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RELATIONSHIPS BETWEEN CARDIO-METABOLIC RISK FACTORS IN CENTRAL 

OBESITY AND THE EFFECTS OF HIGH DOSE STATIN TREATMENT 

by Magdalena Joanna Turzyniecka 

 

Central obesity is a complex cardiometabolic entity strongly linked to the constellation of 

risk factors such as insulin resistance, hypertension, dyslipidaemia and physical inactivity, 

which when combined lead to an increased risk of type 2 diabetes and cardiovascular 

disease. The available evidence suggests that these conditions are linked to microvascular 

dysfunction, which may appear much before the onset of overt cardiovascular and 

metabolic disease. However, in apparently healthy but viscerally obese subjects, little is 

known about the interactions between cardiometabolic risk factors, including 

microvasculature, which could be potential targets for early therapeutic intervention. 

Statins are attributed to have pleiotropic properties, but their effects on insulin resistance 

and microcirculation are still uncertain. 

 

The hypotheses for this study were that in centrally obese but non-diabetic subjects: 

 Skeletal muscle exchange capacity influences levels of HbA1c 

 Diminished insulin sensitivity in skeletal muscle is associated with reduced 

microvascular exchange capacity 

 Microvascular functional dilator capacity is independently associated with insulin 

sensitivity and age 

 Six months of treatment with high dose statin improves insulin sensitivity and 

reverses microvascular dysfunction 

 Cardiorespiratory fitness is independently associated with cardiac diastolic function 

and arterial stiffness 

 

A double-blinded, randomised, placebo controlled trial was conducted in white Caucasians 

aged 29-69 with abdominal obesity and a cardio-metabolic phenotype. Insulin resistance 

was assessed by stepped hyperinsulinaemic euglycaemic clamp and fasting insulin 

sensitivity indices. Microvascular function was examined with venous congestion 

plethysmography and Laser Doppler Fluximetry. 

It was demonstrated that in centrally obese, non-diabetic subjects with modest 

insulin resistance, skeletal muscle exchange capacity was associated negatively and 

independently with HbA1c, positively and independently of visceral fatness with insulin 

sensitivity, and that functional dilator capacity was strongly and positively associated with 

insulin sensitivity and age, independently of each other. Six months of intensive treatment 

with Atorvastatin did not improve insulin sensitivity or microvascular function. A strong 

association was shown between cardiorespiratory fitness and measures of diastolic function 

and arterial stiffness. 

In conclusion, this thesis presented novel aspects of cardio-metabolic factors and 

microvascular relationships, which indicate the early onset of microvascular dysfunction in 

obesity and the importance of fitness in maintaining arterial flexibility and cardiac diastolic 

function. Atorvastatin has no role in improving insulin sensitivity and reversing 

microvascular dysfunction. 
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1. Background 

 
1.1 Obesity 

 
1.1.1 Epidemiology 
 

Obesity, in broad terms, describes the accumulation of excessive amounts of adipose tissue 

in the body, which usually translates into excessive body weight. The word comes from 

Latin obesitas, which means fatness, corpulence, and is composed of ob meaning “over 

“and edere meaning “to eat” pointing towards its commonest cause i.e. overeating. The 

first documentation of obesity in the form of Venus of Willendorf figurines dates back to 

the Stone Age. Hippocrates pointed out the role of excessive food intake in the 

pathogenesis of obesity and a few hundred years later Galen documented the benefits of 

physical activity and moderate food intake on weight maintenance [1]. Furthermore, the 

existence of the different fat distribution and the role of intra-abdominal fat in the 

pathogenesis and phenotypes of obesity was described for the first time already in1765 by 

Morgagni. The worldwide prevalence of obesity has been rapidly increasing over the last 

century and in 1997 obesity was formally recognised by the World Health Organisation 

(WHO) as a global epidemic with Sub-Saharan Africa being the only region where obesity 

was uncommon [2]. As of 2005, the WHO estimated that worldwide there were 

approximately 1.6 billion overweight adults, with at least 400 million of them clinically 

obese, and this being an increasing trend with a projected 2.3 billion of overweight adults 

and over 700 million obese adults by 2015 [3]. In the United States of America, the 

prevalence of obesity amongst adults increased from 13.4 % to 35.1%  between 1960–2 

and 2005–6 [4]. The increase in obesity has not been restricted to industrialised countries 

but is present also in developing countries, where the obesity rates have tripled over the 

last two decades [5] because of the adoption of Westernized lifestyles. The prevalence of 

excessive body weight increases with age and is higher in women [6]. Its negative 

association with physical activity is also well documented [7]. 

 

1.1.2 Obesity: morbidity and mortality 
 

Obesity has a profound and adverse impact on health, and subsequently leads to reduced 

life expectancy [2]. Obesity (and overweight) poses not only the major risk for 

development of type 2 diabetes, dyslipidaemia, hypertension, all of which are recognised 

to facilitate the onset of cardiovascular disease but also has been associated with many 

other non-fatal but serious chronic conditions that significantly affect the quality of life [2, 
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8, 9]. The risk of developing diabetes is 40-fold in obese as compared to normal weight 

individuals [10]. The link between obesity and cardiovascular disease, first identified in the 

large, epidemiological Framingham study, is well established by now. It is evident that 

with the obesity pandemic there has been an increase in the incidence of cardiovascular 

disease as well as diabetes and hypertension [2, 11, 12]. Moreover, recent report from the 

National Heart Forum predicts further increases in cardiovascular disease, in particular 

heart disease, due to obesity over the next 40 years in England [13]. Based on the trends in 

data collected between 1993 and 2007, the authors predict a 44% rise in obesity-related 

coronary heart disease, a 34% rise in obesity-related hypertension and a 98% rise in 

obesity-related diabetes by 2050. Various epidemiological studies have confirmed that 

excess body fat is strongly associated with an increased risk of death [14]. Moreover, 

obesity is associated with raised long term total mortality as shown in a 29 year follow-up 

of Finnish women [15]. The major cause of mortality in obesity and overweight is, 

unsurprisingly, due to cardiovascular disease. The relative risk of death due to 

cardiovascular disease in those with body mass index (BMI) over 30 kg/m
2
 in comparison 

to normal weight varies from 1.2 to 3.0 depending on the age and gender [16-18]. The 

other causes of death in the overweight and obese include diabetes, respiratory disease and 

cancer [17, 19]. There is also evidence of an inverse relationship between physical activity 

and all causes of mortality in the presence of increased body weight [14]. Hu et al. [11] 

showed in a long term follow-up study of women without cardiovascular disease or cancer, 

that increased fatness and physical inactivity were strong and independent predictors of 

death. Moreover, the authors estimated that the BMI in excess of 25 kg/m
2
 and the regular 

physical activity of less than 3.5 hours of exercise per week, together could account for 

31% of all premature deaths, 59% of deaths from cardiovascular disease, and 21% of 

deaths from cancer. 

 

1.1.3 Classification of obesity 
 

The World Health Organisation (WHO) classification based on Body Mass Index (BMI) 

criteria is the most widely accepted and used classification, and provides reasonable 

approximation of adiposity in most people although it does not provide an individual’s 

body composition. According to the 1997 WHO definition, published in 2000 and based on 

large scale morbidity data, in adults overweight is defined as BMI of 25-29.9 kg/m
2
 and 

obesity as BMI  30 kg/m
2
. Obesity is further categorised into three subgroups, each with 

associated co-morbidities risk as moderate, high and very high, respectively (Table 1.1). 

The other commonly used classification, which provides the most practical assessment of 
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abdominal fat, is based on the association between increased cardiovascular risks and waist 

circumference adjusted for gender. Since the waist circumference thresholds have been based 

on the Euro-Caucasian populations, the International Federation of Diabetes (IDF) 

recommended (for defining metabolic syndrome) [20] the application of different definitions of 

central obesity depending on the ethnic origins (Table 1.2). Waist/hip ratio (WHR) is another 

classification of adiposity which accounts for gender differences. Men with WHR>0.9 and 

women with WHR>0.85 are classified as being centrally obese. It is important to point out that 

while the individuals may be classified as being centrally obese by waist girth or WHR, their 

total body fatness may still be classified as overweight according to BMI criteria. 
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  Table 1.1 WHO classification of obesity 

 
 

BMI (kg/m
2
) 

 

 
Classification 

 
< 18.5 

 
underweight 

 
18.5–24.9 

 
normal weight 

 
25.0–29.9 

 
overweight 

 
30.0–34.9 

 
class I obesity 

 
35.0–39.9 

 
class II obesity 

 
≥ 40.0 

 
class III obesity 

 

 

  Table 1.2 IDF definitions for central adiposity 

 
  
Ethnic group 

 
Waist circumference (cm) 

 
Male 

 
Female 

 
Europids 

 
≥ 94 

 
≥80 

 
South Asians 

 
≥ 90 

 
≥ 80 

 
Chinese 

 
≥ 90 

 
≥ 80 

 
Japanese 

 
≥ 90 

 
≥ 80 

 
Ethnic South and Central Americans** 

 
≥ 90** 

 
≥ 80** 

 
Sub-Saharan Africans 

 
≥ 94* 

 
≥80* 

 
Eastern Mediterranean and Middle East 

 
≥ 94* 

 
≥80* 

   

* based on European criteria until further data available 

  ** due to heterogeneity of the population this is based on criteria for South Asians until 

further data available  
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1.1.4 Assessment of obesity 
 

There are several methods of assessing excess body adiposity with different methods 

appropriate for different circumstances. In everyday clinical practice or in the large cohorts 

of subjects, there are indirect methods used and these are based on the relation between 

height and weight, which include BMI, waist circumference and waist-hip ratio. They are 

all relatively simple and easily implemented on a mass scale. The methods that directly 

measure the amount of body fat provide more precise information related to its 

distribution, fat weight or percentage. These include bioimpedance, dual energy X-ray 

absorptiometry (DEXA), computed tomography (CT), magnetic resonance imaging (MRI), 

air displacement plethysmography amongst many others, all of which are complex and 

require specialist equipment and expertise. 

Those methods can provide accurate estimates of total or regional body adiposity or both. 

 

1.1.4.1 Body mass index  

Body mass index (BMI), also known as Quetelet index, is a measure of overall body 

weight adjusted for height and is calculated as the weight (in kilograms) divided by the 

height (in metres) squared. BMI estimates only a relative fatness and not the percentage of 

body fat. It correlates highly, although not perfectly with body adiposity assessed by more 

sophisticated and complex methods. For this reason, it has been often employed as a 

screening tool and a method for the estimation of relative disease risk in large populations. 

Multiple studies have concluded that BMI predicts the risk of developing diabetes [21], 

and morbidity and mortality from cardiovascular disease [22].  

BMI may not correspond with the same degree of fatness in different populations due to 

differences in body proportions for example height. This may be especially applicable to 

various ethnic groups. Dudeja et al.[23] observed that in northern Indians a higher 

percentage body fat was associated with a relatively lower BMI. In males, BMI of 21.4 

kg/m
2
 corresponded with 21.3 % of body fat (BF) whereas an equivalent of percentage 

body fat in Euro-Caucasian equated to a BMI of 25.2 kg/m
2
 [24]. The comparison of their 

findings with the body fat data collected among Caucasians, Blacks, Polynesians and other 

Asians ethnic groups showed further differences [23]. The proposed different cut-off points 

for defining obesity in different ethnic groups are still under debate [23].  

The equation for BMI calculation does not take into account age or different genders. 

Gallagher et al. [24] obtained data from black and white Americans of both genders 

suggesting that BMI is age and sex dependent when used as an indicator of body fatness. 

BMI has also other limitations. It does not distinguish between fat or lean mass, which leads to 
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inaccurate estimations of fatness in certain groups. For example, BMI may provide 

overestimated values of body adiposity in those with high muscle mass, but low fatness, 

because of increased total body weight. In addition, it may not be an appropriate tool for 

defining obesity in elderly population. This is because with increasing age and change in body 

composition, there is increased loss of lean mass which replaced by adiposity results in 

maintenance of stable weight and in turn underestimation of overall fatness when measured 

with BMI [25].  

 

1.1.4.2 Body fat percentage 

The body fat percentage (BF%) is the total weight of fat divided by the individual’s weight 

(expressed as a percentage). It is a direct measure of body composition often regarded as a 

measure of an individual’s fitness. It includes the essential and storage adipose tissue in the 

body. The essential body fat is necessary to maintain life and reproductive functions 

whereas the storage fat protects internal organs and is required to provide energy supply in 

times of famine, as well as thermogenesis (in the case of brown fat). The body fat 

percentage is greater in women to support their childbearing period and other hormonal 

functions. The American Council on Exercise recommended the essential body fat 

percentage for women of 10-13% and for men of 2-5%, whereas obesity was classified as 

body fat percentage of over 32% in women and over 25% in men. 

The  percentage of body fat can be predicted from BMI with the Deurenberg equations 

[26], which are based on the estimation of overall body fatness using BMI and adjusted for 

age and gender. In the formula the age is provided in years, 1 is substituted for male and 0 

for female gender: body fat percentage = 1.2 (BMI) + 0.23 (age) - 10.8 (sex) - 5.4. The 

equation has a standard error of 4% of measured percentage body fatness which is 

comparable to the prediction error obtained with other methods of estimating BF%, such as 

skinfold thickness measurements or bioelectrical impedance. The prediction formulae were 

cross-validated using densitometrically-determined percentage body fat and gave valid 

estimates of body fat in males and females at all ages. The cut-off thresholds for defining 

obesity using those formulas were 25 % of body fat for men and 33% for women. The 

formulas provide linear relationship between BMI and percentage body fatness while the 

measured relationship is curvilinear therefore they are likely to overestimate obesity at the 

higher values of BMI. 

 

1.1.4.3 Waist circumference                                                                                          

Waist circumference is often used along with BMI as a screening tool to identify obesity.  
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It is also an important criterion for defining metabolic syndrome [20]. As it is measured at 

the position of anatomical waist, between lower margin of ribcage and the iliac crest, 

which is different from the commonly defined waist, its accurate determination requires 

appropriate, but not complex, prior training. Although waist circumference provides 

approximate information about total body fat, it is used more as a simple measure of fat 

distribution and an index of intra-abdominal fat mass. In men, this is an anthropometric 

measurement that
 
most uniformly predicts the distribution of adipose tissue among

 
several 

fat compartments in the abdominal region [27]. Waist circumference measurements play an 

important role in identifying central obesity in those whose BMI lies within the normal 

range [28]. Additionally, in some populations for example, such as Asian ethnic groups it 

may be a better risk predictor than BMI [29, 30]. It is also the best available surrogate 

estimate of visceral adiposity as validated in studies using MRI and CT for measurement of 

body fat distribution [31, 32]. Waist circumference is an accurate predictor of the risk of 

developing type 2 diabetes. Along with the increasing waist size, there is an increase in the 

rate of metabolic complications and cardiovascular risks [28], and the waist circumference 

is a stronger predictor of those in comparison to BMI [33]. In people with BMI 25¬35 

kg/m
2
, measurements of waist circumference provide additional to BMI information about 

the health risks. 

Waist circumference to hip circumference ratio (WHR) can also be used for defining 

central, known as visceral adiposity and describe the overall body shape e.g. apple versus 

pear-like shape associated with peripheral obesity. Worldwide WHR  shows stronger 

association  with the risk of acute myocardial ischaemia than BMI as demonstrated in the 

INTERHEART study [34]. This was, however, a case-control study of subjects with acute 

myocardial infarction that assessed relationships between BMI, WHR and waist and hip 

circumferences to myocardial infarction. WHR is a slightly worse predictor than waist 

circumference alone in predicting the development of diabetes [10]. 

 

1.1.4.4. Skinfold thickness  

The Durnin-Womersley method is one of the many methods applied for the measurement 

of skin fold thickness. Those methods provide not only information about subcutaneous 

adiposity but also (less accurately) about the body fat percentage. The skinfolds are 

measured by calipers at the standardized points on the body. Depending on the method 

applied, three to seven measurements may be required. Although a larger number of 

measurements is associated with a higher degree of estimation error, it is the individual’s 

unique body fat distribution that influences the results the most. The Durnin-Womersley 

http://en.wikipedia.org/wiki/Subcutaneous
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method requires 4 measurements at biceps, triceps, sub-scapular and supra-iliac areas. 

Their logarithmic sum is used for the estimation of the total body fat. Consequently, the 

calculated fat percentage result carries the cumulative error from the application of two 

different statistical methods. Moreover, this is a technically difficult method and is 

sensitive to the type of calipers used leading to considerable variation between observers. 

The measurements cause particular difficulties in the severely obese with large skinfold 

thickness and in the elderly because of the wide intra-individual variation found in this 

group. In addition, there are several different methods applying various equations for the 

estimation of body density which lead to the differences in the estimation of the 

subcutaneous fat between 20 to 70%, depending on the equation used. Although skinfold 

methods are inexpensive, they are not considered to convey any real advantages over the 

other anthropometric methods such as BMI [35]. There is evidence that they do not 

correlate well with total body fatness [36]. The other disadvantage of these methods is that 

they do not estimate visceral adiposity. However, provided the skinfold measurements are 

carried out by the same person and using the same technique, the method can give a 

reliable measure of the change in body composition over a period of time. 

 

1.1.4.5 Dual Energy X-ray Absorptiometry  

Total and regional body fat can be estimated with total body dual energy X-ray 

absorptiometry (DEXA). This technique enables rapid and non-invasive estimation of the 

body fat percentage obtained with exposure to the radiation of much lower magnitude than 

that of a Chest X-ray (0.37μSv vs 50 μSv) [37]. DEXA implements a three-compartment 

model that quantifies
 
fat tissue, lean (fat-free, soft) mass and total body mineral (BM).This 

technique assumes that bone mineral content is directly proportional to the amount of 

photon energy absorbed by the bone being studied. It uses a whole body scanner with two 

different types of X-ray, one detecting bone mineral and another detecting soft tissue with 

the exception of fat. A computer program is used to estimate fat from the recorded readings 

and the grade of the exposure determines the fat mass. The comparison with a four 

compartment model for measuring total body fat showed that DEXA is an accurate method 

although may underestimate percentage body fat in leaner individuals [38]. DEXA is a 

very reliable technique, provides extremely repeatable results and presents little burden to 

the subject. Its disadvantage is the high cost of the equipment and problems with providing 

accurate measurements in the morbidly obese. 
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1.1.4.6 Total body water measurements 

Body composition can be estimated by total body water measurement. This method 

involves quantification of body water volumes by isotope dilution based on the assumption 

that the isotope has the same distribution volume and is exchanged in the same manner as 

water. Deuterium (in the form of D2O) has been the most commonly used non-radioactive 

isotope and established as a gold standard method. D2O dilution provides one of the best 

estimates of overall relative leanness, with fractional body water inversely correlated with 

the percentage of body fat. This method is very precise but expensive, laborious and 

restricted to specialized laboratories with access to D2O produced in nuclear power 

stations. 

 

1.1.4.7 Bioelectrical impedance 

Determination of the body impedance is another method that allows characterisation of the 

body composition and provides information about body fat percentage. It relies on the fact 

that various tissues have varying degrees of conductivity (the reciprocal of impedance), 

which is far greater in the fat-free mass than in the fat mass. Bioimpedance is based on a 

two-compartment model. It involves reading of the lean mass and application of scientific 

formulas to determine accurate body composition. Information obtained in this way 

includes the percent and amount of body fat as well as muscle and water mass. 

Bioimpedance is a precise technique that has been validated using various standard 

methods including densitometry [39]. However, the readings may be affected by the 

hydration status, fasting state, skin temperature, and other factors. Therefore, to obtain 

accurate results for repeatable measurements, it is crucial to maintain the same reading 

conditions for each assessment. 

 

1.1.4.8 Total body density measurements 

Another method for assessing body fat involves determination of total body density. 

Hydrodensitometry is one such method and measures body density by determining total 

body volume based on the Archimedes' Principle of displacement. Hydrodensitometry, 

also known as underwater weighing, requires weighing the subject prior to and after their 

complete immersion in water. The calculated body volume is used to determine whole 

body density using standard formulas. The values of whole body density are used to 

estimate the percentage of body fat using either Siri or Brozek equations [40]. Although 

this method is recognised as the gold standard method, it probably underestimates body fat 

in athletes and overestimates body fat in the elderly with osteoporosis. Hydrodensitometry 
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is a cumbersome and expensive technique. Nowadays it is of limited availability and used 

only in small studies for the validation of other techniques. 

Air displacement plethysmography is another method that determines body density and 

estimates body fat using similar standardised calculations in a similar manner to 

hydrodensitometry. Instead of water, it measures the amount of displaced air while a 

subject sits in air-tight capsule for 20 seconds. This technique is applied in commercially 

available BOD POD which is precise and well tolerated by subjects. Its availability in 

clinical practise is limited because of its high cost and strict requirements regarding 

temperature stability of the testing environment and subject’s body temperature, skin 

moisture and avoidance of exercise prior the testing. 

 

1.1.4.9 Computed Tomography and Magnetic Resonance Imaging    

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are modern and 

reliable techniques in measuring not only total but also regional body fat. They provide a 

ratio of intra-abdominal fat to extra-abdominal fat. 

Computed Tomography uses x-ray radiation to produce cross-sectional images that 

determine the body composition using complex algorithms. CT has demonstrated good 

spatial resolution in measuring regional adipose tissue distributions. Although non-invasive 

it is an expensive method, which together with the radiation exposure limits its widespread 

use [41]. 

MRI employs a magnetic field and uses its interactions with protons - hydrogen ions 

abundant in all tissues - to produce cross sectional images of the body [42]. The high-

quality images show the amount and distribution of fat in the body. MRI has been 

extensively validated and it is an accurate method to quantify total body adipose tissue, 

when compared with isotope (D2O) dilution and bioimpedance [41]. As a single slice 

technique it can determine the amount of abdominal fat in terms of both visceral and 

subcutaneous fat [43]. The disadvantage of this technique is the high cost of equipment and 

analysis, which limits its use to research in small studies.  

 

1.1.5 Distribution of Adipose Tissue 
 

There are two distinct patterns of body fat deposition depending on the anatomical 

location:  

 the upper /central body segment also known as apple-shape distribution  

 the lower body/ gluteo-femoral segment, often termed pear-shape distribution. 
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The apple-shape or central distribution is more prevalent, and increases in frequency with 

age, in men while the peripheral, gluteo-femoral adiposity is more common amongst 

women. The body fat phenotype, however, may change with age and the tendency towards 

central rather than peripheral fat distribution has been observed in post menopausal 

women.  

The peripheral fat distribution involves predominantly subcutaneous fat deposition in the 

buttocks, thighs and hips, although intramuscular adipocyte infiltration may also be 

present. In the case of central obesity patterns, adipose tissue can be deposited 

predominantly within the abdominal cavity and referred to as visceral adiposity, or it can 

be deposited subcutaneously. The visceral abdominal phenotype is characterized by excess 

fat around viscera such as gut and within internal organs such as the liver. The 

subcutaneous upper body adiposity is characterized by fat deposits in the subcutaneous 

tissue of the abdominal and chest wall.  

 

1.1.5.1 Factors affecting body fat distribution 

Development of obesity and the distribution of body fat are multifactorial and governed 

predominantly by genetic [44], environmental [45] and physiological factors.  

Fat distribution phenotypes vary between different populations and ethnic groups. Asians 

have higher body fat and different fat distribution compared to Caucasians [46]. These 

ethnic differences suggest that body fat distribution may be modulated by various 

environmental factors that affect the proportion of bone, muscle and fat and result in 

different behavioural patterns that contribute to weight gain and it may also be influenced 

by some genetic components shared amongst individuals of the same race. Loos et al. 

suggested the influence of major genes on regional fat distribution phenotypes [47]. To 

date (in the association studies) there have been 135 different candidate genes identified 

that are associated or linked with the obesity-related phenotypes [44]. While the majority 

of these are probably false positive associations, it is possible that at least 20 of the obesity 

candidate genes will contribute in varying degrees to the risk and type of obesity in human 

populations.  

Some  studies in humans demonstrated a strong genetic influence on the development of 

obesity in the individuals exposed to unhealthy diet or physical inactivity [48] which may 

suggest the interaction between genetic predisposition and an abnormal environmental 

factor required in some individuals to gain excess weight. Twin, familial and adoption 

studies confirmed consistently not only a genetic basis for obesity but also an 

environmental contribution (physical inactivity, excessive energy diets and alcohol, and 
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smoking) to its heritability [45, 47]. However, the mechanism behind their involvement in 

the formation of intra-abdominal fat is unclear.  

Several physiological factors have been identified contributing to the pathogenesis of 

obesity. The storage of fat can be stimulated by the changes in the adipose tissue 

metabolism. Altered brain signalling for the satiety and hunger control centres is another 

mechanism contributing to obesity [49] 

Sex-steroid hormones play a significant role in the defining of body shape, with their 

effects beginning at puberty and varying throughout life. Testosterone levels are 

responsible for the development of the android shape seen predominantly in men but on 

occasions also presenting itself in some females. In contrast, oestrogens promote fat 

storage in the buttocks, hips and thighs. Hence, fat levels are higher in women then in men. 

This is mainly for reproductive and childbearing reasons. Hormonal changes throughout 

life result in changes in body shape. A significant surge in oestrogens during pregnancy 

stimulates subcutaneous fat deposition whereas a decline in levels during menopause 

promotes abdominal fat deposition. Excessive amounts of cortisol, which can be stress-

induced or present in Cushing’s syndrome, lead to central adiposity [50, 51]. Some studies 

have confirmed a strong relationship between the disturbances in the hypothalamic- 

pituitary axis and visceral fat accumulation [51]. There are also many other hormones 

important for the development of obesity although their influence on the body fat 

distribution may not be as clearly defined.  For example, hypothyroidism, growth hormone 

insufficiency and the age-related decline of dehydroepiandrosterone (DHEA) levels are all 

recognised to increase body adiposity. Deficiency in hormones that suppress appetite such 

as cholecystokinine, ghrelin, PYY3-36 and adrenaline also results in obesity.  

 

1.1.5.2 Cardio-metabolic effects of different body fat phenotypes 

The recognition of different body fat deposition patterns such as visceral abdominal, 

subcutaneous abdominal and peripheral phenotypes is important because of their different 

metabolic effects and associated health risks. This is because adipose tissue is not only an 

energy storage for the times of starvation or reproduction but it is also a metabolically and 

hormonally active tissue. It has been established that central obesity is more strongly 

associated with metabolic and cardiovascular complications than total body fat [10, 52, 

53]. In many epidemiological studies, the increased risk of diabetes, hypertension and 

cardiovascular disease has been linked to visceral and subcutaneous upper body adiposity 

[54, 55] and not the subcutaneous fat of the lower body. Moreover, even in lean subjects, 

visceral fat accumulation remains an independent cardiovascular risk factor [56]. Over the 
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years many studies have indicated the strong association between visceral fat excess 

(estimated by a variety of different techniques) and cardiovascular disease such as carotid 

atherosclerosis or increased carotid intima-media thickness [57-59]. Furthermore, visceral 

adiposity has been associated with the acceleration of atherosclerosis in previously disease-

free men [60].  

Several studies have reported a strong relationship between insulin resistance and intra-

abdominal fat deposits. A prospective study by Pouliot et al. showed that the degree of 

visceral adiposity in men with stable total body fat or weight-predicted changes in insulin 

resistance indices over time [61]. Also in women, isolated central obesity has been 

associated with diminished insulin sensitivity and fasting hyperglycaemia [62]. However, 

the mechanisms linking visceral fat and insulin resistance are still not completely 

understood. The association of β3-adrenergic receptor gene polymorphism with the 

presence of increased visceral fat and insulin resistance supported  a lipotoxic theory which 

suggested the increased activity of β3-adrenergic receptor was responsible for visceral 

lipolysis and insulin resistance.  Another theory proposed that cytokines such as tumour 

necrosis factor-α (TNF-α) and interleukin-6 (IL-6), released from intra-abdominal fat, 

diminished adiponectin levels resulting in reduced insulin sensitivity [63]. The existing 

evidence suggests that growing fat mass becomes infiltrated by macrophages and T-

lymphocytes, which lead to the release of high levels of inflammatory mediators that alter 

lipolysis, increase levels of free fatty acids and impair insulin signalling. The research 

studies showed that the visceral fat does not exclusively produce most of cytokines and 

adipokines involved in the cardio-metabolic complication of central obesity. Currently, IL-

6 is the only documented cytokine to be produced in visceral fat in excess of 50% of its 

total concentration [64]. Most studies showed that adiponectin concentrations are low in 

central adiposity. In contrast, a study of obese women showed a positive correlation 

between adiponectin and peripheral fat [65]. In central obesity and type 2 diabetes there is 

reduced production of protective factors such as adiponectin and increased production of 

leptin, resistin, and cytokines such as IL-6, TNF-α, and monocyte chemoattractant protein-

1 (MCP-1) [66]. Visfatin, another adipocytokine whose role in obesity and insulin 

resistance is under scrutiny is predominantly produced in visceral fat [67]. 

There have been several studies pointing out the association between elevated CRP and 

obesity as measured by waist circumference [68]. A cross-sectional study of men by 

Despres et al. revealed an association between visceral fat and high levels of CRP, which 

was independent of total body fat [63]. Furthermore, Forouhi et al. demonstrated a strong 
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correlation between visceral adiposity as measured by CT scanning and waist 

circumference and CRP across two different ethnic groups [69].  

A limited number of studies have addressed the role of peripheral adiposity and showed its 

negative correlation with glucose and atherogenic lipid profile, and that it is an 

independent predictor of lower cardiovascular and diabetes-related mortality [62, 70]. In 

addition, some studies demonstrated that subcutaneous adipocytes were smaller in size and 

less sensitive to lipolytic stimulation by catecholamines due to the increased number of β-

adrenergic receptors and decreased affinity for α2 -adrenergic receptors in the lower body 

[71, 72] which made them  more insulin sensitive. These findings may only in part explain 

the regional differences in fat metabolic activity. Another possible explanation for this 

phenomenon may lie in the fact that visceral fat has much greater expression of the genes 

involved in glucose homeostasis, insulin action and lipid metabolism than the 

subcutaneous fat. 

 

1.1.6 Dyslipidaemia 
 

Dyslipidaemia is a disorder of lipoprotein metabolism including their overproduction or 

deficiency. The typical pattern of dyslipidaemia in central obesity is that of increased small 

and dense Low Density Lipoprotein (LDL), triglycerides and apo-B, but decreased levels 

of High Density Lipoprotein (HDL) [73]. Dyslipidaemia of central obesity undoubtedly 

plays an important role in development of cardiovascular morbidity and mortality. Each 

individual component of this dyslipidaemia (except for apoB whose role is not clear 

although it is a primary apolipoprotein of LDL-cholesterol) has marked atherogenic 

properties and the pattern of dyslipidaemia is not affected by the gender or ethnicity. The 

National Health and Nutrition Examination Survey (NHANES) showed that the greater 

degree of fatness, the more likely is the presence of dyslipidaemia and the greater its 

severity. The greater the increase in the visceral fat the higher the concentration of 

triglycerides and the lower the concentration of HDL [62]. A study by Kissebach et al. 

showed that upper body obesity (apple shape) in women was associated with larger fat 

cells and higher triglyceride concentrations in comparison with lower body obesity (pear 

shape) and non-obese individuals [71]. The NHANES demonstrated that the level of 

dyslipidaemia may be modified by age and gender. The central role in the pathogenesis of 

dyslipidaemia in obesity appears to be played by insulin resistance, strongly associated 

with visceral adiposity. This has been supported by many population-based studies, which 

showed association between central obesity, insulin resistance and dyslipidaemia. Studies 
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such as Framingham, CARDIA and many others confirmed that insulin resistance in the 

centrally obese is positively associated with triglycerides and negatively with HDL 

cholesterol concentrations [74, 75].  

The triglycerides levels in the obese are elevated in both fasting and the postprandial state. 

It appears that fasting hypertriglyceridaemia is due predominantly to a primary defect in 

the hepatic very low density lipoprotein VLDL production. The mechanisms behind 

postprandial lipaemia are not yet fully understood, but may be related to diminished levels 

of (insulin-sensitive) lipoprotein lipase and impaired clearance of  VLDL produced 

postprandially in the liver [76, 77]. The modifications in VLDL metabolism lead to the 

change in the composition of LDL particles, which become enriched in triglycerides and 

when hydrolysed by lipoprotein lipase, they form small, dense, very atherogenic LDL 

particles. Similarly, low concentrations of HDL are the result of the abnormal triglyceride 

metabolism. It is likely that decreased HDL levels are due not only to decreased transfer of 

apolipoproteins and phospholipids from triglyceride rich lipoproteins to HDL, but also 

increased exchange of cholesterol esters between those particles, increased HDL clearance 

and decreased Apo A-I production. 

 

1.1.7 Insulin resistance 
 

The association between obesity and the risk of developing insulin resistance resulting in 

glucose intolerance and diabetes has been well documented. Several studies have shown 

that with increasing BMI there is also a steep linear increase in the incidence of type 2 

diabetes, and that the prevalence of diabetes is much higher in the obese then in normal 

weight population [18, 78]. Moreover, the risk of insulin resistance progresses as the BMI 

absolute values increase even within the range defined as normal [79]. Certain ethnic 

groups such as South Asian Indians or Pima Native Americans are particularly prone to 

obesity and insulin resistance which may be present even from birth [80]. 

From various experimental and clinical studies it has become evident that a causal link 

exists between the insulin resistance and excessive body weight: obesity can contribute to 

the development of insulin resistance that leads to hyperinsulinaemia, which in turn may 

contribute to further weight gain and greater escalation of insulin resistance. It is, however, 

unclear whether insulin hypersecretion or resistance is the primary impulse for the 

development of obesity. It is thought that the adipose tissue contribution to the 

pathogenesis of insulin resistance is through the release of high amounts of non-esterified 

fatty acids, glycerol, cytokines, hormones and many other factors which induce and 

promote insulin resistance in the liver and muscle.  
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1.1.8 Hypertension 
 

Obesity, in particular abdominal obesity, has been consistently linked to hypertension and 

increased cardiovascular risk in many epidemiological studies. Its prevalence increases 

with the increasing degree of fatness regardless of gender [78], being lower in the 

overweight compared to the obese. Analysis of the cohort from the Framingham study 

showed that being overweight or gaining weight increased future risk of developing 

hypertension [81]. Also, a positive correlation between weight and systolic blood pressure 

has been reported in the normotensive individuals [82]. The mechanisms behind obesity-

related hypertension are very complex and are still being investigated. It has been 

suggested that obesity may lead to hypertension by 

(a) activating the sympathetic nervous system through hyperleptinaemia-mediated 

stimulation of hypothalamic pathways 

(b) activation of renin-angiotensin-aldosterone system (RAAS) resulting in volume 

expansion [83] 

(c) other mechanisms, associated with longstanding obesity which include worsening renal 

function, increased procoagulatory activity and microvascular dysfunction as indicated in 

the recent studies [84, 85]. 
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1.2 Insulin sensitivity and resistance 
 

1.2.1 The mechanism of action of insulin: signalling pathways for insulin 
 

Insulin is a polypeptide hormone, which consists of an alpha and beta chain of amino acids 

joined together by two disulphide bonds. It is a product of the proteolytic cleavage of 

proinsulin to biologically inactive connecting peptide (C-peptide) and insulin. Insulin is 

released from pancreatic β cells, in response to glucose levels, by exocytosis into the portal 

venous system and nearly 50% of insulin is taken up directly by liver, with the remainder 

being distributed throughout the body. Insulin is an anabolic hormone essential for glucose, 

lipid and protein metabolism. Its main sites of actions include skeletal muscle – where 

about 80% of glucose is metabolised, liver and adipose tissue. Insulin exerts its actions 

through widely distributed insulin-specific insulin receptors and a system of intracellular 

messengers and signalling pathways (Figure 1.1). 

 The insulin receptor (IR) is a member of the tyrosine kinase superfamily of 

transmembrane signalling proteins. It is composed of two alpha subunits, which are 

entirely extracellular and have ligand binding domains, and two beta subunits that 

penetrate the plasma membrane and with their intracellular portion containing the tyrosine 

kinase activity [86]. The binding of insulin to the alpha subunits results in receptor 

activation characterized by autophosphorylation of the intracellular subunit, which in 

turn phosphorylates a number of intracellular proteins altering their activity and thereby 

triggering signalling cascades. The intracellular proteins belong to the insulin receptor 

substrate (IRS) family and include IRS1- 4, Gab-1, Shc, p62
dok

,
 
Cbl and APS. A single 

activated IR can activate multiple IRS proteins. These proteins can also be activated by a 

variety of the other proteins such as insulin-like growth factor 1 (IGF-1), interleukin-4 (IL-

4) and vascular endothelial growth factor (VEGF) [87]. Once IRS proteins are tyrosine 

phosphorylated they become docking centres for the recruitment and activation of other 

signalling proteins. The activation of IRS proteins stimulates activity of the downstream 

signaling molecules, of which one of the most important is phosphatidylinositol 3-kinase 

(PI3K). PI3K mediates the recruitment of PI3-dependent serine/threonine kinase (PDK1) 

and protein kinase B (PKB, also known as Akt) from the cytoplasm to the plasma 

membrane, where PDK1 activates PKB/Akt, which regulates several downstream proteins 

including components of the glucose transporter 4 (GLUT4) complex, protein kinase C 

(PKC) isoforms, and glycogen synthase kinase-3 (GSK3), all of which are critical for the 

insulin-mediated metabolic effects [87, 88].  
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Figure 1.1 Schematic insulin signalling pathways 

The binding of insulin to its receptor initiates phosphorylation of insulin receptor substrate 

which stimulates downstream enzymes crucial for the activation of several proteins 

indispensible for insulin-mediated metabolic effects. 

IR - Insulin Receptor, IRS - Insulin Receptor Substrate, PI3K - Phosphatidylinositol 3-

kinase, PDK -  PI3-dependent serine/threonine kinase, PKB/Akt - Protein kinase B         

GLUT4 - Glucose Transporter 4, PDE – Phosphodiesterase, GSK – Glycogen Synthase 

Kinase 3, NO - Nitric Oxide, FA – Fatty Acids, SREBP-1 - Sterol regulatory element 

binding protein, PPAR-γ - Peroxisome proliferator-activated receptor 
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1.2.2 Physiological role of insulin 
 

Insulin has several important functions at the whole body and cellular levels. The principle 

role of insulin is the stimulation of glucose and fat metabolism and storage through the 

promotion of cellular glucose and fatty acid uptake, and the suppression of the hepatic 

glucose output. Thus insulin participates in stimulation of glycogenesis, lipogenesis and 

glycolysis, and inhibition of hepatic gluconeogenesis and glycogenolysis. It also 

diminishes lipolysis and mediates vasodilatation through the stimulation of nitric oxide 

synthase. Additionally, insulin promotes intracellular transport of amino acids and protein 

synthesis. It modulates mRNA transcription and stimulates growth, DNA synthesis and 

cell replication.  

 

1.2.2.1 Regulation of glucose metabolism 

The insulin-stimulated increase in the cellular glucose uptake is mediated by plasma 

membrane glucose transporter type 4 (GLUT4). GLUT4 is regulated by insulin and is 

found in the insulin-responsive tissues such as skeletal muscle, heart and adipose tissue. 

Released from the pancreatic cells insulin stimulates, through the activation of IR, IRS, 

PI3K and PKB/Akt signaling cascade, GLUT4 translocation to the plasma membrane to 

facilitate glucose uptake.  

The activation of insulin-dependant phosphodiesterase (PDE) that induces several key 

glycolytic enzymes such as glucokinase, phosphofructokinase-1 (PFK-1), and pyruvate 

kinase (PK) results in increased liver glucose uptake. Inhibition of protein kinase A (PKA) 

by insulin leads to a greater activity of glycogen synthase. Thus the net effect is the 

increased glycolysis and glycogenesis, which in turn increases glucose content in the 

hepatocytes and lowers blood glucose. 

In addition, it has also been documented that the activation of PKB/Akt in liver and muscle 

leads to the phosphorylation and inhibition of GSK3. This process promotes glycogen 

synthase activity, which together with the increased cellular glucose uptake augments 

glycogen synthesis [88].    

 

1.2.2.2 Regulation of lipid metabolism 

Insulin, through the activation of PI3K, stimulates activity of insulin-dependent 

Phosphodiesterase (PDE) which inhibits hormone sensitive lipase (HSL) crucial for 

lipolysis and release of fatty acids and glycerol into blood. Insulin induces the activity of  

lipoprotein lipase (LPL) and fatty acid synthetase (FAS) in adipocytes and myocytes, and 

these are important for lipogenesis.  
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Insulin enhances the expression and maturation of the transcription factor sterol regulatory 

element-binding protein-1 (SREBP-1), an important player in FFA metabolism, present in 

all metabolically active tissues [89], and which regulates adipogenesis and is a mediator of 

insulin action through the induction of peroxisome proliferator-activated receptor gamma 

(PPAR ) activity. 

1.2.3 Insulin resistance definition, aetiology and molecular mechanisms 

1.2.3.1. Definition 

Insulin resistance is a state in which tissues exhibit inadequate or reduced response to 

normal amounts of insulin. This may be due to inability of insulin to bind to its receptors or 

due to abnormalities in the insulin receptors which result in inadequate insulin signaling 

down the signaling pathway and the imbalance in metabolic homoeostasis. This initiates a 

compensatory augmentation in insulin synthesis, which subsequently results in 

hyperinsulinaemia disproportionate to the level of glycaemia [90]. Commonly the end 

result of this metabolic disharmony is development of variable degrees of dysglycaemia or 

type 2 diabetes. Since 1988, when Gerald Reaven proposed the hypothesis of insulin 

resistance syndrome as a link between type 2 diabetes,  hypertension and cardiovascular 

disease, insulin resistance has also been associated with obesity, microvascular dysfunction 

and inflammation. There have been several various hypotheses regarding the etiology and 

pathogenesis of insulin resistance and its interactions with other metabolic disease states 

but the precise mechanisms underlying the development of insulin resistance are still being 

investigated. 

 

1.2.3.2. Etiology 

In 1962, James Neel proposed the “thrifty genotype” hypothesis as an explanation of the 

rapidly expanding epidemic of insulin resistance and obesity. This hypothesis suggested 

existence of genes predisposing to thrifty metabolism, which conferred survival advantage 

to hunter-gatherer societies by allowing increased fat storage in times of plenty for the 

subsequent utilization in times of famine. However, in the modern times of excess of food 

and physical inactivity, the thrifty genes became detrimental to the development of obesity, 

overproduction of insulin and glucose intolerance [91]. The “thrifty genotype” hypothesis 

was decades later challenged by based on the evidence from epidemiological studies 

“thrifty phenotype” hypothesis. This hypothesis proposed that the environmental factors 

during the pre-natal development produced
 
permanent changes in glucose-insulin 

metabolism, which resulted in the future development of insulin resistance [92]. The 

“thrifty epigenome” hypothesis combined elements of both thrifty genotype and thrifty 
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phenotype hypotheses. It suggested that a default “thrifty genome“, a primarily result of 

the complex gene–environment interactions lead to the development of insulin resistance, 

diabetes and obesity [93]. The most recently proposed “drifty gene” hypothesis, by John 

Speakman, referred more to obesity rather than insulin resistance per se, and suggested that 

a drift in the genes encoding the regulation system responsible for the control the upper 

limit of body fatness was the underlying explanation for the modern epidemic of obesity  

phenotype and its related metabolic complications [94]. The above hypotheses are not 

mutually exclusive but represent the complexity of the interactions between multiple 

environmental and genetic factors that have been influencing development of insulin 

resistance and obesity. 

 

1.2.3.3 Pathogenesis and molecular mechanisms 

The pathogenesis, molecular and cellular mechanisms behind insulin resistance are 

multifactorial and have been under constant debate over the several decades. It has been 

well established that free fatty acids (FFA) are important players in the pathogenesis of 

insulin resistance. Randle et al. were first to suggested that FFA competed with glucose for 

mitochondrial substrate oxidation, thus a surplus of FFA present in obesity due to 

increased  lipolysis in adipose tissue resulted in the increased FFA oxidation and decreased 

glucose utilisation and was responsible for insulin resistance in obesity [95]. The essential 

component of this hypothesis was that Fatty Acid – Coenzyme A oxidation would increase 

the ratios of acetyl CoA to CoA and NADH to NAD
+ 

which inhibit the pyruvate 

dehydrogenase (PDH) complex, and increase citrate which inhibit phosphofruktokinase 

(PFK) . In turn these changes would diminish oxidation of glucose and pyruvate and 

increase glucose-6-phosphate (G6P) which would stimulate glycogen storage, inhibit 

hexokinase (HK) and decrease glucose transport. Findings from a recent study suggested 

that increased FFA concentrations first inhibit glucose transport and than reduce glycogen 

synthesis and glucose oxidation in muscle [96]. The intramuscular accumulation of FFA 

and their metabolites may affect directly GLUT4 activity or indirectly, through alterations 

in the upstream insulin signalling pathways, it may reduce GLUT4 translocation, thus 

resulting in diminished intracellular glucose transport [97]. 

It has been documented that increased intracellular fatty acid metabolites stimulate a 

serine/threonine kinase cascade in the muscle and subsequent phosphorylation of sites on 

IRS-1 [98], thus impairing activity of PI3K, and subsequently adversely affecting insulin 

signal transduction pathways. Similarly, excess of FFA metabolites in the liver activates 

PKC, leading to diminished phosphorylation of IRS-2 [97, 99]. 
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The evidence from recent studies suggests that the excess of visceral adipocytes, which are 

less effective in lipid storage then peripheral fat may promote redistribution of fat to 

intracellular sites in liver and muscle, resulting in the insulin resistance in these tissues.  

Moreover, studies in transgenic mouse models and humans with severe lipodystrophy 

suggest that defects in adipocyte fatty acid metabolism may contribute to increased fat 

delivery to liver and muscle [100]. In addition, reports from studies in the elderly and  

subjects with diabetes support the notion that the acquired or inherited defects in 

mitochondrial fatty acid oxidation may also contribute to the pathogenesis of insulin 

insensitivity [101-103]. Therefore an excess of energy intake over energy expenditure may 

lead to accumulation of intracellular fatty acids metabolites and induce insulin resistance in 

muscle and liver through the alterations of adipocyte fatty acid metabolism, or decreased 

mitochondrial fatty acid oxidation [98]. In addition, as described in the recent human 

studies, defects at various levels in the insulin signalling pathway may also contribute to 

the insulin resistance.  

 

1.2.4 Assessment of insulin sensitivity/resistance 

There is a wide choice of different methods available for the assessment of insulin 

secretion and sensitivity or resistance. This includes simple baseline tests, specialist 

techniques performed in the clinical or research setting as well as computed indices based 

on mathematical equations and modeling. Their application depends on the nature of the 

studies and often the size of studied population and local expertise and availability. All 

these methods rely on glucose and insulin measurements and therefore may be influenced 

by factors affecting those measurements such as oscillatory insulin secretion in fasting and 

postprandial states, and insulin liver clearance, which can change in both physiological and 

pathological conditions. Most of the techniques have been validated against the best 

available standard such as euglycaemic clamp and have been able to reproduce clamp-

derived information on insulin resistance in disease states. Methods for the assessment of 

insulin sensitivity or resistance may be broadly grouped into simple and complex 

techniques, the latter consisting of simple surrogate insulin sensitivity (IS) markers, 

surrogate models of IS derived from dynamic tests and indirect and direct measures of 

tissues sensitivity to insulin.  
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1.2.4.1 Simple fasting surrogate measures of insulin sensitivity/resistance 

1.2.4.1.1 Fasting glucose and insulin 

Glucose homeostasis is tightly regulated by feedback mechanisms predominantly linked to 

insulin secretion and its action. It is well recognized that the higher the fasting 

hyperglycemia and compensatory hyperinsulinaemia the worse the degree of insulin 

resistance. Both fasting glucose and insulin concentrations as well as their ratios have been 

widely used in large population studies as surrogate markers of insulin resistance because 

of the simplicity in their measurements and availability. Although they all correlate with 

the clamp-derived insulin sensitivity measurements (ISI clamp), the correlation is not a 

strong and is particularly weak in relation to impaired glucose tolerance [104, 105]. 

Moreover, because of the lack of a standardized insulin assay, it is difficult to define 

universal cut-off points for insulin resistance with these simple surrogate indices. 

 

1.2.4.1.2 HOMA-IR and QUICKI 

It is well recognized that fasting insulin concentration provides more accurate information 

about insulin sensitivity if it is interpreted in the context of the concurrent glucose 

concentration. This knowledge led to the development of mathematical models of glucose-

insulin interactions derived from the responses to intravenous glucose tolerance test, 

hyperglycaemic and euglycaemic clamps. These models were then employed to formulate 

the equations for the insulin resistance and sensitivity estimation such as Homeostasis 

Model Assessment (HOMA) and Quantitative Insulin sensitivity Check Index (QUICKI), 

respectively. Both methods are simple surrogate indices of insulin sensitivity and secretion 

based on paired fasting glucose (G0, mmol/L) and insulin (I0, mIU/L) concentrations 

determined in steady-state, basal conditions.  

HOMA is a computer-generated model that consists of several non-linear empirical 

equations and accounts for glucose distribution, production and utilization. It is used to 

estimate pancreatic β-cell function (HOMA-B) and insulin sensitivity expressed as a 

relative insulin resistance (HOMA-IR) [106]. To account for pulsatile insulin secretion 

some researchers recommend using a mean of three measurements spaced five minutes 

apart in the calculation, but many epidemiological studies, for simplicity, implement only a 

single measurement. The mathematical approximation of both models is represented in the 

following equations: 

   HOMA-B = (I0 x 20) / (G0-3.5) 

     

HOMA-IR = (I0 x G0) / 22.5 

where 3.5 and 22.5 are the normalising factors. 
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HOMA-IR of 1 indicates typically normal insulin sensitivity in an individual. It has been 

established that a HOMA-IR greater than 2.5 indicates insulin resistance [107, 108]. The 

CV for HOMA-IR varies depending on the number of fasting samples and type of insulin 

assay employed [106, 109, 110]. Some studies reported that the index is less accurate in the 

presence of marked hyperglycemia or poor β-cell function [105]. Both HOMA models 

have been shown to be strong predictors of the development of diabetes [111, 112]. Log 

transformed HOMA-IR appears to be especially useful in people with variable degrees of 

glucose intolerance, possibly because it transforms skewed fasting insulin distribution. 

QUICKI is another empirically derived mathematical transformation of fasting insulin and 

glucose. It is believed to be a better approximation of insulin sensitivity than HOMA 

because of the log transformation employed in the equation that accounts for the skewed 

distribution of insulin values [113] and improves the linear correlation with clamp-based 

insulin sensitivity index (ISI clamp). QUICKI is derived by calculating the inverse of 

logarithmically expressed values of fasting glucose (G0, mmol/L) and insulin (I0, mIU/L): 

QUICKI =  1 / (log I0  +  log G0) 

QUICKI provides a reproducible and accurate index of insulin sensitivity with good 

positive predictive power [114, 115] and it performs best in insulin resistant subjects. With 

regard to the coefficient of variant (CV) it exceeds that of other simple fasting surrogate 

markers including HOMA-IR [116] because the employed mathematical transformation of 

reverse of log transformation accounts for the variability in single fasting insulin and 

glucose measurements. 

Both models have been widely employed in clinical research, since they are easy to use in 

the epidemiological and population-based studies in place of sophisticated but complex 

alternative methods. QUICKI appears to have better reproducibility in comparison to 

HOMA [117]. Although both methods are reported to correlate relatively well with ISI 

clamp, QUICKI has better linear correlation over a wide range of insulin 

sensitivity/resistance [113]. This is not only because HOMA is a measure of insulin 

resistance rather than sensitivity [107, 108, 113] but also because of the log transformation 

of both fasting markers in the calculations.  

 

1.2.4.2 Surrogate models derived from dynamic tests 

Oral Glucose Tolerance Test (OGTT) is the most commonly used test for the evaluation of 

whole-body glucose tolerance in vivo. OGTT is the mainstay test for the clinical diagnosis 

of abnormal glucose metabolism such as impaired fasting glycaemia (IFG), glucose 

intolerance (IGT) and diabetes mellitus (DM). The WHO diagnostic criteria for glucose 
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intolerance published in 1998, and reviewed in 2006, (Table 1.3) distinguish the diabetic 

group as being at significantly increased risk of premature mortality, micro- and 

macrovascular complications [118]. OGTT is performed after an overnight fast and 

involves blood sampling at 0 and 120 minutes for clinical purposes or at 0, 30, 60 and 120 

minutes for research studies following the standard 75g glucose loads. It reflects the body 

efficiency at disposing of glucose after a glucose dose or a less commonly used standard 

meal. Glucose metabolism is influenced not only by glucose absorption but also by 

complex interactions between insulin secretion and its metabolic actions, and 

neurohormonal and incretin actions, all of which are primary determinants of glucose 

homeostasis. Thus OGTT or a test meal provides information about glucose tolerance but 

not about insulin sensitivity/resistance per se. Moreover, the complexity of glucose 

homeostasis regulatory mechanisms affects its reproducibility. However, the OGTT 

mimics the physiological conditions of glucose and insulin dynamics more closely than the 

experimental test for insulin sensitivity estimation such as the glucose clamp, insulin 

suppression test (IST) or minimal model. The information about insulin secretion and 

sensitivity can be derived from OGTT / meal test if appropriate mathematical models are 

applied. 
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Table 1.3 WHO criteria for diagnosis of glucose intolerance 

 
  

Fasting 
  

120 minutes 

 
Normal 
 

 
<6.1 mmol/L 

 
and 

 
< 7.8 mmol/L 

 
Impaired fasting glycaemia  
 

 
≥ 6.1 mmol/L 

and <7.0 mmol/L 

 
and 

 
< 7.8 mmol/L 

 
Impaired glucose tolerance  
 

 
<7.0 mmol/L 

 
and 

 
≥ 7.8 mmol/L 

and < 11.1 mmol/L 
 

 
Diabetes Mellitus  
 

 
≥ 7.0 mmol/L 

 

 
and / or 

 
≥ 11.01mmol/L 
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These surrogate insulin sensitivity indices (ISI) take into an account fasting steady-state 

and dynamic post-glucose load plasma glucose and insulin levels. Insulin secretion may be 

estimated from the area under the curve (AUC) of insulin or C-peptide concentration but 

this does not show a completely linear correlation with total insulin secretion over a period 

of time [119]. The other, generally better methods include the ratio of the AUC of insulin 

and glucose (good for assessing β function in diabetics),  insulinogenic index (I30 – 

I0)/(G30-G0) calculated using fasting and 30 minutes insulin and glucose results or 

corrected insulin response index, CIR30 = I30/( G30 x (G30 -70)). All of these simple indices 

show significant but modest correlation with the clamp-derived insulin sensitivity and 

acute response to intravenous insulin administration [120]. 

Several other surrogate ISI derived from OGTT (ISI OGGT) employ far more complex 

mathematical equations. All these methods employ a particular sampling protocol during 

the glucose or meal tolerance test. In addition, the minimal model approaches have also 

been applied to assess plasma glucose and insulin dynamics during the glucose load [121]. 

The surrogate ISI OGGT has been shown to correlate with ISIclamp, but only moderately. This 

may be because the clamp technique is designed to measure peripheral glucose utilization 

whereas responses to OGTT represent peripheral utilization and hepatic glucose 

production. In contrast to several ISI models, Soonthornpun’s index has much stronger 

correlation with ISIclamp (r = 0.869, p<0.0001) as assessed in non-diabetic subjects [105]. 

This was possibly due to the fact that Soonthornpun and colleagues utilized the area above 

the glucose curve which represents peripheral glucose disposal instead of the area under 

the curve which represents hepatic glucogenesis and unused glucose. In addition, the 

adipose tissue insulin sensitivity can be estimated by incorporating plasma non-esterified 

fatty acids (NEFA) suppression measured during OGTT [122].   

Some surrogate ISI derived from dynamic tests use statistical models employing stepwise 

linear regression analysis, which allow estimation of both insulin secretion and sensitivity 

at the same time. These equations may be used in normal and diabetic individuals, and they 

correlate reasonably well with clamp-measured insulin sensitivity indices [123, 124]. 

Several epidemiological studies have reported that the surrogate estimates of insulin 

sensitivity derived from dynamic tests can predict the development of type 2 diabetes [120, 

125].  

 

1.2.4.3 Indirect measures of insulin sensitivity/resistance 

The minimal model analysis provides an indirect measure of insulin sensitivity/resistance 

based on glucose and insulin results obtained during a frequently sampled intravenous 
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glucose tolerance test (FSIVGTT) and incorporated in a simplified mathematical 

representation of their relationships. This model was developed by Bergman et al. in 1979 

[126] and involves an intravenous infusion of a bolus of a glucose after an overnight fast. 

Blood is sampled for glucose and insulin measurements every 1-2 minutes for the first 30 

minutes, then every 10 minutes for 90 minutes and then at 160 and 180 minutes. In insulin 

deficient subjects a modified FSIVGTT is currently applied with an additional intravenous 

insulin or Tolbutamide bolus given 20 minutes after the glucose bolus to stimulate 

endogenous insulin secretion [105]. The results are then subjected to minimal model 

analysis using the computer program MINMOD which generates an index of insulin 

sensitivity (SI). The described minimal model consists of two differential equations, one 

that represents glucose kinetics with a single-compartment model for glucose distribution, 

and the other which represents the insulin effect within the compartment, which is different 

from plasma. Thus SI expresses the relationship between insulin levels in the effect 

compartment and glucose disappearance from the glucose compartment [104]. 

Additionally, a “glucose effectiveness” index (SG) can be estimated from the minimal 

model which describes the ability of glucose per se to promote its own disposal and inhibit 

hepatic production at baseline conditions. The minimal model correlates reasonably well 

with clamp studies in healthy subjects, but this correlation weakens in severe resistance 

states due to the negative results that the minimal model may yield in those states [105]. 

Although it is a laborious method it is technically easier to perform than glucose clamp and 

provides information about insulin sensitivity derived from a single dynamic test. 

 

1.2.4.4 Direct measures of insulin sensitivity/resistance 

1.2.4.4.1 Hyperinsulinaemic euglycaemic clamp 

The hyperinsulinaemic euglycaemic clamp originally devised by Andres et al. was further 

developed by DeFronzo et al. and is recognised worldwide as a gold standard technique for 

the direct estimation of insulin sensitivity [127]. This technique involves simultaneous 

intravenous infusion of insulin, first as a priming bolus followed by a constant rate infusion 

to achieve a pre-set hyperinsulinaemic plateau, and a 20% dextrose set at a variable rate to 

maintain normal fasting glucose levels (euglycaemia, 5.0mmol/L). Blood for is sampled 

every 5-10 minutes for glucose measurements to aid glucose rate adjustments and 

maintenance of euglycaemia. Blood samples for insulin measurements are usually obtained 

every 30 minutes until the steady-state is reached and then every 10 minutes for the last 30 

minutes of the steady state. The steady state is usually achieved after about 2 hours of 

continuous glucose and insulin infusions. 
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It is assumed that during the clamp the exogenous hyperinsulinaemia completely inhibits 

hepatic glucose production, but stimulates skeletal muscle and adipose tissue glucose 

disposal. Thus, the glucose infusion rate in the steady-state reflects whole body glucose 

disposal (M-value) and overall insulin sensitivity. 

The application of an uncorrected M-value may lead to the overestimation of insulin 

sensitivity in some groups i.e. men when compared with women [128]. Typically, to 

estimate insulin sensitivity index, the M-value is normalized to body weight or fat-free 

mass, although the former may result in exaggerated estimates of insulin resistance in 

obese individuals [128]. Given that glucose uptake can occur only in lean tissues, the M-

value may be best optimised for the fat free mass. Also steady-state whole body glucose 

disposal rate may be corrected for the rate of the resting energy expenditure (REE), 

because it is a quantitative measure of all metabolically active tissues, providing REE 

measurement preceded the clamp procedure within the same session[129]. Regardless of 

the employed M-value expression, it may further be corrected for hyperinsulinaemia under 

steady-state conditions (M/I) to account for the small differences in the clamp insulin 

concentrations.  

Alternatively, the clamp data may be used to derive an insulin sensitivity index such as 

SIclamp = M/(G x I), where M-value is normalised for the steady-state glucose 

concentration (G) and the difference in insulin concentration between fasting and steady-

state ( I)[113].  

The hyperinsulinaemic glucose clamp is a very demanding and laborious technique, 

and not without risk. It is expensive and requires a high level expertise to perform. The 

clamp procedure requires maintaining the patency of two intravenous catheters, one of 

which usually provides an arterial or arterialised blood. The latter is accomplished by 

retrograde cannulation at the wrist or hand while heating the hand at about 50 
o
C. Arterial 

or arterialised blood is preferred for glucose measurement because of the arterio-venous 

differences in blood glucose concentrations, which increase with insulin sensitivity and 

insulin dose, and which may lead to possible overestimation of insulin sensitivity if the 

venous blood is sampled. The insulin dosage requires standardisation (either per body 

surface area or body mass) to allow for results comparison. It needs to be established at an 

appropriate level to account for the differences in insulin sensitivity between various 

examined populations. The fine infusion rate adjustments rely on the well calibrated 

infusion pumps and bed-side glucose analysers. Also, defining the glucose level for 

clamping at either the fasting or pre-determined levels requires consideration depending on 

the type of studied population. 
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However, the clamp can be combined with a number of other procedures to enhance 

the information obtained on whole body glucose disposal at a given level of insulinaemia 

under steady-state conditions. Thus, the application of radiolabelled glucose tracers under 

the clamp conditions allows simultaneous quantification of hepatic glucose production and 

whole body glucose disposal [104]. Similarly, use of radiolabelled glycerol or amino acids 

tracers during the glucose clamp facilitates assessment of  insulin sensitivity with respect 

to lipolysis or protein metabolism [104]. The adipose tissue insulin sensitivity may be also 

estimated with the application of a stepped clamp that consists of low dose insulin 

infusion, which is exclusively directed at adipose tissue, followed by the high dose insulin 

infusion. 

It has been reported that the glucose clamp has an excellent CV of 0.1% which may be an 

under-estimate considering the complexity of this procedure and great variability in 

measured insulin and glucose depending on variety of factors (i.e. subjects preparation), 

and good reproducibility  

[130]. Its use is, however, limited to smaller studies with insulin sensitivity as a primary 

outcome. 

 

1.2.4.4.2 Insulin suppression test 

Insulin suppression test (IST) is another technique that directly measures insulin sensitivity 

and was developed in 1970 by Shen et al. and later modified by Harano et al. [104]. 

During this test endogenous glucose release is inhibited by the combined action of 

hyperinsulinaemia, hyperglycaemia and hypoglucagonaemia, and the steady-state plasma 

glucose represents peripheral insulin sensitivity. IST involves, after an overnight fast, 

intravenous infusion of somatostatin or its analogue to suppress endogenous insulin and 

glucagon secretion, and simultaneous constant infusion of insulin and glucose. Blood for 

glucose and insulin measurements is sampled every 30 minutes for 2.5 hours and every 10 

minutes during a steady-state reached at 150-180 minutes after the initiation of IST. 

In the steady state, plasma insulin concentrations are generally similar among subjects but 

plasma glucose concentrations vary depending on insulin sensitivity (higher in insulin 

resistant). Thus, the test provides a direct measure of the ability of exogenous insulin to 

mediate the disposal of an exogenous glucose load under steady-state conditions where  

endogenous insulin secretion is suppressed. The estimates of insulin sensitivity derived 

from IST express good and strong correlation with clamp indices in both normal subjects 

(r=0.93) and people with type 2 diabetes (r=0.91) [120, 131].  
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1.3 Microvascular circulation 
 

1.3.1 Definition and functions 
 

Microvascular circulation is a term applied to describe small vessels of a diameter less then 

150 μm such as arterioles, venules, capillaries, terminal lymphatic capillaries and 

collecting ducts as well as all arterial vessels that are able to contract their lumens in 

response to increasing internal pressure [132]. Microvasculature vessels are responsible for 

the distribution of micronutrients, hormones, inflammatory mediators and other stimuli as 

well as collecting products of tissues metabolism. Arterioles are a major site of systemic 

vascular resistance due to their high level of responsiveness to sympathetic 

vasoconstriction. They regulate organ blood flow and in part capillary hydrostatic pressure. 

Capillaries are characterised by a variable degrees of permeability depending on the site of 

location and organ. They are the primary site of fluid, electrolyte, gas, and macromolecule 

exchange. Venules play an important role in fluid and electrolyte exchange as well as 

regulating capillary hydrostatic pressure through their sympathetic innervation. The 

primary function of the microcirculation is to ensure optimal delivery of nutrients and 

oxygen to the tissues in response to variable demand, and removal of CO2 and other 

metabolic waste products. Microcirculation is responsible for the maintenance of adequate 

hydrostatic pressure that is invaluable for appropriate capillary exchange and determination 

of the overall peripheral resistance [133]. It is also involved in inflammatory responses. 

The number of flowing capillaries per unit volume of tissue (the functional capillary 

density), perfused capillaries (capillary recruitment), microvascular filtration capacity 

(exchange capacity) and increased tissue perfusion in response to demand (functional 

hyperaemia) ensure efficiency of microcirculatory functions [134, 135]. 

 

1.3.2 Assessment of microcirculation 
 

The available techniques for studying microcirculation differ widely in their application, 

cost and availability. Many of them, such as micromyographic analysis of isolated arteries 

or intravital microscopy are invasive and predominantly used in animal studies to examine 

the structure and properties of microvessels. In humans, skin microvasculature is the most 

commonly examined part of the microcirculation. This is usually done with the 

employment of direct visualization techniques such as non-dye microscopy or 

capillaroscopy with orthagonal polarization spectral imaging, which allow measurement of 

capillary permeability, density and flow velocity [136-138]. 
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Microvascular studies in human muscle are much less popular due to restricted availability 

of non-invasive methods. Techniques used to measure tissue perfusion and capillary blood 

flow such as contrast enhanced ultrasound with the application of microbubbles 

(microspheres), positron emission tomography with radiolabelled tracers or needle-inserted 

laser Doppler are very invasive in nature, expensive and often limited by the requirement 

for high expertise, technical skills and local availability of an appropriate tracer [136, 139, 

140]. The alternative methods for assessing muscle microvascular function include non-

invasive techniques of plethysmography and laser Doppler flowmetry. 

 

1.3.2.3 Venous Congestion Plethysmography  

Venous congestion plethysmography (VCP) is a well established and widely used in vivo 

technique  in human studies to investigate the mechanics of vasodilatation and 

vasoconstriction, and the role of the vascular endothelium [141]. It can be coupled to intra-

arterial drug administration for the assessment of vascular pharmacology. It is a non-

invasive method for measuring regional blood flow in human limbs. VCP measures the 

increase in limb volume after cuff inflation to a pressure occluding only a venous return 

but not arterial inflow. Displacement of fluid or strain gauge around the limb is used for 

the estimation of volume change which is a result of  “venous filling as the pressure rises 

and fluid filtration in the microvasculature” [142]. VCP enables estimation of fluid 

filtration capacity (Kf), venous pressure (Pv), isovolumetric venous pressure (Pvi) 

VCP has been well validated, and provides accurate and reproducible results [141]. It is 

limited by the need to avoid high inflation pressures to minimize the risk of the arterial 

flow occlusion.  

 

1.3.2.4 Laser Doppler flux measurement 

Laser Doppler fluximetry is another non-invasive method, which involves the 

measurements of red cell flux in small-volume samples (0.5 mm
3
) of body and organ 

surfaces such as the skin as well as muscle [143]. The measured concentration of blood 

cells and their local speed are referred to as the perfusion and the laser Doppler perfusion 

monitor records the integrated perfusion within the sampling volume. The shift in the 

frequency from a defined, stable and single reference point provides the required 

measurement. The penetration depth of the laser probe is commonly about 0.6 mm but its 

sensitivity decreases with the increasing depth of dermis, thus in practice the best 

penetration is achieved at about 0.3mm [136]. However, the generation of two-dimensional 

perfusion maps and use of higher power and wider separation probes with the laser 
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Doppler imaging overcomes the heterogeneity in the measured variables and allows for 

implementing of this technique in the assessment of muscle microvasculature [143]. Laser 

Doppler fluximetry allows assessment of local responses to a variety of stimuli including 

hyperaemia, change in body temperature or pharmacological stimuli. The measurements 

are provided in perfusion units and results are usually expressed as the percentage of  

 

1.3.3 Role of Insulin in microvascular regulation  
 

The vasodilatory effects of insulin administration have been known for a long time, but it 

was only in 2000 that Baron et al. reported that insulin dilates, in a dose-dependent 

fashion, skeletal muscle vasculature [144]. Insulin preferentially regulates skeletal muscle 

vascular resistance over the microvasculature of other tissues. It has been established that 

physiological insulin concentrations increase cardiac output, but this mechanism is 

impaired in central obesity. There is heterogeneity of vascular responses to insulin, with 

lesser vasodilation in more insulin-resistant subjects. More recent data have shown that 

insulin also stimulates blood flow and perfusion in both skin [133, 140] and skeletal 

muscle [145, 146]. It has been suggested that impairment of insulin-mediated 

microvascular dilator responses in skeletal muscles decreases glucose uptake and thus 

contributes to insulin resistance [147, 148]. Many studies documented impaired insulin-

mediated skeletal muscle vasodilatation in individuals with obesity, diabetes and in 

hypertension confirming the crucial vasoactive role of  insulin in microvascular 

homeostasis [132].  

The proposed mechanism of insulin action by Baron et al. [144] suggests that the 

postprandially raised insulin concentration stimulates pre-capillary arteriolar vasodilatation 

and reduces skeletal muscle vascular tone, which in turn allows greater cardiac output to be 

directed towards the skeletal muscles. This in turn improves arteriolar blood flow and 

facilitates capillary recruitment and perfusion, resulting in greater glucose and insulin 

delivery to the tissues. The raised capillary recruitment leads to increased functional 

capillary density and subsequently greater participation of skeletal muscle in insulin-

mediated metabolism, thus augmenting insulin action [144, 149]. The molecular 

mechanism of insulin-mediated vasodilatation has been under constant investigation and it 

is likely to be multifactorial and synergistic. There is strong evidence that in insulin-

stimulated vasodilatation, endothelium-derived nitric oxide plays a crucial role [132, 135]. 

This vasodilatory mechanism has been well-explored recently and it has become evident 

that insulin exerts its vasodilatory action through PI3-kinase dependent signalling 
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pathways. Insulin stimulates PKB/Akt which then directly increases activity of endothelial 

nitric oxide synthase (eNOS) and nitric oxide production. Insulin also has vasoconstrictor 

properties that are mediated via endothelin-1 (ET-1), derived from the endothelium in a 

process involving an intracellular mitogen-activated kinase (MAPK) / the extracellular 

signal-regulated kinase-1/2 (ERK1/2) mediated pathway [132, 135]. 

 

1.3.4 Microvascular function in obesity 
 

Over the recent years, there has been a growing interest in the role of microvascular 

function in obesity and its cardio-metabolic complications. It has been reported that central 

obesity as measured by WHR is strongly associated with microvascular function, insulin 

sensitivity and blood pressure [150]. Serne and colleagues showed that microvascular 

function plays a central role, even within physiological range, in linking insulin sensitivity, 

blood pressure and abdominal fat in non-obese subjects [151]. In addition, de Jongh et al. 

showed that in obese women, visceral adiposity estimated by MRI is inversely associated 

with insulin-mediated capillary recruitment [152]. It has been reported that measures
 
of 

obesity in healthy individuals are strongly related to skin
 
microvascular function. A recent 

study of young, non-smoking and normoglycaemic women confirmed the presence of 

microvascular dysfunction in overweight and obese individuals [153]. Also, it has been 

postulated that obesity-related microvascular impairment may contribute to the 

development of nephropathy [154] and heart failure [155], and that it plays a role in the 

development of insulin resistance [156]. There is a body of evidence that obesity alters 

microvascular function through the changes in microvascular structure and endothelial 

functions [152]. Animal studies in genetically obese Zucker rats revealed structural re-

modelling [148] and capillary rarefaction [139], the latter also found in skeletal muscle of 

obese humans [157]. With regards to endothelial dysfunction in obese individuals, there 

have been reports of blunted vasodilatation to several endothelium specific stimuli in skin 

and resistance vessels [152, 158, 159], diminished capillary recruitment in response to 

reactive hyperaemia, stress shear and hyperinsulinaemia [152, 160, 161]. The findings of 

improved endothelial function in obese women after weight loss further support the links 

between obesity and microvascular function [162]. There have also been reports, in both 

animal and human studies, of impaired insulin-mediated muscle microvascular function in 

obesity [161, 163].  

The mechanisms underlying obesity-related microvascular dysfunction are complex 

(Figure 1.2). They revolve predominantly around interconnected intracellular, endocrine 

and vasocrine signalling. The studies, which looked into the endocrine and paracrine 
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aspects of adipose tissue, point towards the interactions between adipocytes, macrophages, 

lymphocyte, endothelial cells and vascular smooth muscle cells which take place within 

the adipose tissue, and their end-products (inflammatory mediators) such as cytokines, 

chemokines and hormone-like factors play an important role in the microvascular 

dysfunction of obesity [66]. 

In obesity, the imbalance between insulin vasodilatory and vasoconstrictor effects is due to 

defects in signalling pathways at the cellular level. The excessive amounts of reactive 

oxygen species (ROS) diminish the concentration of available nitric oxide (NO) and impair 

endothelium-related vasodilatation through the direct inhibition of NO synthase and the 

reduced expression and activity of endothelial NO synthase in muscle and kidney. 

Excessive amounts of free fatty acids (FFA) released from the visceral fat impair 

phosphorylation of IRS-1 and activation of PI3-kinase resulting in dysfunction in the 

intracellular insulin signalling transduction pathway and subsequent diminished basal and 

insulin-induced capillary recruitment and endothelium-dependent vasodilatation [132, 

164]. At the same time, insulin-mediated vasoconstriction through MAPK / ERK1/2 

activation and production of endothelin-1 remains intact as demonstrated in a study of 

obese and hypertensive individuals [132].  

Cytokines and adipokines produced in fat tissue constitute an important element of the 

dysfunctional endocrine-intercellular signalling. TNF-α stimulates lipolysis which leads to 

release of FFA. Thus the excess of TNF-α present in central adiposity, indirectly impairs 

the balance between endothelium-derived vasodilators and vasoconstrictors by down 

regulating the expression of NO synthase, inhibiting IRS-1 phosphorylation and up 

regulating ET-1 expression [132]. Obesity-related hyperleptinaemia augments production 

of ROS in the endothelium and coexistent leptin resistance leads to decreased leptin-

dependent signalling, causing further impairment in insulin-mediated microvascular 

function and glucose uptake. In contrast, there is diminished release of adiponectin, which 

leads to reduced IRS-1 phosphorylation in the insulin-signalling pathway thus adversely 

affecting glucose uptake and vascular endothelium. 

Adipose tissue is also a source of all components of the renin-angiotensin system (RAS), 

which are necessary for the generation of angiotensin II (AngII). AngII is not only a potent 

vasoconstrictor itself but it also induces expression of another vasoconstrictor, ET-1.  

There are reports that ET-1 and AngII mutually but indirectly stimulate their own 

production thus mediating the enhanced predisposition to vasoconstriction [132, 156]. 

There is evidence that AngII derived from adipose tissue binds to receptors on adipocytes 

and pre-synaptic nerve endings and blood vessels [84]. In obesity states, the activity of 
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RAS is increased both systematically and locally within adipose tissue [84, 165], leading to 

augmentation of vasoconstriction, decreased total muscle blood flow and capillary 

recruitment that contribute to lowered insulin-mediated glucose uptake and development of 

hypertension [156, 166].  

The latest evidence suggests that perivascular fat deposition, such as in tunica adiposae, 

and local fat deposits around the arterioles in skeletal muscle actively secrete 

adipocytokines, which influence the regulation of microcirculation in obesity. According to 

the “vasocrine” signalling mechanism proposed by Yudkin et al. distal periarteriolar fat 

has similar vasoactive properties to visceral fat and releases cytokines such as TNF-α. 

These inhibit insulin-mediated capillary recruitment and thus reduce blood flow and 

nutrient supply in the local arteriolar-capillary network [167]. 
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Figure 1.2 Schematic overview of the molecular mechanisms underlying 

microvascular dysfunction in obesity 

 

The diagram depicts the effects of excess of the cytokines and adipokines produced in the 

adipose tissue on Insulin-mediated vasodilatation and vasoconstriction signalling cascade. 

IR – Insulin Receptor, IRS – Insulin Receptor Substrate, PI3K - Phosphatidylinositol 3-

kinase, ET-1 – Endothelin-1,PDK -  PI3-dependent serine/threonine kinase, PKB/Akt – 

Protein kinase B, MAPK - Mitogen-activated kinase, eNOS – endothelial Nitric Oxide 

Synthase, NO – Nitric Oxide, ROS – Reactive Oxygen Species, TNF  - Tumour Necrosis 

Factor, FFA – Free Fatty Acids, AngII -  Angiotensin II. 
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1.4 Metabolic syndrome 
 

1.4.1 Definition 
 

The term “metabolic syndrome” (MetSy) refers to a combination of cardio-metabolic risk 

determinants, with the main components being central obesity, hyperglycaemia, 

dyslipidaemia and hypertension. It was first described as a Syndrome X by Reaven in 1988, 

who introduced a concept of insulin resistance as an unifying element for the set of 

metabolic abnormalities [168]. Since then the syndrome has been the subjects of scientific 

scrutiny and was only formally recognised by the Centre for the Disease Control- in 2001, 

and registered as “Dysmetabolic syndrome X”. 

To date, several definitions of the metabolic syndrome have been postulated. The most 

commonly used definitions are from the International Diabetes Federation (IDF, 2005) , 

the National Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP III, 

2001), the World Health Organization (WHO, 1999)  and the European Group for the 

study of Insulin Resistance (EGIR, 1999) [169]. Although these definitions use slightly 

different diagnostic criteria (Table 1.4), they all consist of common, essential features such 

as central obesity, glucose intolerance (or diabetes), hypertension, elevated triglycerides 

and reduced HDL-cholesterol, and require the presence of at least three abnormal 

parameters for the diagnosis. The NCEP ATP III definition requires any three out of the 

five abnormal parameters for the diagnosis, whereas in the IDF criteria central obesity is 

the essential feature besides two other parameters. The EGIR criteria require insulin 

resistance defined as the top quartile of the fasting insulin values among non-diabetic 

individuals, whereas the WHO classification requires measurement of insulin resistance by 

oral glucose tolerance test or hyperinsulinaemic–euglycaemic clamp. Microalbuminuria, 

hyperuricaemia and hypercoagulability are also included in the definitions by the WHO 

and American Association of Clinical Endocrinologists, with the latter organisation also 

incorporating into the definition a polycystic ovarian syndrome, vascular endothelial 

dysfunction and coronary heart disease [170].  The multitude of the definitions for this 

syndrome leads to the ambiguity and incompleteness of its criteria. Since its aetiology and 

pathogenesis (which are discussed in further paragraphs) are uncertain some researchers 

put into doubt its existence. Moreover, the name “syndrome” is inappropriately used for 

this cluster of metabolic factors since a syndrome means a group of symptoms indicating 

or characterising a disease and this is not the case here. The medical value of diagnosing 

patients with this syndrome may also be questionable although it can be used as a 

screening tool for obesity and other metabolic problems within general practice. 
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Table 1.4 Various criteria for the metabolic syndrome definition 

 
  

IDF 2005 
 

 
NCEP ATPIII 2001 

 
WHO 1999 

 
EGIR 1999 

 
Required 

 
Obesity and 
2 other features 

 
3 or more features 

 
IGT or DM and 
2 other features 

 

Fasting  insulin 

and 2 other 
features 

 
Central 
obesity 
 

 
Waist circumference 
≥ 94 cm male 
≥ 80cm female 
(Europids) 

 
Waist circumference 
≥ 102 cm male 
≥ 88cm female 

 
Waist to Hip Ratio 
≥0.9 male 
≥0.85 female 
or BMI >30kg/m

2
 

 
Waist 
circumference 
≥ 94 cm male 
≥ 80cm female 

 
Blood 
Pressure 
(mmHg) 

 
SBP ≥ 130 
DBP ≥ 85 or 
treated hypertension 

 
SBP > 130 
DBP > 85 or 
treated hypertension 

 
SBP ≥ 140 
DBP ≥ 90 

 
SBP ≥ 140 
DBP ≥ 90 or 
treated 
hypertension 

 
Dyslipidaemia 
(mmol/L) 

 
TG ≥ 1.7 
HDL < 1.04 male 
<1.29 female 

 
TG ≥ 1.7 
HDL < 1.0 male 
<1.3 female 

 
TG ≥ 1.7 
HDL < 0.9 male 
<1.0 female 
 

 
TG ≥ 2.0 
HDL < 1.0 or 
treated 
dyslipidaemia 

 
Dysglycaemia 
(mmol/L) 

 
Fasting glucose 
≥ 5.6 or 
diagnosed IGT/DM 

 
Fasting glucose ≥ 6.1 

 
Fasting glucose 
≥ 6.1 or/and 
IGT/DM 

 
Fasting glucose 
≥ 6.1 but not 
diabetic 

 
Insulin 
resistance 
 

 
Not applicable 

 
Not applicable 

 
Glucose uptake 
during HEC in 
lowest quartile 

 

Fasting  insulin 
(highest 25%  of 
non-diabetics) 

 
Other factors 
 

 
None 

 
None 

 
Microalbuminuria 
UAER > 20μg/min 
or 
ACR>30mg/mmol 

 
None 

SBP – systolic blood pressure, DBP – diastolic blood pressure, 

TG –triglycerides, HDL – high density lipoprotein, IGT – impaired glucose tolerance, 

DM – diabetes mellitus, HEC – hyperinsulinaemic euglycaemic clamp, 

UEAR – urinary albumin excretion rate, ACR – albumin-creatinine ratio 
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1.4.2 Epidemiology 

 

The prevalence of metabolic syndrome has been increasing worldwide over the years and 

the syndrome is increasingly seen in younger people. This has been driven by the 

explosion of the obesity epidemic [171, 172]. The prevalence of metabolic syndrome in the 

USA between 1994-2000  has increased from 23% to 27%, along with an increase in 

obesity and physical inactivity [173]. The prevalence of metabolic syndrome differs 

depending on the definition employed as well as the type of population studied including 

age, ethnicity, region and rural or urban environment. The WHO and EGIR definitions are 

more restrictive than the NCEP ATP III definition because of the prerequisite requirements 

regarding defining insulin resistance state. The IDF definition with obesity as a 

prerequisite feature appears to be least constraining. Indeed, there are several studies which 

show the prevalence of metabolic syndrome to be the highest with the use of IDF 

diagnostic criteria [174-176], reaching up to 39%. Many reports from studies conducted in 

other countries were in keeping with the USA findings, but studies from China and Iran 

reported lower rates of metabolic syndrome using the IDF criteria [177, 178]. This may be 

explained by the race-specific waist circumference guideline within the IDF definition. The 

increasing prevalence of raised BMI positively correlates with the prevalence of the 

individual components of metabolic syndrome even in environmentally different 

populations [78, 179, 180]. Metabolic syndrome is more prevalent amongst women than 

men [173]. Based on NHANES studies it appears that gender-related differences in the 

prevalence of metabolic syndrome depend largely on the ethnic and racial background of 

the study’s cohorts. The age-adjusted prevalence was lower in white non-Hispanic women 

than men, but higher in African-American women than men. Rates of metabolic syndrome 

increase consistently with rising age between 12 and 60 years [181-183] and drop down in 

the 6
th

 or 7
th

 decade, which also varies depending on the used definition [182-184]. 

 

1.4.3. Cardio-metabolic implications 
 

There is a body of evidence suggesting that the presence of metabolic syndrome doubles 

the cardiovascular risk [185], triples the risk of coronary heart disease and raises the risk of 

developing type 2 diabetes five-fold [186]. Its presence correlates strongly with the  

incidence and progression of carotid atherosclerosis [187]. It has been established that the 

metabolic syndrome can predict total, cardiovascular and coronary heart disease mortality. 

The presence of even one component of the syndrome increases overall mortality when 

compared with healthy individuals [175, 188, 189]. 
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 However, some researchers reported that the CVD risk based on the full definition did not 

differ significantly from the risk based on its individual elements [190]. It remains 

uncertain which of the syndrome’s components may be detrimental to this risk. 

 

1.4.4. Pathogenesis 
 

The pathogenesis of metabolic syndrome (MetSy) has been under a constant debate for 

several years. A single unifying mechanism or a single gene responsible for this 

constellation of cardio-metabolic determinants has not as yet been established. This is also 

reflected in the large variety of definitions for this syndrome, as discussed in earlier 

paragraphs. The current concepts of MetSy are based on the understanding that it is a 

highly complex entity with an aetiology probably linked to genetic defects, mitochondrial 

mutations, polygenic variability in individuals, pre-natal environment influences, fat 

distribution phenotypes, physical inactivity, ethnicity and advancing age [185, 191]. The 

evidence from studies investigating less common disorders associated with obesity 

supports the genetic bases of the syndrome [192, 193] as an independent factor facilitating 

metabolic dysfunction. The growing clinical evidence suggests a strong correlation 

between visceral adiposity, insulin resistance and CVD risk [194], which has been 

supported  by experimental studies and the portal theory of insulin resistance. In this 

hypothesis, free fatty acids derived from visceral adipose tissue enter the liver directly via 

the portal vein and negatively affect insulin action [195]. The available evidence from 

observational studies of the causal links and the presence of hyperinsulinaemia and insulin 

resistance (IR) in obesity, diabetes dyslipidaemia and hypertension [196-198] strengthens 

proposed role of insulin resistance as a key player in the pathogenesis of the metabolic 

syndrome. The proposed mechanisms at a cellular level revolve around a variety of defects 

in the insulin receptor as well as pre- and post-receptor signalling pathways, and the 

interactions with microvasculature, skeletal muscles and adipocytes [199-201]. Several 

studies have confirmed that visceral adiposity promotes insulin resistance through 

increased lipolysis in response to hormonal stimuli such as glucocorticoids and 

catecholamines [202-204]. However, adipose tissue also secretes a variety of cytokines and 

adipokines, which exert endocrine, paracrine and autocrine effects leading to energy 

imbalance, microvascular dysfunction and impaired glucose uptake and metabolism [205].  
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1.5 Cardiovascular fitness and physical activity 
 

1.5.1 Definition  
 

In broad terms, physical activity refers to a variety of behaviours that result in body 

movement requiring variable levels of energy expenditure. Physical activity, therefore, 

encompasses a wide range of activities from the undertaking of daily living, to 

occupational and recreational activities, and the various degrees of exercise. Exercise is 

comprised of repetitive movements and structured physical activities, often performed at a 

vigorous intensity with the purpose of improving cardio-respiratory fitness [7]. The 

increase in physical activity level leads not only to an improvement in cardio-respiratory 

fitness, but also to an increase in muscle strength and mass, and changes in the body’s 

composition. 

 
1.5.2 Methods of assessment  
 

Direct and objective ways of measuring physical activity and / or fitness include motion  

sensors and measures of fitness and energy expenditure. All these methods differ in the 

levels of precision and sophistication of measurement, and it is often difficult to employ 

them separately from each other.  

 

1.5.2.1 Motion and physiological response sensors 

Motion sensors allow assessment of free-living activity and an indirect estimation of 

energy expenditure. These methods include accelerometers, heart rate monitors and 

devices that combine the features of various sensors. Accelerometers measure direct body 

movement. They provide data on the patterns of physical activity and with the employment 

of special equations, give estimated energy expenditure. Accelerometers have been 

validated for assessing the total amount of physical activity using doubly-labelled water, 

[206], but the laboratory-based energy expenditure prediction equations are not valid for 

free-living activity. Accelerometers are fairly simple and easy to use but the information 

they provide needs careful interpretation. This is because during energy expenditure from 

some movements such as cycling, the upper bodywork is not reflected in the acceleration 

of the body.  

Heart-rate monitors such as Flex HR provide information about heart rate changes in 

response to body movements.  They can provide data on energy expenditure and a pattern 
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of physical activity. The results from heart-rate monitors can be affected by factors other 

than physical activity, such as stress or emotions, and consequently their use is limited.  

The next generation of techniques for the measurement of free-living energy expenditure 

are methods that combine accelerometers with heart rate monitors, such as Actiheart, or 

incorporate motion sensors with other types of sensors, such as skin temperature and heat 

flux sensor (e.g. Armband Pro). As these devices combine different techniques they may 

be able to provide more accurate information about energy expenditure than separate 

individual components. 

 

1.5.2.2 Measures of fitness 

Measures of fitness can be broadly divided into metabolic and fitness tests. The latter 

includes a variety of tests measuring muscle endurance, strength, body flexibility, agility, 

balance and coordination. In contrast with fitness tests, metabolic tests, such as 

cardiorespiratory fitness, provide an assessment of overall body fitness and cardiovascular 

health risk [207, 208]. Moreover, physical activity status is the main determinant of 

cardiovascular fitness and can therefore be used in studies investigating the correlation 

between physical activity and health [209].  

Cardiorespiratory fitness, which is recognised as the gold standard, measures the maximal 

oxygen uptake (VO2 max) during dynamic exercise such as running or cycling. Maximal 

oxygen uptake is the largest amount of oxygen a healthy individual can take in during 

physical activity. With increasing exercise intensity, oxygen uptake increases to a point, 

until it attains a constant level despite additional increases in the workload, whereas carbon 

dioxide production increases leading to a rise in the respiratory quotient. This point defines 

the maximal oxygen uptake. Thus, VO2 max  indicates the maximal level of aerobic power 

output, with the limiting factors being cardiovascular capacity and the rate of oxygen 

diffusion from haemoglobin to muscle mitochondria [210]. Oxygen uptake (VO2) is 

measured by indirect calorimetry and is estimated as the difference between inspired and 

expired oxygen during pulmonary ventilation over a set period. VO2 max is most 

accurately estimated by measurements of expired air composition and respiratory volume 

during maximal exertion. These measurements need to be performed at frequent intervals 

(at least every 15 seconds) to allow accurate assessment of the VO2 response to 

incremental exercise in order to determine the VO2 max.  

The cardiorespiratory fitness assessments are performed with the use of standard exercise 

protocols usually implementing treadmill or ergonometric bicycle. To minimise the risk to 

individuals, various sub-maximal exercise protocols have been used in observational and 
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intervention studies. Although the amount of physical activity undertaken makes a 

significant contribution, genetic factors can play a major role in an individual’s VO2 max, 

with the heredity accounting for up to 25-50% of the interindividual variance [211]. VO2 

max decreases with age at the approximate rate of 10% per decade after the age of 25 

[212], which may also be a reflection of increased body weight, without a change in 

absolute values of oxygen uptake.  

 

1.5.2.3 Measures of energy expenditure 

Energy expenditure (EE) is one the three components of total energy expenditure (TEE) 

besides the basic metabolic rate (BMR) and the thermic effect of food. Energy expenditure 

can be measured with direct and indirect calorimetry methods, or estimated by non-

calorimetric techniques. The latter group of methods applies predictive equations to 

extrapolate data from physiological measurements and observations obtained using, for 

example, heart monitors or accelerometers, as discussed above. In contrast to the 

aforementioned techniques, isotope dilution, also known as the doubly-labelled water 

method, is an invasive non-calorimetric method. It is recognised as a gold standard method 

and as it has no applications for free-living energy assessment, it is used for the validation 

of other, less invasive methods [206].  

Direct calorimetry measures the heat lost from the body using isothermal, adiabatic or 

conductive systems. These are very expensive techniques requiring a high level of 

expertise, which limits their application to highly specialist laboratories only [213]. 

In indirect calorimetry, oxygen consumption and/or carbon dioxide production is measured 

and converted into energy expenditure using specially-designed formulae. There are 

several different approaches used with this method such as room-open circuit, hood/canopy 

open circuit, open circuit-expiratory collection, doubly-labelled water and total collection 

systems. These are all laborious and relatively expensive which limits their use even 

though they provide accurate and reliable measures of energy expenditure. 

 
1.5.3 Cardio-metabolic benefits 
 

It is well known that physical activity has beneficial effects on many systems and disorders 

of the body, in particular, obesity, diabetes and other components of the metabolic 

syndrome [214-216]. There is evidence that suggests the more vigorous the activity, the 

greater the health benefits [207].  

Regular physical activity is associated with longevity, in contrast to sedentary lifestyles 

[217] and good levels of cardiorespiratory fitness are associated with lower risk of all-
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cause and cardiovascular mortality [207]. Several studies reported the association of 

physical inactivity with obesity and development of insulin resistance and type 2 diabetes 

[218]. It has been well documented that exercise training improves glucose tolerance and 

insulin sensitivity, even in the absence of weight loss [219]. Exercise exerts its beneficial 

effects on insulin resistance by increasing glucose uptake in the muscles thorough the 

augmented recruitment of GLUT4 transporters [219] and activation of insulin signaling 

pathways [220]. Moreover, exercising boosts muscle capillary density and consequently 

increases glucose uptake and insulin sensitivity [221]. In addition, a good level of physical 

activity also contributes to an improved lipid profile. Exercise training leads to an increase 

in HDL-cholesterol concentrations by 4-18 % and a decrease in triglyceride concentrations 

by 4-37%, with the greater reductions observed in previously inactive individuals. Benefits 

of exercise on total cholesterol  and LDL-cholesterol are usually associated with a change 

in body weight and composition, and additional dietary fat reductions [218].  
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1.6 Statins 
 

1.6.1 Biochemistry and modes of action 

 
Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), the 

first important and rate-limiting enzyme in the biosynthesis of cholesterol via the 

mevalonate pathway [222] (Figure 1.3). Statins are structurally similar to its endogenous 

substrate 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), enabling them to 

compete directly for the active sites on hydroxymethylglutaryl Co-A reductase (HMGR) 

and block its action (Figure 1.4). This results in the inhibition of de novo cholesterol 

synthesis in the liver and activation of sterol regulatory element binding protein (SREBP), 

which upregulates expression of the gene encoding the LDL receptor, leading to increased 

LDL-cholesterol uptake and consequently decreased blood LDL-cholesterol concentration. 

In addition, this increased expression of LDL receptors stimulates marked reduction in the 

numbers of ApoB100-containing lipoproteins and consequently improves HDL levels in 

the blood. At the same time, statins induce ApoA-I production in the liver and the 

formation of nascent pre-HDL particles. Thus, the end result of the inhibitory actions of 

statins is to not only lower total and LDL-cholesterol but also to increase the plasma 

concentration of HDL [223]. The lipid lowering properties of statins extend beyond those 

described above. Statins also improve hypertriglyceridaemia possibly by stimulating 

hepatic expression of the peroxisome proliferator-activated receptor  (PPAR ) gene. The 

maximum time required for the hypolipidaemic effect of statins to become evident is four 

to six weeks [223]. The lipid lowering properties of statins extend beyond those described 

above. Statins also improve hypertriglyceridaemia possibly by stimulating hepatic 

expression of the peroxisome proliferator-activated receptor  (PPAR ) gene. The 

maximum time required for statins’ hypolipidaemic effect to become evident is four to six 

weeks [223].  

All statins are metabolized in the liver, hence their low systemic bioavailability and 

relatively low potential for serious side effects. They all have the same essential structural 

components of a ring system and a dihydroxyheptanoic acid unit (Figure 1.4); the latter is 

responsible for the group’s lipid lowering effect. The structural differences in the ring 

system and substituents define the activity of statins and their pharmacological properties, 

such as efficacy and lipophilicity. Statins are reported to reduce the concentration of total 

cholesterol by 20-40%, LDL-cholesterol by 20-60%, triglycerides by 10-30%, and increase 

HDL-cholesterol by 5-10% depending on the type and dose of statin [224]. 
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Figure 1.3 Biosynthetic pathway of cholesterol 

 

Cholesterol is synthesised from Acetyl-CoA in a multistep pathway involving mevalonate. 

Statins inhibit HMG-CoA reductase which is a rate-limiting enzyme in the cholesterol 

biosynthesis. 
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Figure 1.4 Schematic structure of a statin and HMG-CoA 

 

Statins exhibit structural similarities to HMG-CoA which allow them to compete for the 

active sites on HMG reductase. 
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1.6.2 Statins and Macrovascular disease 
 

The profound LDL-cholesterol lowering abilities of statins have been well documented 

over the last three decades. There is evidence from several large clinical trials that statins 

reduce cardiovascular morbidity and mortality [223-225] . Five major trials of statins in 

secondary prevention: 4S, CARE, LIPID, GREACE, and HPS have confirmed the benefits 

of treatment in terms of reduced vascular events regardless of the type of statin and 

baseline lipid levels. Four other placebo-controlled trials: WOSCOPS, PROSPER, 

AFCAPS/TexCAPS and ASCOT proved that statins are beneficial for primary prevention 

in those with high cardiovascular risk. Trials of statins in diabetes, such as CARDS, 

confirmed the highly significant favourable cardiovascular risk reduction in parallel with 

reductions in LDL-cholesterol [223]. The findings from ASTEROID trial additionally 

showed that statins reduce the formation of atherosclerotic plaques [226] within coronary 

arteries. Furthermore, the data from the recent METEOR trial showed reduction in 

progression of carotid intima-media thickness with Rosuvastatin treatment [227].   

 

1.6.3 Pleiotropic effects of statin  
 

As shown in many clinical trials, the overall benefits observed with statin therapy occur 

earlier and are of greater magnitude than would be expected from lipid changes alone. This 

suggests that statins may have effects beyond cholesterol lowering (Figure 1.5). These 

extra, non-lipid effects on vascular biology are often referred to as the pleiotropic effects of 

statins. In support of this notion would be the results from the REVERSAL study, where 

intravascular ultrasound measured coronary atherosclerosis before and after the 

intervention with statins showed that despite similar small changes in plaque size there was 

a marked (over 20%) reduction in the rates of cardiovascular events in these patients [223]. 

More recently, the JUPITER study showed that in the absence of hyperlipidaemia and 

atherosclerosis, but in the presence of low grade inflammation, high dose statin therapy 

reduced the incidence of all major cardiovascular events [228] . 

 

1.6.3.1 Endothelial function and inflammatory markers 

Animal and cell culture studies have elucidated important cellular mechanisms modulated 

by statins independently of cholesterol concentrations that affect atherosclerosis and 

vascular function. These mechanisms include increased bioavailability of nitric oxide (NO) 

in endothelial cells, isoprenoid-mediated and other specific anti-inflammatory effects on 

vascular function. Experimental studies have documented increased endothelial availability 
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of NO due to the statin-mediated increase in protein kinase Akt activity and in turn NO 

synthase activity, or the decrease in an endothelial cell protein (caveolin), which 

inactivates NO synthase [229, 230]. Statins also inhibit isoprenoids, which are 

intermediates in cholesterol synthesis via the mevalonate pathway (Figure 1.3 and 1.5) and 

serve as attachments for pro-atherogenic intracellular signalling molecules such as small 

GTP-binding proteins: Rho, Ras and Rac, and cdc42 proteins [229, 231]. It is important to 

note that those significant lipid-independent statin effects demonstrated in various 

experiments required statin concentrations several orders of magnitude higher than those 

used therapeutically in clinical practice. An assessment of the LDL- independent effects of 

statin therapy in clinical trials is difficult because statins, by default, reduce LDL levels. 

However, studies comparing statin versus non-statin treatment groups point to smaller 

improvements in endothelial function in the non-statin intervention group despite lowering 

LDL to a similar degree as statins [230]. Other clinical trials showed that equipotent doses 

of various statins reduced hs-CRP in atherosclerosis [232, 233]. Moreover, it appears that 

in those with low grade inflammation, as evidenced by higher hs-CRP but without 

atherosclerosis and hyperlipidaemia, statins significantly reduce the risk of cardiovascular 

events [228]. There have also been reports of reductions in other inflammatory markers 

such as IL-1, IL-6, TNF , sICAM-1 with statin therapy [234], and that statins exhibit 

potent antioxidant effects [231]. There is, however, a paucity of data regarding the 

pleiotropic effects of statins in those with cardio-metabolic risks but without 

cardiovascular disease. 
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Figure 1.5 Diagram of lipid-lowering and pleiotropic effects of statin 

 

By inhibiting the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), 

it is postulated that statins not only lower hepatic cholesterol synthesis but also reduce 

synthesis of isoprenylated proteins thus exhibiting their pleiotropic effects. 
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1.6.3.2 Microvascular function 

The macrovascular benefits of statin therapy have been well documented over at the last 

two decades. There is also a significant body of evidence from experimental studies that 

statins exert marked positive effects on endothelial function [235-237], and some evidence 

from clinical trials confirming similar findings in the presence of atherosclerosis or 

diabetes, as described earlier. However, few studies examined the effects of statins on 

endothelial function in people with obesity or insulin resistance without apparent 

atherosclerosis and with relatively low cardiovascular risks.  

The influence of statins on endothelial function might be translated into indirect effects on 

microvasculature, but there is a need for studies investigating its effectiveness directly on 

microvascular function. Parson et al. conducted a study investigating subjects with type 2 

DM on a daily dose of 10mg Rosuvastatin or diet, and found significant improvement in 

skin blood flow (SBF) in the statin group as measured by Laser Doppler flowmetry [238]. 

It was not apparent though whether the increase in SBF was independent of the lipid-

lowering effect. Trials with Simvastatin and Ezetimibe in subjects with coronary artery 

disease (CAD), which measured flow-mediated dilatation (FMD) with either high-

resolution ultrasound or venous plethysmography, demonstrated that statin therapy 

improved endothelial function independently of lowering LDL-cholesterol [230]. 

Additionally, McGown et al. reported enhanced nitric oxide-mediated vessel relaxation 

thorough increased NO bioavailability with statin treatment [239]. Others also reported 

reduced oxidative stress and inflammation, inhibition of thrombogenic response, and 

decreased extracellular matrix remodeling [240, 241]. 

Overall, there is evidence to suggest that statin use may have direct microvascular benefits, 

but further evidence is still needed to elicit whether this is a lipid-independent effect. 

 

1.6.3.3 Statins and Insulin resistance 

There is far less consensus regarding the influence of statins on insulin resistance than 

there is on their anti-inflammatory properties. There have been reports of unfavourable 

[242-244], as well as favourable [245-247] effects of statin treatment on insulin resistance, 

and additional reports suggesting a lack of benefit [248]. Those conflicting observations 

might be explained by multiple factors contributing to the outcomes, such as employed 

investigative methods, type, dose and duration of treatment, in addition to subject selection 

and changes in body weight and/or body composition during trials which are known to 

affect insulin action. It may also be possible that there is no drug-class effect with this 

respect and hence the discrepant results [249]. A study by Koh et al. in non-diabetic, 
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hypercholesterolemic subjects treated with 20 mg Pravastatin daily for 12 weeks resulted 

in a significant improvement in QUICKI [247]. The same researchers compared in a 

randomized, single-blinded, placebo controlled trial the effects of 2 months treatment with 

Pravastatin (40mg daily) and Rosuvastatin (10mg daily), and demonstrated that Pravastatin 

improved fasting surrogate insulin sensitivity markers and HbA1c, whereas the opposite 

results were obtained with Rosuvastatin [250]. Sonmez et al. investigated a similar cohort 

of subjects on a daily dose of 40mg Fluvastatin and observed HOMA improvement 

unrelated to triglyceride decrease [251]. Paolisso et al., in a crossover study of subjects 

with type 2 diabetes treated with 30mg Simvastatin daily, found significant improvement 

in insulin sensitivity determined by clamp and reduction in plasma NEFA concentrations 

by statin therapy [245]. Subsequently the same investigators, in a placebo-controlled study 

of diabetics, compared 10 mg Simvastatin with 5 mg Atorvastatin daily. Both statins 

produced significant changes in triglyceride concentration and insulin sensitivity, but the 

improvements achieved by Atorvastatin were greater, with 26% reduction in triglycerides 

accompanied by a 13% improvement in insulin action, whereas Simvastatin resulted in a 

20% and 9% improvement respectively [246]. However, in a similar cohort of subjects 

with a similar study duration but using a higher dose of Simvastatin (20mg), Hwu et al. did 

not find any difference in either triglycerides or insulin-mediated glucose disposal as 

assessed by clamp methodology [248]. In contrast to the aforementioned studies, Ohrvall et 

al. [242] found that in diabetics with hyperlipidaemia, 10 mg of Simvastatin daily 

increased insulin concentrations by 21% and insulin resistance by 28% as assessed by 

intravenous glucose tolerance test (IVGTT) and glucose clamp, despite a reduction in 

VLDL triglycerides [252]. Jula et al. also reported a deterioration in fasting insulin and 

insulin resistance with 20 mg Simvastatin therapy in a randomized, placebo-controlled, 

crossover study of hypercholesterolemic subjects [252]. 

A large, primary prevention WOSCOP study provided data indicating that treatment with 

Pravastatin resulted in a significant, 30% reduction in the onset of new diabetes, suggesting 

that this statin may have a protective role against development of diabetes. More recently, 

during an intensive treatment with Rosuvastatin in the JUPITER trial there was observed a 

small but significant increase in HbA1c and physician reported diabetes rates [228]. Two 

independent meta-analyses of 6 and 13 clinical trials showed that with the exception of 

Pravastatin in WOSCOP trial, statins in general tend to increase risk of developing diabetes 

[253, 254]. A meta-analysis of statin impact on insulin sensitivity in 16 studies also pointed 

out that only treatment with Pravastatin improved insulin sensitivity, whereas with the 

other statins there was a trend in increased risk of developing diabetes [249]. It is plausible 
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that lipophilic statins increase insulin resistance while hydrophilic statins  have an opposite 

effect [247]. Interestingly enough, despite opposite metabolic effects, both Pravastatin and 

Simvastatin have been reported to improve flow mediated dilatation [247], which could 

indicated that statins may reduce microvascular complications in diabetes. 

 

1.6.5 Atorvastatin  
 

Atorvastatin is one of the most efficacious statins and has been available on the market for 

clinical use for several years. The proposed mechanism of Atorvastatin metabolism is 

through cytochrome P450 3A4 hydroxylation and the formation of active metabolites. 

Although Atorvastatin is lipophilic by nature it has low systemic bioavailability [255] 

which is the main reason for its good safety record and low incidence of side effects.  

Atorvastatin, similarly to other statins, reduces LDL-cholesterol and triglycerides, and 

increases HDL-cholesterol concentration, although at the maximum dose of 80mg daily it 

has less effect of raising HDL-cholesterol than other statins [255]. It has also been credited 

with beneficial effects on other aspects of the cardio-metabolic phenotype beyond the 

typical modification of lipid profile. It reduces LDL particle concentration and Apo B 

levels [256]. Atorvastatin has been reported to lower hs-CRP concentrations in states of 

chronic metabolic inflammation, such as atherosclerosis or metabolic syndrome [233, 257]. 

Orr et al. and Karter et al. independently demonstrated improvements in arterial stiffness 

following treatment with Atorvastatin [258, 259] in obesity and prediabetic states. There 

have been several large clinical trials  (ASCOT –ALL, IDEAL, TNT, GREACE, etc) 

outlining the benefits of high dose Atorvastatin treatment in terms of its efficacy, 

cardiovascular outcomes and safety record, which may confer advantages over some other 

statins [255, 260]. Atorvastatin comes in four different doses of 10, 20, 40 and 80mg, and 

its efficacy increases with increasing dose. Although 80mg of Atorvastatin is the most 

potent daily dose, there is only a small difference between this and a 40 mg dose with 

regard to lipid-lowering or cardiovascular effects. However, the maximum dose is 

associated with higher rates of drug discontinuation. This is because the rate of side effects 

and potential drug interactions increases in dose dependent manner. 

 

http://en.wikipedia.org/wiki/Cytochrome_P450
http://en.wikipedia.org/wiki/CYP3A4
http://en.wikipedia.org/wiki/Hydroxylation
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1.7 Study hypothesis 
 

The worldwide overwhelming epidemic of obesity is strongly associated with 

cardiovascular morbidity and mortality, and type 2 diabetes mellitus. The body of evidence 

collected over the last decades suggests that the visceral obesity is a cardio-metabolic 

entity interconnected with insulin resistance, microvascular dysfunction and 

cardiorespiratory fitness but their interactions and relationships require still further detailed 

investigation. Likewise, there have been several reports on pleiotropic effects of statins 

used routinely to treat dyslipidaemia, often in the obese subjects, but the effects of statins 

on microvascular function and insulin sensitivity warrant further research and clarification.  

The aims of this research study were to investigate in a cohort of viscerally obese but 

otherwise healthy subjects skeletal muscle microvascular function, in particular 

exchange/filtration capacity, microvascular blood flow and functional dilator capacity, and 

insulin sensitivity and to explore their relationships and the relationship with other cardio-

metabolic risk factors; to evaluate degree of insulin resistance in non-diabetic but centrally 

obese subjects and the effects of six months treatment with high dose statin on both insulin 

sensitivity and microvascular function; to conduct cross sectional assessment of the 

cardiorespiratory fitness, cardiac diastolic function and arterial stiffness and their 

relationships in the centrally obese with cardio-metabolic risk factors. 

The postulated hypotheses of this study were: 

 skeletal muscle exchange/filtration capacity affects levels of HbA1c 

 decreased microvascular exchange/filtration capacity is associated with reduced 

skeletal muscle insulin sensitivity 

 insulin sensitivity and age are independently associated with microvascular 

functional dilator capacity 

 insulin sensitivity and microvascular dysfunction are improved with six months of 

treatment with 40 mg of Atorvastatin 

 there is independent association between cardiorespiratory fitness and measures of 

cardiac diastolic function and arterial stiffness  
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2. Study Design 
 

In accordance with research governance the scientific rationale for this study was accepted 

by the peer review committee. The research project was funded by an educational grant 

from Pfizer which provided both Atorvastatin and placebo for the study 

 

2.1 Ethics approval 
 

This study had the approval of the Southampton General Hospital Research Ethics 

Committee (LREC05/Q1704/38). It was conducted in accordance with the Declaration of 

Helsinki [261]. All participants were unpaid volunteers and gave written informed consent. 

 

2.2 Research Facility 
 

All metabolic and vascular studies took place on the premises of the Wellcome Trust 

Clinical Research Facility (WTCRF), based within Southampton General Hospital. This is 

a modern, state of art facility dedicated for researchers and their volunteers. It is staffed with a 

team of trained and experienced research nurses and support staff. The unit is equipped with, 

amongst other things, a ward for conducting metabolic studies, clinical rooms, and 

environmental, physiology and preparation laboratories. The preparation laboratory allows 

immediate on site centrifugation, separation, freezing and storage of collected samples. The 

Department of Densitometry and the Radiology Department, both based at Southampton 

General Hospital, conducted whole body DEXA scans and abdominal MRI scans. 

All data collected during the study have been kept strictly confidential. All written data have 

been stored, for the period of 10 years from the end of the study, in the clinical trial secure area 

on Level D and the collected samples have been stored in the designated freezers at -80oC in 

the secure area on Level A at the Institute of Developmental Sciences at Southampton General 

Hospital. The encoded data was analysed on the code protected computers. 

 

2.3 Recruitment 
 

The subjects were recruited through advertisement within Southampton General Hospital, 

which appealed for volunteers amongst both visitors and hospital and university staff. The 

enrolment of suitable participants was based on a screening visit. This consisted of a brief 

interview eliciting the relevant medical and drug history, resting blood pressure 

assessment, measurements of weight, height and waist circumference, and fasting blood 

sampling, which included lipid profile, glucose, thyroid, liver and renal function tests and 

full blood count. Diagrams in Figure 2.1 and 2.2 explain the overview of the study design.  
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Figure 2.1 Diagram of study design 

 

Out of the 136 people who responded to the advertisement recruiting subjects to the study 

46 did not wish to proceed to the screening phase and only 90 subjects attended a screening 

visit. Further 43 subjects dropped out either because they did not fulfill the study criteria or 

did not wish to proceed further. 47 subjects underwent baseline microvascular and 

metabolic investigation. 7 subjects declined further participation resulting in 40 subjects 

being randomised to treatment. 39 subjects completed the study. 
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Figure 2.2 Diagram of investigations performed over the course of the study  

 

After a screening visit, all study participants underwent anthropometric, microvascular and 

metabolic investigations, following which they were randomised (double blind fashion) to 

placebo or Atorvastatin. All subjects had to attend a follow up visit 3 months after starting 

treatment to assess their compliance. During the last 2 weeks of the trial, while subjects 

were still taking their treatment, they all underwent the same investigations as at the 

beginning of the study. 
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2.4 Subjects 
 

These subjects were white Caucasian men and women aged 18-75 years within the 

catchment area of Southampton General Hospital and nearby GP surgeries to ensure a 

minimal drop out rate from the study. Owing to the small number of volunteers, and in 

order to keep the studied group relatively homogenous, we aimed for a similar number of 

participants from both genders. The population of Southampton consists mainly of 

Caucasians and therefore we did not investigate other ethnic groups.  

 

2.4.1 Inclusion Criteria 
  
White, Caucasian subjects aged 18-75 years at the time of recruitment were eligible for 

participation if they had central obesity defined as waist circumference ≥ 94cm for Europid 

men and ≥ 80 cm for Europid women and any of the other metabolic syndrome features 

according to International Diabetes Federation criteria [20]. For ethical reasons, subjects 

were only included into the study, if their estimated cardiovascular risk was less than 20% 

over 10 years based on the equation derived from the Framingham Heart Study [262]. This 

was because national guidelines recommend that people at high cardiovascular risk should 

be treated with statins for primary prevention [263, 264].  

 

2.4.2 Exclusion Criteria 
 

The subjects with known diabetes, renal, liver or uncontrolled thyroid disease, uncontrolled 

hypertension (blood pressure >160/100 mmHg) were excluded from the study. Treatment 

with antihypertensive medication (such as beta-adrenergic blockers, thiazides), 

corticosteroids, oral contraceptives or hormone replacement therapy (HRT) and treatment 

with lipid-modifying drugs within the previous three months served also as exclusion 

criteria. In order to ensure a low rate of possible treatment complications, subjects with 

previous history of muscle symptoms, elevated creatinine kinase (CK) or liver function 

tests while previously on statin therapy were not permitted to participate in the study. Only 

non-pregnant female volunteers of reproductive age were included in the study. 

 

2.5 Medical Assessment  
 

The anthropometric, metabolic and vascular studies were carried out over a course of 

several days before and after the treatment (Figure 2.2). This was because specific 

conditions were required to perform each metabolic study. For the screening visit and 
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thereafter for each metabolic study subjects were required to refrain for 48 hours from 

alcohol and strenuous exercise, and to fast for 12 hours beforehand. Midway through the 

study, (during a short visit to the research facility) all participants were assessed by a 

research nurse through direct questioning with regards to their well-being and compliance. 

The anthropometric measurements were performed before treatment as a screening tool for 

the study inclusion and after treatment to document them as possible confounders of 

results. One volunteer, who was found to be anaemic during the screening process, and 

another diagnosed with diabetes based on the results of oral glucose tolerance test, were 

excluded from the study. One participant who was stable on the replacement dose of 

thyroxine was allowed into the study.  

 

2.6 Treatment 
 

The selection of the statin and its strength was based on the considerations of efficacy and 

tolerability reflecting current clinical practice [255]. Several previous studies documented 

that the use of a more efficacious statin at a lower dose, rather than a higher dose of a 

weaker statin, leads to achieving the maximum efficacy with the least side effects.  

After completing all baseline measurements and investigations the participants were 

randomised to either daily Atorvastatin at a dose of 40 mg or placebo, which they took for 

26 weeks (Figure 2.2). This was a double-blind, parallel group study design to eliminate 

possible selection bias and to assess possible pleiotropic effects of Atorvastatin in the most 

objective way. The randomisation was performed by an independent pharmacist based at 

the Southampton General Hospital. 

There is evidence that weight reduction of 5-10% body weight benefits metabolic traits and 

health [265, 266]. Intentional or unintentional weight loss could potentially affect the end 

results of the study. We therefore encouraged all participants to maintain the same diet and 

lifestyle throughout the whole duration of the study to avoid changes in total body weight 

greater than 5 % from the baseline to minimise the effect of those confounders on the end 

results.  
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2.7 Statistical analysis   

 

All statistical analyses were performed using SPSS for Windows version 16.0 (SPSS, 

Chicago, IL, USA). Means and SD were presented for normally distributed data and 

medians and ranges were presented for non-normally distributed data. Student’s t test 

comparisons were undertaken to compare mean values of normally distributed data. 

Repeated measurements ANOVA was applied to test for the group effects. Pearson 

correlation coefficients were presented for univariate regression analyses of normally 

distributed data and Spearman correlation coefficients were presented for non-normally 

distributed data. Multivariate linear regression models were developed to describe factors 

that were independently associated. A p value of <0.05 was considered statistically 

significant for all analyses. The analysis of statistical power of the part of the study that 

was looking into the statin treatment effects on insulin sensitivity was based on the study 

of Paolisso et al. [245] who demonstrated significant improvement in glucose disposal 

using the hyperinsulinaemic clamp technique (p<0.05) in a small sample size of 12 

subjects. It was calculated that to provide 80% power with an alpha of 0.05 between 

Atorvastatin and placebo groups for M-value (insulin-mediated glucose disposal) the 

estimated sample size of  two ( n=2) for each group was needed (alpha 0.05, power 80%, 

M1=26.3, M2=19.5, SD1=2.08, SD2=1.73). The fact that data of Paolisso et al. [245]  

related to the elderly subjects with type 2 diabetes and that it was a cross-over and not a 

parallel study required caution in the extrapolation of their results in to the subjects with 

obesity and metabolic syndrome phenotype. Therefore it was estimated that a sample size 

of thirty (n=30) for each treatment group was possibly required. However, this was not 

possible to achieve because of study time scale design and problems with subjects 

recruitment and drop outs. Additionally, a retrospective sample size calculation was 

undertaken for the detection of changes in reactive hyperaemia to hyperinsulinaemia 

during a glucose clamp. It was calculated that to detect a 2.3 fold improvement in the 

reactive hyperaemia in response to hyperinsulinaemia with a power of 90% and alpha of 

0.05, 12 subjects were required; this was the same number of subjects as in the study 

reported by de Jongh et al. [140] that showed 2.3 fold increase in reactive hyperaemia to 

hyperinsulinaemia in the tibialis anterior muscle. 
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3. Methods 

 
3.1 Anthropometric assessment  
 
All volunteers had their anthropometric assessment conducted using standard procedures. 

 

3.1.1 Weight 
 

Weight was determined using Seca electronic scales (Germany) to the nearest 0.1 kilogram 

(kg). The participants were weighed while wearing lightweight clothing (shirt and trousers) 

and no shoes. They were asked to stand in the middle of the scale and remain motionless 

until the measurement was completed.  

 

3.1.2 Height 
 

The height was determined using a Seca 220 stadiometer. The measurements were made in 

meters to the nearest millimetre. All individuals were asked to remove their shoes and 

stand as straight as possible with both feet flat on the floor, heels together and toes pointing 

out, and arms held loosely at the sides. The buttocks, shoulder blades and the back of the 

head were in contact with the vertical board. The head was placed in the Frankfurt plane, 

which is a horizontal line, parallel to the floor, joining the ear canal with the lower border 

of the eye’s orbit. Once they were correctly positioned, the head board was positioned 

firmly on top of the head and the reading of the height was taken [267, 268]. 

 

3.1.3 Body Mass Index  
 

Body Mass Index (BMI) was used as in indicator of subjects’ degree of obesity. This index  

is frequently implemented to estimate prevalence and risks associated with obesity  

according the World Health Organisation categories [269].  Body mass index was 

calculated with the weight (kg) divided by the height squared (m
2
): weight /height

2
. 

 

3.1.4 Waist circumference 

  
Anatomical waist circumference, which is an approximate index of intra-abdominal fat 

mass and total body fat, was measured against bare skin. Each subject was asked to stand 

straight, with arms at the sides and relaxed abdomen. The tape was applied in a horizontal 

plane around the abdomen, halfway between the upper iliac crest and lower rib margin. 

One measurement was recorded to the nearest 0.1 centimetre (cm) at the end of normal 

expiration with the tape taut but not pressing the skin. 
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3.1.5 Dual Energy R- ray Absorptiometry 
  
Dual X-ray Absorptiometry (DEXA) method was implemented to assess body 

composition i.e. fat and lean body mass and distribution. This accurate and precise 

technique is based on a three-compartment model that divides the body into total body 

mineral, fat-free soft (lean) and fat tissue mass, and uses  two low dose x-rays placed at 

different sources to simultaneously  read bone and soft tissue mass. The standard visual 

method is applied to divide the images into trunk, limbs and head. Dexa has been widely 

used to assess the whole body and truncal adiposity [270]. We used DEXA HOLOGIC 

Delfia W 4500 (Hologic Inc, USA) which has CV of 0.68%. Two experienced technicians 

from the bone densitometry department performed the measurements. Participants were 

asked to lie down still on a scanning table, while the scanner passed across their body 

collecting data at 0.5cm intervals. 

 

3.1.6 Magnetic Resonance Imaging 
 

Magnetic Resonance Imaging (MRI) was used to measure abdominal visceral adiposity. 

This is a validated and very safe technique because it does not use ionising radiation and at 

the same time it provides high-quality images of fat amount and its distribution [271, 272]. 

We used Siemens 1.5 T Symphony MR Scanner (software release 4VA15A, Siemens AG, 

Erlangen, Germany) to take axial images of subjects placed in the supine position. Since 

we wanted to obtain more detailed information about visceral fat than a conventional, 

single slice would demonstrate, we acquired 5 non-contiguous slices extending from 5 cm 

below to 15 cm above the level of L4-L5 [41]. A gradient echo 2D FLASH (fast low angle 

shot) sequence (TR = 111ms, TE = 4.18ms, flip angle = 70
o
, slice width = 10 mm, slice 

spacing = 50 mm) was used to obtain T1 weighted images. Regions of subcutaneous and 

visceral fat within the cross-sectional abdominal images were identified using a proprietary 

analytical software package (Mimics, Materialise NV, Belgium). A threshold level for fat 

pixels was set after examining the histogram of pixel values in each image. Fat tissue was 

isolated from other tissues in the image with the help of a seed-growing technique, which 

allows selection of neighbouring pixels of similar values (i.e. within the identified 

threshold. The areas of subcutaneous fat and visceral fat were calculated, and compared 

with total cross sectional area [273]. Adipose tissue volume was converted to mass in 

kilograms using a density of 0.92 for adipose tissue [274].  



 

105 

 

3.2 Blood pressure assessment 
 

Blood pressure was determined using the Omron 705CP blood pressure monitor. The same 

measurement protocol was followed for the screening visit and each formal vascular 

assessment performed before and after treatment. 

Blood pressure was measured after the participants had acclimatised with the Clinical 

Research Facility and rested quietly for at least 5 minutes before the actual measurement. 

The blood pressure was recorded with subjects in a sitting position, on a non-dominant 

arm. Three measurements separated by 2 minutes intervals were made. They were used for 

calculation of mean systolic and diastolic blood pressure. 
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3.3 Laboratory techniques 
 

3.3.1 Lipid profile 
 

Fasting lipids estimations were used to assess subjects’ cardiovascular risk, define 

metabolic traits and assess response to treatment. Venous blood samples were collected 

into Lithium Heparin tubes using the Vacutainer system. They were sent immediately to 

the routine biochemistry laboratory at Southampton General Hospital. There, samples were 

centrifuged, separated and plasma was analysed on a Beckman Coulter DxC automated 

analyser using enzymatic colorimetric methods. Owing to practical reasons, samples were 

not batched for analysis. 

 

3.3.1.1 Total cholesterol 

A timed-endpoint method was used to determine concentration of total cholesterol. In the 

reaction, cholesterol esters are hydrolyzed in the presence of cholesterol esterase to free 

cholesterol and fatty acids. Free cholesterol is then oxidized to cholestene-3-one and 

hydrogen peroxide. The latter reacts in the presence of peroxidase with 4-aminoantipyrine 

and phenol to produce a coloured complex. The change in absorbance measured at 520 nm 

is proportional to the cholesterol concentration. The “day to day” CV was 1.7% at 

5.7mmol/L and 1.7% at 10mmol/ L cholesterol control. 

 

3.3.1.2 HDL-cholesterol 

HDL-cholesterol assay utilized a detergent that inhibits LDL, VLDL and chylomicrons 

reaction with the cholesterol enzymes while allowing release of HDL cholesterol by 

cholesterol esterase. HDL is then oxidised to cholestenone and hydrogen peroxide, which 

reacts with 4-Aminophenazone and N, N-bis (4-sulphobutyl)-m-toluidine-disodium
 

(DSBmT chromogen) to produce a quioneimine pigment, similar to that described above 

for total cholesterol. The change in the absorbance measured at 560 nm is directly 

proportional to the concentration of HDL-cholesterol in the sample. The “day to day” CV 

was 2.1% at 1mmol/L and 2.9% at 3mmol/L HDL-cholesterol controls. 

 

3.3.1.3 Triglycerides 

Triglycerides assay was based on the generation of hydrogen peroxide and quinoneimine in 

a timed endpoint method. Lipoprotein lipase hydrolyzes triglycerides to free fatty and 

glycerol.  The latter is converted by glycerol kinase to glycerol-3-phosphate, which is then 

oxidised to dihydroacetone and hydrogen peroxide. A red quinoneimine dye is produced in 
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the final reaction between hydrogen peroxide 3,5-dichloro-2-hydroxybenzenesulfonic acid 

(DHBS) and 4-aminoantipyrine in the presence of horseradish peroxidase. The change in 

absorbance measured at 520nm is proportional to triglyceride concentration. The “day to 

day” CV was 6.3% at 1mmol/L and 5.9% at 5mmol/L triglyceride control. 

 

3.3.1.4 LDL-cholesterol 

The Friedewald equation [275] was used to calculate LDL-cholesterol concentration 

providing the triglycerides concentration was ≤ 4.0mmol/l as per hospital’s current 

laboratory practice: 

 LDL-cholesterol = Total cholesterol – HDL-cholesterol – (Triglycerides÷2.2) 

 
3.3.2 Glucose 
 

Glucose results were used for screening, and to define metabolic traits and insulin 

sensitivity status. Venous blood samples at screening and during the OGTT were collected 

into Fluoride Oxalate tubes whereas arterialised venous blood samples during 

hyperinsulinaemic clamp were collected into both Fluoride Oxalate and Lithium Heparin 

tubes. Screening samples were sent immediately to the routine laboratory where they were 

processed and analysed on the Beckman DxC. The Fluoride Oxalate samples from OGTT 

and clamps were placed on ice and centrifuged for 10min at 1500 x g within 1 hour from 

collection. The plasma was separated and frozen at -80
o
C. They were analysed after 

thawing on the Beckman Coulter DxC automated analyser in a total of 4 and 5 batches 

respectively. Beckman DxC analyser utilises the hexokinase method for glucose 

estimation. In this method, glucose is phosphorylated to glucose-6-phosphate in the 

presence of ATP, hexokinase and Mg
2+

. Glucose-6-phosphate dehydrogenase reacts then 

with NAD
+
 to form NADH and 6-phosphogluconate. NADH-induced increase in 

absorbance at 340nm is directly proportional to glucose concentration in the sample. 

Baseline and post treatment samples from the same participant were analysed in singleton 

and in the same batch. The “day to day” CV was 2.8% at 2.5mmol/L and 1.3% at 

20mmol/L glucose control.  

The Lithium Heparin samples from the clamp were immediately centrifuged for 10 

seconds at 19500 x g and the plasma glucose was immediately analysed by the bedside on 

the YSI 2300 STAT analyser (Yellow Springs Bioanalytical Products). The YSI 2300 

STAT uses membrane-bound enzyme electrode methodology [276]. Glucose is oxidised to 

gluconic acid and hydrogen peroxidase in the presence of glucose oxidase, which is 

immobilised in a thin membrane between polycarbonate and cellulose acetate layers. 
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Hydrogen peroxidase then diffuses through a cellulose acetate membrane and is oxidised at 

a platinum electrode. The generated current is directly proportional to the glucose 

concentration. The intra-assay CV was 0.2% at 5mmol/L glucose control and 0.3% at 

10mmol/L glucose control. The inter-assay CV was 2.5% at the 5mmol/L glucose control 

and 2.1% at 10mmol/L glucose control.  

 

3.3.3 Insulin 
 

Insulin results were used to calculate insulin sensitivity indices. The blood samples were 

collected into Lithium Heparin tubes during hyperinsulinaemic clamp. They were 

immediately placed on ice and within 1 hour from collection, centrifuged for 10 min at 

1500 x g, separated and plasma frozen at -80
o
C. The sets of pre- and post- treatment 

samples from each volunteer were analysed in the same batch to minimise the bias from 

inter-assay variability. The analysis took place in the endocrine section of the biochemistry 

laboratory in Southampton General Hospital. 

The intact Insulin was measured using the dissociation-enhanced lanthanide 

fluoroimmunoassay (DELFIA) which is a solid phase sandwich immunoassay that uses 

time-resolved fluorometry. A microplate is coated with HUI-018 monoclonal antibodies 

directed against a specific site on Insulin, which immobilises on the plate after a sample 

addition. The biotinylated OXI-005 anti-insulin antibody is then added. It is directed to a 

different Insulin epitope and attaches itself to the solid phase antibody-antigen complex. It 

then binds to the added Europium-labelled streptavidin.  After the addition of each reagent, 

there is a wash cycle to remove any unbound substances and potential interferents. The 

next step involves adding the enhancement solution to dissociate Europium (Eu
3+

) from the 

solid phase bound Europium-labelled antibodies to form a homogenous and long-lived, 

highly fluorescent Eu-(2-NTA)3(TOPO)2-3 chelate solution. Multiple readings are then 

taken by a time-resolved fluorometer using Wallac 1420 multilabel counter. Europium 

fluorescence is proportional to the insulin concentration.  

All standards, Quality Controls (QC) and samples were analyzed in duplicate. The 

intra-assay CV was 3.3% at 2mIU/L, 1.4% at 16mIU/L, 1.5% at 55mIU/L and 1.1% at 

149mIU/L insulin control. The inter-assay CV was 36.6% at 2mIU/L, 12.3% at 16mIU/L, 

8.8% at 55mIU/L and 7.4% at 149mIU/L insulin control. 
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3.3.4 Glycated haemoglobin 

Glycated haemoglobin (HbA1c) represents glucose concentration to which erythrocytes are 

exposed during their lifespan. Clinically it is a useful index of mean blood glucose 

concentration over a period of 16 weeks. HbA1c results were used to investigate its 

association with microvascular dysfunction. HbA1c was determined by a high pressure 

liquid chromatography assay using a cation exchange cartridge on Bio-Rad Variant II 

Turbo (Bio-Rad Laboratories, Irvine, CA, USA). The method was aligned with the 

Diabetes Control and Complications Trial (DCCT). The intra-assay coefficient of variation 

(CV) was 2.5% and the inter-assay CV was 3.4% 

 

3.3.5 Biochemical markers of endothelial function 

 
Biochemical markers of endothelial function were used to assess a proinflammatory state 

in relation to microvascular function. Fasting blood samples were collected into SST tubes 

for hs-CRP, ICAM-1, IL-6 and Adiponectin. The samples were placed on ice and 

centrifuged for 10min at 1500 x g within 1 hour from collection. The serum was separated 

and frozen at -80
o
C. Early morning urine samples were collected into plain containers for 

Albumin to Creatinine Ratio (ACR). They were frozen at -80
o
C. All samples were 

analysed after thawing at the end of the study. Blood samples for hs-CRP and urine 

samples for A/C Ratio were analysed in the Southampton General Hospital routine 

laboratory whereas the samples for the other inflammatory markers were analysed by 

Debbie Smith in the laboratory of Endocrinology and Metabolism Department at the 

University of Southampton. 

 

3.3.5.1 High sensitivity - C reactive protein 

High sensitivity C reactive protein (hs-CRP) concentration was determined on the 

Beckman Coulter DxC automated analyser by the highly sensitive near infrared particle 

immunoassay rate methodology. This assay can measure CRP concentration at extremely 

low levels thus allowing detection of very early inflammatory states and responses.  An 

anti-CRP antibody-coated particle binds to CRP resulting in the formation of insoluble 

aggregates that cause increased turbidity. The change in absorbance measured at 940nm is 

proportional to CRP concentration in the sample. The assay has within run CV at the level 

of 0.07mg/dL of 3.9% and total CV of 5.1%. 
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3.3.5.2 Albumin to Creatinine Ratio 

Microalbumin concentration in urine was measured on the Beckman Coulter DxC 

automated analyser by a turbidimetric method [277]. In the reaction, a specific anti-

albumin antibody binds to albumin present in the urine and forms insoluble albumin-

antibody complexes. The change in absorbance measured at 380nm is proportional to 

albumin concentration in the sample. The estimated within-run CV is 8.7% at 1mg/dL and 

3.7% at 3mg/dL. 

Creatinine concentration was determined on the Beckman Coulter DxC automated analyser 

using the modified rate Jaffé method [278, 279]. In an alkaline solution, creatinine directly 

reacts with the picric acid and forms an orange-red creatinine-picrate complex. The change 

in absorbance measured at 520nm is directly proportional to creatinine concentration in the 

sample. The estimated within and total CV for the method is 1.4% at 91 mmol/dL and 

1.5% at 244 mmol/dL. 

The albumin/creatinine ratio (ACR) is calculated by dividing microalbumin concentration 

expressed in mg/dL by concentration of creatinine expressed in mmol/dL, which provides 

the ratio result expressed in mg/mmol creatinine. 

 

3.3.5.3 Soluble Intercellular Adhesion Molecule-1 

Soluble Intercellular Adhesion Molecule-1(sICAM-1) was determined using ELISA kit 

from R&D Systems Europe, Ltd. (Abingdon, UK). The assay employs quantitative 

sandwich enzyme immunoassay technique. A microplate is pre-coated with a monoclonal 

antibody specific for sICAM-1. 100 l of a conjugate and 100 l of standards, samples or 

controls (two latter pre-diluted) are pipetted into the wells and incubated at room 

temperature for 1.5 hours. Any sICAM-1 present is sandwiched by the immobilized 

antibody and an enzyme-linked polyclonal antibody specific for sICAM-1. Any unbound 

substances and/or antibodies are washed out and a substrate solution is added to the wells, 

and incubated for 30minutes. When colour develops a stop solution is added and the colour 

is read using a microplate reader set at 450 nm. The colour is proportional to the 

concentration of sICAM-1 which is read of the standard curve based on the optical density 

plotted against concentration of each standard. The intra-and inter assay CVs were <10%. 

 

3.3.5.4 Interleukin-6 

Interleukin-6 (IL-6) concentration was measured using high sensitivity Quantikine ELISA 

kit from R&D Systems Europe, Ltd. (Abingdon, UK). It employs quantitative sandwich 

enzyme immunoassay technique. A microplate is pre-coated with a monoclonal antibody 

specific for IL-6. 100 l of samples, standards or controls pipetted into the wells are 
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incubated at room temperature for 2 hours to allow binding of any IL-6 present to the 

immobilized antibody. Any unbound substances are then washed away and an enzyme-

linked polyclonal antibody specific for IL-6 is added to the wells and incubated for further 

2 hours. After another cycle of washes a substrate solution is added to the wells, incubated 

for an hour following which an amplifier solution is added to initiate colour development. 

30 minutes later a stop solution is added and the colour is read using a microplate reader 

set at 490 nm. The colour is proportional to the concentration of IL-6 which is read of the 

standard curve based on the optical density plotted against concentration of each standard. 

The intra-and inter assay CVs were <10%. 

 

3.3.6 Non-Esterified Fatty Acids 

 
Non-esterified fatty acids (NEFA) concentration was measured to assess adipose tissue 

insulin sensitivity. The arterialised venous blood samples were collected into Lithium 

Heparin tubes during a euglycaemic clamp. The samples were placed on ice and within 1 

hour from collection centrifuged for 10 min at 1500 x g, separated and the plasma frozen at 

-80
o
C. All samples were analysed after thawing. Samples were analysed (by a technician in 

the Nutrition laboratory at Southampton General Hospital) on Konelab20xTi automated 

analyzer with Wako NEFA C test kit. NEFA were determined using an enzymatic 

colorimetric method based on the acylation of Coenzyme A by fatty acids in the presence 

of added acyl-CoA synthetase. Formed in this way acyl-CoA is oxidised to 2,3-trans-

Enoyl-CoA and hydrogen peroxide, which participates in the oxidative condensation of 3-

methy-N-ethyl-N-aniline with 4-aminophenazone. The intensity of this reaction product 

colour is measured colorimetrically at 550nm and is proportional to the concentration of 

free fatty acids. Grossly haemolysed samples were excluded from analysis. The intra-assay 

CV was 2.6% and inter-assay CV was 4.3%. 

 

3.3.7 Lactate 
 

Throughout the clamp the arterialised venous blood samples were collected at specific time 

points for the lactate measurements. This was performed to document whether the thigh 

cuff inflations resulted in any significant level of muscle ischaemia that would be easily 

identifiable by increased lactate levels, which could affect muscle perfusion and glucose 

uptake. The blood samples collected into the Lithium Heparin tubes were placed on ice and 

within 1 hour from collection centrifuged for 10 min at 1500 x g, separated and plasma 

frozen at -80
o
C. The plasma was analysed (by researcher and a technician) on the 
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Radiometer ABL 725 blood gases analyser, which employs special biosensors and the 

lactate oxidase method. This method is based on the lactate conversion to pyruvate and 

hydrogen peroxide in the presence of lactate oxidase. Electrons released during oxidation 

of hydrogen peroxide are proportional to the concentration of the lactate in the sample. 

“Day to day” CV was 2.6% at 1.7mmol/L lactate control.  
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3.4 Indices of insulin sensitivity / resistance 
 

All tests employed for the estimation of the peripheral and the whole body insulin 

sensitivity and resistance were carried out at 8:00am in most instances, and in the few 

exceptional cases at 9:00am. All subjects were asked to abstain from alcohol and strenuous 

exercise for 48 hours and to fast for 12 hours before each assessment took place at 

WTCRF.  

 

3.4.1 Oral Glucose Tolerance Test 

 
On arrival at the WTCRF each volunteer was seated comfortable in a chair and the 

intravenous cannula was inserted into the vein of one arm to obtain baseline venous blood 

samples for the measurement of fasting glucose and insulin. After the cannula insertion and 

baseline blood sampling, participants were asked to drink a loading dose of 75 glucose 

solution over one minute. This solution was made of 121ml of Polycal (Nutricia, 

Netherlands) diluted in 69ml of cold water to give a drink of the total 200ml volume. The 

next blood sample was taken at 30, 60 and 120 minutes later. Both samples were processed 

and analyzed as described above in chapter 3.3.2. Glucose results from both samples were 

used to define glucose intolerance according to WHO criteria [118]. 

 
3.4.2 HOMA-IR and QUICKI 
 

The results of glucose and insulin concentrations, which were obtained from the fasting 

blood samples taken at the beginning of OGTT, were implemented in the mathematical 

models of insulin sensitivity. HOMA-IR and QUICKI were calculated using the following 

formulae:  

HOMA-IR = (I0 x G0)/22.5 

QUICKI = 1/(log I0+ logG0) 

where I0 represents fasting insulin concentration in mIU/l and G0 represents fasting glucose 

concentration in mmol/L. 

 

3.4.3 Hyperinsulinaemic euglycaemic clamp 
 

A stepped-hyperinsulinaemic glucose clamp was used to assess whole body and adipose 

tissue insulin sensitivity [127, 280] at baseline and after intervention while the subjects 

continued with their study medication. This technique has been widely employed in human 
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studies investigating the pathophysiology of insulin resistance in obesity, metabolic 

syndrome or diabetes and it has had an excellent safety record [281]. 

On arrival at the WTCRF each volunteer was weighed as previously described and asked 

to take a comfortable, sitting position on a bed. In the same arm there were two intravenous 

catheters inserted. The first cannulation was performed on hand or wrist using a retrograde 

technique and the 20-gauge catheter. The hand was warmed up to 50 C in a hotbox. This 

improved the oxygenation of the venous blood thus providing so-called “arterialised” venous 

blood samples [282]. The level of oxygenation was checked at 2-3 time points throughout 

the clamp by measuring the blood gases. The arterialised venous blood samples were used 

for the measurements of glucose, insulin, NEFA and lactate concentration. The blood 

samples for glucose measurements were taken at 5 minute intervals throughout the clamp, 

centrifuged and plasma was analysed at the subject’s bedside using the YSI 2300 STAT as 

described in chapter 3.3.2. The blood samples for insulin, NEFA and lactate measurements 

were taken at baseline, 90, 120 minutes and at 10 minutes intervals during the last 30 

minutes of each (low and high dose) insulin infusion (Figure 3.1), separated and frozen at -

80 C for analysis as described in previous chapters. The patency of the retrograde 

intravenous catheter was maintained with 0.9% Normal Saline infusion at a rate of 1 drop 

per minute. 

The 18-gauge catheter was placed in the antecubital fossa, which was used for the 

exogenous insulin infusion. Human insulin (Actrapid, Novo Nordisk) was given at a rate 

0.2mIU/kg/min for one hour followed by 7-minutes of stepped priming infusion and then 

the continuous insulin infusion at a rate of 1.5mIU/kg/min for two hours. The insulin 

infusion was prepared in 0.9% NaCl to which 1 ml of subjects’ blood was added to prevent 

adsorption of insulin to the plastic surface of the syringe walls and administered with the 

syringe driver Syramed usp 6000. Plasma glucose measurements obtained at 5-minute 

intervals by YSI 2300 STAT, formed the basis for the adjusting the rate of 20% Dextrose 

infusion (using the variable-speed infusion Baxter pump) to maintain the blood glucose 

concentrations at the level of about 5mmol/l. 

 Following the venous cannulation subjects were allowed one hour to adjust to the 

new environment before the insulin infusion was commenced. At the end of the clamp 

procedure, the 20% Dextrose infusion was slowly tailed off over about 30 minutes while 

the subject had lunch to avoid hypoglycaemia. The whole-body insulin-mediated glucose 

disposal rate (M-value) was estimated from the total amount of glucose infused during the 

last 30 min of the clamp when steady state insulin concentration had been achieved. M 

value was expressed in milligrams per body kilogram per minute. The mean of the four 



 

117 

 

insulin concentration results from the blood samples taken at 150, 160, 170 and 180 

minutes determined the steady-state insulin concentration (I value, expressed in milliunits / 

litre). M value divided by I value defined the insulin sensitivity index (M/I) expressed as 

mL/kg of body weight/minute/mIU.   

The adipose tissue sensitivity to low dose (0.2mIU/L) insulin infusion was calculated as 

the percentage of change between the mean NEFA concentration at baseline and after 60 

minutes of low dose infusion. 
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Figure 3.1 Diagram of stepped hyperinsulinaemic euglycaemic clamp 

 

Hand warming allows retrograde cannulation which is followed by one hour period of 

adjustment to a new environment followed by one hour of low dose insulin infusion and 

two hours of high dose insulin infusion. During the last 30 minutes of high insulin dose 

infusion, the steady state is reach which allows estimation of M-value and mean insulin 

concentration (I) which are used to calculate insulin sensitivity index M/I.  
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3.5 Fitness and physical activity 
 

3.5.1 Assessment of fitness 
 

Cardiorespiratory fitness of each volunteer was measured in terms of maximum volume of 

oxygen (VO2 max). It was determined by using a maximal-grading treadmill test and the 

Cortex Metalyser II (Cortex Biophysics GmbH, Germany). Subjects were asked to avoid 

strenuous exercise and alcohol for 48 hours beforehand. They were explained the 

procedure but no practice treadmill was undertaken beforehand. Participants were fitted 

with the air-tight facemask for gas analysis, blood pressure monitor on a non-dominant arm 

and a Polar  Hear Rate monitor. After a short period of acclimatisation to the facemask 

and baseline measurements subjects were asked to perform an incremental treadmill test. 

The test commenced at 1.3m/s (3mph) at a 0% gradient. It was increased every 2 minutes 

by either 2% gradient or speed of 0.25m/s (0.5mph), for example: stage 1= 1.3m/s and 0% 

gradient, stage 2= 1.3m/s and 2% gradient, stage 3= 1.55m/s and 2% gradient, stage 4= 

1.55m/s and 4% gradient, etc. Heart rate was monitored continuously and blood pressure 

was measured at the time of each treadmill adjustment. Unless subjects felt unwell or 

experienced chest pain or had a drop or excessive rise in blood pressure over 250mmHg, 

they were asked to continue until exhaustion and until they reached a respiratory quotient 

over 1.1 and 90% of their target hear rate as determined by formula: 220-age. All subjects 

completed the treadmill, which was terminated only for the reasons of volitional fatigue.  

Oxygen uptake and carbon dioxide production was analysed breath-by-breath using 

metabolic gas analyser system Metalyser II.  

 

3.5.2 Assessment of physical activity 
 

Physical activity of each participant was measured in terms of Physical Activity Energy 

Expenditure (PAEE), Metabolic Equivalent of Task (MET) which is a metabolic 

equivalent of Kcal/hr/kg. It was assessed using a validated activity monitor SenseWear 

Armband Pro2 with a software version 6.1 (Bodymedia Interantional, Milan, Italy) [283-

285]. This multisensor device contains two accelerometers detecting movement in two 

planes, a galvanic skin, temperature sensor and a near patient temperature sensors. The 

physiological body signals recorded by the sensors are used to calculate energy 

consumption based on predetermined algorithms incorporating free-living activity 

recognition patterns. The Armband can collect data for a period up to 2 weeks and store it, 

without the need of recharging the unit, until the transmission of data to the computer using 

USB connection and manufacturer’s software. Before use, the Armbands Pro 2 were 
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individually programmed with details of each subject’s weight, height, hand dominance 

and smoking status, and identification code. All subjects were asked to wear the armband 

continuously on the right arm, according to the manufacturers instructions, for a period of 

7-10 days. This was to gain the most reliable estimate of mean PAEE for each individual 

during a typical week. Mean METs were estimated for a 24-hour period of the whole 

period the device was worn.  
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3.6 Assessment of cardiac diastolic function and arterial 

stiffness 
  
Aortic Augmentation Index at 75 beats/min heart rate (Aix@75HR), ventricular Ejection 

Duration (ED) and Subendocardial Viability Ratio (SEVR) were estimated as measures of 

arterial stiffness and cardiac diastolic function using Pulse Wave Analysis (PWA).  This is 

a non- invasive, based on applanation tonometry technique, which gained popularity in 

research studies on healthy volunteers because of restriction in the use of cardiac 

catheterization [286]. PWA has been validated for measurement of diastolic function in 

terms of myocardial perfusion relative to left ventricular workload which is expressed as 

SEVR [287, 288].   

Pulse wave analysis was performed by a single observer, using SphygmoCor SCOR-PVx 

version 7.1 (AtCor Medical, Sydney, Australia). The blood pressure result checked 

immediately before the beginning of measurements and using the standard protocol (as 

described in the chapter 3.2) was input into the SphygmoCor system. This was to allow 

accurate computing of data collected during applanation tonometry. Each subject sat 

comfortably in a chair, with a non-dominant forearm on the table over a pillow for support 

and their palm facing upwards with wrist in the dorsiflex position. The operator’s forearm 

was also rested on a firm surface to minimise any possible tremor interference. High-

fidelity micromanometer-tipped probe with a frequency response of > 2 kHz (Millar 

Instruments, Houston, Texas) was placed on the wrist. The radial artery was lightly pressed 

until a consistent, good quality (large, moving across the screen in a steady vertical 

position) waveform was produced for at least 10 seconds before it was captured for 

analysis. Waveforms were processed using specialised software to calculate an averaged 

radial artery waveform and to derive a corresponding central aortic pressure waveform 

using a previously validated generalized transfer function [289, 290]. The quality index, 

which represents reproducibility of the waveform, was for all waveform recordings ≥ 95. 
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3.7 Microvascular function studies 
 

A novel and non-invasive approach was adopted to perform microvascular function studies. 

This was technically easier and allowed investigation of a larger cohort of subjects then the 

other currently available but invasive methods. The investigations were performed before and 

after 6 months of treatment with Atorvastatin. 

 

3.7.1 Venous congestion plethysmography 
 

Microvascular filtration capacity (Kf) and muscle blood flow were assessed using a venous 

congestion plethysmography system (Filtrass Angio, DOMED, Munich, Germany) with a 

passive inductive transducer of   5 m accuracy (Compumedics DWL, Singen, Germany). 

The investigator followed a small pressure step venous congestion protocol. The studies 

were conducted in a quiet room, at an ambient temperature of 20 
o
C. Subjects were asked 

to remove the clothing from the right leg and lay still in a supine position throughout the 

study. Results of blood pressure checked in this position using standard protocol (as 

described in the chapter 3.2) were input to Filtrass Angio system. This was necessary for 

accurate data collection. The subject’s right thigh was supported with one pillow and foot 

with two pillows so that the investigated calf was at the heart level and not touching the 

bed or covers (Figure 3.2). This was to minimize any possible interference during the 

recording. Each subject had their calf circumference measured at widest point to select 

appropriate strain gauge size. The Filtrass strain gauge sensor unit, with its inelastic nylon 

measuring line in a flexible guide holder, was placed around the calf at the point of 

maximum circumference and attached to the Filtrass sensor. A congestion cuff was 

wrapped around the ipsilateral thigh and coupled into the Filtrass unit for automatic 

inflation during the protocol. At the beginning of the protocol, the strain gauge 

automatically measured the calf circumference, adjusted its tension and then calibrated 

itself. Small, 10 mmHg cumulative increases in congestion pressure were applied, starting 

from zero to 60 mmHg. The maximum cumulative congestion pressure step did not exceed 

the subject’s diastolic blood pressure. Each pressure step was sustained for just over 4 min 

(Figure 3.3). In addition, to measure resting muscle blood flow (Qa rest) before the first 

pressure step, the congestion cuff was rapidly inflated three times up to 50 mmHg. The 

congestion pressure was maintained for 10 seconds on each occasion and cuff was then 

deflated (Figure 3.3, 3.4 and 3.6). This procedure was also performed at the end of each 

subsequent 4-minute pressure step (6 x ~ 10 mmHg) to measure capillary blood flow (Qa) 

in order to assess integrity of the signalling pathway [141, 291].  
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At the end of each step, to minimize the pitting, the strain gauge tension was automatically 

rebalanced to the starting tension. The whole protocol lasted between 30 and 40 minutes.  

The collected data was analyzed using the manufacturer’s software after completion of 

research project by an independent blinded investigator. 
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Figure 3.2 Photograph of Venous Congestion Plethysmography 

 

The subject lies in supine position in a quiet room and at an ambient temperature with both 

legs supported on pillows so that the investigated calf is at the level of heart. The 

electromechanical sensors attached to the limb measure changes in the limb circumference 

in response to venous congestion using pressure cuff applied on the ipsilateral limb.     
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Figure 3.3 Raw trace of small trace plethysmography to measure K f with added Qa 

measurement at each step 

 

The trace shows a complete plethysmographic recording from the study. The first three 

rectilinear peaks represent the 3 blood flow measurements (Qa). They are followed by the 

progressive rectilinear increases in pressure, representing the cumulative cuff pressure 

(Pcuff) increases and the brief increases (single peaks) in pressure to 80 mmHg at the end of 

each cumulative pressure step, used for the assessment of Qa at each step. The curvilinear 

trace reflects the calf volume response to each of these cumulative pressure steps.  

 

 

Figure 3.4 Raw trace of capillary blood flow (Qa) measurement 

 

The trace depicts the responses to the three initial 50 mmHg pressure steps (each lasting 10 

seconds) used for the assessment of blood flow (Qa). The rectilinear traces reflect the 

pressure steps and curvilinear traces reflect the calf volume responses to the increase in 

pressure. BF= beginning of pressure cuff inflation, pause = release of pressure cuff 
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Figure 3.5 Assessment of muscle filtration capacity (K f) with venous congestion 

plethysmography 

 

The cumulative 10mmHg congestion pressure steps result in the increase in limb volume 

and fluid filtration. Fluid filtration (Jv) is measured from the slope of the last 2 minutes of 

the volume response. Kf is derived from the relationship between Jv and Pcuff.  

 

 

 

Figure 3.6 Assessment of muscle capillary blood flow (Qa) with venous congestion 

plethysmography 

 

The graph depicts the increase in the limb volume in response to applied single congestion 

pressure step. The slope of the first 3 seconds of the swelling is used to calculate muscle 

blood flow. Qa = muscle blood flow, Pcuff = congestion pressure. 
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The resting capillary muscle blood flow (Qarest) was calculated from the slope of the first 

3 seconds of the volume response to the transient pressure elevations (as described above) 

before the beginning of the whole protocol [239, 292]. Qarest was expressed in ml/min/100 

ml tissue. Fluid filtration rate (Jv) was estimated from the slope of the last 2 minutes of the 

volume change in response to six, 10 mmHg pressure steps (0 to 60 mmHg, as described 

above), to allow for the completion of vascular filling. This was plotted against cuff 

pressure (Pcuff). Jv was expressed in ml/min/100 ml tissue. Filtration capacity (Kf) - a 

function of exchange surface area and permeability [293, 294] - was calculated from Jv 

versus Pcuff plot as the slope of that relationship and was expressed in 

ml/min/mmHg/100ml tissue (Figure 3.5 and 3.7). The CV for Kf measurement was 14.5%. 

Isovolumetric venous pressure (Pvi) which represents local plasma oncotic 

pressure/inflammation was estimated as an intercept between the slope representing Kf and 

congestion pressure (Pcuff) (Figure 3.7). 
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Figure 3.7 Diagram representing calculation of microvascular filtration capacity and 

isovolumetric pressure based on plethysmographic measurements. 

 

Net transcapillary fluid movement (Jv) is plotted against congestion pressure (Pcuff) to give 

a linear relationship. Jv =  Kf [(Hydrostatic pressure) – δ(Oncotic pressure)], where δ is the 

osmotic reflection coefficient and Kf represents microvascular filtration capacity (Kf = 

permeability x surface area). Intercept Pvi represents isovolumetric venous pressure.  
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3.7.2. Laser Doppler fluximetry 
 

Functional microvascular dilatory capacity was assessed with cutaneous Laser Doppler 

Fluximetry (LDF) using a 785 nm, 20 mW laser and 4 mm separation (DP1-V2-HP) probe 

(Moor Instruments Ltd, Axminster, UK) with a detection depth of between 3.5 and 4.5 mm 

[143]. Vasomotor control was estimated using decomposition of low frequency periodic 

oscillations within the LDF signal [295].  

The studies were conducted in a designated room at an ambient temperature of 20 
o
C. All 

subjects were asked to expose their non-dominant leg and stay still, in a reclining position 

on a bed. Occlusion thigh cuff with the attached sphygmometer was tightly wrapped round 

the non-dominant thigh and secured with Velcro. The leg, slightly flexed at the knee, was 

placed on a mouldable cushion to ensure individual’s comfort. The high power probe, 

which was directed at the muscle, was secured with sticky O ring over the lateral aspect of 

anterior tibialis muscle. Fibre optic cables sat perpendicular to limb and were directed 

laterally away from leg. The measurements were made three times within duration of the 

euglycaemic hyperinsulinaemic clamp: in pre-insulin stage - during the 30 minutes just 

before the beginning of insulin infusion- and during the last 30 minutes of low and high 

insulin dose (Figure 3.7). 

Within each stage of the clamp, the baseline blood flux was recorded for 10 minutes at rest 

(Resting Flux = RF), three minutes during arterial occlusion (dynamic test) and 10 minutes 

during a reactive hyperaemia to arterial occlusion (PORH). PORH was created by 

inflating, over less then 40 seconds, thigh cuff to 200 mmHg, maintaining the pressure for 

3 minutes and then releasing it (Figure 3.8). The recordings with any significant movement 

artefacts during any stage laser Doppler fluximetry were excluded from analysis. During 

each stage of clamp, just before the blood flux measurements, participant’s blood pressure 

was measured using standard protocol as described in chapter 3.2.  

Mean resting LDF was determined in arbitrary units (AU) at baseline over the final 5 min 

before the cuff inflation (RF),  during the 3 min of arterial occlusion to assess effectiveness 

of the occlusion, and at peak flux value above baseline after release of the cuff (Peak Flux 

= PF). The cutaneous vascular conductance (CVC) was calculated as flux in AU divided 

by the mean arterial pressure in mmHg. This calculation was done to account for any 

changes in blood pressure that may have occurred during the clamp.  

The area under the flux response from baseline curve (AUC) was estimated as previous 

studies showed that the PORH response to ischaemia presented distinct patterns associated 

with cardiovascular risk [236, 296] .  
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Since there is no consensus about expression of PORH flux data [297], the pre-insulin 

values of RF, the percentage increase in PF relative to RF (PF%RF) and AUC were 

compared to the values measured during insulin infusion. This comparison was used to 

assess the insulin-induced change in dilator capacity.  
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Figure 3.8 Diagram of LDF measurements during stepped hyperinsulinaemic 

euglycaemic clamp 

 

Laser Doppler Fluximetry (LDF) to assess functional microvascular dilatory capacity was 

performed for half an hour just before insulin infusion and during the last 30 minutes of 

both low and high dose insulin infusions. M/I = Insulin Sensitivity Index 
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Figure 3.9 Raw trace of blood flux measured by Laser Doppler Fluximetry before, 

during and after 3 minutes of arterial occlusion 

 

The trace shows part of the Laser Doppler Fluximetry recording from the study. The blood 

flux was measured for 10 minutes during the rest (on the left hand side), for 3 minutes 

during the arterial occlusion achieved by inflation of the pressure cuff up to 200mmHg and 

for 10 minutes during reactive hyperaemia to arterial occlusion (PORH); PF = peak flux, 

RF = resting flux 
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4. Central adiposity and the relationships between 

measures of glycaemia and microvascular function 

 
4.1 Introduction 
 

The links between obesity, diabetes and cardiovascular disease are well established by now 

[2, 11, 12]. There is also a body of evidence linking visceral adiposity with an increased 

risk of developing insulin resistance, type 2 diabetes and cardiovascular complications [52, 

54-56, 61]. Central obesity and hyperglycaemia are recognised features of metabolic 

syndrome and pre-diabetic states [298, 299]. Hyperglycaemia is a widely accepted 

biochemical marker for the diagnostic criteria of type 2 diabetes, which are based on a 

threshold in the risk of microvascular complications [118]. In clinical practice, the 

assessment of glycaemia in diabetics is commonly based on the measurement of glycated 

haemoglobin (HbA1c) rather than glucose concentrations. Moreover, new clinical 

recommendations from the American Diabetes Association advocate the use of HbA1c ≥ 

6.5% (47.5mmol/mol Hb) for the diagnosis of diabetes and the levels of 5.7-6.4% (38.8-46 

mmol/mol Hb) to define pre-diabetes [300]. Glycated haemoglobin - a surrogate marker 

for the chronic hyperglycaemia - circulates for the lifespan of a red blood cell and reflects 

the prevailing blood glucose during the preceding twelve weeks. For this reason and 

because it does not require fasting and has low intra-individual variability [301], HbA1c 

may also be useful for the assessment of exposure to glucose among those without 

diabetes. Furthermore, the use of HbA1c is being recommended for the estimation of mean 

blood glucose using derived equations [302]. 

Several epidemiological studies showed an association between HbA1c and increased 

cardiovascular disease and mortality among type 2 diabetics [303-306]. Moreover, a 

positive linear association between CVD risk and glucose concentrations extends well 

below the glucose threshold for the diagnosis of type 2 diabetes, i.e. to the levels for 

glucose intolerance and impaired fasting glycaemia [306-310]. There is growing evidence 

that blood glucose concentrations in the high-normal range are also associated with an 

increased risk of cardiovascular disease [304, 311] and that there is an independent 

association between glycated haemoglobin levels and cardiovascular disease in non-

diabetic populations [227, 301]. Most recently the ARIC study provided additional data on 

the predictive value of HbA1c in non-diabetic but overweight/centrally obese population. 

The results from this large, prospective (median 14-years follow up) study demonstrated 

that HbA1c was not only a strong predictor of developing diabetes but also an important 

marker of cardiovascular risk in non-diabetics after adjusting for age, sex and race even 
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within the normal (5.0 - 5.5%) range of glycated haemoglobin and also at its lower 

concentrations [301]. This association did not change after adjusting for fasting glucose. 

The explanation of those associations is unclear and requires further research. 

Since the diagnostic criteria for diabetes are largely based on the evidential links between 

HbA1c and microvascular disease such as retinopathy [300], it is possible that in the non-

diabetic population glycaemia levels relate in some way to microvascular dysfunction. 

Glycated haemoglobin is strongly influenced by levels of insulin secretion and insulin 

sensitivity among people with type 2 diabetes [312]. It is well recognised that insulin has a 

vasodilatory effect on the resistance vessels. It has been shown that insulin increases blood 

flow and microvascular perfusion in the skin [133, 140] and more importantly in skeletal 

muscle [145, 146] thus improving glucose delivery to the myocytes [149]. It was suggested 

by Baron et al. that the defective action of insulin to increase blood flow to the insulin-

sensitive tissues is a main contributor to insulin resistance [313]. More recent studies have 

proposed that a diminution in glucose uptake by skeletal muscle in obesity is due to 

impaired insulin-dependent microvascular dilatory responses [147, 148] and capillary 

recruitment [152, 164]. There is also evidence for non-insulin mediated mechanisms 

regulating microvascular function such as exercise-induced functional capillary 

recruitment [156]. However, the effects of microvascular exchange capacity on the 

efficacy of glucose uptake in tissues have not been explored in any depth.  

It is plausible that in centrally obese people at risk of developing type 2 diabetes, factors 

affecting peripheral tissue glucose delivery such as microvascular dysfunction could 

decrease glucose uptake in skeletal muscle through impaired nutrient exchange and thereby 

have an impact on HbA1c. Thus an association between the levels of glycated haemoglobin 

and cardiovascular disease could be mediated by microvascular dysfunction in skeletal 

muscles - this association that has not been described to date.  Additionally, factors such as 

physical inactivity, reduced fitness, visceral adiposity or decreased skeletal muscle insulin 

sensitivity could influence both skeletal muscle microvascular function, in particular 

microvascular exchange capacity, and HbA1c. A better understanding of the factors 

contributing to the variance in HbA1c may provide explanations for the mechanism 

underlying the association between glycaemia and risk of CVD in non-diabetic but obese 

people. 

 

The aim of this study was to investigate the relationship between skeletal muscle 

microvascular function and HbA1c in people with central obesity. In particular, we aimed 

to assess the effects of skeletal muscle microvascular exchange capacity, based on the 
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notion that filtration capacity in skeletal muscle would regulate tissue exchange of glucose 

and thereby influence HbA1c. We tested this hypothesis taking care to estimate the impact 

of potential mediators such as muscle insulin sensitivity, physical inactivity and 

cardiorespiratory fitness, which are known to affect plasma glucose concentrations as well 

as microvascular exchange capacity [221]. In addition, we intended to assess the 

proportion of the variance in HbA1c that could be explained by physiological and 

biochemical measurements of factors known to influence glucose tolerance. 
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4.2 Methods 
 

White, Northern European subjects with central obesity defined as waist circumference ≥ 

94 cm for men and ≥ 80 cm for women, according to IDF metabolic syndrome diagnostic 

criteria, participated in this study. All subjects underwent oral glucose tolerance testing 

with a 75-g glucose load and samples were collected in the fasting state, at 30, 60 minutes 

and 2 hours. Only non-diabetic subjects were included into the study. In order to examine 

individuals at modest risk of future diabetes and cardiovascular disease, only volunteers 

with an estimated CVD risk of less than 20% over 10 years, based on the equation derived 

from the Framingham Heart Study, were eligible to participate in this study. 

HbA1c was measured by a DCCT-aligned high pressure liquid chromatography (HPLC) 

method. Fasting lipid profiles were measured in relation to cardiovascular risk assessment 

and glycaemia, and plasma IL-6, sICAM-1 and urinary ACR to assess proinflammatory 

state in relation to microvascular function. Detailed information about the laboratory 

analysis was provided in the chapter 3.3. 

Skeletal muscle microvascular function was assessed with regards to filtration and 

functional dilator capacity. Venous congestion plethysmography employing a Filtrass 

system was performed to measure baseline blood flow Qa, isovolumetric venous pressure 

(Pvi) and filtration rate (Jv), and to establish skeletal muscle exchange capacity (Kf). Laser 

Doppler fluximetry was used for recording functional dilatory capacity, which was 

assessed by measuring post occlusive reactive hyperaemia (PORH) during a 

hyperinsulinaemic clamp. PORH was expressed as a percentage increase in pressure flow 

relative to resting flow (PF%RF). The detailed description of both measurements and 

calculations was provided in the methods chapter. 

Anthropometry, body composition and visceral fat estimation were performed using 

methods previously described in detail in chapter 3.1. 

In order to assess subjects’ insulin sensitivity and microvascular function response to 

insulin, a hyperinsulinaemic euglycaemic clamp was conducted. We calculated a ratio of 

glucose disposal rate (M-value) and mean insulin concentration during the last 30 minutes 

of the clamp as an index of insulin sensitivity (M/I). 

Fitness was estimated with the standard maximal oxygen uptake technique during treadmill 

testing and physical activity was assessed in terms of mean MET during a period of seven 

to ten days (representative of a typical week) of wearing an activity monitor (SenseWear 

Armband Pro2). 

All statistical analyses were performed using SPSS for Windows version 16.0. The 

normally distributed data were presented as means and SD, and Pearson correlation 
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coefficients were used for univariate regression analyses. For the skewed data presentation 

we used medians, ranges and Spearman correlation coefficients. Student’s t test was 

undertaken to compare mean values of normally distributed data.  

The HbA1c data were categorised into tertiles to facilitate its presentation and 

interpretation. In order to examine differences between HbA1c tertiles and other variables 

as well as the linear trends across tertiles we applied one way ANOVA. We also used 

multivariate linear regression models with HbA1c as the outcome variable to describe 

factors that were independently associated with HbA1c. Factors used in this model as 

explanatory (independent) variables were chosen from the results of univariate analysis 

providing they had statistically significant associations with HbA1c. Additionally, age and 

sex were included into multivariate analysis. A p value of <0.05 was considered to be 

statistically significant for all analyses.  

 



 

149 

 

4.3 Results 
 

The baseline characteristics of 47 subjects studied in this research project are presented in 

Table 4.1 and the characteristics stratified by gender are shown in Table 4.2. The majority 

of participants were middle aged, normotensive and with a normal fasting lipid profile, in 

particular with normal or mildly increased triglycerides. All participants were 

normoglycaemic with mean ± SD glycated haemoglobin of 5.3 ± 0.5%. Fifteen subjects 

had HbA1c in the pre-diabetic range of 5.7-6.3%, according to ADA new diagnostic criteria 

and of those, 2 subjects had impaired fasting glycaemia and 5 had glucose intolerance. Six 

more subjects with abnormal glucose tolerance test had HbA1c less than 5.7%. The levels 

of glycated haemoglobin were similar between men and women, but the latter group had 

significantly lower mean fasting glucose concentration. Although all subjects had central 

obesity as defined by IDF criteria, women had statistically significantly lower waist 

circumferences and amount of visceral fat, but greater total body adiposity. CVD risk in 

women was half of the risk in men. Women were significantly less fit and had higher 

HDL-cholesterol levels than men. The microvascular function as well as IL-6 and sICAM1 

levels were similar amongst both groups. 
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 Table 4.1 Baseline characteristics of study population, n=47 

 
 
Variable 

 
Mean ± SD 

 
Range 

 
Age (years) 

 
51.5 ± 9.3 

 
29.0 - 69.6 

 
Waist circumference (cm) 

 
104.5 ± 12.3 

 
86.5 - 151.0 

 
BMI (kg/m

2
) 

 
31.8 ± 4.6 

 
25.3 - 47.9 

 
DEXA total body fat (kg) 

 
32.1 ± 9.2 

 
18.7 - 58.5 

 
DEXA total body fat (%) 

 
36 ± 7.2 

 
21.2 - 47.5 

 
DEXA trunk fat (kg) 

 
16.5 ± 4.7 

 
8.9 - 31.9 

 
DEXA trunk fat (%) 

 
18.5 ± 3.2 

 
10.2 -24.8 

 
MRI visceral fat (kg) 

 
3.6 ± 1.6 

 
1.1 - 7.1 

 
Blood pressure systolic (mmHg) 

 
133 ± 130 

 
93 - 155 

 
Blood pressure diastolic (mmHg) 

 
82 ± 9 

 
64 - 104 

 
CVD risk (%) 

 
7.2 ± 5.1 

 
0 - 17.3 

 
Total cholesterol (mmol/L) 

 
5.8 ± 1.0 

 
3.2 - 9.3 

 
LDL-cholesterol (mmol/L) 

 
3.7 ± 0.9 

 
1.7 - 7.0 

 
HDL-cholesterol (mmol/L) 

 
1.4 ± 0.3 

 
0.9 - 2.5 

 
Triglycerides (mmol/L) 

 
1.4 ± 0.7† 

 
0.4 - 2.9 

 
HbA1c (%)  

 
5.5 ± 0.3 

 
4.9 - 6.3 

 
Fasting Glucose (mmol/L) 

 
5.3 ± 0.5 

 
4.2 - 6.6 

 
VO2 max (ml/min/kg) 

 
22.4 ± 7.65 

 
8.35 - 52.45 

 
PAEE (MET) 

 
1.27 ± 0.17 

 
0.83 - 1.55 

 

M/I ((mg L)/kg/min/mIU)  

 
3.21 ± 1.26 

 
0.97 - 6.26 

 
Kf (×10

-3
ml/min/mmHg/100ml tissue) 

 
3.86 ± 1.13 

 
3.86 ± 1.13 

 
Qa resting (ml/min/100ml tissue) 

 
-1.70 ± 2.23 

 
-5.0 - 4.0 

 
Pvi (mmHg) 

 
20.31 ± 7.0 

 
9.24 - 38.3 

 
Albumin:Creatinine ratio (mg/mmol) 

 
0.43 ± 0.51† 

 
0 - 2.3 

 
sICAM-1 (ng/L) 

 
 0.23 ± 0.04 

 
0.16 - 0.32 

 
IL-6 (pg/ml) 

 
2.1 ± 1.0 

 
0.8 – 5.1 

† median range 
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Table 4.2 Baseline characteristics of study population by gender, n=47 

 
 
Variable 

 
Mean ± SD 

 
p- value 

 
Men (n=19) 

 
Women (n=28) 

 
Age (years) 

 
54.8 ± 8.9 

 
49.1 ± 8.7 

 
0.03* 

 
Waist circumference (cm) 

 
111.0 ± 12.7 

 
101.4 ±10.6 

 
0.006* 

 
BMI (kg/m

2
) 

 
32.1 ± 5.0 

 
31.9 ± 4.4 

 
0.86 

 
DEXA total body fat (%) 

 
29.5  ± 6.0 

 
40.6 ± 3.8 

 
0.0001* 

 
DEXA trunk fat (kg) 

 
15.8 ± 5.4 

 
17.2 ± 4.2 

 
0.34 

 
MRI visceral fat (kg) 

 
4.6 ± 1.5 

 
2.9 ± 1.3 

 
0.001* 

 
Blood pressure systolic (mmHg) 

 
136 ± 10 

 
132 ± 3 

 
0.38 

 
Blood pressure diastolic (mmHg) 

 
83 ± 9 

 
81 ± 8 

 
0.47 

 
CVD risk (% per 10 years) 

 
10.6 ± 4.4 

 
5.0 ± 4.0 

 
0.0001* 

 
Total cholesterol (mmol/L) 

 
5.5 ± 0.7 

 
5.9 ± 1.2 

 
0.22 

 
LDL-cholesterol (mmol/L) 

 
3.6 ± 0.7 

 
3.8 ± 1.1 

 
0.63 

 
HDL-cholesterol (mmol/L) 

 
1.3 ± 0.2 

 
1.5 ± 0.4 

 
0.01* 

 
Triglycerides (mmol/L) 

 
2.1 (0.5-2.6)† 

 
1.3 (0.4-2.9)† 

 
0.57 

 
HbA1c (%)  

 
5.5 ± 0.3 

 
5.5 ± 0.3 

 
0.77 

 
Fasting Glucose (mmol/L) 

 
5.4 ± 0.7 

 
5.0 ± 0.6 

 
0.03* 

 
VO2 max (ml/min/kg) 

 
25.8 ± 8.8 

 
19.1 ± 6.6 

 
0.006* 

 
PAEE (MET) 

 
1.31 ± 0.15 

 
1.25 ± 0.19 

 
0.22 

 

M/I ((mg L)/kg/min/mIU)  

 
3.09 ± 1.32 

 
3.31 ± 1.24 

 
0.60 

 
Kf (×10

-3
ml/min/mmHg/100ml) 

 
3.8 ± 1.2 

 
4.0 ± 1.1 

 
0.54 

 
Qa resting (ml/min/100ml tissue) 

 
-1.64 ± 2.2 

 
-2.29 ± 2.4 

 
0.39 

 
Pvi (mmHg) 

 
17.4 ± 5.7 

 
23.3 ± 7.05 

 
0.009* 

 
Albumin:Creatinine ratio (mg/mmol) 

 
0.20 (0.0-1.5) † 

 
0.40 (0.0-2.3) † 

 
0.39 

 
sICAM 1 (ng/L) 

 
0.24 ± 0.04 

 
0.23 ± 0.05 

 
0.23 

 
IL-6 (pg/ml) 

 
2.3 ± 1.4 

 
1.9 ± 0.7 

 
0.19 

  * p < 0.05, statistically significant, † median range 
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Figure 4.1 Relationship between glycated haemoglobin and microvascular exchange 

capacity 
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The univariate analysis indicated that age was not significantly associated with HbA1c but 

the degree of visceral adiposity strongly correlated with glycated haemoglobin. As 

expected, there was a positive and statistically significant association between HbA1c and 

all glucose measurements during an oral glucose tolerance test (Table 4.3). Strong negative 

correlations were present between HbA1c and measures of fitness, physical activity, insulin 

sensitivity and microvascular exchange/filtration capacity. The scatter plot of the 

relationship between HbA1c and Kf (Figure 4.1) confirmed a good and strong linear 

correlation (r=-0.44, p=0.006). Filtration capacity did not correlate with VO2 max (r=0.21, 

p=0.20), whereas functional dilatory capacity showed positive association (r=0.43, 

p=0.03). There was a lack of significant association with HbA1c and the other estimates of 

microvascular function, i.e. resting blood flow (r=0.21, p=0.21) and dilatory capacity (r=-

0.26, p=0.22). The statistically significant associations were noted between glycated 

haemoglobin and sICAM-1and IL-6 but not with ACR. The data were further examined for 

the differences and linear relationships after it was categorised into 3 groups stratified by 

tertiles of HbA1c following ranges: <4.9%, 5.0-5.69%, 5.7-6.29% (Table 4.4). Statistically 

significant linear trends were observed across HbA1c tertiles and filtration capacity, insulin 

sensitivity, central adiposity, physical activity, fitness, sICAM-1 and IL-6. 
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  Table 4.3 Univariate associations with HbA1c 

 
 
Variable 

 
r value 

 
p-value 

 
Age (years) 

 
0.20 

 
0.17 

 
Waist circumference (cm) 

 
0.46 

 
0.001* 

 
BMI (kg/m

2
) 

 
0.58 

 
0.000* 

 
DEXA total body fat (kg)  

 
0.37 

 
0.009* 

 
DEXA trunk fat (kg) 

 
0.47 

 
0.001* 

 
MRI visceral fat (kg) 

 
0.43 

 
0.004* 

 
Blood pressure systolic (mmHg) 

 
0.01 

 
0.50 

 
Blood pressure diastolic (mmHg) 

 
-0.09 

 
0.52 

 
CVD risk (%) 

 
0.28 

 
0.06 

 
Triglycerides (mmol/L) 

 
0.28 

 
0.048 

 
HDL-cholesterol (mmol/L)  

 
-0.25 

 
0.08 

 
Glucose, 0 min (mmol/L) 

 
0.51 

 
0.0001* 

 
Glucose, 30 min (mmol/L) 

 
0.50 

 
0.0001* 

 
Glucose, 60 min (mmol/L) 

 
0.54 

 
0.0001* 

 
Glucose, 120 min (mmol/L) 

 
0.50 

 
0.0001* 

 
VO2 max (ml/min/kg) 

 
-0.41 

 
0.008* 

 
PAEE (MET) 

 
-0.34 

 
0.02* 

 

M/I ((mg L)/kg/min/mIU)  

 
-0.43 

 
0.007* 

 
Kf (×10

-3 
ml/min/mmHg/100ml tissue) 

 
-.44 

 
0.006* 

 
Qa resting (ml/min/100ml tissue) 

 
0.21 

 
0.21 

 
Pvi (mmHg) 

 
0.08 

 
0.63 

 
PF%RF 

 
-0.26 

 
0.22 

 
Albumin:Creatinine ratio (mg/mmol) 

 
0.18 

 
0.23 

 
sICAM-1 (ng/L) 

 
0.48 

 
0.001* 

 
IL-6 (pg/ml) 

 
0.35 

 
0.03* 

   † Spearman correlation coefficient, * p < 0.05, statistically significant 
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  Table 4.4 Body fatness, physical activity, insulin sensitivity, microvascular function 

and adipokines stratified by tertiles of HbA1c 

 
 

HbA1c (%) 
tertiles 

 
 

4.90 - 5.29 

 
 

5.30 - 5.69 

 
 

5.70 – 6.3 

 
 

ANOVA 
p-value 

 
Linear 
trend 

p-value  
n 

 
13 

 
19 

 
15 

 
Age (years) 

 
46.3 ± 9.6 

 
54.2 ± 8.2 

 
51.8 ± 8.9 

 
0.04 

 
0.13 

 
Waist circumference (cm) 

 
99.1± 10 

 
104.8 ± 8.7 

 
107.2 ± 12.2 

 
0.12 

 
0.045* 

 
BMI (kg/m

2
) 

 
28.7 ± 2.4 

 
32.3 ± 3.9 

 
33.2 ±4.5 

 
0.011 

 
0.005* 

 
DEXA total body fat (kg)  

 
28.0 ± 6.9 

 
33.1 ± 9.2 

 
33.0 ± 8.0 

 
0.15 

 
0.06 

 
DEXA trunk fat (kg) 

 
13.5 ± 2.8 

 
17.3 ± 4.7 

 
17.3 ± 3.4 

 
0.03 

 
0.02* 

 
MRI visceral fat (kg) 

 
2.70 ± 1.17 

 
4.06 ± 1.52 

 
4.11 ± 1.72 

 
0.04 

 
0.03* 

 
PAEE (MET) 

 
1.39 ± 0.13 

 
1.22 ± 0.18 

 
1.24 ± 0.17 

 
0.019 

 
0.029* 

 
VO2 max (ml/min/kg) 

 
27.3 ± 9.9 

 
20.7 ± 5.9 

 
18.6 ± 7.9 

 
0.018 

 
0.007* 

 

M/I ((mg L)/kg/min/mIU)  

 
3.88 ± 1.10a 

 
3.27 ± 1.30b 

 
2.42 ± 0.96

c
 

 
0.02 

 
0.006* 

 
Kf  
(×10

-3
ml/min/mmHg/100ml)

 

 
4.55 ± 1.21 

 
3.79 ± 1.09 

 
3.39 ± 0.74 

 
0.045 

 
0.016* 

 
sICAM-1 (ng/L) 

 
1.98 ± 0.27 

 
2.41 ± 0.37 

 
2.55 ± 30.51 

 
0.004 

 
0.002* 

 
IL-6 (pg/ml) 

 
1.51 ± 0.41 

 
2.14 ± 0.91 

 
2.44 ± 1.40 

 
0.07 

 
0.03* 

  * p < 0.05, statistically significant, 
a
 n=11, 

b
 n=17, 

c
 n=13 
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In order to describe the relationships between the variables and glycated haemoglobin 

observed in the univariate analysis we conducted multiple linear regression analyses. The 

factors that were significantly associated with HbA1c but not co-linear with each other, 

together with age and sex, were selected as explanatory variables and HbA1c was selected 

as the outcome variable. The initial model containing only age and glucose as dependent 

variables explained 29% of the variance in HbA1c (r
2
=0.29, p<0.0001) with fasting glucose 

independently associated with HbA1c (β coefficient=0.26, 95% CI: (0.13, 0.39), p<0.0001; 

age: p=0.65). Similarly, the model with age, sex and glucose explained 31% of the 

variance (r
2
=0.31, p=0.0001), again with glucose independently associated with HbA1c (β 

coefficient=0.56, 95% CI: (0.14, 0.40), p=0.0001). An additional 26% of the variance in 

HbA1c was explained by incorporating into the same model Kf (r
2
=0.57, p= 0.0001), which 

was independently associated with HbA1c (β coefficient=0.45, 95% CI: (0.19, 0.06), p= 

0.001) as presented in Table 4.5. After replacing glucose with M/I as an insulin sensitivity 

measure (Table 4.6), the new model explained 43% of the HbA1c variance (r
2
= 0.43, p= 

0.002) with only Kf  (β coefficient=-0.37, 95% CI: (-0.18, -0.02), p=0.02) and age (β 

coefficient=0.14, 95% CI: (-0.101, 0.273), p=0.008) being independently associated with 

glycated haemoglobin. There was no significant association between M/I and HbA1c 

(p=0.19) in this model. In order to explore further the effect of fasting glucose and visceral 

fat mass, those variables were added as explanatory variables to the model generated in 

Table 4.6. In this model, again there was no association between HbA1c and M/I (p=0.90) 

or visceral adiposity (p=0.31). Kf, as the only variable, remained independently associated 

with HbA1c (Table 4.7). In yet another model examining effects of visceral fat mass, 

physical activity (MET), fitness (VO2 max) and sICAM-1 in addition to age and fasting 

glucose, 55.6% of the variance in HbA1c (p<0.0001) was explained by those variables. 

When Kf was added to this model, it explained 65.6% of the variance in HbA1c (p<0.0001). 

Thus Kf explained an important additional 10% of the variance in HbA1c that had 

previously not been explained by the other factors in the model. In this final regression 

model the only factors that were independently associated with HbA1c were again Kf (β 

coefficient=-0.34, 95% CI: (-0.181, -0.006), p=0.038) and fasting glucose (β coefficient= 

0.262, 95% CI: (0.104, 0.421), p=0.002). 
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Table 4.5 Multiple linear regression model with HbA1c (%) as an outcome variable 

and age, sex, Kf and fasting glucose as independent factors 

 
 
Independent Variables 
 

 
Unstandardised coefficient 

 
Standardised 
coefficient β 

 
95% CI 

 
p-

value  
B 

 
SE 

 
Age (years) 

 
0.009 

 
0.004 

 
0.287 

 
0.001 -  0.018 

 
0.036 

 
Sex 

 
0.089 

 
0.075 

 
0.147 

 
-0.063 -  0.24 

 
0.24 

 
Kf  
(×10-

3
ml/min/mmHg/100ml) 

 
-0.123 

 
0.032 

 
-0.451 

 
-0.187 - -0.058 

 
0.001 

 
Glucose (mmol/L) 

 
0.243 

 
0.070 

 
0.447 

 
0.101 - 0.385 

 
0.001 

R
2
 = 0.57, p < 0.0001 

Table 4.6 Multiple linear regression model with HbA1c (%) as an outcome variable 

and age, sex, Kf and M/I as independent factors 

 
 
Independent Variables 
 

 
Unstandardised coefficient 

 
Standardised 
coefficient β 

 
95% CI 

 
p-

value  
B 

 
SE 

 
Age (years) 

 
0.014 

 
0.005 

 
0.43 

 
-0.004 -  0.024 

 
0.008 

 
Sex 

 
0.086 

 
0.091 

 
0.14 

 
-0.101 - 0.273 

 
0.35 

 
Kf  
(×10

-3
ml/min/mmHg/100ml) 

 
-0.099 

 
0.041 

 
-0.37 

 
-0.183- -0.015 

 
0.02 

 

M/I ((mg L)/kg/min/mIU) 

 
-0.356 

 
0.265 

 
-0.21 

 
-0.898 - 0.186 

 
0.19 

R
2
 = 0.43, p = 0.002 

 

Table 4.7 Multiple linear regression model with HbA1c (%) as an outcome variable 

and age, sex, Kf, M/I, fasting glucose and fatness as independent factors  

 
 
Independent Variables 
 

 
Unstandardised coefficient 

 
Standardised 
coefficient β 

 
95% CI 

 
p-

value  
B 

 
SE 

 
Age (years) 

 
0.008 

 
0.005 

 
0.238 

 
-0.004 -  0.024 

 
0.13 

 
Sex 

 
0.141 

 
0.106 

 
0.218 

 
-0.101 - 0.273 

 
0.20 

 
Kf  
(×10

-3
ml/min/mmHg/100ml) 

 
-0.100 

 
0.044 

 
-0.354 

 
-0.183 – -0.015 

 
0.03 

 

M/I ((mg L)/kg/min/mIU) 

 
0.049 

 
0.378 

 
0.025 

 
-0.898 - 0.186 

 
0.90 

 
Glucose (mmol/L) 

 
0.239 

 
0.081 

 
0.422 

 
-0.88 – 0.016 

 
0.007 

 
MRI visceral fat (kg) 

 
0.048 

 
0.046 

 
0.234 

 
-0.016 – 0.004 

 
0.31 

R
2
 = 0.62, p = 0.001 



 

166 

 



 

167 

 

Summary points: 

 A strong, negative and independent linear relationship between skeletal muscle 

microvascular exchange capacity and HbA1c was present as demonstrated by 

several different regression models. 

 

 Microvascular functional dilatory capacity was not significantly associated with 

HbA1c levels. 

 

 As expected, an independent association between fasting glucose and glycated 

haemoglobin was present. 

 

 An association between HbA1c and insulin sensitivity measure M/I was not 

independent of visceral fat, fitness and physical activity. 

 

 A strong and positive association between HbA1c and sICAM-1 existed but it was 

not independent of Kf. 
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4.4 Discussion 
 

We have demonstrated for the first time a negative association between a measure of 

skeletal muscle microvascular exchange/filtration capacity - Kf and glycated haemoglobin 

in centrally obese and insulin resistant but not diabetic subjects. We used a simple 

regression analysis containing age, sex and fasting glucose, which described 31% of 

variance in HbA1c. A further 26% in HbA1c variance was explained by adding Kf into this 

model. Importantly, the association was independent of potential mediators such as muscle 

insulin sensitivity, sex, age, visceral fat mass and measures of physical activity and 

cardiorespiratory fitness. M/I, visceral fat, VO2 max and MET were not associated with 

HbA1c when Kf was included in the regression models, suggesting that any effect of these 

factors to influence HbA1c may be mediated through microvascular filtration capacity. 

These findings potentially suggest that altered skeletal muscle microvascular function 

could be an early and important factor mediating the cardiovascular risk attached to HbA1c 

levels in people with central obesity. 

 It is well accepted that microvascular dysfunction can occur in type 2 diabetes, but much 

less is known about microvascular function in people at risk of diabetes such as those with 

central obesity. Microvascular disease underpins long-term complications of type 2 

diabetes. It is thought that one of the main mechanisms behind microvascular dysfunction 

in diabetes involves excessive hyperglycaemia and formation of advanced glycation end-

products (AGEs), which cause cross-linking of collagen molecules in arterial walls that 

leads to loss of collagen elasticity and a subsequent increase in arterial stiffness [314]. 

Also, chronic hyperglycaemia and resultant hyperinsulinaemia may increase the local 

activity of the renin–angiotensin–aldosterone system and expression of angiotensin type I 

receptor in vascular tissue, promoting development of wall hypertrophy and fibrosis [315], 

which contribute to vascular dysfunction. Impaired endothelium-dependent vasodilatation, 

reduced substrate delivery and lower capillary density in insulin-sensitive tissues have also 

been reported as important contributors to the microvascular dysfunction in type 2 diabetes 

[316]. However, it is not clear whether similar changes occur in non-diabetic but insulin - 

resistant obese people. 

 

It has been demonstrated that in health, insulin increases blood flow and microvascular 

perfusion in skin [133, 140] and skeletal muscle [145, 146]. In animal studies, Clark and 

colleagues [156] extensively investigated insulin-mediated functional capillary recruitment 

and demonstrated its independence from total blood flow effects on the skeletal muscle 

glucose uptake and the impairment of these mechanisms in the insulin-resistant subjects 



 

170 

 

[147, 148]. Studies in obese humans with insulin resistance showed reductions in both 

insulin-mediated muscle microvascular perfusion and glucose uptake [163, 164, 317]. A 

recent study employing nailfold videocapillaroscopy demonstrated that in subjects with 

metabolic syndrome there were structural defects in capillaries besides the changes in 

capillary functional density and red blood cell velocity (RBCV) [138], thus providing 

evidence that nutritive skin microvascular dysfunction occurs in pre-diabetic stage. It is 

plausible that in insulin-resistant individuals both functional and structural changes, 

through capillary rarefaction or remodelling, could contribute to a reduced microvascular 

exchange capacity. In our study we measured filtration capacity under the resting 

conditions using congestion plethysmography, which produced an estimate of 

microvascular function independent of blood flow and therefore suggestive of capillary 

remodelling or rarefaction. Moreover, our data extend the results of studies described 

above because, unlike those human and animal studies, we accounted for additional factors 

that regulate skeletal muscle glucose uptake and blood glucose concentrations such as 

fitness, physical activity and visceral adiposity. 

 

The mechanisms behind the relationship of microvascular dysfunction and obesity remain 

uncertain [139, 148, 316, 317]. It may be that the altered vasodilatory responses, oxidative 

stress, platelet adhesion and abnormalities of vasoconstriction, which are all linked to the 

increased body adiposity could potentially influence solute delivery via the 

microvasculature [317]. However, in our subjects as shown by the regression model (Table 

4.7) we failed to demonstrate an association of visceral fat and HbA1c. This could suggest 

that the influence of visceral adiposity on HbA1c is mediated via an effect on microvascular 

filtration capacity or insulin sensitivity (Figure 4.2).  

Whether microvascular function regulates the degree of skeletal muscle insulin sensitivity 

or vice versa, or whether microvascular dysfunction is independent of the insulin 

sensitivity properties to regulate glucose concentrations is unclear. Baron et al. [144] 

showed that infusion of an endothelium-dependent vasodilator (methacholine chloride) 

increased insulin-mediated skeletal muscle glucose uptake, indicating that microvascular 

function can directly affect insulin sensitivity. Their data demonstrated that muscle 

perfusion is a potent determinant of glucose uptake in insulin sensitive subjects and insulin 

stimulation is associated with a change in the pattern of microcirculatory perfusion 

allowing for the modulation of glucose uptake. Our data are largely in agreement with 

Baron and colleagues [144] although in contrast to these authors we have recruited 

centrally obese, more insulin resistant and older subjects. In our obese subjects, muscle 
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microvascular exchange capacity was negatively associated with glycated haemoglobin 

independently of low levels of insulin sensitivity. This may suggest that in insulin-resistant 

subjects the major influence on HbA1c comes from the baseline microvascular filtration 

capacity, rather than muscle insulin sensitivity per se. In these subjects insulin-

stimulated/determined microvascular mechanisms such as functional capillary recruitment 

are potentially defective or ineffective thus allowing for the cellular permeability of 

glucose to regulate overall glucose uptake. Supporting this notion is our observation of the 

lack of significant association between functional dilation capacity and glycated 

haemoglobin in our obese subjects.  
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Figure 4.2 Schematic illustration of relationships between factors associated with 

glycated haemoglobin 

 

 

 
 

Muscle insulin sensitivity 

Muscle microvascular exchange 
capacity 

Glycated Haemoglobin   

 r = 0.39, p = 0.021 

 r = - 0.44, p = 0.006 

 r = - 0.54, p = 0.0001 

  r = - 0.56, p = 0.001 

Visceral fat 

Fasting plasma 
glucose  
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HbA1c is used worldwide as a measure of glucose control in people with diabetes but the 

factors influencing HbA1c levels in people at risk of type 2 diabetes have not been 

investigated in depth. The results of our multivariate regression analyses (Table 4.6 and 

4.7) illustrate the relationships between each of the major factors that are associated with 

HbA1c in people with central obesity and insulin resistance. These relationships are 

presented in Figure 4.2 without indicating the direction of causality. Our data suggest that 

glucose and Kf are strongly associated with HbA1c as a regression model containing age, 

sex and fasting glucose explained 31% of the variance in HbA1c, (r
2
=0.31, p<0.0001) and 

adding Kf to this model explained 57% of the variance in HbA1c (r
2
=0.57, p<0.0001) 

(Table 4.5). The model did not change after the addition of insulin sensitivity measure 

(M/I). More importantly, neither M/I nor visceral fat were associated with HbA1c 

independently of age, sex, glucose and Kf. In another regression model comprising age, 

fasting glucose, sICAM-1, visceral fat mass, and measures of physical activity and fitness, 

incorporation of Kf explained additional 10% of the variance in HbA1c, with the whole 

model explaining two thirds of the variance in HbA1c in non-diabetic, centrally obese 

participants. 

The association between glucose and HbA1c in these regression analyses is not unexpected, 

because glycated haemoglobin represents average long term blood glucose concentrations 

including fasting levels. The reasons for an independent association between Kf and HbA1c 

are less certain though. It is plausible that a decrease in microvascular nutrient exchange 

capacity reduces glucose exchange, resulting in increased plasma glucose concentrations 

and an increase in HbA1c. 

This cross-sectional study does not provide an answer as to the direction and causal nature of 

the association between HbA1c and Kf or other factors. Although further research is merited, 

the evidence from previous studies allows some speculation about the causal links between 

glycated haemoglobin, microvascular filtration capacity and other factors playing part in 

those interactions. There is considerable evidence that in people with diabetes, the effect of 

the disease per se causes deterioration in microvascular structure and function because of 

hyperglycaemia and consequent formation of AGEs [314]. In our study, we excluded 

diabetes by oral glucose load testing; the mean plasma fasting glucose concentration was 5.2 

mmol/L and mean HbA1c was 5.5%, which would support our earlier speculation that 

impaired filtration capacity results in increased HbA1c. However, it is still possible that 

relative hyperglycaemia i.e. postprandial hyperglycaemia could directly cause both 

microvascular dysfunction and elevated HbA1c, rather than impaired microvascular exchange 

capacity leading to increased glucose and HbA1c as illustrated in Figure 4.2. A further 
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possibility is that a bi-directional relationship exists contributing to a vicious circle of 

hyperglycaemia and microvascular dysfunction. 

If future research confirms the casual link between HbA1c and Kf, then the remaining 

question is whether our finding of an independent association between Kf and HbA1c is 

clinically relevant. The existing data suggest that it is possible to produce modest changes 

in Kf, which are likely to be physiologically relevant. Charles et al. [318] studied 12 

individuals in a 14 week training programme during which lower-limbs were trained for 

endurance exercise and showed a 79% improvement in Kf (from 2.4 ± 0.8 to 4.3 ± 0.9 

ml/min/100 ml/mmHg;  p<0.05). Brown and colleagues [221] showed about 100% 

increase in Kf from 3.38 ± 0.38 to 6.68 ± 0.62 ml/min/100 ml/mmHg (p<0.05) using for 4 

weeks electrical stimulation in 5 sedentary individuals (8 Hz, 3 x 20 min/day, 5 

days/week). The results of the regression models (Tables 4.5, 4.6 and 4.7), in which we 

examined the relationship between HbA1c and potential explanatory factors showed that 

the adjusted β coefficient for the regression line in the relationship between HbA1c and Kf 

was -0.45, -0.37 and -0.35 respectively. Therefore, if the existence of  a causal relationship 

is confirmed by larger studies including interventional studies, an achievable change in 

microvascular exchange capacity as described above could be expected to be associated 

with a clinically relevant change in HbA1c of about 0.6-0.7%, even after adjusting for 

factors such as M/I, visceral fat, age, sex and fasting glucose. 

 

In addition, our study interestingly showed a strong association between the percentage of 

HbA1c and sICAM-1 levels (Table 4.3), the latter being a marker of endothelial cell 

activation. Sattar et al. [319] recently demonstrated an association between increased 

sICAM-1 concentrations and incident diabetes. These authors showed that sICAM-1 levels 

were higher in those who developed diabetes, and remained independently associated with 

new-onset diabetes (HR: 1.84, 95% CI: (1.26, 2.69), p=0.0015) per unit increase in 

log(sICAM-1) after adjusting for classical risk factors and C-reactive protein. To date it is 

uncertain why sICAM-1 should predict incident diabetes but Sattar and colleagues 

speculated that “there is much more microvascular than large artery endothelium and one 

could assume that concentrations of sICAM-1 are determined more by microcirculatory 

function”. Our data substantiate this speculation since regression analysis showed that the 

relationship between HbA1c and sICAM-1 was not independent of Kf, and Kf potentially 

confounded this relationship. Thus these data lead us to suggest that increased sICAM-1 

levels may reflect skeletal muscle microvascular endothelial dysfunction.  
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There are several limitations of this study, and a relatively small sample size is the one of 

them. Power calculations show that a study of 46 subjects has a 95% power to detect a 

correlation of r=0.5 and a study of 47 subjects has a power of 80% to detect a correlation 

of r=0.4. In our study, HbA1c and Kf correlation was of r=-0.44, p=0.006. While 

undertaking the linear regression analyses we assumed a uniform linear relationship 

between the variables. However, it is biologically feasible that between individuals there 

may be differential impact of individual variables but our sample size is too small to 

stratify our analyses. For this reason, we were also unable to determine in our analyses any 

possible “stepped” or “hierarchical” effects of variables that may occur in nature 

otherwise. 

Although we have examined in regression analyses the independent nature of the 

relationship between Kf and HbA1c, we were unable to depict in this cross sectional study 

the direction of the described associations. These results cannot be extrapolated to other 

population groups such as the non- centrally obese or those of different ethnicity. Also, this 

study did not investigate the effects of any intervention known to change Kf. The factors 

such as anaemia, high turnover or premature haemolysis of red blood cells can all result in 

a misleadingly low HbA1c. Although we have no measurements of RBC turnover or 

reticulocyte count in our volunteers, all subjects were well, without biochemical, 

haematological or radiological evidence of haemolysis or anaemia. All had normal 

haemoglobin, red cell count, mean corpuscular volume and bilirubin levels. There was no 

evidence of splenomegaly on abdominal ultrasound.  

 

In conclusion, we demonstrated that in people without diabetes but with central obesity, a 

simple measure of skeletal muscle microvascular exchange/filtration capacity (Kf) is 

associated with HbA1c independently of age, fasting glucose, visceral fat mass, levels of 

physical activity and fitness. A model containing all of these factors explains two thirds of 

the variance in HbA1c. We showed that Kf explains 26.5% of the variance in HbA1c, 

beyond that explained by age, sex and glucose. These findings, in conjunction with other 

data demonstrating achievable improvements in Kf [221, 318] may suggest that enhancing 

Kf could produce clinically relevant decreases in plasma glucose concentrations in people 

at risk of type 2 diabetes, and that the relationship between HbA1c and incident 

cardiovascular disease could be related to skeletal muscle microvascular dysfunction. The 

increased and positively correlated with HbA1c, levels of sICAM-1 may reflect skeletal 

muscle microvascular endothelial dysfunction. 
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The finding of strong independent association between Kf and HbA1c warrants further 

investigations exploring the causal associations and interactions. 

 

Summary points: 

 

 In centrally obese and insulin resistant subjects, there is present a strong negative 

association between skeletal muscle microvascular exchange/filtration capacity (Kf) 

and HbA1c independent of age, gender, fasting glucose, visceral fat mass, peripheral 

insulin sensitivity, level of physical activity and fitness and sICAM-1. 

 

  Kf explains almost one third of the variance in HbA1c beyond age, sex and fasting 

glucose. 

 

 Improvements in Kf may produce clinically relevant decreases in plasma glucose 

concentrations in centrally obese Caucasians at risk of type 2 diabetes. 

 

 Increased plasma sICAM-1 concentrations may reflect skeletal muscle 

microvascular endothelial dysfunction. 

 

 Skeletal muscle microvascular dysfunction may be a link between HbA1c and 

incidence of cardiovascular disease. 
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5. The relationship between microvascular function and 

insulin sensitivity in obese subjects 

 
5.1 Introduction 
 

The body of evidence confirms that microvascular dysfunction is associated with central 

obesity and insulin insensitivity [316, 320], the main players in the development of 

metabolic syndrome and its cardiovascular complications. Studies in type 2 diabetics, who 

invariably have obesity, linked microvascular dysfunction with factors such as impaired 

endothelium–dependent vasodilatation, reduced substrate delivery, and capillary density in 

insulin-sensitive tissues. The excessive glycation of erythrocyte membrane proteins present 

in diabetes results in significant changes in erythrocyte deformability and aggregation, 

which in turn may affect flow of blood through the microcirculation [321]. Concomitant 

changes in endothelial cell surfaces due to the activation of receptors of advanced 

glycation end products (AGE)  may influence not only vascular permeability but also 

exchange surface area [322]. Microvascular dysfunction was also reported in obese 

subjects without  type 2 diabetes [317]. Increased body fatness may lead to molecular 

changes that can modulate oxidative stress, vasodilatory and vasoconstrictive responses as 

well as affect platelet adhesion. Some studies in obese, non-diabetic subjects showed 

reductions in the dilator response to endothelial-dependent and independent agonists [152, 

323] while others reported attenuation of insulin-dependent microvascular perfusion and 

glucose uptake [163, 324]. All of those factors could adversely influence solute delivery 

via microcirculation, but it is still uncertain which components of the obesity-based 

pathophysiology lead exactly to microvascular dysfunction [139, 148, 316, 317].  

It has been documented that insulin increases blood flow and microvascular perfusion in 

skin [133, 140] as well as in skeletal muscle [145, 146]. Studies in obese humans with 

impaired microvascular function showed presence of reduced insulin-mediated muscle 

microvascular perfusion and glucose uptake [163, 164, 317]. Similarly, studies of insulin 

resistance in animal models suggested that altered insulin-mediated microvascular dilator 

responses in skeletal muscles are key factors in reducing glucose uptake, even at basal 

insulin concentrations [147, 148]. Reports from studies in obese Zucker rats indicated 

diminished insulin-stimulated muscle microvascular perfusion recruitment [139], which 

could be due to increased production of reactive oxygen species (ROS) and reduced nitric 

oxide availability.  

It has been advocated, based on the animal models, that by dilating arterioles in the capillary 

beds [325] insulin increases substrate delivery [191], which precedes and is independent of 
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the increase in total blood flow and glucose disposal [325] resulting from dilatation of 

upstream arteriolar vessels [326]. In support of this hypothesis and based on wide literature 

review, Clark et al. proposed insulin-mediated redistribution of blood flow. He suggested 

that insulin through its vasodilatory action, stimulates redirection of blood flow from non-

nutritive routes to so-called nutritive vessels [156] and thus increases microvascular 

perfusion. Many experimental studies in healthy humans showed that effects of insulin on 

capillary blood flow are dose- and time-dependent, and that the increase in blood flow 

parallels glucose disposal [327]. However, it remains uncertain whether the capacity of 

insulin to boost the capillary recruitment is impaired in insulin resistant states, such as 

obesity [328]. 

  

In obese subjects changes in the microvascular function were reported, such as impaired 

dilator responses to endothelial dependent and independent stimuli, and reduced insulin-

mediated microvascular perfusion may occur early during development of insulin resistance 

and before the onset of macrovascular disease [138, 320, 323, 329]. Changes in 

microvascular responsiveness have been linked to increasing age [330, 331] which is also 

associated with insulin resistance. However, further clarification is required as to whether the 

impact of age and insulin resistance on microcirculation occurs via a common endothelial 

signalling pathway [332] or whether those factors independently influence microvascular 

function. 

Although it is known that microvascular dysfunction occurs in obese, non-diabetic 

individuals, the nature of the relationship between glucose disposal and microvascular 

function in insulin-sensitive tissues such as skeletal muscle, and the role of potential 

confounders like physical activity and fitness have not been fully clarified. 

 

The purpose of this study was to investigate in centrally obese subjects the relationship 

between insulin-mediated glucose disposal and measures of microvascular function such as 

microvascular exchange capacity (Kf), microvascular integrity represented by isovolumetric 

pressure (Pvi), resting blood flow (Qa) and functional microvascular dilator capacity. We 

tested the hypothesis that diminished insulin-mediated glucose disposal in skeletal muscle is 

associated with reduced filtration capacity (Kf) and that the functional dilator capacity is 

independently associated with insulin sensitivity and age. We also assessed for potential 

confounders of Kf such as physical activity and cardiorespiratory fitness [221]. 
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5.2 Methods 
 

Non-diabetic and non-hypertensive subjects with central adiposity as defined by IDF 

criteria were recruited into this study as previously described. All had estimated 

cardiovascular risk less than 20% over 10 years. All volunteers had measured fasting lipid 

profile, glucose, hs-CRP, sICAM-1 and HbA1c as described in the laboratory analysis 

section. Detailed information about anthropometric assessment, body composition using 

DEXA and visceral fat estimation using MRI was provided in chapter 3.1 

Measures of microvascular function such as exchange capacity (Kf), resting blood flow 

(Qa) and isovolumetric venous pressure (Pvi) were assessed using venous congestion 

plethysmography employing Filtrass system with subjects at rest and lying down. 

Functional dilator microvasculature capacity in skeletal muscles and its response to insulin 

was assessed with Laser Doppler Fluximetry (LDF) during a hyperinsulinaemic 

euglycaemic clamp by measuring post occlusive reactive hyperaemia (PORH) before and 

during the final 30 minutes of insulin infusion. PORH was expressed as a percentage of 

increase in pressure flow (PF) relative to resting flow (PF%RF). The mean RF was 

established 5 minutes before and during the three minutes of dynamic test to assess the 

effectiveness of occlusion of the pressure cuff and as PF rose above baseline RF after the 

release of cuff. We also accounted for any possible change in blood pressure by calculating 

cutaneous vascular conductance (CVC). The description of all measurements and 

calculations was detailed in the chapter 3.7. 

Insulin sensitivity (M/I) was assessed during hyperinsulinaemic euglycaemic clamp which 

was described together with all relevant calculations of M/I in the chapter 3.4.   

We estimated cardiorespiratory fitness with the standard maximal oxygen uptake technique 

during treadmill and physical activity with an activity monitor (SenseWear Armband Pro2) 

as possible confounders of skeletal muscle exchange capacity. The detailed description of 

those techniques was presented in chapter 3.5.  

 

All statistical analyses were performed using SPSS for Windows version 16.0.  

Normally distributed data were expressed as mean  SD, with Student’s t tests employed to 

compare mean values and Pearson correlation coefficients for univariate regression 

analyses. Non-normally distributed variables were log transformed to normalise the 

distribution and expressed as medians and ranges. Multivariate linear regression models 

were used to describe factors that were independently associated with Kf or PORH as the 
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dependent variable. A p value of <0.05 was considered to be statistically significant for all 

analyses. 
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5.3 Results 
 

Forty centrally obese subjects were studied. One individual was unable to complete the 

study and therefore the baseline characteristics of thirty nine subjects are shown in Table 

5.1. The subjects were insulin resistant but did not have diabetes. Amongst the recruited 

subjects there were 17 men and 22 females who had a similar number of the features of 

metabolic syndrome. There were no significant differences between men and women with 

regards to BMI, blood pressure, insulin sensitivity index or lipids, except for HDL 

cholesterol. Men were significantly older and had greater cardiorespiratory fitness than 

females as presented in Table 5.2. 

 

The baseline measurements of filtration capacity, blood flow and endothelial integrity, 

obtained during venous congestion plethysmography, are presented in Figure 5.1. The 

mean value of Kf was 3.91 ± 0.18×10
-3

ml/min/mmHg/100ml, the mean value of Qa was 

4.01 ± 0.48 ml/min/100ml and the mean value of Pvi was 20.5 ± 1.1 mmHg. There was an 

approximately 3-fold difference in Kf levels between subjects and the other measures also 

showed considerable variability within the study cohort.  

During the stepped increases of venous congestion pressure there was evidence of reduced 

functional vasodilator capacity. Data free from movement artefacts were available on thirty 

five subjects. As the venous congestion cuff pressure increased (Figure 5.2) the calf blood 

flow relative to baseline blood flow (Qa rest) was not sustained, whereas a sustained blood 

flow has been previously reported in healthy subjects even as the congestion pressure 

approached mean arterial pressure [291].  

 

Free from movement artefacts, satisfactory recordings of functional dilator capacity 

measured by LDF were obtained on thirty six subjects. The results showed the resting flow 

of 71 (35) AU and pressure flow of 203 (67) AU (median (IQR)). The relative change in 

PF during post occlusive reactive hyperaemia response was consistent with the response 

reported in healthy individuals by Clough et al. [143].  

 

During the insulin infusion there was a significant increase in resting flow to 87 (69) AU, 

p=0.0012 but pressure flow did not significantly change and was 185 (85) AU, p>0.05.  

There was no change in the mean blood pressure before insulin infusion (95 (13) mmHg) 

or during insulin infusion (90 (13) mmHg). The peak CVC did not change during the 

clamp (pre-insulin 2.2 (0.9) AU/mmHg and during insulin 2.1 (0.85) AU/mmHg). The area 
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under the curve of the PORH response was also unaffected by insulin; pre-insulin 8.6 (4.1) 

(×10
3 

AU×sec; insulin 8.9 (4.7) ×10
3 

AU×sec).  
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Table 5.1 Baseline characteristics of study population, n=39 

 

 
Variable 

 
Mean ± SD 

 
Range 

 
Age (years) 

 
51.4 ± 9.0 

 
29.0 - 69.6 

 
Waist circumference (cm) 

 
105.3 ± 12.9 

 
86.5 - 151.0 

 
BMI (kg/m

2
) 

 
32.1 ± 4.6 

 
25.3 - 47.9 

 
DEXA total body fat (%) 

 
35.6 ± 7.4 

 
21.2 - 47.5 

 
DEXA trunk fat (%) 

 
16.8 ± 4.6 

 
9.0 -31.9 

 
Blood pressure systolic (mmHg) 

 
133 ± 14 

 
93 - 155 

 
Blood pressure diastolic (mmHg) 

 
85 ± 9 

 
64 - 104 

 
CVD risk (%) 

 
7.3 ± 5.1 

 
0 - 17.3 

 
Total cholesterol (mmol/L) 

 
5.7 ± 1.1 

 
3.2 - 9.3 

 
LDL-cholesterol (mmol/L) 

 
3.7 ± 0.9 

 
1.7 - 7.0 

 
HDL-cholesterol (mmol/L) 

 
1.6 ± 0.4 

 
0.9 - 2.5 

 
Triglycerides (mmol/L) 

 
1.4 ± 0.6 

 
0.4 - 2.7 

 
HbA1c (%)  

 
5.5 ± 0.3 

 
4.9 - 6.3 

 
Fasting Glucose (mmol/L) 

 
5.2 ± 0.7 

 
4.0 – 6.6 

 
M/I ((mg L)/kg/min/mIU)   

 
3.36 ± 1.25† 

 
0.97 - 6.26† 

 
VO2 max (ml/min/kg) 

 
23.2 ± 7.8 

 
8.35 - 52.5 

 
PAEE (MET) 

 
1.3 ± 0.2 

 
0.8 - 1.6 

 
hs-CRP (mg/dL) 

 
2 (1.09 -10.47) †† 

 
0.0 - 39.8 

 
sICAM-1 (ng/L)  

 
2.2 ± 0.4 

 
1.6 – 3.1 

† n = 37, †† median (95%CI) 
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  Table 5.2 Baseline characteristics of study population by gender, n=39 

 
 
Variable 

 
Mean ± SD 

 
p- value 

 
Men (n=17) 

 
Women (n=22) 

 
Age (years) 

 
55.3 ± 9.1 

 
48.4 ± 7.9 

 
0.016* 

 
Waist circumference (cm) 

 
110.5 ± 13 

 
101.3 ±11.6 

 
0.025* 

 
BMI (kg/m

2
) 

 
31.7 ± 5.2 

 
31.6 ± 4.6 

 
0.93 

 
Blood pressure systolic (mmHg) 

 
135 ± 10 

 
131 ± 17 

 
0.49 

 
Blood pressure diastolic (mmHg) 

 
84 ± 9 

 
81 ± 8 

 
0.36 

 
CVD risk (%) 

 
11 ± 5 

 
5 ± 4 

 
0.0001* 

 
Total cholesterol (mmol/L) 

 
5.5 ± 0.8 

 
5.9 ± 1.3 

 
0.24 

 
LDL-cholesterol (mmol/L) 

 
3.5 ± 0.6 

 
3.7 ± 1.1 

 
0.53 

 
HDL-cholesterol (mmol/L) 

 
1.3 ± 0.2 

 
1.6 ± 0.4 

 
0.007* 

 
Triglycerides (mmol/L) 

 
1.5 ±  0.7 

 
1.3 ± 0.6 

 
0.23 

 
HbA1c (%)  

 
5.5 ± 0.4 

 
5.4 ± 0.3 

 
0.52 

 
Fasting Glucose (mmol/L) 

 
5.4 ± 0.8 

 
5.0 ± 0.6 

 
0.08 

 
M/I ((mg L)/kg/min/mIU)  

 
3.26 ± 1.28 

 
3.44 ± 1.22 

 
0.48 

 
VO2 max (ml/min/kg) 

 
25.8 ± 9.1 

 
20.4 ± 7.3 

 
0.048* 

 
PAEE (MET) 

 
1.31 ± 0.15 

 
1.26 ± 0.18 

 
0.04* 

  * p < 0.05, statistically significant 
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Figure 5.1 Baseline measurements of filtration capacity, resting limb blood flow and 

endothelial integrity 

 

 

 

            Kf (×10
-3

ml/min/mmHg/100ml), Qa resting (ml/min/100ml), Pvi (mmHg) 

 

 

 

Figure 5.2 Calf blood flow expressed as a % of baseline values measured during 

increasing venous congestion 
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n = 35, data presented as mean  SEM 
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The univariate analysis of the relationships between microvascular exchange capacity and 

metabolic parameters, measures of obesity, physical activity and fitness (Table 5.3) 

showed that Kf was significantly associated with waist circumference (r=-0.36, p=0.025), 

but not the other easily measurable features of metabolic syndrome (blood pressure, 

glucose, HDL-cholesterol and triglyceride concentrations). As represented also in Figures 

5.3 and 5.4, Kf was also significantly and positively associated with M/I (r=0.39, p=0.02) 

and negatively associated with visceral fat (r=-0.43, p=0.015). Kf showed negative 

associations with plasma hs-CRP (r=-0.32, p=0.04) and soluble ICAM-1 (r=-0.31, p=0.05). 

There were no significant associations between Pvi or Qa and measures of obesity, insulin 

sensitivity, physical activity, fitness, inflammatory markers or any of the metabolic 

syndrome features. 

 

We further explored the factors associated with the microvascular exchange capacity using 

multiple regression modelling. The model containing Kf as the outcome variable and 

HbA1c, M/I and visceral fatness as the explanatory variables explained 38% of variance in 

Kf. In order to determine whether the association between Kf and insulin sensitivity 

observed in univariate analysis (Table 5.3) was independent of visceral fat we used Kf as 

the outcome and M/I and visceral fat as explanatory variables. The index of insulin 

sensitivity and visceral fat explained 30% of the variance in Kf (r
2
=0.30, p=0.008). 

Interestingly, M/I was associated with Kf independently of visceral fat (β coefficient 3.13, 

(95%CI: 0.22-6.02), p=0.036), whereas visceral fat was not associated with Kf 

independently of M/I (β coefficient=-0.09 (95% CI: -0.40-0.22, p=0.55). Gender did not 

have any effect in these models.   
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  Table 5.3 Univariate associations with Kf 

 

 
Variable 

 
r value 

 
p- value 

 
Age (years) 

 
0.02 

 
0.89 

 
Waist (cm) 

 
-0.36 

 
0.025* 

 
MRI Visceral fat (kg) 

 
-0.43 

 
0.015* 

 
MRI Subcutaneous fat (kg) 

 
-0.28 

 
0.12 

 
Blood pressure systolic (mmHg) 

 
-0.15 

 
0.36 

 
Blood pressure diastolic (mmHg) 

 
0.08 

 
0.63 

 
CVD risk (%) 

 
-0.15 

 
0.38 

 
HDL-cholesterol (mmol/L) 

 
0.13 

 
0.43 

 
Triglyceride (mmol/L) 

 
-0.30 

 
0.07 

 
Glucose (mmol/L) 

 
-0.05 

 
0.77 

 
PAEE (METS) 

 
0.20 

 
0.24 

 
VO2 max (ml/min/kg) 

 
0.21 

 
0.20 

 

M/I ((mg L)/kg/min/mIU) 

 
0.39 

 
0.021* 

 
hs-CRP(mg/dL) 

 
-0.32 

 
0.04* 

 
sICAM-1(ng/L) 

 
-0.31 

 
0.05* 

  * p < 0.05, statistically significant 
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Figure 5.3 Relationship between insulin sensitivity and microvascular exchange 

capacity 

 
 

 

 

Figure 5.4 Relationship between visceral fat and microvascular exchange capacity 
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We also assessed the relationships between functional dilator microvasculature capacity 

and metabolic and inflammatory parameters, insulin sensitivity, age and fitness as 

presented in Table 5.4. There was a statistically significant positive association between  

 insulin-induced change in functional hyperaemia (PF%RF) and insulin sensitivity (r=0.46, 

p=0.024). PORH was strongly and negatively correlated with the age (r=-0.46, p=0.02), 

sICAM-1 (r=-0.43, p=0.033) and LDL-cholesterol (r=-0.437, p=0.03). There was also a 

positive association between cardiorespiratory fitness and PF%RF (r=0.43, p=0.03). 

However no significant associations were found between PORH and measures of body 

fatness.  

 

The variables which significantly correlated with PORH in univariate analysis (Table 5.4) 

were selected for inclusion into multiple regressions modelling to investigate further the 

association between insulin-induced change in PF%RF and insulin sensitivity, and to 

explore the potential effect of any confounders in this relationship. Over a half (53%) of 

the variance in PF%RF was explained by age, M/I, cardiorespiratory fitness and LDL 

cholesterol used as independent explanatory variables (r
2
=0.53, p=0.005). A regression 

model containing age, M/I and sex as explanatory variables identified 44% of variance in 

the insulin-induced change in dilator capacity (Table 5.7). Stepwise linear regression 

modelling was undertaken to investigate the proportion of the variance in PF%RF that was 

identified by the explanatory factors. Age was the most important explanatory factor 

identifying 27% of the variance (Table 5.5). Inclusion of M/I into the model (Table 5.6) 

identified an additional 15% of the variance, and this final model explained 42% of the 

variance in the outcome variable. Only age and M/I were independently associated with an 

insulin-induced change in PORH (Table 5.7). 
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Table 5.4 Univariate associations with PORH 

 
 
Variable 

 
r value 

 
p- value 

 
Age (years) 

 
-0.460 

 
0.02* 

 
BMI (kg/m

2
) 

 
-0.26 

 
0.21 

 
MRI Visceral fat (kg) 

 
-0.376 

 
0.11 

 
CVD risk (%) 

 
-0.05 

 
0.75 

 
LDL-cholesterol 

 
-0.437 

 
0.03* 

 
Glucose (mmol/L) 

 
-0.414 

 
0.04* 

 
HbA1c (%) 

 
-0.26 

 
0.22 

 
VO2 max (ml/min/kg) 

 
0.431 

 
0.03* 

 
M/I ((mg L)/kg/min/mIU) 

 
0.46 

 
0.024* 

 
sICAM-1 

 
-0.43 

 
0.033* 

* p < 0.05, statistically significant 
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Table 5.5 Multiple linear regression model with PORH (PF%RF) as an outcome 

variable and age as independent factor 

 
 
Independent Variables 
 

 
Unstandardised coefficient 

 
Standardised 
coefficient β 

 
95% CI 

 
p-

value  
B 

 
SE 

 
Age (years) 

 
-12.6 

 
4.4 

 
-0.52 

 
-21.8 -  -3.4 

 
0.009 

R
2
 = 0.27, p < 0.009 

 

 

Table 5.6 Multiple linear regression model with PORH (PF%RF) as an outcome 

variable and age and M/I as independent factors  

 
 
Independent Variables 
 

 
Unstandardised coefficient 

 
Standardised 
coefficient β 

 
95% CI 

 
p-

value  
B 

 
SE 

 
Age (years) 

 
-11.15 

 
4.1 

 
-0.46 

 
-19.6 - - 2.7 

 
0.013 

 

M/I ((mg L)/kg/min/mIU) 

 
422.5 

 
180.8 

 
0.39 

 
46.5 - 798.5 

 
0.029 

R
2
 = 0.42, p = 0.003 

 

 

Table 5.7 Multiple linear regression model with PORH (PF%RF) as an outcome 

variable and age, sex and M/I as independent factors  

 
 
Independent Variables 
 

 
Unstandardised coefficient 

 
Standardised 
coefficient β 

 
95% CI 

 
p-

value  
B 

 
SE 

 
Age (years) 

 
-12.1 

 
4.3 

 
-0.50 

 
-21.0 - - 3.2 

 
0.01 

 
Sex 

 
-66.3 

 
78.2 

 
-0.15 

 
-229.5 - 96.9 

 
0.20 

 

M/I ((mg L)/kg/min/mIU) 

 
406.8 

 
182.9 

 
0.38 

 
25.1 - 788.5 

 
0.04 

R
2
 = 0.44, p = 0.008 
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Summary points: 

 A strong and independent linear association between skeletal muscle microvascular 

exchange capacity and insulin sensitivity index was present as demonstrated by 

multiple regression modelling. 

 

 The negative and linear relationship between skeletal muscle microvascular 

exchange capacity and visceral fat was not independent of insulin sensitivity. 

 

 A significant negative, but not independent association between Kf, hs-CRP and 

sICAM-1 was present.  

 

 A lack of sustained blood flow in the face of increasing venous congestion pressure 

was observed during plethysmography. 

 

 A strong and independent relationship was present between insulin-induced change 

in microvascular functional dilator capacity, age and insulin sensitivity. 
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5.4 Discussion 
 

In our study we have demonstrated that centrally obese, insulin resistant but not diabetic 

adults had impaired skeletal muscle microvascular function. Our data demonstrated that 

impaired muscle microvascular exchange capacity (Kf) was associated with attenuated 

insulin mediated glucose uptake in skeletal muscle, independently of visceral fatness. It 

also showed that the muscle filtration capacity was adversely associated with body fatness 

but this was not independent of the level of insulin sensitivity. These relationships were not 

confounded by a low level of physical activity or cardiorespiratory fitness.  

The fact that the insulin sensitivity (M/I) was positively associated with the muscle 

microvascular filtration capacity (Kf) may suggest that greater muscle exchange capacity 

and in turn nutrient delivery is present in the more insulin sensitive subjects. The values of 

Kf in our centrally obese cohort showed considerable variability but they were similar to 

the values previously reported in individuals of similar age [318, 333] and prediabetic or 

diabetic individuals without microvascular complications [334-337]. 

Additionally, Kf was also inversely associated with inflammatory markers such as hs-CRP 

and sICAM-1, the latter a marker of endothelial cell activation. This is in keeping with the 

reports that microvascular dysfunction is associated with low grade systemic inflammation 

in obese  [338] and is related to changes in endothelial cell activation [339] 

The assessment of blood flow  in the skeletal muscle microvascular bed by 

plethysmography in our study showed the mean resting limb blood flow (Qarest) to be 

higher than that reported previously in young healthy [141] or in older overweight and 

obese individuals [340]. Moreover, our subjects with central obesity were unable to 

maintain calf blood flow in the face of increasing venous congestion pressure unlike the 

young, healthy individuals in whom Qa remained constant possibly because of a 

progressive reduction in pre-capillary resistance due to retrograde transmission of 

vasodilatory signals through the endothelium [156]. Although the slope of the relationship 

between blood flow and venous congestion pressure followed, it was considerably lower in 

our study of obese subjects than the reported in other patient groups [291]. The muscle 

microvascular perfusion at rest is modulated by local capacity for vasodilatation. It is 

plausible that in people with central adiposity and insulin resistance, metabolites released 

from excess body fat down-regulate the vasodilator and up-regulate the vasoconstrictor 

pathway. These data suggest that both muscle microvascular perfusion and exchange 

surface area are reduced in the centrally obese and insulin resistant individuals with 

consequent effects on important aspects of muscle function relating to nutrient handling. 
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With the employment of Laser Doppler Fluximetry we showed an independent associa tion 

between age, insulin sensitivity and the functional hyperaemic response to physiological 

stimuli such as venous occlusion and hyperinsulinaemia. Interestingly, the functional 

hyperaemic response was not associated with the measures of body fatness or other 

cardiovascular risk factors. Functional hyperaemia represents an increase in tissue 

perfusion in response to an increased metabolic demand. It can be modified in response to 

local or circulating metabolic factors, including insulin, through both endothelium-

dependent and -independent mechanisms [341] all of which may contribute to an altered 

vascular response [342]. We showed in our study that under basal conditions which 

constitute low metabolic demand, the capacity to increase functional tissue perfusion was 

lower in individuals at increased cardio-metabolic risk associated with central obesity. 

Moreover, we also showed that the capacity of functional hyperaemia was not ameliorated 

or overcome by insulin. De Jongh et al. reported that in the obese subjects PORH capillary 

recruitment in the skin of the nailfold at baseline and during an insulin clamp was impaired 

in comparison to lean controls [152]. The findings from our study are consistent and 

extend the findings of de Jong’s and colleagues. Furthermore, our data also extends the 

findings reported by Clerk et al. from a study investigating muscle microvascular blood 

volume (MBV) with contrast ultrasound in obese subjects [163]. In this study, the authors 

demonstrated a relationship between the insulin-induced change in muscle MBV and BMI 

only, whereas we showed that both, age and insulin sensitivity index explained 

independently nearly  half of the variance in functional hyperaemia (r
2
=0.42, p=0.003) 

(Table 5.6). 

Additionally, by utilizing laser Doppler fluximetry to assess blood flux at rest, during post 

occlusive reactive hyperaemia and acute hyperinsulinaemia we were also able to show that 

dysregulation of the microvascular function in central obesity manifests early prior to the 

onset of overt macrovascular disease. The age-related alterations in microvasculature and 

the mechanisms behind the ameliorated with age dilator responses were extensively 

studied in the healthy subjects [330]. However, the mechanisms underlying the attenuated 

microvascular dilator responses in centrally obese individuals at increased cardio-

metabolic risk were less explored and understood. Moreover, up to date it has been 

uncertain whether the adverse effect of age and insulin resistance on microvascular 

function was independent, considering that insulin resistance may increase with age. Data 

from our study, however, indicates that age and insulin resistance independently of each 

other adversely affect muscle microvascular function as demonstrated by altered PORH 

responses. 
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Within a  range of techniques available for the studying microcirculation, the number of 

methods for direct investigation of muscle microvasculature are not only limited, but they 

are also invasive, time consuming and expansive such as radiolabelled imaging techniques 

[343], contrast enhanced ultrasound using albumin microbubbles [146] or needle-inserted 

laser Doppler probes [140]. The alternative way to assess muscle microvascular function is 

to non-invasively quantify the capacity of the microvascular bed to filter fluid using 

plethysmography. This is a well validated technique which uses measurements of the 

change in limb volume resulting from small step increases in venous occlusion pressure to 

provide a measure of muscle microvascular filtration capacity (Kf) [141]. Kf has been 

shown to be differentially sensitive to increases in capillary perfusion [221] as well as to 

increases in capillary surface area [318]. Since Kf  is an important and sensitive measure of 

microvascular function we elected to use this non-invasive technique in our study, as we 

felt it would provide better compliance and be acceptable to non-paid volunteers returning 

for re-testing at the end of extensive study. It is important to stress that plethysmography 

allows for the measurement of the rate of fluid exchange across the whole muscle 

microvascular bed thus addressing  the issue that many of the invasive and direct methods 

rely upon visualization of erythrocyte movement or their particulate surrogates which is 

often difficult to visualise.  

For similar reasons as the above, we also employed Laser Doppler Fluximetry with a high 

power probe to estimate changes in microvascular function under basal conditions and 

during functional demand. This is another non-invasive and novel technique, and the 

deeply penetrating laser probe samples a large volume of nutritive vasculature [143]. 

Glough et al. demonstrated previously that in lean individuals over a 65% of the probe 

signal is derived from sub-dermal tissue [143]. Therefore the use of this LDF probe in our 

obese subjects may have lead to a greater variability in the signal due to a different sub-

dermal thickness between individuals. Nevertheless, the variance in signal reported in our 

study did not differ significantly from those reported in other studies where a lower laser 

power and a standard probe were used [297]. 

A criticism of this study may be that we have not recruited a control group. However, the 

study was designed to investigate microvascular function in a cohort of individuals with a 

spectrum of cardiovascular risk determinants but without overt vascular disease. Therefore 

we did not aim to compare microvascular function in normal weight versus obese 

individuals. A further criticism is that our study may have lacked power to detect small 

changes in measures of reactive hyperaemia during hyperinsulinaemia. However, using the 

study results we conducted a retrospective sample size calculation. We calculated that 
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measurements in 12 subjects would detect a 2.3 fold improvement in reactive hyperaemia 

during the insulin infusion providing our study with 90% power at a 5% significance level. 

The same, 2.3 fold increase in reactive hyperaemia during hyperinsulinaemia in the tibialis 

anterior muscle was reported previously by de Jongh et al. [140]. Unlike de Jongh who 

used a placebo clamp in the healthy individuals as a comparison, we were unable to 

include a placebo clamp in this study. The fact, however, that we did not observe an 

increase in blood pressure would suggest that the attenuated vasoresponse to insulin 

reported in our cohort was unlikely to be due to differences in baseline sympathetic tone 

during the experimental protocol.  

In conclusion, we have shown that in centrally obese, non diabetic men and women, a 

strong, independent of visceral fatness, association between skeletal muscle microvascular 

exchange capacity (Kf) and decreased insulin sensitivity in skeletal muscle. Also, a strong 

but not independent of insulin sensitivity, adverse relationship between Kf and visceral 

fatness was documented. Both associations were not confounded by factors such as 

physical inactivity or low fitness level. We have also demonstrated that skeletal muscle 

microvascular dilator capacity is independently associated with both age and insulin 

sensitivity, which together explain almost half of the variance in this measure of  

microvascular function. The assertion that central obesity blunts microvascular dilator 

response and constrains functional hyperaemia which can not be overcome by acute 

hyperinsulinaemia is supported by our results. The presented data emphasises that two key 

elements of microvascular function, the filtration/exchange capacity and functional dilator 

response, are negatively associated with insulin insensitivity in individuals with central 

adiposity and in the absence of type 2 diabetes. All these factors may give rise to impaired 

delivery and handling of nutritive solutes to insulin sensitive tissues such as skeletal 

muscle during an increased metabolic demand. Moreover, the results of this study support 

the notion that the impaired microvascular function is an early indicator of cardio-

metabolic risk in subjects with central obesity and features of metabolic syndrome. 

 

 

Summary points: 

 

 In centrally obese, insulin resistant but not diabetic individuals, there is present 

strong positive association between skeletal muscle microvascular exchange 

capacity/filtration (Kf) and level of insulin sensitivity, independent of visceral 

fatness and not confounded by physical inactivity and poor cardiorespiratory 

fitness. 
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 Kf is also strongly and adversely, but not independently of insulin sensitivity 

associated with visceral fatness. 

 

 In centrally obese, insulin resistant but not diabetic individuals, there is present a 

strong positive association between skeletal muscle microvascular dilator capacity 

(PORH) and age and insulin sensitivity, independent of each other; both together 

explain almost half of the variance in PORH. 

 

 Microvascular function is negatively associated with insulin insensitivity in 

individuals with central adiposity and in the absence of type 2 diabetes.   

 

 Central obesity blunts microvascular dilator response and constrains functional 

hyperaemia in response to metabolic demand. 

 

 The impairment of microvascular function in centrally obese, insulin resistant but 

not diabetic individuals precedes the onset of overt macrovascular disease. 
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6. The effects of six months treatment with Atorvastatin 

on the insulin sensitivity and microvascular function in 

healthy but viscerally obese subjects 

 
6.1 Introduction 
 

It is well documented that obesity is associated with the risk of developing insulin 

resistance [18, 78] and that central obesity is more strongly associated with metabolic and 

cardiovascular complications than total body fat [52, 344]. Many studies reported a strong 

relationship between attenuated insulin sensitivity and intra-abdominal adiposity [61]. 

Also, research studies showed that obesity is associated with microvascular function, and 

that the latter may be a potential link between visceral adiposity and insulin sensitivity 

[151, 152]. Both central obesity and insulin resistance play a central role in the 

development of the metabolic syndrome [168, 345, 346], for which early identification and 

effective treatment is a major therapeutic goal. However, a clear drug of choice for 

individuals at high cardio-metabolic risk has not been identified as yet.   

Statins, the 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, 

lower blood cholesterol levels by increasing expression of low density lipoprotein (LDL) 

receptors and improving LDL-cholesterol uptake by hepatocytes. About four to six weeks 

are required for their hypolipidaemic effect to become evident. The profound effects of 

statins on total and LDL cholesterol are well documented and proven to reduce 

cardiovascular risk in primary [223, 225] and secondary prevention [223, 224]. They were 

shown to be effective in reducing vascular risk in people with metabolic syndrome but no 

diabetes [347]. 

It is also well accepted that statins have pleiotropic actions. However, there is conflicting 

evidence regarding the effects of statin therapy on insulin resistance. Ohrvall et al. [242] 

reported that Simvastatin 10 mg daily for 4 months increased plasma insulin concentrations 

by 21% and decreased insulin sensitivity by 28% as assessed by glucose clamp in patients 

with type 2 diabetes mellitus. Similarly, Jula et al. demonstrated deterioration in surrogate 

insulin sensitivity markers in a double-blinded, placebo controlled trial with 20mg daily 

Simvastatin for 3 months in hypercholesterolaemic but not obese or diabetic subjects 

[252]. No change in insulin sensitivity was found in a placebo-controlled study with 20 mg 

of Simvastatin for 3 months in type 2 diabetes mellitus [248]. In contrast to those studies, 

Paolisso et al. compared Simvastatin 10 mg daily with Atorvastatin 5 mg and placebo in 

subjects with type 2 diabetes and documented a 13% improvement in insulin action with 

Atorvastatin and 9% with Simvastatin [246]. Interestingly, Koh et al. demonstrated  
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improved insulin sensitivity, as measured by fasting insulin and QUICKI, with 2 months of 

treatment with 40 mg daily of Pravastatin [247] and deterioration in the same markers with 

20mg daily of Simvastatin. 

These discrepant findings may be due to different patient selection, baseline lipid profiles, 

investigative methodology, statin type, dosage and duration of treatment implemented in 

various research studies. Additionally changes in body weight and/or body composition 

during the investigations could have potentially played a role as confounding factors on 

insulin action. Moreover, to date there have been no studies investigating the effects of 

statins on insulin sensitivity in subjects without type 2 diabetes but with central adiposity 

and insulin resistance. Although the recent meta-analysis of clinical trials with statins 

provided information on the increased risk of incident diabetes with all statins [253], 

analysed studies consisted of various patient cohorts, who were likely to be on multiple 

medications. The mechanisms behind this increased diabetes risk have been not elucidated 

as yet and remain uncertain. 

The reported pleiotropic effects of statin within macrovasculature include improvement of 

endothelial function and attenuation of endothelial dysfunction in the presence of 

atherosclerotic risk factors. Those effects were shown to be achieved through increased 

bioavailability of nitric oxide (NO) [231, 239], apparent after 6 months of therapy [241], 

and also through reduced oxidative stress and inflammation, and increased recruitment of 

endothelial progenitor cells [229, 230, 240]. However, the potential for statins to modulate 

endothelial function in human microvasculature via the postulated pleiotropic effects and 

independently of lipid-lowering benefits remains uncertain [138, 332, 348, 349]. 

 

 

The purpose of this study was to assess the level of insulin sensitivity in people with central 

adiposity and other metabolic traits and to evaluate the effects of statins on insulin resistance 

and measures of skeletal muscle microvascular function including functional microvascular 

dilator capacity (PORH), microvascular filtration capacity (Kf), a measure of microvascular 

integrity (Pvi) and resting limb blood flow (Qa). We tested the hypothesis that in centrally 

obese subjects without diabetes, six months intensive statin treatment with Atorvastatin 

40mg daily would improve insulin sensitivity and reverse microvascular dysfunction via the 

potential pleiotropic properties of statins to modulate nitric oxide production. 

In order to test the effects of high dose statin treatment we estimated insulin sensitivity and 

microvascular function at baseline and again after randomisation to six months of either 

Atorvastatin 40 mg daily or placebo. We have chosen Atorvastatin because it was credited 
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with beneficial effects on central obesity and several aspects of the metabolic syndrome, and 

its potency, efficacy and safety record may confer advantages over other statins [255, 350]. 

Since the level of physical activity may potentially influence insulin sensitivity and skeletal 

muscle microvascular function [221], we investigated the influence of this potential 

confounder on those variables. 
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6.2 Methods 
 

White Caucasian, non-diabetic and non-hypertensive unpaid volunteers aged 29-69 years 

were recruited into the study. All subjects had central adiposity defined according to IDF 

criteria as a waist circumference ≥ 94cm in men and ≥ 80 cm in women. Only individuals 

who had low or moderate cardiovascular risk of less than 20% over 10 years, as calculated 

using equation derived from the Framingham Heart Study, were included into the study. 

All participants were statin naïve. All investigations were performed at baseline and after 

interventions while the subjects continued with their study medication. They all underwent 

an oral glucose tolerance test with a 75g glucose load and had measured fasting lipid 

profile, insulin, NEFA, hs-CRP and HbA1c. Lactate was measured throughout the clamp 

studies to assess for any adverse effects of thigh cuff inflations. Description of the 

analytical methods for the above parameters was provided in the laboratory methods 

chapter. 

All individuals were subjected to anthropometric assessment and their body composition 

was measured with DEXA before and after intervention, of which a detailed description 

was provided in chapter 3.1. 

The stepped hyperinsulinaemic euglycaemic clamp was employed to assess insulin 

sensitivity. The whole-body glucose disposal rate (M-value) was determined during the last 

30 minutes of clamp as well as mean insulin level. Both parameters were used to calculate 

insulin sensitivity index (M/I). Adipose tissue response to low dose insulin infusion was 

estimated by calculating the percentage of change between the mean NEFA concentration 

at baseline and after 60 minutes of low dose infusion. The details of clamp and calculations 

were presented in chapter 3.4.   

Skeletal muscle microvascular function was assessed in terms of functional dilator capacity 

during a hyperinsulinaemic euglycaemic clamp by measuring post-occlusive reactive 

hyperaemia (PORH) before and during the final 30 minutes of insulin infusion using Laser 

Doppler fluximetry. PORH was calculated as a percentage increase in pressure flow 

relative to resting flow (PF%RF). Exchange/filtration capacity (Kf), resting blood flow (Qa) 

and isovolumetric venous pressure (Pvi) as a measure of endothelial integrity were assessed 

using venous congestion plethysmography employing Filtrass system. All measurements 

and calculations were detailed in chapter 3.7. 

Physical activity was measured with an activity monitor (SenseWear Armband Pro2) and 

cardiorespiratory fitness with the standard maximal oxygen uptake technique during 

treadmill exercise as they were considered as possible confounders of skeletal muscle 

exchange capacity. Those techniques were described in detail in chapter 3.5.  
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The participants were randomised to either Atorvastatin (40 mg daily) daily or placebo for 

6 months in a double-blind, parallel group study design. The selection of a daily dose of 40 

mg Atorvastatin was based on considerations of efficacy and tolerability [255, 351].   

The subjects were encouraged to maintain the same diet and lifestyle throughout the 

duration of the study to avoid changes in total body weight greater than 5 % from the 

baseline and thus to minimise the effect of those confounders on the end results. 

The statistical analysis was performed using SPSS for Windows version 16.0. No statistical 

correction was undertaken for the performed multiple measurements..Paired and unpaired 

student t-test was used for within- and between-group analysis, and repeated measurements 

ANOVA to test for the group effect. Normally distributed data were expressed as mean  

SD. To test the effect of statin on measures of microvascular function we analysed 

microvascular function at the end of the trial, adjusting for randomization and baseline 

microvascular measures and in case of functional dilator capacity additionally for age, by 

factorial ANOVA. A p value of ≤ 0.05 was considered to indicate statistical significance. 
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6.3 Results 
 

Out of the forty-nine participants recruited to this study, eight declined further participation 

and one was excluded due to severe anaemia before commencing the treatment phase. 

Another subject withdrew after randomisation. The baseline characteristics of thirty nine 

subjects who completed the treatment and all microvascular studies are presented in Table 

6.1. They included 17 men and 22 women and their mean age was 51.4 ± 9 years. All 

participants had central adiposity with a mean waist circumference of 105.3 ± 12.9cm. Of 

those, twenty fulfilled IDF criteria for the metabolic syndrome: 13 had 3 features, 6 had 4 

features and 1 individual had all 5 features. Nine subjects fulfilled both waist and blood 

pressure criteria, while the remaining ten only fulfilled the waist criterion. The summary of 

the metabolic traits in our cohort is presented in Table 6.2. All participants managed to 

maintain their lifestyle throughout the study as indicated by their body weight, which 

remained within 5% from the baseline (mean weight difference between baseline and end 

of the study was 3% ± 2%). Their level of physical activity, measured by activity monitor 

over an average period of seven days before randomisation and at the end of treatment, had 

not significantly changed during the course of study with the mean daily METs before 

treatment of 1.28 ± 0.17 and after treatment of 1.26 ± 0.23, p=0.58. 

Twenty volunteers were randomised to the placebo arm, which included an equal number 

of men and women. Within the active treatment group there were seven men and twelve 

women. The characteristics of the study cohort based on the randomisation at the baseline 

and at the end of intervention are shown in Table 6.3. We collected completed sets of 

results from clamp studies (before and after randomisation) on thirty two participants. 

 

Subjects randomised to placebo had waist circumference of 106.5 ± 2.5 cm and those 

within the Atorvastatin group of 103.0 ± 2.7 cm (p=0.355). There was no significant 

difference between both groups with regards to baseline weight and BMI, neither was there 

a significant difference between anthropometric parameters after 6 months of treatment 

within and between groups (Table 6.3 and 6.4). Similarly, the body fat composition 

remained similar between and within both groups at the baseline and after intervention 

(Table 6.3 and 6.4). 

 

Although the systolic blood pressure was significantly lower in the treatment group (134 ± 

8.7 mmHg vs 124 ± 17.2 mmHg, p=0.026), which may be related to slightly lower (but 

statistically insignificant) body weight (Table 6.3), this did not changed after intervention 
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and there was no significant change in systolic blood pressure within each group (placebo: 

134 ± 8.7 vs 131 ± 13.1mmHg, p=0.314; statin: 124 ± 17.2 vs 120 ± 12.5, p=0.130). 

 

As expected there was a dramatic change in the fasting lipids in the treatment arm of the 

study as opposed to the placebo arm (n=20) in which the mean baseline LDL-cholesterol 

was 3.76 ± 1.02 mmol/L and at follow up was 3.69 ± 0.87 mmol/L (p=0.566), and baseline 

triglycerides were 1.36 ± 0.69 mmol/L and after 6 months: 1.25 ± .65 mmol/L (p=0.361). 

In contrast, in the treatment group (n=19), the baseline LDL-cholesterol decreased from 

3.53 ± 0.82 mmol/L to 1.63 ± 0.58 (p<0.0001) at follow up and triglycerides from 1.36 ± 

0.60 mmol/L at baseline to 0.92 ± 0.49 mmol/L (p<0.0001) after treatment (Table 6.4 and 

6.5). The alteration in lipids concentration within the treatment group resulted in a 

diminished by 50% CVD risk, from 6.1% to 2.88% (p<0.0001), while in the placebo group 

the CVD risk remained similar over 6 months period (8.4% vs 9.1%, p=0.092). 
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  Table 6.1 Baseline characteristics of study population, n=39 

 
 
Variable 

 
Mean ± SD 

 
Range 

 
Age (years) 

 
51.4 ± 9.0 

 
29.0 - 69.6 

 
Waist circumference (cm) 

 
105.3 ± 12.9 

 
86.5 - 151.0 

 
BMI (kg/m

2
) 

 
32.1 ± 4.6 

 
25.3 - 47.9 

 
DEXA total body fat (%) 

 
35.6 ± 7.4 

 
21.2 - 47.5 

 
DEXA trunk fat (%) 

 
16.8 ± 4.6 

 
9.0 -31.9 

 
Blood pressure systolic (mmHg) 

 
133 ± 14 

 
93 - 155 

 
Blood pressure diastolic (mmHg) 

 
85 ± 9 

 
64 - 104 

 
CVD risk (%) 

 
7.3 ± 5.1 

 
0 - 17.3 

 
Total cholesterol (mmol/L) 

 
5.7 ± 1.1 

 
3.2 - 9.3 

 
LDL-cholesterol (mmol/L) 

 
3.7 ± 0.9 

 
1.7 - 7.0 

 
HDL-cholesterol (mmol/L) 

 
1.6 ± 0.4 

 
0.9 - 2.5 

 
Triglycerides (mmol/L) 

 
1.4 ± 0.6 

 
0.4 - 2.7 

 
HbA1c (%)  

 
5.5 ± 0.3 

 
4.9 - 6.2 

 
Fasting Glucose (mmol/L) 

 
5.2 ± 0.7 

 
4.0 – 6.6 

 

M/I ((mg L)/kg/min/mIU)   

 

3.36 ± 1.25† 

 

0.97 - 6.26† 

 
PAEE (MET) 

 
1.3 ± 0.2 

 
0.8 - 1.6 

 
hs-CRP (mg/dL) 

 
2 (1.09 -10.47) †† 

 
0.0 - 39.8 

 † n=32, †† median (95%CI) 

  Table 6.2 Summary of the features of the metabolic syndrome in the cohort 

 

 

Features of metabolic syndrome 

 

Total number of subjects 
 
Waist circumference: ≥ 94cm in men 
                                   ≥ 80cm in women 

 
39 

 
Blood pressure: systolic ≥ 130mmHg or 
                          diastolic ≥ 85mmHg 

 
22 

 
Fasting triglycerides ≥ 1.7 mmol/L 
 

 
12 

 
Fasting glucose ≥ 5.6 mmol/L 
 

 
10 

 
HDL-cholesterol: ≤ 1.03mmol/L in men 
                            ≤1.29 mmol/L in women 

 
6 

 

 



 

220 

 



 

221 

 

Table 6.3 Characteristics of study population based on randomisation, at baseline and 

after intervention 

 0 months p- 
value 

6 months p- 
value Placebo Atorvastatin Placebo Atorvastatin 

 
Age (years) 
 

 
53.3 ± 9.3 

 
52.9 ± 8.7 

 
0.927 

   

Waist 
circumference 
(cm) 

 
108.4 ± 14.3 

 
102.0 ± 10.7 

 
0.126 

   
 

 
Body weight (kg) 
 

 
94.4 ± 20.` 

 
89.3 ± 14.9 

 
0.376 

 
95.5 ± 21.84 

 
89.7 ± 16.43 

 
0.356 

 
BMI (kg/m

2
) 

 

 
32.30 ± 5.5 

 
30.9 ± 3.9 

 
0.357 

 

 
32.6  ± 6.12 

 
31.1  ± 4.79 

 
0.383 

 
DEXA total body fat 
(kg)  

 
33.3 ± 10.95 

 
30.39 ± 7.95 

 
0.351 

 

 
34.65 ± 12.79 

 
30.97 ± 8.52 

 
0.298 
 

 
DEXA trunk fat (kg) 

 
17.36 ± 5.78 

 
15.32 ± 3.68 

 
0.200 

 
18.54 ± 7.65 

 
15.72 ± 4.11 

 
0.164 

 

 
Blood pressure 
systolic (mmHg) 

 
134.2 ± 8.7 

 
124.2 ± 17.2 

 
0.026* 

 
131.9 ± 13.1 

 
120.8 ± 12.5 

 
0.011* 

 
Blood pressure 
diastolic (mmHg) 

 
81.7 ± 8.5 

 
79.7 ± 10.2 

 
0.526 

 
82.5 ± 7.5 

 
76.1 ± 8.8 

 
0.020* 

 
Total cholesterol 
(mmol/L) 

 
5.8 ± 1.2 

 
5.7 ± 1.0 

 
0.887 

 
5.49 ± 1.03 

 
3.49 ± 0.66 

 
0.000* 

 
LDL-cholesterol 
(mmol/lL) 

 
3.7 ± 1.02 

 
3.53 ± 0.8 

 
0.446 

 
3.69 ± 0.87 

 
1.63 ± 0.58 

 
0.000* 

 
HDL-cholesterol 
(mmol/L) 

 
1.4 ± 0.3 

 
1.5 ± 0.4 

 
0.397 

 
1.25 ± 0.30 

 
1.44 ± 0.30 

 
0.048 

 
Triglycerides 
(mmol/L) 

 
1.4 ± 0.7 

 
1.4 ± 0.6 

 
0.992 

 
1.25 ± 0.65 

 
0.92 ± 0.49 

 
0.086 

 
HbA1c (%) 
 

 
5.5 ± 0.36 

 
5.4 ± 0.32 

 
0.302 

 
5.7 ± 0.58 

 
5.6 ± 0.24 

 
0.256 

 
Fasting Glucose 
(mmol/L) 

 
5.3 ± 0.89 

 
5.1 ± 0.47 

 
0.478 

 
5.6 ± 1.03 

 
5.40 ± 0.46 

 

 
0.493 

 

 
Fasting Insulin 
(mIU/L)  

 
10.88 ± 7.76 

 
8.83 ± 3.17 

 
0.293 

 

 
11.65 ± 8.57 

 

 
11.52 ± 3.99 

 
0.951 

 
HOMA-IR 
 

 
2.73 ± 2.56 

 
2.12 ± 0.74 

 
0.331 

 
3.10 ± 3.44 

 
2.73 ± 1.05 

 
0.662 

 

 
QUICKI 
 

 
0.60 ± 0.09 

 
0.61 ± 0.07 

 
0.686 

 
0.58 ± 0.07 

 
0.57 ± 0.05 

 
0.438 

 

M value  † 

(mg/kg/min)  

 
4.30 ± 1.16 

 
5.48 ± 1.25 

 
0.005* 

 
4.57 ± 1.09 

 
5.04 ± 1.13 

 
0.231 

 

M/I † 
((mg L)/kg/min/mIU)    

 
2.90 ± 1.27 

 
3.85 ± 0.99 

 
0.014* 

 
2.97 ±1 .04 

 
3.83 ± 1.41 

 
0.054 

 
PAEE (MET) 
 

 
1.29 ± 0.19 

 
1.28  ± 0.13 

 
0.895 

 
1.22 ±0.19 

 
1.31 ± 0.25 

 
0.198 

* p < 0.05, statistically significant, † n=32 
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Table 6.4 Anthropometric measurements, within-group comparison 

 
  

Placebo 
 

p- 
value 

 

 
Atorvastatin 

 
p- 

value  
0 months 

 
6 months 

 
0 months 

 
6 months 

 
Body weight (kg) 
 

 
94.4 ± 20.1 

 
95.5± 21.8 

 
0.205 

 
89.3 ± 14.9 

 
89.6 ± 16.4 

 
0.607 

 

 
BMI (kg/m

2
) 

 

 
32.3 ± 5.5 

 
32.6 ± 6.1 

 
0.375 

 
30.9 ± 3.9 

 
31.0 ± 4.8 

 
0.573 

 
DEXA total body 
fat (kg)  
 

 
33.3 ± 10.9 

 
34.6 ± 12.7 

 
0.47 

 
30.3 ± 7.9 

 
30.9 ± 8.5 

 
0.273 

 
DEXA trunk fat 
(kg) 
 

 
17.4 ± 5.8 

 
18.5 ± 7.6 

 
0.065 

 
15.3 ± 3.7 

 
15.7 ± 4.11 

 
0.199 

* p < 0.05, statistically significant 

 

 

Table 6.5 Fasting lipid profile before and after treatment with Atorvastatin 

 
  

Baseline 
 

After treatment 
 

p- value 

 
Total cholesterol (mmol/L) 
 

 
5.71 ± 0.98 

 
3.49 ± 0.66 

 
0.000* 

 
LDL-cholesterol (mmol/L) 
 

 
3.53 ± 0.82 

 
1.63 ± 0.58 

 
0.000* 

 
HDL-cholesterol (mmol/L) 
 

 
1.50 ± 0.37 

 
1.44 ± 0.30 

 
0.209 

 
Triglycerides (mmol/L) 
 

 
1.36 ± 0.60 

 
0.92 ± 0.49 

 
0.002* 

* p < 0.05, statistically significant 
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Atorvastatin also reduced hsCRP significantly from a median baseline concentration of 

2.0mg/dL (95% CI: (1.31, 5.59)) to 0.5mg/dL (95% CI: (0.35, 4.65)) at the follow up (p=0.02), 

whereas the median level of hsCRP in the placebo group was 2.0 mg/dL (95% CI: (1.09, 

10.47)) compared with 3.0 mg/dL (95% CI: (1.62, 6.35)) after 6 months (p=0.73). There was a 

positive correlation between the change in LDL-cholesterol and hsCRP (r=0.27, p<0.002). 

 

Oral Glucose Tolerance Testing identified 5 subjects with impaired glucose tolerance 

(IGT) both before and after intervention, 3 of whom were in the placebo group. An 

additional subject in the placebo group, who at 0 months had impaired fasting glycaemia 

(IFG), was found to have IGT (borderline) at 6 months and one subject from intervention 

group who previously had a normal test was found to have IFG at the end of study. Three 

subjects in the placebo group who had initially normal glucose tolerance tests were found 

to have IGT after 6 months while the opposite was seen in the case of one subject from the 

placebo and 1 subject from the statin group. 

 

The baseline levels of fasting insulin sensitivity indices such as glucose, insulin, HOMA-

IR and QUICKI were similar between both groups. All those parameters were significantly 

altered with Atorvastatin treatment – concentrations of glucose, insulin and HOMA 

increased whereas the QUICKI level proportionally decreased (Table 6.3 and 6.6). There 

was also a small, significant increase in fasting glucose in the placebo group. However 

repeated measures ANOVA did not show a group effect with p-value of 0.467. 

 

The concentrations of glucose and insulin measured throughout the clamp studies did not 

differ significantly between the placebo and statin group at any time point, both at baseline 

and 6 months later, except for the 170 minute time point at baseline (t (30)=2.216, 

p=0.034) and 150 minute time point at 6 months (t (30)=2.173, p=0.038) as presented in 

Figure 6.1 and 6.2. This suggests that the tests were comparable and reproducible between 

and within the groups. 

Subjects randomised to active treatment were at baseline more insulin-sensitive than those 

in the placebo group as defined by the mean insulin-mediated glucose disposal rate (M- 

value) and insulin sensitivity index (ISI) expressed as M/I value. Although the insulin 

sensitivity markers deteriorated over the course of study in the statin group, the difference 

was not statistically significant when using Student t-test. The repeated measures ANOVA, 

however, indicated borderline significant change for M-value (p=0.054) and statistically 

significant group effect for M/I with p=0.032. HbA1c concentrations showed small but 
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significant increase in both groups over the time with pre-treatment level of 5.5% and post-

treatment level of 5.7% (p<0.009) in placebo arm and 5.4% versus 5.6% (p<0.0001) 

respectively in the intervention arm, but repeated measures ANOVA did not show a group 

effect for HbA1c (p=0.246). 

 

NEFA concentrations, measured to assess lipolysis in the adipose tissue during the clamps, 

were similar amongst both groups before randomisation, and they were higher than those 

in non-obese populations (Table 6.8). There was 46% and 42% NEFA suppression in the 

statin and placebo groups respectively in response to low dose (0.2mIU/kg/min) insulin 

infusion and this remained unchanged by treatment in either group. The degree of NEFA 

suppression to high dose (1.5mIU/kg/min) insulin infusion reached 90% in both groups of 

subjects and was not altered by intervention (Figure 6.3). 

 

Thigh cuff inflation at 44 and 164 minutes during the clamp did not affect lactate 

concentrations (Table 6.8). There was no significant difference in lactate levels at any time 

point during the low dose and during the last 30 minutes of high dose insulin infusion. 

Lactate concentration increased by 35% during high dose in comparison to the low dose 

insulin infusion (Figure 6.4). 
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Table 6.6 Fasting insulin sensitivity indices – comparison within the groups 

 
  

Placebo 
 

p- 
value 

 
Atorvastatin 

 
p- 

value  
0 months 

 
6 months 

 
0 months 

 
6 months 

 
Glucose (mmol/L) 
 

 
5.26 ± 0.89 

 
5.58 ± 0.03 

 
0.007* 

 

 
5.09 ± 0.47 

 
5.40 ± 0.46 

 
0.006* 

 
Fasting Insulin 
(mIU/L)  
 

 
10.9  ± 7.77 

 
11.6 ± 8.57 

 
0.152 

 
8.84 ± 3.17 

 
11.52 ± 3.99 

 
0.003* 

 
HOMA-IR 
 

 
2.72  ± 2.56 

 
3.10 ± 3.44 

 
0.145 

 
2.12 ± 0.74 

 
2.74 ± 1.04 

 
0.008* 

 
QUICKI 
 

 
0.60 ± 0.09 

 
0.58 ± 0.07 

 
0.107 

 
0.61 ± 0.06 

 
0.56 ± 0.04 

 
0.003* 

* p < 0.05, statistically significant 

 

  

Figure 6.1 Glucose concentrations during stepped hyperinsulinaemic euglycaemic 

clamp; pre tx = pre treatment, post tx = post treatment 
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Figure 6.2 Insulin concentrations during stepped hyperinsulinaemic euglycaemic 

clamp; pre tx = pre treatment, post tx = post treatment  
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Table 6.7 Clamp-derived insulin sensitivity indices – within-group comparison 

 
  

Placebo 
 
p- 
value 

 
Atorvastatin 

 
p- 
value  

0 months 
 

6 months 
 

0 months 
 

6 months 

 
M value 
(mg/kg/min) 
 

 
4.42  ± 1.16 

 
4.56  ± 1.09 

 
0.490 

 
5.41 ± 1.23 

 
5.09 ± 1.15 

 
0.247 

 
M/I 
(mg/kg/min/mIU/L) 
 

 
3.00  ± 1.26 

 
2.97  ± 1.04 

 
0.849 

 
3.90 ± 1.07 

 
3.83 ± 1.41 

 
0.756 

* p < 0.05, statistically significantly  
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Table 6.8 NEFA concentrations during the stepped hyperinsulinaemic euglycaemic 

clamp: at baseline, after 60 minutes of low dose insulin infusion and during the steady 

state of high-dose insulin infusion  

 
  

Placebo 
 

p- 
value 

 
Atorvastatin 

 
p- 

value  
0 months 

 
6 months 

 
0 months 

 
6 months 

 

Basal NEFA ( mol/L) 

 

 
640 ± 40 

 
571 ± 46 

 
0.008* 

 
679 ± 63 

 
595 ± 46 

 
0.120 

 
Low-dose insulin infusion   

( mol/L) 

 
372 ± 46 

 
375 ± 38 

 
0.925 

 
368 ± 34 

 
328 ± 38 

 
0.458 

 
High-dose insulin infusion 

( mol/L) 

 
39 ± 4 

 
40 ± 3.5 

 
0.780 

 
38 ± 5 

 
31 ± 4 

 
0.143 

* p < 0.05, statistically significant 

 

 

 

 

Figure 6.3 NEFA concentrations during stepped hyperinsulinaemic euglycaemic 

clamp; pre tx = pre treatment, post tx = post treatment 
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Table 6.9 Changes in lactate concentrations at the time points of thigh cuff inflation 

during the hyperinsulinaemic euglycaemic clamp 

 
 
Insulin Infusion 
 

 
Time point (minutes) 

 
∆ Lactate (mmol/L) 

 
p- value 

 
Low dose 

 
40 -50 

 

 
- 0.155 

 
0.293 

 
Low dose 

 
40 -60 

 

 
- 0.103 

 
0.545 

 
Priming for  high dose /high 
dose 

 
60-90 

 

 
- 0.378 

 
0.000* 

 
High dose 

 
160-170 

 

 
0.013 

 
0.234 

 
High dose 
 

 
160-180 

 

 
0.028 

 
0.030 

 

 

 

 

Figure 6.4 Lactate concentrations during the stepped hyperinsulinaemic euglycaemic 

clamp; pre tx = pre treatment, post tx = post treatment 
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The baseline microvascular function measurements are presented in Figures 6.5 (this figure 

was also shown in chapter 5) and Figure 6.6. There was considerable variability in all 

measures of microvasculature within both groups which remained unchanged throughout 

the study as presented with the example of functional dilatory capacity in Figure 6.6. The 

characteristics and relationships of microvascular function in our obese subjects were 

described in this dissertation in chapters 4 and 5. 

 

Six months of treatment with Atorvastatin did not significantly alter any of the 

microvascular function parameters measured with the venous congestion plethysmography 

or LDF during the clamp studies (Figures 6.6, 6.7 and 6.8). There were no significant 

changes in Kf (p=0.99), Pvi  (p=0.28) and Qa (p=0.29) in the intervention group after 

adjusting for baseline measurements, age and gender. Similarly, therapy with Atorvastatin 

did not influence the resting blood flux (RF) when compared with the baseline (p=0.15). 

The microvascular dilator capacity to arterial occlusion (PF%RF) (Figure 6.8) and insulin-

induced change in PF%RF were not significantly altered by statin treatment compared with 

placebo group.  
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Figure 6.5 Baseline measurements of filtration capacity, resting limb blood flow and 

endothelial integrity 

 

   Kf - exchange capacity (×10
-3

ml/min/mmHg/100ml tissue), Qa rest - resting blood flow 

    (ml/min/100ml tissue), Pvi - isovolumetric venous pressure (mmHg) 

 

 

Figure 6.6 Baseline and post treatment results of blood flux and PORH peak 

measured by Laser Doppler Fluximetry during hyperinsulinaemic clamp 
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Figure 6.7 Effects of six months treatment with statin and placebo on exchange 

capacity (Kf), isovolumetric venous pressure (Pvi) and baseline blood flow 
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Figure 6.8 Effects of six months treatment on resting blood flux (RF), functional 

dilator capacity (PF%RF) and insulin-induced change in PF%RF 
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Summary points: 

 All subjects had central obesity defined by waist circumference according to IDF 

criteria and a modest degree of insulin resistance as assessed by stepped 

hyperinsulinaemic clamp. 

 

 There were no significant differences in the anthropometric measurements and 

body fat estimation between the placebo and active treatment group at baseline and 

after intervention. 

 

 Subjects’ level of physical activity remained stable throughout the study. 

 

 There was a significant reduction in total and LDL-cholesterol, triglycerides and 

hs-CRP with Atorvastatin. 

 

  Fasting glucose, insulin and HOMA-IR significantly increased and QUICKI 

decreased within the intervention group as compared to placebo group where only 

fasting glucose increased while other parameters remained unaffected. 

 

 There was a small decrease in the insulin sensitivity markers (M-value and M/I) but 

this was not statistically significant. 

 

 Atorvastatin treatment did not alter any of the microvascular function parameters. 
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6.4 Discussion 
 

In this study we showed that our cohort of centrally obese, non-diabetic participants but 

with other metabolic traits and at cardiovascular risk, had a modest degree of insulin 

resistance as characterized by fasting surrogate and direct markers of insulin sensitivity. 

It has previously been shown that hyperinsulinaemia in the presence of normoglycaemia 

provides evidence of insulin resistance and in general, fasting insulin concentrations 

greater than the upper limit for an assay might indicate insulin resistance [352]. Based on 

this criterion, a fasting insulin level above 10 mIU/L suggested that 44 % of the study 

population had insulin resistance of variable degrees. However, fasting insulin 

concentrations may overestimate insulin resistance due to the considerable overlap in 

insulin concentration between normal and insulin resistant states [353]. Only half of 

individuals who are hyperinsulinaemic are actually insulin resistant on a clamp [354]. 

When we defined insulin resistance as HOMA-IR > 2.5 again over 40% of the study met 

the criteria. The similarity in those results may be due to the use of a single fasting insulin 

for HOMA-IR calculations, which has previously been done by researchers for the sake of 

simplicity [355]. However, this does not take into account the pulsatility of insulin 

secretion and blood glucose levels and while it may not influence the results in larger, 

diabetic populations, in a smaller and non-diabetic population such as in our study, 

HOMA-IR based on a single measurement may misrepresent the actual insulin resistance 

status. The variable degrees of obesity and fat distribution (visceral versus subcutaneous) 

could potentially also influence the characteristics of the subjects’ insulin sensitivity.  

It has previously been reported that the rate of glucose disposal in the steady state 

expressed as M-value > 7.5mg/kg/min indicates insulin sensitivity, while the M-value < 

4mg/kg/min indicates relative body resistance to insulin action. Levels between 4.0 and 7.5 

are regarded as a grey area, possibly a pre-diabetic state [104, 356]. Using these criteria, 

we found that at the baseline about 23% of the study population had insulin resistance, 

whereas the rest of the subjects fell into the “pre-diabetic” category. There is evidence 

from other studies that glucose and insulin concentrations during the steady phase of a 

euglycaemic clamp differ between normal, obese as well as diabetic subjects [113, 356]. 

Within the obese population there may be additional variability in the level of insulin 

resistance depending on the fat distribution resulting in various grades of metabolic 

disturbances and therefore it is likely that application of the general criteria defined above 

may have underestimated the subjects’ insulin sensitivity. Throughout the clamps we 

performed, as part of microvascular studies, periodic thigh cuff inflations, which were 

designed to cause complete arterial occlusion and would be expected to result in a degree 
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of leg ischaemia with consequent increase in plasma lactate. Since it has previously been 

reported that elevated lactate levels induce insulin resistance in skeletal muscle [357] this 

could have potentially affected the results of M-value and M/I. However, we showed that 

thigh cuff inflations did not alter plasma lactate concentrations in our subjects throughout 

the clamps and since the timing of blood sampling followed a similar pattern to the one 

during a standard ischaemic forearm exercise test, it is unlikely that any significant 

increase in lactate was not detected. The observed 36% increase in lactate concentration 

following a high dose primer infusion and maintained throughout the clamp is likely to 

reflect body compensatory mechanisms involving increased output through the Cori cycle 

in response to the infusion of large amounts of dextrose required for maintaining 

euglycaemia in the presence of exogenous hyperinsulinaemia. It is not clear whether the 

acute increase in lactate could affect insulin signalling at peripheral tissues and this may 

require further investigation. 

Furthermore, there are no standard protocols for performing hyperinsulinaemic clamps and 

many modifications of the original clamp exist, but there have been no studies 

investigating the effects of variable methodology on the interpretation of the results. All of 

these factors require consideration when interpreting and comparing results from different 

studies and of various insulin sensitivity markers. Additionally, it is important to note that 

HOMA-IR and other fasting indices provide an estimation of hepatic, not peripheral/whole 

body insulin sensitivity, whereas the standard clamp technique assesses sensitivity to 

insulin at stimulated (non-physiological) extremes and estimates peripheral sensitivity, 

mainly derived from the muscle such as in the present study. This may explain the 

differences in the estimation of insulin resistance in our subjects using the various 

methods.  

The baseline NEFA results found in our obese cohort were in keeping with previous 

reports that post-absorptive plasma NEFA concentrations are higher in obese than in 

normal subjects, in whom circulating NEFA concentrations are around 500 μmol/L [358]. 

This may be due to enhanced lipolysis from increased fat mass [359] present in obese 

subjects. It is also thought that raised plasma NEFAs may cause a reduction in peripheral 

insulin sensitivity via the Randle cycle, which may in part contribute to the explanation of 

our findings [95, 360, 361]. The approximate 40% suppression of NEFA after 60 minutes 

of low dose insulin infusion suggests a relatively good, but perhaps less than expected 

response when compared with the results of Brackenridge et al. [280] who showed 70% 

suppression of NEFA by the end of a 2 hour low dose (0.3mIU/kg/min) infusion in 
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overweight subjects. The maximal suppression of NEFA to high dose insulin infusion is 

consistent with previous findings [280].  

 

Our data demonstrated that in centrally obese and non-diabetic subjects, six months of 

treatment with high dose statin did not improve insulin sensitivity, however, there was a 

trend towards an increase in insulin resistance. While we showed that the statin therapy 

significantly increased fasting surrogate measures of insulin resistance when adjusting for 

baseline, we did not confirm a group effect with repeated measures ANOVA. We observed 

the opposite with direct measures of insulin sensitivity, that is no significant alteration in 

the results with active treatment when adjusting for baseline but when adjusted for placebo 

there was present a significant effect of statin therapy. These, at first glance, paradoxically 

discrepant results may be explained by a relatively small number of subjects recruited into 

the study and the fact that we were unable to obtain repeated measurements on M-value 

and M/I index for all participants both, before and after completed therapy. Previous 

unfavorable reports for Simvastatin and Atorvastatin by Orhvall et al. [242] and Koh et al. 

[243] respectively were based on studies with a little higher number of subjects (n=29 and 

n=43 for statin, respectively) but who had already type 2 diabetes. Therefore it is plausible 

that in those populations it would be far easier to elicit any changes in insulin sensitivity 

than in a population with much higher insulin sensitivity reserve. This speculation concurs 

with the findings by Sukhija et al. [362] who reported a significant increase in fasting 

glucose with use of any statin after adjustment for age and concurrent medication in a 

study with over three hundred thousand subjects, which included both diabetic and non-

diabetic. 

The small and significant deterioration in HbA1c levels in a placebo group may be 

explained by the fact that subjects in this group had 16% higher insulin resistance, which 

over a period of time was far more likely to deteriorate than otherwise. Since both groups 

showed deterioration in HbA1c when adjusted for baseline, it is not unexpected that we did 

not demonstrate statistically significant changes after adjustment for placebo. However, the 

increase in glycated haemoglobin with active treatment led to reclassification of those 

subjects from normal to a prediabetic category. At the same time our data showed that 

Atorvastatin did not significantly affect peripheral insulin resistance in the middle aged, 

centrally obese and modestly insulin resistant subjects when adjusted for baseline results. 

Although the peripheral glucose disposal deteriorated in the intervention group, while it 

remained unchanged in the placebo group, which was at baseline 16% more insulin 

resistant than the active treatment group, the change in M-value and M/I index was not 
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statistically significant. However, there was a borderline change for M-value and 

significant change for M/I index after adjusting for randomization. Again, it could be 

speculated that our subgroups consisted of relatively small number of participants which 

were insufficient to detect significant effects of statin on peripheral insulin sensitivity.  

Although other studies with statins that implemented clamps for assessment of insulin 

resistance and showed significant changes in the outcome results used even lower number 

of participants [245, 248], their populations were far more insulin resistant and older than 

our cohort, which could in part explain our findings: our subjects have a large enough 

reserve of peripheral (skeletal muscle) insulin sensitivity to protect them from marked 

deterioration in peripheral insulin resistance with statin treatment. Since we had a 

relatively smaller number of subjects in active treatment group, which was also much 

younger than in the other study, we could not easily demonstrate statistically significant 

change. In support of this speculation is a recently reported meta-analysis by Sattar et al. 

[253] which indicated that the risk of incident diabetes with statin is the highest in older 

populations, over 65 years, which by default will have a much lower reserve of insulin 

sensitivity.   

The mechanism by which statins may increase the fasting markers of insulin sensitivity is 

unclear. Sukhija et al. [363] proposed that statins may decrease various metabolites 

including ubiquinone, which enhance glucose uptake via glucose transporter type 4 

(GLUT4) in adipocytes thus impairing insulin release and altering glycaemic control. 

However some researchers suggested that while lipophilic statins such as Atorvastatin 

worsen insulin sensitivity, hydrophilic statins on the other hand seem to improve it. We 

have not been able to investigate the mechanisms by which treatment with Atorvastatin 

increases fasting surrogate markers of insulin sensitivity and this certainly requires further 

exploration. 

The maintenance of subjects’ body weight and fat composition, and level of physical 

activity throughout the study makes it unlikely that any major changes in the participants’ 

lifestyle confounded the results.  

 

While statins have been shown to have beneficial pleiotropic effects within the 

macrovasculature through regulation of endothelial function and blood flow, our data from 

a randomised double blind placebo controlled trial with 6 months of treatment with high 

dose of Atorvastatin has unequivocally shown no effect of statin on any of the measured 

aspects of skeletal muscle microvascular function. This finding is consistent with that of 

Fegan et al. [348] who reported a lack of improvement in cutaneous vascular response 
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after 3 months of single or combined lipid-lowering therapy in type 2 diabetics. Similarly, 

no effect of 4 week  therapy with a small dose of Atorvastatin was seen on vasomotor 

function investigated with high-resolution ultrasound over the brachial artery [231]. 

However, Haak et al. [349] demonstrated that 12 weeks of 80mg daily Fluvastatin in 

patients with hyperlipidaemia improved time to peak reactive hyperaemia in the capillaries 

of the nailfold and that this was positively correlated with post treatment LDL-cholesterol 

levels. Statins have also been shown to exert a lipid-independent amelioration of 

endothelial dysfunction in several animal models via increases in NO bioavailability, 

attenuation of NADPH oxidase-mediated superoxide production and down regulation of 

COX-2 dependent 8-isoprostane generation, or possibly by lessening the severity or 

rarefaction through a proangiogenic action [235-237]. It is therefore plausible that the 

noted beneficial effects of statins on endothelial function may be statin-specific or that 

their pleiotropic effects do not play a major role in improving microvascular function 

[140]. Furthermore, it is possible that a 6 month treatment with statins may be not 

sufficient for the necessary neovascularization or endothelial cell turnover to occur and 

improve the aspects of microvascular function measured in our study. 

It is plausible that our study lacked power to detect small changes with high dose statin 

treatment. There have been no similar studies examining effects of statins on 

microvascular function, to our best knowledge. However, a retrospective sample size 

calculation using our data-set estimated that our study would have had 90% power, at a 5% 

significance level, to detect a 68% improvement in PORH with 14 subjects in our statin 

trial. A 68% improvement in PORH with exercise was noted by Pasqualini et al. [364] who 

recently undertook a study in overweight and hypertensive patients, testing the effects of 

exercise on reactive hyperaemia. Also, our study was powered to detect relatively modest 

changes in Kf such as an increase in mean Kf from 3.9 to 5.0 x10
-3

ml/min/mmHg/100ml 

(97% power at 5% significance level). More marked changes in Kf have been reported with 

electrical stimulation for 4 weeks, which increased Kf  from, 3.38 ± 0.38 to 6.68 ± 0.62 

(p<0.05) [221]. 

 

In conclusion, our findings showed that in the centrally obese subjects without type 2 

diabetes but with other moderate metabolic traits, the level of insulin resistance was 

modest, predominantly within the pre-diabetic range as assessed by hyperinsulinaemic 

euglycaemic clamp and M-value. They also had, as expected, enhanced lipolysis but 

reduced adipose tissue response to low dose of insulin infusion. We also demonstrated that 

6 months of treatment with high dose of Atorvastatin resulted in reduced hepatic insulin 
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sensitivity as expressed by increased fasting surrogate markers of insulin resistance. 

However we failed to show a significant effect of statin on peripheral insulin sensitivity. 

Furthermore we demonstrated that despite marked decreases in LDL-cholesterol and hs-

CRP concentrations, 6 months of therapy with Atorvastatin did not improve any of the 

measures of microvascular function investigated in our study. 

 

 

Summary points: 

 

 Our cohort of middle-aged, centrally obese but non diabetic subjects had a modest 

degree of insulin sensitivity and impaired peripheral lipolysis as assessed by 

hyperinsulinaemic euglycaemic clamp. 

 

 Six months of daily treatment with 40mg of Atorvastatin did not improve insulin 

sensitivity but we observed a trend towards deterioration in insulin sensitivity 

markers. 

 

 As expected Atorvastatin significantly reduced total and LDL-cholesterol as well as 

triglycerides concentrations leading to significantly lowered cardiovascular risk in 

subjects with features of metabolic syndrome. 

 

 Although intensive treatment with statin reduced hs-CRP, it did not alter any of the 

measures of microvascular function. 

 

 

 

Part of this chapter / data were submitted in 2008 for FRCPath in a dissertation titled: “The 

Effect of Atorvastatin on Insulin Resistance of the Metabolic Syndrome”. 
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7. The relationship between cardiorespiratory fitness, 

cardio-metabolic risk factors and cardiac diastolic 

function in central obesity 

 
7.1 Introduction 
 

Cardiorespiratory fitness is a well-recognised predictor
 
of cardiovascular outcome in 

normal individuals as well as in those with underlying cardiovascular disease. Fitness is 

related to several factors such as age, weight, nutrition [7, 365], gender [7], obesity, 

quantity and quality of physical activity [7] and genetics [211]. Bouchard  et al. reported 

that heredity accounts for 25-50 % of variance in aerobic power [211]. Studies have shown 

that a low level of cardiorespiratory fitness in the overweight results in an increased risk of 

type 2 diabetes [214, 215, 217], cardiovascular morbidity and all cause mortality [208]. A 

large cohort prospective study demonstrated that the association between obesity, 

metabolic syndrome and all cause and cardiovascular mortality is largely explained by 

cardiorespiratory fitness [216]. The modern literature suggests that high aerobic fitness 

protects against cardiovascular disease in non-obese and obese individuals. Recently, 

Fogelholm conducted a systematic review of 36 publications examining the health risks of 

poor aerobic fitness in normal weight and good aerobic fitness in obese individuals with 

BMI less than 35 [207]. The data indicated that the risk of all-cause and cardiovascular 

mortality was lower in individuals with good cardiorespiratory fitness and high body mass 

index, compared to those with normal BMI but low levels of fitness. Additionally, the data 

showed that obese subjects, despite high levels of physical activity, were still at a higher 

risk of developing type 2 diabetes than those with normal BMI and low physical activity 

level. These findings indicate that relationships between fitness, fatness and cardio-

metabolic factors are far more complicated than they may appear at first glance. This also 

illustrates the importance of understanding which determinants contribute to fitness-

induced cardiovascular protection in obese people at risk of cardiovascular disease and 

type 2 diabetes. 

 

There are still many uncertainties about the exact determinants of fitness in middle-aged 

individuals with central adiposity and other metabolic traits. The maximal oxygen 

consumption (VO2 max) is the single best measure of cardiorespiratory capacity to deliver 

oxygen to the skeletal muscles during physical activity. VO2 max is determined by the 

oxygen supply and its utilisation. Convective oxygen delivery is largely dependent on 

cardiac function and peripheral vasodilatory response. Crucial for oxygen utilisation is the 
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skeletal muscle diffusing capacity, which is regulated by the muscle functional capillary 

surface area [212]. Regular exercise appears to be the most important physiological 

stimulus for myocardial oxygen demand and ensuring system efficiency. It modulates 

cardiac diastolic function which predetermines cardiac output, promotes muscle capillary 

development that is essential for oxygen diffusion and utilisation, and improves insulin-

mediated whole body glucose uptake [212]. 

Studies have shown that cardiac diastolic function correlates with exercise capacity in 

normal subjects and that left diastolic dysfunction plays a key role in the development and 

progression of cardiovascular disease [366]. Physiological insulin levels have been shown 

to increase cardiac output and stimulate peripheral vasodilatation preferentially into 

skeletal muscle microvasculature [151, 313], whereas those mechanisms seem to be 

impaired in central obesity [156, 313]. 

Thus, it becomes apparent that cardiorespiratory fitness may be influenced by several 

factors such as the energy expenditure derived from physical activity, insulin sensitivity, 

skeletal muscle microvasculature and cardiac function. Their relative impact on the VO2 

max however, is unclear and requires further research that would provide a better 

understanding of the individual contribution of the key regulators of VO2 max variance and 

an insight into the new ways of ameliorating the cardiorespiratory fitness.  

The use of cardiac catheterizations, an invasive technique, is restricted in research on 

healthy volunteers and echocardiography provides measures of cardiac function but not 

other vascular parameters. With advances in the modern technology, cardiac function 

together with arterial stiffness can be reliably assessed in healthy individuals using the 

well-validated, non-invasive method of pulse wave analysis [289, 290]. This technique 

allows estimation of the subendocardial viability ratio (SEVR) which represents 

myocardial perfusion relative to the left ventricular workload and is a proxy measure for 

diastolic function. We therefore used pulse wave analysis as an indirect measure of 

diastolic function and arterial stiffness. 

 

In this study we aimed to elucidate the factors independently associated with VO2 max and 

determine the proportion of the variance in VO2 max that they explained. We therefore 

examined the relationships between cardiorespiratory fitness and insulin sensitivity, 

fatness, physical activity energy expenditure, skeletal muscle microvasculature and cardiac 

diastolic function. Since the myocardial perfusion occurs during diastole, we tested the 

hypothesis that VO2 max is independently associated with diastolic function when 
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controlled for potential confounders such as physical activity levels, insulin sensitivity, 

skeletal muscle microvascular function and visceral and total adiposity. 
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7.2 Methods 
 

Forty-seven white Caucasian, non-diabetic men and women aged 29 – 69 were recruited.  

All subjects had central obesity defined as waist circumference ≥ 94 cm for men and ≥ 80 

cm for women and were assessed with the regards to cardiorespiratory fitness and physical 

activity.  

Fasting lipid profiles, glucose and HbA1c were measured to establish the presence of any 

other metabolic traits, and plasma IL-6 and urinary ACR to assess proinflammatory state in 

relation to microvascular function. Detailed information about laboratory analysis and 

subject recruitment was provided in the methods chapter. 

Fitness was estimated as maximal oxygen uptake during a maximal-grading treadmill test 

as described in the methods chapter. Physical activity was assessed in terms of mean 

energy expenditure expressed as MET during a period of seven to ten days (representative 

of a typical week) of wearing an activity monitor as detailed in the methods section. 

Body composition in terms of fat and lean body mass and visceral fat mass was measured 

using DEXA and abdominal MRI respectively as described previously in methods chapter.  

Data from forty two subjects was collected during pulse wave analysis studies. PWA was 

performed using radial artery applanation tonometry to obtain measures of arterial wave 

reflection (Alx@HR75) as a surrogate measure of arterial stiffness and peripheral arteriolar 

resistance, diastolic function/myocardial perfusion (SEVR) and percentage of ejection 

duration (ED%), which indirectly influences SEVR. Details of method principles and 

measurements were previously provided in chapter 3.6. 

Skeletal muscle exchange capacity (Kf) was measured during venous congestion 

plethysmography to assess skeletal muscle microvascular function. Insulin sensitivity was 

estimated using a hyperinsulinaemic euglycaemic clamp and a ratio of M value and mean 

insulin concentration during the last 30 minutes of the clamp. 

All statistical analyses were performed using SPSS for Windows version 16.0. Student’s t 

test was undertaken to compare mean values. Pearson correlation coefficients were used 

for univariate regression analyses of normally distributed data. The VO2 max data was 

categorised into tertiles to facilitate its presentation and interpretation. Differences and 

linear trends across VO2 max tertiles were examined with the application of one way 

ANOVA. In order to describe factors independently associated with VO2 max or SEVR% 

as outcome variables, multivariate linear regression models were developed, for which 

explanatory variables were chosen from the results of univariate analyses.  
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7.3 Results 
 

The mean ± SD of age of the forty-seven volunteers, which included 19 men and 28 

women, was 51.5 ± 9.3 years. The mean ±SD of VO2 max for all subjects was 22.6 ± 8.7 

ml min
-1

kg
-1

 with significantly higher mean VO2 max values for men (26.1 ± 9.0 ml min
-

1
kg

-1
) than for women (19.1 ± 6.6 ml min

-1
kg

-1
), p=0.005. The baseline characteristics of 

subjects are presented in the Table 7.1. 

The results of univariate associations analysis between VO2 max and estimates of cardiac 

diastolic function, arterial stiffness, microvascular function, insulin sensitivity, body 

composition and physical activity are shown in Table 7.2. VO2 max was significantly and 

inversely correlated with HbA1c, total and truncal fat. However, there was no significant 

association with whole body insulin sensitivity (p=0.11) or mean physical activity energy 

expenditure (p=0.26).  The measures of diastolic function and arterial wave reflection 

showed a statistically significant association with VO2 max (SEVR: r=0.50, p=0.001; 

Alx@ HR 75: r=-0.46, p=0.002). The scatter plots of the relationships between VO2 max 

and SEVR (Figure 7.1) and VO2 max and Alx@HR75 (Figure 7.2) confirm a good linear 

correlation. In order to examine the relationship between each measure and VO2 max in 

more detail, the VO2 max data was categorised into tertiles (Table 7.3). The strong and 

linear relationship between maximal oxygen uptake and measures of diastolic function and 

arterial stiffness has been maintained across all VO2 max tertiles. Similarly, total, truncal 

and visceral fat showed significant linear trends across all VO2 max tertiles.  
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 Table 7.1 Baseline characteristics of study population, n=47 

 
 
Variable 

 
Mean ± SD 

 
Range 

 
Age (years) 

 
51.5 ± 9.3 

 
29.0 – 69.6 

 
Waist circumference (cm) 

 
104.5 ± 12.3 

 
86.5 – 151.0 

 
BMI (kg/m

2
) 

 
31.8 ± 4.6 

 
25.3 – 47.9 

 
DEXA total body fat (kg) 

 
32.1 ± 9.2 

 
18.7 – 58.5 

 
DEXA total body fat (%) 

 
36 ± 7.2 

 
21.2 – 47.5 

 
DEXA trunk fat (kg) 

 
16.5 ± 4.7 

 
8.9 – 31.9 

 
DEXA trunk fat (%) 

 
18.5 ± 3.2 

 
10.2 –24.8 

 
MRI visceral fat (kg) 

 
3.6 ± 1.6 

 
1.1 – 7.1 

 
Blood pressure systolic (mmHg) 

 
133 ± 13 

 
93 – 155 

 
Blood pressure diastolic (mmHg) 

 
82 ± 9 

 
64 – 104 

 
CVD risk (%) 

 
7.2 ± 5.1 

 
0 – 17.3 

 
Total cholesterol (mmol/L) 

 
5.8 ± 1.0 

 
3.2 – 9.3 

 
LDL-cholesterol (mmol/lL) 

 
3.7 ± 0.9 

 
1.7 – 7.0 

 
HDL-cholesterol (mmol/L) 

 
1.4 ± 0.3 

 
0.9 – 2.5 

 
Triglycerides (mmol/L) 

 
1.4 ± 0.7 

 
0.4 – 2.9 

 
HbA1c (%)  

 
5.5 ± 0.3 

 
4.9 – 6.3 

 
VO2 max (ml/min/kg) 

 
22.4 ± 7.65 

 
8.35-52.45 

 
PAEE (MET) 

 
1.27 ± 0.17 

 
0.83-1.55 

 

M/I ((mg L)/kg/min/mIU)  

 
3.21 ± 1.26 

 
0.97-6.26 

 
Kf (×10

-3 
ml/min/mmHg/100ml tissue) 

 
3.86 ± 1.13 

 
3.86 ± 1.13 

 
ED (%) 

 
34.3 ± 4.0 

 
26.0 - 48.0 

 
AIx@ HR 75 

 
18.4 ± 10.6 

 
-12.0 - 41.0 

 
SEVR (%) 

 
169.6 ± 32.1 

 
102.0 - 247.0 
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Table 7.2 Univariate associations with maximal oxygen consumption 

 
 
Variable 

 
r value 

 
p- value 

 
Age (years) 

 
-0.18 

 
0.24 

 
Waist circumference (cm) 

 
-0.12 

 
0.43 

 
BMI (kg/m

2
) 

 
-0.31 

 
0.04* 

 
DEXA total body fat (kg)  

 
-0.39 

 
0.008* 

 
DEXA trunk fat (kg) 

 
-0.37 

 
0.013* 

 
MRI visceral fat (kg) 

 
-0.07 

 
0.70 

 
Blood pressure systolic (mmHg) 

 
-0.10 

 
0.54 

 
Blood pressure diastolic (mmHg) 

 
0.11 

 
0.45 

 
CVD risk (%) 

 
-0.05 

 
0.75 

 
Triglycerides (mmol/L) 

 
-0.17 

 
0.28 

 
HbA1c (%)  

 
-0.35 

 
0.018* 

 
PAEE (MET) 

 
0.18 

 
0.26 

 

M/I ((mg L)/kg/min/mIU)  

 
0.26 

 
0.11 

 
Kf (×10

-3 
ml/min/mmHg/100ml tissue) 

 
0.21 

 
0.20 

 
ED (%) 

 
-0.45 

 
0.002* 

 
AIx@ HR 75 

 
-0.46 

 
0.002* 

 
SEVR (%) 

 
0.50 

 
0.001* 

   * p < 0.05, statistically significant 
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Figure 7.1 Relationship between maximal oxygen uptake and subendocardial viability 

ratio
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Figure 7.2 Relationship between maximal oxygen uptake and augmentation index at 

heart rate of 75 beats/min 
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  Table 7.3 Body fatness, physical activity, insulin sensitivity, arterial stiffness and 

  diastolic function stratified by tertiles of VO2 

 
 

VO2max (ml/kg/min) 
tertiles 

 
 

8.3-19.6 

 
 

20-27 

 
 

28.3-52.5 

 
 

ANOVA 
p-value 

 
Linear 
trend 

p-value  
n 

 
16 

 
16 

 
15 

 
Age (years) 

 
51.7 ± 8.3 

 
53.8 ± 8.6 

 
48.3 ± 10.1 

 
0.24 

 
0.30 

 
Waist circumference (cm) 

 
105 ± 12 

 
107 ± 15 

 
103 ± 11 

 
0.74 

 
0.71 

 
BMI (kg/m

2
) 

 
32.7 ± 4.7 

 
32.0 ± 4.7 

 
31.0 ± 3.8 

 
0.57 

 
0.30 

 
DEXA total body fat (kg)  

 
35.2 ± 10.0 

 
32.5 ± 9.1 

 
28.5 ± 7.1 

 
0.12 

 
0.04 

 
DEXA trunk fat (kg) 

 
17.9 ± 5.0 

 
17.2 ± 4.8 

 
14.4 ± 3.5 

 
0.09 

 
0.04 

 
MRI visceral fat (kg) 

 
3.75 ± 1.49 

 
3.58 ± 1.80 

 
3.51 ± 1.56 

 
0.04 

 
0.03 

 
PAEE (MET) 

 
1.23 ± 0.22 

 
1.31 ± 0.15 

 
1.24 ± 0.18 

 
0.69 

 
0.68 

 

M/I ((mg L)/kg/min/mIU)  

 
0.43 ± 0.22 

 
0.47 ± 0.15 

 
0.52 ± 0.16 

 
0.44 

 
0.21 

 
Kf  
(×10

-3
ml/min/mmHg/100ml)

 

 
3.62 ± 1.27 

 
4.05 ± 0.86 

 
4.05 ± 1.22 

 
0.54 

 
0.34 

 
ED (%) 

 
36.2 ± 4.6 

 
33.1 ± 2.7* 

 
33.4 ± 3.9† 

 
0.049 

 
0.45 

 
AIx@ HR 75 

 
21.7 ± 7.0 

 
20.3 ± 10.6* 

 
12.2 ± 11.7† 

 
0.02 

 
0.01 

 
SEVR (%) 

 
153.3 ± 27.6 

 
172.6 ± 19.6* 

 
177.4 ± 32.2† 

 
0.037 

 

 
0.016 

  * n=14, † n=12 
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Several multiple linear regression analyses were performed to identify the factors that were 

independently associated with VO2 max and to assess how much they contributed to the 

VO2 max variance. We used maximal oxygen uptake as an outcome variable, whereas the 

factors that were significantly associated with VO2 max in the univariate analysis were 

selected as the explanatory factors. 29% of the variance in VO2 max (r
2
=0.29, p=0.001) 

was explained in the regression models when age, sex and truncal or visceral fat were used 

as explanatory variables. Incorporating SEVR as an additional explanatory variable to the 

regression model with age, sex and truncal fat (Table 7.4), explained 46% of the variance 

in VO2 max (r
2
=0.46 p=0.0001). This regression model showed that SEVR was 

independently associated with VO2 max with a standardised coefficient β of 0.37 (95%CI: 

(0.003, 0.18)), p=0.007). The association between SEVR and VO2 max remained 

independent and statistically significant despite replacing truncal fat with other measures 

of the body fatness such as visceral and total body fat or lean body mass in the further 

analyses. 

 

HbA1c was another variable that showed significant association with VO2 max (Table 7.2) 

and therefore was built into the regression model with age, sex, truncal fat and SEVR as 

independent variables. Although this regression model explained 49% of the variance in 

VO2 max (r
2
=0.49, p=0.0001), it influenced the nature of some associations between 

variables. Incorporating HbA1c into the model resulted in the loss of the association 

between age and VO2 max. However, it did not alter significantly the correlation between 

SEVR and VO2 max (standardised coefficient β=0.35, p=0.009). Also, the association 

between sex and VO2 max (standardised coefficient β=-0.37, p=0.009) was still present as 

shown previously. 

 

We also explored the relationship between VO2 max and augmentation index, a proxy 

measure for arterial stiffness, which in the univariate analyses was associated with VO2 

max (r= -0.46, p=0.002) and age (r=0.35, p=0.017). In the linear regression model with 

age, sex, truncal fat and SEVR, we replaced SEVR with Alx@HR75. This model 

explained 40.5% of variance in VO2 max (R
2
=0.41, p=0.001). This analysis showed a 

borderline significantly independent association between Alx@HR75 and VO2 max 

(standardised coefficient β=-0.32, p=0.054). As expected from the previous analyses, there 

was a negative association between VO2 max and truncal fatness (standardised coefficient 

β=-0.28, p=0.04). 
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Finally, we investigated which factors may be associated with SEVR, since we showed 

earlier that this proxy measure of cardiac diastolic function was strongly and independently 

associated with VO2 max in subjects with central obesity. In particular we wanted to 

determine whether diastolic function was independently associated with fatness. Diastolic 

function results (mean ± SD) were not statistically different between the genders, with 

SEVR (%) of 175±34 in men and 162±23 in women (p=0.18). The univariate analyses 

showed lack of association between SEVR and physical activity energy expenditure 

expressed in mean MET (r=0.18, p=0.26) or age (r=0.05, p=0.73). However, there was a 

statistically significant inverse correlation between SEVR and fatness (r=-0.33, p=0.026) 

and IL-6 (r=-0.36, p=0.014). To identify which of those factors were independently 

associated with SEVR we built linear regression models with SEVR as the outcome 

variable. Age, sex, IL-6 and truncal or total or visceral fat were used in subsequent 

regressions as explanatory variables. In none of those analyses were measures of fatness, 

age or gender independently associated with SEVR as a proxy measure of diastolic 

function. However, as presented in Table 7.5, IL-6 was inversely and independently 

associated with SEVR.  
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Table 7.4 Multiple linear regression model of factors independently associated with 

VO2 max as an outcome variable 

 
 
Independent Variables 
 

 
Unstandardised coefficient 

 
Standardised 
coefficient β 

 
95% CI 

 
p-value 

 
B 

 
SE 

 
Age (years) 

 
33.6 

 
10.99 

 
-0.31 

 
-0.50 -  -0.04 

 
0.02 

 
Sex 

 
-0.27 

 
2.15 

 
0.40 

 
-11.01 -  -2.30 

 
0.004 

 
DEXA trunk fat (kg) 

 
-0.30 

 
0.22 

 
-0.17 

 
-0.74 -  0.15 

 
0.18 

 
SEVR (%) 

 
-6.65 

 
0.04 

 
0.37 

 
0.03 -  0.18 

 
0.007 

CI: Confidence Intervals, R
2
 = 0.46, p = 0.0001 

 

 

 

Table 7.5 Multiple linear regression model of factors independently associated with 

SEVR as an outcome variable 

 
 
Independent Variables 
 

 
Unstandardised coefficient 

 
Standardised 
coefficient β 

 
95% CI 

 
p-value 

 
B 

 
SE 

 
Age (years) 

 
-0.10 

 
0.46 

 
-0.03 

 
-1.02 -  0.83 

 
0.83 

 
Sex 

 
-13.8 

 
9.28 

 
-0.24 

 
-32.5  -   4.98 

 
0.15 

 
DEXA trunk fat (kg) 

 
-1.03 

 
1.07 

 
-0.15 

 
-3.19 -  1.13 

 
0.34 

 
IL-6 

 
-10.4 

 
4.46 

 
-0.36 

 
-19.4 -   -1.40 

 
0.025 

R
2
 = 0.23, p = 0.03 
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Summary points: 

 A significant and inverse correlation between cardiorespiratory fitness and HbA1c, 

total and truncal fatness was present. 

 

 A linear association between measures of diastolic function (SEVR) and 

cardiorespiratory fitness (VO2max) was demonstrated. 

 

 There was lack of significant relationship between cardiorespiratory fitness and 

measure of insulin sensitivity (M/I) or physical activity energy expenditure 

(PAEE). 

 

 VO2 max and SEVR showed a strong, positive and independent association in 

several regression models. 

 

 VO2 max and Alx@HR75 inverse correlation was borderline independent of other 

factors. 

 

 There was a significant inverse correlation between SEVR, fatness and IL-6, but 

only the latter was independently associated with measurement of diastolic 

function. 
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7.4 Discussion 
 

The novel aspect of our study is that in centrally obese subjects we have demonstrated a 

strong and independent association between cardiorespiratory fitness and a measure of 

diastolic function closely related to left ventricular load. Regression modelling showed that 

a simple model containing age, sex and the proxy measure of diastolic function identified 

almost half of the variance in VO2 max. Moreover, the relationship between fitness and 

diastolic function was independent of confounding factors that are recognised to influence 

level of fitness such as age, gender, visceral, truncal or total body adiposity and physical 

activity. Additionally, other potential confounders of fitness such as whole body insulin 

sensitivity and skeletal muscle microvascular exchange capacity did not have any 

significant influence on this association.  

We did not use the conventional methods of cardiac function assessment such as cardiac 

catheterisation because its invasive nature restricts its use in research on healthy 

volunteers. Instead we have opted for the non-invasive, arterial applanation tonometry, 

which over recent years has been commonly used in vascular research studies in healthy 

individuals [286]. This technique can readily be applied to study individuals with central 

obesity, because the arterial waveform is reproducibly measured over the radial artery at 

the wrist, which is easily accessible in obese individuals. Pulse wave analysis allows a 

validated estimation of subendocardial viability ratio, which would usually be derived from 

cardiac catheterisation, and pulse wave augmentation index, both of which are the proxy 

measures for cardiac diastolic function and arterial stiffness [367, 368]. Although SEVR 

measured with applanation tonometry does not take account of the left ventricular end 

diastolic pressure, it is a good estimate of the subendocardial viability index in people 

without evidence of ischaemic heart disease and normal left ventricular end diastolic 

pressure [367, 368]. The reason for using SEVR as a measure of cardiac diastolic function 

is that it is a non-invasive estimate of myocardial blood supply, i.e. myocardial perfusion 

relative to left ventricular workload and thus myocardial demand [287, 288, 369]. 

Myocardial oxygen demand depends mainly on the heart rate, myocardial contractility and 

ejection pressure, which all contribute to cardiac output and oxygen demand during 

physical activity [370-372]. The increase in the left ventricular oxygen demand is 

predominantly met by increasing coronary blood flow [373]. However, coronary blood 

flow is hindered during systole. Therefore the duration of cardiac diastole is a crucial 

determinant of myocardial perfusion at a given diastolic perfusion pressure [374, 375]. 
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Diastolic function is also an important determinant of aerobic exercise capacity [366], 

because the enhanced systolic function which is fundamental for high levels of cardio-

respiratory fitness has to be matched by changes in left ventricular filling. Although 

diastolic function has been reported to be related to high levels of cardio-respiratory fitness 

[376, 377], it has been uncertain whether diastolic function in sedentary obese individuals 

correlated with levels of fitness, especially when adjusted for the potential confounding 

factors such as fatness, insulin sensitivity and levels of energy expenditure during activity. 

In our study we assessed levels of physical activity energy expenditure in free living 

individuals, using a validated multi-sensor Sensewear Pro device. To obtain as precise an 

estimate of PAEE as possible, subjects were asked to maintain their usual activity 

behaviour pattern over the period of 7-10 days during which period they wore the device 

continuously. This was because we expected that a relationship between VO2 max and 

diastolic function may be influenced by the level of physical activity. The results obtained 

from the activity monitor showed that our subjects were generally physically inactive 

(mean PAEE estimated from 7-10 days record = 0.83 – 1.55 MET). Interestingly, there was 

a lack of strong relationship between both PAEE and the measure of diastolic function, 

SEVR (r=0.18, p=0.26), and PAEE and VO2 max (r=0.18, p=0.26). Given that neither of 

these relationships came close to reaching statistical significance, it is clear that the 

association between cardiorespiratory fitness and diastolic function is not confounded by 

levels of physical activity in this centrally obese and sedentary cohort. 

 

Therefore, the question what mechanisms may explain the association between VO2 max 

and SEVR remains to be answered. Our data supported the previous reports that the level 

of fitness was related to the degree of fatness [7]. We showed in the univariate analyses 

that measures of fatness were inversely associated with diastolic function, and there was 

even a stronger inverse association between diastolic function and IL-6. The study of 

Fontana et al. reported that IL-6 is mainly produced in the visceral fat and that its 

concentration correlated directly with CRP levels, suggesting a potential link between 

visceral adiposity and systemic inflammation [64]. There is also some evidence that 

perivascular adipocytes influence vasocrine signalling mechanisms [167, 378]. Moreover, 

it is now apparent that the epicardial fat which lies directly over the myocardium and 

shares its microcirculation is also metabolically active and may interact with the 

myocardium through epicardial fat paracrine and vasocrine signalling mechanisms [379]. It 

is therefore possible that cardiac diastolic function may be directly affected in central 

adiposity by the physical contact between an increased layer of epicardial fat and 
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myocardium- or adipocyte-derived cytokines such as IL-6, or both. A study of epicardial 

fat function in subjects with cardiovascular disease demonstrated higher levels of 

inflammatory cytokine expression, including IL-6, in epicardial fat than in matched 

subcutaneous fat samples independent of other metabolic factors such as obesity or 

diabetes [380]. 

Interestingly in our study, adding cytokine IL-6 into the linear regression model adversely 

affected the association between fatness and diastolic function identified previously in 

univariate analyses; this model showed that only IL-6 and not any measure of fat quantity, 

was independently and inversely associated with diastolic function. A recent study showed 

that increased plasma levels of IL-6 and TNF-  had cardio-depressive effects and were 

negatively associated with left ventricular diastolic function [381] suggesting the 

importance of proinflammatory processes in the pathogenesis of diastolic dysfunction. In 

another study IL-6 was reported to accentuate already present systemic low grade 

inflammation.  

 

It is plausible that a subclinical grade of inflammation in centrally obese individuals 

adversely affects diastolic function, which in turn influences VO2 max. Studies looking 

into the effects of weight reduction and left ventricular structure and/or function in obese 

individuals with and without ischaemic heart disease demonstrated that weight loss 

improves cardiac structure together with systolic and diastolic function [382, 383]. 

Recently, a large study of middle aged obese subjects showed that significant weight 

reduction and a decrease in HbA1c were independent predictors of  left ventricular systolic 

and diastolic function improvement [382]. Whether the benefit of decreasing body fat on 

cardiac function in these studies was mediated by altered visceral adipocyte function and 

specifically modified adipocyte-derived paracrine signalling mechanisms induced by 

weight loss remains uncertain. Therefore further research is required to investigate the 

mechanisms behind the proinflammatory state and diastolic function interaction and its 

effects on maximal oxygen uptake in obese individuals at low cardiovascular risk.  

We found that in people with central obesity and without clinical evidence of 

cardiovascular disease, the level of cardiorespiratory fitness was strongly correlated with 

the augmentation index, corrected for heart rate to minimise possible confounding. This 

index estimates arterial wave reflection, which depends amongst other parameters on 

pulse-wave velocity. Therefore the augmentation index is classified as an indirect, 

surrogate measure of arterial stiffness [384]. Several studies reported that the augmentation 

index increases with age because of the faster wave reflection due to loss of arterial 
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elasticity. Increased arterial stiffness was reported to relate with visceral adiposity in a 

large study of elderly adults [385]. However to date, there have been no reported studies 

investigating wave reflection in relation to obesity and fitness [384]. We demonstrated that 

the augmentation index significantly decreased across tertiles of increasing VO2 max, that 

is, with increasing aerobic exercise capacity. We used adjusted augmentation index for 

heart rate (AIx@750, which allowed the elimination of potential confounding associated 

with the variability in heart rate between and within subjects. The slower the wave 

reflection,  the lower the  augmentation index as the more elastic the arteries are [384]. 

This would mean that in our obese individuals, higher levels of fitness were potentially 

associated with significantly less stiff arteries. Increased arterial stiffness causes a 

premature return of reflected waves in late systole, increasing the workload of left ventricle 

and myocardial oxygen demand, thus influencing diastolic function and aerobic fitness. 

Recently, the relationship between visceral adiposity and carotid arterial stiffness has been 

examined in a study of 459 patients in whom epicardial fat was assessed by 

echocardiography as a measure of visceral fat that may impair diastolic function. The 

authors found a positive correlation between epicardial fat and arterial stiffness parameters 

and a negative correlation was found with diastolic parameters [386]. This may suggest 

that the visceral fat is adversely influencing cardiovascular function. Over the last decade 

studies have confirmed not only the deleterious effects of subclinical inflammation 

resulting in atherosclerosis and arterial stiffness, but also its strong links with metabolically 

active visceral fat [64, 66, 384]. It is therefore possible that the strong association between 

level of cardiorespiratory fitness, diastolic function and arterial stiffness, and the negative 

correlation between diastolic function, body fatness and IL-6 found in our viscerally obese 

subjects is more likely due to the paracrine function of fat than its mechanistic effects.  

 

The limitation of this study is that the estimations of
 
central aortic systolic and pulse 

pressures depend on the validity
 
and applicability of the generalized transfer function used

 

to generate the central aortic waveforms from peripheral readings. However, the 

correspondence
 
between calculated central aortic and directly recorded systolic

 
and pulse 

pressures has been found to be within 1 mmHg [290, 387, 388]. The transfer function used 

to derive the central aortic pressures
 
is based on observation that pressure wave 

transmission
 
in the upper limb is remarkably consistent despite effects of aging, disease, 

drug therapy, and
 
variation in heart rate. This allows a generalized transfer

 
function to be 

used to convert the radial to an aortic pressure
 
wave [289], which was implemented in the 

SphygmoCor device used in the CAFE study [389] and gained US Food and Drug 
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Administration
 
approval in 2001. However, a potential weakness of this technology

 
is that 

the calibration of central aortic pressures depends
 
on the accuracy of the brachial pressure 

measurements [390]. Additionally, we extrapolated PWA data on augmentation index for 

assessment of arterial stiffness, whereas pulse-wave velocity (PWV) is the preferred non-

invasive method for the estimation of arterial stiffness. PWV provides direct information 

about the intrinsic wall stiffness unlike augmentation index which only indirectly provides 

the information about arterial stiffness and may be affected by pathophysiological 

conditions and drugs while aortic PWV remains unchanged. However, precise 

measurements over the carotid and femoral arteries required in PWV analysis are 

technically difficult and time consuming in obese individuals thus potentially leading to 

inaccurate results [384]. This is not the issue with PWA, which requires only detection of 

easily accessible, even in the obese, radial pulses and therefore has been used as a proxy 

measure for arterial stiffness in large studies such as Hoorn study [391]. Also, our subjects 

were healthy and on no medication therefore eliminating the effects of those factors on the 

results and their interpretation. 

 

In conclusion, we demonstrated in people with central obesity and low cardiovascular risk 

a strong association between cardiorespiratory fitness (VO2 max) and a measure of 

diastolic function (SEVR ) which is independent of age, gender, measures of body 

adiposity, level of physical activity, skeletal muscle microvascular exchange capacity and 

whole body insulin sensitivity. We showed that cardiac diastolic function in those obese 

subjects is strongly and independently correlated with IL-6, which may suggest that the 

low-grade proinflammatory state present in obesity may be an important link between 

cardiac diastolic function and aerobic exercise capacity, and may contribute to the 

pathogenesis of diastolic dysfunction. Additionally, for the first time, we documented 

strong correlation between arterial wave reflection and cardiorespiratory fitness, indirectly 

showing the important relationship of arterial stiffness and fitness in centrally obese 

middle-aged people. 

 

 

Summary points: 

 

 In centrally obese, sedentary and at low cardiovascular risk subjects, there is 

present a strong positive association between proxy measure of diastolic function 

(SEVR) and cardiorespiratory fitness independent of age, gender, fatness, physical 
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activity energy expenditure, insulin sensitivity and skeletal muscle microvascular 

function.  

 

 Subclinical inflammation present in subjects with visceral adiposity may contribute 

to the pathogenesis of cardiac diastolic dysfunction. 

 

  Low - grade proinflammatory state may be a link between diastolic function and 

cardiorespiratory fitness capacity in sedentary people with visceral adiposity. 

 

 Higher level cardiorespiratory fitness is strongly associated with reduced arterial 

stiffness in obese. 
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8. Conclusions 
 

In this study of individuals with central obesity we have explored several aspects of the 

relationships between cardio-metabolic risk factors and the effects of treatment with 40mg 

daily of Atorvastatin on insulin sensitivity and microvascular function. 

 

In the cohort of non-diabetic subjects with central obesity defined by waist circumference 

according to IDF criteria, with visceral adiposity confirmed on MRI and in the presence of 

a mild metabolic syndrome phenotype we found modest levels of peripheral insulin 

resistance. Both fasting surrogate markers and direct measures confirmed variable levels of 

insulin resistance. The degree of insulin sensitivity assessed by the gold standard stepped 

hyperinsulinaemic euglycaemic clamp was predominantly within a pre-diabetic range, as 

were the concentrations of glycated haemoglobin. We also demonstrated that the subjects 

had low levels of daily physical activity METs and cardiorespiratory fitness, which would 

suggest that in the centrally obese individual with low cardiovascular risk and with 

minimal metabolic disturbances with  a sedentary lifestyle, a degree of insulin resistance is 

already present. 

We showed that in central obesity there is a greater variability in the measures of 

microvasculature such as filtration capacity, blood flow, endothelial integrity and 

functional vasodilator capacity. With the use of venous congestion plethysmography and 

Laser Doppler fluximetry we demonstrated in subjects with a low to moderate 

cardiovascular risk the presence of microvascular dysfunction. With plethysmography, we 

provided evidence that in the face of even a modest degree of peripheral insulin resistance, 

skeletal muscle exchange capacity is altered, resting limb blood flow is increased and the 

functional vasodilator capacity is reduced. We produced an estimate of filtration capacity 

independent of blood flow suggesting that capillary rarefaction or remodelling may 

contribute to skeletal muscle microvascular dysfunction in obesity. We also showed that in 

the centrally obese the capacity to increase functional tissue perfusion during  low 

metabolic demand was attenuated, and the capacity for functional hyperaemia was not 

ameliorated by insulin. All these findings would provide an argument that the functional 

and structural changes contribute to microvascular dysfunction, which may be present 

without clinically overt insulin resistance and which precedes, well in advance, the onset of 

macrovascular disease in those with central obesity and features of the metabolic 

syndrome.  
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We have gone on  to explore the relationship between the skeletal muscle microvascular 

function, namely skeletal muscle microvascular exchange capacity, and the measure of 

long term glycaemia - HbA1c. The evidential links between HbA1c and microvascular 

disease have for decades provided a basis for the diagnostic criteria for diabetes mellitus 

but recently published data have suggested that HbA1c, even within the high-normal range, 

is not only a strong predictor of diabetes but also a marker for cardiovascular disease risk 

in non-diabetic but centrally obese individuals. We have demonstrated for the first time a 

strong negative association between skeletal muscle microvascular exchange/filtration 

capacity (Kf) and HbA1c, which was independent of potential confounders such as age, 

gender, fasting glucose, peripheral insulin sensitivity, visceral fat mass, level of physical 

activity and fitness, and sICAM-1. Moreover, Kf explained almost a third of the variance in 

HbA1c thus emphasising its important role in peripheral glucose uptake. The fact that 

microvascular exchange capacity, independently of modest levels of insulin sensitivity, 

was associated negatively with glycated haemoglobin would point towards skeletal muscle 

microvascular filtration capacity rather than muscle insulin sensitivity as being an 

important influence of HbA1c concentrations. Those findings also indicate a potential for 

skeletal muscle microvascular dysfunction to be an early, important mediator of 

cardiovascular risk associated with HbA1c. At the same time we did not demonstrate an 

independent association between visceral adiposity and HbA1c, which means that the 

effects of visceral fat on long term glycaemic control may be modulated via skeletal 

muscle microvascular exchange capacity or insulin sensitivity. Interestingly, we found a 

strong positive association between sICAM-1 and HbA1c concentrations which were 

potentially confounded by Kf , and this could indicate that increased levels of sICAM-1 

may be a reflection of skeletal muscle endothelial dysfunction. 

Although in our cross-sectional study we were unable to provide an explanation as 

to the causative nature of the relationships between Kf, HbA1c and other interconnected 

factors, it is plausible that either the impaired exchange capacity modulates levels of 

HbA1c, or relative glycaemia directly alters microvascular exchange capacity and raises 

levels of HbA1c. Alternatively, it may be that bi-directional interactions exist between 

microvascular dysfunction and relative hyperglycaemia resulting in increased long term 

glycaemia.  

 

We have further examined in centrally obese but non-diabetic individuals the associations 

between insulin sensitivity and several measures of skeletal muscle microvascular function 

such as exchange/filtration capacity (Kf), resting blood flow (Qa), isovolumetric venous 
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pressure (Pvi) and functional dilator capacity (PORH). We found that out of all the 

investigated measures of microvasculature only filtration capacity and functional dilator 

capacity were associated with insulin resistance status. We showed that diminished 

microvascular filtration capacity was strongly and independently (of visceral adiposity) 

associated with insulin resistance and that the negative association of Kf with visceral fat 

was not independent of insulin sensitivity; and these associations were not confounded by 

levels of physical activity and fitness. These findings together with the body of evidence 

from research in animal models and obese humans without diabetes may suggest mutual 

interaction between insulin sensitivity and microvascular filtration capacity in obesity; that 

is, the greater the insulin sensitivity the better the microvascular exchange capacity, and 

the greater microvasculature exchange capacity the lesser the insulin resistance, which in 

turn allows greater nutrient delivery to skeletal muscle and greater glucose uptake.  

We also demonstrated a strong and independent relationship between insulin-

induced changes in microvascular functional dilator capacity, age and insulin sensitivity, 

which indicates that age and insulin resistance independently of each other can adversely 

affect microvascular function. This is an important finding because for the first time the 

independent influence of age and insulin sensitivity on microvasculature became apparent. 

Additionally our findings support the notion that central obesity blunts the microvascular 

dilatory responses at a given metabolic demand. 

 

Furthermore, we have examined the effects of six months of treatment with high dose 

Atorvastatin on insulin sensitivity and measures of microvascular function in a double-

blinded randomised trial with placebo. Importantly our results were not confounded by 

change in body composition, weight or level of physical activity. 

We demonstrated that 40mg daily of Atorvastatin did not improve insulin sensitivity in 

centrally obese non-diabetic individuals with features of metabolic syndrome despite 

significantly lowering cholesterol (total and LDL fraction), triglycerides and hs-CRP 

Nevertheless, we showed a trend towards deterioration in insulin sensitivity markers, 

especially fasting surrogate measures. To date, there has been conflicting evidence 

regarding the effects of statins on insulin resistance [242, 245, 246, 248]. However, a 

recent large trial reported by Sukhija et al. [363] demonstrated a significant increase in 

fasting blood glucose in both diabetic and non-diabetic populations with any statin, and a 

smaller study of hypercholesterolaemic patients on Atorvastatin by Koh et al. [243] 

showed a significant increase in fasting insulin and HbA1c concentrations. This has been 

further supported by the recently published meta-analysis by Sattar et al. [253] 
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documenting the detrimental effects of statins on incident diabetes. Our study is in part in 

keeping with those reports and also allows for additional speculation. It is plausible that in 

individuals with modest insulin resistance, like those in our study, who have large insulin 

sensitivity reserves in the peripheral tissues such as skeletal muscle, statins may exert 

adverse effects on hepatic insulin sensitivity before the peripheral insulin insensitivity 

becomes identifiable with direct measures of insulin sensitivity. However, a much larger 

study, with perhaps a more homogenous population of centrally adipose non diabetics is 

required to confirm this. 

We have also presented evidence that six months of treatment with high dose statin 

did not alter any of the investigated measures of skeletal muscle microvascular function 

despite lowering lipids and hs-CRP concentrations. Likewise, with the effects of statins on 

insulin sensitivity, there have been conflicting reports regarding their influence on 

microvascular function, with more recent animal studies demonstrating that statins, 

independently of their lipid-lowering effect, ameliorate endothelial dysfunction [235-237, 

348]. It is possible that either the beneficial effects of statins on microvasculature are 

statin-specific or that they require a much longer period than six months, as in our study, to 

exert their effects through revascularisation of endothelial cells. 

 

Finally, we elucidated the relationship between cardiorespiratory fitness, cardiac diastolic 

function, and arterial stiffness using a novel Pulse Wave Analysis (PWA) technique. For 

the first time we demonstrated that cardiorespiratory fitness in centrally obese individuals 

was strongly and independently associated with SEVR - a measure of diastolic function 

closely related to left ventricular load - this relationship was not confounded by age, 

gender, level of physical activity, body adiposity, microvascular function or insulin 

sensitivity. Based on recent reports [64, 167, 379, 380] and our data showing inverse 

associations between diastolic function, fatness, and concentration of IL-6, which is mainly 

produced in visceral fat, it is plausible that subclinical inflammation alone or together with 

mechanistic effects from excessive accumulation of epicardial fat [378] may be one of the 

key players in the pathogenesis of cardiac diastolic dysfunction that in turn adversely 

affects cardiorespiratory fitness. We also showed significant improvement in a surrogate 

measure of arterial stiffness - Augmentation Index (AIx@75) - with increased 

cardiorespiratory fitness. This additional finding could suggest that in centrally obese 

subjects, greater fitness translates into lesser arterial stiffness and thus may also positively 

influence diastolic function. However, further research is required into the mechanisms 

behind the interactions between adiposity, pro-inflammatory state, arterial stiffness and 
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VO2max in centrally obese, non-diabetic but insulin-resistant subjects. A potential 

criticism of this study may be that we did not use the conventional techniques for 

measurement of cardiac diastolic function and arterial stiffness but used surrogate 

measures with the application of PWA. However, this technique, in contrast to cardiac 

catheterisation and pulse wave velocity, is easy to perform in obese subjects and is without 

health risk unlike cardiac catheterisation, whose use is limited to research on healthy 

volunteers; it is also a well-validated technique and has been used for similar assessments 

in much larger studies [391]. 

 

In conclusion, our study uncovered several novel aspects of the relationships between 

cardio-metabolic risk factors in subjects with visceral adiposity and modest levels of 

insulin sensitivity which strongly suggest that obesity blunts microvascular responses even 

in apparently otherwise healthy individuals; that a good level of cardiovascular fitness 

benefits obese people by ensuring lesser arterial stiffness and better cardiac diastolic 

function. Our findings adds credence to the argument that microvascular dysfunction is an 

early marker of cardio-metabolic risk in people with obesity at risk of CVD and diabetes. 

Our data provided new insights into the relationships between skeletal muscle 

microvascular function, ambient glycaemia, pro-inflammatory state, insulin sensitivity and 

visceral fatness suggesting mutual interactions between those factors, but their 

directional/causality links require further research. Furthermore, considering all the 

relationships discussed above between cardiometabolic factors and measures of 

microvascular status, it appears that microvascular dysfunction should be included within 

vascular implications of the cardio-metabolic phenotype associated with central obesity. 

Our study documented a lack of beneficial pleiotropic effects of statin on insulin sensitivity 

or microvascular function, emphasising the need for investigating other agents and 

measures to improve the factors that are crucial in the development of metabolic syndrome.  

Further research in a larger population, employing both surrogate and direct measures of 

insulin sensitivity is required to confirm the observed trend towards deterioration in insulin 

sensitivity with high dose statin therapy. 
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