
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

University of Southampton

PERFORMANCE VISUALIZATION OF
PARALLEL PROGRAMS

by

Oscar Nairn DTaola

A thesis submitted for the degree of
Doctor of Philosophy

Faculty of Engineering
Department of Electronics and Computer Science

May 25, 1995

Supervisor: Prof. A.J.G. Hey

University of Southampton

ABSTRACT

Faculty of Engineering

Department of Electronics and Computer Science
Doctor of Philosophy

P E R F O R M A N C E VISUALIZATION OF P A R A L L E L P R O G R A M S

by Oscar Nairn D'Paola

Supervisor: Prof. A.J .G. H e y

Performance is a critical issne in current massively parallel processors. However,
delivery of adequate performance is not automatic and performance evaluation tools
are required in order to help the programmer to the behaviour of a par-
allel program. In recent years, a wide variety of tools have been developed for this
purpose including tools for monitoring and evaluating performance and visualization
tools. However, these tools do not provide an abstract representation of performance.
Massively parallel processors can generate a huge amount of performance data and
sophisticated methods for representing and displaying this data (e.g. visual and aural)
are required. Current performance views are not scalable in general and do not represent
an abstraction of the performance data.

The Do-Loop-Surface display is proposed as an abstract representation of the
performance of a particular do-loop in a program. It has been used to improve the
performance of several algorithms on diEerent hardware platforms (e.g. CM-5, Meiko
CS-2, IBM SP2). The examples demonstrate that the Do-Loop-Surface display is
an useful way to represent performance. It is implemented using AVS (Application
Visualization System), a standard data visualization package. The use of scientific
visualization tools such as AVS to display performance data, is becoming a very
powerful alternative to support performance analysis of parallel programs. The Do-
Loop-Surface (DLS) display is presented in this thesis as an example on how a data
visualization tool can be used to define new abstract representations of performance,
helping the user to analyze complex data potentially generated by a large number of
processors.

Additionally to this main contribution, our experience developing the performance
tool ANDES is presented in this thesis as well as our studies related to the invasiveness
effects that performance instrumentation can generate.

A ck iiowle dge me nt s

I am very grateful to the following people, who in some way or another helped me to
successfully Anish this PhD Thesis: Alistair Dunlop, Nick Floros, Stephen HeHberg,
John Merlin, Ivan Wolton, Richard Cloke, Emilio Hernandez, Mario Dantas, Mark
Rogers, Flavio Bergamaschi, Vladimir Getov, Roger Hockney, Ed Zaluska, Denis Nicole
and the Concurrent Computation Group in general. I am also very grateful to Peter
Ossadnik and Malcom Brown for their very useful comments and to GMD for providing
access to a CM-5. Special thanks also for Rusty Lusk at Argonne National Laboratory
for helping me with the final experiments of my Thesis and for providing access to
an IBM SP2, as well as for the excellent treatment I had during my whole stay at
ANL. I am also grateful to the British Council and Fundayacucho, my sponsors, for
their economical support. Many thanks also to Chris Collier, one of the most wonderful
secretaries I have ever met, and to all the secretaries of the department for their support
and friendship.

Finally, I would like to say that this Thesis would not have been possible without
the advice of Tony Hey, who always helped and directed me in the best way. Thanks
to him, I had the opportunity to interact with other researchers all over the world and
more important, I learned how to be a good researcher. Thanks Tony for your example!

To all of you folks, thanks a lot!

(fe dedzcoda o Zos (fog mwjereg mag m*
Mono CamZZo, mi norzo y /wfum egpoaa, 1/ D'faoZo, m* mamo; y o

VenezueZo, m; guerido

Contents

1 I n t r o d u c t i o n 10

2 O v e r v i e w a n d S t a t e of t h e A r t 14
2.1 Review of Parallel Machines 14

2.1.1 CM-5 14
2.1.2 Meiko CS-2 15
2.1.3 IBM SP2 16

2.2 Review of Message Passing Systems and Emerging Standards 16
2.2.1 PVM 16
2.2.2 MPI 17
2.2.3 EPF 18

2.3 Review of Performance Analysis Tools 19
2.3.1 PABLO 19
2.3.2 SIMPLE 27
2.3.3 ParaGraph 38
2.3.4 Snmmary and further references 45
2.3.5 Comparisons and Conclusions 49

3 Review of ANDES 54
3.1 Description of ANDES 54

3.1.1 Performance Metrics 55
3.1.2 Performance analysis methodology 57
3.1.3 A case study using ANDES 58

3.2 ANDES Enhancements 59
3.2.1 ANDES on PARMACS 59
3.2.2 VisANDES 59
3.2.3 Tabular Output 60

3.3 Comments and Conclusions 65

4 E x p e r i m e n t s w i t h I n v a s i v e n e s s 66
4.1 Effects due to invasiveness 66
4.2 State of the art: A Perturbation Analysis Model 67
4.3 Measurement Tools 67
4.4 Measuring Invasiveness 68

4.4.1 Results 68
4.4.2 Comparison between PARMACS and PICL 69
4.4.3 LU Matrix Decomposition Algorithm 70
4.4.4 Other results 72

4.5 Comments and Conclusions 72

5 P a r a l l e l P e r f o r m a n c e V i s u a l i z a t i o n 74
5.1 Do-Loop-Surface: General Description 74

5.1.1 Trace Generation 75
5.2 DLS and AVS - Integration with Scientific Data Visualization 78
5.3 Interaction with other Performance Tools 84

5.3.1 Case Study - Red Black Relaxation 84
5.3.2 Comments and Conclusions 89

5.4 Related work 89

6 D L S Tool E v a l u a t i o n : C a s e S t u d i e s 94

6.1 Matrix Multiply 94
6.1.1 Results for a 100x100 matrix on 32 processors 94

6.2 Genesis Benchmarks 96
6.3 Cache/Memory effects 103
6.4 Red Black Relaxation 108
6.5 Experiments at Argonne National Laboratory 117

6.5.1 DLS version for MPI 117
6.5.2 The LINPACK Benchmark in MPI 117
6.5.3 Comparison between ANL-MPI and IBM-MPI 120
6.5.4 Scalability test using 128 processors 120

6.6 Comments and Conclusions 126

7 C o n c l u s i o n s 128

B i b l i o g r a p h y 131

A A p p e n d i c e s 143
A.l Publications 143
A.2 Study visits 144

List of Figures

2.1 PABLO Module Creation 22
2.2 PABLO displays for the LU Matrix Decomposition Algorithm - Stage

1 26
2.3 PABLO displays for the LU Matrix Decomposition Algorithm - Stage

II 28
2.4 Example generated nsing the POET library 29
2.5 Example of TDL description 30
2.6 Example VARUS file 31
2.7 Trace protocol generated by LIST 32
2.8 Output produced by TRCSTAT 32
2.9 TRCSTAT graphic generated by XGRAPH 33
2.10 Gantt diagram generated with S 33
2.11 Screen snapshot of SMART 34
2.12 Feynman diagram vs. Gantt 35
2.13 Entered information - Processor 0 36
2.14 Entered information using POET - Processor 0 36
2.15 Duration send-recv 37
2.16 Activity's definition Ale 38
2.17 Results using the /acf tool 39
2.18 LU Algorithm - Part I: AH processors are busy (n=100) 43
2.19 LU Algorithm - Part 11: Communications start to increase (n=100). 44
2.20 LU Algorithm - Part III: Gathering results, communications are the

dominant factor (n=100) 44

3.1 Elapsed time per processor (p=8) 60
3.2 Percentage of business per processor 61
3.3 Percentage of Tcom, Twait and Toverlap vs. Elapsed time 61
3.4 Speedup vs. Number of processors 62
3.5 Serial Fraction vs. Number of processors 62
3.6 Original tabular output generated by ANDES 63
3.7 New tabular output generated by ANDES. Note: N.A. stands for ATot

64

4.1 Invasiveness of PARMACS - COMMSl Genesis Benchmark 69
4.2 Invasiveness of PARMACS, PICL and ANDES - LU Matrix Decom-

position 71

5.1 DLS display showing differences in execution time of floating point
units on a CM-5 75

5.2 Generating trace information for a DLS. HOST program, PARMACS
version 76

5.3 Generating trace information for a DLS. NODE program, PARMACS
version 77

5.4 Output from the dlsJilter program. In this example, the number of
iterations has been reduced from 678 to 52 or 92% 79

5.5 Trace data Bow to produce a Do-Loop-Surface 79
5.6 AVS Data Network generating a Do-Loop-Surface display 81
5.7 AVS Module Library. Several modules are already provided by AVS

and they can be used for further data analysis 82
5.8 The module controls the current iterations and pro-

cessors being displayed. In this way only relevant information need
be analyzed 82

5.9 The module controls the current iterations and pro-
cessors being displayed. In this figure the first 10 iterations have been
deleted 83

5.10 Interaction of the Performance Estimator, and DLS m parallel-
ising programs 85

5.11 Performance estimator output for the sequential program code on a
CM-5 node 87

5.12 Summary of results: Comparison between estimated and actual exe-
cution times of the Red/Black Relaxation code. Notice that for both
cases (performance predictor and real execution of the program) the
column distribution provides better results 88

5.13 Summary of results: Comparison between the execution times of the
templates and the Red/Black Relaxation code. Notice that
also confirms that the column distribution provides better per-

formance results 88
5.14 Do-Loop-Surface: Red Black Relaxation, Block Distribution, 5x5 grid

of processors 90
5.15 Do-Loop-Surface: Red Black Relaxation, Column Distribution, 1x25

grid of processors 90
5.16 Do-Loop-Surface: Red Black Relaxation, Block Distribution, 5x5 grid

of processors, CPU section of the algorithm only 91
5.17 Do-Loop-Surface: Red Black Relaxation, Block Distribution, 5x5 grid

of processors. In this picture, each iteration correspond to a of
10 iterations. Notice that iteration 20 is representing iteration 200. . 91

6.1 Main do-Loop of the Matrix Multiply Algorithm (node program). . 95
6.2 Matrix Multiply: Do-Loop-Surface (Synchronous communication). No-

tice the pattern that is repeated three times representing communic-
ation delays while a particular processor is broadcasting a row of the
matrix to every other processor 97

6.3 Matrix Multiply: Do-Loop-Surface (Asynchronous communication).
Notice how the values are smaller, deeper valleys and a more intense
blue in a colour picture (red=high values, blue=small values), than
the previous figure 97

6.4 Matrix Multiply: Program Speedup for Synchronous and Asynchron-
ous communications (n=100 and n=400) 98

6.5 TRANSl Genesis Benchmark. Exchanging of sub-matrices between
oppogife processors. Note that the distance between these processors
is not the same. Bold circles indicate longer distances between two
processors 98

6.6 TRANS 1 Genesis Benchmark. 4x4 Grid with additional link between
processors 3 and 12 99

6.7 TRANSl Genesis Benchmark, (number of times the al-
gorithm is executed) being measured during the experiment 99

6.8 FFTl Genesis Benchmark. being measured during the ex-
periment 100

6.9 TRANSl Genesis Benchmark. DLS display of a 100x100 matrix ex-
ample on a 4x4 grid of processors (PARSYS Supernode, 16 processors). 101

6.10 TEANSl Genesis Benchmark. DLS display of a 100x100 matrix ex-
ample using one additional link between the two more distant points
of the grid (PARSYS Supernode, 16 processors) 101

6.11 Grid of 4x4 processors plus some additional links 102
6.12 FFTl Genesis Benchmark. Comparison between a Feynman display

(ParaGraph) and a DLS. 4x4 Grid 104
6.13 FFTl Genesis Benchmark. Comparison between a Feynman display

(ParaGraph) and a DLS. 4x4 Grid plus some additional links 105
6.14 Case study: nested do-loops. Notice that each do-loop can be arbit-

rarily reordered, changing therefore the access to each matrix A, B,
and C 106

6.15 Memory access patterns for a 3D matrix. Access by rows 106
6.16 Memory access patterns for a 3D matrix. Access by columns (left) and

by rows (right) 107
6.17 Memory access patterns for a 3D matrix. Access by columns 107
6.18 DLS: Matrix access using i j ,k. Average time per iteration: 1.176

seconds (CM-5, 31 processors) 109
6.19 DLS: Matrix access using i ,kj . Average time per iteration: 0.7 seconds

(CM-5, 31 processors) 109
6.20 DLS: Matrix access using j,i,k. Average time per iteration: 1.004

seconds (CM-5, 31 processors) 110
6.21 DLS: Matrix access using j,k,i. Average time per iteration: 0.481

seconds (CM-5, 31 processors) 110
6.22 DLS: Matrix access using k,ij . Average time per iteration: 0.466

seconds (CM-5, 31 processors) I l l
6.23 DLS: Matrix access using kj , i . Average time per iteration: 0.465

seconds (CM-5, 31 processors) I l l
6.24 DLS: Matrix access using ij ,k. Average time per iteration: 4.619

seconds. Matrix size: 75x75x75. Size increased by a factor of 3.38
(CM-5, 31 processors) 112

6.25 DLS: Matrix access using kj , i . Average time per iteration: 1.672
seconds. Matrix size: 75x75x75. Size increased by a factor of 3.38
(CM-5, 31 processors) 112

6.26 DLS: Matrix access using i j ,k. Average time per iteration: 3.649
seconds. Matrix size: 75x75x75. CM-5 in time-sharing mode. The
compiler optimization option (-0) has been used in this example.
Notice that there is a difFerence in execution time between the first
7 processors and the last 8 (CM-5, 15 processors) 113

6.27 DLS: Red/black relaxation algorithm, Meiko CS-2, 8 processors. The
Arst 4 processors from left to right belong to the uecfor partition and
the remainding 4 to the gccZor partition 115

6.28 DLS: Red/black relaxation algorithm, Meiko CS-2, 3 processors,
partition. Notice that the 4th and 16th iterations have longer execu-
tion time due to the usage of an unreferenced data array on those two
iterations. We have eliminated the first iteration in order to obtain a
clearer picture 116

6.29 Generation of DLS trace data using MPE 118
6.30 DLS display for LINPACK (IBM SP2, 100 processors). Notice the

cycZi'c patterns every 10 iterations/processors. It is also important to
say that in this single picture we are displaying the information of 100
iterations for 100 processors 120

6.31 Nupshot: section of the LINPACK execution (IBM SP2, 9 processors).
Notice the ci/cZ;'c pattern in communications: Arst 3 processors, then
processors 3 to 5, then processors 6 to 8, and so on. Communications
correspond to the three broadcasts inside the main do-loop of the LU
factorization of LINPACK 121

6.32 Nupshot: section of the LINPACK execution (IBM SP2, 100 pro-
cessors). The view becomes too complex for a single picture 122

6.33 DLS: Execution of LINPACK using the ANL version of MPI for the
IBM SP2 (mpich) 123

6.34 DLS: Execution of LINPACK using the IBM version of MPI for the
IBM SP2. Notice the differences in terms of that both
pictures have. The only thing in common is the fact that the values
decreases as the execution progress (which is a feature of the algorithm
in general) 123

6.35 Nupshot: Section of LINPACK execution for the ANL version of MPI
(IBM SP2, 9 processors). Notice the z'rregwZon^g/in the communication
patterns 124

6.36 DLS: Scalability test (IBM SP2, 128 processors). Notice that some
processors take longer to execute the same number of operations (there
are no communications inside the do-loop being analyzed) 125

6.37 Do-loop code of our scalability test. Notice that there are no commu-
nications inside the loop and that the same operations are repeated on
every processor 125

List of Icibles

4.1 Percentage of overhead for the tracing mechanism of PARMACS on
the COMMSl Genesis Benchmark 69

4.2 Time spent exchanging 1 and 1000 bytes messages between neighbour-
ing nodes on the iPSC/860 (time in microseconds) 70

1 Introduction

Massively Parallel Processor machines are a reality and they represent a revolution in
terms of computational power, promising Terafop/second performance. The need for
this computational power has been widely justified by the Grand CAaZZenge problems,
which include problems from molecular dynamics to weather simulation and prediction.
The current computational power of these massively parallel systems can outperform
state of the art serial supercomputers, and they are far less expensive.

However, this advance in hardware technology has not been matched by software
technology. It is clear that more powerful massively parallel systems wQ be built, but
now the problem is to make software capable of exploiting this immense computational
power. Parallel processing promises enormous power at a cost - Parallel
computations involve highly complex and little understood behaviour and this lack of
understanding prevents efficient use of this power [1].

The scenario that a parallel programmer has to face is much more complex than
the equivalent one for sequential programmers. There are problems related to the
parallelization of the algorithm itself (e.g. how to divide a process in tasks and how
to map them on the physical processors) and problems related to the optimal use
of the parallel resources (e.g. load balance, communications, use of cache, memory
contentions). In order to produce a high performance application, the programmer
requires a very good knowledge of the application and, in some cases (e.g. performance
programming [2]), a good knowledge of the underlying parallel hardware as well as the
software platform available (e.g. how the compiler actually works).

Thus, the degree of expertise required for a parallel programmer in order to
produce a high performance application is higher than for a sequential programmer.
Programming parallelism can be very painful and frustrating. In addition, debugging
a parallel program and searching for performance bottlenecks is a di&cult and time-
consuming process.

For all of these reasons, massively parallel machines have acquired a reputation for
being difRcult to program, but this is largely an artifact of the lack of programming
tools comparable to those that are available on serial machines [3]. Parallel performance
monitoring tools are needed in order to understand the AeAauzoMr and inner work-
ings of programs, and to help identify possible trouble spots such as communications
bottlenecks. They may be used to evaluate and compare the performance of similar
programs and variants of algorithms, and are also an aid to debugging [4]. Many
projects from universities and research institutions have developed and implemented
tools and environments to ease the use and programming of parallel systems. Dozens
(hundreds?) of parallel programming tools are being developed and some of them are
becoming commercially available [5]. However, most of them are either integrated in a
programming environment or they are built only for one special monitor system.

Since is one of the most important requirements for the use of par-
allel computers, and since initial implementations of parallel programs typically yield

10

11

disappointmg performance, tuning to improve performance is thus a significant part of
the parallel programming process. A major factor contributing to the large amount
of skilled eEort typically required to achieve good parallel program performance is the
shortage of good performance analysis and evaluation tools. In the absence of such
tools, performance problems must be identified through a combination of guesswork,
folklore, and application-specific instrumentation [6]. Tuning the performance of par-
allel programs is a crucial but difficult task which requires a good understanding of the
program to be tuned. The aim of performance monitoring and visualization tools is to
give this understanding to the programmer [7].

Performance visualization is the use of graphical display techniques to present an
analysis of performance data for an improved understanding of complex performance
phenomena [8]. Performance visualization systems for parallel programs have been
helpful in the past and they are commonly used in order to improve parallel program
performance. However, despite the advances that have been made in visualizing
scientific data, techniques for visualizing performance of parallel programs remain off
Aoc and performance visualization becomes more difficult as the parallel system becomes
more complex [8].

Popular views like space-time/Feynman diagram (ParaGraph [9, 10]) or event
timeliaes (Express Etool [11]) often provide some insight into program behaviour.
Unfortunately, for these tools to be truly useful in the domain of large scale parallel
machines they must be extended to include abstract high level views [12]. Massively
parallel processors can generate a huge amount of performance data and sophisticated
methods for representing and displaying this data are required. Visualization must be
carefully used in order to get useful results

In general, current performance views are not scalable and do not represent an
abstraction of the performance data. If performance visualization is to become an
integral tool in parallel performance evaluation, it must be based on a formal foundation
that relates abstract performance behaviour to visual representations [8]. Two examples
of the research effort in this field are PARASEER [8] and the work done by Carter
[14, 15]. PARASEER, is a parallel performance visualization project carried out by
the University of Oregon, as an exploratory research study of next-generation parallel
performance visualization technology. On the other hand, Carter proposes to represent
computation intensive algorithms or programs as a (usually 3-dimensional) solid. In
this way, the problem of tuning the code for a computer, or of parallelizing the code,
can be visualized as cutting the solid into smaller pieces, where surface area corresponds
to communication and volume to computation [15].

Another example is the development of a set of visualization tools for EPF (High
Performance Fortran [16,17]). HPF promises to be an attractive abstraction for Fortran
programs on parallel and massively parallel computers. Since HPF does not contain
explicit message passing, the opportunity arises to visualize program execution at a
higher level than that of existing tools.

Parallel performance visualization offers a wide range of research opportunities,
and one of these is the designing and development of new scoZobZe pef/ormGnce

These data representations should have the following features:

^Drawing useful pictures is difficult. As Miller s ta tes in [13], visualizations should guide, not
rationalize. To guide means t h a t it leads you to discover things t h a t you did not already know and
rationalize means t h a t it lets you i l lustrate things t h a t you already know.

12

Scalability (i.e. number of processors, problem size).

Higher level of abstraction than that of existing views.

Usefulness. A performance view must be useful in the process of understanding
parallel program behaviour.

Incorporation and integration of state of the art technologies including: applic-
ation domain expertise, human-computer interaction (HCI), visual perception,
and graphic design.

The Do-Loop-Surface representation of the performance of a particular do-loop in
a program is presented in this thesis as an alternative tool that provides an abstract
representation of performance, using a commercial scientific data visualization tool
(AVS, [18]) for this purpose [19, 20]. One advantage of this approach is that no
tool development is required and that every feature of the data visualization tool can
be used for further data analysis. AVS also has its own built-in analysis capabilities.
Many analysis functions are available and the methods are scalable with respect to data
set sizes and extensible in terms of applying additional analysis (or programming user-
speciAc analysis), and support multiple domains of analysis (e.g. temporal, spatial, and
frequency domains). The objective of multiple-domain analysis methods is to selectively
focus on a particular aspect of the performance while hiding the contributions from
other aspects [21].

In this thesis, several state of the art monitoring and visualization tools described
in the literature are presented (after a short review of the state of the art in parallel
architectures, message passing systems and emerging standards given in Chapter 2),
including PABLO [22], ParaGraph [9], and SIMPLE [23] (Section 2.3). Additionally,
ANDES [24], a recent development, is also described (Chapter 3). The degree to which
these monitoring tools perturb the behaviour of the application being analyzed, i.e.
their tool is described in Chapter 4. Chapter 5 describes in detail the
Do-Loop-Surface abstraction and its main goals and advantages. Chapter 6 iHustrates
several tool evaluation tests and our experience at Argonne National Laboratory using
DLS displays. Finally, Chapter 7 shows the conclusions of this research.

The main original contributions of this work are presented in Chapters 3, 4, 5,
and 6. They include three main issues: which was originally developed as an
MSc Thesis at Universidad Simon BoHvar but enhanced at the University of Southamp-
ton as part of my Interim Thesis (presented in the 16th Technical Meeting of the
World Occam and Transputer User Group [25], 1993); experiments with mucszuenegg
(presented in IFIP'94 [26]); and the 2)^6" abstract representation of parallel program
performance, first presented at the High Performance Computing and Networking Con-
ference held in Munich in 1994 [19], and to be published in Concwrrenci/.' Practice ancf
.Bzpenence [20]. Other publications of research involving DLS are HPCN Europe'95 [27]
and the Second Workshop on Environments and Tools for Parallel Scientific Computing
1994 [28].

13

'TAe mcreosmg compZezzf?/ o/pomf/eZ compu^mg gg/g^ema Aog 6mugA^ obou^ o cn'gig
m poro/ZeZ per/brmance euaZuofwn and ylẐ AougA (Aere Aoue 6een zmporfan^ ad-
ifonceg m pefyormcnce (ooZg m recent g/eorg, we 6eZ*et;e /u^ure paraZZeZ pef/ormonce
enuironmen^g u;%Z/ moue Aeg/ond fAege fooZg Ay m(egm(mg pez^rmonce mg(rumen^o(:on

compiZerg /or orcAz^ec^ure-mdependen^ Zangwogeg, 6̂ / /ormGZ*zmg Âe reZô *ong/»%p
6e(u;een per/ormance uzewg and <Ae do^a ^Aey repregen^, and 6;/ aw^omafmg gome agpec^g
o/jpef/ormance inferpre^a^zon.

indeed, Âe grand cAaZZenge probZem ;n compu(a^;onaZ go/tware /or gcaZabZe, paraZZeZ
g!/g(emg ;g (Ae det;eZopmen(o/ ôoZg (Aâ can rotf^meZy (^ond, WeaZZy, au^omah'caZZi/̂
produce AigA per/brmance appZ*ca^2ong^ [8].

2 Overview and State of the Art

The purpose of this Chapter is to brieSy describe the state of the art in parallel
architectures, languages, and performance tools. We describe the most interesting
parallel machines used in our experiments as weU as parallel languages and message
passing systems. The last section of this Chapter, reviews current performance analysis
tools including PABLO, ParaGraph and SIMPLE.

2.1 Review of Parallel Machines

The following three sections describe three state of the art parallel computers: Thinking
Machines CM-5, Meiko CS-2, and IBM SP2.

2.1.1 CM-5

The Connection Machine CM-5 is a MIMD supercomputer that combines ease of
use and high performance for programmers working on large, complex, data-intensive
applications [29]. The CM-5 supports both data parallel programming and message-
passing programming. The CM's data parallel compilers (CM Fortran, C*, *Lisp)
present the user with a global address space and a single thread of control. The
CMMD communications library, callable from Fortran 77, C, C++, CM Fortran and
C*, provides fast commuiucation between independent tasks.

The CM-5 may have configurations with a large number of processors (e.g. 512).
Each of the CM-5 parallel processing nodes hag its own memory. Nodes can fetch from
the same address in their memories to execute the same instruction, or from individually
chosen addresses to execute independent instructions. These processing nodes are
supervised by a control processor. The system administrator can divided the nodes into
groups, known as partitions. There is a separate control processor, known as a partition
manager, for each partition. Each user process executes on a single partition, but caji
exchange data with processors on other partitions. The CM-5 processing node is a
standard RISC microprocessor. This microprocessor may optionally be augmented with
a special high-performance hardware arithmetic accelerator that uses a wide data path,
deep pipelines, and large register liles to improve peak computational performance.
The node memory subsystem consists of a memory controller and either 8 Mbytes, 16
Mbytes, or 32 Mbytes of DRAM memory. The special arithmetic hardware consists of
four vector units (VUs), each of them with a memory bank of 8 or 32 Mbytes. Each
VU can deliver 40 MFlop/s peak 64-bit Soatiag point performance.

Every control processor and parallel processing node in the CM-5 is connected to
two communication networks, the Data Network and the Control Network. The control
network is used for operations that involve all the nodes at once, such as synchronization
operations and broadcasting. The data network is used for bulk data transfers where
each item has a single source and destination. External networks, such as Ethernet
and FDDI, can also be connected to a CM-5 via the control processors. The topology

14

15

of the data network is a ^ree, so called because some branches are /oMer (of higher
bandwidth) than others. One advantage of this topology is that tra&c between two
partitions does not interfere with trafRc internal to a third partition.

In terms of software, the CM-5 operating system, CMOST, is an enhanced version
of the UNIX operating system. The CM-5 also provides tools for parallel programming,
debugging and tuning, such as Prism and the CMAX Fortran 77 to CM Fortran
translator. Prism is a programming environment that integrates debugging, profiling,
and other useful tools in a convenient windowed environment. CMAX provides a
convenient migration path for serial programs onto the CM-5, since it helps in the
translation of serial Fortran 77 code to Connection Machine Fortran (CM Fortran).

2.1.2 Meiko CS-2

The CS-2 is a scalable multicomputer which combines vector and concurrent processing
capabilities [30]. CS-2 is a distributed global memory architecture and each processing
element is a scalar or super-scalar SPARC processor running Solaris, the industry
standard operating system. Each CS-2 vector PE consists of a SPARC scalar unit,
a communications processor and 2 Fujitsu VP vector units sharing a three ported
memory system. Although the SPARC itself offers a 40 MFlop/s processing power,
Bupercomputing performance is obtained by exploiting the vector processors which
combined can deliver 200 MFlop/s. Exercising a small set of such nodes in a parallel
configuration can deliver GFlop/s performance. A few thousand processors would
be needed to scale performance to TeraFlop/s range. Processors are connected by
a multi-stage switching network and the communication itself is handled by specialized
communication processors to achieve low communication latencies and high bandwidth.

The CS-2 application development environment includes compilers for Fortran 77,
ANSI C, Fortran 90 and High Performance Fortran together with a wide variety of tools
for instrumenting, analyzing, debugging and parallelizing programs. This toolset runs
either on the system or on networked SPARC workstations. In terms of message passing,
Meiko supports the standard interfaces PVM and PARMACS on the CS-2, together
with their own CS-Tools. Intel NX/2 compatibility libraries provide portability from
iPSC and Paragon systems.

CS-2 systems support a wide range of tools designed to assist in porting and
parallelizing applications codes. Tools include both compiler tools for parallelizing
applications and utilization tools for measuring performance. Hardware support for
collecting performance data is provided by the CS-2 control network. The CS-Tools
multi-process debugger provides a (fbz style interface to debugging multi-process
programs. allows the user to set break and watch points, trace, inspect and modify
variables. Another tool available for the CS-2 is the TotalView debugger [31]. Totalview
is part of a suite of software development tools for debugging, analyzing, and tuning the
performance of programs, including multiprocess programs. Some of the main features
of Totalview are: provides an X Windows graphical interface, TotalView allows to
debug remote and distributed programs over the network, and it is possible to write
source code fragments within TotalView and insert them temporarily into the program
we are debugging. Additionally, many standard debugging features are provided (e.g.
breakpoints) plus a number of useful functions for examining and manipulating data.
Visualization of parallel performance data is provided under AVS.

16

2.1.3 IBM SP2

The IBM SP2 is the second generation of IBM's scalable POWERparallel series, for
serial and parallel application execution [32]. Each node has substantial disk space and
memory (from 64MB to 2GB of memory and from 1 to 8 GB internal disk). This allows
local physical storage memory commensurate with the processing power of the node,
thus allowing large problems and problem segments to run on individual nodes.

The SP2 nodes are RISC-based processors (from 4 up to 128) running full AIX/6000
software, providing a growth in peak performance from 1 to 34 GigaFlop/s. The
multistage packet switching network supports high performance communication between
processor nodes and the point-to-point communication time between any two nodes is
independent of the relative node positions within the SP2 complex of nodes.

The internode network architecture provides relatively high bandwidth as well
as good behaviour with respect to irregular communication patterns, thus permitting
the efRcient use of advanced algorithms that adapt to the structure of the problem.
Additionally, the system includes a large, high performance I/O architecture that
provides a significant number of connections to the external 1/O network, thus allowing
a very high aggregate bandwidth to secondary storage and other external devices and
network connections.

The SP2 win support popular parallel application interfaces such as Express, PVM,
MPI, and Linda. Additionally, the MPL message passing library is provided by IBM for
efRcient low level communication. FORGE 90 is available to assist in the conversion of
existing serial code and a fuU version of Fortran 90 is also provided. High Performance
Fortran is supported as well as the DB2 database package.

2.2 Review of Message Passing Sys tems and Emerging
S tandards

The following three sections of this Chapter describe: PVM, the current de
standard for message passing, MPI, the emerging standard, and High Performance
Fortran.

2.2.1 P V M

PVM, or Parallel Virtual Machine [33], is a software package that permits a heterogen-
eous collection of serial, parallel, and vector computers on a network to appear as one
large computing resource. User programs written in C or Fortran are provided with
access to PVM through the use of caUa to PVM library routines for functions such
as process initiation, message transmission and reception, synchronization and global
operations.

PVM supports heterogeneity at three levels: application (snbtasks may use the
architecture best suited for their solution), machine (computer with different data
formats, different architectures, and different operating systems), and network (different
network types such as FDDI and ethernet). One of the major advantages of PVM is
its portability. PVM runs on a wide range of parallel architectures and systems (more
than 25 at the time of writing) including Intel iPSC/860, Paragon, CM-5, Meiko CS-2,
IBM SP2, and clusters of workstations. Version 3 is also portable to non-Unix machines
and multi-processor computers.

17

In terms of communication, PVM provides routines for packing and sending mes-
sages between tasks. The model assumes that any task can send a message to any
other PVM task, and that there is no limit to the size or number of such messages. In
practice, we have found that packing and unpacking data can be very costly and can
seriously afFects performance. The PVM communication model provides asynchronous
blocking send and receive, and non-blocking receive functions.

An important advantage of PVM is that it is available in the public domain.
Additionally, there are tools for visualization and debugging of PVM programs such
as Xab [34, 35], and XPVM [36]. Xab, or X-wiudow Analysis and deBugging, is a
tool for run time monitoring of PVM programs. Using Xab, PVM programs can be
instrumented and monitored. Xab uses PVM to monitor PVM programs, making Xab
also very portable. Xab consists of three main components: a user library, which
provides instrumented versions of the PVM calls; a monitoring program, which runs
as a PVM process and gathers monitor events in the form of PVM messages; and an
X-windows front end, that displays information graphically about PVM processes and
messages.

XPVM is a graphical console and monitor for PVM. It provides a graphical
interface to the PVM console commands and information, along with several animated
views to monitor the execution of PVM programs. These views provide information
about the interactions among tasks in a parallel PVM program, to assist in debugging
and performance tuning. To analyze a program using XPVM, a user need only compile
their program using the PVM library (version 3.3 or later) which has been instrumented
to capture tracing information at run-time. Then, any task spawned from XPVM will
return trace event information, for analysis in real time, or for postmortem playback
from saved trace files.

2.2.2 M P I

The international Message Passing Interface (MPI) initiative [37, 38], was founded by
Oak Ridge National Laboratory, the Center for Parallel Computing at Rice University
and the University of Southampton. The MPI Forum is a collection of major vendors
and users from around the world. The main goal of this effort has been to define a
message passing interface which could be efRciently implemented on a wide range of
parallel and distributed systems. MPI is intended to be the standard message passing
interface for parallel applications and library programming. The basic content of MPI is
point-to-point communication between pairs of processes and collective communication
within groups of processes. MPI also provides more advanced message passing features
which allow the user to manipulate process groups, topological structures, and support
the development and utilization of parallel libraries.

MPI data structures allow the user to send and receive messages with complicated
storage patterns without the need to copy data in to and out of message buffers, and
allow an implementation to optimise communications with such storage patterns. Issues
such as parallel input/output and remote read/write are not currently included in MPI.
The MPI Forum intends to cover further topics in a second phase begining in 1995.

Communications within MPI are performed within a communication conkzt which
insulates messages in different parts of the program from one another. The defining
property of a context is that a message send in one context can only be received in
that same context. The communication context is the primary mechanism for isolation

18

of messageg in diEerent libraries. The point-to-point message passing routines are the
core of the MPI standard. These routines are gemd and rece%t;e. There are 4 types of
these routines: standard, synchronous, ready-receive, and buffered. MPI also provides
non-blocking or immediate return send and receive primitives, as well as collective
communication routines such as banker, broocfcog ,̂ ga^Aer, gcoMer, redwce, and
ezcAoMge. Since many applications have a geometrical background, MPI also allows
the deAnition of a geometrical arrangement of processes as well as graph topologies.

At this moment, several public domain versions of MPI are available and some are
commercially supported implementations. We expect MPI to become the most used
message passing interface in the near feature.

2.2.3 H P F

High Performance Fortran, EPF [39], is a new data parallel language for writing efficient
portable parallel programs. HPF consists of a set of extensions to Fortran 90 which
facilitates data-parallel computations on multi-processor architectures. HPF provides
directives for specifying how program data should be distributed over the network
of processors in order to produce the most efficient result. HPF goals include high
performance on MIMD and SIMD computers with non-uniform memory access costs
and code tuning for various architectures.

Some of the most interesting features of HPF are:

Data alignment and distribution to increase locality of reference.

Assertion that the statements in a particular section of code do not exhibit any
sequential dependencies.

Declaration of rectilinear processor arrangements.

FORALL statements, designed primarily for data parallel programming. BrieAy,
if you have, e.g.: f 0 = 1 : — 0.5 * («(% — 1) 4- 4- 1)), the RHS
(right hand side) is fully evaluated for aZJ index values z = 1 : n, and then the
assignment is performed to corresponding elements of the LHS (left hand side).
Therefore, if the RHS involves any assignment variables, it always uses the oM
values of the variables before they are updated by the assignment. Therefore the
semantics of FORALL are data parallel by definition.

Pure procedures (i.e. procedures with no side eEects).

Extended intrinsic functions and standard library (e.g. combining-scatter func-
tions, sorting functions, bit-manipulation functions).

Extrinsic procedures (interface to procedures written in other paradigms such as
message passing, and interface with other languages).

The HPF directives are structured comments that suggest implementation strategies
or assert facts about a program to the compiler. They may affect the e&ciency of the
computation performed, but do not change the semantics of the computation. The form
of the HPF directives has been chosen so that a future Fortran standard may choose
to include these features in the language by deleting the initial comment header. HPF
has no I/O extensions at all. Of course, an HPF implementation of Fortran's I/O
statements could perform the I/O in parallel in suitable circumstances.

19

2.3 Review of Pe r fo rmance Analysis Tools

2.3.1 PABLO

PABLO is a performance analysis environment developed at the University of Illinois,
designed to provide performance data capture, analysis, and presentation (both sound
and graphics) across a wide variety of parallel systems [22]. PABLO is a toolkit for the
construction of performance analysis environments. It consists of two primary compon-
ents: portable software instrumentation and portable performance data analysis, with
a trace data meta-format coupling the instrumentation with data analysis.

Portable software instrumentation: this is designed to support interactive spe-
cification of source code instrumentation points. The software instrumentation
can be used to gather performance information from either the system or the
application code. The initial architectural targets are: Thinking Machines CM'2,
CM-5 and the Intel Paragon XP/S.

@

Portable performance data analysis: this consists of a set of data transformation
modules that can be graphically interconnected to form an acyclic, directed
data analysis graph. Performance data Bows through the graph nodes and is
transformed to yield the desired performance metrics.

Trace data meta-format: the performance data format has no embedded se-
mantics (i.e. there are no predefined event types or data sizes).

Performance data analysis software: this is an object-oriented software written
in C4--t- designed to be easily ported to new machine architectures.

The PABLO design philosophy attempts to address the three issues of:

Portability and ease of use are critical to the acceptance of new performance tools.
Scalability is a key characteristic of the new generation of massively parallel systems
by adding processors one can incrementally increase performance without replacing
existing hardware or changing the underlying software. A performance environment
must be extensible, allowing its users to interact with the system and add new features
to it. If a tool's functionality is too limited, it will not be used. If a tool is too
general and does not support common cases in obvious ways, it wQ also not be used.
The environment must also be able to recognize different kind of users (e.g. novice,
intermediate and expert).

The PABLO environment presently includes:

A Motif-based interface for the specification of source code instrumentation points
(both trace and count data).

A C parser that can generate instrumented application source code.

20

A performance data trace capture library for single processor Unix systems and
for the Intel iPSC/2 and iPSC/860 hypercnbes.

A Sexible seH-docnmenting data meta-format and associated tools that can be
used to describe and process diverse types of data.

A graphical performance analysis environment. This environment is based on
the graphical configuration of directed data analysis graphs, that can be used to
analyze and display dynamic performance data.

A set of graphical display widgets for the X window system. These include
bargraphs, dials, scatterplots, kiviat diagrams, and contour plots.

In addition to dynamic X window graphics for the display of performance data,
PABLO supports the use of sonic data presentation via replay of sampled sounds, via
a Sun SparcStation audio port, and via use of the Musical Instrument Digital Interface
(MIDI).

2 .3 .1 .1 I n s t r u m e n t a t i o n Sof tware

The three components of the PABLO instrumentation software are a graphical interface
for interactively specifying source code instrumentation points, C and Fortran parsers
that generate source code with embedded calls to a trace capture library, and a trace
capture library that records the performance data. This approach is a compromise to
maximize portability.

The parsers accept source code to be instrumented and produce the parse tree
information needed by the graphical instrumentation interface. The graphical interface,
based on X and Motif, will then interpret the parse tree data information and allow
the user to graphically specify source code instrumentation points.

Because PABLO's only modification to source code is the insertion of calls to the
trace capture library, it is possible to move an instrumented program to another parallel
system. If the trace capture library has been ported to the new parallel system, the
same application data can be captured there, permitting cross-architecture performance
comparisons. The performance data trace capture library is currently available for
single processor Unix systems and for the Intel iPSC/2 and iPSC/860 hypercubes,
Intel Paragon, IBM RS/6000, SGI, HP 700 series, IBM IlS/6000, DECstation, and
Thinking Machines CM-5.

In order to balance the needs of detailed data and minimal perturbation, the
PABLO instrumentation software supports three classes of instrumentation events:
trace, count and time interval. The instances of each event class are recorded in a trace
Ale using a self-documenting data format (SDDF) that includes internal definitions of
data types, sizes, and names. For events of all three classes, the PABLO trace capture
library supports optional, user-written extension functions that can process event data
before it is written to the trace file, acting as a filter mechanism.

Another important issue that is intended to minimize perturbation during data
recording is PABLO's implementation of an adaptive instrumentation control, which
allows a user-specified maximum trace level with each event. In addition to instru-
mentation control via user-specified trace levels, the PABLO instrumentation software
wiU dynamically adjust event trace levels within the user-specified range. The PABLO
trace capture library also monitors the aggregate event rate using a similar algorithm.

21

In this way, the PABLO instrumentation software allows a balance between event data
volume against application perturbation, maximizing the amount of useful trace data.

2.3 .1 .2 T h e S e l f - D e s c r i b i n g T r a c e D a t a F o r m a t (S D D F)

The PABLO portable trace data format links the PABLO instrumentation software,
which captures dynamic performance data, and the PABLO data analysis environment,
which provides the tools to reduce and analyze the data.

The Self-Describing Data Format (SDDF) is a trace description language that
specifies both the structure of data records and data record instances. SDDF is best
viewed as a data meta-format. When creating a trace file, one is free to decide what is
appropriate for that situation and describe event records accordingly. In the same way,
when analyzing the data one uses the embedded descriptions to interpret the data.

SDDF allows ASCII and binary representations in order to provide compactness
and portability when necessary. Simple tools can quickly convert from one representa-
tion to the other.

The ASCII and binary versions of the SDDF meta-format describe four classes of
data records:

@

@

Stream attribute: information about the entire trace file.

Record descriptor: template for a data record.

Record data: record instance.

Command: action to be taken.

2 .3 .1 .3 D a t a A n a l y s i s E n v i r o n m e n t

The PABLO Data Analysis Environment provides a framework for reducing, analyzing,
and presenting performance data. The keys to the PABLO data analysis environment's
extensibility and portability are:

The reliance on a toolkit of data transformation modules capable of processing
the self-describing data format.

* The recognition that software embedded knowledge of parallel system architec-
tures makes portability impossible.

This environment supports the graphical interconnection of performance data
transformation modules to form a directed acyclic data analysis graph. Performance
data then &ows through the graph nodes and is transformed to yield the desired
performance metrics. Details like file input/output, storage allocation, and module
execution scheduling are isolated in the environment infrastructure. This allows exten-
sion of the environment by adding new data transformation modules (see figure 2.1).

By graphically connecting these modules to form a directed acyclic graph and
interactively selecting which trace data records should be processed by each data
analysis module, the user selects the desired data transformations and presentations.
All data passed among modules in the configured data analysis graph is encapsulated in
self-describing data format records. When the analysis environment begins execution,
the environment infrastructure automatically extracts the necessary fields from data

22

Pablo

File Run Configure Moduie

Mai
Help

File

Filelnput

FileOutput

Math

Binarylvlatli

Logaritlnm

HistotyMath

Power

ReductionMath

Module name:

lHistoryDial-1

Pablo Module Creation

Display

Interval

Kiviat

Led

Matrix

Sound

liSla

Synthesis

SynthesizeAn-ay

SyntfiesizeArrayEleme;

SynthesizeVector

SynthesizeVectorElem

SynthesizeCoordinates

Unclassified

FiiterRecords

Module icon:

Dismiss Add IHelp

Figure 2.1: PABLO Module Creation.

23

records and passes those values to the modules for processing. The semantics of the
data analysis are embedded in the user's graphical conAgnration, not the data analysis
software.

The graphical programming model allows users to develop new data analyses by
constructing data analysis graphs whose semantics re&ect the desired transformation.

The PABLO data analysis environment's Sexibility rests not only on the self-
describing data format (SDDF) and the environment infrastructure, but also on the

of data analysis and presentation modules. The basic set of data analysis
modules process performance data without software embedded knowledge of higher level
data semantics. AH data analysis modules in the basic set are - they process
all mathematically valid combinations of data inputs. The basic module set includes
simple mathematical transforms such as counts, sums, products, differences, ratios,
maxima, minima, averages, absolute value, powers, logarithms, and trigonometric
functions. This data analysis environment wiU serve three kind of users: novice,
intermediate, and expert.

The PABLO environment supports two types of data presentation modules: graph-
ical and sonic. The graphical displays are based on the X window system. Currently
supported graphical displays include:

Bar graphs.

Bubble charts.

Strip charts.

Contour plots.

Dials (with and without history).

Interval plots.

Kiviat diagrams.

LEDs (discrete bar graphs).

X-Y line/scatter plots.

Matrix displays.

Pie charts.

Polar plots.

3-dimensional scatter plot.

2 .3 .1 .4 D a t a Son i f i ca t ion

Just as visual elements (e.g. colour, form, and line) are combined to present and
analyze data visually, the elements of sound (e.g. duration, pitch, volume, timbre, and
spatial location) can be combined to present data aurally. Sound can emphasize data
characteristics not easily seen, much in the same way a movie sound track conveys
information complementary to the imagery.

@

@

24

Much of Bonification's embryonic state is attributable to the lack of software
standards and common hardware interfaces. A reasonable compromise is instruments
that conform to the Musical Instrument Digital Interface (MIDI). The PABLO sound
toolMt is an attempt to ensure portability across multiple sound devices by separating
the sound hardware interface from the sonification (i.e. the algorithm that creates
sound from data). Each sound device is managed by its own network server, which
accepts sonic messages that cause sounds to be played. An application program
opens a connection to a (possible remote) sound server, receives a list of supported
sonic messages (like play note, vary pitch or select synthesized instrument), and uses
parameterized variants of those messages thereafter to interact with the sound server.

The current implementation of PABLO supports both the sampled sound cap-
ability of the Sun SparcStation audio port and a variety of MIDI systems. Creating
Bonifications is simplified by four major abstractions: sound control files, transformation
functions, sonic widgets and widget control files. Sonifications can be saved, edited, and
recreated. Several examples of mappings of performance data from distributed memory
parallel systems to sound have been developed. These examples include sonifying
message transmissions by:

Mapping the node number of a message transmitter to pitch.
On hearing this example one can detect not only the frequency of transmissions
but also the number of communicating processors and, with knowledge of the
mapping function, their physical separation in a multicomputer network.

Mapping the node number of a message transmitter to pitch in the left speaker
and, when the message is received, mapping the node number of the message
receiver to pitch in the right speaker.
This reveals details about temporal communication activity that could not be
easily deduced from concurrent visualization, namely that messages often occur in
tightly clustered groups; staccato bursts of sound makes this immediately obvious.

Mapping the node numbers of message transmitter to pitch, but a note begins
when a message is sent and continues until the message is received.
This shows not only the expected delay between message transmission and receipt
but also the distribution of latencies.

A set of eorcong or audio warnings have been also developed for PABLO. This
presently includes sampled voice warnings, enumerations, and alarms. A good example
is when an aggregate processor utilization was mapped to a sonic alarm that sounds
only when utilization fell below a specified threshold. This is particularly useful when
processing large volumes of data since users are unable to maintain attention focus
on graphic displays for long periods of time. A sonic alarm can quickly alert about
important behaviours.

2.3 .1 .5 A case s t u d y us ing P A B L O

In order to gain some experience using PABLO, the LU Matrix Decomposition Al-
gorithm of Section 4.4.3 was analyzed^. For this purpose, a directed data analysis

^Results for 4 processors on a T800 Transpu te r Parsys Supernode. T h e size of the ma t r ix was
n=100 .

25

graph was built. The basic idea of this experiment was to determine the bottlenecks of
the algorithm using the current displays provided by PABLO and to evaluate the tool
itself.

The design and creation of the data analysis graph was easy. The most important
consideration is to have specific questions to ask about the performance data. For this
example, the factors to be analyzed are work load and commmiication traffic. Work
load is represented by the percentage of idle time per processor using two displays:
Bargraph and Kiviat. Communication traffic is represented by the number of messages
that each node has produced: the length of those messages and the communication
patterns. Five displays are used here: Led, Matrix, Contour, Bargraph and Kiviat.

1. The Led display represents its input parameter as a set of levels stacked either
horizontally or vertically. Individual levels are filled according to the magnitude
of the datum and the "minimum" and "maximum" data values stored within
the functional unit. The minimum and maximum values may be set by the user
during the configuration process.

2. Matrix accepts a two-dimensional array of input values and represents the data
as individual squares in a grid pattern accessible by row/column indexing. The
squares within a matrix are filled with a solid colour: the colour varies with the
magnitude of the data according to the colourmap defined in the functional unit.

3. Contour represents the data as contour lines drawn within a grid in the plotting
array. Contours are drawn according to the magnitude of the data: larger values
correspond to contours having more lines. The grid line defining the region in
which each contour appears may or may not be drawn. The intersection points of
the grid lines define identify particular (row,column) locations; location (0,0) is
the top-left intersection, and rows grow to the right and columns grow downward.

4. Bargraph represents its input parameter as a single bar whose size varies with the
magnitude of the incoming datum. In addition to the bar, Bargraph maintains a
"sticky hold" value, a line drawn in colour to mark the maximum value the bar
has obtained during a given period.

5. The Kiviat display accepts as input a vector of data values and maps each
vector element to a location on a corresponding axis within valid "minimum"
and "maximum" ranges according to the values set by the user at configuration
time. Kiviat axes are spoke like and radiate from the origin of a circle. A default
option for Kiviat is to connect the plotted points with a line and fill (or shade)
the resulting closed area with a colour.

All these displays can be seen in figure 2.2. The displays show the first stage of the
algorithm in which every processor is working on its particular section of the matrix.
It is easy to see in this figure how well the processors are working at this moment. The
percentage of idle time is not high (around 10%), and it is equally balanced among the
processors (Bargraph and Kiviat). It is possible to obtain this value by cZzctmg the
mouse on the desired position of the display.

The ring communication pattern can be recognized in the Contour and Matrix
displays. The same number of messages have been sent by each processor. These
messages have the same length (Led display). The second stage of the algorithm can

26

Pablo
File Run Configure Module Help

System Status:

Last Modification Date:

Configuration Name:

Idle

Sun Apr 18 17:41:03 1993

LU Conf

dyntheslzeArray:MsgNumbei

SynArrayElemiMsgLeng

Length PerMsg

LengthPerMsg

Min: 0.000
Max: 1000.000

Receiver

LedrMsaLenath

Led:MsgLength

Min: 0.000
Max: 1000.000

M

Ml processors

CPntouriMsaHumber

ContounMsgNumber

Min: 0.000
Max: SI.000

Receiver

Bar6raph:ldleTimePerHoile

BarGraphildleTlmePerNode

Min: 0.000
Max: 100.000

Processors

Kiviatildlenme
KiviatldleTime

Min: 0.000
Max: 100.000

Processors

Figure 2.2: PABLO displays for the LU Matrix Decomposition Algorithm - Stage L

27

be seen in Agure 2.3. At this moment, the amomit of work to be done in parallel is not
enough to keep ail the processors busy and the dominant factor is communications. It
is also possible to recognize that the algorithm is finishing and that the communication
pattern is changing (because of the gathering of partial results).

2 .3 .1 .6 C o m m e n t s a n d C o n c l u s i o n s

PABLO is a very powerful and useful tool for monitoring the performance and behaviour
of parallel applications. It was helpful in understanding som.e features described in the
previous section about the LU Matrix Decomposition Algorithm. Unfortunately, the
PABLO sound facility could not be used due to problems with the installation of the
software. However, sound is a new way to represent performance data that could help to
complement visual displays. More research is needed to understand how to incorporate
and use sound.

There were some problems with the present release of PABLO (e.g. execution
speed when the graph is complex, possibility of going backward or forward, in time,
as wen as some bugs), but these problems wiH certainly be fixed in future releases.
PABLO has many advantages. It is portable, scalable and extensible and these issues
are important. In the near future it is likely that many contributions wHl be made in
order to increase the current PABLO displays and modules in general.

2.3.2 S I M P L E

SIMPLE is a modular tool environment for performance evaluation, modeling and
visualization of monitored event traces [23, 40, 41]. The acronym SIMPLE stands for
Source related and Integrated Multiprocessor and computer Performance evaluation,
modeLing and visualization Environment. SIMPLE is the first performance evaluation
tool environment which is independent of the monitor device(s) used and the system
monitored. The crucial step toward this independence was introducing the data access
interface TDL/POET which can decode measured data of arbitrary structure, format
and representation.

2 .3 .2 .1 B e h a v i o u r a l a b s t r a c t i o n

SIMPLE's approach to view parallel and distributed systems is called behavioural
abstraction [40]. It is based upon viewing a system's activity as consisting of a stream
of points of interest, the so-called events, representing significant points of the system's
behaviour. An event together with its attributes completely describes what occurred,
when and where in the system. A stream of events sorted by increasing acquisition
time is called an event trace.

2.3 .2 .2 P O E T - P r o b l e m O r i e n t e d E v e n t T r a c e I n t e r f a c e

POET provides a simple and monitor independent function interface which allows the
user to access measured data stored in event traces in a problem-oriented manner. In
order to be able to access and decode the different measured data, the POET functions
use a so-called access A;e2/ which contains a complete description of formats and
properties of the measured data.

The measured data are collected using event driven monitoring. This means that
whenever the monitor device recognizes an event, it stores a data record describing the

28

m. BarGraph'.ldteTlmePerHode lediMsa Length
LediMsgLength BarGraph:ldleTimePerNocle

Kin. 0.000
Max: 100.000 Kin: 0.000

Max: 1000.000

m\ Length PerMsg

M m : 0.000
Max: 1000.000

OontounMsg Number KiviatnaieTlme

KiviatldleTime ContounMsgNumber
M m : 0.000
Kax: 100.000 Mm: 0.000

Kax: 153.000

Rawww

Figure 2.3: PABLO displays for the LU Matrix Decomposition Algorithm - Stage IL

29

occurred event. Such a record is called an E-record and contains information about
what happened, when and where. An E-record consists of several record Aelds, each
containing a single value describing one aspect of the event. A sequence of E-records is
called an event trace (Ale). This event trace Ale can be segmented, if some E-records
have been lost, or unsegmented, which is a trace segment describing a completely
observed time interval of the dynamic behaviour of the monitored system.

Using the POET library, it is possible to write programs that can easily access
performance data to retrieve any desired kind of information. The example in hgure 2.4
shows the number of occurrences of each event.

trace_start: 4

open: 0

load: 0

send: 0

probe: 0

recv: ############ 399

recv_blocking; ############ 405

recv_waking: 2

message: 0

sync: 0

compstats: ## 1612

commstats: ## 1604

close: 5

trace_level: 0

trace_mark: 0

trace_message: 0

trace_stop: 0

trace_flush: 0

trace_exit: 5

block_begin: 0

block,end: 0

trace.marks: 6

clock_sync: ############ 401

Figure 2.4: Example generated using the POET library.

2 .3 .2 .3 T D L - T r a c e D e s c r i p t i o n L a n g u a g e

The TDL language was developed in order to make the construction of the occegg A:e!/
more user-friendly and is especially well suited for a problem-oriented description of
event traces. The access key is generated by a TDL compiler caHed TDLC, which
checks the user written TDL description (an example of a TDL description can be seen
in hgure 2.5).

The development of TDL had two main goals:

To make a language available which clearly rejects the fundamental structure of
an event trace.

To allow users to be able to read and understand a given TDL description, even
if they are not familiar with all language details.

30

TRACE DESCRIPTION:

TRACE IS UNSEGMENTED;

EVENT RECORD:

TOKEN:

NAME IS PROCESSOR;

LENGTH IS 1 BYTE;

VALUES ARE [1..3];

INTERPRETATION

1 = 'PRGC 1',

2 = 'PROC 2',

3 = 'PROC 3';

TOKEN:

NAME IS EVENT;

LENGTH IS 1 BYTE;

VALUES ARE ['B', 'C', 'S', 'E'];

INTERPRETATION

'B' = 'BEGIN',

'C' = 'COMPUTE',

'S' = 'SYNC',

'E' = 'END';

TIME:

NAME IS AOqUISITION;

FORMAT IS (UNSIGNED**, ms);

MODE IS POINT;

Figure 2.5: Example of TDL description

31

Using TDL/POET for all the SIMPLE took allows independence from the object
system, especially of its operating system and the programining languages used. In
order to adapt SIMPLE to another kind of measurement, one only has to write a TDL
description of the event trace to be analyzed. As TDL/POET provides a uniform
interface, the evaluation of the data is independent of its recording.

2 . 3 . 2 . 4 S I M P L E Too l s

Checktrace
The program cAect^race performs some simple tests on the event trace given that
can be applied to all event traces (e.g. it is checked whether the E-records are
correctly sorted according to increasing timestamp).

Varus
Vbrug performs user-defined checks called validation rules or assertions on an
event trace. Varus opens an input file and checks the specified assertions on
syntactic and semantic correctness. If no errors can be found, the second phase
is started, during which the assertions are checked against the event trace.

ASSERT

NUMBER (EVENT == 'RelaA') == NUMBER (EVENT == 'RelaE');

IF PROCESSOR == 'Slavel' ASSERT

DISTANCE (EVENT == 'SyncA') TO (EVENT == 'SyncE') <=5 [ms];

Figure 2.6: Example VARUS Ale

List
lists a (binary) event trace file in a readable form. For that purpose it

needs two parameters: the name of the event trace Ale and the name of the
corresponding key lUe (figure 2.7).

Trcstat
It performs simple statistical computations on an event trace. It can count
the frequency of token field values, compute the distance between the different
occurrences of an event or the duration of activities defined by a start and end
event. The results can be seen by tables (figure 2.8) or by graphics (figure 2.9)
using the UNIX facility zgmpA.

S data ajialysis package
The tools -Ligt and Trcsfaf are quite useful, but normally more complex computa-
tions have to be done. The user wants to analyze the measured data interactively,
with graphics support and in a high-level environment. For this purpose, the
commercial data analysis package S from AT&T was integrated in SIMPLE. S
provides a high level programming language for data manipulation and graphics.
S was extended in order to access event traces via the TDL/POET interface.

Gantt
To visualize the dynamic behaviour of concurrent activities, the function

32

******* NEW GLOBAL SEGMENT *************************************

[record 0]

PROCESSOR

EVENT

ACQUISITION

Master

MGZ-E

0 [ns]

[record 1]

PROCESSOR

EVENT

ACQUISITION

Slave1

MGZ-E

0 [ns]

[record 2]

PROCESSOR

EVENT

ACQUISITION

Slave2

RelaE

0 [ns]

Figure 2.7: Trace protocol generated by LIST

#011 FREQUEICY EVEIT PROCESSOR

#021 DURATION 'SyncA' 'SyncE' PROCESSOR UPPER' -5 [ma]

#025 639 [us] on 'Master'
#02S 591 [us] on 'Slavel'
#02S 519 [us] on 'Slave2'

#02T Master Slavel Slave2 Slave3
#02T no : 0)49(0 0)46(3 0)46(3 0)31(18 0)172(24
#02T min: 412 477 474 487 412 []
#02T 2.502 3.412 3.372 4.513 4.513 []
#02T sum: 46.974 30/^2 32.881 61.279 171.836 [us]
#02T mean: 969 667 715 1.977 999 [us]
#02T 25%: 531 501 505 1.197 501 [us]
#02T med: 904 534 513 1.433 562 [us]
#02T 75%: 1.289 639 646 2.726 1 .265 [us]
#02T var: 293.524 241.020 248.028 1.724.769 738.753 [us]

Figure 2.8: Output produced by TRCSTAT

was implemented in S. Gantt can be used to draw Gantt charts of arbitrary
event traces. Gantt charts are usually known as diagrams that represent the
temporal evolution of different program states of an examined object system
versus a common time axis (see figure 2.10).

Smart - Slow Motion Animated Review of Traces
Smart visualizes an event trace file. This is useful for investigating the dynamic

btrc
InterFolatioi

R^iricticn
Iteration

(felaaticn

Syi:
Intarolaticn

Restricticn
Iteration

Relaaticn

Stnc
IfiterFolatim

Restriction
Iteration •

Relaaticn •

Syi:-
Merpolatim •

Ifestriction •
Iteration •

Relaoticn •

Close Haidcopy About
dCP

DURATION

4.00

341

2.00

1.0

TOTAl

Master
Slave!
Sfa\e2
SiaveO

MIO 1&00 2100 3&00 4040 5040

Figure 2.9: TRCSTAT graphic generated by XGRAPH

Single Processor Phase

n n a

n m

IBOO mo IBS)

33

Tine [ffs]

Figure 2.10: Gantt diagram generated with S

34

S M A R T - Slow Motion Animated Review of Traces
display

Version 2.5 05.04.1991
KEY: mqz4 mmBi
TRC: mqz4

1 •
MCZ-A HGZ-A MCZ-A MGZ-A
MGZ-E MGZ-E MGZ-E MGZ-E
RelaA RelaA RelaA RelaA
RelaE RelaE RelaE RelaE
I terA I terA IterA IterA
IterE IterE IterE IterE
RestA RestA RestA RestA
RestE RestE RestE RestE
IntpA IntpA IntpA IntpA
IntpE IntpE IntpE IntpE
SyncA SyncA SyncA SyncA
SyncE SyncE SyncE SyncE

VisEv [
RecNr [[us]

> I

Figure 2.11: Screen snapshot of SMART

behavior of an algorithm or of a computer system. The visualization presents the
algorithm in action, exposing properties of the program that might otherwise be
difficult to understand or might even remain unnoticed. The monitored events will
be shown in the correct temporal order, but it is possible to distinguish between
two modes: first the interactive mode, in which the user can force the step to
the next event record, and second the timely mode, in which the event trace is
visualized as a movie in slow motion. Smart can be used on any ASCII-terminal
(see figure 2.11).

• Fact - Find activities in event traces
Fact can be used to find activities in an event trace. An activity is a sequence
of events. The user can define activities by specifying this sequence as a regular
expression of events. In the activities definition file used by fact the user can
specify the activities to be searched for. It has to be created manually with a
text editor.

• Other Tools
There are other tools like AICOS (Automatic Instrumentation of C Object Soft-
ware), VISIMON (visualization tool), CEDES (descriptor file editor), FILTER
and some others which are not described in this report.

2.3.2.5 A case s tudy using S IMPLE

An example trace file generated by PICL from a, fft benchmark (also called butterfly),
was chosen to be analyzed using SIMPLE. In figure 2.12 (see below) it is possible to
compare the Feynman diagram of ParaGraph [4] and the Gantt diagram generated by
one of the SIMPLE tools. Looking at the Gantt figure we cannot see the butterfly
pattern, but another different pattern. Notice that at each time, all send and receive
events occur almost at the same time. Only 4 processors are shown in the Gantt figure
because it is not very scalable (i.e. the picture is not clear when there are either too

35

F e y n m a n

FEYNMRN DIAGRAM

Corputatlcn

ChnFUtatlcn

Recu
Cbmputaticn

Coran

Send
Recu

Gbrpjtatlon

P I C L

-

1 1 1 1
L

-

1 1 1 1
L

1 1 1
L

,
I 1

L

Time [ms]
10

Figure 2.12: Feynman diagram vs. Gantt

many events or a large number of processors). The Gantt figure cannot show the
relationship between send and receive. It is possible to see that a particular processor
is sending a message, but the receiver is unknown.

If one wants to measure the duration between two events, e.g. send and receive on
the same processor, the procedure is as follows:

• Create a descriptor file specifying the desired measure (i.e. DURATION 'send'

• Use the trcstat tool to read the trace file and generate the corresponding results
{trcstatout file).

• Finally, the result can be seen graphically (using xgraph, figure 2.15), or filtering
the information of the trcstatout file (figure 2.13).

36

%grep '#02S' picl.trcstatout 1 grep 'Proc

#02S 536 [us] on 'Proc 0'

#02S 529 [U 8] on 'Proc 0'

#02S 526 c US] on 'Proc 0'

#02S 522 c us] on 'Proc 0'

Figure 2.13: Filtered information - Processor 0

It is also possible to write a small program in order to make the query Aow Zong
(Ae o/ euenk gemd and recuf, using the POET-library and get

the following result (figure 2.14):

% duration picl.key picl.trc send recv 'Proc 0'

activity 1

activity 2

activity 3

activity 4

536 [1 us]

529 [1 U B]

526 [1 us]

522 [1 us]

min: 522 [1 us]

max: 536 [1 us]

mean: 528 [1 us]

Figure 2.14: Filtered information using POET - Processor 0

As this example shows, it is not di:0cult to customize "queries" and get the
corresponding information from the trace Ale.

It is also possible to define as an interpretation of a specific sequence of
events. For example, a sequence like gend, followed by anything until a reci; is found,
it can be defined as an activity (see figure 2.16). To make a query using activities,
the tool (find activities) is provided by SIMPLE. The result of this query for a
particular processor (0 to be consistent), is showed in figure 2.17.

Using SMART it is possible to see the behaviour of the program, changing from
event to event in slow motion. However, it is difRcult to really what is
happening.

2.3.2.6 Comment s and Conclusions

In [5], Mohr afhrms that standardization of the physical event trace format is not
the right approach. No standard format can be flexible enough to represent
all possible event trace formats unless format information is included in the
trace. Moreover, there is a great variety of existing (hardware) monitors which
cannot produce a standardized format and many conversion programs would
have to be implemented. In this sense, the TDL/POET interface shows that a
generalized access method for arbitrary event traces works well without requiring
standardized physical formats. Tourancheau et al [42] affirm that no assumption
about the trace record format should be made and a self-defining (PABLO, [22])
or external hie description format (SIMPLE, [23]) should be used.

37

[P
0

Close Hardcopy About

I usj

565.00

560,00

55&00

550.00

545.00

540.00

535.00

530.00

525.00

520.00

515.00

x g r a p h

Duration send-recv

f s

PtQC 0

Proc 1

Proc'fO'

Proc i 1

Proc 1 2

Pr^cll
Proc 14

Proc 1 5

Proc 2

Proc 3

Proc 4

Proc 5

Proc6

Proc7

Fmc8"
Proc 9

L . 1.00 1.50 2.00 2.50 3.50 4.00 J

Figure 2.15: Duration send-recv

38

ACTIVITY step IS

(send ->> recv)

END

Figure 2.16: Activity's deAmtion Ale

The Gaatt display cannot show the relationship between sender and receiver as
the Feynman display in ParaGraph. The Gantt display is aLso not scalable if the
number of events shown is large.

*

@

Using the POET library, it is possible to create any kind of query just by writing
a small program. Using tools like it is also possible to deAne that
relate a sequence of different events. These facilities have been shown to be very
useful.

The SIMPLE visualization facilities are not very complex and they are very easy
to use. However, it is difRcult to really uzgwaZize patterns of communications
between processors like for example in ParaGraph. In SMART it is possible to
see the transition between events but there is a lack of general perspective and
is not possible to see what happened (i.e. to see all events) during a particular
interval of time. To do this, other tools like can be used.

SIMPLE is a good example of what we may have in the future: a of
diEerent performance analysis took in order to analyze a particular trace file,
which have been generated using either hardware, software or hybrid mechanisms
but which is also independent of the object system.

2.3.3 Pa raGraph

ParaGraph is a graphical display system for visualizing the behaviour of parallel
programs on message passing multiprocessor machines. It is a post-execution tool
that was written for use with PICL (Portable Instrumented Communication Library).
Both ParaGraph and PICL were developed at Oak Ridge National Laboratory. PICL
optionally produces an execution trace Ale during an actual run of a parallel program
on a message-passing machine, and the resulting trace data can then be replayed
graphically with ParaGraph. ParaGraph provides several distinct visual perspectives
from which to view processor utilization, communication traffic and other performance
data. The multiplicity of ways oEered by ParaGraph to view the information is an
advantage it has over many other tools.

ParaGraph and PICL are public domain software. ParaGraph and PICL have
been modified at the University of Southampton in order to extend and enhance some
of their features, allowing ParaGraph to read trace Ales generated by software other
than PICL (PARMACS [43] and Express [11]), and implementing a version of PICL to
run on transputers.

For more details about the original versions of ParaGraph and PICL, see [9,10, 44].
Details about the modiAed versions of ParaGraph and PICL can be found in [45, 4].

39

step[1]:

66 : send

67 : compstats

91 : compstats

116 : recv

step[2]:

174 : send

175 : compstats

190 compstats

220 recv

step [3] :

270 send

271 compstats

286 compstats

316 recv

step [4] :

366 send

367 compstats

385 compstats

412 recv

536 [u s]

529 [u s]

526 [u s]

522 [u s]

step no:

step min:

step max:

step sum:

step mean:

step med:

step var:

522 [us]

536 [us]

2XU.3 [u s]

528 [u s]

528 [US]

35 [(1^0*2]

Figure 2.17: Results usiug the tool

40

This section will be based on the modified version of ParaGraph.

2.3.3.1 General description

The principal design objectives of the original version of ParaGraph were ease of
understanding, eaae of use and portability. Eage of use implies that the displays should
be as self-evident and consistent as possible, providing a variety of them and oSering
different perspectives. ParaGraph is menu driven with most user input provided by
mouse operation, although some options require a small amount of keyboard input.
There are two aspects to portability. Firstly, the graphical system itself should be
portable. ParaGraph is based on the X Window System and runs on a wide variety of
graphical workstations. It uses no X toolkit and requires only Xlib.

Although ParaGraph is most effective in colour, it also works on monochrome and
grayscale monitors. The second aspect of portability is that the package should be
capable of displaying the execution behaviour of programs running on different types
of parallel machines. This requirement has been partially satisfied by using PICL, and
this has been extended with the development of trace filter programs for PARMACS
and Express.

2.3.3.2 General displays

ParaGraph has a graphical, menu-oriented user interface that accepts user input via
mouse clicks and keystrokes. Menu selections determine the execution behaviour of
ParaGraph both statically (e.g. initial selection of parameter values) and dynamically
(e.g. pause/resume, single-step mode). ParaGraph preprocesses the input trace file to
determine relevant parameters (e.g. time scale, number of processors) automatically
before the graphical simulation begins. These values, however, may be overridden by
the user if desired.

ParaGraph o&rs the following display options^:

Feynman
This is one of the most useful displays for getting an overall impression of the
state of execution of the program. The thread of execution of each processor
is represented by a horizontal line, which changes colour to indicate whether
the processor is active, idle, or waiting for a send or receive to complete. The
message transfers between any pair of processors are represented by diagonal
lines from source to destination. Those points where the communication lines
meet the processor lines mark the send and receive times. The Feynman display
is particularly useful showing whether processors are idle because they are blocked
waiting for a message to be sent or received.

It is useful to see how communications take place between processors. Nodes are
depicted as circles, communications between nodes are represented by lines and
the status of each node is displayed by a colour which may be either busy, idle,
sending or receiving. When there is a send from one processor to another, a line
is drawn and then deleted when it is received. At the end of the simulation all

^The actual maxinmm nnmber of processors supported by this version is 32. Most of the displays
of the current version of ParaGraph described in [10], allow up to 512 processors although a few are
limited to 128 and one is limited to 16.

e

41

the lines of communication that were used are displayed, indicating the logical
commnnication links between processors.

Message Z êngtAg
Messages are represented by a coloured square in a grid whose rows and columns
correspond to sending and receiving processors. The length of each message is
indicated by the colour of the square. This colour, may be modified by the user
via keyboard input in the appropriate window of the legend. At the end of the
simulation, the cumulative message volume for the complete run is shown.

This is a geometric representation of individual processor utilization and overall
load balance. Each processor is depicted as a spoke of a wheel. The fractional
utilization of each processor portrays a point on the spoke, with the hub of the
wheel representing zero (completely idle) and the edge of the spoke representing
one (completely busy). The vertices of the polygon whose size and shape indic-
ate the load balancing and utUization of the system, are determined by taking
together all those points on the spoke.

This display shows when each processor is busy, idle or waiting to receive a
message, using different colours for each state. Each processor is depicted as a
line which changes its colour depending on the state. It is similar to the Feynman
display, but does not show the communication lines between processors.

This plot displays the number of processors that are busy as a function of time.
It is useful to determine the load balance of the system. The same information
can be found in the Gantt and Feynman displays, but it is usefuHy summarized
here.

Communication 2)oa(f
It shows either the volume or the number of messages of the system as a function
of time. It is like the Utilization display but for communications.

Qweue 5'zze
This display depicts the length in bytes of the message queue for a particular node
as a function of time, as weH as the number of messages in a particular queue.

Message Queues
Depicts the length of the messages that are currently traveling on the system for
each processor. The display uses diferent colours to show different lengths and
at the end of the simulation it produces a useful summary. It works also with the
number of messages as well as with the length.

Communzcatzon 5'tat:st%cs
This display shows the communication statistics for a single node as a function of
time. It displays not only the source but also the destination. It has three types:
node, message type and message length. In the first caae, it shows the messages
going from and to a particular node. The last two cases show the same situation
but for message type and message length.

e

@

@

42

CZocA
This indicates current time in the simulation.

Trace Aeconf
This shows the cnrrent trace record being processed and optionally by expanding
the window, past trace records.

o/ nocfea
This display shows the actual number of nodes of the simulation.

OMfer
This enables the user to specify the ordering of processes in the displays or to
select a particular subset of them. Automatic reordering ensures that a given
process is not multiply displayed.

5'cron
This option allows control of the scroll of a particular display over the time. There
are fives alternatives: smooth, jump 1/4, jump 1/2, jump 3/4 and jump 1.

6'coZe
This controls the scale factor of the displays. There are four options: 64, 128,
256 and 512.

This resets the current display.

fauge/Regume
This option allows the user to stop the simulation and study a particular snapshot
of it, resuming the execution when desired.

This enables the user to study the execution of the simulation step by step.

5'e^
This enables the user to modify the start and end times, the time step, the printer
for screen dumps, and the trace image dump file names.

This option allows to user to save the actual layout of the ParaGraph's displays
in order to re-draw them in another session.

» Menu
This is ParaGraph's main menu. Display windows may be selected or de-selected
by toggling their corresponding buttons, and replay of the trace may be started,
stopped or single-stepped. A number of display options may be adjusted, and
screen-dumps may be taken.

2.3.3.3 A case s tudy using P a r a G r a p h

The LU matrix decomposition algorithm used in this section was proposed by Geist
and Romine in 1988 and implemented by Ortega [46]. This algorithm, known as CSPR
(Column Storage Row Pivoting), builds the LU decomposition using row pivoting on

43

a
FEYNMAN IlIflCRWI

a
Klvlat

a a
flCCRECflTE PROCESSOR UTILIZATION

Animation

0

© o e o

Figure 2.18; LU Algorithm - Part I: All processors are busy (n=100).

a matrix distributed by columns in a wrap-around fashion. Ortega's version of the
algorithm was implemented on a ring of transputers with a copy of the program on
each processor. This implementation has two subroutines and one main routine. The
first subroutine, urand, is a random number generator; the second, backslv, solves a
triangular system of equations. The main routine, main, controls the LU decomposition
process.

ParaGraph has been shown to be a useful tool to help users to understand the
behaviour of their application. In figures 2.18, 2.19 and 2.20 the three different stages
of the LU decomposition algorithm can be seen.

This implementation of the algorithm made by Ortega, first computes the matrix
to be solved in order to generate a solution where all entries of the right hand side vector
(usually called b) are 1.0. For this reason, this first part is not considered for tracing
and therefore the trace facility is off during this stage. The first part of the algorithm
computes the actual pivot and makes the corresponding updates on the matrix (part
I, figure 2.18). This part shows the best behaviour and aU processors are busy almost
aU the time, except when they are communicating data in order to decide the value of
the pivot and to make updates.

In part II (figure 2.19) the situation is different. The algorithm is finishing and
the amount of work to be done per processor is not enough to keep them busy. The
interval of time between communications is therefore becoming shorter.

In part III (figure 2.20), the algorithm is collecting all the partial results. This part
is dominated by communications and only one or two processors are working at the
same time (in this implementation, communications do not overlap with computation).
ParaGraph displays; Feynman, Utilization, Kiviat and Animation, were very helpful in
understanding the different stages of this LU decomposition algorithm.

2.3.3.4 Commen t s and Conclusions

• ParaGraph has been shown to be a useful tool to help the user to understand the

44

Fey n m a n

Klviat

U t l h z a t l o A n i m a t i o n

© O @ O
dl* busy s«rKj

Figure 2.19: LU Algorithm - Part II: Communications start to increase (n=100).

F e y n m a n Kiv la t

0 A n i m a t i o n U t i l i z a t i o n

© o * o

Figure 2.20: LU Algorithm - Part III: Gathering results, communications are the
dominant factor (n=100).

45

behaviour of an appEcation. The following displays were used in the analysis of
the LU decomposition algorithm: Feynman, Utilization, Kiviat and Animation.

It is not straightforward to And out the particular interval of time to be analyzed.
This situation is even worse when the application has a long execution time. It
would be worth to have some kind of operation like Express [11].

There is no direct relation between ParaGraph's displays and the source code.

This version of ParaGraph does not provide statistics in order to compare, for
example, the percentage of idle time per processor. It is important to see the
dynamic behaviour of an application, but it is also important to obtain gummary
information about that behaviour, aUowing the user to focus his/her attention on
a particular aspect of interest.

2 . 3 . 4 S u m m a r y a n d f u r t h e r r e f e r e n c e s

Some other tools can be found in the literature. They cover performance analysis,
performance measurement, visualization and tuning of parallel programs among other
features.

The tools and references in alphabetical order are:

Chitra, Visual Analysis of Parallel and Distributed Programs in the Time, Event
and Frequency Domains, Abrams et al [47].

Faust, An Integrated Environment for Parallel Programming, Guarna et al [48].

Instant Replay, LeBlanc and MeUor-Crummey [49].

IPS-2, The Second Generation of a Parallel Program Measurement System, Miller
et al [50].

JEWEL, A Distributed Measurement System, Lange et al [51].

Maritxu, Generic Visualisation of Highly Parallel Processing, Zabala and Taylor
[!] •

The Massively Parallel Monitoring System, Tourancheau et al [42].

Monit, A performance Monitoring Tool for Parallel and Pseudo- Parallel Pro-
grams, Kerola and Schwetman [52].

Mtool, An integrated System for Performance Debugging Shared Memory Multi-
processor Applications, Goldberg and Hennessy [53].

Parasight Programming Environment, Aral and Gertner [54].

PAWS, A performance Evaluation Tool for Parallel Computing Systems, Pease
et al [55].

PIE, A programming and instrumentation environment for parallel processing,
Segall and Rudolph [56].

Poker Parallel Programming Environment, Notkin et al [57].

46

Prism Programming Environment, Sistare et al [3].

PTOPP, A Practical Toolset for the Optimization of Parallel Programs, Earl
McClanghry [58].

Quartz, A Tool for Tuning Parallel Program Performance, Anderson and Lazowska
[6].

Start/PAT, A Parallel Programming Toolkit, Appelbe et al [59].

TIPS, A Transputer-based Interactive Parallelizing System, Wagner et a! [60].

TMP, A Hybrid Monitor for Behavior and Performance Analysis of Distributed
Systems, Haban and Wybraoietz [61].

TOPSYS, A run time tool for visualizing message-passing parallel programs,
Bemmerl et al [62].

TRACEVIEW, A trace visualization tool, Malony et ai [63].

TRAPPER,, TRAfFonic Parallel Programming EnviRonment, Schafers et al [64].

Upshot, An X-based graphic program for displaying the information captured in a
logfile during the execution of a parallel program. It emphasizes the static display
of detailed information. Upshot has proven useful in tuning parallel programs
running on a moderate number of processors [65].

VMMP, A practical tool for the development of portable and e&cient programs
for multiprocessors, Gabber [66].

Further references for performance metrics:

» A cage ugmg Roger Sockney [67].

f f and BencAmar&mg o/ 5'wpercompu^erg, Roger Hockney
[68].

o/ fey/ormonce, Roger Hockney [69].

» /i/2 - ^ memory and commtfnzcofzon 6oMZenec&g, Roger
Hockney and 1. Curington [70].

v4 ̂ m e w o r t /or 6encAmorA: pef/ormance Roger Hockney [71].

famZZeZ Compwkrg vircA«^ecfure6, frogrammmg and ^Zgon^Tzma, Roger Eock-
ney and C. Jesshope [72].

Aeerafwa^mg v4mdaArg /aw, J. Gustafson [73].

MeaaunngparaZ/eZ processor pef/ormance, Allan Karp and H. Flatt [74].

Mode/mg (Ae gerio/ and paraZ/eZ/rac^iong o /a paraZJeZ aZgorî Am, E. Carmona and
M. Rice [75].

47

BencAmor&mg pomZZe/ programg m o mwZ^^progmmmzng environment - (Ae fAA-

BENCH system W. Nagel and M. Linn [76].

Tbword a teMerparaZZeZpef/ormance metnc, X. Sun and J. Gnstafson [77].

TowanZ a foa;onom7/ o/pef/ormance mefnca, J. Worlton [78].

TAe mtegration o/ appZicotwn and ai/gtem 6oge(Z metncg m a poroZZeZ program
per/brmonce tooZ, J. HoUingsworth et al [79].

« f araZZeZ Program f eT^brmance Metncg; v4 comparz'aon oncZ {;aZz(Za(;on, J. HoUings-
worth and B. Miller [80].

Meogunng paraZZeZzam m computation mtenawe gczent^c/engmeering appZ*ca-
t«ong, M. Kmnar [81].

5'eZect%i;e Mon%tonng Z7gmg fef/ormance Afetnc frecZicatea, C. Fineman and P.
Hontalas [82].

Meagunng tAe 6ugmegg o / a tranapwter, G. Jones [83].

jBncZgmg tAe gap between ^mda/iZ'g i^aw an(Z 5'an(Z;a i}a6oraton/'g reguZtg, X. Zhou

interpretmg poraZZeZproceggorper/ormance meagurementg, H. Jordan [85].

Further general references for performance analysis:

f7zper%enceg wzt/i Monitoring and yigwaZiging tAe f e/^rmance o/ f araZZeZ f ro-
gramg, K. Imre [7].

f er^rmance 7̂%;aZ«at2on o/ f araZZeZ Programs m f araZZeZ ancZ Z)igtn6ute(Z ^'i/gtemg,
Bernd Mohr [40].

l ^ a t to Z)rawf W%en to Drawf v4n eggai/ on faraZZeZ frogmm FigwoZization,
Barton Miller [13].

Digtributed f er^rmance Monitonng; MetAocZg, TooZg ancZ AppZicationg, R. Hof-
mann et al [86].

^ yiguaZization ^'i/gtem/or faraZZeZi'zmg frogramg, C. Dow et al [87].

T/*e fer/ormance AeaZitieg o/ MaggiueZi/ faraZZeZ froceggorg; ^ Cage '̂tucZ;/, 0 .
Lubeck et al [88].

PeT/ormance FigwaZization /or faraZZeZ Programs, E. Lusk [89].

T/;e A f g program FiguaZization ^7nuironment, D. Kimelman [90].

FiguaZization o/Program fef/ormance on Concurrent Computerg, D. Rover et al
[91].

5'imuZation ancZ FigwaZization fooZg/or jL*nA;-6age(ZfaraZZeZv4rcAitectureg, E. Luque
et al [92].

TboZg, K. Nichols [93].

fey/ormance-Meaauremen^g TboJg m a MwZf*procegaor .B'nrzronmen^, H. Burkhart
and B. Miller [94].

yl f e^n nef approocA/orpeTyormomce onenW^araHeZ program (Zegtgn, A. Ferscha
[95].

[/ncZerg^anjmgpara/ZeZ program beAamor (ArougA fe(r% ne(mocfeZg, G. Balbo et al
[96].

^ mê AofioZog^ /or per/ormance anaZg/gzg o/ poraZZeZ compufa^iong wzYA Zooping
cong^rucfg, A. KapeWkov et al [97].

v4 mefAocZoZogy /or pe^/brmance eraZua^zon o/ pamZZeZ oppZzca(;ong on muZ îpro-
ceggorg, D. Menasce and L. Barroso [98].

T';'mmgporaZZeZprogramg uae meggoge paggmg, N. Karonis [99].

foraZZeZpey/ormonce o/oppZzco^zoMg on 6'upercompuferg, C. Grassl [100].

f or̂ abZe erecw(%on ^racea /or paraZZeZ program cZebwggzng oncZ per/ormonce t̂ zguoZ-
zza^zon, Alva Conch and David Krnmme [101].

Monz^onng ParoZZeZ Ea^ecutiong in AeaZ Time, Alva Conch and David Krnmme
[102].

yzguoZ-v4uroZ jZepregen^afiong o / fe r^ rmance /or a 5'caZa6Ze v4ppZ*cG((on frogrom,
Joan Francioni and Diane Rover [103].

_De6wggmg foraZZeZ frogramg ugmg gowncZ, Joan Francioni et al [104].

r/^e gouncZg o/paraZZeZprogmmg, Joan Francioni et al [105].

Me(Ao(ZoZog /̂or Fz'guaZWng fer/ormonce o/i^oogeZ^ 5'{/ncAronoug frogromg, S.
Sajnkkai et al [12].

v4 Dc^a/Zow (ooZH(/or mguaZiza^ion, D. Dyer [106].

« MuZ(«proceggor fef/ormance, E. Gelenbe [107].

7n(ro(Z«ĉ %on (o foraZZeZ Computing, T. Lewis and H. El-Rewini [108].

fef/brmance onaZygzg o/poroZZeZproceggmg gyg^emg, R. Nelson et al [109].

yzguaZizmg pez/ormance (Ze6uggmg, T. Lehr et al [110].

f ef/ormance meogwremen^ /or paroZZeZ and cZ:g(rz6uW programg." ĝ ruĉ MrecZ ond
au^oma^ic approacZ:, C. Yang and B. MiUer [111].

fer/ormance ing^rwmen^a^zon and FiguaZiza^ion, M. Simmons and R. Koskela
[112].

fngtrumenfafion o/ fufure faraZZeZ Computing ^'i/sfemg, M. Simmons, R. Koskela,
and L Bncher [113].

49

fomZ/eZ frogmmmmg; fef/ormonce fergpec(z'i;e, S. Thakkar [114].

v4n mfegratecf approach to pomZZeZ progmm de6wgg%n^ ond per/brmonce cnoZg/gig
on Zonye-gcaZe muZ(«proceggorg, R. Fowler et al [115].

Zngtrumentotzon an(Z f efyormonce Monztonng o/D%gtrz6uW 6'2/gtemg, R,. McLaren
and W. Rogers [116].

MuZtzprogrommmg one! fAe fefyomzcnce 0/ fomZZeZ frogmnzg, M. Benten and H.
Jordan [117].

fey^onnonce Meagurement /ngfrumenWzon /or MwZ^zproceggorg Compu^erg, R.
Carpenter [118].

fef/ormonce Meoguremen^ 7ng(rumen(a(ion /or ZoogeZy-CowpZed M/MD
v4rcA%(eĉ ureg, J. Roberts et al [119].

Monitoring 0/ DwM6«(e(Z AeoZ-Time S'yg êmg.- TAe Fergo^iZe Tinzmg vinaZyzer,
W. Kastner and U. Schmidt [120].

Z7n(Zergfan(Zmg (Z;e 6eAawo«r o/paraZZeZ gg/ĝ emg, Peter Capon [121].

T̂ orA;gAop on f er/ormance Meaguremen^ and yiguaZizo/ion 0/ f aroZZeZ 5'i/gfemg,
Rainer Klar [122].

Monitoring f amZZeZ f rogmmg Aunnmg in TVongpufer jVetwor&g, Umberto ViUano
[123].

j4 pey^ormonce onaZi/gig ezempZor - faraZZeZ Aoy Tracing, D. Jensen and D. Reed

[124].

vlnoZyzingparaZZeZ program ezecwtiong wging muZtipZe mewg, T. LeBlajic et al [125].

j4n Oweruzew 0/ Common BencZimar&g, Reinhold Weicker [126].

6pecioZ fggwe on fe fn ' Wef MotZeZing o/foraZZeZ Compw^erg, Giovanni Chiola [127].

TooZg/or M«Z^ipZe-Cf(7 ^ni;ironmenfg, Warren Harrison [128].

MocZeZ-fZriuen VoZWô ion o/farcZZeZ frogramg BagecZ on ^t;en(Tmceg, P. Danphin
et al [129].

2 . 3 . 5 C o m p a r i s o n s a n d C o n c l u s i o n s

In order to compare the set of tools described in previous sections and make some
conclusions, the following issues wiU be considered:

_Run-(ime ua. fog^-mor^em
Most of the tools that have been mentioned in this document are postmortem
tools, that means tools which work with trace data generated by a previous run of
the application being studied (PABLO, SIMPLE, and ParaGraph are postmortem
tools).

There is one clear advantage of using a run-time tool: only one execution of
the application is needed (at least in theory) to obtain and analyze the current

50

performance of the application (for some systems the analysis of trace files implies
another execution of the program). However, some disadvantages were found: it
is not always possible to repeat an event of interest; when the elapsed time of an
application is long enough and the user has no idea about what to analyze (i.e.
which breakpoints to use to stop the application when it is needed), it could be
difficult to foHow a run-time display and, Anally, there is a lack of perspective
due to the fact that the views are only or ZocoZ views.

In a postmortem environment it is often possible to repeat events of interest (e.g.
ParaGraph), and to change the perspective of the current view of the system
in time (e.g. changing the scale of the display in ParaGraph). In this way, the
analysis can be done in a more Sexible way, examining the data as many times
as needed. The amount of information provided by a postmortem tool is also
more specific, because a postmortem tool has the possibility to allow a certain
amount of invasiveness while recording the performance data that a run-time
system cannot accept.

In general, a postmortem tool provides more flexibility than a run-time tool
and most of the existing performance analysis tools for parallel programs are
postmortem, including recent and sophisticated developments (e.g. PABLO).
However, for large volumes of data run-time systems (e.g. Paradyn [130]) are a
more convenient choice.

Visualization is the most popular way to represent performance data. AH of the
tools reviewed here have visual representations of the data, offering a wide range
of displays (e.g. Kiviat, Feynman, Gantt, Dial, etc). However, other forms of data
representation have started to appear. PABLO uses sound as an alternative way
to represent certain kinds of performance data. Other authors (e.g. Francioni et
al [103, 104, 105]) have also been working in this field.

Most researchers are convinced that visual displays are necessary to help the
user in understanding the behaviour of a parallel application, but they are not
convinced that sound would help. However, it is wise to test alternative ways
to represent data (i.e. use of sound) especially to overcome current problems of
performance data representation on massively parallel machines with hundreds
or thousands of processors.

Portability is a key issue for the success of any performance analysis tool. However,
some of the took presented here have some kind of platform dependence (e.g.
trace format, hardware architecture). ParaGraph can only read the trace data
generated by PICL and more recently by PARMACS and Express (Southampton's
trace file converters). Although it is possible to obtain data from applications that
have been run on a variety of architectures, ParaGraph is restricted to the inform-
ation included in the PICL trace standard. In contrast, SIMPLE and PABLO are
not dependent on the trace format. SIMPLE tools use the TDL/POET library
to access the trace data and PABLO has a Self Defining Data Format (SDDF),
where all the characteristics of the data are represented. In this way, SIMPLE
and PABLO can analyze ani/ trace data generated by any machine.

51

Other levels of portability are generally fulfilled by the use of the X standard and
Motif for the graphical system. However, the only tools that offer portability
(i.e. independence of the performance trace data) are SIMPLE and PABLO.

Extensibility means that it is possible and straight-forward to add new features
to the performance analysis tool and that users are able to incorporate their
own ideas into it. In this sense, only PABLO and SIMPLE are really extensible
(although the most recent version of ParaGraph has some extensibility features
[10]). SIMPLE is a set of tools which use the TDL/POET interface to access the
performance trace data and PABLO is designed as a toolkit for the construction of
performance analysis environments. In both cases it is easy to add new features,
but PABLO has a more robust design for this particular purpose.

Scalability is another key characteristic of the new generation of massively par-
allel systems; by adding processors one can incrementally increase performance
without replacing existing hardware or changing the underlying software. However,
new ways to represent performance data are required in order to produce useful
and understandable displays for thousand of processors.

The latest version of ParaGraph has 512 as the maximum number of processors
to be represented. However, it is not clear that the displays are stiH useful for this
number of processors. In some cases, there is not an explicit maximum number of
processors, but the displays cannot work beyond a certain point (e.g. Smart tool
in SIMPLE, Etool in Express [11], PATOP in TOPSYS [131, 62] and TimeMap
in PA-TOOLS [132]).

Some ideas like, for example, using or c/ogges of processors instead
of individual processors, might be useful, but more research is needed in this
area. Another aspect of scalability, that has not been tested but certainly very
important, is that the performance analysis tool itself must be scalable to work
with even larger trace files. If a tool works very well for small traces but only
very slowly for larger ones, it is unlikely that the user will continue using it.

o/ uge
Most of these tools are in general easy to use. However, some are easier than
others. ParaGraph is very easy to use, but unfortunately it does not provide
graphical help (this could make things easier for the user). PABLO is easy to use
once the user has understood its approach. SIMPLE also requires some training.

In some cases a tool is easy to use but not to use. Ease of use
must be balanced against the power of the tool. We can expect a complex but
powerful tool to be more complicated to use than a simple and not very powerful
one.

@

A powerful tool must be extensible, but should also provide a set of basic features
for the novice user. Thus it is desirable for a tool to have different user levels (e.g.
novice, intermediate and expert). An expert user wiU wish to modify and add
new features to the system depending on the application being analyzed. PABLO
and SIMPLE fulfill this requirement.

52

Z/ge o/ coZourg range o/ numencoZ uoZueg
There are many ways to represent numerical values in a visual form but one of
the most popular is using some kind of colour scale. Typically, a light coloiir
represents a small numerical value and a dark colour a large numerical value.

This way of representing data is helpful when the amount of data is considerable.
Another use of colours is to establish a difference between events or stages (e.g.
green means that the processor is busy and red that it is idle). The use of colours
is provided by all the tools. It would be helpful to define a standard use of colours
in order to avoid confusion between systems.

f rogmmmmg MocfeZ
Several tools are restricted to message passing systemB. However, languages Dke
EPF (High Performance Fortran) do not include communications statements
explicitly. HPF is based on data parallelism and it could become a standard
for high performance computing. For these reasons, it is important to separate
the event collection process and the analysis of the performance data. A tool
must be general enough to avoid any dependency on the communication model.

When a tool is dependent on the information and semantics of a specific trace
data format (e.g. ParaGraph), it is unlikely to be flexible enough to support
different models. PABLO and SIMPLE have a performance data format without
embedded semantics, and can be extended to support different models.

Since a perfect tool does not exist, it is sometimes useful to use a combination of
tools. However, the lack of a standard for the representation of performance data
makes this option difRcult and several (e.g. PICL SDDF (PABLO),
PARMACS PICL (ParaGraph)) have been written.

However, if the problem was only due to a particular it would be relatively
easy to solve. The major problem arrives when there is a lack of information and
no translation is possible. Again, PABLO and SIMPLE are most likely to be able
to interact with other tools due to their portable data format (SDDF and TDL).

o/ ad Aoc gwerzeg by (Ae uaer
The performance analysis of a parallel program is an iterative process. The user
usually wishes to ask questions about the performance, using the feedback to
produce even more interesting queries.

The key factor here is to allow the user to build queries about the performance
data in as Bexible a way as possible. Although it is useful to provide some
basic facilities (e.g. it is always useful to know the percentage of idle time per
processor), it is also worth allowing users to use their imagination in asking any
kind of question about the data. We cannot forget that the user is the of
the application being analyzed.

SIMPLE allows users to their own queries using the TDL/POET in-
terface. In contrast, PABLO provides a performance data analysis environment
where the user could buUd a gmpA which will produce the required
answer.

53

f er/ormance o/ (Ae f ef/ormance Toof
It is desirable for a performance analysis tool to have a reasonable performance.
E this is not the case, the user would spend more time answering even simple
questions about the data. In extreme cases, the user would decide to avoid the
use of the tool.

Mec/tonisma AandZe and display o/ (fofo
Experience using several tools suggest the foDowing features to handle the exe-
cution and display of data:

- Possibility to go forward and/or backward in time.

- Access to a specific point in time or where a specific event occurs.

- Re-execution of events.

- Control of the speed of the execution by the user.

fezyormance Ana/i/szs MefAodoZog;/
In order to successfully complete the performance analysis process, a methodology
is required. However, none of the tools presented in the previous sections suggest
a particular methodology. The use of a methodology would save time and also
give ideas to the user about what to do. Such a methodology would have to be
Bexible, understandable, portable and extensible.

between peT^rmonce ond source code
Once a possible bottleneck have been found, it is often difBcult to relate the
problem to the source code of the application in order to know wAere the problem
is located. It would be desirable from the user point of view, to cZicA; the mouse
over a specific display where the problem is being represented and then obtain the
source file and the line where the program is currently executing. However, this
has not been achieved by any of the tools described here. In general, the relation
between performance data and source code, depends on the user's ability and
his/her knowledge about the problem. Some features, like user defined events,
could be used in order to facilitate this effort.

3 Review of A N D E S

ANDES is a, performance monitor designed for MIMD distributed memory machines
that inserts additional code in the program to be analyzed [24, 25, 133, 134]. ANDES
was developed at Universidad Simon Bolivar (Caracas, Venezuela) as a MSc Thesis
with Prof. Alejandro Teruel as supervisor. Further improvements have been done at
the University of Southampton.

ANDES determines the following metrics: speedup, eHiciency, experimentally de-
termined serial fraction, percentage of idle time per processor, load and communication
balancing, synchronization time and percentage of cpu-communication overlap. Within
ANDES, a performance analysis methodology is proposed.

A prototype of ANDES was designed to analyze programs written in parallel
INMOS ANSI C running on bidirectional ring of T800 transputers.

3.1 Description of ANDES

ANDES is a software monitor which analyzes the performance of a parallel program by
inserting additional code in order to get information related to the events that define the
performance of the program. This information is distributed among all the processors
in the network and is local to each one. Once the apphcation ends, ANDES keeps the
results generated and gives the user the possibility to analyze them pogfmorfem.

The development of ANDES took approximately one year, considering that there
already existed an ANSI C parser to build the abstract tree related to the program
being analyzed [135]. The ANDES prototype was written in parallel INMOS ANSI C
[136] and has around 1300 lines of code.

ANDES has three main modules:

This allows the user to introduce particular hardware characteristics
like topology, communication channels, etc. Using this information, ANDES can
decide how to transmit the results of the analysis at the end of the process.
For this prototype, the topology was restricted to a bidirectional ring and the
configurer reduced to a configuration Ale.

f reprocesgor Once the data related to the system configuration has been spe-
cified, the preprocessor inserts code in the program being analyzed in order to
get information about the events that define performance. This information is
accumulated on each processor until the application ends and the results are then
collected.

Each event occurrence is registered and accumulated in a "dynamic call tree" of
the application. The main routine of the application is the root of the tree and
when one routine calls another one, a new node is created and added to the tree.
This new node links the "father" with his "son".

54

e

55

Each node of the tree contains a register with the information associated with
that node. There is one tree per processor and at the end of the application,
these trees are saved in order to be postprocessed.

This provides graphical facilities to vignalize the results obtained. For
this version of ANDES, the visualizer was not included.

ANDES has the following restrictions:

All the parallel programs to be analyzed by ANDES mnst terminate successfully,
including all its constituent processes.

ANDES is not designed for real time applications.

Due to the fact that ANDES is a software monitor, it introduces some degree of

The user must specify the particular characteristics of the topology where ANDES
wUl run. For this prototype, the topology is a bidirectional ring.

3 . 1 . 1 P e r f o r m a n c e M e t r i c s

The main goals of a parallel performance analyzer are:

To determine the performance of the program: This allows the programmer to
know whether his application is executing efEciently. In this way, the programmer
may decide whether it is necessary to carry out a deeper analysis.

e

To make projections and define scalability: Once the performance of the applic-
ation is known, it is important to ask the following question: how would the
application behave if the number of processors increases?

To And bottlenecks: If the performance is not as expected, it is necessary to find
the modules of the program where the possible problem is located. Only the
modules of the application that are consuming a substantial amount of time need
to be considered.

To obtain enough information in order to know and improve the degree of
parallelism of the program: Some node architectures, like transputers, allow
concurrent computation and communication. This freedom allows the maximum
degree of parallelism on one particular node to be obtained. However, it is
important to determine if the total amount of time of cpu-communication overlap
is significant with regard to the total execution time and whether the cpu-
communication overlap has been fully exploited. In this way, it is possible to
improve the execution time of the program by optimizing the cpu-communication
overlap and maintaining each processor as busy as possible.

With these objectives in mind, this section describes some of the most useful
metrics to analyze parallel programs: speedup, efRciency, experimentally determined
serial fraction [74] and percentage of cpu-communication overlap. The remaining

^Overhead produced by the measuring mechciiusm.

56

metrics: percentage of idle time per processor, load and communication balancing
and synchronization time are described in detail elsewhere [24].

Speedup is the elapsed time of the best sequential algorithm divided by the elapsed
time required by the parallel version on p processors. EHiciency is related to price-
performance. It is defined by the ratio between the speedup and the number of
processors. A small efRciency indicates waste of resources. In general, increasing the
number of processors should reduce the elapsed time of the application, but by what
factor? This is measured by the speedup. Speedup close to linear is good, but how
close to linear is good enough? The serial fraction answers this question.

This section describes the two most interesting metrics measured by ANDES: the
experimentally determined serial fraction and the percentage of cpu-communication
overlap.

3.1.1.1 Experimental ly de termined serial f ract ion

The theoretical serial fraction of a program is the part of the program that must be
executed sequentially. To calculate this serial fraction in an analytical way is a very
complex problem, because there is not an easy way to determine for each program
which fraction of it is executed serially and which fraction is not.

For this reason, Karp and Flatt [74] introduce the definition of experimentally
determined serial fraction (serial fraction from now on), which is an empirical estimation
of the theoretical serial fraction. The serial fraction is defined by the following equation:

1

P

where A(7i,p) is the speedup for a problem size of n on p processors.
One of the advantages of the serial fraction is its capability to make projections

of the performance of the program using a larger number of processors and thereby
determine the scalability of the algorithm.

The serial fraction is a good diagnostic tool to detect anomalies in performance.
While speedup and efRciency change when the number of processors increases, the serial
fraction should remain constant in an ideal system (problem size remains the same).
Small variations are much easier to detect from something that should be constant than
from something that varies.

3.1.1.2 Percentage of cpu-communicat ion overlap

Computation and communications do not always occur in a disjoint way. When an
algorithm is doing only communication, the processor is practically idle. This time
may be used to do some computations independent of the data being transmitted
or received. Computing the percentage of cpu-communication overlap, allow us to
determine whether the program is using the maximum parallelism possible on one
node. If this is the case, the processor would be busy most of the time doing useful
things; if not, there may be a problem. This indicator also helps to define the degree
of parallelism of a program more precisely.

57

3 . 1 . 2 P e r f o r m a n c e a n a l y s i s m e t h o d o l o g y

In order to sTiccessfnlly complete the performance analysis process nsiag ANDES as a
tool, a methodology is required. The main objective of the following methodology is
to analyze the performance of a specific program and to determine if this performance
can be improved. The main steps of the methodology are:

* Step 1: Evaluate the application's performance.

- Metrics:

* Speedup

* E&ciency

— Description: The first thing to be determined when analyzing the perform-
ance of a parallel application, is whether this performance is good enough.
In the case of SIMPAR^, the results obtained using four transputers were
compaj-ed with MPSX, a commercial Simplex solver, running on an IBM3090
where the linear programming problems are solved. In this way a compar-
ison can be made between the performance of a parallel application and an
excellent sequential version (e.g. if the results obtained using 16 transputers
are equal in time with the corresponding ones on the IBM3090, then an
equivalent solution, but 100 times cheaper, has been found!)^.

When analyzing speedup and e%ciency, it is important to notice the follow-
ing "problem indicators":

+ Speedup is not a linear function of the number of processors.

* Speedup grows linearly until a certain number of processors, but from
that point begins to decrease.

* The number of processors used in the analysis (e.g. 2 and 4 processors)
is too small to estimate with enough precision whether the paralleliza-
tion of the algorithm was successful. With too few comparison points
erroneous conclusions can be reached.

Although speedup and efficiency allow performance evaluation, these metrics
are not sufRcient to determine what caused this behaviour if the speedup is
not as expected.

Step 2: Make projections and estimate the extent to which performance can be
improved.

— Metrics used:

* Serial fraction

+ Amdahl's law

- Description:

^SIMPAR is a joint effort between Maraven S.A. (Venezuelan Oil Indus t ry) and the Universidad
Simon Bolivar (Caracas, Venezuela). The main goal of this project is to build commercial software to
solve sparse linear programming problems on a t ransputer based p la t fo rm using a P C as a front-end.
In [134] there is a description of the methodology and studies made in order to evaluate SIMPAR.

^This compaiison waa requested by our sponsor MARAVEN since they were interested in obtaining
shorter turn-around times at significantly lower costs

58

+ Compute the serial fraction for p — (w h e r e P is the total nnmber
of processors). Extra,polate this information to project the performance
for any nnmber of processors.

+ Apply Amdahl's law, using the serial fraction, and compute the max-
imum speedup possible for p processors.

It could be dificult to decide whether the speedup of an application is good
enough (for example, is a speedup of 70 on 100 processors good enough
or not?). For this reason, the serial fraction and Amdahl's law are used.
Through these metrics it is possible to know which part of the program (the
serial or the parallel fraction) grows faster when the number of processors is
increased (again, the problem size remains constant).

Step 3: Analysis per routine.

— Metrics used:

+ Load and Communication balancing

* Percentage of communication time

* Percentage of non communication time (complement of the communic-
ation time)

* Percentage of cpu-communication overlap

* Percentage of synchronization time between processes

— Description:

+ Locate which are the heaviest used routines in the application. These
are the routines consuming the largest amount of time.

* Determine specific bottlenecks.

If the speedup is not as expected and the serial fraction confirms some kind of
additional overhead (perhaps due to communication, synchronization or load
balancing), then it is necessary to specify: what exactly are the problems,
what are the possible causes of these problems, which routines generate these
problems and in what proportion do these routines contribute to the total
execution time of the application.

Step 4: Apply steps 1,2 and 3 and evaluate results.

— Description: Once the problems are identified and the improvements have
been applied, the evaluation process starts again. This iterative evaluation
process continues until the performance is satisfactory or until no further
improvements can be gained.

3 . 1 . 3 A c a s e s t u d y u s i n g A N D E S

In order to evaluate ANDES with a real problem and validate the methodology pro-
posed, Acosta and Fernandez [138] implemented a parallel version of the 5'ompZer
algorithm and analyzed it using ANDES.

The (7(666 5'ampZer algorithm determines a curve that represents the function
associated with a given collection of initial data using statistical methods. This
algorithm has a high degree of parallelism, because the load balancing is good and

59

also because there are no commnnications nntil the end of the program to gather the
final results.

The results obtained by Acosta and Fernandez using direct measurements, were
the same as those obtained by ANDES. The speedup was located between 3.72 and
3.87 for 4 processors.

The lowest speedup, 3.72, was generated by one of the most representative prob-
lems. The serial fraction was 2% but the percentage of idle time per processor was 4%
on average and the load balancing was 0.96 (the maximum possible is 1). These results
indicate that the load balancing is very good. However, as there is no communication
throughout the algorithm, it seems to be contradictory to have a serial fraction of 2%.
One possible answer, which prompts an interesting discussion, is that the 5'ompZer
has a random execution time depending on the initial data. Moreover, the sequence of
instructions executed by the algorithm could change depending on the initial results
obtained. This means that a problem that has been executed on 1 processor is not
exactly the same problem as the one executed on 4 processors, with the latter requiring
more computation. As a result, there is a slight effect on the serial fraction.

As regards the precision of the measurements made by ANDES, the error was 14%
in the worst case (synchronization time between processes) and 1% in the best case
(communication time). Observations on codes for other algorithms, including an LU
parallel decomposition algorithm, are described in [24].

3.2 A N D E S Enhancements

This section describes the latest improvements of ANDES including a version running
with PARMACS [43] and the implementation of VisANDES, a prototype of a visualiz-
ation tool for ANDES based on the Unix facHity

3 . 2 . 1 A N D E S o n P A R M A C S

ANDES has been successfully extended in order to run with the PARMACS commu-
nication macros [43]. This extension allows ANDES to analyze programs running on
any topology, making it more portable. However, only two PARMACS communication
primitives are being supported for measuring: SENDR and RECVR, which are the
synchronous version of send and receive. It is important to remember at this point,
that ANDES does not support asynchronous communications in its measurements and
therefore it is not possible to support these primitives. ANDES on PARMACS wiU not
keep track of any PARMACS primitive other than SENDR and RECVR.

ANDES has been modified without a big effort, showing that it is suitable for this
purpose. These modifications were made basically on the code which determines what
routines wiU be by new Also the gathering of the performance
data at the end of the execution was modified, making it easier since there is no worry
about the topology.

3.2.2 V i s A N D E S

This prototype aJlows a graphical interface with ANDES based on gnupZof. gnuplot is a
command-driven interactive function plotting program. E files are given, gnuplot loads
each file with the load command, in the order specified and gnuplot exits after the
last file is processed. Here are some of its features: plots any number of functions.

60

g n u p i o t

E l p a s e d T i f w

E l p a a e d t i m e - R o u t i n e w i n —

4

3 •

2

1 •

C 1 2 3

P r o c e s s o r ID

4
(p = 8)

5 6 7

u

Figure 3.1: Elapsed time per processor (p=8)

built up of C operators, C library functions, support for plotting data Ales, and
comparisons between actual data ajid theoretical curves. Currently, there are 5 displays
automatically generated by VisANDES:

Elapsed Time for a particular routine (figure 3.1).

Processor Activity - busy time (hgure 3.2).

Comm., Waiting and Comm/Compt. Time vs. Elapsed Time (Agure 3.3).

Speedup vs. Number of processors (hgure 3.4).

Serial Fraction vs. Number of processors (hgure 3.5).

A trace filter is also provided. Using this option, the user can generated a subset of
the original trace Ale with only some particular fields previously specified. In this way,
the user can generate his/her own pictures of the data or post-process it in a different
way.

3 . 2 . 3 T a b u l a r O u t p u t

The current version of ANDES produces three types of output files:

Gndea.owf: is the original readable trace file generated by ANDES (figure 3.6).

is a new compact version of the trace file, which contains only data.
This is in order to make the post-processing of the trace file easier for the user.

is a new tabular output which shows data that have been previously
filtered. This data is showed in a format (figure 3.7).

61

% of business

100

Dzu.

g n u p l o t

% of busslness per processor

0 1 2 3 4 5 6

Processor ID (p=8)

Figure 3.2: Percentage of business per processor

' tzi gnuplot

% vs. Elapsed Time Routine main

20 20

Tcom -4—

Toverlap

Twait a -

15

10 • -

5 -

- -'.or'

- -y,"

......... O - •

C 1 2 3 4 5 6 7

Processor ID (p=8)

rJ

Figure 3.3: Percentage of Tcom, Twait and Toverlap vs. Elapsed time

62

' Izj g n u plot

Speedup

10

Speedup vs. Number of processors Speedup

10

9
Speedup -®—

7

G

5

4

3

2

1 2 3 4 5 6 7 8

Number of processors

9 10

I

Figure 3.4: Speedup vs. Number of processors

' I v J gnuplot

Percentage

10

Serial Fraction vs. Number of processors Percentage

10

9
Serial Fraction —

7

B

5 -

4

3 •

2 -

a 2 3 4 5 G 7

Number of processors

8 9 10

u

Figure 3.5: Serial Fraction vs. Number of processors

63

Data for processor 0:

Position 0:

Function

Processor

Index

main

0
- 1

==> Results <==

Telap : 2.6109888000e+02

Tcom : 1.1491852800e+02

Tncom : 1.4618035200e+02

TotComPar : 0.OOOOOOOOOOe+00

Toverlap : O.OOOOOOOOOOe+00

InputWT : 3.0885760000e+00

OutputWT : 1.0936261780e+02

Total WT : 1.1245119380e+02

==> Statistics <==

% elapsed time vs. total

% busy time

% Communication time

% Comm/Computation Overlap

% Waiting time

% Input WT vs Total HI

% Output WT vs Total WT

% TotComPar vs. Tcom

l.OOOOOOOOOOe+02
57

4.4013412850e+01

N.A.

9.7852970933e+01

2.7465924510e+00

9.72534075496+01

N.A.

Position 1:

Function

Processor

Index

urand

0
0

==> Results <==

Telap : 1.9200000000e-04

Tcom : 0.OOOOOOOOOOe+00

Tncom : 1.9200000000e-04

TotComPar : O.OOOOOOOOOOe+00

Toverlap : 0.OOOOOOOOOOe+00

InputWT : O.OOOOOOOOOOe+OO

OutputWT : O.OOOOOOOOOOe+OO

Total WT : O.OOOOOOOOOOe+OO

==> Statistics <==

% elapsed time vs. total

% Communication time

% Comm/Computation Overlap

% Waiting time

% TotComPar vs. Tcom

7.3535359478e-05

O.OOOOOOOOOOe+OO

N.A.

N.A.

M. A.

Figure 3.6: Original tabular output generated by ANDES

64

Routine Mode '/,Telap •/,Tcomm •/.Twait %Tov %Tov vs. Tcomm

main 00 100.00 96.70 0.00 N.A. N.A.

Routine lode '/,Telap •/.Tcomm •/.Twait %Tov '/.Tov vs. Tcomm

main 01 100.00 0.03 0.00 N.A. N.A.

Computation 01 70.27 0.00 0.00 N.A. N.A.

Control 01 70.27 0.00 0.00 N.A. N.A.

ReceiveMsg 01 2.39 96.37 0.00 N.A. N.A.

SendMsg 01 2.41 97.04 0.00 N.A. N.A.

SendMsgSeq 01 2.34 97.64 0.00 N.A. N.A.

ReceiveMsgSeq 01 7.13 98.94 0.00 N.A. N.A.

Routine Node •/.Telap •/.Tcomm '/.Twait '/.Tov •/.Tov vs. Tcomm

main 02 100.00 0.00 0.00 N.A. N.A.

Computation 02 50.66 0.00 0.00 N.A. N.A.

Control 02 50.66 0.00 0.00 N.A. N.A.

ReceiveMsg 02 2.36 96.23 0.00 N.A. N.A.

SendMsg 02 2.38 97.17 0.00 N.A. N.A.

ReceiveMsgSeq 02 2.25 96.94 0.00 N.A. N.A.

SendMsgSeq 02 2.33 97.73 0.00 N.A. N.A.

Routine Node •/.Telap •/.Tcomm '/.Twait %Tov %Tov vs. Tcomm

main 03 100.00 0.00 0.00 N.A. N.A.

Computation 03 33.01 0.00 0.00 N.A. N.A.

Control 03 33.00 0.00 0.00 N.A. N.A.

ReceiveMsg 03 2.34 96.54 0.00 N.A. N.A.

SendMsg 03 2.31 97.21 0.00 N.A. N.A.

ReceiveMsgSeq 03 4.48 98.49 0.00 N.A. N.A.

SendMsgSeq 03 2.27 97.75 0.00 N.A. N.A.

Routine Node %Telap •/.Tcomm '/.Twait %Tov %Tov vs. Tcomm

main 04 100.00 0.00 0.00 N.A. N.A.

Computation 04 16.16 0.00 0.00 N.A. N.A.

Control 04 16.15 0.00 0.00 N.A. N.A.

ReceiveMsg 04 2.27 96.66 0.00 N.A. N.A.

SendMsg 04 2.26 97.25 0.00 N.A. N.A.

ReceiveMsgSeq 04 6.63 99.01 0.00 N.A. N.A.

SendMsgSeq 04 2.10 97.54 0.00 N.A. N.A.

Figure 3.7: New tabular output generated by ANDES. Note: N.A. stands for 7Vo(

66

3.3 Commen t s and Conclusions

ANDES is a software monitor that analyzes the performance behaviour of a
parallel program by applying performance debugging.

ANDES computes the following metrics:

- Speedup

- EfBciency

- Serial fraction

- Load and Communication balancing

- Elapsed time

- Communication and non communication time

- Synchronization time between processes

- Percentage of cpu-communication overlap

- Percentage of idle time per processor

The ANDES prototype is a useful tool to analyze the performance of parallel
programs, as has been shown by the experience with the algorithm
[138].

The percentage of cpu-communication overlap is a new metric proposed in this
work that can be used to compute the degree of parallelism of one specific
processor.

The ANDES prototype is an "easy to use" tool. In SIMPAR, as an example,
the direct measurement process took around three days including the analysis
of 200 pages of numbers! However, the measurements obtained using ANDES
were made in half an hour for the algorithm. Even accounting for
the difference in size between these two programs (SIMPAR is 10 times bigger
than the 5'amp/er) the improvement is substantial. Unfortunately, we could
not make any measurements of SIMPAR using ANDES due to the large size of
SIMPAR's source code and the restrictions of the current ANDES prototype.

The experience acquired in the development of this tool has contributed to a
better comprehension of the behaviour of the processes executed in parallel.
Moreover, it hag been demonstrated that it is possible to build a useful tool
in a reasonable period of time.

4 Experiments with Invasiveness

Performance is a critical issue in order to justify the use of parallel computers. However,
it is usually a difEcult task to write an application which successfully exploits the
target parallel architecture. For this reason, many performance analysis tools have
been developed (e.g. Pablo [22], ParaGraph [9], Express [11], PA-Tools [132], TOPSYS
[139], ANDES [25]) in order to increase the understanding about the behaviour of
parallel applications with the aim of improving their performance. These tools use
different mechanisms (i.e. software, hardware or hybrid) to record events of interest
related to performance.

However, these profiling mechanisms may perturb the behaviour of the applica-
tion being monitored and can become a significant factor. This factor, often called
muGgzuenegg [137], [140] or mfnfgwenegg [54], must be taken into account
when measuring the performance of an application in order to provide more accurate
information.

The purpose of this Chapter is to describe our experience determining the degree
of invasiveness of PARMACS, a well known set of macros which provides a portable
programming model, on four diEerent hardware platforms (Intel iPSC/860, Parsys
Supernode, Meiko CS-1 and a SUN Workstation Network) and for two diEerent ap-
plications (the COMMSl Genesis Benchmark and an LU Matrix Decomposition Al-
gorithm), comparing these results with similar tools (PICL, a portable instrumented
communication library [44], and ANDES, a software monitor [25]), as well as some
other results recorded in the literature.

Having the knowledge of the degree of invasiveness of a particular profiling tool,
it would be easier to use this tool in such a way that the invasiveness is kept low,
producing more accurate results.

The following sections describe why it is important to study invasiveness, looking
at its negative effects, and what is the state of the art in this field. More detailed
information about invasiveness can be found elsewhere [26].

4.1 Effects due to invasiveness

In extreme cases, the insertion of costly software event collection code may mask
or aggravate erroneous behaviour. This is known as the pro6e e^ec^. The term
pro6e has been used to describe the phenomenon that has been observed when
erroneous behaviour of a program is extinguished or introduced by the insertion of a
monitoring device [141]. Intuitively, the more invasive the collection mechanism, the
more pronounced the eEect.

The primary source of instrumentation perturbations is execution of additional
instructions. However, ancillary perturbations can result from disabled compiler op-
timizations and additional operating system overhead. These perturbations manifest
themselves in several ways: execution slowdown, changes in memory reference patterns,

66

67

event reordering, and even register interlock stalls. From a performance evaluation per-
spective, instrumentation perturbations must be balanced against the need for detailed
performance data [140].

With the exception of passive hardware performance monitors, performance ex-
periments rely on software instrumentation for performance data capture. Such in-
strumentation mandates a delicate balance between volume and accuracy. Excessive
instrumentation perturbs the measured system; limited instrumentation reduces meas-
urement detail [140].

4.2 S ta te of t h e a r t : A Pe r tu rba t ion Analys is JVIodel

Malony, Reed and WijshoE [140] proposed a onaZi/gw modeZ in order to
recover the (rue trace of events as they would have been generated during an execution
without instrumentation. Models to capture and remove timing perturbations due to
instrumentation must be based on a particular instrumentation approach. Because
tracing is the most general form of instrumentation, allowing both static and dynamic
analysis, a time-based perturbation model for trace instrumentation was derived.

The results of the application of this model proposed by Malony, Reed and Wijshoff,
has successfully demonstrated that global performance measures, such as total execu-
tion time, are computable to an acceptable accuracy via application of performance
perturbation models. Moreover, the ability of such relatively simple models to approx-
imate actual code execution times to within 15% from fuH trace instrumentations, with
execution time perturbations exceeding by four orders of magnitude the unperturbed
time, appears remarkable.

4.3 Measurement Tools

Other efforts have also been made in order to provide a feasible way of low-intrusive
performance analysis measurement in distributed processing environments. An example
is Parasight, a programming environment that is geared towards non-intrusive per-
formance analysis and high level debugging. In Parasight, profilers execute as observer
programs which run concurrently with the target program and monitor its behaviour
[54],

Another example is JEWEL, a distributed measurement system [51]. JEWEL
consists of a Sexible toolkit for low-interference on-line performance measurement
integrated with a powerful adaptable graphical presentation facility and a generic
interactive experiment control system.

The last example to be mentioned is Mtool, an integrated tool for isolating
performance bottlenecks in shared memory multiprocessor applications [53]. Mtool
isolates sources of performance loss in two steps. In an initial pass, Mtool instruments
a program by adding basic block counters. Using a knowledge of instruction latencies
and the basic block counts obtained by running the instrumented program, Mtool builds
an execution profile describing how much time the program spent in each basic block.
This profile is used both to identify important regions of the program to instrument
with performance probes and to insure that the overhead of such probes is kept to
acceptable levels (on average less than 10%).

68

4.4 Measur ing Invasiveness

The purpose of this section is to determine the invasiveness of PARMACS on the
COMMSl Genesis Benchmark for a set of four different hardware platforms: Parsys
Snpernode (transputer based), Intel iPSC/860, Meiko CS-1 (transputer based), and
SUN Workstation Network. The reason why the COMMSl Genesis Benchmark was
selected is that although this benchmark is very simple, tracing measurements in
PARMACS are made basically when a process is doing communication and the purpose
of this benchmark is, precisely, to measure the basic communication properties of a
computer network.

The Genesis Benchmark Suite has been developed to fulRU a need for bench-
mark programs that can be used to evaluate the performance of distributed-memory
MIMD systems on scientific and engineering problems [142]. The COMMSl Genesis
Benchmark measures the basic communication properties of a computer network by
performing the pmgpong experiment between a neighbouring pair of nodes. A message
of varying length is sent to a neighbouring node, and immediately returned after the
data has become available to the receiving user program.

On the other hand, the PARMACS ANL/GMD Macros provide a portable pro-
gramming model for distributed memory architectures. They are available for a variety
of architectures (Cray Y-MP, Intel iPSC/2, iPSC/860, nCUBE 2, SUPRENUM, Meiko,
Transputers) as well as for networks of workstations [43]. PARMACS provides portable
point-to-point message passing between processes arranged in a host-node configura-
tion. The macros were originally based on a message passing interface developed at
Argonne National Laboratory for the C programming language. Four implementations
of PARMACS were used for this experiment: Parsys Supernode, PARMACS baaed
on top of VCR [143]; Meiko CS-1, PARMACS based on top of CS-Tools [144]; SUN
Workstation Network, PARMACS based on top of PVM [33] and Intel iPSC/860,
PARMACS based on top of NX-2 (Intel's communication library software).

4 . 4 . 1 R e s u l t s

The general results for this experiment are presented in table 4.1. The experiment
consisted of measuring the time to send a message of a particular length between a
neighbouring pair of processors, with the tracing mechanism of PARMACS on and off,
recording the difference between them.

The overhead produced by the tracing mechanism of PARMACS is very high for
short messages. The worst cage is 68.5% (Msg. length = 1 byte, Meiko - Transputer
based) and the best value 0.4% (Msg. length = 40000 bytes, Intel iPSC/860). In
general, the overhead appears to be inversely proportional to the message length. This
is true for the Parsys, Meiko and Intel machines but not for the SUN Workstation
Network. For this latter case, the overhead is not linear and depends on the dynamic
network load (Sun-1 and Sun-II represent two different executions of the experiment).

The best general behaviour is achieved by the Intel iPSC/860, followed by the
Parsys and Meiko versions of PARMACS (see figure 4.1). For these three cases the
invasiveness for a message length greater than 5000 bytes, is less than 3.3%.

Since tracing measurements in PARMACS are made when a process is doing
communication, the results given above mean that we could expect a low invasiveness for
applications with message lengths greater than 5000 bytes for these particular hardware

69

Table 4.1: Percentage of overhead for the tracing mechanism of PARMACS on the
COMMSl Genesis Benchmark.

farsyg Sun-II
1 56.9 16.7 30.2 68.5 45.1

100 48.9 4.8 0.2 61.3 -

400 - - - - 16.0
946 18.2 19.8 29.1 28.2 -

1000 - - - - 11.5
4946 4.6 16.3 21.3 7.8 -

5000 - - - - 3.3
14946 1.6 5.8 12.4 2.8 -

24946 0.9 18.0 12.3 1.7 -

40000 0.6 6.7 11.3 1.0 0.4

o
BP

Invasiveness of PARMACS - COMMSI GENESIS Benchmark
-r

Intel iPSC/860
Parsys Supemode -i—

SUN Network-Test I B -
SUN Network - Test n -x—

kieiko - Transputer based -

0 5000 10000 15000 20000 25000 30000 35000
Message Length

40000

Figure 4.1: Invasiveness of PARMACS - COMMSl Genesis Benchmark

platforms (except the SUN Workstation Network, where the results depend on the
network load).

4.4.2 Comparison between PARMACS and P I C L

It is useful to compare the results of the previous section with equivalent results for
a similar tool. In this section, some results are presented about the invasiveness of
PICL for single operations such as and rece*;;e, measured in the same way as in
section 4.4.1 (comparing the results with and without trace generation) for the Intel
iPSC/860 [145]. Other results for the Intel iPSC/2 and nCUBE/3200 can alao be found
in [145]. PICL is a portable instrumented communication library designed to provide

70

portability, ease of programming and execution tracing in parallel programs [44]. An
important feature of PICL is that messages are allowed to be sent between arbitrary
pairs of processors, irrespective of the underlying hardware communication network.

Table 4.2 gives the time required to send one byte of data to an immediate
neighbour and receive another byte back. Thus, this time represents the Tninimnm cost
associated with exchanging information. The table gives the time for this operation
using the native commands csend and crecv (iPSC/860) and using the PICL routines
gendO and rect;0 in the following way: with tracing off (no-trace); tOOO, with tracing
on but no trace records generated; t333, with tracing on and aU possible trace records
generated.

Table 4.2: Time spent exchanging 1 and 1000 bytes messages between neighbouring
nodes on the iPSC/860 (time in microseconds).

TVoce Trace Time ^ OoerAead Trace
113.5 tooo 141.5 19.7 1

- t333 222.9 49.0 1
814.4 tooo 836.6 2.6 1000

- t333 876.4 7.0 1000

For short messages the overhead is high in all cases, but for large messages the
overhead decreases. The best value is 2.6% (Msg. Length = 1000 bytes. Trace level
= tOOO, iPSC/860). Unfortunately, there are no more comparison points other than 1
and 1000 bytes for the message length.

For PICL, with full trace and with a message length of 1000 bytes, the overhead
generated by the tracing mechanism was lower (7.0%) compared to the overhead for
PARMACS on a similar benchmark (11.5%) on an Intel iPSC/860 (see table 4.1 and
4.2). If this behaviour is the same for larger message lengths, then we could expect
the invasiveness to be lower for PICL than PARMACS on this particular machine.
However, as it is shown in the next section, the application also has an affect on the
degree of invasiveness generated by the profiling mechanism.

4 . 4 . 3 L U M a t r i x D e c o m p o s i t i o n A l g o r i t h m

The invasiveness of an event collection mechanism can also be affected by the particular
application being monitored. For this reason a small real, and well known appEcation,
LU Matrix Decomposition Algorithm, wag selected in order to test this idea.

The LU matrix decomposition algorithm used in this section, was proposed by
Geist and Romine in 1988 and implemented by Ortega [46]. This algorithm, best
known as CSRP (Column Storage Row Pivoting), builds the LU decomposition using
row pivoting on a matrix distributed by columns in a wrap-around fashion. Ortega's
version of the algorithm was implemented on a ring of transputers with a copy of the
program on each processor.

This experiment was performed using a transputer version of PARMACS [143]
and PICL [146], both implemented at the University of Southampton. Additionally,
the invasiveness of ANDES (a software monitor), was also determined and compared
against the invasiveness of the tracing mechanisms of PARMACS and PICL for this
particular application.

71

ANDES is a performance monitor designed for MIMD distributed memory ma-
chines that inserts additional code in the program to be ajialyzed [24, 25]. Within
ANDES, a performance analysis methodology is proposed. Although the underlying
ideag of ANDES are general, the current version of ANDES (1.0) was designed to
analyze programs written in parallel INMOS ANSI C [136] running on a bidirectional
ring.

4.4.3.1 Resul ts

The results of this section can be seen in figure 4.2. The matrix size is the same (n=100)
for the whole experiment. As can be deduced from the graph in Agure 4.2, when the
number of processors increases the invasiveness of ANDES grows faster than for PICL
and PARMACS (although the invasiveness of ANDES is high, ANDES is collecting
more than just communication information [25]). In general, the invasiveness generated
by the tracing mechanism of PICL is lower than the ones for ANDES and PARMACS.
However, for PICL and PARMACS the invasiveness first increases and then decreases
as the number of processors increases. This is due to the fact that the size of the
matrix is not as large as required to keep every processor as busy as possible and the
algorithm becomes communication bound. Therefore, using more processors does not
improve the performance but generates more overhead.

100

90

70

60

50

40

30

20

Invasiveness of PARMACS, PICL and ANDES - LU Matrix Decomposition

PARMACS
PICL -4—

-

ANDES -B-- -

-

- -

t " , 1 1 1
32

Number of Processors
64

Figure 4.2: Invasiveness of PARMACS, PICL and ANDES - LU Matrix Decomposition

If these results are compared with the results of section 4.4.1, some interesting
things can be found: the invasiveness of PARMACS for messages of 800 bytes (which
is the size in bytes of one column of a matrix of n=100 in double precision) is around
20% for the Parsys Supernode, and this value is approximately what is obtained for
the LU Matrix Decomposition Algorithm for 4 processors. However, aa the number of
processors increases, the invasiveness increases up to 30% but for the reason explained

72

above, the amount of work is not enough to keep all processors busy and there is no
gain in performance but in overhead.

4 . 4 . 4 O t h e r r e s u l t s

Mohr afRrms in [147] that times reported in the literature for software monitoring and
"normal" amount of event instructions (e.g. each entry and exit of each function) vary
from 10% up to 500%. Examples are: 45% for IPS-2 [50], and 200% for TOPSYS [139].
In [148], Beier shows that due to the measurements made by the software monitor, the
program execution slows down about 2%. However, a software implementation of these
mechanisms of the monitoring system reduces the complexity of the hardware monitor
by about 30%.

Mtool reduces the intrusiveness of software instrumentation by using an initial
profile to estimate and control the overhead it is introducing [53]. Goldberg and
Hennessy afErm that generally, Mtool's instrumentation increases program execution
time by less than 10% while comparable existing tools (e.g. Quartz [6], IPS-2 [50])
increase it by 40-70%. Using hybrid monitoring and carefully placed event calls, these
values could be reduced to 0.1 - 1% [147, 149, 150].

4.5 Commen t s and Conclusions

Invasiveness is an important factor to be considered when measuring the performance
of a parallel application. Invasiveness represents the overhead produced by a measuring
mechanism and it can affect the accuracy of the performance data generated. In
this Chapter, the invasiveness of PARMACS has been determined on four diEerent
hardware platforms (Intel iPSC/860, Meiko CS-1, SUN Workstation Network and
Parsys Supernode) and compared with results using similar tools. One of the main
purposes of this experiment is to learn how to use profiling tools in such a way that the
invasiveness is minimized, satisfying the user requirements in terms of data accuracy.

As an example of the previous statement, the results of the COMMSl Genesis
Benchmarks Suite show that we could expect a low invasiveness for applications with
message lengths greater than 5000 bytes for those particular hardware platforms (except
the SUN Workstation Network, where results depend on the network load).

Another way of minimizing the invasiveness, is to select the tool which haa the
smallest degree of invasiveness for the particular application and hardware platform,
as it can be deduced from the experiment of section 4.4.2.

The application being monitored is another factor that a%cts the degree of in-
vasiveness. Using an LU Matrix Decomposition Algorithm as a small, real application
and comparing these results against the COMMSl results, it is possible to see how the
invasiveness is similar for an equivalent message length, but it is also possible to notice
how the invasiveness increases up to 30% for the LU Matrix Decomposition Algorithm
as the number of processors increases, since the amount of work is not enough to keep
all processors busy and there is no gain in performance but in overhead.

There are some other issues that are important to notice. Using PARMACS on top
of any other communication software like VCR, increases the overhead. However, there
are no efficient implementations of PARMACS for every hardware platform (at least not
at the time these experiments were made). In any case, further measurements should be
done for more e&cient implementations of PARMACS. Another issue is that only the

73

overhead in terms of execution slow down is measured as an effect due to invasiveness.
In general, these results show a wide variety of values for the invasiveness depending
on the event collection mechanism, the hardware platform, and the application.

One very interesting issue is to determine what values are low in terms of invas-
iveness. In general, values below 10% are considered acceptable if the reordering of
events do not affect the final result of the application and this statement is based on
empirical results (Miller [50], Goldberg [53], Mohr [147]). Greater invasiveness implies
longer execution times and less accuracy.

Mohr has suggested that values for the invasiveness of the order of 0.1 to 1% could
be achieved using hybrid monitoring and carefully placed event calls. However, it is
clear that timing perturbations cannot be completely removed by efficient instrument-
ation: perturbation analysis must be applied for reliable performance prediction and
resolution of tracing-generated timing errors.

Finally, further research is needed into these invasiveness effects, as weU as a better
understanding of perturbation models. Accurate information is crucial for an accurate
performance analysis.

5 Parallel Performance Visualization

VisuaJization is now recognized as a fundamental element in scientific computing. As
high performance computing allows us to solve ever larger problems, and as measure-
ment technology yields ever more data to be studied, so our ability to analyze and
understand this data relies more and more on visual processing [151].

Visualization has been important in the past and is becoming even more important
at present. One of the advantages of visualization is that it is a way of seeing the unseen
[151]. or ond m fAe o/dmgmms, Aog a crwci'aZ
par((o pZci/ m (Rene Descartes, 1637).

In this Chapter, the Do-Loop-Surface representation of the performance of a
particular do-loop in a program is presented as an alternative to provide an abstract
representation of performance (at least of the performance of a particular do-loop or
kernel in a program), using a scientific data visualization tool (AVS) for this purpose
[20, 19, 28, 152, 27].

5.1 Do-Loop-Surface: General Description

A Do-Loop-Surface (DLS), is an abstract representation of the performance of a par-
ticular do-loop in a program. This surface is created by measuring the elapsed time
per iteration for every processor and representing this data as a 3D display. The three
axes represent proceggorg, and eZapged fzme per i^erofmn respectively and we
win call %(erâ zon the execution of each cycle of the particular do-loop being analyzed.
By representing a do-loop using a DLS, the user can view a complete execution of this
section of the program in a single picture and looking at this display from the right
perspective may uncover unknown bottlenecks .̂ A new and evocative vocabulary that
explains the particular features of the display is also incorporated (e.g.
uaZZet/s, yZâ). This surface is displayed using AVS [18] (Application Visualization
System), which allows rotation of the figure in several ways as well as zooming when
necessary and some other interesting transformations.

The main goals of the DLS representation are:

* To provide an abstract representation of program performance.

* To provide useful information for the user, allowing detection of unknown bottle-
necks using 3D displays.

* To provide scalable views for programs running on a large number of processors.

By analyzing a DLS, the user can identify performance features like load balance
and communication delays. The work presented in this thesis has shown that DLS

tiiauaZization makes some details of the view manifest, while obscuring others. A view defines
io/zaf information is presented; a visualization describes how the informat ion is displayed [125].

74

75

displays are also useful in identifying cache/memory effects [153], comparing differ-
ent communication strategies, and even identifying hardware irregularities (figure 5.1
illustrates a DLS display that enabled us to discover performance differences in the
floating point units of the SPARC-2 chip set on a CM-5. This figure shows that some
nodes execute faster than others. Additionally, the figure shows how the user can get
information from the display by "clicking" the mouse on the desired position).

Elapsed Time per iteration
Position: 10 10.1119 10.5

Iterations

Figure 5.1: DLS display showing differences in execution time of floating point units
on a CM-5.

A do-loop represents one of the most important sections of the program, since it
is where the main computation generally takes place. Additionally, a programmer may
understand more about do-loop structures than communication directives. A DLS
is, therefore, an appropriate structure to visualize. In terms of scalability, a DLS is
represented by a single picture that can be zoomed if necessary and a general view of
the surface wiU determine which regions require a more detailed analysis. The DLS
displays have been successfully scaled up to 128 processors and we expect they wiU
scale well for a larger number of processors.

5.1.1 Trace G e n e r a t i o n

The procedure to be followed in order to generate the necessary trace data for a DLS is
straightforward. A small trace library has been implemented on top of PARMACS [43],
PVM [33], and MPI [37], (both for FORTRAN and C) on the following architectures:

• PARMACS version: CM-5, PARSYS Supernode, and MEIKO CS-1.

• PVM version: CM-5, Meiko CS-2, and Sun workstations network.

• MPI version: Sun workstations network, IBM SP2.

We have chosen PARMACS, PVM, and MPI to assure portability and, therefore,
access a wide range of architectures. The user has only to add a few instructions to
the program as in the example in flgures 5.2 and 5.3.

76

PROGRAM host

...General Declarations

C DLS.TRACE

include 'dls_fparraacs.inc'

C DLS.TRACE

C Declarations and init for macros

EHVHOST

IMITHOST

TORUS(nprocs,1,1,'node','xx_proc_group')

REMOTE_CREATE('xx_proc_group'.procid)

C DLS.TRACE

CALL DLSHINIT(20,1,LOOK_UP_IfPROCS.MYPROC,procid)

C DLS_TRACE

...Body of the program

C DLS_TRACE

CALL DLSCT(l)

C DLS.TRACE

ENDHOST

STOP

END

Figure 5.2: Generating trace information for a DLS. HOST program, PARMACS
version.

The trace library provides the following functions:

DLSHINIT: Initialization of global variables and general setup for the host pro-
gram. It has 6 parameters:

- Trace size in Kbytes, integer.

- Frequency of trace recording, integer. If the frequency is 1, then DLSGETT
win record traces for every iteration of the do-loop. E the frequency is 100,
then it wiH record traces every 100 iterations. This option is very useful in
order to control the amount of trace information produced.

- Number of node processors, integer.

- Processor ID, integer.

- Host ID, integer.

DLSINIT: Initialization of global variables and general setup for the node pro-
gram. It has the same parameters as DLSHINIT, except the last one.

DLSGETT: Generates do-loop trace information. It must be called at the begin-
ning and at the end of the do-loop being analyzed. It has two parameters: the

77

PROGRAM node

...General Declarations

G DLS_TRACE

include 'dls_fparmacs.inc'

C DLS_TRACE

C Declarations and init for macros

EWVMODE

IRITIfODE

C DLS_TRACE

CALL DLSmT(20,1 ,LOOK_UP_NPROGS,MYPROC)

C DLS_TRACE

...Body of the program

C Do-Loop to be measured

DO k=l,niter

C DLS_TRACE

CALL DLSGETT(l,k)

C DLS_TRACE

...Do-Loop body

C DLS_TRACE

CALL DLSGETT(l,k)

C DLS.TRACE

ENDDO

...Rest of program

C DLS_TRAGE

CALL DLSSTO

C DLS_TRACE

ENDNODE

STOP

END

Figure 5.3: Generating trace information for a DLS. NODE program, PARMACS
version.

78

tag of the do-loop (several traces for different do-loops can be generated in the
same run of the program), and the iteration variable. Both values are integers.

DLSST: Sends the trace information to the host program. It must be called from
the node program. No parameters.

DLSCT: Collects the trace generated by each particular node. It must be called
from the host program. It has one parameter which specifies whether or not the
trace wiH be saved.

The only communication functions required by the library are (from the
nodes to the host) and receiue (the host receives traces from the nodes). The hrst
one is provided by (PARMACS), (PVM) and (MPI).
The second one is provided by (PARMACS), pum.reci; (PVM) and Mf7_Rect;
(MPI).

The trace generated has the following format:

1 1 0 0.018624

i i I i
I I I Time stamp

I I Processor number

1 Iteration

Do-loop tag

The do-loop tag allows the user to collect data from more than one do-loop during
the same run. Further processing can separate and reorder (by processor number)
this data (program dk_reor&r). In order to reduce trace size, the trace data may be

by using the program The program can be used to remove
redundant information (i.e. information that does not show us any important change
in the behaviour of the algorithm) from a DLS, allowing larger data sets to be displayed
on a single screen. The user specifies the Altering percentage, delta, and then if two
consecutive values on the trace fUe differs by less than that delta value, then one of
the values is eliminated from the file and only one class representative is kept (see
figure 5.4). A summary of the trace data flow is presented in figure 5.5.

The overhead, or muaswenegg [26], generated by this tracing mechanism, is low
and the diEerence in time between running a program with and without such tracing
is often negligible. In fact, the overhead generated by DLSGETT (which is the only
routine that really makes an effect in the execution time of the do-loop being measured)
is, approximately, 0.0001 seconds (on the CM-5, for each do-loop iteration). However,
there are other systems (e.g. ANDES [25]), where the invasiveness may become a
significant factor. For more details, please refer to Chapter 4.

5.2 DLS and AVS - In tegra t ion wi th Scientific D a t a Visu-
alization

AVS, Application Visualization System [18], is a data visualization environment de-
signed to analyze scientific and engineering data in areas like fluid dynamics, computer-
aided engineering, and molecular modeling. AVS users can construct their own visual-
ization applications, by combining software components into executable Sow networks.

79

File name: gaus2.15p

Number of processors: 15

Number of iterations: 678

Filtering Reduction Value (percentage): 5.0

Filtering iterations...

Saving new data file...

Iterations filtered: 92.33 %

Min. difference (neighbours iter.)

Max. difference (neighbours iter.)

Ave. difference (neighbours iter.)

New number of iterations: 52

0.00 % (proc=2, iter=282)

22.98 % (proc=8, iter=156)

1.34 %

Figure 5.4: Output from the dlsJilter program. In this example, the number of
iterations has been reduced from 678 to 52 or 92%.

Add instructions to the program

Trace library based on PARMACS and PVM

Run the program and generate trace data

Reorder results by processor Id

DLS Visualization

Trace Generation

Trace Reordering

Trace Instrumentation

Data Visualization (AVS)

Trace Filtering Remove redundancy

Figure 5.5: Trace data Aow to produce a Do-Loop-Surface.

80

The components, called modules, implement specific functions in the visualization
cycle (filtering, mapping, and rendering). The Sow networks are built from a menu
of modules by using a direct-manipulation, visual programming interface called AVS
Network Editor. With this editor, the users can create their own visualizations by
selecting a group of modules and drawing connections between them (see figure 5.6).

The user views, organizes, and further processes the output of a network through
one of the AVS subsystems. These subsystems are:

The Geometric Viewer: displays 3D geometric objects.

The Image Viewer: displays 2D images.

The Graph Viewer: creates XY and contour graphs of data.

AVS also includes a set of modules for construction of networks (figure 5.7),
although it is possible for the user to create his own modules by using the AVS Module
Generator. This module generator can be used to automatically create module code
in C or FORTRAN and it hag a visual interface. Modules are software building blocks
with well-defined interfaces, written either in FORTRAN or C. A good example of
these customized modules can be seen in figures 5.8 and 5.9. The figures illustrate
the module which is a customized module that controls the iterations
and processors currently being displayed. In this way only relevant information of the
DLS can be analyzed. Modules take typed data as inputs and produce typed data
as outputs. The basic data types in the system are oriented toward scientific data
manipulation and graphic display. These types are:

ID, 2D, and 3D grids of numbers with scalar values or vectors of byte, integer,
or Soating-point values at each grid point.

@

* unstructured cell data.

geometric data.

images.

» molecular data.

AVS implements two basic strategies for translating numerical data into colour
pictures. In the pixel-based method, data points become pixels, more or less directly.
In the geometry-based method, the numerical data is converted to descriptions of 3D
geometric objects. There are, in turn, turned into colour images by the machine's low-
level graphics software and rendering hardware. For more detailed information about
AVS, see the AVS reference manual [18].

AVS has been used in this research in order to support performance analysis of
parallel programs. One advantage of using AVS to represent Do-Loop-Surfaces is that
no tool development is required and that every feature of the data visualization tool
can be used to find unknown bottlenecks (e.g. rotating a figure may lead the user to
discover something that he has not seen before, using a specific module that computes
statistics about the data points displayed, etc.). AVS also has its own built-in analysis
capabilities. Many analysis functions are available and the methods are scalable with
respect to data set sizes and extensible in terms of applying additional analysis (or

AVS

81

Htip j m
(NctiMOlfl Tools

YfylgJ

WMtt K#W#
I eaiwiwfcuiii
I PentwtWwk

$&»# yw&mKf*
P*MW4#M

AV&McdwIf LibtaiV l l r i If' MW* îips«ppo ĵ
K 3 IKS 0 E] B3

U mmimaafAw* 10 liMrtftArf J
iatetaird tntvunr MitaliM Clumv tiu:

U (WmWW
_f NfMWemmw J kikfc U 4i$r4M *### , ' J

(Ak (*#*b (lamp J WWM#Z •1^ &*#wWAw J
(iaiMlrrfttrjf mW#* ##*w -J 2
(kPKfW _ wkmwf <«Rt»lirt« (!••» J _ J

.V mw#» staJtts .-f wagtl* («ra _i

i»UM

I yc,;.

3 r AVS g e o m e t r y v i e w e r

t

•——i-Mf-

vm

I
'- \ %>'] iWBXtm www

Elapsed Time per iteration

Position: 42.3105 9.87668 9.41265

20
iterations

-15

Figure 5.6: AVS Data Network generating a Do-Loop-Surface display.

82

AVS HoJule litraiv r ucD r r itmnm Swppcmed

a t I Filters AT I ! Mapp*M

iKd f5\m ^mfsd» axes Daa

#mf*Abeir#k#et BttttSkt CClCKftŜ (ompwe Sf)Me MNwe Gtneimr '

c«rrtA5t iicd siue 21

Mcd gMd €WW01V# Afplw HAW

wdto wwn

\p resuJ k*m#l itcdinuer v*ww f
IB iirf

drsiw *## ymwne tounds »reftd mWlf

wlwme »iid(Y \v femd sel ifmKvm ffnekgeto om

Figure 5.7: AVS Module Library. Several modules are already provided by AVS and
they can be used for further data analysis.

0»tainpflt /'Y1 fjftew
NetMOift Tc«l9

r MiWi rwW:

AVS geo metry viewer
' Qiate K #*«###*

dktnricnmi
îTOKS r-wmr-.

Elapsed Time periteration

Iterations

Processors

i # ## tyi MI n 1
MRS. Fn-c

<>}$'-W'

Figure 5.8: The dlsJransform module controls the current iterations and processors
being displayed. In this way only relevant information need be analyzed.

83

WT-SWMWfllbmnr

#Wu« <fisatrl»

r- tMihrnH
r nirt**W

AVS geometry v i e w e r

rr irM-fdrtvwtwe*
f|jp dlsjnnffcim

i
Elapsed Time per iteration

Mm*.
w

Iterations

Processors

Figure 5.9: The dlsJransform module controls the current iterations and processors
being displayed. In this figure the first 10 iterations have been deleted.

programming nser-speciAc analysis) and support multiple domains of analysis (e.g.
temporal, spatial, and frequency domains). The objective of multiple-domain analysis
methods is to selectively focus on a particular aspect of the performance while hiding
the contributions from other aspects [21].

Additional advantages of this approach are:

Scalability of analysis and display regardless of the am.ount of data.

Extensibility of analysis.

Data importing and exporting capabilities.

Extensive image processing capabilities [154].

Experimentation with such tools win allow us to learn more about how to use
visualization techniques to represent performance data and to design, modify, and
produce new tools which incorporate this new knowledge.

5.3 Interaction with other Performance Tools

In this section, we describe our experience using the DLS displays together with
two other performance tools: and a Performance Estimator. The purpose
of this experiment is to illustrate how the above tools can be used to address the
problem of improving application performance from different perspectives. The parallel
benchmark generator, [155], provides the user with a workload specification
language with which to describe proposed algorithms. Given an algorithm specification,
the parallel benchmark generator produces a template program with the specified
workload characteristics. This facility allows for rapid performance prototyping of
different solution strategies. The parallel performance estimator [156] predicts the
expected execution time of parallel programs by analyzing their use of the hardware
units and simulating data movement within the memory hierarchy. This tool does not
require the target hardware platform, and is able to identify the workload placed on
the system hardware components.

5 . 3 . 1 C a s e S t u d y - R e d B l a c k R e l a x a t i o n

This case study shows how the three tools, the performance estimator, and the
DLS displays can be used to assist in developing efficient parallel code. The problem
we consider is parallelising a sequential red/black simple over-relaxation method for
a 64 node Thinking Machines CM-5. The problem size used is a 1024x1024 element
matrix.

To determine the best data partitioning method and number of processors usually
requires running the complete parallel program using different numbers of processors
for each data partition. This is costly and in many cases impractical as it requires access
to the parallel resource. The combined use of Zebep and the performance estimator,
however, enables parallel algorithm selection and initial performance evaluation in the
absence of the parallel platform. The method by which we achieved this is described
below and shown in schematic form in figure 5.10.

The first stage in parallelising the sequential code is to obtain an estimate of the
expected execution time on a single node, and to determine the relative use of functional

85

Sequential
P rogram

\ 1
Per fo rmance
Est imator

Lebep

Parallel Templa te
1 -D block Partition

Parallel T e m p l a t e
2 -D block Par t i t ion

Execut ion trace of
Comple te Parallel Code

1
D L S

Figure 5.10: Interaction of the Performance Estimator, and DLS in paraUelising
programs.

units within the node. This is important for two reasons. First, it provides a base
Agnre from which we can later judge the efEciency of parallel versions. Secondly, it can
identify processing bottlenecks in the integer unit (lU), the Aoating point unit (FPU)
and memory hierarchy. This latter type of information could suggest that a totally
different solution method is required in order to achieve efBcient processor utilization.
An example of the output from the performance estimator for the sequential code on
the CM-5 is shown in hgure 5.11. Summarising this information, the FPU accounts for
61 percent of the total time, the lU for 10 percent and data movement for 29 percent^.
This indicates that relatively high performance wiH be obtained on each processing
node. One possible area of optimization could be improving on the 50 percent FP
register hit rate, although the high cache hit rate does offset this substantially.

Given the sequential code analysis, we construct templates of the proposed parallel
implementations using The two implementations we consider are both data
parallel on the 1024x1024 grid. The first of these implementations is block distributed
in both dimensions; the second data partitioning strategy is block distributed only in
the second dimension.

In this example, the code is SPMD with processors mapped to a two
dimensional grid and identified by X-Y values. Edge data is exchanged between
neighbouring processors in the order of East, South, West, and North. For the 1-D
block distribution, edge data is exchanged between East and West neighbours only.
Following the communication of boundary points, the amount of work performed
on each processor is specified. This is given in terms of Soating point operations,
determined from the sequential code, and the percentage of floating point references
that result in cache misses, which is determined by the performance estimator. Given
these ieAep specification files, the PVM code generated by the translator is

evaluated by the performance estimator. By using the performance estimator in this
manner, the most appropriate data partitioning method and number of processors
can be determined. It is notable that the most appropriate partitioning method and
processor efBciency has been determined by using only template specifications in the
absence of the target machine.

To verify our predictions we developed parallel implementations of both data
partitioning strategies. Both implementations (including the version generated by
Z/e6ep) were run on the CM-5 for up to 25 processors. Figure 5.12 compares actual run
times of the red/black code with the predicted code values given by the Performance
Estimator, while figure 5.13 compares actual run times for the generated code,
with the run times of the red/black relaxation code. To understand the dlEerence
between the projected and actual times, as well as these results in general, we used
DLS displays.

The DLS displays for two data partitionings (5x5 and 1x25 examples) are shown in
figures 5.14 and 5.15. From the pictures it is clear that the column partitioning produces
a better result since the values are generally lower. Also, this DLS display is
with the only section corresponding to initialization and synchronization in the
first iteration. By comparison, the display for the 2-D block distribution (figure 5.14),
shows a droj) in execution time of about 20 percent in the 12th iteration. This is difEcult
to explain from algorithm analysis alone. Accordingly, we viewed the computation

the production code is compiled with the highest levels of optimization, we use the minimnm
possible execution t ime analysis provided by the performance es t imator .

87

Execution Time Analysis (seconds)

- Integer Calculations

- FP Calculations

- Function Calls

- Message Passing

- Data Access Time

0.130867

0.784897

0

0
0.367134

Min Possible Time : 1.2829

- Add. Integer Calc : 0

- Add. FP Calc : 0

- Array Subscript Calc : 2.82563 to 5.65126

Max Possible Time : 6.93415

Functional Unit Usage (Percent of Max time)

CPU

Memory System

Message Passing System

(Function Calls)

95

5

0

0

Functional Unit Usage (Percent of Min time)

-(#U
- Memory System

- Message Passing System

- (Function Calls)

Memory Hierarchy analysis

%Access Time

71

29

0
0

- Main Memory

- LI Cache

- FP Registers

- Int Registers

64

36

0

0

Hits

787979

4709908

4184068

15712255

Misses

0

524808

4188164

23

HitRate

100

90

50

100

Figure 5.11: Performance estimator output for the sequential program code on a CM-5
node.

PcrWm*Prc(&Ay-Bk)dDWiulk)o<!oî ^ -
RcdBkA-Bkd: Dutnbaboo-Con̂nkr OpL -.

PRfdmi«%Prcdickir<!okmDis(̂^ -8-
Rc(IBlack<))hmDi:lnbQlioo<̂^̂

Procwson

Figure 5.12: Summary of results: Comparison between estimated and actual execution
times of the Red/Black Relaxation code. Notice that for both cases (performance
predictor and real execution of the program) the column distribution provides better
results.

RcdBuck-Block Distnbolxm-Lompln Op*
Lcbq)-BlodDiArWoii-CompikrOpL -

KcdBlack{ohnnoDutnbodoo<]anpî Q
Lcbcp<]Qbm[)%anbqtkm<](x̂^

ProccKon

Figure 5.13: Summary of results: Comparison between the execution times of the
templates and the Red/Black Relaxation code. Notice that i,e6ep also confirms that
the column distribution provides better performance results.

89

section of the progiam in isolation nsing a DLS (Agnre 5.16). In this picture, we see
that some processors are taking longer than others to complete the relaxation part of
the algorithm in spite of having identical work loads.

The drop to a common platean after the 12th iteration seems to indicate that the
hills in iterations 0 to 11 are dne to either initialization costs or system/administration
overheads. Initialization costs of the red/black relaxation program are unlikely as this
would require aU processors to decrease in execution time after the 11th iteration.
However, the DIS shows that some processors have a constant computation time for
aU iterations. A more plausible explanation is that certain administrative tasks are
performed on some of the CM-5 processors soon after start up. This is easier to see
if we use the DLS visualiser to represent the total time for blocks of 10 iterations
(Agure 5.17). The higher computation time for the Arst block of 10 iterations and the
fattening off of the surface thereafter is clearly visible.

5.3.2 C o m m e n t s and Conclus ions

The DLS representation of performance, was successfully used to determine perform-
ance bottlenecks. By using DLS displays, similarities in the behaviour of the
templates and the application were immediately apparent, despite their differences in
computation and memory access patterns. This information could not be obtained
from execution time alone. The DLS displays also enabled us to obtain an accurate
view of the performance on the target machine. Figure 5.14, for example, helped us to
identify a performance problem that it is stiU difBcult to explain (why the execution time
decreases after the 12th iteration of the algorithm), but that it is probably originated
by certain administrative tasks performed on some of the nodes of the CM-5 soon after
start up. It is interesting to notice that this situation is almost impossible to predict
(one could say that it is not directly related to our application) but it is indeed affecting
the performance of our program.

The differences in performance between processors and iterations in the 2-D block
distributed case were distinct. Although these performance differences were initially
thought to result from cache effects, the Performance Estimator revealed constant
cache performance for all processors over all iterations. The Performance Estimator
thus assisted in interpreting the DLS displays. Future plans for the DLS project wiU
include a closer relationship with and the Performance Estimator, representation
of cache/memory effects and experiments with larger number of processors.

Through the case study, the added value of using the Performance Estim-
ator, and the DLS displays in a collaborative manner has been demonstrated. From
our experience, the current trend to develop integrated toolsets holds much promise for
delivering powerful environments with unexpected benefits.

5.4 Related work

Parallel performance visualization has already been identified as a useful technique (e.g.
[112], [9], and [22]). In this section, four papers related to abstract performance views
and scalability are brie&y discussed.

Rover and Wright [157] present VISTA, a framework to capture, process, and
display performance information. In general, the views specific to VISTA are based
on applying the techniques of data visualization and multidimensional graphics to

Drop

Processors

90

Elapsed Time per
Iteration (sees)

0.095

0.071

Iterations

pigoie 514
. Do-Loop-Surface

. Red Black R e l a t i o n , Block
Distnbutioit) 5x5 grid o

processors.

Elapsed Time
per Iteration (sees)

O.UG

0.065

Iterations

processors

Figure 5.15: Do-Loop
of processors.

-STirface: B-eA
RelaajdicHi, (DoluJiwi

DigtcnoutioB) 1)^25

91

« , p.e> . r . n . e

0.028

tterattons

prod essors
Btock o w n

•ibutioiv, 5x5
of

r i g u i e 5 A 6 . ^ - : ; % L o { t h e
p^ocessois,^):^

Elapsed Tiff*®
0.856

OJOG

VtBrations

92

program performance visualization. VISTA is applicable to a large class of scalable
programs and machines, specifically SPMD and data-parallel programs executing on
distributed memory computer systems, and it is presented via a hierarchy of views. At
least two levels of observation can be identified in VISTA: microscopic (lower- level)
and macroscopic (higher-level). A microscopic perspective highlights the individual
components of the system, and specific behaviour is presented in detail. A macroscopic
view rejects the overall behaviour of the collection of components. The activity of any
component becomes part of an aggregate activity of the system. These levels form a
useful hierarchy which must be exploited for larger systems. A key and essential area
of study is analyzing the microscopic versus macroscopic performance of large systems,
where there is little experience [157].

Not only visual but also aural methods are being explored in order to represent
parallel performance data. Visual and aural portrayals of parallel program execution
are used to gain insight into how a program is working (e.g. PABLO [22]). The
combination of portrayals in a coordinated performance environment provides the
user with multiple perspectives and stimuli to comprehend complex, multidimensional
run-time information [103]. Reasons for using auralization in general and in parallel
computing in particular are documented by Prancioni [104, 105]. Some interesting
features of auralization are:

« By listening to the auralization while looking at a related graphical display,
the speed of recognition and distinction of whole and partial programs may be
increased over using either sound or graphics alone.

The scalability of auralization, specifically for representing program behaviour, is
essentially an unknown and remains to be empirically determined.

In general, visual-aural representations could be used effectively on large systems.
However, suitable approaches must support a hierarchical presentation and/or logical
grouping of information [103].

Another interesting line of research is proposed by Sarukkai et al [12]. They
suggest that a programmer should begin the investigation into the causes of performance
degradation with high level and abstract views, so that global trends can be seen. A
set of guidelines for methodical application of views, proceeding from the highest level
to the lowest level, is also presented in [12]. While a collection of views, animations,
and general performance data can help uncover performance bugs, some guidelines or
strategies are needed to direct the order in which views are examined. The guidelines
that they suggest are:

@ Dissatisfied with performance?

Compare progress with zdeoZ behaviour.

Examine deviation in overall behaviour.

Examine individual sections/PEs.

Low Level investigation.

@

93

The work done by Conch in [158] deals with the problem of scalability. In that
paper, global context is described by scalable execution views that do not change
in format, size, meaning, or clarity as processors are added to an execution. Couch
also states that one way to produce a scalable view is to categorize processors by
behaviour and display category statistics. Categorical views are particularly useful
when there is am inverse mapping for an arbitrary view region to the subset of processors
whose behaviour was described in the region. The execution visualization tool Seeplex
implements this form of category management to provide scalable execution views [158].
Seeplex manages view relationships using a data-&ow visualization environment in the
spirit of scientific visualization systems such as AVS. Two important issues are also
addressed by Couch. The first one is that a scalable view is less useful if one cannot
trace back from view features to raw data. The second one is that (ateg

ancf ezpenence fo regwZk. Aope (o an
ouoWg gZoboZ seorcA omtf oZZ

we do [158].
Finally, another interesting research effort is the approach to parallel program

analysis by LeBlanc, Mellor-Crummey and Fowler [125], which is based on a multiplicity
of views of an execution. A synchronization trace, captured during execution, is used
to construct a graph representation of the behaviour of the program. The user then
manipulates this representation to create and tune visualizations using an integrated,
programmable toolkit. They also state that tools should be structured so that a
programmer can select views of a program execution in some reasonable sequence,
where each view tales into consideration previous views and the programmer's current
needs. One of the views presented in this work done by LeBlanc, Mellor-Crummey
and Fowler, analyzes a similar surface (equivalent to a Do-Loop-Surface) displaying
data transfer time, worker processes and rounds of computation. For a Gaussian
Elimination experiment, they concluded that the display helped them to find an
explanation of a particular performance problem. Although there are similarities
between this visualization and the DLS display, we believe that the DLS display has
several new features such as the integration with a Scientific Data Visualization Tool
(AVS), providing further data analysis capabilities. Additionally, the idea of using this
sort of display for performance analysis is evaluated in depth in this document.

6 DLS Tool Evaluation: Case Studies

The purpose of this Chapter is to illustrate and validate the usefulness of the DLS
displays in analyzing parallel program performance. A set of case studies is presented
including a Matrix Multiply, TRANS 1 and FFTl from the Genesis Benchmarks Suite,
a Red/black relaxation algorithm, and a synthetic code to analyze cache/memory
behaviour. Finally, we describe our experience using DLS displays at Argonne National
Laboratory.

6.1 M a t r i x Mul t ip ly

The purpose of this case study is to demonstrate the usefuhiess of a DLS in analyzing
the performance of a parallel algorithm. The parallel implementation of this Matrix
Multiply algorithm works in the following way: the matrix A is distributed by rows and
the matrix B by columns. At the stage the processor which has the row % send this row
to all the other processors (broadcast) and then each processor starts computing the
corresponding inner products in order to generate the result (each processor generates
a set of elements of the resulting matrix).

A trace generation library was written in order to collect the required data per
iteration. The only thing that the user hag to do in order to obtain trace data is to
add a call to the corresponding trace function at the beginning and at the end of the
do-loop. If the number of iterations is very large, the trace can be generated only for a
set of iterations (e.g. each 100 iterations) in order to reduce the amount of information
produced. The hardware platform consisted of a 64 T800 Parsys Supernode and the
program was written in C using PARMACS [43].

6 .1 .1 R e s u l t s for a 100x100 m a t r i x on 32 p r o c e s s o r s

The DLS of figure 6.2 represents the matrix multiplication algorithm for two matrices of
dimension 100x100 (we could not use a larger problem due to lack of memory), running
on 32 processors (initialization and terminating values have been removed in order to
get a clearer picture). The values correspond to the main do-loop of the algorithm as
it is illustrated in figure 6.1.

The DLS in figure 6.2, shows a clear pattern which is repeated three times. This
pattern consist of a hiHy section that goes through a diagonal line until the pattern is
repeated again. Each time the pattern begins, there is a which is higher from
left to right. All these hilly sections represent communication delays, and they basically
occur when a processor is broadcasting one particular row to the other processors.
Since the processors are numbered from 0 to 31 from left to right in the picture, then
processor 0 is the one which takes longer in the iteration where it has to broadcast a row,
due to the fact that while it is sending that particular row to every other processor,
those processors start doing their computation but processor 0 has to wait until it
finish the broadcast in order to start doing its corresponding inner products (since the

94

95

for (i=0;i<gnrowA;i++) {

DLSGETTd,i); /* Collection of data */

if (isInHere(i)) {

broadcast_async(MYPROC,niatrixA[i/NUMPROC] ,ncolA*sizeof (float) ,MSG) ;

memcpy(tmp_row,matrixA[i/NUMPROC],ncolA*sizeof(float));
}
else {

RECV(tmp_row,ncolA*sizeof(float),&1,&s,&t,MATCH_TYPE(MSG));

>

for (j=0;j<ncolB;j++) {

elem = 0;

for (k=0;k<ncolA;k++) {

elem = elem + tmp_row[k]*matrixB[j] [k] ;

}
partialR[j] . i = i ;

partialR[j].j = (j*NUMPROC) + MYPROC - 1;

partialR[j].element = elem;

}
if (gncolB'/.NUMPROC < MYPROC)

partialRCgncolB/KUMPROC].i = -1;

/* Elements of row i ready */

SEHDE(HOSTID,partialR,((gncolB/NUMPROC)+l)*sizeof(RMATRIX) ,MSG_R) ;

DLSGETTd,i); /* Collection of data */

}

Figure 6.1: Main do-Loop of the Matrix Multiply Algorithm (node program).

96

commumcatioiiB are syiickronoiis). For a matrix of size 100x100 and 32 processors, this
occurs three times because most of the processors have 3 columns (100/32 = 3.12) and
only a few of them have up to 4.

Now, one good question is whether we can improve the performance of the program
in some way using the information of the DLS. One possible answer is trying to
reduce those hiHy parts of the surface (i.e. reducing the delays per processor). Since
the communications are synchronous in this implementation of the algorithm, one
possibility is to use asynchronous communication. The effect on the DLS when using
asynchronous communication is remarkable (figure 6.3). In this display the hillm
are lower and the valleys deeper, which means lower values for the elapsed time
per iteration. Although the initialization costs are the same, the improvement in
performance is notable (from 6.48 seconds to 2.15 seconds).

In terms of speedup, in figure 6.4 we can see the improvement gained by using
asynchronous conmiunication when a particular processor is broadcasting one of the
rows that belongs to it. This improvement in speedup increases as the problem size
increases. For n=100 (n=number of columns), the maximum speedup occurs at p=8
(p=number of processors) and for n=400 at p=32. For n=400 and synchronous
communication, the speedup starts decreasing after p=16 while the speedup for the
asynchronous version is still increasing up to p=32.

6.2 Genesis Benchmarks

FFTl (Fast Fourier Transform) and TRANSl (Matrix Transpose) are two programs
from the Genesis Benchmarks Suite [142]. TRANSl transposes a square matrix by
dividing the original matrix in sub-matrices and exchanging them between opposite
processors (see figure 6.5).

Eowever, the distance between these processors is not the same (64 T800 Parsys
Supernode) and in this 4x4 grid example the exchange of Information between processor
3 and 12 becomes a bottleneck. E one adds an additional link between processors 3
and 12 (in order to make this distance shorter, figure 6.6) then one may expect a
significantly better result.

The efTect of adding one extra link to the grid topology makes an impressive
impact on the DLS display. This additional link creates a direct communication line
between the two most distant points of the grid, making communication much faster.
The average elapsed time per iteration is reduced from 2.4 seconds to 1.8 seconds (see
figures 6.9 and 6.10). In this example, the term involves the execution of the
whole matrix transposition (figure 6.7).

The FFTl benchmark is based on the classical radix-2 l-dimensional FFT al-
gorithm by Cooley and Ttikey. The Fourier transform comprises two main phases: the
generation of twiddle factors and the calculation of harmonic amplitudes (butter&y
phase). The latter is commonly critical for the speed of computation. Figure 6.8 shows
the section of the algorithm we are measuring.

In this experiment, the results of running the FFTl benchmark on a 4x4 grid
of processors, topology I, and on a 4x4 grid plus some additional links, topology II,
(figure 6.11) are shown in figures 6.12 and 6.13.

In these figures, both DLS^s are also compared against the Feynman display of
ParaGraph. For topology I, synchronization points seem to be not as good as for

97

Elapsed Time per Iteration (sees)

0.139

,01 0.004

Iterations

Figure 6.2: Matrix Multiply: Do-Loop-Surface (Synchronous communication). Notice
the pattern that is repeated three times representing communication delays while a
particular processor is broadcasting a row of the matrix to every other processor.

Elapsed Time per Iteration (sees)

O.OSS

,0 J. 0.004

Iterations

Figure 6.3: Matrix Multiply: Do-Loop-Surface (Asynchronous communication). Notice
how the values are smaller, deeper valleys and a more intense blue in a colour picture
(red=:high values, blue=small values), than the previous figure.

98

16

14

12

10

Matrix Multiply: Asynchronous vs Synchronous Program Speedup
1 1

Synchronous Program Speedup (n=100) -0-
Asynchronous Program Speedup (n=100)

Synchronous Program Speedup (n=400) -B-
Asynchronous Program Speedup (n=400) x-

16 32
Number of Processors

Figure 6.4: Matrix Multiply: Program Speedup for Synchronous and Asynchronous
communications (n=100 and n=400).

Figure 6.5: TRANSl Genesis Benchmark. Exchanging of sub-matrices between
processors. Note that the distance between these processors is not the same. Bold
circles indicate longer distances between two processors.

99

Figure 6.6: TRANSl Genesis Benchmark. 4x4 Grid with additional link between
processors 3 and 12.

DO 100 C0UNT=1,LOOPS

C DLS_TRACE

CALL DLSGET(1,C0UMT)

C DLS.TRACE

DO 50 I = 1,D

DO 40 J = 1,D

TEMP(I.J) = DATA(J,I)

40 CONTINUE

50 CONTINUE

IF (X.NE.Y) THEN

SEND(TASKS(OPPOS),TEMP,DATLEN,lO+COUNT)

RECV (DATA,DATLEN, IL, IS, IT ,MATCH_ID_AND_TYPE (TASKS (OPPOS) , lO+COUNT))

ELSE

DO 120 1=1,D

DO 110 J=1,D

DATA(I,J) - TEMPd.J)

110 CONTINUE

120 COHTIHUE

ENDIF

C DLS.TRACE

CALL DLSGETd,COUNT)

C DLS_TRACE

100 COHTIHUE

Figure 6.7: TRANSl Genesis Benchmark. Zferah'ong (mimber of times the algorithm
is executed) being measured during the experiment.

100

C === Butterfly phase - Fourier analysis ===

DO 200 LAYER = L0GP,1,-1

C DLS_TRACE

CALL DLSGETCl,LAYER)

C DLS_TRACE

C === Calculation sublayer ===

CALL FFTCT1(FINTR,FINTI,0MEGAR(INDTF) ,OMEGAI(INDTF) .NTOTIN)
IHDTF = HTASK/(2**(LAYER-1))

C === Communication sublayer ===

CALL DESTOM (LAYER,NTASK,DESTIN,OFFSET)

IF(OFFSET .NE. 0) THEN

DO 101 1 = 0 , NTOTIN/2-1

BUFFL(I) = FIMTR(l)

101 CONTINUE

SEND(PROCN(DESTIN),BUFFL,BUFLEN,30+LAYER)

RECV (BUFFL, BUFLEN, IL, IS, IT, MATCH_ID_AND_TYPE (PROCN (DESTIN), 30+LAYER))

DO 201 1 = 0 , NTOTIN/2-1

FINTR(I) = BUFFL(I)

201 CONTINUE

ELSE

DO 301 I = 0, NTOTIN/2-1

BUFFR(NT0TIN/2+I) = FINTI(NT0TIN/2+I)

301 CONTINUE

SEND(PROCN(DESTIN),BUFFR,BUFLEN,30+LAYER)

RECV (BUFFR, BUFLEN, IL, IS, IT, MATCH_ID_AND_TYPE (PROCN (DESTIN) , 30+LAYER))

DO 401 1 = 0 , NTOTIN/2-1

FINTI(NT0TIN/2+I) = BUFFR(NT0TIN/2+I)

401 CONTINUE

END IF

C DLS_TRACE

CALL DLSGTd,LAYER)

C DLS_TRACE

200 CONTINUE

Figure 6.8: FFTl Genesis Benchmark. being measured dnring the
experiment.

101

Elapsed Time per Iteration (sees)

3.955

1.042

Iterations

Figure 6.9: TRANSl Genesis Benchmark. DLS display of a 100x100 matrix example
on a 4x4 grid of processors (PARSYS Supernode, 16 processors).

Elapsed Time per Iteration (sees)

7.632

Oi 1.22G

Iterations

Processors

Figure 6.10: TRANSl Genesis Benchmark. DLS display of a 100x100 matrix example
using one additional link between the two more distant points of the grid (PARSYS
Supernode, 16 processors).

102

Figure 6.11: Grid of 4x4 processors plus some additional links.

103

topology n . The Arst ajid the third iterations have longer elapsed time than iterations
2 and 4. This fact can be seen in the DLS display (Agnre 6.12).

For topology H, every processor starts and ends comm^unication at the same time.
Some processors can send messages "faster" than others due to additional links, and
then they keep waiting for the corresponding receive (orange lines on the Feynman
display in a colour picture). The first three iterations have the same elapsed time,
but the last one is shorter. This last remark can be clearly seen in the DLS display
(figure 6.13). Even a small change in the elapsed time of a particular iteration may
produce a dramatic eEect on the DLS display as it is illustrated in this example.

6.3 C a c h e / M e m o r y effects

The main purpose of this case study is to show how useful the DLS displays can
be to understand cache/memory effects generated by changing the order in which a
particular do-loop accesses a particular data structure (a matrix in this case). The
hardware platform for this experiment is a CM-5 (64 Sparc nodes with 32 Mbytes of
memory and 4 vector units each). The software platform is based on the PARMACS
message-passing interface.

The do-loop under study can be seen in figure 6.14. Notice that each do-loop can
be arbitrarily reordered, changing therefore the access to each matrix A, B, and C. The
operation executed in the innermost do-loop is irrelevant, since the most important
issue for this experiment is the way the memory hierarchy is used.

In figures 6.15, 6.16, and 6.17 the memory access pattern is displayed depending
on the order the do-loop is executed (i.e. there are only 6 possible combinations for
i j ,k).

Figures 6.18 to 6.23 show the results for this case study. Each figure represents one
particular order of the 6 possible ones. The memory size, which is another important
factor to be taking into account, is defined by the size of each matrix in the example.
In this case, each matrix is 50x50x50.

The results in terms of performance, from best to worst, are:

kj , i ; 0.465 seconds in average per iter, per processor (figure 6.23).

k,ij ; 0.466 seconds in average per iter, per processor (figure 6.22).

j,k,i; 0.481 seconds in average per iter, per processor (figure 6.21).

« i,k j ; 0.7 seconds in average per iter, per processor (figure 6.19).

j,i,k; 1.004 seconds in average per iter, per processor (figure 6.20).

ij ,k; 1.176 seconds in average per iter, per processor (figure 6.18).

104

AVS geometry viewer 1

Elapsed Time per iteration 1

.
P i

H
Processors ®

\g 1

1
Feyntwan

FEYNMflN DIRGRHM

\ \ \ III

m

z :

/ ^ \ z .

U 639 lAtlE-,

Figure 6.12: FFTl Genesis Benchmark. Comparison between a Feynman display
(ParaGraph) and a DLS. 4x4 Grid.

105

AVS g e o m e t r y v i e w e r 1

Elapsed Time per iteration

d
1

Processors p i

F e y n t n a n

FEYNMflN BIRGRfltl

Figure 6.13: FFTl Genesis Benchmark. Comparison between a Feynman display
(ParaGraph) and a DLS. 4x4 Grid plus some additional links.

106

do iter=l,50

C DLS_TRACE

call dlsgett(1,iter)

C DLS_TRAGE

do i=l,maxlen

do j=l,maxlen

do k=l,maxlen

matrixC(i, j ,k) = (matrixA(i, j ,k)*niatrixB(i, j ,k))+matrixA(i, j ,k)

enddo

enddo

enddo

C DLS_TRACE

call dlsgett(1,iter)

C DLS_TRACE

enddo

Figure 6.14: Case study: nested do-loops. Notice that each do-loop can be arbitrarily
reordered, changing therefore the access to each matrix A, B, and C.

(i, j , k) matrix access (i , k , j) matrix access

J

/ /

/ /

Figure 6.15: Memory access patterns for a 3D matrix. Access by rows.

107

(J, i , k) matrix access (J, k , i) matrix access

j

/ /

/ / /

Figure 6.16: Memory access patterns for a 3D matrix. Access by columns (left) and by
rows (right).

(k , j , i) matrix access (k , 1, j) matrix access

Figure 6.17: Memory access patterns for a 3D matrix. Access by columns.

108

It is clear that the best results are obtained when the matrices are accessed by
columns, since this is the way FORTRAN stores data. The shape of the DLS is smooth
for the better cases (figures 6.23 and 6.22) and it becomes hilly and irregular for the
worse cases (figures 6.18 and 6.20), where the matrices are being accessed in a less
efficient way. In the best case (figure 6.23), it is possible to see how the execution
time of each iteration varies (increasing or decreasing) due to cache/memory e&cts,
repeating this behaviour in a regular fashion.

One interesting variation of the experiment occurs when the size of the matrices
is increased. In this example, the matrices are 75x75x75 (figures 6.24 and 6.25). The
cases shown in the figures are the best (kj,i) and the worst (i j ,k). Notice the dramatic
change in the DLS display for the worst case. After a few iterations, there is a jump
in the figure and the elapsed time per iteration increases in about 7 milliseconds. This
situation might be produced by the increasing of the problem size, since a bigger
problem would fill in the cache completely, generating therefore more misses. It is
also interesting to see the following eEect: the memory haa been increased by a factor
of 3.38 approximately and the average elapsed time per iteration has been increased by
a factor of 3.93 (worst case). In general, the execution time increases faster when the
size of the problem is increased.

The following example shows the result of a experiment of size 75x75x75 on 15
processors using the compiler optimization option (-0) on the CM-5 in time-sharing
mode (figure 6.26), for the best matrix access pattern (kj , i) . This figure shows a very
interesting behaviour: the first few processors (the first 7) execute the nested do-loops in
less time (about 30 milliseconds less) than the remainder 8 processors. Inquiring about
this situation with one of the system programmers of the CM-5, we found that due to
a problem with the 602 Soating point unit in the SPARC-2 chip set, some of the CM-5
nodes run more slowly than others when running serial f77/C codes. It is important to
notice that we discovered this problem without having any previous knowledge about
this strange behaviour of the floating point unit in the SPARC-2 chip, and with the
help of the DLS display of figure 6.26.

6.4 R e d Black Re l axa t i on

Red/black is an example of a "small" real application. If we consider a rectangular
data domain, red/black is a way of separating the grid into two halves: a red set and a
black one with the additional constraint that a red cell is only surrounded by black cells
in its non diagonal directions and viceversa. One solves the linear equation system first
on the red cell subset by using the (old) values of the black cells and then computes
the solution on the black cells by using the (new) values of the red cells. These steps
are repeated until the desired result is obtained.

In this section, we show two examples of cache/memory effects for this application
on a Meiko CS-2. The current machine configuration has two partitions each of four
processors, a uec^or partition and a gcoZar partition. Each processor in the vector
partition has a 66MHz HyperSparc CPU with a pair of Fujitsu uVP vector units. The
processors in the scalar partition are 50MHz SuperSparc CPU's. The software platform
is based on the PVM message passing interface.

The original idea of this experiment was to compare diEerent strategies to calculate
the computational part of the red/black algorithm. These strategies are Zoop unroZZmg
and Zoop and they compute the same results as the original do-loop that makes the

109

Elapsed Time per Iteration (sees)

1.178

Oi 1 174

Iterations

Figure 6.18: DLS: Matrix access using i,j,k. Average time per iteration: 1.176 seconds
(CM-5, 31 processors).

Elapsed Time per Iteration (sees)

0.700

r 0 i 0 .639

Iterations

Figure 6.19: DLS: Matrix access using i,k,j. Average time per iteration: 0.7 seconds
(CM-5, 31 processors).

110

Elapsed Time per Iteration (sees)

I 1.00B

1.003

Figure 6.20: DLS: Matrix access using j,i,k. Average time per iteration: 1.004 seconds
(CM-5, 31 processors).

Elapsed Time per Iteration (sees)

D.482

O i 0.480

6CK Iterations

Proeessors

Figure 6.21: DLS: Matrix access using j,k,i. Average time per iteration: 0.481 seconds
(CM-5, 31 processors).

I l l

Elapsed Hme per Iteration (sees)

0.468

O i 0.466

Iterations

Figure 6.22: DLS: Matrix access using k,i,j. Average time per iteration: 0.466 seconds
(CM-5, 31 processors).

Elapsed Time per iteration (sees)

0.466

0.465

Iterations

Processors

Figure 6.23: DLS: Matrix access using k,j,i. Average time per iteration: 0.466 seconds
(CM-5, 31 processors).

(g USMAFIV p-

112

Elapsed Time per Iteration (sees)

4^4

0l 4.608

Processors

Figure 6.24: DLS: Matrix access using i,j,k. Average time per iteration: 4.619 seconds.
Matrix size: 75x75x75. Size increased by a factor of 3.38 (CM-5, 31 processors).

Elapsed Time per Iteration (sees)

1.B73

O i 1.671

Iterations

Figure 6.25: DLS: Matrix access using k,j,i. Average time per iteration: 1.672 seconds.
Matrix size: 75x75x75. Size increased by a factor of 3.38 (CM-5, 31 processors).

113

Elapsed Time per Iteration (sees)

3.666

Figure 6.26: DLS: Matrix access using i,j,k. Average time per iteration: 3.649 seconds.
Matrix size: 75x75x75. CM-5 in time-sharing mode. The compiler optimization option
(-0) has been used in this example. Notice that there is a difference in execution time
between the first 7 processors and the last 8 (CM-5, 15 processors).

114

computation in the red/black algorithm, but they operate with the data in a different
way (i.e. different memory access patterns). However, we did not find a considerable
difference in applying any particular strategy (the merge loop was slightly better), but
we found an irregular behaviour. The very first iteration of the program was taking
almost 100% longer than the following iterations. In order to test whether this situation
was due to cache/memory eSects, we prepared an example where a copy of the original
2D data array used in the algorithm was incorporated in the computation but only on
two specific iterations (5th and 17th). Since this new array has not been referenced
before, we would expect a longer execution time for these two iterations. The DLS of
figure 6.27 illustrates a high initialization cost in one of the partitions (the scalar) as
well as higher execution time in the 5th iteration (as we would expect) but only for
the scalar partition. The surface of the DLS for the vector partition (hrst 4 processors
from left to right in the Agure) was Aat and regular.

The problem is generated by the size of the data arrays. When this size is large
enough (greater than 1 Mb for the scalar partition), we find a long initialization phase
and subsequent irregular memory behaviour (hiUs in the picture). But, if the size of the
data array is less than 1 Mb, the initialization costs disappear as well as the irregular
memory effects and we get a Aat surface again. The size of the oS chip direct mapped
cache for the scalar processors is precisely 1 Mb. We confirmed this analysis using a
smaller data array. We obtained the expected result for the experiment using a data
array which has not been referenced before in two particular iterations (4th and 16th),
as illustrated in figure 6.28.

115

0.03?

iterati,

f>B('«̂ essô

Parfjt_
C&p

' ffoc,
t ie

GSSOfs

':Qdfa
&8t

& 4 t o

116

Elapsed Time per Iteration (sees)

0.019

0.014

Processors

Figure 6.28: DLS: Red/black relaxation algorithm, Meiko CS-2, 3 processors, vector
partition. Notice that the 4th and 16th iterations have longer execution time due to
the usage of an unreferenced data array on those two iterations. We have eliminated
the first iteration in order to obtain a clearer picture.

117

6.5 E x p e r i m e n t s a t A r g o n n e N a t i o n a l L a b o r a t o r y

This section describes our experience during a study visit to Argonne National Labor-
atory (ANL) in Dlinois, USA (March 1995). One of the maim purposes of this visit was
to test the scalability of the DLS displays for a large number of processors. In fact, we
could run applications up to 128 processors on an IBM SP2. Also, we describe in this
section how the DLS trace generation library was ported to MPI, making the generation
of trace hies portable. Finally, we discuss several experiments done during this visit as
well as the interaction between DLS and Nupshot, a performance visualization software
developed at Argonne.

6.5.1 DLS version for M P I

The DLS displays do not depend on any particular hardware platform or programming
style. The only requirements in order to generate a DLS display are a DLS trace file and
AVS. The DLS trace Ale has been generated in the past by writing a small trace library
for the corresponding message-passing system (i.e. PARMACS and PVM). However,
for MPI it was easier. The MPI version of Argonne comes with a separate environment
called MPE (Multi-Processing Environment), which is a software provided by ANL
to enhance message-passing programming with MPI, including graphics and profiling
capabilities [159]. MPE has a set of profiling routines that are used to create log-hies of
events that occur during the execution of a parallel program. By using this library, one
can measure the elapsed time for each iteration on a particular do-loop in a program,
which is the information required to display a DLS (figure 6.29 illustrates how to use
MPE to generate the information of a DLS trace hie).

MPE is currently used to generate log-files for Nupshot, a performance visual-
ization software developed at ANL. Nupshot is an enhanced version of Upshot, also
developed at ANL. One of the main advantages of using MPE is that this library can
be used with other vendor versions of MPI (since it is based on calls to MPI). In this
way, we would be able to generate DLS trace hies on any of the platforms supported
by MPI. Also, MPE allow us to analyze several do-loops at the same time, making it
possible to generate several DLS's on a single run. The only requirement to display
this information as a DLS, is to transform the MPE log-Ale into the corresponding DLS
trace hie format required by AVS. For all the advantages that this approach give us,
we think that a future freely available version of DLS wiU be based on MPI only.

6.5.2 The L I N P A C K Benchmark in M P I

In order to test the DLS version for MPI and the scalability of the DLS displays on
the IBM SP2, we made several experiments. The hrst one consists of an MPI version
of the LINPACK software [160, 159].

The LINPACK benchmark is a well known numerical code that is often used to
benchmark computers for hoating-point performance. This program solves the linear
system yla; = 6, where A is a denae matrix (i.e. A[iJ] != 0). The problem is solved by
computing a factorization of A into PLU, where L is a lower triangular matrix, U an
upper triangular matrix, and P is a permutation matrix that represents the exchange
of rows used in the porh'of pzuofmg algorithm (strategy used by this code to improve
numerical stability). The matrix A is distributed amongst the processors using the
square block scattered decomposition described in [161], which is a practical and general

118

c

c Definition of the DLS state that we are going to measure. A state

c consist of two events. In our example, these events are 1 and 2

c

if (myid .eq. 0) then

CALL MPE_DESCRIBE_STATE(1, 2, "DLSijk", "bluezgray")

end if

c

c Start generating tracing information

c

CALL MPE_START_LOG()

do iter=l,100

c

c First event: beginning of the do-loop

c

CALL MPE_LOG_EVE!rr(l. iter, "DLSijk-start")

do l=l,max_iter

do j=l,max_iter

do k=l,max_iter

c(i,j) = a(i,k)*b(k,j) + c(i,j)

enddo

enddo

enddo

c

c Second event: end of the do-loop

c

CALL MPE_L0G_EVENT(2, iter, "DLSijk-end")

enddo

c

c Stop generation tracing information and save it in the file dls.log

c

CALL MPE_STOP_LOG()

CALL MPE_FIHISH_LOG_("dls.log")

Figure 6.29: Generation of DLS trace data using MPE

119

purpose way of decomposing dense linear algebra computations. In problems, such as
LU factorization, in which rows and/or columns become inactive as the algorithm
progresses, this decomposition provides a good load balance (as it is shown in [161]).

This algorithm was run on an IBM SP2 at ANL\ This machine consists of 128
nodes and two compile servers. Each node is essentially an RS/6000 model 370. This
model has a 62.5 MHz clock, a 32Kb date cache, and a 32Kb instruction cache. The
main features of this system are [162]:

128Mb of memory per node.

iGb local disk on each node (400Mb for users and the rest for paging and for the
operating system).

FuU Unix on each node (IBM AIX 3.2.5).

Each node is accessible by Ethernet from the Internet.

High performance Omega switch for the interconnection network between pro-
cessors. The SP2 interconnection network is a bidirectional multistage intercon-
nection network. The SP2 method of packet transfer between nodes is related to

[163]. Latency is 63 micro seconds and bandwidth is 35Mb/s.

The maximum number of processors for this machine is 128, but 512 systems are
available on special request.

Figure 6.30 shows the execution of the main do-loop of the LU decomposition
(subroutine PDLUBR) for 100 processors (with N=6400 and NB=64, where N is the
size of matrix and NB the block size used for wrapping). The figure illustrates a clear
pattern of repeated every 10 iterations and processors. This is due to the fact
that the topology used by the algorithm is a grid of 10x10 processes. This is exactly
the way the algorithm is designed to work [164]. If you assume that the processors are
arranged as a 10x10 grid (10 rows and 10 columns), and the grid is composed of rows
and columns, then the factorization of the block is performed by processor columns
in a cyclic manner. During the very first iteration processors 0, 10, 20,..., 90 wiH be
involved in the factorization. After factorization, the factored panel (or factored section
of the matrix) has to be broadcast to the rest of the process columns. In this broadcast,
processors {0, 1,..., 9}, {10, 11,..., 19},..., {90,..., 99} are involved (i.e. 10 broadcasts
occur in parallel). After this step, there is an update operation on the block and this
update is done in a processor row, and therefore only processors {0,1,..., 9} are involved.
After this, the updated block is broadcast to other process rows, so processors {0, 10,
20,..., 90}, {1, 11,..., 91},..., {9, 19,..., 99} are involved in the broadcast (aH occur in
parallel again). Then the above step is repeated starting with processor 1, that is in
the processor column 1.

We can also see how every 10 processors, there is a (Zrop in the execution for
that particular iteration (creating the diagonal lines of the figure). AH these patterns,
correspond to the cyclic behaviour of the algorithm. Also, notice how the surface
(fecreogeg as the iterations progress (due to the fact that more rows and columns become

^The author(s) gratefully acknowledge use of the Argonne High Performance Computing Research
Facility. The H P C R F is funded principally by the U.S. Department of Energy Office of Scientific
Computimg.

120

inactive as the algorithm move forward). The cyclic patterns can also be seen using
Nupshot (figure 6.31, for 9 processors). However, for 100 processors, it is more difficult
to use this sort of display (at least on a single view, see figure 6.32).

Elapsed Time per Iteration (sees)

2.661

0.097

Figure 6.30: DLS display for LINPACK (IBM SP2, 100 processors). Notice the cyclic
patterns every 10 iterations/processors. It is also important to say that in this single
picture we are displaying the information of 100 iterations for 100 processors.

6 .5.3 C o m p a r i s o n be tween A N L - M P I and I B M - M P I

Another interesting experiment was to compare the execution of the two current
versions of MPI available for the IBM SP2 at ANL (i.e. IBM-MPI and ANL-MPI).
The results can be seen in figures 6.33 and 6.34. It is clear from the pictures that both
executions are different. In a colour picture, we would notice first that the values for
the IBM-MPI case are higher than for the ANL-MPI case. Also, the regularity of the
patterns has been affected. This fact can be deduced by the sequence of peaks present
in the first 30 iterations of the algorithm. Nupshot was used in order to confirm this
behaviour, and the results are illustrated in figures 6.31 and 6.35. The ANL version of
MPI proved to be more efficient than the IBM version for this particular application.

6.5.4 Scalabi l i ty t e s t us ing 128 processors

Figures 6.36 and 6.37 illustrate one of our scalability tests using the full configuration of
the IBM SP2 at ANL (128 processors). Also, this test aUovî us to see a very interesting
behaviour that we have seen in similar cases before but on different machines (e.g. CM-
5): some processors are taking longer (more than 20 percent in some cases) to execute
the exact same code. The do-loop we are analyzing consist of statements that do not
include any communication at all and they are repeated on every processor. We know
that there are a few set of processors that run slower than others (i.e. processors 1,
17, 33, 49, 65, 81, 97, and 113), but we have found that for this particular test some
other processors behave different than expected. As in our case study in Section 5.3.1
(figure 5.16), it seems that either there is also an additional overhead of the operating

121

flHpshot" 9f>,us,campt. i .iog

WSRMT5 Iaj r 7S 1 ' Sr 1

:9P**!4AiiM:<̂wlt',, ,;\r'..'.i.-. .iiAO ./w. l.«%'.'.f.'...1̂ &:

l i i
«

W W W

Figure 6.31: Nupshot: section of the UNPACK execution (IBM SP2, 9 processors).
Notice the cyclic pattern in communications; first 3 processors, then processors 3 to 5,
then processors 6 to 8, and so on. Communications correspond to the three broadcasts
inside the main do-loop of the LXJ factorization of LINPACK.

H 4
(D

a>
3
oi

a" ND (D ' '

§ a
8

- ^
fD fl)

f i
& «
3 %

fD
S
5-

td

C/]
hj
bC

o
o

0
1 CO
8

m\ HMI

iii,

i i i i i b i ip i f i i i

!

iiimi
m i l
IS!S!
IIHil

i»l
iMIUnqiUgiiiiii

iSiSlBiiiiiSB!
! ! ! ! ! ! » »
K i i l S S P j i f f i i :

^ - ^ r -

; a #

ilii

Ebgrnagf:
e4=Wa:W3Z2

bO ISP

123

Elapsed Time per Iteration (sees)
0.051

Figure 6.33: DLS: Execution of LINPACK using the ANL version of MPI for the IBM
SP2 (mpich).

Elapsed Time per Iteration (sees)
0.161

0.003

Iterations

Figure 6.34: DLS: Execution of LINPACK using the IBM version of MPI for the IBM
SP2. Notice the differences in terras of regularity that both pictures have. The only
thing in common is the fact that the values decreases as the execution progress (which
is a feature of the algorithm in general).

124

mipshor - fbm Iinpitk-niiOO.fihx.Si) m.comp. i log

• • _ l

Figure 6.36: Nupshot: Section of LINPACK execution for the ANL version of MPI
(IBM SP2, 9 processors). Notice the irregularity in the communication patterns.

125

system that affects the execution of our code or these set of processors are shghtly
different than the others. In terms of scalability, the picture easily represents 128
processors and 100 do-loop iterations. We believe that the DLS displays will scale in
the same way as AVS scales. However, for thousands of processors, the trace files will
be perhaps too large (especially if the number of do-loop iterations is large too) and
the DLS could be more difficult to handle.

Elapsed Time p e r Iteration (sees)

0 . 2 4 9

0.101

I terations

^ ^ 1 0 0

Figure 6.36: DLS: Scalability test (IBM SP2, 128 processors). Notice that some
processors take longer to execute the same number of operations (there are no
communications inside the do-loop being analyzed).

do iter=l,100

CALL MPE_L0G_EVENT(1, iter, "DLSijk-start")

do i=l ,niax_iter

do j=l,max_iter

do k=l,max_iter

c(i,j) = a(i,k)*b(k,j) + c(i,j)

enddo

enddo

enddo

CALL MPE_L0G_EVENT(2, iter, "DLSijk-end")

enddo

Figure 6.37: Do-loop code of our scalability test. Notice that there are no
communications inside the loop and that the same operations are repeated on every
processor.

126

6.6 Commen t s and Conclusions

The experiments presented in this thesis in general and in this Chapter in particular,
have successfully demonstrated that the DLS representation of performance is an useful
tool for analyzing and evaluating parallel program performance. The following is a
summary including good points, weak points, and possible future improvements for the
DLS abstraction.

DLS - good points:

Easy to use.

Scalable representation of performance (tested up to 128 processors).

e Useful in understanding parallel program behaviour (e.g. Section 6.1), identifying
hardware irregularities (e.g. figure 5.1), comparing and evaluating communication
patterns and different versions of algorithms (e.g. Sections 6.5.3 and 5.3.1),
identi:^ng different sorts of system irregularities such as unexpected operating
system overheads and memory behaviour (e.g. Sections 5.3.1 and 6.3), identifying
load balancing problems, and validating results of other performance tools.

DLS is not restricted to any particular architecture, message passing system or
programming model. The only requirements are a DLS trace file and AVS.

DLS has all the advantages of using a scientific data visualization tool such as
AVS. One of the advantages of visualization is that it is a way of seeing the unseen
[151].

Generating the DLS trace files using MPE (Section 6.5.1) makes it possible to
generate trace data on every architecture where MPI actually runs, assuring a
good degree of portability.

DLS - weak points:

DLS does not provide detailed information.

DLS does not isolate the cause of the problem (but helps identify it).

Volume of data can be difficult to handle if the problem has a very large number
of iterations and/or processors (e.g. 1000).

Visualization is useful, but it is important to give a warning about the mzguse of
visualization. Fred Brooks says that "TAe puT-pose o/ ^ (o m/orm,
nof fo *mpregg. Jjf do m/orm, i/ou WH [151]. There are many
ways to confuse or impress the users with a nice picture without telling them
any useful thing. One has to be very careful when using visualization in order to
understand the images we see (e.g. Globus and Raible [165] give 14 ways to say
nothing with Scientific Visualization).

DLS - possible improvements:

One interesting issue is that we could characterize different sorts of performance
problems by the aAope of a DLS. In this way, diEerent shapes would correspond
to different problems or behaviours. The benefit for the user would be clear, since
it would recognize previously defined problems by just looking at a single picture.

127

For a very large mimber of processors, a dynamic notion of performance in-
strumentation and measurement can be used [130]. In this way, the amount
of information produced can be dramatically reduced.

We have been working hard to visualize the performance of the whole execution
of a particular application. However, only those parts that are aEecting the
overall performance are relevant to our study. Therefore, one possible improve-
ment would be to coUect only reZeuanf information, i.e. information related to

changes in the execution of our program (e.g. coUect data only if the
elapsed time per do-loop iteration is greater than a certain value).

7 Conclusions

High performance at low cost is the key reason for the existence of parallel machines.
More complex problems can be solved by using large parallel computers and in the
near future we will have these machines delivering TeraFlop/s performance. No one
doubts the future importance of parallel computers to attain the highest performance.
However, the delivery of adequate performance is not automatic and performance tools
are required in order to help the programmer to understand the behaviour of a parallel
program. If we can understand the behaviour of our parallel program, we might be
able to tune and improve its performance. In recent years, a wide variety of tools
have been developed for this purpose including tools for monitoring and evaluating
performance and visualization tools. Some relevant issues to be mentioned about
performance analysis tools that are derived from the research done in this thesis are:

Portability, extensibility and scalability are key issues for the success of a per-
formance analysis and evaluation environment.

A performance analysis methodology is required in order to formalize the data
analysis process, making it easier and safer.

» Performance Instrumentation must have a low and predictable al-
lowing the user to incorporate perturbation analysis models when required.

Performance analysis is not an isolated process and may require the use of several
and different tools. Thus, the ability of erc/iangmg information is desirable (e.g.
integration of tools by using PCTE [166]).

Performance data representations that allow scalability must be developed at
a higher level of abstraction (then given by present tools). Usefulness and
understanding must be present in such representations, which need not be only
visual. Alternatives such as aural representations should be explored.

With current technology, an MPP means a machine with a large number of
processors (i.e. hundreds or even thousands of processors). Analyzing the performance
of a program running on such a machine is not an easy task and even standard
performance tools might not be useful. Performance visualization of parallel programs
is important because it helps the user to understand complex performance phenomena.
In a single picture, it is possible to see what is happening for the whole execution of a
program. Additionally, for a human being it is easier to recognize visual patterns than
to extract the same information from plain numbers. There are many took designed
for scientific visualization, such as AVS, that are used fundamentally to analyze data
in areas such as chemistry, huid dynamics, and different sorts of simulations of real
phenomena (e.g. seismic simulation, reservoir simulation, weather prediction). In
order to handle complex data, AVS provides very powerful buUt in capabilities. One

128

129

can transform and display data in many ways, rotate figures, zoom in and zoom out
as necessary, change colour scales, create different views of the same data, ajialyze
statistics, etc. The main purpose of integrating performance analysis with scientific
data visualization is, precisely, to take advantage of these excellent capabilities for data
analysis. Once we have produced the required performance data (e.g. by instrumenting
the program's source code), we are ready for the analysis process. Nothing else is
required. One of the advantages of this approach is that no tool development is
necessary. This is important for several reasons: (1) we can spend more time analyzing
our performance data and (2) we do not need to reinvent the wheel. To create a
visualization program is not a trivial task at all and this effort may be incorporated to
a more productive goal, i.e. the performance analysis process.

In this thesis we have presented our experience on performance analysis of parallel
programs. The performance tool, ANDES, invasiveness measurements and the new
parallel performance representation, DLS, show the importance of several issues related
to the evaluation of parallel performance.

ANDES was an interesting starting point since it gave us the opportunity to learn
more about the behaviour of parallel processes. If one wants to measure a parallel
program, first we have to understand the internal complex behaviour of processes
interacting in parallel. Additionally, we had to design a methodology in order to
make the performance evaluation process more efficient. The first version of ANDES
was restricted to one particular software platform. However, an enhanced version
of ANDES that was developed for PARMACS allowed us to make ANDES more

Portability is a key issue for the success of a performance analysis tool.
Finally, by ANDES and gnupZof we find an example of the advantages
that can give us. The use of existing tools is important because allow
us to incorporate facilities and features that are not present in our tool, making the
performance evaluation more complete.

Developing a performance analyzer is a very valuable experience. Amongst other
things, we learned that performance instrumentation can perturb the application by
a significant factor. It was clear for us that the study of was the next
step. Understanding invasiveness makes possible a better control over it. Low and
predictable invasiveness is our goal if we want accurate performance data. However,
this is a complex problem and more research is required for a better understanding of
invasiveness effects and how to control them.

The experiments presented in this thesis have successfully demonstrated that
the DLS representation of performance, our main contribution, is an useful tool for
analyzing and evaluating parallel program performance. The DLS is scalable, portable,
easy to use, useful, it can be used in a collaborative way with other tools and it has
aU the advantages of using a commercial scientific data visualization tool such as AVS.
Additionally, using the MPE profiling library in order to produce the trace data required
to display a DLS, makes it possible to have a very portable version based on MPI.
Moreover, this version wiU be freely available in the near future.

Future research directions of this work should consider the use of DLS for different
programming paradigms such as HPF, different applications such as databases and
different architectures (e.g. mixtures of shared and distributed memory machines).
Another area to explore is the use of DLS for the design of compilers (e.g. use a DLS
to decide whether one do-loop ordering is better than other). Incorporating gouncf
to a DLS wiH be an interesting test because it wiH add one additional dimension to

130

the display (e.g. for real time displaying, when a event occurs). Some other
important issues that must be considered in current and future research are:

Integration of tools.

Automatic tools for parallelizing sequential programs. If these took become
successful, are performance tools still necessary?

Future of parallel processing (e.g. machines with a still larger number of pro-
cessors? MIMD and/or Shared Memory Machines?).

Closer interaction with the user.

Finally, we believe that this work has contributed towards a better understanding
of parallel program performance and that our experience can be used for improving the
design of future performance analysis environments. If parallel computers are here to
stay, then parallel performance visualization is also here to stay.

Bibliography

[1] Eugenio Zabaia and Richard Taylor, "Maritxn: Generic Visualisation on Highly
Parallel Processing", in froceetfmgg o/(Ae ZFZP T^or̂ gAop on fmgmm-
mmg fomZZe/ Compw^mg, Edinburgh, Scotland, April 1992.

[2] Larry Carter, "The RAM Model and the Performance Programmer", Research
Report RC 16319, IBM Research Division, T.J. Watson Research Center, NY,
November 1990.

[3] Steve Sistare, Don Allen, Rich Bowker, Karen Jonrdenais, Josh Simons, and Rich
Title, "Data Visualization and Performance Analysis in the Prism Programming
Environment", in frocee(imgg ^0.^ IVorAgAop on frogmmmmg
^nmronmenk /or fomneZ Comj)u^mg, Edinburgh, Scotland, April 1992.

[4] Ian Glendinning, Stephen HeHberg, Piers Shallow, and Martin Gorrod, "Gen-
eric visualization and performance monitoring tools for message passing parallel
systems", in froceedmgg o/f/;e ZFZP 1^(7 ^0.,^ W ôrA;gAop on frogmmmmg JFn-
Mronmen^g /or faroHef CompwZmg, Edinburgh, Scotland, April 1992.

[5] Bernd Mohr, "Standardization of Event Traces Considered Harmful or Is an
Implementation of Object-Independent Event Trace Monitoring and Analysis
Systems Possible?", in f^nmronmen^g and IboZs/or S'czenf^c fomneZ Compwh'ng,
Saint Hilaire du Touvet, Prance, September 1992.

[6] T. Anderson and E. Lazowska, "Quartz: A tool for tuning parallel program
performance", in froc. o/^Ae Cor^erence on Measurement
and ModeZmg o/ Con%j)w(er 5'2/stemg, May 1990, pp. 115-125.

[7] Kayhan Imre, ^zpenences Monifortng ond y%gwGZ;g*ng tAe fer/ormance
o/ foraJZeZ frogrcmg, PhD thesis. University of Edinburgh, Department of
Computer Science and Edinburgh Parallel Computing Centre, 1992.

[8] Allen Malony and Gregory Wilson, "Future directions in parallel performance
environments", in T^ortgAo^ on fer/ormance Meogurement Gn(f y;g«GZ;'zGf*on o/
f oraZZeZ ^'ystemg, Moravany, Czecho-Slovakia, October 1992.

[9] M. Heath and J. Etheridge, "Visualizing the performance of parallel programs",
5'o/tu;are, pp. 29-39, September 1991.

[10] Michael Heath, "Recent Developments and Case Studies in Performance Visu-
alization using ParaGraph", in IForA:aAop on fer/ormance Meogurement ancf
yzguoZzzotion o/ f aroHeZ '̂i/g^emg, Moravany, Czecho-Slovakia, October 1992.

[11] Parasoft Corporation, fara5'o/(^7zpregg. C/aer̂ a GwWe, 1990.

131

132

[12] Sekhar Sarukkai, Doug Kimelman, and Larry Rndolph, "A methodology for
visualizing performance of loosely synchronous programs", in
f GTyormance Con/erence, 5"^?CC-P,0. April 1992, pp. 424-432, IEEE
Computer Society.

[13] Barton Miller, "What to draw? when to draw? An essay on parallel program
visualization", JoumaZ o/fomZZeZ ond DzaWbuW Compu^mg, vol. 18, no. 2, pp.
265-269,1993.

[14] Larry Carter, "Private Electronic Mail Communication", January 1993.

[15] G. Almasi, B. Alpern, C. Berman, Larry Carter, and D. Hale, "A Case-study
in performance programming: Seismic Migration", in .gnd on
fey/ormonce Compu^mg. October 1991, pp. 195-206, North SoHand.

[16] John Merlin, "EPF Visualization Tools - Proposal", Tech. Rep., University of
Southampton, April 1993.

[17] Brian Wylie, Michael Norman, and Lyndon Clarke, "High Performance Fortran:
A Perspective", The University of Edinburgh, EPCC-TN92-05.04, May 1992.

[18] Advanced Visual Systems Inc., AK? f/ger'g AeZeage May 1992.

[19] Oscar Nairn and Tony Hey, "Do-Loop-Surface: An Abstract Performance Data
Visualization", TVofeg m Computer 6'c*ence, vol. 797, pp. 367-372, April
1994.

[20] Oscar Naim, Tony Hey, and Ed Zaluska, "Do-Loop-Surface: An Abstract Rep-
resentation of Parallel Program Performance", To be published in Concurrency-
Practice and Experience, March 1995.

[21] Abdul Waheed, Bernd KronmiiHer, Roomi Sinha, and Diane Rover, "A Toolkit
for Advanced Perofrmance Analysis", in on ModeZmg,
ylMoZi/gig, and o/ Comj)«(er6 and TeZecommwnzmfwn

DurAom #C, January 1994.

[22] Daniel Reed, Ruth Aydt, Tara Madhyastha, Roger Noe, Keith Shields, and Brad-
ley Schwartz, "The PABLO performance analysis environment", Department of
Computer Science, University of Illinois at Urbana-Champaign, 1992.

[23] Bernd Mohr, "SIMPLE: A Performance Evaluation Tool Environment for Paral-
lel and Distributed Systems", in Munich, April 1991.

[24] Oscar Nairn, "Un analizador de desempeno para programas en C Paralelo
(ANDES)", Master's thesis, Universidad Simon BoUvar, Computer Science and
Information Technology Department, Caracas-Venezuela, March 1992, Super-
visor: Dr. Alejandro Teruel.

[25] Oscar Naim and Alejandro Teruel, "ANDES: A Performance Analyzer for Parallel
Programs", in and Occom AegeorcA; 16th Technical
Meeting of the World Occam and Transputer User Group (WoTUG-16). She&eld,
UK, March 1993, vol. 33, pp. 91-99, lOS Press, Amsterdam.

133

[26] Oscaj Nairn and Tony Hey, "Invasiveness of Performance Instrumentation Meas-
urements on Multiprocessors", ZFZP 5'CA

vol. 44, pp. 319-328, 1994.

[27] Alistair Dnnlop, Emilio Hernandez, Oscar Naim, Tony Hey, and Denis Nicole,
"A Toolkit for Optimising Parallel Performance", .Lecture in Computer
^'czence, vol. 919, pp. 548-553, May 1995.

[28] Alistair Dunlop, Stephen Hellberg, Tony Hey, Oscar Nairn, and David Pritchard,
"Environments, Performance Analysis, and Data Visualisation", in fmceedmga
o/ (Ae 5'econ(f on onii TboZg f araZk/ Com-

Tennessee, USA, May 1994, SIAM, Edited by Jack Dongarra and Bernard
Tonranchean.

[29] Thinking Machines Corporation, Connec^wn MacAme CM-5. f/ger'a GuWe,
August 1993.

[30] Meiko Limited, Product 1992, Brochure.

[31] BBN Systems and Technologies, TofaZyiew [/ger'g Guide, April 1994, Version 3.

[32] IBM, f . Brochure.

[33] A1 Geist, Adam Begnelin, Jack Dongarra, Kiang Weicheng, Robert Manchek, and
Vaidy Snnderam, "PVM 3 Users's Guide and Reference Manual", Tech. Rep.
ORNL/TM-12187, Oak Ridge National Laboratory, May 1993.

[34] Adam Begnelin, "Xab: A Tool for Monitoring PVM programs", in PForAaAop on
^eferogeneo{/g froceaaing, Los Alamitos, California, April 1993, pp. 92-97, IEEE
Computer Society Press.

[35] Adam Begnelin, Jack Dongarra, A. Geist, and V. Sunderam, "Visualization and
Debugging in a Heterogeneous Environment", Computer, vol. 26, no. 6, pp. 88-
95,1993.

[36] Kohl, Jim, "XPVM Technical Documentation", PVM Version 3.3.x.

[37] "Message Passing INterface Forum", Tech. Rep. Technical Report CS-93-214,
November 1993, Document for a standard message-passing interface.

[38] Clarke, Lyndon and Glendinning, Ian and Hempel, Rolf, "The MPI Message
Passing Interface Standard", Tech. Rep., 1994, Technical report.

[39] "High Performance Fortran Language Specification", Draft, High performance
Fortran Forum, November 1994, Version 1.1.

[40] Bernd Mohr, "Performance evaluation of parallel programs in parallel and
distributed systems", in / y / PO, Ziirich, September 1990.

[41] University Erlangen-Niirnberg, f/ger'g Guide Vergion f a r f vl; TDZ,
_Re/erence Guide; f ^e/erence ManuaJ; C; Tbofg jZe/erence
MonucZ; f); Ae/erence Guide, 1992.

134

[42] B. Tourancheau, X. Vigouroux, and M. van Riek, "The massively parallel monit-
oring system a truly parallel approach to parallel monitoring", in froceefimgs o/
(Ae ZFfP WG ^0.,^ TyorA;gAop on frogmmmmg frnwronmenk/or famZZef Com-
pufmg, Edinburgh, Scotland, April 1992.

[43] R. Hempel, TAe Macroa foTiabZe
fomfZeZ frogrammmg using Megaage falsing frogmmmmg MocfeJ. f/ser'g
Guide and Reference Manual, Pallas GmbH, 1991.

[44] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, ^ (Tserg' gwWe
(o porfabJe ms^rumenfec! communication /z^rary. Oak Ridge National
Laboratory, 1991, ORNL/TM-11616.

[45] Ian Glendinning, Vladimir Getov, Stephen Hellberg, Roger Hockney, and David
Pritchard, "Performance Visualisation in a Portable Parallel Programming En-
vironment", in PKorA:gAop on fer/ormonce Meagurement and y*guaf*zatzon o/
fomZfef 5'2/gtemg, Moravany, Czecho slovakia, October 1992.

[46] M. Ortega, "Implementacion de un Algoritmo Paralelo para la Descomposicion
LU", IVabajo para la materia Algoritmos Paralelos de la Maestria en Ciencias
de la Compntacion de la Universidad Simon Bohvar, Caracas-Venezuela, April
1991.

[47] M. Abrams, N. Doraswamy, and A. Mathur, "CHITRA - Visual Analysis of
Parallel and Distributed Programs in the time, event, and frequency domains",

Trongacfiong on famZZeZ ancf Dig^nbufed 5'!/g(emg, vol. 3, no. 6, pp. 672-
685,1992.

[48] Vincent Guarna, Dennis Gannon, Yogesh Gaur, and David Jablonowski,
"FAUST: An Environment for Programming Parallel ScientiAc Applications", in
froceedmgg o/5'upercompMt;n(/'&&, Orlando, Florida, November 1988, pp. 3-10.

[49] Thomas LeBlanc and MeHor-Crummey, "Debugging Parallel Programs with
Instant Replay", Tmngactiong on Compwterg, April 1987.

[50] B. Miller, M. Clark, J. HoDingsworth, S. Kierstead, S. Lim, and T. Torzewski,
"IPS-2: The second generation of a parallel program measurement system", /EjBE
Tmngoctiong on foraneJ oncf D*gtn6uW 5'i/gtemg, pp. 206-217, April 1990.

[51] Frank Lange, Reinhold Kroeger, and Martin Gergeleit, "JEWEL: Design and
Implementation of a Distributed Measurement System", iTmngactiong on
famZZeZ an(f Z)2g(rz6«W 5'i/gtemg, vol. 3, no. 6, pp. 657-671, November 1992.

[52] Teemu Kerola and Herb Schwetman, "Monit: A performance monitoring tool
for parallel and pseudo-parallel programs", in froceetfmgg o/ tAc j4CM

Con/erence, May 1987.

[53] A. Goldberg and J. Hennessy, "Mtool - an integrated system for performance
debugging shared memory multiprocessor applications", Thzngactzong on
fomZZeZ on(f Dig^ntutec! 5'2/g(emg, vol. 4, no. 1, pp. 28-40, 1993.

[54] Ziya Aral and Ilya Gartner, "Non-Intrusive and Interactive Profiling in Para-
sight", j4GM5'*gpfon TVotzceg, pp. 21-30, 1988.

135

[55] Daniel Pease, Arif Ghafoor, Ishfaq Ahmad, David Andrews, Kamal FondD-Bey,
Thomas Karpinski, Mohammad Mikki, and Mohamed Zerronki, "PAWS: A
performance evaluation tool for parallel computing systems", Computer,
January 1991.

[56] Zary Segall and Larry Rudolph, "PIE: A programming and instrumentation
environment for parallel processing", 5'o/(u;are, vol. 2, no. 6, November
1985.

[57] David Notkin and et al, "Experiences with Poker", in
1988.

[58] Patrick Earl Mcclaughry, "Ptopp - a practical toolset for the optimization of
parallel programs", Master's thesis. University of Illinois at Urbana-Champaign,
1992.

[59] WUliam Appelbe, Kevin Smith, and Charlie McDowell, "Start/PAT: A Parallel
Programming Toolkit", vol. 6, no. 4, pp. 29-40, July 1988.

[60] A. Wagner, S. Chanson, N. Goldstein, J. Jiang, H. Larsen, and
H. Sreekantaswamy, "TIPS: Transputer-based interactive parallelizing system",
Department of Computer Science, University of Columbia, 1991.

[61] D. Haban and D. Wybranietz, "A hybrid monitor for behavior and performance
analysis of distributed systems", on jFngmeenng,
vol. 16, no. 2, pp. 197-211, February 1990.

[62] T. Bemmerl and Peter Braun, "Visualization of message-passing parallel pro-
grams with the topsys parallel programming environment", JoumcZ o/ fomf/e /
ond vol. 18, no. 2, pp. 118-128, 1993.

[63] Allen Malony, D. Eammerslag, and D. Jablonowski, "Traceview - a trace visual-
ization tool", Z E f f vol. 8, no. 5, pp. 19-28, 1991.

[64] Lorenz Schafers and Christian Scheidler, "A Graphical Programming Environ-
ment for Parallel Embedded Systems", in froceecfmgg o/ ZF/P JO.g

on frogmmmmg /or foroZZeZ Compw^mg, Edinburgh,
Scotland, April 1992.

[65] Virginia Herarte and Ewing Lusk, "Studying Parallel Program Behavior with
Upshot", Technical Report ANL-91/15, Argonne National Laboratory, Illinois,
USA, 1991.

[66] E. Gabber, "VMMP: A practical tool for the development of portable and efRcient
programs for multiprocessors", on fomHeZ and

vol. 1, no. 3, July 1990.

[67] Roger Hockney, "A case study using Paragraph", Preliminary-draft 4, January
1992.

[68] Roger Hockney, "Performance parameters and benchmarking of supercom-
puters", Compuh'ng, vol. 17, pp. 1111-1130, 1991.

136

Roger Hockney, "Parameterization of computer performance", fomZZeZ Comput-
mg, vol. 5, no. 1, pp. 97-103, 1987.

[70] Roger Hockney and I. Cnrington, "/1/2 : A parameter to characterize memory
and communication bottlenecks", foraZkZ Computmg, vol. 10, no. 3, pp. 277-286,
1989.

[71] Roger Hockney, "A framework for benchmark performance analysis", 5'upercom-
pp. 9-22, March 1992.

[72] Roger Hockney and C. Jesshope, Compwterg fmgmm-
mmg and Adam Hilger, Bristol and Philadelphia, 1988.

[73] J. Gnstafson, "Reevaluating Amdahl's law", GACM, vol. 31, no. 5, pp. 532-533,
May 1988.

[74] AUan Karp and Flatt H., "Measuring parallel processor performance", GACM, ,
no. 33, pp. 532-533, May 1990.

[75] E. Carmona and M. Rice, "Modeling the serial and parallel fractions of a parallel
algorithm", JournoZ o/fomHeZ and Computmg, vol. 13, no. 3, pp.
286-298,1991.

[76] W. Nagel and M. Linn, "Benchmarking parallel programs in a multiprogramming
environment - the PAR-BENCH system", fomHeZ Compwfmg, vol. 17, no. 10-1,
pp.1303-1321,1991.

[77] X. SunandJ . Gustafson, "Toward a better parallel performance metric", fomZZeZ
Compufmg, vol. 17, no. 10-1, pp. 1093-1109,1991.

[78] J. Worlton, "Toward a taxonomy of performance metrics", fomZ/eZ Computmg,
vol. 17, no. 10-1, pp. 1073-1092, 1991.

[79] J. Hollingsworth, R. Irvin, and B. MUler, "The integration of application and
system based metrics in a parallel program performance tool", in froc. 0/
tAe ACM 5'i/mpogmm on frzncipaZg end froctzce 0/ famZZeZ
frogrammmg, April 1991, pp. 189-200.

[80] JeErey HoUingsworth and Barton Miller, "Parallel program performance met-
rics: A comparison and validation", in froceedmgg 0/ 5'upercomputmg
MmneopoZfg, Computer Science Department, University of Wisconsin-Madison,
November 1992.

[81] M. Kumar, "Measuring parallelism in computation intensive
scientific/engineering applications", pp. 1088-1098, September 1988.

[82] Charles Fineman and Philip Hontalas, "Selective monitoring using perform-
ance metric predicates", in 5'coZa6Ze fef/ormance Computing Con/erence,
5"^^CC-P,2. April 1992, pp. 162-165, IEEE Computer Society.

[83] G. Jones, "Measuring the business of a transputer", in C)CC/4M Z7ser Crowj)
TVewgZetter. INMOS, January 1990.

137

[84] X. Zhou, "Bridging the gap between Amdahl's Law and Sandia Laboratory's
results", o/ fAe ACM, vol. 8, no. 32, pp. 1014-1015, 1989.

[85] H. Jordan, "Interpreting parallel processor performance measnrementB",
J. 5'c;. vol. 8, no. 2, pp. 220-226, March 1987.

[86] R. Hofmann, R. Klar, B. Mohr, A. Quick, and M. Siegle, "Distributed perform-
ance monitoring: Methods, tools and applications". Revised version for IEEE
Transactions on Parallel and Distributed Systems, 1992.

[87] Chyi-Ren Dow, Shi-Kno Chang, and Mary Lou Soffa, "A Visualization System
for Parallelizing Programs", in f roceedmgg o/ '̂ ,9, MmneapoZig,
November 1992, pp. 194-203.

[88] Olaf Lubeck, Margaret Simmons, and Harvey Wasserman, "The Performance
Realities of Massively Parallel Processors: A Case Study", in froceecfmgg o/

MmnmpoZw, November 1992, pp. 403-411.

[89] E. Lusk, "Performance Visualization for Parallel Programs",
vol. 84, no. 4, pp. 377-384, 1993.

[90] D. Kimeknan and T. Ngo, "The RP3 program Visualization Environment", ZBM
JowmaZ o/AeaearcA and Deue/opmenf, vol. 35, no. 5, pp. 635-651, 1991.

[91] D. Rover, G. Prabhu, and C. Wright, "Visualization of Program Performance
on Concurrent Computers", m 5'c*ence, vol. 507, pp.
154-160,1991.

[92] E. Luque, R. Suppi, J. Sorribes, M. Mayosky, and M. Senar, "Simulation and
Visualization Tools for Link-baaed Parallel Architectures", Mtcroproceggmg and

vol. 32, no. 1, pp. 479-486, 1991.

[93] K. Nichols, "Performance tools", vol. 7, no. 3, 1990.

[94] H. Burkhart and R. MHlen, "Performance-measurements tools in a multipro-
cessor environment", Tmngacfiong on Compu(erg, vol. 38, no. 5, pp. 725-
737,1989.

[95] A. Ferscha, "A petri net approach for performance oriented parallel program
design", Journal o/faraZZe/ ancf Compu^mg, vol. 15, no. 3, pp. 188-
206,1992.

[96] G. Balbo, S. DonateUi, and G. Pranceschinis, "Understanding parallel program
behavior through petri net models", JowmoZ o/ f omfZeZ ond Com-
pufmg, vol. 15, no. 3, pp. 171-187, 1992.

[97] A. Kapelnikov, R. Muntz, and M. Ercegovac, "A methodology for performance
analysis of parallel computations with looping constructs", JoumoZ o / fo rage /

Compu^mg, vol. 14, no. 2, pp. 105-120, 1992.

[98] D. Menasce and L. Barroso, "A methodology for performance evaluation of
parallel applications on multiprocessors", JoumoZ o/ faraZ/eZ and
Compw(mg, vol. 14, no. 1, pp. 1-14, 1992.

138

[99] N. Karonis, "Timing parallel programs that use message passing", JoMmoZ o/
faraZkZ a n j Compw^mg, vol. 14, no. 1, pp. 29-36, 1992.

[100] C. Grassl, "Parallel performance of applications on supercompnters", famZ/eZ
Compuh'ng, vol. 17, no. 10-1, pp. 1257-1273, 1991.

[101] Alva Couch and David Krnmme, "Portable execution traces for parallel pro-
gram debugging and performance visualization", in fefformonce
CompWmg Con/erence, 5'^fCC-P,g. April 1992, pp. 441-446, IEEE Computer
Society.

[102] Alva Couch and David Krumme, "Monitoring parallel executions in real time",
1990, IEEE Computer Society Press.

[103] Joan Francioni and Diane Rover, "Visual-Aural representations of performance
for a scalable application program", in fef/onTionce Compwfmg
Con/eremce, 5"^^CC-P,g. April 1992, pp. 433-440, IEEE Computer Society.

[104] Joan Francioni, L. Albright, and J. Jackson, "Debugging parallel programs using
sound", in 1991, vol. 26, pp. 68-75.

[105] Joan Francioni, L. Albright, and J. Jackson, "The sounds of parallel programs",
in frocee&'nga o/ (Ae Memory Con/erence. 1991,
IEEE Computer Society.

[106] D. Dyer, "A data&ow tooDdt for visualization", Computer, pp. 60-69, July
1990.

[107] E. Gelenbe, MuJfzproceggor fef/ormonce, Wiley Series in Parallel Computing,
John Wiley and Sons, 1989.

[108] Ted Lewis and Hesham El-Rewini, Introduction to Parallel Computing, Prentice-
Eall, International Editions, 1992.

[109] R. Nelson, D. Towsley, and A. Tantawi, "Performance analysis of parallel
processing systems", on 5'oAware vol. 14, no. 4,
pp. 532-540, April 1988.

[110] T. Lehr, Zary Segall, D. Vrsalovic, E. Caplan, A. Chung, and C. Fineman,
"Visualizing performance debugging", ZSEf Computer, October 1989.

[111] C. Yang and B. Miller, "Performance measurement for parallel and distributed
programs: A structured and automatic approach", 3}%ingac(%ong on 6'o/t-
ware Engmeenng, vol. 15, no. 12, December 1989.

[112] Margaret Simmons and Rebecca Koskela, fefformonce Thg^rumen^afion and
MauaZzza^zon, ACM Press, Frontier Series, 1990.

[113] Margaret Simmons, Rebecca Koskela, and I. Bucher, 7ng(rumen(G(%on o/ fb(«re
fomZZeZ Comj)w^mg ACM Press, Frontier Series, Addison Wesley, 1989.

[114] S. Thakkar, "Parallel Programming: A Performance Perspective", in PamfZeZ
Compufmg; fefyormonce 7ng^runzen(a(%on ontf FigMoZzzo îon. Addison Wesley,
1990, R. Koskela and M. Simmons.

139

[115] Robert Fowler, Thomas LeBlanc, and John Menor-Crummey, "An integrated
approach to parallel program debugging and performance analysis on large-
scale multiprocessors", in froceeiimgg, ACM
on famZkZ and D*g(n5uW Debugging, May 1988, Special issue of SIGPLAN
Notices, 24(1), January, 1989.

[116] R. McLaren and W. Rogers, "Instrumentation and Performance Monitoring of
Distributed Systems", in Computer '̂ocze ;̂/ fregg, 1990.

[117] M. Benten and H. Jordan, "Multiprogramming and the Performance of Parallel
Programs", in froceeJmgs, ,9r(f 5'ZAM Con/, on faraZZeZ _Procegg;ng/or 5'czen^(^c
Compu^mg, Los Angeles, California, December 1987.

[118] R. Carpenter, "Performance Measurement Instrumentation for Multiprocessors
Computers", in feyyormance Computer Ed. Elsevier Science
Publishing Co, New York, 1988, E. Gelenbe.

[119] J. Roberts, J. Antonishek, and A. Mink, "Hybrid Performance Measurement
Instrumentation for Loosely-Coupled MIMD Architectures", in froceedingg o/^Ae
fbwrfA Con/, on ^ypercube Concurrent Computerg and vlppZzcationg, Monterrey,
California, March 1989.

[120] Wolfgang Kastner and Ukich Schmidt, "Monitoring of distributed real-time sys-
tems: The versatile timing analyzer", in WbrtgAop onfeTyormanceMeogurement
ond y;gwoZ;zof*on o/foroJZe/5'2/g(emg, Moravany, Czecho-Slovakia, October 1992.

[121] Peter Capon, "Understanding the behaviour of parallel systems", in l^ortgAop
on f er/ormonce Meaguremenf and y%guo/zzot2on o/ f arctZZeZ '̂yg^emg, Moravany,
Czecho-Slovakia, October 1992.

[122] Rainer Klar, "Event driven monitoring of parallel systems", in IForA ĝAop
on fer/ormonce Meogwrenzent and Mgua/izafzon o/ jParaHeJ 5'ygfemg, Moravany,
Czecho-Slovakia, October 1992.

[123] Umberto ViUajio, "Monitoring parallel programs running in transputer net-
works", in M ôr̂ gAop on fer/ornzance Meagurement and FzguaZizatzon o/faraHeZ
6'3/gtemg, Moravany, Czecho-Slovakia, October 1992.

[124] D. Jensen and Daniel Reed, "A performance analysis exemplar - parallel ray
tracing", Concurrency-Practice and Ezpenence, vol. 4, no. 2, pp. 119-141, 1992.

[125] T. LeBlanc, J. MeHor-Crummey, and R. Fowler, "Analyzing parallel program
executions using multiple views", Journal 0/ f araJZeZ and Z)zgtrz6uted Computmg,
vol. 9, no. 2, pp. 203-217, 1990.

[126] Reinhold Weicker, "An Overview of Common Benchmarks", Computer,
pp. 65-75, December 1990.

[127] Giovanni Chiola, "Special Issue on Petri Net Modeling of Parallel Computers",
JoumaZ 0/ f araZZeZ and D*gtr:6uted Computing, vol. 15, pp. 169-170, 1992.

[128] Warren Harrison, "Tools for Multiple-CPU Environments", 6'o/tu;are, pp.
45-51, May 1990.

140

[129] P. Dauphin, M. Kienow, and A. Quick, "Model-driven Validation of Parallel
Programs Based on Event Traces", in froceetfmgg o/ (/le ZF7P 1^(7 Wbrta/top
on frogmmmmg /or jPomZZeZ Comp«(mg, Edinburgh, Scotland,
April 1992.

[130] Barton et al Miller, "The Paradyn Parallel Performance Measurement Tools",
Technical report. Computer Science Department, University of Wisconsin-
Madison, 1993.

[131] Amdt Bode and Peter Braun, "Monitoring and visuaiisation in topsys", in
IFortgAop on f efyormcnce Meaguremenf and o/ f cm/ZeZ
Moravany, Czecho-Slovakia, October 1992.

[132] PaUas, GmbH, fA-rooZa, fer/ormance Took, 1991.

[133] Oscar Naim, "A Case Study using ANDES: A Performance Analyzer for Parallel
Programs", February 1993.

[134] Oscar Naim and Alejandro Teruel, "Consideraciones sobre el Paralelismo en SIM-
PAR, (EASE I)", Technical Report IT-1991-001, Department of Computer Sci-
ence& Information Technology, Universidad Simon Bolivar, Caracas-Venezuela,
1991.

[135] Mauro Sanabria and Alberto Hung, "Construccion de un Parser de ANSI
C", Master's thesis, Universidad Simon Bohvar, Computer Science Department,
Caracas-Venezuela, October 1991.

[136] INMOS Limited, C TooZgê [/ger ManuoZ, 1990.

[137] Matthew Reilly, v^feT/ormanceMom^or/orfarafZeZfrogrants, Academic Press,
Inc., 1990.

[138] Dionisio Acosta and Margarita Fernandez, "Generacion de Variables Aleatorias
en Paralelo", Trabajo de Grado, Ingenieria de la Computacion, Universidad
Simon BoHvar, Caracas-Venezuela, January 1992.

[139] Institut fiir Informatik, Technische Universitat Miinchen, Ot^er-
mew, Vergzon ^.0, December 1990.

[140] Allen Maiony, Daniel Reed, and H. WijshoE, "Performance-measurement intru-
sion and perturbation analysis", on fcmZZeZ ond
5'2/g(emg, vol. 3, no. 4, pp. 433-450, 1992.

[141] J. Gait, "A Probe eifect in Concurrent Programs", 5'o/(wore fmc^zce and
^^zperzence, vol. 16, no. 3, pp. 225-233, 1986.

[142] V. Getov, Tony. Hey, R. Hockney, and I. Wolton, "The GENESIS Distributed-
Memory Benchmark Suite - Release 2.1", Technical report, Southampton Novel
Architecture Research Centre, University of Southampton, 1993.

[143] Mark Debbage and Mark HUl, jPAAMAC? on yCR Fergion fnaWZa-
(«on #o^eg, Department of Electronics and Computer Science, University of
Southampton, September 1992.

141

[144] Meito Limited, 650, Aztec West, Almondsbury, Bristol, BS12 4SD, UK., CS'Took
ybr 5'wn05', 1989, Vol. 1 ajid 2.

[145] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, v4 ;)orto6Ze
Z*6mr;/ - (7 Ae/erence MonuaZ, Oak Ridge National

Laboratory, 1991.

[146] Stephen HeUberg, "PICL for Transputers - vl.O Usage Notes", Technical report.
Department of Electronics and Computer Science - University of Southampton,
June 1992.

[147] Bernd Mohr, "Private electronic mail communication". Subject: Measuring
Invasiveness, March 1993.

[148] Jorg Beier and Thomas Bemmerl, "Software monitoring of parallel programs",
in gg, 1988.

[149] D. Wybranietz and D. Haban, "Monitoring and Performance Measuring Distrib-
uted Systems", in froceetfmgg Con/erence, Santa Fe, 1988,
vol. 16, pp. 197-206.

[150] D. Wybranietz and D. Haban, "Monitoring and Measuring Distributed Systems",
in fef/ormonce M. Simmons and R. Koskela,
Eds., chapter 2, pp. 27-45. ACM Press, Frontier Series, Addison-Wesley Publish-
ing Company, New York, 1990.

[151] Ken Brodlie, "Scientific Visualization - past, present and future", TVucZeor
and m fAygicg AegeorcA - A, vol. 354, pp. 104-111, 1995.

[152] Alistair Dunlop, Emilio Hernandez, Oscar Naim, Tony Hey, and Denis Nicole,
"Collaborative Tools for Parallel Performance Optimization", Technical Re-
port HPCC94-011, Dept. of Electronics and Computer Science, University of
Southampton, Southampton S017 IBJ, UK, November 1994, Submitted to Sci-
entific Programming.

[153] Oscar Naim and Tony Hey, "Visualization of cache/memory effects using Do-
Loop-Surface displays", Technical Report HPCC94-003, Dept. of Electronics
and Computer Science, University of Southampton, Southampton S017 IBJ, UK,
1994.

[154] Abdul Waheed and Diane Rover, "Performance Visualization of Parallel Pro-
grams", in San Jose, California, October 1993.

[155] C. Figueira and E. Hernandez, "Benchmarks Specification and Generation for
Performance Estimation on MIMD Machines", in ZF/f Tmnsacfiong m er
^'czence ancf TecnoZogy, 1994, vol. 44.

[156] A.N. Dunlop, A.J.G. Hey, and D.A. Nicole, "Parallel performance estimating
using memory hierarchy simulation". Technical Report HPCC94-008, Dept. of
Electronics and Computer Science, University of Southampton, Southampton
S017 IBJ, UK, 1994.

142

[157] Diane Rover and Charles Wright, "Visualizing the Performance of SPMD and
Data-Parallel Programs", JoumaZ o / f amneJ oncf Computing, vol.
18,pp.129-146,1993.

[158] Alva Couch, "Categories and Context in Scalable Execution Visualization",
JowmaZ o/fomnef ond vol. 18, pp. 195-204, 1993.

[159] Gropp, William ajid Lusk, Ewing and SkjeUum, Anthony, MP/.- for(-
o6Ze famneZ frogrommmg wifA Meggoge-foggmg /nkfyoce, Scientific and
ENgineering Computation Series, MIT Press, 1994.

[160] Cwik, T. and van de Geijn, R. and Patterson, J., "Application of Massively
ParaHell Computation to Integral Equation Models of Electromagnetic Scattering
(Invited Paper)", J. 5'oc. A, vol. 11, no. 4, April 1994.

[161] Dongarra, Jack and van de Geijn, Robert and Walker, David, "LAPACK Working
Note 43: A look at Scalable Dense Linear Algebra Libraries", Technical report,
University of Tennessee, Oak Ridge National Laboratory, and University of Texas,
May 1992.

[162] Gropp, William and Lusk, Ewing, Z/aera GuWe /or (Ae ZBM 5'fz, MCS,
Argonne National Laboratory, January 1995, Draft.

[163] Stunkel, Craig and et al, "The SP2 Communication Subsystems", Tech. Rep.,
IBM Thomas J. Watson Research Center, August 1994.

[164] Bangalore, P., "Private electronic mail communication", Subject: MPI version
of LINPACK, March 1995.

[165] Al Globus and Eric Raible, "Fourteen Ways to Say Nothing with Scientific
Visualization", ZBEE Computer, pp. 86-88, July 1994.

[166] Jonathan Jowett, "Emeraude vl2: Pete based core facilities for software engin-
eering environment frameworks", July 1992.

A Appendices

A . l Publications

Oscar Nairn, Tony Hey, Ed Zalnska
o/ ParoZZeZ frogmm f ef/ormonce

Dept. of Electronics and Computer Science, University of Southampton
March, 1995. To be published in Concurrency-Practice and Experience.

Alistair Dunlop, Emilio Hernandez, Oscar Naim, Tony Eey, and Denis Nicole
TboZg /or f araZZeZ f eyyormonce

Dept. of Electronics and Computer Science
University of Southampton, Southampton S017 IBJ, UK
December, 1994. Submitted to Scientific Programming.

Oscar Nairn, Tony Hey
0/ f efyormonce Meagi/remenk on MwZ îproceggorg

IFIP TRANSACTIONS A-COMPUTER SCIENCE AND TECHNOLOGY
Vol. 44, pp. 319-328, 1994.

Oscar Naim, Tony Hey
Z)o-i)oop-5'u7yoce.' yln fer/brmonce ZPofo yzguoZzzo^zon
HPCN Europe'94, April 1994, Munich, Germany.

Oscar Naim, Tony Hey
^oo/t:^ /or paroZZeZ per/ormonce op(;m;'gG(;on

HPCN Europe'95, May 1995, Milano, Italy.

Alistair Dunlop, Stephen Hehberg, Tony Hey, Oscar Naim and David Pritchard
f7nr;ronmenfs, f er/ormonce and yzguoZzgo^zon
Proceedings of the Second Workshop on Environments and Tools for Parallel
Scientific Computing
Published by SIAM, May, 1994.

9 Oscar Naim, Alejandro Teruel
v4 jPef/omzance AnaZyzer /gr f oraZZeZ f rogromg

Transputer and Occam Research: New Directions
16th Technical Meeting of the World Occam and Transputer User Group
(WoTUG-16). SheSield, UK. Vol. 33, pp. 91-99, 1993.

@

e

143

144

A.2 Study visits

16th Technical Meeting of the World Occam and lYanspnter User Group
(WoTUG-16). ShefReld, UK, 1993.

Parallel Summer Institute, Prague, 1993.

HPCN Europe 94, Munich, Germany, April, 1994.

International Conference on Applications in Parallel and Distributed Computing,
Caracas, Venezuela, April, 1994.

HCM-MAP Meeting, Nice, France, January, 1995.

Argonne National Laboratory, Illinois, 1995.

HPCN Europe 95, Milano, Italy, May, 1995.

