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DYNAMIC MODELLING OF BEAM-PLATE SYSTEMS 

IN THE MID-FREQUENCY REGION 

By Ji Woo Yoo 

The mid-frequency region, where neither a low frequency deterministic method nor 

a high frequency statistical method may be amenable requires special treatment. 

For structures such as automotive vehicles, ships and aircraft, this region 

corresponds to an important part of perceived sound spectrum, and it is necessary 

to develop practical methods to predict the response in this region. This thesis 

develops and compares approaches that can deal with built-up structures in the 

mid-frequency range. 

Most previous work on this region has been limited in application to a simple 

structure, for example, a one-dimensional system or a single beam coupled to a 

plate so that its applicability to more complex structures has yet to be determined. 

Thus, an objective of this thesis is to develop approaches that can deal with more 

complicated structures in the mid-frequency region. Two principal configurations 

considered are a fully framed rectangular plate and a rectangular plate with two 

beams on opposite parallel edges. While the beams are relatively stiff, the plate is 

more flexible. Such systems are typical components in industrial applications and it 

is important to identify their dynamic behaviour at the mid and high frequencies. 



The analytical models considered are based on a wave method, proposed by Grice 

and Pinnington. The beam is assumed infinitely stiff to torsion and thus the plate 

edge at a junction is sliding. This method starts from free wavenumbers of 

subsystems and uses an approximate impedance for the plate in determining the 

coupled beam wavenumbers. It is reasonable as long as the beam is much stiffer 

than the plate. This approximate wave method is enhanced by introducing Muller's 

method to solve for the wavenumbers. 

The model is extended from a single-beam-plate system, to a plate with two 

parallel beams which is modelled using a symmetric-antisyrnmetric wave model, 

and a plate surrounded by four beams which is modelled using a plate-decoupled 

wave model. The modelling techniques for the two systems are different, although 

a similar wave approach is used. Because the wave methods provide an 

approximate response, a Fourier technique and a modal method based on simplified 

boundary conditions are also considered for comparison. These provide exact 

responses for the two-beam-plate and four-beam-plate systems respectively for the 

particular boundary conditions. The wave method can be applied more generally 

and is computationally more efficient but involves approximations that are not 

always justified. For example, mobilities show some discrepancy when the coupled 

beam wavenumbers found from the travelling wave have a high rate of decay. 

An experimental study is performed to verify the analytical models. Comparisons 

based on power and subsystem energy ratios show that the wave models replicate 

well the experimental results at mid and high frequencies. Also, the modal and 

Fourier models show good agreement at these frequencies, which justifies their use 

of simplified boundary conditions. A wavenumber correlation technique has been 

used to verify experimentally that the wavenumbers in the plate follow those of the 

beam in the direction parallel to the beam. 

11 



Table of Contents 

Abstract I 

Table of Contents 111 

Acknowledgements IX 

List of Symbols X 

CHAPTER 1 INTRODUCTION 1 

1.1 Background 1 

1.2 Low frequency methods 2 

1.3 High frequency methods 4 

1.3.1 Statistical Energy Analysis: a general overview 4 

1.3.2 Statistical Energy Analysis: variability at low frequency 7 

1.3.3 Energy flow method and energy finite element method 9 

1.4 Mid-frequency methods 12 

1.4.1 eMS-based method 12 

1.4.2 Wave methods 15 

1.4.3 Fuzzy structure theory 15 

1.4.4 Power mode and mode-based approaches 17 

1.4.5 Hybrid methods for mid-frequency analysis 18 

1.4.6 Other studies for mid-frequency investigation 21 

1.5 Analysis of four-beam coupled structures 22 

1.6 Aims and scope of thesis 23 

CHAPTER 2 MODAL METHOD FOR COUPLED STRUCTURES 30 

2.1 Introduction 30 

2.2 A modal description for flexural beam vibration 31 

2.2.1 Mode shape function and natural frequencies 31 

2.2.2 Introduction of hysteretic damping 33 

2.3 A modal description for plate vibration 34 

2.4 General coupling based on modal method 35 

2.4.1 Modal method of subsystems 36 

111 



2.4.2 Structural response based on the general modal coupling 38 

2.5 A modal formulation for the coupled motion of a system comprising 

a single beam attached to a plate 42 

2.5.1 A single beam coupled to a rectangular plate 42 

2.5.2 Solution in terms of generalised coordinates 43 

2.6 Results 44 

2.6.1 Investigation of convergence 47 

2.6.2 Comparison of the modal method for beam-plate coupled 

system with FE 54 

2.7 Conclusions 56 

CHAPTER 3 FOURIER TECHNIQUE FOR STRUCTURES WITH 

CONSTANT GEOMETRY IN ONE DIRECTION 

3.1 Introduction 

3.2 Infinite beam coupled to semi-infinite plate 

3.2.1 Wavenumber relationship 

3.2.2 Response ofthe coupled beam 

3.2.3 Discussion 

3.2.4 Results: uncoupled beam in wavenumber domain 

3.2.5 Results: Fourier transform of uncoupled beam 

3.2.6 Results: coupled beam in wavenumber domain 

3.2.7 Results: Fourier transform of coupled beam 

3.3 Infinite beam coupled to finite width plate 

3.3.1 Structural coupling 

3.3.2 Results 

3.4 Finite beam coupled to finite plate 

3.4.1 Motion of finite beam by Fourier series 

3.4.2 Powers 

3.4.3 Results 

3.5 Conclusions 

IV 

58 

58 

59 

59 

63 

65 

67 

69 

71 

74 

80 

80 

83 

85 

85 

86 

88 

91 



CHAPTER 4 APPROXIMATE WAVE METHOD FOR ANALYSIS 

OF STIFF ONE-DIMENSIONAL STRUCTURE COUPLED 

TO FLEXIBLE STRUCTURE 92 

4.1 Introduction 92 

4.2 Infinite beam coupled to semi-infinite plate 93 

4.2.1 Undamped free wave motion 93 

4.2.2 Forced response 98 

4.2.3 Introduction of damping in the beam 100 

4.2.4 Approximation by locally reacting impedance 100 

4.2.5 Results 102 

4.3 Infinite beam coupled to finite width infinitely long plate 109 

4.3.1 Travelling coupled wave for general boundary conditions 

on plate edge 109 

4.3.2 Approximate impedance and inclusion ofthe plate damping 111 

4.3.3 Solution for coupled wavenumber 112 

4.3.4 Results 113 

4.4 Finite beam coupled to finite rectangular plate 121 

4.4.1 Beam response for the coupled system 121 

4.4.2 Plate response for the coupled system 122 

4.5. Results for finite beam coupled to finite rectangular plate 123 

4.5.1 Mobilities 123 

4.5.2 Power balance 127 

4.5.3 Discussion 132 

4.6 Conclusions 133 

CHAPTER 5 TWO PARALLEL BEAMS COUPLED TO A PLATE 136 

5.1 Introduction 136 

5.2 Fourier technique for analysis of beam-plate-beam systems 137 

5.2.1 Coupling between infinitely long structures 137 

5.2.2 Response of finite two-beam structure 141 

5.2.3 Results based on the Fourier technique 142 

5.3 Wave method for analysis of a symmetric beam-plate-beam system 147 

v 



5.3.1 Synthesis from non-symmetric structure 148 

5.3.2 Results based on the wave method 150 

5.4 Conclusions 154 

CHAPTER 6 FULLY FRAMED STRUCTURE 156 

6.1 Introduction 156 

6.2 A modal formulation for the coupled motion of a system of two or 

four beams attached to a plate 158 

6.2.1 A modal method for the framed structure 158 

6.2.2 Configuration of framed structure 161 

6.2.3 Test of convergence: two-beam-plate coupled system 162 

6.2.4 Numerical result offour-beam-plate coupled system 169 

6.3 Analysis of four-beam-plate coupled system using a wave 

approach 170 

6.3.1 Wave approach 170 

6.3.2 Coupled structure consisting of four beams: application 

of the wave method 172 

6.4 Numerical analysis of four-beam-plate coupled system 173 

6.4.1 Mobilities 173 

6.4.2 Power investigation 177 

6.4.3 Confidence interval for the power transfer 184 

6.4.4 Computation time and computer resources 186 

6.5 Conclusions 187 

CHAPTER 7 EXPERIMENTAL STUDY OF COUPLED SYSTEMS 190 

7.1 Introduction 190 

7.2 Experimental configurations 191 

7.2.1 Coupled system 191 

7.2.2 Beam samples 193 

7.3 Experimental procedure 195 

7.4 Measurement of material properties 197 

7.4.1 Measurement 198 

VI 



7.4.2 Structural loss factor 

7.4.3 Measurement of Young's modulus 

7.5 Experimental wavenumber estimation 

7.5.1 Theoretical background 

7.5.2 Measurement considerations 

7.5.3 Plate wavenumbers 

7.6 Energy and power in the coupled systems 

7.6.1 Measurement 

7.6.2 Kinetic energy and power 

7.6.3 System of two identical beams coupled to a plate: 

wave method 

7.6.4 System oftwo identical beams coupled to a plate: 

Fourier method 

7.6.5 System of two dissimilar beams coupled to a plate 

7.6.6 Fully framed structure consisting of similar beams 

7.6.7 Fully framed structure consisting of dissimilar beams 

7.7 Conclusions 

CHAPTER 8 CONCLUSIONS 

8.1 Introduction 

8.2 Summaries and conclusions 

8.2.1 Analytical methods 

8.2.2 Approximate wave method 

8.2.3 Analysis of two-beam coupled systems 

8.2.4 Analysis of four-beam coupled systems 

8.3 Recommended future research 

8.3.1 Separation of plate impedances based on travelling and nearfield 

waves 

8.3.2 Experimental identification of plate wavenumbers in a framed 

structure 

8.3.3 Curved panel and beam structure 

8.3.4 Consideration of damping material attached to a plate 

Vll 

199 

202 

203 

203 

204 

206 

211 

212 

213 

214 

222 

225 

228 

233 

236 

238 

238 

239 

239 

240 

241 

243 

245 

245 

246 

246 

247 



8.3.5 Study ofjoint area in a beam-plate system 247 

8.3.6 Introduction of an arbitrary configuration in the wave method 248 

REFERENCES 249 

APPENDICES 

APPENDIX A. NEARFIELD WAVENUMBER OF COUPLED BEAM 257 

A.I Theoretical derivation 257 

A.2 Wavenumbers 259 

A.3 Impedance 262 

APPENDIX B. USE OF MULLER'S METHOD FOR THE ESTIMATION 

OF COUPLED W A VENUMBERS 264 

APPENDIX C. NUMERICAL ANALYSIS OF A SINGLE BEAM 

COUPLED TO A RECTANGULAR PLATE 

WITH OPPOSITE EDGE SLIDING 

C.l Wavenumbers 

C.2 Impedance and mobilities 

C.3 Power relationship 

APPENDIX D. WAVE MODEL OF A FRAME CONSISTING OF 

FOUR BEAMS 

D.I Equations of motion 

D.2 Numerical results 

APPENDIX E. WAVENUMBER CONVERGENCE 

V111 

271 

271 

273 

274 

276 

276 

281 

286 



Acknowledgements 

I would like to dedicate this thesis to my wife Yun Kyong. She worked harder and 

worried more than myself, as also a friend and colleague. Without her immense 

help, all this work would not be possible. 

My supervisors, Prof. David J. Thompson and Dr. Neil S. Ferguson, are teachers of 

whom I cannot imagine better. My greatest gratitude should go to them. They have 

taught me many things from the viewpoint of life as well as in study. I am also 

grateful to them for the financial arrangement and support. 

I wish to acknowledge Prof. Brian R. Mace and Dr. Tim P. Waters who gave me 

invaluable comments and advice during my study. Also, I really thank Ms. Anne­

Marie McDonnell for her warm help. 

I would like to share my pleasure with my father and mother who have always been 

concerned for their son and my father and mother-in-law who believe in their son. I 

also thank my brothers and sisters and especially my brother-in-law and his wife. 

During living in the United Kingdom, the Korean colleagues and friends who have 

been and are in Southampton gave me great comfort and consolation. I must 

express my gratitude to them. 

IX 



A 

A 

B 

C 

D 

E 

F 

I 

I 

K 

K 

L 

M 

M 

List of Symbols 

modal correlation matrix 

wave amplitude (m); cross-sectional area 

wave amplitude (m) 

wave amplitude (m); constant 

wave amplitude (m); beam stiffuess (Nm2); plate stiffuess (Nm) 

Young's modulus of elasticity (N/m2); energy 

force vector 

amplitude of force (N) 

mean square force of a point force (N) 

spatial Fourier transform of force J; (N/m) 

identity matrix 

second moment of area ( bh3/12 ) 

stiffuess matrix 

generalised stiffuess; function stiffuess 

length or width (m) 

mass matrix 

generalised mass; function mass; maximum mode number; 

amplitude of bending moment; number of sampled data point 

N maximum mode number; number of sampled data point 

P power (Nmls) 

Pdis dissipated power 

~n input power 

~-? j net power transferred from subsystem i to subsystem j 

T kinetic energy 

U potential (strain) energy 

W Spatial Fourier transform of displacement w (m) 

Y structural mobility (mlsN) 

Yo point mobility 

x 



Z impedance matrix 

Zb beam impedance in flexure ( = 2 pAc B (1 + i) ) 

Zmass impedance of a point mass (= iOJm) 

Z~ line impedance of a plate (Ns/m2) 

a constant 

b thickness of a beam (mm) 

cB phase velocity of a flexural wave 

e frequency and space-averaged error (dB); residual 

f frequency (Hz); 

fc centre frequency of band (Hz) 

It lower frequency of band (Hz) 

I., upper frequency of band (Hz) 

J; force per unit length (N/m) 

h height of a beam (mm) 

i H 
kb uncoupled beam wavenumber (rad/m) 

ke coupled nearfield trace wavenumber in y direction (rad/m) 

kp uncoupled free wavenumber in a plate (rad/m) 

k
t 

coupled travelling trace wavenumber in x direction (rad/m) 

kt,n mr/Lx 

ky coupled travelling trace wavenumber in y direction (rad/m) 

m mode number; mass (kg) 

m; mass per unit length of a beam (kg/m) 

m; mass per unit area of a plate (kg/m2) 

n mode number; Fourier component number 

q vector containing q 

q generalised coordinate 

r mode number 

Xl 



r complex reflection coefficient 

s mode number 

t thickness (mm); time (s) 

v velocity response (m/s) 

w displacement (m) 

X,Y,z Cartesian coordinates (m) 

y correlation function 

'P matrix containing mode shape function If 

p modal correlation matrix 

j3 wave attenuation coefficient 

r non-dimensional wavenumber ( kx/kb) 

rp non-dimensional wavenumber (= k,/kp ) 

6 Dirac delta function; Kronecker delta; constant 

17 structural loss factor (-) 

A wavelength (m) 

v Poisson's ratio 

; kb/kp 

P density (kg/m3
) 

(J constant 

r constant 

¢ mode shape function; ~ (r;)2 + 1 

X orthogonal function 

If mode shape function; ~ (r;)2 -1 

f1 m;/( m~kp) (-); mean 

(j) radian frequency (rad/s) 

( ) spatial average 

C) frequency average 

complex quantities 

XlI 



Chapter 1. Introduction 

CHAPTERl 

INTRODUCTION 

1.1 Background 

Since the industrial revolution started in the United Kingdom in the 18th century, 

vibration, noise and related problems have often been critical issues in most 

industrial, commercial and domestic situations [1]. In addition, the increasing 

importance of social and environmentally friendly regulations ensures that noise 

and vibration must be given a high priority in industry [1, 2]. From the industrial 

viewpoint and for the welfare of people, this might become more critical in future. 

Low frequency dynamics that provides a basic theory for dealing with a noise and 

vibration problem can often be considered using simple lumped parameter systems 

analysed using Newton's law of motion. As the frequency range is extended, more 

complex analytical and numerical models are required, a typical example of which 

is the widely applied Finite Element Method (FEM) [3-10]. In this, a discretised 

model of a continuous system is produced using elements that incorporate stiffuess, 

mass and dissipation effects. FE is basically suitable for low frequency analysis 

because higher frequency calculations require more elements as the wavelength 

reduces. There is also a more fundamental reason that prevents the higher 

frequency application. At high frequencies the dynamic response is increasingly 

sensitive to structural details and consequently there is considerable variability in 

the response due to uncertainties [11]. This means that the exact modelling of a 

particular system is limited and impractical [12] and thus high frequency analysis 

should be carried out in a different way, i.e. a statistical approach which provides 

more useful spatial and frequency average behaviour. 

In this context alternative methods were developed to overcome the disadvantages 

of the low frequency technique such as FE, the most widely accepted being 
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Statistical Energy Analysis (SEA) [12-17]. In SEA, the system is considered to be 

an assembly of subsystems and each subsystem is assigned a single energy degree 

of freedom [15]. The coupling loss factor (CLF) describes the power transferred 

through a junction between subsystems. As a probabilistic method, SEA requires a 

minimum number of modes in each subsystem and it is assumed that subsystems 

are weakly coupled. These inherent characteristics of SEA imply that it is more 

suitable for high frequency analyses. 

An alternative energy based method, the so-called Energy Flow Method (EFM) has 

been developed [28-34]. However, the application is also limited to the higher 

frequency regions in general and some difficulties remain. 

Between the low and high frequency is called the mid-frequency region, in which 

neither method mentioned above is suitable. Therefore, much recent research has 

attempted to find new methods suitable for mid-frequency analysis. FE-based 

techniques involving the component mode synthesis (CMS) [35-39], wave methods 

[40, 41], fuzzy structure theory [42-46] and a mode-based approach [47-49] have 

been proposed. In addition, some methods combine the advantages of the 

conventional methods such as FE with the energy flow method (EFM) or wave 

methods. Theses are called hybrid methods [50-56]. These methods are discussed 

in more detail in the following sections. 

1.2 Low frequency methods 

Low frequency analysis has been traditionally important because it represents the 

fundamental characteristics of a structure and some useful and powerful numerical 

methods have been developed for this analysis range. 

The most common of these is the finite element method. It is widely used in most 

companies manufacturing mechanical engineering applications. This is primarily 

due to the increasing dependence on virtual prototyping using FE instead of many 

2 
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physical experiments. Also both the static and dynamic characteristics of a product 

can be predicted before manufacturing and other performance, optimisation and 

design calculations can be considered. For example, it is generally used in the 

automotive industry to predict body vibrations and interior noise in the low 

frequency region [5-7]. In an FE model the structure is divided into a finite number 

of elements, often hundreds of thousands, and an overall stiffuess and mass matrix 

is determined in terms of degrees of freedom (e.g. displacements and rotations) for 

each element. This is a deterministic method because in principle it is possible to 

predict the exact behaviour ofthe system for given material properties. 

In general, it is known that more than four linear elements are needed per half 

bending wavelength to predict and replicate the continuous deformation [3, 4]. The 

accuracy of the result can usually be improved by increasing the number of 

elements [8]. This means that for more accurate results in the higher frequency 

range, a large number of elements should be included. Thus, it is more appropriate 

for low frequency analysis. This limitation may partially be solved by the 

significant development of computer speed and memory allowing enlarged 

frequency ranges to be solved. Also, recent new developments have led to higher 

order elements being developed [9, 10]. These Hierarchical Finite Elements use 

higher order polynomial or slope functions which result in fewer elements per 

wavelength and can result in smaller computational problems. However, even with 

such a large size of model, predictions can be inaccurate due to the uncertainties of 

the system. For example, the response of the structure can be very sensitive to 

small fabrication details so that the dynamic characteristics seem significantly 

different at high frequencies. Such an example is shown in Figure 1.1 where the 

measured noise levels in the cabin of 57 nominally identical trucks due to a force 

input at the wheel show large variations even at frequencies that are not particularly 

high [11]. If an FE model were made of one of these variants it would not 

accurately represent the others. 

Thus, although extending the frequency range is possible in principle, the 

variability in the results at high frequencies make this option inappropriate and 

3 
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undesirable [17]. In such cases the structural analysis often needs to be treated as 

providing a mean value estimate rather than the detailed response of the structure. 

Typically one could then average over a number of results from similar FE models 

but this is computationally expensive and inappropriate. For this reason various 

methods have been developed, amongst which the most widely accepted is 

Statistical Energy Analysis (SEA) [12-17]. 
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Figure 1.1. Modulus of transfer functions between input force at front left wheel and sound 

pressure level at the location of driver's head measured on 57 nominally identical vehicles 

[11] . 

1.3 High frequency methods 

1.3.1 Statistical Energy Analysis: a general overview 

In SEA, the system is generally divided into a number of subsystems, the response 

of which is described in terms of energy. Nominally identical subsystems may have 

the same gross physical and geometrical properties, but modal characteristics vary 

due to differences in detailed properties. If they are randomly different in a 

statistical sense, then the characteristics ofthe subsystem can be defined in terms of 

the ensemble average of many such similar but not identical systems [15]. Then, 

the energy flow between subsystems is found considering a statistical approach 

4 
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rather than detenuinistic quantities such as exact natural frequencies and mode 

shapes. 

Although the results are evaluated strictly in tenus of ensemble averages, the 

application based on the ensemble is often impractical. It is known that the 

variance of the response over the ensemble decreases when the frequency 

averaging bandwidth increases [15]. Thus, the frequency average technique can be 

used to approximate the ensemble average if the system has high modal overlap or 

wide analysis bands are used. The frequency average arises from analysis based on 

a frequency band, for example an octave or one-third octave band. 

The simplest SEA model consists of two subsystems. The time-averaged energy 

and the power balance relationship of such a system is shown schematically in 

Figure 1.2 below. 

E2,total 

~,dis Pz,diS 

Figure 1.2. Power balance relationship of a coupled structure consisting of subsystems 1 

and 2. E is the stored energy in each subsystem, P is the dissipated or transferred net 

power and subscripts indicate the corresponding subsystems in the coupled system. 

The power transferred between subsystems is related to the difference between the 

mean modal stored energy in the source and receiver subsystems and the coupling 

loss factor, CLF. This is defined in an analogous way to the dissipation loss factor 

(DLF) [12, l3]. The values of the CLFs for particular connections are highly 
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dependent on the physical and geometrical properties and may require numerical 

calculations [18]. Values can also be estimated using a wave method [19, 20]. 

In SEA it is assumed that the response is spatially diffuse within each subsystem, 

so that only the total vibrational energy in each subsystem is important. Because 

each subsystem or substructure corresponds to only one element of the solution 

matrix, it is a relatively simple, efficient and low cost method. However, in 

practical applications there are also some difficulties. One of them is to find the 

relevant coupling loss factors. To ensure more accurate results for practical 

structures, more diverse coupling loss factors that include more dynamic 

characteristics of the corresponding structures should be defined, so that their 

variability due to uncertainties can be identified [21]. 

Ideally for application of SEA the subsystems or substructures should be weakly 

coupled. Coupling is generally considered weak if the ratio of the coupling loss 

factor to the internal loss factor for the subsystem is substantially less than unity 

[22]. The response based on SEA depends strongly on the modal overlap. The 

modal overlap is the ratio of the half-power bandwidth to the average spacing 

between resonances [12]. If this factor is in the region of unity or greater then no 

clear resonance peaks can be seen, since the resonance peaks tend to merge 

together. As variability of the response due to structural uncertainties is of concern, 

it is preferable to have high modal overlap that generally leads the variance of the 

response to be low [15]. In addition, for any particular frequency band each 

substructure should contain a minimum number of modes whose natural frequency 

falls within the band and there should ideally be equi-partition of vibrational 

energy between the modes of a substructure [16]. 

Because of such assumptions mentioned above, the accuracy of the predicted 

average energy is limited particularly for a system containing components carrying 

a long wavelength or having a low modal density. This results in a low frequency 

limit for the applicability of SEA in such cases. 

6 
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SEA is thus generally used for the high frequency analysis in various areas such as 

buildings [14], aerospace applications [23] and more recently automotive vehicles. 

One successful example of the latter was given by Fraser [24], in which wave 

intensity analysis proposed by Langley [57, 58] was used to model a curved panel 

and a complex joint modelling technique was studied. Then, the energy level 

difference of certain panels connected through a joint, such as the roof and the 

windscreen or the windscreen and the firewall, was predicted in an SEA 

framework. The sound pressure level (SPL) in the interior saloon due to an engine 

excitation was predicted by the complex joint SEA model. The result showed good 

agreement with experiment in terms of one-third octave bands in the frequency 

range of 100 to 6300 Hz and the most important noise paths were identified. 

Another application to an automotive vehicle was carried out by Yamazaki et al 

[25], where an FE model was used in the calculation of the coupling loss factors. 

As it is difficult to find the experimental modal density of a complex structure such 

as an automotive body-in-white, the modal density of each subsystem of the body 

was determined from the normal mode analysis with an FE model. The coupling 

loss factors were obtained using the equation for infinite plates connected at a line 

junction and the effect of the power reflection by the coupled structure was 

ignored. Thus, in fact they were not calculated in terms of a power balance 

equation. Although the result is only approximate, the coupling loss factor shows 

reasonable agreement compared with the experiment above about 500 Hz. 

1.3.2 Statistical Energy Analysis: variability at low frequency 

The previous studies based on SEA are important because, although a statistical 

model is normally acceptable for high frequency analysis, it is also helpful to 

understand the physical behaviour of the structure in the low and mid-frequency 

regions. Thus, SEA-related studies previously published, especially studies dealing 

with the variability of the coupling loss factors are discussed here because most 

difficulties in an SEA application are related to such variability due to uncertainties. 

7 
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An investigation into the variability of the CLF was conducted by Wester and 

Mace [26]. They used an explicit ensemble average formulation to analyse two 

line-coupled finite rectangular plates. The response of the system was described 

using a wave approach. The subsystem was assumed to be drawn from an ensemble 

in which the reflection coefficient phase lag is uniformly distributed as a random 

variable. Accordingly, the ensemble power was presented and compared with the 

estimates of the CLFs obtained using traditional SEA methods, e.g. infinite plate 

wave transmission. It was shown that the traditional SEA hypothesis of 

proportionality between the coupling power and the difference in subsystem mean 

modal energies is exact for the ensemble average response of the plate systems, 

regardless of the strength of coupling. Also a CLF traditionally calculated for use 

in SEA by a wave method, in which semi-infinite subsystems and diffuse fields are 

assumed, was found generally to over-estimate the exact value based on the 

ensemble average predictions at low frequencies (low modal overlap). At these low 

frequencies the subsystems are described as being strongly coupled. 

Fahy and Mohammed [27] investigated the relationship between the CLF, modal 

overlap factor and the variance of the power flow for a coupled plate system using 

a computational experiment. For the coupled plate system presented, it was shown 

that it is necessary to have at least five resonance frequencies in a frequency band 

for reliable estimates of the CLF to be obtained. In addition, the estimates of the 

CLF based on a diffuse field transmission coefficient generally exceed the actual 

value when the geometric average modal overlap factor of the two subsystems is 

much less than unity. Accordingly, the computational examples showed that the 

CLF derived from tests on one physical sample could be umepresentative of the 

ensemble average value when modal overlap factors are small. 

The variability in the CLF of two coupled rectangular plates was investigated by 

Park [21] using the dynamic stiffness method. In order to quantify the variability of 

the effective CLF, a wide range of parameter variations such as the thickness ratio, 

the length ratio, the length-to-width ratio and damping loss factor were studied 

8 
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using finite plate simulations. Variations in both modal density and modal overlap 

were considered, either together or separately. Although the variability of the 

effective CLFs reduced as frequency increased, it was found that significant 

variability still remained when modal overlap is greater than about 0.4. Upper and 

lower bounds for the CLF developed by Craik et al [59] were considered. It was 

shown that better agreement is found when the modal overlap of both systems is 

taken into account, rather than that of the receiver alone, as originally proposed by 

Craik et al [59]. Also the variance was investigated to find the variability of the 

effective CLF in terms of the combined modal overlap factor and combined 

number of modes for each subsystem. An empirical formula for the variance of the 

effective CLF was derived, which showed improved confidence intervals of the 

CLFs compared with previously published estimates [59, 60]. 

1.3.3 Energy flow method and energy finite element method 

An alternative method to SEA, a so-called energy method (energy flow method, 

EFM) is in use to solve high frequency problems. As SEA can only define a single 

energy value for each subsystem, the spatial information within an SEA subsystem 

cannot be found. Although the division of subsystems into smaller ones may 

partially solve this limitation, in general these become strongly coupled and the 

same energy levels are obtained for the divided components. To overcome this 

limitation Nefske and Sung [28] proposed a power flow analysis, which is 

analogous to the flow of thermal energy in heat conduction. Based on this 

hypothesis, Wohlever and Bernhard [29] developed an energy flow method for 

one-dimensional systems. On the assumptions that a structure has light damping 

and that the kinetic energy density and potential energy density are equal, a second 

order differential equation governing the energy distribution was developed and 

applied to coupled rod or coupled beam systems. 

Bouthier and Bernhard [30] also applied this method to membranes where the 

energy equation is approximate or relies on the assumption that one is in the far 
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field where the response can be reasonably described in tenns of plane waves. To 

get an approximate energy distribution, an equation for the time-averaged energy 

density was used with a smoothing operation which means a space-averaging 

procedure over the span of the trace wavelength. The accuracy of this method is 

improved as the frequency of excitation increases, but at low frequency the 

approximations are not suitable because there are not enough modes in the 

frequency band of interest. 

A more complicated system consisting of a rectangular plate and finite beams was 

investigated by Seo et al [31] using the energy flow method in which several 

parallel beams were coupled to a simply supported plate. Although the power 

transmission and reflection coefficients at a beam-plate junction and the power 

input were calculated using the assumption of a semi-infinite plate, the energy 

density distributions and the power flow intensity were successfully predicted, in 

terms of the global decay and the attenuation patterns of the energy density. 

Langley [32] investigated the use of EFM for two-dimensional structures and 

showed some difficulties for the present case. For a point load, the direct field 

response predicted by EFM does not match the known exact solution. This is 

especially important when the structure is heavily damped. Also it was emphasised 

that the far field energy density in EFM is proportional to 1/.J; with r the radius 

from the loading point, while the exact result is proportional to 1/ r. It is known 

that such difficulties do not arise for one-dimensional systems. 

In application of the energy flow method, a finite element approach was employed 

by Vlahopoulos et al [33]. This is called the Energy Finite Element Method 

(EFEM). It was based on the governing differential equations with respect to 

energy density variables. Only the propagating wave of a plate is considered. The 

finite element formulation is utilised for a numerical solution. In EFEM, a 

discontinuity occurs if the geometry and material properties are changed such as a 

junction where different members meet. Thus, a junction element was developed to 

connect such discontinuities, the coefficients of which are computed from 
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analytical solution of semi-infinite members connected to each other and by the 

continuity of the power flow across the junction. Where it is continuous between 

elements the energy density was found in the conventional finite element manner. 

The calculated energy ratio in one-third octave bands for a scale model of an 

engine foundation and a large scale ship structure shows similar agreement with 

that of conventional SEA above about 4000 Hz. The numerical result also showed 

that the spatial variation of the energy density can easily be identified using EFEM. 

It is traditionally important to define the joints particularly of automotive vehicles, 

especially spot-welded joints. The development and evaluation of the power 

transfer coefficient in the EFEM framework was carried out by Vlahopoulos et al 

[34] to predict the behaviour of spot-welded joints in an automotive structure. In 

order to derive the power transmission coefficient, the connected members are 

generally considered semi-infinite, similar to SEA. However, although the 

conventional FEM was utilised to compute the power characteristics, the semi­

infinite assumption was not used. Instead, a numerical iterative algorithm was 

adopted. The technique presented showed better agreement in comparisons of 

energy ratio of the two-plate coupled system via spot-welding. This energy flow 

approach via the FE method shows the possibility of a hybrid method incorporating 

an energy method with FE, which will be discussed further later in this chapter. 

Another type of energy flow method was developed for a jointed beam structure by 

Shankar and Keane [61, 62]. Under some limiting conditions, for example, the 

beams are not allowed to be coupled at the mid-span and the boundary conditions 

are only hinged or clamped conditions, the average energy levels were studied 

using the receptances at the grid of joints between beams. The behaviour of the 

global structure made of rigidly jointed beams was predicted from Green's 

functions of the individual uncoupled beams. This approach has some advantages, 

for example, local damping can be used for the corresponding substructure and the 

finite element method can be used. However, difficulties in the convergence of the 

Green's function can require the inclusion of a large number of modes. 
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1.4 Mid-frequency methods 

In the mid-frequency region the low frequency characteristics and methods have 

increasing uncertainties whilst an SEA response calculation is not strictly 

applicable. This can be due to strong coupling, the presence of global modes or a 

small number of modes. A particular problem arises in structures containing a 

mixture of stiff and flexible elements. The stiff elements may exhibit 'low 

frequency' behaviour up to quite high frequencies whereas the flexible components 

may have 'high frequency' behaviour from quite low frequencies. Thus such 

structures have a very broad mid-frequency region where neither conventional 

approach is satisfactory. 

There has been much effort to overcome the limitations and to find suitable 

methods for this region and some of these previous studies are described here. 

1.4.1 eMS-based method 

Some efforts have been made to extend the frequency region of interest for FE 

models. Mace and Shorter [35] used FE to find energy-related quantities. This 

involved using a global modal decomposition and a reordering of the subsequent 

numerical calculation. For frequency-averaged response quantities and spatially 

independent excitation such as 'rain-on-the-roof', cost-reduced integral forms were 

presented as only a few terms including global modal receptance are frequency 

dependent. There is further benefit for a lightly damped system and with an 

excitation force of known power spectral density. It was shown that significantly 

fewer component modal degrees of freedom based on the component mode 

synthesis (eMS) approach [63] were required and hence less computation is 

involved. 

eMS was originally developed to reduce the number of degrees of freedom (DOF) 

in FE analysis and models [3]. The most general method among the eMS is known 
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as a Craig-Bampton method [63]. In CMS, the response of a system is found in 

terms of the modal degrees of freedom (DOF) of the subsystems (called 

components). Different CMS approaches exist where the modes of the subsystems 

are calculated either with free or fixed interface conditions at their boundaries. In 

addition to these modes, additional 'constraint modes' are introduced to allow for 

interface motion. The overall model is then transformed in terms of the modal and 

boundary degrees of freedom, significantly smaller in size than the original number 

of DOFs. Very good convergence can be obtained for a reasonably small number 

of component modes. 

The Craig-Bampton method was adapted by Castanier et al [36] to give a more 

efficient numerical analysis based on FE. In conventional eMS methods if the FE 

mesh is fine, the size of the CMS model increases as the number of constraint 

mode degrees of freedom increases. The size of the CMS model can be reduced by 

performing an eigenvalue analysis on the constraint mode partitions. So-called 

characteristic constraint modes were produced, which represent the characteristic 

motion of the interface boundary between substructures. Thus, the technique 

involves a secondary modal analysis. A refinement of the finite element mesh 

would increase the accuracy without requiring an increase in the size of a 

numerical model consisting of the characteristic constraint modes. The 

characteristic constraint modes provide the principal modes of deformation for the 

coupling interface. Thus, this technique presents important physical insight into 

the energy transmission between substructures, in which the characteristic 

constraint modes may be suitable for the efficient calculation of power flow in a 

complex structure, due to the compact representation ofthe interface motion. 

This enhanced CMS technique was thus used for predicting the power flow 

statistics due to uncertainties [37]. The outward power flow from a subsystem was 

formulated in terms of the characteristic constraint modes. The uncertainties were 

incorporated into the subsystem by assuming that a group of component modes is 

associated with a random variable with uniform distribution. The technique was 

used on a complex tracked vehicle. The statistical treatment provides efficient and 
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accurate modelling of parameter uncertainties, which is critical for mid-frequency 

vibration analysis. 

A local modal/perturbational method was introduced by Mace and Shorter [38], 

which enables the statistics of the FRF to be predicted for a system whose 

properties are uncertain. The global modes of the baseline system were found in 

terms of all of subsystem modes using fixed interface component modes. It was 

assumed that the uncertainty exists in the local mode properties of the subsystem, 

not in physical properties of the original system. Thus, here the ensemble was 

defined in terms of the component modal properties such as the mass and stiffness 

matrix in the component modal equations. Correspondingly, each member system 

in the ensemble was defined by its eigenvalues. A linear perturbation was found 

which relates small changes in the local mode properties to those in the global 

mode properties. A Monte Carlo simulation was used to estimate the FRF statistics. 

Two spring-coupled rods were considered as the numerical example. 

Soize and Mziou [39] suggested an alternative approach in dynamic sub structuring 

for numerical calculation of complex structures in the mid-frequency range. This 

was also based on the Craig-Bampton decomposition. For a damped substructure 

with fixed coupling interface, the eigenfunctions of the kinetic energy in a certain 

frequency bandwidth in the mid-frequency region were found from the eigenvalue 

problem. It was shown that the eigenvalues of the substructure rapidly decrease for 

the present case. Then, only a few larger eigenvalues were used to construct the 

reduced matrix model of each substructure. The extension of the method seems 

promising as the matrix reduction can be applied to any boundary condition on the 

coupling interface. However, how the mid-frequency region and a corresponding 

bandwidth can be defined, especially in terms of obtaining such eigenvalues, is not 

clear. 
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1.4.2 Wave methods 

A wave approach based on the reflection and transmission of a wave along a 

structure and at its joints can also be used. Hugin [40] described the response and 

transmitted power of bending waves in structures consisting of beams under the 

assumption that the influence of the near fields is negligible. 

Grice and Pinnington [41] used a wave analysis to study a built-up structure 

consisting of a stiff beam and flexible plate in which the beam is seen as a source 

and the plate as a receiver. If the flexural wavenumber in the plate is at least twice 

as large as the coupled wavenumber in the beam, the plate can be idealized as a set 

of independent plate strips that have a locally reacting impedance [64]. Then the 

dynamic behaviour of the beam can be described in terms of the locally reacting 

impedance of the plate and the dispersion relationship of the coupled structure. As 

the coupled structure can be divided into a component carrying long wavelengths 

(beam) and one carrying short wavelengths (plate), one can expect that each 

substructure can be analysed by different methods. This leads to a hybrid method 

that will be discussed and developed later. 

1.4.3 Fuzzy structure theory 

For the analysis of the mid-frequency range, Soize [42] introduced fuzzy structure 

theory. A fuzzy structure is defined as the set of uncertain substructures which are 

attached to a master structure but are not accessible by classical modelling and are 

therefore modelled by probabilistic concepts [43]. For the low frequency dynamic 

analysis, the modelling of the fuzzy structure is commonly made with a system of 

masses [44], which may not be suitable for the mid-frequencies. Therefore, the 

dynamic effects that the fuzzy has on the master system were considered in [43]. 

For this, a probabilistic (fuzzy) boundary impedance that models the effects of the 

fuzzy structure on the master system was sought. Two different constitutive laws 

were proposed to construct the impedances [42]. 
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The first type of impedance is independent of the spatial variable along the 

common boundary ( or interface) between the master and the fuzzy systems. The 

parameters of simple oscillators were modelled by random variables and 

consequently a random family of oscillators was generated probabilistically. The 

mechanical parameters, which are the mass and damping and modal density of the 

fuzzy part, were modelled by mutually independent random variables. A parameter 

was introduced to control the distribution of these mechanical parameters. 

The second type of impedance can be described as an impedance dependent on the 

spatial variable along the interface. It was modelled by a mass attached to the 

boundary via a set of oscillators, each of which has absolute displacement (so­

called spatial memory). It comprises the equivalent coupling loss factor as well as 

the mechanical random parameters mentioned above. 

Then, the second fuzzy impedance proposed in [42] was used to model the fuzzy 

substructures attached to the master system through a continuous common 

boundary (junction) [45]. A system was investigated consisting of six rectangular 

plates, four of which are coupled perpendicularly to two coplanar plates. The fuzzy 

theory gives the simpler boundary value problem related to the master plate 

attached to the fuzzy substructures. Thus, the impedance of the boundary junction 

was described in terms of the fuzzy impedance. The variables are mass, damping, 

modal density and equivalent coupling factor. The mean response function 

calculated by the fuzzy theory gave a good estimation. Some important problems 

remain such as fitting the fuzzy parameters upon real structures and the choice of 

the probability density distribution for the fuzzy parameters [45]. 

Strasberg and Feit [46] derived a simple expression for the vibration damping 

induced by a multitude of small sprung masses without using a probabilistic 

approach and applied this to a simple structure consisting of a beam and a plate. 

From these studies it is observed that the fuzzy structure behaves mainly as 
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damping to the master structure and the level of the damping is independent of the 

dissipation factor of the attachments. 

In practice, because a structure is divided into a master structure and a fuzzy 

structure, application is limited to relatively simple structures or structures with a 

clear division between master and fuzzy components. 

1.4.4 Power mode and mode-based approaches 

Ji et al [47] proposed a power mode approach in which the vibrational power 

transmitted to a receiver, such as a flexible plate, by N discrete point forces, can be 

considered as that transmitted by N independent force contributions involving 

eigenvectors and eigenvalues that are found from the receiver mobility matrix. The 

initial idea was originally suggested by Jianxin et al [65] in which the bound of 

power transmission can be simply defined using the characteristics of the 

eigenvalues. The power mode approach provides the lower and upper bounds ofthe 

power transmitted to the plate using the mean and standard deviation of the 

eigenvalues. This showed the approximate power transmission can be found simply 

when the wavelength of the plate is very short and the correlation between 

individual excitations can be neglected. Thus, this showed possible application to 

mid and high frequency analyses where the plate is regarded as a flexible receiver 

system coupled to a stiff system. 

The power mode approach was extended to a built-up structure consisting of a stiff 

beam (source) and a flexible plate (receiver) connected through a discrete coupling 

[48]. Approximate upper and lower bounds of power transmission were again 

found. The range between them is closely related to the mobility mismatch between 

the source and the receiver. A larger mismatch, corresponding to a stiffer source 

compared with the receiver, results in a narrower range. If the receiver structure is 

much more flexible than the source, the approximate power transmission can be 

given simply, incorporating the mobilities of the uncoupled source and receiver. 
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The approximate frequency average of the power transmission was also found 

using the characteristic point mobility, which is equal to the point mobility of an 

infinite plate. The numerical results showed that the accuracy increases as the 

mobility mismatch increases, whilst requiring much less calculation effort than an 

exact description and solution. 

Ji also proposed a mode-based method [49] where a set of basis functions was 

introduced for interface decomposition between a stiff beam and a flexible plate. 

The equilibrium and continuity boundary conditions are enforced along the 

interface. Then, the dynamic response of the coupled beam and the power 

transmitted to the plate can be expressed in terms of uncoupled modal properties of 

the beam and the plate as well as the modal correlation matrix between them. The 

numerical analysis was performed for a flexible rectangular plate in simply 

supported conditions, coupled to a stiff beam. Cases when the plate is rotated 

relative to the beam or when a larger plate is coupled were also considered for 

comparison. The numerical results showed that the dimensions or the boundary 

conditions of the plate are less important for determining the general vibration 

response as the response is predominantly controlled by the beam. The mode-based 

method can also be used for a flexible plate which is approximated in an 

asymptotic way such as a simple standing wave model, especially in a frequency 

average sense. 

1.4.5 Hybrid methods for mid-frequency analysis 

Considering the advantages and disadvantages of the deterministic and 

probabilistic methods, it seems natural to develop a hybrid method, for example 

combining the features of the finite element method and statistical energy analysis. 

Langley and Bremner have developed a novel hybrid method [50]. In this method, 

the degrees of freedom of a system are partitioned into a global set and a local set. 

The important assumption is that the local modes have a high degree of modal 
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overlap and the main effect of the local modes is to add damping and an effective 

mass to the global modes, which can be referred to as a fuzzy structure. Then, the 

long wavelength component is modelled deterministically, while the short 

wavelength component is modelled using SEA so that each subsystem can be 

assigned a single degree of freedom corresponding to the vibrational energy of the 

local modes. An example for a simple rod system was presented in [50] and it was 

shown that the method can be used to predict the dynamic behaviour in low and 

high frequency regions. However, application to other systems is not 

straightforward. 

A hybrid method incorporating both FE and SEA in a different way was proposed 

recently by Langley and Shorter [51], where separate direct and reverberant fields 

are introduced. An advantage of this method is that a conventional FE model can 

readily be used. All degrees of freedom of the FE model are divided into those 

associated with SEA subsystems (e.g. flexural motion with short wavelength) 

except at subsystem boundaries and those of the deterministic part (e.g. in-plane 

motion with long wavelength). Then, a direct field dynamic stiffness matrix that 

will be coupled to the FE model is constructed for each subsystem in terms of the 

subsystem boundary degrees of freedom. The forces arising from the SEA 

subsystem are separated into those producing a direct field and those producing a 

reverberant field. The response is found from equations coupling FE and SEA 

methodologies. As FE is not used to calculate the short wave response of the 

subsystems, computation time significantly reduces. A beam framework with three 

plates was investigated. The response due to a point force shows good agreement 

between the hybrid method and Monte Carlo simulation based on a FE model. 

Further study for the extension ofthe hybrid method is in progress. 

The theoretical development of a hybrid finite element method was introduced by 

Vlahopoulos and Zhao [52, 53]. This combines the conventional finite element 

method (FEM) with the Energy Finite Element Method (EFEM, see section 1.3.3) 

to achieve a numerical solution to mid-frequency vibrations. So-called 'long 

members' and 'short members' were defined. The long members that contain 
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wavelengths shorter than the corresponding system were modelled by the EFEM. 

The short members that contain wavelengths longer than the corresponding system 

were modelled by conventional FE. Uncertainties are imposed on the long member 

by using different lengths. The primary concept of this hybrid method is to utilise 

low-frequency models (FEM) for deriving energy information for the short 

members and to integrate them with EFEM. Thus, this method involves two sets of 

data. The first set comprises power transfer coefficients for each EFEM members at 

a joint (with a short member). The second comprises relationships between the 

primary variable of the EFEM model at a joint and the primary variables of the FE 

model at the same joint. 

The method was applied to coaxially coupled beam systems [52] and systems 

consisting of two or three beams connected at an arbitrary angle [53]. In the latter 

case the member possessing the bending wave was considered as a long member 

whilst the longitudinal wave member was considered as a short member. Although 

applications are limited to simple structures of beams, the method showed good 

agreement with the analytical solution in the mid-frequency region where the 

EFEM results are inaccurate as the resonant effects of the short members are 

important to the overall behaviour. 

The wave approach for the investigation of a structure consisting of a so-called 

spine and receiver, introduced by Grice and Pinnington [41], was extended to a 

hybrid method [54] where the plate is modelled as a number of plate strip 

impedances. Meanwhile, a finite element method was used for modelling the beam. 

The hybrid approach was used to calculate the response oftwo different plate-beam 

systems, with a rectangular plate and a trapezoidal plate, and good agreement with 

measurements was shown. This hybrid method was then extended to a box 

structure [55], in which the finite element method was used to predict a long-wave 

response and analytical impedances were considered to calculate short flexural 

waves. This method seems useful for the simple structure combination considered, 

but it has yet to be extended to a more general approach to deal with practical 

structures. 
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Another hybrid method incorporating a mode shape function and a Fourier 

transform was presented by Ji et al [56], in which a stiff beam is defined 

deterministically in terms of its modes, whereas a plate having a high mode count 

is treated approximately by assuming that it extends to infinity. The conventional 

Fourier transform method can yield the line impedance of an infinite plate in the 

wavenumber domain. It was assumed the contribution outside the plate interface 

region is negligible in the Fourier integral. Equilibrium and continuities were 

approximated along the interface between the beam and the plate in the 

wavenumber domain by a Fourier transform method. Then, assuming the cross 

coupling between beam mode shape functions can be ignored, the coupling 

relationship could be found in terms of the plate line impedance and the mode 

shape of the uncoupled beam in the wavenumber domain. The numerical results 

showed that the exact details regarding boundary conditions, size and shape of a 

very flexible receiver, tend to be less important when the dynamic mismatch, such 

as given by a large wavenumber ratio, of the system increases. Thus, it can be 

useful to deal with beam-plate coupled systems where the exact dynamic properties 

of the plate receivers may not be available. 

1.4.6 Other studies for mid-frequency investigation 

Vibrational power-flow techniques were proposed by Cuschieri [66] for the mid­

frequency analysis of two-dimensional plate-like coupled structures joined along a 

common edge. Since the mobility functions were defined for the individual 

substructures, it was not necessary to consider the global structure, but each 

substructure was considered separately. The input power and transmitted power 

were obtained from the input and transfer mobilities. The flexural response in the 

two plates was calculated when the joint is simply supported for convenience. The 

numerical results are in reasonable agreement with those obtained using FE or 

SEA. The aspect of the uncertainty was neglected in the application. 
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Savin [67] showed an experimental study ofa three-dimensional complex structure, 

consisting of beams and plates. He proposed that the medium frequency range is 

the range where the modal density exhibits important variations from one band to 

another and vibration of a complex structure at these frequencies is characterised 

by the superposition of some global modes and local modes. He pointed out that 

local modes are not necessarily modes having high natural frequencies but can 

exist even at relatively low frequencies with high modal densities, for example in a 

three-dimensional truss structure. 

1.5 Analysis of four-beam coupled structures 

The most important structure considered in the present study consists of four beams 

and a rectangular plate. There are some published studies on such a framed 

structure. Takabatake and Nagareda [68] studied the framed structure, where the 

behaviour of the plate was the primary focus. The plate supported with edge beams 

was replaced by a plate with edges elastically restrained against translation and 

rotation. Using relationships between these different boundary conditions, the 

shape functions in the plate use the beam shape functions corresponding to 

supports with equivalent translational and torsional stiffuess. The closed form 

approximate solutions for static and dynamic problems of a rectangular plate with 

edge beams were developed using the Galerkin method, in which the mass effect of 

the beam was neglected. 

The static and dynamic characteristics of a rectangular plate with edge beams were 

evaluated using a Ritz vector approach by Yang and Gupta [69]. The effect of 

elastic edge restraints was accounted for by including appropriate integrals for the 

beams in the expressions for the total kinetic and potential energies, although the 

procedure to develop the modal mass and modal stiffuess was not clearly 

explained. The various types of boundary conditions at the beams were considered 

by the corresponding Ritz vectors. The contribution of beam mass to the total 

kinetic energy was also considered. 
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Various analytical methods proposed for mid-frequency analysis have been 

reviewed. As seen and discussed, their applications are generally placed on simple 

academic systems for example, one-dimensional systems [38, 52] and a single 

beam and plate [41, 46, 54, 56]. A more complicated system such as a framed 

structure was only studied in terms of a fundamental dynamic behaviour [68, 69]. 

For other analytical research concerning the mid-frequency region, it seems that 

further study is necessary for more general applications [39, 45, 50]. Thus, such 

evaluation provides the motivation of the present research and a more 

straightforward and practical approach is sought for a complex industrial 

application. 

1.6 Aims and scope of thesis 

An objective of this thesis is, therefore, to consider another possibility for mid­

frequency analysis of more complicated structures, in particular two-beam and 

four-beam coupled systems, which might increase the applicability of the technique 

for practical industrial application. Typically such systems are principal 

components in an automotive vehicle, aircraft fuselage, ship hull etc. 

As presented in section 1.5, there are few previous studies that deal with such 

systems consisting of two beams or four beams coupled to a rectangular plate. The 

closest example may be the study by Grice and Pinnington in which a hybrid 

technique incorporating FEM and an analytical impedance based on the wave 

approach was used to analyse a box structure [55]. 

It should be noted that, as the mid-frequency region was defined as the region 

where neither deterministic nor statistical methods can be used reliably. This region 

is dependent on the structural system under investigation. For example, the mid­

frequency regions for a beam having a large second moment of area and a thin 

flexible plate would be different. When coupled together, the mid-frequency region 

ofthe combined structure can be very broad. 
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Some researchers have defined the low frequency region as where a deterministic 

method is suitable, and the high frequency region as suitable for a statistical 

method. Then, the mid-frequency region can be defined as the frequency range 

where some of the components of a system are suitable for the deterministic 

method while other members are suitable for the statistical method in this thesis. 

The mid-frequency region can be considered as the range where stiff beams show 

low frequency behaviour while flexible plates show high frequency behaviour. 

Such a system consisting of beams and plates is a most practical industrial structure 

and thus although still idealised it is expected that the present research will be very 

applicable. Figure 1.3 shows an automotive body-in-white [8J. One can find such a 

beam-plate system is widely present in the vehicle body, for example as 

highlighted by circles indicating the roof, floor and parcel shelf. 

Figure 1.3 A typical automotive body-in-white [8]. The circles indicate structures 

consisting of two or four stiff beams coupled to a flexible plate. 

The main aim of the thesis is to develop analytical methods that can be applied to 

the mid-frequency region of coupled beam / plate structures. The emphasis is 

placed on structures consisting of several beams and a rectangular plate as well as a 

simple beam and plate system previously studied by other researchers [41, 46, 54, 

56J. Such analysis provides insight into the dynamic behaviour of coupled systems 
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of beams and plates that is often difficult to obtain from numerical methods. 

Although no application is considered here of an engineering structure such as the 

automotive body-in-white shown in Figure 1.3, it is expected that the study can be 

utilised as a basis for mid-frequency analysis of such structures. 

Both exact and approximate methods will be considered to obtain the dynarnic 

response of such coupled systems. The exact methods are a mode-based method 

and a Fourier transform technique. These will provide exact solutions that can be 

used for benchmarking purposes but will be limited to specific sets of boundary 

conditions. An approximate wave method is then considered which allows much 

greater flexibility in terms of geometry and boundary conditions. 

The analytical models to describe the motion of two beams coupled to a plate are 

developed using both the Fourier transform technique and a wave approach. A 

modal method and the wave method are used to model the framed four-bearn-plate 

system. The wave methods are approximate but practically suitable for the mid­

frequency analysis. It should be noted that the modelling techniques for the two­

beam system and the four-beam system introduced later are different although they 

are based on a similar wave approach. Thus, they may be separately mentioned as 

the symmetric-antisymmetric wave model and the plate-decoupled wave model. 

The conventional wave method [41] is enhanced for this purpose. 

The novelty of this thesis can be summarised as follows. 

(i) Introduction of sliding boundary conditions on the plate edges and beam ends: 

this allows both an external excitation on an arbitrary location and a simplification 

for analyses based on the modal and Fourier methods. 

(ii) The damping and mass effect of the plate on the coupled beam is identified in 

the wavenumber domain. 

(iii) Enhancement of the wave method: Muller's method is utilised for obtaining 

complex roots of a dispersion wave equation, which does not converge in the 

conventional wave method based on a simple iteration. 
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(iv) Identification of a plate impedance corresponding to a beam nearfield wave in 

the wave model: it is found that this plate impedance has the same form as that 

corresponding to a travelling wave, but different values. 

(v) Application of a symmetric and anti-symmetric technique in the beam-plate­

beam system: this is commonly used, for example, in FE, but is introduced here in 

the wave model and can be realised by simply changing the reflection coefficient in 

the plate impedance equation. 

(vi) Representation of the framed system by introducing four decoupled plates in 

the wave model: the four beams surrounding the rectangular plate are described 

using four separate plates, each of them being coupled to the corresponding beam. 

The power investigation shows that this is a reasonable representation, although a 

difference is found for the beam furthest from the excitation point due to the lack of 

the physical connection by the plate. 

(vii) Experimental verification of wavenumbers in the beam-plate-beam system: it 

is found that wavenumbers of the rectangular plate in the beam direction are 

dominated by the stiffbeam wavenumber. 

(viii) Limitations of the wave method are found: it is found that the wave method 

provides only approximate results of the power transfer and dissipated power of 

subsystems. Also, if the wave model is based on separate plate impedances 

corresponding to the travelling and nearfield waves in the beam a violation of 

energy conservation occurs. 

Throughout this thesis, it is assumed that the beams are infinitely stiff to torsion 

and a plate is rigidly attached to the beams. Consequently, the corresponding edges 

of the plate are in sliding. Such a boundary condition can also approximate a real 

structure such as a beam-ribbed floor structure (e.g. the structure shown in [31]) 

where several parallel beams are attached to a flat plate, as the presence of a plate 

on both sides of a beam introduces structural symmetry. 

The beams are modelled based on Euler-Bernoulli beam theory and an isotropic 

plate [70] is assumed throughout in this thesis. As this study concerns the mid­

frequency region of a coupled beam-plate system and in-plane motion in the plate 
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and beam occurs at relatively higher frequencies [50], only flexural motion for both 

the beam and plate is taken into account. 

The chapters are arranged as follows. 

As an introductory step before dealing with the complicated systems, Chapter 2 

introduces a simpler system consisting of a single beam and a plate. A modal 

method is introduced which will be used as a reference model for comparison with 

approximate methods developed later. Using sliding boundary conditions one can 

greatly simplify the analysis of a single beam coupled to a rectangular plate by 

ensuring that the mode shapes of the beam and plate match. Simple analytical 

expressions are available for the mode shapes, which are separable solutions for the 

plate in the two coordinate directions. Use of the sliding boundary condition also 

allows point forces to be placed at the edges, which is not possible with simple 

supports. The convergence of the modal method is studied and, for modes in the 

direction parallel to the beam, is found to depend on the wavenumbers in the stiffer 

beam rather than the more flexible plate. 

In Chapter 3 a Fourier approach is used to study the same system. The mass and 

damping effect of the coupled plate is shown in the wavenumber domain. The 

range of integration required for a specified accuracy is established in terms of the 

wavenumber ofthe beam. 

Chapter 4 presents and discusses an approximate wave method. Approximate 

solutions for the wave motion and forced response are obtained by modelling the 

stiff structure using a wave approach in which the wavenumber is modified by the 

local impedance of the flexible structure. To estimate the wavenumbers at certain 

frequencies Muller's method is introduced to give improved convergence. Solving 

separately for the propagating and nearfield wavenumbers of the coupled system, it 

is found that a non-physical system is created in which power balance is not 

respected. This can largely be overcome by using the same wavenumber for both 

27 



Chapter 1. Introduction 

waves. In such a case, it is found that the power dissipated in the plate is an 

underestimate due to the approximations ofthe wave method. 

Chapter 5 extends the analysis to a coupled system consisting of two parallel beams 

and a rectangular plate. The Fourier method discussed in Chapter 3 is used for such 

a system, and can analyse the system irrespective of whether the beams are 

identical or not. A symmetric-anti-symmetric technique is used to simplify the 

analysis for the wave method. Consequently, the wave method is here limited to 

identical parallel beams. From the power balance investigation it is shown that the 

wave method gives only approximate results of the power transfer and the 

dissipated power. Nevertheless, the difference seems mostly small and the validity 

of the wave method is presented. 

Chapter 6 is concerned with a more complex coupled system consisting of four 

beams and a rectangular plate. The modal method introduced in Chapter 2 is 

extended to cover such a system and provides an exact response for the present 

(sliding) boundary conditions. For a framework of beams surrounding the plate, an 

approximate wave model is presented as a set of connected beams each loaded with 

an independent plate. This allows non-identical beams in the modelling. Use of a 

semi-infinite plate loading the beam framework is also considered but shown to 

lead to an over-estimate of the damping in the system. However, the actual 

boundary conditions used at the far side of the plate are shown not to be important 

for the frequency-averaged response. 

In Chapter 7 experimental work is presented concentrating on two-beam and four­

beam plate coupled systems. Experimental validation is shown for the power flow 

calculation based on the wave method, even though the boundary conditions differ 

from those in the numerical model. This shows the usefulness of the sliding 

boundary conditions used in the model. A comparison using the energy ratio 

between subsystems also shows the validity of the numerical methods, especially 

the wave method, although wave models only provide an approximate response. 

From measurements with a scanning laser vibrometer and using wavenumber 
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estimation techniques, the wavenumbers in a coupled beam-plate structure are 

shown to be dominated by the stiff beam system in the direction parallel to the 

beam, as expected and predicted theoretically. This is important in justifying the 

use of the wave method. 

The conclusions are summarised and the related important results are integrated 

into Chapter 8. Future studies that could be extensions of this work are also 

discussed. 
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CHAPTER 2 

MODAL METHOD FOR COUPLED STRUCTURES 

2.1 Introduction 

As reviewed in the previous chapter, there are a number of analytical and numerical 

approaches that have been developed to analyse the behaviour of coupled structures 

consisting of stiff and flexible components, such as beams and plates. In later 

chapters of this thesis, approaches such as a wave method and a Fourier transform 

technique will be developed and applied to such structures. Before introducing 

these more novel approaches, a brief overview of a modal method will be given, 

which is widely used in many texts to describe the motion of a simple beam or 

plate. This provides an excellent analytical benchmark and also highlights some 

important dynamic characteristics when applied to simple structures. 

A mode-based method, in which the dynamic response of a coupled structure is 

described in terms of the mode shape functions of the components, is given in 

many texts [71-73]. In this chapter a coupled structure comprising a single beam 

and a single plate is considered, with a relatively straightforward extension to a 

structure containing several beams given in later chapters. 

Although various kinds of boundary conditions for the ends of a beam and the 

edges of a plate can be used, sliding boundary conditions have been considered for 

the beam and plate here. There are several reasons for choosing sliding conditions. 

Firstly, this gives exact analytical mode shape functions and natural frequencies. 

Secondly the complexity of the analysis can be significantly reduced. Third, unlike 

simple supports, a point force can still be applied to the plate edges. In principle the 

modal approach is valid for arbitrary boundary conditions and it is not a necessary 

condition that both structural components, in this case the beam and plate, have 

identical mode shapes. It is sufficient only to enforce the equilibrium and 

continuity conditions at the junction or interface of the individual structural 
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components. However, the focus of the research is on the mid to high frequency 

prediction, whereas the effect of imposing particular boundary conditions is 

noticeable mainly at low frequencies. There are less differences with results from 

other boundary conditions as the frequency increases so that the actual boundary 

conditions are less important [26, 49]. 

A brief presentation of the theoretical basis of the modal method and a general 

coupling technique involving basis functions of the interface are described. Then 

application to the beam-plate coupled system is highlighted. Some numerical 

results are shown and compared with those of a Finite Element (FE) model, 

including results demonstrating the convergence of the response with the number 

of modes included. This has implications for predicting the effect of a stiff beam 

when coupled to a more flexible plate. Before introducing the coupled model, a 

modal description of the uncoupled beam and plate vibrations is given. 

2.2 A modal description for flexural beam vibration 

2.2.1 Mode shape function and natural frequencies 

It is well known [74] that the dynamic response of an one-dimensional elastic 

structure, such as a beam, at position x and time t can be expressed as 

(2.1) 
m 

where w(x,t) is the displacement, qm(t) is the generalised coordinate for the mode 

m and ¢m (x) is the corresponding mode shape function of the structure for the 

specified boundary conditions. The modal expansion given in equation (2.1) is 

valid for arbitrary motion as well as harmonic steady state motion. Strictly for a 

continuous structure the summation is over the infinite number of modes of the 

structure. 
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For a unifonn beam in flexure the general expression for the nonnal mode or 

characteristic function is given by [74] 

(2.2) 

where kx is the flexural wavenumber, related to the natural frequencies by 

(2.3) 

where Db is the bending stiffuess, OJm is the m th natural frequency and m~ is the 

mass per unit length of the beam assuming a unifonn cross-sectional area. Using 

the general solution, such as equation (2.2), the mode shape functions for arbitrary 

boundary conditions can be found [74]. Solving the resulting characteristic 

equation provides the corresponding values of kx for the particular modes. 

For a beam of length L, with both ends of the beam x = 0 and x = Lx considered 

to be in sliding conditions, the corresponding boundary conditions are zero rotation 

and shear force. Applying these conditions to (2.2), it is found that 

C2 = C3 = C4 = 0 and the wavenumbers at the natural frequencies can be found as 

[75, 76] 

k = mJr fi 1 2 or m = 0, , ,3"" 
x L 

x 

(2.4) 

where m = 0 corresponds to the rigid fundamental mode of a sliding beam. The 

resulting mode shape from equation (2.2) is 

(2.5) 

The response of the structure, given the chosen shape functions, reqmres the 

generalised coordinate q m (t) to be detennined as a solution of the modal equations 

of motion. The equations can be derived using Lagrange's equations [73]. The 

steady state solution for the generalised coordinate qm is found to be [73] 
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(2.6) 

where Fm is the harmonic generalised force amplitude corresponding to the 

generalised coordinate qm' M! is the modal mass, OJm is the natural frequencies 

of mode m and is used for complex quantities. The generalised force is given by 

(2.7) 

which for a point force Fa at XI is given by Fm (t) = FO¢m (XI )eiOJt
• The modal mass 

is obtained by 

(2.8) 

For the mode shape given in equation (2.5) M! = m; Lx /2 for m ~ 1 and m;Lx for 

mO. The natural frequencies OJm can be found from equations (2.3) and (2.4) as 

( J
4 

2 m1[ Db 
OJ = - - for m = 0 1 2 ... m L' , , , 

x mb 
(2.9) 

where m = 0 represents the rigid body mode for the sliding boundary condition 

considered. 

2.2.2 Introduction of hysteretic damping 

If structural damping is introduced to the beam via a complex Young's modulus 

E = E (1 + i'l) , the corresponding bending stiffness Db is then given by 

(2.10) 

where 'lb is structural loss factor. Then, equation (2.6) is changed to include the 

damping as follows. 
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(2.11) 

2.3 A modal description for plate vibration 

Similar to equation (2.1), the flexural displacement of a two-dimensional structure 

such as a plate having an arbitrary shape can also be represented using an infinite 

senes as 

(2.12) 

where If/r(x,y) is a shape function of the plate, qr(t) IS the corresponding 

generalised coordinate. 

Limiting the plate to a rectangular shape, its mode shapes can be either exactly or 

approximately represented by combination of shape functions in the two 

perpendicular directions. Thus, the mode shape of the rectangular plate If/r (x, y) 

can be expressed as the product of two separable functions so that each depends on 

a single spatial variable x or y i.e. 

(2.13) 

where ¢m
r 
(x) and ¢n

r 
(y) are selected as two linearly independent sets satisfying all 

of the appropriate boundary conditions and mr and nr are integers representing the 

orders of the separable functions for mode r. In the general case, the separable 

solution is an approximate approach as it is only in the special cases where a pair of 

opposite parallel edges are either simply supported or sliding that the governing 

equation of motion for a rectangular isotropic plate can be solved exactly by this 

type of separable expansion. 
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If all edges of the rectangular plate are sliding then the corresponding separable 

functions are exact and given by 

(2.14) 

where 

k = m ,,/L for m = 0 1 2 ... x r x r' , , 
(2.15) 

Similar to the beam in the previous section, assuming harmonic excitation and 

response at frequency (j) and introducing structural damping to the plate results in 

- ~ qr = M: [ OJ; ( 1 + ir; p ) - {j)2 ] 

(2.16) 

where r; p is the structural loss factor of the plate, ~ IS the generalised force 

amplitude given by ~ = fx lLy 
f(x,y,t)/f/r (x,y) dxdy ,or 

(2.17) 

for a point force at (XpYl)' and the modal mass IS gIven by 

2.4 General coupling based on modal method 

In this section a structural coupling technique based on the modal method is 

discussed. Although in this thesis the emphasis is placed on a coupled structure 

consisting of beams and a plate for sliding boundary conditions, the coupling in a 

general situation is presented first. The derivation is similar to Ji [49] but uses a 

dynamic stiffuess approach rather than a mobility approach. 
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Consider a coupled structure consisting of two subsystems attached through 

arbitrary continuous interfaces indicated by the thick line shown in Figure 2.1 (a). 

It is assumed for simplicity that the subsystems are undamped, although the 

damped system can also be realised simply as explained in section 2.2.2 by 

introducing a loss factor. For consistency with the following sections, the upper 

subsystem is described as system 'b' and the lower subsystem as system 'p', 

although at this stage the subsystems can have arbitrary shapes. If an external force 

Ie is applied to system b then the coupled system can be divided as shown 

schematically in Figure 2.1 (b) where J/ and J/ are the forces acting on each 

subsystem through the interface. Although they will be enforced to be the same by 

an equilibrium condition, they are initially described separately to explain the 

general coupling procedure. 

Systemp Systemp 
(a) (b) 

Figure 2.1. The coupled system and its force relationship between subsystems. 

2.4.1 Modal method of subsystems 

The dynamic displacement of the uncoupled subsystem b can be written, similar to 

equation (2.1), as 

(2.18) 
m 
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where Wb(Xb ) is the displacement, ¢! is the mth mode shape function, q! is the 

mth generalised coordinate and Xb is the local coordinate of subsystem b which is 

given in a vector form. Then, assuming time-harmonic motion, the steady state 

solution, similar to equation (2.6), is found as (see [49] for details) 

Fb _Fb 1 
-b = e,m i,m =_(Fb _Fb ) 
qm Mb ( 2 _ 2) Zb e,m I,m' 

m OJb,m OJ m 
(2.19) 

where M! is the modal mass, and wb,m is the natural frequency of the uncoupled 

subsystem b. Z! is the dynamic stiffness corresponding to mode m, 

Z! = M! ( w;,m - OJ2 ). Also, the corresponding generalised external and interface 

forces of the mth mode are respectively 

(2.20) 

and 

Fb = r {"b (Xi )d.b (Xi )dxi 
i,m JDi jib 'rm b b 

h 

(2.21 ) 

where D; and Di are the respective domains where the external force is applied 

and the interface force occurs and x~ and x~ are the corresponding local 

coordinates. Equation (2.19) can be presented in a matrix form as 

(2.22) 

where Zb is a diagonal matrix of modal stiffnesses. Then, the motion of subsystem 

b can be found from equations (2.18) and (2.22). It should be noted that the exact 

response is found from the sum of an infinite number of modes. However, for 

practical reasons an appropriate finite number should be considered. 

In a similar manner the displacement wp of subsystem p is given by 
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(2.23) 

where 1fI: is the rth mode shape function, q: is the corresponding generalised 

coordinate and xp is the local coordinate of the uncoupled sUbsystemp. Similar to 

subsystem b, the modal solution of the uncoupled system can be found as 

(2.24) 

where Z p is a diagonal matrix of modal dynamic stiffnesses of the form 

zp =MP(o/ -0/) r r p,r (2.25) 

where M: is the modal mass of subsystem p and the generalised interface force is 

(2.26) 

where Di IS the interface domain and Xi IS the local coordinate where the p p 

interface force occurs in subsystem p. 

2.4.2 Structural response based on the general modal coupling 

Consider the interface force J; applied at the local coordinate Xi and the 

corresponding displacement at Xi' Wi(Xi). This force and displacement can be 

presented in terms of a set of complete orthogonal basis functions, Xk (xJ 

spanning the interface domain, as 

J;(xJ = LXk(XJF;,k (2.27) 
k 

Wi(xJ = LXk(XJqi,k (2.28) 
k 

where F;,k is the kth generalised interface force and qi,k is the kth generalised 

interface coordinate. One can see that the actual interface force and displacement 
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are now decomposed in terms of the generalised interface coordinates. Such 

expressions for the force and displacement can be utilised for a general coupling 

situation, for example, when the mode shape functions of subsystems are different 

and their interaction through the interface needs to be identified. As the basis 

functions are orthogonal 

(2.29) 

where Di is the interface region, Ow is the Kronecker delta and X k depends on 

the normalisation of X. Note that for practical cases the sum in equations (2.27) 

and (2.28) is also truncated to a finite number of basis functions. 

Then, the motion of the coupled system can be described in terms of the force 

equilibrium and the continuity of the displacement through the interface, which are 

Combining equations (2.21), (2.27) and (2.30) results in 

or in a matrix form 

where the matrix of factors ilb is given by 

(2.30) 

(2.31 ) 

(2.32) 

(2.33) 

(2.34) 

Thus, ilb is a matrix of modal correlations between the modes of subsystem band 

the basis functions of the interface. Then from equation (2.33), equation (2.22) 

becomes 
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(2.35) 

Similarly, combining equations (2.26), (2.27) and (2.30) gives 

(2.36) 

where 

fJ~ = ii 1j/:(X~)Xk(Xi)dX~. 
p 

(2.37) 

Thus from equation (2.36), equation (2.24) becomes 

(2.38) 

As continuity should hold at the interface, equation (2.31), 

'" ",b( i)qb _ '" P( i)qp _ '" ( ) i ~'f/m Xb m - ~lj/r xp r - ~Xk Xi qk' (2.39) 
m r k 

Multiplying equation (2.39) by Xk (xJ and integrating over the interface using 

equations (2.34) and (2.37) gives the relationship between the beam and plate as 

(2.40) 

Equation (2.40) can be used to eliminate qp' substitute into (2.38) to express Fi in 

terms of qb and then into (2.35) to find qb in terms of the externally applied force 

Taking the special case where the beam mode shapes can be used as the interface 

basis functions 

(2.41 ) 
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for some constant Ck chosen to ensure 

(2.42) 

Thus, if ¢~ = cos ( ktr xl Lx) the constant Ck is 

C = {l/ Lx for k = 0 
k 21 Lx for k ~ 1 

(2.43) 

Thus, the above equations (2.35), (2.38) and (2.40) reduce to, respectively 

(2.44) 

(2.45) 

(2.46) 

Expressing the response in terms of qp leads to 

(2.47) 

and thus 

(2.48) 

Such a special case can be realised when a beam is attached at the edge of a 

rectangular plate where the edge motion is described using the shape function of 

the beam and thus a basis function is not necessary. This coupling case will be 

explained in the following section. 

41 



Chapter 2. Modal method for coupled structures 

2.5 A modal formulation for the coupled motion of a system 

comprising a single beam attached to a plate 

2.5.1 A single beam coupled to a rectangular plate 

The vibrational behaviour of a coupled structure consisting of a single beam and a 

rectangular plate, as shown in Figure 2.2, is investigated next. The motion of the 

uncoupled beam and the plate can be represented using the mode shape functions 

described previously. The behaviour of the coupled system can also be described in 

terms of the mode shapes. It is not necessary to obtain the modes of the coupled 

structure itself, as the relevant separate modal matrices of the uncoupled structures 

will be used as presented in sections 2.2 and 2.3. The motion of the coupled 

structure is obtained by the above coupling technique. 

Figure 2.2. A coupled structure consisting of a finite beam attached to a finite rectangular 

plate. 

For simplicity, the beam is assumed infinitely stiff to torsion and all edges of the 

plate are also assumed to be sliding. Similar to the uncoupled plate, it is assumed in 

the following that the plate response is given using a separable solution. Thus, the 

two sets of functions in the two directions correspond to the mode shape functions 

of a beam with sliding ends. Then, as these mode shape functions are orthogonal, 

no other basis functions are required for the general coupling situation in 

representing the motion of this coupled system. 
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2.5.2 Solution in terms of generalised coordinates 

The flexural displacement ofthe plate with a single beam attached is written as 

(2.49) 
r 

where If/r are the r th mode shapes of the uncoupled plate and qr are generalised 

coordinates. The displacement ofthe beam is given by 

Wb (x,t) = wp (x,O,t) (2.50) 

due to continuity at the plate edge. 

Now the response of the coupled structure is expressed in terms of the generalised 

coordinates of the plate. The modal correlation functions, equation (2.37) can be 

written as 

fJ~ = Ck ti If/:(xi)¢t(xi)dxi . 
p 

(2.51 ) 

As the mode shapes of the plate are written in terms of the function ¢ (equation 

(2.13)) 

(2.52) 

since ¢n
r 
(0) = 1. The maximum number of modes m and k may be chosen to be the 

same. The corresponding maximum mode numbers M and N need to be determined 

for practical use, which also corresponds to the maximum mode number R. 

The dynamic stiffuess matrix in equation (2.47) to be assembled 

(2.53) 

or in terms of modal mass and stiffuess matrices 
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(2.54) 

where Kp,r =())~,rMp,r and Kb,m =())~,mMb,m' Note that M =Mp +PpMbP~ is an 

assembled mass matrix and K = K p + P pKbP~ the corresponding stiffness matrix. 

F = P pF: is the generalised force vector in plate modal coordinate. 

Introducing the hysteretic damping to the system by making the stiffness matrices 

complex, the generalised coordinates of equation (2.47) can then be obtained in 

terms of the generalised mass, stiffness matrix and the force matrix as follows. 

(2.55) 

2.6 Results 

Numerical analysis is carried out based on the modal method for the beam-plate 

structure shown in Figure 2.2. The torsional stiffness of the beam is assumed 

infinite and the boundary conditions assumed are sliding beam ends and plate 

edges. The beam is located symmetrically with respect to the plate, so that its 

neutral axis lies in the centre of the beam and the second moment of area I of the 

beam cross-section is given by 1= bh3 /12. 

It is first necessary to determine maximum mode numbers (M, N) for a practical 

application of the modal method by investigating convergence. In the convergence 

study some important physical phenomena of the coupled system are identified. 

Using the chosen mode numbers the response of the coupled system is compared 

with that based on the finite element method (FEM). 

Table 2.1 shows the material properties and dimensions used for the coupled 

structure. Perspex is considered and the material properties are the same as 
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presented by Grice and Pinnington [41]. For reasons of comparison with later 

models, the wavenumbers of the subsystems are chosen to represent a system in 

which the free plate wavenumber is at least about twice the coupled beam 

wavenumber. The ratio of the free wavenumber of the uncoupled plate to the 

uncoupled beam (kp/kb) is 3.26, which is sufficiently large (see also section 4.2.5). 

Note that, however, this is not a limitation ofthe modal method. The corresponding 

free wavenumbers are shown in Figure 2.3. 

Table 2.1. Material properties and dimensions of the coupled system consisting of a beam 

and a rectangular plate shown in Figure 2.2. 

Material Perspex 

Young's modulus, E (GNm-2
) 4.4 

Poisson's ratio, v 0.38 

Density, p (kgm-3) 1152.0 

Beam length, Lx (m) 2.0 

Beam thickness, b (mm) 5.9 

Plate width, Ly (m) 0.75 

Plate thickness, t p (mm) 5.9 

Height of beam, h (mm) 68.0 

Damping loss factor of beam, lJb 0.05 

Damping loss factor of plate, lJp 0.05 
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Figure 2.3. Wavenumbers of the uncoupled subsystems. 

The frequency range of interest in numerical analysis is chosen as 5.6 - 1412 Hz 

(data points of 457 are used in this range). This is basically a similar to the range of 

10 - 1000 Hz used by Grice and Pinnington [41]. However, in this thesis an 

average expression such as octave or one-third octave bands will often be used and 

thus the frequency range is adjusted for convenience to cover complete bands. The 

number of frequency data points used in each one-third octave band is 19. In this 

frequency range, the uncoupled beam has 10 modes with the first resonance 

frequency at 15.1 Hz (the rigid body mode at zero Hz being incorporated into the 

modal sum and calculation). Meanwhile, the first three resonance frequencies of 

the uncoupled plate are 104,5.7 and 10.0 Hz and there are more than 300 modes in 

the frequency range considered, the modal density being about 004 modes per Hz. 

The modal overlap of the plate is greater than unity above about 50 Hz. Thus the 

beam and plate might be suitable for low and high frequency analyses respectively, 

which provides an insight for mid-frequency analysis. 
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2.6.1 Investigation of convergence 

The analytical modal procedure presented in section 2.5 provides an exact response 

only when an infinite number of modes are included in the calculation. For 

practical calculations, a reasonable range should be chosen such that there is an 

acceptable error in the response. 

The response calculated when the number of modes is very large is taken as a 

reference, for comparison with the calculations based on a more practical number 

of modes. Here, the maximum mode number of 200 for each direction is 

considered as a reference case (M = N = 200), which results in 40401 modes in 

the motion of the coupled structure. This should provide an accurate prediction of 

the coupled modal response in the present frequency range of 5.6 - 1415 Hz. The 

FEM predicts 316 coupled modes in this frequency range. Assuming the reference 

case gives an exact response, the convergence of the modal method is investigated 

in terms of the evaluation of the spatially averaged kinetic energy. 

To obtain an estimate of the space-averaged kinetic energy of the plate, 20 points 

are randomly selected when an external point force is applied at the end of the 

beam (see Figure 2.2)*. It is assumed that the response calculated using the 

maximum mode number of 200 in each direction is exact. This space-averaged 

kinetic energy for a unit amplitude force is shown in Figure 2.4. Although the 

modal density of the present plate is about 0.4 modeslHz, individual modes cannot 

be distinguished separately at high frequency because of high modal overlap . 

• Although 20 points are insufficient to give an accurate estimate of the energy [21] by using the 
same points in each case the influence of these points is eliminated. 

47 



Chapter 2. Modal method for coupled structures 

10-5 

10-6 '""---~-'---~-~~~~~~'-.,.----~--~~~~-"-'--::----' 
10

1 
102 10

3 

Frequency (Hz) 

Figure 2.4. Kinetic energy averaged over 20 points of the plate of the coupled system as in 

Figure 2.2. Unit excitation at x = 0.0 m, Y = 0.0 m (beam left hand end). M = N = 200. 

The relative error in the kinetic energy estimate at a certain frequency is given as 

(2.56) 

where (Texact ( OJ )) is the accurate estimate of the space-averaged kinetic energy of 

the plate and (TMN ( OJ )) is that resulting from a finite modal summation. Then, the 

frequency-averaged error e in dB is given as 

(2.57) 

where EO) is the frequency-averaged value of EO) . For illustration this is evaluated 

as a one-third octave band average for bands with centre frequencies of 20, 100, 

1000 and 1250 Hz. 

The convergence is examined by evaluating the mean error e when the maximum 

mode numbers, M and N are incrementally changed for the x and y directions 

respectively, at intervals of 2. 
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The error distribution in the 20 Hz one-third octave band is shown in Figure 2.5. It 

is interesting that the mean error reduces rapidly as the number of modes in the x 

direction is increased, especially for maximum mode numbers M of 6, 12 and 24, 

whilst for the error in the y direction the reduction is more gradual. This effect is 

related to the motion of the stiffer beam which lies along the x axis. 

M (max. mode number, x dir.) N (max. mode number, y dir.) 

Figure 2.5 . Error distribution in terms of the one-third octave band average energy based 

on the modal method. Centre frequency of 20 Hz. Reference values from M = N = 200 

using the modal method. 

As the mean error is evaluated using the plate response, it seems reasonable to 

introduce a non-dimensional wavenumber in terms of the plate free wavenumber. 

The centre frequency of the one-third octave band is used to derive the non­

dimensional wavenumber. Note that the introduction of the centre frequency here is 

only for a consistent expression in this study using one-third octave bands. This 

non-dimensional wavenumber is given by 

(2.58) 

where M and N are the maximum mode numbers in the x and y directions, Lx 

is the length of the beam, Ly is the width of the plate and k;.e = m;co; / Dp is the 

plate free wavenumber at the centre frequency we ( = 21l" Ie) . 
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In a similar manner, a normalised wavenumber with respect to the beam free 

wavenumber can be introduced. This is helpful to understand the relationship 

between the motions of the beam and the plate. Consider such a wavenumber 

normalised by the beam free wavenumber in the one-third octave band centre 

frequency. In the present one-third octave band ( fc = 20 Hz), the beam 

wavenumber is kb,c = 1.81 rad/m and thus, the normalised wavenumber with 

respect to the free beam wavenumber gives factors of about 5, 10 and 20 

corresponding to M = 6,12 and 24 respectively. 

Another example is shown in Figure 2.6 corresponding to the one-third octave band 

average error in the energy at 1 kHz. The beam wavenumber in this band is 12.8 

rad/m. Comparing this result with Figure 2.5, one can observe that the error is 

larger. It is natural to expect that using a particular maximum mode number gives a 

lower error at low frequencies than at high frequencies, as the maximum mode 

number can more adequately describe the motion at low frequencies. As the free 

plate and beam wavenumbers increase, more modes are required to represent the 

motion. 

The overall observation is that the reduction in the mean error is more rapid as the 

number of modes is increased in the x direction than for the y direction. A rapid 

reduction is found at M = 10. The corresponding normalised wavenumber with 

respect to the beam wavenumber is about 1. Thus, it appears that the mean error 

significantly reduces when the trace wavenumber k
t 

( = M n/ Lx) becomes greater 

than the beam wavenumber kb in the corresponding frequency band. Note that the 

error is obtained using space-averaged responses on the plate, not on the beam. 

Thus, this gives the important result that the motion of the flexible plate is heavily 

influenced by the motion of the stiff beam in this direction (parallel to the beam). 

This enables a hypothesis to be proposed that in any subsequent wave method the 

motion of the plate in this direction is dominated or heavily influenced by the 

coupled beam wavenumber. 
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M (max. mode number. x d ir .) N (max. mode number, y d ir. ) 

Figure 2.6. Error distribution in terms of the one-third octave band average based on the 

modal method. Centre frequency of 1 kHz. 

Clearly, using more modes results in a more accurate response prediction. It is also 

clear that the response at higher frequencies needs more modes for a given 

accuracy than at lower frequencies . Thus, it is necessary to choose a maximum 

mode number to be used for a practical application, which is also dependent on the 

frequency range of interest. Accordingly, a physical quantity that is less dependent 

on the frequency range needs to be introduced rather than a maximum mode 

number. 

A contour plot of the mean errors shown in Figure 2.6 is given in Figure 2.7 in 

terms of the non-dimensional wavenumbers r p ,x and r p ,y ' The thick black line 

indicates a mean error of about -20 dB (about 1.0 %) in the corresponding one­

third octave band. 
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3.5 4.5 

Figure 2.7. Contours of the one-third octave band average error as a function of the non­

dimensional wavenumbers in the modal method. Centre frequency of 1 kHz. 

Another example of the contours corresponding to the centre frequency of 100 Hz 

is shown in Figure 2.8, also in terms of non-dimensional wavenumbers. The thick 

black line again indicates an error of about -20 dB. 

5 
ky / kpcenlr. 

Figure 2.8. Contours of the one-third octave band average error as a function of the non­

dimensional wavenumbers in the modal method. Centre frequency of 100 Hz. 

Comparing Figures 2.7 and 2.8, one can find that the error of -20 dB occurs at very 

similar non-dimensional wavenumbers, say about rp ,x :::::: 0.6 or rp,y :::::: 2.5 . Note 

that while convergence occurs when the wavenumber is about 2.5 times the free 
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plate wavenumber in the y direction, the same convergence occurs when the 

wavenumber is smaller than the free plate wavenumber in the x direction. This 

confirms that the beam dominates the plate motion in this direction. Similar 

phenomena are also found for other frequency bands considered (!c = 20 Hz and 

1250 Hz). As expected, the non-dimensional wavenumber appears to be a very 

useful indicator, which seems independent of frequency. If an error of -20 dB is 

chosen on practical grounds *, the non-dimensional wavenumbers assist in 

specifying the modal order limits for the required accuracy from the modal 

approach. Further, in the present coupled structure, the motion in the x direction, 

parallel to the beam, is strongly related to the motion of beam, which gives the 

assumption of kx ~ kb • Then, as kp/kb = 3.26» 1 , using the wavenumber trace 

matching of k~ = k~ - k; , the ratio of the trace wavenumbers can be found as 

ky/kt ~ 3.1. Thus, the location having this ratio, somewhere in the black line in 

Figures 2.7 and 2.8 for the error of -20 dB, can be found. This gives unique non­

dimensional wavenumbers of rp,y = 2.53 and rp,x = 0.78 in Figure 2.7. In the 

same manner, non-dimensional wavenumbers producing the error of about -20 dB 

in different frequency bands are evaluated and summarised in Table 2.2. 

Table 2.2. Relationship between the maximum mode number and non-dimensional 

wavenumber in various one-third octave bands for a mean error of -20 dB. 

!c rp,x rp,y M N 

20Hz 0.71 2.31 3 4 

100Hz 0.79 2.57 7 9 

1000 Hz 0.78 2.53 21 26 

1250 Hz 0.69 2.25 21 26 

The M and N values given III the table are the mimmum to give the 

corresponding non-dimensional wavenumbers for the particular plate dimensions 

• An error of -20 dB, or 1 % in the energy corresponds to ±0.04 dB accuracy. 
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(2.0 x 0.75 m). Thus, for the whole frequency range of 5.6 - 1412 Hz, it is 

recommended to use M x N = 21 x 26. The mean error in the whole frequency 

range of 5.6 - 1412 Hz is about -27.3 dB (0.18 %). For further study the maximum 

numbers of M = N = 26 are used for convenience. 

2.6.2 Comparison of the modal method for beam-plate coupled system with FE 

Numerical results based on the modal method presented in the previous sections 

are presented here. The maximum number of modes used in the modal method is 

26 for both directions x and y . A comparison is made between the modal method 

and results obtained using a commercial Finite Element (FE) program for structural 

analysis. The same boundary conditions of sliding beam-ends and plate edges are 

used in both methods. Euler-Bernoulli FE beam elements (133 elements) and thin 

shell elements are used. It is generally known that at least 8 elements per 

wavelength are necessary to describe an appropriate motion of a structure [3] and 

thus the thin shell element size of 15 mm is used for the plate. The plate 

wavelength at 1412 Hz is 0.126 m. The FE model used is shown in Figure 2.9 

where the thick solid line is added to distinguish the beam from the plate. The total 

number of elements is 6783. A hysteretic damping factor 7J of 0.05 is used for the 

beam and plate. The material properties are as in Table 2.1. 

x 
' .. y 

Figure 2.9. A finite element model used for the numerical comparison with the modal 

method. 
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The results presented consist of mobilities where a point force is applied at one end 

of the beam. The point mobilities are compared in Figure 2.10 and the transfer 

mobilities to an arbitrary point on the plate are compared in Figure 2.11. The two 

methods are in excellent agreement, with differences only noticeable at the high 

frequencies. Note that the FE results should be considered approximate at high 

frequencies. 

10-' r-~--r-r-Il------~-~--'---------;:==--=M;::;o:::::d=:al=m::::Jet:;=ho='d=il 
- - FEM 

Frequency (Hz) 

Figure 2.10. Point mobilities from the modal method and the FEM. Excitation and 

response at x = 0.0 m, Y = 0.0 m (beam left hand end). 

1 0-6 '-'-~---.L-:--__ ~_~~~_~---'--:--__ ~_~~~~~~'-;:---' 
10

1 
102 10

3 

Frequency (Hz) 

Figure 2.11. Transfer mobilities from the modal method and the FEM. Excitation at 

x = 0.0 m, Y = 0.0 m (beam left hand end) and response of the plate at x = 1.50 m, 

Y = 0.49 m. 
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The results presented in Figures 2.10 and 2.11 confirm the validity of using the 

modal model that has been developed and the coupling technique for a stiff beam 

connected to a flexible plate using mode shape functions based on separation of the 

variables. 

2.7 Conclusions 

The modal method presented in this chapter, for coupling a stiff beam to a flexible 

rectangular plate, produces some important results that will be used for further 

studies. 

The modal method gives excellent predictions of the coupled response such as 

mobilities. The modal coupling technique allows the known mode shape functions 

of the corresponding subsystems to be used, instead of finding the modes of the 

coupled system. The approach based on the variable separation is especially useful 

to analyse the coupled system incorporating a rectangular plate. Also by assuming 

sliding boundary conditions of the plate edges the complexity of the modal method 

is reduced with simple analytical modes which are the same for plate and beam 

along their common boundary and simplicity in the algebraic derivation and 

numerical implementation. While the same could be achieved using simple 

supports, sliding boundaries allow an external force to be considered on the beam. 

Such a technique can also be utilised for more complex systems consisting of 

several beams, to provide an accurate response to be used for comparison with 

alternative approximate methods developed later. The number of modes required in 

the modal method in order to obtain an accurate response was examined. The 

convergence in one-third octave bands was studied in terms of the non-dimensional 

wavenumbers. Convergence is achieved to within -20 dB when modes are included 

up to a wavenumber approximately 2.5 times the free plate wavenumber in the y 

direction and 2.5 times the free beam wavenumber in the x direction. 
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In the convergence study, it was shown that the behaviour of the flexible 

rectangular plate in the direction parallel to the stiffer beam is mostly governed by 

the stiff beam. The response in that direction also requires fewer modes in order to 

represent the behaviour well. This important result has implications for the wave 

method considered in later chapters. 

The mode-based method could be extended to the more general case using the 

uncoupled modes of the separate beam and plate. The modes could be numerical 

rather than analytical and need not be for the same boundary conditions or 

expressible as separate functions in the orthogonal directions [49]. 
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CHAPTER 3 

A FOURIER TECHNIQUE FOR STRUCTURES WITH 

CONSTANT GEOMETRY IN ONE DIRECTION 

3.1 Introduction 

The dynamic behaviour of a coupled structure consisting of a single beam and a 

plate was analysed in Chapter 2 using a modal method. In this chapter, a similar 

coupled structure is investigated using a Fourier transform technique. This 

approach will show some important physical phenomena of the coupling between 

the beam and the plate, which were difficult to determine using the modal method. 

The Fourier method considers all possible real values for the wavenumber kx in the 

direction of the beam. 

In the previous chapter, it was assumed that the beam attached to the plate has 

infinite torsional stiffuess. A sliding condition was also considered at the ends of 

the beam. These assumptions are also made in this chapter. However, it is assumed 

that the opposite edge of the plate, parallel to the beam, is pinned. This shows an 

advantage ofthe Fourier transform technique in comparison with the modal method, 

as other boundary conditions such as sliding or free condition can simply be 

adopted instead. Also the corresponding results will be used in the next chapter for 

comparison with those obtained by the approximate wave method where the pinned 

opposite edge is considered. 

This chapter mainly deals with the case of excitation on the beam of the coupled 

beam-plate structure (the plate-excited case can be considered in a similar way). 

The structural behaviour is presented for the coupled structure consisting of an 

infinite beam and a semi-infinite plate. The dynamic characteristics of the structure 

are examined in terms of the spatial Fourier transformed response and some 

physical meanings are given. Both numerical quadrature and FFT implementations 
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of the Fourier transform are considered. Following this, an infinite beam connected 

to a finite width plate is considered. Then, a Fourier series approach is applied to 

obtain the response of a finite beam coupled to a finite plate. 

The results of the analysis are compared and validated against those obtained using 

the FEM. Furthermore, power relationships based on the Fourier transform method 

are presented and some comments are given relating to the studies that will follow 

later. 

3.2 Infinite beam coupled to semi-infinite plate 

3.2.1 Wavenumber relationship 

Consider an infinite beam coupled to a plate of semi-infinite width and infinite 

length shown in Figure 3.1. Harmonic motion at frequency OJ is assumed 

throughout with a time dependence of e iOJl
• It is assumed that the beam is infinitely 

stiff to torsion along y = O. 

Figure 3.1. A coupled structure consisting of an infinite beam attached to a plate of semi­

infinite width. 
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Firstly, considering the uncoupled free vibration of the beam at frequency OJ, the 

relevant equation of motion ofthe beam with damping is [70] 

(3.1) 

where Wb is the complex displacement amplitude of the beam vibration, m~ is the 

mass per unit length and Db is the bending stiffuess given by EbI , with 

Eb ( = Eb (1 + i1h )) Young's modulus with damping and I the second moment of 

area ofthe beam. The damped free beam wavenumber satisfies Dib4 = m~a/ . 

When the semi-infinite plate and the infinite beam are joined along the line yO, 

a force per unit length J;(x) acts between them as shown in Figure 3.1. An 

external force acting on the beam at x = 0 is defined by a point force Fo5(x - 0) 

where 5(x- 0) represents a delta function. Then equation (3.1) becomes 

(3.2) 

Spatial Fourier transform pairs are defined by the relationship between the 

coordinate x and real wavenumber k
t 

in the x direction as follows. 

For spatial derivatives ofthe functions one has 

ikxTf:(kJ = [ dwb(x) e-ik,xdx, 
00 dx 

-k;Tf:(kJ = [ d
2
;2(X) e-ik,xdx. 
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Therefore, the spatial Fourier transform of equation (3.2) gives 

(3.6) 

where F; (kJ is the Fourier transform of j; (x). 

The equation of motion ofthe free plate with damping is [77] 

- (a
4
w/x,y) a

4
w/x,y) a

4
w/x,y)]_ " 2 _ _ 

Dp 4 +2 2 2 + 4 mpOJ wp(x,y)-O 
ax ax By By 

(3.7) 

where D p is the complex plate bending stiffuess given by D p = Ei! /12(1- v 2
), V 

is Poisson's ratio, t p is the thickness and m; is the mass per unit area of the plate. 

This leads to damped free wave solutions with wavenumber f; = m;OJ2 
/ Dp . 

If the motion of the plate is defined by a wavenumber k~ in the x direction, the 

response can be written as Wp(kt,y). The complete response at position y can 

thus be given by the Fourier transform 

w/x,y) = 2~ [W/kx,y)eik,xdkt , (3.8) 

which has an inverse Fourier transform 

(3.9) 

Now the Fourier transform of equation (3.7) is 

(3.10) 

which can be written as 

(3.11) 

Consider a solution for a harmonic wave in the plate of the form 

61 



Chapter 3. A Fourier technique for structures with constant geometry in one direction 

(3.12) 

where ky is the trace wavenumber for the wave radiating into the plate normal to 

the beam. Substituting equation (3.12) into equation (3.11) gives 

or 

(3.13) 

Therefore, if the negative square root is assumed for waves propagating or 

decaying away from the junction (i.e. with a negative real part), two different types 

of wavenumber in the plate are found to be 

(3.14 a) 

(3.14 b) 

If Ikx I < /kp /' then wavenumber kYl may be considered to represent a wave 

propagating outward into the plate (if kp is real then kYl is imaginary for kx < kp) 

and kY2 is considered as a nearfield wave decaying outward from the beam. 

Conversely, if Ikx I > /kp / ' then both may be considered as nearfield waves. 

Consequently the travelling and nearfield waves for the plate can be written as 

(3.15) 

The waves with wavenumber -k
Y1 

and -k
Y2 

cannot exist on a semi-infinite plate 

for excitation on the beam. 
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3.2.2 Response of the coupled beam 

Having obtained the wavenumber relationship of the coupled structure, the 

response of the structure can be obtained from the boundary conditions expressed 

in the wavenumber domail1. The boundary conditions when a semi-infinite plate is 

attached at its edge to the beam are: 

(i) Continuity equation; equal displacement 

(3.16) 

(ii) Sliding condition for the plate; the beam is assumed infinitely stiff to torsion 

alongy=O 

(3.17) 
y=o 

(iii) Force equilibrium condition; the force on the plate is equal and opposite to the 

force on the beam 

(3.18) 

From boundary condition (ii), 

(3.19) 

Equation (3.16) for the boundary condition (i) becomes 

(3.20) 

From equations (3.17) and (3.18), 

(3.21) 
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Substituting equation (3.19) into this gives 

(3.22) 

From equation (3.20), this can be expressed in terms of W:(kx ) as follows. 

(3.23) 

Equation (3.6), representing motion of the coupled structure, becomes, on 

substituting for the interaction force 

(3.24) 

The displacement of the beam at position x IS gIven by the Inverse Fourier 

transform, equation (3.4), 

(3.25) 

Note that the meaningful range of kx for the integral depends on the uncoupled 

beam wavenumber kb , as will be shown later. By introducing a new variable r, 

defined as the ratio of the coupled wavenumber kx to the uncoupled real 

wavenumber kb (r = k)kb ), consideration of both kx and kb can be simplified. 

- -
Also, as the plate wavenumbers kYl and kY2 include the wavenumber kt' another 

variable is introduced as follows. 

(3.26) 

Then, as rq kj kp , the third term of the denominator of equation (3.25) divided 

by k: is 
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- 15 pkYlkY2 ( kYI + kY2 ) / (15bk; ) 

= m;~(r~r -1 ( ~(r~t -1 +~(r~t +1 )/[ m~kp (1 + i77b) J. (3.27) 

To simplify, if new variables ¢, Ij/ and Ji are given by 

(3.28) 

then, equation (3.27) becomes 

(3.29) 

Thus, assuming small damping k; / k; ;::; 1- illb , equation (3.25) becomes 

(3.30) 

3.2.3 Discussion 

If the plate is removed from the beam, then the third term of the denominator of 

equation (3.25) is equal to zero, and the response should be that of a forced 

uncoupled beam. Then, the corresponding equation becomes 

F ikxx 

Wb(X)=~[ : -4dk. 
2 D ifJ k -k x 1r b x b 

(3.31) 

In terms of the non-dimensional wavenumber r(= kx!kb ) , equation (3.31) becomes 

(3.32) 

The solution to this can be obtained analytically. First of all, note that the integrand 

has four poles at k, = ±kb and ±ikb which are complex numbers. Accordingly, 

they can be represented in the complex plane as shown in Figure 3.2. The integrand 

goes to zero as Ik,1 ~ +00 for Im (kx) > 0, so the contour is closed in the upper half 
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plane (anti clockwise) as shown. Contour integration can be applied in this upper 

half plane letting the magnitude R = Ikxl go to infinity. 

Im(kJ 

X Re(kJ 

x 

Figure 3.2. Poles of the uncoupled beam and the path of the corresponding contour integral. 

As the poles are at complex values of kx' it can be seen that the contour encloses 

only two poles, k< = ikb and -kb' Then, the integral can be evaluated using the 

residue theorem [78] as 

(3.33) 

as the contribution from the semi-circular arc on the contour can be shown to be 

zero in the limit. Finally, the analytical solution for the forced uncoupled beam is 

(3.34) 

which is the well-known solution for the forced infinite beam [79]. Such an 

analytical integration could be considered for a beam-plate coupled system 

consisting of infinite structures, although in this thesis the response of a beam-plate 

system is found numerically. Such an example was given by Lamb, Jr [80] who 

found the analytical response of an infinite beam coupled to the centre of a plate 

using the Cauchy integral theorem, where the contribution of both poles and branch 

cuts was taken into account. 
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As can be seen in equation (3.31), the denominator is minimized when kx = kb , and 

correspondingly the beam response will have a peak at this wavenumber. In the same 

manner, equation (3.25) shows how the response of the beam can be obtained from 

the inverse Fourier transform over wavenumber kx for the case when the plate is 

attached to the beam. The Fourier transformed beam response will be maximum 

when kx ~ kb , although the exact value depends on the third tenn of the denominator. 

The physical meanmg of the third term in equation (3.30) can be identified. 

Assuming the beam and the plate are undamped, and if Ikxl« Ikpl, then the third 

term is approximately 

m"(-1+i) 
J1tPlf/ (tP + If/) ~ P, • (3.35) 

mbkp 

Thus this complex term introduces damping to the beam as well as a mass effect. 

That is, the imaginary part has a damping-like effect. Also, the real part can be 

regarded as a mass-like term and will shift the peak response to a wavenumber 

slightly above kb • If m; « m; / k p then the effect of this tenn will be large. In fact, 

m;/kp is the mass, per unit length along the beam, of a plate having a width of 

approximately one-sixth of the plate wavelength [41]. Therefore, its effect becomes 

small as frequency increases due to the factor 1/ k p • The subsequent numerical 

results in section 3.2.6 will clearly show these effects. 

3.2.4 Results: uncoupled beam in wavenumber domain 

Before presenting numerical results for the coupled beam-plate structure, it is 

worthwhile to consider an uncoupled infinite beam as described in the previous 

section. The response of the uncoupled beam can be simply obtained from equation 

(3.31). The dimensions of the uncoupled beam are chosen as those presented in 

Table 2.1 except that the beam is assumed infinitely long. 
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The external point force Fa = 1 is applied at x = O. Although, to obtain the exact 

response, it may be possible to consider the whole range of the wavenumber, from 

-00 to 00 as presented in equation (3.31), it seems more practical to choose an 

appropriate integration range. This is because the range chosen can readily be used 

for a Fourier series to be used for a finite coupled system (see section 304.1), 

although a convergence test is necessary. This will be discussed in the following 

sections. Initially a large but finite range of the wavenumber kx is chosen, between 

-100 and +100 rad/m. Then ~(kx) can be evaluated for different values of kx 

and kb when the third term ofthe denominator of equation (3.24) equals zero. 

The modulus of the transformed displacement of the uncoupled beam based on 

equation (3.24) is shown in Figure 3.3 for a frequency of5.6 Hz. 

10-8 

10-12 .'-:--_-'-_--'-__ -'--_-L-_---' __ --'--_--'--__ -'--_--'-_---' 
-100 -80 -60 -40 -20 0 20 40 60 80 100 

Wavenumber kx (rad/m) 

Figure 3.3. Fourier transfonned displacement of the uncoupled beam at 5.6 Hz. kb = 0.96 

rad/m. 

Figure 3.3 shows that the response of the uncoupled beam as a function of the 

wavenumber kx is symmetric. The pole of equation (3.24) is identified at 

kx = ±0.96 rad/m, corresponding to the uncoupled wavenumber kb = 0.96 rad/m at 

this frequency, which minimises the denominator. Note that the pole lies in the 
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complex plane near this value of kx leading to a peak in 1W;,(kJI at this value 

limited by damping. 

Truncating the integral at kx = ±100 rad/m appears to be justified from the low 

response levels and small contribution at these values of kx . 

Figure 3.4 shows the Fourier transformed displacement of the uncoupled beam at 

1412 Hz. The corresponding pole occurs at kx = ±15.2 rad/m. Again the peaks at 

the pole do not tend to infinity due to the damping in the beam. 

10-8 

10-12 '-----_--'-_-----'-__ -'-----_--'-_------' __ -"---_--'-__ -'-----_---'--_---' 

-100 -80 -60 -40 -20 0 20 
Wavenumber kx (rad/m) 

40 60 80 100 

Figure 3.4. Fourier transformed displacement of the uncoupled beam at 1412 Hz. 

kb = 15.2 rad/m. 

3.2.5 Results: Fourier transform of uncoupled beam 

Using the Fourier transformed response presented, the forced frequency response 

function can be obtained from equation (3.31). The analytical solution is presented 

in equation (3.34) and is used for comparison. To evaluate the integral, the 

function QUADL [81] of MATLAB was used, which is based on an adaptive 

Lobatto quadrature. 
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An appropriate wavenumber range to be considered in the integration is inferred. 

Because the uncoupled beam wavenumber kb depends on frequency, it seems more 

reasonable to use equation (3.32) including the non-dimensional wavenumber 

r(= kx!kb ) to determine the wavenumber range. In Figure 3.5, the inverse Fourier 

transformed response at the point of excitation divided by the corresponding 

analytical result based on equation (3.34) is shown. The inverse Fourier 

transformed results depend on the different ranges of the non-dimensional 

wavenumber. The actual response itself, is shown later in Figure 3.14 where the 

response is shown in terms of mobility. 

1.00Sr--_______________________ --I 

1.006 

1.004 

-::£.002 

! 
1 1---'-,-,,-~-.- .. --.- ----.-.. --.- ----.-.. --.- --~--.- .. ~.~ ---. 

~0.99S 

0.996 
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Figure 3.5. Error of the displacement of the uncoupled infinite beam at the excitation point 

when different ranges of non-dimensional wavenumber r are considered in the inverse 

Fourier transform. The responses are divided by the analytical displacement given in 

equation (3.34). 

As can be seen, the inverse Fourier transformed response for the case -3::;; r::;; 3 is 

already close to the analytical result, with an error of 0.8%, reducing to about 0.01% 

for -15 ::;; r ::;; 15 . When the range for r is considered from - 50 to + 50, the error is 

approximately 0.0002% (0.000002% for -200::;; r ::;; 200). A further investigation of 

convergence is carried out for the coupled beam case in the next section to determine 

an appropriate range of the non-dimensional wavenumber for that case. 
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3.2.6 Results: coupled beam in wavenumber domain 

Attaching the semi-infinite plate to the beam one can compare how the response is 

affected. The material properties and all dimensions are as presented in Table 2.1, 

except that the beam is infinite and the plate is semi-infinite. 

To examine the relationship between the response of the coupled beam and the 

wavenumber kt' the response ~(kJ obtained from equation (3.24) is first 

presented. Figure 3.6 shows the modulus of the transformed displacement of the 

coupled beam for a frequency of 5.6 Hz. 

Comparing Figures 3.3 and 3.6, it is clear that the coupled beam is influenced by 

the damping effect of the plate near the peaks, which are less sharp. While the 

uncoupled wavenumber kb = 0.96 rad/m, the peak in Figure 3.6 occurs at 

kx ~ ± 1.4 rad/m. This means that the pole of the coupled wavenumber occurs at a 

larger wavenumber due to the influence of the plate, and this is mainly related to 

the added mass effect of the plate. 
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Wavenumber kx (rad/m) 

Figure 3.6. Fourier transformed displacement of the coupled beam as in Figure 3.1 at 5.6 

Hz. kb =O.96radlm. m;/(m~kp) =4.7. 
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The mass and damping effects of the third term in equation (3.24) can be simply 

compared by including either the real part or the imaginary part of the third term 

separately. Figure 3.7 shows these results. It can be seen that the mass effect shifts 

the peak to a wavenumber above kb and the effective damping due to the plate 

reduces the peak amplitude and broadens the peaks. 

1ifr---~----~--~----~--~----F=~~~~~==~==~ 
- Uncoupled beam 

-10 -8 -6 -4 -2 0 2 

- - Real part of the third term used 
Imag. part of the third term used 

- The third term used 
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Wavenumber kx (rad/m) 

10 

Figure 3.7. The effect of the complex third term in the denominator of equation (3.24) at 

5.6 Hz in the wavenumber domain. 

Figure 3.8 shows the transformed displacement response at 1412 Hz. The peak 

occurs at kx ;::::: ±16.1 rad/m which is closer to the corresponding uncoupled value of 

kb = 15.2 rad/m. That is, the relative difference between the values of kb and kx is 

smaller at 1412 Hz than at 5.6 Hz. As explained before, this is because the mass 

effect of the plate is reduced as frequency increases due to the k p term. This can be 

confirmed by comparing the values of fJ = m; / ( m~k p ), which changes from 4.7 at 

5.6 Hz to 0.3 at 1412 Hz. 

As the uncoupled beam wavenumber kb depends on frequency, to obtain the 

correct response of Wb the wavenumber range of ~(kx) to be considered should 

be changed according to the frequency, i.e. ~(kx) is not only a function of kx but 
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also of kb as seen in Figures 3.6 and 3.8. Therefore, it is necessary to consider the 

response from the point of view of both k t and kb • By introducing the non­

dimensional wavenumber r = kx / kb as before, the relationship between the 

response and k t and kb can be examined. 
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Wavenumber kx (rad/m) 

Figure 3.8. Fourier transformed displacement of the coupled infinite beam and plate as in 

Figure 3.1 at 1412 Hz. kb = 15.2 rad/m. m;j{m;kp) = 0.3. 

Wb(kx) is shown in terms of r in Figure 3.9. Note that it is possible to truncate the 

range of integration by identifying a sufficiently low level response with respect to 

the maximum Fourier transformed response. For example, if the non-dimensional 

wavenumber range is chosen to cover a range of 60 dB with respect to the 

maximum response, this would seem to be a reasonable range to estimate the most 

significant contribution. The corresponding non-dimensional wavenumber range is 

approximately ±50 at 5.6 Hz and ±25 at 1412 Hz. A further study follows. 
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Figure 3.9. Fourier transformed displacement of the coupled infinite beam and plate as in 

Figure 3.1 with non-dimensional wavenumber at 5.6 Hz and 1412 Hz. 

3.2.7 Results: Fourier transform of coupled beam 

To choose an appropriate range of the non-dimensional wavenumber, the drive 

point response amplitude of the coupled structure is used. Assuming the amplitude 

based on the range of y = ±200 is exact, the accuracy of the response is examined 

for different integration ranges. The response amplitudes are calculated based on 

equation (3.30), which is derived in terms of the non-dimensional wavenumber y 

in the inverse Fourier transform. The function QUADL was used as previously for 

the evaluation of the integral and the corresponding results are shown in Figure 

3.10. This indicates that the response amplitude is predicted reliably for a small 

range of non-dimensional wavenumber. When the non-dimensional wavenumber 

range for y is between ±3 the response is already close (error of 1.2% at 5.6 Hz) 

to that for the case when y = ±200 is used. Maximum errors of 0.06%, 0.009% and 

0.0004% are found for y = ±8 , Y = ±15 and y = ±50 respectively. The 

corresponding point mobility is shown later in Figure 3.14. 
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Figure 3.10. Error of the displacement of the coupled infinite beam and plate as in Figure 

3.1 at the excitation point when different ranges of non-dimensional wavenumber rare 

considered in the inverse Fourier transform. The results for r = ±200 is used as a reference. 

The errors are shown in Figure 3.11 as a function of the integration range at three 

different frequencies, 5.6 Hz, 100 Hz, and 1412 Hz. Clearly, it can be seen that the 

differences are reduced as the integration range is increased. Although a greater 

range results in smaller errors, it also requires much more computation time. 

Therefore, a compromise is required. If the non-dimensional wavenumber range 

chosen is -15 to +15 the errors for the frequencies considered are less than 0.01% 

in Figure 3.11, which can be regarded as acceptable accuracy *. This range is used 

for further studies where the frequency range of 5.6 - 1412 Hz is considered. The 

chosen non-dimensional wavenumber of r = ±15 are about 40 and 51 dB below 

the maximum at the frequencies of 5.6 and 1412 Hz respectively. Thus, an 

alternative requirement of at least 40 dB attenuation can be used instead of the 

fixed non-dimensional wavenumber range of r = ±15 . 

• This gives responses with precision ± 0.0009 dB. 
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Figure 3.11. The errors of the displacement dependent on the integration range of the non­

dimensional wavenumber (The result based on the range of y = ±200 is assumed to be the 

exact value). 

Instead of adaptive quadrature, the Fast Fourier Transform (FFT) can be used to 

evaluate Wb(X), The advantage of the FFT is that results can be obtained more 

rapidly than using an adaptive quadrature. However, consideration should be given 

to the data resolution of ~(kt) . If ~(kx) is not calculated with sufficient 

resolution in terms of kx' then some important data can be lost, particularly at the 

peaks, and this results in inaccurate predictions. The relationship between the data 

resolution of ~(kx) and the response wb(x) has therefore been studied. 

Data resolution !1kx in the FFT defines the response ranges of wb(x) as follows 

[82]. 

(3.36) 

In fact, because the results calculated using the FFT are symmetric with respect to 

x 0, only half of the inverse Fourier transforms are shown and their limit can be 

defined by 
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X
max 

J[ 
X =--=--

fold 2 11k 
x 

(3.37) 

Using the symmetric Fourier transformed displacement, such as that shown in 

Figure 3.9, the FFT gives the response at all positions x. Figures 3.12 and 3.13 

present these results, which show the real part of the displacement of the coupled 

beam as a function of position x. For both cases, the same non-dimensional 

wavenumber range r = -15 to + 15 is used. Because the same resolution of non-

dimensional wavenumber is used, the resolution of the wavenumber I1kx is 

effectively adjusted based on kb . In this case the number of values of wavenumber 

k t used is 2561, independent of frequency, and I1kx is chosen to be O.OI2kb • 

In both figures it can be seen that the response decays to a negligible level well 

within the range limited by x fold' Therefore, the value chosen for I1kx based on the 

non-dimensional wavenumber seems to be reasonable for obtaining an accurate 

response. A larger value of I1kx would give the same response but truncated to a 

smaller value of x fold' 

Note that the displacement at 5.6 Hz decays in a smaller number of cycles than the 

1412 Hz case. As mentioned previously, this is also related to the damping effect of 

the plate. The value of J1 = m;/( m~kp) at 5.6 Hz is larger than that at 1412 Hz, the 

effective damping due to the plate is greater at the lower frequency (see equation 

(3.35)). 
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Figure 3.12. Real part of displacement of the coupled infinite beam as in Figure 3.1 at 5.6 

Hz. Non-dimensional wavenumber range used is r = -15 to +15, k
t 

= -14.3 to +14.3 

rad/m, b.kt = 0.0122 rad/m, X/old = 280 m, m;/( m~kp) = 4.7. 
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Figure 3.l3. Real part of displacement of the coupled infinite beam as in Figure 3.l at 1412 

Hz. Non-dimensional wavenumber range used is r = -15 to +15, k
t 

= -228 to +228 

rad/m, b.kt =0.1782rad/m, X/old = 17.6m, m;/(m~kp) =0.3. 

The response at x = 0 based on the discrete FFT is compared in Figure 3.14 with 

that calculated by the Fourier transform method, for which QUADL is used. The 

same integration range of the non-dimensional wavenumber r = -15 to + 15 is 

used. Because a unit point force is applied, the velocity response is equivalent to 
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the point mobility of the infinite beam coupled to the semi-infinite plate. Figure 

3.14 shows good agreement in both the amplitude and phase of the point mobilities 

for the two methods (the two lines are indistingushable). Maximum differences of 

0.1% and 1.2 xl0-4 radian respectively are found at 5.6 Hz, due to different 

integration methods used. 

Finally, the effect of the plate on the beam is investigated by comparing the point 

mobility and the corresponding phase ofthe coupled beam and the uncoupled beam. 

The Fourier transform method is used for this where the non-dimensional 

wavenumber range r = -15 to + 15 is used. The corresponding results are also 

shown in Figure 3.14. It can be seen that the mobility level of the coupled beam is 

lower than that of the uncoupled beam because of the mass effect of the plate. As 

explained in section 3.2.3 the effective mass of the plate corresponds to a width of 

about one-sixth of the plate wavelength at the corresponding frequency. Thus, it 

can be seen that its effect reduces with increasing frequency. Also, due to the 

damping effect of the plate the phase lag increases with increasing frequency, the 

phase of the uncoupled beam being -1[/4. For reference, the point mobility of the 

uncoupled plate is also shown in the same figure, which is calculated by 

1/( 4~Dpm;) for excitation at a sliding edge. It forms a low frequency asymptote 

to the mobility of the coupled system, although the beam mass of the coupled 

system results in difference in the level. 
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Figure 3.14. The amplitude and phase of the point mobility for an infinite beam coupled to a 

semi-infinite plate, uncoupled beam and uncoupled plate (lib = 17p = 0.05). Non-dimensional 

wavenumber range y= -15 to + 15 is considered in the Fourier transform and FFT. 

3.3 Infinite beam coupled to finite width plate 

3.3.1 Structural coupling 

In this section, a coupled structure is considered consisting of an infinite beam and 

a plate of finite width as shown in Figure 3.15. A pinned boundary condition is 

considered along the opposite edge of the plate parallel to the beam. 
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Figure 3.15. A coupled structure consisting of an infinite beam attached to a finite width 

plate. 

Including the reflected travelling wave and nearfie1d wave generated at the 

opposite edge of the finite plate, equation (3.15) can be extended, as follows, 

(3.38) 

where B3 IS the amplitude of the reflected propagating wave and B4 IS the 

amplitude of the nearfield wave which is generated at the opposite edge of the 

plate. 

All boundary conditions between the plate and beam are assumed to be the same as 

presented in the previous section. From boundary condition (i), 

(3.39) 

From boundary condition (ii), 

(3.40) 
y=o 

and from the force equilibrium condition, 

(3.41) 
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It is necessary to introduce two more boundary conditions because there are two 

more unknown variables B3 and B4 • 

(iv) Pinned condition at the opposite edge of the plate at y = L y ' 

(v) The pinned condition also yields 

a2Wp (kx 'y) 
ay2 

- -
As kYJ ::j:. kY2 these yield 

B IB = 2kyl Ly = P-
3 J e yl' 

B- IB- = 2kY2Ly - p-
4 2 e - y2' 

(3.42) 

(3.43) 

(3.44) 

Substituting these into equation (3.40), the relationship between BJ and B2 IS 

obtained. 

(3.45) 

Therefore, equation (3.39) becomes 

(3.46) 

Similarly the equation for force equilibrium condition is expressed as 

F;(kx ) =Dp [k~J (1+ PYJ)BJ +k~2 (1+ pY2)B2 J. 
- kyJY2 (k:J -k:2) -

= Dp _ ( _ )/( _) _ ( _ )/( _) ~(kx)' -kyJ 1- PY2 1 + PY2 + kY2 1- PYJ 1 + PYJ 
(3.47) 

equation (3.47) can be expressed more simply as 
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(3.48) 

Finally substituting for the reaction force of the finite width plate F; (kx ) into 

equation (3.6), for the coupled structure shown in Figure 3.15, one has the 

transfonned beam response 

W. (k ) = Fa 
b x D- k4 _ ' 2 + H-(k ) 

b x mbO) x 
(3.49) 

where H(kx ) is defined as 

(3.50) 

3.3.2 Results 

Numerical simulation was carried out using equation (3.49) for the coupled structure 

as in Figure 3.15. The material properties and dimensions are as in Table 2.1 

For companson with the numerical results, FEM is used, which can describe 

approximately such an infinite system by imposing a damping effect on the finite 

system. The FE model is constructed in a similar manner as in section 2.6.2. Thus, 

the Euler-Bernoulli FE beam elements and thin shell elements are used and their 

size is as explained in the same section. The opposite edge of the plate, parallel to 

the beam, is considered to be pinned. To approximate and compare with the semi­

infinite beam structure, a beam of length 8.0 m is modelled. Accordingly the length 

of the plate also becomes 8.0 m. One end of the beam at x = 0 , where the external 

force is applied, and the corresponding plate edge, are assumed to be sliding to 

represent symmetry. The other end and the corresponding plate edge are modelled 

as free. To simulate an anechoic tennination of the free end, structural damping of 

between 0.05 and 0.65 is added gradually in both the beam and plate along the final 

2.0 m length. 
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The numerical response based on the Fourier transfonn method is symmetric in 

shape with respect to x = o. Therefore, the point mobility of the FE model with the 

sliding condition is twice that of the fully infinite structure, as the sliding condition 

requires symmetry and accordingly, only half the force is necessary for the half 

model. These point mobilities are compared in Figure 3.16. 

Z 
~ 
,;;-
~ 
::2 

10-' t~-'-'------~--~-~-,--,===;=::::::=::::;::::~::=:::=7.;:::~;:::::;:::;=='il 
- Fourier transform (finite plate) 
- - FEM 

Fourier transform (semi-infinite late) 

10-2 

I, 
I , 

" 

10-3 

10-4,-,--~--'--'-,:--_~_~_~~~~-,-:-__ ~ __ ~~~~---"~-, 

10
1 

10
2 

10
3 

Frequency (Hz) 

Figure 3.l6. Point mobility calculated by Fourier transform and by FEM for the infinite 

beam and finite width plate as in Figure 3.15. Values of y= -15 to +15 are considered in 

the inverse Fourier transform. 

Some low frequency fluctuations occur in the FEM result. Although an attempt was 

made to simulate an infinite length using high structural damping near the free end, 

the FE model is actually finite and the global modes are related to the finite 

structure. Nevertheless, good agreement is found above about 20 Hz. Because the 

beam is assumed to be infinite in the Fourier transfonn method, the peaks and dips 

of the mobility are only related to dynamic characteristics of the finite width plate. 

The result in Figure 3.16 can be seen to oscillate around that of the infinite beam 

and semi-infinite plate (from Figure 3.14). 
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3.4 Finite beam coupled to finite plate 

3.4.1 Motion of finite beam by Fourier series 

In the previous section, the motion of the infinite beam coupled to a finite width 

plate has been described and formulated. As this defines the relationship between 

the beam and the plate, the response of a finite beam-plate system can be obtained 

if that relationship is maintained. 

Consider the finite coupled beam-plate system shown in Figure 2.2 with sliding at 

both ends of the beam. The plate edge parallel to the beam is pinned, and the other 

two plate edges (x ° and x = Lx) are assumed to be sliding. 

Then the behaviour of the coupled beam with sliding conditions at its ends can be 

expressed in terms of cosine orders, as follows, 

(mrx] cos 4 ' n = 0,1,2,3,,,, (3.51) 

where Lx is the length of the beam and n is the number of half-cosine waves along 

the coupled beam. Note that the relationship between the coupled beam and the 

plate defined in the previous sections is maintained. Thus, the motion of the finite 

coupled beam with sliding end conditions may be written as a Fourier series 

(3.52) 

where kx,n = mr/ Lx and ~,n = ~(kx,n) is the nth component of the motion of the 

coupled beam, which is defined in equation (3.24) for the semi-infinite plate case 

and equation (3.49) for the finite width plate case. ~,o/2 is considered as the 

value for rigid motion of the beam (kx = 0). The motion of the coupled beam is 

expressed as a Fourier series possessing only cosine functions due to the particular 

boundary conditions imposed. 
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In the same manner, the motion of the plate at each position y can also be written 

in terms of a Fourier series in the x direction, as follows, 

(3.53) 

where Wp.n(Y) Wp(kx,n'Y) is the nth component of the motion of the plate, which 

is presented in equation (3.38). Thus the method of the previous section can be 

used, replacing the Fourier transform by a Fourier series. 

3.4.2 Power 

In this section expressions are derived for the various powers and energies required 

to investigate the power balance relationship for the beam-plate coupled structure. 

The time-averaged power input due to a point harmonic force is [79] 

(3.54) 

where Fa is the point force amplitude, Vo is the velocity response amplitude at 

x = 0, * means complex conjugate and Yo is the point mobility. 

The Fourier series for the harmonic force acting on the plate due to the beam of the 

coupled structure is 

- F.,o ~-
;; (x) = -' + ~F."n cos(kx,nx) , 

2 n=l 

(3.55) 

where the Fourier transformed force ft;,n = ft; (kx,n) is defined from equation (3.48) 

with kx,n = nJr/ Lx' 

The net power transferred from the beam to the plate can be expressed in terms of 

the distributed interaction force and responses, 
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(3.56) 

where Vb (X) = ievwb(x) is the velocity response of the coupled beam and Lx is the 

length of the beam. Substituting equations (3.52) and (3.55) into equation (3.56) 

gives a simpler form of the net power transferred. 

L {( -. - / ~ -. - J} ~~ p = 4t Re iev F;,o~,o 2 + ;;t F;,n ~,n . (3.57) 

Also, the dissipated power is obtained from the strain energy of the corresponding 

substructure. The dissipated power in the finite beam can be written as [12] 

(3.58) 

where Ub,max is the maximum over a cycle of the strain energy in the beam, given 

by 

2 _ 2 

U = Db rL, d Wb(x) dx. 
b,max 2.b d:l (3.59) 

The second derivative of wb(x) can be obtained in terms of the Fourier series as 

(3.60) 

The strain energy U in a plate is given by [70] 

[( 
2 J2 (2 J2 2 2 (2 J2 ] D Ly L, a w a w a w a w a w 

U = -p ! r' -2-
P + ----!- + 2v ----!-----!-+ 2(1- v) -_P dxdy, 

2 .b ax By ax By axBy 

(3.61) 

where wp = wp(x,y,t) is time dependent and therefore, each term in the strain 

energy can be regarded as a time dependent term. Assuming that each term is either 
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in or out of phase the maximum strain energy in a cycle can be obtained from twice 

the time-averaged value of each term in equation (3.61), and is given as [21] 

82
wp 

2 + 82
wp 2 +2VRe{(8\Vp J(82Wp J*} 

D >L >L 8x2 ay2 8x2 ay2 
-p Lx L' 2 ydx 
2 82 -wp +2(I-v) --

8xay 

(3.62) 

where wp = wp(x,y). As the motion of the finite plate wp is given by equation 

(3.53), the second derivative of wp with respect to the variables x and y can be 

expressed using the Fourier series. Finally, the dissipated power in the finite plate 

is given by 

Pp,dis = OJ 1] pU p,max . (3.63) 

3.4.3 Results 

Numerical results are presented for the finite beam attached to a finite plate shown 

in Figure 2.2. The dimensions of the structure are as given in Table 2.1. 

For an external, unit magnitude, point force applied at x = 0 the point mobility is 

shown in Figure 3.17. In equation (3.52), n = 145 is used, which approximately 

corresponds to the wavenumber kx = 230 rad/m at 1412 Hz, corresponding to the 

non-dimensional wavenumber r = 15 . Results are also shown obtained using FEM. 

The number of elements used in the FE model is 6783 (see Figure 2.9) 

corresponding to 8 elements per wavelength at the maximum frequency. As seen in 

the figure, the result obtained by the Fourier series method shows very good 

agreement with that of FEM. Note that the responses agree well even in the higher 

frequency region. 
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Figure 3.17. Point mobility calculated by different methods for the coupled finite beam­

plate structure as in Figure 2.2 (7Jp = 0.05 in the plate, 7Jb = 0.05 in the beam, point force 

applied at x = 0 ). 

In addition to the point mobility comparison, an example of a transfer mobility to 

an arbitrary point on the plate is shown in Figure 3.18, which also shows good 

agreement with that ofFEM. 
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Figure 3.18. Transfer mobility for the plate (at x = 1.50 m and y = 0.49 m) in the coupled 

finite beam-plate structure as in Figure 2.2 (7Jp = 0.05 in the plate, 7Jb = 0.05 in the beam, 

point force applied at x = 0). 
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The total input power and the net power transferred to the plate are compared in 

Figure 3.19. It is clear that the total power input is greater than the power 

transferred from the beam to the plate at all frequencies, as expected. Comparing 

the two powers, one can find that at some frequencies, such as 22.9, 59.8 and 118 

Hz, most power is transferred to the plate, while at other frequencies such as 6.7, 

36.3 and 90.2 Hz, there is a larger difference between the two powers. This could 

be explained in terms of the mode shapes of the beam and the plate. Although the 

modes of the beam and the plate are coupled, nevertheless, at some natural 

frequencies the mode of the beam is dominant, at other frequencies the mode of the 

plate is dominant. Therefore, it can be said that when the difference between the 

two powers is reduced, the mode of the plate is dominant and the plate receives 

most energy. In that case, the magnitude of the beam motion is relatively small. 

Conversely, if the difference is large, the magnitude of the beam motion becomes 

larger than that of the plate. In such a situation, the behaviour of a plate attached to 

a beam, for example the resonances and anti-resonances of the plate impedance, 

play an important role. These power-related phenomena will be explained further 

in Chapter 4 dealing with a wave approach where the plate impedance is discussed. 

10-' ~~-'--'--~-----~~r------r=====::O::;:::O==;:C===il 
- Total power input 
- - P beam->plate 

10' 

Frequency (Hz) 

Figure 3.19. Total input power to the coupled structure shown in Figure 2.2 and net power 

transferred to the plate (lJp = 0.05 in the plate, lJb = 0.05 in the beam, point force applied 

atx = 0). 
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3.5 Conclusions 

In this chapter, the Fourier transfonn and Fourier series methods are used to 

analyse the structural behaviour of a coupled beam-plate structure and numerical 

results are presented and compared with FE analysis. 

Firstly, the Fourier transfonned motion of the infinite coupled beam is developed 

when an infinite plate is attached to the beam. From the coupled equations of the 

motion, the influence of the plate on the beam is identified in the wavenumber 

domain. The damping effect as well as the mass effect of the plate is identified and 

explained. It has been shown that the mass effect becomes smaller as frequency 

increases; the added mass is that within 116 of a plate wavelength of the beam. 

Also, comparing the response of the coupled beam obtained using the Fourier 

transfonn, it has been highlighted that the effective damping due to the plate 

decreases as frequency increases. These phenomena observed here will provide a 

good reference case in the development of a wave method later incorporating a 

plate impedance model. 

A consistent rule for truncating the sufficiently low level response with respect to 

the maximum response is used in evaluating the Fourier integral. Using non­

dimensional wavenumbers in the range ± 15, the response is truncated at 40 dB 

below the maximum and the result is accurate to within 0.01 %. 

To obtain the response of a coupled finite beam and finite width plate, a Fourier 

series method has been developed and implemented. Then, the corresponding 

numerical analysis was perfonned based on the wavenumber range mentioned 

above. Comparing the numerical results with those of FEM, very good agreement 

is found. 

The developments of the Fourier approach in this chapter can be extended to any 

system which has a constant cross-section, for example for the analysis of a beam­

plate-beam structure. This will be considered further in Chapter 5. 
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CHAPTER 4 

APPROXIMATE WAVE METHOD FOR ANALYSIS OF 

STIFF ONE-DIMENSIONAL STRUCTURE COUPLED 

TO FLEXIBLE STRUCTURE 

4.1 Introduction 

In Chapters 2 and 3, the dynamic characteristics of a coupled structure consisting 

of a beam and a plate were investigated using a modal approach and a Fourier 

technique respectively. For the particular boundary conditions considered, these 

numerical results can be regarded as exact provided that sufficient numbers of 

modes or Fourier components are included. However, this generally requires large 

computer resources and computation time. The wave approach proposed by Grice 

and Pinnington [41] offers a more efficient although approximate method for the 

analysis of such coupled systems. 

In addition, from the viewpoint that the present study concerns the mid frequency 

analysis, coupling a stiff beam (long wavelength behaviour) and a flexible plate 

(short wavelength behaviour) by means of a wave approach and analysing their 

response forms an important aspect of this thesis. In later chapters, the wave 

method is applied and extended to more complicated systems such as a two-beam 

and four-beam systems. First, the more basic system consisting of a single beam 

and a plate is discussed. 

The coupled structure considered in this chapter is basically similar to that of Grice 

and Pinington [41] although a non-symmetrical configuration is considered here 

with the beam on one edge of the plate, as in previous chapters. Also in [41], the 

travelling wavenumber of the coupled beam was calculated iteratively, and it was 

assumed that the nearfield wave in the coupled beam had the same wavenumber as 

the propagating wave. In this chapter, problems of convergence in the iteration 

method used for the wavenumber estimation at some frequencies are addressed by 
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using Muller's method [83]. Also, the nearfield wavenumber is considered 

separately in the coupled beam. The resulting coupled nearfield wavenumber 

displays differences from the travelling wavenumber originally determined, but it is 

shown that using these separate wavenumbers yield a non-physical model. 

The ends of the beams are sliding as in previous chapters. However, this boundary 

condition can be simply changed for a different situation. 

Initially, the relationship between the coupled beam wavenumber and the plate 

wavenumber is presented. The relationship when the nearfield wavenumber is 

considered separately in the beam is also discussed in Appendix A. The numerical 

analysis is presented for a pinned condition on the opposite edge of the plate as in 

the previous chapter. This is based on the numerical evaluation using Muller's 

method. In Appendix B the influence of the iteration method on the result is 

reviewed and Muller's method is explained in more detail. The improvement to the 

results due to its application is shown. 

4.2 Infinite beam coupled to semi-infinite plate 

4.2.1 Undamped free wave motion 

A coupled structure consisting of infinite systems is investigated first. The 

combined structure consists of a stiffer beam component carrying long-wavelength 

flexural waves and a flexible plate component carrying short-wavelength flexural 

waves. Figure 3.1 presented in Chapter 3 shows an infinite beam coupled to the 

edge of a semi-infinite plate. It is assumed that the ratio of these wavelengths is 

sufficiently large. It is known that the coupled structure can be analysed in terms of 

its dispersion relation [41]. It is assumed that the beam is infinitely stiff to torsion 

along y = 0, as in previous chapters. 
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It should be noted that the following wave approach is only suitable for the case 

where the stiff beam is excited, so that the excited beam radiates short wavelength 

waves into the flexible plate. Although wavenumber trace matching can still be used 

for the plate-excited case in which waves in the plate are incident on the beam at an 

arbitrary angle, such solutions are not considered here. Thus, in this context the plate 

is always considered as the 'receiver' in this wave method [41]. 

Consider first the uncoupled free wave motion of the undamped beam and plate. 

Thus no external force is applied. Harmonic motion at frequency OJ is assumed 

throughout with a time dependence of ei())t. 

The relevant equations of motion of the beam and plate were presented in equations 

(3.1) and (3.7) respectively, except that no damping is now considered. A travelling 

harmonic flexural wave in the infinite beam, uncoupled from the plate, has 

wavenumber kb, given by k: = (m;/ Db){)i . Nearfield waves also exist with the 

When the semi-infinite plate and the infinite beam are joined along the line y = 0 a 

force per unit length J; (x) acts between them. Equation (3.1) becomes 

(4.1) 

Suppose that the 'free' wave motion ofthe coupled beam becomes 

- A- -ik x 
Wb = e x (4.2) 

for some wavenumber kx • In Chapter 2, it was shown that the coupled stiff beam 

dominantly governs the motion of the flexible plate. Thus, by trace wavenumber 

matching with respect to the coupled beam wavenumber kx the motion of the plate 

is given by 
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- (B- -ikyY c- -k Y) -ik x 
Wp = e + e e e x (4.3) 

where jj is the amplitude of the wave propagating away from the junction, C is 

the amplitude of the nearfield wave in the plate which is also generated at the 

junction, ky is the trace wavenumber for the propagating wave radiating into the 

plate normal to the beam and ke is the trace wavenumber for the nearfield wave in 

the plate. In the above it is assumed that kx is real, although as will be seen this is 

not quite the case. 

To obtain the travelling wavenumber kx in terms of the beam and plate properties, 

consider the propagating wave solution in the plate wp = Be -ikyY e-ik,x • Substituting 

this into equation (3.7) gives 

[ D (k 4 + 2k2e + k4) - m" oiJi3e-
ikyy 

e-ik,x = 0 
p x yx Y P • (4.4) 

For non-trivial solutions, the propagating normal trace wavenumber in the plate is 

found to be 

(4.5 a) 

Similarly, letting wp = Ce-keYe-ik,x , the normal nearfield wavenumber is 

(4.5 b) 

The boundary conditions when a semi-infinite plate is attached at its edge to the 

beam are: 

(i) Continuity equation; equal displacement 

(4.6) 

(ii) Sliding condition for the plate; the beam is assumed infinitely stiff to torsion 

alongy=O 
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ow 
p =0 

0; y=o 
(4.7) 

(iii) Force equilibrium condition; the force on the plate is equal and opposite to the 

force on the beam 

(82
- 82- J 8 wp wp-

Dp- --2-+(2-v)-2- =J;(x). 
0; 0; 8x 

y=o 

(4.8) 

From the boundary condition (4.6), 

~ ~ ~ 

A=B+C. (4.9) 

From the boundary condition (4.7), 

(4.10) 

Therefore, from equations (4.9) and (4.10) the amplitudes of the waves in the plate 

are given by 

(4.11) 

From the boundary condition (4.8), 

(4.12) 

Substituting for jj and C in terms of A gives 

(4.13) 

Therefore, the plate line impedance presented to the beam for wavenumber kx can 

be found. The line impedance is the impedance of the plate per unit length of the 

beam arising at the coupling junction, which is found from the force per unit length 

acting on the line junction and a velocity response at the junction, both the force 

and response being functions of the coordinate x in the form e -ik,x. Therefore, the 

exact line impedance of the plate is 
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i' = J;(x) 
p hoAe -ik,x 

(4.14) 

One can see that the line impedance is independent of the coordinate x. Note that 

equation (4.14) includes a damping-like term (real part) and also a mass-like 

imaginary term. Recalling that the plate is undamped, this explains the damping 

and mass effect of the plate on the coupled beam, which was identified in the 

wavenumber domain in the Fourier transform method. 

Finally, the general dispersion relationship for the coupled structure can be derived 

from equations (4.1) and (4.14). 

D k 4 , 2 • Z-, 
b = mbOJ -lOJ • x p (4.15) 

As briefly explained in the first paragraph in this section, an important requirement 

for this dispersion relationship is that the plate should be more flexible than the 

beam, so that the plate impedance is smaller than the beam impedance. Note that, 

although the wavenumber ratio of the plate to the beam is also used as a criterion in 

this thesis, the small impedance of the plate does not necessarily mean that the 

plate wavenumber is greater than the beam wavenumber. Provided that the plate 

impedance is smaller than the beam impedance, it is expected that there are two 

travelling wave solutions and two nearfield wave solutions to this equation. Note 

that kx is not real, due to the damping-like term in i~, and also i~ is a function of 

kx' so that this equation must be solved iteratively. lfthe plate impedance becomes 

larger, then the dispersion equation may not converge in an iteration approach and 

this wave approach may not be usable. 

Substituting equations (4.5) and (4.14) into equation (4.15) gives the dispersion 

equation presented in terms of kx' kb and kp as 

(4.16) 
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The dispersion equation can be presented in a simpler form if kp is much larger 

than kx ' Such an implementation and the explanation of this physical phenomenon 

follow in section 4.2.4. 

4.2.2 Forced response 

Once the wavenumber for the coupled structure is evaluated, then the point 

mobility of the structure can easily be calculated from the equation of the point 

mobility of an infinite beam. In this section, a semi-infinite beam the end of which 

is assumed to be sliding is considered because it is more meaningful for 

comparison with a finite beam structure in the following sections. This differs from 

the result for an infinite beam by a factor of2. 

Consider a semi-infinite beam located at 0 ~ x ~ 00 , and excited at x = 0 by a force 

Fa acting perpendicular to the beam axis. The point mobility can be derived from 

the general solution of the motion of a beam. In general, the coupled beam may 

have different wavenumbers for the propagating and nearfield waves. Thus, the 

corresponding solution of the semi-infinite beam becomes 

(4.17) 

where AI IS the amplitude of propagating wave, A2 IS the amplitude of the 

nearfield wave, kb is the propagating wavenumber and knJ is the nearfield 

wavenumber. Note that for an uncoupled beam the nearfie1d wavenumber is equal 

to kb • Since all waves propagate away from the excitation point, waves travelling 

in the negative x direction waves vanish. Because the slope of the beam end is 

zero for the sliding boundary condition and the force applied should be the same as 

the shear force of the beam at x = 0, the boundary conditions are 
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awl =0, Db 03~ =Fa. 
OX x=O ox x=O 

(4.18 a, b) 

Then the amplitudes Al and A2 are obtained and the mobility of the semi-infinite 

beam is 

(4.19) 

Because kb = knJ in an uncoupled semi-infinite beam, the mobility becomes 

(4.20) 

and the point mobility at x = ° is 

(4.21) 

The general relation of equation (4.15) is still valid for the coupled structure 

consisting of the semi -infinite beam shown in Figure 4.1 and the point mobility for 

the coupled structure can be calculated from equation (4.19) using the 

corresponding coupled travelling wavenumber kx and the nearfield wavenumber 

knJ of the coupled structure. The travelling and nearfield wavenumbers in a 

coupled system may be different. Concerning this, further explanations are 

presented in following sections. 
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Figure 4.1. A coupled structure consisting of a semi-infinite beam attached to a semi­

infinite plate. 

4.2.3 Introduction of damping in the beam 

The effect of damping in the beam can be introduced to the previous analysis by 

using a complex bending stiffuess Db which is given in terms of Db and the 

structural loss factor ofthe beam llb as follows [79]. 

(4.22) 

Provided llb is small the above analysis remains approximately valid. However it 

should be realised that the derivation of ky and ke by wavenumber matching is 

strictly only applicable in the undamped case. 

4.2.4 Approximation by locally reacting impedance 

Note that if kp » kx, i.e. the plate wavenumber is much larger than the 

wavenumber in the coupled beam, then the exact line impedance of the plate, 

equation (4.14) can be written approximately as 
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f'( ) D e m"w i' = J~ x. ~~(1+i) =-P-(l+i). 
P iaJAe-1k,X aJ kp (4.23) 

Equation (4.23) is known to be valid if the plate wavenumber is sufficiently larger 

than the coupled beam wavenumber [41]. Then the impedance of the plate can be 

considered as the input point impedance of an equivalent beam of infinite length 

and unit width driven by a point force (the inverse of equation (4.21)). Therefore, 

the plate is considered as locally reacting. This means that if the beam propagating 

wavelengths are much longer than those in the plate, then the wave radiates into the 

plate at an angle which is almost normal to the axis of the beam. Thus, in fact the 

plate behaves like separate strips. If equation (4.23) is used, k; can be found 

directly from equation (4.15) from which the travelling wavenumber and the 

nearfield wavenumber in the beam can be calculated. 

Strictly, the travelling wavenumber k
t 

and the nearfield wavenumber knJ in the x 

direction could have different values, but in the present case, since wavenumber 

trace matching is only based on the propagating wave kx in the coupled beam, the 

exact nearfield wavenumber cannot be calculated. By assuming the locally reacting 

plate impedance, the nearfield wavenumber can be calculated approximately from 

the roots of k: in equation (4.15). 

If a nearfield wave is present in the beam with no travelling wave, the 

corresponding plate impedance i~ is a function of the nearfield wavenumber in 

the beam knf . This leads to different wavenumbers in the plate as described in 

Appendix A. However, in general, the travelling and nearfield waves are present in 

the beam together and the corresponding plate impedance should account for both 

their contributions. Each wave in the beam will 'see' a plate impedance due to the 

total plate motion. In practice, the travelling wave will dominate the beam response 

and a reasonable approximation can be obtained by using the plate impedance 

corresponding to this wave, as given above. 
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4.2.5 Results 

Numerical analysis was performed for the structure shown in Figure 4.1. The 

relevant material properties of the structure are as listed in Table 2.1 in Chapter 2. 

The length of the beam Lx and the width of the plate Ly are infinite. It should be 

emphasised that damping in the beam is considered where necessary, whilst the 

plate is undamped. 

As described in section 4.2.4, if the impedance of a plate can be regarded as locally 

reacting, the numerical analysis to identify the characteristics of the full structure 

will be greatly simplified. Before using the simplification, it is necessary to verify 

whether the assumption is applicable. If the ratio of k t to k p is sufficiently small 

so that the locally reacting impedance is the same as the exact line impedance, it 

can be said that the locally reacting impedance of the plate is valid. 

In Figure 4.2, the relationship between the ratio of the two impedances and kx / kp 

is shown. For kx / kp < 0.5, the locally reacting impedance is the same as the exact 

line impedance to within 3 %. The actual ratio kx / k p for the structure of Figure 4.1 

is shown in Figure 4.3. It has values below 0.5 throughout the frequency range of 

interest (5.6 Hz to 1412 Hz). 

When the actual wavenumbers kp' ky and ke are used in equations (4.14) and 

(4.23) for the present structure, the locally reacting impedance (equation (4.23)) is 

a little greater than the exact line impedance (equation (4.14)) by about 3% at 5.6 

Hz (maximum error of 3%), which seems negligible. Therefore, the plate can be 

considered as locally reacting and the general dispersion relation equation (4.15) 

can be solved using equation (4.23) for the locally reacting impedance of the plate. 

This assumption is valid for both the infinite plate and a finite plate considered 

later. 
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Figure 4.2. Ratio of the locally reacting impedance to the exact line impedance of the semi­

infinite plate. 
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Figure 4.3. Ratio of wave numbers of the coupled system as in Figure 4.1. 

In using the wave method, it is important first to understand the characteristics of 

the wavenumbers in the structures. The equations related to the wave method start 

basically from the free or uncoupled wavenumber of a beam or plate. Thus, the 

coupled beam wavenumber kx is compared with the free wavenumbers of the 

semi-infinite beam and the semi-infinite plate in Figure 4.4. 
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Because the depth of the beam is larger than that of the plate, the wavenumber of 

the plate is greater than that of beam. The ratio of kb to kp is already shown in 

Figure 4.3 and is constant at 0.306 because both of them are proportional to cd/2
• 

The coupled wavenumber kx lies between kb and k p • It is greater than kb due to 

the presence of the plate impedance in the dispersion equation (4.15). The mass of 

the plate increases kx' but its influence is smaller at high frequency because the 

equivalent mass is m;/kp ,see equation (4.23). Because of this, as shown in Figure 

4.3, the ratio of k< to kp does not have a constant value. 

10' 

i 
! 
ill 
i 
i 10° 

Frequency (Hz) 

Figure 4.4. Travelling wavenumbers of the coupled beam (k<), the uncoupled beam (kb ) 

and the uncoupled plate (k ). k is calculated on the basis of a locally reacting plate. p x 

The imaginary part of the wavenumber is related to the damping of the structure. 

As mentioned in section 4.2.1, the 'damping' part ofthe plate impedance makes the 

coupled wavenumber kx complex. Physically this means that the plate appears to 

add damping to the beam although it does so by energy radiation into the plate. 

Note that the coupled system is assumed to be undamped at this stage. An 

equivalent loss factor for the beam '7 can be derived from 
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17 = - Im(k:) ;::; -4 Im(kx ) 

Re(k:) Re(k,) 
(4.24) 

and is presented in Figure 4.5. This shows how the damping falls with increasing 

frequency. This tendency was previously described by Heckl [64]. 
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Figure 4.5. Equivalent loss factor 7J in the coupled structure as in Figure 4.1. k
t 

is 

calculated on the basis of the locally reacting plate. 

In addition to the damping effect of the plate, it would be interesting to see how the 

dynamic characteristics change when damping is introduced to the beam. A loss 

factor equal to 0.05 is introduced into the beam. In Figure 4.6, the imaginary part of 

the wavenumber kx is shown from which the damping can be inferred. Although 

the difference is small, it can be seen that the damping increases, particularly at 

higher frequencies where the equivalent loss factor from the plate is smaller (see 

Figure 4.5). 
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-- Undamped beam 
- - Damped beam 

- --

Figure 4.6. Imaginary part of the wavenumber k
t 

for undamped and damped ('h = 0.05) 

beam coupled to semi-infinite plate. 

Figure 4.7 shows the point mobility of the beam-plate system. If damping is 

included in the beam, the level of the point mobility will be reduced slightly, but as 

shown in Figure 4.7, the difference between the solid line and the dashed line 

(lower two lines) in the mobility graph is not distinguishable. 

In the phase graph, it can be seen that the dashed line in the upper two lines shows 

a delayed phase due to the inclusion of the beam damping. The point mobility of 

the structure consisting of the damped semi-infinite beam and the undamped semi­

infinite plate is used later in this chapter for comparison with the results of different 

finite structures. Figure 4.7 also shows the mobility and its phase of an uncoupled 

semi-infinite beam with a sliding end. Concerning the effect of damping, the 

tendency is similar to the coupled beam. A comparison of the mobilities between 

the coupled beam and the uncoupled beam was already made and discussed in 

section 3.2.7 (see Figure 3.14) where the mass and damping effect of the plate was 

explained. 
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Figure 4.7. Point mobility and phase of the coupled system consisting of the semi-infinite 

beam and semi-infinite plate as in Figure 4.1 and the uncoupled semi-infinite beam. 

Finally, the results from the wave model are compared with those of the Fourier 

transform method for the case when the beam is damped (1Jb = 0.05) and the plate 

is undamped. The non-dimensional wavenumber range in the Fourier transform is 

y=-15 to +15. A similar result (with a damped plate) based on the Fourier 

transform was shown in Chapter 3 (see Figure 3.14) except that the beam was 

assumed to be infinite instead of semi-infinite. Thus for comparison here, twice 

the magnitude of the point mobility of the Fourier transform method is used (for 

this, see the explanation with respect to Figure 3.16). The corresponding results 
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are compared in Figure 4.8. They show good agreement with maximum errors of 

about 3% and 0.02 radian for the magnitude and phase respectively. 

A similar comparison of the uncoupled beam was already presented in section 

3.2.5 (see Figure 3.5), in which for the same non-dimensional wavenumber range 

of r = ±15 in the Fourier transform the maximum error was about 0.01 % with 

respect to the analytical solution. Thus, here, the response of the Fourier method 

can be considered as accurate. Recalling that the approximate impedance of the 

plate was a little larger than the exact impedance, it may be expected that the 

point mobility level based on the wave method is lower than that of the exact 

Fourier method in Figure 4.8. However, one can see that the point mobility level 

is actually a little greater than that of the Fourier method. Thus, in addition to the 

approximation of the plate impedance, it seems that there is another reason 

producing such a difference. Indeed, in the wave method, it was assumed that the 

nearfield wavenumber knf has the same value as the propagating wavenumber kx ' 

Thus, the error in Figure 4.8 seems to be related to the substitution of the 

nearfield wavenumber by the travelling wavenumber in the beam. Concerning 

this, a further investigation follows in the next section. 
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Figure 4.8. Point mobility and phase of the semi-infinite beam coupled to the semi­

infinite plate obtained using the wave method and the Fourier transform method (non­

dimensional wavenumber range r = -15 to +15). The beam is damped (lib = 0.05) and 

the plate is undamped. 

4.3 Infinite beam coupled to finite width infinitely long plate 

4.3.1 Travelling coupled wave for general boundary conditions on plate edge 

The impedance of a finite width plate as shown in Figure 3.15 with a general 

boundary condition at the edge y = Ly can be obtained from a wave approach in 

the same way. The beam is again assumed to be infinitely stiff to torsion. 
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Assuming initially that there is no damping in the plate, the response in the 

infinitely long plate of width Ly joined to an infinitely long beam can be written as 

- (B- -ik"y c- -ky f3 -B- iky'y D- ke{y-L,,» -ik x wp = e' + e e + yr e + e 'e" (4.25) 

where f3y = e -iky2Ly represents a phase shift over length 2Ly ' r is the complex 

reflection coefficient at the edge of the plate y = Ly and jj is the amplitude of the 

nearfield wave which is generated at the opposite edge of the plate. The response of 

the beam is assumed to be Wb = Ae -ik,x as before. 

The boundary conditions when a finite plate is attached at its edge to the beam are 

the same as for the semi-infinite plate structure. Therefore, from the first boundary 

condition (4.6), 

(4.26) 

From the second boundary condition (4.7), 

[( -·k jj -ikyy - k C- -keY ·k f3 -jj ikyy k D- ke{y-Ly ») -ikeXJ = 0 
1 y e e e + 1 y yr e + e e e . 

y=o 
(4.27) 

Because the beam is attached to the edge y = 0 of the plate, at sufficiently high 

frequency it can be assumed that the influence of the nearfield from the opposite 

edge will be negligible, which means De -keLy >::; o. Therefore, the approximate 

amplitudes ofthe waves in the plate are given by 

(4.28) 

From the force equilibrium boundary condition (4.8), 

Substituting for jj and C in terms of A and eliminating kx gives 
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(4.30) 

from which the line impedance of the plate, which is the impedance per unit length 

along the beam, is given by 

(4.31) 

4.3.2 Approximate impedance and inclusion of the plate damping 

The relationship between the wavenumbers k p' ky, ke and kx is the same as for 

the semi-infinite plate structure of section 4.2.1 but should be found iteratively 

from the dispersion equation similar to equation (4.15). If the plate wavenumber 

greatly exceeds the beam wavenumber i.e. kp »kx' then ky ~kp' ke ~kp and the 

line impedance of the plate equation (4.31) can be expressed in the simpler form 

(4.32) 

where r depends on the boundary conditions at y = Ly • For a pinned condition, 

the reflection coefficient r becomes -1 while for a sliding condition r = + 1. .i~ in 

equation (4.32) has the appearance of a locally reacting impedance as in section 

4.2.4. However, although equation (4.32) no longer contains ky, ke etc., explicitly, 

the factor fly still retains a dependence on ky . It is therefore not a completely 

locally reacting impedance. Nevertheless, it is still a good approximation of the 

plate impedance. 

If hysteretic damping is introduced into the plate, the plate stiffuess becomes 

Dp = Dp(1+irJp) and the wavenumber of the damped plate becomes 

kp~kp(1-irJp/4) assuming rJp «1. Now, equation (4.32) can be modified as 

follows to include damping terms. 
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(4.33) 

where Py = e -iiy 2Ly is the propagating wave attenuation coefficient of the plate, 

which represents attenuation as well as phase shift over the distance. 

4.3.3 Solution for coupled wavenumber 

The general dispersion relationship for the infinite beam attached to the finite plate 

can be derived from equations (4.1) and (4.33), and has the same form as equation 

(4.15). 

D k4 , 2 • Z-, 
b x = mbO) -10) p • (4.34) 

One can see that kr is not real, due to the impedance term i~. If i~ = 0, which 

means the beam becomes uncoupled from the plate, then equation (4.34) has four 

roots kx (actually kb ). However, because the approximate impedance term i~ 

which includes Py = e -iky2Ly depends on kx , the equation becomes more 

complicated and it might be possible that there are more than four roots. 

Nevertheless, concerning the present case when the plate is flexible compared 

with the beam, there are only two propagating wave solutions (kx ) and two 

nearfield wave solutions (knf) to equation (4.34) that are close to kb ' the 

corresponding solutions for i~ = 0 . Note that the general equation and the 

approximate impedance should be solved iteratively as i~ depends on kx ' 

Again, travelling and the nearfield wavenumbers could be calculated separately, 

but as mentioned in section 4.2.4, the theoretical development is based on the 

travelling wave in a coupled beam. Therefore, the nearfield wavenumber knf is 

assumed to have the same value as the propagating kx wave based on the 
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approximate impedance and the general dispersion relation. This simplification is 

advantageous in understanding dynamic behaviour of the coupled structure as seen 

in the results of the following section. 

4.3.4 Results 

Computer simulations were carried out based on the above theory. Figure 4.9 

shows the coupled structure considered, consisting of a semi-infinite beam and a 

plate which has finite width Ly . For the plate both damped and undamped cases are 

considered but the beam has damping for both cases. The opposite edge of the plate 

parallel to the beam is pinned. 

Figure 4.9. A coupled structure consisting of a semi-infinite beam attached to a finite plate 

with a pinned edge. 

Material properties and dimensions considered are as given in Table 2.1 except the 

length of the beam Lx which is infinite. A point force was applied at the beam end (x 

= 0) which is assumed to be sliding. 

As emphasised in section 4.3.3, the wavenumber should be found iteratively. 

However, the numerical results do not converge using a simple iteration at some 

specific frequencies, for example mostly near peaks and dips of the coupled 

wavenumber kx ' To overcome this problem, Muller's method [83] which can find 
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complex roots is introduced. Then, the coupled beam wavenumber kx ' and thus the 

corresponding plate wavenumber such as ky , can be calculated using this method 

(see Appendix B for the use of Muller's method for the estimation of coupled 

wavenumbers ). 

Muller's approach is now used to find the corresponding wavenumbers of the 

coupled system in which the plate is undamped. Firstly, the impedance of the 

undamped plate calculated from equation (4.32) is shown in Figure 4.1 O. It is 

expected that the resonances ( dips) tend to 0 but this is truncated by the frequency 

resolution. Concerning anti-resonances (peaks), these peaks are related to the 

selection of roots in Muller's method. It was assumed that there are usually four 

roots in the dispersion equation, so that only one root in the fourth quadrant of the 

complex domain can be used. However, at some frequencies where the plate 

impedance increases, two roots simultaneously exist in the fourth quadrant of the 

complex domain contours (see Figure BA). Thus, for the application of this wave 

method, it is necessary to choose one root and this results in discontinuities when 

wavenumbers found are presented as a function of frequency. 

Roots found in the fourth quadrant of the complex domain contours are shown in 

Figure 4.11, where it can be seen that there are two roots, for example at 25 Hz. 

The thick line in the same figure represents the selected wavenumbers to be used 

in the wave method. Thus, such selection of wavenumbers gives discontinuities 

and consequently, the plate impedance also shows discontinuities, which 

determines the peaks of the impedance as in Figure 4.10. 
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Figure 4.10. Locally reacting impedance of the undamped finite plate. 
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Figure 4.11. Wavenumbers found in the fourth quadrant of the complex domain contours 

in Muller's method and selected wavenumbers to be used in the wave method. 

Figure 4.12 shows the point mobility of the coupled structure. It was calculated 

using the impedance shown in Figure 4.10 and the general dispersion equation, 

when the semi-infinite beam of the structure has a damping loss factor 0.05. Also 

shown is the corresponding characteristic mobility from Figure 4.7 (dashed line). 

It can be seen that the trend of the point mobility follows the characteristic 

mobility well. 
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Because a semi-infinite beam has no resonances or anti-resonances, the dynamic 

characteristics of the coupled structure will be determined by the characteristics of 

the finite width plate. It is important to notice that the peaks in Figure 4.10 and the 

dips in Figure 4.12 occur at the same frequencies. The peaks in the impedance 

correspond to the anti-resonances, and at these anti-resonance frequencies of the 

plate the point mobility level of the coupled structure is minimized. A further 

explanation follows later for the damped plate. The resonances of the coupled 

structure do not occur at the same frequency as the resonances of the plate strips 

due to the mass ofthe beam. 

10' r-~~------~----~~--~~----~--~==~~~~~~ 
-- Finite width plate 

Semi-infinite plate 

10' 10
2 

Frequency (Hz) 

Figure 4.12. Point mobilities of the coupled structures as in Figures 4.9 and 4.1 (undamped 

plate, 17b = 0.05 in the beam, point force applied at x = 0). 

The dynamic characteristics of the same structure are investigated when the damping 

is added to the plate. First, the propagating wavenumber ky and the nearfield 

wavenumber ke along with kx (thin solid line) of the coupled finite plate system are 

compared in Figure 4.13. Also to enable comparison, the free plate wavenumber kp' 

the uncoupled beam wavenumber kb and the coupled beam wavenumber kx (thick 

solid line) based on the semi-infinite plate are shown, which can be used as 

asymptotic representations. As kp is much larger than kx' the difference between 
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k p' ky, and ke is small. This means that k p can be used in the calculation of the 

plate impedance instead of ky and ke (see equations (4.31) and (4.33)). 
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Figure 4.13. Wavenumbers of the coupled structure consisting of the semi-infinite beam 

and the finite plate as in Figure 4.9. Thick line is corresponding result for a semi-infinite 

plate. 

The coupled beam wavenumber kx based on the finite plate (thin solid line) shows 

peaks and dips because of the impedance of the finite width plate attached to the 

beam. At the resonances of the plate the impedance i~ is small (see Figure 4.15 

below) and the wavenumber kr is close to kb • At the anti-resonances kx is increased 

considerably. 
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The imaginary part of the coupled wavenumber kt based on the finite plate is also 

shown in Figure 4.13. As mentioned in section 4.2.5, the imaginary part is related 

to the damping of the structure. When the imaginary part of the coupled 

wavenumber is divided by the real part, it is possible to infer an equivalent loss 

factor. This ratio is shown in Figure 4.14. 

For comparison, the approximate line impedance of the damped plate is shown in 

Figure 4.15, calculated using equation (4.33). Comparing Figures 4.14 and 4.15, it is 

clear that the equivalent loss factor is maximum at anti-resonance frequencies of 

the plate (peak in the plate impedance). 

10° 

:;;x 
or 
cr: 

:;x 
::§ ..,. , 

10-1 

Frequency (Hz) 

Figure 4.14. Equivalent loss factor 17 of the wavenumber k of the coupled system due to 
x 

the finite width plate (17 p = 0.05 in the plate). 
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Figure 4.15. Approximate line impedance of the finite width plate ('lp = 0.05 in the plate). 

The corresponding point mobility of the coupled structure is shown in Figure 4.16. 

Similar to the undamped plate, the anti-resonance frequencies of the plate, such as 

22.1, 62.7, 126.7 Hz, coincide with the dips of the point mobility of the coupled 

structure. Therefore, the motion of the coupled beam is reduced at anti-resonances of 

the plate. This phenomenon is referred to as a 'blocking effect' [41]. Comparing 

Figures 4.12 and 4.16, it can be seen that the damping of the plate has an obvious 

influence on the drive point mobility ofthe beam, especially reducing the peaks. 

The point mobility is also compared with predictions using the Fourier method which 

can be regarded as exact (a non-dimensional wavenumber range of r = ±15 was 

used). The general tendency is in good agreement. However, there are frequency 

shifts in the peaks and dips. The two assumptions made in the wave method may be 

the possible reasons. The first one is that the plate impedance is approximate. As the 

dips of the mobility are due to the blocking effect of the plate one may assume that 

the frequency shift of the dips is related to the approximate plate impedance. The 

second may be related to the nearfield wavenumber assumption. The peak frequency 

and level are apparently related to the nearfield wave as well as the travelling wave at 

the excitation point. Recalling that the nearfield wavenumber is assumed to have the 

same value of the travelling wavenumber, such an assumption may cause this 

difference in the point mobility. 
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Figure 4.16. Point mobilities of the coupled structures as in Figures 4.9 and 4.1 ('7 p = 0.05 

in the damped plate, '7b = 0.05 in the beam, point force applied at x = 0.0 m). 

Comparison of transfer mobilities may be useful as the nearfield wavenumber 

contribution will be reduced. They are compared between the two methods in Figure 

4.17, for a response point located at x = 2.0m along the semi-infinite beam. Firstly, 

one can see that the frequency corresponding to the blocking effect is very similar 

in the two methods, although there is still a small difference at low frequencies due 

to the approximate impedance (recall that the error of the approximate impedance 

is maximum at 5.6 Hz). Thus, the assumption of the plate impedance appears not to 

have a large effect. Then, concerning the peak frequencies, they are also in good 

agreement especially at high frequencies. Thus, the difference found in the point 

mobility comparison seems to be more related to the nearfield wavenumber 

assumption. Thus, in the following section the nearfield wavenumber is considered 

separately and the limitation of such an approach is examined. 
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Figure 4.17. Transfer mobilities of the coupled structure as In Figures 4.9 and 4.1 

(17 p = 0.05 in the plate, 17b = 0.05 in the beam, point force applied at x = 0.0 m, response at 

x = 2.0 m). 

4.4 Finite beam coupled to finite rectangular plate 

4.4.1 Beam response for the coupled system 

The general relationship (equation (4.34)) of the coupled system comprising an 

infinite beam and a plate of finite width can be extended to the structure which is 

finite in length as shown in Figure 2.2 (thus a rectangular plate), where it is 

assumed that the beam has a sliding boundary at both ends. Note that the plate 

behaves strip-like as the plate wavenumber is assumed to be much larger than the 

beam wavenumber and strictly in the wave model there are no boundary conditions 

applied at the plate edges normal to the beam. However, as discussed in Chapter 2, 

the motion of the flexible plate is governed by the stiff beam. Thus, it is expected 

that the boundary conditions ofthe plate edges normal to the beam are also close to 

the sliding conditions. 
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The general solution for the motion of the finite beam at frequency OJ is 

(4.35) 

where Al and A3 are the amplitudes of travelling waves, A2 and A4 are the 

amplitudes of the nearfield waves, kx and knf are the complex travelling 

wavenumber and nearfield wavenumber respectively, as determined previously. 

These may be different at this stage. 

If the beam has length Lx with an external point force Fa applied at one end x = 0, 

and has sliding boundary conditions at both ends, the boundary conditions can be 

written in a matrix form, 

-ik -knf ikx knf Al 0 x 
'e -k~ -ik3 k~ 1 x A2 ft;)i5b 

x 
(4.36) 'k -ik L k -knrL, 'k ik L k k'if L, = -1 e .t.t 1 e.t.t nfe A3 0 x - nfe x 

iee-ikxL, e -k'ifLx ·e ;k,L, e k'if L, A4 0 x - nje -1 xe .. nfe 

Having solved this for the amplitudes A;, the transfer mobility from the excitation 

point x = ° to the response at an arbitrary position x on the beam can be calculated 

from the relationship between the force and velocity, 

(4.37) 

4.4.2 Plate response for the coupled system 

The response of the plate for a travelling wave in the beam is as given in equation 

(4.25), and by obtaining the coefficients in the equation, the response can be 

determined. The coefficients will be calculated from equations (4.6) - (4.8) which 

describe the boundary conditions. 

122 



Chapter 4. Approximate wave method for analysis of stiff one-dimensional structure coupled to 
flexible structure 

The plate response is calculated from consideration of each beam wave and the 

corresponding plate impedance. By adding the four different responses of the plate 

generated by the four different waves in the beam, which are a forward travelling 

wave (kx + ), backward wave (kx - ), forward nearfield wave (knf + ) and backward 

nearfield wave (knJ - ), the plate response can be obtained. 

4.5. Results for finite beam coupled to finite rectangular plate 

In this section some numerical results are given for the coupled finite structure. The 

dimensions are the same as shown in Table 2.1. The length of the beam is 2.0 m 

(Lt = 2.0 m) and loss factors of the subsystems are 0.05. The plate edge parallel to 

the beam is considered to be pinned. Results are compared with those obtained by 

the Fourier method discussed in Chapter 3 with the non-dimensional wavenumber 

range of r = ±15. 

4.5.1 Mobilities 

The point mobility of the coupled structure is shown in Figure 4.18 along with the 

corresponding result of the Fourier method. The non-dimensional wavenumber 

range used is r -15 to r = + 15 . Also shown is the characteristic mobility of a 

coupled structure consisting of a semi-infinite beam and a plate of semi-infinite 

length and width located in x ~ 0, y ~ 0 ( dotted line). Comparing the result from 

the wave analysis with that from the Fourier method, they agree reasonably well 

even at low frequencies although they differ in detail. The characteristic mobility 

passes through the centre ofthese results, as expected. 

Some small sharp troughs in the analytical point mobility, for example at 22.1,62.7 

and 126.6 Hz coincide exactly with the anti-resonances of the finite width plate 

calculated on the basis of the travelling wavenumber kx (Figure 4.15). 
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Figure 4.18. Point mobility of the coupled structure as in Figure 2.2 (llp = 0.05 in the 

plate, llb = 0.05 in the beam, point force applied at x = 0). Dotted line indicates 

characteristic mobility of a structure consisting of a semi-infinite beam and plate of a semi­

infinite length and width. 

By calculating (J separately, the influence on the point mobility is shown in 

Figure 4.19. In some regions, such as the first trough near 14.1 Hz in the analysis, 

the result based on using kx throughout in equation (4.35) appears to give better 

agreement with that ofthe Fourier method than the result including a separate value 

for knJ • In general, although there are some differences in the level of the peaks 

and troughs, this change seems to have only a small influence on the response of 

the structure. It can be assumed that knJ does not significantly affect the behaviour 

of the whole structure because the nearfield wave is limited to the excited region or 

the ends of the beam. 
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Figure 4.19. Point mobility of the coupled structure as in Figure 2.2 (lJp = 0.05 in the 

plate, 'h = 0.05 in the beam, point force applied at x = 0). Dotted line indicates 

characteristic mobility. 

In Figures 4.20 and 4.21, examples of the plate response are shown. These are 

obtained from the sum of the results provided by the forward and backward 

travelling and nearfield waves as mentioned in section 4.4.2, although, in fact, the 

values of ~( is used throughout in equation (4.35). Generally the level of the 

response agrees quite well with the Fourier method and the positions of the troughs 

in the response agree well even in the high frequency region for both figures. Note 

that no boundary conditions were applied at the plate edges normal to the beam in 

the wave model, whilst the sliding conditions were considered in the Fourier 

method. Thus, the assumption that the strip-like plate motion is close to that of the 

plate in the sliding conditions seems valid. 
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Figure 4.20. Transfer mobility for the plate (at x = 1.50 m and y = 0.49 m) in the coupled 

structure as in Figure 2.2 ('l p = 0.05 in the plate, 'lb = 0.05 in the beam, point force applied 

atx = 0). 
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Figure 4.21. Transfer mobility for the plate (at x = 0.89 m and y = 0.45 m) in the coupled 

structure as in Figure 2.2 ('lP = 0.05 in the plate, 'lb = 0.05 in the beam, point force 

applied at x = 0). 
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4.5.2 Power balance 

Before discussing the power balance relationship of the wave model, the power 

results based on the wave method are briefly compared with those obtained from 

the Fourier method, which were presented in section 3.4.3. Total power input is 

shown in Figure 4.22. It can be seen that they are generally in good agreement 

between the two methods. 
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Figure 4.22. Total input power inserted to the coupled structure shown in Figure 2.2 

(17 p = 0.05 in the plate, 17b = 0.05 in the beam, point force applied at x = 0) based on the 

wave method and the Fourier series method. 

Also, the power transferred to the plate is shown in Figure 4.23. Although the 

results of the two methods have the same tendency, it seems that the difference 

tends to increase especially at some troughs such as 12 Hz and 46 Hz. At these 

frequencies, the use of the strip model for the plate appears inappropriate, which 

may increase the difference between the wave and Fourier methods. A further 

discussion follows in terms ofthe power ratio below. 
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Figure 4.23. Net power transferred to the plate of the coupled structure shown in Figure 2.2 

(7Jp = 0.05 in the plate, 7Jb = 0.05 in the beam, point force applied at x = 0) based on the 

wave method and the Fourier series method. 

The power balance relationship of the wave model is now investigated. In Figure 

4.24, the total input power and the net power transferred to the plate are compared 

for the model in which the travelling wavenumber k
t 

is used for both the travelling 

and nearfield waves. It is clear that the power is maximum at the resonances of the 

coupled structure (see Figure 4.18). Comparing the two powers, at peaks just above 

the anti-resonances of the plate using the travelling wavenumber kx' the plate 

receives most energy such as at the peaks at 22.9, 63.5 and 128 Hz. Here the total 

input power and the net power transferred to the plate have almost the same values. 

The magnitude of the beam motion becomes larger than that of the plate at other 

peaks such as at 6.7, 18.7, 35.9 and 91.3 Hz, and then the difference between the 

two powers is larger. The ratio of the power transferred to the plate to the total 

input power is shown in Figure 4.25. This has maxima close to 1 at the peaks ofthe 

plate impedance (see Figure 4.15) i.e. the anti-resonances of the plate using the 

plate. 
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Figure 4.24. Total input power inserted to the coupled structure shown in Figure 2.2 

('7 p = 0.05 in the plate, '7b = 0.05 in the beam, point force applied at x = 0) and net power 

transferred to the plate. Wave method is used. 

The difference of the power transfer between the wave and Fourier methods 

mentioned above may be seen clearly in terms of the power ratio. Although the 

difference is reduced at the anti-resonance frequencies, it seems that the power 

transfer based on the wave method is generally smaller than that based on the 

Fourier method. This is because the wave method assumes that the plate is strip­

like. A further explanation follows in the next figure. 
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Figure 4.25. Ratio of the power transferred to plate to the total input power shown in 

Figure 4.24. 
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The power balance for the beam was checked and it was found that the sum of the 

power transferred to the plate and the power dissipated by the beam is equal to the 

total power input to the combined structure with a mean error of 0.3% due to 

numerical integration. 

For the plate the power balance is investigated. Note that, as the plate behaves like 

strips the strain energy is obtained approximately by using the sum of the strain 

energy of the strips. The power dissipated by the plate is calculated using equation 

(3.63) where the damping loss factor 7Jp = 0.05 is considered. The corresponding 

result is shown in Figure 4.26. One can see that the power dissipated in the plate is 

larger than the power transfer at the junction and it seems that energy conservation 

is violated. However, in fact this is also related to the motion of the plate. That is, 

as the plate behaves strip-like in the y direction, the power dissipation in the x 

direction cannot actually be taken into account in this wave method. Thus, as seen 

in the figure, if the damping loss factor 7J p is used the power dissipated by the plate 

tends to be larger and the power relationship does not hold. 

10-' ~~.....---~-----~~r----~---;===;::;,==~ 
I~ - P beam->plate 

I[ - - P plate, dis 

I 

10' 

Frequency (Hz) 

Figure 4.26. Comparison of power balance for the plate in the coupled structure shown in 

Figure 2.2 (7Jp = 0.05 in the plate, 7Jb = 0.05 in the beam, point force applied at x = 0 of 

beam). 
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However, if the equivalent loss factor calculated from the wavenumber ky is used 

for the plate (thus 17k) ~ -4 Im(ky)/Re(ky) ), it is found that the power balance 

relationship holds. The corresponding equivalent loss factor of the wavenumber ky 

is shown in Figure 4.27. This equivalent loss factor is smaller than damping loss 

factor of the plate. Comparing this with Figure 4.14, one can see that the 

frequencies at troughs coincide with the peaks of the equivalent loss factor of the 

wavenumber kx ' Using this equivalent loss factor 17k the power dissipated in the 
y 

plate was obtained and it is found that the difference between the power transfer 

and the power dissipation is only 3% on average. 

Since the beam dissipated power and the power transfer ~~p add to give the input 

power, and ~--7P does not require adjustment to the loss factor, it seems more 

reliable to use ~--7P than Pp,dis' 

Frequency (Hz) 

Figure 4.27. Equivalent loss factor '7k, of the wavenumber ky of the coupled system due 

to the finite width plate (1J
p 

= 0.05 in the plate). 

Although the power balance relationship holds using the equivalent loss factor of 

the wavenumber in the y direction, it is clear that the power dissipated in the plate 

IS underestimated as only power dissipation in the y direction is considered. 
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Meanwhile, because of such an underestimate of the power dissipated in the plate, 

it is expected that the power dissipated in the beam may be overestimated, as long 

as the power input level remains similar. This will be shown in the next chapter 

dealing with two-bearn-plate systems. 

4.5.3 Discussion 

Note that the discussion above is based on the case when the travelling wavenumber 

- -
kt is substituted for the nearfield wavenumber knf in equation (4.35) and 

corresponding plate wavenumbers are considered. If the travelling wavenumber kx 

and the nearfield wavenumber knJ are determined separately from their corresponding 

plate impedances, although the power transferred to the plate is expected to be the 

same as the power dissipated by the plate, it is found that they do not agree. The 

dissipated power obtained from the sum of the plate responses for each of the 

different waves in the coupled beam generally shows a lower level than the net 

power transferred to the plate [84]. Therefore, it seems that the behaviour of the 

plate cannot be separately considered in terms of the different waves of the bearn, 

and a simple sum of the separate responses seems to be in error. 

In summary, if the travelling wavenumber kx is used throughout in the equation of 

motion of the beam, the power balance holds. However, it seems that the 

calculation of the plate response based on the separation of the coupled 

wavenumber has some limitation regarding energy conservation. As the influence 

on the response due to the separation of the nearfie1d wavenumber seems small, in 

further studies dealing with the wave method, it is assumed that the nearfield 

wavenumber has the same value as the travelling wavenumber. 
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4.6 Conclusions 

The vibrational characteristics of a structure consisting of a beam possessing small 

wavenumbers and a plate possessing large wavenumbers has been calculated by 

means of the wave method. The structure is non-symmetric unlike the symmetric 

structure considered by Grice and Pinnington [41]. 

The general relationship between the coupled beam wavenumber and the plate 

wavenumber has been derived when the travelling and nearfield wavenumbers in 

the coupled beam are separately considered, and the corresponding plate 

impedance has been explained. This shows that the impedance equation has the 

same fonn regardless of vvave types but the numerical values for the impedance are 

changed. Although the wavenumbers are basically obtained using an iteration 

method, the non-convergence of the wavenumber in the iteration procedure at 

certain frequencies has been explained. As an alternative numerical approach, it has 

been shown that Muller's method can be applied to obtain the complex coupled 

wavenumber based on the dispersion equation. 

The wavenumbers are obtained by assuming a plate impedance based on the 

travelling wavenumber in the beam. This is reasonable approximation where the 

motion of the beam is dominated by the travelling wave but gives poor results in 

frequency regions where both waves have a high decay. 

It was shown that, for the present structure, the exact line impedance could be 

replaced by a simplified approximate impedance. This means that the line 

impedance of the plate can be considered as the input point impedance of the 

corresponding beam (thus strip) driven by a point force. To allow such 

simplification in the wave method, the wavenumber of the free plate should be at 

least about twice as large as that of the coupled beam, which is satisfied for the 

case considered in this chapter for the frequency range considered. 
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It was shown that the plate behaves like added damping as well as mass when 

coupled to the beam. The ratio of the imaginary part to the real part of the coupled 

wavenumber shows that the equivalent loss factor falls with increasing frequency, 

as shown by Heck1 [64]. The plate introduces a blocking effect to the beam. When 

the travelling wave is present in the beam, the equivalent loss factor of the beam is 

maximum at the anti-resonance ofthe finite plate, and thus the mobility level of the 

coupled structure is minimized. This is because the plate reduces the motion of the 

beam at this frequency. 

The total input power injected to the structure consisting of a finite beam and a 

finite plate was compared with the power transferred to the plate. The power 

transferred to the plate was obtained from the approximate impedance of the plate, 

which behaves like separate strips. In such a case, it seems that the power 

dissipated in the plate is underestimated because of the strip-like motion of the 

plate. From the ratio of the power transferred to the plate to the total input power, it 

was seen that the greatest proportion of power is transferred to the plate at specific 

frequencies which coincide with the anti-resonance frequencies of the plate. This 

corresponds to the blocking effect. 

It should be noted that the results mentioned above are based on some assumptions. 

Firstly, coupled wavenumbers are calculated based on wavenumber trace matching 

which only strictly applies when structures have no damping. For application of the 

wavenumber trace matching in damped structures, it is assumed that the loss factor 

of the spine is very small and the spine wavenumber is much smaller than the 

receiver wavenumber. Secondly, the approximate impedance of the plate is 

adopted. This is satisfactory only when the free plate wavenumber is about twice as 

large as the coupled beam wavenumber. 

A violation of energy conservation occurs if the plate responses are calculated in 

terms of separate beam wave types, the beam wavenumbers also being calculated 

independently from the corresponding plate impedances. However if all 

wavenumbers are determined from the same impedance, so that the same 
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wavenumber kx is used for travelling and nearfie1d waves, no violation of energy 

conservation occurs. 
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CHAPTERS 

TWO PARALLEL BEAMS COUPLED TO A PLATE 

5.1 Introduction 

The various methods developed in the previous chapters have been applied to 

obtain the response of a coupled system consisting of a single beam and a plate. An 

aim of this thesis is to deal with more complicated systems such as two beams or 

four beams coupled to a plate. As a step towards investigation of a framed structure 

of four beams surrounding a plate, the previous analyses are extended here to apply 

to a structure consisting oftwo identical beams connected by a rectangular plate. 

The Fourier method developed can readily be extended to the case where two 

beams are attached to a finite width plate, using continuity and force equilibrium 

conditions. From the relevant equations it will be seen that this method can also be 

used where these beams are dissimilar. The limits required for convergence found 

previously in Chapter 3 are again used in this chapter. 

The applicability of the wave method as an approximate method for a single beam­

plate coupled system was shown in Chapter 4. A further study is carried out here to 

find a wave solution for a symmetric beam-plate-beam system. By symmetry, this 

structure can be assembled from solutions of a plate of half the width attached to 

one beam for which the opposite edge of the plate parallel to the beam is either 

pinned or sliding. The synthesis procedure is described and some numerical results 

are shown. In the wave approach, the wavenumbers are found using the plate 

impedance corresponding to the travelling wave in the beam as this is expected to 

dominate the response. 

The results of the Fourier method are firstly compared and validated against those 

obtained using the modal method extended from Chapter 2. Then, results based on 

the Fourier method and the wave method are presented and some comments are 
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given on comparisons between the two methods, indicating their advantages and 

disadvantages. Although the same boundary conditions are considered for 

comparison between the methods, strictly, the strip-like plate assumed in the wave 

model has no boundary conditions on the plate edges normal to the beam. 

5.2 Fourier technique for analysis of beam-plate-beam systems 

5.2.1 Coupling between infinitely long structures 

In Chapter 3 the Fourier transform and Fourier series techniques were introduced to 

analyse a coupled system consisting of a single beam and plate. In a simiiar way, the 

Fourier method can be applied to a structure comprising two beams. The waveguide 

structure consisting of two infinite beams and an infinitely long finite width plate 

are shown in Figure 5.1 along with their force relationships. It is arranged that their 

neutral axis lies in the centre of the beams. Harmonic motion at frequency OJ is 

assumed. It is again assumed for simplicity that the beams are infinitely stiff to 

torsion along y = 0 and y = Ly • In later chapters, a four-beam coupled system is 

studied. Thus, for consistency, the driven beam is named 'beam l' and the opposite 

beam is named 'beam 3'. 

K 
x Ly 

Figure 5.1. A coupled structure consisting of infinite two beams attached to an infinitely 

long finite width plate and force relationship between them. 
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When the plate and beam 1 are joined along the line y = 0, a force per unit length 

J; (x) acts between them as shown in Figure 5.1. It is assumed that the external 

point force is acting on the beam at x = 0 (beam 1). The force is defined by 

Fat5(x-O). Now considering all forces related to beam 1, the motion of this beam 

with damping becomes 

(5.1) 

where subscript b 1 stands for beam 1, Dbl is its complex bending stiffness and m~l 

is its mass per unit length. In the same manner, the equation of motion for the other 

beam (beam 3) is 

(5.2) 

Therefore, taking the spatial Fourier transform of equations (5.1) and (5.2) gives 

respecti vel y 

(5.3) 

(5.4) 

where F;(kt ) and F;(kx ) are the Fourier transforms of J;(x) and J;(x) 

respectively. 

The equation of motion of the free plate with damping and the corresponding 

Fourier transform are the same as shown in equations (3.7) and (3.10) in section 

3.2.1. 

Assuming a solution for the harmonic wave in the plate wp (y) = S/yY , the 

wavenumber relationship can be determined as in section 3.2.1. The waves in the 

plate propagating or decaying away from the junction of beam 1 and the plate are 
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shown in equation (3.14). If Ikx I < If pi, then wavenumber kYl is considered as a 

travelling wave, and kY2 is considered as a nearfield wave. Conversely, if 

Ikx I > Ifp I ' then all ofthem behave as nearfield waves. 

Consequently the motion ofthe plate can be written as 

- - i - i - i, - i W (k y) = Be yIY + Be y2Y + Be )3} + Be y4Y 
p x' ] 2 3 4 (5.5) 

- -- - - - -
where ky] and kY2 are calculated in equations (3.14), kY3 = -kYl and kY4 = -ky2 ' 

Based on the wavenumbers obtained, the response of the beams and the plate can 

be identified. This procedure starts initially from the boundary conditions. All 

boundary conditions related to the beams and plate are as follows. 

(i) Continuity equation for beam 1 and beam 3; equal displacement to the plate at 

junctions y = 0 and y = Ly respectively, 

(ii) Sliding condition; the beams are assumed infinitely stiff to torsion along y 0 

and y =Ly • 

In a similar manner as presented in section 3.2.2 the relationship of the 

displacements with respect to the beam and plate can be found. By introducing a 

matrix form, it can be written simply as 

~](kJ 
1 1 1 1 

B] 
ekYILJ ekY2Ly kY3Ly ekY4Ly 

~3(kt) e B2 = (5.6) 
0 ky] kY2 kY3 kY4 B3 

0 k kYILy 
y]e kY2ekY2LJ k kY3Ly 

y3e k ky4Ly 
y4e B4 

(iii) Force equilibrium condition; the forces on the plate are equal and opposite to 

the respective forces on the beams 
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Substituting equation (5.6) into equation (5.7) gives 

{
- } [ jjp F;(kJ P yl 

F (k) - jj P kylLy 
3 x pyle 

1 1 

ekYILy eky,L) eky,Ly 

kYI kY2 kY3 

k e kYIL) 
yl 

k ky,Ly 
y2 e 

k ky,L) 
y3e 

1 
-I 

~1(kJ 
~3(kJ 

o 

To simplify this equation, new variables 0' and T are introduced. 

1 1 1 1 
-I 

e 
k)'IL)' 

e 
kY2Ly ekY3Ly 

kYI kY2 kY3 

k k)'IL) 
y1e 

k i'2Ly 
y2 e 

k k,yL, 
y3 e - -

(5.7) 

(5.8) 

(5.9) 

Note that 0' and T are related only to the plate properties. The relationship between 

the forces F(kx) and the displacements ~(kx) can be written simply as 

{~(kt)}=[(}1 (}2]{~bl(kJ}. 
F;(kt ) TI T2 ~/kt) 

(5.10) 

Substituting equation (5.10) into equations (5.3) and (5.4), gives 

(5.11) 

(5.12) 
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Finally, by inverting this equation the response of beam 1 can be expressed as 

(5.13) 

Accordingly, the response of beam 3 becomes 

(5.14) 

The responses Wbl(X) and Wb2 (X) can be obtained from the inverse Fourier 

transform of these equations according to equation (3.4). Moreover from ~I (kx ) 

and ~3 (kJ, equation (5.6) can be used to find B1 , B2 , B3 and B4 • These can then 

be substituted into equation (5.5) to give Wp(k"y) which can be inverse Fourier 

transformed to give wp(x,y) (equation (3.8)). 

It should be noted that equations (5.13) and (5.14) allow the beams to be dissimilar. 

Thus, for example, two beams having different second moments of area or mass 

per unit length coupled to a plate can be analysed. It is an advantage of the Fourier 

method in contrast to the wave method in the analysis of two parallel beams 

coupled to a plate. Two dissimilar beams coupled to a rectangular plate will be 

investigated in Chapter 7 in connection with an experimental study and validation. 

5.2.2 Response of finite two-beam structure 

The above theory can be readily applied to the finite coupled structure, shown in 

Figure 5.2, where the ends of both finite beams are considered to be sliding. The 

two corresponding edges of the plate are also assumed to be sliding. As before, the 

beams are assumed to have infinite torsional stiffness. 
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Figure 5.2. A coupled structure consisting of two finite beams attached to a rectangular 

plate. 

As explained in section 3.4.1, the behaviour of the coupled beams with sliding 

conditions can be described in terms of cosine orders. Therefore, the motions of the 

coupled beams 1 and 3 are written in the same form as equation (3.52) and the 

motion of the plate as presented in equation (3.53) in the same section. The 

solution at each value of wavenumber in the Fourier series is obtained as in the 

previous section. 

5.2.3 Results based on the Fourier technique 

Using the Fourier senes, the response of the finite beam-plate-beam structure 

shown in Figure 5.2 is calculated. The width of the plate Ly is 1.5 m and all other 

material properties and dimensions are the same as given in Table 2.1. Although 

the mathematical development allows the two beams to have different properties, 

for the purpose of validation the two beams are here taken to be identical. 

Structural loss factors of 0.05 are used for the beams and plate. 
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The Fourier senes IS truncated at a non-dimensional wavenumber of 15 

(r = kjkb = 15 at 1412 Hz) as proposed in Chapter 3 which gives a maximum 

number of Fourier components of 145. 

For comparison, a modal model is constructed. In Chapter 2 dealing with the modal 

method, only a single beam coupled to the rectangular plate was discussed. 

However, a similar procedure can be applied so that the contribution of the second 

beam can be incorporated. A two-beam system is discussed later in Chapter 6 

where the two-beam system is realised by eleminating two parallel beams in a fully 

framed system. Thus, the details concerning the two-beam system are not explained 

at this stage. However, as dicussed in section 2.6.1, the maximum mode number 

should be chosen for the present application, as the plate width is changed from 

0.75 m to 1.50 m. In Chapter 2, the non-dimensional wavenumbers with respect to 

the plate free wavenumber were chosen to be r p,x = 0.69 and r p,y = 2.25 (see 

Table 2.2). These give maximum mode numbers of M = 21 and N = 51 for the 

present case. For convenience M = N = 51 are used here in the modal model 

consisting of two beams and a plate. 

One may notice at this stage that the Fourier method and the modal method use the 

same cosine function with the same wavenumber k
t 

to describe the motion along 

the x direction. They are presented in equations (3.51) and (2.5) respectively. 

Thus, the maximum number of components in the Fourier series n and the 

maximum mode number M have in fact the same physical meaning. That is, if the 

same value for M and n is used then the response of the structure along the x 

direction should be identical ignoring the behaviour along the y direction. Thus, 

for comparison between the two methods strictly it is expected that the same value 

for M and n should be used, even though the responses may not be identical due 

to the motion along the y direction. However, note that in this section M = 51 and 

n = 145 are used. This is related to the computer resources that are limited in 

calculation as the modal method deals with a matrix, the size of which is defined 

by the maximum mode number in the two directions. Meanwhile, in the Fourier 
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method the motion along the y direction is defined in fact in terms of only four 

waves for a given wavenumber kt' which reduces calculation time. Thus, the 

response based on the Fourier method is likely to be more accurate than that based 

on the modal method as n > M here. 

First, the point mobility at one end of the beam is compared in Figure 5.3. The 

results show excellent agreement between the Fourier series and the modal method 

(maximum errors of 0.9%). 

10-' ~~""---------~--'--'------r===~==O:=::J::::::=1:l 
- Fourier series 
- - Modal method 

10-4 
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102 10
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Frequency (Hz) 

Figure 5.3. Point mobility of the finite beam-plate-beam structure (point force applied at 

x = 0 of beam 1). 

Also, the transfer mobilities to points on the plate and beam 3 are shown in Figures 

5.4 and 5.5 respectively. They are obtained at points of x = 1.51 m and y = 0.99 m 

on the plate and x = 0 m on beam 3 when the point force is applied at x = 0 of 

beam 1. Comparing them with those obtained using the modal method, they agree 

well. Maximum errors of 16% at 820 Hz and 60% at 1150Hz are found in the 

respective figures which correspond to the deepest trough. They occur due to the 

numerical integration, so that the average errors for the whole frequency range 

considered are only 0.09% and 0.3% respectively. 
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10-' F~----'-------------'-'-------r==:=====;::::::=l1 
- Fourier series 
- - Modal method 

.::::: -3 
~10 

j 

102 

Frequency (Hz) 

Figure 5.4. Transfer mobility for the finite beam-plate-beam structure to a point on the 

plate (at x = 1.51 m and y = 0.99 m, point force applied at x = 0 of beam 1). 
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Figure 5.5. Transfer mobility for the finite beam-plate-beam structure to a point on beam 3 

(at x = 0, point force applied at x = 0 of beam 1). 

Considering the good agreement between the Fourier and the modal methods, the 

Fourier method may be regarded as an exact method for obtaining the correct 

response of the coupled structure such as the beam-plate-beam structure under the 

boundary conditions. 
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The vanous powers are compared with the total power in Figure 5.6. The 

difference between the two transferred powers corresponds to the dissipated power 

in the plate (maximum error of 0.001 %). Also the net power transferred from the 

plate to beam 3 is equal to the dissipated power in beam 3 (maximum error of 

0.001 %). One can see that the power transferred to beam 3 is smaller than that 

transferred from beam 1 to the plate by more than 10 dB at all but the lowest 

frequencies, the difference increasing at higher frequencies. Thus, it can be said 

that the power transferred from beam 1 to the plate is mostly dissipated in the plate. 

Consequently, it is expected that the power from beam 1 is hardly transferred to 

beam 3. However, comparing the power dissipated in beams 1 and 3, they are 

generally similar in level except at higher frequencies. Thus, although most power 

is dissipated in the plate, it seems that a significant fraction of the power from 

beam 1 is still transmitted to beam 3. 

It may be noted that the plate has a much higher modal density than the beams, so 

that if the subsytems have similar average modal energy, the plate will have a 

higher total energy, as here. 
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Figure 5.6. Total input power to the coupled structure as in Figure 5.2, the power 

dissipated in beam 1, the net power transferred to the plate and the net power from the 

plate to beam 3 (point force applied at x = 0 of beam 1). The two identical beams are 

considered (beam height = 68 mm). 
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When two beams with different heights are considered for this (all other 

dimensions and material properties are not changed), the results are as shown in 

Figure 5.7. One can see that the difference of the dissipated power between beam 1 

and beam 3 is increased compared with Figure 5.6 (thus the power transferred to 

beam 3 is smaller) even at lower frequencies. The effect is much larger than simply 

due to the change in impedance and indicates that when the beam wavenumbers are 

different the transfer through the plate is reduced considerably. 

10-' E~-'-'----~--~~~~---r---~-r=~:::=::;::=~='=i3 
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Figure 5.7. Total input power to the coupled structure as m Figure 5.2, the power 

dissipated in beam 1, the net power transferred to the plate and the net power from the 

plate to beam 3 (point force applied at x = 0 of beam 1). The beam heights of beam 1 and 

beam 3 are 68 mm and 44 mm respectively. 

5.3 Wave method for analysis of a symmetric beam-plate-beam 

system 

The approximate wave method used to model a single beam and plate is extended 

to find the response of a symmetric beam-plate-beam system. It is assumed that the 

plate impedances acting upon the two parallel beams are the same. Then, the 
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approximate plate impedance found in Chapter 4 can be used for such an analysis. 

As in Chapter 4 this is based on the travelling wave in the beam. A symmetric 

structure consisting of two identical beams and single rectangular plate is examined 

as follows. 

5.3.1 Synthesis from non-symmetric structure 

Consider the coupled structure consisting of two finite beams attached to a 

rectangular plate as shown in Figure 5.2, where the two beams are identical. A point 

force is applied at one end of the beam and it is assumed that the ends of the beams 

are sliding. Note that although the sliding ends are assumed here for comparison with 

the Fourier method, the boundary conditions in the wave method are arbitrary. For 

example, the response of the free-free coupled beam can also be found using the 

similar procedure explained below. Due to the stiffuess of the beams, the edges of the 

plate also effectively have a sliding boundary condition, although no constraints are 

required. This is because in the present case the plate is assumed to behave like 

independent strips. All the dimensions are the same as in the previous section and 

thus, the width ofthe plate is 1.5 m. For convenience, this is written as 2Ly • 

Now, by symmetry, the wave motion III the plate can be described by a 

combination of the waves reflected by a pinned condition along the middle line of 

the plate (y = Ly), parallel to the beam, and the waves reflected by a sliding 

condition along the same line. Such a technique is common in FE analysis [3]. 

Therefore, the analysis performed previously for the structure consisting of one 

beam and one plate in Chapter 4 can be used in this analysis. Figure 5.8 shows how 

the response of the symmetric structure can be synthesized from a combination of 

the motion of the structure which is symmetric and that which is antisymmetric 

about the middle line (y = Ly) of the plate. In each case half the force amplitude is 

applied on one side. 
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Figure 5.8. Response of a symmetric structure calculated from consideration of the 

symmetric and antisymmetric motion. 

If the point force is applied at the end of beam 1 of the symmetric structure, the 

response of the upper half (0 S; y S; Ly) of the structure can be assumed to be the 

sum of the antisymmetric response of the structure with a pinned condition and the 

symmetric response of the same structure with a sliding condition at y = Ly . 

Meanwhile, the response of the lower half (Ly S; y S; 2Ly) can be obtained from the 

difference between the results. In terms oftransfer mobilities this gives 

(5.15 a) 

~lIm (y) = [ ~/d ( 2Ly - y) - Ypin ( 2Ly - y ) J/2 for Ly < y S; 2Ly (5.15 b) 

where the SUbscripts pin and sid represent the pinned and sliding boundary 

conditions ofthe plate edge y = Ly respectively. 

The force acting on the plate from the beam can be calculated from the transfer 

mobility of the beam and the approximate plate impedance for the corresponding 

boundary condition. For example, the force acting on the plate from beam 1 of the 

synthesized structure can be expressed in the form 

J; (x) = -; (J?;,I,Pin (x )Z~'Pin + J?;,I,sld (x )Z~,sld ) • (5.16) 
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The force acting on the other beam, beam 3, can also be calculated in the same 

way. No net external force acts on beam 3 as the forces in the two component 

models cancel. As the response of the beam-p1ate-beam structure is found from the 

sum of the anti symmetric and the symmetric responses, only a configuration with 

identical beams can be modelled using such a synthesis. 

While such an approach is commonly used, for example in FEM [3], it should be 

realised that the coupled wavenumbers in the two component models differ, as they 

depend on different line impedances. The assembly from symmetric and 

antisymmetric models, therefore, represents an approximation in the present analysis. 

5.3.2 Results based on the wave method 

The numerical analysis of the coupled system consisting of two identical beams 

coupled to a rectangular plate as in Figure 5.2 is carried out in this section. For the 

wave method, the symmetric and antisymmetric motions of the single beam system are 

required. In section 4.3.4, numerical calculations were already given for the case when 

the opposite edge of the plate parallel to the beam is pinned, giving a reflection 

coefficient r = -1. The dynamic behaviour of the same coupled system where the 

opposite edge is sliding can be realised by simply changing the reflection coefficient to 

unity (r = 1) in equation (4.33). The numerical analysis for such a case is presented in 

Appendix C, in which the corresponding wavenumbers, plate impedance, point 

mobility and power relationship are discussed in a similar manner as in section 4.5. 

From the responses of the single-beam coupled system with the pinned and then with 

the sliding opposite edge, the response of two identical beams coupled to the 

rectangular plate can be found. Note that the dimensions of the two-beam system are 

the same as that discussed in section 5.2, with twice the width of Chapter 4. 

Firstly, the point mobility of the combined structure, calculated using equation 

(5.15), is shown in Figure 5.9. Comparing it with corresponding results from the 
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Fourier method, generally close agreement is found. The mobility contains 

dynamic characteristics of both the pinned and sliding systems; for example the 

peaks at 6.7, 23.2, and 36.4 Hz correspond to the resonance frequencies of the 

pinned system (see Figure 4.18) and those at 9.7, 27.5, and 40.1 Hz are the 

resonance frequencies of the sliding system (Figure C.4 in Appendix C). The 

former modes correspond to anti-symmetric behaviour of the whole structure, and 

the latter to symmetric behaviour. Also, it can be seen that the plate impedances 

(Figures 4.15 and C.3) have an influence on the synthesized structure as well. At 

the anti-resonance frequencies 22.1, 62.7 and 126.7 Hz of the pinned plate and 9.4 

and 39.5 Hz of the sliding plate, the point mobility of the combined system has 

small troughs. Some of the anti-resonances seem to have no influence on the 

response of the structure, but this is because the response is described by the sum 

of the two structures with different boundary conditions. For example, the anti­

resonance of the sliding structure at 262 Hz does not result in any trough because 

the response is dominated by the resonance ofthe pinned structure at 272 Hz. 

10-' ",~""---------~~~-'------~-----r;==-==-~w;:C:av::::Oe:::::m:::::et!:::==hO:::::::d=il 
- - Fourier series 

FEM 

10-4"--..._'---'-c:-__ ~_~~~~_~-'-::-__ ~_~~~~~~'-::---' 

10' 102 10
3 

Frequency (Hz) 

Figure 5.9. Point mobility of the symmetric coupled structure as in Figure 5.2 (point force 

applied at x = 0 of beam 1). The FEM results have free boundaries on the plate at x = 0 and 

x=Lx. 

The transfer mobilities to a point on the plate are compared in Figure 5.10. They 

show good agreement between the wave model and the Fourier method. The small 

151 



Chapter 5. Two parallel beams coupled to a plate 

differences at low frequencies may occur because of the approximations of the 

plate impedance and nearfield wave in the coupled beam. 

10-' r~-'--'---------~--'--'-------r=::::;s:==.~ 
- Wave method 

10' 10
2 

Frequency (Hz) 

- - Fourier series 
FEM 

Figure 5.10. Transfer mobility for the plate (at x = 1.51 m and y = 0.99 m) in the coupled 

structure as in Figure 5.2 (point force applied at x = 0). The FEM results have free 

boundaries on the plate at x = 0 and x = Lx . 

In both approaches, sliding beam ends are assumed. However, it has been noted 

that strictly the corresponding plate edges normal to the beam behave in different 

ways, that is, in the Fourier approach, the edges experience sliding conditions, 

while in the wave method no boundary conditions are applied. However, as 

discussed with respect to the modal model in Chapter 2, the motion of the coupled 

beam has a dominant effect on the plate motion. The comparisons presented above 

show that the responses are in very good agreement at low frequencies as well as 

high frequencies, from which it can be said that the effect of differences in the 

boundary conditions is small, as expected. This can be confirmed by comparing 

them with the results obtained from FE that are also shown in the same figures. 

Although the FE model has free boundary condition on those plate edges (the 

beams still have sliding boundaries), one can see that the differences seem small 

even at low frequencies. 
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Chapter 5. Two parallel beams coupled to a plate 

Figure 5.11 shows the total input power, the power dissipated in beam 1 and the 

power transferred between the subsystems obtained using the wave method. Due to 

the fact that response of the system is synthesised using two different plate 

impedances, the calculated power transferred to beam 3 and the power dissipated 

by the beam differ by up to 35% (mean error of 0.4% for the whole frequency 

range considered). Nevertheless, these differences are still relatively small (at most 

1.3 dB and 0.02 dB on average) so that the synthesis approach can be used with 

some caution. 

10-' ~~---'------~---~-"""------r============i1 
- Total power input 
- - Pbeam1,diS 

_. Pbeam1->Plate 
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10-6 L-~---'-'--,---__ ~~_~~~~",-,-:,----_~_~ __ ~~~-'-'-::---' 

101 102 10
3 
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Figure 5.11. Total input power to the symmetric coupled structure as in Figure 5.2, the 

power dissipated in beam 1 and the power transferred to the plate and to beam 3. 

Comparing this result with that for the Fourier method given in Figure 5.6, generally 

good agreement is found for the power input. However, as mentioned in section 

4.5.2, one can see that the power transfer from beam 1 to the plate tends to reduce, 

whilst the power dissipated in the beams seems to increase as expected. Thus, strictly 

it seems difficult to predict an exact level ofthe dissipated or transferred power using 

this wave method. However, the differences of the power transfer and the power 

dissipated in beam 1 are small compared with those based on the Fourier method and 

such a power investigation is still useful to estimate the general power relationship 

between subsystems. For example, the result discussed in section 5.2.3 that most 
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power is dissipated in the plate and there is still some power transmission from beam 

1 to beam 3 can also be found here from Figure 5.11. 

5.4 Conclusions 

In this chapter, two parallel beams coupled to a rectangular plate were studied 

using both the Fourier method and the wave method. As explained in Chapters 3 

and 4, the latter is regarded as an approximate method while the former produces 

an exact response. Their responses were examined and also advantages and 

disadvantages ofthe two methods were discussed. 

The developments of the Fourier approach show that it is applicable for the 

analysis of a beam-plate-beam structure. The transfer mobility as well as the point 

mobility show very good agreement with those from the modal method. The 

formulation developed can be applied to non-symmetric beam-plate-beam systems 

and results for this will be examined in connection with the experimental study 

later. 

The wave model was also extended to a beam-plate-beam system. Using a 

combination of two single beam-plate models comprising pinned and sliding plate 

opposite edges respectively, an analysis of the symmetric beam-plate-beam 

structure was synthesised when one of the beams is excited. The response of the 

synthesized model shows features from both the symmetric and antisymmetric 

response. Application of this approach is possible for other arbitrary beam boundary 

conditions, which is not the case for the Fourier method. 

The wave method is an approximate approach. However, good agreement is found 

between the mobilities of the symmetric beam-plate-beam system obtained with the 

present method and those from the Fourier method. The power balance holds 

approximately, although the error (1.3 dB at most) is larger than that of the Fourier 

method, due to the approximation and the synthesis procedure. Strictly, the power 

transfer to the plate and the power dissipated in the beams differ from the exact 
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values due to the approximations in the wave method. Nevertheless, such a power 

investigation seems useful to give an insight of the power relationship between 

subsystems, as the difference is mostly small. 

The Fourier method provides an exact response as long as a sufficient number of 

Fourier components is included in the Fourier series. The wave method is much 

more efficient, as its dispersion equation is based on only the free wavenumber of 

the subsystems. However, the approximation of the plate impedance only results in 

an approximate response compared with the Fourier method. A discussion of the 

computational time and computer resources required for the different methods will 

be presented at the end of Chapter 6 where a more complicated four-beam system 

is studied. 

155 



Chapter 6. Fully framed structure 

CHAPTER 6 

FULLY FRAMED STRUCTURE 

6.1 Introduction 

Several numerical methods have been used to investigate the structural behaviour 

of a coupled structure consisting of beams and a plate. As well as a modal approach 

and a Fourier approach, a wave technique was introduced and applied to a structure 

consisting of one or two parallel beams coupled to a rectangular plate in Chapters 4 

and 5. 

A fully framed structure consisting of four beams surrounding a rectangular plate is 

an important concern in the present research, as it is a principal configuration 

considered in many engineering structures, e.g. automotive vehicles, ship hulls, etc. 

Although the numerical approaches developed previously have produced good 

results for the vibrational motion in the cases considered, they have rarely been 

used for the analysis of framed structures consisting of four beams. 

It has been shown that the wave approach can be used to obtain an approximate 

response of a beam-plate coupled structure as long as the system consists of a 

subsystem (spine) possessing long wavelength waves and a receiver subsystem 

possessing short wavelength waves. Thus, in principle, this technique can be 

applied to give an approximate dynamic response for a fully framed structure. It is 

necessary to have an accurate result for comparison with this approximate wave­

based solution. Thus, in this chapter the modal method considered in Chapter 2 is 

applied to the framed structure. The accuracy of this method is limited only by the 

number of modes included in the series. 

There are a few published studies on a framed structure consisting of four beams 

and a plate [68, 69] (see section 1.5). Both studies quoted concentrated on 

predicting the plate behaviour, rather than that of the beam. Also, both papers 
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assumed that the motion of the ends of each beam is zero. From the point of view 

that the stiff beams possessing the bending waves radiate short-wavelength bending 

waves into the plate, the behaviour of the beams is very important [41]. Therefore, 

the present study, which considers the beam as well as the plate and allows for 

excitation at the beam ends, differs from the studies described above. 

Grice and Pinnington considered a box structure and introduced a so-called spine 

and receiver [55] (see section 1.4.5). This concept is also considered in the present 

research. However, here the coupled wavenumber, representing the long 

wavelength wave including the effect of the plate impedance, is obtained to 

describe the motion instead of using the finite element model. 

This chapter is divided into two main parts. Firstly the modal approach of Chapter 

2 is extended to the four-beam-plate system. The number of modes that should be 

included in the calculation is an important issue in the mode-based analysis. For 

this, numerical results are shown and compared with those based on the Fourier 

technique previously investigated in Chapter 5, although the structure consisting of 

only two beams is used as there is no result previously obtained for the four-beam 

structure. Then, the dynamic response of the four-beam structure using the modal 

method is compared with that of the finite element method (FEM). 

In the second part, the procedure for obtaining an approximate response using the 

wave technique is explained. The principal equations, such as the equation of 

motion of a beam and the expression for the plate impedance, are emphasised and 

numerical results are shown for comparison of the various techniques. The 

corresponding equations of motion, based on the wave method for a four beam 

structure, are presented in Appendix D. 

Depending upon the problem and application, the detailed response at individual 

frequencies is important at low frequencies. However, with increasing frequency 

the band-averaged response and the variability about a mean value are much more 

important than narrow band results. The aim of the present study is related to the 
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dynamic characteristic in the mid and high frequency regions. Thus, results based 

on the wave method are mostly represented from this point of view. For example, a 

result such as an octave band average or a confidence interval of a response is just 

as applicable and useful as narrow-band results. Hence such results are also 

presented. 

The modal and wave methods are applied to a perspex plate l.Ox 0.75 m with a 

thickness of 2 mm, surrounded by beams 22 x 6 mm. As in previous sections the 

frequency range selected is 5.6 to 1412 Hz (one-third octave bands 6.3 to 1250 Hz). 

In this range each beam has between 7 and 9 modes so that the beams can be 

considered to be in their "low frequency" range. The plate has a modal density of 

about 0.4 modes per Hz, so that its 10th mode occurs by about 23 Hz and about 500 

modes can be expected below 1412 Hz. The modal overlap factor [12, 21] of the 

plate is greater than unity above about 50 Hz. This, therefore, has "high frequency" 

behaviour over much of the frequency range considered. 

6.2 A modal formulation for the coupled motion of a system of two 

or four beams attached to a plate 

6.2.1 A modal method for the framed structure 

The motion of a framed structure consisting of four beams and a rectangular plate, 

as shown in Figure 6.1, is investigated here. The modal method for a single beam 

coupled to a rectangular plate involving the modal coupling technique was 

presented in Chapter 2. Similarly, for the framed structure, its behaviour can be 

described in terms of mode shapes and the coupling based on the modal 

coordinates of the plate. 

The boundary conditions for the analysis of the framed structure as in Figure 6.1 

are similar to those presented in Chapter 2. The beams are assumed infinitely stiff 

to torsion and correspondingly all edges of the plate are assumed to be sliding, 
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which significantly reduces the complexity ofthe analytical and numerical analyses. 

As in Chapter 2 a separable solution is used for the plate and thus, the beam shape 

functions along the plate edges in the x and y directions are used as the two sets 

of functions. 

~x 
z y 

Beam 1 

--------------~" ----- " ' ----------- , " ---- " " , , , , , , , , , , , , 
" " 

Beam 3 '" '" 

----::::::::::~~~ ---- ~ ------

~~~~:=~~====~=-=-=-=--======~ --------- ~ --------------
Lx 

Figure 6.1. The coupled structure consisting of four beams and a rectangular plate. 

Similar to section 2.5.2, the flexural motion of the framed structure can first be 

derived using the mode shapes of the uncoupled plate satisfying the boundary 

conditions If/r and generalised coordinates qr. They are shown in equation (2.49). 

The maximum mode number R should be determined for practical use. 

The flexural displacement of the beams shown in Figure 6.1 is 

WbJ (x,t) = wp (x,O,t); Wb3 (x,t) = wp (x,Ly,t) 

W b4 (y,t) = wp (O,y,t); W b2 (y,t) = wp (Lx,y,t) 

due to continuity at the plate edges. 

(6.1) 

Writing the equations of motion in terms of the plate modal coordinates, the 

generalised mass matrix of the coupled structure is found, in a similar way to 

chapter 2, to be 

(6.2) 
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where M p is the modal mass matrix of the plate, Mbi is the modal mass matrix of 

beam i in beam modal coordinates and Pi is a transformation matrix from beam to 

plate modal coordinates. For plate mode r defined in terms of cosine orders mr and 

nr in the x andy directions (see equation (2.14)), 

(6.3 a) 

(6.3 b) 

(6.3 c) 

(6.3 d) 

c = {l/ Lt for k = 0 
k 2/ L

t 
for k ~ 1 ' 

(6.4) 

(6.5) 

The maximum numbers of modes m and k may be chosen to be the same and so 

may the numbers of modes n and I. 

Similarly the generalised stiffuess matrix is 

where Kp is a diagonal matrix with Kp,r = OJ~,rMp.r and Kbi,m OJ~i,mMbi,m' 

The force is applied to beam 1, so, as in Chapter 2 the generalised force in plate 

modal coordinates is given by 
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(6.7) 

where FbI is the generalised force in beam 1 modal coordinates given by 

~I,m = F;/Pm (XI) with a point force Fa applied at X = XI on beam 1. Steady state 

harmonic motion is assumed and then, introducing the hysteretic damping to the 

matrix :K results in the generalised coordinates as in equation (2.55). The flexural 

displacement of the framed structure is determined from the generalised 

coordinates obtained and the shape functions as in equation (2.49). 

6.2.2 Configuration of framed structure 

In the following, numerical simulations based on the modal method are presented 

and configurations of the framed structure to be used are explained. The structure 

consisting of four beams and a rectangular plate shown in Figure 6.1 is investigated. 

The numerical analysis based on the wave method will also be included later in this 

chapter. An important assumption of the wave method used in this research is that 

the wavenumber of the free plate kp should be at least about twice as large as the 

coupled beam wavenumber kx (see section 4.2.5). In principle this is not a 

restriction on the modal approach, but has been adopted so as to be able to consider 

results produced by the two methods. The material properties and dimensions of 

the coupled structure are given in Table 6.1. Note that some of the dimensions 

differ from those used in Chapters 2 - 5, in particular the beam length and height 

and thickness of the beam and plate. This is for consistency with the dimensions of 

the framed structure to be used in the experimental study in Chapter 7. 

The free wavenumbers of the beam and the plate are compared in Figure 6.2. The 

corresponding wavenumber ratio is a constant and equal to k p / kb = 3.18. This is 

large enough to apply the wave method in the present frequency range of interest 

(see Figure 4.4). 
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Table 6.1. Material properties and dimensions of the coupled structure shown in Figure 6.1. 

Material Perspex 

Young's modulus, E (GNm-2
) 4.4 

Poisson's ratio, v 0.38 

Density, p (kgm-3) 1152.0 

Beam length, L
t 

(m) 1.0 

Beam thickness, b (mm) 6.0 

Plate width, Ly(m) 0.75 

Plate thickness, t p (mm) 2.0 

Height of beam, h (mm) 22.0 

Damping loss factor of beam, 77b 0.05 

Damping loss factor of plate, 77 p 0.05 

- kb (uncoupled beam) 
__ kp (uncoupled plate) 

10°L-~~ __ ~_~~~ __ ~~~_~_~==~====~~ 
10' 10:2 103 

Frequency (Hz) 

Figure 6.2. Wavenumber comparison of the subsystems. 

6.2.3 Test of convergence: two-bearn-plate coupled system 

The number of modes to be included in the numerical solution for adequate 

convergence needs to be determined. This was already studied for the single-beam 

system in Chapter 2, where the response accuracy was compared to the modal 
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model itself having a large mode number (M = N = 200). A similar examination is 

carried out here for the two-beam-plate coupled system. Unlike the single-beam­

plate structure, the difference in response predictions is investigated here using 

other known numerical analyses. In Chapter 5, the Fourier technique was 

introduced to find the response of the coupled structure consisting of two beams 

and a rectangular plate and the results of this technique can be used for comparison. 

Comparing the difference between two methods, it is expected that the appropriate 

number of modes necessary for the frequency range of interest (5.6 - 1412 Hz) can 

be ascertained. 

It can be expected that the number of modes required for the two-beam structure 

can also be used reliably for the equivalent four-beam structure of similar 

dimensions. The four-beam structure is actually stiffer than the two-beam case 

suggesting that fewer modes should be required, or conversely that for a given 

number of modes the accuracy should be better than that of the two-beam case. 

The two-beam structure considered is shown in Figure 5.2. All material properties 

and dimensions are the same as for the four-beam structure (Table 6.1). Also 

sliding boundary conditions were assumed as described previously. The relevant 

matrix equations are shown in section 6.2.1. However, as there are no beams along 

the y direction, the corresponding mass and stiffuess beam contributions should be 

zero. 

In the Fourier approach the wavenumber range considered in the calculation is 

defined in terms of the non-dimensional wavenumber r = kx / kb where kx = m'C / L, 

and n is the number of half-cosine waves along the beam length Lx (see sections 

3.2.2 and 3.4.1). Clearly, extending the range for the Fourier transform produces 

better results. However, it also requires much more computation time and it was 

shown that a range of r ±15 results in less than 0.01 % error in the amplitude at 

5.6, 100 and 1412 Hz for the present (single beam) coupled structure (see Figure 

3.11). Thus, in the present case, a total of 129 Fourier coefficients is used which 

corresponds to a non-dimensional wavenumber range of r = ±15 at 1412 Hz. 
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An external unit force is applied at x = 0 of beam 1 as shown in Figure 5.2. To 

compare the results of the modal method with those of the Fourier technique a 

spatially averaged kinetic energy estimate of the plate is used as in Chapter 2. To 

obtain this 20 points are randomly selected on the plate. Assuming the Fourier 

technique is an exact result for this problem, the difference EO) is defined by 

Em = E( OJ) = I(TF (OJ)) -(TMN (OJ ))I/(TF (OJ)) (6.8) 

where (TF (OJ)) is the space-averaged kinetic energy of the plate based on the 

Fourier technique and (TMN ( OJ )) is that with the maximum mode number MN 

based on the modal method. Then, equation (2.57) can be used to give the error e 

in dB, which is expressed in terms of the frequency-averaged difference Em' 

First, the space-averaged kinetic energy using the Fourier method is shown in 

Figure 6.3 in terms of a narrow frequency resolution. The plate has about 500 

modes in this frequency range, the modal density being about 0.4. 

10-3 

E 
;;:.. 

j 
10-4 

10-5 

10-6 

10' 102 
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Figure 6.3. Kinetic energy averaged over 20 points of the plate of the coupled system as in 

Figure 5.2. Excitation at x = 0.0 m, Y = 0.0 m (beam left hand end). Maximum component 

number of n = 128 is used in the Fourier series based on the non-dimensional wavenumber 

range of r= ±15 at 1412 Hz. 
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The decibel difference e between the modal method and Fourier method is 

evaluated for different values of the maximum mode number in the x direction 

( M ) and the maximum mode number in the y direction (N). The mode numbers 

were chosen to be at intervals of 2. Similar to section 2.6.1, the error e is 

considered in various one-third octave bands for the convergence investigation. 

The bands considered have centre frequencies of 20, 100, 1000 and 1250 Hz. 

The error distribution corresponding to the centre frequency of 100 Hz is shown in 

Figure 6.4. As expected, while the error gradually reduces in the y direction, the 

reduction in the x direction is rapid at small mode numbers reaching a minimum at 

M = 8. The normalised wavenumber in terms of the beam free wavenumber of the 

one-third octave centre frequency, corresponding to the trough at M = 8, is about 3. 

·5 

·10 

~-20 _ .. 

ill) -25 -. . 

-40 . 

M (max. mode number , x dir.) 

' " 
..... 

50 50 
N (m ax. mode number. y d ir.) 

Figure 6.4. Error of the one-third octave band average in the modal method compared to 

the Fourier technique (fc = 100 Hz). The results are shown as a function of the maximum 

mode number. 

The error distribution in the one-third octave band with centre frequency of 1 kHz 

is shown in Figure 6.5. The error is greater for a given maximum mode number due 

to the shorter wavelengths present at higher frequencies. 
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A trough occurs at M = 10, at which the nonnalised wavenumber with respect to 

the free beam wavenumber gives a factor of about 1. The two stiffer beams lying in 

the x direction have a dominant influence on the motion in this direction, whereas 

one needs a higher number of sliding modes in the y direction to get a good 

prediction. 

o 

- 10 ....... . .. , 

-15 ..c . · · · · 

~ ~20 _:.- . " 
u 

·25 _ . .. . . . 

-30 -.; ... . 

-35 _ .. . . . 

M (max. mode number, x dlr.) 

40 

50 50 
N (max. mode number. y d ir .) 

Figure 6.5. Error of the one-third octave band average in the modal method compared to 

the Fourier technique (fc = 1 kHz). The results are shown as a function of the maximum 

mode number. 

The non-dimensional wavenumbers r p .x and r P.y introduced in equation (2.58) are 

also adopted to find the criteria for the convergence less dependent on the 

frequency range. The error shown in Figure 6.4 is replotted using contours in 

Figure 6.6 as a function of the non-dimensional wavenumbers. The thick line is 

shown to indicate the mean error of about -20 dB (= 1 %). 
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I 

Figure 6.6. Contours of the one-third octave band average error as a function of the non­

dimensional wavenumbers in the modal solution (fc = 100 Hz). 

Another example of contours is shown in Figure 6.7, which gives the mean errors 

at the centre frequency of 1 kHz shown in Figure 6.5. The thick line also indicates 

the error of about -20 dB. 

~~O.5~---~--~---:2 --~2~.5 --~ 

ky/kpClnlr. 

Figure 6.7. Contours of the one-third octave band average error as a function of the non­

dimensional wavenumbers in the modal solution (fc = 1 kHz). 

In both Figures 6.6 and 6.7 the mean error of -20 dB occurs at around rp.x ::::: 0.8 

and r p.y ::::: 2 - 4. Similar results are found for the centre frequencies of 20 and 1250 
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Hz. Thus, the introduction of the non-dimensional wavenumber seems useful for 

this two-beam-plate system as well as for the single beam system to predict the 

accuracy of the response independent of frequency. As the beam motion governs 

the plate motion in the x direction parallel with the beam, using the wavenumber 

ratio of k p / kb = 3.18 in the present case, a particular non-dimensional wavenumber 

to give the error of -20 dB is chosen, similar to the single beam situation (see 

section 2.6.1). The results are summarised in Table 6.2, where the minimum M 

and N are chosen to give the non-dimensional wavenumbers presented in the table. 

Selecting MxN = 21x50 results in the mean error of -27.4 dB (0.18 %) for the 

whole frequency range of 5.6 - 1412 Hz. 

Table 6.2. Relationship between the maximum mode number and non-dimensional 

wavenumber in various one-third octave bands for a mean error of -20 dB. 

fc Yp,x Yp,y M N 

20Hz 0.7 2.2 3 4 

100 Hz 1.2 3.9 9 22 

1000 Hz 0.8 2.6 19 45 

1250 Hz 0.8 2.6 21 50 

Subsequently in the present study dealing with the framed structure M 50 and 

N = 50 have been chosen for computations as the computational time is acceptable. 

These correspond to a maximum plate wavenumber of 2.5 times the free plate 

wavenumber at the maximum frequency (and eight times that of the beams). It is 

expected that, for the four-beam coupled structure, the accuracy may increase as 

two other beams are attached which are stiffer than the plate and hence govern the 

coupled structural behaviour. Thus, it is expected that if M 2': 50 and N ~ 50 then 

the error will be less than 0.18%. 
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6.2.4 Numerical result of four-bearn-plate coupled system 

The four-beam structure shown in Figure 6.1 is analysed using the modal procedure 

represented in section 6.2.1. Firstly the point mobility of the coupled structure is 

obtained when a harmonic point force of unit magnitude is applied at x = 0, y = 0, 

the joint of beams 1 and 4. The response is compared with a finite element (FE) 

model prediction in Figure 6.8. The beam in the FE model is modelled using Euler­

Bernoulli beam elements (400 elements) and the plate with shell elements (9804 

elements) corresponding to at least 8 elements per plate free wavelength 

(Ap = 0.074 m at 1412 Hz) and all plate edges and the ends of the beams are also 

assumed to be in sliding conditions. The result of the modal method shows an 

excellent agreement with that of the FE model, the latter itself also being an 

approximate numerical solution. 

10°r-~~----------------~~------------r==T.~~~m 
- - Modal method 

10' 102 

Frequency (Hz) 

- FEM 

Figure 6.8. Point mobility of four-beam-plate structure obtained using the modal method 

and the FE method (excitation atx = 0). 

Also an example of the transfer mobility comparison with FE is shown in Figure 

6.9, also giving good agreement. 
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10°r-~~----------------~~------------~~~=s~~ 
- - Modal method 
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Frequency (Hz) 

Figure 6.9. Transfer mobility of four-beam-plate structure obtained using the modal 

method and the FE method (excitation at x = 0, response at x = 0.51, Y = 0.51). 

Although the modal method requires significant computational time and resources, 

it produces excellent responses. These results are used in the following section to 

compare with a further development of the wave method. 

6.3 Analysis of four-bearn-plate coupled system using a wave 

approach 

6.3.1 Wave approach 

In Chapters 4 and 5, and the previous work of Grice and Pinnington [41], it was 

shown that a wave approach can conveniently be used for the analysis of a simple 

coupled structure such as a beam and a plate under certain assumptions. The most 

important restriction is that the wavenumber of the plate should be at least about 

twice as large as that of the beam. 

The wave method has also been applied to a more complicated system, where a box 

structure was investigated using the concept of the wave approach, although the 

spine structure was modelled using the FEM [55]. 
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In this section, the framed structure consisting of four beams and a rectangular 

plate is investigated. The beams possessing the long wavelength waves are 

modelled by the wave method instead of the FEM. As in the previous section the 

beams are assumed to be infinitely stiff in torsion so that the edges of the plate are 

effectively in sliding. For such boundary conditions on the opposite edges of the 

plate, the approximate wave impedance of the plate is given by equation (4.33), in 

which r = 1 for a sliding condition. 

It should be emphasised that the terminology width in the discussion of the wave 

method is always used to mean the dimension in the direction normal to the beam 

axis and the opposite edge refers to the plate edge parallel to the attached beam 

whatever the orientation of the beam. Thus, Ly in equation (4.33) is the width of 

the finite plate between the beam axis lying at y = 0 and the opposite edge lying at 

y = Ly . If the plate is infinitely wide so that Ly = CIJ, then the approximate 

impedance ofthe plate is simply presented by equation (4.23). 

The general dispersion equation for the built-up structure is given by equation 

(4.34). Note that, as equation (4.33) includes the plate trace wavenumber ky, an 

iterative method is required to find the coupled beam wavenumber kx in solving 

equations (4.34) and (4.33). Muller's method is used as before to get improved 

results (see Appendix B). Also, the plate impedance corresponding to the travelling 

wavenumber in the beam is used. Once the coupled beam wavenumber is found, 

the motion of the finite beam possessing the coupled wavenumber can be 

represented by equation (4.35). 
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6.3.2 Coupled structure consisting of four beams: application of the wave 

method 

If it can be assumed that most of the power due to excitation on the beam is 

dissipated in the plate and only a small fraction of the power is transferred to other 

beams, then it may be possible that the framed structure consisting of four beams 

and the rectangular plate can be represented by a system consisting of the four 

beams each having the coupled wavenumber due to the plate impedance. Then such 

a system can be modelled simply using the wave method. The structure physically 

satisfying the above assumption is realised in Figure 6.10. In the figure, the width 

of the plates attached to beams 1 and 3 is Ly and for the plates attached to beams 2 

and 4 the width is Lx. 

As sliding edges are assumed in the framed structure in Figure 6.1, the same sliding 

boundary conditions are used at the opposite edges for the structure shown in 

Figure 6.10. This may result in different responses compared with those of the 

framed structure, as in fact the opposite edges should be attached to other beams. 

However, if the assumption explained above holds, it is expected that their 

influence will be reduced and although affecting the individual frequency 

behaviour this approach might still be useful for the mean response calculation. 

---------
--------

---------------f:.X 
Z Y Beam 1 

--------

----------

Figure 6.10. Configuration of the coupled structure for the use of the wave method. 
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The external force is applied at the comer of beam 1 and beam 4. As the coupled 

beam wavenumber to be used in modelling is based on the assumption that the 

opposite edges of the plates shown in Figure 6.10 are sliding, equation (4.33) is 

used in equation (4.34). Also, it is assumed here that beams 1 and 3 are identical 

with the same (coupled) wavenumber kx and that beams 2 and 4 are identical with 

wavenumber ky , although they could be different, as considered in Chapter 7. 

The method for obtaining the response using the wave model is similar to that 

given in Appendix D. This describes a frame of four beams in which no plate is 

attached to the beams. Thus the beams possess the free beam wavenumber, kb • The 

boundary conditions of the wave model consisting of four beams are also explained 

and these are the same as those used in the modal model in section 6.2. In order to 

model the structure shown in Figure 6.10, only the coupled wavenumber obtained 

from equation (4.34) needs to be substituted for the uncoupled beam wavenumber 

in the method of Appendix D. 

6.4 Numerical analysis of four-beam-plate coupled system 

6.4.1 Mobilities 

As explained in the previous section, the wave approach is an approximate method 

and it is necessary to compare its results with other known methods. In section 6.2, 

the modal method and its numerical examples were shown for the framed structure 

and this gives good results. Thus the results based on the wave method are 

compared here with those of the modal method. The highest modal order used in 

the modal method is 50 (M = N = 50, see section 6.2.3) 

The first step in the wave analysis is to determine the wavenumbers of the 

corresponding subsystems of the coupled structure. Firstly the coupled beam 
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wavenumbers kx' ky and the corresponding uncoupled wavenumbers are shown in 

Figure 6.11. It can be seen that, although the wavenumbers kx and ky follow the 

same asymptotic line, corresponding to a beam coupled to a semi-infinite plate, 

their peaks and troughs are different as the plate widths are different. 

- kb (uncoupled beam) 
- - kp (uncoupled plate) 

kx (coupled beam, semi-inti. plate) 
- kx (coupled beam. finite plate) 

100~~~~ __ ~ __ ~ __ ~ __ ~~~~=-==k~Y~(CO=U~PI=ed=b=e=am=.=fi=ni=te~pl=at~e)==~ 
10' 102 103 

Frequency (Hz) 

Figure 6.11. The coupled beam wavenumber k ,k and the related wavenumbers. x y 

It is interesting to compare the point mobilities ofthe two structures of Figures 6.10 

and D.1 so the effect of the plate can be understood. They are compared in Figure 

6.12, in which the result of the structure from Appendix D is the same as given in 

Figure D.2. It can be seen that there are many more resonance peaks when the plate 

is attached, due to the coupling with plate modes. However, one can also see that 

(i) the average vibrational level significantly decreases and (ii) the height of the 

peaks and troughs is reduced. This is likely to be because the plate behaves like 

mass and damping attached to the beam, as explained in Chapter 4. 

An asymptotic representation for the point mobility shown in Figure 6.12 may be 

useful to understand the effect of the plate. The asymptotic line of the point 

mobility of the framed structure can be obtained by making two adjacent beams 

semi-infinite in the structures shown in Figures 6.10 and D.1; the other two beams 

are in fact removed. Thus, for example beams 1 and 4 remain in Figure D.1 if an 
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external force is applied the joint of those beams. The point mobility of such a 

system consisting of two semi-infinite beams joined at right angles can be found in 

the same way as explained in Appendix D, except that amplitudes of the reflected 

waves in equation (D.1) should be zero. The sliding condition of the joint is not 

changed. The relevant equation of the point mobility is given by 

(6.9) 

where kb is the beam wavenumber when the system is not coupled to plate. This is 

the same result as for an infinite beam. 

The effect of the semi-infinite plate coupled to the beams can be realised by 

replacing kb by the coupled beam wavenumber k.t which is obtained in equations 

(4.23) and (4.34). In such a situation the two plates coupled to beams 1 and 4 in 

Figure 6.10 are infinite in their respective width direction. Thus, the semi-infinite 

plates do not physically surround the joint where the two beams meet. However, as 

the plate mostly behaves strip-like in the width direction, it is expected that 

equation (6.9) with kx obtained from the semi-infinite plate represents the 

asymptotic point mobility ofthe four-beam-plate structure. 

The asymptotic lines for the point mobilities of the framed structures shown in 

Figures 6.10 and D.1 are also shown in Figure 6.12. It seems that they represent the 

general tendency of the corresponding point mobilities very well. It can be seen 

that the coupled plate reduces the response level because of the added mass effect. 

This effect however decreases with increasing frequency as the effective mass due 

to the plate reduces (see also Figures 3.14 and 4.7). 
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- Frame without plate 
2 semi-infinite beams without plate 

- - Frame coupled to finite plates 
- 2 semi-infinite beams coupled to semi-infinite plates 

10
2 

103 

Frequency (Hz) 

Figure 6.12. Point mobility comparison of the plate-coupled structure as in Figure 6.10 and 

the structure consisting of only four beams as in Figure D.1 (based on the wave method, 

excitation at x = 0). 

The point mobility of the coupled system is compared with that predicted by the 

modal method in Figure 6.13. It can be seen that the results are in good agreement 

at high frequencies, although at lower frequencies there are detail differences 

between the two methods. This will be discussed later. 

It is also interesting to compare these point mobilities with that obtained when semi­

infinite plates are assumed connected to the beam framework. The semi-infinite plate 

is realised by letting the width of the plates shown in Figure 6.10 be infinite and the 

corresponding wavenumber can be found using equation (4.23) instead of equation 

(4.33) in equation (4.34). This wavenumber is shown in Figure 6.11. One can see 

that the point mobilities in Figure 6.13 oscillate around the line obtained using the 

semi-infinite plates. It seems that most of the peaks may occur due to the oscillating 

finite plate. The damping added to the beams increases when the semi-infinite plate 

is introduced, resulting in a behaviour of the coupled structure similar to a heavily 

damped beam. It is known that the attached plate with a short wavelength behaves 

like a mass and damping on a beam possessing a long wavelength, such an 

arrangement acting as a fuzzy structure [42, 46]. 
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10° r-~~------------------~~----r=~~~~~====~==D 
-- Modal method 

10
2 

Frequency (Hz) 

- - Wave method (finite plate) 
- Wave method (semi-infi. plate) 

Figure 6.13. Point mobilities of the coupled structure as in Figure 6.10 based on the wave 

method and the modal method (excitation atx = 0). 

6.4.2 Power investigation 

An investigation of the power transfer in the system is important, as the wave 

model is based on the assumption that most power is dissipated in the plate. Thus, 

first, the power transferred from the beams to the plate, equal to the dissipated 

power in the plate, is investigated. For the wave method the power transferred is 

the sum over all four attached plates (similarly the plate energy is also found from 

the sum of the energy of each plate). 

Since the exact location of resonance peaks is of less interest than a frequency band 

average result in a mid-frequency analysis, the power transferred from the four 

beams to the plate based on the wave and modal methods is compared in terms of 

one-third octave band averages in Figure 6.14. Although it was expected that the 

result based on the wave method underestimates, in fact the average values of the 

two methods agree, especially at high frequencies. The differences below about 60 

Hz may occur because of differences in global modes between the structure shown 

in Figure 6.10, assumed for the wave method, and the framed structure used in the 

modal method (Figure 6.1). Thus the assumptions used for the wave method do not 
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appear to be appropriate for calculating the low frequency response and subsequent 

coupling power. 

The average values are also compared with the result where attached semi-infinite 

plates are considered. Very good agreement can be observed at high frequencies. 
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Figure 6.14. Power transfer from four beams to the plate in one-third octave bands (point 

force is applied at x = 0). 

The results shown in Figure 6.14 imply that the average power transfer is hardly 

influenced by changes in the plate width. This is verified here by simply changing 

the plate width. The width of each plate attached to the beams is doubled. Note that 

the coupled wavenumbers are also changed. The results are shown in Figure 6.15. 

As expected, they show close agreement except at low frequencies, even though 

the width of all plates is changed. Small differences may occur because the larger 

plate is equivalent to greater damping on the beam. 

In addition to the width change, the effect of a boundary condition change is also 

investigated. The opposite edge of each plate, parallel with each beam is now 

assumed to be simply supported. This is realised by changing the complex 

reflection coefficient r in equation (4.33) to -1 and thus the coupled beam 

wavenumbers kx and ky are changed. The numerical result for this situation is also 
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shown in Figure 6.15, which is in good agreement with others above about 50 Hz. 

The differences found at low frequencies are clearly due to the different boundary 

condition considered. Thus, it can be said that the plate width and the boundary 

condition of the opposite edge far from the beam does not have critical effect on 

the mean power presentation, at least above about 50 Hz. 

It is interesting to recall that the modal overlap factor for the plate is greater than 

unity above about 50 Hz. Thus, above this frequency the plate may be regarded as a 

system having high frequency motion, whilst the beams are still in their low 

frequency region. Consequently, it can be said that in this mid-frequency region of 

the present system the power transferred to the plate is in good agreement between 

the modal and \vave methods. 
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d: 
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Figure 6.15. Power transfer to plate in one-third octave bands when the plate width and the 

boundary condition of the plate opposite edges are changed (point force is applied at x = 0 

of beam 1). 

The total power input to the system based on the modal method and the wave 

method are compared in Figure 6.16 using the one-third octave band average. A 

very good agreement is found except at low frequencies. Comparing Figures 6.14 

and 6.16, one can observe similar tendencies in the difference between two 

methods, suggesting that the differences in power transfer to the plate are actually 

due to differences in input mobility. 
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Figure 6.16. Input powers based on the modal method and the wave method in one-third 

octave bands (point force is applied atx = 0 of beam 1). 

The power transfer from the four beams to the plate normalised by the input power 

is shown for the two methods in Figure 6.17. 
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Figure 6.17. Power ratio (of power transfer from the four beams to the plate to the power 

input) based on the modal method and the wave method in one-third octave band average 

(point force is applied at x = 0 of beam I). 

Even though it is expected that the power transfer of the wave model is an 

underestimate, it can be seen that the ratios based on the wave method and the 
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modal method are in reasonable agreement above about 50 Hz. This means that the 

fully framed structure as in Figure 6.1, can conveniently be analysed for power 

transfer estimates using the wave method in terms of a mid-frequency analysis. 

However, it can be seen that the difference is large at low frequencies. This shows 

that the wave model is not appropriate to represent the motion of the framed 

structure at these frequencies. 

Finally the power dissipated in each subsystem is investigated. It is expected that 

the dissipated power in each beam is small in comparison with the plate-dissipated 

power. Also, it is expected that the dissipated powers of each subsystem closely 

agree between the two methods. The corresponding result is shown in Figure 6.18, 

plate is larger than the others at least by 10 dB. Thus it can be said that most power 

is dissipated in the plate. It is interesting to compare the powers dissipated in beams 

1 and 4 with those dissipated in beams 2 and 3. Note that the point force was 

applied at the junction of beams 1 and 4 so that the power is directly transmitted to 

beams 1 and 4. However, the powers transferred from beam 1 to beam 2 and from 

beam 4 to beam 3 experience one junction, which may cause some power reflection. 
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Figure 6.18. Power dissipated in each subsystem in one-third octave bands for the four­

beam-plate system. Based on the modal method. 
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The powers shown in Figure 6.18 are then compared in Figure 6.19 with those 

found from the wave model. Again, recall that the power transfer to the plate tends 

to underestimate and the power dissipated in the beam tends to overestimate. 

Nevertheless, one can see that the levels are in quite good agreement above about 

50 Hz and it seems that such an error due to the approximation in the wave method 

is negligible. The difference mostly occurs in beams 2 and 3. Although it was 

assumed that most power is dissipated in the plate, some power may be transferred 

to other beams through the plate in the framed system. However, in the wave 

model the plate does not physically connect the beams and thus, such power 

transferred through the plate cannot be described, which results in such a difference. 

Nevertheless, this difference is relatively small (at most about 5 dB). Consequently, 

it seems that using the assumption that the power transferred through the plate to 

other beams can be ignored still gives reasonably good results. 
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Figure 6.19. Power dissipated In each subsystem in one-third octave bands: comparison 

between modal method (thick line) and wave method (thin line) for the four-beam-plate 

system. 
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6.4.3 Confidence interval for the power transfer 

Although good qualitative agreement has been found between the two methods, as 

seen in Figure 6.14, the magnitude of the fluctuations relative to the average should 

also be considered. One possible way is to compare the confidence interval of the 

response so that the distribution of the power in a certain frequency band can be 

indicated. For this, overlapping octave bands are used at one-third octave band 

intervals. It is expected that the confidence interval given in terms of octave bands 

shows smoother results than one-third octave bands. In each octave band 57 

frequency data points are used. 

The average value of the power is obtained for each octave band, ~ctave' Then the 

power at each frequency is normalised by the octave band average. The normalised 

power is calculated in dB as follows. 

(6.10) 

where P = P ( OJ) is the power in a narrow band. 

The 68% confidence interval of the normalised power ~B is obtained explicitly for 

the results based on the modal method and the wave method. The results for the 

power transferred to the plate are shown in Figure 6.20. It can be seen that the 

confidence interval follows the narrow band power very well, although it is not 

symmetrical with respect to the mean. 
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Figure 6.20. Octave band average and 68% confidence interval of the power transferred to 

the plate; (a) modal method (b) wave method (point force is applied at x = 0 of beam 1). 

The confidence interval and the octave average shown in Figure 6.20 (a) and (b) 

are compared simultaneously in Figure 6.21. Comparing the confidence intervals 

one can see that they show good agreement at most frequencies especially at and 

above 80 Hz. The differences in the level between the two methods occur mainly 

because of the difference in the octave band average value; the confidence intervals 

are mostly similar in width for the two methods. 
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Figure 6.21. Octave band averages and 68 % confidence intervals of the power transferred 

to the plate based on the modal method and the wave method. 

The numerical results indicate that the wave method is useful to obtain the response 

at mid and high frequencies. For example, the power transfer averaged in one-third 

octave bands is almost the same as that obtained using the modal method above 

about 50 Hz, even though it is an approximate result. To interpret this value of 

frequency, it may be noted that the stiff four-beam structure has only 4 resonance 

frequencies below 54 Hz (see Figure D.2). The plate has almost 20 modes below 

50 Hz and the modal overlap is less than unity below about 50 Hz. Thus in this low 

frequency region, the wave method is no longer appropriate as a coupling 

technique of the spine and the receiver structures. 

6.4.4 Computation time and computer resources 

An important concern in practical applications is related to computer resources and 

calculation time. An example of a calculation time comparison for the framed 

structure is shown in Table 6.3. The Fourier method was used for two beams 

coupled to a rectangular plate, as it is not applicable to the framed system. 

Although the wave method can predict only approximate responses, it is very 

advantageous as it requires far less computer resources and time. Also, small 
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computation time is necessary in the Fourier method because a Fourier series is 

considered only in the x direction whilst the y direction follows the wave 

equation. One can see that wave method is the most efficient in terms of calculation 

time. 

Table 6.3. Comparison of computational time (an Intel Pentium 4 computer (CPU 1500 

MHz) is used in calculation) for the framed system of four beams and a plate. 

Computation Frequency range 
Comments 

time (min.) of calculation (Hz) 

Modal method 1380 5.6 - 1412 M=N=50 

Wave method 0.1 5.6 - 1412 -

Fourier method 0.8 5.6 - 1412 
n =128 

Two-beam-plate system 

FEM 9 0- 1412 431 modes used 

For reference, the computational time required for the FE analysis is also given. In 

comparing the modal method and FE, it should be noted that the number of modes 

obtained by FE for the forced response is 431, which is much less than that used in 

the modal method (2601). Reducing the number of modes in the modal method 

results in much less computational time. For example, for the present case if 432 

modes are considered in the modal method, the computational time significantly 

decreases to about 10 minutes. In addition, compiled FE code is used in the 

calculation whereas the other methods are solved by using uncompiled Matlab code. 

6.5 Conclusions 

A fully framed structure consisting of four beams and a rectangular plate was 

studied, where both ends of each beam and all the plate edges are assumed to be 

sliding. The vibrational response of the framed structure was first obtained using 

the modal method. Then the wave method was applied to the same structure to 
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obtain an approximate response. The results of the two methods were compared 

and useful observations and comments given. 

The modal method was used to produce an analytical model of the framed structure, 

the corresponding generalised mass and stiffuess matrices of which were found. 

The dependency of the response on the number of modes included in the 

calculation was investigated and the maximum mode numbers chosen were used 

for the modal model, which is considered to give an accurate response for the 

comparison with the wave model. 

Although the modal method gives an accurate result, details such as exact natural 

frequencies are not of concern in the present study which deals with the mid and 

high frequencies. Thus an approximate method seems appropriate and the 

analytical model based on the wave method for the dynamic response of the framed 

structure was presented. The statistical responses such as one-third octave band 

averages and a confidence interval of the power were obtained as well as the 

narrow band response. 

In comparison with the modal method it has been shown that the analytical wave 

model can conveniently be used for the estimation of the vibrational response in the 

mid and high frequency regions, even though the power transfer and dissipated 

power found based on the wave method only give an approximate result due to the 

inherent limitations of this method. For the present framed structure, the wave 

model gives good estimation above about 50 Hz. Below this frequency band the 

four-beam frame has only 4 modes and the plate has a modal overlap less than 

unity. 

In the wave model, it is shown that the plate width and the boundary condition of 

the plate opposite edges are not very critical in obtaining the average power 

transfer in a certain wider frequency band. However, use of the semi-infinite plates 

loading the beam framework leads to an over-estimate of the damping of the 
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framework, although it allows a correct estimate of the power transferred to the 

plate to be obtained. 

The calculation time of the various methods was compared for the framed structure. 

The wave method offers considerable advantage over the other methods in this 

respect although it provides an approximate response. 
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CHAPTER 7 

EXPERIMENTAL STUDY OF COUPLED SYSTEMS 

7.1 Introduction 

Experimental studies have been carried out for the validation of the analytical and 

numerical models described in previous chapters. Experimental investigations 

concerning a single-beam-plate system have already been carried out by other 

researchers [41, 64] and hence in this chapter emphasis is placed on two-beam­

plate and framed structures. The results of these are compared with the numerical 

analyses presented in Chapters 5 and 6. 

The structures used in the experiments are made of acrylic (perspex). This is 

convenient as it is light and various configurations of the experimental structure 

consisting of stiff and flexible subsystems can easily be made. Also, the structural 

damping is higher than other materials such as steel. This may be advantageous for 

numerical predictions, such as in wave methods where convergence might be an 

issue. Although the nominal material properties of perspex are known [41], more 

accurate properties including Young's modulus and the structural loss factor were 

determined experimentally using beam samples. 

The effect of a stiffbeam on the plate wavenumbers was investigated by estimating 

the wavenumbers ofthe coupled plate system using a large set of measured transfer 

mobilities. The power input obtained experimentally was compared with numerical 

predictions using various models. 

Whereas sliding boundaries were applied in the numerical analyses for 

convenience, in the experiments the boundaries are free. Consequently 

comparisons of quantities such as mobilities between models and experiment, 

partiCUlarly in narrow frequency bands, are not entirely appropriate. To overcome 

this, measured results are expressed in terms of kinetic energies and the ratio of 
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energies in various subsystems is compared with that obtained from the models. 

These results are expressed in terms of one-third octave band averages in order to 

assist comparisons where exact resonance frequencies do not match, and indeed are 

not of direct interest. The details are explained in the corresponding sections. 

7.2 Experimental configurations 

7.2.1 Coupled system 

Each coupled system consists of a rectangular plate and two or four beams that are 

made of perspex. In each case the plate has a thickness of 2 rnm and dimensions 

1.0 x 0.75 m. Strips of width 6 mm are fixed using a stiff glue above and below the 2 

mm plate to form beams which are symmetric about the plate centreline. Four 

coupled structures denoted C 1 - C4 have been studied. The uncoupled plate is named 

C5. The beam dimensions for the different structures are presented in Table 7.1. 

These dimensions were measured using a micrometer at three locations on each 

beam. The averaged dimensions and their maximum tolerances are shown. The 

numbering of the four beams corresponds to Figure 7.1. 
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plate (2 mm) 

Table 7.1 Nominal dimensions of coupled systems used in measurement. 

Beam height and width (mm) 

Comments 

h/ h2 h3 h4 b 

Two identical beams 
23.7 ± 0.21 - 23.7 ± 0.21 - 6.0 ± 0.07 

Beam on the long edge 

Different beam heights 
23.9 ± 0.33 - 14.1 ± 0.34 - 6.1 ± 0.23 

Beam on the long edge 

Framed structure 
23.6 ± 0.86 6.1 ± 0.11 

Four beams of same height 

Framed structure 
24.1 ± 0.36 13.3±1.11 13.3 ± 1.11 24.1 ± 0.36 6.0 ± 0.41 

Adjacent beams of same height 
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Chapter 7. Experimental study of coupled systems 

A representative configuration of the coupled structure (here, C3) and the cross­

section of the beams are shown in Figure 7.1. The sUbscript corresponding to each 

beam is the number as shown in Figure 7.1 and as written in the table. Note that 

beam 1 is located at the bottom of the plate in this chapter, whereas it has been shown 

at the top in the figures in previous chapters. Thus, the two-beam coupled systems 

consist of parallel beams 1 and 3. Note that the dimensions of the subsystems are 

chosen such that the wavenumber ratio of the free plate wavenumber to the coupled 

beam wavenumber kp/kx is at least about 2. As the coupled beam wavenumber kx 

is larger than the free beam wavenumber kb it is expected that the free 

wavenumber ratio kp/kb should be somewhat larger than 2. For the present system 

C2, for example, the wavenumber ratios are kp/kb1 = 3 .5 for beam 1 and 

kp /kb3 = 2.7 for beam 3. Thus, the requirement is met for these structures 

considered in the experiments. 

... 

0.75 m Beam 2 

l.Om 

Beam 3 

Beam 1 

Beam 4 
A--A 

Figure 7.1. Configuration of coupled structure C3 consisting of four beams and a 

rectangular plate. The structure is shown in the photograph in Figure 7.4. 

7.2.2 Beam samples 

To determine the basic material properties of the perspex, four beams were 

prepared which were similar to those used in the coupled specimens (see Table 

7.2). Two plate strips, samples VI and V2, were prepared to obtain Young's 
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modulus and structural loss factor. Two beams, samples U3 and V4 were made of 

acrylic blocks of 6.0 mm width glued to the upper and lower faces of a plate strip, 

as shown in Figure 7.2. These correspond to the beams in the beam-plate systems 

considered in the previous section. The measured masses per unit length, densities 

and the nominal dimensions are presented in Table 7.2. A Poisson's ratio of 0.38 is 

used for the perspex as given in [41]. The procedure to obtain Young' s modulus is 

explained in section 7.4.3 . 

10mml 
2 mm I::::=:=:t::''' 

10 mm TL------",," 
~ 

6mm 

~---c71/ Acrylic block 

/ Acrylic plate strip 

/ Acrylic block 

Figure 7.2. Configuration of the beams U3 and U4. 

Table 7.2. Nominal dimensions and material properties of subsystems made of acrylic 

material (perspex). 

Size Mass per Density, Young's 
Sample 

Type Lxbxh length, m' P modulus, E 
No. (mm) (kgm-I ) (kgm-3

) (GNm-2
) 

VI Plate strip 600 x 6.6 x 2.0 0.0160 1212 4.28 

V2 Plate strip 400 x 6.6 x 2.0 0.0160 1212 4.58 

1000 
V3 Beam x 6_1 (± 0.35) 0.161 1158 4.96 

x 22.8 (± 0.13) 

1000 
V4 Beam x 6.7 (± 0.15) 0.106 1106 4.76 

x 14.3 (± 0.57) 
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7.3 Experimental procedure 

Two methods are used to measure mobilities. One consists of using an instrumented 

impact hammer and accelerometers. However, for the coupled systems where a large 

grid of points is required the use of accelerometers would give excessive measurement 

times. Furthermore, accelerometers would add mass loading to the thin plate. Instead, a 

scanning laser vibrometer was used which enables many points to be measured with 

excitation being provided by a shaker. In this section, the experimental procedure for 

the coupled structures using the laser vibrometer will be presented. The configuration 

commonly used throughout all the experiments is described. Additional detail will be 

mentioned later, as necessary, in the corresponding sections. 

The structure to be measured was suspended vertically using nylon cord and an 

electrodynamic exciter located near the bottom of the structure. The laser vibrometer 

was positioned to cover all the area of the structure to be measured. The configuration 

is shown schematically in Figure 7.3 including the test instruments. Details of the 

instruments are listed in Table 7.3. Figure 7.4 shows a photograph of the experimental 

configurations, in which the coupled system C3 is suspended and the exciter is 

attached to beam 1 using a stinger. Beam 1 was located at the bottom of the 

experimental configuration. 

/ 

:?- :?-

.-----

Laser 
Vibrometer Signal 

J~ E~.£~tS:L_ -l Power amplifier I analyser 
I , 

\. -I 
(Front end) 

Force 
transducer H Signal conditioner ~ 

Figure 7.3. Instrumentation used for the measurement using laser vibrometer. 
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Table 7.3. Equipment used for measurement. 

Equipment Make/Model Serial Number 

Laser vibrometer Polytec OFV 056 6012264 

Front end Polytec PSV -Z 040H 5015391003 

Exciter LDS V201 69439-5 

Force transducer PCB 208COI 20824 

Signal conditioner PCB 441A42 748 

Power amplifier Ariston AX-910 07000190 

l' 
-.. ' .~ ... !. ~ .. )i,_~._. -:-_, ,, 

Figure 7.4. Experimental configurations for the measurement of mobilities (four- beam 

system C3) and the attachment of the exciter. 

A pseudo-random force was applied at the centreline of beam 1 using the exciter as 

seen in Figure 7.4 and the force signal was measured by a force transducer. The 

exciter was located 0.36 m from the right-hand end of beam 1 (which is designated 

x = 0). This is an arbitrary location chosen part way along beam 1. The comer was 

avoided as it is shown in Appendix D that the sliding boundary conditions have a 

greater effect on the input power at the comers. 
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In most experiments the velocities of each response point were averaged over 20 

data samples. However, the mobilities used for calculating the structura110ss factor 

of the uncoupled systems were averaged 100 times for a more accurate response. 

The frequency range used for the predictions in previous chapters is 5.6 - 1412 Hz 

and the experiments were conducted to cover at least this range. For example, for 

the measurement of the mobility to be used in a subsequent energy calculation, the 

frequency range was 0 - 1.6 kHz and a 2.0 kHz low pass filter was incorporated in 

the software of the signal analyser (sampling frequency of 8.192 kHz). The 

frequency resolution was 1 Hz. However, in some cases the frequency range was 

changed depending upon the subsequent processing and calculations required. 

Figure 7.5 shows an example of a measurement of the point mobility \X;hich 

demonstrates an excellent coherence. 

I - Point mobility!i I 

1::f 
~ ~ 06 

j
' 8 

04 

0,2 

-50L.-...-,O'c-, ------,-'-;:O'-----~,-:; 

Frequency (Hz) 

(b) 

10' 10' 

Frequency (Hz) 

Figure 7.5. An example of point mobility and its coherence function for the two-beam 

coupled system C1 measured using shaker excitation and laser vibrometer. Force and 

response at x = 0.36 m of beam 1. 

7.4 Measurement of material properties 

Before considering experiments for the verification of the numerical models, it is 

necessary to determine some basic material properties of the structures, for 

example the structural loss factor and Young's modulus, to be used in the 
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numerical models. The experimental procedure and the corresponding results will 

be presented. 

7.4.1 Measurement 

Various methods can be used to determine the damping loss factor, such as the decay 

rate method [12] and an input mobility technique [41]. However, for a lightly 

damped system with low modal overlap, a half-power bandwidth technique [85] 

involving a natural frequency is convenient. Experimental samples Ul - U4 were 

used for obtaining the structural damping loss factor (DLF) based on the half-power 

bandwidth technique as they represent the subsystems of the coupled systems. 

Strictly the DLF of the plate should be obtained from sample C5. However, this is 

more difficult due to the high modal density ofthe plate. Thus plate strips Ul and U2 

are used. Beams U3 and U4 additionally include the glue layers of the built-up 

beams. It is therefore interesting to compare their results with VI and U2. 

The experimental procedure was as explained in section 7.3 using the scanning laser 

vibrometer and exciter. The beams were suspended freely. The point force was 

applied at 0.25 m from the end of the beam in each case using a pseudo random 

signal. To obtain better results, separate frequency ranges of 10 - 800 Hz, 300 -

1250 Hz and 1.0 - 1.6 kHz were chosen and the responses were averaged over 100 

data samples. 

The Young's modulus of each uncoupled system can be found from the natural 

frequencies of the corresponding systems (the mass is already known). Thus the 

same experimental results can simply be used for this. Each beam was suspended at 

the 2 nodal points of the fundamental bending mode, which is important to get an 

exact Young's modulus (see section 7.4.3). However since motion was perpendicular 

to the suspension cords, their influence on other modes should be negligible. 
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7.4.2 Structural loss factor 

Once the mobility is obtained, the structural loss factor can be calculated using the 

half-power bandwidth technique as [85] 

(7.1) 

where OJn is the n th natural frequency and I10J is the frequency bandwidth 

corresponding to -3 dB from the maximum level. An example is given in Figures 

7.6 and 7.7. Figure 7.6 shows a transfer mobility of the uncoupled beam U3, the 

maximum level at the natural frequency at approximately 131 Hz is marked by 0 

in Figure 7.7 with the horizontal line showing 3 dB lower than the maximum level. 

The DLFs of each uncoupled system were investigated in the same manner and the 

results obtained are summarised in Table 7.4. 

-10 

-20 

~ 
C! 

II -30 
Q; 
a: 

!Iii 
-40 

-50 

Frequency (Hz) 

Figure 7.6. Transfer mobility Yofbeam U3 for the loss factor estimation. 20log1o (Y/Ref) 

with Ref=1.0 mlslN. Force at 0.25 m and response at 0.4 m from the end of the beam 

(beam length L = 1.0 m). x 
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131 132 

Frequency (Hz) 

133 134 

- Mobilit 

135 136 

Figure 7.7. Selection of the frequency bandwidth based on half-power bandwidth 

technique (natural frequency:::: 131 Hz, beam U3). 

Table 7.4. Structural damping loss factor 77 of uncoupled structures and the corresponding 

natural frequencies based on the half-power bandwidth method. 

U1 U2 U3 U4 

In 771 III 772 In 773 In 774 

56.5 0.062 53.8 0.065 48.5 0.069 30.5 0.075 

108 0.056 144 0.053 131 0.055 78.9 0.065 

178 0.051 316 0.062 416 0.042 252 0.061 

391 0.058 739 0.042 623 0.046 384 0.053 

662 0.040 1023 0.043 844 0.043 689 0.044 

1013 0.042 1358 0.042 1099 0.041 998 0.040 

- - - - - - 1338 0.047 

It is clear that the loss factors reduce with increasing frequency, in agreement with 

published results [41, 64]. Although they show a clear tendency in terms of 

frequency, it is impractical to use these values in calculating frequency-related 

power quantities. Interpolated values are therefore sought for practical application. 

A linear regression technique with respect to a logarithmically scaled frequency 
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(log(f)) has generally been used previously [41, 64J for DLFs and this is adopted 

here. The corresponding formula for the linear regression is given by [86J 

(7.2) 

where aD and a1 are coefficients representing the intercept and the slope 

respectively, e is the residual and f is the frequency. The coefficients aD and a1 

can be determined to minimise the sum of the squares of the residual. The DLFs 

and their linear regression results are shown in Figure 7.8. Results for plate strips 

UI and U2 are given together in a single regression; similarly for U3 and U4. 

0.1 

0.06 

0.04 

(a) 

o 

.. eta
i 

o eta2 
- Linear re ression 

0.02
0
'-----'------'------'----2-::"------'------::-3--' 

10910 ( Frequency (Hz) ) 

0.1 

0.08 

+ .. 
+ 

0.06 

0.04 

(b) 

0.02
0
'-----'--------'-------'------'2 -------'----c:

3
---' 

10910 ( Frequency (Hz) ) 

Figure 7.8. Structural loss factors and their linear regression results: (a) samples UI and 

U2, (b) samples U3 and U4. 
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These structural loss factors are compared together in Figure 7.9. It seems that 

there is no clear difference between them. It may thus be concluded that the glue 

layers in beams U3 and U4 have negligible effect on the damping. 

0.1 1------.------,--------r--;=::::=;:=:::;::;;:~:;::;::::~~;:;:]1 
-+- Plate strips U1 & U2 

0.08 

.,. 0.06 

" -

0.04 

-. - Beams U3 & U4 

..... 
\ 
\ 
\ 

\ -.- " / 

0.02
1
'--------'--------::'-2 -------'--------3::'---

10010 ( Frequency (Hz) ) 

Figure 7.9. Structural loss factors of the uncoupled systems. 

7.4.3 Measurement of Young's modulus 

Masses and densities were obtained simply from weighing the beam samples. The 

Young's modulus E of a beam can be found from its bending stiffuess, described 

in terms of frequency and wavenumber as follows. 

(7.3) 

where Db is the bending stiffuess, ()) is frequency, m; is mass per unit length of 

the bearn, kb is the wavenumber corresponding to the frequency ()) and 

1(= bh3 /12) is the second moment of area of the beam. E is evaluated by 

determining ()) and kb at resonances of the bearn. 

In order to reduce the effect of the boundary conditions, each beam was suspended 

by thin threads at the 2 nodal points in the fundamental bending mode and 

consequently free-free boundary conditions apply. The flexural wavenumbers 
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corresponding to the resonances of a uniform free-free beam are known (e.g. [71]). 

For example, the wavenumber of a mode having 2 nodal points is given by 

kbLx = 4.730 where Lt is the length of the beam. 

The natural frequencies of the uncoupled beams Dl - V4 were obtained 

experimentally. For example, for the taller beam D3, the fundamental natural 

frequency was 48.5 Hz and the bending stiffuess can be calculated by 

(7.4) 

It should be noted that the plate strips Dl and D2 are very flexible and thus the 

added mass effect of the force transducer may be large. Thus the natural 

frequencies of the systems VI and V2 used to obtain the Young's modulus were 

found by means of an impact hammer and small accelerometer (PCB 352C22, 

0.5 g) instead of the exciter and the force transducer, the detailed procedure for 

which is not given here. The measured Young's modulus is presented in the earlier 

Table 7.2. For the Young's modulus of the plate, the average value of the plate 

strips given in the table is used (= 4.43xl09 N/m 2
). In Chapters 2 - 6 the nominal 

Young's modulus of E = 4.40xl09 N/m 2 was used. 

7.5 Experimental wavenumber estimation 

7.5.1 Theoretical background 

For the application of the wave method, the plate free wavenumber is required to 

be more than twice as large as the beam wavenumber. Consequently the 

wavenumber component ky radiating into the plate from the beam-plate junction is 

assumed to be close to the plate free wavenumber kp allowing the plate to be 

represented by a local impedance. This important hypothesis needs to be verified. 

In this section the wavenumbers of a plate-beam system are determined 

experimentally. 

203 



Chapter 7. Experimental study of coupled systems 

The estimation of the wavenumbers of a two-dimensional structure may begin with 

equation (7.5) defining the correlation of the measured transfer mobility with a 

• i(OJt-k x-k .y) travelhng wave e' ) . 

(7.5) 

where kx and ky are the wavenumber components corresponding to directions x 

and y, OJ is the frequency of interest and Y is the transfer mobility of the two­

dimensional system for a fixed force point. The dimensions of the scanned area are 

defined by (xmax -Xmin)X(Ymax - Ymin) , which is assumed to be rectangular. Note 

that the correlation function Y is a continuous function of the wavenumbers kx 

and ky • Thus, it is expected that this correlation will have a maximum value at a 

particular wavenumber pair (kx,ky) corresponding to the dominant wavenumber at 

the particular frequency. 

For practical reasons, Y (x, y, OJ) is only available at discretely chosen response 

points. Thus equation (7.5) should be modified for discretely sampled data as [87] 

and normalised in the same way as the Modal Assurance Coefficient (MAC) such 

that the value is between 0 and 1. 

(7.6) 

where M and N are the numbers of sampled data points III each direction 

respectively and xm and Yn are the sample locations (assuming a rectangular grid). 

7.5.2 Measurement considerations 

As equation (7.6) involves the sampling locations xm and Yn as well as the 

wavenumbers kx and ky, it is a spatial domain analysis. Similar to a frequency 
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domain analysis, the accuracy of the wavenumber obtained is dependent on the 

sampling resolution and the size of the scanned area. In order to have a better 

resolution of the wavenumber it is necessary to measure over a larger scanning 

area. In the present study, the length of the scanning area is chosen as 0.64 m, 

which covers almost the whole plate in the y direction (see Figure 7.10). From 

conventional Fourier transform theory the wavenumber resolution might be 

expected to be restricted by the length of the scan area La to be 21r / La . A further 

study to choose the wavenumber resolution was performed and presented in 

Appendix E. It shows that 63% of the principal wavenumber (k = 21r/ La X 0.63, 

thus La = 0.63A) can still be identified. For La = 0.64 m the corresponding lower 

wavenumber estimation limit is 6.2 rad/m. Wavenumbers below this may be 

incorrectly estimated and are affected by the limited scan length. 

Another factor influencing the estimation of the wavenumber is the scannmg 

resolution, i.e. spatial aliasing due to spacing of the measurement points. In order to 

reduce the measuring and post-processing times a reduced frequency range of 5.6 -

500 Hz was selected here. The resolution of the measurement points was chosen to 

be 2 cm, equal to about 1/6 the wavelength at 500 Hz (which is 0.12 m), which is 

sufficient to eliminate the spatial aliasing effect in the frequency range 5.6 - 500 

Hz. 

Figure 7.10 shows the configuration used for the plate wavenumber measurement 

of the two-beam coupled structure C 1 and the scanning area consisting of the 

measurement points. The number of scanning points was 1089 ( = 33 x 33 ) and the 

distance from the grid to the closest edge was 0.03 m and 0.025 m in the x and y 

directions respectively. The point force was applied on the centreline of beam 1 at 

x = 0.36 m from the right-hand end. This is close to the centre of the scanned area. 

The mobility at each point was obtained by averaging over 20 data samples. The 

same procedure was applied to the uncoupled plate C5 for comparison. 
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Figure 7.10. Configuration for the wavenumber measurement in two-beam coupled structure 

C1. The symbol )( on beam 1 indicates the excitation point (x = 0.36 m from the right-hand 

end of beam 1). 

7.5.3 Plate wavenumbers 

The spatial average of the modulus squared of the mobilities (/y/2) was first 

calculated for systems C 1 and C5 and shown in Figure 7 .11, from which various 

resonance frequencies can be distinguished. 
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Figure 7.11. Space-averaged mobility amplitude over 1089 measurement points of (a) the 

two-beam coupled structure Cl (b) the uncoupled plate CS. 

206 



Chapter 7. Experimental study of coupled systems 

The spatial distribution of the plate vibration can be obtained from the transfer 

mobilities of the 1089 points. The motion at natural frequencies in particular should 

give a clear behaviour. Figure 7.12 shows two examples in terms of the contours of 

the amplitudes. These are at the natural frequencies of 172 and 283 Hz of the 

beam-plate coupled system C 1. Two other examples at the natural frequencies of 

140 and 350 Hz of the uncoupled plate C5 are shown in Figure 7.13. These 

frequencies are identified in Figure 7.11. 

It can be seen that, in the beam-plate system, the wavelength across the plate is 

shorter than that along the beam. Node lines in the beam are reflected in the plate 

response, so that the motion of the plate is governed by the motion of the beam. By 

contrast the uncoupled plate C5 does not show clear node lines parallel to its edges. 

The wavelengths in the two directions seem similar. 

Figure 7.12. Contour of mobility amplitudes ( a) at 172 Hz (b) at 283 Hz of the two-beam 

coupled structure Cl. The symbol X on the x axis indicates the excitation point. 
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Figure 7.13. Contour of mobility amplitudes (a) at 140 Hz (b) at 350 Hz of the uncoupled 

plate C5. The symbol X on the x axis indicates the excitation point. 

The wavenumber of the system is investigated using equation (7.6). An example of 

the results of this calculation is shown in Figure 7.14. This gives wavenumber 

results for the two-beam-plate system C1 at 283 Hz. There are two dominant peaks 

that are propagating In opposite x directions. The most dominant plate 

wavenumber is given by kx = 17.8 rad/m and ky = -33.4 rad/m which yield a 

combined wavenumber kp ~k~ + k~ = 37.8 rad/m. A value of 38.5 rad/m for kp 

is expected from the numerical model at this frequency. Other peaks correspond to 

the same wavenumber heading in the opposite x and y directions. 
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Figure 7.14. Dominant wavenumbers of the two-bearn-plate system Cl at 283 Hz. 

208 



Chapter 7. Experimental study of coupled systems 

The same calculation is carried out to obtain the dominant wavenumber of the 

uncoupled plate C5 where the motion at 140 Hz is investigated. The result is shown 

in Figure 7.15. Unlike the result of Figure 7.14, it seems that the waves propagate 

in several directions located on a circle of radius 27 rad/m, which is the free plate 

wavenumber at this frequency (the expected wavenumber is kp = 27.1 rad/m). It 

seems difficult to find a dominating propagation wave in a particular direction. 
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Figure 7.15. Dominant wavenumbers of the uncoupled plate C5 at 140 Hz. 

The dominant plate wavenumbers obtained in the frequency range 5.6 - 500 Hz are 

incorporated into Figure 7.16. The theoretical wavenumber of the uncoupled plate 

is shown in the same figure for comparison, in which the physical properties are 

based on the experimental results of section 7.2.1. One can see that the 

experimental value k p of the coupled plate is in very good agreement with that of 

the free plate wavenumber and the theoretical wavenumber represents the 

experimental ones very well. Greater deviations are found below 20 Hz where the 

grid is rather small for accurate resolution of the wavenumbers, the details of which 

follow below. 
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Figure 7.16. Wavenumbers of two-beam-plate system C 1 and uncoupled plate C5 with 

theoretical values for comparison. 

In Figure 7.17 the trace wavenumbers kx and ky of the coupled plate obtained at 

each frequency are compared with the theoretical wavenumbers of the uncoupled 

systems. 

Although more than one peak occurs in the correlation at each frequency, as shown 

for example in Figure 7.14, it is found that the dominant trace wavenumber kx of 

the coupled plate mostly follows the uncoupled beam wavenumber kb above about 

100 Hz. As mentioned before, and in Appendix E, the lower limit for resolving the 

wavenumber in the present situation is about 6.2 rad/m. Thus, if the wavenumber to 

be estimated is less than this it may not be correctly identified. This approximately 

corresponds to about 80 Hz for the beam free wavenumber. However, it seems that 

the wavenumber lower limit influences the wavenumber ky only at very low 

frequencies. The plate wavenumber kp given by the trace wavenumbers kx and ky 

may also be inaccurate only at very low frequencies, as kx is much smaller than ky 

even though kx is inaccurate below about 100 Hz. 

Although there is some limit at low frequencies due to the wavenumber resolution, 

the results indicate that the behaviour of the plate in the direction of the beam is 
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dominated by the beam behaviour. On the other hand, the trace wavenumber in the 

y direction is close to the free plate wavenumber. Consequently, the important 

hypothesis in the wave method, namely that the wavenumber ky is approximately 

equal to the plate wavenumber k p , can be confirmed from these results. 
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Figure 7.17. Wavenumber comparison of the two-beam-plate system C 1. 

It should be noted that the estimation method has been performed at each 

measurement frequency and in certain cases, for example anti-resonances, it might 

also not be possible to estimate the wavenumbers well. 

7.6 Energy and power in the coupled systems 

In this section dissipated and transferred powers of the subsystems are evaluated 

and compared with the corresponding theoretical results. 
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7.6.1 Measurement 

As previously, the point force was applied at x = 0.36 m on the centreline of 

beam 1. Firstly, the point mobility was measured using the laser vibrometer. As it 

is not feasible to obtain the strain energy of a vibrational system, its kinetic energy 

is considered, which can be found simply using the vibrational velocity of the 

structure and its mass. 

Measurement points were selected randomly over the plate and the beams of the 

coupled system, and used to give an estimate of the spatially averaged energy. 

Figure 7.18 shows 20 points selected over the plate, which were used in the 

measurement for all coupled systems. For each beam of the coupled structure, 10 

points were selected. Although strictly they should be selected on the beams, 

because of the thin width of the beam (b = 6 mm) it was difficult to align the laser 

beam exactly on the middle of the beam, which results in poor responses. Thus, the 

laser was aimed to measure along a parallel line less than 1 cm from the beam (thus 

in fact on the plate). As the motion along this line is mainly dependent on the 

motion of the beam it is expected that the error will be small (note that the plate 

wavelength at the maximum frequency (1412 Hz) is about 7.3 cm). 
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Figure 7.1S. Randomly selected measurement points of the plate. 
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7.6.2 Kinetic energy and power 

Assuming that the time-averaged kinetic and strain energies are equal, for a 

uniform structure if the transfer mobilities of N points are measured, the spatially 

averaged energy of the subsystem normalised by the mean square force is given by 

[21] 

(7.7) 

where ( 1 ~ 12) is the space-averaged value of 1 ~ 12 , ~ is the transfer mobility given 

by Vi / Fa, Vi is the velocity amplitude at the i th point, Fa2 is the mean square 

force at the point force, and m is the total mass ofthe corresponding subsystem. 

The power is also normalised by the mean square force. The power dissipated in 

the subsystem normalised by the mean square force is given by 

(7.8) 

where OJ is the circular frequency and 17 is the structural loss factor which has 

been determined in section 7.4.2. Similarly the input power normalised by the 

mean square force is given by 

~npllt / Pc} = Real { Yo } (7.9) 

where Yo is the input mobility. Thus, energy and power can conveniently be 

expressed in terms of the mobility and they can be compared with those obtained 

from the numerical models. In the following sections the energy and power refer to 

values normalised by the mean square force. 
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7.6.3 System of two identical beams coupled to a plate: wave method 

Firstly, the input power and dissipated power estimates are compared for the two­

beam coupled system C 1 consisting of two identical beams. The results are shown 

in Figure 7.19, in which the dissipated power of each subsystem is obtained using 

equation (7.8). One can see that the estimates of input and dissipated power are 

approximately equal. The slight differences may occur because: (i) the selected 

random points only approximately represent the energy (ii) the structural loss factor 

is also approximate being given by the linear fit to the discrete damping loss factors 

and (iii) the kinetic and strain energies are not equal, the difference is expected 

away from the resonances at low frequencies. Nevertheless, they are in good 

agreement and it can be concluded that the energy obtained using the space­

averaged mobility reasonably represents the energy that each subsystem possesses. 
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Figure 7.19. Input and dissipated power of the two-beam-plate system C 1. Power 

normalised by the mean square force, dB re 1 WIN 2
, experimental results. 

The power dissipated in each subsystem is shown in Figure 7.20. One can see that 

most power is dissipated in the plate as discussed in Chapter 5 dealing with 

modelling such systems with two parallel beams (see Figures 5.6 and 5.11). 
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Figure 7.20. Power comparison of the two-hearn-plate system Cl. Power normalised hy the 

mean square force, dB re 1 WIN 2, experimental results. 

The numerical model is now compared with the experimental results. This 

comparison is made initially in terms of input power. The numerical model 

considered here is based on the wave method. The system has two identical beams 

and is constructed using symmetric and anti-symmetric responses as discussed in 

Chapter 5. Unlike the model in Chapter 5 both ends of the experimental beam are 

free and the other edges of the plate are also effectively free, which are the same as 

the experimental situation for the system C 1. However in the model the rotation of 

beams 1 and 3 is constrained, which differs from the experimental situation. The 

force point is located at x = 0.36 m as in the experiment. 

The input power shown in Figure 7.19 is compared with that of the wave model in 

Figure 7.21. They agree very well in the mid-frequencies between about 40 and 

300 Hz. The difference at low frequency occurs because of the different boundary 

conditions as mentioned above. 
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Figure 7.21. Input power for the two-beam-plate system Cl: comparison between the wave 

method model and the experiment. 

One can find that there is a general undulating trend. Small peaks and dips are also 

found on the general trend. These small peaks and dips occur due to the vibrating 

plate coupled to the beam, as discussed in Chapter 6 (see Figure 6.12). Meanwhile, 

the general undulation may be related to the excitation point and the corresponding 

motion of the beam, which may be explained in terms of the motion of the beam. 

The excitation point (x = 0.36 m) coincides with a node of the mode of the 

uncoupled beam with natural frequency 273 Hz. This is close to the general dip at 

about 250 Hz. Meanwhile, the uncoupled beam motion at the natural frequency of 

450 Hz shows an antinode at the excitation point, which corresponds to the general 

peak at about 400 Hz. These relationships are summarised in Table 7.5. 
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Table 7.5. Relationship of the motions between the coupled system Cl and the 

corresponding uncoupled beam. 

Natural Motion Motion Corresponding approximate 
frequency (Hz), in fundamental at excitation frequency in coupled system 
uncoupled beam bending mode point Cl (Hz) and peak/dip 

273 4 nodal points node 250 (dip) 

450 5 nodal points antinode 400 (peak) 

673 6 nodal points antinode 590 (peak) 

939 7 nodal points node 830 (dip) 

1251 8 nodal points antinode 1130 (peak) 

A level difference is found between the numerical model and the experiment at 

high frequencies in Figure 7.21. This does not appear to be related to the boundary 

conditions. Rather, it seems to be related to the mass of the force transducer. This 

can be confirmed by comparing the impedances of an infinite beam that has the 

same dimensions as beam 1 and the force transducer. The actual mass of the force 

transducer that has an effect on the experiment has been measured, and found to be 

about 62 % of the force transducer mass itself (22.7 g) *. Thus, an effective mass of 

14 g is considered for comparison. The impedances of a beam in flexural motion 

and of a point mass are given by [79] 

(7.10) 

where p is the density, A( = b x h) is the cross-sectional area, C B ( = ~ Db / m~ {j;) 
is the phase velocity of a flexural wave, Db is the bending stiffuess, m~ is the mass 

per unit length of the beam, and m is the mass. The calculated impedances are 

• The effective mass of each side of the force transducer was measured by attaching it to the exciter 
through a stinger and measuring the force applied to the free part of the transducer. An 
accelerometer measured the acceleration allowing the mass of the free part of the transducer to be 
determined from Newton's second law. 
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compared in Figure 7.22. It is clear that the mass effect is not negligible at high 

frequencies. 
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Figure 7.22. Impedance comparison of an infinite beam (h = 23.7 rnm) and the mass of the 

force transducer (mass = 14 g). 

The mass effect introduced by the force transducer upon the measurement of the 

power input to the beam can be calculated by [88] 

(7.11) 

where ~+mass is the point mobility of the mass-attached beam, which results in the 

measured power input. The estimated power inputs obtained using the real part of 

the mobilities, Re {~+mass} and Re {~} using the infinite beam are also plotted in 

Figure 7.21 for comparison. The difference between these lines is similar to that 

between the wave method and experiment at high frequencies with a difference of 

4.2 dB at 1412 Hz. It seems clear that the mass effect reduces the power input level 

in the experiment. The same phenomena occur for other coupled systems 

considered later in this chapter. 
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The input powers shown in Figure 7.21 are replotted in one":third octave bands in 

Figure 7.23. The calculated power input incorporating the mass of the force 

transducer is also considered in the same figure, which shows excellent agreement 

with the experimental result except at low frequencies. 
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Figure 7.23. Input power in one-third octave bands for the two-beam-plate system Cl: 

comparison between the wave method model and the experiment (dB re 1 WIN \ 

Next, results are compared in terms of the energy ratio between the vanous 

subsystems. This has the advantage of reducing the effect of boundary conditions 

and cancelling out any mass effect of the force transducer. The boundary 

conditions may influence the general level of the FRF through the whole frequency 

range, and may also change the natural frequencies, thus peaks and dips. The 

differences in response level are eliminated by comparing the energy ratios. 

Differences in the frequency of peaks and dips have less influence if a frequency 

band average, such as one-third octaves, is used. 

The energy ratio between the subsystems at discrete frequencies is shown in Figure 

7.24. The upper figure shows the plate energy divided by that of beam 1; the lower 

figure shows the ratio of the energies of the two beams. Results for the wave 

method are shown along with the experimental results. 
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Figure 7.24. Energy ratio of the two-beam-plate system C 1. The wave model and 

experimental results for (a) E p'ate / Ebeaml ' (b) Ebeam3/ Ebeaml • 

One can see that there is very good agreement between theory and experiment for 

both cases, even at low frequencies, apart from differences in the exact location of 

peaks and dips. The difference at very low frequencies may occur because the 

rotation of the beams is suppressed in the wave model and the approximate plate 

impedance is used instead of the exact line impedance (see also Chapter 5). 

Comparing the two figures 7.24 (a) and (b), one can also see that as most of the 

energy transmitted from the driven beam to the plate is dissipated in the plate 

connecting the two beams, the energy transferred to the third beam is smaller. 

Nevertheless it is on average only about 5 dB less than that of the driven beam. 
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Although the figures above show excellent agreement even at low frequencies, it is 

of interest to re-evaluate the energy ratio in terms of a one-third octave band 

average. This is obtained by firstly calculating the one-third octave band energy of 

each subsystem and then their ratio. The results are shown in Figure 7.25. From 

these results, the numerical wave model is seen to represent the experimental 

situation well and can be used for the frequency average response prediction of 

such a structure. 
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Figure 7.25. Energy ratio in one-third octave bands for the two-beam-plate system Cl. The 

wave method and experimental results for (a) energy ratio E plate / Ebeaml ' (b) energy ratio 

221 



Chapter 7. Experimental study of coupled systems 

7.6.4 System of two identical beams coupled to a plate: Fourier method 

The same system C1 is now investigated using the numerical model based on the 

Fourier transform technique. Note that in the Fourier method, both ends of the two 

beams and the all edges of the plate are sliding. Thus the boundary conditions of 

the beam ends and the two edges normal to the beams are different from those in 

the experiment. The numerical model based on the Fourier method and the 

experimental results are compared. The effect of the different boundary conditions 

may also be identified by comparing the numerical results of the wave model from 

the previous section and the Fourier method. 

Firstly, the input powers are compared in Figure 7.26. Differences occur at low 

frequencies because of differences in the boundary conditions. At high frequencies 

the effect of added mass can be seen as explained in the previous section. In the 

mid-frequencies between 50 and 500 Hz, however, they show reasonably good 

agreement. Comparing this with Figure 7.21 for the wave model, one can see that 

the differences are slightly greater, which may be due to the different boundary 

conditions (see below). 
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Figure 7.26. Input power of the two-beam-plate system Cl: comparison between the 

Fourier method model and the experiment. 
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The power input in one-third octave bands is shown in Figure 7.27. Comparing this 

with Figure 7.23 the differences are greater although the result of the Fourier 

method is still in quite good agreement with that of the experiment. The boundary 

effect seems clearer and this is probably related to the motion of the beam. One can 

find that there is a consistent frequency shift in the general trend especially above 

100 Hz. It seems for example that the dip of 250 Hz in the experiment moves to 

315 Hz in the numerical result. The frequency shift may be explained in terms of 

different boundary conditions (sliding and free) and corresponding motion of an 

uncoupled beam. 

Consider the uncoupled beam having the same beam properties. If the beam ends 

are sliding, then there is a natural frequency of the beam at 356.1 Hz where the 

beam has 4 nodal points in its bending mode (kb = 4JZ"). The most similar 

experimental motion having 4 nodal points occurs at 273 Hz in the beam where the 

beam ends are free (although strictly the two motions are different especially at the 

ends of the beam). The frequency shift occurs by about a factor of 1.30 

(= 356.1/273) for these similar modes, which is similar to the shift seen in Figure 

7.27. Frequency shifts in the other peaks and dips shown in Figure 7.27 may also 

be explained in a similar way. 
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Figure 7.27. Input power in one-third octave bands for the two-beam-plate system Cl: 

comparison between the Fourier method model and the experiment. 
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The energy ratio is compared in the same manner as in the previous section. Figure 

7.28 shows the one-third octave band averages of the energy ratios between the 

subsystems for both the Fourier method and the experiment. It can be seen that the 

numerical model replicates the experimental situation well, especially the energy 

ratio between the driven beam (beam 1) and the plate. 
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7.6.5 System of two dissimilar beams coupled to a plate 

As the wave model considered in Chapter 5 is not appropriate to describe the 

system consisting of two dissimilar beams, here the results are compared only with 

the numerical model based on the Fourier transform technique. While both ends of 

the two beams are sliding and all edges of the plate are also in sliding in the 

numerical model, experimentally the ends of the beams and the plate edges are free. 

The measured input power and the total dissipated power of all subsystems are 

shown in Figure 7.29, showing good agreement. 
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Figure 7.29. Input and dissipated power of the two-beam-plate system C2. Power 

normalised by the mean square force, dB re 1 WIN 2
, experimental results. 

The numerical input power is compared with that obtained experimentally in Figures 

7.30 and 7.31. The same tendency is found as in the previous section. That is, detail 

differences are found at low frequencies due to the different boundary conditions and 

at high frequencies the mass of the force transducer introduces a consistent difference. 

225 



0 

-5 

-10 

-15 

~-20 

f 
£-25 

0 

'" 0 

~ 
-30 

-35 

-40 

-45 

-50 

I 
I 

10' 

Chapter 7. Experimental study of coupled systems 

102 

Frequency (Hz) 

- Fourier method 
- - Ex eriment 

Figure 7.30. Input power of the two-beam-plate system C2: comparison between the 

Fourier method and the experiment. 
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Figure 7.31. Input power in one-third octave bands for the two-beam-p1ate system C2: 

comparison between the Fourier method and the experiment. 

The energy ratios between the driven beam (beam 1) and the energy-receIvmg 

subsystems (beam 3 and the plate) are calculated in terms of one-third octave band 

averages for both the numerical model and the experiment, and are shown in Figure 

7.32. Detail differences are found at low frequency, largely due to the different 

boundary conditions of the beam-ends and also probably the plate edges attached to 

the beams. 
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The energy ratio between the driven beam and the plate is in very good agreement 

above about 50 Hz, which may be considered as the mid-frequency region in this 

present structure consisting of stiffer beams and a flexible plate (see also section 

6.4.2). The results for the plate are similar to those found for two identical beams in 

the previous section. However the energy of beam 3 is much less in the present case 

of dissimilar beams, particularly at high frequencies (compare with Figure 7.28). The 

numerical results drop lower than the experimental results (although it should be 

recalled that the latter are measured on the plate adjacent to the beam). 
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C2. Numerical model based on Fourier method: (a) Eplate/EbeamI' (b) Ebeam3/EbeamI • 

227 



Chapter 7. Experimental study of coupled systems 

Comparisons based on the energy ratio are very useful to verify a numerical model 

for the mid and high frequency analysis even though the boundary conditions are 

different from those in the experiment. Also the comparison shows the usefulness 

of the strategy of adopting sliding boundary conditions in the mid and high 

frequency analyses. The same technique is applied to a more complex system 

consisting of four beams and a rectangular plate in the following sections. 

7.6.6 Fully framed structure consisting of similar beams 

This section deals with coupled structure C3, a system consisting of a rectangular 

plate surrounded by four identical beams. The framed structure was studied in 

Chapter 6 where the modal method was used to obtain an exact response and the 

wave method an approximate response. Their responses are compared here with the 

experimental results. 

In the modal model a maximum number of 50 modes is used for each direction x 

and y . It should be noted that the numerical model based on the modal method is 

constructed using sliding boundary conditions on the beam ends and plate edges. 

Sliding boundary conditions are also applied to the ends of each beam in the wave 

model as beam torsion is suppressed. Moreover in the wave method, the plate does 

not connect the beams and the wave model is represented by four plates attached to 

the individual beams. This is different from the wave model considered in section 

7.6.3 which uses the symmetric and anti-symmetric responses and in which 

consequently the plate does connect the two beams. 

In Figure 7.33 the measured input power of coupled system C3 is compared with 

the sum of the dissipated power of each subsystem, the plate and beams 1 - 4. One 

can see that good agreement is found for this system. 
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Figure 7.33. Input and dissipated power of four-beam-plate system C3. Power normalised 

by the mean square force, dB re 1 WIN 2
, experimental results. 

By companng the power dissipated in each subsystem, the energy transferred 

between subsystems can be identified. The measured dissipated power in each 

subsystem is shown in Figure 7.34. It is clear that, as before, most energy is 

dissipated in the plate, with the driven beam power greater than the others above 

30Hz. 
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Figure 7.34. Power comparison of the four-beam-plate system C3, experimental results. 

The input power shown in Figure 7.33 is now compared by means of one-third 

octave band averages with those calculated based on the modal method and the 

wave method, as shown in Figure 7.35. The results of the modal model and the 

229 



Chapter 7. Experimental study of coupled systems 

wave model show close agreement with each other except at low frequencies. 

These numerical results are in good agreement with the experiment at least in the 

mid-frequency region between 40 and 300 Hz. A reason for the difference between 

the numerical result and the experiment at high frequencies is the added mass of 

the force transducer, as explained previously. If the mass effect is included in the 

numerical model, the power difference between the numerical model and the 

experiment in one-third octave bands is at most 3 dB above about 40 Hz. 
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Figure 7.35. Input power in one-third octave bands for the four-beam-plate system C3: 

comparison between the numerical models and the experiment. 

Figure 7.36 shows the energy ratios III one-third octave band form from the 

experimental results and the two theoretical models. In the wave method the 

approximate plate energy of the framed structure can be found from the sum of the 

energies of the four plates (see section 6.4.2). For the energy ratio of the plate 

relative to the driven beam (beam l), above about 40 Hz both predicted and 

experimental results agree very well, within about 3 dB. For other cases, except for 

beam 3, the maximum difference is less than about 5 dB in the mid and high 

frequency regions, even though the wave method is known to provide an 

approximate response. In the experiments and Fourier method, beam 3 has a 

similar energy to beams 2 and 4 whereas in the wave method it is up to 10 dB 

lower. A reason for the large difference for beam 3 is due to the modelling 
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assumption in the wave method. That is, the plate in the wave model does not 

connect the two beams (beam 1 and beam 3) and thus the energy transfer through 

the plate between the two beams cannot be realised in such a model. Thus, this 

implies that, in the description of the beam energy, the power flow through the 

plate is mostly important to the opposite beam (beam 3) rather than to the other 

beams. Note that the configuration considered here differs from the earlier chapter 

in that the force is located on one beam away from a comer. For such a case it 

seems that the power flow through the beams experiences more power reflection, 

as there are always two comers between the forcing point and beam 3. 

231 



Chapter 7. Experimental study of coupled systems 

3°r----r------------------~----------r=~M5o~d~a~,=m~e2th=Od~ 

25 

20 " 

15 

10 

5 

o 

-5 

(a) 

-10 
10' 

10 

5 

0 

w- -5 

!:t!.o -10 

:if 
S' -15 

-20 

-25 

(b) 

-30 
10' 

10 

5 ~ 

"\. , , 
0 

, , 

U?-
-5 

~C> -10 

ff 
'" -15 

-20 

-25 

(c) 

-30 
10' 

20 

15 

10 

U?-
5 

\!!. 

:if 
S' 

-10 

-15 

(d) 

-20 
10' 

, 

" , , 
, '" 

10
2 

1/3 octave band centre frequency (Hz) 

102 

1/3 octave band centre frequency (Hz) 

, 
\k __ -..:1 

10
2 

1/3 octave band centre frequency (Hz) 

10
2 

1/3 octave band centre frequency (Hz) 

Wave method 
Experiment 

Modal method 
Wave method 
Ex eriment 

Modal method 
Wave method 
Experiment 

Modal method 
Wave method 
Experiment 

Figure 7.36. Energy ratio m one-third octave bands of four-bearn-plate system C3, for the 

numerical models and the experiment: (a) E IE plate beaml 
(c) 

232 



Chapter 7. Experimental study of coupled systems 

7.6.7 Fully framed structure consisting of dissimilar beams 

Finally the same investigation was carried out for the coupled system C4, which 

consists of four beams and a rectangular plate. Adjacent beams I and 4 are 

24.1 mm high and beams 2 and 3 are 13.3 mm high (see Figure 7.1). Figure 7.37 

compares input and dissipated power estimates showing good agreement. The 

individual dissipated powers are not shown here as they show the same tendency as 

in section 7.6.6. 
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Figure 7.37. Input and dissipated power of the four-bearn-plate system C4. 

The numerical input powers of the modal method and the wave method are 

compared with that of the experiment in Figure 7.38. These results show the same 

tendencies as those for system C3, see Figure 7.35. As in the previous section, the 

three results are similar, which shows the suitability of the numerical models. 
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Figure 7.38. Input power in one-third octave bands for the four-beam-plate system C4: 

comparison between the numerical models and the experiment. 

The one-third octave band energy ratios predicted by the modal and wave models 

are compared with the experimental results in Figure 7.39, which provides further 

interesting results. The modal model gives close agreement to the experimental 

results for all cases. The wave model shows reasonable agreement above about 40 

Hz for the energy ratio between the stiffer beams and the plate. However, it is 

found that the difference in the energy of beam 3 increases and also there is 

difference in beam 2 compared with the case where all the beams were identical. 

In both cases the wave model gives lower energies than for identical beams, 

whereas the modal method gives similar results to previously. 
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This appears to be due to the fact that the wave model does not physically connect 

these beams to the excited beam through the plate. Beams 2 and 3 are 13.3 mm 

high which is less than of beams 1 and 4 (24.1 mm). Power flow from the driven 

beam to the opposite beam 3, for example, appears to be dominated by power flow 

through the plate and the wave model cannot reproduce this effect. This implies 

that the wave model gives better results for a system consisting of much stiffer 

beams and a more flexible plate. In this case it is known that power transfer 

through the plate is not so important. If one is solely interested in the driven beam 

or plate response then Figures 7.36 and 7.39 show that either prediction method 

could be used as the trends and average levels are in good agreement. 

It is interesting to compare the experimental results of systems C2 and C4 which 

both have dissimilar beams opposite the excitation point. While beams 1 and 3 are 

connected by other beams as well as the plate in system C4, they are connected 

only by the plate in system C2. Nevertheless, comparing Figures 7.32 (b) and 7.39 

(c), one can find that the energy ratios are at similar levels. Thus, this helps to 

confirm that the power is hardly transferred to beam 3 through the beams and most 

ofthe power is transferred through the plate. 

7.7 Conclusions 

Experimental studies dealing with various built-up structures consisting of beams 

attached to a rectangular plate and the comparison with the numerical models 

provide some important conclusions. 

(a) Although the boundary conditions in the numerical models are different from 

the experimental configuration, comparison of the power input shows the 

suitability of the models based on the Fourier technique, the modal method and 

the wave method for mid-frequency analysis, especially when frequency-band 

averaged results are considered. 
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(b) By studying the energy ratios it is possible to investigate the energy 

relationship between subsystems in the built-up structures. The results show 

that, apart from differences in the narrow-band results at low frequencies, the 

effect of the boundary conditions is not significant in terms of energy ratios. 

(c) In addition, even though the wave model gives only an approximate response, 

it can be used to predict the behaviour of the two-identical-beam coupled 

system and the framed structure consisting of four identical beams. 

Comparison of the numerical and the experimental results shows that the 

beam-plate coupled system consisting of stiffer beams results in a better 

estimation in the wave method. When the beams are less stiff they are more 

influenced by coupling through the plate which has been ignored in this 

method. 

(d) From measurements with a scanning laser vibrometer, the wavenumber of the 

coupled system consisting of two beams and plate has been identified. It is 

shown that the wavenumber component in the plate normal to the beam is 

almost identical to the plate free wavenumber and the trace wavenumber 

parallel to the beam is dominated by the stiffer beam structure and its 

wavenumber. 

237 



Chapter 8. Conclusions 

CHAPTER 8 

CONCLUSIONS 

8.1 Introduction 

The mid-frequency regIOn IS generally defined the regIOn where neither a 

deterministic method such as Finite Element Analysis (FEA) nor a probabilistic 

method such as Statistical Energy Analysis (SEA) can be used reliably. As seen in 

Chapter 1, there have been many efforts to find a solution for such a frequency 

region. However, it is also true that most of them remain applied to simpler 

situations, for example, a system comprising a single beam and a single plate and 

more research is necessary so that a general tool for mid-frequency analysis can be 

used practically. 

The object of this thesis is to deal with more complicated systems through 

reasonable approaches and the corresponding results are mainly concentrated on 

the mid and high frequencies. For this, various analytical and numerical approaches 

have been examined. The uncoupled beams considered contain only about 10 

modes below 1412 Hz. Thus, their behaviour can be regarded as a low frequency 

motion in the present frequency range (5.6 - 1412 Hz). Meanwhile, the plate 

considered has about 500 modes in the same frequency range so that it shows high 

frequency characteristics with a modal overlap greater than unity above 50 Hz (see 

Chapter 6). The mid-frequency region is thus defined in this thesis, in a narrow 

sense, as a certain frequency region associated with the coupling of stiff beams and 

a flexible plate where the beams are in their 'low frequency' region and the plate in 

its 'high frequency' region. For realisation of these two important objectives, i.e. 

the consideration of more complicated systems and the coupling of stiff beams and 

a flexible plate, a coupled system consisting of several beams and a plate is a 

principal system examined in the thesis. 
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In particular, a beam-plate-beam coupled structure was analysed based on a Fourier 

technique. A wave method provides an approximate response of such a structure. A 

modal method was applied to find the vibrational motion of a framed structure 

consisting of four beams and a rectangular plate. The approximate wave method 

was then used to find a reasonable response ofthe same system, at least in the mid­

frequency region. The response obtained using such approaches was firstly 

evaluated using FEA and then compared with those obtained experimentally. 

Wavenumbers were also identified from the experiment and shown to satisfy the 

assumption on which the approximate wave method is based. 

8.2 Summaries and conclusions 

8.2.1 Analytical methods 

FEM and SEA are the most important tools to predict the dynamic response of 

structural and acoustical systems and are found widely in industrial use; some 

examples were presented in Chapter 1. Research intended to overcome the 

limitations of these methods was also reviewed. These previous studies show that 

more research is still necessary and this thesis provides a contribution to this area. 

Among the different kinds of approach in use to analyse the dynamic behaviour of 

a system, the methods based on a Fourier transform/series and modal coupling are 

considered in this thesis. These are also used to provide a reference for comparison 

with the approximate wave method that is developed. These methods have been 

applied previously to a simple beam and a simple plate. These Fourier and modal 

methods are also extended here to find the response of more complicated systems. 

Firstly, a modal coupling technique was presented in Chapter 2 and applied to a 

single stiff beam and a rectangular plate. Assuming the plate edges are in sliding 

conditions, the vibrational response of the coupled system can be found in a 

relatively simple form using separation of variables. It was shown that the 
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behaviour of the plate in the beam direction is mostly governed by the stiff beam. 

This implies that the coupled plate motion can be analysed by means of trace 

wavenumber matching involving the coupled beam wavenumber in the wave 

approach. 

In Chapter 3, the Fourier method clearly showed the nature of the interaction 

between the beam and plate in the single-beam coupled system. The fact that the 

flexible plate acts as an equivalent mass and damping to the beam was shown in the 

wavenumber domain. 

The procedures presented in Chapters 2 and 3 can also be extended to more 

complex systems. Also, they can be used as a basis for comparison with the 

approximate wave method. They provide an exact result for the present boundary 

conditions, apart from the need for an infinite number of modes or Fourier 

components. Convergence was examined to minimise computational time and 

computer resources. The criteria determined from the convergence study were 

utilised in the analysis of more complicated systems. 

8.2.2 Approximate wave method 

As an approximate approach, a wave method was studied. The wave method, 

originally proposed by Grice and Pinnington [41] to analyse a symmetric single 

beam-plate system, was applied to a non-symmetric single beam-plate system. 

While in the Fourier method the whole range of real values for the coupled beam 

wavenumber are included in the integral, in the wave approach the coupled beam 

free wavenumber is calculated based on wavenumber trace matching. 

Under the important hypothesis that the coupled beam wavenumber is sufficiently 

smaller than the plate free wavenumber, it was shown that the exact line impedance 

for the plate could be substituted by the approximate impedance where the plate 

trace wavenumbers are assumed to be equal to the plate free wavenumber. This 
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physically means that the plate can be regarded as many strips along the beam. The 

damping and mass effect of the coupled plate observed in the Fourier method was 

analytically explained in terms of the wave approach. 

The wave method presented by Grice and Pinnington [41] was enhanced to obtain 

an improved response. A simple iteration method to find roots in the wave 

dispersion equation did not converge at certain frequencies. It was shown that 

introducing Muller's method to identify roots in the complex domain could solve 

such a problem. Strictly, the travelling and nearfield 'free' wavenumbers in the 

coupled beam should be different if present separately. Separation of the two 

wavenumbers was attempted. The corresponding numerical results using these two 

wavenumbers simultaneously showed violation of the energy conservation between 

the transferred and dissipated powers in the plate. This could be overcome by using 

the plate impedance corresponding to the travelling wave when finding the 

nearfield wavenumber, which yields identical wavenumbers. By using this 

approach, an approximate system is obtained for which the power balance holds. 

As the plate behaves like strips, the power in the direction normal to the beam is 

only taken into account for the dissipated power in the plate. Consequently, the 

plate-dissipated power is an underestimate. Nevertheless, it was shown that the 

wave method is still a good approximate approach. A similar approach was also 

adopted later in the analysis of more complicated systems involving two or four 

beams. 

8.2.3 Analysis of two-beam coupled systems 

For analysis of a coupled system consisting of two parallel beams and a plate, the 

exact Fourier and approximate wave methods were considered. The response of the 

finite beam-plate-beam system can be found using a simple cosine function in the 

Fourier series if the opposite two edges of the plate (and the corresponding beam 

ends) are sliding. The relevant equations show that this method is advantageous as 

it can be used for a system consisting of two dissimilar beams. 
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By synthesising symmetric and anti symmetric motions of a single beam-plate 

system with half the width, the wave method can be used to find the response of a 

symmetric beam-plate-beam system. If plate impedances acting upon the two 

beams are assumed to be the same, then the plate impedance and coupled beam 

wavenumber for the non-symmetric single beam-plate system can be utilised 

without modification. Although strictly they may be different, a power balance 

investigation shows the difference to be small. Such a synthesis technique based on 

the wave model can also be used when the boundary conditions of the beam ends 

are different, for example, when free-free conditions are considered. 

Mobilities and powers were examined based on the Fourier and wave methods. The 

Fourier method is regarded as an exact method for the present boundary conditions 

and used as a reference. The symmetric-antisymmetric wave model seems useful in 

dealing with a symmetric beam-plate-beam system. Although a power investigation 

of the wave model shows that the power transfer and dissipated power in the 

coupled system are only approximate, the numerical results show that it can 

provide a reasonable estimate of the dynamic response at mid-frequencies as well 

as high frequencies. 

The energy ratios and the input power of the numerical models were compared 

with those obtained experimentally. The ratio of subsystem energies was 

introduced to reduce the effect of the different boundary conditions between the 

numerical model and the experiment. It was shown that the Fourier and wave 

methods replicate the experimental results very well. In the Fourier model, 

although the results show a small frequency shift in the general peaks and dips 

compared with the experiments, they can be explained in terms of the different 

boundary conditions. The general levels are in good agreement. The experiment 

also shows that the Fourier model can be applied reliably to the coupled system 

involving two dissimilar beams. The wave model can consider arbitrary boundary 

conditions with respect to the beam ends and such a frequency shift does not occur 

in comparison with the experiment. Thus, although the wave model was constituted 
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based on the approximate plate impedance, the narrow band response as well as the 

one-third octave band averages are in very good agreement with experiments at 

mid and high frequencies. 

The most important hypothesis in the wave method is that the coupled beam 

wavenumber should be sufficiently smaller than the plate free wavenumber, so that 

the plate free wavenumber is almost equal to the trace wavenumber in the direction 

normal to the beam. This was verified experimentally by estimating the coupled 

plate wavenumber using a scanning laser vibrometer and a correlation technique. 

The estimation also shows that the plate motion is predominantly governed by the 

stiffbeam. This was numerically predicted in a convergence study using the modal 

model consisting oftwo beams and a plate. 

8.2.4 Analysis of four-beam coupled systems 

By assuming sliding boundary conditions at the edges of the rectangular plate the 

motion of a coupled system consisting of four beams surrounding the plate could 

be obtained relatively simply using the modal method. Although the sliding 

condition is not a necessary condition in the modal method, it reduces the 

complexity in its application due to the possibility of separation of the variables in 

the plate and the fact that plate and beam mode shapes are equal. Strictly, although 

such boundary conditions are different from the experiment, the differences 

introduced are not very significant at least in dealing with mid and high frequency 

regIOns. 

While the modal method gives an exact result as long as a sufficient number of 

modes are included, the wave method predicts only an approximate response. By 

assuming most of the power due to an excitation is dissipated in the plate the 

framed system can be modelled as a system consisting of four beams, each attached 

to a separate plate. The response in terms of one-third octave band averages 

showed that this plate-decoupled wave model gives reasonable results compared 
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with the modal model at least above 50 Hz; the region below this corresponds to 

the first 3 beam modes and the region where the modal overlap of the plate is less 

than unity. 

In such a wave model, the dimensions and the boundary condition of the four plates 

were assumed to be the same as the original plate surrounded by four beams. Thus, 

the opposite edge parallel to the beam is assumed sliding. However, it is not a 

necessary condition for the modelling and even if a pinned condition or a different 

width is considered, the average response shows little difference in the mid and 

high frequency regions. Assuming semi-infinite plates (thus, an infinite width in 

the direction normal to the beam), however, results in an overestimate in the 

damping effect on the beam. 

The wave model under such assumptions and the modal model were then compared 

with experiments. Although the boundary conditions of the analytical wave and 

modal models, i.e. the beam ends sliding and beams infinitely stiff in torsion, are 

different from those in the experiment, the input power comparison in terms of 

one-third octave band averages shows the suitability of the numerical models for 

the mid-frequency analysis. Especially in the wave model, although the inherent 

limitation that the plate does not connect the beams directly results in differences in 

the input power at low frequencies, in general it does not affect the results at mid 

and high frequencies. The energy ratio between subsystems based on one-third 

octave bands also shows the validity of the wave and modal models as the 

numerical and experimental results are generally in close agreement. While the 

modal model shows good agreement in comparison of the subsystem energy ratio, 

in the wave model there is a difference for the beam furthest from the excitation. 

This is because in the wave model the plate does not connect the beams. 

The comparison with the experiment shows that the plate-decoupled wave model 

can predict the averaged response of four beam cases well at least in mid and high 

frequency regions. For example, the power inputs in one-third octave bands agree 

within 5 dB above about 50 Hz between the numerical four-beam model and the 
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experiment, even though a frequency shift occurs due to the different boundary 

conditions. Recall that the motion of the stiff beams is considered to be in their low 

frequency range while the plate shows high frequency behaviour. Thus, the 

estimation discussed above shows that the wave-based coupling of such 

subsystems having low and high frequency characteristics can provide a reasonable 

response in the mid-frequency region. 

An advantage of the wave method is highlighted in terms of computation time and 

computer resources. Although the wave method can predict only an approximate 

response it requires far less computer resources and time. For example, for the 

present case of the framed system, it was shown that the wave method requires 

only about 1 % of the computational time compared with a commercial FE program, 

despite using uncompiled code. 

8.3 Recommended future research 

In this section some suggestions for further research are highlighted. 

8.3.1 Separation of plate impedances based on travelling and nearfield waves 

In the wave method developed in this thesis, the plate impedance obtained based on 

the travelling wave in the coupled beam is used. This reasonably describes the 

motion of a beam-plate coupled system as the beam motion is dominated by the 

travelling wave. Nevertheless, strictly it is expected that the plate impedance 

depends on the nearfield wave as well as the travelling wave. The nearfield wave 

effect becomes larger near an excitation point or beam ends. Consequently, the 

response of the coupled beam might be represented in terms of the two 

wavenumbers, i.e. the travelling and the nearfield wavenumbers. In this thesis, a 

separation of the wavenumbers present in the coupled beam was sought and 

resulted in the violation of energy conservation. The physical system should obey 

the energy conservation. Thus, further study on the plate impedances dependent on 
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both the travelling and nearfield waves and the consequent motion of the beam­

plate coupled system seems necessary. 

8.3.2 Experimental identification of plate wavenumbers in a framed structure 

In this thesis, the wavenumber of the plate in a coupled system comprising two 

identical beams was experimentally identified, from which it is found that the 

wavenumber in the beam direction is dominated by the beam wavenumber. It might 

be more complicated if the beams are dissimilar and it is necessary to investigate 

the plate wavenumber in such a case. 

The plate wavenumbers in a framed structure with similar beams seem more 

interesting as it is expected that they may be related to the beam wavenumber as 

well as the plate wavenumber. Furthermore, if dissimilar beams are considered in 

the framed structure, the plate motion will be far more complex. Thus, the 

wavenumber identification of the coupled plate of various systems is an important 

topic for future study. 

8.3.3 Curved panel and beam structure 

In Chapter 1, it was stated that a main structure to be studied, four beams coupled 

to a plate, is principally important as such a structure can be found in automotive, 

marine and aerospace applications. For example, the floor and roof of a car are 

basically framed structures. The roof, however, usually consists of a doubly curved 

plate. Similarly aircraft consist of framed singly curved plates. In wave approaches 

in previous studies [41, 54, 55], the plate curvature is not included. Therefore, this 

could be considered using a wave approach. 
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8.3.4 Consideration of damping material attached to a plate 

Another important area of study involves damping materials. Most important noise­

control strategies are based on the use of damping materials, especially for high 

frequencies. However, their efficiency to control power flow between components 

such as plates and beams is hardly considered in general, which is important for 

weight and cost reduction. 

In the wave approach, the plate is assumed to be strip-like. Thus, the damping 

treatment in this direction seems relatively easy and the power transfer between 

subsystems can be investigated in terms of the partially damped plate. 

Consequently, it is expected that the optimal location and appropriate material 

property of the damping treatment may be decided by using the locally damped 

plate. 

8.3.5 Study of joint area in a beam-plate system 

It seems especially difficult to understand the behaviour of the joint area of such a 

structure consisting of beams and a plate. Although the motion of such a framed 

structure was studied, for example, by Yang and Gupta [69] and Takabatake and 

Nagareda [68], there were no specific investigations on the joint area. Ohtsuki and 

Ellyin [89] studied the joint of a framed structure where the structure only consists 

of beams without a plate. In this thesis, the framed beam-plate system was analysed 

by assuming the four decoupled plates attached to each beam. Although the general 

response such as mobilities and powers shows the validity of this assumption at 

mid and high frequency regions, it is not so clear that the assumption can be 

acceptable in the joint area as it is expected that the response is more complicated 

due to the presence of nearfield waves. Thus, an investigation of the joint area of a 

beam-plate coupled structure seems useful for a future study. 
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8.3.6 Introduction of an arbitrary configuration in the wave method 

It can be said that the structures investigated in this thesis are more complicated 

than those of previous studies discussed in Chapter 1, as they include systems with 

two or four beams. Nevertheless, these structures are based on the rectangular plate 

system. It is of interest to include more general configurations e.g. non-rectangular 

plates. Such a coupled system may be realised using a similar approach proposed in 

Chapter 6. Also, FE may be used to model the beams, while the impedance acting 

on the beam is considered analytically. Grice and Pinington [55] proposed a similar 

approach. However, their coupled structure, a box structure, was still based on the 

rectangular configuration and there is considerable scope for further investigation. 
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APPENDIXA. 

NEARFIELD WAVENUMBER OF COUPLED BEAM 

A.1 Theoretical derivation 

The dispersion relationship of coupled systems was derived in sections 4.3.2 and 

4.3.3, in which the nearfield wavenumber is obtained based on the travelling wave 

assumption. As seen in section 4.3.4, substituting the travelling wavenumber for 

the nearfield wavenumber gives an advantage to understand physical phenomena of 

the structural coupling. However, strictly the two wavenumbers cannot be 

considered equal. Thus, the nearfield wavenumber is taken into account in this 

appendix. 

Consider first the coupled system consisting of an infinite beam and an infinitely 

long finite width plate as in section 4.3.1 (see the structure shown in Figure 3.15). 

A wavenumber relationship can similarly be developed when the nearfie1d 

wavenumber in the beam is considered. Suppose that the nearfield wave motion of 

the beam is represented by 

(A.l) 

where knf is the nearfield wavenumber in the coupled beam. 

Then the motion of the plate with no damping is given by 

- (B-' -ik;y C-, -k'y {J'''':D' ik;y D-' k;(y-Ly ») -k,ljx wp = e + e e + yrlJ e + e e (A.2) 

where B' is the amplitude of the travelling wave, (;' IS the amplitude of the 

nearfield wave in the plate, I)' is the amplitude of the nearfield wave which is 

generated at the opposite edge of the plate, k~ is the trace wavenumber for the 
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travelling wave radiating into the plate nonnal to the beam, k; is the trace 

wavenumber for the nearfie1d wave in the plate and /3; = e -ik;2Ly represents a phase 

shift over length 2Ly . The dash is used to distinguish them from the case when the 

travelling beam wavenumber is considered. 

Now consider the travelling wave solution in the plate wp = jj'e-ik;Ye-knjx to obtain 

the nearfield wavenumber knf' Substituting this into equation (3.7) describing 

motion of the plate results in 

(A.3) 

For non-trivial solutions k~ - 2k;2 k~ + k;4 - k; = O. Therefore, the propagating 

nonnal trace wavenumber in the plate is 

(AA a) 

Similarly, letting wp = C;'e-k;ye-k"rx , then the nearfield plate wavenumber is 

(AA b) 

They are found by solving the dispersion equation similar to equation (4.34) using 

kllJ instead of kx' These differ from the results ky and ke found for a travelling 

wave kx in the beam. 

The procedure to obtain the plate impedance when the beam nearfield wavenumber 

is considered is similar to the case when the travelling wavenumber is considered 

(see section 4.3.1). All of the equations are the same except equation (4.29), the 

force equilibrium condition, which is 
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Once knl has been eliminated from this equation, the equation for the impedance is 

the same as equation (4.31). Note that even though the equation is not changed, a 

different value will be calculated because the impedance includes k~, k; and the 

phase shift f3; which is a function of k~, all of which differ from the values 

corresponding to a travelling wave kx ' The introduction of damping on the plate 

and the approximation of the impedance follow the same procedure as explained 

for the case of the travelling wavenumber in section 4.3.2. 

A.2 Wavenumbers 

The nearfield wavenumber knl in the coupled beam and its corresponding 

wavenumbers in the finite plate are shown in Figure A.I. The uncoupled beam 

wavenumber kb and coupled beam wavenumber kx using the semi-infinite plate 

are shown for comparison. One can see that kill based on the finite plate follows 

well the asymptotic line k t • 

The corresponding results for the travelling wavenumber are already shown in Figure 

4.13. Comparing Figures A.I and 4.13 show how the plate wavenumbers are 

changed due to the travelling and nearfield wavenumbers of the beam. It can be seen 

that the travelling and nearfield waves of the plate in the y direction can be 

approximated by the free wavenumber ofthe plate in both cases. 
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Figure A.1. Comparison of the nearfield wavenumber of the beam and the corresponding 

wavenumbers of the plate of the coupled structure as in Figure 2.2 (17
p 

= 0.05 in the plate, 

17b = 0.05 in the beam). 

In Figure A.2, a companson IS gIVen of the imaginary parts of the travelling 

wavenumber and nearfield wavenumber in the coupled beam as well as the 

corresponding real parts. 
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Figure A.2. Comparison of the beam travelling and the nearfield wavenumber In the 

coupled structure consisting of the finite beam and the finite plate as in Figure 2.2 

('7p = 0.05 in the plate, '7b = 0.05 in the beam). 

These wavenumbers are related to the plate impedance and, for example, at the peaks 

of kx the plate exhibits an anti-resonance (see also Figure AA). In the same way the 

nearfield wave number knJ depends on the corresponding impedance of the plate 

which has peaks at different frequencies. At the peaks of the imaginary part of kx the 

plate has a considerable damping effect on the beam. 
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Approximate equivalent loss factors are shown in Figure A.3, determined according to 

equation (4.24). Note that at the anti-resonances of the plate, the damping is large so 

that the small damping approximation no longer holds. 
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Figure A.3. Equivalent loss factors of the travelling and the nearfield wavenumbers in the 

coupled beam. 

A.3 Impedance 

In Figure AA, the approximate line impedances (see equation (4.33)) of the finite 

width plate with damping are shown when ~t and knf are considered respectively. 

As mentioned before, although the impedance equation (4.33) is unaltered, the 

- -
figure shows how the values of the impedances are changed when kx or knJ is 

considered. The peaks in the impedance correspond to the plate anti-resonances, 

and comparing Figures A.3 and AA, it is clear that the equivalent loss factor is 

maximum around these frequencies. 
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APPENDIXB. 

USE OF MULLER'S METHOD FOR THE 

ESTIMATION OF COUPLED W A VENUMBERS 

If the coupled wavenumber kx of a beam-plate system is calculated iteratively, 

erratic fluctuations are observed in the plate impedance at some frequencies. In this 

appendix, the iteration procedure is explained briefly and a numerical procedure is 

described to eliminate these fluctuations. 

Consider a finite width damped plate and an infinite beam as shown in Figure 3.15. 

Corresponding dimensions are the same as those shown in Table 2.1. A pinned 

boundary condition along the opposite edge parallel to the beam is considered and 

the beam is also assumed to be infinitely stiff in torsion. 

The coupled travelling wavenumber k t could be obtained iteratively using the 

dispersion equation for the coupled beam which is given in section 4.3.3. 

D k 4 , 2 • Z-, 
b x = mbOJ -1OJ p (B.1) 

where Db is the bending stiffness of the beam, m~ is mass per unit length of the 

beam, OJ is frequency and i~ is the approximate impedance of the plate. An initial 

value for kx can be obtained if the semi-infinite plate is assumed, and then the 

travelling trace wavenumber ky of the finite plate can be obtained from the trace 

wavenumber relationship 

(B.2) 

where kp is uncoupled wavenumber of the plate. Using the approximate plate 

impedance corresponding to this value of ky an improved estimate for the 

wavenumber k t is calculated and this procedure is repeated. At most frequencies 
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the wavenumbers converge after a small number of iterations (for the present case a 

maximum of 19 iterations are used). Nevertheless, it has been discovered that 

erratic behaviour occurs when the coupled wavenumber kx does not converge 

during the iteration procedure. Figure B.l and Figure B.2 illustrate this effect for 

the case of a damped plate. Figure B.l shows the result after 18 iterations and 

Figure B.2 shows that after 19 iterations. For further iterations these results are 

repeated. Large differences can be seen around 20 Hz, 60 Hz, 130 Hz and 450 Hz . 
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Figure B.1. Comparison of the wavenumber of the coupled structure consisting of an 

infinite beam and a finite width plate (1] p = 0.05 in the plate). 18 iterations . 

..... . "": .... 

Frequency (Hz) 

Figure B.2. Comparison of the wavenumber of the coupled structure consisting of the 

infinite beam and the finite width plate (1] p = 0.05 in the plate). 19 iterations. 
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In the figures above, kp represents the free wavenumber of the plate, ky the 

travelling wavenumber perpendicular to the beam, ke the nearfield wavenumber of 

the plate in this direction and kx the coupled wavenumber of the beam. It can be 

seen that at the first peak near 20 Hz the results do not converge during the 

iteration. This corresponds to the first anti-resonance of the plate. In this region it 

can be seen that ky becomes smaller and kx become large (Figure B.2). Because 

the wavenumbers kx and kyare related through equation (B.2), the region in which 

the wavenumbers do not converge occurs when ky, the wavenumber across the 

plate, becomes small and kr' the corresponding travelling wavenumber along the 

beam becomes large. Therefore, it seems that the iterative method used is not 

appropriate for some frequency regions, particularly near the peaks in the 

dispersion curves. 

The solution to this problem can start from the dispersion equation (B.l). Because 

the attached plate impedance i~ is a function of the wavenumber ~r the equation 

can be rewritten as 

(B.3) 

As explained in section 4.3.3, it can be assumed that there are four roots close to 

the uncoupled beam wavenumber kb and nonnally two of them represent 

propagating waves and two nearfield waves. From the complex domain plot, these 

four roots can be identified. One example for this is shown in Figure B.3. Contours 

in the figure represent equal values of the function I/(kx)1 given in equation (B.3) 

and the four circles in the figure represent roots where I/(kr)1 = 0 (the circles near 

Re(kJ ~ ±5.8 correspond to peaks and are not roots). Comparing this figure with 

Figure B.2, it can be said that the root near Re(kJ ~ 3.6 is the correct value of the 

travelling wavenumber for the present case. 
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Figure B.3. Complex domain contours (right quadrants) and the roots at 125.1 Hz. 

Now, based on these complex domain contours and an appropriate numerical 

method, the wavenumber k.~ can be obtained by calculating the root of this 

equation. Specifically to obtain such a complex root, Muller's method [83] is a 

good approach. This method uses a quadratic equation which fits through three 

points in the vicinity of a root and the proper zero of the equation is used as the 

estimate of the root. This process is repeated using the set of three points nearest 

the root being evaluated. 

The first three initial values are selected at the complex domain contours such as 

Figure BA, basically by trial and error. From the contours the root can be inferred 

approximately. For example, at 23.7 Hz near the first plate anti-resonance in Figure 

B.2, the root is expected to exist at the centre of the circles in the fourth quadrant in 

the contours of Figure BA. One can see that there are two roots near Re(kJ;::; 1.5 

and 4.9 (the circle near 3.9 corresponds to peak). Thus, although it was assumed 

that there is only one root in each quadrant in the dispersion equation this is not the 

case. It is necessary to choose an appropriate root so that it can be used in the wave 

method, and here the root closer to that found from the dispersion equation is 

basically chosen. As presented in section 4.3.4, this method for root selection 

results in wavenumber discontinuity when presented as a function of frequency 

(see Figure 4.11). 
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From Figure B.2, it can be inferred that the real part of kx is smaller than 2 for this 

case and the root in the lower quadrant is expected to be the centre of circle near 

Re(k.) ~ 1.5 in Figure BA. Therefore, the three initial values are selected by trial 

and error near this circle. The arrows in Figure B.5 show the procedure converging 

to find the root near Re(kx) ~ 1.5 from initial values. 

-1 

-2 

Figure BA. Complex domain contours and the roots at 23.7 Hz. 

2 
Real (k) 

3 5 

Figure B.5. Root-tracing calculated by Muller's method in the complex domain (23.7 Hz). 
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As can be seen from Figures B.1 and B.2, during the standard iteration the 

frequencies at which the wavenumber does not converge can be identified. If the 

calculated real part of the wavenumber shows more than 0.1 % difference between 

the results of the 18th and 19th iterations, then that wavenumber is regarded as a 

wavenumber which does not converge for which Muller's method is then used. The 

criterion 0.1 % was chosen by trial and error. For example, if 1 % is chosen then 

the number of calculations required using Muller's method can be reduced but 

results are not as good. Conversely, if 0.01 % is chosen then more calculation is 

necessary but the results show little improvement. On the basis of the 0.1 % 

criterion, 66 individual frequencies which do not converge are found and Muller's 

method is applied to obtain the exact root for the system. Newly calculated 

wavenumbers k, and the corresponding plate wavenumbers are shown in Figure 

B.6, from which it can be seen that the erratic behaviour has been eliminated. The 

approximate plate impedance, which depends on ~(, does not show any erratic 

fluctuation either, as seen in Figure B. 7. It is these results that are used in the 

thesis. 
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Figure B.6. Comparison of the travelling wavenumber k of the coupled structure as in x 

Figure 4.9 (1Jp = 0.05 in the plate) with the plate wavenumbers kp' ky' and ke after using 

Muller's method. 
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Muller's method. 
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APPENDIXC. 

NUMERICAL ANALYSIS OF A SINGLE BEAM 

COUPLED TO A RECTANGULAR PLATE WITH 

OPPOSITE EDGE SLIDING 

In section 4.3.4, a single beam coupled to a plate was investigated where the plate edge 

parallel and opposite to the beam is pinned. The same investigation is carried out in 

this appendix, only the boundary condition is changed from pinned to sliding which 

means r = +1 in equation (4.33). The impedance corresponding to the travelling 

wavenumber is used to find all wavenumbers. 

The basic physical phenomena, for example the relationship between the wavenumbers 

and the plate impedance and the damping effect of the plate at its anti-resonances, are 

the same as those found in section 4.3.4. Therefore, only the values of, for example, the 

resonance frequencies and the anti-resonance frequencies in the impedance will be 

changed due to the change ofthe reflection coefficient. Nevertheless, it is important to 

include the responses of the structure for a sliding plate condition, because this 

structural analysis is used in the analysis of the structure consisting of two beams 

which is discussed in section 5.3. The numerical results are presented in the same 

manner as in section 4.3.4. 

C.I Wavenumbers 

Calculating the approximate plate impedance (equation (4.33)) and the dispersion 

equation (equation (4.34)) the coupled beam wavenumber and the corresponding 

plate wavenumbers can be found. Muller's method is again used. Figure C.l shows 

the wavenumber in the coupled beam and the corresponding wavenumber in the 

plate. They show that the assumption of the approximate impedance is still valid for 
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the sliding boundary condition, as /( / « k p' Also, it can be seen that the coupled 

beam wavenumber kx based on the semi-infinite plate forms the overall trend of kx 

based on the finite plate. 
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Figure C.l. Comparison of the travelling wavenumber of the beam and the corresponding 

wavenumbers of the plate of the coupled structure as in Figure 2.2 with a sliding condition on 

the edge opposite to the beam (1Jp = 0.05 in the plate, 1Jb = 0.05 in the beam). 

The approximate equivalent loss factor obtained using equation (4.24) is shown in 

Figure C.2. One can see that the damping effect decreases with increasing frequency as 

explained in section 4.2.5. 
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Figure C.2. Equivalent loss factor in the coupled system as in Figure 2.2 with sliding opposite 

edge. 

C.2 Impedance and mobilities 

The approximate impedance of the finite plate with damping is shown in Figure 

C.3. Anti-resonance frequencies in the impedance due to the travelling 

wavenumber kx' for example at 9.4, 39.5, 91.3 and 165 Hz, coincide with the 

frequencies ofthe peaks in Figures C.l and C.2. 
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Figure C.3. Approximate impedance of the finite plate as in Figure 2.2 with a sliding 

condition on the edge opposite to the beam (7Jp = 0.05 in the plate). 
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The point mobility of the coupled structure for this configuration is shown in 

Figure CA. The peaks in the plate impedance result in small troughs in the overall 

point mobility. The result from the analysis and that from the modal method agree 

well at low frequencies and their levels at high frequencies are similar on average. 

1~r-~~--------------~--~~-------------r==~~~~~ 
-- Wave method 

z 
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:::: -2 
~10 

~ 
, 

\ , 
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10-4L-~--'---'-____ ~ __ ~~~_~---'--'--____ ----~--~-~-~--'-=--' 

10
1 

10
2 

10
3 

Frequency (Hz) 

Figure CA. Point mobility of the coupled structure with the sliding condition (lJp = 0.05 in 

the plate, lJb = 0.05 in the beam, point force applied at x = 0). Maximum mode numbers of 

M = N = 26 are used in the modal method (see section 2.6.1). 

C.3 Power relationship 

The relationship between the input power and the power transferred to the plate and 

their ratio are shown in Figures C.5 and C.6 respectively. As explained for the 

pinned structure case, at the anti-resonance frequencies of the plate, such as 904, 

39.5, 91.3 and 165 Hz, most power is transferred to the plate. These frequencies 

again coincide with the peaks of the equivalent loss factor based on the travelling 

wavenumber kx shown in Figure C.2. 

274 



10° ~~~-r------~----~----~------.---------------~======~==~~ 
- Wave method 

, , , 
10-3 \ I 

" 

- - Modal method 

10-4L-~~~ ______________ ~ ____ ~ ____ ~ ______ ~ __ ~ __________ ~~~~ 

10' 102 10
3 

Frequency (Hz) 

Figure C.S. Comparison of input and transferred powers in the coupled structure for the 

sliding edge condition ('7 p = 0.05, '7b = 0.05, point force applied at x = 0). 
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Figure C.6. Ratio of the power transferred to plate to the total input power shown in Figure 

C.S. 
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APPENDIXD. 

WAVE MODEL OF A FRAME CONSISTING OF FOUR 

BEAMS 

D.I Equations of motion 

A rectangular frame structure consisting of four identical cross-section beams is 

considered, as shown in Figure D.l. This is solved using a wave approach. Each 

beam carries free waves with wavenumber f: = m; / Db 0)2 in harmonic motion at 

frequency OJ. An external force is applied at the comer of beams 1 and 4. Each 

beam is assumed infinitely stiff to torsion. Damping is introduced through a 

complex bending stiffness Db. 

~x 
z y 

Beam 1 

, I 

'" : Beam 3 __ ----.>. ---------------------------

Lx 

Figure D.I. The wave model consisting of four beams. 

The boundary conditions for the four-beam structure as in Figure D.l are: 

(i) Continuity equation; equal displacement at comers 

(ii) No rotation at the ends ofthe beams 

(iii) Force equilibrium at the comers 

The displacement of each beam can be given by an equation of the following form, 

shown for example for beam 1 
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(D.l) 

where the subscripts of the equation mean they belong to beam 1. Then, from the 

first boundary condition, at the comer of beam 1 and beam 2 

(D.2) 

The same boundary condition for beam 2 and beam 3 gives 

A
2
e -ikbLy + B

2
e -kbLy + C2eikbLy + D

2
i bLy 

- A3e -ikbL, - B
3
e-kbL, - C3eikbL, - D3ekbL, O. 

(D.3) 

For beam 3 and beam 4, 

(DA) 

For beam 1 and beam 4, 

,....,....,....,....,....,....,.... ,.... 

Aj +Bj +Cj +Dj-A4 -B4 -C4 -D4 =0. (D.5) 

The condition of no rotation IS applied to the ends of the beam, the relevant 

equation of which for beam 1 is 

(D.6) 

Thus, the two equations given by boundary condition (ii) for beam 1 are 

,.... .... ,.... ,.... 

-ikbAj - kbBj + ikbCj + kbDj = 0 (D.7) 

and 

(D.8) 

For beam 2, 
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(D.9) 

and 

(D.IO) 

For beam 3, 

(D.II) 

and 

(D.12) 

For beam 4, 

(D.13) 

and 

(D.14) 

The shear force acting on beam I is given by 

(D.15) 

where Db is the bending stiffness of the beam. As the force equilibrium holds at 

the comer where two beams join, the corresponding boundary equation can be 

found. For beam I and beam 2 the equation is 

(iP A e-ikbL, - k3 B e-kbL, _ ik3C ikbL, + P D i bL,) 
bIb I bIb I 

-(ik:Az -k:Bz -ik:Cz +k:Dz)=O. 
(D.16) 

For beams 2 and 3, it is 
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(ik;Ale-ikbLy -k;Ble-kbLy -ik;CleikbLy +k;D
2
i bLy ) 

+(iPA e-ikbL, -P B e-kbL, -iPC eikbL, +P D /,bL,) = 0 b3 b3 b3 b3 • 

For beams 3 and 4, 

(ik;A4e-ikbLy -k;B4e-kbLy -ik;C4/
kbLy +k;D4i bLy ) 

-(ik;A3 -k;B3 -ik;C3 +k;D3) = 0 

(D.I7) 

(D.I8) 

For beams 4 and I, the external force applied at the comer should be included in 

the equilibrium condition. Thus the corresponding equation is 

(D.I9) 

Then, equations (D.2) - (D.S), (D.7) - (D.I4) and (D.16) - (D.I9) can be written 

into a matrix form. 

F=Ku (D.20) 

where the force vector, F is 

F = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Po / Db J ' (D.21) 

the displacement vector is 

[ - - A4 B4 C
4 

n-4 JT u= ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

(D.22) 

and K is given by 
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The displacement of any beam of the coupled structure shown in Figure D.l can be 

found from 

(D.24) 

allowing Wi (x) to be found from equation (D.l). 

D.2 Numerical results 

As an example, the point mobility of the structure shown in Figure D.l is given in 

Figure D.2. The relevant dimensions and properties of the structure are the same as 

listed in Table 6.1 except that no plate is attached to the beams. The result is 

compared with that of FE and they are not distinguishable (maximum error of 

0.6%). As in section 6.2.4, the beam are represented by Euler-Bernoulli beam 

elements (400 elements), constrained to prevent rotation with sliding conditions at 

the comers. 

10°r---------~--~~----------~--~--~_r==~==~~ 
-- Wave method 
- - FEM 

10-1 

Z 
:[ 
g 

~ 
10-2 

Frequency (Hz) 

Figure D.2. Point mobility comparison between the wave model and the FE (excitation at 

x = 0 andy = 0). 
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The effect of the torsional stiffuess of the rectangular frame structure as in Figure 

D.l is identified here. In the FE model the torsional stiffuess can simply be realised 

by releasing the rotational Degree of Freedom (DOF). 

Consequently, the sliding boundary condition for the ends of the beam is no longer 

applied. The results are compared in Table D.l and Figure D.3. Table D.l shows 

the Modal Assurance Criterion value (MAC, [85]), which shows the spatial 

correlation between the mode shapes obtained with and without the rotational 

constraint. The table shows the modes below 100 Hz of the system without sliding 

conditions, which are compared with the rotationally constrained modes. A MAC 

value equal to unity means that the two modes considered are identical. By 

allowing the torsional motion of the beams, the natural frequencies of the framed 

structure occur at lower frequencies than when restrained. For example, it can be 

seen that the sliding constraint mode at 26.9 Hz is similar to a mode for the system 

without the sliding constraints occurring at 10.4 Hz. The unconstrained system has 

three rigid body modes, whereas with the sliding constraints there is only one*. 

Constraining the beam rotation results in the modes corresponding to 12.2 and 17.3 

Hz shown in Table D.l. These modes correspond to a half cosine motion on two 

opposite beams and rigid motion of the other two beams. Thus, they are rather 

closer to the rigid modes than other dynamic modes of the system without 

constraints. So, comparing the dynamic modes of the two systems, although the 

natural frequencies are significantly changed by the different boundary conditions, 

the mode shapes are not very different. 

• Here, translational rigid modes in x and y directions and a rotational rigid mode with respect to z 
direction are not included as the FE model is made for comparison with the wave model. 
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Table D.l. Modal Assurance Criterion between the mode shapes with sliding constraints 

and without sliding constraints (a zero corresponds to a MAC value of less than 1.0 x 10-3 
). 

Modes without sliding constraints (Hz) 

0 0 0 10.4 24.2 37.8 53.1 63.1 96.9 

0 0.61 0.32 0.07 0 0 0 0 0 0 

12.2 0.38 0.48 0.13 0 0 0 0 0 0 

17.3 0 0.19 0.80 0 0 0 0 0 0 
Modes with 

26.9 0 0 0 0.99 0 0 0 0 0 
sliding 

53.3 0 0 0 0 0.96 0 0 0.01 0 
constraints 

64.8 0 0 0 0 0 0.97 0 0 0 
(Hz) 

95.0 0 0 0 0 0 0 0.96 0 0 

113 0 0 0 0 0.01 0 0 0.95 0 

142 0 0 0 0 0 0 0 0 0.95 

The point mobilities are compared in Figure D.3 where the point force is applied at 

the joint of beams 1 and 4 as in Figure D.1. It can be seen that allowing the 

torsional motion of the beam increases the response level as the framed structure 

becomes more flexible. Especially, at high frequencies, the sliding boundary 

condition at the excitation point results in a reduction by a factor of 2 in the 

average level of the point mobility of the framed structure compared with the less 

constrained case. At very low frequency the difference is larger due to the effect of 

rotation of the frame on the effective mass. 
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Frequency (Hz) 

Figure D.3. Point mobility comparison to identify the effect of the rotational constraints on 

the beam frame structure using FE (excitation at x = 0 and y = 0). 

It is expected that such level differences reduce if the excitation point is moved 

away from the junction, as the constraint effect reduces. An example is shown in 

Figure DA where the excitation point is located at the middle of beam 1 (x = 0.5 

m). One can see that the level difference is reduced and, in fact, the general level 

seems similar except at very low frequencies. However, because the excitation 

point is located at the mid-point of beam 1, some resonance modes are not 

identified. Thus, in Figure DA only 3 modes are found below 100 Hz for the case 

without sliding conditions (6 modes found in Figure D:3). Consequently, one may 

need to choose an appropriate excitation point for the framed structure, so that the 

two aspects, i.e. the level difference and mode identification, should be considered. 

In the experimental study in this thesis, an excitation point of 0.36 m from the 

junction is selected. 
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- With sliding constraints 
- - Without slidin constraints 

Frequency (Hz) 

Figure D.4. Point mobility comparison to identify the effect of the rotational constraints on 

the beam frame structure using FE (excitation at x = 0.50 and y = 0). 
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APPENDIX E. WAVENUMBER CONVERGENCE 

In the wavenumber estimation from measured data usmg the spatial Fourier 

transform of equation (7.6), a larger scanning area gives a better wavenumber 

resolution. However, as shown in Figure 7.10 the practical area is limited and thus 

the wavenumber resolution is restricted by this. Although, in the conventional 

Fourier transform theory the resolution is defined by 27r/ La with measuring length 

La' in this appendix an adoptable wavenumber lower limit is investigated. 

Various techniques can be used for this. Here the configuration presented in section 

7.5.2 is used. A single line of length La = 0.64 m consisting of 33 points is 

considered, which is one ofthe 33 lines forming the scanning area as in Figure 7.10. 

For convenience this is called beam A and is shown in Figure E.l. Then a 

sinusoidal motion of the beam A is considered, from which the corresponding 

wavenumber is estimated. 

o 0.1 0.2 0.3 
x(m) 

0.4 0.5 0.6 

Figure E.l. Beam A consisting of 33 nodes. Length La = 0.64 m and interval Ax = 0.02 m. 

The representative sinusoidal motion IS shown in Figure E.2 (a) where the 

wavelength is 0.64 m (principal wavelength A = 0.64 m) and thus a factor of La / A 
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is equal to unity (La I A, = 1.0). This is exactly one cycle of a sine function. To 

evaluate convergence of the wavenumber obtained by equation (7.6) the 

wavelength for beam A is varied between half and twice the principal wavelength, 

which seems a reasonable range to investigate the convergence. Correspondingly 

the factor of Lal A, is changed from 2 to 0.5. The convergence is shown in terms of 

La I A, . Figure E.2 (b) shows the sinusoidal motion having a factor of La I A, = 0.64. 
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Figure E.2. Motion of the beam A described as a sme function: (a) La/A 1, (b) 

La/A = 0.64. 
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To consider various motions, phase changes of 0, Jrl4 and Jr/2 in the sinusoidal 

motion are also considered. Figure E.3 shows an example of the motion that has a 

single cycle with a phase change of Jr 14 . 

0.8 

0.6 

0.4 

0.2 

* 0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 
0 0.1 0.2 0.3 

x(m) 

0.5 0.6 

Figure E.3. Motion of the beam A. La/ -1, = 1, phase change of Jd4. 

Wavenumber estimates are found using equation (7.6) and various displacement 

motions mentioned above. Lal A is varied in steps of 0.02 between 0.5 and 2.0. 

Calculation examples at factors of La I A being equal to 0.64 and 1.0 with the phase 

change of 0 are shown in Figure EA where the correlation function of equation 

(7.6) was used (thus normalised value). They give kestimate = 8.2 rad/m for the 

motion of Lal A = 1.0 and kestimate = 5.7 rad/m for the motion of La! A = 0.64. The 

corresponding exact wavenumbers are kexact = 9.8 rad/m and kexact = 6.3 rad/m 

respectively. 
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Figure EA. Dominant wavenumber of the beam A: (a) La/A = 1 and phase change ofO, 

(b) La/A = 0.64 and phase change ofO. The results are shown based on equation (7.6). 

The estimates and the exact wavenumbers are compared in terms of La / A . Firstly, 

the comparison is presented in Figure E.5 where the phase change of 0 is 

considered. Even when the motion consists of a full sine function (A = 0.64 m, 

La / A = 1) it can be seen that the estimated wavenumber shows an error of 16 % as 

the calculation uses only limited discrete data. However, the estimates converge 

with increasing La / A as expected. The minimum number of La / A to produce a 

reasonable estimate of the exact wavenumber occurs at La/ A = 0.63 (error of 16%). 

In such a case the corresponding wavenumber lower limit can be found as 

k = 27r / A ~ 6.2 rad/m from La / A = 0.63 (equivalent to kLa = 27r x 0.63 ). 
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Figure E.5. Comparison of wavenumber estimates and the exact wavenumbers. Motion of 

the phase change ofO. 

The similar results where the phase change of 1l/4 is considered are shown III 

Figure E.6. The errors seem generally smaller than the previous results. A 

maximum error of 12% is found for the range of La / A considered. 
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Figure E.6. Comparison of wavenumber estimates and the exact wavenumbers. Motion of 

the phase change of Jd4. 

Next, the motion having the phase change of Jr/2 is considered and the results are 

shown in Figure E. 7. The minimum number usable value of La / A is found at 0.53 

(error of 13%). 
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Figure E. 7. Comparison of wavenumber estimates and the exact wavenumbers. Motion of 

the phase change of Jd2. 

Summarising the results of the different relative phases, it can be said that the 

motion having La / A ~ 0.63, thus 63% of the principal wavenumber (21r / La X 0.63 ), 

can be identified to within 16%. The corresponding wavenumber low limit for the 

use of equation (7.6) is about 6.2 rad/m. Thus for the present situation, the 

estimated wavenumber using equation (7.6) may be inaccurate below this 

wavenumber lower limit. 
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