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ABSTRACT 
Improving water quality is of global concern, with agricultural practices being the major 
contributors to reduced water quality. The reuse of nutrient-rich drainage water can be a 
valuable strategy to gain economic-environmental benefits. However, currently the tools and 
techniques to allow this do not exist. Therefore, we have proposed a framework, WQMCM, 
which utilises increasingly common local farm-scale networks across a catchment, adding 
provision for collaborative information sharing. Using this framework, individual sub-networks 
can learn their environment and predict the impact of catchment events on their locality, 
allowing dynamic decision making for local irrigation strategies. Since resource constraints of 
network nodes (e.g. power consumption, computing power etc.) require a simplified predictive 
model for discharges, therefore low-dimensional model parameters are derived from the 
existing National Resource Conservation Method (NRCS), utilising real-time field values. 
Evaluation of the predictive models, developed using M5 decision trees, demonstrates accuracy 
of 84-94% compared with the traditional NRCS curve number model. The discharge volume 
and response time model was tested to perform with 6% relative root mean square error 
(RRMSE), even for a small training set of around 100 samples; however the discharge response 
time model required a minimum of 300 training samples to show reasonable performance with 
16% RRMSE 
 
INTRODUCTION 
 
Water quality degradation in a catchment is mainly attributed to outdated agricultural practices. 
Excessive or poorly timed application of irrigation water and fertilizer result in nutrient fluxes 
into the water system with main issues being due to phosphorous (P) and nitrogen (N) losses 
(EPA [1]). In addition, the inherent inefficiency of nutrient uptake by crops (up to 50% for N 
and 10% uptake for P) renders nutrient outflows inevitable. This implies that adopting a 
reutilization mechanism of drainage and nutrients within the farm system can prove to be a 
valuable strategy to manage these outflows before they end up in rivers (Harper [2]). However, 
it is challenging to make valid predictions about these outflows (what and when to expect). 

Over recent years, wireless sensor networks (WSNs) have received considerable attention 
in precision agriculture, due to their low cost and real time data availability. It is believed that, 
despite their limitations, there is huge potential for leveraging existing networked agricultural 



activities into an integrated mechanism by sharing information about discharges and predicting 
their impact (Zia et al. [3]). However, there is no framework to investigate and implement such 
a mechanism. The authors have proposed a framework, WQMCM, which utilizes collaboration 
among networks in a catchment to investigate and enable such a mechanism (Zia et al. [4]). The 
basic architecture comprises modules to enable individual networks to learn its environment by 
correlating neighbor’s events with events within their own zone, predict their impact in terms of 
discharges and runoffs and then adapt the local monitoring and management strategy. This 
paper focuses on the development and evaluation of the discharge prediction model.  

For the prediction of discharges, various physical and mathematical hydrological models 
have been developed. Although popular in research, their dependence on acquiring numerous 
input parameters, the need for calibration, and the tremendous computational burden involved 
in running the models makes wide-spread application complicated and difficult for sensor 
networks (Basha et al. [5]). Furthermore, for implementing the WQMCM framework, 
constraints are associated with the practicality of information sharing among neighbors and the 
transmission costs linked with sharing high-dimensional input parameters for the predictive 
models. Therefore, a computing model running on WSNs for the WQMCM framework, 
requires a simplified underlying physical model, based on fewer and, ideally, real-time field 
parameters acquired autonomously. In this respect, data-driven techniques based on machine 
learning, are becoming increasingly popular in hydrological modelling (Solomatine et al. [6]), 
and feature low computational complexity. In this paper, we use a popular NRCS curve number 
model as a basis for deriving and evaluating simplified model parameters. We use an M5 
decision tree machine learning algorithm to generate the predictive models based on proposed 
parameters. The effect of different feature sets and training sizes, on the prediction performance 
of the models, are evaluated and discussed. 
    

 
Figure 1: A) A discharge hydrograph, B) Predictive model for hydrograph dynamics 
 
MODEL SIMPLIFICATION FOR A DISCHARGE PREDICTIVE MODEL 
 
A runoff or drainage discharge is represented using a hydrograph as shown in Figure 1A. For 
the WQMCM framework, the parameters of interest for discharge dynamics are ‘Q’, ‘t1’ and 
‘td’. These parameters provide information about the depth and timing of the expected 
discharges.  Individual learning models are developed to obtain ‘Q’, ‘t1’ and ‘td’, as shown in 
Figure 1B, for which we first derive the model parameters in the following. 
 
Mathematical Model for ‘Q’  
One of the most popular methods to estimate the volume of surface runoff for a given rainfall 
event, is the  NRCS Curve Number method (Hawkins et al. [7]). Using this method, Q is 
computed as follows;  









+

















10-1000 0.8

10-1000 0.2 -
=

2

CN
P

CN
P

Q                                                                                             (1) 

      Where, P is the rainfall depth and CN is a coefficient reducing the total precipitation to 
runoff potential after surface absorption (with values in the range 0-100). The higher the CN 
coefficient, the higher is the runoff potential. It is computed considering the type of land use, 
land treatment, hydrological condition, hydrological soil group, and antecedent soil moisture 
condition (AMC). The volume of rainfall either retained in surface depressions or lost through 
evaporation or infiltration, termed as the initial abstraction (Ia), is assumed to be 20% of the 
potential soil moisture retention (Hawkins et al.  [7]). 
 
Mathematical Model for ‘t1’ and ‘td’ 
As evident from Figure 1A, td is expressed as; 

pcd tTt +=              (2) 
      Where, Tc is time for runoff to travel from the furthest distance in the watershed to the 
location where Q is to be determined, and tp is the time to peak discharge. Typically there are 
three distinct runoff patterns in a watershed such as sheet flow, shallow concentrated flow, and 
channel flow. Numerical equations based on the underlying physical model are described 
below. 

( )
( ) ( ) ( ) ( ) 













+

5.0
3
24.05.0

2

0.8

c

1.4936003600
+0.007=

sR

nL
V

L
SP

nLT                       (3) 

      Where, L is length (ft.) of flow pattern, n represents land cover, P2 is 2-year return period 24 
hour precipitation (in.) for a region, R is hydraulic radius (ft.), s is average ground slope (ft.-
vertical/ft.-horizontal), Tt  is travel time (hr.),  and V is average velocity (ft./s) of water.  
      As per the author’s best knowledge, there is no direct mathematical equation to express tp in 
the NRCS method. The other parameter required is t1, and once again there is no mathematical 
expression for this. However, both are extracted from hydrograph plots drawn using the 
convolution of incremental runoff depth and unit hydrograph flow rate for a specific region. 
The unit hydrograph is a hypothetical unit response of a watershed (in terms of runoff volume 
and timing) to a unit input of rainfall. It is specific to a particular watershed, rainfall distribution 
(RD), and  rainfall duration (Pd) such as 1-hour, 6-hour, or 24-hour (Shaw et al. [8]). 
 
Limitations in Mathematical Model: 
The NRCS method, although simpler than the other models, still presents a challenge of 
acquiring a variety of permanent and transient parameters for every field under observation to 
determine discharge dynamics (Eq. (1) and Eq. (3)). Under the WQMCM framework paradigm, 
sharing these parameters among networks is not practical as it incurs high transmission costs 
resulting in low battery life of the deployed sensors. Moreover, at the time the NRCS method 
was developed, due to the absence of remote and inexpensive sensing measures, proxy 
parameters, average values or manual observations were used to represent land conditions. An 
example is AMC, which is used to determine CN. This is represented by using the amount of 
rainfall received in the five days preceding the storm event, which is a subjective judgment, 



instead of a physical reality (Fennessey et al. [9]). In addition, type and extent of land cover, 
slope and land treatment etc., is determined by manual observation of the field, which limits 
autonomous monitoring and renders result prone to error. Furthermore, determining t1 and td is 
computationally intensive. This implies that low-dimensional model parameters are required 
which should take into account real time field conditions in an autonomous manner. 
 

 

Figure 2: Model simplification for a Q-predictive model 
 
Model Simplification for Q, t1 and td 

During the last decade the area of empirical modelling received an important boost due to 
developments in the area of WSNs and machine learning. It is anticipated that learning models 
yield low computational complexity. Here, the authors derive a simplified model based on the 
NRCS model. This simplification is based on two steps; firstly the transient parameters from the 
NRCS model parameters are selected for each of the predictive models for Q, t1 and td. This is 
because learning models are trained only on transient values. After this, the transient parameters 
are analyzed for likely improvements made possible by using WSNs. 
      For Q, model simplification is as shown in Figure 2. The transient parameters in the NRCS 
model are rainfall depth, past 5-day rainfall and land cover. With increasing adoption of WSNs 
in agriculture, it is more practical to use this technology to extract real field conditions for 
prediction. For example, methods such as field imaging and signal attenuation methods have 
been used to determine the plant biomass autonomously (Vellidis et al. [10]). This can be 
interpreted into the crop stage. Similarly, various applications have used sensors to monitor soil 
moisture conditions of the field for precision irrigation (Zia et al., Vellidis et al. [3, 11]). 
Therefore, it is proposed to use actual soil moisture values instead of the 5-day rainfall index.  
 

 
Figure 3: Soil moisture conditions in response to irrigation events in a field 
 
      In order to validate the limitation of 5-day rainfall index to represent AMC, we have 
analyzed season long data observed in a precision irrigation application, supplied by the 
University of Georgia (Vellidis et al. [11] ). The analysis shows that in many cases the soil 
moisture condition was measured as moderate, although the field did not receive any rainfall or 



irrigation in the last 5 days. Figure 3 plots a week long data of measured soil tension (represents 
soil moisture). Using the 5-day rainfall index, on 22nd July, dry soil conditions would be 
estimated, due to the fact that there was no rain in the preceding 5 days. However, the actual 
soil condition is measured as adequately saturated by the sensors. This leads to incorrect 
determination of drainage after a rainfall or irrigation. Therefore, rainfall, soil moisture and 
crop stage are proposed as the simplified model parameters for the prediction of Q (Figure 2). 
      As already discussed, for t1 and td, the mathematical model and convolution method requires 
various parameters and historical data (Figure 4). Firstly the transient parameters are selected 
which include rainfall duration (Pd), rainfall (P), surface roughness (n) and 2-year average 
rainfall (P2). This is further corroborated by analyzing an extensive set of simulated data (using 
NRCS based simulator, (Davis [12])) for which a routine in Matlab was written to extract t1 and 
td. The data indicated strong correlation of the selected transient parameters with t1 and td. This 
is because higher surface roughness inhibits flow rate and increases travel times. It is proposed 
in this thesis that crop stage may well represent the field roughness. Furthermore, instead of 
relying on historical data for estimating P2 and RD for every region, it is proposed to use actual 
soil moisture conditions. Simulation results can be used to evaluate the effect of this 
substitution on prediction accuracy of t1 and td. 
 

 
 
Figure 4: Model simplification for a t1 and td-predictive models 
 
SIMULATION AND RESULTS FOR HYDROGRAPH PREDICTVE MODELS 
 
Using machine learning algorithms, the models are trained on the historical data describing the 
phenomenon in question. Historical data includes known samples that are combinations of 
inputs and corresponding outputs. The learned model is then used to predict the outputs from 
the new input values. Here historical data is generated using a simulator, developed in Matlab, 
for a combination of various event depths and field conditions, which is based on the NRCS 
method (Davis [12]). The obtained data set is then modified to substitute CN with the proposed 
simplified model parameters of CS and SM. 
      The prediction accuracy of the learned models is tested using RMSE (Root Mean Square 
Error), 10-fold cross validation (CVRMSE), Relative RMSE (RRSME) and R squared value 
(R2). A good value for RMSE and CVRMSE is stated as half of the standard deviation value 
for the output data (Singh et al. [13]). This comes out as 1.3 for Q and t1, and 3.2 for td. Values 
of R2 and RRMSE can range between 0 and 1, where 1 means perfect forecasting. The value of 
RRMSE is represented as a percentage. The predicted models developed using different model 
parameters and training set sizes, are evaluated with test data to compare their performance with 
the NRCS model. For performance evaluation of these models, we use Matlab’s M5 decision 
tree toolbox (Jekabsons et al. [14]) and the Java-based Weka machine learning simulator (Hall 
et al. [15]). 



Q-predictive model  
For developing the model, a simple regression tree algorithm was first used to compare the 
performance with another, more advanced, algorithm - M5 decision trees [14]. For a small 
training set of 65 samples, the M5 model gives better performance (RMSE=0.317, R2=0.984, 
RRMSE=5.98%) when compared to the regression tree model (RMSE=0.915, R2=0.506, 
RRMSE=10%). Although the value of RMSE indicates that the regression tree model is also 
acceptable. However, the value of R2 indicates an extensive deviation of its predicted results; 
hence, the M5-tree algorithm was selected for further evaluation.  
 
Table 1: Performance of the predictive models based on various training sizes using M5 trees 
 

  Q-Predictive Model 
(P, CS, SM)  

t1-Predictive Model  
(Pd, P, CS, SM) 

td-Predictive Model 
(Pd, P, CS, SM)   

Training 
set size 250 125 65 450 300 100 450 300 100 
RMSE 0.159 0.234 0.317 0.239 0.318 0.825 0.2755 0.299 0.598 

R2 0.998 0.997 0.984 0.985 0.976 0.835 0.997 0.977 0.991 
CVRMSE 0.216 0.278 0.465 0.2935 0.381 1.042 0.3856 0.426 0.713 
RRMSE 5.7% 7.5% 5.98% 16.1% 16.8% 27% 5% 6% 8.2% 

 
      Figure 5A illustrates plots of predicted data for M5 tree models, calculated using the various 
models (see figure legend), against the output of NRCS mathematical model. The proposed 
model (P, CS, SM) shows an excellent match (R2=0.984, RRMSE=5.98%), however the 
predicted results of model developed using only P gives 30% RRMSE. Similarly, the 
performance of Q-predictive models generated using different training set sizes, based on the 
proposed parameters, is shown in Table 1. Figure 5 B) plots the result of test data for these 
models. Even a small training set of 65 samples retains the performance of the model. 

 
Figure 5: Plot of data predicted using Q-predictive models, generated using various A) model 
parameters and B) training sizes, against data measured using NRCS method 
 
t1-Predictive and td-Predictive model  
For t1, initially 450 training instances, based on the same model parameters as in Q model (P, 
CS, SM), were used to generate the model for the sake of comparison using M5 decision tree. 
However, the model performance was very poor with RMSE of 1.433, which is higher than the 
acceptable value of 1.3, and RRMSE as 65%,. This shows that the same model parameters 
cannot be used for t1. The new proposed parameters (Pd, P, CS, and SM) were then used to 
generate the model. This substantially improved the model performance (RMSE= 0.239, 
RRMSE=16.1%). This is further illustrated by plotting the result of predicted data using the 
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above two models against the NRCS model in Figure 6A. Furthermore, to evaluate the impact 
of training set size on prediction performance, models are generated, based on the proposed 
parameters (Pd, P, CS & SM). As shown in Table 1, model developed using a training set of 300 
shows reasonable performance (RMSE=0.318, RRMSE=16.8%). Although with 100 samples, 
the RMSE seems adequate (0.825), however the RRMSE increases to 27%. Therefore, although 
a training set of 65 samples gave good performance (RRMSE=5.98%) for Q model, similar 
results do not hold for t1, and more training samples are required.  
 

 
Figure 6: Plot of data predicted using t1-predictive models, generated using various A) model 
parameters and B) training sizes, against data measured using NRCS method 
       

 
Figure 7: Plot of data predicted using td-predictive models, generated using various A) model 
parameters and B) training sizes, against data measured using NRCS method 
 
      Similarly, for td, the plot shown in Figure 7 A) demonstrates that the results of the model 
developed using parameter set (P, CS, SM) and 300 samples fits poorly to a 1:1 ratio 
(R2=0.107, RRMSE=98%), as compared to the results of the model generated using Pd, P, CS, 
& SM (R2=0.997, RRMSE =6%). As compared to the t1-model, the td- model shows higher 
correlation of output with Pd. Similarly a comparison of prediction performance of M5 models 
developed using different training sets, based on Pd, P, CS &SM, is shown in Table 1. Unlike t1, 
even a small training set of 100 shows good correlation (R2=0.990, RRMSE =8%) as shown in 
Figure 7 B).  
CONCLUSIONS 
This paper has proposed that individual farm-scale networks can be integrated into a 
collaborative framework to support catchment-scale water quality monitoring and management 
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to learn and predict the impact of catchment events. This enables reutilization and timely 
control of nutrient outflows within the farm system. Since a computing model on a sensor 
network, for the implementation of the collaborative WQMCM framework, requires a 
simplified underlying physical model therefore, low-dimensional model parameters are derived 
from the existing NRCS method for the prediction of discharge dynamics. An M5 decision tree 
algorithm is used to develop predictive models for discharge volume (Q) and response timing 
(t1 and td), based on the proposed model parameters. Evaluation of these models has 
demonstrated high accuracy for Q and td (94%), even for a small training set of under 100 
samples. However, for t1, 300 samples are required to provide adequate performance (84%). 
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