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ABSTRACT

A salient feature of paleorecords of the last glacial interval in the North Atlantic is pronounced millennial

variability, commonly known as Dansgaard–Oeschger events. It is believed that these events are related to

variations in the Atlantic meridional overturning circulation and heat transport. Here, the authors formulate

a new low-order model, based on the Howard–Malkus loop representation of ocean circulation, capable of

reproducing millennial variability and its chaotic dynamics realistically. It is shown that even in this chaotic

model changes in the state of themeridional overturning circulation are predictable. Accordingly, the authors

define two predictive indices which give accurate predictions for the time the circulation should remain in the

on phase and then stay in the subsequent off phase. These indices depend mainly on ocean stratification and

describe the linear growth of small perturbations in the system. Thus, monitoring particular indices of the

ocean state could help predict a potential shutdown of the overturning circulation.

1. Introduction

Ice core and proxy temperature data from the North-

ern Hemisphere show strong variability on millennial

time scales, but only during the (last) glacial interval,

which sharply contrasts the relative stability of the sub-

sequent Holocene epoch (GRIP Members 1993; Alley

2000; Andersen et al. 2004). Distinct episodes, called

Dansgaard–Oeschger (D–O) events, make up a series of

abrupt climate shifts with a presumed periodicity of about

1470 6 500 yr especially pronounced in d18O records

(Dansgaard et al. 1993; Bond et al. 1997; Grootes and

Stuiver 1997; Bond et al. 1999). Typically, these episodes

have two phases—a rapid warming of 58–108C occurring

over a few decades followed by a slow cooling over sev-

eral centuries. It has been conjectured very early

(Broecker et al. 1990) that D–O events are related to

variations in the ocean thermohaline circulation (THC),

and the warm and cold phases of the oscillation corre-

spond to different states of the Atlantic meridional

overturning circulation (AMOC),with stronger orweaker

circulation, and poleward heat transport, respectively.

For simplicity, we will refer to these states as the over-

turning on and off phases. The goal of this study is to

formulate a simple low-order model of the AMOC that

can simulate such millennial variability realistically and

then use this model to study predictability of the circu-

lation shifts.

To explain themillennial signature in the paleorecords,

one can invoke two different paradigms: exogenous or

endogenous (i.e., extrinsic or intrinsic to the system).

In the former paradigm, millennial variability arises as

the system response to a forcing with a 1500-yr period

(Alley et al. 2001; Rahmstorf 2003; Ganopolski and

Rahmstorf 2001) or to random forcing (Ditlevsen et al.

2005; Ditlevsen et al. 2007). The second paradigm,

supported by the present study, suggests that D–O

events arise as a self-sustained oscillation whose irreg-

ularity is determined by deterministic chaos. The

truth may lie somewhere in the middle as indicated by
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studies that show that millennial oscillations become ir-

regular when noise is added to the system (Timmermann

et al. 2003; Stocker and Johnsen 2003).

Note that one study questioned the very existence of

the millennial oscillation and suggested instead that the

millennial variability might be attributable to the alias-

ing of the seasonal cycle in the d18O records (Wunsch

2000). However, other authors emphasized the non-

stationary character of the times series of oxygen iso-

topes as only a few D–O events contribute to the

spectral peak of 1470 yr, which makes the aliasing hy-

pothesis unlikely (Schulz 2002).

Even before the discovery of D–O events, Stommel

found multiple equilibria in a simple box model of the

THC (Stommel 1961). Subsequently, the existence of

multiple equilibria for the ocean overturning circulation

has been confirmed in zonally averaged ocean models

of various complexity (Thual and McWilliams 1992;

Quon and Ghil 1992; Cessi and Young 1992; S�evellec

and Fedorov 2011), in forced ocean general circulation

models (Rahmstorf et al. 2005), and in some coarse

coupled models (Manabe and Stouffer 1988, 1999). At

the same time, millennial oscillations have been repli-

cated in idealized ocean models (Weaver and Sarachik

1991; Weaver et al. 1993; Winton and Sarachik 1993;

Winton 1993, 1995) or either statistical model (Rial and

Sasha 2011). Episodic but persistent reductions in the

ocean overturning circulation have been found in the

proxy data (McManus et al. 2004).

Studies using zonally averaged and box models (some

exposed to gradually varying surface freshwater fluxes)

have demonstrated the existence of millennial oscilla-

tions for intermediate values of the freshwater flux and

proposed different low-order conceptual dynamic

systems describing millennial oscillation (Cessi 1996;

Sakai and Peltier 1999; Colin de Verdi�ere 2007; Colin de

Verdi�ere et al. 2006; S�evellec et al. 2010). Different au-

thors emphasize the role of salinity (Sakai andPeltier 1999;

S�evellec et al. 2010), convection (Cessi 1996; Colin de

Verdi�ere et al. 2006; Colin de Verdi�ere 2007), or the in-

terhemispheric bipolar seesaw (Stocker and Johnsen 2003)

for these oscillations. Apparently, the period of the oscil-

lations in these models depends on how far the system is

from thebifurcation (Colin deVerdi�ere et al. 2006; S�evellec

et al. 2010) and can go from about 1000yr to infinity even

for a relative, weak change in the oscillation amplitude, as

expected for an infinite-period bifurcation (Strogatz 1994).

Although these models have improved our under-

standing of the THCmillennial variability, they typically

produce too regular D–O events unless forced with high

levels of noise. Also, recent studies have argued that

the bifurcation behavior and the millennial cycle in the

paleorecords are more typical of a 3 degree of freedom

system (S�evellec et al. 2010). his limits the validity of con-

ceptual models with fewer degrees of freedom (most of

previous idealizedmodels had 1 or 2 degrees of freedom).

In parallel to these studies, the early warning signal in

the climate system (EWS), that is, detecting climate

tipping points by statistical methods, has become an area

of extensive research (e.g., Livina and Lenton 2007;

Dakos et al. 2008; Scheffer et al. 2009; Lenton 2011). The

EWS approach assumes that in the close proximity to

the tipping point, the attraction of the system statistical

equilibrium becomes weaker, leading to a variance in-

crease. In this forced paradigm (internal or external

noise is needed to sustain the system variance), EWS

has been detected within a range of idealized models of

D–O events (Cimatoribus et al. 2013). However, these

authors have also suggested that there is no evidence of

EWS, as defined by Livina and Lenton (2007), in the

nonstochastic system.

In the present study, we formulate a new low-order

idealized model of the AMOC millennial variability,

which can be derived from the equations of motion for

ocean circulation in their zonally averaged form. The

model has 3 degrees of freedom and generates irregular

millennial variability within the endogenous paradigm.

That is, ocean dynamics in the model without any sto-

chastic forcing give rise to a deterministic chaotic be-

havior and induce variability on millennial time scales.

We will describe the bifurcation diagrams of the model

and its routes to chaos when surface freshwater flux in-

creases. Further, we will demonstrate that even in this

deterministic chaotic system, the shutdown of the AMOC

can be accurately predicted by evaluating the growth of

small perturbations. Following the approach of Evans

et al. (2004), who have found that the growth of small

disturbances depends on the imminence of the tipping

point, we will show the existence of early warning in-

dicators, or more generally of both qualitative and quan-

titative predictability, of the AMOC regime shifts.

2. The model, steady states, and their stability

The objectives of this work is to study the AMOC

dynamics and its long-term variability (from centennial

to millennial) and to develop and validate a methodology

for predicting abrupt climate changes related to the re-

organization of theAMOC.To that end, herewe formulate

the simplest deterministic model for the ocean meridional

overturning circulation capable of chaotic behavior, which

can be derived from the zonally averaged equations of

motion on the depth-latitude plane [described, e.g., in

Wright and Stocker (1991, 1992)]. In this model, we ap-

proximate theAMOCas a purely rotational circulation on

the depth-latitude plan, for which deformations of the
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zonally averaged velocity field are neglected and the flow

follows a single streamline (Fig. 1a). This last approxima-

tion implies that the model does not distinguish between

shallow- and deep-ocean circulations.

This model is a modification of the Howard–Malkus

loop (Fig. 1b), originally proposed by Welander (1957,

1965, 1967) and further developed by Howard (1971)

and Malkus (1972); for a review, see Welander (1986)

and Wunsch (2005). The loop model has been shown to

describe centennial variability of the THC (Winton and

Sarachik 1993; S�evellec et al. 2006). One of the versions

of the loopmodel was formulated for three variables: two

salt gradients and the overturning circulation strength

(Dewar and Huang 1995, 1996; Huang and Dewar

1996). Being analogous to waterwheel models where

water is replaced by salt, this model showed chaotic

behavior (Strogatz 1994). Here, we will start with this

version of the loop model but will add a new term

representing a steady component of the overturning

circulation driven by mean temperature gradients and

surface winds.

a. Model equations

The model three variables are the varying component

of the ocean meridional overturning v and the vertical

(bottom–top) and meridional (north–south) salinity

gradients, SBT and SNS, respectively, each depending on

time t. We assume that the steady component of the

circulation V0 is set by the mean oceanic temperature

gradients and surface winds, and the variable part of

circulation v is controlled by variations in salinity gra-

dients. The total overturning is V 5 V0 1 v, where V,

V0, and v are measured in the units of yr21, which re-

flects the ocean overturning rates. (See appendix A for

the model derivation starting from the zonally averaged

equations of motion for the ocean circulation and the

main approximations.) The model equations connecting

these variables are as follows:

dtv52lv2 �bSNS , (1a)

dtSBT 5 (V01v)SNS2KSBT1
F0S0
h

, and (1b)

dtSNS 52(V01v)SBT 2KSNS . (1c)

The first equation describes the momentum balance,

in which the rate of change of the ocean overturning is

set by the buoyancy torque with the coefficient � and

a linear friction with the coefficient l, and b is the haline

contraction coefficient. The two other equations de-

scribe the evolution of the salinity gradients driven by

advection, linear damping (with the coefficient K), and

the surface salt flux F0S0/h, where F0 is freshwater flux

intensity, S0 is a reference salinity, and h is the loop

depth or thickness (more exactly the depth of the level

of nomotion for the baroclinic flow). Particular values of

the parameters are given in Table 1. For simplicity, we

use virtual salt rather than freshwater fluxes.

The use of a constant V0 for the thermally and wind-

driven circulation is a key approximation in our model,

which assumes that, to the leading order, the atmo-

spheric equator-to-pole temperature gradient is fixed

(set by different insolation at the poles and at the

equator), as is the meridional temperature gradient in

FIG. 1. A schematic diagram mapping (a) the North Atlantic

overturning circulation onto (b) the loop model. The heavy solid

lines represent the surface ocean circulation. The two collimate

dashed lines in (a) show the deep-ocean return flow implicit in the

loop model. The variable u is the angle coordinate positive for

counterclockwise motion and measured from the bottom of the

ocean, h is the loopmodel characteristic depth or thickness (i.e., the

depth of the level of no motion for the baroclinic flow), and V0 is

the steady component of the overturning circulation induced by

winds and the atmospheric meridional temperature gradient. Sur-

face freshwater fluxes are also shown.
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the ocean. This approximation is based on the quick

adjustment time scales of the atmospheric dynamics

(a fewmonths to a few years) as compared to the ocean

overturning time scales (hundreds to thousands of

years). The fixed oceanic temperature gradient, and

the fixed winds, drives a constant overturning circula-

tion in the ocean. (The assumption of steady thermal

gradients could be relaxed by introducing two more

equations for the ocean vertical and meridional tem-

perature gradients and modifying the momentum

balance appropriately.)

For a nonzeroV0, the model equations are now able to

describemillennial variability with a deterministic chaotic

behavior (Fig. 2). Understanding this variability and

predicting regime shifts within the model is our next goal.

b. Steady states

Using the set of equations in (1), we easily determine

that the system’s steady states (dt [ 0) are given by

2

�
�b

l

�2
SNS

3
1 2V0

�b

l
SNS

2

1

�
2V2

01
F0S0
h

�b

l
2K2

u

�
SNS1V0

F0S0
h

5 0, (2a)

v52
kb

k
SNS, and (2b)

SBT 5
V01v

K
SNS 1

F0S0
hK

, (2c)

where v, SBT, and SNS represent the overturning circu-

lation and the vertical and horizontal salinity gradients

for the steady state. [Note that the existence of a non-

zero steady-state circulation in the absence of vertical

mixing does not contradict the ideas of Sandstr€om

(1908), since this circulation could be very shallow.]

TABLE 1. Parameters of the loop model.

Parameter Value Definition

h 1000m Depth of the level of no motion

(i.e., the loop thickness)

V0 22.5 3 1022 yr21 Thermally and wind-driven

circulation component

F0 1myr21 Freshwater flux intensity

S0 35 psu Reference salinity

l 1022 yr21 Friction coefficient

� 0.35 yr22 Buoyancy torque coefficient

K 1024 yr21 Laplacian eddy diffusion

coefficient

b 7 3 1024 psu21 Haline contraction coefficient

FIG. 2. Integration of the loopmodel. (a) Circulation intensity in themodelV, as a function of

time and (b) the corresponding power spectra for two different (randomly chosen) sets of initial

conditions, for the reference freshwater flux intensity (1myr21).
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Applying a linearization yields a set of equations for

small perturbations around these steady states as

dt

0
BBBBB@

~v

~SBT

~SNS

1
CCCCCA5

0
BBB@

2l 0 2�b

SNS 2K V0 1v

2SBT 2V02v 2K

1
CCCA
0
BBBBB@

~v

~SBT

~SNS

1
CCCCCA , (3)

where (~v, ~SBT, ~SNS)5 (v, SBT, SNS)2 (v, SBT, SNS) are

anomalies of the state vector. The conventional linear

stability analysis yields the following equation for the

system’s eigenvalues g:

g 31 (l1 2K)g 21 [(V0 1v)21K21 2lK2 �bSBT]g

1 l[(V01v)21K2]2 �b[SNS(V01v)1 SBTK]5 0.

(4)

Analyzing these equations while using the freshwater

flux intensity F0 as a control parameter, we obtain several

important results. First, for very low values of the fresh-

water flux (F0, 0.6 cm yr21), there exists a single stable

steady state (Fig. 3a). It corresponds to a solution

largely dominated by the thermally and wind-driven

circulation (V ’ V0) with a small contribution from

salinity.

The freshwater flux intensity equal to approximately

0.6 cm yr21 gives rise to an imperfect supercritical

pitchfork bifurcation in the system. After that there exist

two other steady states, which are both unstable. A

second bifurcation occurs at approximately 1.6 cmyr21,

that is, a subcritical Hopf bifurcation, transforming the

stable steady state into an unstable one.

After this bifurcation (for higher values of the

freshwater flux), the system has three unstable steady

states: a state with zero v, controlled by the balance

between salt diffusion and the surface freshwater

forcing, and two other states where the dominant bal-

ance is between advection and the freshwater forcing.

The latter two (unstable) steady states are analogous,

to some extent, to the thermal and haline (stable)

steady states of the Stommel model (Stommel 1961).

Depending on the sign of v, the total flow can be

greater or smaller than V0. Setting V0 5 0 (i.e., ne-

glecting both wind- and thermally driven circulations)

would lead to the classical results of the rotating wa-

terwheel (Strogatz 1994), that is, a perfect supercritical

pitchfork bifurcation followed by two subcritical Hopf

bifurcations.

c. The model homoclinic orbit and route to chaos

In the regime with three unstable steady states, nu-

merical integrations of (1) reveal the existence of a ho-

moclinic orbit in the model phase space, that is, an orbit

connecting an unstable steady state to itself. The period-

icity of this orbit has amillennial time scale, and it appears

through a global bifurcation leading to an infinite period

at the bifurcation point (Strogatz 1994; Dijkstra 2000).

The period of the oscillation corresponding to this orbit

follows a 22/3 power law as a function of the distance to

the bifurcation (in terms of the freshwater flux intensity;

FIG. 3. (a)A bifurcation diagram for the steady states of the loopmodel showing the circulation intensity as a function of freshwater flux,

for the reference value of the constant overturning circulation parameter (V0522.53 1022 yr21). The pitchfork andHopf bifurcations on

the diagram are denoted by letters P andH, respectively. (b),(c) The period of the millennial oscillations in kiloyears (kyr) as a function of

freshwater flux intensity after the Hopf bifurcation (the dashed lines correspond to the best power-law fit of 22/3). The period goes to

infinity at the bifurcation point. It is the occurrence of this Hopf bifurcation that enables the millennial oscillation.
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see Fig. 3), whereas the amplitude of the oscillation does

not change. These characteristics of the millennial oscil-

lation are consistent with the previous analysis of a zonally

averaged latitude–depth model (S�evellec et al. 2010) and

of another idealized model (Colin de Verdi�ere 2007).

The millennial oscillation could be described as rapid

switches between the on and off phases of the AMOC

(negative and zero values of V after centennial vari-

ability has been filtered out, respectively), characteristic

of a relaxation oscillation (Winton and Sarachik 1993;

Winton 1993, 1995; Cessi 1996; Sakai and Peltier 1999;

Colin de Verdi�ere et al. 2006). During the on phase,

a centennial oscillation with an advection-related period

of 2p/V; 250 yr (which is an essential part of themodel

variability) acts to increase the meridional salinity

gradient until the circulation stops, V ’ 0 (S�evellec

et al. 2006). During the off phase, the surface fresh-

water flux slowly reduces the vertical salinity gradient

until the stratification becomes unstable and the cir-

culation restarts. In contrast to previous studies (e.g.,

Winton and Sarachik 1993; S�evellec et al. 2010; Colin

de Verdi�ere 2007), the unrealistic overshoot of the

circulation during its reactivation, on the order of 100 Sv

(1Sv [ 106m3 s21) over a few centuries during the so-

called flushing events, is absent in the loopmodel. The off

state is related to the weak circulation regime identified

by S�evellec and Fedorov (2011), wherein heat and

freshwater transports are primarily carried on by hori-

zontal diffusion.

In the most realistic regime (V0 5 20.025 yr21, F0 5
1myr21) the loop model shows a chaotic behavior. In

this regime, the system state clearly depends on the

initial conditions (Fig. 2a). The model variability dis-

plays both centennial and millennial frequencies (Fig.

2b). However, the spectral peak corresponding to

millennial variability is rather broad. This indicates

that the models behavior follows not a limit cycle but

a strange attractor. In such a regime, phase trajectories

move like ‘‘a ball in a pinball machine’’ (Strogatz 1994).

This chaotic behavior of the AMOC can be compared

to the dynamics of atmospheric convection described

by the Lorenz (1963) attractor; in fact, discussing the

sensitivity of trajectories to initial conditions, we could

even refer to a ‘‘shrimp effect’’ instead of the well-

known butterfly effect.

Now that we have studied the bifurcation structure of

the model behavior, we will use the model’s most re-

alistic setting (V0 5 20.025 yr21, F0 5 1myr21) to in-

vestigate what controls the timing of the circulation

shutdown. Two questions will be addressed: in the cir-

culation on phase, could we predict (i) the time left

before the shutdown and (ii) the duration of the in-

coming off phase?

3. Methodology and results: Predicting AMOC
regime shifts

In a recent study, Evans et al. (2004) has demonstrated

that a prediction of regime change is possible in the

famous Lorenz model (Lorenz 1963; Saltzman 1962).

Perturbing the model chaotic trajectories by instanta-

neous random perturbations, the authors of that study

showed that the growth of these perturbations may in-

dicate the impending regime change, which gives an

example of a qualitative prediction in a chaotic system.

They also showed that longer durations of the pertur-

bation growth before the regime change are associated

with longer durations of the next regime. However, their

quantitative prediction had a strong uncertainty.

In the present paper, we will follow a similar philoso-

phy but apply a less ad hocmethodology to perturbmodel

trajectories, a methodology based on a generalized sta-

bility analysis (Farrell and Ioannou 1996a,b) as applied to

our loop model. The generalized stability analysis allows

finding perturbations with a structure optimal (or most

efficient) for perturbing the AMOC in a linear frame-

work (appendix B). We will demonstrate that the growth

of the optimal perturbations provides a precursor of the

AMOC change (Palmer 1999), which can be used for

both qualitative and quantitative prediction.

a. Qualitative prediction

As a first step, we introduce the optimal perturbation

growth parameter g, giving the growth rate of the per-

turbations that induce the maximum change of ocean

meridional overturning (see appendix B for the exact

mathematical definition). This parameter g is a local in-

time diagnostic computed over time scales (t 5 20 yr)

significantly shorter than the characteristic time scales of

the loop model (;250 yr and;2 kyr). It varies along the

system trajectories in the phase space and helps identify

the regions of the attractor where a perturbation grows

(g. 0) or decays (g, 0) (see Fig. 4). In the latter regime,

small disturbances have no significant impact on the

system long-term evolution, while in the former regime,

g sets the bounds on the error growth in the system.

Computing this growth parameter in the model phase

space reveals a cylindrical symmetry, that is, a radial

symmetry on the plane (SBT, SNS) for a constant V
(Fig. 4d). Thus, despite the chaotic nature of the strange

attractor, the growth parameter g shows a regular

structure. The axis defining the cylindrical symmetry

(V constant) crosses SBT ’ 20.5 psu and SNS ’ 0.5 psu

(defining the center of stability, i.e., the minimum of

perturbation growth). This offset between the center of

stability and the steady state implies that, during the on

phase, the perturbation growth is greater for high values
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of salinity gradients (SBT . SBT and, but less signifi-

cantly, SNS . SNS) and low values of circulation intensity

(V.V).

In summary, a close qualitative relationship between

the growth of perturbations and the time left before the

shutdown of the AMOC (Fig. 4a) exists. In other words,

the closer we are to anAMOC shutdown, the stronger the

expected growth of optimal perturbations. This statement

suggests that our methodology has general qualitative

predictive skills even in the chaotic regime, which is

consistent with the previous idealized study ofEvans et al.

(2004). The next step is to investigate whether our ap-

proach has quantitative predictive skills as well. The key

question is whether one could use the optimal perturba-

tion approach to define a quantitative measure to assess

the temporal proximity and future duration of the

AMOC shutdown.

b. Quantitative prediction

To obtain proper statistics we have performed several

23 106-yr-long simulations. Each of the simulations has

about 1000 successions of on- to off-phase intervals (red

and blue, respectively, Fig. 5a). Next, using these simu-

lations, we will explore the quantitative predictability of

the system regime shifts.

1) PREDICTING THE TIME LEFT IN THE ON PHASE

To investigate the predictability of the regime shift,

we compare the time left in the on phase against the

perturbation growth parameter g. This comparison re-

veals a tight correspondence between the two variables

(Fig. 5b). Thus, we have arrived at a remarkable result—

any value of the growth parameter g corresponds to a

particular time left in the on phase, within an uncertainty

range. This result implies quantitative predictive skills:

the knowledge of the growth parameter g provides an

accurate prediction of the time left in the on phase.

Larger values of g suggest a quickly approaching AMOC

regime shift.

Despite this prediction skill, there is small uncertainty

that it depends on g (Fig. 5b). However, measured as the

standard deviation, this uncertainty decreases for higher

values of g (closer to the regime shift). Even the relative

error (standard deviation divided by the mean) decreases

with the growth parameter for g . 0.1 yr21. Conse-

quently, our prediction becomesmore andmore accurate

close to the regime change.

2) PREDICTING THE DURATION OF THE INCOMING

OFF PHASE

To investigate the quantitative predictability of the

time the systemwill stay in the off phase, we use a slightly

different procedure. For each on-phase interval, we find

the maximum growth parameter G along the phase–

space trajectory (stars in Fig. 5a): G 5 max(g)jon-phase.
This parameter corresponds to the most unstable part

of the trajectory and gives the maximum possible growth

rates of optimal perturbations during each on-phase

interval.

FIG. 4. One realization of the time integration of the loopmodel in the chaotic regime showing (a) the circulation intensity, (b) the bottom–

top salinity gradient, and (c) the north–south salinity gradient. (d) The corresponding strange attractor of themodel. Colors indicate the value

of the growth parameter g along the model trajectories following (B9): blue and green correspond to the stable part of the trajectory (g# 0),

yellowand red correspond to the unstable part (g. 0). Blue and green indicate negative value of g smaller and greater than 1/2 of theminimum

of g, respectively; and yellow and red indicate positive values of g smaller and greater than 1/2 of the maximum of g, respectively. Horizontal

dashed lines in (a)–(c) and black dots in (d) denote two of the three unstable steady states (around which the trajectory wanders).
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Plotting the time spent in each off phase as a function

of G evaluated over the preceding on-phase interval

reveals a very good correspondence between the two

variables (Fig. 6a). In fact, each G is associated with

a unique duration of the next off-phase interval, which

suggests a high level of predictability. In other words,

knowing G for an on-phase interval gives an accurate

prediction for the total duration of the next off phase.

The prediction accuracy exceeds 98% (this number is

given by the fraction of predictions that fit into the

general pattern of Fig. 6a).

To understand why the time spent in the next off

phase and the maximum growth parameterG during the

preceding on phase are related, we should first look at

what controls G. Plotting the three model variables, V,

SBT, and SNS, at the time of the maximum perturbation

growth as a function of G reveals that this parameter is

most closely related to SBT (Fig. 6). The connection ofG

to V and SNS is more uncertain and is affected by the

chaotic behavior of the system. With a perfect knowl-

edge of G we are able to obtain the value of SBT with

a less than 0.1% uncertainty, but we were able to obtain

the values of V or SNS with a 4% and 12% uncertainty,

respectively. In general, the close relation between the

maximum growth parameter G and each of the three

variables at the time of the maximum perturbation

growth is an important result.

Now we are ready to discuss the relation between G

and the off-phase duration and its different regimes.

First, for large values ofG, ocean circulation is weak but

vertical stratification is strong (Figs. 6b,d). According to

Fig. 5b, large values of G should lead to a rapid shut-

down of the circulation, during which the ocean can

retain this strong stratification. Then, it will take a long

time to reduce this stratification by the surface freshwater

flux forcing before the circulation can resume, which

makes the time spent in the off phase quite long.

For low values of G, ocean circulation is strong and

stratification is weak (Figs. 6b,d). The time left before

the shutdown is rather long (Fig. 5b). The circulation

needs a sufficient time to slow down before the shut-

down.However, this rather long delay allows the building

of a strong ocean stratification before the shutdown of

the circulation through the interaction between the over-

turning flow and freshwater flux, that is, through the

positive salinity feedback (Marotzke 1996) and its oscil-

latory counterpart (S�evellec et al. 2006). Again, after the

shutdown, it will take a long time to reduce this stratifi-

cation before the circulation can resume.

For intermediate values of G, the shortest possible

duration of the future off phase is achieved (dashed

vertical lines in Fig. 6a). This occurs because of the sat-

uration of the north–south salinity gradient (Fig. 6c),

which sustains the circulation. Over this saturation value,

the ocean circulation is too fast, and the salinity gradients

cannot increase any longer through the positive salinity

feedback (Marotzke 1996; S�evellec et al. 2006), which is

consistent with Stommel’s model (Stommel 1961).

FIG. 5. (a) Intensity of the circulation as a function of time, for F0 5 1myr21. Colors represent the regime change between the

circulation on phase (red) and off phase (blue). The on and off phases are defined, after applying a 100-yr running mean to the circulation

intensity, as intervals with V smaller and greater than 20.03 yr21, respectively. The stars indicate the time when the maximum growth

parameter, G 5 max(g)jon-phase, is reached during the on phase. (b) Time left in the on phase as a function of the growth parameter g,

defined in (B9). The solid line represents the mean values and the dashed lines show plus or minus one standard deviation range. This

panel provides an empirical law that can be used for predicting the time left in the on phase. Note that large values of g indicate an

imminent collapse of the AMOC within a few decades.
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4. Conclusions

In this work we have developed an idealized model of

ocean overturning circulation, which reproduces mil-

lennial variability as a relaxation oscillation controlled

solely by internal oceanic processes. This oscillation is

characterized by rapid transition (that occurs over just

a few decades) between two different phases of the

AMOC. Our model is based on modified rotating water-

wheel equations (Strogatz 1994), representing the ocean

overturning circulation as a sum of two components—

a constant component representing the thermally and

wind-driven circulation and a time-varying component

driven by variations in the vertical and horizontal salinity

gradients (Howard 1971; Malkus 1972). This represen-

tation allows our model to describe a multiequilibrium

regime characteristic of the thermohaline circulation

(Stommel 1961). Despite the model simplicity, it exhibits

a rich chaotic behavior qualitatively consistent with the

characteristics of the Dansgaard–Oeschger events in the

paleorecords.

To understand the behavior of the model we have

obtained its bifurcation diagram by varying the fresh-

water flux intensity F0. As F0 increases, the bifurcation

diagram reveals a pitchfork bifurcation (where a single,

stable steady state splits into two stable states and one

unstable state). This pitchfork bifurcation is perfect if and

only ifV0 5 0 and imperfect otherwise, which introduces

FIG. 6. (a) Total duration of the oncoming off phase as a function of the maximum perturbation growth parameterG, estimated during the

on-phase interval. This parameter is obtained for times indicated by stars in Fig. 5a. This plot provides an empirical law that can be used for

predicting the duration of the next off phase. (b)–(d) The circulation intensity for the north–south, and bottom–top gradients of salinity at the

times of themaximumgrowth as a function ofG for each of the onphases in the simulations. The horizontal solid line in (c) indicates the average

saturation value of the north–south salinity gradient. The vertical dashed lines in (a) and (c) show the value ofG corresponding to the shortest

possible duration of the on phase in this parameter range. Note the tight relation between G and the vertical salinity gradient in the model.
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asymmetry in the system behavior for V0 6¼ 0. For suffi-

ciently strong F0 (.2 cmyr21) and any V0, the steady

states become unstable through a subcritical Hopf bi-

furcation. It is after this second bifurcation that the mil-

lennial oscillation becomes possible. In this regime, the

freshwater flux induces a vertical salinity stratification,

which reduces density stratification. This result is con-

sistent with the work of Colin de Verdi�ere and te Raa

(2010) andArzel et al. (2010), who stressed the importance

of the weak ocean mean stratification for the existence

of millennial variability in ocean–atmosphere coupled

models.

This oscillation, which is a 3 degree of freedom oscil-

lation, is described by a homoclinic orbit in the phase

space emerging in the absence of any stable steady states.

The orbit period depends on the distance to the bi-

furcation as a22/3 power law (as a function of freshwater

flux). This implies that exactly at the bifurcation point the

period of the homoclinic orbit is infinitely long, which is

consistent with previous studies (Colin de Verdi�ere 2007;

S�evellec et al. 2010).

For realistic parameters (F0 5 1myr21 and 2p/V0 ’
250 yr), the model exhibits a chaotic behavior (corre-

sponding to positive Lyapunov exponents), and the

system trajectories in the phase space follow a strange

attractor. In this regime, with a strong sensitivity to the

initial conditions, small oceanic perturbations can po-

tentially lead to a shutdown of the AMOC (the shrimp

effect).

The power spectrum of the model time integration in

this realistic parameters regime has a broad peak in the

millennial band, consistent with the available data

(Wunsch 2000), as well as weaker peaks at centennial

frequencies. Furthermore, our idealized model is able to

represent the irregular strengthening and weakening of

the AMOC, typically associated with the D–O events,

driven solely by internal oceanic processes (without

external noise or any time-dependent forcing).

The chaotic properties of our idealized model make

it a useful tool to test predictability of the AMOC

collapse. To that end, we applied a generalized stability

analysis, imposing instantaneous linear optimal per-

turbations along phase trajectories and evaluating the

AMOC intensity after a given time delay (20 yr). This

analysis shows higher growth rates of the optimal per-

turbations prior to the circulation collapse, indicative

of qualitative skills to predict and track the AMOC

collapse.

To make this analysis more quantitative, we have

introduced a perturbation growth parameter g to show

the existence of an empirical law relating, within a

small uncertainty, the time left before the AMOC col-

lapse to this parameter.We have also established another

empirical law connecting the maximum amplitude of

this parameter during the on phase,G5max(g)jon-phase,
to the total duration of the subsequent off phase (i.e.,

the time lapse between the collapse and recovering of

the AMOC). As soon as these laws are established we

do not need to run the model anymore to predict the

timing of the next collapse and recovery of the AMOC.

Computing these two parameters, g andG, will provide

these predictions.

Our study has also shown that the maximum per-

turbation growth parameter is tightly linked to ocean

vertical stratification (and not the intensity of the

AMOC or the north–south salinity gradient). In other

words, in a 3 degree of freedom model, only one variable

of themodel affects the prediction of theAMOCcollapse.

The predictive skill of the salinity stratification needs

to be tested further in more realistic models exhibiting

millennial oscillations, including zonally averaged ocean

and coupledmodels (S�evellec et al. 2010;Colin deVerdi�ere

and te Raa 2010) and intermediate coupled models (Arzel

et al. 2010).

The crucial role of the salinity stratification, in the

context of the AMOC collapse, has been investigated

in a range of coupled models by Huisman et al. (2010)

and Cimatoribus et al. (2013). These studies suggested

that the meridional freshwater transport is an indicator

of the AMOC bistable regime, so that a decrease of

the ocean salinity stratification increases the possibility

of an AMOC collapse. Unlike our study, these studies

are exclusively in a steady state context, so direct

comparisons are not possible.

Since it is nearly impossible to monitor the full tra-

jectory of the actual ocean, the generalization of our

results could be particularly significant: to monitor

a potential collapse of the AMOC, we might not need to

know the entire state of the ocean, but rather its specific

indices, even though the choice of these indices is not

straightforward. Even in our idealizedmodel, before the

full analysis of the model sensitivity to optimal pertur-

bations, it was not obvious if one parameter was sufficient

to anticipate the AMOC collapse or which particular

parameter. Nor is it clear how many indices have to be

monitored in a more realistic system. This highlights the

need to perform such an analysis in more complex cases.

Its implementation in ocean general circulation models

will be a goal of our future work.
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APPENDIX A

Derivation of the Idealized Model

To derive the idealized ocean model, we start with

a description of the AMOC dynamics commonly used in

2D (latitude–depth) zonally averaged models (e.g.,

S�evellec and Fedorov 2011). This approximation in-

vokes a linear frictional balance that relates the over-

turning mass transport to the meridional gradient of

baroclinic pressure (e.g., Wright and Stocker 1991, 1992).

In this paper, we simplify the dynamics further going

from 2D to one dimension (1D). To do so, we neglect the

deformation of the overturning flow and only consider

its rotational part. This can be achieved by following

a single streamline of the AMOC. In such an approach,

shallow and deep circulations become virtually indis-

tinguishable. Nevertheless, this simplification still allows

an accurate representation of both the positive salinity

feedback (Marotzke 1996) and the centennial variability

of the THC, as demonstrated by S�evellec et al. (2006).

These two processes are crucial for themillennialAMOC

variability as discussed in section 2c and in S�evellec et al.

(2010).

To express these ideas mathematically, it is conve-

nient to place ourselves in the center of the ocean basin,

so that we are inside the simple, closed curve formed by

the streamline (Fig. 1). We introduce the angle u, posi-

tive for counterclockwise motion and measured from

the bottom of the ocean, as the new spatial coordinate.

Then, the density gradient can be expressed as a buoy-

ancy torque, while the flow intensity will not vary with u

(since the flow is incompressible). Following a linear

frictional balance, this leads to an equation describing

the changes in the overturning circulation:

dtVTHC52lVTHC 2 �

ð2p
0

du
r

r0
sinu , (A1)

where u is the angle around the loop, VTHC is the ther-

mohaline circulation intensity, l is a friction coefficient,

and � is a proportionality factor between the overturning

circulation and the buoyancy torque.

Retaining an inertial term in the momentum balance

follows two arguments. (i) As shown by numerical cal-

culations of Johnson and Marshall (2002), the ocean

circulation does not adjust immediately to meridional

pressure gradient. Consequently, incorporating inertial

terms in zonally averagedmodel leads to amore realistic

variability (Drbohlav and Jin 1998). (ii) Mathematically,

there is no reason to exclude a long-term adjustment

due to the inertial term. One could expand ›t 5 ›t0 1
s21›t1 1s22›t2 1

. . . , where s is a small parameter

(�1), using a scale separation between different ocean

processes (t 5 t0 1 st1 1 s2t2 1 . . .). For example, even

when the initial east–west adjustment is completed, the

system can still undergo further adjustment on longer

time scales.

Using a linear equation of state of seawater and as-

suming that thermally driven component of the ocean

circulation is always in a steady state (controlled by fast

atmospheric processes) we obtain

dtv52lv2 �

ð2p
0

dubS sinu, and (A2a)

VT 5
�

l

ð2p
0

duaT sinu , (A2b)

where v and VT are the haline and thermally driven

circulations (such thatVTHC5 v1VT), and a and b are

the thermal expansion and haline contraction co-

efficients, respectively. In the loop model we can also

add a third term for the circulation representing the

effect of the winds VW. This term derives from the sur-

face boundary conditions. We thus obtain that the con-

stant overturning flow is V0 5 VW 1 VT, and the total

circulation isV5V01 v. This separation, which is used

operationally to monitor the AMOC [Rapid Climate

Change (RAPID); Hirschi and Marotzke 2007], is pos-

sible because of the linearity of the momentum equation.

Further, we use this total circulation in the advective–

diffusive equation controlling the evolution of salinity in

the loop:

›tS1V›uS5K›2uS1F S0
h
, (A3)

whereK is the Laplacian eddy diffusion coefficient, F is

the freshwater flux, and h is the loop thickness or depth.

The periodicity of the loop implies that the spectrum

of the solutions is discrete in terms of u and allows the

following Fourier decomposition:

S(t)5<
�
�
n2N

Sn(t)e
inu

�
, (A4)

where< indicates the real part, with a reverse projection

Sn5 Srn 1 iSin 5
1

2p

ð2p
0

duSe2inu , (A5)

where the subscripts r and i stand for the real and imag-

inary parts, respectively. Since the freshwater forcing

cannot impactmodeswithn 6¼ 1 (no projection onto these

modes), we restrict our consideration to the first mode

(no sources of potential energy are available for other

modes and hence they thus have only trivial solutions).
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Using notations SNS 5 Si1 and SBT 5 Sr1, to explicitly

represent the north–south and bottom–top salinity gra-

dients, we now arrive at the incompressible loop model

equations rewritten as the following:

dtv52lv2 �bSNS , (A6a)

dtSBT 5 (V01v)SNS2KSBT 1
F0S0
h

, and (A6b)

dtSNS 52(V01v)SBT 2KSNS . (A6c)

The time integration of the model equations follows

a fourth-order Runge–Kutta method. Two initial con-

ditions, randomly chosen in the phase space of the

model, are used to plot Fig. 2 (black and red lines). This

allows the testing of the system’s sensitivity to initial

conditions and, at the same time, demonstrates the de-

terministic chaotic behavior in the model.

APPENDIX B

Computing Optimal Perturbations

To compute the optimal perturbations we first define

jUi5

0
B@

v

SBT
SNS

1
CA , (B1)

where jUi is model along a the trajectory.We also define

hUj associated with the Euclidian norm: hU jUi (a scalar
product).

The prognostic equations in (1) can be rewritten as

a general autonomous dynamical system:

dtjUi5N (jUi) , (B2)

where N is a nonlinear operator.

Next, we define the anomalous state vector as a per-

turbation to the model trajectory:

jui5

0
B@ v0

S0BT
S0NS

1
CA , (B3)

where jui is the anomalous state vector, v0 is the

anomaly of circulation intensity, S0BT is the anomaly of

the bottom–top salinity gradient, and S0NS is the anomaly

of the north–south salinity gradient.

The time evolution of the perturbation is described by

dtjui5A(t)jui, A(t)5
›N
›jUi

����
jU(t)i

, (B4)

where A(t) is the Jacobian matrix evaluated for a par-

ticular value jU(t)i. Integrating this equation from initial

time ti to the final time tf, we obtain jui as a function of

time (Farrell and Ioannou 1996b) as

ju(tf )i5M(tf , ti)ju(ti)i , (B5)

where M(tf, ti) is the nonautonomous propagator of the

linearized dynamics from time ti to tf.

To define linear optimal perturbations, we also need to

define the optimality and choose a measure to maximize.

Here, following S�evellec et al. (2007), as the measure

we use the anomalous circulation intensity:v0 5 hF j u(tf)i,
with hFj5 (1, 0, 0). Finally, we need to define a norm that

will ensure nondegenerate solutions for optimization in

a linear framework. For this norm we choose

hu(ti)jSju(ti)i5v021
�
b�

l

�2

(S02BT 1S02NS) , (B6)

where S is the operator defining the inner product as-

sociated with this particular norm.

Subsequently, the linear optimal perturbations are

obtained using a Lagrangian function that allows us to

maximize the anomalous circulation intensity under the

constraint of a normalized initial perturbation (S�evellec

et al. 2007):

L(ti, t)5 hF j u(ti 1 t)i2 n[hu(ti)jSju(ti)i2 1], (B7)

where n is a Lagrangian multiplier and t 5 tf 2 ti is the

duration (i.e., the delay after which the impact of the

initial perturbation is assessed). The solution of the max-

imization problem is given by the condition dL(ti, t) 5 0.

Applying this condition, we find the linear optimal per-

turbations as

juoptt
i
i5 6

S21My(ti, ti1 t)jFiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF jM(ti 1 t, ti)jS21jMy(ti, ti 1 t)jFi

q , (B8)

where y denotes the adjoint defined through the scalar

product.

Using this expression, we now define the linear growth

parameter of the optimal perturbation g at a particular

time along the trajectory ti as

g(ti)5
1

t
ln

huoptt
i
jMy(ti, ti 1 t)jSjM(ti 1 t, ti)ju

opt
t
i
i

huoptt
i
jSjuoptt

i
i

" #
.

(B9)

This parameter shows how much the norm of the linear

optimal perturbation will grow for the specified time

delay t. For our computations we choose t 5 20 yr;
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testing other values of t shows no qualitative changes to

the results. The only constraint we impose is that this

time scale be significantly shorter than the characteristic

time scales of the loop model dynamics (;250 yr and

;2 kyr), which makes g a local in-time diagnostic.
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