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1. Introduction

The topology of simply-connected four-manifolds is a subject of widespread and en-
during interest. They have been classified up to homotopy type by Milnor [19] and up to 
homeomorphism type by Freedman [13]. Their classification up to diffeomorphism type 
is one of the great unsolved questions in modern mathematics, with significant advances 
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achieved by Donaldson [9] and Seiberg and Witten [28]. They have also been studied in 
view of their connections to other areas of mathematics, such as knot theory [12] and 
symplectic geometry [23].

The homotopy theory of simply-connected four-manifolds has continued to attract 
considerable attention since Milnor’s classification. For example, given simply-connected 
four-manifolds M and N , Cochran and Habegger [6] calculated the group of self-
homotopy equivalences of M ; Zhao, Gao and Su [29] calculated the homotopy classes of 
maps [M, N ]; and Baues [4] has written a monograph entirely devoted to investigating 
the homotopy theory of M , N and the maps between them.

In another direction, Wall [27] initiated the study of (n −1)-connected 2n-dimensional 
manifolds as a generalization of simply-connected four-manifolds. Such manifolds have 
received considerable recent attention as certain families of them arise as intersections 
of quadrics in geometric topology and moment-angle manifolds in toric topology [5,14]. 
Another variation is connected sums of products of two spheres, which generalizes the 
sub-collection of simply-connected four-manifolds that are connected sums of S2 × S2. 
Such connected sums appear in the classification by McGavran [18] of n-torus actions 
on closed, compact, simply-connected (n + 2)-manifolds, and they also appear as inter-
sections of quadrics and moment-angle manifolds [5,14].

In this paper we study simply-connected four-manifolds and their generalizations from 
a new perspective. Let M be a simply-connected manifold. Let ΩM be the space of 
continuous basepoint preserving maps from the circle to M , called the (based) loop space
of M . When M is a simply-connected four-manifold, an (n − 1)-connected 2n-manifold, 
or a connected sum of products of two spheres, we aim to give an explicit, integral 
homotopy decomposition of ΩM as a product of simpler factors.

Decomposing the loops on large classes of manifolds has long been thought to be 
too hard to do. However, the methods used in the paper are relatively accessible and 
flexible. Essentially, the starting input is information about the integral cohomology 
of M derived from Poincaré duality. This is then manipulated by creating appropriate 
homotopy fibrations involving M which allow one to apply decomposition methods from 
homotopy theory, in the spirt of [8]. It should be the case that the same methods can be 
used to investigate the loops on other classes of manifolds.

Such decompositions are useful and to illustrate this, we give three examples. First, 
in toric topology one associates to a simplicial complex K a space called a moment-angle 
complex. If K is a simple polytope then this moment-angle complex is a manifold. For 
example, if K is an n-gon then the moment-angle complex is a connected sum of prod-
ucts of two spheres [5,14]. The combinatorics of the polytope and the geometry of the 
manifold are deeply connected, but the relationship is not well understood. Decomposing 
the loops on such connected sums and relating the factors to the combinatorics of the 
polytope should be insightful. Second, string topology is concerned with properties of 
the free loop space ΛM of M : the space of continuous unbased maps from the circle to 
M . There is a fibration ΩM −→ ΛM

e−→ M where e evaluates a map at the basepoint, 
and e has a section. The section implies that πm(ΛM) ∼= πm(M) ⊕ πm(ΩM) for m ≥ 2, 
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so the homotopy groups of ΛM can be determined to the same extent as those of the 
factors of ΩM . This has implications for counting the geodesics on M (see [26]), and 
the decomposition of ΩM may help clarify the homology and cohomology of ΛM . The 
third application is to configuration spaces, which will be discussed in more detail in Sec-
tion 5. Let F (M, k) be the configuration space of ordered k-tuples of distinct points in 
the product space Mk. In certain cases, for example if M is a product of two non-trivial 
manifolds, Cohen and Gitler [7] showed that ΩM is a factor of ΩF (M, k). A decomposi-
tion for ΩM further refines this, and allows for the calculation of a significant subgroup 
of the homotopy groups of the configuration space.

To present our results, we start with a classification theorem. Assume that homology 
is taken with integral coefficients and use the symbol “�” to denote a homotopy equiva-
lence. By a connected sum of sphere products, we mean a connected sum of products of 
two spheres.

Theorem 1.1. The following hold:

(a) if M and N are simply-connected four-manifolds, then ΩM � ΩN if and only if 
H2(M) ∼= H2(N);

(b) if M and N are (n − 1)-connected 2n-dimensional manifolds and n /∈ {2, 4, 8}, then 
ΩM � ΩN if and only if Hn(M) ∼= Hn(N);

(c) if M and N are n-dimensional connected sums of sphere products, then ΩM � ΩN

if and only if Hm(M) ∼= Hm(N) for each m < n.

Observe that in each case, the homotopy type of ΩM depends only on the cohomology 
of M , regarded as a Z-module, in degrees strictly less than the dimension of M . This 
contrasts with the situation before looping. For example, Milnor [19] proved that two 
simply-connected four-manifolds M and N are homotopy equivalent if and only if M
and N have isomorphic cohomology rings. Theorem 1.1 states that after looping the 
ring structure in cohomology plays no role, only the rank in degree 2 cohomology does. 
So looping considerably simplifies the homotopy types. This is interesting because ΩM

has the same homotopy groups as M , just shifted down one dimension. We therefore 
immediately obtain the following corollary.

Corollary 1.2. The following hold:

(a) if M and N are simply-connected four-manifolds, then π∗(M) ∼= π∗(N) if and only 
if H2(M) ∼= H2(N);

(b) if M and N are (n − 1)-connected 2n-dimensional manifolds and n /∈ {2, 4, 8}, then 
π∗(M) ∼= π∗(N) if and only if Hn(M) ∼= Hn(N);

(c) if M and N are n-dimensional connected sums of sphere products, then π∗(M) ∼=
π∗(N) if and only if Hm(M) ∼= Hm(N) for each m < n. �
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Part (a) of Corollary 1.2 reproves a theorem of Duan and Liang [10] via more homo-
topy theoretic methods, while parts (b) and (c) generalize it to wider classes of manifolds. 
Another proof of part (a), again using more geometric techniques, is given in a recent 
preprint by Basu and Basu [3]. In fact, they show that the result holds for stable ho-
motopy groups in place of homotopy groups. It would be interesting to see whether this 
also holds for the generalizations presented here.

Theorem 1.1 is proved by decomposing ΩM into a product of spaces, up to homotopy. 
Explicitly, we have the following.

Theorem 1.3. Let M be a simply-connected four-manifold and suppose that
dimH2(M) = k. If k = 0 then M � S4, if k = 1 then ΩM � S1 × ΩS5, and if 
k ≥ 2 then there is a homotopy equivalence

ΩM � S1 ×Ω
(
S2 × S3)×Ω

(
J ∨

(
J ∧Ω

(
S2 × S3)))

where J =
∨k−1

i=1 (S2 ∨ S3) if k > 2 and J = ∗ if k = 2.

Theorem 1.4. Let M be an (n − 1)-connected 2n-dimensional manifold and suppose that 
dimHn(M) = k. If k ≥ 2 then there is a homotopy equivalence

ΩM � Ω
(
Sn × Sn

)
×Ω

(
J ∨

(
J ∧Ω

(
Sn × Sn

)))
where J =

∨k−2
i=1 Sn.

Theorem 1.5. Let M and N be closed oriented (m − 1)-connected n-dimensional man-
ifolds, with 1 < m ≤ n − m. Suppose that H∗(M) is torsion-free and there is a ring 
isomorphism H∗(N) ∼= H∗(Sm × Sn−m). Let M − ∗ and N − ∗ be the punctured mani-
folds with a single point ∗ removed. Then the following hold:

(i) there is a homotopy equivalence

Ω(M#N) � Ω
(
Sm × Sn−m

)
×Ω

(
(M − ∗) ∨

(
(M − ∗) ∧Ω

(
Sm × Sn−m

)))
;

(ii) the looped inclusion Ω((M − ∗) ∨ N̄) � Ω((M − ∗) ∨ Sm ∨ Sn−m) Ωi−→ ΩM has a 
right homotopy inverse.

Consequently, the homotopy type of Ω(M#N) is independent of the homotopy type of N , 
and depends only on the homotopy type of M − ∗.

Theorems 1.4 and 1.5 are consequences of much more general results presented in The-
orem 2.6 and Proposition 3.2, both of which are stated in the context of CW -complexes 
and Poincaré duality spaces.
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Observe that in each of these theorems, the decompositions can be further refined. 
In each case, J is a wedge of simply-connected spheres, so J � ΣJ ′ where J ′ is a 
wedge of spheres. Therefore, using the facts that Ω(X × Y ) � ΩX ×ΩY , Σ(X × Y ) �
ΣX ∨ΣY ∨ (ΣX ∧Y ) and by [16], ΣΩSs �

∨∞
i=1 S

(s−1)i+1, we see that J ∧Ω(Ss ×St)
is homotopy equivalent to a wedge of spheres. Thus the factor Ω(J ∨ (J ∧Ω(Ss × St)))
is homotopy equivalent to the loops on a large wedge of spheres, and the Hilton–Milnor 
Theorem can be applied to decompose this as a product of loops on spheres of varying 
dimensions. In particular, in each case, ΩM decomposes as a product of loops on spheres, 
and so the homotopy groups of M can be determined to the same extent as the homotopy 
groups of spheres. A similar refinement is possible in Theorem 1.5 when M − ∗ has the 
homotopy type of a suspension.

From this point of view, Theorems 1.3, 1.4 and 1.5 should be regarded as analogues of 
the Hilton–Milnor Theorem. As such, these theorems are very practical and should have 
numerous applications. We have already mentioned how they can be used to determine 
the homotopy groups of M . As another application described in detail in Section 4, we 
consider principle G-bundles P −→ M , where M is a simply-connected four-manifold 
and G is a simply-connected, simple compact Lie group. It is well known that there are 
[M, BG] ∼= Z distinct equivalence classes of such principle G-bundles. However, after 
looping the homotopy types of ΩP all coincide as ΩM ×ΩG.

To prove Theorems 1.3, 1.4 and 1.5, we consider a more general class of torsion-free 
CW -complexes which resemble Poincaré duality spaces. For such a space P of connec-
tivity m −1 and dimension n, we assume that the (n −1)-skeleton P̄ has Sm∨Sn−m as a 
wedge summand, and that there is a space Q and a map P

q−→ Q such that there is a ring 
isomorphism H∗(Q) ∼= H∗(Sm × Sn−m) and the composite Sm ∨ Sn−m −→ P −→ Q is 
onto in cohomology. Taking F to be the homotopy fibre of q, we analyze the homology 
of F via the Serre spectral sequence, and then use this to determine its homotopy type. 
This is then fed into a decomposition of ΩP as ΩQ ×F . The decompositions in the three 
theorems above then follow as special cases of this more general decomposition. All of 
this goes through provided there are no cup product squares in cohomology, which is the 
reason for the excluded cases {2, 4, 8} in Theorem 1.4. In the case of simply-connected 
four-manifolds, these difficulties can be overcome through a novel modification. If the 
simply-connected four-manifold M is mapped into CP∞ by representing a cohomology 
class in degree 2, then the homotopy fibre is a simply-connected 5-dimensional Poincaré 
duality complex Z which fits into the general class of torsion-free spaces P above. The 
resulting decomposition of ΩZ is then used to determine the homotopy type of ΩM .

2. A general homotopy decomposition

The loop space functor and localization functors both have effect of simplifying ho-
motopy types while retaining most of the original homotopy theoretic information. At 
one extreme a conjecture of Anick [2] (for which there is some evidence [22,1,25]) asserts 
that the loop space of any simply connected finite CW -complex localized away from a 
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predetermined finite set of primes decomposes as a weak product of a certain countable 
list of indecomposable spaces, while at the other end of the spectrum the loop space 
homotopy type of a highly connected CW -complex is uniquely determined. This is not 
difficult to see, for if X and Y and (2n −2)-dimensional (n −1)-connected, then they are 
the 2n-skeletons of ΣΩX and ΣΩY respectively, so a homotopy equivalence ΩX � ΩY

would allow one to construct a composite X incl.−−−→ ΣΩX
�−→ ΣΩY eval.−−−→ Y that in-

duces an isomorphism on homology, and is therefore a homotopy equivalence. Recently, 
a much stronger result of Grbić and Wu [15] shows that if X and Y are simply-connected 
finite dimensional co-H spaces then X � Y if and only if ΩX � ΩY .

This leads to a natural question. Starting with a finite CW -complex P̄ , and attaching 
a cell to P̄ to form a space P , which homotopy classes of attaching maps yield the same 
loop space homotopy type for P? By the above remarks, distinct homotopy classes of 
co-H-maps tend to yield distinct loop space homotopy types. Our goal is to provide suf-
ficient cohomological criteria given a few conditions on P̄ . More precisely, we give a loop 
space decomposition for a certain class of spaces, which includes certain connected-sums 
and certain Poincaré duality spaces (both examples to be discussed in more detail in 
the next section). Looping will have the effect of simplifying homotopy types, and the 
homotopy types of the loop spaces will be shown to depend only on simple data, often 
obtained from the homology of the original space in degrees strictly less than the dimen-
sion of the space. We begin by defining the class of spaces we have in mind. Throughout, 
homology is taken with integer coefficients.

Definition 2.1. Let m and n be integers such that 1 < m ≤ n −m. Suppose P is a finite 
n-dimensional (m −1)-connected CW -complex with torsion-free integral homology given 
by

H∗(P ) ∼= Z{a1, . . . , a�, z}

where

1 < m = |a1| ≤ |a2| ≤ · · · ≤ |a�| = n−m < |z| = n.

Let P̄ be the (n − 1)-skeleton of P and let i : P̄ −→ P be the skeletal inclusion. Notice 
that the bottom cell of P̄ occurs in dimension m while the top cell occurs in dimension 
n −m.

Define P as the collection of all such spaces P which also satisfy the following two 
properties:

(1) there is a homotopy equivalence P̄ � J ∨ (Sm ∨ Sn−m) for some space J ;
(2) if Q is the homotopy cofibre of the composite J ↪→ P̄

i−→ P , then there is a ring 
isomorphism H∗(Q) ∼= H∗(Sm × Sn−m).

To analyze ΩP for P ∈ P, some observations and notation are required.



P. Beben, S. Theriault / Advances in Mathematics 262 (2014) 213–238 219
Observations:

(1) If X is a space and H∗(X) is torsion-free, an element x ∈ H∗(X) has a dual class 
in H∗(X) which we label as x∗. In our case, since H∗(P ) is torsion-free, whenever 
|ai| + |aj | = n, the cup product a∗i a∗j is some multiple of z∗; define the integer cij by 
a∗i a

∗
j = cijz

∗.
(2) Observe that the homological description of P implies that there is a homotopy 

cofibration

Sn−1 α−→ P̄
i−→ P

where α attaches the top cell to P . A basis for H∗(P̄ ) is given by the elements 
{a1, . . . , a�}.

(3) The homotopy decomposition of P̄ lets us define composites

s : J ↪→ P̄
i−→ P

s′ : Sm ∨ Sn−m ↪→ P̄
i−→ P .

Let ιt ∈ Ht(St) represent a generator. Without loss of generality we may assume that 
the basis for H∗(P ) has been chosen so that (s′)∗(ιm) = a1 and (s′)∗(ιn−m) = a�. 
Then the decomposition P̄ � J ∨ (Sm ∨ Sn−m) implies that s∗ induces an injection 
onto {a2, . . . , a�−1}.

(4) The definition of Q also lets us define a map q by the homotopy cofibration

J
s−→ P

q−→ Q.

As this cofibration induces a long exact sequence in homology, the fact that 
P̄ � J ∨ (Sm ∨ Sn−m) is the (n − 1)-skeleton of P implies that the composite 

Sm ∨ Sn−m s′−→ P
q−→ Q induces an injection in homology.

(5) The ring isomorphism H∗(Q) ∼= H∗(Sm × Sn−m) implies that

H∗(Q) ∼= Z{x, y, e},

where |x| = m, |y| = n − m, |e| = n and the generators can be chosen so that 
(x∗)2 = (y∗)2 = 0 and y∗x∗ = e∗. Further, since (q ◦ s′)∗ is an injection, we have 
q∗(a1) = x, q∗(a2) = y and q∗(z) = e; and as q◦s is null homotopic we have q∗(ai) = 0
for 2 ≤ i ≤ 	 − 1.

(6) The description of q∗ on the generators of H∗(P ) implies that c�1 = 1, c1� =
(−1)m(n−m), and c11 = c�� = 0.

We are aiming for the homotopy decomposition of ΩP stated in Theorem 2.6. To get 
started, we begin with an initial decomposition. Define the space F and the maps f and 
δ by the homotopy fibration sequence
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ΩQ
δ−→ F

f−→ P
q−→ Q.

We first calculate the homology of ΩQ and relate it to the homology of Ω(Sm ∨ Sn−m). 
By the Bott–Samelson theorem, there is an algebra isomorphism

H∗
(
Ω
(
Sm ∨ Sn−m

)) ∼= T (u, v)

where T (u, v) is the free tensor algebra on generators u and v of degrees m − 1 and 
n −m − 1 respectively. Let Z[u, v] be the polynomial algebra generated by u and v.

Lemma 2.2. There is a coalgebra isomorphism H∗(ΩQ) ∼= Z[u, v] which can be chosen 

so that the map Ω(Sm ∨ Sn−m) Ω(q◦s′)−−−−−−→ ΩQ induces in homology the abelianization 
T (u, v) −→ Z[u, v].

Proof. First, consider the homology Serre spectral sequence for the path-loop homotopy 
fibration Ω(Sm ∨ Sn−m) −→ ∗ −→ Sm ∨ Sn−m. Let ιk ∈ Hk(Sk) represent a generator. 
Then the elements ιm, ιn−m ∈ H∗(Sm∨Sn−m) transgress to the elements u, v ∈ T (u, v), 
and the element [u, v] ∈ T (u, v) arises in the spectral sequence as the element u ⊗ ιn−m+
(−1)|u||ιn−m|ιm ⊗ v.

Next, consider the homology Serre spectral sequence for the path-loop homotopy 
fibration ΩQ −→ ∗ −→ Q. By Observation (5), H∗(Q) ∼= Z{x, y, e} where |x| = m, 
|y| = n − m, |e| = n and the cohomology duals satisfy x∗y∗ = e∗. Thus in homology, 
the reduced diagonal Δ(e) equals x ⊗ y + y ⊗ x. Thus in the Serre spectral sequence for 
the path-loop homotopy fibration, we have x and y transgressing to elements a and b

respectively, and dn(e) = a ⊗y+(−1)|a||y|x ⊗b. It is now a straightforward calculation to 
show that there is an isomorphism of vector spaces H∗(ΩQ) ∼= Z[a, b] where |a| = m − 1
and |b| = n −m − 1.

Now consider the homotopy commutative diagram of path-loop homotopy fibrations

Ω(Sm ∨ Sn−m)

Ω(q◦s′)

∗ Sm ∨ Sn−m

q◦s′

ΩQ ∗ Q.

This induces a morphism of Serre spectral sequences between the two path-loop homo-
topy fibrations. By Observation (5), the map (q ◦ s′)∗ is an isomorphism in degrees < n. 
Therefore, comparing Serre spectral sequences, (Ω(q ◦ s′))∗ is an isomorphism in de-
grees < n − 1. In particular, (Ω(q ◦ s′))∗ is an isomorphism in degrees m − 1 and 
n − m − 1. Thus, up to sign, (Ω(q ◦ s′))∗ sends u, v ∈ T (u, v) to a, b ∈ Z[u, v]. Com-
paring spectral sequences, we also have the element u ⊗ ιn−m + (−1)|u||ιn−m|ιm ⊗ v

sent to a ⊗ y + (−1)|a||y|x ⊗ b, which is the image of the differential dn(e). That is, 
[u, v] ∈ T (u, v) is sent to 0 ∈ Z[a, b]. Further, it is straightforward to see that once the 
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dn differential is taken into account and we move to En+1, that the En+1 page for the 
fibration Ω(Sm ∨ Sn−m) −→ ∗ −→ Sm ∨ Sn−m maps onto the En+1 page for the fibra-
tion ΩQ −→ ∗ −→ Q. As there are no more non-trivial differentials, the same is true of 
the E∞ pages, and so (Ω(q ◦ s′))∗ is onto.

Finally, since (Ω(q ◦ s′))∗ is an algebra map and (Ω(q ◦ s′))∗([u, v]) = 0, there is a 
factorization

T (u, v)
(Ω(q◦s′))∗

π

H∗(ΩQ) ∼= Z[a, b]

Z[u, v]
g

for some map g, where π is the abelianization map. Since (Ω(q ◦ s′))∗ is onto and both 
Z[u, v] and Z[a, b] have the same Poincaré series, g must be an isomorphism. The state-
ment of the lemma now follows. �

By the Hilton–Milnor Theorem, the inclusion of the wedge into the product 
Sm ∨ Sn−m j−→ Sn × Sn−m has a right homotopy inverse after looping. That is, there 
is a map

φ : ΩSn ×ΩSn−m −→ Ω
(
Sm ∨ Sn−m

)
which is a right homotopy inverse of Ωj.

Lemma 2.3. The composite ΩSm ×ΩSn−m φ−→ Ω(Sm ∨ Sn−m) Ωs′−−−→ ΩP
Ωq−−−→ ΩQ is a 

homotopy equivalence. Consequently, in the homotopy fibration sequence ΩQ δ−→ F
f−→

P
q−→ Q, the map δ is null homotopic, implying that there are homotopy equivalences

ΩP � ΩQ×ΩF � ΩSm ×ΩSn−m ×ΩF.

Proof. The fact that φ is a right homotopy inverse of Ωi implies that φ∗ is a coalgebra 
map which maps onto the sub-coalgebra Z[u, v] of T (u, v) ∼= H∗(Ω(Sm ∨ Sn−m)). By 
Lemma 2.2, (Ω(q ◦ s′))∗ maps this sub-coalgebra isomorphically onto H∗(Q). Thus Ωq ◦
Ωs′ ◦ φ induces an isomorphism in homology and so is a homotopy equivalence.

For the consequences, consider the homotopy fibration sequence ΩF −→ ΩP
Ωq−−→

ΩQ δ−→ F . We have just shown that φ ◦Ωs′ is a right homotopy inverse for Ωq. Therefore, 
the map δ is null homotopic, and this immediately implies that there is a homotopy 
equivalence ΩP � ΩQ ×ΩF . �

Next, we wish to give an explicit homotopy decomposition of the space ΩF . The first 
step is to calculate its homology. By Observation (4), the composite J s−→ P

q−→ Q is 



222 P. Beben, S. Theriault / Advances in Mathematics 262 (2014) 213–238
a homotopy cofibration, so it is null homotopic. Therefore, s lifts through F
f−→ P to a 

map

s̄: J −→ F .

By Observation (3), s∗ induces an injection onto {a2, . . . , a�−1}. So its lift s̄ has the 
property that (s̄)∗ is an injection, and we will also label a basis for the image of (s̄)∗ by 
{a2, . . . , a�−1}.

As the homotopy fibration

ΩQ
δ−→ F

f−→ P (1)

is principal, there exists a left action

θ : ΩQ× F −→ F

such that the following diagram commutes up to homotopy

ΩQ×ΩQ
1×δ

μ

ΩQ× F

θ

ΩQ
δ

F

(2)

where 1 is the identity map and μ is the standard loop space multiplication.

Proposition 2.4. There is an isomorphism of left H∗(ΩQ)-modules

H∗(F ) ∼= Z{a2, . . . , a�−1} ⊗H∗(ΩQ),

where Z{a2, . . . , a�−1} is the image of s̄∗ and the left action of H∗(ΩQ) given by θ∗.

Proof. By a result of Moore [21], the homology Serre spectral sequence E for the 

principal homotopy fibration sequence ΩQ
δ−→ F

f−→ P is a spectral sequence of left 
H∗(ΩQ)-modules, with

E2
∗,∗

∼= H∗(P ) ⊗H∗(ΩQ). (3)

Here, the left action is induced by θ∗ and the differentials respect the left action of 
H∗(ΩQ). That is, up to sign, dn(f ⊗ gh) = (1 ⊗ g)dn(f ⊗ h) whenever the differential 
dn is defined. We now proceed to calculate the spectral sequence. In doing so, it will be 
helpful to rewrite (3) as

E2
∗,∗

∼= Z{1, a1, . . . , a�, z} ⊗H∗(ΩQ). (4)
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Initial information on the differentials. Consider the composite Sm ∨ Sn−m s′−→ P
q−→ Q. 

By Observation (4), (q ◦ s′)∗ is an injection in homology. The composite induces a ho-
motopy fibration diagram

ΩQ Z Sm ∨ Sn−m
q◦s′

s′

Q

ΩQ
δ

F
f

P
q

Q

which defines the space Z. Since (q ◦ s′)∗ is an injection in homology and there is a coal-
gebra isomorphism H∗(Q) ∼= H∗(Sm × Sn−m), in the homology Serre spectral sequence 
for the fibration ΩQ −→ Z −→ Sm ∨ Sn−m the generators ιm, ιn−m ∈ H∗(Sm ∨ Sn−m)
transgress to the elements u, v ∈ H∗(ΩQ) respectively, where u, v are as in Lemma 2.2. 
Now consider the homology Serre spectral sequence for the fibration ΩQ

δ−→ F
f−→ P . 

By Observation (3), we may assume that (s′)∗(ιm) = a1 and (s′)∗(ιn−m) = al, 
so a comparison of spectral sequences implies that the elements a1, al transgress to 
u, v ∈ H∗(ΩQ). That is, in terms of E2

∗,∗, we have

dm(a1 ⊗ 1) = 1 ⊗ u, dn−m(a� ⊗ 1) = 1 ⊗ v.

Further, by Observation (3), the map J s−→ P induces an injection in homology onto 
{a2, . . . , a�−1}, and it was observed before the statement of the proposition that the 
map s lifts through f to F . Therefore the elements {a2, . . . , a�−1} survive the spectral 
sequence. Consequently,

dt(ai) = 0 for all t ≥ 2 and 2 ≤ i ≤ 	− 1. (5)

Case 1 : m < n − m. For degree reasons, the differentials d2, . . . , dm−1 are all zero on 
the elements a1, . . . , a�, so the left action of H∗(ΩQ) implies that these differentials are 
identially zero. Therefore

E2
∗,∗

∼= Em
∗,∗.

For dm we have dm(a1 ⊗ 1) = 1 ⊗u. The left action of θ∗ implies that for any element 
g ∈ H∗(ΩQ), we have (up to sign),

dm(a1 ⊗ g) = (1 ⊗ g)dm(a1 ⊗ 1) = (1 ⊗ g)(1 ⊗ u) = 1 ⊗ gu.

By (5), dm(ai) = 0 for 2 ≤ i ≤ 	. So the left action of θ∗ implies that for dm(ai ⊗ g) = 0
for any 2 ≤ i ≤ 	 and any g ∈ H∗(ΩQ). Next, consider the element z ⊗ 1. Dualizing 
to the cohomology spectral sequence associated with E, we have for each i such that 
|ai| = n −m,
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dm
(
a∗i ⊗ u∗) =

(
dm

(
a∗i ⊗ 1

))(
1 ⊗ u∗) + (−1)|ai|(a∗i ⊗ 1

)
dm

(
1 ⊗ u∗)

= (−1)|ai|(a∗i ⊗ 1
)(
a∗1 ⊗ 1

)
= (−1)|ai|ci1

(
z∗ ⊗ 1

)
.

This implies that in the homology Serre spectral sequence E we have

dm(z ⊗ 1) =
∑

|ai|=n−m

(−1)|ai|ci1(ai ⊗ u).

The left action of θ∗ therefore implies that

dm(z ⊗ g) =
∑

|ai|=n−m

(−1)|ai|ci1(ai ⊗ gu)

for each g ∈ H∗(ΩQ). Therefore, as c�1 = 1 by Observation (6), c�1(a�⊗gu) = (a�⊗gu) is 
identified in Em+1

n−m,∗ with a linear combination of elements ai⊗gu for |ai| = n −m. Note 
that a1 is excluded here since |a1| = m and in this case we have assumed that m < n −m. 
Collectively, we have determined the differential dm, and obtain an isomorphism of left 
H∗(ΩQ)-modules

Em+1
∗,∗

∼= Z{a2, . . . , a�} ⊗H∗(ΩQ).

Continuing, by (5), dm+1, . . . , dn−m−1 are all identically zero on the elements 
a2, . . . , a�−1 and for degree reasons, dm+1, . . . , dn−m−1 are all identically zero on a�. So 
the left action of θ∗ implies that these differentials are identically zero on all elements. 
Therefore there is an isomorphism

Em+1
∗,∗

∼= En−m
∗,∗ .

For dn−m, by (5), dn−m(ai) = 0 for 2 ≤ i ≤ 	 − 1, so the left action of θ∗ implies 
that dn−m(ai ⊗ g) = 0 for any 2 ≤ i ≤ 	 − 1 and for any g ∈ H∗(ΩQ). From the initial 
calculation of differentials, we obtained dn−m(a� ⊗ 1) = 1 ⊗ v. The left action of θ∗
therefore implies that for any element g ∈ H∗(ΩQ) we have (up to sign),

dn−m(a� ⊗ g) = (1 ⊗ g)dn−m(a� ⊗ 1) = (1 ⊗ g)(1 ⊗ v) = 1 ⊗ gv.

Thus we have determined the differential dn−m, and obtain an isomorphism of left 
H∗(ΩQ)-modules

En−m+1
∗,∗

∼= Z{a2, . . . , a�−1} ⊗H∗(ΩQ).

Finally, by (5), the differentials dt for t > n −m are all identically zero on a2, . . . , a�−1, 
so the left acton of θ∗ implies that these differentials are identically zero on all elements.
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Hence

E∞
∗,∗

∼= En−m+1
∗,∗ .

Since there is no torsion in E∞
∗,∗, there is no extension problem, and we have

H∗(F ) ∼=
⊕

i+j=∗
E∞

i,j
∼= Z{a2, . . . , a�−1} ⊗H∗(ΩQ). (6)

To see that this is an isomorphism of left H∗(ΩQ)-modules, recall that the left action 
H∗(ΩQ) ⊗ E∞

i,j −→ E∞
i,j+∗ coincides with the left action of associated graded objects

H∗(ΩQ) ⊗ Fi,i+j

Fi−1,i+j
−→ Fi,i+j+∗

Fi−1,i+j+∗
∼= E∞

i,j+∗

induced by the action H∗(ΩQ) ⊗Hi+j(F ) μ∗−→ Hi+j+∗(F ), where Fi,j = FiHj(F ) ⊆
Hj(F ) is the increasing filtration associated with our spectral sequence. Observe from 
the calculations above that the action on the E∞

∗,∗ is free, so the action on the associated 
graded objects is free. Therefore the action μ∗ must also be free, and so the isomor-
phism (6) is one of left H∗(ΩQ)-modules.

Case 2 : m = n − m. This case is simpler. We have n = 2m and |u| = |v| = m − 1. 
So the only differential which comes into play is dm. This time dm(z ⊗ g) is the sum 
of linear combinations of the elements ci1(ai ⊗ gu) and ci�(ai ⊗ gv) for all i, where 
c�1 = 1, c1� = (−1)m(n−m) = −(−1)|u||v| and c11 = c�� = 0. Therefore the elements 
a� ⊗ gu − (−1)|u||v|a1 ⊗ gv are identified in Em+1

m,∗ with a linear combination of elements 
of the form ai ⊗ gu or ai ⊗ gv for 2 ≤ i ≤ 	 − 1, and the calculation goes through as 
before. �

Now we refine the homotopy decomposition ΩP � ΩQ ×ΩF of Lemma 2.3 by iden-
tifying the homotopy type of F . For spaces X and Y , the left half-smash of X and Y is 
defined by

X � Y = (X × Y )/(∗ × Y ).

It is well-known that if Y is a suspension then there is a homotopy equivalence

X � Y � Y ∨ (X ∧ Y ).

Proposition 2.5. There is a homotopy equivalence

F � ΩQ� J.
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Proof. Using the lift J s̄−→ F of J s−→ P and the homotopy action ΩQ× F
θ−→ F , define 

λ as the composite

λ : ΩQ× J
1×s̄−−−→ ΩQ× F

θ−→ F .

By (2), the restriction of θ to ΩQ is homotopic to δ, which by Lemma 2.3 is null homo-
topic. Therefore the composite

ΩQ× ∗ 1×∗−−−→ ΩQ× J
λ−→ F

is null homotopic. Since the homotopy cofibre of 1 ×∗ is ΩQ �F , the map λ extends to 
a map λ̂ that makes the following diagram homotopy commute

ΩQ× ∗ 1×∗
ΩQ× J

λ

ΩQ� J

λ̂

F.

By definition, λ = θ ◦ (1 × s̄), so Proposition 2.4 implies that λ̂∗ is an isomorphism. Thus 
λ̂ is a homotopy equivalence. �
Theorem 2.6. Let P ∈ P and suppose that P is (m − 1)-connected and n-dimensional. 
Then the following hold:

(i) there is a homotopy equivalence

ΩP � Ω
(
Sm × Sn−m

)
×Ω

(
Ω
(
Sm × Sn−m

)
� J

)
,

which, if J is a suspension, refines to a homotopy equivalence

ΩP � Ω
(
Sm × Sn−m

)
×Ω

(
J ∨

(
J ∧Ω

(
Sm × Sn−m

)))
;

(ii) the map ΩP̄
Ωi−→ ΩP has a right homotopy inverse.

Proof. For part (i), by Lemma 2.3, ΩP � ΩQ ×ΩF and ΩQ � ΩSm ×ΩSn−m, and by 
Proposition 2.5, F � ΩQ � J . Thus

ΩP � ΩSm ×ΩSn−m ×Ω
((
ΩSm ×ΩSn−m

)
� J

)
.

If J is a suspension, this decomposition refines due to the fact that ΩQ �J � J∨(J∧ΩQ).
For part (ii), define q̄ as the composite

q̄ : P̄ i−→ P
q−→ Q.
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From this composite we obtain a homotopy pullback diagram

ΩQ
δ̄

F̄
f̄

τ

P̄
q̄

i

Q

ΩQ
δ

F
f

P
q

Q

(7)

which defines the space F̄ and the maps f̄ , δ̄ and τ . In particular, this is a homotopy 
commutative diagram of principal fibration sequences, so if θ̄ : ΩQ× F̄ −→ F̄ is the 
homotopy action for the top fibration sequence, then there is a homotopy commutative 
diagram of actions

ΩQ× F̄
θ̄

1×τ

F̄

τ

ΩQ× F
θ

F.

By definition, the map J s−→ P factors as the composite J r−→ P̄
i−→ P , where r is 

the inclusion of the wedge summand in P̄ � J ∨ (Sm ∨Sn−m). Since s lifts through f to 

the map J s̄−→ F , the definition of F̄ as a homotopy pullback in (7) implies that there 
is a pullback map r̄ : J −→ F̄ such that f̄ ◦ r̄ � r and τ ◦ r̄ � s̄. Combining this with the 
preceding diagram, we obtain a homotopy commutative diagram

ΩQ× J
1×r̄

ΩQ× F̄
θ̄

1×τ

F̄

τ

ΩQ× J
1×s̄

ΩQ× F
θ

F.

(8)

By definition, the map Sm ∨ Sn−m s′−→ P factors as the composite Sm ∨ Sn−m j−→
P̄

i−→ P , where j is the inclusion of the wedge summand in P̄ � J ∨ (Sm ∨ Sn−m). By 
Lemma 2.3, Ω(q◦s′) has a right homotopy inverse. As q̄ = q◦ i, we have q◦s′ = q◦ i ◦j =
q̄ ◦ j, so Ω(q̄ ◦ j) has a right homotopy inverse. Consequently, Ωq̄ has a right homotopy 

inverse, which implies that in the homotopy fibration ΩP
Ωq̄−→ ΩQ

δ̄−→ F̄ , the map δ̄ is 
null homotopic.

Let λ̄ be the composite along the top row of (8),

λ̄ : ΩQ× J
1×r̄−−−→ ΩQ× F

θ̄−→ F̄ .

Since θ̄ is a homotopy action, its restriction to ΩQ is δ̄. Therefore the restriction of λ̄ to 
ΩQ is δ̄, which is null homotopic. Thus there is a homotopy commutative diagram
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ΩQ× ∗ 1×∗
ΩQ× J

λ̄

ΩQ� J

λ̃

F

where the top row is a homotopy cofibration and λ̃ is an extension of λ̄. Now let γ be 
the composite

γ : ΩQ� F̄
λ̃−→ F̄

τ−→ F .

Observe that γ is a choice of the extension λ̂ in the proof of Proposition 2.5. Thus γ
induces an isomorphism in homology and so is a homotopy equivalence. Consequently, 
the map τ has a right homotopy inverse σ : F −→ F̄ .

Finally, consider the diagram

(ΩSm ×ΩSn−m) ×ΩF
1×Ωσ

(ΩSm ×ΩSn−m) ×ΩF̄
Ωj×Ωf̄

1×Ωτ

ΩP̄ ×ΩP̄
μ

Ωi×Ωi

ΩP̄

Ωi

(ΩSm ×ΩSn−m) ×ΩF
Ωs′×Ωf

ΩP ×ΩP
μ

ΩP

where μ is the standard loop multiplication. The left triangle homotopy commutes since 
σ is a right homotopy inverse of τ . The middle square homotopy commutes since, by 
definition, s′ = i ◦j, and by (7), f � i ◦ f̄ . The right square homotopy commutes since Ωi

is a loop map. By part (i), the bottom row is a homotopy equivalence, so the homotopy 
commutativity of the diagram implies that Ωi has a right homotopy inverse. �
3. Consequences

In this section we apply Theorem 2.6 to two classes of examples, first to certain 
connected sums, and then to certain Poincaré duality complexes, and prove Theorems 1.4.

If M is a closed oriented n-dimensional manifold, let M̄ be the (n − 1)-skeleton of M . 
In particular, M is homotopy equivalent to M −∗, and is obtained from M̄ by attaching 
a single n-cell. Observe that if N is a closed oriented n-dimensional manifold and there 
is a ring isomorphism H∗(N) ∼= H∗(Sm × Sn−m), then N̄ � Sm ∨ Sn−m. Denote the 
connected sum of two closed oriented n-dimensional manifolds M and N by M#N . 
Observe that the (n − 1)-skeleton of M#N is homotopy equivalent to M̄ ∨ N̄ . Let

i : M̄ ∨ N̄ −→ M#N

be the skeletal inclusion.
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Proof of Theorem 1.5. We will show that M#N ∈ P. Let P = M#N , let P̄ be the 
(n − 1)-skeleton of P , and let P̄ i−→ P be the skeletal inclusion. By the definitions of M
and N , P is an (m − 1)-connected, n-dimensional CW -complex. Since P = M#N is a 
closed oriented manifold, it satisfies Poincaré duality, which implies that P̄ � M̄ ∨ N̄ is 
actually (n − m)-dimensional. Note that as m > 1 we have n − m < n − 1, so H∗(P )
is torsion-free if and only if H∗(P̄ ) is torsion-free. But as H∗(M) is torsion-free, so is 
H∗(M̄), which implies that P̄ � M̄ ∨N̄ � M̄ ∨(Sm∨Sn−m) also has H∗(P̄ ) torsion-free. 
Thus H∗(P ) is torsion-free.

Now if J = M̄ then as N̄ � Sm ∨ Sn−m, we have P̄ � J ∨ (Sm ∨ Sn−m). Let Q
be the cofibre of the composite J −→ P̄

i−→ P , that is, Q is the cofibre of the com-
posite M̄ −→ M̄ ∨ N̄

i−→ M#N . Then Q � N , which implies that H∗(Q) ∼= H∗(N) ∼=
H∗(Sm×Sn−m). Thus P = M#N satisfies all the conditions of Definition 2.1, so P ∈ P. 
The assertions of the proposition are now all direct applications of Theorem 2.6. �
Example 3.1. As an example of Theorem 1.5 in action, recall that an n-dimensional 
manifold M is a connected sum of sphere products if

M ∼=
(
Sm1 × Sn−m1

)
# · · ·#

(
Smk × Sn−mk

)
for some integers m1, . . . , mk. Let M1 = (Sm1 × Sn−m1)# · · ·#(Smk−1 × Sn−mk−1) and 
N = Smk × Sn−mk so that M = M1#N . Observe that M̄1 =

∨k−1
i=1 (Smi ∨ Sn−mi). So 

by Theorem 1.5, there is a homotopy equivalence

ΩM � Ω(M1#N) � Ω
(
Smk × Sn−mk

)
×Ω

(
M̄1 ∨

(
M̄1 ∧Ω

(
Smk × Sn−mk

)))
.

Recall that P is a Poincaré duality complex if it has the homotopy type of a finite 
CW -complex and its cohomology ring H∗(P ; R) satisfies Poincaré duality for all co-
efficient rings R. In particular every oriented simply-connected manifold is a Poincaré 
duality complex.

Proposition 3.2. Fix 1 < m ≤ n. If m = n − m, assume that m /∈ {2, 4, 8}. Let P be 
an (m − 1)-connected n-dimensional Poincaré duality complex such that (n − 1)-skeleton 
P̄ of P has the homotopy type of a wedge of spheres. Let i : P̄ −→ P be the skeletal 
inclusion. Then the following hold:

(i) there is a homotopy equivalence

ΩP � Ω
(
Sm × Sn−m

)
×Ω

(
J ∨

(
J ∧Ω

(
Sm × Sn−m

)))
where J is obtained from P̄ by quotienting out a copy of Sm ∨ Sn−m;

(ii) the map ΩP̄
Ωi−→ ΩP has a right homotopy inverse.

Consequently, the homotopy type of ΩP depends only on the homotopy type of P̄ .
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We will need a preliminary lemma about the cohomology ring of Poincaré duality 
complexes before we can prove this.

Lemma 3.3. Let P be an n-dimensional Poincaré duality complex such that H∗(P ) is 
torsion-free, and let e∗ be a generator of Hn(P ) ∼= Z. Then for any positive integer i ≤ n

and basis element x∗ in Hi(P ), there exists a choice of basis for Hn−i(P ) such that 
x∗y∗ = e∗ for some y∗ in this basis.

Proof. Let x and e be the homology duals of x∗ and e∗. Since H∗(P ) satisfies Poincaré 
duality, the cap product homomorphism

e ∩Hi(P ) −→ Hn−i(P )

is an isomorphism, so it maps a basis of Hi(P ) to a basis of Hn−i(P ). Therefore

y = e ∩ x∗

is an element in a basis for Hn−i(P ).
Since H∗(P ) is torsion-free, the cup product is dual to the cap product. That is, there 

is a commutative diagram

Hn−i(P )
∼=

∪x∗

Hom(Hn−i(P ), Z)

(∩x∗)∗

Hn(P )
∼=

Hom(Hn(P ), Z).

In particular, since the homomorphism (∩x∗) sends e to y and e generates Hn(P ), its 
dual (∩x∗)∗ = (∪x∗) sends y∗ to e∗, so we have

y∗ ∪ x∗ = e∗.

Since y is an element in a basis for Hn−i(P ), y∗ is an element in the dual basis for 
Hn−i(P ), and we are done. �

Note that if m = n and m /∈ {2, 4, 8} then the element y∗ in Lemma 3.3 is not equal 
to ±x∗. But if m ∈ {2, 4, 8} then we may have y∗ = ±x∗. This is the reason for the 
exclusion of this case in the statement of Proposition 3.2.

Proof of Proposition 3.2. We will check that P ∈ P. By Poincaré duality, P̄ is 
(n−m)-dimensional. So as m > 1, we have n − m < n − 1, implying that H∗(P ) is 
torsion-free if and only if H∗(P̄ ) is torsion-free. But as P̄ is homotopy equivalent to a 
wedge of spheres, H∗(P̄ ) is torsion-free and therefore H∗(P ) is torsion-free.
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Fix e∗ as a generator of Hn(P ) ∼= Z. Let x∗ ∈ Hm(P ) be a basis element. By 
Lemma 3.3 there exists a basis element y∗ ∈ Hn−i(P ) such that x∗y∗ = e∗. Since P̄ is 
homotopy equivalent to a wedge of spheres, x∗ and y∗ are spherical classes represented 

by maps Sm α−→ P̄ and Sn−m β−→ P̄ and the wedge sum Sm ∨ Sn−m α+β−−−→ P̄ has a 
left homotopy inverse. Thus P̄ � J ∨ (Sm ∨ Sn−m) where J is the homotopy cofibre of 
α + β. Let Q be the homotopy cofibre of the composite J −→ P̄

i−→ P . The homotopy 
equivalence for P̄ and the fact that, as a CW -complex, P = P̄ ∪ en implies that Q is a 
three-cell complex, Q = (Sm∨Sn−m) ∪en, and the map to the cofibre, P q−→ Q, is onto in 
homology. Dualizing, q∗ is an injection. Suppose that u∗ ∈ Hm(Q), v∗ ∈ Hn−m(Q) and 
z∗ ∈ Hn(Q) satisfy q∗(u∗) = x∗, q∗(v∗) = y∗ and q∗(z∗) = e∗. Then the fact that x∗y∗ =
e∗ implies that u∗v∗ = z∗. Thus there is a ring isomorphism H∗(Q) ∼= H∗(Sm × Sn−m). 
Thus P satisfies all the conditions of Definition 2.1, so P ∈ P. The assertions of the 
proposition are now all direct applications of Theorem 2.6. �

As an example of Proposition 3.3 in action, we prove Theorem 1.4. Let M be an 
(n − 1)-connected 2n-dimensional manifold. Observe that the (2n − 1)-skeleton of M is 
homotopy equivalent to 

∨k
i=1 S

n, where k = dimHn(M). We aim to decompose ΩM .

Proof of Theorem 1.4. If n /∈ {2, 4, 8} and k ≥ 2, then by Proposition 3.3 there is a 
homotopy equivalence

ΩM � Ω
(
Sn × Sn

)
×Ω

(
J ∨

(
J ∧Ω

(
Sn × Sn

)))
where J =

∨k−2
i=1 Sn. �

4. The case of simply-connected 4-manifolds

Proposition 3.2 does not cover the cases of simply-connected 4-manifolds, 3-connected 
8-manifolds, or 7-connected 16-manifolds, due to the potential presence of nonzero cup 
product squares. To handle the case of simply-connected 4-manifolds and prove The-
orem 1.3, we use the fact that such spaces appear as the base space in a certain S1

homotopy fibration whose total space is a Poincaré duality complex. These homotopy 
fibrations generalize the fiber bundle S1 −→ S5 −→ CP 2.

Let M be a simply-connected oriented 4-manifold. If H2(M) = 0 then M is homotopy 
equivalent to S4, and the homotopy type of ΩS4 is well known to be S3 × ΩS7. So we 
will assume from now on that H2(M) �= 0. Then, up to homotopy equivalence, there is 
a homotopy cofibration

S3 α−→
k∨

i=1
S2 −→ M

for some map α. Suppose that there is an isomorphism of Z-modules
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H∗(M) ∼= Z{x1, . . . , xk, z}

where |xi| = 2 and |z| = 4. Let cij be such that xixj = cijz. Let C be the k × k matrix

C = [cij ].

The anti-commutativity of the cup product implies that cij = cji, so C is symmetric, 
and Poincaré duality implies that C is nonsingular.

Focus on the class xk ∈ H2(M). By Lemma 3.3, we may assume the basis of H2(M)
has been chosen so that ckk̄ = 1 for some k̄. That is,

xkxk̄ = z.

The cohomology class xk is represented by a map

q:M −→ K(Z, 2).

Note that K(Z, 2) � CP∞, and ΩCP∞ � S1. Define the space Z by the homotopy 
fibration sequence

S1 −→ Z −→ M
q−→ CP∞.

A theorem of Quinn [24] says that in a fibration of spaces having the homotopy type 
of finite CW -complexes, the total space is a Poincaré duality complex if and only if 
the fiber and base space are Poincaré duality complexes. This, of course, also holds for 
homotopy fibrations. Therefore, as we have a homotopy fibration S1 −→ Z −→ M and 
both S1 and M are Poincaré duality complexes, then so is Z.

Lemma 4.1. The Poincaré duality complex Z satisfies the following:

(i) there is a homotopy cofibration

S4 γ−→
k∨

i=1

(
S2 ∨ S3) −→ Z

for some map γ;
(ii) H∗(Z) is torsion-free.

Proof. Consider the homotopy fibration S1 −→ Z −→ M . We will use a Serre spectral 
sequence to calculate H∗(Z). We have E∗,∗

2
∼= H∗(S1) ⊗ H∗(M). Let a ∈ H1(S1) rep-

resent a generator and recall that, as a Z-module, H∗(M) ∼= Z{x1, . . . , xk, z}. Thus a 
Z-module basis for E∗,∗

2 is given by
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{1, 1 ⊗ x1, . . . , 1 ⊗ xk, 1 ⊗ z, a⊗ 1, a⊗ x1, . . . , a⊗ xk, a⊗ z}.

The fibration in question is induced by the map M
q−→ CP∞ which represents the co-

homology class xk. Therefore d2(a) = ±xk. Changing the basis of H1(S1) if need be, 
assume that d2(a) = xk. As d2 is a differential, the fact that xkxk̄ = z implies that 
d2(a ⊗ xk̄) = xkxk̄ = z, while d2(a ⊗ xj) = xkxj = ckjz. Thus a Z-module basis for E∗,∗

3
is given by

{
1, 1 ⊗ x1, . . . , 1 ⊗ xk−1, (a⊗ x1 − a⊗ ck1xk̄), . . . , (a⊗ xk̄−1 − a⊗ ck(k̄−1)xk̄),

(a⊗ xk̄+1 − a⊗ ck(k̄+1)xk̄), (a⊗ xk − a⊗ ckkxk̄), a⊗ z
}
.

All other differentials are trivial for degree reasons, so we have H∗(Z) ∼= E∗,∗
∞

∼= E∗,∗
3 .

Notice that the calculation for the rational cohomology Serre spectral is exactly the 
same. Thus the rationalization map H∗(Z;Z) −→ H∗(Z;Q) preserves the number of 
basis elements in each dimension. Thus H∗(Z) is torsion-free, proving part (ii).

Notice that the description of H∗(Z) implies that Z has k−1 cells in dimension 2 and 
k− 1 cells in dimension 3. The fact that H∗(Z) is torsion-free therefore implies that the 
3-skeleton of Z is homotopy equivalent to 

∨k
i=1(S2∨S3). The one remaining nontrivial cell 

of Z occurs in dimension 5, so Z is the homotopy cofibre of a map S4 −→
∨k

i=1(S2 ∨ S3), 
proving part (i). �
Remark 4.2. The space Z is in fact a manifold, not just a Poincaré duality complex, 
which is diffeomorphic to the connected sum of k copies of S2 × S3 [10]. As we only 
use the much simpler properties of Z listed in Lemma 4.1, it is clarifying to leave the 
analysis of Z as it stands in the statement and proof of the lemma.

Before proceeding to decompose the loop space of a simply-connected 4-manifold, we 
first decompose the loop space of the associated Poincaré duality space Z. Let

i :
k−1∨
i=1

(
S2 ∨ S3) −→ Z

be the skeletal inclusion.

Proposition 4.3. If k = 1 then Z � S5, so ΩZ � ΩS5. If k ≥ 2 then the following hold:

(i) there is a homotopy equivalence

ΩZ � Ω
(
S2 × S3)×Ω

(
J ∨

(
J ∧Ω

(
S2 × S3)))

where J =
∨k−1

i=1 (S2 ∨ S3) if k > 2 and J = ∗ if k = 2;
(ii) the map Ω(

∨k−1
i=1 (S2 ∨ S3)) Ωi−→ ΩZ has a right homotopy inverse.
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Proof. Notice that Proposition 4.1(i) implies that if k = 1 then Z � S5. Assume from 
now on that k ≥ 2. We will show that the conditions of Proposition 3.2 hold. The 
result of Quinn already cited implies that Z is a Poincaré duality space, and by Propo-
sition 4.1(i), Z is 1-connected and 5-dimensional. So with m = 2 and n = 5 we have 
m = 2 < n−m = 3. By Proposition 4.1, the 4-skeleton of Z is homotopy equivalent to ∨k−1

i=1 (S2 ∨ S3). Thus Z satisfies the hypotheses of Proposition 3.2, and applying the 
proposition immediately gives the statements of the proposition. �

We now prove Theorem 1.3, restated as follows.

Theorem 4.4. Let M be a simply-connected 4-manifold and suppose dimH2(M) = k for 
k > 0. If k = 1 then there is a homotopy equivalence

ΩM � S1 ×ΩS5

and if k ≥ 2 then there is a homotopy equivalence

ΩM � S1 ×ΩZ � S1 ×Ω
(
S2 × S3)×Ω

(
J ∨

(
J ∧Ω

(
S2 × S3)))

where J =
∨k−1

i=1 (S2 ∨ S3) if k > 2 and J = ∗ if k = 2. Consequently, the homotopy type 
of ΩM depends only on the integer k = dimH2(M).

Proof. Consider the map M
q−→ CP∞ representing the cohomology class xk. Since M

is simply-connected, any generator of H2(M) is in the image of the Hurewicz homo-
morphism. In our case, the homology class dual to xk is the Hurewicz image of a map 
t : S2 −→ M . Dualizing, t∗(xk) = ι∗2, where ι∗2 is a generator of H2(S2). Therefore, 
the composite S2 t−→ M

q−→ CP∞ is degree one in cohomology. Let t̄ : S1 −→ ΩM

be the adjoint of t. Then the composite S1 t̄−→ ΩM
Ωq−→ S1 is degree one in cohomol-

ogy, implying that it is a homotopy equivalence. Therefore, in the homotopy fibration 

ΩZ −→ ΩM
Ωq−→ S1, the map Ωq has a right homotopy inverse, implying that there is 

a homotopy equivalence

ΩM � S1 ×ΩZ.

The theorem now follows from the decomposition of ΩZ in Proposition 4.3. �
An analogue of Theorem 4.4 holds for 3-connected 8-manifolds M , provided that 

there is a map M −→ HP 2 that induces a surjection onto H4(HP 2) ∼= Z. In such a 
case, composing this map with the inclusion HP 2 −→ HP∞ and then using the fact that 
HP∞ � S3, one obtains a principal homotopy fibration S3 −→ Z −→ M with total space 
Z an 11-dimensional Poincaré duality complex. The only nonzero homology groups of Z
are in degrees 4, 7, and 11, and using the associated action of S3 on Z, it is not difficult 
to show that the 10-skeleton of Z is homotopy equivalent to a wedge of 4-spheres and 



P. Beben, S. Theriault / Advances in Mathematics 262 (2014) 213–238 235
11-spheres. It is not really clear what may happen in the case of 7-connected 16-manifolds, 
as S7 does not have a classifying space.

We now re-organize the information appearing in the decomposition in Theorem 4.4
when k ≥ 2 to make it more clear how the decomposition depends on the 2-skeleton of 
the 4-manifold. Let i: 

∨k
i=1 S

2 −→ M be the skeletal inclusion.

Theorem 4.5. Let M be a simply-connected 4-manifold and suppose dimH2(M) = k for 
k ≥ 2. Then the map Ω(

∨k
i=1 S

2) Ωi−→ ΩM has a right homotopy inverse.

Proof. Recall that there is a homotopy fibration Z r−→ M
q−→ CP∞. In Theorem 4.4 it 

was shown that Ωq has a right homotopy inverse, f : S1 −→ ΩM . Thus the composite

S1 ×ΩZ
f×Ωr−−−−→ ΩM ×ΩM

μ−→ ΩM

is a homotopy equivalence, where μ is the loop multiplication.
By Proposition 4.3, the map Ω(

∨k−1
s=1 (S2 ∨ S3)) Ωj−→ ΩZ has a right homotopy in-

verse, where j is the inclusion of the 4-skeleton into the 5-dimensional space Z. Let 
g : ΩZ −→ Ω(

∨k−1
s=1 (S2 ∨ S3)) be a right homotopy inverse of Ωj. Let h be the compos-

ite

h :
k−1∨
s=1

(
S2 ∨ S3) j−→ Z

r−→ M.

Then Ωh ◦ g is homotopic to Ωr. Therefore, by the previous paragraph, the composite

S1 ×ΩZ
f×g−−−→ ΩM ×Ω

(
k−1∨
s=1

(
S2 ∨ S3)) 1×Ωh−−−−→ ΩM ×ΩM

μ−→ ΩM

is a homotopy equivalence.
Since 

∨k−1
s=1 (S2 ∨ S3) is 3-dimensional, the map h factors through the 3-skeleton 

of M , which is homotopy equivalent to 
∨k

i=1 S
2. Thus h factors as a composite ∨k−1

s=1 (S2 ∨ S3) h′
−→

∨k
i=1 S

2 i−→ M for some map h′. Also, for connectivity and dimen-
sion reasons, the map S1 f−→ M factors as a composite S1 f ′

−→ Ω(
∨k

i=1 S
2) Ωi−→ ΩM for 

some map f ′. Therefore, inserting these factorizations into the homotopy equivalence 
μ ◦ (1 ×Ωh) ◦ (f × g), we obtain a homotopy equivalence

S1 ×ΩZ
f ′×g−−−−→ Ω

(
k−1∨
s=1

S2

)
×Ω

(
k−1∨
s=1

(
S2 ∨ S3)) 1×Ωh′

−−−−−→ Ω

(
k∨

i=1
S2

)
×Ω

(
k∨

i=1
S2

)

Ωi×Ωi−−−−−→ ΩM ×ΩM
μ−→ ΩM.

Finally, since Ωi is a loop map, it commutes with the loop multiplication, so we obtain 
a homotopy equivalence
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S1 ×ΩZ
f ′×

(
Ωh′◦g

)
−−−−−−−−→ Ω

(
k∨

i=1
S2

)
×Ω

(
k∨

i=1
S2

)
μ−→ Ω

(
k∨

i=1
S2

)
Ωi−−→ ΩM.

Consequently, the map Ωi has a right homotopy inverse. �
Theorem 4.5 is useful. For example, we apply it to determine the homotopy type of 

the loops on certain principle G-bundles.

Corollary 4.6. Let G be a simply-connected, simple compact Lie group. Let M be a simply-
connected 4-manifold with dimH2(M) ≥ 2. Let P π−→ M be a principle G-bundle. Then 
Ωπ has a right homotopy inverse, implying that there is a homotopy equivalence

ΩP � ΩM ×ΩG.

Proof. Any principle G-bundle P π−→ M is classified by a map M
g−→ BG, where BG is 

the classifying space of G and P is the homotopy fibre of g. In our case, since G is a simply-
connected, compact simple Lie group, BG is 2-connected (in fact, it is 3-connected). 
Thus the composite 

∨k
i=1 S

2 i−→ M
g−→ BG is null homotopic by connectivity. By The-

orem 4.5, Ωi has a right homotopy inverse. Therefore Ωg is null homotopic. Hence in 

the homotopy fibration sequence ΩG −→ ΩP
Ωπ−→ ΩM

Ωg−→ G the null homotopy for Ωg

implies that Ωπ has a right homotopy inverse, and therefore ΩP � ΩM ×ΩG. �
Corollary 4.6 says something interesting. While there are [M, BG] ∼= Z distinct prin-

ciple G-bundles over M , after looping all those bundles become homotopy equivalent. 
Further, the decomposition of ΩP can be refined by inserting the decomposition of ΩM

in Theorem 4.4, and — after localizing at a prime p — by the decompositions of ΩG

that arise from the p-local decompositions of G due to Mimura, Nishida and Toda [20].

5. Looped Configuration Spaces

We end with a quick application that is in the spirit of our previous results. Let

Fk(X) =
{
(x1, . . . , xk) ∈ X×k | xi �= xj if i �= j

}
be the ordered configuration space of k distinct points in X. The literature on these 
spaces is substantial, but many basic questions remain unanswered. For example, their 
integral homology is not clearly understood in most cases, and it is now known that their 
homotopy type generally does not depend only on the homotopy type of X, even after 
restricting the input space to compact manifolds [17].

Things do simplify after looping however. If we were to take M to be a smooth man-
ifold with a nonvanishing tangent vector field, then the projection map Fk(M) −→ M

onto the first coordinate has a section. By [11,7] there is a homotopy decomposition
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ΩFk(M) � ΩM ×Ω(M −Q1) × · · · ×Ω(M −Qk) (9)

for any choice of distinct points q1, . . . , qk in M , with Qi = {q1, . . . , qi}. Thus, not only 
are the Betti numbers ΩFk(M) relatively easy to compute, but the homotopy type of 
ΩFk(M) depends only on the homotopy type of the input manifold M when M is simply 
connected. The following takes this a step further:

Corollary 5.1. Let 1 < m ≤ n − m, n be odd, and let M be a closed oriented 
(m − 1)-connected n-dimensional smooth manifold with torsion-free homology. Then the 
homotopy type of the looped configuration space ΩFk(M#(Sm × Sn−m)) depends only 
on the homotopy type of M − ∗ for each k ≥ 1.

Proof. Recall that the connected sum of smooth manifolds can be constructed so that 
the resulting manifold also has a smooth structure. Then M#(Sm ×Sn−m) is a smooth 
manifold, and moreover it is odd dimensional, so it has a nonvanishing tangent vector 
field. Thus, the decomposition (9) specializes to

ΩFk

(
M#

(
Sm × Sn−m

))
� Ω

(
M#

(
Sm × Sn−m

))
×Ω

(
M#

(
Sm × Sn−m

)
−Q1

)
× · · ·

×Ω
(
M#

(
Sm × Sn−m

)
−Qk

)
for any choice of k distinct points q1, . . . , qk in M#(Sm × Sn−m).

Notice that M#(Sm × Sn−m) − Qi is homotopy equivalent to the wedge sum of 
(M − ∗) ∨ Sm ∨ Sn−m with i − 1 copies of the (n − 1)-sphere. Thus, the homotopy 
type of each factor Ω(M#(Sm × Sn−m) − Qi) in the decomposition above depends 
only on the homotopy type of M − ∗. Likewise, the homotopy type of the remaining 
factor Ω(M#(Sm × Sn−m)) depends only on that of M −∗ by Theorem 1.5. The result 
follows. �
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