sampling horizon to values of ~3 µmol C l−1 and
<0.2 µmol N l−1 at depth (Fig. 4c,d). Interestingly, the
re duction in PON concentration with depth was more
pronounced than the corresponding reduction in
POC concentration, supporting general observations
that the remineralization length scales for C and N
are different (Longhurst & Harrison 1989, Ono et al.
2001). Particulate organic C:N ratios, and the C:NO3

−

uptake ratio, augmented with additional data from
separate 15N/13C uptake experiments conducted dur-
ing this cruise (Painter et al. 2013), showed that ele-
vated C:N ratios relative to the Redfield ratio (~7:1;
Redfield 1958, Redfield et al. 1963) were common
throughout the entire water column (Fig. 5a). Partic-
ulate C:N ratios of ~14 were typical in shallow waters
but the ratio decreased to values of ~12 at the base of
the euphotic zone between 1 and 0.1% PAR, most
likely in response to increased nutrient concentra-
tions. A substantial increase in the C:N ratio (to values
>20) was evident below 160 m depth. Elevated C:N
ratios in organic matter is characteristic of subtropi-
cal waters and considered indicative of sub-optimal
plankton growth rates in response to a low nutrient
input history (Goldman et al. 1979, Martiny et al. 2013).

In the absence of true C:N uptake ratios we present
the ratio of C:NO3

− uptake, which provides qualita-
tive information on the relative importance of NO3

−

for production. The profile of the C:NO3
− uptake ratio

(black dots in Fig. 5b) revealed a distinct maximum
around 80 m depth indicative of a productivity maxi-
mum that was not fuelled by NO3

−. Rather, this fea-
ture must have been driven by alternative nutrients
such as ammonium and other recycled forms. Within
the broader context of other observations made dur-
ing this cruise (red dots in Fig. 5), the C:NO3

− ratios
observed at 80 m were broadly comparable to those
ratios seen in the upper 40 m of the euphotic zone.
Thus, the apparent C:NO3

− minimum seen at ~50 m
must be viewed carefully as it provides a false im -
pression of the vertical variability in C:NO3

− ratios
due to the absence of data from shallower depths.
The ratio of specific uptake (v), also shown in Fig. 5c
(note log scale), revealed a gradual decrease with
depth and noticeably lower ratios at depths >180 m.
We interpret this as being due to the influence of in -
creased detrital material at depth, which also agrees
with the rather dramatic increase in the C:N ratio of
the particulate material at the same depth (Fig. 5a).

Relationship between picoeukaryotes 
and NO3

− uptake

The relationship between picoeukaryote abundance
and NO3

− uptake relative to both sampling depth and
ambient NO3

− concentration is shown in Fig. 6a,b.
Under the assumption that picoeukaryotes consumed
the majority of the available NO3

−, we identified 3
distinct clusters within the data related to 3 depth
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horizons in the upper ocean. Group 1, characterised
by moderate picoeukaryote abundance (~1000 cells
ml−1), low NO3

− uptake (<0.5 nmol l−1 h−1) and low
ambient NO3

− concentrations (<50 nmol l−1) was rep-
resentative of supra-nitracline waters (i.e. above the
nitracline; <100 m depth). Group 2, characterised by
high picoeukaryote abundance (1000 to 3000 cells

ml−1), high NO3
− uptake (generally >0.5 nmol l−1 h−1)

and moderate ambient NO3
− concentrations (50 to

500 nmol l−1) was representative of upper nitracline
waters (i.e. the region where NO3

− concentrations
begin to increase rapidly; 100 to 140 m depth). Finally,
Group 3, which was characterised by low pico euka -
ryote abundance (<1000 cells ml−1), high NO3

− up -
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take rates (>0.5 nmol l−1 h−1) and high ambient NO3
−

concentrations (>500 nmol l−1) was typical of lower
nitracline waters (>140 m depth). The similarity
between the increased NO3

− uptake with depth (as
shown in Figs. 3a & 4f) and the distribution of pico -
eukaryotic plankton is highly suggestive of a link
between the two.

Analysis of the red fluorescence and side light
scatter intensity signatures associated with pico -
euka ryotes indicated that deeper-living picoeukary-
ote cells had a significantly higher red fluorescence
signature (R2 = 0.86), indicative of their higher
chlorophyll content (due to photo-acclimation) than
their shallower living counterparts (Fig. 6c). The
mean side scatter intensity, which can be used as an
indicator of cell size, revealed 2 well-defined as -
semblages (Fig. 6d,e). The shallow assemblage,
which was generally representative of supra-nitra-
cline waters, showed a wide range of side scattering
intensities indicative of variable cell size but a weak
relationship to depth. This assemblage is largely
analogous to picoeukaryote Group 1. The deep as -
semblage meanwhile, showed a particularly strong
relationship (R2 = 0.74) of in creased cell size with
depth, and whilst not directly analogous, is predom-
inately representative of pico euka ryote Groups 2
and 3. Thus, the picoeukaryotes overall showed in -
creased red fluorescence with depth, and within the
deeper of the 2 identified assemblages, cell size
increased linearly with depth (Fig. 6e).

A further check of the assumptions under which we
interpreted our results was gleaned from examina-
tion of picoeukaryote cell-normalized uptake rates
(Fig. 6f). In the waters above 100 m, cell-normalized
uptake rates averaged 0.27 ± 0.31 fmol NO3

− cell−1

h−1 but more generally were <0.4 fmol NO3
− cell−1

h−1. In the 100 to 140 m depth range typified by
picoeukaryote Group 2, the average cellular uptake
rate was higher at 0.6 ± 1.07 fmol NO3

− cell−1 h−1,
whilst at greater depths the cellular uptake rate was
higher still at 1.96 ± 2.25 fmol NO3

− cell−1 h−1. In gen-
eral, cell-normalized uptake rates appeared lowest
above the nitracline but increased with depth —
therefore presumably in conjunction with increased
NO3

− concentrations. To provide a context for these
rates we estimated cellular N content using the
picoeukaryote cell biomass of 1496 fg C cell−1 and a
C:N stoichiometry of 6.6, which produced a cellular
N content of ~19 fmol N cell−1. This indicated that our
cell-normalized uptake rates were consistent with
typical cellular N content and suggested that cellular
N content could be turned over on timescales of ~10
to ~70 h. The increase in cell-normalized uptake rate

with depth may be a function of picoeukaryote cell
size, which, using side scatter as a proxy, increased
with depth (Fig. 6d). Thus, biomass-normalized up -
take rates may provide a better normalization metric.
However, with the data we have available, and in
particular the imposition of a fixed cell biomass
 re lationship and uncertainty over cellular stoichio-
metric ratios (Frenette et al. 1998, Martiny et al.
2013), we were unable to test this further.

DISCUSSION

Kinetics of NO3
− uptake

Our results demonstrate an important distinction
between the waters of the nitracline and the supra-
nitracline waters immediately above, and to further
demonstrate the affinity for NO3

− by deep-living
plankton we derive the kinetic parameters related
to NO3

− uptake. At NO3
− concentrations below

~70 nmol l−1, NO3
− uptake is generally considered a

linear function of NO3
− concentration rather than a

hyperbolic function as described by the Michaelis-
Menten equation (McCarthy et al. 1992, Rees et al.
1999). At the 3 shallowest sampling horizons, NO3

−

uptake was indeed more appropriately described via
a linear relationship to NO3

− concentration following
a log transformation of the data (Fig. A1a−c in the
Appendix). However, the ability of changes in NO3

−

concentration alone to explain the variance in NO3
−

uptake progressively diminished with depth — from
explaining 71% of the variance at the shallowest
horizon to 23% at the 5% irradiance depth. Using the
same approach, Rees et al. (1999) determined that
83% of the variance in NO3

− uptake in surface waters
(<30 m) of the NE North Atlantic could be explained
by changes in NO3

− concentration. That the relation-
ship between NO3

− uptake and NO3
− concentration

weakened with depth, despite low and constant
NO3

− concentrations being found down to ~100 m,
suggests that other controls on NO3

− uptake, such as
irradiance, became progressively more important.
The coefficients for the equations describing the lin-
ear fits to the data (not shown) are broadly similar,
and using the ordinate value of the last valid data
point at each depth to determine the crossing point of
the linear fit on the abscissa, all produced a positive
intercept on the x-axis at 4 nmol l−1. In other words,
the linearity of NO3

− uptake with NO3
− concentration

extended down to a concentration of 4 nmol l−1—
similar to the estimate of 5 nmol l−1 obtained by Rees
et al. (1999).
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At deeper, more NO3
−-rich sampling horizons, NO3

−

uptake was better-defined by a Michaelis-Menten
type relationship, though there was considerable
scatter within the data (Fig. A1e−g in the Appendix).
In the strictest sense, our data should not be used to
establish uptake kinetics, as the phytoplankton com-
munity structure was variable in space and time and
some of the scatter seen at these deeper irradiance
horizons will reflect variations in both the abundance
and composition of the community within our incu-
bation bottles. It is nevertheless true that the data
from the deeper sampling horizons did fit the
Michaelis-Menten equation, suggesting that approx-
imate kinetic parameters could be obtained. Conse-
quently, at the deep chlorophyll maximum we esti-
mated parameter values for maximum uptake (Vmax)
and for the half saturation constant (Ks) of 3 nmol l−1

h−1 and 184 nmol l−1, respectively. At a depth of 0.5%
PAR, Vmax was determined to be 1.01 nmol l−1 h−1 and
Ks was 498 nmol l−1, whilst at the deepest sampling
depth values for Vmax and Ks were 1.63 nmol l−1 h−1

and 2013 nmol l−1, respectively.
Because the data from supra-nitracline depths

were broadly similar, we pooled the data together to
obtain mean estimates of the kinetic parameters for
the supra-nitracline waters. In doing this we were
able to obtain estimates of Vmax and Ks of 4.86 nmol
l−1 h−1 and 11.9 nmol l−1, respectively, but 3 data
points heavily weight the result (Fig. A1d in the
Appendix). Nevertheless, these results are compa-
rable to those reported by Rees et al. (1999) (Vmax =
2.77 nmol l−1 h−1, Ks = 20 nmol l−1) and by Harrison
et al. (1996) (WOCE-93 data, Vmax = 0.63 nmol l−1

h−1, Ks = 27 nmol l−1) from the surface waters of the
subtropical North Atlantic, lending credence to our
estimates.

A summary of NO3
− uptake at the nitracline

In Fig. 7, we present a summary of our observa-
tions, which represents a generic description of
NO3

− uptake at the nitracline and how the resident
pico eukaryote-dominated phytoplankton commu-
nity ap pears well-adapted to utilizing this deep
nutrient source. Rate measurements, picoeukaryote
abundance, NO3

− concentrations, C:Chl-a ratios
and community growth rates from the 13 profiles
reported here have been used to produce a mean
vertical profile. The associated estimates of Vmax

and Ks for the plankton community are based on
kinetics results ob tained from the 6 sampled depth
horizons (Fig. A1). Many of these parameters dis-
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play co-located local maxima, and the prominent
NO3

− uptake maximum (Fig. 7a) was clearly associ-
ated with maximum picoeukaryote abundance
(Fig. 7e), maximum community growth rate (~0.5 d−1)
(Fig. 7h), and a maximum in Vmax (Fig. 7b). The
maximum mean community growth rate of 0.52 ±
0.18 d−1 observed at the nitracline is comparable to
group-specific growth rates reported by Andre et
al. (1999), which ranged from 0.42 ± 0.13 to 0.56 ±
0.21 d−1 for picoeukaryotes and Synechococcus,
respectively. More generally, the data reveal an
increase in community growth rate with depth from
<0.25 d−1 at depths <100 m to rates of ~0.5 d−1

within the nitracline, a pattern that is consistent
with that ex pected for a community increasingly
dominated by small eukaryotic cells at depth
(Lande et al. 1989). Our community-based growth
rates are also in broad agreement with the conclu-
sions reached by Marañón (2005) regarding low
community growth rates in subtropical regions. In
addition to changes in growth rate, the mean
C:chl a ratio (Fig. 7g) ex hibited a 4-fold reduction,
from values >100 at 50 m depth to values of ~20 at
depths >140 m. The magnitude of this reduction
was similar to the 3 to 6-fold reduction reported by
Perez et al. (2006); thus, our results are broadly
reflective of typical conditions in the lower euphotic
zone of the subtropical ocean.

One anomaly does, however, remain. At depths
>140 m there was a residual increase in the rate of
NO3

− uptake that does not appear to follow the trend
in picoeukaryote abundance. This residual increase
may be (1) related to a distinct subpopulation of pico -
eukaryotes and the gradual increase in picoeukary-
ote cell size found within this depth range (see Fig. 6d),
(2) an artefact or (3) driven by processes that result in
unusually high C:N ratios in particulate material at
depth (Fig. 5a). Further work on the picoplankton
community in this depth range is needed to resolve
this question, as the increase in the mean side scatter
intensity and red fluorescence signature suggests im -
portant physiological adaptations are likely. In par-
ticular, the presence of ever larger but less numerous
 picoeukaryote cells at depths down to 200 m (and
potentially deeper) raises many questions about the
taxonomic composition, lifecycle and function of such
organisms. Species diversity within the picoeukary-
ote group, which is poorly known, also requires fur-
ther investigation in order to more fully describe and
understand NO3

− uptake at the top of, and within, the
nitracline. This is likely to have important implica-
tions for understanding nutrient cycling in subtropi-
cal waters.

Implications for the concept of a 
2 layered euphotic zone

The concept of a 2-layered euphotic zone with a
productive upper layer based upon the rapid utiliza-
tion of ammonium, urea or other organic nitrogen
compounds and a less productive lower layer based
increasingly on NO3

−, is an established and widely
used conceptual model for oligotrophic waters (e.g.
Venrick 1982, Dore et al. 2008, Beckmann & Hense
2009, Dave & Lozier 2010). Unique floral assem-
blages associated with each layer further suggest
that the biogeochemical role of each layer differs. It is
notable that deep ocean sediment cores typically
contain ‘shade flora’ species from the lower euphotic
zone rather than species from the more productive
upper water column (Molfino & McIntyre 1990,
Kemp & Villareal 2013). Therefore, the upper layer
may be important for the rapid synthesis and turn-
over of organic carbon and for air−sea gas exchange,
whereas it is the lower layer that most likely regu-
lates the flux of organic material to the ocean interior.

Our data revealed a significant co-location of max-
imum picoeukaryote abundance with maximum NO3

−

uptake rates (Fig. 7), which we believe provides strong
evidence to support the idea that NO3

− uptake in the
lower euphotic zone can be broadly linked to vari-
ability in the abundance of picoeukaryotic organisms
(a plankton group that is far less common in the
upper euphotic zone). However, the picoeukaryote
community is highly diverse in oligotrophic systems
(Kirkham et al. 2011, 2013) and identifying which of
the many taxa are more likely to be responsible for
the uptake of NO3

− is not possible with the data avail-
able. Warranting further research, this study has doc-
umented the intriguing occurrence of NO3

− uptake in
the increasingly aphotic deeper waters (140 to 200 m)
of the subtropical ocean coincident with what appears
to be a distinct pico eukaryote group (Group 3 in Fig. 6).
We conjecture that this group may provide an expla-
nation for the seasonal removal of NO3

− beneath the
euphotic zone in the North Pacific, reported by John-
son et al. (2010). Interestingly, in a global perspective
on picoeukaryote community structure, Kirkham et
al. (2013) re ported the presence of Chrysophyceae
and Trebouxiophyceae taxa to depths of 800 m in the
Indian Ocean, which they ascribed to the mixotrophic
potential of these taxa. If such taxa are indeed re -
sponsible for the uptake of NO3

− beneath the euphotic
zone then this would either expand the utility of the
lower euphotic zone concept significantly, or more
likely argue for the existence of a third (aphotic)
layer; the role and function of which is unknown.
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Implications for new and export production

The consumption of NO3
− at the base of, and even

below, the euphotic zone represents an important
decoupling of production from nutrient acquisition
with implications for estimates of new production.
The degree of plasticity in cellular and uptake C:N
ratios at the base of the euphotic zone may be related
to size-dependent (and species-specific) uptake rates
under low irradiance. Hence, the imposition of fixed
stoichiometric ratios when interpreting NO3

− uptake
and production rates at the base of the euphotic zone
is likely inappropriate (Frenette et al. 1998, Martiny
et al. 2013) and could impact estimates of new pro-
duction based solely on NO3

− removal. Furthermore,
the non-migratory nature of picoeukaryotes implies
that high NO3

− uptake at depth is unlikely to be bal-
anced by subsequent photosynthesis higher in the
water column, as has been suggested for certain
large and rare plankton (e.g. Villareal et al. 1996).

Phytoplankton community responses to nutrient in-
put need not be visible within the upper euphotic
zone — particularly if strong density gradients are
present — as the biological impact may be entirely lo-
calized to the lower euphotic zone a few to tens of me-
tres above the nitracline (Goldman & Mc Gilli cuddy
2003). Our results, which show a 10-fold increase in
NO3

− uptake rates with depth, also demonstrate a
high affinity for NO3

− within the picoeukaryote com-
munity, suggesting NO3

− is likely to be rapidly con-
sumed. Based on the derivation of kinetic parameter
values (Fig. A1 and Fig. 7) the theoretical maximum
rate of NO3

− uptake at the uptake maximum was
3 nmol l−1 h−1, which is slightly higher than found in
most individual profiles (Fig. 3a). Scaling to a daily
rate and integrating over a 5 m thick layer results in a
maximum daily uptake of 270 µmol NO3

− m−2 d−1. Co-
incident estimates of the diffusive NO3

− supply made
during this cruise were over 4-fold lower and aver-
aged 60 µmol m−2 d−1 (Painter et al. 2013). The in situ
demand for NO3

− was thus significantly larger than
the magnitude of the diffusive flux, which raises the
possibility that small changes in the magnitude of
NO3

− uptake at depth may be a significant factor reg-
ulating the flux of NO3

− to the upper euphotic zone.
This supports the view put forward by Bienfang et al.
(1984) and Banse (1987) that nutrient fluxes to the up-
per ocean are biologically regulated within the lower
euphotic zone rather than due to physical processes
alone. This mechanism is additional to density-driven
stratification that separates the upper euphotic zone
from deep ocean nu trient reservoirs, and may explain
why only weak correlations between stratification

and primary production have been found on interan-
nual timescales (Dave & Lozier 2010, Lozier et al. 2011).

Large eukaryotic phytoplankton are numerically
rare in the open ocean but considered disproportion-
ately important for export fluxes (Michaels & Silver
1988). Smaller yet more numerous picoplankton are
not generally thought to contribute directly to export
fluxes due to their small cell size and negligible set-
tling velocity (Takahashi & Bienfang 1983, Michaels &
Silver 1988). However, this long-standing assumption
has come under renewed scrutiny. Richardson &
Jackson (2007) found that picoplankton provide an
important source of carbon to higher trophic levels
and Lomas & Moran (2011) reported a non-negligible
contribution to export fluxes by aggregating pico -
plankton cells. Despite lower abundances, eukaryotic
phytoplankton biomass is often equivalent to or ex-
ceeds that of the more numerous prokaryotic cells due
to larger picoeukaryote cell size (Zubkov et al. 1998).
As picoeukaryotes (<2 µm) represented the dominant
form of biomass in the broader <12 µm size class
found between 150 and 200 m depth, they are most
likely an attractive source of food for grazers as well
as potentially acting as nuclei around which aggre-
gates may form. We conjecture that pico euka ryotes
most likely contribute to export fluxes by virtue of
their deep-living nature and their biomass dominance
deeper in the water column. In an environment where
heterotrophic bacterial abundance decreases with
depth and bacterial production rates at the nitracline
are frequently <30% of rates in the upper surface wa-
ters (Zubkov et al. 2000b), both factors could favour
the export of picoeukaryote biomass. However, de-
spite a clear and important role in NO3

− uptake, un-
derstanding how picoeukaryotic production is trans-
lated into an exportable flux is not yet clear, and this
remains important to the wider question of global
rates of carbon export and the sensitivity of this export
flux to changing environmental conditions. Predic-
tions that the future ocean may experience stronger
stratification, reduced vertical nutrient supply and an
expansion of oligotrophic waters (e.g. Polovina et al.
2008, Gruber 2011) may not adversely impact pi-
coeukaryote communities that appear well adapted to
life at the nitracline, and such changes could even en-
hance the role they play in export production.

CONCLUSIONS

NO3
− uptake rates within a thin layer of the upper

nitracline were typically 10-fold higher than uptake
rates in the NO3

− poor surface waters above. The
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decoupling of NO3
− uptake at depth from a shallower

primary production maximum is consistent with a
reduced role for NO3

− in sustaining upper euphotic
zone productivity. Phytoplankton biomass at the nitr-
acline was dominated by picoeukaryote phytoplank-
ton whose maximum abundance was coincident with
peak NO3

− uptake rates. The in situ community was
well adapted to life under low irradiance, as indi-
cated by local growth rate maxima and mean rates of
in situ NO3

− uptake, which were similar to kinetic-
based estimates of maximum potential uptake rates.
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Appendix. Fig. A1. Kinetics curves presented by irradiance horizon based on pooled samples from all experiments. The left
hand column shows the log-transformed relationship between NO3

− uptake (ρNO3
−) and ambient NO3

− concentrations for
depths corresponding to (a) 15% surface irradiance, (b) 10% surface irradiance, (c) 5% surface irradiance and (d) a combined
dataset representing all data collected between 15 and 5% surface irradiance. A linear trend (blue line) is fitted to each data-
set with data  points excluded from the fit shown in black. The right hand column shows results (on untransformed data) from
the 3 nitracline/sub- nitracline depths corresponding to (e) 1% surface irradiance, (f) 0.5% surface irradiance and (g) 0.1% 

surface irradiance. A best fit Michaelis-Menten curve is shown by the black line
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