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The choices and behaviours of individuals in social systems combine in unpredictable

ways to create complex, often surprising, social outcomes. The structure of these be-

haviours, or interactions between individuals, can be represented as a social network.

These networks are not static but vary over time as connections are made and broken or

change in intensity. Generally these changes are gradual, but in some cases individuals

disagree and as a result “fall out” with each other, i.e. , actively end their relationship

by ceasing all contact. These “fallouts” have been shown to be capable of fragmenting

the social network into disconnected parts. Fragmentation can impair the functioning of

social networks and it is thus important to better understand the social processes that

have such consequences.

In this thesis we investigate the question of how networks fragment: what mechanism

drives the changes that ultimately result in fragmentation? To do so, we also aim

to understand the necessary conditions for fragmentation to be possible and identify

the connections that are most important for the cohesion of the network. To answer

these questions, we need a model of social network dynamics that is stable enough

such that fragmentation does not occur spontaneously, but is simultaneously dynamic

enough to allow the system to react to perturbations (i.e. , disagreements). We present

such a model and show that it is able to grow and maintain networks exhibiting the

characteristic properties of social networks, and does so using local behavioural rules

inspired by sociological theory.

We then provide a detailed investigation of fragmentation and confirm basic intuitions

on the importance of bridges for network cohesion. Furthermore, we show that this

topological feature alone does not explain which points of the network are most vul-

nerable to fragmentation. Rather, we find that dependencies between edges are crucial

for understanding subtle differences between stable and vulnerable bridges. This under-

standing of the vulnerability of different network components is likely to be valuable for

preventing fragmentation and limiting the impact of social fallout.1

1This work was supported by an EPSRC Doctoral Training Centre grant (EP/G03690X/1).
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Chapter 1

Introduction

“Social networks are dynamic by nature. Ties are established, they may

flourish and perhaps evolve into close relationships, and they can also dissolve

quietly, or suddenly turn sour and go with a bang.”

—Snijders et al. (2010)

The world we live in is becoming more and more complex. Or rather, our perception of it

is becoming more and more complex since we have reached the boundaries of knowledge

acquisition through reductionist science. Focus in many fields of science is shifting from

the study of system components in isolation to studying interactions and relationships.

In social systems, such as groups of humans or animals, organisations or countries,

behaviour of the system as a whole is shaped by individual actions and the aggregated

effect arising from the interplay of the actions. Thus, the system behaviour is the

result of a non-linear aggregation of individual actions, rendering it a complex system

(Newman, 2011). The complicated set of interactions between humans or social entities

can be described as a social network (Wasserman and Faust, 1994). In a network,

nodes represent the system components and edges between them the relationships or

interactions between the components. In a social network the nodes are most commonly

individuals, however the nodes can also represent groups of people, such as organisations

or governments. The nature of the interactions being represented depends on the setting

considered. Network connections might represent mere proximity between individuals,

or a history of explicit interactions of some type, e.g. sexual contacts (Liljeros et al.,

2001), face-to-face meetings (Cattuto et al., 2010), phone calls (Onnela et al., 2007b) or

online interactions (Grabowski, 2007; Leskovec and Horvitz, 2008; Szell and Thurner,

2010). Alternatively, connections can represent interactions with a specific function,

such as one individual seeking advice from another. Thus, social networks can have a

variety of functions such as communication, information spread and support. In other

cases the function of a social network is less obvious or less clear cut as edges might

fulfill different functions at different times, such as support at one time and information

1
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transfer another. Some networks that fall under the term social network are purely

epiphenomenal, such as the network of co-starring actors. While this type of network

represents data on real-world interactions, the connections are not perceived to have any

function from the perspective of the actors involved.

When trying to understand systems shaped by the actions of many individuals, the way

these actions interact to form a system level outcome is important (Strogatz, 2001). It

has been shown that the interaction structure strongly influences the outcomes in many

contexts, ranging from disease transmission (Keeling, 2005) to movement decisions in

animals (Bode et al., 2012).

In many contexts, information and knowledge are transferred along the edges of social

networks. In organisations a formal, often hierarchical network is present but in addi-

tion, an informal network might develop (Albrecht and Adelman, 1984; Albrecht and

B.W., 1997; Albrecht and Hall, 1991; Contractor et al., 2012; Huberman and Adamic,

2004) and this informal network could be crucial for the performance of the organisation

(Borgatti and Cross, 2003; Burt, 1992; Eisenberg and Monge, 1987; Geard and Bul-

lock, 2010; Krackhardt, 1994; Papa, 1990) as it influences information diffusion within

the organisation, knowledge transfer and the quality as well as speed of organisational

decisions (Carley, 1999; Davis and Greve, 1997). Despite the importance of informal

networks on organisational performance and the fact that a lot of empirical research

exists on this, according to Monge and Contractor (2001) almost no work on theories of

mechanisms driving small-group network formation has been published in the previous

20 years.

Well-connected networks, in which multiple paths between pairs of nodes exist, have been

shown to have an important influence on team performance (Sinclair et al., 2012). The

influence of interactions and information flow on team performance has been studied in

a range of settings, such as medical teams in hospitals (Leykum et al., 2012) and football

teams in the English Premier League (Grund, 2012). In some contexts lives depend on

the cohesion of the group and intact communication structures such as military operation

or research expeditions; one example that has been studied in this context being South

Pole research station staff during the winter months where the team can not leave the

station (Johnson et al., 2003). Even in cases where social fragmentation would not be

life-threatening to anyone in the network it can significantly impact individuals’ well-

being and happiness (Salzinger, 1982). A well known fictitious example describing the

potential effects of group fragmentation is given in the novel “Lord of the Flies” by

William Golding.

Thus, it is pivotal in many contexts for communication networks to stay well connected

and not fragment into isolated components. As with many complex systems, social

systems cannot be easily steered – as examples from organisations have shown: here,

an informal communication network frequently forms in addition to a formal one. It is
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therefore important to understand the factors that contribute to the formation of stable

and well-connected networks, and which of these factors could yield points of influence.

In cases where network cohesion is weak, it has been observed that the social network

fragments into isolated components, completely cut off from each other (Zachary, 1977).

Even though the problem of network fragmentation has been mentioned in the literature

(Borgatti and Halgin, 2011) and most of us will have anecdotal evidence of it occurring

in our own social networks, not much work has been done in investigating the processes

responsible for network fragmentation. Note that we do not always want to prevent frag-

mentation: in some case we might want to influence the network to actually make it more

fragile. This has been discussed in relation to disease transmission (e.g. fragmentation

of a HIV transmission network, Rothenberg et al., 1996) and we could imagine interest

in this in the context of terrorist networks (Krebs, 2002) or companies and political

parties (regarding competitors and opposing parties). In any case, understanding the

mechanisms of fragmentation is crucial for achieving any chance of influencing network

stability.

Although network stability (robustness to node or edge removals) has been studied in

detail when considering technological networks (e.g. electricity grid, Crucitti et al.,

2004b), processes on social networks are quite different from current flow on electrical

networks. We will discuss why findings regarding the stability of technological networks

cannot be directly transferred to social networks later in this thesis. In social networks,

fragmentation has been studied intensively using coevolutionary opinion dynamic models

(Holme and Newman, 2006). In these dynamic models individuals are connected by a

network. They hold opinions and change these based on the people they are connected to.

This means that the network topology influences the information flow between people.

In addition to these dynamics on the network, there is a dynamic of the network:

individuals break connections to others that hold an opinion that is too dissimilar from

their own. Depending on the rates or timescales of the two processes (opinion change

and edge breaking), consensus or fragmentation can be observed (Gil and Zanette, 2006;

zu Erbach-Schoenberg et al., 2011).

In this thesis we investigate the phenomenon observed in Zachary (1977): a single dis-

agreement causes the network to fragment. In this example of a university Karate club,

the club president and the instructor had a disagreement about lesson prices that even-

tually led to fragmentation of the social network between club members. Fragmentation

of a network following a single disagreement can result from two different processes (or

an interplay of those): individuals taking sides and interacting preferentially with in-

dividuals in the same faction; and individuals being drawn to one side of the conflict

without explicitly choosing sides. The first process is simple and relatively easy to un-

derstand intuitively, even though the complexities introduced by the networked nature of

the system make it hard to make intuitive predictions about sizes and exact membership

of the resulting disconnected components. This mechanism is well described by models
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of coevolutionary opinion dynamics, as introduced above, and has been well-studied.

However, most of us have experienced or heard of situations in which individuals did

not explicitly choose a side and nevertheless fragmentation occurred. This scenario is

clearly distinct from the first scenario, and the mechanisms underlying fragmentation in

these conditions are not yet well understood.

In this thesis, we will present a mechanistic explanation for a previously stable network

fragmenting as a consequence of a single disagreement, even when the two disagreeing

individuals are the only ones to change their behaviour. To study the mechanisms

that lead to fragmentation, we explicitly simulate network dynamics. To demonstrate

that the fragmentation is caused by the perturbation (i.e. a disagreement) the network

must have reached a stable topology before any perturbation is introduced. In order

for the system to be able to react to a perturbation, it is at the same time necessary

for the system to exhibit ongoing dynamics on the micro-level. Here we will introduce

a dynamic model satisfying both of these requirements. In the model presented here,

local rules grow and maintain a network which exhibits the properties characteristic

of social networks. These topological characteristics remain stable over time while on

the micro-level relationships continue to fluctuate, thus exhibiting ongoing dynamics.

Using this model we show that in cases where individuals do not explicitly take sides,

dependencies between edges play a crucial role in the fragmentation process.

1.1 Methodology: agent-based models

In this thesis, we use an agent-based model to simulate the dynamics of network frag-

mentation.

In an agent-based model individual components interact and the behaviour of these

individuals or agents is specified by local rules. Agent-based models (Bonabeau, 2002)

are one of the main techniques used for modelling complex systems. They are well

suited for modelling complex systems as the macro-level behaviour emerges as a result

of non-linear interactions between micro-level components (Bedau, 2002). Social systems

are complex systems since the social behaviour does not follow linearly from individual

behaviour (Moss, 2008). Thus, the use of agent-based models has been popular in the

social sciences (Gilbert and Troitzsch, 2005; Miller and Page, 2009) and many believe

that agent-based models play a crucial role in bridging the macro-micro gap between

macro-level observations and theory on the micro-level (Raub et al., 2011). Their use

ranges from investigating whether hypothesised behavioural mechanisms are able to

generate certain system level outcomes, to models incorporating large amounts of data

with the purpose of making predictions about system-level behaviour. Agent-based

models can integrate data from various sources such as qualitative and experimental

data, as well as empirically validated theoretical knowledge (Alam and Geller, 2012).
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For the problem investigated in this thesis, an agent-based modelling approach is highly

appropriate: we want to explore behavioural rules and constraints that allow growth

and maintenance of a social network as well as creating fragmentation following a fall-

out (i.e disagreement between two individuals). Using such an approach enables us to

examine, at a conceptual level, mechanisms and processes that are entangled in frag-

menting social networks. We want to examine whether it is even possible conceptually

to create the outcome of fragmentation under the conditions described, as no mechanism

has been proposed for this so far and there is a lack of time-resolved data that has a fine

enough resolution to allow us to investigate potential mechanisms. Purely mathemati-

cal approaches, on the other hand, do not deal well with heterogeneities in the system,

an aspect that is key for understanding how fragmentation could result from a single

behavioural change in a specific location.

1.2 Methodology: networks of agents

Agent-based modelling in the social sciences is often combined with networks to repre-

sent interaction structures (Alam and Geller, 2012). Instead of assuming that agents

randomly select interaction partners, potential interactions are represented by a social

network.

Networks are often assumed to be binary, meaning that a connection between two in-

dividuals is either present or absent. However, it is often appropriate to attribute a

strength or weight to each network connection, since some social interactions may be

stronger or take place more frequently than others (Barrat et al., 2004a, 2005). When

representing such weighted interactions as a binary network, important information may

be lost when inferring network topology from interaction patterns as it is necessary to

apply some form of thresholding to decide whether a certain frequency of interaction

should be represented as an edge or not. How this threshold is chosen influences the

resulting topology (Franks et al., 2010). Additionally, when simulating the dynamics

of networks, using binary connections restricts the edge dynamics to make and break

dynamics, making it impossible to model the gradual changes in interactions that can

be observed for real-world relationships.

To study group fragmentation in the context of coevolutionary opinion dynamics binary

networks are sufficient since these models assume individuals to make the decision to

break a connection to individuals with an opposing opinion. If we want to study how a

disagreement can lead to other edges disappearing (ultimately leading to fragmentation)

without individuals explicitly deciding to break edges, it is obvious that more gradual

dynamics are needed. Therefore, we will use a weighted network to model associations

between the individuals, meaning we assign a weight to each edge. The dynamics will

change these edge weights. If an edge weight becomes zero we assume the edge to be
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broken. If an edge weight increases from zero to a non-zero value, a new edge has been

made.

Above we have established the suitability of the agent-based modelling paradigm and

the importance of using weighted network dynamics for studying non-strategic fragmen-

tation. In the remainder of this chapter we provide an outline for how the thesis is

organised.

1.3 Structure of the thesis

In Chapter 2 we discuss the background of the research presented in this thesis and

introduce related literature. We establish that there is a gap in the literature for a

model of weighted social network dynamics that is able to both grow and maintain a

network using only localised, non-strategic behavioural rules.

In Chapter 3 we outline such a model, and discuss assumptions made and their relation to

evidence about human behaviour. We describe constraints on the interactions between

agents and how these constraints are parametrised in the model.

In Chapter 4 we study the topological features of the resulting networks and show that

they exhibit features characteristic of real-world social networks. We show that the

system reaches a quasi-stable state in which the defining topological features reach equi-

librium while the edge weights, quantifying the strength of the relationships, continue

to fluctuate. We discuss the influence of parameters and initial conditions on the result-

ing topology and identify regimes within the parameter space for which the generated

networks resemble real social networks. We also explore how the system scales when

increasing the number of agents.

In Chapter 5 we investigate the effects of the perturbation in terms of topological changes

and edge weight changes and discuss the mechanism that results in the impact. Through

this investigation, we demonstrate that our model can exhibit fragmentation as a result

of a disagreement perturbation, and identify some of the key features of the network

topology for this to occur.

In Chapter 6 we discuss shortcomings of existing models of network dynamics. We

list limitations of our model and put it into context with empirical literature on social

networks. We present suggestions for further work, including how our model could be

integrated with other existing models to form a more mature model of social network dy-

namics. We discuss implications of our findings for real-world systems and how measures

could be applied.
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1.4 Key contributions

A social network model with ongoing micro-scale dynamics. In Chapter 3 we

introduce a model of weighted network dynamics. This model fills the gap that we

identified in Chapter 2, and puts us in a position to study the process of fragmentation

as a consequence of small perturbations. This is a substantial contribution that enables

the investigations in subsequent chapters: the model must balance the requirements of

exhibiting some fluctuations in order to react to a perturbation, but it cannot be so

fragile that it falls apart unperturbed. Our model is capable of growing and maintaining

a network in a quasi-stable equilibrium (Bryden et al., 2011) without the need for global

balancing processes.

Chapter 4 shows that our model does exhibit the dynamical behaviour required for

studying non-strategic fragmentation: the topology of the generated networks reaches

quasi-stable equilibrium, while on the micro-level edge weights exhibit ongoing dynamics.

Furthermore, the resulting networks exhibit the topological features characteristic of

social networks and we show that this is stable across a range of parameter settings.

Understanding mechanisms that result in fragmentation after small changes

in interaction structure. In Chapter 5 we show that fragmentation can happen fol-

lowing a disagreement, even though almost all individuals continue to behave as before.

We demonstrate that this fragmentation is a result of the perturbation and not due to

noise through the use of unperturbed control runs. We investigate edge characteristics,

and identify characteristics that indicate which of the edges must remain unperturbed

in order for the network to stay connected. We examine the underlying mechanism by

which a single perturbation can lead to breaking of several edges, ultimately leading to

fragmentation.





Chapter 2

Background

2.1 Networks for complex systems

A network or graph describes components of a system and the relations or interactions

between them. Thus, it simultaneously describes parts that comprise the system, called

vertices and the structure of relationships between the components, called edges. Dif-

ferent notations exist in different fields. In computer science the elements are called

nodes and the connections links, in the context of sociology they are referred to as ac-

tors and ties and yet another notation exists in the physics literature, sites and bonds

(Newman, 2010). Despite these different names, the aim in studying networks is the

same in all disciplines: formalising and understanding the structure of interactions be-

tween the elements that form a system. The study of complex systems is focused on

these interactions between a system’s elements and how they give rise to global-scale

behaviour. Therefore, networks, together with agent-based models, cellular automata

and differential equations models form the basis for describing and modelling complex

systems (Holme et al., 2007).

The nodes and edges in a network can represent different entities, depending on the real-

world system that is being modelled. The interactions between people can be modelled

as a social network. We will describe social networks in detail in Section 2.2. Other

examples include technological networks, ranging from the Internet as a network of

routers, the telephone network and transportation networks, to delivery and distribution

networks such as the power grid or water supply networks (Newman, 2010). In biology,

systems commonly described as networks include neural networks, ecological networks or

food webs (Solé and Montoya, 2001), biochemical networks such as metabolic networks

(Jeong et al., 2000; Ravasz et al., 2002), protein-protein interaction networks and genetic

regulatory networks (Newman, 2010). Documents that reference other documents can

form a network of references such as the world-wide-web or a citation network (Boccaletti

et al., 2006).

9
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2.1.1 Research questions in network research

The questions asked by scientists about the behaviour of systems represented as net-

works are diverse and depend on the target system. Questions studied include “which

flight connections should we offer for maximum profit?” for a flight connection network

(Cancho and Solé, 2003; Gastner and Newman, 2006), “what is the effect of remov-

ing nodes of the network” for distribution networks such as the electricity grid (Crucitti

et al., 2004a) or “how does the topology of a network influence the spread of an infectious

disease?” (Keeling, 2005; Keeling and Eames, 2005; Newman, 2003b).

If we compare the real-world questions asked, it is obvious that many of them address

similar problems and processes. One problem concerns which nodes and connections are

most crucial for the system in fulfilling its function. In technological systems such as

computer networks or distribution networks this is a very important problem as nodes

and connections are subject to failure or targeted attack. Closely related to this is

the question of robustness and resilience, concerned with how a system will cope with

failures of components and connections, especially if one failure can trigger another

leading to a failure cascade. This is especially important in supply networks, such

as the power grid, but its relevance for social systems forms the basis of the research

question in this thesis. Another frequently posed question is how to build or change

a system to optimise certain properties such as cost, efficiency, robustness or all three,

given certain constraints. In air traffic networks the tradeoff is between the length of a

journey (how often does a passenger need to change planes, which should be as low as

possible) and the number of edges present, which should be as low as possible as each

edge means a flight connection that needs to be supplied which is costly (Cancho and

Solé, 2003). Yet another line of research focuses on the role of networks in spreading

processes such as the spread of information (Borgatti and Cross, 2003; Daley and Gani,

2000; Friedkin, 1982; Noble et al., 2004; Wu et al., 2004), opinions (Deffuant et al., 2000;

Franks et al., 2008; Hegselmann and Krause, 2002), behaviours (Christakis and Fowler,

2007, 2008; Coviello et al., 2014; Rosenquist et al., 2010), infectious diseases (Barthélemy

et al., 2005b; Brockmann and Helbing, 2013; Pastor-Satorras and Vespignani, 2001) or

computer viruses (Chakrabarti et al., 2008).

The details of the system studied need to be taken into account for answering more

specific questions especially if predictions are to be made. For spreading processes

different constraints apply depending on what spreads on the network. Information can

be transferred in the context of a phone call whereas most diseases require at least some

proximity between the individuals. For modelling the transmission of a particular disease

it is important to distinguish between diseases where infection and subsequent recovery

lead to immunity and diseases for which reinfection is possible. However, certain network

topologies are more likely to allow for spread (of disease or information) to reach a larger

proportion of the network than others, which is why results from epidemic spread can be
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of interest to marketing executives wanting to spread product information. Frequently,

such general findings hold for networks from different research areas. This realisation

that some of the questions asked and processes studied with network models are similar

in very different areas of research has led to the development of a shared multidisciplinary

terminology and theory base, now generally called network science. Based on the well-

established mathematical field of graph theory (Bollobás, 1998, 2001; Harary, 1994;

West, 2000) and borrowing statistical measures from sociology (Wasserman and Faust,

1994), network science tries to distill out properties and behaviours common to networks

in different fields. For a detailed introduction to network science see the book by Newman

(2010) or an earlier review article by the same author (Newman, 2003a). Focusing on

the developments in the area of network science are the reviews by Lewis (2011), Albert

and Barabási (2002) and Dorogovtsev and J.F.F. (2002).

2.1.2 Complex networks

In the last 10 years, network research has undergone a transition to the study of “complex

networks” (Barrat et al., 2008; Boccaletti et al., 2006; Cohen and Havlin, 2010; da Fon-

toura Costa et al., 2011). The focus has shifted from describing topologies and static

properties to the study of dynamical processes on the network as well as the processes

that shape the “evolution”1 of networks. Using networks to describe the interaction

structure of a dynamic system (Strogatz, 2001) has become a widely used approach

in many areas of research that before had tended to assume random mixing for sim-

plicity. Examples for this are the study of spreading processes through a population,

synchronisation processes and games on networks (Jackson, 2005).

In addition, network models have started to become more complicated by taking into

account more features of real-world networks. One example for this shift is considering

weighted networks instead of binary networks. In a binary network, an edge is either

present or absent. In most real-world systems, connections can differ in strength or

capacity (Barrat et al., 2004b; Barthélemy et al., 2005a; Granovetter, 1973; Yook et al.,

2001). In a social network we might like some people very much and others less so. In a

distribution network, different edges might be able to accommodate different flows. To

be able to represent this fact in a network, we can add a weight to an edge, denoting

the strength of the connection. In social networks, adding weights to the edges allows

distinguishing between friends and acquaintances, a distinction that is very important

in social networks, since these two types of relationship play different roles (Fingerman,

2009; Granovetter, 1973, 1983). Furthermore, weights on edges allow for a more gradual

change of edges compared to rewiring of links. Rewiring is used in many network models

of network change but is arguably not a realistic abstraction of human behaviour.

1The term evolution in network science is used to describe the change of network topology over time
and should not be confused with the biological meaning of the word.
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Another step towards complex network models can be made by allowing heterogeneity

of nodes. The heterogeneity might be structural, such as how many neighbours a certain

individual has which in turn could be a result of heterogeneity in behaviour. For example,

some people prefer to interact with only a small circle of close friends while others

might prefer contact with a range of more casual contacts (Backstrom et al., 2011). In

addition, other factors such as age or type of job can influence the number of contacts

an individual has (Danon et al., 2012; Roberts et al., 2008) This heterogeneity has

important implications for a range of systems. In sexually transmitted diseases (STDs)

most nodes have few contacts and therefore only a small number of edges compared

to other diseases such a influenza. However, a few individuals with many contacts can

sustain a STD epidemic in the population (Jones and Handcock, 2003; Potterat et al.,

2002). The effects of network topology on disease dynamics has been intensively studied

for various diseases (Bansal et al., 2007; Bearman et al., 2004; Colizza et al., 2006; Jeger

et al., 2007; Keeling, 2005; Moreno et al., 2002; Newman, 2003b; Pastor-Satorras and

Vespignani, 2001; Salathé and Jones, 2010; Shirley and Rushton, 2005; Volz, 2008; Volz

and Meyers, 2007; Wu and Liu, 2008).

2.1.3 Coevolutionary networks

Recently, the interplay of processes on the network and change of topology has been

studied extensively and several review articles and books on this topic exist (Blasius

and Gross, 2009; Gross and Blasius, 2008; Gross and Sayama, 2009; Mukherjee et al.,

2013). In an adaptive or coevolutionary network there is mutual feedback between a

dynamic process happening on the network and the network topology. Nodes interact

with each other and these interactions are mediated by the topology. These encounters

then lead to changes in topology, closing the circle. The study of social coevolutionary

networks can be divided into three main areas depending on the process constrained by

the network: opinion dynamics, games on networks and disease spread on networks.

In the context of epidemics on networks, susceptible individuals can rewire away from

infected individuals, adding feedback from dynamics to topology which alters the disease

spread patterns (Gross et al., 2006; Shaw and Schwartz, 2010; Van Segbroeck et al.,

2010; Zanette and Risau-Gusmán, 2008). Related are models of adaptive networks using

opinion or cultural dynamics as the process on the network (Castellano et al., 2009; Jalili,

2013). Some of these use binary opinions (Kacperski and Ho lyst, 2000; Nardini et al.,

2008; Vazquez et al., 2008; Zanette and Gil, 2006) while others use continuous opinions

(Dittmer, 2001; Kozma and Barrat, 2008; Krause, 2000; Prettejohn and McDonnell,

2011). Rewiring can be selective (e.g. to someone with the same state) (Holme and

Newman, 2006; Vazquez et al., 2008) or random (Kozma and Barrat, 2008; Nardini et al.,

2008) or may take into account local rewiring using triangle closure (Iñiguez et al., 2009).

The interplay between dynamics and network topology change has also been studied
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using games on networks where the outcome of games played with neighbours influences

which edges are kept and which ones are dropped or rewired (Biely et al., 2007; Demirel

et al., 2011; Ebel and Bornholdt, 2002; Pacheco et al., 2006; Poncela et al., 2009; Santos

et al., 2006; Skyrms and Pemantle, 2000; Van Segbroeck et al., 2011, 2009; Zimmermann

et al., 2004). While the areas of coevolutionary opinion dynamics and coevolutionary

game theory models are related to the topic of this thesis and are important topics in

their own right, we will only discuss a few relevant models here as a comprehensive

review of these topics is beyond the scope of this thesis. We will discuss the differences

in assumptions between our model and coevolutionary network and opinion dynamics

models in detail in Chapter 6.

2.1.4 Networks and space

Another important feature of real-world networks is that almost all of them are embed-

ded in physical space. In social networks, face-to-face meetings are very important for

maintaining relationships between individuals and these meetings require the individuals

to be in the same physical location. Another example of real-world systems where space

is crucial is the optimisation of transport networks (Barrat et al., 2004a; Caschili and

De Montis, 2013; Kaluza et al., 2010) where the balance of edge-count-distance versus

spatial distance generates very different topologies (Gastner and Newman, 2006). If

the per-edge cost dominates, the resulting networks often have a hub or star structure

such as commonly found in air transport networks. If the actual spatial distance is

the more important factor, then the resulting optimal networks are significantly more

branched, as in the case of road networks. The simplest model of a spatially embed-

ded network is a random geometric graph where nodes are distributed uniformly in

space. Two nodes are connected if their distance is below a certain threshold (Dall and

Christensen, 2002; Penrose, 2003). Compared to non-spatial random networks, these

networks show higher clustering (meaning that it is likely that two neighbours of a node

are themselves connected) and assortativity (positive correlation in degree for network

neighbours) (Herrmann et al., 2003; Wong et al., 2006). Both of these are qualities found

in many real-world networks such as social networks. If the assumption of homogeneous

node distribution is relaxed, even higher levels of assortativity can be observed (Barnett

et al., 2007; Bullock et al., 2010). However, network models that are only constrained

by space produce networks that lack other important aspects of social networks such

as communities (Barnett et al., 2007; Illenberger et al., 2012). We will encounter more

examples of spatially embedded networks in the following sections.
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2.2 Social networks

The interaction structures of people can be represented as a network. In such a social

network the nodes represent individual people and the edges represent interactions, rela-

tions or sentiments. The term social network in a broader sense is used for networks such

as Facebook or collaboration networks, which represent information about peoples’ senti-

ments or interactions but do so on a higher level. For example, consider a social network

generated by asking university students who they spend most of their time with. This

network constitutes an abstract representation of the real student friendship network.

The Facebook network between the same people will depend strongly on the friendship

network, but give us a more time-aggregated, higher-level view. Many people will still be

Facebook friends with people from their school class even though many of these contacts

are no longer active or maintained. However, removal of edges is possible in Facebook in

contrast to another type of network studied: collaboration networks amongst academics.

Collaborations provide a fully time-aggregated mapping of an underlying collaboration

network time series. Each collaboration resulting in a publication before the snapshot

was taken will be represented by an edge in the network. It is important to make the

distinction between snapshots of a network and aggregated snapshots (Holme et al.,

2007). While time-aggregated social networks are worth studying to render insights into

specific questions, it is important to note that some of the features (such as scale-free

degree distribution) of these higher level social network abstractions do not generalise to

non-aggregated friendship networks (Amaral et al., 2000). By contrast, snapshots also

introduce biases since, by nature, they are also collected over a period of time, even if

this period of time is short.

Data on the interaction structure of people in certain settings has been collected by

social scientists for a long time (Wellman, 1926) and therefore an extensive body of

case studies, techniques and theoretical work exists (Scott, 1988; Wasserman and Faust,

1994). Sociology is concerned with both describing the topology of networks and the

implication of this topology for processes constrained by the network, as well as the

implications of an individual’s position in the network for that individual. Many of

these measures have been integrated and developed further within the framework of

network science and we will describe the most important ones for the work presented

in this thesis later. In addition to the descriptive approach of characterising network

topology, many theories exist about how individuals behave and make decisions that

shape the social network they are embedded in.

2.2.1 Different questions generate different networks

At the heart of social network research in the social sciences is data collection to for-

mulate new theories and validate or refute existing theories. Therefore, an extensive
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base of data exists. Data generally shows the interactions between individuals but the

setting and type of these interactions span a large range. Even in the same setting or

social group the resulting network depends on the questions asked to determine strength

or presence of an edge (Borgatti and Halgin, 2011; Caldarelli et al., 2004). Examples

for social networks range from small groups with fairly well-defined boundaries2 such as

members of a university sports club (Zachary, 1977), novitiates in a monastery (Samp-

son, 1968), the network of a terrorist cell (Krebs, 2002) or even the interactions between

dolphins and killer whales (Foster et al., 2012; Lusseau et al., 2003) to the study of

large groups such as a university (Kossinets and Watts, 2006), a large online gaming

community (Grabowski and Kruszewska, 2007; Leskovec et al., 2010) or even a whole

country (Blondel et al., 2008; Onnela et al., 2007a). The types of interactions consid-

ered are also diverse (Borgatti et al., 2009) and include communication and interaction

networks (Contractor et al., 2012), friendship or acquaintance networks (Bernard et al.,

1988; Fararo and Sunshine, 1964), advice networks, co-citation or co-starring networks

(Watts, 1999a), kinship and marriage networks (Padgett and Ansell, 1993) as well as

marking someone as a friend (or foe) in an online social network or game (Leskovec

et al., 2010; Szell and Thurner, 2010).

A distinction can be made between state-type ties such as like/dislike, family ties or

friendship ties and event-type ties (sending email, meeting someone, making a sale)

(Borgatti and Halgin, 2011). A common problem for the collection of data on state-type

ties is that individuals have different scales on which they rate interactions. Some people

might consider everyone who they talk to regularly as a friend, while others would only

see their closest contacts as belonging to their circle of friends. Individuals also tend to

forget to list people they are acquainted with leading to errors in sampling (Wang et al.,

2012). Therefore, even when focusing on the study of friendship networks, contact or

communication networks are frequently used as a less biased alternative. Individuals

tend to have very biased observations of who they interact with and the duration of

these interactions (Bernard and Killworth, 1977; Bernard et al., 1984; Killworth and

Bernard, 1976; Marsden, 1990). Therefore, recent studies on contact networks often aim

to collect data directly instead of asking individuals for their perception of the events.

Interaction data can be collected by asking participants to fill out contact diaries (Danon

et al., 2012; Read et al., 2008), collecting or analysing existing online interaction data or

by measuring contacts using wearable sensors (see Section 2.3.1). More and more data

sets on online interactions have become available for study. This data can come from

social networking services (Ahn et al., 2007; Buscarino et al., 2012; Grabowski, 2007;

Panzarasa et al., 2009), massively multiplayer online role playing games (Grabowski

and Kruszewska, 2007; Szell and Thurner, 2010), mobile phone call records (Onnela

et al., 2007b; Wesolowski et al., 2012) or email and instant messenger logs (Cole et al.,

2See Laumann et al. (1989) for a discussion on why boundaries of a social system are often hard to
define and why it is important to define them well and explicitly specify where the boundary of a certain
group was drawn.
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2005; Ebel et al., 2002b; Klimt and Yang, 2004; Leskovec and Horvitz, 2008). Contact

networks are especially important for the study of disease spread. Depending on the type

of disease, a contact can be anything from being in spatial proximity (such as being in the

same room or bus), touching the same object (shopping trolley handles come to mind)

to physical contact such as handshaking or as the case for many sexually transmitted

diseases, sexual contact or needle sharing between drug users. In contrast, the spread

of information might take place via many channels of which face-to-face conversation is

just one. Others include phone calls, text messages, emails or letters, online chats and

instant messages, forums or feeds such as on twitter or Facebook.

2.2.2 Measures of topological properties

In social sciences and biology social network analysis (SNA) denotes the data-driven

study of real-world networks. SNA has developed many measures to characterise prop-

erties of networks which have since then become more universally used due to the multi-

disciplinary efforts in network research. The measures used in SNA broadly fall into two

categories: measures to describe characteristics of the network topology and measures

to describe the importance or influence of an actor (Borgatti and Foster, 2003). These

network measures are used to study the topology of a static snapshot of a social network.

However, they are generally used to understand the constraints placed on dynamic pro-

cesses happening on the network. Although using a set of numbers to describe a network

is a very strong abstraction, the measures used by social scientists convey information

about the potential dynamics of the system. Knowing several network measures allows

us to make a rough inference about the dynamics. As an example, if we consider infor-

mation spread on a social network, then knowing a network is sparsely connected tells

us that information flow on this network will most likely be slow. If we know that a

network consists of several disconnected parts, then we expect that a piece of informa-

tion discovered in one part of the network will never reach the individuals in the other

components. Therefore, even though the study of network dynamics should extend be-

yond pure analysis of static network snapshots, using statistical measures allows us to

describe and characterise networks. We introduce measures as they are used in this

thesis but for more detailed descriptions and formal definitions we refer the interested

reader to Newman (2010).

2.2.3 The distinct features of social networks

Several properties have been recently discovered to be omnipresent in real-world net-

works, differing significantly from the simplifying assumption of a regular, lattice like

topology used in early work on networks (Boccaletti et al., 2006). Most real-world net-

works (social networks in particular), exhibit a remarkably short average path length

(Watts and Strogatz, 1998). The average shortest path length in social networks is
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much lower than the path length we would expect to see in a regular network, such as

a lattice, but larger than the path lengths observed in random networks. The existence

of shortcuts through the network has been illustrated by Milgram (1967) in his famous

experiment in which letters were handed out to participants, telling them the name,

city of residence and occupation of the intended receiver but nothing else. The task

was to pass the letter to one of their friends or acquaintances which they thought would

be closer to the target than themselves. Surprisingly, most letters reached the target

after only 6 steps. A more recent version of this experiment is described in Dodds et al.

(2003) using email instead of paper mail. The experiment confirmed the number 6 for

the average path length (the paths were on average 5-7 hops long) using a large number

of people. Another example of this “small-world” phenomenon is the Bacon number

for film actors. In the film actor network, two actors are connected by an edge if they

have co-starred in a film. The Bacon number of an actor is the number of hops from

the actor to Kevin Bacon. The highest defined number found is surprisingly low with

8 hops (Watts, 1999a). The same effect can also be observed in collaboration networks

(Newman, 2001).

We all experience the phenomenon described above every now and then when we find

out that two of our acquaintances from different friendship circles know each other or

share a common friend unknown to us. This is surprising, since social networks tend to

be very sparse networks. This effect can be explained as a result of social networks both

having high levels of clustering and low global separation (Watts, 1999b). The low global

separation is a result of bridges connecting otherwise disconnected clusters consisting of

internally densely connected nodes. This combination of densely connected areas with

high clustering and connecting bridges or weak ties to other groups of well-connected

nodes is called community structure. Community structure is another characteristic

property found in (but not limited to) social networks (Blondel et al., 2008; Fortunato,

2010; Girvan and Newman, 2002; Newman, 2006). Communities result from heterogene-

ity in the population such as grouping by location, family ties, occupation or interests,

age, gender, race, religion or even explicit group membership (Newman, 2003b). This

assortativity, associating preferentially with individuals similar to oneself gives rise well-

connected clusters of individuals sharing certain properties. Assortativity according to

degree is another important characteristic of social networks (Newman and Park, 2003;

Toivonen et al., 2007). Social networks display positive values for the assortativity coeffi-

cient, indicating that higher degree nodes tend to be directly connected more often than

would be expected to occur by chance, whereas other types of networks have negative

values indicating disassortative mixing (Newman, 2002).

Most social networks also display broad degree distributions, with some individuals

having many connections and others only very few. The shape of this distribution has

been the subject of an ongoing debate, with some authors arguing that social networks

exhibit scale-free degree distributions (Barabási and Albert, 1999) while others argue
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that degree distributions are Poisson distributions (Bearman et al., 2004). However, a

distinction should be made of the type and size of social network considered. In certain

types of social networks such as actor networks or Facebook friend networks it is possible

for the degree distribution to be scale-free and for the degree of nodes to reach very high

maximum values since the contacts do not require maintenance. In the actor network,

two actors can star in the same film without ever meeting. For Facebook networks,

individuals in urban areas come into contact with many people they can connect to.

However, they can still only maintain a certain number of those potential relationships.

So even though someone might have met 2000 people and added them as friends on

Facebook, he or she will not be able to keep up regular contact with all of them. In

contrast, in networks where the edges require regular maintenance, such as in a friendship

network (Bernard et al., 1988) the degree distribution tends to have a characteristic scale

or display a sharp cutoff at higher numbers (Amaral et al., 2000).

To summarise the main identifying features of social networks are high levels of transitiv-

ity or clustering, community structure (densely connected areas with fewer connections

between them), short average path length, assortative mixing according to degree and

right-skewed, broad degree distributions (Boguñá et al., 2004; Hamill and Gilbert, 2010;

Jackson and Rogers, 2007; Newman and Park, 2003; Toivonen et al., 2007; Wong et al.,

2006).

2.2.4 Theories of behaviour

Many sociological theories about human behaviour in social settings have been proposed

and empirically tested over the years. Here, we will give an overview of a small subset

of theories important for the type of network that is the focus of this thesis. A more

extended review can be found in various works on communication theories in an or-

ganisational context for example in Monge and Contractor (2001) on theories and their

connection to processes and outcomes in organisational settings or in Contractor et al.

(2006, 2012) on the use of these theories for statistical modelling of networks.

One theory based on the cognitive abilities of humans suggests that friendship networks

generally do not exceed 150 acquaintances (where a name and other information can be

associated with the person and contact is maintained to some degree) (Dunbar, 2008).

This limit has been confirmed by empirical evidence (Hill and Dunbar, 2003). This limit

has been taken into account by some companies by making sure that individual units

stay within this limit. One example is GoreTex where no factory unit has more than 150

employees (Gladwell, 2000). As discussed in Section 2.2.3 degree distributions in certain

types of social networks might have higher cutoffs depending on the type of network

considered. However, when considering friendship networks of actively maintained rela-

tionships or organisational communication networks the number of friends is generally

in the range of hundreds.
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Another important theory for social networks is balance theory. Balance theory pos-

tulates that people are more likely to connect to friends of their friends. This leads to

increased transitivity in the network by closing open triangles, a process commonly called

triangle closure. This effect can be measured as it leads to larger clustering coefficients.

In addition, studies looking at longitudinal network data have observed open triangles

closing over time, thus providing support for balance theory (Hallinan and Hutchins,

1980). In signed networks (networks with positive and negative links) balance theory

predicts subgroups to be stable if all cycles have a positive sign, thus the network can

be split into groups with positive links within the group and negative links in between

(Cartwright and Harary, 1956). Not many networks are explicitly signed. However, an

example of a study of a signed network can be found in Leskovec et al. (2010) where the

authors study signed online networks.

Another theory focusing on which connections are likely to be made and maintained in a

network is the theory of homophily. According to this theory, individuals who are close in

demographic space are more likely to interact with each other (Contractor et al., 2012).

Gender has been shown to be particularly important in this context, for example in

organisational networks (Brass, 1985), classrooms (Smith-Lovin and McPherson, 1993)

or voluntary associations (Popielarz, 1999).

McPherson et al. (2001) distinguish between two dimensions of assortment: induced

homophily and choice homophily. Induced homophily refers to the limited options indi-

viduals have to form ties to individuals with radically different demographic attributes

due to the social context they are embedded in. As an example, consider the setting of

a school. If most girls had only other girls as their friends, this could be due to induced

homophily for example in cases where the school is an all-girls school. In this case the

available pool of potential friends would be strongly biased towards making friends with

girls. On the other hand, in a class with exactly the same number of boys and girls

homophily could be the result of the explicit choices the children make and therefore

considered to be a case of choice homophily. Kossinets and Watts (2009) investigate the

contribution of both types of homophily on the observed total homophilous effect in a

university email network and conclude that both play an important role in the system

studied.

Many social interactions take place in the context of activity foci. This includes groups

with explicit membership, such as religious groups, clubs or classes as well as friendship

groups or workplaces. It has been argued that foci present one of the most important

contributions to clustering in social networks (Feld, 1981). This effect has been shown

to be particularly significant in student populations (van Duijn et al., 2003). Another

important factor of induced homophily is spatial embedding, which limits the pool of

potential friends to within a certain vicinity or reach (Wong et al., 2006). This theory

is referred to as proximity theory (Contractor et al., 2012). This effect has been shown

empirically by Backstrom et al. (2010) and Illenberger et al. (2012).
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Often several of these aspects of homophily are considered as separate hypotheses in

modelling social networks, for example in Contractor et al. (2012) where the influence

of gender homophily, the effect of shared activity foci as well as spatial proximity are

considered separately. Another example investigates homophily effects regarding indi-

viduals belonging to the same organisation type (government organisation or private

company) (Contractor et al., 2006).

A particularly well known theory of social networks is the theory of weak ties (Granovet-

ter, 1973). Granovetter observed that most job seekers discovered new job opportunities

through contacts they classified as acquaintances, not close friends. He proposed that

this stems from the fact that groups of close friends are more transitive and clustered,

while acquaintances provide bridges between these clusters. The high clustering of strong

edges means that it is likely that you will have the same information as your friends.

Therefore, information within clusters is redundant, so that your friends are unlikely

to have new information for you. Acquaintances share fewer friends with us, thus they

provide a bridge to the information their friends have, which will most likely be novel

to us. The existence of these bridges and the fact that they are generally weak ties have

been empirically confirmed in studies by Onnela et al. (2007a); Toivonen et al. (2007),

analysing a mobile phone call network. They find that weak ties indeed do not share

many neighbouring ties, but have high betweenness centrality, meaning they feature

in the shortest paths between many pairs of nodes. They also observe that removing

random weak links leads to faster fragmentation of the network than removal of strong

edges, suggesting that components are indeed frequently connected by weak ties. An-

other study highlighting the importance of weak ties is by Dodds et al. (2003). In their

modern version of the Milgram experiment using email instead of letters the authors

found that successful chains often went through medium or weak edges, thus confirming

the theory.

Describing the same phenomenon but taking a different angle is the theory of structural

holes (Burt, 1992). Burt proposes that individuals have a potential advantage depend-

ing on to their position in the network. Individuals acting as bridges have access to

information from two clusters that otherwise do not exchange information. This means

they span a structural hole in the network. In cases where new information is valuable,

spanning structural holes can be advantageous for individuals.

The two theories have in common that they both emphasise the importance of bridges

or non-redundant ties. They are important, because they are more likely to give an

individuals access to novel information. For more detail on these theories and their

different angles, we refer the reader to Borgatti and Halgin (2011). Both original theories

focus on the benefits for individuals in the network. Considering the network as a whole,

weak ties often act as bridges between densely connected clusters. Therefore, they are

important for the structural cohesion of the network as a whole as they provide the only

channel for information flow or communication between groups.
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2.3 Network dynamics

Most of network research until recently has focused on static snapshots of networks.

Even though many have argued for the study of network dynamics (see for example

Bansal et al. (2010); Doreian and Stokman (1996, 2003); Palla et al. (2007); Snijders

et al. (2010)) a large proportion of research on social networks has considered static

network snapshots. This might be due to limited availability of time-resolved data or

the extension of models to dynamics models not being trivial. In addition, statistical

measures are only defined for static networks and some authors suggest that, at least for

growing networks, the properties measured (such as diameter (denoting the maximum

distance in the graph), clustering coefficient and average degree) change significantly

(Barabási et al., 2002; van Duijn et al., 2003), thus requiring redefinition or extension

of measures.

In this section we will discuss the recent availability of time-resolved data and then

present statistical and simulation models considering the dynamics of networks, demon-

strating that dynamic models are now feasible.

2.3.1 Data on dynamics of social networks

In the social sciences the importance of collecting longitudinal data has been recognised

and attempts to collect longitudinal data to foster understanding of mechanisms of

network change have been made, but these are of course subject to limitation of manual

data collection. Examples of longitudinal data collected by hand include a study by

Morgan et al. (1996) on the social networks of recent widows studied over the course

of a year, a study by Sampson (1968) on the interactions of young men in a monastery

documented at different timesteps, the study of a changing social network of members of

a university Karate club by Zachary (1977), the change in topology of a drug-user needle

sharing network (Rothenberg et al., 1998) and the social network of sociology freshmen

at the university of Groeningen (van Duijn et al., 2003). It is important to note that two

of these studies have reported fragmentation of the observed small groups (Sampson,

1968; Zachary, 1977), indicating that this is not a rare phenomenon. Limitations of these

studies are the small number of snapshots for each network and that they often focus on

ego-centered sub-parts of larger networks and therefore do not allow propositions about

dynamics of the whole network.

Digital data storage and the web have led to vast quantities of data being recorded,

stored and made available. Examples for online interactions between individuals are

blog comments, Facebook messages or wall posts, diggs, upvotes or likes and tweets or

retweets (De Choudhury et al., 2010). Popular data sources are social networks such

as Facebook, where users can mark other users as friends and send messages (Holme

et al., 2004; Leskovec et al., 2008; Panzarasa et al., 2009). Another important digital
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source of data on human communication are email networks, where it is recorded who

sends emails to whom and with what frequency. Recording the frequency also makes

it possible to assign weights to the edges and therefore to distinguish between strong

and weak or frequent and infrequent interactions (Kossinets et al., 2008; Kossinets and

Watts, 2006). The inclusion of weights is particularly important if we are interested in

potential routes of information flow as a longer path of very frequent contacts could lead

to faster information transmission than a short path going through infrequent contacts.

Another source of interaction data is data on mobile phone calls (Blondel et al., 2008;

Onnela et al., 2007b). These data sets are particularly interesting as some also provide

approximate locations of the callers and therefore allow studying correlations between

phone calls and proximity of the callers. One study found that people often call each

other just before they meet face-to-face for coordination and therefore mobile phone call

networks are correlated more strongly with face-to-face meetings than one might expect

(Calabrese et al., 2011).

Massively multiplayer online games build a virtual world in which players can interact

with each other. In addition, many games allow sending messages to other players and

forming allegiances with them. Data on individuals interacting in these games has been

collected (Leskovec et al., 2010; Szell and Thurner, 2010) and games have even been

designed explicitly to study the social behaviour (Spraragen et al., 2013).

To measure face-to-face contacts (which is especially important for studying the spread

of contagious diseases) several novel data collection methods have been proposed. One of

them is measuring proximity via bluetooth equipped phones (Eagle and Pentland, 2006;

Eagle et al., 2009). A different approach using dedicated sensors based on RFID tech-

nology has been deployed mainly in conference settings (Cattuto et al., 2010; Chaintreau

et al., 2007; Isella et al., 2011). Use of a different type of dedicated sensor is described in

(Fischbach et al., 2009). In this study, in addition to the sensors, email communications

were also recorded for the same period. This allowed for comparison between face-to-face

communication and email communication which were found to show different structures

as people that were spatially close only very rarely emailed each other. This is an im-

portant fact to take into consideration when inferring communication networks from a

single source such as email contact data. Further studies are needed to investigate the

relationship and interactions of communication networks over different media (such as

face-to-face meetings, email, calls).

2.3.2 Statistical modelling of social network dynamics

Available data can be used to build statistical models. Statistical models conceive of

each social tie in a network as a random variable and try to assess the relative impor-

tance of various processes working on node attributes and creating characteristic local
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structures (such as triangles or reciprocal dyads in directed networks) in creating the

global topology observed. The stochasticity of these models is sometimes argued to be

necessary because of the stochasticity of the system itself, or it could reflect lack of

knowledge of processes that are fundamentally deterministic. By exploring how param-

eters must be tuned in order to generate (maximum likelihood) networks that agree with

empirical properties of interest, these models can answer questions regarding the rela-

tive contributions made by different social processes to key features of network structure.

These models are called ERGMs (exponential random graph models) or p∗ models. We

refer the interested reader to the introductions found in Robins et al. (2007a); Snijders

(1996) and examples in Contractor et al. (2006); Pattison and Robins (2004); Robins

et al. (2007b).

These models have been extended to models of longitudinal data using discrete (Han-

neke and Xing, 2010; Robins and Pattison, 2001) or continuous time (Snijders et al.,

2010). Apart from modelling network dynamics, the continuous models are suitable

for modelling out-of-equilibrium networks (Snijders et al., 2010). They use an actor-

orientated approach, assuming that the network changes due to the choices of individual

actors. As these models use continuous-time Markov chains they can no longer be solved

analytically and therefore have to be solved by simulation. An implementation of this

framework named SIENA is presented by Snijders (Snijders, 1996, 2002; Snijders and

van Duijn, 1997). Example applications can be found in Contractor et al. (2012) where

longitudinal data on communication within an organisation is modelled and van Duijn

et al. (2003) where the framework is applied to data on university freshmen friendships.

More recent models are also capable of considering coevolutionary dynamics of network

change and behaviour change of the actors (Burk et al., 2007; Steglich et al., 2006).

Statistical models provide a powerful way of modelling network dynamics. However, they

are not yet able to consider weights on edges and are limited to fairly small networks of

no more than 1000 nodes (Burk et al., 2007; Snijders et al., 2010).

2.3.3 Simulation modelling of social network dynamics

Although statistical models of the type described in the last section and agent-based

models are both types of simulation that take an actor based view on the system, the

two approaches are somewhat different (Snijders et al., 2010). While the former (which

we will refer to as statistical actor models) tend to employ more sophisticated statistical

analysis, the latter (which we will refer to as simulation models) concentrate on explicit

representations of social interactions, allowing for weighted dynamics and heterogeneity

of nodes.

Modellers using statistical models have argued that the two modelling methods comple-

ment each other as simulation allows for hypothesis generation and conducting thought
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experiments whereas statistical models are concerned with explaining observed empir-

ical data and making predictions about which processes have generated the observed

topology. Authors have argued that simulation models can fill the macro-micro gap

between descriptive statistical models on the macro-level (which do make predictions

about network processes but only based on observation of their resulting topological

substructures) and the sociological theories about individual behaviour on the micro

level of actors or dyads and triads (Robins et al., 2007a). Simulation is able to bridge

this gap by relating micro-level behaviour proposed by sociological theory and validated

by empirical research to observed macro-level network topology or network evolution.3

In addition to linking certain micro-level conditions to macro-level outcomes (Raub

et al., 2011), simulation models allow for the direct observation of the processes driving

the network evolution and therefore can provide insights into the modelled phenomena

(Alam and Geller, 2012; Jackson, 2005).

In the following sections, we will give an overview on existing simulation models of

network evolution. Some of the models discussed here are compared to each other (and

ERGMs) in Toivonen et al. (2009). This review is however focused on the physics and

statistics community of network science and we will add to it by discussing agent-based

and coevolutionary models of network change.

2.3.3.1 Growing network evolution models

One class of models for modelling dynamic change of social systems is titled growing

network evolution models or growing NEMs by Toivonen et al. (2009) as they model

network growth. This means nodes are added sequentially until a certain number of

nodes has been reached. This type of network evolution model is a good abstraction for

growing systems such as the Internet or collaboration networks. However, in many other

real world systems, such as most social settings, the continued making and breaking of

edges after a short initial growth phase is what dominates the dynamics of the topology.

For such cases these network formation models are less appropriate models. Many

NEMs are explicitly not aimed at modelling network evolution but instead at efficiently

generating a static network with certain properties that will be used for some other

modelling context (Toivonen et al., 2006).

One example is presented in Holme and Kim (2002) where the traditional preferential

attachment mechanism (Barabási and Albert, 1999) is extended by adding a triad form-

ing mechanism to increase clustering in the resulting network. The first edge for each

node added is made according to preferential attachment. The following edges connect-

ing the new node to the existing network are made either by preferential attachment

3Stokman and Doreian (1996) argue that network dynamics should denote the description of network
change (quantitative or qualitative) while network evolution should be reserved to contexts where we also
have a theoretical understanding of the processes generating the changes in addition to the description
of those, which is the aim of most simulation models.
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(with probability p) or connect the new node to neighbours of the node selected in the

first step (with probability 1− p).

Another model extending the preferential attachment model creates a nested community

structure (Park et al., 2006). The network is grown by preferential attachment for a

number of steps. Then the two vertices with highest degree are picked to create a

group. Each of the remaining nodes gets assigned to one of these groups depending

on which of the two selected nodes it is closer to. Now the groups grow in size by

preferential attachment within the group. Depending on the the nestedness desired in

the final network, the splitting of groups can be repeated to split the groups into smaller

subgroups before continuing the preferential attachment.

Other models are based on random attachment with subsequent linking to neighbours

to increase clustering. Vázquez (2003) add a new node to the network with probability

1− p and connect it to a random node j. They then add potential edges from the new

node to all of j’s neighbours. These edges are not made, they are just listed as possible

edges that can be created at a later stage. With probability p a random edge from the

list of potential edges is created. A similar model can be found in Toivonen et al. (2006).

Here each new node is connected to either one (probability p) or two (probability 1− p)
initial contacts. For the first initial contact j, a number msec U [0, k] is drawn which

denotes how many edges to j’s neighbours the new node will attempt to make. The

new node will then connect to msec randomly chosen neighbours of j (if they exist). If

a second initial contact was chosen in the first step, the same procedure is repeated for

the second contact. An extension of this is presented in Ivanova and Iordanov (2012)

using two populations of nodes to represent violent and non-violent nodes in a model

of terrorist networks. This model allows for different edge probabilities for nodes of the

same group compared to edges between one violent and one non-violent node.

To model the growth of ego-centered Facebook friendship networks, Buscarino et al.

(2012) attach new nodes to randomly chosen nodes with probability p. With probability

1 − p the new node selects neighbours randomly from a subset, corresponding to a

community. To determine the subset, communities in the network are calculated using a

community detection algorithm and one of the resulting communities is chosen to act as

a subset for the new node to link into. While this allows us to add community structure

to the generated network, the mechanism obviously does not to attempt to model the

process by which social networks form and organise into communities.

2.3.3.2 Spatial network models

As discussed in Section 2.1.4 many systems that can be described as networks involve

spatial arrangement of their elements. However, many models of social networks ignore

the location of nodes for simplicity’s sake. While placing the nodes in space adds com-
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plexity to models, it has also been shown that important features of social networks

come “for free” if we embed social networks in space and place some restriction on inter-

actions depending on the distance between nodes. This is a valid assumption to make

according to proximity theory, which has proved that in most cases individuals located

in close proximity have a higher probability of interacting than individuals further apart.

We will refer to models that take spatial arrangement into account when forming links

as spatial network models. In Toivonen et al. (2009) these are denoted nodal attribute

models or NAMs.

Several spatial extensions of the traditional preferential attachment model exist (Barrat

et al., 2005; Barthélemy, 2003; Manna and Sen, 2002; Xulvi-Brunet and Sokolov, 2002).

Most models make the simplifying assumption of homogeneously distributed nodes. This

is an unrealistic assumption in many cases, one example being the Internet where nodes

typically are clustered in space due to denser population in urban areas. Models con-

cerning the growth of the Internet take into account these biases by either placing new

nodes preferentially close to existing nodes (Xulvi-Brunet and Sokolov, 2007) or by using

population density data for the calculation of location probabilities (Yook et al., 2002).

Spatial embedding of the nodes has also been added as a factor in utility-based models

of social network formation (Illenberger et al., 2012; Johnson and Gilles, 2000).

As an extension to random geometric graphs, which have a distance cutoff for inter-

actions, Boguñá et al. (2004) distribute N nodes uniformly in 1D space and then link

the nodes with probability p = 1
1+(d/b)α (where d is distance between the nodes, while

b defines a characteristic length scale that is used to control the average degree and α

represent degree of homophily). They also discuss extensions of their model to higher-

dimensional space. Another model with probabilistic, distance based edges is presented

in Wong et al. (2006). Here nodes are distributed homogeneously in space. Two nodes

are connected subject to the following rules: if their distance d is smaller or equal than

a certain threshold H (d ≤ H), connect the nodes with prob p + pb. If the distance

between the nodes exceeds the threshold H, connect them with a different probability,

p−∆ (where ∆ is chosen so that a specific total fraction of possible links is created).

A model with finite distance cutoff is presented in Hamill and Gilbert (2009). Nodes

are randomly distributed in space and connected if they are less then a certain distance

apart. This is implemented as follows. Every node has a social reach r defining a circle

around the node of radius r. Individuals connect if and only if their social reaches

overlap at some point. Extending from this random geometric graph model, the authors

investigate the effect of heterogeneity in distance threshold between different individuals

and find that the addition of heterogeneity in r adds a fat tail to the degree distribution.

A similar model is presented in Antonioni et al. (2014, 2013) where, in addition to the

interaction threshold, there are costs associated with forming an edge, depending on the

length of the edge.
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In most of the models, the concept of space is not limited to geometric space but could be

extended to the notion of social space. Social space includes factors and dimensions that

lead to some actors being closer to each other than others. Possible dimensions in social

space include geometric arrangement but extend to potentially include demographic

attributes such as age or gender, interests and opinions or shared affiliations (Pattison

and Robins, 2004).

While the models presented in this section are important models for social networks,

they do not include network evolution. A first step in this direction is made in Hamill

and Gilbert (2010) where agents are allowed to move in space which leads to changes in

the network structure due to altered distances.

2.3.3.3 Dynamic network evolution models

Another model where movement of the agents in space drives ongoing network change

is presented in González et al. (2006). In the model presented in the paper, nodes are

deleted and added to maintain a certain edge density in the network. The nodes or agents

have a radius of size r and are not fixed in space but move around. A collision between

two agents leads to the creation of a link, after which the agents change direction. The

space in this model is not meant to represent physical space but rather social space.

While this is a reasonable abstraction to make, the assumption that individuals change

direction in the journey of the social space after a collision without any correlation

between the two individuals now connected by an edge is not explained by the authors

or linked to any sociological theory or real-world observation. The model is able to match

the levels of community structure and assortative mixing as well as average shortest path

length and clustering coefficient of a real-world school friendship network.

Movement of agents in space is one of the mechanisms driving network change but

not the only one. A simple model for the dynamics of a social network is described

in Davidsen et al. (2002) and Ebel et al. (2002a). The model works as follows. A

node i is selected at random and if it has less than two neighbours it is connected to

another randomly chosen node. Otherwise, two neighbours of i are picked and connected,

closing an open triangle. With probability p a randomly chosen node is removed from

the network, together with all its links and a new node is added to the network. This

removal probability p controls the clustering and density of the network. Here, the

resulting networks exhibit in a power-law degree distribution and high clustering. Since

most real-world social networks do not show scale-free degree distributions, this model

is more appropriate for simulating the dynamics of online networks where unmaintained

links can persist.

A similar model is presented in Marsili et al. (2004). Here a randomly selected node i

connects to another randomly selected node with probability η. With probability ξ, it
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chooses the new contact from the set of its neighbours’ neighbours (again leading to tri-

angle closure). In this model, however, nodes are not removed to keep the network from

fully connecting as in previous models. Instead, with probability λ for each timestep, a

random edge is deleted.

The models described so far all assume binary relations, meaning an edge can be either

present or absent. This is a common abstraction to make, but if we want to model

the dynamics in continuous time we need to allow for gradual changes of edges, which

requires weights to be assigned to the edges. Kumpula et al. (2007) and Kumpula et al.

(2009) present a model that simulates the dynamics of a weighted network. Each step

a randomly selected node i connects to random nodes or friends of friends, similar to

the models described previously. The node selects a friend of a friend k by weighted

search along the present edges. Node i is therefore more likely to meet a friend of a

good friend than a friend of a casual acquaintance, which is a realistic assumption to

make. Once a suitable contact k is found, i connects to k with probability p (with initial

weight w0) if the two individuals are not already connected. If they are connected, the

edge weight wik is increased by δ. In addition, the edges visited during the search also

receive a weight increase of δ. Independently, i connects to a randomly selected node

with probability pr. As in models discussed previously, with probability pr a node is

removed with all its edges and a new node added to the network.

This models allows for gradually changing edges and models the mutual feedback of

weights and dynamics. This is very important as we have to remember that the social

network is just a visualisation of a very complex social system. In the social interaction

system, the actors have a memory of past interactions (which are represented as the

social network) which influences their current actions. For models using binary edges,

this memory can distinguish between two states, denoting whether the other individual

has been encountered before or not. Adding weights to the edges allows for a much

finer distinction between frequent and infrequent contacts and opens the possibility to

studying phenomena like the emergence of weak ties as bridges (Granovetter, 1973). In

Kumpula’s model and a subsequent extension by Jo et al. (2011) (to model burstiness

observed in human interaction patterns) weights represent a history of past meetings as

they are increased with every meeting.

Even though the models reviewed here have taken the first steps to modelling the dy-

namics of social networks (with the models by Kumpula even moving towards gradually

changing, weighted edges) they require a constant in- and outflow of nodes or random

deletion of edges to reach a dynamic equilibrium. While random removal of edges is a

good way for an abstract model to keep the network from filling up with edges, there is

no sociological process that could be abstracted as random edge removal. A throughput

of individuals can be a realistic assumption in many contexts if the system is studied at

the right time scale. In friendship networks individuals move away and new individuals

are added. In an organisational context, people get hired and people leave for new jobs
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or are fired. However, when studying network fragmentation, the timescales are often

much shorter. It is therefore safe to assume that the number and identity of the actors

stays the same over the course of the simulation, making the models presented unsuit-

able as a base model for the investigating the topic of this thesis. We will now review

some models that do not require replacing nodes.

One such model, where the number and identity of nodes is fixed and edges are weighted

is described in Jin et al. (2001). In this model meetings between individuals happen with

a certain probability pij for the pair i and j. This probability increases with the number

of mutual friends and decreases with the number of friends the two individuals considered

already have. This could relate to the real-world fact that if you have many friends you

are probably less likely to make many new friends, due to limitations on time available

for maintaining social connections. When two individuals meet, their edge weight is set

to 1 and is then subject to decay, leading to a weighted network. We find this way of

simulating edge weight dynamics counterintuitive, as we would expect a connection to

get progressively stronger with subsequent meetings. In the model by Jin et al. (2001)

no matter how frequently two individuals meet, the weight of the edge between them

will be 1. Furthermore, there is no positive feedback of individuals prioritising strong

ties over weaker ones when allocating time. Therefore, while able to generate realistic-

looking social networks, this model is not suitable for studying the weighted dynamics

of social networks.

2.3.4 Groups and network evolution

Another view on network dynamics views groups as crucial for the evolution of social

networks. This is based on theories of homophily and interaction foci. In models of

group dynamics, groups and community structure emerge in the social network as a

result of the individuals’ interactions and fragmentation might be observed.

One model is presented in Grönlund and Holme (2004). The theory behind this model

differs from other models of group evolution in that the authors assume that people

want to be different from others, but not too different. In this model the least central

node i of three randomly selected vertices is picked. Then another random vertex is se-

lected and its edge rewired to i and its neighbours. The model produces networks with

clear community structure; however, the mechanism does not mimic human interactions.

Another model explains the emergence of groups as a result of biasing communication

towards local communication (Rosvall and Sneppen, 2009). Here individuals communi-

cate with other individuals and build a map of the network based on a memory of these

encounters.

Other models model groups explicitly and study the coevolution of groups and network

topology. In Geard and Bullock (2008) a social network with a fixed number of N nodes
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and M edges is used. Each node has an associated trait vector, modelling individual

heterogeneity. Each iteration, G individuals are selected to each start a new group.

Every group has a dimension of the trait vector associated to it. One setting where

this might be a realistic assumption are university clubs, where each club is centered

around an activity or opinion. Each of the group starters then invites neighbours who

are not yet associated with a group to join their group. Each invited individual now

compares the value at the relevant position of their trait vector with the group’s value

and joins the group with a probability proportional to the distance. Thus, the more

closely aligned an individuals’ relevant attribute is to the groups attribute, the more

likely it is for the individual to join the group. If the individual chooses to join the

group, it itself can recruit new members from its friends by the same process. Once

every group member has tried to recruit all of their neighbours, each individual that is

in a group will adjust their connections by rewiring an edge from their most dissimilar

friend to the most similar group-comember (that they are not already connected to).

Now a new round of group formation starts by dissolving all groups and selecting G

new individuals to start new groups. The authors find that group growth is in some

cases self-limiting by generating very pronounced community structure, limiting the flow

of information (invitations) which, in extreme cases, can lead to fragmentation of the

network into disconnected parts.

As in reality groups do not dissolve periodically, the authors develop the model to allow

for more persistent groups (Geard and Bullock, 2009). Individuals in this model have a

single attribute assigned to them which is a number between 0 and 1. Individuals create

new groups with probability g and, contrary to the model discussed before, they can also

leave groups. The probability for leaving a group increases with the number of friends

not in this group (with a particular weight on friends who used to be members but are

not any more) and also with the number of other groups the individual is associated

with (imposing time constraints). The probability of leaving decreases for every friend

who is currently in the group. The probabilities of joining a group after being invited

by a friend depend on the same factors but with reversed effects. These factors are in

line with sociological theory and empirical work (McPherson et al., 1992). The network

evolves by rewiring randomly selected edges. An edge is either rewired to a group co-

member of one of the groups that an individual belongs to or to a randomly selected

individual from the whole population. If the distance in attributes between the two

new neighbours is larger than between the two old neighbours, the connection might be

rejected with a certain probability.

A model similar to this, but with slightly less sophisticated joining and leaving probabili-

ties, is presented in Geard and Bullock (2010). It studies the influence of time constraints

on the resulting network, by assigning each individual a fixed capacity for group invest-

ment (TAE). If an individual is invited to join a group and joining that group would

exceed the its TAE, it either refuses to join or it has to drop a current association to join
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the new group. Groups more distant to the individual in social space are dropped with

a higher probability. Note that the models discussed here again only allow for binary

edges. Therefore, while they provide a good abstract model for group dynamics, the

mechanisms driving topology change are rather simple. The models highlight how the

interplay/positive feedback between choices (choice homophily) and social environment

(induced homophily) can generate high levels of homophily and pronounced community

structure. When individuals have larger time budget available, community structure is

less visible and an increase in group size and lifetime is observed. In contrast, for low

values of the group investment TAE, the networks are more prone to fragmentation. In

the case where membership in only one group is allowed, this model is very similar to

opinion dynamics models, which we will discuss next.

2.3.5 Communities and fragmentation as a result of opinion dynamics

In opinion dynamics models group formation and fragmentation is frequently observed.

We will discuss some models of opinion dynamics here. However, we want to stress

that while the mechanisms and individual behaviours implemented in models of opinion

dynamics provide an explanation for network fragmentation, they are limited to cases

where the individuals explicitly break edges. In contrast to this is the question that

is the central point of this thesis, which is how edges can erode away even though the

individuals involved do not explicitly make a decision to break or cease to maintain them.

Following from the previous section we will first discuss a model where groups emerge as

a result of opinion dynamics (Bryden et al., 2011). In the model presented, four different

processes operate on the network. Two are state change processes: state spread, where

one node adopts the state of a neighbour and innovation where a random node is assigned

a novel state that is not present in the network yet. The two other processes are rewiring

processes, either random or homophilous, to connect two individuals with the same

state. Depending on the relative rates of these processes, three main regimes can be

observed: random networks, networks displaying community structure, and fractured

networks, in the case when rewiring dominates the dynamics. This model is similar

to models studying the co-evolution of opinions and network topology. One model of

opinion dynamics coupled with homophilous rewiring is presented in Holme and Newman

(2006). In this model a randomly selected node either rewires one of its edges to a node

with the same opinion (probability φ) or adopts a neighbour’s opinion with probability

1 − φ. The authors show that for a critical value φc the system transitions from all

opinions persisting in disconnected clusters to a giant component with one dominating

opinion. Durrett et al. (2012) study a variant of this model where rewiring is random

instead of homophilous. They find that this change leads to a continuous transition

around the critical value, thus, counterintuitively, leading to a less rapid fragmentation

into same-opinion components compared to the original model.
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A model considering homophily as well as heterophily (tendency to connect with in-

dividuals dissimilar to oneself) is studied in Kimura and Hayakawa (2008), extending

the model by Holme and Newman (2006). In this model, nodes can also rewire to a

randomly chosen node with a different opinion (heterophilous rewiring). This leads to

bridges between clusters of same opinion individuals being maintained. This model

shows how certain tendencies can counteract the fragmentation of the network into

opinion-homogeneous components. A model explicitly studying the fragmentation of

the network based on differing opinions is discussed in Henry et al. (2011). Opinions

are static in this model and edges are randomly rewired with a probability proportional

to the neighbours’ opinion difference and an aversion bias p quantifying the level of

tolerance the agents have towards differing opinions.

These models describe the emergence of groups through opinion dynamics as well as

fragmentation as a result of explicit disagreement. However, the processes are very

abstract and gradual changes can not be modelled due to edge dynamics being simulated

by rewiring and not gradual edge weight changes.

2.4 Disruptive change

We will now discuss models of cascades and fragmentation as well as factors that make

networks vulnerable to fragmentation. The stability of networks is a very important

topic in many areas of network research. One area investigating network stability is

the study of network percolation (Callaway et al., 2000). Edges or nodes are removed

until the giant component of the network disappears. This is relevant for distribution

networks where we want the network to remain connected and functioning even when

edges or nodes fail. For epidemics, fragmentation is desired, so we want to know how

many nodes need to be vaccinated to stop the spread of an epidemic by fragmenting the

network into components between which transmission can not occur.

Node or edge removal in these models can be random or targeted. Random removal cor-

responds to random technical failures while targeted removal could represent targeted

attack by terrorists or hackers. Targeted attacks are simulated by removing high degree

vertices, high betweenness vertices or vertices identified as important by some weighted

measure such as strength for weighted networks (DallAsta et al., 2006). Different topolo-

gies react differently to random and targeted attacks. Scale-free networks can tolerate

a higher number of randomly chosen nodes being removed than random graphs but are

more vulnerable to targeted removal of high degree nodes (Albert et al., 2000; Cohen

et al., 2000, 2001; Crucitti et al., 2003, 2004b).

Percolation theory studies independent failures, but one failing part could also start

a cascade of failures (Crucitti et al., 2004b; Motter and Lai, 2002). This has been

observed frequently in electric power grids. Here a failure of a line leads to higher load
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on neighbouring lines, potentially leading to failure of those if they were already close to

being overloaded (Crucitti et al., 2004a). These cascading failures are not constrained to

a single network but can cross to another co-dependent network. One example of this is

the blackout in Italy in 2003 where a power network and the Internet failed in a series of

cross-network cascades as the Internet dependent on the power for functioning and the

power network was regulated via the internet (Buldyrev et al., 2010; Vespignani, 2010).

Such interdependent networks show a breakdown behaviour very different to failures

in a single network, displaying a faster decay and sharp transition to fragmentation.

Both cases have been studied extensively. Another interesting study has been presented

in Holme (2002) where the authors show that growth by preferential attachment can

potentially lead to the network fragmenting itself as it grows if edges are sensitive to

overloading, so that the network itself triggers the cascade.

The models reviewed here do not extend to fragmentation of social networks. The

processes at work here are very different from overload of edges. It has been shown that

cascades in technological networks propagate further in networks with little community

structure (Wu et al., 2006). In contrast, in social networks community structure leads

to a higher risk of triggering fragmenting of the network as we will discuss later. As

described before, we need to distinguish between two cases of fragmentation dynamics

in social networks. In the first, fragmentation is due to individuals making an explicit

decision to take sides or disconnect from certain parts of the network. This case is

modelled very well by models of opinion dynamics as described at the end of Section

2.3.3.3. The other case, which we will focus on here, can not be modelled by opinion

dynamics. In this case a single edge failure due to a disagreement leads to a cascade

of rearrangements in the network. In contrast to cascading failures in technological

networks this is not a result of other edges failing through overloading. Instead the

same social processes that coordinated meetings between individuals before now lead

to fragmentation of the network. Individuals’ behaviour rules remain the same and

individuals do not take sides with one of the individuals involved in the fall-out. However,

the network that individuals base their decisions on has changed and this leads to further

changes.

Certain topologies are more prone to fragmentation than others. As discussed before,

social networks often exhibit community structure with densely connected clusters con-

nected by a few, often weak, edges. Percolation studies of weighted social networks have

shown that the removal of weak edges leads to faster fragmentation, thus confirming

that components are often connected by weak bridges (Onnela et al., 2007b; Toivonen

et al., 2007). The structuring of a network into communities is obvious for many social

networks, such as friendship networks of students (Eagle et al., 2009; Zachary, 1977),

mobile phone calls networks (Blondel et al., 2008), networks of drug-users (Weeks et al.,

2002) and even dolphin social networks (Lusseau et al., 2003).4

4A picture of this network can be found in Fortunato (2010).
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The observed community structure can often be traced back to some external constraints.

In the mobile phone call network the data is from Belgium and the observed communities

correlate with the French and Dutch language communities (Blondel et al., 2008). In

the social network of a Karate club observed by Zachary (1977) (which has become a

benchmark for community detection since a split was actually observed later; Fortunato

(2010)) the club members are grouped by loyalty to the trainer or the president of the

club. Another example is presented in Lazer et al. (2009) in a citation network between

political blogs where each of the two very distinct clusters corresponds to an American

political party. Clustering can also be due to spatial location of the nodes as shown in

an email network studied by Huberman and Adamic (2004).

Networks can either fragment or become more densely connected. Both cases have been

observed by Potterat et al. (1999). Fragmentation has been described by Zachary (1977),

where the university club split into two clusters according to the community structure5.

Another example of fragmentation of small groups is presented in the study by Sampson

(1968) who observed the interactions of young men in a monastery over a period of time

during which many members left the monastery, either resigning or being expelled.

In cases such as the university club, the monastery, or in settings such as companies,

fragmentation can lead to splitting of the organisation or even complete dissolution. In

these cases, we are interested in ways to make networks more resistant to fragmentation.

There are other cases, though, where we are interested in how to aid fragmentation of

networks such as terrorist networks or disease transmission networks (Bearman et al.,

2004; Weeks et al., 2002).

Factors increasing group stability have been studied in the setting of groups with explicit

membership (Geard and Bullock, 2008, 2010) and theoretically in sociology (White and

Harary, 2001). On the other hand fragmentation without explicit groups but as a re-

sult of differing opinions has been studied in detail (Durrett et al., 2012; Henry et al.,

2011). Fragmentation of small groups without explicit group memberships where the

fragmentation is not a result of explicitly taking sides has been mentioned as an impor-

tant problem in the literature (Borgatti and Halgin, 2011), however there is a lack of

both data and explanatory models. In this thesis we will present a model investigating

this phenomenon and the potential mechanisms that can lead to group fragmentation.

5With the exception of one individual, who was in the community centered around the club president
but associated with the trainer in order to finish his black-belt training.



Chapter 3

Simulating the dynamics of social

networks

3.1 Introduction

In the previous chapter we have reviewed models that are able to grow networks mim-

icking social network structure by exhibiting the characteristic topological features ob-

served in real-world social networks e.g. (Holme and Kim, 2002; Toivonen et al., 2006;

Vázquez, 2003). While these models grow the network in a dynamic fashion by adding

links sequentially, the growth process is typically a means to achieve some class of final

network structure rather than an attempt to model the human social behaviours that

continuously generate and maintain real social networks. Other models explicitly model

the dynamic change in topology (Davidsen et al., 2002; Ebel et al., 2002a; Kumpula

et al., 2007; Marsili et al., 2004) but rely on periodic exogenous removal of randomly

chosen edges or nodes (including all their edges) in order to maintain the system in a

steady state. Models of coevolutionary or adaptive networks focus on the mutual feed-

back between processes constrained by the network and topological change as a result

of individual behaviour (Gross and Blasius, 2008; Skyrms and Pemantle, 2000) but rely

on a specific process taking place on the network such as opinion dynamics or pairwise

games (Egúıluz et al., 2005; Holme and Newman, 2006; Takács et al., 2008; Van Seg-

broeck et al., 2009) restricting their applicability to the study of strategic interactions

Thus, we have identified a gap in current work on network dynamics for a general model

of network evolution, where individual behaviour drives network evolution and the net-

work reaches a dynamic steady state which can be maintained without artificial, global

balancing processes. Here, we propose such a model in which the network topology is

created as a result of ongoing changes in interaction patterns. The interaction patterns

emerge as a result of the nodes’ decisions and can be formally described as a weighted

network; we will investigate the topology of networks generated by the model in the

35
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next chapter.

In this chapter we will discuss the choice and implementation of behavioural rules on the

individual level that make up our model. The decisions on which components of human

behaviour to include in the model were guided by sociological theory and empirical

evidence. We will elaborate on the assumptions and design choices made for the various

model components and how they relate to the literature on theory and data of social

networks/interactions.

3.2 Modelling social network dynamics

3.2.1 Problems modelling the dynamics of weighted networks

Before arriving at the model presented in this chapter, we explored several other mech-

anisms. In this section we will discuss these approaches and why they were insufficient

to model the dynamics of weighted social networks. Not many models of weighted social

networks exist and we postulate that this is due to the fact that several issues arise

when simulating network dynamics, that can be avoided in binary networks but not in

weighted networks. Here we will discuss these problems before presenting a model that

is able to overcome these difficulties.

The main issue when simulating network dynamics (binary or weighted) is that for a

network to reach a steady-state the number of edges made must balance the number

of edges deleted. In many models this problem is avoided by using rewiring dynamics

(Demirel et al., 2011; Geard and Bullock, 2009; Holme and Newman, 2006). When using

rewiring for modelling network dynamics, the number of edges is kept constant as edges

are disconnected from one node and rewired to another, but never created or removed.

Thus, achieving a stable network state with a certain density is guaranteed by the

rewiring mechanism. In cases where edges can be created, an edge removal process must

exist to balance the increase in edge number (unless the focus is on network growth

which is not the focus of the model presented here). This is generally implemented

as network growth with an added periodic removal of edges (Marsili et al., 2004) or

of nodes with all their edges (Ebel et al., 2002a; Kumpula et al., 2009). Thus, these

models utilise a globally set removal rate that needs to be tuned for obtaining stable

steady-state networks. While this is an effective mechanism to achieve stable networks,

edges or nodes to be removed are chosen randomly at the network level, rather than

removal being a local process reflecting a real-world process.

One of the few models using weighted dynamics, which is presented in Kumpula et al.

(2009), employs this technique of periodic node removals to achieve a steady state. While

it is able to produce weighted networks, this model does not provide any dynamics of

those weights. Similar to growing models being limited to models of network growth, this
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model is limited to modelling weight strengthening: edges are only ever strengthened

until they are removed (when a node they are connected to is removed).

When simulating weight dynamics, balancing is again the main issue. For a network

to reach a steady-state the total increase in weights must be balanced by a decrease in

weights. There are several options to implement a balancing process. We could imple-

ment a global decay process that decreases each edge weight by a certain predetermined

amount each time step. However, in preliminary studies we found this method very dif-

ficult to parameterise as the increase in edge weight is highly heterogeneous depending

on the edge’s embedding in the network. We would frequently observe fully connected

or completely empty networks.

Another option is to implement a local process scaling all edges attached to a partic-

ular node once the node strength reaches a predetermined value. We found that this

resulted in very homogeneous networks and often lead to spontaneous fragmentation

of the network into disconnected clusters during the initialisation phase, a feature not

desired for the baseline model. Furthermore, this means that each edge is adjusted by

the two nodes it connects independently, which might be a reasonable assumption for

sentiment networks but is not a good assumption for modelling contact networks, since

the contact frequencies represented by the edges are a result of the aggregated decisions

of both individuals connected by the edge.

These unsuccessful initial modelling approaches prompted us to build a more refined

model through studying assumptions made in sociological and organisational literature

and deriving the behavioural rules of the individuals from these assumptions. Through

this approach we have arrived at a more elegant way of balancing edge weights that

arises naturally from the dynamics. We will describe this method in Section 3.3.1.4,

after discussing the assumptions that have influenced these rules.

3.2.2 Assumptions

Following Snijders et al. (2010) our selection of model mechanisms was “guided by theory,

subject-matter knowledge, and common sense”. We will first discuss the assumptions

we make about human behaviour that inform our model and link them to sociological

theory and empirical observations.

3.2.2.1 Decay and time allocation

Most importantly, we assume that social ties have to be actively maintained, otherwise

they decay in intensity and importance and eventually vanish (Burt, 2000; Cummings

et al., 2006). As ties need to be maintained by social interactions, individuals have to

devote resources to maintain a tie (such as time, money, emotional energy and memory
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space) and these resources are limited (Contractor et al., 2012; Kossinets and Watts,

2009; Miritello et al., 2013; Sutcliffe et al., 2012). Thus, individuals have to decide on

how to allocate their time to the maintenance of contacts.

It has been shown that people are biased to interact with individuals they have interacted

with previously (Caldarelli et al., 2004) as the contact has already been established and

the individuals have established a certain level of trust and familiarity. In addition,

exposure of two individuals to each other seems to increase the likelihood of people liking

each other more (Reis et al., 2011) which might be another reason for them to seek to

maintain the relationship. Time allocation in real-world interactions is also influenced

by many other factors and how well two individuals get on also depends strongly on their

character traits, opinions and interests. The fact that individuals in general prefer to

interact with others who are like them in some respect is called homophily. Homophily

has been shown to be an important predictor for edge existence (Kossinets and Watts,

2006) and friendship formation (van Duijn et al., 2003).

3.2.2.2 Spatial constraints

Direct contact between two individuals requires physical proximity which necessitates

travel, costing time and money. People therefore have a limit on the distance they are

willing to travel for social interactions (Illenberger et al., 2012) and only connections

between individuals located close enough can thus be maintained through regular face-

to-face meetings. In addition, it has been shown that individuals located close to each

other have a higher probability for casual meetings leading to contact which maintains

the connection (Conrath, 1973; Festinger et al., 1963; Monge et al., 1985; Van den Bulte

and Moenaert, 1998; Zahn, 1991). Real-world social networks are embedded in space

and many of the properties (such as high clustering and assortativity) that define social

networks are linked to spatial embedding (Barnett et al., 2007; Bullock et al., 2010;

Herrmann et al., 2003).

3.2.2.3 Triangle closure

So far we have mainly discussed the assumptions regarding the maintenance of existing

relationships. Connections in social networks are often made when an individual brings

two of their friends into contact, thus facilitating a new connection. This process is

called triangle closure and has been shown to play an important role in real-world social

networks (Kossinets and Watts, 2006; van Duijn et al., 2003). It is used in several of the

models discussed in the previous chapter to achieve strong clustering, meaning connected

nodes are likely to have network neighbours in common (Newman, 2010).
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3.2.3 Modelling the dynamics of relationships

In a social network the edges represent some kind of real-world relationship or interac-

tion between individuals. The most important distinction to be made here is between

contexts where edges represent quantified sentiments and contexts where they stand for

some type of contact. In this thesis we investigate the phenomenon that despite senti-

ments between people remaining unchanged relationships between them might dissolve

as a result of changes to the local environment in which the relationship is embedded. In

the model presented here we therefore measure contact frequencies and represent these

as edges. This means an edge does not represent how much two individuals like each

other but rather how often they come into contact. We represent this contact frequency

of a pair of individuals as an undirected edge (representing a symmetric relationship)

between them.

Unlike in other models, we simulate the interaction between individuals explicitly and

the edge weights are a representation of this simulated interaction, just as edges in an

observed contact network represent real world interactions between people. Therefore,

an edge’s existence is not under the control of one of the actors as is the case in many

models of strategic interaction. This means that individuals do not actively change edge

weights or break edges. Rather, edge weights change as a result of contacts which in turn

are a result of the individual decisions of both nodes involved in a tie. Edges disappear

or are broken when individuals decide to not maintain the contact anymore in which

case the edge weight gradually decays to zero.

3.2.4 Desired properties for generated networks

As discussed in Chapter 2, real-world social networks exhibit several defining properties.

Models of social networks aim to create networks that match these properties. Therefore,

we will revisit the list of properties characteristic for social networks and later assess the

networks created by our model using this specification.

Real-world social networks exhibit high levels of transitivity or clustering, meaning that

two individuals who have mutual friends are likely to be connected themselves. Another

characteristic feature is short average path length, meaning that on average a pair of

nodes is connected by a relatively short path. Short here refers to being shorter than

would be expected from a regular network, such as a lattice, while potentially being

longer than the very short average paths in random networks.

Social networks are generally sparse, with only a subset of potential connections be-

ing present. Networks that are both sparse and show high levels of clustering exhibit

another defining topological features of real-world social networks: community struc-

ture. Community structure describes the existence of parts of the networks that are
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densely connected internally, but have few connections between them. Often the exis-

tence of community structure in a social network is assessed simply by visual inspection.

Communities show a high edge density within the community with fewer edges existing

between communities. More formally community is defined as sets of nodes that have

more connections between each other than to nodes outside of the group.

Another feature that is used frequently to distinguish the topology of social networks

and other networks is degree correlation. In social networks degree correlation between

nodes connected by an edge is high and positive, which is referred to as assortative

mixing. In contrast, in other networks (e.g. technological networks) negative degree

correlations are frequently observed.

Regarding the degree distribution of the network, there is some debate on the exact

nature of the distribution and it is likely that the exact shape depends on the type and

size of the social network. However, a general consensus is that social networks should

exhibit broad degree distributions with a certain degree of skew.

3.3 The RASH Model

In this section we will give a brief overview on the key mechanisms of the model and the

corresponding parameters, before discussing how we have translated the assumptions

listed above into model mechanisms. We will go into detail on how the constraints on

interactions discussed in Section 3.2.2 are formalised into decision rules and how the

constraining processes are parametrised. After that we will describe the algorithm in

more detail.

3.3.1 Mechanisms

The core of the model is very simple. Each timestep, every individual invites all of their

network neighbours to a gathering where connections between individuals are strength-

ened and new connections formed. Whether an individual accepts an invitation depends

on several constraining processes which model the social processes described in Section

3.2.2. We will now introduce the parameters related to these processes before providing

a detailed description of the implementation of each process.

1. Interactions are constrained by a limited interaction range: individuals separated

by a spatial distance greater than R cannot accept each others’ invitations.

2. Interactions are constrained by affinity : with probability A there is enough affinity

between a pair of individuals to interact. With probability 1 − A there is a lack

of affinity and the individuals will not accept each others’ invitations. They can

however, meet at a mutual friend’s gathering.
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3. Interactions are constrained by a limited number of time slots available: each

individual can accept at most S invitations per timestep.

4. Interactions are constrained by history : invitations tend to be accepted when the

individuals involved have a strong history of interaction over the preceding H

timesteps.

3.3.1.1 Spatial constraints

To model spatial embedding of the nodes and the resulting constraints on interaction

we assign each of the N nodes a random position (xi, yi) (where xi and yi are chosen

uniformly from the interval [0,M ]) in a two-dimensional bounded square arena of size

M and area M2. The probability of interaction depends on the distance between two

individuals; this is modelling the constraint that geographic embedding has on interac-

tions. We model this by restricting interactions to pairs of nodes that are no further

than R apart. The distance between two nodes is measured as the Euclidean distance

between their positions. This is similar to the spatial restriction used by Hamill and

Gilbert (2009, 2010) and following them we will refer to it as the social reach or reach

of an individual. There is a small difference in the way the reach of an individual is

described between their model and ours. In their model, two individuals interact if their

reaches overlap therefore leading to an interaction distance of up to 2R, meaning that

nodes further apart than 2R can not interact. In contrast, in our model individuals must

be located within each other’s reach of radius R, so that the parameter R describes the

threshold distance for interaction. We illustrate this difference in the definition of reach

in Figure 3.1.

This constraint only applies to direct interactions where one individual attends a friend’s

gathering. In addition to these directly maintained interactions, individuals in our model

can interact with friends of their friends, even if these individuals are located beyond

their own direct social reach, as they can meet at a mutual friend’s gathering. This

relaxes the spatial limitations on triangle closure present in Hamill’s social reach model.

3.3.1.2 Homophily and affinity

In addition to spatial distance, pairs of individuals may be separated by differences of

personality or belief. To reflect this, each pair of individuals is assigned an affinity value

describing how well they get along. This value is mutual and therefore symmetrical,

and, once assigned, it remains constant for the duration of a run. For simplicity we

only distinguish between two cases. With probability A, a pair of nodes have sufficient

affinity to send invites to each other. With probability 1 − A, the pair’s affinity is not

sufficient for invitations to be exchanged. This incorporates homophily into our model
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(a) Illustration of interaction re-
striction used in Hamill and Gilbert

(2009).
(b) Illustration of interaction restric-

tion used here.

Figure 3.1: Defining the interaction range of an individual as a circle of radius R
around each individual, we illustrate the differences between the model by Hamill and
Gilbert (2009) and the model presented here. In the model presented by Hamill and
Gilbert two individuals are within reach if their interaction circles overlap (resulting in
maximum interaction distance of 2R). In the model presented here, individuals must
lie within each others interaction circle, resulting in a maximum interaction distance
of R. Thus the parameter R in our model denotes the threshold distance for active

maintenance of a contact between two individuals.

in an abstract way. Note that similarly to the spatial distance, a connection between

people who would not actively maintain contact (due to being to far apart in space or

out of disinterest due to low affinity) can be maintained indirectly through a mutual

friend.

3.3.1.3 Time constraints

As discussed above, social interactions are limited by the time budgets of the individ-

uals involved. In general, individuals have more opportunities for social interactions

than time available to pursue these opportunities. A model that explicitly models these

limited time budgets is presented in Geard and Bullock (2010) where individuals have a

fixed capacity for investing in group membership. We impose a similar capacity by re-

stricting individuals to attend at most S gatherings per time step, chosen from amongst

the (typically greater than S) invites that they receive. They choose based on affinity

as well as relative familiarity (based on the previous encounters reflected in the edge

weight), similar to the mechanism of choosing interaction partners described in the

“Friends” models in Skyrms and Pemantle (2000). This mechanism leads to positive re-

inforcements as familiar interaction partners are preferred, resulting in more familiarity.

As discussed in Section 3.2.2.1 this effect has been observed empirically.
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3.3.1.4 Decay and maintenance of edges

Finally, real social connections must typically be actively maintained or they erode and

eventually disappear. Thus, we must include some form of decay if we want to model

the dynamics of a social network.

A simple mechanism to achieve this is to use a global decay process which reduces

all edge weights every time step. We found this almost impossible to calibrate, often

leading to networks either fragmenting completely if decay is too strong, or connecting

fully if decay is too weak. This is a major problem that bottom-up models of weighted

social networks face, as stochasticity together with heterogeneity in degree and positive

feedback make it difficult to predict low-level outcomes. We will discuss this in more

detail in Chapter 6.

Some models avoid this problem through occasionally removing nodes with all their

edges. However, since our ultimate aim for this model is to understand how edges dis-

appear as a result of changed context, edge weight decay has to be a linked to individual

decisions.

Consequently, rather than implementing global decay or turnover processes, we have

chosen a localised mechanism inspired by the fact that friendships need to be actively

maintained. We therefore assume that there is a baseline contact frequency that is

required for an edge to continue to exist. This means that if a contact is not maintained

regularly enough, individuals will “forget” each other.

To achieve this, we model the interactions between individuals explicitly, meaning that

the edge weights denote relative frequency of contact between two individuals (rather

than sentiments, as discussed in Section 3.2.3). This means that the intensity of a

relationship is defined as the history of meetings within a certain time frame. In detail,

each individual has a memory recording their meetings with other individuals for each

of the previous H time steps. The number of encounters between two individuals i and

j at timestep t is denoted htij and can range from 0 to S + 1 occasions per timestep

(the maximum value corresponding to the situation where both individuals attend each

others’ gatherings and also attend the same S−1 gatherings hosted by their other shared

neighbours).

This means that H defines the time period within two individuals need to at least have

one contact for the edge between them to continue to exist. Thus, if two individuals have

had no meetings in the last H timesteps, there will be no edge between them. Otherwise

an edge exists with the weight depending on the number of encounters within the last

H timesteps.
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Formally, the weight of an edge between individuals i and j, is calculated as

wij =
1

H

H∑
t=1

htij (3.1)

summing the total number of meetings in the pair’s recorded interaction history hij

and dividing this number by the history length H (thus yielding the average number

of encounters per time step). This gives us a value that is meaningful and allows for

comparison between runs with different memory lengths.

3.3.2 Algorithm

With the mechanics described, we can specify the model more formally as follows:

1. Each of N nodes is independently assigned a location, (xi, yi), selected uniformly

at random on a map of size M (only one parameter is needed as we use a square

map of area M2).

2. Every pair of nodes, (i, j), where i 6= j, is assigned a symmetric affinity, aij = aji,

set equal to one with probability A, and zero otherwise.

3. For every pair of nodes, (i, j), where i 6= j and the distance separating them, dij ,

is not more than R, a connection is established by adding a single meeting at

a randomly chosen point, 0 < t < H in their interaction histories, htij and htji,

initialising the remainder of the history with 0 meetings.1

4. For each simulated timestep t < tmax:

(a) For each edge, (i, j), update the interaction history by shuffling more recent

values one step down the list and overwriting the oldest value hH , i.e.,

∀t ∈ {0, 1, . . . ,H − 1} : ht+1
ij ← htij . As the edge weight wij is defined as the

mean number of meetings per timestep this update results in an update of

the edge weight.

(b) For each pair of nodes, (i, j), invite j to i’s gathering (and vice versa) if

wij = wji > 0 meaning j is a current network neighbour of i, and aij = 1,

and dij ≤ R.

(c) For each node, i, accept at most S invitations, each selected with probability

proportionate to the edge weight wij .

1Note that the resulting steady-state networks are not sensitive to the placement of the initial single
meeting slot. We chose to initialise in a random slot as this means that during the initialisation phase
t = 0 to t = H edges that were initialised but then never maintained decay to 0 at different points and
not all at the same time leading to a smoother transition to equilibrium phase.
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(d) For each node, i, consider each pair of individuals (j, k) attending i’s gathering

(including i themselves), where j 6= k, and increment their interaction history

by one meeting in the most recent time slot, i.e. increment h0jk and h0kj by

one.

3.3.3 Algorithm illustration

We will describe one timestep of the algorithm using a hand-generated example network.

For clarity, we will focus on one individual and its neighbourhood. The individual we

will focus on here is individual 0, highlighted with a grey circle (Figure 3.2a).

At each step invitations are sent between network neighbours. They are only sent if

the individuals are no further than distance R apart. In Figure 3.2b we visualise the

social reach of node 0 by the grey circle. Node 0 can only send invitations to and receive

invitations from individuals within this circle, i.e. nodes 2, 3 and 4. Furthermore,

invitations will only be sent between pairs of nodes that have sufficient affinity. Let us

assume that in this example the affinity value associated with each pair of nodes is 1,

except for (0, 3) (highlighted in Figure 3.2c by the edge between them being coloured

orange).

Given these constraints, individual 0 sends out invitations to (and receives invitations

from) all individuals within reach that have sufficient affinity, in this example nodes 2

and 4 (Figure 3.2d). This means that in the example node 0 will only send and receive

two invitations. If we assume that each individual can select up to 2 meetings here

(S = 2) then no selection is required here as the number of invitations is the same as

the number of available time slots. For most parameter settings this is generally not

the case and nodes will on average receive more invitations than they have timeslots

available. To exemplify this, let us consider another node, individual 2. Individual 2

has received invitations from all its neighbours that are within reach: 0, 1, 3, 6 and 7,

indicated by green edges in Figure 3.2e. Node 2 now has to select two of these invitations

to accept. The likelihood of selection is proportionate to the edges weights, which is the

same approach as used in Skyrms and Pemantle (2000). Thus, the most likely outcome

here would be to select invitations from nodes 0, 3 and 7 (corresponding to the edges

with the highest weights).

Node 2 has decided to attend node 0’s gathering. We will now describe what happens

at this gathering. If we assume individual 4 has accepted the invitation as well, then

there are 3 individuals present at node 0’s gathering: the two guests, 2 and 4, and the

host, 0 (Figure 3.2f). Edges that already exist are strengthened (or maintained) which

here applies to the edges (0, 2) and (0, 4). In addition, new connections can be formed

between individuals. Here nodes 2 and 4 are introduced to each other and form a new,

initially weak edge. This edge closes a previously open triangle (Figure 3.2g).
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Figure 3.2: Illustration of the algorithms using a small example network. A detailed
description of these figures is given in the main text.
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Note that 2 and 4 are outside of each others reach (Figure 3.2h). Therefore, the edge

between them can only be maintained indirectly by their mutual friend, node 0, who

is located within the intersection region of their reaches. This means that both nodes

can attend node 0’s gatherings and maintain a connection between them by doing so.

In the same way, the edge between node 0 and 3 can be maintained, even though the

individuals do not attend each others gatherings due to lack of affinity.

The process demonstrated for one individual here happens for all nodes, meaning that

each timestep N gatherings take place. New edges are formed, existing edges are main-

tained or strengthened and unmaintained edges decay in weight. Edges that have not

been maintained in the last H timesteps will disappear.

3.3.4 Implementation details

3.3.4.1 Proportionate selection of invitations

Due to time constraints, each timestep every individual has to select S invitations from

a typically larger set of invitations received. These are selected with probabilities pro-

portionate to the edge weight. We implement this as a roulette-wheel selection.

For this an individual i assigns an invitation from its neighbour j the following score:

wij ∗aij ∗ rij where wij is the weight of the connection between i and j, aij is the affinity

score and r(i, j) is a function of the distance between i and j. In the current version of

the model we use a distance cutoff for interactions, meaning that

r(i, j) =

1, if dij ≤ R

0, otherwise
. (3.2)

Similarly the affinity score aij is either 1 denoting sufficient affinity to attend a neigh-

bours gathering, or 0 in which case the affinity is not sufficient. This means that being

further away than R or having a affinity value of 0 is equivalent to an invitation not

having been sent as it is always ignored. This means that effectively only invitations

from neighbours within range are considered and only if the pair of nodes has sufficient

affinity. From the set of individuals to which these two conditions apply, selection is

proportionate to the edge weight.

3.3.4.2 Initialisation of the meeting history

When a new edge is made during the run (which happens when two individuals are

introduced by a mutual friend), it is initialised with an empty history and at the end

of the time step updated like all other edges. This means that the most recent slot is

set to the number of meetings that occurred during the current timeslot. This number



48 Chapter 3 Simulating the dynamics of social networks

can be larger than one if two individuals get introduced to each other at one party and

then immediately meet again at another party in the same timestep. This would be

equivalent to meeting someone new one week and meeting them again at another party

the same week.

This procedure means that there is no need for a parameter that determines with which

weight a connection is initialised as the initial weight follows naturally from edge weights

being calculated from observed meetings.



Chapter 4

Characteristics of generated

networks

In this chapter we will discuss the characteristics of the network structures generated

by the model presented in the previous chapter. We will discuss how the interplay of

the constraining processes leads to networks that are more than simple random geo-

metric graphs, even though the spatial restrictions are crucial for generating the desired

topological structures. We show that the generated networks reach equilibrium on the

macro-level, while changes on the micro-level continue to happen and why this is crucial

for studying the type of network fragmentation that is the topic of this thesis.

4.1 Topology of resulting networks

4.1.1 Topological measures

Social networks are typically sparse and they exhibit community structure as well as

high clustering, positive assortativity with respect to degree and short characteristic

path length. We will first investigate whether the structures resulting from running

our model exhibit these properties. We use R = 30, A = 0.75, S = 3, H = 50 and

M = 200 as the standard parameter setting (also listed in Table 4.1). We will discuss

the influence of the parameters on the resulting networks in detail in Section 4.4. Setting

R = 30 means that nodes can invite (and thus directly interact) with other nodes no

further away than 30. The map the individuals are located on is of size 200 and area

2002 = 40000. Individuals can accept up to 3 invitations every time step, limiting the

edge weight to a maximum of wmax
ij = S + 1 = 4. Around 75% of all pairs of nodes

will have sufficient affinity to interact directly, while the remaining 25% will not invite

each other. This standard parameter setting is used for all experiments unless stated

otherwise.

49
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Parameter value

R 30
A 0.75
S 3
H 50
M 200

Table 4.1: Standard parameter values used if not stated otherwise.

(a) Network
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Figure 4.1: An example network at t = 10, 000 for the standard parameter setting.
The network exhibits community structure with densely connected components, which
are linked together by weaker edges. The degree distribution of the network is shown
in Figure 4.1a. The distribution is broad, spanning an order of magnitude and limited
for higher values, as observed in real social networks that require edge maintenance,

however, it lacks the skewedness observed in many real-world networks.

An example network generated with the standard parameter setting is shown in Figure

4.1a. Regarding the desired characteristics defined in Section 3.2.4, the obtained net-

works are sparse, exhibiting both densely connected clusters and weaker bridges between

clusters. Thus, the resulting networks exhibit community structure. In Table 4.2 we

list network measures calculated for the networks resulting from running the model for

t = 10000 timesteps with the standard parameter settings. Each value shown is the

rounded mean taken over 100 runs, with the standard deviation shown in brackets. The

values obtained for the statistical measures match those of real-world social networks

with high clustering and positive assortativity with respect to degree. The average short-

est path length is low, however, looking at a larger system size of N = 1000, the average

shortest path length does not scale logarithmically as observed in many real-world net-

works. This is due to the strong limitations on contacts in our model, imposed by the

interaction threshold R. We will discuss the scaling behaviour of the system in detail in

Section 4.3.
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N=100 N=1000

nodes∗ 98.49 (± 1.23) 992.06 (± 3.41)
edges 535.56 (± 56.76) 6153.7 (± 163.57)
clustering 0.75 (± 0.04) 0.71 (± 0.01)
clustering weighted 0.25 (± 0.03) 0.2 (± 0.01)
transitivity 0.69 (± 0.04) 0.66 (± 0.01)
assortativity 0.49 (± 0.11) 0.55 (± 0.05)
shortest path 3.49 (± 0.75) 12.16 (± 1.78)
diameter 8.49 (± 2.23) 31.69 (± 5.89)
degree 10.88 (± 1.17) 12.41 (± 0.34)
strength 12.22 (± 0.37) 12.67 (± 0.09)
components 2.88 (± 1.39) 8.37 (± 2.96)

Table 4.2: Measures characterising the topology of the resulting networks for network
sizes N = 100 and N = 1000, showing mean (over 100 runs) and standard deviation
for each. For networks consisting of more than one component, the average shortest
path length and diameter were measured for the largest component. When increasing
the system size, the number of edges increases proportionately with the number of
nodes (by a factor of 10 in this case). Diameter, average shortest path length and the
number of components increase by a factor of

√
10. This results from scaling the grid to

ensure the same density of nodes when increasing the number of nodes. We will discuss
how the different measures scale with N in detail in Section 4.3. (∗When calculating
these measures, singletons are ignored, meaning only nodes with at least one edge are
considered. Listed here is the number of nodes that were not singletons and therefore

included in the calculation of the measures shown.)

The degree distribution is relatively broad, spanning an order of magnitude, and centred

around a characteristic value, as has been observed for real-world social networks where

links require regular contact to be maintained (Amaral et al., 2000). The maximum

degree has a cut-off, which has been suggested as another important characteristic of

interaction networks (Figure 4.1b) (Hamill and Gilbert, 2010). However, the distribution

does not exhibit an obvious skew, while skewed distributions have been observed for

many real-world networks.

4.1.2 Resulting networks differ from random geometric graphs

The spatial constraints imposed by the finite interaction reach encourage the high clus-

tering and community structure typical of a social network. However, the networks are

not just random geometric graphs with threshold distance R. Clustering is higher than

for a random geometric graph (Dall and Christensen, 2002) as gatherings bring about

longer range edges with a length up to 2R. However, these longer range edges can only

be created if they close a triangle. They are able to persist only as long as connections

to the shared neighbour that facilitated the edge creation exist. Because of this depen-

dence on other edges we will refer to these edges as secondary edges and to the edges

with a length of less than R (which can be directly maintained by mutual invitation)

as primary edges. Since edges with length between R and 2R have to be maintained
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by a mutual friend, many nodes separated by such a distance are not connected (see

Figure 4.2). Nodes at that distance might be lacking a mutual friend for several reasons.

There might be simply no node placed in the space between them, meaning no potential

edge facilitator exists. Or there might be a lack of affinity between one of the nodes

and a potential mutual friend. All of these effects can lead to potential secondary edges

not being created. The influence of affinity results in not all possible primary edges

being present either as some individuals will not invite each other. Furthermore, the

stochasticity of the meeting process in combination with the time constraint can lead

to a primary edge being lost in which case it can only be recovered if the pair of nodes

have at least one common neighbour.

Both the additional process of triangle closure bringing about secondary edges as well

as the added constraints imposed by the restrictions on affinity and time available for

maintaining connections lead to networks that are more complex than random geometric

graphs with connection threshold R. Furthermore, the triangle closure mechanism creat-

ing secondary edges leads to dependencies between edges. We will show later that these

dependencies are crucial for modelling the social processes that lead to fragmentation in

social networks.

4.1.3 Variability between different realisations of the same spatial ar-

rangement

The stochasticity of the initialisation and the meeting process allows for some variability

between networks generated with the same node locations but different initial seeds.

Figure 4.3 shows four networks resulting from running the model with the same spatial

arrangement of nodes but varying the seed initialising the random number generator.

This means that the histories of the initial edges are initialised differently, affinity values

might vary between runs and the selection of invitations to accept is changed (but still

biased in the same way towards edges with higher weights). The resulting network

topologies look similar but also exhibit some obvious differences. For example, the

networks on the left hand side have a higher number of components as nodes on the far

left form a separate component. This is due to the stochasticity in the meeting process

and the fact that edges, once broken, can only be re-formed if a mutual friend is present.

To study the variability between different runs on the same spatial arrangement we ran

1000 repeats of the model with identical node positions. For each edge observed in at

least one of the resulting networks we calculated in how many of the 1000 repeats this

edge was observed. An example run of this is shown in Figure 4.4. Primary edges are

shown in grey and secondary edges are shown in cyan. This shows that many of the

primary edges are present in almost all of the 1000 repeats, whereas secondary edges

typically only occur in some of the realisations.
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(a) Primary edges present (b) Secondary edges present

(c) Primary edges missing (d) Secondary edges missing

Figure 4.2: Classes of edges within the example network shown in Figure 4.1a. Figures
4.2a and 4.2b show the edges that are present in the network, whereas Figures 4.2c and
4.2d show potential edges that are not observed. The edges are divided into two groups,
primary edges and secondary edges. Primary edges are between nodes close enough to
invite each other to gatherings (i.e. dij ≤ R). Secondary edges are between nodes
that may only interact at the gatherings of mutual neighbours (i.e. R < dij ≤ 2R).
A typical network features many but not all of the possible primary edges and a much
smaller fraction of the possible secondary edges. We discuss this in more detail in

Section 4.4.2.
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Figure 4.3: Four networks resulting from running the model with the same spatial
arrangement of nodes but different random number generator seeds. The standard
parameter setting was used. While exhibiting similar topology the networks also have
some differences. Note for example that nodes on the far left form a separate component

in the two networks on the left hand side.

We then average over 20 different spatial arrangements, running the model with 1000

different seeds for each arrangement. This means that again any particular edge can be

present in up to 1000 repeats (if it is found in every single repeat). The results are shown

separately for primary and secondary edges in Figure 4.5. On the x-axis the number of

repeats that an edge can be present in is shown and the y-axis shows the percentage of

primary or secondary edges respectively that are present in that number of repeats. This

shows that almost all primary edges are present in all repeats for a particular spatial

arrangement, i.e. the presence of primary edges seems to be only minorly influenced by

the particular chain of events as determined by a particular random generator seed. In

contrast, there is a much higher variability across secondary edges. Most secondary edges

are present in more than half of all repeats on one node placement, but the distribution

is broad.
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Figure 4.4: Number of edges that are present in a certain number of network reali-
sations generated on the same spatial arrangement of nodes. Primary edges (shown in
grey) seem to be fairly stable across different repeats whereas secondary edges (cyan)
show more variability. This figure shows the results of 1000 realisations on exactly the

same spatial arrangement of the nodes.
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Figure 4.5: These figures were created by generating 20 different spatial arrangements.
For each of the arrangements, 1000 repeats were run, each with a different random seed
(as for Figure 4.4). We then calculated in how many of these 1000 repeats each edge
(that was found in at least one repeat) was present, giving us a measure of variability
between runs. We calculated these counts for all edges observed and for each of the
20 spatial arrangements. Using these counts we derive the numbers of edges that are
present in a certain number of repeats (out of 1000 total repeats). From this we calculate
the percentages of edges that were present in a certain number of repeats; these are the
values shown in the figures. The left hand figure shows that almost all (more than 90%)
of all primary edges are present in all repeats for a particular spatial arrangement. The
right hand figure displays the percentages for secondary edges, which tend to only be

present in some of the repeats.
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4.2 Dynamical behaviour

4.2.1 Macro-level

Regarding the dynamics of the system, the topological measures reach equilibrium after

H timesteps as shown in Figure 4.6 (the standard parameter setting was used here with

H = 50). After H steps the initialisation effects have been removed. At this point all

H slots of the history contain entries that reflect simulated meetings as all entries that

were set during initialisation phase have been replaced by newer entries. Once this has

happened the topological measures are remarkably stable. In the initialisation phase

new edges are formed, resulting in an increase in mean degree and strength of the nodes

as well as a decrease in diameter and average shortest path length.

clustering
assortativity

components

shortest path

diameter

degree

strength

Figure 4.6: Topological measures equilibrate rapidly, within H = 50 timesteps. After
t = 50 all initialisation effects have been removed and the system reaches a quasi-stable
equilibrium. All data points shown are means taken over 100 runs. The standard

parameter setting H = 50 is marked by the grey vertical line.

4.2.2 Micro-level

While the values of measures characterising the topology are stable once all history

slots contain values reflecting actual meetings, the exact topology described by edges

and their weights is subject to random fluctuations. This is exemplified in Figure 4.7

where the change in edges weights is shown for all edges attached to a randomly selected

node (for a single run). The edge weights fluctuate over time due to the stochasticity in

the meeting process generated by limiting the number of invites accepted to S (and the

random selection of these) and having only a finite memory of length H. The magnitude
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of the fluctuations can be controlled by changing H. A higher value (longer memory)

means that the edge weights are calculated over a larger window of time, leading to less

volatility (Figure 4.7).
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(a) H = 50
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(b) H = 5

Figure 4.7: Edge weights over time for all edges attached to a randomly chosen
node, shown for the interval t = 4000 to t = 5000. The system has reached global
equilibrium at this point and topological measures are stable, while individual weights
continue to fluctuate. Primary edges are plotted in black, secondary edges in a cyan.
To highlight the effect of the history parameter H on the stochastic fluctuations the
settings H = 5 and H = 50 are shown, displaying a much larger magnitude and
frequency in fluctuations for shorter history dynamics. Note also that secondary edges
on average have a lower edge weight, as they rely on indirect maintenance through
mutual friends and the increased distance between them ensures that they share fewer

of these neighbours compared to nodes closer together.

This means that the system reaches a quasi-stable equilibrium in which the statistical

properties of the topology do not change, whereas edge weights (and therefore the exact

topology) continue to change. This seems to be a property of social systems in equi-

librium and has been demonstrated for other models/systems as well (Bryden et al.,

2011). Related is Snijders’s definition of a dynamic equilibrium as “stochastic fluctua-

tions without a systematic trend” (Snijders et al., 2010), which we observe in our model

as fluctuating edge weights without these fluctuations propagating to the macro-level.

4.3 Scaling behaviour

The network’s topological properties discussed in Section 4.1 scale appropriately with

increasing system size. For instance, for a larger system consisting of N = 1000 nodes

(the size of the grid was increased appropriately to ensure the density of nodes remained

the same for N = 100 and N = 1000), we observe the same structures as before, leading

to comparable values of clustering, assortativity and average degree (see Table 4.2 for

values and Figure 4.8 for an example network). Since these measures are linked strongly

to the connectivity, they are mainly constrained by the spatial restrictions placed on

the interactions. Therefore, the increased number of nodes does not result in growth
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of the existing structures but in the presence of more of these local structure that were

previously observed. They are linked together to form a larger network, leading to

increased diameter, shortest path length and number of components (see Figure 4.9).

The increase in those measures is due to the fact that long range links are not possible

in this model because of the strict restrictions on social reach, thus prohibiting the

existence of edges bridging long distances.

Figure 4.8: An example network with many nodes. Parameters are the same as in
Figure 4.1a except for the increased number of nodes N = 1000 and the size of the
map being enlarged to M = 632 to ensure the same node density as for the run with
fewer nodes. The resulting network exhibits the same characteristic local structures as
for N = 100 but inevitably has a larger diameter and longer shortest path length due
to longer range edges being prohibited by the spatial constraint (see Table 4.2 for a

comparison of the topological measures).

To demonstrate that the increase in diameter, shortest path length and number of com-

ponents results from components of the same scale being connected together we will

now compare sub-networks of the same spatial size cut from the networks with different

sizes. For each value of N we select an area of the same size (140 by 140) from the

middle of each spatial map (of total size M =
√

400 ·N) and only consider nodes and

edges within the selected area for calculating the topological measures (see Figure 4.10

for illustration). Thus, we obtain a subnetwork for each network which contains only

the nodes located within a certain area. This area is chosen to be the same size for

each of the networks to be compared, therefore allowing us to compare the topological

structures found on a local level across different system sizes.
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Figure 4.9: Topological measures for different network sizes N . Clustering, strength
and average degree as well as assortativity do not scale with N (apart from for small
values of N) since the social reach R creates a characteristic scale. In contrast, diameter,
average shortest path length and the number of components increase with increasing N .
All values shown are averages over 20 runs. The map was enlarged with increasing N to
keep the node density constant across different values of N according to M =

√
400 ·N ,

all other parameters were kept constant to the standard parameter setting.

Figure 4.10: To show that structures on the local level have the same properties
irrespective of the system size, we compare sub-networks of the same size from each
network. An area of size 140 by 140 is selected from the middle of the map and all

nodes within this area and all edges between them are selected.
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Figure 4.11 shows the topological measures calculated for different system sizes N . The

values calculated from the selected area (with same size across each network size) are

shown in colour and for comparison the measures for the whole network are plotted in

grey (as shown in Figure 4.9). If we only consider the selected sub-networks, we observe

that diameter, shortest path length, and number of components do not scale with N .

This means that for all system sizes, the structures observed on a local level are the

same. This is due to R placing a strong limit on interactions, thereby generating a

characteristic scale independent of the system size N .

diameter

diameter subarea

components subarea

components

shortest path

shortest path subarea

Figure 4.11: Measures for different network sizes N calculated for an area of size
140 by 140 from the middle of each spatial map, as illustrated in Figure 4.10. Only
nodes and edges within that area were taken into account for calculating the measures.
The fact that diameter, shortest path length and components do not scale with N if
focusing on an area of particular size shows that the effects observed for the whole
system (shown in grey here) are due to the system scaling by connecting components
of the same scale to form a larger network. Each data point shown is the mean taken

over 20 runs.

4.4 Influence of parameters

The model has four main parameters that control network dynamics and, consequently,

influence topology: the social reach, R; the probability of affinity, A; the maximum

number of invitations accepted per time step, S; and the length of the interactions

histories, H. In this section we explore the effect that varying these parameters has and

determine the portion of parameter space for which the model produces networks with

desired characteristics.
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4.4.1 Equivalence of varying M and R

We omit the parameter M from our analysis as we can show that varying M is equivalent

to varying R and it is therefore sufficient to investigate the effect of varying R. Each

node can only interact with a subset of the total number of nodes in the system. Since

the N nodes are distributed approximately evenly over the map of size M2, the number

of nodes within reach of a node can be approximated by the fraction of the whole map

(of size M2) that is covered by the circle of radius R around the node. Formally, we can

write this as:
N

M2
πR2 (4.1)

Decreasing the size of the map (by halving M) is equivalent to increasing the reach (by

2):
N

(12M)2
πR2 =

N

(12)2M2
πR2 =

N

M2
π22R2 =

N

M2
π(2R)2 (4.2)

We illustrate this effect in Figure 4.12. Note that the same effect can also be achieved

by increasing the number of nodes (without increasing the map size M accordingly as

was done in the experiments described in Section 4.3), although here the equivalence

would only hold on a local level as discussed in the previous section.

4.4.2 Limits on connectivity imposed by parameters

The social reach R places a hard limit on the number of interactions. R restricts the

number of nodes to which a node can make connections and is thus the most important

factor influencing the connectivity of the network. Direct interaction is not possible for

nodes further apart than R, therefore the other processes governed by the parameters

A, S and H can only operate within the limit imposed by R and reduce the set of

possible connections further, but not extend it. We will investigate this upper bound

on connectivity set by the parameter social reach and how the number of connection

opportunities changes with (increasing) R.

For a sufficiently large system we would expect the average number of nodes within an

individual’s reach to depend on the proportion of the map covered by the interaction

radius of R as described by equation 4.1. How this value scales with increasing values of

R is shown in Figure 4.13 by the dashed black line. We can easily calculate the number

of nodes within reach of a particular node simply by counting the number of nodes

around it that are no further away than R (i.e. lie within a circle of radius R around

the individual of interest). In Figure 4.13 we show the number of nodes within reach

averaged over all nodes in a network. To cancel out any noise introduced by the specific

placement of nodes for a particular run we take the mean over 280 spatial arrangements.

The observed values are shown as a solid black line.
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Figure 4.12: Figure illustrating how varying R, M and N can lead to comparable
results. Increasing the interaction radius R leads to a larger proportion of the map
being within the interaction radius of each individual. The same effect results from
shrinking the map on which the nodes are distributed without changing R. Increas-
ing N increases the node density and therefore leads to more nodes being located in
an individual’s interaction radius, thus increasing the number of potential interaction
partners. However, in contrast to the equivalence in varying R and M , increasing N
will lead to an increase in certain topological values, such as diameter, as discussed

before.

If we compare observed and expected values for the number of nodes that are on average

within an individual’s reach, we see an obvious discrepancy here. This is due to boundary

effects as the map has a finite size. Thus, nodes positioned closer than R to any of

the borders have less potential interaction partners, as part of their interaction radius

lies outside of the map 1 (illustrated in Figure 4.14). This effect can be quantified

by measuring the mean number of nodes within reach separately for nodes within the

central region of the map (R ≤ x ≤M−R and R ≤ y ≤M−R, shown in green) and the

boundary region (shown in red) (Figure 4.13). Nodes located in the central region of the

map on average have the expected number of neighbours whereas nodes located in the

boundary regions of the map have a significantly lower number of potential interaction

partners. As R increases, the number of potential interaction partners increases in both

regions. However, as the size of the central region shrinks with R (as nodes need to be

further and further away from the border of the map to have no part of their interaction

radius outside of the map) fewer and fewer nodes lie within that region. At R = M
2 the

border region spans the whole network and no central nodes are observed any more.

1Note that we do not use periodic boundary conditions in the model.
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Figure 4.13: Number of nodes within reach of an individual. Shown in dashed is
the expected number of nodes within reach as calculated in equation 4.1. The observed
number is shown as a solid black line. Note that the observed number is much lower than
the expected number due to the finite size of the map and resulting boundary effects. To
highlight this, the number of interaction neighbours was calculated separately for nodes
within the central region (green) and nodes located in the boundary region (red line)
where generally less interaction partners are available (see Figure 4.14 for illustration).
Each data point was calculated as the mean over 280 runs. The map size used was

M2 = 2002, as in the standard parameter setting.

Figure 4.14: Illustration of boundary effect observed in Figure 4.13. Nodes located in
the boundary region of the map (shown in red) have less potential interaction partners

since part of their interaction circle defined by R lies outside of the map.
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To summarise, R limits the number of edges that can be made to a set of potential

edges. We will now investigate how many of these potential edges are made in a typical

run of our model and how this number depends on the parameters R, A, S and H.

The number of edges that could be made if there were no restrictions on connections is

given by:
N(N − 1)

2
(4.3)

This corresponds to a fully connected network, so for the standard parameter setting

with N = 100 the network would contain 4950 edges. Analogously to Section 4.4.2 we

can calculate the upper limit of edges possible in our model, given the spatial restrictions

imposed by R. The upper limit here includes all potential primary edges (edges that can

be maintained directly since the two nodes i and j are less than R apart - d(i, j) ≤ R)

as well as all potential secondary edges (calculated as the number of pairs i, j where

R < d(i, j) ≤ 2R).

In Figure 4.15a we show these upper limits together with the observed numbers of

edges. Shown as a solid black line is the maximum number of edges for a spatially

unrestricted network, which corresponds to a fully connected graph. The number of

edges possible (primary and secondary) given the restrictions imposed by R is shown as

a dashed line. As discussed in Section 4.4.2 the number of possible edges increases with

R and reaches maximum connectivity (fully connected) for sufficiently large R - when

all nodes are within reach of each other, either directly or indirectly. For reference, we

show the number of possible primary edges (as shown by a solid line in Figure 4.13) as

a dot-dashed line.

We will now take a look at the number of edges present and how this number relates

to the number of possible edges. In Figure 4.15a we show the number of observed

primary edges in grey (with the area under the line coloured in grey) and the number of

observed total edges (primary and secondary) in cyan. The area between the cyan and

grey line is coloured cyan and corresponds to the number of secondary edges observed.

As the parameter R increases, the social reach of each node gets larger leading to more

potential direct interactions. As we can see in Figure 4.15a, the number of observed

primary edges (shown in grey) is very close to the number of potential primary edges

(shown by a dot-dashed line), meaning that very few primary edges are missing.

Thus, the number of actual interactions increases with the number of possible inter-

actions. The number of primary edges for a run with the standard parameter setting

can be approximated by the number of node pairs where the nodes are no further than

R apart. With an increasing number of primary edges being present for larger R, the

number of secondary edges present increases as well. However, the total number of

edges does not reach the maximum number possible under spatial restrictions (shown

in dashed). We calculated this number as the number of pairs that could technically
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Figure 4.15: Changes in connectivity of the resulting networks when varying the 4
main parameters R, A, S and H. The parameter varied is shown on the x-axis, all
other parameters were set to the standard parameter setting. R has the largest impact
on connectivity and sets a hard upper limit on the number of edges possible within
which the other parameters can reduce the number of edges further, but not increase
it. With increasing R, more and more edges are present. Decreasing H reduces the
number of edges due increased noise in the edge weights, but only for smaller values. S
has a similar effect, but here the standard parameter setting of S = 3 is in the regime
where the parameter has a limiting effect on the connectivity. The parameter A directly
influences the number of primary edges that can be formed. Increasing A therefore leads
to more pairs of nodes having sufficient affinity to maintain a direct connection. Note
that in Figure 4.15a a larger range is used for the y-axis. For each parameter settings
we ran 20 repeats. The standard value for the parameter studied/varied is indicated

by a grey vertical line.

form a connection, either direct or indirect. In contrast to primary edges (which can

form and be maintained directly if nodes are no further than R apart) secondary edges

(R < d(i, j) ≤ 2R) can not be maintained directly and therefore rely on the two nodes

having a mutual friend. Thus, many potential secondary edges are not present because

the two individuals between which an edge could be formed do not share any mutual

friends.

We will now examine how the remaining parameters A, S and H influence network

connectivity. We show the obtained results in Figures 4.15d to 4.15b. Since R = 30

(standard parameter setting) for these runs, the number of edges possible under the
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spatial restrictions imposed by this value of R is much lower than for the highest values

shown in Figure 4.15a. Therefore, to visualise the effect of the other parameters on

connectivity remaining subgraphs are shown on a smaller scale.

The parameter H (length of the meeting history) defines the number of past timesteps

that are considered in calculating the strength of a connection. H therefore influences to

what extend the stochastic fluctuations in meeting patterns translate into fluctuations

of edge weights. For higher values, H has little influence on the number of edges present

and long meeting histories correspond to low levels of noise. For small values (H < 20)

H decreases the number of edges. This is because the increase in noise leads to edges

being broken and some of these broken edges can not be re-formed due to a lack of

mutual friends.

Next, we will discuss the influence of the affinity probability A. Increasing A leads to

a larger number of primary edges as more direct interactions are possible because more

pairs of individuals have enough affinity to accept each others invitations2. As secondary

edges depend on the presence of primary edges, the number of secondary edges increases

with the number of primary edges. For A = 1.0 all possible primary edges are present,

which can be seen in Figure 4.15b as the number of primary edges (grey line) reaching

the number of potential primary edges (shown as dot-dashed line).

Lastly, we will focus on the influence of the parameter S which specifies the number of

interaction opportunities per timestep. Changing the value of S only has a visible effect

on the network connectivity for small values of S, mainly because H is chosen fairly

large here H = 50 so that even with a relatively small number of available time slots

many interactions can be maintained. However, for the standard parameter setting of

S = 3 the number of edges present is still somewhat lower than the number of possible

edges. This means that under the standard parameter setting both R, A and S influence

the connectivity, with R setting an upper limit within which A and S can reduce the

connectivity further.

This effect is visualised in Figure 4.16. This figure is similar to Figure 4.15a, but

instead of the standard parameter setting A and S are set to higher values. The affinity

probability A is set to the maximum value of 1.0, meaning all pairs of nodes have

sufficient affinity to interact directly. The number of meeting slots S is set to S = 50.

In contrast to Figure 4.15a we observe fully connected networks for R = 120. This

shows that even though the imposed spatial restrictions are most crucial for creating

sparse networks, the other limiting processes (time constraints and affinity) influence

the connectivity as well, within the limits set by R.

2Note that edges between individuals without sufficient affinity can still exist, as they can be main-
tained through a mutual friend, similar to secondary edges. We will discuss this in more detail in Chapter
5.
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Figure 4.16: This figure shows the results from Figure 4.15a on the left hand side
to allow comparison with the same analysis for the parameter setting A=1.0, S=50
and H=50 (shown on the right hand side). It highlights the limiting effect of S and
A on connectivity as, in contrast to the case shown on the left hand side, the network
connects fully for high values of R with the observed number of edges reaching the
maximum number of edges possible. For lower values of S and A (as shown on the left
side here) this value is not reached, as lower value of S and A were keeping some edges

from forming.

4.4.3 Influence of parameters on other aspects of the network topology

In the previous section we have discussed the influence of the parameters R, A, S and H

on the connectivity of the networks produced by the model. We will now investigate the

effects of varying these parameters on other topological measures, such as the number of

components, assortativity and average node strength (which is the weighted equivalent

of degree, calculated by summing the weight of all edges attached to a particular node).

In Figure 4.17 we show example networks resulting for different combinations of R and

S. For all runs the same underlying spatial placement of nodes was used to allow for

easier visual comparison. R increases from left to right and S from top to bottom.

We can see clearly here that as R increases, edges get longer as they can span larger

distances and therefore the number of possible and observed connections increases, as

discussed in the previous section. For low R, networks are sparse and fragmented into

many components as each node has only a limited number of potential interaction part-

ners (see leftmost column of Figure 4.17). As R increases, components connect until the

network consists of one component. This point is reached at around R = 40. At R = 30

(the value for R in the standard parameter setting) the majority of nodes belongs to a

single connected component. However, some singleton nodes might still be present. At

this point the diameter and characteristic path length are at their maximum as shown

in Figure 4.18.
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Figure 4.17: Resulting networks after t = 10000 steps for H = 50, A = 0.75 and
varying R (columns, increasing from left to right) and S (rows, increasing from top to
bottom), using the same placement of nodes for all runs. The network generated with

the standard parameter setting (R = 30, S = 3) is highlighted by a grey box.
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At this point the largest component spans the whole network but the social reach is still

too small to allow direct connections between pairs of nodes on opposite sides of the

space.3

With increasing R clustering increases. However, around R = 40 a small dip in clustering

can be observed as previously isolated components connect without all triangles being

able to close. Note that clustering stays fairly high in the system across all parameter

settings shown, due to the triangle closure mechanism present.

Increasing the value of R further weakens the influence of spatial proximity until the

networks lose the characteristics of social networks and eventually transition to random

networks. As the model makes this transition, assortativity decreases until it becomes

negative as shown in Figure 4.18 as the red dashed line. The value of R at which the

network transitions to a random network decreases with increasing values of the history

length H (see Figure 4.19).
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Figure 4.18: Topological measures changing in reaction to varying the social reach R
(R ranging from 10 to 70, 20 repeats per data point). Assortativity and the number
of components decrease with increasing R, whereas clustering and diameter increase
until reaching a peak at around R = 25. At this point the reach is large enough for a
connected network to form, but not large enough for a significant number of triangles
and shortcuts to be created. Note that in contrast to Table 4.2, the calculation of the
number of components does include singletons as we are considering parameter settings
for which significant numbers of singletons exist. Other parameters were set as in the

standard parameter setting.

Low values of H lead to more noise and greater fluctuation in the edge weights, increasing

3For lower R the network consists of several components meaning that the diameter and average
shortest path length are not defined for the whole network. We therefore resort to calculating these
measures for the largest component. As R increases components will merge, resulting in the largest
components being bigger than before, thus leading to an increase in diameter and average shortest path
length.
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Figure 4.19: Mean of assortativity (calculated over 20 runs per data point) showing
that the value of H influences the point at which the network transitions towards a
random network, crossing to negative values of assortativity. R ranging from 50 to 120,

shown for different values of H.

the probability for an edge being lost due to noise. Increasing H reduces fluctuations

and therefore lowers this risk. In addition, increasing H allows each node to keep track

of an increased number of relationships, as the minimum number of meetings required

to maintain an edge is lower. This leads to a denser network relative to the a network

with the same value of R (but lower H), which is why increasing H shifts the point of

transition to a random network towards lower values of R. This increase in connectivity

caused by H can also be observed as an increase in the maximum and average degree,

resulting in a flattening of the degree distribution (as shown in Figure 4.20).

This means that for the standard value of H = 50 realistic-looking social networks

with positive assortativity are obtained for intermediate values of the parameter R of

approximately 20 < R < 70, with the exact range depending on the values of the other

parameters as well as the desired density of the resulting social network.

We have shown the effect of H on fluctuations in edge weight in Figure 4.7 (showing

the dynamics of the edge weights of all edges attached to a particular node for one run)

showing an example for H = 50 and H = 5. The higher value of H shows substantially

smaller fluctuations. More fluctuation in the edge weights leads to more fragmentation

events where a component is split in two. Since components cannot fuse, decreasing

H leads to an increase in the number of components (see Figure 4.21). For very low

values (H = 2) the network is fragmented into many components and displays almost

maximal clustering since only fully connected cliques can persist in the presence of high
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Figure 4.20: Degree distributions for different values of H = 2, 4, 8, 16, 32, 50. For all
other parameters the standard parameter setting was used. The increase in connectivity
for higher values of H results in an increase in the maximum and average degree,

resulting in a flattening of the degree distribution.

noise. Note that for the standard parameter setting of H = 50 edge weights are fairly

stable and accidental fragmentation is unlikely to occur. We have chosen a fairly large

value of H to ensure that any fragmentation effects observed are not caused by edge

weight fluctuations. This will be crucial when we investigate fragmentation processes of

networks.
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Figure 4.21: Number of components decreasing for increasing values of H (memory
length). Note that in contrast to Table 4.2, the calculation of the number of components
does include singletons. Each data point represents the mean taken over 20 data points.
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4.4.4 Balance between degree and strength

Increasing R or H increases the number of edges in the network4 and therefore results in

a higher average degree. In contrast, average node strength is primarily constrained by

the parameter S. Figure 4.22 shows that increasing R only increases the average node

strength up to a certain point at which it is limited by S.
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Figure 4.22: Strength in reaction to varying R for different values of S. The average
strength increases for increasing R, with the maximum value reached being determined
by the number of slots available per timestep (S). Each data point shown is the mean

over 20 repeats.

As discussed before, the maximum weight of each edge is S + 1, therefore increasing

S increases the possible strength of the nodes. This effect can be seen in the bottom

row of Figure 4.17 where the edges are plotted thicker in proportion to their increasing

weights. For the standard parameter value of R = 30 increasing S from 1 to 2 and

then 3 first leads to an increase in degree. This increase in connectivity also leads to a

decrease in the number of components. Increasing S further to 4, 5 and 6 has a much

smaller effect on the degree as the number of nodes within reach is limited by R = 30.

Therefore, the increase in “socialising time” leads to an increase of the average edge

weight5 as the extra time can not be spent on creating new relationships, so instead it

is spent strengthening existing ones.

This interplay between increasing socialising options (controlled by R) and opportunities

(limited by S) on existence and weight of edges is highlighted in Figure 4.23. On the

left-hand side the number of edges present in the network is shown (mean over 20 repeats

4As discussed in the previous section, R has a much larger influence on this than H.
5The increase in average edge weight can also be observed as an increase in node strength.
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with the same parameter setting). The number of edges increases with R, and within the

limits set by R, S controls how many connections can be maintained by imposing time

constraints (as discussed in Section 4.4.2). The number of edges increases with both R

and S. On the right side the average weight of an edge for different combinations ofR and

S is shown and here we observe that the average weight is highest for smaller values of

R. In this case there are only few socialising options but many opportunities, meaning

that individuals have a very limited set of individuals to interact with and therefore

increase in socialising time can only lead to stronger connections but not more.
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Figure 4.23: Number of edges (left) and average edge weight (right) for varying values
of R and S. Higher values are shown in deeper shades of red. The number of edges
increases for increasing R and S, while the average edge weight is highest for large S but
small R. This is because in this case each individual is only connected to a few other
individuals but has a large time budget for socialising. Due to the limited socialising
options, socialising time is generally spent on the same individuals, leading to high edge

weights.

4.4.5 Conclusion

In this chapter we have shown that the model introduced in Chapter 3 produces networks

with the topological properties defining real social networks: community structure, high

clustering, positive assortativity with respect to degree and short characteristic path

length. The spatial restrictions imposed by only allowing interactions within a finite

social reach are crucial for generating these structures. Together with the triangle closure

mechanism present in the model this leads to networks that share some properties with

random geometric graphs. We have noted that the generated networks are more complex

than random geometric graphs as triangle closure allows for some edges to form that

depend on the presence of other edges. As we will discuss in the next chapter, the

presence of these dependencies between edges is crucial for understanding the dynamics

that lead to the type of network fragmentation that is the focus of this thesis.

Furthermore we have shown that the system reaches a quasi-stable equilibrium with

macro-level topological features reaching an equilibrium while on the micro-level the

exact topology defined by the edge weights continues to fluctuate. This means that the

system reaches a stable state but can still react to perturbations as a result of ongoing

dynamics on the micro-level. This is very important if we want to model fragmentation

as a result of a small perturbation. If the system would not reach equilibrium, we
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could not attribute fragmentation to an applied perturbation. If the system reached a

stable equilibrium that was not accompanied by ongoing low-level edge dynamics, then

it would not be able to react to perturbations, rendering it useless for investigating the

phenomenon that we are considering here.

In the next chapter we will discuss the nature of the perturbation used and the reaction

of the system to it.



Chapter 5

The impact of social fallout on

topology and weight structure

5.1 Introduction

In this chapter we focus on fragmentation of social networks and will show how our

model can shed light on this phenomenon. It has been observed in the real-world that

a disagreement between a pair of nodes can have consequences that lead to a previ-

ously connected social network fragmenting into two disconnected parts (Zachary, 1977).

While described as a potential problem for some networks and a potential opportunity

in others, not many attempts have been made to propose an underlying mechanism

responsible for this phenomenon. Here, we propose such a mechanism and show that it

can lead to fragmentation.

In the previous chapter we have shown that the model presented in Chapter 3 has the

characteristics required to study fragmentation dynamics of social networks: the system

reaches a quasi-stable equilibrium, where the characteristic features of the generated

networks remain stable, while on the lower level edge weights continue to change. We

have discussed why these features are crucial for modelling fragmentation dynamics.

In this chapter we will show that a disagreement between two people can be a sufficient

perturbation to fracture the network. This fragmentation happens even though all nodes

(apart from the two nodes having the disagreement) continue to act according to the

same behavioural rules as before. In cases where the network does not fracture, we can

nevertheless observe a significant impact within a confined neighbourhood and we will

introduce measures that are able to quantify this impact. Furthermore, we discuss edge

measures that could be predictors for identifying the edges most critical for maintaining

cohesion of the social network and how well different measures can predict the observed

impact.

75
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5.2 Implementation of social fallout

The aim of the model presented here is to allow investigation of the impact that a

disagreement (or fallout) between two people can have on network topology. We model

a fallout event between two individuals by running the base model presented in Chapter

3 until it has reached equilibrium and then introducing a perturbation by changing the

affinity value associated with a pair of nodes to 0. This means that the two individuals

cease to maintain their connection. We do not directly remove any edges or change the

behavioural rules of any of the individuals. Any edges broken or changing in weight are

a result of the perturbed dynamics that the change of one affinity value introduces into

the system. It is important to allow the system to settle into a quasi-stable state before

introducing the perturbation, as in this state major topological changes due to noise are

extremely rare. Therefore, we know that any major topological changes are a result of

the perturbation.

The effect of the fallout on the system is not trivial. Considering the weight of the edge

between the two individuals involved in the fallout highlights the complexities in the

system. We would expect nodes to break their connection after a disagreement, but,

while in some cases this is indeed the case, in others the edge between the nodes that

fall out weakens, but persists. This can be explained by the fact that the relationship

is embedded within the context of the social network. Even though the two individuals

in question no longer actively maintain their relationship, they might still be forced

into contact through mutual friends. Note that in the case of a strong disagreement,

people might actively avoid each other to an extent where they will refuse to attend any

gathering that brings them into contact. While this certainly does happen in the real

world, we do not model this here. We want to show that fragmentation is possible even

though individuals do not change their behaviour, thus it is essential that the behavioural

rules remain unchanged. To what extent this new avoiding behaviour would influence

dynamics would be a separate question.

Examples for the two possible cases (the fallout edge disappears or it persists with

a lower weight) are shown in Figure 5.1 where the edge weight of the fallout edge is

depicted over time. The fallout perturbation is introduced at t = 5000 and the seed

used to initialise the random number generator is the same for both fallout and base

run, therefore their trajectories are identical up to the fallout point. We can see that

in the case shown in Figure 5.1a the edge weight of the fallout edge rapidly drops to 0,

meaning the edge is broken as a result of the fallout. In contrast, in Figure 5.1b the

edge weight drops steeply as well but to a non-zero value as the edge continues to be

maintained indirectly through mutual neighbours of the nodes as a consequence of both

the directly involved nodes attending the same gatherings hosted by mutual friends.

The examples shown here consist of a single run. If we want to ensure that the effects

observed are due to the introduction of a perturbation and not noise, we need to quantify
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(a) Edge weight of fallout edge drops to zero
following fallout
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(b) Edge weight of fallout edge drops to non-
zero value following fallout

Figure 5.1: The edge weight of the fallout edge over time. In black, we show the edge
weight for the base case without fallout, in red we show the edge weight for the fallout

case.

the level of noise present in equivalent runs in order to decide whether an observed

effect is due to chance or an underlying systematic trend. As discussed in Section

4.1.3, fluctuations due to noise have a strong effect during the initial phase, leading to

variability in the resulting equilibrium topology. So while it is necessary to assess any

fallout impact across different sequences of events, it would not be very useful to compare

runs with completely independent sequences of random numbers as the same edge might

not be present in different runs and affinity values would be distributed differently. We

can, however, make use of the fact that once the system has reached the quasi-stable

equilibrium, the effect of the randomness in edge fluctuations is less pronounced with

regard to its effect on the overall topology. On the local level, the edge weights will differ

over time but the same edges will be present in general, allowing us to assess whether

an edge disappearing is due to noise or can be attributed to the fallout.

Therefore all results are ensembles of runs with the same initial seed up to the fallout

point tfo = 5000. This ensures that all runs follow the same trajectory initially, resulting

in exactly the same topology at t = 5000, the point where the fallout is introduced. Note

that for H = 50, as per the standard parameter setting, the system has been in equilib-

rium for a long time. Running the model for a long period allows for any spontaneous

fragmentation due to unstable topological features to occur before we introduce the fall-

out. At tfo = 5000, the seed of each instance within the ensemble runs is reset to a new,

individual value, allowing the runs to diverge due to stochastic effects. In Figure 5.2

we show the same information as in Figure 5.1 but for an ensemble of 10 runs for both

the base case and fallout case. The base case runs are shown in shades of grey and the

fallout runs in orange-red. We can see here that the individual runs diverge somewhat

after being reseeded with different seeds at t = 5000. However, base case and fallout

trajectories remain clearly separated, meaning we can attribute the gross difference in
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Figure 5.2: Analogous to Figure 5.1 this figure shows the weight of the fallout edge
over time. For both the base case and the fallout case 10 different runs are shown. The
effect observed in Figure 5.1 is still visible, with the edge decaying to 0 on the left hand

side and to a non-zero value on the right side.

edge weight to the perturbation. Averaging over 25 different networks we observe that

in 12% of the cases the fallout edge is always lost (in each of the 50 runs), in 85% it is

never lost and in the remaining 3% it is lost in a proportion of runs within an ensemble.

As we can see from these examples, edge weights change rapidly to adjust to the new

conditions. To measure the impact of the fallout, we consider the networks resulting at

t = 5500, which is 500 timesteps after the fallout. We use the standard parameter setting

of R = 30, A = 0.75, S = 3 and H = 50, meaning that this timespan is equivalent to 10

history lengths.

5.3 Effects of fallout

5.3.1 Network fragmentation

We will now look at the effects the fallout on the network topology. First, and most

importantly, we will show that this process can indeed lead to fragmentation, which

confirms our main hypothesis: that previously stable social networks can fracture even

though only one relationship is directly perturbed and all other individuals continue

to behave as before. Networks do fracture as a result of the fallout, implemented as

described above. An example is shown in Figure 5.3. In this figure we show the network

at t = 5500 for a run with fallout (Figure 5.3b) and for a base run where no perturbation

is introduced (Figure 5.3a). To reiterate, both runs are identical up to the point where

the fallout occurs (tfo = 5000) and each run (in both cases) is reseeded with a new seed

at that point. As we can see here, one of the two large components in the network has

fragmented into two components in the fallout case (but not in the base case). In the

fallout case the edge connecting the two disagreeing individuals (marked by an arrow in
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the left subfigure) has disappeared together with edges surrounding it. We will discuss

the mechanisms that leads to this later in this chapter.

(a) base case at t = 5500 (b) fallout case at t = 5500

Figure 5.3: An example for network fragmentation. On right hand side we see the
network at t = 5500, 500 steps after the fallout. The fallout edge is indicated by the
black arrow. One of the two components is split into two for the fallout case. For
comparison the network for a base case run without the fallout is shown on the left
hand side, where no fragmentation occurs. The area where the fragmentation occurs is

marked by a black box.

Whether the network fragments or not depends on which edge is the fallout edge. Later

in this chapter we will discuss measures that allow us to predict which edges are crucial

for the network to stay connected. For each network we simulate a fallout for each edge

that is present in the network at t = 5000. We run each fallout independently, meaning

we run a separate iteration of our model for each fallout simulated. For each fallout edge

we run 50 reseeds with fallout and 50 base cases without. Fragmentation following fallout

is generally only observed for some edges in the network. For these edges, fragmentation

will often be observed in all 50 repeats. However, for some edges fragmentation only

occurs in a subset of the fallout runs. Note that we almost never observe fragmentation

in any of the base cases, meaning we can attribute the fragmentation to the fallout

and not to noise in the system. A single network for which spontaneous fragmentation

was observed in the base case has been excluded from our analysis to make sure any

fragmentation observed is due to the fallout.

5.3.2 Networks can fracture at different points

Generally networks have more than one point that is vulnerable to fragmentation. This

means that for most networks we can observe several fragmentation patterns, depending

on the pair of nodes between which the fallout occurs. In Figure 5.4 we show an example
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for this. In Figure 5.4a the network is shown for t = 4999, just before the fallout occurs.

In the remaining subfigures, different fragmentation patterns found for this network are

shown at t = 5500. As we can see, the already existing components can split further

at different points, depending on which edge is the fallout edge. The component on the

left has several potential fracturing points and a small component at the bottom left has

two fracturing points. Note that in this example the largest component is stable and

has no fragile points.

The sizes of the resulting components vary. In Figure 5.3 we observed a component

splitting into two components of roughly equal size. In other cases, such as shown in

Figures 5.4e and 5.4f, small fringe components containing only one or a few nodes split

off. Often these are located in the periphery of the network where socialising options

are sparse. This shows that there is variety in the effect of a fallout. How we rate the

impact of a particular effect depends on our focus. If we are concerned with impact

on the information flow in the network, then the largest component splitting in two

removes many communication paths and therefore has a severe impact on the function

the network serves. In contrast, a small fringe component splitting off has only a minor

effect on information flow across the whole network. However, if we are concerned with

the impact on individuals, then a small group or a single individual splitting off isolates

them whereas in the case of a larger component splitting into two still large components

breaks some edges but all nodes involved retain some contacts.

5.4 Local fragmentation

Fragmentation is the most obvious and drastic result of a fallout for the network topology.

However, even in cases where fragmentation does not occur, the fallout can have an

impact on the local topology. It might lead to edges within a component being broken

even though redundant paths keep the component connected. This could lead to local

fragmentation where only a much longer path maintains cohesion of the module. An

example is shown in Figure 5.5 where local fragmentation occurs in the lower part of the

network. However, the number of components stays the same since redundant, albeit

much longer, paths exist.

5.5 Non-fragmentation impact

In cases where a perturbation results in neither global nor local fragmentation, it can

still lead to significant rearrangement within an area of the network. Even in the case

where no edges are broken significant adjustment of edge weights can follow the fallout.

To capture these effects and measure the effect of fallout on the edge weights, we compare
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(a) Network before fallout at t = 4999 (b) Left component fractures in the middle

(c) 4-clique on the left splits off (d) Left component splits at the top

(e) Small component consisting of two nodes
at the bottom left is formed.

(f) Small component consisting of three nodes
is formed.

Figure 5.4: Depending on which pair of nodes falls out, the network can fracture in
different places. Here we show the initial network for comparison together with five

different observed fragmentation patterns.
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(a) network at t = 4999 (b) network following fallout at t = 5500

Figure 5.5: For the resulting network presented on the right hand side the fallout
does not result in an increase in the number of components. However, we observe that
on the local level two previously connected modules of the largest component are now
only indirectly connected, leading to local fragmentation. On the left hand side we

show the network before the fallout for comparison.

edge weights in the resulting network for the base case and the fallout case. To do so

we calculate the difference in weight at t = 5500 between fallout and base cases for each

edge that is present at the time of fallout. Due to the stochasticity in the model, edge

weights fluctuate. The attenuate the noise introduced by this we run ensembles of runs

by reseeding at the point of fallout as described in Section 5.2. For both fallout and

base case we run 50 repeats with different random seeds for reseeding, meaning the runs

are the same up to the fallout point when their trajectories diverge.

We then calculate the difference in average weight between fallout and base case for each

edge fallout. To do so we take the mean over all 50 repeats for the fallout case (w̄f
ij)

and subtract the mean weight calculated for the 50 base reseeds (w̄b
ij):

∆w̄ij = w̄f
ij − w̄

b
ij . (5.1)

Positive values indicate that an edge’s weight has increased as a result of the fallout

whereas negative values indicate a decrease. For cases where an edge was broken in the

fallout case (in one or more repeats) we assumed its weight to be zero for any repeats

where the edge was not present.

In Figure 5.6, we show the differences in weight calculated as described in Equation

5.1 for all edges that were present before the fallout at t = 4999. Each point shown

corresponds to an edge in the graph. Each figure shows the effect for a different fallout

edge (edge (24, 28) in Figure 5.7a and edge (58, 72) in Figure 5.7b). The y-axis represents

the magnitude of edge weight differences and while the x-axis corresponds to the distance
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Figure 5.6: Edge weight differences resulting from two fallouts. Edges that were
present in the base cases but not in any of the fallout repeats are shown by the symbol

“×”. See text for details and explanation of the colour coding.
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of an edge to the fallout edge (meaning the edge at x = 0 is the fallout edge itself). We

calculate the distance between edges as the Euclidean distance between the midpoints of

the edges. The distances R and 2R (corresponding to the limits for direct and indirect

interactions) are shown as grey vertical lines to give an indication of the scale.

In a spatially embedded network, edge-distances can be measured in two ways: distance

in space as discussed above or geodesic distance on the network by measuring the number

of edges on the shortest path from one edge to another. Here, we will refer to this as

hop distance. Edges that share an endpoint are one hop away from each other. Edges

whose shortest path goes through an edge that is one hop away have hop distance 2 and

so forth. Hop distance is correlated with spatial distance in our model due to the spatial

restriction imposed. However, depending on the topology, edges can be close to each

other in space but several hops apart in the network. Even for edges located very close

together on the map there might be no path at all between them if they are in different

components. In Figure 5.6, we visualise the hop distance of an edge to the fallout edge

as the colour of the corresponding data point: the fallout edge itself (with hop distance

0) is shown in black, edges with hop distance 1 to the fallout edge (meaning they share

a node with the fallout edge) are shown in red, edges with hop distance 2 in purple and

any remaining edges (with a hop distance of more than 2) are shown in blue.

Edges that were present in the base reseeds but not in any of the fallout repeats are

shown using the marker “×” all other edges are shown using a “+”. Since these edges

are not present in any of the fallout repeats but can be found in the base repeats, their

disappearance is very likely to be a result of the fallout. The number of edges broken

as a result of the fallout is generally low, but the distribution has a long tail (see Figure

5.8). Note that we do not observe the reverse: edge formation as a result of the fallout.

In Figure 5.7 we show the same data used in Figure 5.6, with points coloured according

to whether the weight difference between fallout and base case is statistically significant.

To determine whether this is the case, we pair each of the 50 observations of an edge

weight in the base case with one of 50 observation in the fallout case. We calculate the

mean of this distribution of weight differences (as done previously) and the confidence

intervals for this mean. Weight differences for which the confidence interval does not

include 0 are shown in red, all others in grey. We observe that the majority of edges

that exhibit a significant weight difference between fallout and base case are found in

the vicinity of the fallout edge.

If we consider the change in edge weights as plotted in Figure 5.6, then we can see that

larger changes in edge weight are limited to edges that are located within distance 2R

of the fallout edge. Moreover, the edges that exhibit the largest change in weight are

edges that share a node with the fallout edge (shown in red). This means that both

spatial proximity on the map as well as geodesic proximity influence the effect the fallout

has on a particular edge. This means that the effect of a fallout is localised to an area
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Figure 5.7: Edge weight differences resulting from two fallouts. Points shown in
red show a significant difference between fallout and base case. Edges exhibiting a
significant weight change as a result of the fallout are mostly located in the vicinity of

the fallout.
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1

Figure 5.8: Number of edges broken following the fallout. Distribution shown over
all edges for a particular network. The number of edges broken as a result of the fallout

is generally low, but the distribution has a long tail.

around the fallout. We will discuss this later in more detail. The fallout edge itself (at

distance 0) shows the largest change in weight. The fallout leads to a negative change

in average edge weight for the edges closest to the fallout edge, close in terms of both

distance measures, map distance and hop distance. For edges further away, we observe

positive changes in edge weight, meaning the average edge weight is higher in the fallout

case than in the base case. These positive changes in edge weights highlight how the

system adjusts and re-balances itself following a fallout.

5.6 Rearrangement of edge weights following perturbation

Changing the affinity value of a pair of individuals from 1 to 0 means the nodes in

question will no longer actively maintain the connection between themselves. This leads

to a decrease in edge weight, either to 0 or a non-zero value lower than the previous

weight, for both the fallout edge itself (as discussed in Section 5.2) as well as edges

that were indirectly maintained through the fallout edge. This decrease in edge weight

corresponds to data points with negative values in Figure 5.6.

The two nodes involved in the fallout now have additional time available since they no

longer invest any time in maintaining the connection between them. The time freed up

can now be allocated to the maintenance of other contacts, leading to an increase in the

weights of edges to other contacts. This effect is visible in Figure 5.6 as positive values.

This balancing effect becomes obvious when visualising the magnitude of edge change

by colouring the edges of the network according to the magnitude of edge weight change

observed. In Figure 5.9 the local neighbourhood of the fallout is shown and edges are

coloured according to the magnitude and direction of weight difference between fallout

and base cases. Edges with a decrease in edge weight are shown in red (darker shades

indicate a larger change) and edges for which an increase in edge weight is observed are

shown in shades of blue.

The fallout edge (24, 28) (nodes 24 and 28 shown in red), shows the largest difference in

weight (decrease in weight, therefore coloured red). The edges from node 28 to mutual
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Figure 5.9: Magnitude and direction of edge weight changes for neighbourhood of
the fallout. The fallout nodes (24 and 28) are shown in red here. Negative changes
indicated by red edge colour, edges with increased edge weight as a result of the fallout
are coloured blue. Darker shades indicate larger magnitude of edge weight changes.
Some of the edges decrease in edge weight, most visibly the fallout edge itself, coloured
in dark red as it shows the largest magnitude of weight change. This negative change
of edges decreasing in strength results in social capacities being freed up which leads

to other edges increasing in weight.

friends of 24 and 28 also exhibit a decrease in weight, as they loose the indirect mainte-

nance of meeting node 28 at node 24’s gatherings. Other edges experience an increase

in edge weight (indicated by blue colour). Following the fallout, node 24 has additional

time to invest in strengthening some of its connections since it no longer requires part

of its time budget to maintain the edge to node 28. Note that by investing time to

strengthen an existing link by more frequently attending an individual’s gathering, con-

nections to mutual friends are strengthened too, through meeting at the same gathering.

Therefore, negative changes in weights are balanced out by positive changes. The net

effect of the fallout is generally small and can be positive or negative. This depends on

the topology surrounding the fallout edge and therefore highlights the non-linear nature

of the system studied.

We can observe this balancing effect of some edges decreasing in weight while others

increase by showing the change of edge weights over time for selected edges. In Figure

5.10 we show all edges that are attached to either of the fallout nodes. The network,

fallout edge and local neighbourhood used are the same as shown in Figure 5.9. On the

left hand side of Figure 5.10 we can see that following the fallout at t = 5000 the system

rapidly adjusts to a new quasi-stable steady state. This readjustment consists of some

edges decreasing in weight, while others increase. For comparison, we show the weights

for the same edges in the base case, where no perturbation is introduced and we can see

that no rearrangement happens.
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Figure 5.10: Weights over time for all edges attached to one of the two nodes involved
in the fallout. On the left side the edge weights are shown in the fallout case. The
fallout occurs at t = 5000 and we observe subsequent changes in edge weights for the
edges that share a node with the fallout edge. Note that the change can be positive
(increase of edge weight) or negative (decrease in weight). On the right side the base

case is shown for comparison.

5.7 From fallout to fragmentation

In the previous section we have discussed how the fallout results in edges decreasing in

weight and how this, in turn, leads to other edges being strengthened due to reallocation

of individuals’ time budgets. We will now investigate the mechanism by which the fallout

of a single pair of individuals can fragment the network.

The key to this is the existence of dependencies between edges. These dependencies

are created through the spatial constraints imposed on the connections as well as the

restrictions through the affinity value structure. As discussed in Section 4.1.2, edges

between nodes that are located more than R apart in space (but less than 2R) cannot

be directly maintained, as the individuals do not attend each others gatherings. They

can, however, meet at a mutual friends gathering and thus indirectly maintain their

connection.

In Chapter 4 we introduced the distinction between primary and secondary edges based

solely on distance. Some of the edges that are classified as primary edges by distance

are nevertheless not directly maintained due to lack of affinity. This means that these

edges are effectively secondary edges as they can only be maintained through mutual

friends. Here, we will further distinguish between true primary edges and secondary

edges by affinity which we will simply call affinity secondary edges. We classify all edges

as affinity secondary edges that are no more than R in length (and are therefore primary

edges by distance) but do not have sufficient affinity to maintain the connection directly.

In Figure 5.11 the network previously shown in Figures 5.5 and 5.4a, is represented with

the edges drawn according to the three classes of edges: primary edges are shown in
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Figure 5.11: Network used in Figures 5.5 and 5.4a with edges classified into primary
edges (black solid), affinity secondary edges (black dashed) and secondary edges (cyan).

This allows us insight into the dependency structure of the edges.

black, affinity secondary edges are shown as black dashed lines and secondary edges are

shown in cyan.

As discussed in Section 4.4.2, secondary edges depend on the presence of at least one

mutual friend in order to be formed. Since secondary edges (both secondary by distance

as well as affinity secondary edges) cannot be maintained directly, they also rely on

mutual friends for maintenance and, thus, existence. A secondary edge that is facilitated

through a mutual friend requires two edges to continue to exist: the edges from both of

its endpoints to the mutual friend. Note that for this individual to be able to facilitate

the connection, both edges to it need to be primary edges so that the two nodes can

both attend the mutual friend’s gathering.

This introduces dependencies into the system. Secondary edges depend on the existence

of other edges. Based on the exact network structure, a secondary edge might be main-

tained through several mutual friends whereas in other cases it is fully dependent on the

existence of connections to a single mutual friend.

These dependencies are crucial for understanding how a single fallout can lead to network

fragmentation. Created by the combination of indirect strengthening of connections

which individuals did not directly choose to reinforce and the constraints on which

connections can be maintained directly, these dependencies are the main reason that the
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system is a non-linear and therefore complex system. Without these dependencies, the

system could never show fragmentation as a result of a single fallout. If no dependencies

exist between edges, two nodes changing their behaviour cannot have any effect on the

rest of the network unless other nodes change their behaviour too.

The dependencies of secondary edges on the existence of a particular primary edge lead

to the effects observed. When a primary edge disappears, all secondary edges that

depend on that edge will decrease in weight. In the case where the edge was exclusively

maintained through this connection, its weight will decrease to zero resulting in the edge

being broken. In other cases, where more than one mutual friend (and therefore more

paths for indirect maintenance) exists, the edge decreases in weight but continues to

exist as it is still maintained through the remaining connections.

Fallout in primary edges can lead to the effects discussed above. It effectively turns a

primary edge into an affinity secondary edge. Therefore, fallout in secondary edges has

no effect since the nodes never were able to maintain their connection directly. This

becomes clear if we consider the mechanism by which fallout is implemented. When

introducing the fallout perturbation we set the affinity value of a pair of individuals

to 0. If they previously had an affinity value of 1, this changes the dynamics of edge

maintenance. If, however, the affinity value was 0 to begin with (which is what defines

an affinity secondary edge) then nothing has changed for which edges are maintained

directly and which are not. We will highlight this effect in the following section.

5.8 Quantifying impact

We have discussed how the fallout of primary edges can lead to changes in edge weights

and edges breaking as well as network fragmentation. We will now move on to studying

these effects systematically over sets of networks. In Figure 5.6 we observed that the

effect of a fallout is localised to a certain region in the vicinity of the fallout edge.

However, we also observe a non-zero change in edge weights further away even though

no systematic edge weight change should be observed there. These changes are due to

random fluctuation as we observe similar levels of noise within the base case samples

(see Figure 5.12). Here, instead of comparing the average weights of the edges between

fallout and base cases, we calculate the difference between the weight averages taken

over one half of the 50 base runs to the average over the other half. Runs are randomly

assigned to the halves.

From visual inspection we can confirm that the levels of noise observed in the tail in

Figure 5.6 (at distance > 2R) from the fallout are similar to the levels of noise observed

within the base runs as shown in Figure 5.12. To assess which edges in the vicinity of

the fallout edge experience significant weight changes we need to quantify the baseline

levels of noise.
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Figure 5.12: Differences in weight averages between two ensembles of 25 baseline
runs. This highlights that due to noise and divergence of trajectories after reseeding,
we should expect to observe some changes in edge weights even when no perturbation

is introduced.

To do so, we consider the distribution of the edge weight differences between fallout and

base case (as shown in Figure 5.6). To establish the levels of noise in the tail of the

spatial plot, we calculate the standard deviation in the tail σtail over all edges that are

further than 2R away from the fallout edge.

This σtail is around 0.2 for the scenarios shown in Figure 5.6 and the mean of σtail

observed over all fallouts for that particular network is 0.022. We use this technique to

distinguish between significant and non-significant edge weight changes when assessing

the number of edges that experience weight changes as a result of the fallout. To do so

we use a fairly conservative threshold of 5σtail. We count the number of edges where

|∆w̄ij | > 5σtail (meaning the absolute edge weight change for that edge is larger than

the threshold). Since each fallout is scaled to its individual tail noise level we can

compare the number of edges affected across different fallouts (for one network) and

across different spatial arrangements and networks.

In Figure 5.13 we show the distribution of the number of edges with above threshold

weight difference over all edge fallouts for one particular network. The number of edges

affected varies depending on which pair of nodes falls out and large numbers can be

observed for some cases. We also see that there are no significant effects of fallout

where the fallout edges are secondary edges (both secondary and affinity secondary),

as discussed in Section 5.7. Thus, we will only consider primary edges for all following

experiments.

So far we have focused on the study of single network examples to illustrate the effects



92 Chapter 5 The impact of social fallout on topology and weight structure

0 10 20 30 40 50 60 70
number of edges

primary

affinity secondary

secondary

Figure 5.13: Distribution of number of edges with |∆w̄ij | > 5σtail over all possible
fallouts for one network. The distribution is split up by type of the fallout edge. Only
for primary edges we observe a median that is larger than 0, as expected. For most
cases reasonable number of edges is affected, but for some cases we observe as many as

64 edges that have changed in weight as a result of the fallout.

observed. We will now move on to assessing the impact of fallout on both topology as

well as weights across multiple network realisations.

As discussed above, fallout can result in different types of impact on the network. The

most drastic and obvious form of impact is fragmentation, with a component of the

network splitting into smaller components. On a more local level, edges might be broken,

but without fragmentation occurring. Even when no edges are broken, we might observe

changes in edge weights, both negative and positive as discussed in Section 5.6. Here,

we will measure these forms of impact in the following ways.

To quantify fragmentation, for each fallout edge we calculate the fraction of fallout

repeats for which fragmentation is observed (i.e. cases for which we observe an increase

in number of components). We here use 50 repeats for each individual fallout. To assess

the impact in terms of edges broken, we count the number of edges that are present in

the base runs but not in any of the fallout runs. To assess the impact on edge weights,

we count the number of edges that exhibit a difference in average weight between fallout

and base runs that is greater than the previously discussed threshold in magnitude,

|∆w̄ij | > 5σtail.

We will now try to assess what characterises edges that are likely to lead to a certain

type of impact. We would expect fallout in edges that are connected to nodes with

high degrees to have a stronger impact than fallout for edges in isolated areas of the

network. For node removal a common measure is to simply take the degree of the node

as a measure of its importance. Extending from this, we here use a measure we call

degree sum, which is simply the sum of the degrees of the two nodes that are connected

by the fallout edge. Following from Section 5.6, we would expect fallout in edges with

high degrees sum to lead to above-threshold changes in weight for many of the adjoining
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Figure 5.14: Number of edges where an above-threshold change in edge weight is ob-
served versus the degree sum for the fallout edge. As we can see here, the more neigh-
bours the nodes of the fallout edges have, the more nodes exhibit an above-threshold
change in weight in the fallout case compared to the base case. We observe a linear

correlation, the regression line with slope 0.688126 is shown as a black line.

edges, since the two fallout nodes will distribute the newly available time no longer

needed for maintaining the fallout edge across other neighbours. Thus, our hypothesis

is that there is a linear correlation between the degree sum and the number of edges

that show an above threshold change in weight following the fallout.

In Figure 5.14 we show the number of edges that exhibit an above-threshold change

plotted against the degree sum of the fallout edge. In this figure we show the aggregated

results for 24 networks.1 For each network a fallout scenario was run for each primary

edge and in each case 50 base and fallout reseeds were run to calculate edge weight

changes as described in Equation 5.1. Each data point aggregates the impact on all

edges in the network for a particular fallout edge and represents the point cloud shown

in each of the subfigures of Figure 5.6. The data points are plotted with low opacity to

allow us to identify regions where many points are located in the same space.

We observe that the number of edges that exhibit an above threshold change in edge

weight as a result of the fallout is linearly correlated with the degree sum of the fallout

edge. Number of edges with above threshold change can be predicted from the sum

of degrees by the following formula: y = 0.688 · x,R2 = 0.862 (forced through 0).

This means that the more neighbours the fallout nodes have, the more individuals (or

relationships to be exact) will be subject to some change following the fallout. Thus,

1We initially used 25 different networks, but further analysis revealed that one network needed to be
excluded as it exhibited spontaneous fragmentation in a base case.
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our hypothesis is confirmed in this case.

For fragmentation and the number of edges broken, however, the degree sum is not a

good predictor (Figure 5.15). A binomial logistic regression of sum of degrees against

fragmentation shows a low odds ratio of −0.106 and a linear regression for number

of edges broken versus sum of degree found a weak correlation between y = 0.032 ·
x + 0.989, R2 = 0.021. While both of these relationships were significant (p < 10−10),

this is largely due to the large sample sizes involved. Fragmentation seems to be rare

for higher values of degree sum, presumably because there is a higher likelihood for

redundant connections to exist in more densely connected areas. Regarding the number

of edges that are broken as a result of the fallout, we can see that the maximum number

observed does increase with the degree sum, but only weakly. More edges can potentially

be broken, since more edges around the fallout edge exist. Thus, we can conclude that

degree sum, while a useful measure in assessing the potential weight change impact of a

fallout, is not a good predictor for the number of edges breaking.
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Figure 5.15: Fraction fragmentation and number of edges broken for degree sum of
the fallout edge.

For network cohesion, edges with high betweenness centrality are often thought to be

particularly important, as many shortest paths run through them. Thus, removing

edges with high betweenness centrality often leads to paths between nodes increasing

in length. This is especially important for systems where transmission occurs along

the edges. Effects of the removal of high-betweenness edges for percolation have been

investigated in Onnela et al. (2007a) and we will discuss this in more detail in Chapter

6. Here we will investigate whether high centrality edges are the most crucial edges for

network cohesion or whether other edge measures better characterise the set of edges

most crucial for cohesion. Our hypothesis is that edges with high betweenness centrality

are likely to lead to fragmentation of the network when broken.

We calculate edge betweenness centrality using networkX, taking into account the weights
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of the edges. The algorithm used by the networkX package is described in Brandes

(2001).

In Figure 5.16 we show the edge level measures of fallout impact versus the edge be-

tweenness centrality of the fallout edge. These show no interesting relationship, although

we can observe a decrease in the maximum number of edges broken with increasing cen-

trality and a weak but significant (p < 10−10) linear correlation is observed (according

to the formula y = 0.149 ·x+16.991, R2 = 0.011 for centrality and number of edges with

above threshold change and y = 0.151 ·x+0.966, R2 = 0.203 for number of edges broken

predicted by centrality). Since this is simply a result of edges with higher centrality

being located in sparser neighbourhoods, this effect is already captured by the degree

sum (edges in a more densely connected area will exhibit a higher degree sum as well as

lower centrality as more redundant paths exist).
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(a) Number of edges above threshold
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(b) Number of edges broken

Figure 5.16: Edge with weight change above threshold and number of edges broken
against betweenness centrality of the fallout edge.

In Figure 5.17 we show the fraction of fragmentation for fallout edges with a certain

scores of betweenness centrality. From this we can conclude that betweenness central-

ity alone is not a good predictor for the effect of the fallout on the global topology (a

binomial logistic regression indicates a weak relationship with a low odds ratio of 0.099,

p < 10−10). However, our hypothesis is confirmed for edges with very high levels of

centrality are important for network cohesion is confirmed since in cases where between-

ness centrality of the fallout edge is high, the network is likely to fragment. In the 24

networks considered there are only a few of edges with very high betweenness central-

ity. The issue with using betweenness centrality as a measure to predict fragmentation

is that, while it correctly identifies edges that are important connectors between parts

of the network (and this includes bridges), it is a global measure and thus takes into

account the context of the edge. When assessing edge importance for network cohesion,

it results in high values for bridges that connect large components. In contrast, an

edge that connects relatively small modules to the rest of a component might be more
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Figure 5.17: Fraction fragmentation versus edge betweenness centrality

important for the integrity of that component, but the edge will still have a relatively

low score of betweenness centrality since there are only a limited number of shortest

paths going through that edge, due to the small size of one of the sub components.

Thus, edge betweenness centrality might be a good measure if we are mostly interested

in the stability of large components. If we are interested in fragmentation of smaller

subgroups, edge betweenness centrality fails to identify the edges crucial for connecting

small modules as important.

A measure developed to describe the “bridginess” of an edge is overlap (Onnela et al.,

2007a). As it is a local measure, it is not biased by the size of the subcomponents on

either side of the bridging edge. Furthermore, due to its localised nature, it can be

efficiently calculated for very large networks. The overlap score of an edge between two

nodes i and j is calculated according to the following equation:

Oij =
mij

(ki − 1) + (kj − 1)−mij
(5.2)

ki and kj denote the degrees of the nodes i and j respectively. mij denotes the number

of mutual neighbours of i and j. Overlap is therefore defined as the fraction of mutual

friends with respect to all neighbours of i and j and ranges from 0 to 1. High overlap

means that to a large proportion of i’s friends are also j’s friends (and vice versa), thus

corresponding to a low level of “bridginess” for the edge. Here we therefore use 1.0−Oij

which we will refer to as complement overlap. Thus, a high complement overlap score

for an edge indicates that the two nodes it connects share few neighbours, therefore the

edge is likely to be a bridge.

In Figure 5.18 we show the fraction of fragmentation against the complement overlap.
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Figure 5.18: Fraction fragmentation versus complement overlap of the fallout edge.
For low levels of complement overlap, fragmentation is generally not observed in any
of the reseeds. For fallout edges with high levels of complement overlap fragmentation
is likely, most often in all 50 reseeds. For intermediate values, either case might be
observed; sometimes even cases where fragmentation occurs only for some of the repeats.

For low values, fragmentation is unlikely and generally occurs in none of the 50 fallout

reseeds. For edges with intermediate values of around 0.5, fragmentation can occur but

does not always. For most edges the network either fragments in all 50 reseeds or in none,

however, for some fallout edges fragmentation is observed only for some of the 50 repeats.

This is most likely for edges with medium levels of complement overlap (see Figure 5.18).

Note that we only measure global fragmentation here. In some cases, fallout for edges

with intermediate to high levels of complement overlap might lead to local fragmentation

but this would not register as global fragmentation. For edges with high scores of

complement overlap, fragmentation is very likely. A logistic regression indicates a strong

relationship with a high odds ratio of 7.587 that is statistically significant (p < 10−10).

This means that overlap is a good predictor for which edges will lead to fragmentation

in case of fallout.

The maximum number of edges that break as a result of the fallout increases with

complement overlap (Figure 5.19). A positive, linear correlation exists between the

number of edges broken and complement overlap, according to the following formula:

y = 5.603 ·x+0.077, R2 = 0.245, with p < 10−10. The increase in the maximum number

of edges breaking is due to the fact that it is more likely that edges exist that fully

depend on the fallout edge as a bridge, as bridges span locally sparse regions of the

network. Thus, we observe that for very high values of complement overlap there is

a decrease in the maximum of broken edges as in the case where the two nodes of the

fallout edge share no mutual friends the fallout edge will not have any edges that depend
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Figure 5.19: Number of edges broken versus complement overlap of the fallout edge.
We observe an increase in maximum number of edges broken for increasing values of
the complement overlap and a decrease for very high value. Note that the banding in

the figure is due to overlap being calculated as a fraction.

on it.

Next, we will introduce two measures that explicitly take into account the dependencies

between edges and therefore are able to better predict the number of edges broken as

a result of the fallout. As discussed in Section 5.7, edges are broken as a result of a

supporting primary edge being turned into a secondary edge through fallout.

The first measure we introduce here simply counts the number of secondary edges that

are maintained exclusively through a particular primary edge. Note that each secondary

edge requires two primary edges to be present to close the triangle, thus both will

receive an increase in score of 1 for that edge. Since the score consist of a count of

edges it is an integer. We call this measure the dependency score. Edges with a high

dependency score maintain many secondary edges that could not exist without the edge

itself existing. Thus, the dependency score provides a lower bound for the number of

edges that will disappear following a fallout in the edge. We observe this effect in Figure

5.20. As expected, all edges that depend on the fallout edge break (corresponding to

the dependency score) and often the fallout edge itself decays to zero, leading to the

number of edges broken being the dependency score increased by one. In some cases

we observe more edges disappearing. One example for this is the case where a pair of

nodes is connected by a weak primary edge, that relies mainly on indirect maintenance.

In other cases edge weight perturbations following weight rearrangement might lead to

edges breaking.
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Figure 5.20: Number of edges broken versus dependencies score of the fallout edge.
We show the diagonal y = x for reference as a black line. Points on this diagonal
correspond to cases where the number of edges broken as a result of the fallout is
exactly the number of edges that depend strongly on the fallout edge being present.
In some cases the fallout edge itself disappears, resulting in a second diagonal of data
points. Additionally, we observe cases in which additional edges are broken following

the fallout although this is less common.

We observe a high correlation between the dependency score and the number of edges

broken: y = 1.080 · z + 0.092, R2 = 0.797, p < 1−10. The dependency score is able to

predict the number of edges broken with high accuracy as it utilises perfect information

on the dependency structure. For real-world systems we are unlikely to be able to extract

information like this as it is unlikely that dependency structures are simple enough to

assume exclusive dependencies. We will therefore introduce a measure that takes into

account dependencies without having to rely on an edge being part of the only path

through which a particular secondary edge can be maintained. Even though this is still

a very abstract measure that might be impossible to calculate in real-world setups, we

will discuss in Chapter 6 how similar measures to be used for network analysis could be

derived.

We will refer to this measure as an edge’s facilitation score. It is similar to the depen-

dency score, however, secondary edges that can be maintained through several paths

are taken into account for this measure, whereas for the dependency score only strong

dependencies (which are maintained through only one path) are considered. If we as-

sume that a certain secondary edge can be maintained through x mutual friends, all

edges on the paths through each mutual friend receive an increase in facilitation score

of 1
x . If we compare this measure to the dependency score, we observe the same effect,

but in addition we observe values underneath the diagonal (see Figure 5.21, the corre-
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Figure 5.21: Number of edges broken versus facilitation score. As for Figure 5.20, the
number of edges broken is correlated with the score. However, here we observe values
below the diagonal since the definition of the facilitation score includes secondary edges
that can be maintained through several paths and thus are not always broken following

a fallout.

lation in this case is weaker with: y = 0.943 · −0.795, R2 = 0.653, but still statistically

significant with p < 10−10). This corresponds to edges that have a higher facilitation

than dependency score. The edges that depend on these fallout edges do not depend

on them exclusively. Therefore, many of these edges will not disappear following the

fallout as redundant paths for maintenance exist. They will, however, still be affected by

a decrease in edge weight since one of the maintenance paths has disappeared. This is

also reflected in an increase of both minimum and average number of edges that exhibit

above threshold edge changes with increasing facilitation (Figure 5.22, observed linear

correlation is relatively low (but significant with p < 10−10) according to the formula

y = 1.682 · x+ 13.190, R2 = 0.116). Thus, for a more holistic assessment of both global

and local impact, the facilitation score provides a better measure than the dependency

score.

5.9 Conclusion

In this chapter we have discussed how fallout in one edge affects the network both on a

global and local level. We have shown that changing the behaviour of a single pair of

nodes leads to weight changes in the edges surrounding the fallout edge, even though

all other individuals behave in the same way as before. On a global level we have

confirmed that fragmentation is possible as a result of the fallout and we have discussed
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Figure 5.22: Number of edges with weight change above threshold against facilitation
score. Both minimum and average increase with increasing facilitation score of the

fallout edge.

how dependencies between edges are crucial for this to happen.

We have investigated different edge measures to characterise fallouts that impact the

network in a certain way. We find that the sum of degrees of the two nodes connected by

the fallout is correlated with the number of edges that exhibit significant weight changes

following the fallout. We have shown that betweenness centrality is a good predictor for

some types of fragmentation impact and discussed its limitations and reasons for these

limitations. Furthermore, we have shown that complement overlap, a measure derived

from overlap (as presented in Onnela et al., 2007a) which describes the “bridginess” of an

edge, is not biased in the same way as it is a local measure and is thus able to provide a

good prediction for fragmentation impact in general. We have introduced two measures

to quantify the dependency structure of the edges and have shown that the number of

edges broken as a result of the fallout is strongly correlated with these measures.

In the following chapter we will discuss the limitations, but also the possible applications

of these measures.





Chapter 6

Discussion

6.1 Connections to existing theoretical and empirical work

6.1.1 Shortcomings of other modelling approaches

Chapter 2 introduced several models of social network dynamics. Here, we revisit this

topic and discuss in more detail why the modelling approaches presented fall short in

modelling the dynamics of social networks.

Many models of social networks are mathematical models. The advantage of these mod-

els is that they can be solved analytically and a large theory base exists. The issue with

these models is that many modellers stay within the bounds of analytically solvable mod-

els and as a result choose problems based on whether they can be solved by a particular

tool. Thus, a vast proportion of network research is concentrated around problems for

which analytical solutions exist and mean-field approaches can be applied. While signif-

icant progress has been made using mathematical network models, the mathematically

minded branch of network science seems to centre its efforts around a certain set of

models as a result of being unwilling to move out of the area of simple, mathematically

tractable models.

A related bias can be observed in the agent-based modelling community. In the context

of this community, richer models regarding node behaviour can be found, as well as

coevolutionary models, studying the interplay of topology dynamics with processes on

the network. However, similar to the mathematical network science community, a narrow

focus has developed on incremental work. A majority of models centre around three main

areas: disease spread, opinion dynamics and games on networks. The public health

implications of urbanisation and globalisation explain the interest in, and funding for,

the study of network-mediated disease spread. The others owe their popularity mainly to

the fact that there are simply not many other coevolutionary models of human behaviour.

103
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When starting work on the models presented in this thesis, we were looking for a base

model for coevolutionary social network dynamics. We were surprised to find that no

general model of social network dynamics seemed to be publicly recognised as a starting

point for modelling non-strategic human behaviour. While many models exist that

are useful abstractions of certain settings, such as (Ahrweiler et al., 2011; Kaufmann

et al., 2009; Noble et al., 2012), for general and abstract models of network dynamics

the modelling landscape is dominated by game theoretic models and opinion dynamics

models. These models, however are not as general as they claim to be, due to the specific

nature of the processes.

Game theory focuses on modelling strategic interactions between pairs of individuals

and is thus well suited for situations where individuals might rationally assess different

options of interaction behaviour and strategically decide on the behaviour that is likely

to give the individual the largest benefit. Thus game theoretic network models play an

important role for modelling a certain subset of problems where individuals interact and

for each interaction choose their behaviour from a range of possible behaviours. For

simulating casual encounters between humans, they are less useful, since a lot of this

behaviour is the result of non-strategic decisions, limited options or simply past choices

(for example when individuals stick with the same behaviour since it has become a

habit). Opinion dynamics can provide valuable insights into network fragmentation

driven by strategic decision making. Thus, models of coevolutionary opinion dynamics

provide the counterpoint to the approach taken in our model. Again, this assumes

strategic decisions and, more importantly, explicit breaking of edges. While explicit

breaking of connections certainly occurs in real world social networks, in many cases

edges disappear unceremoniously by decaying due to not being maintained. Therefore,

human behaviour is more complicated than assumed by game theoretic models and

opinion dynamics models and involves a non-rational component. We thus argue that

behavioural rules that are not based on strategic decisions should be considered more

frequently to complement the approaches taken by existing models.

Another problem is that most models of dynamic networks do not use weighted networks,

limiting the edge dynamics to making and breaking of edges. Even models that do take

into account edge weights (Kumpula et al., 2007; Skyrms and Pemantle, 2000) do not

implement any self-balancing mechanisms for the edge weights. Instead, edges or nodes

are periodically removed to ensure that the network density remains within a certain

regime.

While the reasons behind this design choice are generally not discussed, we suspect that

this global mechanism of node or edge removal is chosen because implementing a self-

balancing mechanism of network dynamics is rather hard. There are several reasons for

this and they are consequences of the complex nature of social networks. Stochasticity of

the dynamics, heterogeneity in both topology and node behaviour, and positive feedback

all play a major role in this. For example, in most network models we observe topological
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heterogeneity as nodes vary in their degree. Since real social networks exhibit broad

degree distributions this is a desired feature and should therefore not be omitted from

social network models for the sake of simplicity. Heterogeneities in the network are often

a result of initial differences being magnified by the stochasticity of the system. This

makes it very hard to calculate information needed for balancing mechanisms, such as

the average increase in weight per timestep. This in turn leads to difficulties for the

design of an appropriate decay mechanism for balancing edge weights.

We tried several other approaches before settling on the approach presented here, which

is to make edge weights an explicit representation/record of past meetings. While it is

desirable to have the edges reflect contact frequencies, as it potentially allows for com-

parison with empirical contact data, we have also found that it is crucial to implement

edge decay this way as it is very difficult to predict the global increase in weights per step,

due to the complexity of the systems as discussed above. Local balancing mechanisms

that rely on a fixed decay rate fail for our model since the magnitude of weight increase

depends on the aggregated decisions of all individuals due to the fact that connections

can be reinforced indirectly at friend’s gatherings. This is a specific problem of non-

binary weight changes, which might be one of the reasons why not many social network

models incorporate weight dynamics. In addition, since edges in networks represent

relationships between two people, we believe that edge weights should be influenced by

the actions of both individuals and thus should not be regulated by the individuals inde-

pendently. In addition, allowing individuals to independently increase and decrease edge

weights to limit node strength can lead to less well connected nodes getting disconnected

even though they invest time in the maintenance of particular contacts. This does not

happen for the mechanism presented in this thesis, as unreciprocated relationships are

possible (an individual can attend another individuals party even if the reverse never

happens). With the mechanism presented here edge weights are bounded as a result of

external constraints and they are a result of the action of both of the individuals that

are connected by the edge.

6.1.2 Limitations of the modelling approach presented here

Due to the dearth of models of non-strategic network behaviour we could not build on

existing models when creating the model presented in this thesis, as they were unsuitable

for our purpose in one way or another. While inspired by mechanisms present in other

models, our model combines these mechanisms in new ways and additionally incorporates

mechanisms that are novel in modelling social network dynamics. This means that our

model is just a first step in the direction of modelling the dynamics of weighted social

networks and therefore fairly simple. While it is a good starting point and sufficient to

answer the main question posed in this thesis, there are many ways in which it could

be extended to match human behaviour better. In this section we discuss limitations of
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the model and possible extensions.

Referring back to the desired properties for artificial social networks discussed in Section

3.2.4, we will first discuss to what extent the networks generated as a result of our model

match the desired properties. As discussed in Section 4.1, the generated networks are

sparse and exhibit high levels of clustering and positive assortativity. They exhibit

visually obvious community structure, which is a characteristic topological feature of

social networks. With regard to these characteristics our model is able to match the

desired features.

Regarding average shortest path length, our model shows larger values than observed in

real social networks for larger values of N . This is due to the fact that our model im-

plements a strict cutoff for edges above a certain length, therefore prohibiting shortcuts

between more distant nodes. However, there are several mechanisms one could think of

to introduce additional long range connections to the existing model. Allowing random

connections, not constrained by spatial placement is used in many models to generate

long range connection as well as local connections that do not close triangles. Whether

this is a realistic assumption to make depends on the system to be modelled. Another

option would be to allow nodes to move in space and retain some of the previously made

edges, even if they span distances larger than the reach R.

The degree distributions observed are broad, but do not exhibit any obvious skew.

Real-world social networks have right-skewed degree distributions and our model fails

to recreate this feature. Preliminary work by Hamill and Gilbert (2009) suggests that

heterogeneity in social reach R might be able to address this issue and introduce a degree

skew to the distribution.

In the model presented here, nodes are located in space. As discussed, this is an impor-

tant factor for the generation of realistic-looking social networks. Spatial placement in

our model is according to a uniform distribution, whereas in many real-world systems

we observe nodes to be clustered both with respect to locations in space as well as dis-

tributions of traits or opinions. Thus, extending the model to allow for different spatial

distributions is a possible next step. Moving towards non-uniform node distributions

could also influence the likelihood of sparse local areas, thus leading to more bridges

and increased probability of fragmentation. The initialisation of networks in our model

as a random geometric graph is a further simplification. Some preliminary studies show

that starting with a slightly less dense network does not produce obvious differences in

topology, given there is some variability between individual runs with different seeds due

to stochasticity in any case. However, if initialising with an entirely different topology

we might find that this affects the topology of the resulting networks in more obvious

ways. In any case the initialisation will be an abstraction of how social networks form

from scratch, but this is a different problem and beyond the scope of the work presented

here.
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In addition to the simplifications regarding spatial placement of nodes, we can also imag-

ine possible extensions using continuous mechanisms for implementing a spatial influence

on possible connections. In our model, the reach R sets a discrete threshold distance

for direct interactions, whereas in the real world we would assume a more probabilistic

mechanism, with connection probability decreasing with increasing distance. Further-

more, we would expect this decrease in probability to be influenced by other factors,

such as the similarity of the individuals in question, as well as the number of socialising

opportunities in the closer neighbourhood. This last factor has been studied empirically

and we will come back to this in the next section where we discuss our model in the

context of empirical findings on social networks.

Using a threshold allows us to divide edges into primary and secondary edges which

makes it easier to understand the mechanism that causes fragmentation following a

fallout. We would expect this distinction to be less clear cut in the real world, meaning

that dependency structures would also be more complicated. For example, if we assume

probabilistic interactions based on distance we could still observe dependencies but they

would no longer be a binary distinction between primary and secondary edges. Instead

of an individual never accepting an invitation, it would simply be highly unlikely for

that individual to accept. We would not expect this extension to change the dynamics

drastically, but nevertheless it would be interesting to study fragmentation in the case

where this slightly forced distinction between primary and secondary edges does not

exist and investigate to what extent exactly this influences fragmentation dynamics.

Another simplification that should be addressed in further work is the fact that cur-

rently nodes are homogeneous with respect to attributes and behaviour. We have not

yet investigated the influence of heterogeneity for any of the parameters. Hamill and

Gilbert (2009) find that in their model heterogeneity in reaches leads to a longer tail

in the degree distribution. Their model is not dynamic, thus it would be interesting to

investigate whether a similar result can be obtained in our dynamic model. The effect of

heterogeneity in individual’s reaches on the actual dynamics is a particularly interesting

possible extension as this would again affect the dependency structures, which influences

the fallout dynamics.

Similarly, introducing heterogeneity in the time budgets (parameter S in our model)

could represent that some individuals spend more of their time socialising than others, or

the simple fact that some individuals might have less time available. This heterogeneity

should have implications for the resulting topology. Heterogeneity in history length (H)

could reflect the fact that some people are better at keeping in contact with old friends

whereas others show more variability in their set of their friends over time, which has the

potential to affect the dynamics of network change and stability of the created networks.

An important step for the future would be to add richer homophily dynamics to replace

the affinity values. We could add several dimensions of traits and values, and individuals
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could assess whether to maintain a connection based on differences in these values. The

spatial placement of nodes in our model can be viewed as distinct from the social value

space but could also represent location in an abstract social space. If we take this

view, spatial embedding and affinity values could be replaced with a higher dimension

trait space with likelihood of direct interaction being a distance function between the

individuals’ locations in this space.

Another type of heterogeneity that most models, including our own, fail to incorporate

is that different types of connections can exist with entirely different dynamics. One

example are romantic relationships which, at least in general, undergo discrete transi-

tions in type and are exclusive. Romantic ties are also more likely to be actively broken,

which is why it would be interesting to add such a dynamic to our model especially to

include fallout as an internal process instead of an external perturbation. Another type

of ties are family ties, which persist over long periods and are generally more resilient

to being broken, even when not maintained for a long time. While our model does not

capture any of these heterogeneities, it could be extended to do so.

In the following section we review findings of empirical work on social network dynamics

and discuss how they relate to the model presented here. In this context we discuss

features observed in empirical work that emerge in our model and we present empirical

findings about human behaviour that are currently missing but could be included in

future iterations of the model (depending on desired applications).

6.1.3 Empirical context of the work presented here

Regarding persistence and decay of relationships, Burt (2000) notes that embedding

edges in a dense network with shared friends results in a higher probability of edge

survival. This can be observed in our model, as edges that connect individuals with

mutual friends are less likely to decay as multiple paths of maintenance exist. This

only holds for non-fallout situations though, which is in accordance with the findings

described by Burt (2000), namely that the probability of decay is increased for embedded

edges where the embedding is disrupted. However the author also observes that strong

relationships and edges that have existed for long periods of time show lower rates of

decay, a fact that is not represented in our model.

Using data on the dynamic change of an email communication network, Kossinets and

Watts (2006) study factors influencing triadic closure. They find that tie strength

strongly influences the probability of triadic closure. This effect is an emergent property

of our model as stronger ties lead to a higher probability of two individuals attending

each other’s gatherings and thus meeting each other’s friends, resulting in triangle clo-

sure. Thus, triadic closure is more likely for a pair of nodes with strong connections to

the mutual friend. We can also observe a certain degree of heterogeneity in individuals’
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socialising behaviour, similar to what is observed by Backstrom et al. (2011): some in-

dividuals interact with only a small circle of close friends intensively, others have more

friends but invest less time in each of the relationships. We can observe this in the model

presented here; it is a result of the spatial embedding of the nodes and the resulting het-

erogeneity in the number of contact opportunities. In the real-world, the type of time

allocation across contacts (focused on few individuals or spread across many) seems to

be stable for an individual over time and is thus unlikely to be the result of contact

limitations. Our model does not capture intrinsic differences in time-allocation in its

current form, even though this might be an important factor for extending the model

towards heterogeneous behaviour.

Regarding spatial effects, Illenberger et al. (2012) study data on leisure contacts and the

geographic distance between the individuals and find that the probability of forming a

connection decreases with distance, as modelled in our model by the spatial constraint.

They also observe that the number of contacts seems to be independent from the spatial

location, meaning that individuals located in sparse areas compensate for this fact by

accepting longer range connections, a fact that is not captured in the current state of our

model. Furthermore, the constraint on edge length is very rigid in our model prohibiting

any long range links. As discussed in Chapter 4, the absence of long range links results

in diameter and average shortest path length not scaling logarithmically, as observed

in real-world social networks. Therefore, relaxing this constraint to allow some longer

range edges might be important for the future as well as moving from a threshold of

interaction to a probabilistic approach.

van Duijn et al. (2003) confirmed that spatial proximity, similarity and network opportu-

nity all influence the probability of friendship formation. These factors are implemented

in our models as the spatial constraints (parameter R), the affinity value structure (pa-

rameter A) and the triangle closure mechanism. In real-world friendship formation the

importance of these factors changes over time, a fact that cannot be represented in our

model in its current form. The authors show that proximity is important in the first

stages of friendship formation, whereas “invisible similarity” only becomes important

later on as the friendship develops (as it can not be assessed at the beginning when

individuals do not yet have any information about each other). It could be interesting

to include richer mechanisms of friendship formation in future models of the dynamics

of friendship networks.

Regarding the development of relationships over time, Reis et al. (2011) find that two

individuals being exposed to each other increases two individuals’ affinity to each other.

While this effect is indirectly captured in our model by preference for attending meet-

ings hosted by individuals to which a strong edge exists (indicating frequent previous

contact), we do not model this fact explicitly by modelling the dynamics of affinity

values.
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6.1.4 Fragmentation and percolation

Not much empirical work studying network fragmentation exists. This might be due

to the fact that this requires collection of time-resolved data, but with the advent of

new collection techniques for time-resolved contact and communication data (see Section

2.3.1) we will hopefully see progress in this area in the future.

In Onnela et al. (2007a) the authors study the percolation behaviour of a real world

mobile phone call network. They observe that many weak links seem to have low over-

lap but high betweenness centrality, confirming their role as bridges as suggested by

Granovetter (1973). Thus, they are important for the cohesion of the network. In our

model, edges that are bridges by default have a lower weight as they are only directly

maintained and do not receive additional indirect maintenance through mutual friends.

Our model therefore recreates this structure, now thought to be a defining feature of

social networks. Our experiments on fallouts confirm that edges with high levels of be-

tweenness centrality and low levels of overlap (high levels of complement overlap) are

more likely to lead to fragmentation of the network. This also fits with the definition of

group cohesion in the social sciences literature, where groups are considered to be more

cohesive if more edges need to be removed to split the group (White and Harary, 2001).

In models of group evolution, spontaneous fragmentation has been observed when com-

munity structure of the network becomes so pronounced that groups no longer have

access to potential new members and thus can grow no further, leading to network

fragmentation (Geard and Bullock, 2008). In a later model, Geard and Bullock (2010)

observe that increasing individuals’ social time budgets results in more robust networks

that are less likely to fragment, as they show less distinctive community structure.

As discussed previously, fragmentation has also been studied in the context of opinion

dynamics. In coevolutionary opinion dynamics, the timescales of the processes involved

(opinion update and edge rewiring) play a major role in determining whether the system

develops towards fragmentation or connected consensus (zu Erbach-Schoenberg et al.,

2011). The process that leads to fragmentation in these models (individuals explicitly

break edges to individuals with a differing opinion) thus can not explain the questions

that are the focus of this thesis: how networks can fragment without the individuals

taking explicit action towards breaking edges. Nevertheless, since human behaviour in

social conflict probably lies between explicitly taking sides and breaking edges and not

taking sides at all, these models should be considered for future studies of fragmentation

dynamics.

Cascading failures are observed in many technological systems (Holme, 2002; Motter and

Lai, 2002). Whether edge failure cascades are possible in social networks as well has not

been answered by empirical studies yet. The model we present in this thesis does not

exhibit cascades as described in other works. The effect of the fallout we observe in our
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model is localised. Only edges located close to the fallout edge in space and which have

a short hop distance to the edge are affected. This means that cascades, as observed

in other systems, are not possible in this model. However, the breadth of the impact

is only limited by the degree of the fallout edge, so fallout of one edge can still lead

to changes in edge weights for many edges. And even though the impact is localised,

fragmentation does occur as shown in Chapter 5.

6.2 Steps towards richer models of social network dynam-

ics

Many of the models discussed in Chapter 2 are able to accurately model certain aspects of

human behaviour. Here we identify several key mechanisms of social network dynamics

that have been the focus of these models and suggest how they could be combined to

construct richer models of social network dynamics.

One important aspect of social network dynamics is triangle closure. Triangle closure

is used in many models of social networks to achieve high levels of clustering. In an

empirical study of a dynamics network Kossinets and Watts (2006) claim that social

network evolution is indeed driven by triangle closure and additionally, homophily. Ho-

mophily is generally divided into two dimensions. The first is baseline homophily (also

called induced homophily), which is a result of limited interaction opportunities. One

example for this is that students at a university are generally young adults, and are

therefore more likely to interact with other young individuals. Similarly, meeting some-

one in the UK it is likely that both of you will speak English. While this homophily is

influenced by past choices, it involves no current bias on choosing interaction partners.

The additional bias of choosing to interact with a similar individual instead of another is

called choice homophily. It describes the bias to preferentially interact with individuals

similar to oneself. In our model, both types of homophily are represented in an abstract

way: baseline homophily is present due to the spatial location of the individuals and

interactions are further biased by the affinity values, introducing a choice homophily

mechanism.

An important aspect of social network dynamics we have not discussed so far is focal

closure. Focal closure refers to the fact that individuals meet through activity foci.

Activity foci are associated with some form of activity such as work, a hobby or a

religious group. Activity foci bring individuals together for particular activities and

this enables the formation of new connections. In contrast to triangle closure, activity

foci can lead to the formation of connections between individuals that do not share

mutual friends and is therefore less constrained by the network. In real-world social

networks both network mediated new contacts as well as contacts not directly mediated

through the network are important for driving network evolution. The model presented
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in this thesis does not capture non-network-mediated contacts, which is why components,

once fragmented, cannot reconnect. This process is abstracted as random encounters of

individuals in many models. While this can be a reasonable abstraction to make, we

believe that in many cases the fact that activity foci are defined through some shared

values or interests (and thus lead to baseline homophily) is important and should be

considered even for abstract models of network dynamics.

In Kossinets and Watts (2009) the authors suggest the construction of a simulation

model in which choice homophily, focal closure, and cyclic closure could be varied to

study their effects and the model presented in Chapter 3 could serve as a basis for this.

However, our model lacks the possibility for connections to be made between nodes that

do not share a mutual friend. As just discussed, non network mediated connections can

happen though shared activity foci or groups. Some previously introduced models study

the interplay of networks and group dynamics (Geard and Bullock, 2008, 2010). The

main focus of these models is group dynamics. Therefore the network dynamics side is

rather simple and does not include weighted dynamics. Combining these models with

our model using weighted edges could be a promising step towards a more mature model

of social network dynamics.

6.3 Implications for real-world social networks

As discussed above, the study of social network dynamics is still in its infancy. Therefore,

claims about mechanisms of fragmentation in real-world systems are still further down

the line. Nevertheless, we have provided insights into mechanisms that can lead to

fragmentation and will discuss implications of these findings for further study of the

cohesion of social networks.

To draw conclusions about real-world friendships or organisational networks a more

specific model would be necessary. However, we have provided a basis for such a model.

In Chapter 5 we confirmed previous results: edges that are bridges are important for

the cohesion of a social network and these edges are characteristically edges with low

overlap and high betweenness centrality.

Neither of these measures are able to capture the dependency structures present in many

networks, which are the focus of our explanation for fragmentation following a single

disagreement. Our work highlights the importance of these hidden dependencies. We

could try to get an idea of these dependencies in two different ways. First, it would be

possible to question individuals about their sentiments to find out which connections are

directly maintained and which ones are not. This might be feasible for smaller networks.

For larger networks this approach would, however, suffer from the same problem as

other manual data collections: high costs. Furthermore, for organisational networks, we

might not be interested in the sentiments themselves but rather in identifying who the
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facilitators of certain contacts are. For this it does not matter whether two individual

would like to actively maintain a work connection, if the organisational structure makes

this impossible in any case. Thus, observation of the facilitation structure would be

more useful here.

The key fact for indirectly maintained relationships (secondary edges) is that they are

always reinforced together with the maintaining edge. Instead of purely thinking in

terms of dyads, it would be beneficial to consider groups in this context. This approach

is not limited to face-to-face meetings, but could also be used for online interactions such

as emails. If two individuals never send direct emails to each other but frequently occur

together in email conversations within a larger group of individuals then this would be a

strong indicator that the two individuals are connected by an secondary edge. Finding

out which other individual (or group of individuals) is the facilitator of this edge might

be more difficult than identifying the secondary edge, especially as this situation might

not be as clear-cut as in the model.

6.4 Summary

In this chapter we have discussed the shortcomings of other coevolutionary models of

social networks and the bias towards models of strategic interactions such as games on

networks or opinion dynamics. The field of agent-based social network models seems to

centre mainly around models where actors are assumed to make rational decisions and

models of non-strategic behaviour are rare. Real human behaviour surely lies somewhere

between these extremes for most settings and we have thus argued that non-strategic

interactions should be explored more frequently.

In this thesis we have presented such a model that uses non-strategic behavioural rules to

build a model of social network formation and maintenance and explore the phenomenon

of network fragmentation. Due to not being able to build on an extensive body of

previous work in this area, since there is a lack of models with similar assumptions,

our work is only a first step and thus oversimplifies human behaviour in the opposite

direction to strategic models: it assumes that interactions are entirely nonstrategic. We

have discussed these limitations in this chapter and have pointed out parts of the model

that could benefit from richer mechanisms. In addition we have discussed how results

and mechanism of our model fit in with existing work on theory and empirical work on

social networks.

Lastly, we have shared some ideas about how our model complements other modelling

approaches for network dynamics, such as opinion dynamics, models of homophily, and

group dynamics, and how combining these could lead to richer, more advanced models

of coevolutionary social network dynamics.
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Conclusion

In this thesis, we have presented a dynamic network model that is able to grow and

maintain networks. These networks exhibit the defining features of social networks,

such as sparseness, high levels of clustering, and positive assortativity. In contrast to

other models, the interactions between individuals are non-strategic and thus our model

complements existing approaches of modelling network dynamics using strategic interac-

tions. Strategic models use explicit make-and-break decisions to drive network change,

whereas in our model the network is shaped through positive feedback (reinforcing con-

nections that were reinforced in the past) as well as a range of constraints on interactions

inspired by sociological theory.

We have discussed limitations of existing models and highlighted the difficulties present

in building models of self-limiting network growth. The edge weight dynamics in our

model are self-limiting and thus, in contrast to other models, do not require a global

balancing process. While the model presented here is quite simple, we have shown

how it could be combined with existing models and incorporate additional processes

suggested by empirical evidence to build a richer, more mature model of social network

dynamics. Crucially, we have shown that our model exhibits the dynamical features that

are essential for studying non-strategic fragmentation dynamics: it reaches stability on

the macro-level while exhibiting continuous dynamics on the micro-level.

One aim of this thesis was to show that fragmentation of social networks can occur

even when individuals do not consciously choose to break connections to other individ-

uals. We have shown that this is possible and have discussed which edges are crucial for

maintaining a cohesive network topology. Unsurprisingly, these edges fulfil a bridging

function in the network and we have shown that a measure derived from overlap is well

suited to identify such edges. However, this topological feature is not sufficient to fully

explain fragmentation. For bridges that consist of several edges, fragmentation will only

occur if all of these edges are broken. This can happen as a result of dependencies

between edges. These dependencies are a result of the constraints on connections im-
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plemented in our model which results in some edges depending on mutual friends for

maintenance. It is through these dependencies that a single disagreement can lead to

a number of other edges disappearing. This will lead to fragmentation in cases where

a bridge consists of one primary edge and several dependent secondary edges. We have

proposed some preliminary measures to quantify these dependencies and have discussed

how they could be approximated in real-world settings.

We have contributed to the understanding of an important social process that can signif-

icantly impact the functioning of social networks with respect to information transfer.

As we have discussed, cohesion of communication networks is essential for many set-

tings, such as organisational and team performance. Thus understanding the dynamics

of fragmentation is important to identify points at which we might be able to circumvent

(or otherwise influence) its onset.
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Amaral, L., Scala, A., Barthélémy, M., and Stanley, H. (2000). Classes of small-world

networks. Proceedings of the National Academy of Sciences of the United States of

America, 97(21):11149–11152.

Antonioni, A., Bullock, S., and Tomassini, M. (2014). Reds: an energy-constrained

spatial social network model. In Lipson, H., Sayama, H., Rieffel, J., Risi, S., and

Doursat, R., editors, ALIFE 14: The Fourteenth International Conference on the

Synthesis and Simulation of Living Systems. MIT Press.

Antonioni, A., Egloff, M., and Tomassini, M. (2013). An energy-based model for spatial

social networks. In Advances in Artificial Life, ECAL, volume 12, pages 226–231.

117



118 BIBLIOGRAPHY

Backstrom, L., Bakshy, E., Kleinberg, J., Lento, T., and Rosenn, I. (2011). Center of

attention: How facebook users allocate attention across friends. In Proc. 5th Interna-

tional Conference on Weblogs and Social Media.

Backstrom, L., Sun, E., and Marlow, C. (2010). Find me if you can: improving ge-

ographical prediction with social and spatial proximity. In Proceedings of the 19th

international conference on World wide web, pages 61–70. ACM.

Bansal, S., Grenfell, B., and Meyers, L. (2007). When individual behaviour matters:

homogeneous and network models in epidemiology. Journal of the Royal Society In-

terface, 4(16):879–891.

Bansal, S., Read, J., Pourbohloul, B., and Meyers, L. (2010). The dynamic nature of

contact networks in infectious disease epidemiology. Journal of Biological Dynamics,

4(5):478–489.

Barabási, A. and Albert, R. (1999). Emergence of scaling in random networks. Science,

286:509–512.
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