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ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

SCHOOL OF MATHEMATICS

Doctor of Philosophy

Aiport Runway Optimization

by Mohammad Mesgarpour

This thesis considers the scheduling of aircraft landing and take-off problems on

a single runway where aircraft must respect various operational constraints. The

aim is to introduce generic models and solution approaches that can be imple-

mented in practice. Existing solution methods and techniques of airport runway

optimization have been reviewed. Several solution methods such as mixed integer

programming, dynamic programming, iterated descent local search and simulated

annealing are proposed for the scheduling of aircraft landings in the static and dy-

namic environment. A multi-objective formulation is used for taking into account

runway throughput, earliness and lateness, and the cost of fuel arising from aircraft

manoeuvres and additional flight time incurred to achieve the landing schedule.

Moreover, computational results are presented using real data from Heathrow air-

port as well as randomly generated problem instances which are generated based

on characteristics of the real data. Later, dynamic programming, descent local

search and beam search algorithms are proposed for the scheduling of aircraft

take-offs in the departure holding area. Scheduling aircraft take-off is formulated

as a hierarchical multi-objective problem which includes maximizing departure

runway throughput and minimizing total waiting time in the holding area. Perfor-

mance of the algorithms have been evaluated for three common layouts of holding

area. Computational results are presented on randomly generated test data.
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Chapter 1

Introduction

In this thesis, our focus is on the efficient scheduling of landing aircraft, or specifi-

cally the aircraft landing problem (ALP) and impact of the holding area on aircraft

take-off problem (ATP). In Section 1.1 a summary about air traffic management

is provided. A brief overview of the airport runway optimization is discussed in

Section 1.2 and in Section 1.3 the main contributions of this research are explained.

1.1 Air Traffic Management

According to projections, air transportation demand is expected to grow annu-

ally at rates between three and five percent in spite of the short-term economic

recession (E. Grunewald and Keimel, 2007). Increasing traffic causes congestion

in the terminal areas, holding delays for arriving aircraft and long queues at the

holding departure areas. Given the current congestion levels in the busier airports,

accommodating further flights presents a significant challenge.

Airport runway capacity is often a limiting factor when creating plans to offer

additional flights at an airport. This is because improvements to the management

of en-route air traffic have shifted the bottleneck from en-route airspace to the

airport (Soomer and Franx, 2008), and more specifically to the runway. Although

airport capacity can be increased by building a new runway, making the best

1
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usage of the existing runway(s) through careful scheduling may reduce the need

to improve the infrastructure.

In addition to issues of safety, which is the responsibility of air traffic controllers

(ATCs), there are other stakeholders with an interest in how aircraft landings

and take-offs are scheduled. Punctuality is a priority for airlines and airports.

Airport operations such as gate assignment and baggage handling require careful

planning in advance, and delays to an aircraft landing and take-off may have a

detrimental effect on similar operations for the subsequent aircraft. Airlines also

prefer schedules that minimize the cost of fuel, and governments typically have

targets for reducing CO2 emissions. Long queues and additional manoeuvres by

aircraft to create a landing and take-off sequence may increase emissions. ATCs

organize the landing and take-off of aircraft to meet safety requirements and max-

imize throughput. Ideally, the aims of all of the various stakeholders would also

be taken into account when scheduling the landings and take-off of aircraft.

Today, Air Traffic Management (ATM) is concerned about traffic optimization at

the airport and in terminal manoeuvring areas for economic, environmental and

capacity reasons. In this situation, air traffic controllers have to meet various chal-

lenges such as: avoiding long air and ground queues; considering the best usage

of available airspace, runways, taxiways and gates; taking into account fuel effi-

ciency; reducing noise disturbance and environmental impact; minimizing delays;

and accounting for safety issues.

1.2 Airport runway optimization

One of the main factors affecting runway usage is the enforcement of minimum

separations between landing/take-off aircraft that arise from safety considerations.

Wake vortices are rotating masses of air that are generated by aircraft as a conse-

quence of their lift. Without sufficient separation, wake vortices provide a hazard

for the following aircraft. Wake vortices are bigger if they are created by a larger

aircraft. Moreover, they have a greater impact when the following aircraft is

light rather than heavy. Thus, the required minimum separations between aircraft
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mainly depend on the weight class of the leading and following aircraft. Con-

sequently, effective scheduling will aim to avoid a light aircraft landing/take-off

immediately after a heavy aircraft.

Our research focuses on sequencing and scheduling arrival/departure of aircraft

to/from the airport. Considering the complexity of airport runway scheduling, it

is hard to find the optimal solution to the problem in most cases. Thus, it draws

significant attention from different scientific communities with numerous research

studies carried out on modelling and developing algorithms to increase capacity

at an airport. Careful sequencing and scheduling can reduce the number of long

separation times thereby opening up opportunities for new landing or take-off

slots.

1.3 Contribution

Most of the research on scheduling aircraft landings/take-offs deals with the static

or off-line problem in which all aircraft to be scheduled are known at the outset.

However, ATCs work in a dynamic or on-line environment where new aircraft enter

the controller’s airspace over time. In this dynamic problem, decisions about the

landing/take-off of earlier aircraft have to be made without knowledge of those that

may enter the airspace or may release the gate at a later time. Any system that

is designed to support the decision making of ATCs should therefore consider the

dynamic problem. Further, a solution of the static problem is only of theoretical

interest unless it forms a component of an algorithm for the dynamic problem.

Another shortcoming of many studies in the literature is that the models do not

address all of the important issues in a practical decision-making environment.

For example, the objective functions within these models typically do not address

the concerns of all of the stakeholders, and some of the important operational

constraints are often missing. Furthermore, the solution approaches often have

excessively long run-times relative to the almost instantaneous response required

in a decision support system that could be of use to ATCs. Finally, many of the

algorithms have not been tested using real data.
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In view of the above discussion, there is a need for a model that operates in a

dynamic environment and considers more of the constraints that arise in practice.

Moreover, the model should adopt a multi-objective approach that considers the

interests of the different stakeholders. Our aim is to develop a model that meets

these requirements, and to design a dynamic/on-line scheduling algorithm that

produces solutions sufficiently quickly that it would be of benefit to ATCs.

This research has been divided into two main parts: aircraft landing scheduling

and take-off holding area optimization. The former part concerns finding a good

and quick solution for sequencing and scheduling arrival aircraft in the terminal

manoeuvering area. Static and dynamic versions of the ALP have been stud-

ied. Impacts of the take-off holding area on aircraft take-off scheduling have been

investigated in the latter part.

The main contributions of the ALP are as follows:

• Majority of published works have looked at the ALP once arriving aircraft

are approach the runway in the static environment while we have considered

various scheduling time horizons in dynamic environment as well as static

environment.

• Impact of changing the freezing time and rescheduling period have been

studied in the dynamic case. In the dynamic aircraft landing problem, se-

quence needs to be updated in response to the arrival of the new aircraft

to the planning horizon. Moreover, it is impractical to change the position

of the aircraft in the sequence if it is aligned in a straight line approach to

the runway threshold for landing. Therefore, rescheduling should be done on

a periodic basis without updating the landing time schedule of the aircraft

which are in the freezing window.

• Performance of the dynamic programming, iterative descent and simulated

annealing algorithms in solving ALP has been compared with the schedules

produced by the ATCs at Heathrow airport.

• Proposed algorithms have been evaluated using randomly generated test

data with the characteristic of the real test data.
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• Various weighted multi-criteria objective functions have been examined to

take into account the interest of the various stakeholders such as ATC, air-

port, airlines and the government.

The main contributions of ATP are as below:

• To our knowledge, it is one of the first studies looking at the impact of the

holding area on ATP.

• Effects of three common holding area layouts on the departure sequencing

and runway throughput have been investigated.

• Dynamic programming algorithm as an exact method and two heuristic al-

gorithms including beam search and descent local search are described for

scheduling of aircraft take-offs.

The remainder of this thesis is organized as follows. Chapter 2 provides an overview

of some of the methods used in scheduling landings and take-off aircraft at the the

airport. Some basic concepts related to the ALP and ATP such as time window,

separation, position shifting are explained and the description of the airport run-

way scheduling is given in Chapter 3. An extended literature review of the aircraft

landing and take-off problem is provided in Chapter 4. The application of vari-

ous exact and approximation algorithms have been also discussed in this chapter.

Chapter 5 offers a complete description of the ALP including the constraints and

objective functions. Moreover, this chapter continues with a description of the

algorithms and experimental results for the static and dynamic problems. Chap-

ter 6 provides the description of the ATP and associated methods for tackling this

problem. Computational evaluation of the introduced algorithms for scheduling

aircraft in the holding area based on three common layouts is presented in this

Chapter. Finally, Chapter 7 contains the conclusion, some concluding remarks

and direction for the future work.





Chapter 2

Methodologies

Optimization can be defined as the process of finding the best possible solution(s)

that maximizes or minimizes a given objective function of some decision variables

subject to some constraints. Section 2.1 provides background information about

combinatorial optimization with focus on scheduling problems. Several solution

methods for solving scheduling problems have been discussed in Section 2.2. We

explain several approaches including branch-and-bound, dynamic programming,

local search, simulated annealing, tabu search, beam search and genetic algorithm.

2.1 Combinatorial optimization problems

An optimization problem can be continuous (an infinite number of feasible so-

lutions) or combinatorial (a finite number of feasible solutions). Combinatorial

problems generally maximize or minimize a function of discrete variables. There-

fore, combinatorial optimization problems (COPs) can be defined as allocation of

limited resources (constraints) to optimally meet desired objectives when the value

of some or all the variables are restricted to be integral. COPs are often referred

to as integer programming problems. Such problems occur in various fields such

as production, inventory control, scheduling, etc. Various methods such as lin-

ear programming, dynamic programming, branch and bound, heuristic, and local

search can be used to find optimal or near-optimal solutions (Papadimitriou and

Steiglitz, 1982).

7
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The number of solutions usually grows exponentially with the number of variables

and constraints in COPs. Finding an optimal or even near-optimal solution for

the large-sized problem instances (mostly real-world optimization problems) poses

increasing demands on time and computational resources in most cases. Therefore,

using heuristic algorithms are more attractive than using exact algorithms.

2.1.1 Complexity

A decision problem can be classified into P and NP classes. The P stands for

polynomial and it is the set of problems that can be solved in polynomial time

on a deterministic Turing machine. The NP refers to non-deterministic polyno-

mial and it is the class of problems that can be solved in polynomial time on a

nondeterministic Turing machine. All problems in P are also in NP (Karp, 1972).

A problem is NP-hard if an algorithm to solve it in polynomial time would make

it possible to solve all NP problems in polynomial time (Garey and D. S. Johnson,

1979). NP-hard problems do not have to be in NP. A problem is NP-complete if

it can be proved that it is NP and it is poly-time reducible to a problem already

known to be NP-complete (Karp, 1972). In other words, a problem is NP-complete

if it is both NP-hard and an element of NP. NP-complete problems are the hard-

est problems in NP and NP-hard problems are at least as hard as NP-complete

problems.

2.1.2 Scheduling

Scheduling problems are an important class of combinatorial optimization prob-

lems. The study of sequencing and scheduling dates back to 1950s (Potts and

Strusevich, 2009). Scheduling has become one of the major fields within opera-

tional research which has turned to be more challenging and complex today than

in the past.
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2.1.2.1 Sequencing and scheduling problems

Pinedo (2008) has defined that scheduling is a decision-making process that deals

with the allocation of resources to tasks over given time periods and its goal is to

optimize one or more objectives. Sequencing deals only with the specific ordering

of products, items, tasks, etc; while scheduling gives a more complete description

about when a particular task can start .

Resources may be machines in a workshop, nurses and practitioners at a hospital,

CPU and memory in a computer system, runways at an airport, and mechanics in

an automobile repair shop. Activities may be different operations in a manufac-

turing process, giving services to the patient at a hospital, execution of a computer

program, landings and take-offs at an airport, car repairs in an automobile repair

shop. Each activity may have different priorities, due date, ready time, etc. Many

distinct measures are also available to optimize the problem. In general tasks

have to be accomplished with the goal of minimizing or maximizing an objective

or a combination of various objectives. One objective can be the minimization of

the delay, whereas another objective can be the maximization of the customers

satisfaction (Pinedo, 2008).

In terms of modelling uncertainty, the scheduling problems can be classified into

two categories of deterministic and stochastic. In the past fifty years, scheduling

problems have received an extensive amount of attention especially in determin-

istic scheduling. The basic assumption of deterministic scheduling is that the

parameters of the problems are fixed, in which values should be known exactly

(Brucker, 2007). However, many sources of uncertainty can affect the scheduling

environments. In stochastic scheduling, one or more uncertainty factors are added

to the problem formulation.

2.1.2.2 Multi-objective scheduling

Until the late 1980s, the majority of the scheduling research has been concentrated

on a single criterion problem. However, scheduling decision should consider multi-

ple criteria in practice to provide the decision maker with more realistic solutions.

Scheduling problems become more difficult to model and solve when more than
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one objective (criterion) is required. In many cases, it is unlikely that various

objectives would be optimized by the same choice of decision variables. In other

words, an improvement in one objective is often only a gain at the expense of

a detraction in other objectives. Therefore, there exists a trade-off between the

multiple objectives. This type of problem is known as a multi-objective scheduling

problem (T’kindt and Billaut, 2006; Hoogeveen, 2005).

Gupta et al. (2001) have classified the multi-objective scheduling problems into

three different classes:

(a) Objectives are weighted equally : Trade-offs can be made between all efficient

solutions of the problem.

(b) Objectives are weighted differently : Problem can be defined as a single-

objective scheduling problem by defining the objective function as the sum

of weighted functions.

(c) Objectives are hierarchical : The scheduling problem can be solved for the

first priority objective by ignoring the other objectives and then be solved

for the second priority objective by not changing the optimal solution of the

first objective and so on.

2.2 Solution methods

For most NP-hard problems, the performance of exact methods such as branch-

and-bound and dynamic programming is not satisfactory due to the huge computa-

tional time. In spite of exact algorithms which provide an optimal solution together

with the proof of its optimality, heuristic provide a near-optimal or sometimes an

optimal solution without proof of its optimality. On one hand, the complexity of

exact methods are often too high and unacceptable for solving NP-complete or

NP-hard problems. On the other hand, it is often sufficient to come up with a

good solution in a reasonable time.
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2.2.1 Branch-and-bound

Branch-and-bound method is used for solving integer and discrete optimization

problems (Land and Doig, 1960). It is based on the enumeration of solutions

which has a tree structure. The branch-and-bound method starts with the root

node. Branching from a node represents a choice. The main idea of this method is

to grow only the most promising nodes. Branch-and-bound approach attempts to

omit a node based on the lower bound of the objective function called bounding.

If the bound is worse than objective value of the trial solution, the node is pruned.

Tightness and easy calculation of the bound in addition to the quality of the trial

solution affect the efficiency of branch-and-bound method. The main disadvantage

of the branch-and-bound is that it is usually time-consuming because of the large

number of nodes (Pinedo, 2009).

2.2.2 Dynamic programming

Dynamic programming (DP) is a recursive optimization method that solves prob-

lems by breaking them into simpler and more trackable problems. DP is originally

developed by Richard Bellman in the 1940s (Bellman, 2003). The main feature

of the dynamic programming approach is dividing the optimization problem into

multiple stages which are solved sequentially as one stage at a time.

Each stage is associated with a number of states of the process. At each stage the

decision rule is determined by evaluating an objective function called the recursive

equation. In other words, there is a recursive relationship between the decision at a

stage and the optimum decision in the previous stage. The procedure of solving the

problem starts by first solving a one-stage problem and sequentially including one

stage at a time until the overall optimal solution has been found. This procedure

can be either backward, where the first stage to be analyzed is the final stage of

the problem, or forward, where the first stage to be solved is the initial stage of

the problem.

The dynamic programming relies on a principle of optimality. It states that given

a current state, an optimal policy for the remaining stages is independent of the
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policy adopted in the previous stages. In other word, the optimal solution to a

problem is a combination of optimal solutions to some of its subproblems. Two

main advantages of the dynamic programming are that it breaks down a complex

problem into a series of interrelated subproblems and it also saves the computa-

tion time over complete enumeration. The classical DP has often been dismissed

because of the curse of dimensionality. In fact, the number of states often grows ex-

ponentially with the dimension of the number of variables in the problem (Bellman,

2003). Approximation methods in DP is introduced to overcome this drawback

by finding sub-optimal solutions.

2.2.3 Heuristics

Since NP-hard problems are unlikely to be solved in polynomial time, we have

to use solution methods like heuristics and approximation algorithms to find the

best possible solution. Heuristic approach is a method to find good (near-optimal)

solutions at a reasonable computation time (Smith et al., 1996). Heuristics aim

to provide good but not necessarily optimal solutions to difficult problems. They

are especially suitable for problems arising in practice.

Heuristics can be classified as either constructive or perturbative heuristics. While

constructive heuristics build the solution from scratch, perturbative heuristics start

with an initial complete solution and thereafter try to iteratively improve it. Var-

ious heuristic methods have been proposed in the literature such as local search,

simulated annealing, tabu search, beam search, genetic programming, etc (Burke

and Kendall, 2005). An overview of the heuristic methods which have been used

in this thesis are given in the following sections.

2.2.4 Local search

Local search is a class of methods that searches the solution space with the aim

of improving the solution. The simplest form of the local search is called descent

local search (DLS) which starts with an initial solution and iteratively explores

neighbourhoods with lower costs. The algorithm performs a series of moves on
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the initial (starting) solution S0 to find a local optimal solution S. These moves

(transformations) are normally designed based on the neighbourhood structure.

In each iteration, if a better solution exists, then it is selected as the current

solution. The procedure is continued until no better solutions can be found in the

neighbourhood of the current solution.

The final solution is a local optimum based on the neighbourhood function that

is used because it stops when no improvement can be made by a single move.

The main drawback of the descent local search is that it can get trapped in local

optima. Best improvement and first improvement strategies can be explored. The

best neighbour among all neighbour are selected in the best improvement move.

In contrast, the first improvement move selects the first neighbour that improves

the current solution values. Generally, the first improvement move is quicker than

the best improvement move.

Iterated descent local search is a practical type of the local search methods for

obtaining near-optimal solutions for a wide range of complex combinatorial op-

timization problems. It consists of a local search and a perturbation operator.

The main advantage of the iterated descent local search is that when the local

search procedure is trapped in a local optimal solution, a perturbation operator

(kick move) is used to transform a local optima into a new starting point for the

local search. The perturbation aims to effectively escape local optima without

completely loosing partially optimized structure.

2.2.5 Simulated annealing

Simulated Annealing (SA) algorithm is a stochastic heuristic. SA has been devel-

oped initially as an algorithm to simulate the process of cooling and crystallization

of materials in heat bath (known as the annealing process) by Metropolis et al.

(1953) in thermodynamics. Kirkpatrick et al. (1983) has formally introduced the

simulated annealing approach and showed that Metropolis algorithm can be ap-

plied to solve optimization problems as well. SA is a neighbourhood search algo-

rithm. It is capable of not being stuck in local optima by allowing hill-climbing

moves to reach the global optimum.
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In general, it is a stochastic optimization method for minimizing a function f over

a discrete domain S (Kirkpatrick et al., 1983). A standard SA procedure begins by

generating an initial solution s ∈ S. At each stage, the new solution taken from

the neighbourhood of the current solution s′ ∈ S is accepted as a new current

solution if a solution has a lower or equal cost; if it has a higher cost it is accepted

with a probability e−∆/t, where ∆ is the difference between the costs of the s and

s′ , and t is a parameter of SA referred to as temperature. This temperature, which

is simply a positive number, is periodically reduced by a temperature scheme, so

that it changes gradually from a relatively high value to near zero as the method

progresses. Initially, t takes a user-defined value and it is decreased according to

a function (referred to as cooling schedule) iteration-by-iteration. Thus, at the

beginning of SA most of the worsening moves are accepted, but at the end only

improving ones are likely to be accepted.

Apart from temperature and cooling schedule, the performance of the SA model

is influenced by factors such as the stopping condition, the choice of the space

of feasible solutions, the form of the objective (cost) function, and the way of

choosing a neighbourhood structure (Dowsland, 1993).

2.2.6 Tabu search

Tabu search (TS) algorithm is a deterministic search method which is similar to

local search algorithm. It is proposed by Glover (1989) and since then it has been

applied in variety of COPs. A key aspect of tabu search is that it accepts non-

improving moves if one would like to escape from a local optimal solution in spite of

SA which does it with decreasing probability as search progresses. Consequently,

TS maintains details of the recent moves and prevent the search cycling back to

the solutions already examined by the use of short-term memory called Tabu list.

Moreover, the long-term memory aims to diversify the search to other areas of the

search space and prevents cycles in the search.
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2.2.7 Beam search

Beam search (BS) method is an adaptation of branch-and-bound in which only

the best β promising nodes at each level of search tree are selected to branch based

on global evaluation, where β is the beam width. Then, the other nodes are pruned

permanently. During filtering process, some nodes are discarded permanently

based on local evaluation function value and it should be performed for each set

of child nodes branching from the same parent node. The best α children of each

beam node are retained for global evaluation step, where α is the filter width.

BS method has been used for the first time by Lowerre (1976) for the speech

recognition. Figure 2.1 illustrates an expanded beam search tree with α = 2 and

β = 3.

Figure 2.1: Illustration of a beam search

The local evaluation examines candidate partial solutions according to the eval-

uation criteria and the global evaluation attempts to estimate the minimum cost

of the best solution that can be reach from the current node. Although, local

evaluation functions are computationally fast, they may lead to eliminate good

nodes. On the other hand, global evaluation functions are more accurate but re-

quire higher computational time. In fact, there is a trade-off between computation

time and solution quality. The running time of the algorithm is polynomial for

large-sized problems by restricting the search space.
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2.2.8 Genetic algorithms

Evolutionary algorithms (EAs) are stochastic heuristics derived from the evolution

theory. Genetic Algorithm (GA) is one of the most popular EAs which is based on

natural selection and genetics. It is first introduced by Holland (1975). The GA

mimics evolutionary population-based search. The solutions are represented as

chromosomes. The population is a set of possible solutions called individuals. The

GA starts with an initial solution called population and reproduces new generations

by applying genetic operators such as mutation, cross-over and selection. The

selection operator chooses the fittest individuals for reproduction. The mutation

operator changes a random gene in an individual. The cross-over is for combining

the selected individuals (chromosomes of parents) to obtain genetic codes of their

offspring (children). The main difference between GAs and other heuristics is that

GAs work on a population of possible solution rather than a single solution in

their iterations.

In the next chapter, an overview of the air traffic management and description of

the aircraft landing problem and aircraft take-off problem are presented.



Chapter 3

Air Traffic Management

Air Traffic Management can be defined as procedures, resources and systems that

collectively have a role in safety guiding aircraft in the skies and on the ground.

Some background about the air traffic control (ATC) and management as well as

description of aircraft runway scheduling will be explained in this chapter. Sec-

tion 3.1 describes responsibilities of air traffic controllers at different positions be-

sides some key concepts of ATC such as time window, first-come-first-served disci-

pline, runway capacity and separations. An overview of airport runway scheduling

including objectives and modelling techniques will be presented in Section 3.2.

3.1 Air Traffic Control

An Air Traffic Management (ATM) system aims to assure safety and efficiency of

air traffic flows by establishing a set of services.

3.1.1 Introduction

Three types of facilities control the aircraft between the airport used for take-

off and the airport used for landing. These are the airport traffic control tower,

terminal airspace control centre and en-route control centre.

17
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The airport traffic control tower is responsible for ground traffic control, take-off

and landing control within about 5 nautical miles (nm) and 3000 ft above ground

level from the airport. The usual responsibilities of controllers in the tower are:

clearance delivery, gate hold, ground control, ground planning, and runway con-

trol. The terminal airspace control centre, which is also called an approach control

airspace or Terminal Radar Approach Control (TRACON), handles departures

and arrivals up to 40 nm and 10,000 ft from the airport. The en-route control

airspace, which is also named the Air Route Traffic Control Centre (ARTCC)

handles the traffic flow outside the terminal manoeuvring area (see Figure 3.1).

For further details, we refer to de Neufville and Odoni (2003).
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Figure 3.1: Air traffic control segments

The airspace is divided into a number of geographical regions of varying size,

known as sectors. A sector can be defined as a volume of airspace managed by a

team of controllers. Generally, sectors which handle high-flying en-route traffic are

much larger than the busy sectors which handle a large amount of climbing and

descending traffic. Busy airspace, such as in the London area of the UK, can be

subdivided into super-low, low, high, and super-high sectors according to altitude.

As a flight proceeds through the airspace, responsibility passes from one sector

team to the next.

There is a limitation on the number of aircraft that can fly in each sector at

any given time, which depends on several factors such as safety, flight geometry,

controllers’ workload, weather, surveillance equipment in use, and the training

or experience of the air traffic controllers (Filar et al., 2001). It appears that

dividing the airspace into smaller sectors may help in dealing with the increasing

traffic demand. However, this approach requires pilots to change radio frequencies
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more often and increases the controllers’ workload because of greater need for

co-ordination between sectors (de Neufville and Odoni, 2003; Duke, 2009).

3.1.2 Decision problems

Generally, ALPs/ATPs consist of the sequencing, scheduling, and runway-assignment

decisions. The sequencing process determines the sequence by which aircraft land

or take off from the set of feasible sequences, while the aim of scheduling is to

assign a scheduled landing time (SLT)/scheduled take-off time (STT) to each air-

craft in the sequence, subject to maintaining operational and safety constraints

(Brinton, 1992; Ernst et al., 1999). When more than one runway is available for

landing or take-off, each aircraft also has to be assigned to a particular runway.

Scheduling of the landing and take-off of aircraft can be divided into three stages:

creating an initial schedule, modifying the schedule, and freezing the schedule

(Mesgarpour et al., 2010). For landing aircraft, the initial schedule is based on a

first-come first-served (FCFS) order, which is the landing order that would result

if each aircraft could proceed to the runway and land without consideration of

other aircraft. The FCFS order requires updating when new aircraft enter the

airport landing planner’s radar range (the Extended Terminal Manoeuvring Area,

or Extended TMA), about 30 to 40 minutes before touch down.

The second stage considers new aircraft entering the Extended TMA and adjusts

the previous landing sequence to produce an improved schedule. Two to three

minutes before landing the schedule is frozen as the aircraft is too close to the

runway to make further changes to the landing order or landing time (Neuman

and Erzberger, 1991). A similar concept applies for the take-off problem. The

first stage may start after informing the controllers about the approximate time

an aircraft will be ready to leave the gate and start its journey to the runway; this

is called pushback. Modifications to the schedule are made in the second stage

when precise times for pushback become available to controllers. The freezing stage

begins by entering the aircraft into the holding area. Starting time and length of

the freezing time window vary due to configurations of taxiway, departure holding

area and runway as well as overtaking constraints.
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3.1.3 Time windows

The landing/take-off time of an aircraft must lie between its earliest and latest

possible landing/take-off time, which can be dependent on the technical and oper-

ational constraints such as fuel limitation, maximum allowed delay, or maximum

or minimum airspeed, although other factors such as runway availability, possible

manoeuvres, or meeting a connecting flight can also be taken into account. This

time window should be treated as a hard constraint. Moreover, there may be a

predefined landing time slot in which case controllers aim to assign a Scheduled

Landing Time (SLT) to each aircraft so that the SLT lies within the aircraft’s slot.

If an aircraft uses a congested route or is destined for a hub airport in Europe,

then the Central Flow Management Unit (CFMU) of EUROCONTROL in Brussels

assigns a Calculated Take-Off Time (CTOT). The CTOT limits the time at which

aircraft enter these congested areas with the aim of smoothing the traffic in the

airspace and at the airports (Atkin, 2008). Controllers aim to assign a Scheduled

Take-Off Time (STT) to each aircraft from five minutes before to ten minutes after

the CTOT. Therefore, the CTOT defines a time window for take-off of the aircraft.

Ideally, CTOT is a hard constraint for departure scheduling. However, this can

be treated as a soft constraint because violations are sometimes unavoidable.

In theory, there can be multiple non-overlapping time windows for an aircraft to

land or take-off. Hence, an aircraft could be constrained to land or take off in

any one of the collection of specified time intervals (Balakrishnan and Chandran,

2006).

3.1.4 First-come first-served (FCFS)

The simplest way of sequencing aircraft to land on a single runway is through the

first-come first-served (FCFS) discipline. It assigns an SLT to each aircraft based

upon the order generated by the estimated landing time (ELT) of the aircraft.

The landing planner system calculates the ELT based on the planned arrival route,

cruise speed (the most economical or preferred speed), and the standard procedure

descent profile. Controllers use the ELT as a reference value in computing delays



Chapter 3 Air Traffic Management 21

in the terminal area (Neuman and Erzberger, 1991). The order of the aircraft

queueing at the holding area is the FCFS order, which provides an Estimated

Take-off Time (ETT). While the FCFS rule is fair in terms of the ELTs and

ETTs and it simplifies the implementation of operational constraints, FCFS does

not necessarily match the preferred landing/take-off order since it does not use

important information about the problem (Carr et al., 2000). Moreover, it has

been established that FCFS rarely provides the best sequence in terms of runway

throughput, average aircraft delay or even average passenger delay (Capri and

Ignaccolo, 2004).

3.1.5 Runway capacity and assignment

As stated by Idris et al. (1998a,b), the runway provides the main constraint on

capacity in an airport system. Blumstein (1959) introduces the first important

analytical model for estimating the capacity of an arrival runway. The runway

capacity (maximum throughput) can be defined as the maximum hourly rate of

aircraft takeoff or landing operations that can reasonably be accommodated by

a single or combination of runways. Capacity is generally dependent on the run-

way occupancy time, mix of aircraft using the runway, availability of taxiways,

aircraft type/performance, spacing between parallel runways, intersection point

of runways, mode of operation (segregated or mixed), performance of the ATM

systems, weather conditions (visibility, wind strength and direction), and noise

restrictions (Bazargan et al., 2002; de Neufville and Odoni, 2003). In segregated-

mode, the runway is solely used for either landing or take-off of the aircraft, while

mixed-mode allows both landing and take-off on the same runway. The airport

capacity model presented by Newell (1979) shows that capacity is greater when

runways are operated in mixed-mode. Since increasing the number of runways

is often impractical, air traffic controllers aim to use methods and techniques to

maximize the throughput from the available runways.

Airports can operate with different numbers and configurations of runways. These

can be a single runway, a number of parallel or intersecting runways, or a combi-

nation of these. Assigning a runway to the landing/take-off aircraft is a decision

made by controllers. The runway assignment is typically dependent on the airport
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configuration, the direction of arriving aircraft (arrival feeder gate), and departure

route of the aircraft which is normally specified by the flight plan (Brinton, 1992).

While an aircraft approaches the runway, adjustments can be made to the flight

plan by assigning the aircraft to an alternative runway, which is known as runway

allocation, in order to balance both the landing/take-off on each runway and the

controllers’ workload. Airline preferences such as parking gate location, taxi time

between the runway and the gate, and controller considerations such as safety,

shorter flight times, and lower workloads can lead a controller to assign a new

runway to an aircraft (Isaacson et al., 1997).

3.1.6 Separation

The prime responsibility of the air traffic controllers is the safety of the flights.

Standard vertical and horizontal separations that keep aircraft from becoming dan-

gerously close comprise one of the main ATC safety considerations. The usual min-

imum vertical separation between civilian aircraft operating in controlled airspace

is 1000 ft. The horizontal separations between aircraft vary depending on the

position, type and speed of the aircraft, and possibly other considerations.

One reason for setting minimum aircraft separation is to avoid the effect of vortices

generated by the aircraft as a consequence of their lift. A Wake Vortex (WV) is

potentially hazardous because of the rolling moment it can impose on a following

aircraft. Generally, the WV separation between consecutive aircraft depends on

the airspeeds, landing/take-off routes, and types of aircraft, and therefore it is se-

quence dependent. For example, heavier aircraft generate a greater WV and can

tolerate more turbulent air. As a result, a light aircraft following a heavy aircraft

requires a greater separation than when the following aircraft is also heavy. Conse-

quently, effective scheduling will aim to avoid a light aircraft landing immediately

after a heavy aircraft.

As a consequence of WVs, the International Civil Aviation Organization (ICAO)

puts into force separation standards between the leader and the follower aircraft

for approach, landing, and take-off to allow safe flight operations. The WV con-

straints govern the minimum permissible distance between aircraft lined up in
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sequence on the approach to land on the runway, and the delay before an aircraft

can take off from the runway. The separation standard for landing is based on dis-

tance, while the take-off separation is based on time. If the scheduling procedure

for landing requires a time-based separation instead of distance, the separation

distances are typically converted into separation times using a fixed landing speed

for the corresponding aircraft type (Beasley et al., 2001). It can be argued that the

air speed is not fixed and depends on various factors such as aircraft type, flight

level and weather conditions. The separation standard must satisfy the triangle

inequality:

sac ≤ sab + sbc, for all aircraft classes a, b, c, (3.1)

where sab is the WV separation between aircraft classes a and b (Balakrishnan and

Chandran, 2006).

The simple ICAO’s standard international classification of aircraft is based on

three weight categories (Heavy, Medium and Light), and using distance separations

that are integer (or half integer) numbers of nautical miles thereby making the

air traffic controllers’ job simpler at the expense of reducing capacity (Tether

and Metcalfe, 2003). However, in the United Kingdom, the original ICAO three-

group scheme has been modified to the five groups (Heavy, Upper-Medium, Lower-

Medium, Small and Light) to provide more appropriate separations for certain

aircraft types. When operating at peak capacity, the WV is often a major concern.

It effectively determines runway capacity, and thus limits an airport’s capacity in

the terminal airspace. The large asymmetries in the minimum required separation

can provide an opportunity to reduce airborne delays by shifting aircraft positions

in the landing sequence. Further, adjusting the take-off sequence can similarly

create additional capacity.

Departure routes also impose separation constraints. Aircraft take-off along spec-

ified predefined departure routes called Standard Instrument Departure (SID)

routes. Aircraft following the same SID route must observe the SID separation.

Finally, if two consecutive aircraft belong to different speed groups, then the sep-

aration may have to be modified depending on these speed groups.
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3.1.7 Holding and manoeuvres

Controllers may make an aircraft wait (hold) before landing or take-off as a result

of traffic congestion, poor visibility, weather conditions, occupancy of the runway,

or missed time slots. Holding an aircraft is complicated because of the restriction

imposed by a predefined flight plan, congestion, capacity of the holding area, and

the dependency of the aircraft’s speed on its type, weather conditions, and the

altitude.

For departures, aircraft can be held at stands or at specific holding points. While

airborne, an aircraft can be held using a number of techniques, namely vector-for-

space (VFS), holding pattern (HP), detour, shortcut, or speed control. Figure 3.2

provides an illustration of the first four techniques. VFS and HP are the main

holding procedures controllers use to manage the waiting process in the terminal

area (Artiouchine et al., 2008). The VFS manoeuvre consists of a deviation of the

aircraft away from its original flight path for a short time so that when it rejoins

the flight path the time is later than without the deviation, whereas HPs generate

a constant prescribed delay for an aircraft by flying in a loop (see Figure 3.2).

Several HPs may exist in each terminal area and an aircraft can enter a holding

pattern several times. A common HP near airports is known as a holding stack,

where aircraft are instructed to join a waiting loop at different altitude levels above

a feeder fix point (Bianco and Bielli, 1993). When an aircraft at the lower level

is cleared to leave the hold, the other aircraft are laddered down. Controllers can

also use various techniques such as detour (taking a longer route by deviating

from the prescribed flight path as illustrated in Figure 3.2), shortcut (taking a

more direct route, again by deviating from the prescribed flight path as illustrated

in Figure 3.2)), and speed up or slow down (issuing an instruction for the pilot to

accelerate or decelerate) to allow aircraft to land before or after their Estimated

Landing Times (ELTs).
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Vector-for-Spacing Holding Pattern 

Shortcut Detour 

Figure 3.2: Holding and manoeuvring techniques

3.1.8 Position shifting

In practice, delaying or advancing an aircraft by a large number of places in the

FCFS take off/landing sequence is undesirable because of the operating environ-

ment. Dear (1976) introduces constrained position shifting (CPS) for the ALP

to limit the extent of deviations from the scheduling sequence. CPS defines the

maximum number of positions an aircraft can shift in the landing sequence rela-

tive to the FCFS order. Specifically, maximum position shifting (MPS) uses an

integer k to define the maximum deviation of the landing position of an aircraft

in the selected landing sequence from its landing position in FCFS; this is also

referred to as k-MPS. When k is small, an element of fairness among the aircraft

is maintained by reducing the deviation from the FCFS sequence. A small value

of k has the added advantage when solving the ALP or ATP that the size of the

search space is reduced. As shown by de Neufville and Odoni (2003), the most

undesirable landing sequences, such as those with a heavy aircraft followed by a

light aircraft with an associated high separation, can be avoided, and delays can

be significantly reduced, even with k = 2 or k = 3. Mesgarpour et al. (2010)

consider constrained time shifting (CTS), which limits the deviation of landing

time of an aircraft from that obtained using the FCFS sequence, where the limit

can be dependent on aircraft type.

Re-sequencing becomes increasingly difficult as aircraft become closer to landing.

Relative position shifting (RPS) takes this into account by defining the maximum

number of position shifts (either backward or forward) of any aircraft in the se-

quence relative to the position that it occupies in FCFS. The maximum number of

positions in RPS can be defined by the air traffic controllers for any subsequence

of the landing/take-off sequence. Generally, this value decreases for subsequences



26 Chapter 3 Air Traffic Management

near the beginning of the sequence and can be set to zero in the freezing stage

(Bianco et al., 1997).

3.2 Airport Runway Scheduling

The aircraft landing/take-off problem is to sequence landing/take-off aircraft on/from

the available runways at an airport and to assigned each aircraft a landing/take-off

time subject to variety of operational constraints. The prime responsibilities of

the air traffic controllers are safety of the flights and efficient planning of arriving

and departing flights to and from the airport.

The aircraft landing problem (ALP) and aircraft take-off problem (ATP) models

most commonly studied in the literature deal with the static (off-line) case, al-

though some consider the dynamic (on-line or real-time) case (see Beasley et al.,

2004; Moser and Hendtlass, 2007; Veidal, 2007). In the static version, the model

is solved based on a given set of aircraft, where the complete information on these

aircraft is assumed to be available and known. It can be argued that ignoring

uncertainties leads to a reasonable approximation because information is fairly

predictable close to the time of landing or take-off. Nevertheless, after solving the

static problem, it is expected that these solutions are revised over time as new

aircraft arrive into the system.

ALPs and ATPs differ in three important aspects. First, departure separation

time minima depends on departure route and airspeed of leading and following

aircraft as well as weight class of aircraft while the final approach separation dis-

tance minima depends on weight class of leading and following aircraft. Second,

latest landing time constraints are hard constraints although latest take-off time

constraints can be considered as soft constraints. Third, deviation of the landing

sequence from FCFS sequence is limited by the approach operational constraints;

however, deviation of the take-off sequence from FCFS sequence depends on config-

urations of taxi-out and departure holding area. Landing and departure scheduling

problems are depend on separation which is the main similarity of ALPs and ATPs.
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3.2.1 Objectives

Air transportation has a number of different stakeholders, including Air Traffic

controllers (ATCs), airlines, airports, and government, who each have their own

explicit or implicit objectives. As a result, the formulation of ALP and ATP

involves the simultaneous optimization of a variety of objectives that may conflict,

which is likely to lead the decision-maker into considering possible tradeoffs. The

main (single) objectives are as follows (Idris et al., 1998a; Fahle et al., 2003; Lee

and Balakrishnan, 2008).

(a) ATCs aim to ensure safety and efficiency of the aircraft. The following are

desirable from an ATC perspective:

• maximizing the runway throughput

• minimizing the approach time of aircraft before landing

• minimizing air traffic controllers’ workload

• maximizing fairness among the aircraft

• minimizing the aircraft taxi-in/taxi-out time

• minimizing the arrival/departure delay

• minimizing deviations from an appropriate balance between arrivals

and departures.

(b) The airline’s main objectives are:

• minimizing operating costs (especially fuel costs)

• minimizing engine run times before take-off

• maximizing punctuality with respect to landing/take-off time in pub-

lished timetables

• minimizing total passenger delays

• maximizing adherence to airline priorities within their own flights

• maximizing the connectivity between incoming and outgoing flights.
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c) The airport priorities are:

• maximizing punctuality relative to the operating schedule

• minimizing the need for gate changes due to delays.

d) The government preference is:

• minimizing environmental effects (noise and air pollution).

Typical scheduling objectives used in the literature, similar to those used in

production scheduling, minimizes the average delay (average tardiness), average

landing/take-off time (equivalent to average flow time or average completion time),

and landing/take-off time of the last aircraft in the sequence (makespan). Delay is

usually defined as the deviation of actual landing/take-off time from the estimated

landing/take-off time calculated by the FCFS principle, and not based on the air-

craft schedule. Delay is a service-based objective, whereas flow time, completion

time and makespan are throughput-based objectives.

3.2.2 Modelling techniques

The literature provides a range of approaches to modelling and solving the ALP

and ATP. We identify the core modelling approaches below, and we provide more

details of some specific algorithms from the literature in Chapter 4.

As shown by Beasley et al. (2000) and Mesgarpour et al. (2010), the ALP and

ATP can each be formulated as a mixed integer program (MIP). However, both

problems are NP-hard and computation time to find an exact solution is likely to

grow exponentially with the number of aircraft. As a result, solving the MIP is

unattractive for real-time implementation on practical-sized instances.

Brentnall (2006) points out the relationship between the ALP and a machine

scheduling problem with sequence-dependent setup times. The objective function

can include makespan, and total earliness and tardiness by penalizing early and

late jobs in terms of time windows or due dates. Regarding the specifics of the
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machine scheduling problem, each job corresponds to a landing operation of the

aircraft; each machine with capacity one represents a runway; the ready time

(release date) of the job corresponds to the estimated landing time (ELT) of the

aircraft; the starting time of the job represents the actual landing time (ALT) of the

aircraft; the completion time of the job corresponds to the time the aircraft frees

the runway; and the sequence-dependent processing time between jobs represents

the required separation between aircraft.

The travelling salesman problem (TSP) and the ALP also have resemblances. The

classic TSP is to find a shortest tour that visits every city exactly once, starting

and finishing at the same origin city (Laporte, 2010). The single-runway ALP

closely resembles an open TSP with time windows, where the tour does not return

to the origin. Each city corresponds to an aircraft, intercity distances represent

the separations between aircraft, and the time windows for visiting each city are

the landing time windows. The multiple-runway problem similarly resembles a

multiple-TSP (Luenberger, 1998).

Finally, it is natural to consider the ALP/ATP as a queueing system (Pujet et al.,

1999; Idris, 2001; Bauerle et al., 2007). Different classes of aircraft correspond to

different customer types and the runways are servers. The service time of each

customer (aircraft) is the separation time between the aircraft and its successor.

Different queueing models can be used to represent the ALP/ATP problem de-

pending on the number of runways available, the mode of operation at each runway

(segregated or mixed), and the method of runway allocation by the controllers.

Applications of the operational research and management science techniques on

airport runway scheduling in the literature are presented in the next Chapter.





Chapter 4

Literature Review

In this chapter, we review the main algorithmic contributions for scheduling air-

craft landings and take-offs. The subsections are organized according to the main

methodology used in the study. Unless stated otherwise, the problem considered

is to schedule the landing/take-off of n aircraft each belongs to one of C classes,

with separation times defined by the classes of the leader and follower aircraft.

Section 4.1 and Section 4.2 review the literature about aircraft landing problem

and aircraft take-off problem, respectively. Essential methods used in the liter-

ature are dynamic programming, branch-and-bound and genetic algorithm. The

combined aircraft landing and take-off problem have been reviewed in Section 4.3.

Section 4.4 includes some of our findings from the literature 1.

we would like to highlight some of our findings

4.1 The Aircraft Landing Problem

In this section, applications of various optimization methods such as dynamic pro-

gramming, branch and bound, branch-and-price, genetic algorithm, ant colony

optimization and queuing theory in scheduling of aircraft landings have been re-

viewed.

1The literature review has been published as an invited review paper in 4OR (see Bennell
et al. (2011))

31
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4.1.1 Dynamic programming

Dynamic Programming (DP) is a general optimization technique for making se-

quential decisions. Almost all ALPs can be usefully modelled as DP problems

because the algorithms can evaluate current partial solutions independently of the

exact sequencing decisions used to form these solutions. Beginning with the early

work of Psaraftis (1978), there have been several attempts to develop efficient dy-

namic programming algorithm for the ALP. In many of these studies, it is assumed

that all aircraft within any weight class can be sequenced. The aircraft landing

problem then reduces to one of merging the individual sequences constructed for

the different weight classes, with dynamic programming providing an effective ap-

proach for finding an optimal merging. The number of weight classes C is assumed

to be fixed (in most practical applications, ranges between 3 and 5).

Psaraftis (1978, 1980) considers a simplified version of the ALP in which all air-

craft are available to land immediately. As an objective function, he considers

throughput as measured by minimizing LTmax, where LTmax = maxj=1,...,n LTj,

and delay as measured by the sum of landing times of the aircraft (
∑n

j=1 LTj). He

develops backward dynamic programming algorithms that have as state variables

the number of aircraft from each class that has not yet been scheduled to land

and the class of the last aircraft to land. These algorithms essentially merge the

lists of aircraft within the different classes. For the case of a single runway, the

DP algorithm has a time complexity of O(CnC), where C is the number of classes

and n is the number of aircraft. For fixed C, this represents a polynomial time

algorithm. Further, the DP algorithm can be adapted to handle CPS without

increasing the time complexity. An extension of the algorithm to the case of two

runways is also proposed.

Brentnall (2006) extends the dynamic programming approach of Psaraftis in two

directions. First, he assumes that aircraft have earliest landing times. For some

objective functions including the landing time of the last aircraft and the sum of

landing times, he establishes that, within each class, aircraft should be sequenced

in non-decreasing order of earliest landing time. Using these properties, he devel-

ops two forward DP algorithms: one minimizes the landing time of the last aircraft

in O(CnC) time, and the other minimizes the sum of landing times in O(nC2+C+1)
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time. For the second direction, he assumes that all aircraft are circling in several

stacks, and the aircraft to land next is to be chosen as one at the bottom of one of

these stacks. Using as state variables the number of aircraft from each stack that

have been scheduled to land and the stack previously containing the last landed

aircraft, forward DP algorithms requiring O(nC2+K) time are proposed for general

objective functions, where K is the number of stacks. Brentnall and Cheng (2009)

suggest four delay sharing strategies: all delay in hold, delay as late as possible,

delay as early as possible, and delay evenly throughout the route. By linking the

algorithms and methods to a discrete-event simulation and using several statistical

methods, they analyze the output from simulations based on Stockholm Arlanda

airport.

Bayen et al. (2004) propose a model that takes account of the time taken to com-

plete a circuit in a holding stack. They assume that all aircraft belong to a single

class. They develop a 5-approximation algorithm for the problem of minimizing

the sum of landing time, and a 3-approximation algorithm for minimizing the

landing time of the last aircraft. Their algorithms combine dynamic programming

and the rounded solution of a linear program.

An alternative dynamic programming approach is introduced by Balakrishnan

and Chandran (2006). They consider the problem of minimizing the landing time

of the last aircraft, and impose CPS, precedence constraints between aircraft and

arrival time-window constraints. The problem is formulated as a modified shortest

path problem in a network with O(n(2k + 1)2k+2) arcs, where k is the maximum

position shift (see Figure 4.1). In addition to a source node s and a terminal

node t, the network consists of n stages, where each stage represents an aircraft

position in the final sequence. A node at stage σ of the network corresponds to a

subsequence of the aircraft of length min{2k + 1, n − σ + 1}. If a node at stage

σ can be followed by a node at stage σ + 1, they are connected by a directed

arc. The network shown in Figure 4.1 for n = 5 and k = 1 represents all the

sequence combinations of possible aircraft assignments to each position. A pruned

network, which is significantly smaller than the original network, can be produced

by removing nodes which are not part of a path from source to sink (shown in

grey) or which violate the precedence constraints.
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Figure 4.1: Pruned network for n = 5 and k = 1

Some notation is needed in our statement of the dynamic programming algorithm

of Balakrishnan and Chandran (2006). Let P (j) represent the set of predecessor

nodes of each node j. Also, the earliest and latest landing times of the first aircraft

in the sequence associated with node j are denoted by e(j) and l(j), respectively.

The shortest path length in the network from node s to each node j of the network,

which represents the landing time assigned to the first aircraft in the subsequence

associated with node j, can be computed using the following forward dynamic

programming recursion:

T (j) = max{e(j), min
i∈P (j):T (i)≤l(i)

{T (i) + sij}}.

Note that the density of the pruned network is significantly smaller than the worst-

case complexity expression in practical instances. Also, since the basic network

remains the same for any given n and k, it can be stored and retrieved when

required. The computational experience of Balakrishnan and Chandran (2006) is

based on an implementation of their algorithm on realistic data from the arrival

flow at Denver International Airport. The algorithm exhibits small computation

times for instances with up to 50 aircraft and with k ≤ 3.

Building on the approach described above, Chandran and Balakrishnan (2007) in-

troduce a dynamic programming algorithm to compute the tradeoff curve between

the robustness and throughput. Robustness is interpreted as the probability of not

violating any separation constraints. Their proposed algorithm is computationally
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efficient with a time complexity of O(n(L/ε)3), where L is the largest difference

between the latest and the earliest landing time over all aircraft, and ε is the

interval used when discretizing time.

More recently, Lee and Balakrishnan (2008) extend the previous framework pro-

posed by Balakrishnan and Chandran (2006) and Chandran and Balakrishnan

(2007) by presenting a dynamic programming algorithm for minimizing the sum

of landing costs of an arrival schedule. They use this approach firstly for minimiz-

ing total delay, which is equivalent to minimizing the sum of landing times, and

secondly for minimizing fuel cost, where the strategy of speeding up some aircraft

at the expense of burning extra fuel is explored. The study shows that speeding

up to allow a landing up to 3 minutes earlier than normal is often advisable. By

generating 1000 problem instances of 30-aircraft sequences using a Poisson dis-

tribution, the tradeoff between minimizing the average delay and maximizing the

throughput as objectives, which are not necessarily aligned, is investigated. Re-

sults shows that the significant improvements in the average delay are achievable

through decreasing the throughput so that the delay becomes relatively small.

4.1.2 Branch-and-bound

Brinton (1992) introduces one of the first branch-and-bound approaches for the

ALP and the runway assignment problem. Static, dynamic, and depth limiting

methods are used to reduce the number of tree branches that need to be searched.

The objective function is a weighted combination of various costs although the

proposed implicit enumeration algorithm does not depend on which costs are in-

cluded. The methodology is the foundation of the Traffic Management Advisor

(TMA) tool of the Center TRACON Automation System (CTAS) developed at

NASA Ames Research Center. The implementation of runway and sequence opti-

mization is discussed although there are no detailed computational results.

Abela et al. (1993) propose another branch-and-bound algorithm based on a 0-1

mixed integer programming formulation for the single-runway ALP. The objective

function has a cost for each aircraft that is attributed to either speeding up or

holding. Furthermore, they propose a genetic algorithm in which two heuristic



36 Chapter 4 Literature Review

operators, force feasible and squash, are used to ensure that the schedule after

crossover satisfies the minimum separation times. Computational results for prob-

lem instances with up to 20 aircraft are presented.

Ernst et al. (1999) design a branch-and-bound algorithm and a local search heuris-

tic for the ALP with single and multiple runways, where the objective function

comprises penalty costs for landing before and after target times. A key compo-

nent of their approach is a specialized simplex algorithm for determining a landing

schedule, given on a partial order of the aircraft. They develop a heuristic-based

problem space search which comprises their simplex algorithm, a constructive

based heuristic to generate a good sequence, and a genetic algorithm to search

the perturbation space. The heuristic algorithm and simplex method are used

to obtain upper and lower bounds for the branch-and-bound algorithm. Various

devices such as tightening intervals, upper-bound-based fixing, and fixing based

on data are used as pre-processing methods to improve the performance of the

branch-and-bound algorithm. An extended version of the algorithm can be used

for multiple runways. The OR-Library data sets (Beasley, 1990) are used to eval-

uate the heuristic and exact algorithms on instances involving up to 50 aircraft on

both a single runway and multiple runways.

In addition to providing an extensive literature overview on the ALP, Beasley

et al. (2000) design branch-and-bound algorithms by employing linear program-

ming (LP)-based tree search approaches for both single- and multiple-runway prob-

lems. They use the same objective function of Ernst et al. (1999) in which there

are penalties for landing before and after target times. Their formulation of the

problem is based on that introduced earlier by Abela et al. (1993). However,

some additional constraints are proposed in order to reduce the zero-one space

of the mixed integer formulation and strengthen the LP relaxation. The ALP

is solved optimally for the problem instances found in the OR-Library (Beasley,

1990) involving up to 50 aircraft and four runways.



Chapter 4 Literature Review 37

4.1.3 Branch-and-price

The multiple-runways version of the ALP is addressed by Wen (2005) and Wen

et al. (2005) using a column generation approach. They also adopt the objective

function of Ernst et al. (1999) in which there are penalties for landing before

and after target times. The ALP is formulated as a set partitioning problem

with side constraints. They develop and test a branch-and-price exact algorithm

using the problem instances of Beasley (1990), which include 50 aircraft and four

runways. Their computational results show that the linear relaxation of the set

partitioning model provides a better lower bound than the linear relaxation of

the mixed integer program. Further, the branch-and-price approach solves all

instances while generating less than 450 columns and exploring no more than 12

nodes in the search tree.

4.1.4 Heuristics

Based on the observation that constrained position shifting can significantly reduce

the number of candidate landing sequences, Dear and Sherif (1989, 1991) present

an enumerative heuristic for the static and dynamic ALP. Computational results

involving up to 500 aircraft and one runway show the smaller delays obtained

under the heuristic than for a FCFS approach.

Bianco et al. (1999) suggest the ALP as an application of the single machine

scheduling problem with release dates and sequence dependent processing times

to minimize the sum of completion times (often referred to as problem 1|rj seq −
dep|

∑
Cj). They develop a dynamic programming formulation that is of theoret-

ical interest because one of the state variables is the current set of scheduled jobs,

and three lower bounds. Further, they propose two heuristic algorithms. The first

is an O(n2 log n) construction procedure that builds a schedule by adding jobs to

the current partial sequence, and the second is based an O(n4) insertion approach.

The effectiveness of the proposed heuristics is evaluated using randomly generated

test instances, and two realistic ALP problem instances that include 30 and 44

commercial aircraft belonging to four weight classes. The schedules span a period

lasting about 40 minutes, and are evaluated according to total aircraft landing
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time, and maximum and average landing delay. Because they do not consider

CPS in their model, some aircraft are subject to excessive delay.

4.1.5 Genetic algorithms

Genetic algorithms (GAs) provide a popular approach for tackling sequencing

problems, with many successful applications reported in the literature. Generally,

a chromosome represents the order of the aircraft in a landing sequence. As an

example of an alternative encoding, Beasley et al. (2001) use the assigned landing

times of the aircraft.

Stevens (1995) provides one of the first and the simplest application of GA for

minimizing the total penalty for landing before and after specified target times.

Operational constraints include a constant three-minute separation time and an

earliest landing time of three minutes before the target landing time. Results of

computational tests are presented for ten problem instances involving two runways

and up to 40 aircraft over a one-hour scheduling horizon.

Based on the GA of Stevens (1995), Ciesielski and Scerri (1997, 1998) compare two

GA implementations for the dynamic/on-line ALP in terms of the percentage of

valid solutions obtained and the best objective function value. The first algorithm

builds the new schedule from scratch, and the second seeds it from the population

left at the end of the last problem by removing landed aircraft and inserting new

aircraft into the scheduling horizon. Their computational results are presented for

two data sets involving 28 aircraft in a 37 minutes period and 29 aircraft in a 38

minutes period on two runways.

Cheng et al. (1999) design four different genetic schemes for the multiple-runway

ALP. The first GA uses two chromosomes to encode the landing sequence and

the runway assignment, respectively. In the second and third schemes, each chro-

mosome forms a component of priority list for the flights. A fourth approach is

based on genetic programming (GP) with chromosomes defined as mathematical

operations and functions. They evaluate four approaches using one instance in-

volving 12 aircraft and three runways. Hansen (2004) builds on the work of Cheng

et al. (1999) by examining the efficiency and effectiveness of GA and GP methods
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in solving ALP. By applying four genetic search methods on four different test

scenarios, he shows that the GP method provides the best solutions and these

solutions can support controllers in real-time situations.

Beasley et al. (2001) develop a population heuristic for the static single-runway

ALP with time-window restrictions. The algorithm aims to minimize the squared

deviations from target landing times. Their computational results are for a single

problem instance with five classes of aircraft, where the data for the instance are

obtained from observations during a busy period at London Heathrow airport.

In a GA implementation of Capri and Ignaccolo (2004) for the static and dy-

namic ALP, three different objective function formulations are investigated for

minimizing delay. Implementations to solve the static ALP consist of the GA, the

GA with maximum landing time constraints, the cheapest insertion heuristic of

Bianco et al. (1997), and FCFS. Results from four test problem cases proposed by

Bianco et al. (1997) are used to compare the approaches. The performance of the

dynamic model is evaluated using four test instances with up to 30 aircraft.

Pinol and Beasley (2006) implement two different population heuristics, scatter

search and a bionomic algorithm, for the multiple-runway ALP. Solutions are

represented by specifying the position of the landing time within a given time

window and a runway assignment for each aircraft. Both a linear and a non-linear

objective function are considered. The linear objective has penalties for landings

both before and after a target landing time, while the non-linear objective has

a positive quadratic penalty for landings after the target time and a negative

quadratic penalty for landings before the target time. An infeasibility penalty for

violations of the separation constraints between aircraft is considered separately.

Computational tests with OR-Library data sets (Beasley, 1990) indicate that the

relative effectiveness of the scatter search and bionomic algorithms depends on

whether the linear or non-linear objective function is assumed.

Yu et al. (2009) use cellular automation (CA) to generate a landing sequence for

the single-runway ALP. Improvements are made to the landing sequence using a

GA with a relaxation operator. The instances of Beasley et al. (2000) are used

to test the method. Bencheikh et al. (2009) propose a hybrid method to solve

the ALP where ant colony optimization generates the initial population of feasible



40 Chapter 4 Literature Review

solutions for the GA. The ALP is formulated as a job shop scheduling problem

with partial orders and alternative sequences through “and/or” graphs.

The dynamic ALP is studied by Hu and Chen (2005a,b), and we review their

contributions below. In later work, Hu and Di Paolo (2008) introduce a new type of

chromosome which defines a 0-1 value matrix based on neighbouring relationships

between each pair of aircraft. The binary representation makes it easier to perform

an efficient uniform crossover operator. The proposed GA based on a binary

representation is compared with the GA with a permutation representation, as

introduced by Hu and Chen (2005a) for the static and dynamic versions of the ALP.

These authors also design a GA with uniform crossover for the multi-runway ALP

using the successor relationship between aircraft to construct the chromosomes

rather than the order of the aircraft in the queues (Hu and Di Paolo, 2009). They

compare their method with the GP approach of Hansen (2004) and an extended

version of the GA of Hu and Chen (2005a).

Hu and Chen (2005a,b) study GAs for the dynamic ALP using an approach based

on receding horizon control (RHC). Figure 4.2 presents the comparison of the RHC

with other optimization strategies (Hu and Chen, 2005b). The off-line strategy

optimizes the static ALP for the entire time horizon. The one-step-ahead adjust-

ment modifies the landing sequence for the current time interval given the static

solution and current information. The conventional dynamic optimization and

the RHC optimizes ALP over the horizon from the current time to the end of the

time horizon or M time intervals ahead respectively, repeating the procedure at

the beginning of each interval based on new information. For the GA of Hu and

Chen (2005a), the aim is to minimize the airborne delay, which is the deviation

of the actual landing time from the earliest landing time. The performance of

their GA is compared with the approach of Bianco et al. (1997) and a GA that is

based on conventional dynamic optimization (CDO) using test problem instances

from Bianco et al. (1997). The performance of the GA based on RHC is eval-

uated further by Hu and Chen (2005b) under different levels of uncertainty and

congestion.
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Figure 4.2: Different optimization strategies

4.1.6 Ant colony optimization

In addition to the use of ant colony optimization (ACO) by Bencheikh et al. (2009)

in a hybrid method for generating initial solutions for the GA, Randall (2002) uses

ACO to tackle the ALP. The objective is to minimize the total penalty associated

with aircraft landing before and after specified target times as defined by Beasley

et al. (2000). Moreover, there are time-window constraints. Six problem instances

from Beasley (1990) are used for computational tests. Results show that the

quality of the solutions is not as good as those obtained by Beasley et al. (2000).

4.1.7 Queueing theory

Bauerle et al. (2007) model the ALP as a special queueing system with the in-

coming aircraft corresponding to customers of different types and separation times

between aircraft corresponding to customer service times. The single-runway prob-

lem is modelled as an M/SM/1 queueing system, with semi-Markov service times.

In addition, they derive the stability condition and the average waiting time. Sev-

eral routing heuristic strategies are studied and compared with respect to the

average delay for assigning aircraft to two runways.

4.1.8 Comparative studies

There exists work on comparing different algorithms proposed for solving the ALP.

Fahle et al. (2003) consider the simplest model of single-runway ALP with time-

window and separation constraints in a static environment. They compare four

exact methods. The first two are proposed by Beasley et al. (2000): a mixed inte-

ger programming model that uses continuous time, and an integer programming
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formulation that is modelled using discrete time. The other two methods consist

of a constraint programming model, and a satisfiability problem formulation. In

addition to these exact methods, they implement two local search heuristics based

on descent and simulated annealing. These six methods are evaluated using three

problem instances with up to 123 aircraft.

In another study, Beasley et al. (2004) define a displacement problem, which is

used in the solution of the dynamic ALP. The rationale of this approach is that un-

favourable deviations from the previous solution are penalized in the displacement

problem when new information becomes available and the solution is updated.

Possible solution approaches for the displacement problem are the LP-based tree

search (Beasley et al., 2000), a heuristic algorithm (Beasley et al., 2000), and a

population heuristic (Beasley et al., 2001). Their computational results are pre-

sented for two sets of test problems involving up to 500 aircraft and five runways.

4.2 The Aircraft Take-Off Problem

The ALP has attracted much greater research interest compared to the ATP for

which studies are quite scarce. The main reason is that take-off scheduling problem

is highly correlated with taxi-out scheduling problem and they cannot be solved

separately. Integration of these two sub-problems makes the problem complex

and difficult to solve. However, landing scheduling problem and taxi-in scheduling

problem have little correlation and can be dealt with separately.

Idris et al. (1998a,b) study the flow constraints and the dynamics of airport sys-

tems. Specifically, they analyze the departure flow at Logan airport as a complex

queuing system. As aircraft compete for limited resources such as gates, ramp,

taxiways and runways, queues are created in various parts of the airport. They

conclude that the runway is the main constraint. Pujet et al. (1999) develop an

alternative queuing model of the departure system. Their model is evaluated using

the runway configuration and traffic data. The intention is to relieve the departure

traffic congestion on the ground.
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4.2.1 Dynamic programming

Craig et al. (2001) propose a dynamic programming algorithm for sequencing the

take-off of aircraft at one of the simplified holding points at London Heathrow

airport. Some possible strategies for sequencing aircraft at the stands are also

considered in their research. Based on their model for the ALP (Balakrishnan

and Chandran, 2006), Balakrishnan and Chandran (2007) introduce a dynamic

programming algorithm for the ATP. Their approach is also extended for multiple

runways and active runway crossing.

4.2.2 Heuristics

Anagnostakis and Clarke (2002, 2003) investigate a two-stage heuristic algorithm

for solving a runway operation planning problem. The first stage aims to maximize

the throughput by generating candidate sequences of classes of aircraft, while ig-

noring the operational constraints. The second stage uses an integer programming

model to assign aircraft to class slots in one of the sequences generated in the first

phase taking into account the relevant constraints (see also Anagnostakis, 2004).

4.2.3 Metaheuristics

Atkin et al. (2004) consider an initial model of the simplified ATP at London

Heathrow airport including the holding point structure. Based on the results of

comparing different search heuristics, their conclusion is that tabu search performs

better than simulated annealing and descent algorithms. A later and more detailed

study of Atkin et al. (2006) investigates the effects of the different constraints on

scheduling. A key aspect of their algorithms involves the checking of candidate

take-off sequences for feasibility, taking into account the current positions of air-

craft at the holding points.

Atkin et al. (2007) propose a hybrid approach that uses different search methodolo-

gies and a heuristic method to solve the static version of the ATP. Their objective

function comprises a weighted sum of delay, a reordering cost (for an aircraft that

is moved later in the take-off sequence than in FCFS, the cost is proportional to
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the number of positions moved), a non-linear cost for violation of a CTOT time

window or for scheduling a take-off near to a boundary of the window, and an

additional penalty cost for schedules that introduce an excessive delay on aircraft.

The model is evaluated using six sets of data from London Heathrow airport. Re-

sult shows that the availability of more information about the aircraft taxiing can

reduce delays and improve CTOT compliance. In a further study, Atkin et al.

(2008) provide some further enhancements to their previous work (see also Atkin,

2008).

Based on Dallas Fort Worth airport, Stiverson (2009) designs a greedy heuristic

and a 2-interchange heuristic for departure sequencing. Lower bounds on an op-

timal solution are also provided using a mixed-integer linear programming model.

Performance of the heuristics has been tested using randomly generated datasets.

Total delay and take-off time of the last aircraft are optimized subject to the arrival

time of the aircraft to the runway, separation and runway layout. To simplify the

problem, it is assumed that the possible taxi-out routes are limited and that there

is no upper bound on the number of aircraft that can occupy a queue, crossing or

taxiway.

4.2.4 Constraint satisfaction

Using a constraint satisfaction approach for the ATP and the ILOG solver, van

Leeuwen et al. (2002) map flights onto activities, and model the taxiways, runways,

and exit points of an airport as resources. Also, different type of constraints such

as take-off order, time-slot, and separation are listed as temporal or resource con-

straints in the ILOG environment. Results of applying the model to real data from

Prague airport for up to 12 aircraft in a 50-minute time interval are also presented.

As the problem size gets larger, the model fails to find a solution in reasonable

time. van Leeuwen and van Hanxleden Houwert (2003) introduce constraint re-

laxation techniques to overcome the highly complex or conflicting requirements

that have to be considered in practice. The constraints are divided into different

sets of soft and hard constraints according to whether they are candidates for

relaxation. Additional controller-imposed constraints, time-slot constraints, and

runway preferences are considered as soft constraints.
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4.3 Combined aircraft landing and take-off prob-

lem

Trivizas (1998) introduces a dynamic programming approach for solving optimally

the static runway scheduling problem for landings and take-offs based on the CPS

concept. The mixed-mode, segregated-mode, and multiple-runway environments

are considered. His computational results obtained with actual traffic data and

a real airport configuration show that even a modest value such as a maximum

position shift of three can increase the runway capacity up to 20% compared to

FCFS sequencing.

Bianco et al. (2006) introduce static and dynamic models for scheduling the land-

ing and take-off of aircraft in the terminal manoeuvring area (TMA). The pro-

posed deterministic job shop scheduling model can represent several operational

constraints and different runway configurations. The model considers the runway,

TMA, inbound and outbound flight paths, holding stacks for landing and hold-

ing points for take-off. The solution method is based on a fast descent heuristic.

Experimental results using real data of Milan Malpensa and Rome Fiumicino air-

ports show that the average delay can be reduced by more than 40% and the TMA

capacity may increase up to 30% in comparison with FCFS sequencing.

4.4 Remarks

Predictions for increasing air traffic over the next 15 years puts pressure on air

navigation service providers around the world to improve safety levels, reduce

delays, and cut the costs. This is the motivation behind the SESAR (Single Eu-

ropean Sky ATM Research) and NextGen (Next Generation Air Transportation

System) programs. SESAR is a European air traffic control infrastructure mod-

ernization program that aims to eliminate the fragmented approach in European

air traffic management, to transform its system, to synchronize all stakeholders,

and to federate resources (EUROCONTROL, 2012). NextGen is the transforma-

tion of the entire air transportation system through the use of twenty first century

technology to support the current and future demand for aviation services in the
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United States (FAA, 2012). After reviewing previous research studies on ALP and

ATP and observing air traffic controllers in a working environment, we would like

to highlight some of our findings. In our research, we aim to fill some of these gaps.

Practical vs theoretical models

As explained before, many theoretical studies may show an increase in utilization

of the runway capacity, but it may not be possible to implement the models in

practice. Often, some critical operational constraints in the modelling are ignored,

some of the hard constraints in obtaining a solution are relaxed, or required com-

putational resources are unreasonable.

Quick and good vs slow and optimal solution methods

In real situations, controllers can only use algorithms which can quickly (in a mat-

ter of seconds) find a good solution (near-optimal). Optimal solutions arising from

lengthy computation times are of little practical use.

Defining the objective functions and constraints

Choosing an appropriate objective function for the ALP/ATP is controversial and

stakeholders (air traffic control, airports, airlines, and government) may have con-

flicting criteria. Thus, selecting one or more objective that can satisfy the interests

of all parties, or provide an acceptable compromise, is an important first step to-

wards the model to be implemented.

Robustness and flexibility

There are different levels of uncertainty associated with the information considered

within an ATP/ALP, especially in a dynamic environment. The uncertainty can

be caused by weather conditions such as winds and snow, the precision of equip-

ments, as well as the uncertainty in pushback times and taxi times for departing

aircraft. However, most studies consider a static rather than a more realistic dy-

namic environment.
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Increasing the number of separation categories

Currently, ICAO classifies aircraft into three categories of Heavy, Medium and

Light. Since wake vortex separation is a primary constraint on runway through-

put, refining the classification into more classes may increase runway capacity.

Integrated models

There are several models that can relatively solve problems involving individual

components of airport operations effectively. However, a major challenge is to

form an integrated model. Possible types of integration include integrating run-

way scheduling, ground movement control, and gate assignment. Another example

is the scheduling of an aircraft’s take-off and landing at the same time which re-

quires runways at several airports to be scheduled simultaneously.

Throughput is the primary objective for ATC

The literature considers many different objective function criteria, whereas in gen-

eral controllers are only concerned with throughput after safety considerations are

taken into account. In order to balance other criteria, controllers need more infor-

mation and good decision support tools to use this information.

Availability of information in advance

The accuracy and timeliness of information can improve decision making. One of

the purposes of the Collaborative Decision Making (CDM) approach for airports

is to provide relevant information to all parties (airport, airlines, and ATC) in ad-

vance. This helps controllers to schedule landings and take-offs with better insight

into the future state of the system.

US vs Europe

There are greater research activities in airport runway scheduling in the US com-

pared to Europe. The difference in the type of research on the ALP and ATP

in the US and Europe indicate that joint research projects would provide a good

opportunity for both communities to enhance their models and further develop

their solution algorithms.
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In the next chapter, the ALP has been defined in details and different solution

methods for scheduling arrival flights to the airport have been discussed.



Chapter 5

Aircraft Landing Problem

This chapter describes the development of our solution algorithms for the static

and dynamic aircraft landing problem. Our goal is to design algorithms that run

in under five seconds and preferably provide solutions in less than one second.

So that they can be implemented in real life as a decision support tool for the

controllers. In the following subsections, we present various search algorithms for

solving the static problem. These algorithms provide the core search mechanism

for tackling the dynamic problem. We describe the solution procedure for the

dynamic problem in the final subsection.

By its nature, there is no notion of an optimal solution for the dynamic problem

because not all of the information is available when decisions start to be made.

On this basis, it is not necessary to design algorithms for the static problem that

guarantee optimal solutions. Instead, we are content with heuristics that provide

good quality solutions at modest computational expense.

Problem has been briefly defined in Section 5.1. Landing time constraints and

separation constraints have been explained in Section 5.2. Algorithms for the

static problem are presented in Section 5.3. These algorithms can be regarded

as building blocks because they are embedded within our proposed algorithms

for the dynamic problem. The dynamic algorithms are presented in Section 5.4.

Section 5.5 presents the computational experience of algorithms for static and

dynamic environments. Concluding remarks have been discussed in Section 5.6

49
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5.1 Problem definition

In our model there is a single runway that is used solely for landings and another

runway for take-offs. This situation is common, although there are airports such

as London Gatwick airport where both take-offs and landings are scheduled on a

single runway. Associated with any schedule are landing times.

The model that is developed below contains some features associated with coordi-

nated planning involving the various stakeholders that might be applicable in the

future. In spite of the model’s generality, a suitable choice of parameters makes it

compatible with the criteria upon which ATCs make their decisions in a current

day setting. Generally, the ALP is to sequence landing aircraft onto the available

runways at an airport and to assign each aircraft a landing time, subject to a

variety of operational constraints.

In the static/off-line version of the aircraft landing problem, there are n aircraft

with landings to be scheduled. All data concerning these aircraft are known in

advance of any decisions being made. Associated with any schedule are landing

times. Specifically, in any schedule, let LTj denote the landing time of aircraft

j ∈ A, where A = {1, . . . , n}.

However. in the dynamic/on-line version of the landing problem, aircraft arrive

into an ATC’s airspace over time. In practice, controllers have knowledge of an

aircraft between 30 and 40 minutes before it can reach the runway. The number of

aircraft is not known in advance. Further, no information is available to controllers

about aircraft that have yet to arrive into their airspace. Thus, scheduling decisions

have to be taken on the basis of partial data.

The model formulation that follows attempts to include an element of the type

of coordinated planning to be used in the future by considering the interests of

the various stakeholders. However, these days, ATCs usually schedule landings

to minimize separation times between aircraft, subject to meeting safety require-

ments. In spite of our model’s broader remit, a suitable choice of parameters

maintains compatibility with the criteria upon which ATCs make their decisions

in a current-day setting.
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5.2 Constraints

The constraints on the aircraft landing problem are divided into two main types.

There are constraints on the time that an aircraft can land, and constraints on

the separation time between landings.

5.2.1 Landing time constraints

There are various constraints on the landing time of each aircraft j, for j =

1, . . . , n, that take the form of time windows. First, LTj should lie within a time

window [eltj, lltj], where eltj and lltj are the earliest and latest landing times of

aircraft j. Typically, the earliest landing time is the time aircraft j takes to fly

from its current location to the runway at a maximum safe speed. The latest

landing time is usually the maximum possible flight time based on the fuel carried

by the aircraft, although there could be reasons why an airport or airline could

stipulate a smaller value of the latest landing time. Second, LTj should lie within

a time window centred around the unconstrained landing time, ultj, of aircraft j.

The value of ultj is the time that aircraft j would be expected to land when there

are no other aircraft to impede its progress to the runway. It is determined by

the arrival planner system after the aircraft enters the range of the relevant radar.

Aircraft j is assumed not to land before ultj, but may land up to a maximum

time shift tsj after ultj, which means that LTj should lie within the time window

[ultj, ultj +tsj]. The rationale for such a bound on the time shift is partly fairness

so that no aircraft is delayed by an excessively long time, and partly workload

reduction on ATCs.

The two time windows defined by the earliest/latest landing times and the de-

viations from the ultj can be combined. This provides a constraint of the form

ej ≤ LTj ≤ lj for j = 1, . . . , n, (5.1)

where ej = max{eltj, ultj} and lj = min{lltj, ultj + tsj}.

An aircraft j may also have an associated preferred landing time pltj. The

preferred landing time may be based on the aircraft’s flight plan, the airlines
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timetable, or a time used by the airport in their plans for assigning a gate to the

aircraft or for the baggage to be unloaded. However, we view the preferred landing

time as a soft constraint that we address when considering the objective function.

5.2.2 Separation time constraints

Associated with each aircraft is a weight class that determines the minimum sep-

aration times between successive landings. Let C denote the number of classes.

Also, let sbc be the minimum separation time when an aircraft of class b lands

before an aircraft of type c, for b, c = 1, . . . , C. We assume that the separation

times satisfy the triangle inequality so that for any aircraft of types a, b and c we

have sab +sbc ≥ sac. This implies that it is sufficient to impose the separation time

constraints only between successive pairs of aircraft in the landing sequence.

Due to the importance of the separation time constraints, it is sometimes conve-

nient to use double indices for the aircraft. For any weight class c, let nc denote

the number of aircraft in this class, where n =
∑C

c=1 nc. We then refer to the

aircraft in each weight class c as (1, c), . . . , (nc, c). Because an aircraft (i, b) lands

either before or after any other aircraft (j, c), we obtain a separation constraint

LTi,b + sbc ≤ LTj,c or LTj,c + scb ≤ LTi,b (5.2)

for each pair of aircraft (i, b) and (j, c).

Note that there may be precedence constraints specifying that one aircraft must

be placed before another in the landing sequence. Thus, if aircraft (i, b) must land

before aircraft (j, c) according to the precedence constraints, then constraint (5.2)

is replaced by LTi,b + sbc ≤ LTj,c.

5.2.3 Objective function

As previously discussed, the ALP involves a number of stakeholders with various

priorities. As a result, adopting a multi-objective approach is appropriate.
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The main objective of ATCs after taking into account safety is to maximize run-

way throughput. This naturally translates into minimizing the landing time of the

last aircraft in the schedule, or minimize LTmax, where LTmax = maxj=1,...,n LTj.

However, in a more realistic dynamic scheduling environment, there is a high like-

lihood that the latter part of the schedule will change due to new aircraft arriving,

with the result that only the initial part of the landing schedule is implemented.

Therefore, focusing only or mainly on the landing time of the last aircraft may

create schedules that are less suitable when used for scheduling within a dynamic

environment. Thus, we also consider the minimization of the average landing time

ALT =
n∑

j=1

LTj/n, (5.3)

which aims to reduce each of the landing times rather than just the last. Thus, the

overall contribution to the objective function of our runway throughput measure

is

w1LTmax + w2ALT, (5.4)

where w1 and w2 are suitably chosen non-negative weights for the maximum and

average landing time, respectively.

The notion of a preferred landing time is introduced in Section 5.2.1. For each

aircraft j, we define a time window [pltj − δe
j , pltj + δl

j] within which the aircraft

should ideally land, were δe
j and δl

j define allowable tolerances for earliness and

lateness, respectively. If LTj < pltj−δe
j , then there is an earliness penalty ue

j(pltj−
δe
j − LTj), where ue

j is a penalty per unit of earliness with respect to the left-

hand end of the time window. Similarly, if LTj > pltj + δl
j, then there is a

lateness penalty ul
j(LTj −pltj +δl

j), where ul
j is a penalty per unit of lateness with

respect to the right-hand end of the time window. Generally, we would expect the

model parameters to be chosen so that ul
j ≥ ue

j , because lateness usually causes

greater disruption then earliness. Thus, the overall penalty for violation of the

time windows defined for preferred landing times is

TW =
n∑

j=1

ue
jmax{pltj − δe

j − LTj, 0}+
n∑

j=1

ul
jmax{LTj − pltj + δl

j, 0}. (5.5)
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Lastly, the cost of using more fuel than necessary for a flight is a concern for

airlines, and moreover a reduction in fuel burn is helpful in reaching government

targets on CO2 emissions. Thus, another objective is the minimization of the

additional fuel used to achieve a landing schedule. As a baseline, a landing time

of ultj is assumed for each aircraft j. Any later landing for aircraft j, which is

defined by LTj > ultj, causes the aircraft to use more fuel due to being airborne

for longer and also possibly through some manoeuvres requested by the ATC to

delay its landing time. Recall that we do not allow any aircraft j to land before

ultj. If the permission would be given to the aircraft j to land before ultj, either it

could save fuel by taking advantage of shortening the flying route and taking the

shortcut or it could cause extra fuel burn because of the increasing airspeed. If vl
j

denotes the cost per unit time of the extra fuel associated with lateness relative

to ultj, then the overall extra fuel cost is

EF =
n∑

j=1

vl
jmax{LTj − ultj, 0}. (5.6)

Since the ALP may involve the simultaneous optimization of various dependent

objectives that are not necessarily aligned, a trade-off among the objectives is

required. Therefore, they need to be optimized in the form of a weighted multi-

criteria objective function. Using suitable weights, we can combine the different

objectives defined in (5.4), (5.5) and (5.6) to give the overall objective function

w1LTmax + w2ALT + w3TWF + w4EF, (5.7)

for suitably chosen non-negative weights w3 and w4 (as well as w1 and w2). This

expression is to be minimized, subject to constraints (5.1) and (5.2).

Based on equation (5.7), the incremental cost of aircraft j landing at time t is

given by

gj,t = w2t/n + w3(u
e
jmax{pltj − δe

j − t, 0}+ ul
jmax{t− pltj − δl

j, 0})

+w4(v
l
jmax{t− ultj, 0}). (5.8)
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5.2.4 Assumptions

The decision variables in our model are the landing time variables LTj for j =

1, . . . , n. We assume that any selection of landing times that is chosen to satisfy

(5.1) and (5.2) define a feasible solution.

One aspect of feasibility that we do not consider is runway occupancy by a land-

ing aircraft. Suppose that the aircraft landing immediately before (j, c) is (i, b).

According to constraint (5.2), aircraft (j, c) could land as early as LTib + sbc. Our

model assumes that aircraft (i, b) has left the runway by this time. Thus, we do

not model the blocking of the runway by any aircraft that has already landed or

by any aircraft that is taxiing.

Another operational issue that does not appear in our model concerns the ma-

noeuvres required by aircraft to achieve those landing times that correspond to

the values of the decision variables. We aim to avoid the need for excessive rese-

quencing of aircraft by imposing constraint set (5.1). On this basis, our assumption

is that ATCs can achieve the desired landing times by using relevant techniques

(as pointed out in 3.1.7), vectoring, detour and shortcut are used by ATCs to

position aircraft according to the desired landing sequence).

5.2.5 The dynamic problem

The above formulation holds for the static problem with n chosen as the total

number of aircraft, and for the dynamic problem with n chosen as the subset of

aircraft available to the ATC for scheduling at a particular time. In the dynamic

aircraft landing problem, aircraft are scheduled for landing using a rolling horizon

approach. This means that every τ units of time, for some suitable chosen time

interval τ , the previously created (provisional) schedule is updated to include new

aircraft entering the system by appearing on the ATC’s radar screen, and aircraft

at the beginning of the schedule that land and therefore leave the system. Some

aircraft that are sufficiently close to the start of the schedule cannot be rescheduled

for safety reasons. Further, the likelihood of an aircraft being rescheduled reduces

as it gets closer to landing. This is because any new aircraft entering the system

are too far away to have a significant influence on their landing times.



56 Chapter 5 Aircraft Landing Problem

We refer to τ as the update time. Typically, τ may be approximately five minutes.

Too small a value of τ would result in too frequent updates to the schedule, possibly

with only one or two additional aircraft in the system. On the other hand, if τ

is too large, some of the opportunities for manoeuvres to create better landing

schedules may be lost. We investigate different values of τ in our computational

experiments.

5.3 Algorithms for static problem

5.3.1 Mixed Integer Programming Model

The mixed-integer programming (MIP) model has been presented in this section

which is based on the MIP model introduced by Beasley et al. (2000). Since the

problem is NP-hard solving instances of practical size is time-consuming. Pro-

posed MIP model has two decision variables. Decision variable LTj describes the

scheduled landing time of aircraft j. Decision variable xij is defined to be 1 if

aircraft i lands (not necessarily immediately) before aircraft j, and 0 otherwise.

Moreover, parameter pij is denoted to be 1 if aircraft i must land (not necessarily

immediately) before aircraft j, and 0 otherwise. M is also a big enough positive

number. The MIP model is given as follow.

Minimize w1LTmax + w2

n∑
j=1

LTj/n + w3TW + w4EF. (5.9)

subject to

xij + xji = 1 ∀i, j ∈ A, i 6= j. (5.10)

LTi,b + sbc ≤ LTj,c + M(1− xij) ∀i, j ∈ A i 6= j b, c ∈ C (5.11)

eltj ≤ LTj ≤ lltj ∀j ∈ A (5.12)
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ultj − tsj ≤ LTj ≤ ultj + tsj ∀j ∈ A (5.13)

LTipij < LTj ∀i, j ∈ A, i 6= j (5.14)

xij ∈ {0, 1} ∀i, j ∈ A (5.15)

LTj ≥ 0 ∀j ∈ A. (5.16)

In this proposed MIP model, there are n2 +n decision variables and 3n2 +2n prob-

lem constraints, where n denotes the number of aircraft. If precedence constraints

are not considered, the number of constraints reduce to 2n2 + 3n.

The objective function (5.9) is to minimize the sum of weighted multi-objective

including landing time of the last aircraft, average landing time (5.3), violation of

time window (delay) (5.5) and extra fuel burn associated to earliness and lateness

(5.6). Moreover, weights associated to each objective are

0 ≤ wk ≤ 1 and
4∑

k=1

wk = 1. (5.17)

Constraint (5.10) specifies that the runway can be used by at most one aircraft

at a time, so either aircraft i lands before j or vice versa. Minimum separation

distance between landing aircraft is defined in constraint (5.11) to avoid turbu-

lence caused by preceding aircraft. Earliest/latest landing time window and time

shifting window are presented by constraints (5.12) and (5.13), respectively. It

has to be mentioned that a time slot (time window) assigned to each landing

aircraft which typically starts 5 minutes before pltj and ends 10 minutes after

pltj does not necessarily coincide with the earliest/latest landing time window.

Constraint (5.14) is the precedence constraint which shows airlines or controllers

preferences on aircraft landing order. Constraints (5.15) and (5.16) guarantee that

the xij are binary and landing time remains positive.
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5.3.2 FCFS

In FCFS, the aircraft are sequenced in non-decreasing order of their unconstrained

landing times. Thus, the landing sequence σ is chosen so that ultσ(1) ≤ · · · ≤
ultσ(n). The landing sequence effectively defines precedences between aircraft that

land in succession. Thus, the actual (smallest) landing times are determined by

applying constraints (5.1) and (5.2) in a straightforward way.

5.3.3 Dynamic programming

Brentnall (2006) provides several DP algorithms for sequencing of aircraft landings.

He shows that the LTmax of the landing sequence can be optimized if aircraft of the

same weight class ordered by unconstrained landing time. Moreover, he shows that

an optimal landing sequence for the total lateness can be obtained if ultj = pltj

and aircraft of the same weight class is ordered by unconstrained landing time. As

mentioned in Section 2.2.2, the main drawback of classical DP is that the number

of states often grows exponentially by increasing the number of aircraft in ALP

because of the curse of dimensionality.

Our dynamic programming algorithm assumes that, within each weight class, the

aircraft are ordered in non-decreasing order of their unconstrained landing times.

We index the aircraft accordingly, so that ult1,c ≤ · · · ≤ ultnc,c, for c = 1, . . . , C.

Our dynamic programming algorithm merges the C streams of pre-ordered aircraft

(1, c), . . . , (nc, c) for c = 1, . . . , C. This DP approach does not necessarily reach

the optimal solution since our objective function and operational constraints are

not the same as problems considered by Brentnall (2006).

The dynamic program has state variables (m1, . . . ,mC , c, t). This state corre-

sponds to a landing schedule of aircraft (1, b), . . . , (mb, b) for b = 1, . . . , C, where

1 ≤ mb ≤ nb, with t representing the scheduled landing time of aircraft (mc, c)

which has the last of the scheduled landing times. Let f(m1, . . . ,mC , c, t) de-

note the minimum total cost among partial landing schedules corresponding to

state (m1, . . . ,mC , c, t). It has to be mentioned that state variable t has not been

considered in the DP method proposed by Brentnall (2006).
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Algorithm DP

Initialization

Set k = 1, and

f(1, . . . , 0, 1, e(1,1)) = g(1,1),e(1,1)

...

f(0, . . . , 1, C, e(1,C)) = g(1,C),e(1,C)

where the function g is defined in equation (5.8).

Next Stage Generation

For each state (m1, . . . ,mC , c, t) such that
∑C

b=1 mb = k and each b such that

mb < nb, generate the new state (m1, . . . ,mb−1, mb + 1, mb+1, . . . ,mC , b, t′), where

t′ = max{e(mb+1,b), t+scb}), together with its associated value f(m1, . . . ,mC , c, t)+

g((mb + 1, b), t′), where g((mb + 1, b), t′) is computed from equation (5.8).

Next Stage Elimination

If any state (m′
1, . . . ,m

′
C , b, t′) is created more than once in the Next Stage Gen-

eration Step, select the one with the smallest value associated to V and set

f(m′
1, . . . ,m

′
C , b, t′) = V . If k <

∑C
b=1 nb, then set k = k + 1 and return to

the Next Stage Generation step.

Select Solution

Among all states (n1, . . . , nC , b, t′) for b = 1, . . . , C and all t′, select the one with

the smallest value of w1t
′ + g(nb,b),t′ .

If the landing time of the last aircraft has many potential values in the partial

schedules, then the Next Stage Elimination may not remove many states, and
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consequently the dynamic programming algorithm has a similar performance to

that of using complete enumeration to find an optimal merging.

5.3.4 Iterated descent

We first describe a descent algorithm that provides the basic building block for our

iterated descent method. Solutions are represented as a landing sequences of air-

craft. Thus, each solution is defined by some aircraft sequence σ = (σ(1), . . . , σ(n)).

We use a combined insert, swap and 2-insert neighbourhood. Soomer (2009) also

introduces a local search heuristic approach using insert and swap neighbourhoods

to maximize the fairness in the aircraft landing problem. The insert neighbour-

hood comprises all sequences that can be obtained from the current sequence by

removing an aircraft from its current position and inserting it into a new position

in the sequence. Thus, for 1 ≤ h < i < j ≤ n, two insert neighbours of σ are

(σ(1), . . . , σ(h), σ(i), σ(h + 1), . . . , σ(i− 1), σ(i + 1), . . . , σ(n))

(σ(1), . . . , σ(i− 1), σ(i + 1), . . . , σ(j), σ(i), σ(j + 1), . . . , σ(n)).

Further, the swap neighbourhood comprises all sequences resulting from the inter-

change of two aircraft, so for 1 ≤ i < j ≤ n a swap neighbour of σ is

(σ(1), . . . , σ(i− 1), σ(j), σ(i + 1), . . . , σ(j − 1), σ(i), σ(j + 1), . . . , σ(n)).

The 2-insert neighbourhood comprises all sequences that can be obtained by re-

moving two adjacent aircraft having the same weight class and inserting them into

a new position in the sequence. Our motivation for this move type arises from

the potential benefit of batching aircraft from the same weight class in terms of

separation times. Note that these neighbourhoods can create solutions that can-

not be formed by a merging of streams of aircraft as in our dynamic programming

algorithm.

The descent algorithm uses the FCFS sequence as the initial solution and selects

to a new solution using a best improve strategy when searching the combined in-

sert, swap and 2-insert neighbourhoods. Specifically, each iteration of the search
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generates all landing sequences that are neighbours of the current sequence, from

which the corresponding (smallest) landing times are computed using (5.1) and

(5.2). Any sequence that does not produce feasible landing times is not consid-

ered further, whereas other sequences with feasible landing times are evaluated

using equation (5.7). The best neighbour is then selected. If it improves on the

current solution, this best neighbour replaces the current solution and the search

to improve the new current solution continues. If the best neighbour does not im-

prove on the current solution, then the descent algorithm terminates with a local

optimum.

Iterated descent prevents the descent algorithm from terminating at the first local

optimum by applying a ‘kick’ to the locally optimal solution to create a new

starting solution. Descent is then applied to this new solution, and the process

repeats for a specified number of iterations. Our kick corresponds to k randomly

generated insert moves, where any such moves that cause infeasibility due to the

maximum time shift constraints are rejected and consequently replaced by other

random insert moves. We investigate different values of k in our computational

experiments.

5.3.5 Simulated annealing

Simulated annealing is one of a number of local search techniques that can escape

from local optima through accepting non-improving moves. In brief, the search

randomly selects a neighbour, evaluates it with respect to the objective function,

if it is an improving move it is automatically accepted, otherwise it is accepted

with a certain probability. A temperature parameter controls this probability,

which dynamically changes through the search. The initial temperature is set

so the probability of accepting non-improving moves is high, and as the search

progresses the probability reduces. This is called the cooling schedule. Some

researchers have investigated non-monotonic changes in temperature.

Fahle et al. (2003) propose a simulated annealing approach for ALP using a simple

geometric cooling schedule. They implemented insert and swap neighbourhood

search in their SA algorithm. Our implementation of simulated annealing follows
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the approach proposed by Crauwels et al. (1997) for scheduling families of jobs on

a single machine, where a set-up time is required when the machine switches from

processing a job in one family to a job in another family. There are some parallels

with our problem, where aircraft are in families of classes and, usually, switching

classes incurs a greater separation than landing consecutive aircraft from the same

class. We use the same three neighbourhoods as in our iterated descent approach;

insert, 2-insert and swap.

Neighbours producing the same or a better objective function values than the

current solution are accepted. Neighbours producing a worse objective function

value are accepted with probability e−∆/t, where ∆ is the amount by which the

objective function increases and t is the temperature. We follow the scheme of

Crauwels et al. (1997) in which the values of the temperature are periodic, rather

than the usual scheme of starting with a high temperature which is gradually

decreased during the course of the algorithm.

5.4 Algorithms for dynamic problem

As explained in Section 5.2.5, the dynamic problem is based on solving a static

problem every τ time units, where τ is the update time. The aircraft that are

available to the static scheduling algorithm depend on two parameters in addition

to τ . First, we consider the time horizon T over which the static problem is solved.

Thus, at the update time, any aircraft that are within time T of the runway are

assumed to be known to the ATC and are therefore included, but those aircraft

with unconstrained landing times that are more than T time units into the future

are excluded. Second, we assume that there is a freeze time t that defines the

period of time for which the previously created schedule cannot be altered. As

a consequence, any aircraft that is currently scheduled to land within the next t

time units cannot be rescheduled. Note that the freeze time must exceed a certain

minimum level to avoid potentially dangerous manoeuvres of aircraft that are close

to the runway. Also, the time horizon T is selected to include all aircraft whose

appearance times would reasonably be expected to be known to the ATC.
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An interesting observation is that the length of the time period T − t is our main

concern, rather than the specific values of t and T . Assuming that the system is

empty at the start of the dynamic scheduling solution approach, then the solution

provided by T = 30 and t = 10 resulting in a 20 minute scheduling window, would

be the same as that for T = 35 and t = 15 under the same update time. Hence,

we can set the length of the time window to be T ′ = T − t with T ′ chosen such

that knowledge of aircraft that are separated by more than T − t time units does

not significantly improve the quality of the landing schedule that is generated.

5.5 Computational experiment

5.5.1 Test data

Our computational tests use two types of data sets. The first includes all landings

at Heathrow Airport, UK, over a ten day period during June 2009. The sec-

ond comprises data that are randomly generated in such a way to exhibit similar

characteristics of traffic volume to the Heathrow data, and cover a 40-day period.

The Heathrow data are the property of NATS (National Air Traffic Services) Ltd

(NATS, 2011) and subject to a non-disclosure agreement, hence motivating the

generation of artificial data that can be made available to other researchers.

There are two parallel runways available for use at Heathrow airport. As the

airport is situated close to residential areas, two runways generally operate in

segregated mode; one for landing and one for take-off. Occasionally, landings

are allowed on the nominated take-off runway to reduce delays and taxi times.

Arriving aircraft approach from the east to west (westerly operation) unless the

wind comes from the east in which case the landing direction is reversed so that

aircraft land into the wind for safety reasons. During busy periods, controllers

normally direct arriving aircraft to the top of one of four holding stacks. As

aircraft reach the lowest level in their stack, controllers vector the aircraft onto

the final approach and move higher aircraft down. Finally, they are merged into

a single arrival stream of traffic for landing (Heathrow, 2012).
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For the Heathrow data set, we extract the following information for each aircraft

j to form the input for our scheduling algorithms: actual landing time, landing

runway, weight class of aircraft (cj) based on the UK’s wake vortex group classi-

fication, date, time that the aircraft crosses a cordon 40nm from the airport, and

unconstrained landing time (ultj). The Arrival Manager (AMAN) tool estimates

the unconstrained landing time of each aircraft and suggests the landing sequence

to minimize the wake vortex separation. The UK has increased the original Inter-

national Civil Aviation Organization’s three wake turbulence separation groups to

five, in decreasing order of weight these are Heavy (H), Upper medium (U), Lower

medium (M), Small (S) and Light (L). The unconstrained landing time is calcu-

lated from the 40nm cordon crossing and provides the initial landing sequence for

FCFS sequence. The crossing time of the 40nm cordon is the appearance time that

defines when the flight becomes available to the controllers for scheduling. We use

the landing runway data to identify and remove flights that do not land on the

primary landing runway. Removing these data should not affect separation times

for landing the other flights in the data set (although there may be implications

on ATC workload but this is not considered in our model).

In addition to providing test instances for our algorithms, the Heathrow data are

used to estimate the separation time matrix (sbc) and to determine for each aircraft

j its maximum time shift (tsj). Note that air traffic controllers are required to

observe standard separation distances rather than times, and therefore the time

between landings of aircraft is dependent on their approach speed.

In order to estimate separation times, we first extract the times between actual

landings of consecutive flights. However, not all landings are queued and conse-

quently some separations may have greater than the minimum required. Hence,

we remove any separation times that are greater than 1.2 times the standard sep-

aration distances divided by the estimated speed of aircraft immediately prior to

landing at Heathrow. The remaining data are averaged by wake vortex leader/-

follower categories. Unfortunately, these data cannot be used directly because

some categories have insufficient observations. Instead, we determine the airspeed

that, when multiplied by the standard separation distances, gives the lowest mean

square error from the separation times extracted from the Heathrow data set across
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all wake vortex categories. The separation times in Table 5.1 arise from a landing

airspeed of 149 nm per hour, which gives a mean squared error of 43.9.

Table 5.1: Separation times (seconds) based on an airspeed of 149 nm per
hour

Follower
H U M S L

H 97 121 121 145 169
U 72 72 97 97 145

Leader M 72 72 72 72 121
S 72 72 72 72 97
L 72 72 72 72 72

Section 5.2.1 details the rationale for the maximum time shift, tsj. Here, we

define a common maximum time shift that applies to all aircraft. Analysis of

the frequency of time shifts in the Heathrow data, after removing flights that land

before their unconstrained landing time, show that 95% of the time shifts LTj−ultj

lie in the range 0-870 seconds after the unconstrained landing time. On this basis,

we set tsj = 870 seconds for all aircraft j. Since we do not have the necessary

information to determine a meaningful preferred landing time, we assume that it

is equal to the unconstrained landing time and therefore set pltj = ultj for all

aircraft j.

5.5.2 Random test data

In order to generate the random test instances, we design a model that mimics the

pattern of changes in traffic volume across the day and allows us to set different

traffic intensities. As a result, we can evaluate the performance of the algorithms

over a variety of problem instances. Each problem instance covers a one-day

period. The appearance of the first aircraft is after 3am and the last aircraft

before 10pm. Each day is divided into three periods: Morning (3am-6am), Day

(6am-8pm) and Night (8pm-10pm). Fewer aircraft arrive during the Morning and

Night periods. We further divide the Day period into Normal and Busy hours,

where Busy hours are 6-8am, 11am-1pm and 4-7pm and the remaining hours are

Normal. Table 5.2 details the average number of aircraft µ per hour and the

standard deviation σ, for each time period and each traffic intensity, where Set1
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represents the lowest intensity and Set4 the highest. Ten instances are generated

for each traffic intensity level, giving forty random test instances in total.

In addition to the number of flights, we also need a mechanism to generate for

each aircraft j its weight class, appearance time (apj) and approach direction

of the flight. For any time period t, probabilities pt(c) and qt(d) for the weight

class c ∈ {H,U,M,S,L} and approach direction d ∈ {1, . . . , 10} of an aircraft are

derived from the 10-day Heathrow data, where d is the number of the dodecant

corresponding to the position the aircraft crosses a cordon 40nm from the airport

(only 10 of the 12 dodecants are used for approaches). Also, a negative exponential

distribution provides a good fit for the inter-arrival time of flight appearance in

the Heathrow data set.

Table 5.2: Means and standard deviations of hourly aircraft arrivals

Morning Day Night

3-4am 4-5am 5-6am Normal Busy 8-9pm 9-10pm

Set1
µ 5 15 30 37 39 30 10

σ 0.5 0.5 1.0 1.5 1.5 1.0 0.5

Set2
µ 5 15 30 38 41 30 10

σ 0.5 0.5 1.0 1.5 1.5 1.0 0.5

Set3
µ 5 15 30 39 43 30 10

σ 0.5 0.5 1.0 1.5 1.5 1.0 0.5

Set4
µ 5 15 30 40 45 30 10

σ 0.5 0.5 1.0 1.5 1.5 1.0 0.5

Algorithm 1 details the procedure for generating the test data. In brief, for each

hour we generate the number of flights using the normal distribution N(µ, σ2)

based the means and standard deviations in Table 5.2. Then we generate the

inter-arrival times between the flights using the negative exponential distribution.

These times are scaled to ensure the arrivals exactly span the entire hour (with

one aircraft appearing on the hour). The arrival times of the aircraft correspond

directly to these values. The algorithm then computes further parameters for

each aircraft j as follows. The weight class and approach direction are generated

according to their respective probability distributions. Given d and the runway for

landing, the remaining duration of the flight rdfd, assuming an unimpeded passage

to the runway, is estimated from the Heathrow data. Hence, we can calculate ultj

for each aircraft j. Finally, the latest landing time lltj is found by randomly
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choosing a time gap of 1800, 2700 or 3600 seconds with probability 0.3, 0.5 and

0.2, respectively, and and adding it to the appearance time apj. Note that the size

of all gaps exceeds the maximum time shift and therefore latest landing times are

effectively redundant when a maximum time shift constraint is imposed.

Daily Traffic Sample Generator

Execute the following steps for each hour h = 1, . . . , 19 of the day, where the hours

correspond to the time periods 3-4am,. . . ,9-10pm. Select the intensity Set1, Set2,

Set3 or Set4 to be used, and set t to be one of the seven time periods according to

the hour h and the columns of Table 5.2.

Generate Appearance Times

Generate the number of the aircraft nh that appear during hour h from the normal

distribution N(µ, σ2), where µ and σ are given in Table 5.2.

Generate the gaps in seconds between aircraft appearances as follows.

A sample of unscaled inter-arrival times gj in seconds for j = 1, . . . , nh for hour h

from an exponential distribution with mean 3600/nh is generated.

Compute corresponding scaled inter-arrival times ḡj = 3600tj/
∑nh

i=1 gi for j =

1, . . . , nh.

Assign the appearance times using apj =
∑j

i=1 ḡi for j = 1, . . . , nh.

Generate Data for Each Aircraft

Execute the following statements for each aircraft j, for j = 1, . . . , nh, that has an

appearance time in hour h.

Generate a random number and use the the probabilities pt(c) for c ∈ {H,U,M,S,L}
to assign aircraft j a weight class.

Generate a random number and use the the probabilities qt(d) for d ∈ {1,. . . ,10}
to assign aircraft j an approach direction (dodecant).

Generate a random number and set lj = apj + 1800, lj = apj + 2700 and lj =

apj + 3600 with probabilities 0.3, 0.5 and 0.2, respectively.
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Set ultj = apj + rfdd, pltj = ultj, δe
j = 300, δl

j = 600 and tsj = 870.

The Generator does not guarantee that the resulting data set has a feasible sched-

ule. Hence we check feasibility using dynamic programming and discard any set for

which a feasible solution is not found. The preferred landing time and maximum

time shift are assigned in the same way as for the Heathrow data.

5.5.3 Experimental design

All algorithms were coded in MS Visual C++ 2008 and run on a PC with a dual

core, 2.13GHz and 2GB RAM. We refer to the first-come first-served, dynamic

programming, iterated descent and simulated annealing algorithms as FCFS, Al-

gorithm DP, Algorithm ID and Algorithm SA, respectively. For the static problem,

we select three half-hour periods, three one-hour periods and one two-hour period

to schedule aircraft from the 10-day Heathrow data set. These focus on time peri-

ods between 7-8am, and 5-7pm, when demand for landing is particularly high. In

the case of Algorithm ID and Algorithm SA where there is a stochastic element

to the search procedure, the algorithm is run n/5 times with different random

number streams, where n is the number of flights, and the average performance is

reported. For the dynamic problem, each instance corresponds to the data for one

day for both the Heathrow and random data sets. Each algorithm are run once

for each instance.

Both Algorithm ID and Algorithm SA require an initial solution and a termination

condition. The FCFS sequence provides the initial solution for iterated descent

and simulated annealing applied to the static problem. For the dynamic problem,

flights do not always appear in FCFS order. Nevertheless, the initial sequence

when applying iterated descent at an update is obtained by adding the newly

available flights in FCFS order to the end of the previous schedule. For the static

case, Algorithm ID uses a kick size of five random moves as is common within the

literature, and terminates after fifty local optima are found, and Algorithm SA

terminates once it has performed n/2 levels, where a maximum of n neighbours
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Figure 5.1: Average PI of Algorithm BS relative to k = 2 and CT = 1,
Heathrow data, dynamic environment: Weights (0.3, 0.5, 0.1, 0.1)

are searched at each level. Moreover, initial experiments with Algorithm ID show

that these parameters are appropriate choices for the static case.

In the dynamic case, the termination condition for each update is set to three

seconds because returning a solution in a fast time is critical. Further, initial

experiments with Algorithm ID show that a kick size of six is an appropriate

choice. Figures 5.1 and 5.2 show the PI of Algorithm DP for objective weights

(0.3, 0.5, 0.1, 0.1) for different combinations of number of kicks and termination

conditions using Heathrow data and random data, respectively. These results are

based on three replications.

For the dynamic problem, the previous schedule is updated every τ time units. We

investigate the influence of τ by considering values τ = 2.5, 5.0, 7.5, 10 minutes.

Scheduling starts after the freeze time that occupies the first t units of the schedul-

ing period and considers those aircraft with unconstrained landing times that are

no more than T time units into the future. As pointed out in Section 5.4, our

interest is in the value of the parameter T ′ = T − t that defines the length of the

active time window. We investigate T ′ = 10, 15, . . . , 40 minutes. For the Heathrow
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Figure 5.2: Average PI of Algorithm BS relative to k = 2 and CT = 1, random
data, dynamic environment: Weights (0.3, 0.5, 0.1, 0.1)

data, appearance time is between 13 to 20 minutes before unconstrained landing

time depending on the approach route. In order to study longer time windows, we

subtract a constant from the appearance times.

Our experiments investigate several sets of weight vectors (w1, w2, w3, w4) for the

objective function defined in equation (5.7) of Section 5.2.3. When investigating

throughput, we use the objective function defined in equation (5.4) and also the

single objective function LTmax . For the full multi-criteria objective function

(5.7), there are penalties for time window violations and for the use of extra fuel

if the unconstrained landing time is not achieved. Table 5.3 lists the unit penalty

values for each weight class. In (5.5), for each aircraft j we set δl
j = 600, where δl

j

is expressed in seconds.

Specifically, our first weight vector is (0.3, 0.5, 0.1, 0.1), which reflects the through-

put considerations of ATCs with some consideration of time-window violations

and extra fuel cost. The second set is (0.2, 0.4, 0.3, 0.1), which gives more empha-

sis to time-window violations. Note that delays relative to the time windows and

extra fuel costs are non conflicting. We also consider two objectives that measure
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Table 5.3: Weights for time window violation and extra fuel

Weight class of j H U M S L

ul
j 20 17 15 12 10

vl
j 15 13 12 10 8

ue
j 10 8 7 5 4

throughput. The first of these is given by the weight vector (0.4, 0.6, 0.0, 0.0) so

that both LTmax and ALT are considered, while the second considers only LTmax

by selecting the weight vector as (1.0, 0.0, 0.0, 0.0). It is worth noting that ATCs

typically prioritize throughput, and in particular LTmax, when deciding upon the

landing order of aircraft. Hence, a throughput objective function is regarded as

providing the best basis to compare our schedules against those designed by the

controller. Although LTmax provides the most natural measure of throughput, this

objective only uses the landing time of the last aircraft and has the disadvantage

of ignoring other landing times.

Our comparison of algorithms is based on the following performance statistics:

PI: percentage improvement in the solution objective function relative to the ini-

tial sequence (off-line problem) or to a specific sequence (on-line problem);

TD: total deviation of the positions in the solution landing sequence relative to

FCFS;

ND: number of aircraft with changed positions in the solution landing sequence

from FCFS;

SEP: sum of the standard minimum separation times in seconds between aircraft

implied by the solution sequence;

CT: computation time in seconds for scheduling a given set of aircraft (off-line

problem) or the available aircraft in the time horizon (on-line problem).

Max CT: maximum computation time in seconds for scheduling the available

aircraft in the time horizon (on-line problem).

As well as the overall weighted objective function, we also give values of PI rel-

ative to the individual components LTmax, ALT, TW and EF, where the latter
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three are defined in equations (5.3), (5.5) and (5.6), respectively. The results for

the Heathrow data also include those for ATC, which are the actual the actual

landing schedules obtained through decisions by air traffic controllers. TD and

ND quantify deviations from the FCFS landing sequence, providing a measure

of the amount of intervention necessary to achieve the landing schedule. SEP

can be viewed as a measure of the amount of batching used to reduce separation

times. Intuitively, reducing separation times is aligned with maximizing through-

put; hence ATCs implicitly use batching as a heuristic decision tool for increasing

throughput.

5.5.4 Results

The tables that follow detail the average performance of the schedules arising

from each of the approaches described in the earlier sections, where the objective

function is defined by (5.7) for various choices of weights and the time window

constraints (5.1) and separation constraints (5.2) are imposed. Results tables

for the Heathrow data include the actual landing times resulting from the ATC’s

scheduling. As discussed previously, the ATC does not work to optimize our multi-

objective function, and the data and constraints do not perfectly mirror the task

that the ATC performs. Moreover, the minimum standard separations are cur-

rently based on distance (radar separation), which have been converted into time

separations when used within our algorithms. Results of the algorithms have been

verified to make sure that the models meet the requirements and specifications of

the problem and they perform as expected.

Tables 5.4, 5.5, 5.6 and 5.7 list average results for the Heathrow data used in

a static environment, where each table corresponds to an alternative objective

function. The first and second columns in each table give the durations in minutes

of the time windows that define the aircraft to be scheduled and the average

numbers of aircraft in the data set. The third column contains row headings for

the objective function criteria. Hence, for each data set, the first row gives results

for the main objective used by all of the approaches and the following rows break

down the objective function into its component criteria. For some entries in the
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Table 5.4: Heathrow data, static environment: Weights (0.3, 0.5, 0.1, 0.1)

ATC Algorithm DP Algorithm ID Algorithm SA
T n Obj. PI TD ND PI TD ND CT PI TD ND CT PI TD ND CT

30 21

Overall −3.05

15 10

1.47

15 8 0.16

1.47

18 9 0.09

1.47

15 8 0.07
LTmax −0.09 0.07 0.07 0.07
ALT −0.02 0.07 0.07 0.07
TW −22.78 2.65 2.65 2.65
EF −7.83 8.36 8.36 8.36

60 42

Overall −7.60

36 22

4.41

35 16 0.56

4.39

45 22 0.39

4.41

31 16 0.52
LTmax −0.36 0.19 0.19 0.19
ALT −0.13 0.12 0.12 0.12
TW −87.99 16.16 16.16 16.16
EF −16.25 10.50 10.50 10.50

120 84

Overall −9.27

72 47

7.08

74 30 7.73

7.08

90 36 2.36

7.05

84 36 8.94
LTmax −0.00 0.00 0.00 0.00
ALT −0.10 0.09 0.09 0.08
TW N/A 0.00 0.00 0.00
EF −29.60 24.27 24.27 23.65

TW row, a value of PI is not available (N/A) because the value of TW is zero for

the initial FCFS sequence but positive for the algorithm under consideration.

The complete results for the Heathrow data used in static environment are pre-

sented in Tables A.1, A.2, A.3, and A.4 in Appendix A. Detailed results of the

ATC performance are not included in these tables because of the confidentiality

agreement between the NATS and research participants.

Tables 5.4 and 5.5 show an improvement in the main objective relative to the

initial FCFS schedule across all approaches. The ATC schedule does not show an

improvement, but this is largely due to the TW and EF cost elements. This is

expected since there is no attempt by the ATC to reduce lateness or the cost of

fuel. However, there is some degradation in LTmax and ALT, which is explored in

more detail below in the discussion for dynamic environment. When considering

the break-down of criteria, the improvement for LTmax and ALT is modest; it is

clear that our approaches are producing similar throughput but with reduced cost

associated with time window violations and extra fuel. The results in Table 5.5

put greater emphasis on time window violations, but this has only a small impact

on the results. A much greater weight on TW may improve this criterion, but

could potentially cause a poorer performance for throughput. Tables 5.6 and 5.7
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Table 5.5: Heathrow data, static environment: Weights (0.2, 0.4, 0.3, 0.1)

ATC Algorithm DP Algorithm ID Algorithm SA
T n Obj. PI TD ND PI TD ND CT PI TD ND CT PI TD ND CT

30 21

Overall −2.29

15 10

1.83

15 8 0.25

1.83

21 11 0.09

1.83

13 7 0.05
LTmax −0.09 0.07 0.07 0.07
ALT −0.02 0.07 0.07 0.07
TW −22.78 2.65 2.65 2.65
EF −7.83 8.36 8.36 8.36

60 42

Overall −14.20

36 22

6.30

35 16 0.71

6.30

42 20 0.51

6.30

30 15 0.52
LTmax -0.36 0.19 0.19 0.19
ALT −0.13 0.12 0.12 0.12
TW −87.99 16.16 16.16 16.16
EF −16.25 10.50 10.50 10.50

120 84

Overall −12.36

72 47

8.56

82 33 7.74

8.56

98 41 2.48

8.51

106 39 7.28
LTmax 0.00 0.00 0.00 0.00
ALT −0.10 0.09 0.08 0.09
TW N/A 0.00 0.00 0.00
EF −29.60 23.66 23.66 23.52

Table 5.6: Heathrow data, static environment: Weights (0.4, 0.6, 0.0, 0.0)

ATC Algorithm DP Algorithm ID Algorithm SA
T n Obj. PI TD ND PI TD ND CT PI TD ND CT PI TD ND CT

30 21
Overall −0.05

15 10
0.10

22 9 0.25
0.10

28 12 0.08
0.10

14 6 0.04LTmax −0.09 0.13 0.13 0.13
ALT −0.02 0.08 0.08 0.08

60 42
Overall −0.22

36 22
0.18

63 23 0.72
0.18

79 29 0.36
0.18

61 22 0.42LTmax −0.36 0.23 0.23 0.23
ALT −0.13 0.14 0.14 0.14

120 84
Overall −0.06

72 47
0.05

88 34 7.64
0.05

126 46 2.08
0.05

96 34 7.14LTmax 0.00 0.00 0.00 0.00
ALT −0.10 0.09 0.09 0.09

do not consider costs for time window violations or extra fuel in the objective

function.

Comparing across the different solution approaches, dynamic programming has the

longest and most variable computation times and iterated descent is the fastest and

most consistent. For these data instances, greater computational effort does not

lead to improved schedules, with all three methods having similar performance on

average across all objective functions. Nevertheless, the ability of iterated descent

to obtain competitive solutions with short run times provides a case for using it

in preference to dynamic programming or simulated annealing.



Chapter 5 Aircraft Landing Problem 75

Table 5.7: Heathrow data, static environment: Weights (1.0, 0.0, 0.0, 0.0)

ATC Algorithm DP Algorithm ID Algorithm SA
T n Obj. PI TD ND PI TD ND CT PI TD ND CT PI TD ND CT
30 21 LTmax −0.09 15 10 0.13 37 13 0.26 0.13 43 16 0.05 0.13 11 5 0.05

60 42 LTmax −0.36 36 22 0.23 88 31 0.73 0.23 45 16 0.25 0.23 27 9 0.47

120 84 LTmax 0.00 72 47 0.00 204 69 7.77 0.00 96 31 0.69 0.00 0 0 7.59

Table 5.8: MIP vs. Heuristic methods, Heathrow data, static environment:
Weights (0.3, 0.5, 0.1, 0.1)

Data
T n

MIP Algorithm DP Algorithm ID Algorithm SA
set PI CT Solution PI PI PI
S01 30 22 1.73 3600 Local 2.89 2.89 2.89

S02 30 21 1.10 3600 Local 1.20 1.20 1.20

S03 30 20 0.33 2 Global 0.33 0.33 0.33

S04 60 41 8.68 3600 Local 9.02 8.96 9.02

S05 30 42 2.78 3600 Local 3.51 3.51 3.51

S06 60 42 0.69 3600 Local 0.69 0.69 0.69

S07 120 84 5.16 3600 Local 7.08 7.08 7.05

One statistic of note is that all of our approaches are finding schedules of similar

performance but with varying deviations from the initial FCFS sequence as mea-

sured by TD and ND. This suggests that there are many local optima with similar

objective function values.

Table 5.8 presents performance of the MIP model, Algorithm DP, Algorithm ID

and Algorithm SA. The Xpress IVE (FICO, 2012) optimization package has been

used for solving the MIP model. The solver is stopped after 3600 seconds and the

best obtained solution has been reported. The global optimal solutions have not

been found for any problems instances other than data set S03. As higher values

of PI are more desirable, the best reported solution by the MIP model after one

hour computation time is not as good as other methods.

We now present our computational results for the dynamic environment. For

these experiments we retain iterated descent as the best performing approach

and dynamic programming as a benchmark, but remove simulated annealing from

consideration. Note that the reported results are based on schedules created for a

complete day.
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We design an initial set of experiments in order to test parameters using the

Heathrow data, and eight days of the random test data where two days are ran-

domly chosen for each of the four traffic intensity levels. We first experiment with

the update times τ = 2.5, 5.0, 7.5, 10.0 minutes, where dynamic programming is

applied to solve the resulting problem at each update and the objective function is

defined by the weights (0.3, 0.5, 0.1, 0.1). Table 5.9 lists average PI values relative

τ = 2.5 minutes, using t = 5 minutes and T = 30 minutes. It is clear from the

results that τ = 5 minutes provides the best strategy in terms of solution quality

and it has a lower computational requirement than the next best value of τ = 2.5

minutes.

Table 5.9: Influence of τ : Average PI relative to τ = 2.5 min

Update time τ (mins)

Dataset 5 7.5 10

10-day Heathrow 0.011 −0.029 −0.050

8-day random data 0.000 −0.052 −0.297

Table 5.10 and Figure 5.3 present our computational results for various active time

window lengths T ′ = 15, 20, 25, 30, 35, 40 minutes (in minutes), with τ = 5 minutes

and objective function weights (0.3, 0.5, 0.1, 0.1), using dynamic programming.

Table 5.10: Influence of T ′: Average PI relative to Active T ′ = 15 mins

Active scheduling window length T ′ (mins)

Dataset Measure 15 20 25 30 35 40

10-day Heathrow Ave. PI 0.743 0.931 0.999 1.022 0.983

Ave. CT 0.002 0.020 0.103 0.308 0.883 1.959

8-day random data Ave. PI 0.245 0.761 0.855 0.973 0.980

Ave. CT 0.002 0.012 0.052 0.157 0.380 0.831

The quality of schedules and the computation time increase as T ′ becomes larger.

However, the improvement in solution quality becomes less with each five minute

widening of T ′, whereas the computation time significantly increases. Hence, there

are rapidly diminishing returns after T = 25. These results confirm the intuitive

conclusion that the likelihood of new aircraft added to the end of the schedule

impacting the order of the aircraft at the beginning of the schedule reduces as the
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Figure 5.3: Influence of the T ′ relative to T ′ = 15mins

T ′ increases. As a result, we select T ′ = 25 minutes as the length of active time

window.

Tables 5.11 and 5.12 detail the full results for the dynamic problem with τ = 5,

T ′ = 25 using Algorithm ID with k = 6 and a computation time limit of 3 seconds

for each update and using Algorithm DP. The tables give average percentage

improvements with respect to the FCFS schedule. Note that we omit objective

function weights (1.0, 0.0, 0.0, 0.0), which reduces to the single objective LTmax,

because the landing time of the day’s last aircraft is not good enough in isolation.

Furthermore, it is likely that the position of the last aircraft in the partial sequence

changes in the next update. However, LTmax has not been considered as a single

objective function for the dynamic environment, it has been used as a part multi-

objective function for each time horizon.

The complete results for the Heathrow data used in dynamic case with respect to

objective function weights (0.3, 0.5, 0.1, 0.1), (0.2, 0.4, 0.3, 0.1) and (0.4, 0.6, 0.0, 0.0)

are shown in Tables A.5, A.6 and A.7 in in Appendix A. Detailed results of the

ATC performance are not included in these tables because of the confidentiality

agreement between the NATS and research participants.
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Table 5.11: Heathrow data, dynamic environment: Average PI relative to FCFS

FCFS ATC Algorithm DP Algorithm ID Algorithm SA
Weight Obj Sep. PI TD ND Sep PI TD ND CT Max CT Sep PI TD ND Sep PI TD ND

(0.3, 0.5, 0.1, 0.1)

Overall

54151

−51.61

569 302 53354

23.76

504 218 0.11 58.60 52838

23.60

523 222 52840

22.60

556 225
ALT −0.20 0.14 0.14 0.13
TW −3706.31 34.24 32.70 55.52
EF -52.01 29.46 29.33 27.92

(0.2, 0.4, 0.3, 0.1)

Overall

54151

−80.81

569 302 53354

26.32

486 216 0.10 52.90 52869

26.19

511 220 52871

25.22

534 219
ALT −0.20 0.13 0.13 0.13
TW −3706.31 72.17 70.04 77.47
EF −52.01 46.93 28.59 27.01

(0.4, 0.6, 0.0, 0.0)

Overall

54151

−0.10

569 302 53354

0.05

736 272 0.09 26.40 52944

0.07

721 266 52906

0.07

742 268
ALT −0.20 0.11 0.15 0.14
TW −3706.31 −538.30 −328.24 −377.82
EF −52.01 18.14 29.37 27.18

The complete results for the random data Set1 used in dynamic environment are

represented in Tables A.8, A.12 and A.16 in Appendix A. Moreover, Tables A.9,

A.13 and A.17 in Appendix A provide the complete results for the random data

Set2. The complete results for random data Set3 used in dynamic environment

are displayed in Tables A.10, A.14 and A.18 in Appendix A. Finally, Tables A.11,

A.15 and A.19 in Appendix A show the complete results for the random data Set4.

The results for the Heathrow data in Table 5.11 show that iterated descent and

dynamic programming provide schedules that improve over FCFS and ATC for all

objective function components. As with the static case, the ATC schedules appear

to be inferior to FCFS schedules. TW and EF play a major role in the reduction in

solution quality; neither of them are used by ATC in making scheduling decisions.

Our understanding is that ATC seek to maximize runway utilisation by reducing

separation times. This can be achieved locally by batching aircraft. Performance

measure SEP sums the minimum separation time between consecutive aircraft

given the landing sequence. Using this measure we can see that ATC are success-

fully reducing separation times over FCFS. Iterated descent and DP also improve

on FCFS and ATC by this measure. Table 5.12 shows a similar performance using

the randomly generated test data. For both the Heathrow and the random data,

Algorithm DP performs a little better than Algorithm ID with a lower deviation

from the initial FCFS sequence. However, DP has variable computation times
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Table 5.12: Random data, dynamic environment: Average PI relative to FCFS

Algorithm DP Algorithm ID Algorithm SA
Weight Obj PI TD ND CTMax CT PI TD ND PI TD ND

(0.3, 0.5, 0.1, 0.1)

Overall 26.53

527 266 0.11 68.70

26.50

572 277

25.48

556 265
ALT 0.20 0.20 0.19
TW 59.69 60.09 72.39
EF 29.09 29.04 27.66

(0.2, 0.4, 0.3, 0.1)

Overall 31.32

503 261 0.14 77.50

31.26

544 271

30.13

533 260
ALT 0.19 0.19 0.18
TW 78.81 78.66 80.27
EF 28.33 28.28 26.88

(0.4, 0.6, 0.0, 0.0)

Overall 0.10

754 320 0.11 71.60

0.10

798 326

0.09

807 323
ALT 0.21 0.21 0.20
TW −573.23 −747.66 −737.47
EF 29.24 29.13 27.35

that can sometimes be in excess of one minute, which makes it less attractive for

implementation.

5.6 Concluding Remarks

This chapter has introduced models and algorithms for the static/off-line aircraft

landing problem and the dynamic/on-line version of the problem. A special feature

of our model is the multi-objective approach that takes into account the agendas of

the various stakeholders that have an interest in the scheduling of landing aircraft.

Dynamic programming, iterated descent and simulated annealing algorithms are

proposed for the static problem. Also, using a rolling horizon approach, the dy-

namic problem is tackled periodically updating the previous schedule with an

iterated descent or dynamic programming solution approach. A thorough compu-

tational evaluation is performed using data from Heathrow airport and randomly

generated test data.

Results for the static problem show that all of the proposed algorithms are effective

in achieving an efficient runway throughput. In addition, algorithms are capable

of finding solutions that perform well in terms of minimizing delay and minimizing

the cost of extra fuel used to achieve the desired landing schedule. Iterated descent

has the advantage of being faster and having more predictable run times than
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the other approaches, and is therefore preferred to dynamic programming and

simulated annealing.

For the dynamic problem, the frequency of update time and the length of the time

window when aircraft are available for scheduling are investigated. A five minute

update time provides as good solutions as with a more frequent update, and has a

lower computational cost. A time window of twenty-five minutes for scheduling is

chosen. Wider time windows have diminishing returns and require much greater

computational effort. Our overall computational results show that iterated descent

and dynamic programming provide schedules that improve upon FCFS across all

objective function elements. However, iterated descent is preferred to dynamic

programming because of its more modest and predictable computational compu-

tational requirements.

The next chapter is dedicated to aircraft take-off problem. The impact of the

departure holding area on scheduling of aircraft take-off has been investigated.



Chapter 6

Aircraft Take-off Problem

This chapter describes the departure scheduling problem. The focus is on impact

of holding area on take-off scheduling. Our aim is to design algorithms to be able

to sequence the aircraft according to the layout of the departure holding area.

Aircraft take-off scheduling runs in under three seconds and preferably provide

solutions in under one second.

Problem has been briefly defined in Section 6.1. Calculated take-off time con-

straints, separation time constraints and layout constraints have been discussed in

Section 6.2. A description of the models and developed solution methods including

dynamic programming, descent local search and beam search have been explained

in Section 6.3. Section 6.4 provides the computational experiment. Finally, con-

cluding remarks have been given in Section 6.5.

6.1 Problem definition

The take-off scheduling problem is to find a sequence and corresponding scheduled

take-off times that optimizes the objective function subject to the operational

constraints. Generally, ground movement controllers are responsible for giving

clearance and guidance to the pilots for leaving the gate and the route for taxiing

to the runway. Then, the responsibility is passed to the take-off runway controller.

Therefore, the initial take-off sequence (or FCFS order) is generated by the ground

81
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movement controllers and it will be modified and finalized by the take-off runway

controller. In this chapter, sequencing and scheduling of departing flights from the

holding area are investigated.

Our study involves scheduling n aircraft for take-off on a single runway. The

arrival times of these aircraft into the holding area are given by at1, at2, . . . , atn,

where the indices are chosen in a way that at1 ≤ at2 ≤ · · · ≤ atn. Our aim is to

determine take-off times T1, . . . , Tn for these aircraft.

We consider a hierarchical objective function. Minimizing the maximum take-

off time (makespan or runway throughput), Tmax, where Tmax = maxj=1,...,n Tj is

regarded as being of primary importance by air traffic controllers, is considered as

the main objective function. Minimizing the total waiting time

TWT =
n∑

j=1

(Tj − atj), (6.1)

is chosen as the second objective, where the waiting time of an aircraft is defined

as the difference between its scheduled take-off time and its arrival time into the

holding area. The first objective aims to maximize the runway’s utilization. Fair-

ness among the departure flights, fuel burn, CO2 emission and delay are the main

concerns of the second objective function.

Planning the taxiing of departing aircraft to the runway so that these aircraft reach

the runway threshold in the right sequence and at the right time is unrealistic based

on the current level of technology. Therefore, aircraft have to wait frequently in the

holding area before departure. Depending on the layout of the holding area and

the number of entry points to the runway, it may be possible to re-sequence the

aircraft for take-off rather than using a First-Come First-Served (FCFS) sequence.

The aim is to study the impact of the runway holding area on the scheduling of

aircraft take-offs. So, three layouts of the departure holding area are considered.

Dynamic programming, descent local search and beam search methods for opti-

mizing take-off schedules, subject to timing, layout and separation constraints are

proposed. The performance of the proposed algorithms are evaluated by using

randomly generated test data.
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6.2 Constraints

6.2.1 CTOT constraints

Calculated Take-Off Time (CTOT) is an operational constraint which has to be

considered as a hard constraint and cannot be violated. The CTOT which is also

known as slot time for a flight is a period of time within which the flight is ex-

pected to get airborne. The CTOT is allocated by the Central Flow Management

Unit (CFMU) to protect congested air traffic control sectors so that traffic within

a sector does not reach unmanageable levels. If a slot is missed, a new slot by

CFMU has to be assigned which has a big influence on the flight delay. There-

fore, respecting the slot time is an important limiting factor for the airlines and

controllers.

The slot for aircraft j is defined as the interval [ctotj−δ1, ctotj+δ2], where typically

δ1 is set to be 5 minutes and δ2 is set to be 10 minutes in Europe, although not

all aircraft are constrained by such a slot. Thus, there is a constraint

ej ≤ Tj ≤ lj j = 1, . . . , n, (6.2)

where ej = max{ctoti − δ1, atj} is the earliest take-off time and lj = ctoti + δ2 is

the latest take-off time.

6.2.2 Separation time constraints

Another constraint which is imposed for safety reasons is the take-off separation

constraint. Wake vortex generated by departing flights poses a potential risk

to the following aircraft. Therefore, aircraft should maintain minimum standard

separation to avoid wake turbulence hazard. The minimum standard departure

separation time depends on the relative size of the consecutive aircraft, the stan-

dard instrument departure (SID) route, and the airspeed of the aircraft. A SID

defines an air route out of airport to facilitate transition between take-off and

en-route operations.
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Generally, if the following aircraft is in a lower airspeed class category than the

leading aircraft, two minutes separation is required; otherwise, a one-minute min-

imum separation is imposed. Moreover, the minimum separation increases by one

minute if two consecutive take-off flights use the same departure route group. In

addition, if two consecutive take-off flights are of different speed groups, then the

route-based separation needs to be modified. Therefore, separations are different

for the various combinations of departure flights. They are asymmetric and do

not necessarily satisfy the triangle inequality.

If aircraft i of weight class b departs before aircraft j of weight class c, then the

separation constraint is of the form

Ti + sbc + λij ≤ Tj, (6.3)

where

λij =

1 if i and j have the same SID route

0 otherwise.

assuming that aircraft j is not of a higher airspeed class than aircraft i. In general,

it is sufficient to ensure that separation constraints are satisfied between each group

of four consecutive departing aircraft.

6.2.3 Layout constraints

The layout and configuration of the holding area represents a major operational

constraint in the take-off sequencing problem. It is the main limiting factor for the

take-off runway controllers in changing the position of the aircraft in the sequence.

In this study, the impact of three main layouts of the departure holding area on

take-off scheduling (Figures 6.1, 6.2 and 6.3) is investigated. These layouts are the

most common configurations for the departure runway holding area. There are

similarities between departure holding area of runway 30 at Cardiff International

Airport (CWL), runway 24R at Los Angeles International Airport (LAX) and

runway 34L at Denver International Airport (DEN) and Layout A, Layout B and

Layout C, respectively.
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The departure holding area can be divided into two sections; one section is used

for holding and the other one is used for queueing. The holding section comprises

the waiting positions before the entrance to the runway represented by the letter

R and the positions in between shown by the letter M. It is assumed that aircraft

form a queue before entering to the holding section which we refer to it as the

queueing section. The holding positions are the focus of this research.

Figure 6.1: Holding area for Layout A

Figure 6.2: Holding area for Layout B

It is assumed that aircraft cannot overtake each other in the holding area. Addi-

tionally, it is assumed that heavy class aircraft must enter the runway using the

last entrance (R1).

Figure 6.3: Holding area for Layout C
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In Layout A as shown in Figure 6.1, there are three holding points, namely R1,

R2 and M1. However, Layout B in Figure 6.2 displays four holding points, R1, R2,

M1 and M2 and Layout C in Figure 6.3 displays five holding points, R1, R2, R3,

M1 and M2.

Each layout has some specific characteristics. There is a restriction on the number

of aircraft to move forward in the sequence with respect to the FCFS sequence

depending on the layout of the holding area. For Layout A, each aircraft can

move a maximum of two positions forward in the sequence relative to the FCFS

sequence, while for Layout B the limit for moving any aircraft forward in the

sequence is three positions and the limit for moving any aircraft forward in the

sequence is four positions in Layout C.

Furthermore, the layout of the holding area imposes restriction on the number

of aircraft which can be moved backward relative to the FCFS sequence. The

position of a batch of three or more consecutive aircraft in FCFS order cannot be

moved backward in Layout A. The limit for Layout B is a batch of four or more

aircraft and a batch of five and more aircraft is the limit for Layout C. The size

of such a batch depends on the number of holding points in holding section.

6.3 Algorithms

In this section, the FCFS, dynamic programming (DP), descent local search (DLS)

and beam search (BS) algorithms have been introduced for sequencing aircraft in

the departure holding area.

6.3.1 Feasibility check

One of the main challenges in designing the FCFS, DLS and BS algorithm is to test

if the developed sequence can be achieved based on the holding area configurations

(Atkin, 2008). It is computationally expensive to evaluate the feasibility of the

departure sequence without knowing the assigned entrance to the runway for each

aircraft. For this purpose a Feasibility Check (FC) algorithm has been developed.
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There are two initial tests carried out in the FC algorithm. The first phase of

the initial feasibility test can be performed based on the deviation of the sequence

from the original FCFS sequence. A positive deviation shows a moving forward

position and a negative deviation displays a moving backward position in the

sequence relative to the original FCFS sequence. It has to be mentioned that the

original FCFS sequence of a set of aircraft is formed by the non-decreasing order

of their arrival times to the holding area and it is not necessary feasible subject to

the CTOT constraint. Sequencing aircraft with FCFS method will be discussed

in Section 6.3.2. Based on the deviation of the sequence from the original FCFS

sequence, some feasibility rules have been derived for each layout.

For instance, in Layout A, Layout B and Layout C the maximum positive deviation

of each aircraft from FCFS cannot be more than 3, 4 and 5 positions, respectively.

Moreover, some consecutive order of the deviations have to be avoided. Table 6.1

displays forbidden deviation blocks for layout A, B and C. These forbidden order of

deviations relative to the FCFS sequence are derived by performing experimental

tests.

Table 6.1: Forbidden consecutive order of deviation from FCFS

Layout Forbidden consecutive order of deviation
A +2, 0, −2

B

+2, 0, −2
+3, 0, 0, −3

+2, 0, +1, −3
+3, +1, −1, −3
+3, +1, −2, −2

+3, +3, 0, −3, −3
+2, +2, 0, −1, −3

C
+4, 0, 0, 0, −4

+4, +1, 0, −1, +3, +1
+4, +4, +4, 0, −4, −4, −4

The second phase of the initial feasibility check is based on the entrance (positions

next to the runway ie. R1, R2 and R3) assignment. First, any entrance positions

other than R1 can be assigned to the aircraft with deviation more than +1. So

in all three layouts, aircraft with deviation more than +1 cannot be assigned

to position R1 (the last entrance). Moreover, it is infeasible to assign aircraft

with deviation more than +2 to position R2 (second entrance) in Layout C. First,
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entrances position should be assigned to aircraft with deviation more than +1

position. Then, the entrance positions will be assigned to the aircraft starting in

the first unpositioned aircraft in the sequence. If the sign of the deviation of the

aircraft is the same as the following aircraft in the sequence, the same entrance

position can be assigned, otherwise a different entrance should be assigned. If this

condition cannot be satisfied, the sequence is infeasible.

It has to be mentioned that satisfying the initial feasibility test is necessary but

not a sufficient condition for feasibility of the sequence. If the sequence can satisfy

the first and second phases of the initial feasibility check, the feasibility of the

sequence and assigned entrance positions are evaluated using a simulation based

procedure depending on the layout of the departure holding area.

6.3.2 FCFS

In FCFS method, the aircraft are sequenced in non-decreasing order of their arrival

times to the departure holding area. Therefore, the take-off sequence σ is chosen

so that atσ(1) ≤ · · · ≤ atσ(n). Moreover, take-off times are defined by applying

constraints (6.3) and (6.2). The FC algorithm is used to evaluate the feasibility of

the sequence. In the case of obtaining an infeasible sequence because of considering

the CTOT as hard constraints, the possibility of the modification of the sequence

for satisfying the feasibility conditions is investigated. The aim is to create a

feasible solution with the minimum deviation from the original FCFS sequence.

It has to be mentioned that only the last runway entrance is taken into account

for generating the FCFS sequence. Therefore, the FCFS sequences for all three

configurations of the holding area are the same.

6.3.3 Dynamic programming

Our proposed dynamic programming algorithm has n main stages where n is the

number of available aircraft to be sequenced, plus an initial stage containing a

single dummy node s and a final stage containing a single dummy node t. Each

transition from one stage to the next one corresponds to the take-off of one aircraft
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and the movement of aircraft to different holding points. It has some resemblance

to the approach used by Balakrishnan and Chandran (2007) for scheduling landings

with a constraint on the number of positions an aircraft can shift relative to the

FCFS landing sequence. For conciseness, we only consider Layout A because

Layout B and Layout C are treated analogously.

Our dynamic programming algorithm has states (r1, r2, m1, t1, t2, t3), where r1,

r2 and m1 are the aircraft in holding positions R1, R2, and M1, respectively, and

t1, t2 and t3 are the last three aircraft to have taken off. A zero value of a state

variable indicates the absence of an aircraft in a holding position or that there are

less than three departed aircraft. A function value (r1, r2, m1, t1, t2, t3) defines

the minimum take-off time of the last aircraft among all partial solutions achieving

the state (r1, r2, m1, t1, t2, t3), where ties are broken in favour of the smallest

total waiting time.

Consider state (r1, r2, m1, t1, t2, t3) where r1, r2 and m1 are nonzero, and aircraft

q1 is the first aircraft in the queue to enter the holding area. The four possible

alternative state transitions arise as follows.

• Aircraft r1 takes off, aircraft m1 moves from position M1 to position R1 and

aircraft q1 moves from the queue to position M1 to give a new state (m1, r2,

q1, r1, t1, t2).

• Aircraft r1 takes off, aircraft m1 moves from position M1 to position R1 but

aircraft q1 stays in the queue to give a new state (m1, r2, 0, r1, t1, t2).

• Aircraft r2 takes off, aircraft q1 moves from the queue to position R2 to give

a new state (r1, q1, m1, r2, t1, t2).

• Aircraft r2 takes off, and aircraft q1 stays in the queue to give a new state

(r1, 0, m1, r2, t1, t2).

We implement the dynamic program by finding a shortest path in a network, where

the nodes correspond to the states and the arcs correspond to state transitions.

Given f(r1, r2, m1, t1, t2, t3), it is straightforward to use equations 6.1 and 6.2

to compute the take-off time of the next aircraft r1 or r2, or to discover that the
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state transition is impossible. Because the aircrafts take-off slot is missed or the

aircraft weight class is heavy and cannot enter to the runway via position R2.

Since overtaking is not permitted, the holding section is the only area where run-

way controllers can re-sequence departing aircraft. To model the problem of se-

quencing departing aircraft in the holding area, we construct a network that de-

fines allowable movements of aircraft in the departure runway holding section.

The network implicitly defines the state transitions of our dynamic programming

algorithm. The aim is to investigate the extent to which different network designs

allow a sufficient re-sequencing of the aircraft in order to produce high-quality

take-off schedules. Moreover, the impacts of the holding area layouts on runway

throughput as well as minimizing delay are studied as the secondary objectives.

Thus, a dynamic programming algorithm is designed for creating take-off schedules

based on a given network structure.

Table 6.2: Number of the nodes at each network for different layouts

Layout A Layout B Layout C

Number of Aircraft 15 20 15 20 15 20

Basic Network 1.8× 108 7.2× 1010 5.0× 108 2.3× 1011 3.4× 1012 3.9× 1016

DP Network 1.7× 104 4.8× 104 8.0× 104 3.4× 105 2.9× 106 1.6× 107

Each directed arc from stage u to stage u + 1, for u = 1, . . . , n − 1, defines

the aircraft in position u of the take-off sequence. Each directed path from s

to t represents a feasible take-off sequence. To provide a basis for evaluating the

power of dynamic programming, we consider a basic network in which each feasible

state transition creates a new node. The DP network is generated by eliminating

identical nodes in the basic network. Table 6.2 shows that the DP network is

significantly smaller than the basic network.

The DP network for 10 aircraft is shown in Figure 6.4. Aircraft are labelled

1, 2, . . . , 10 according to non-decreasing order of their arrival time into the holding

area. Each node is a state with two types of information. The first row displays the

aircraft in positions R1, R2 and M1, respectively, where a blank entry indicates

that the corresponding holding position is empty. In addition, the most recent

departed aircraft is shown in the first position of the second row, the second most
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Figure 6.4: DP network for Layout A with 10 aircraft

recent departed aircraft is shown in the second position of the second row, and the

third most recent departed aircraft is shown in the third position of the second

row. Again, blank entries are allowed if less than three aircraft have departed.

The first stage corresponds to all of the feasible combinations of aircraft placement

into the holding positions at the start of the process. A source node s, and a sink
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Table 6.3: Generating nodes in stage u+1 in regarding to stage
u based on Layout A, (R1,R2,M1)

Stage u Stage u + 1
Take-off aircraft

Type State Type State

S1 (i,j,k)

S1 (k,j,l) i

S2 (k,j,0) i

S1 (i,l,k) j

S4 (i,0,k) j

S2 (i,j,0)

S3 (0,j,0) i

S1 (i,l,m) j

S2 (i,l,0) j

S3 (0,j,0)

S1 (m,l,n) j

S2 (m,l,0) j

S3 (0,l,0) j

S4 (i,0,k)
S1 (k,m,l) i

S3 (k,0,l) i

node t are also introduced to represent the beginning and the end of the sequence.

Each arc joins a node at one stage to a node at the next stage and corresponds

to the decision that one particular aircraft takes off, and one or more aircraft

move to a different position in the holding section or from the queueing section to

the holding section. Each arc and each stage of the network are generated based

on the given state transition as shown in Table 6.3 for Layout A, Table 6.4 for

Layout B and Table B.1, B.2 and B.3 in the appendix B for Layout C. These tables

display all possible transitions from the current state to the next state for the three

layouts. Each state is defined based on occupancy of holding points in the holding

section. Four different types of configurations for Layout A and Layout B and

fourteen different type of configurations for Layout C can be defined. Aircraft’s

indices are such that ati ≤ atj ≤ atk ≤ atl ≤ atm ≤ atn ≤ ato ≤ atp ≤ atq ≤ atr.

The idea behind the dynamic programming is to find an s-t path in the network

to maximize the runway throughput which is measured by the maximum take-off

time. Total waiting time is used to break the ties among any identical solutions

and it can be also considered as the second objective. Take-off times are subject

to timing constraints (CTOT slots and arrival time into the holding area), sep-

aration (aircraft type and departure route) and layout constraints as defined by
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Table 6.4: Generating nodes in stage u+1 in regarding to stage
u based on Layout B, (R1,R2,M1,M2)

Stage u Stage u + 1
Take-off aircraft

Type State Type State

S1 (i,j,k,l)

S1 (k,j,l,m) i

S2 (k,j,l,0) i

S1 (i,m,k,l) j

S5 (i,0,k,l) j

S2 (i,j,k,0)

S3 (k,j,0,0) i

S1 (i,m,k,n) j

S2 (i,m,k,0) j

S3 (i,j,0,0)

S4 (0,j,0,0) i

S1 (i,m,n,o) j

S2 (i,m,n,0) j

S3 (i,m,0,0) j

S4 (0,j,0,0)

S1 (n,m,o,p) j

S2 (n,m,o,0) j

S3 (n,m,0,0) j

S4 (0,m,0,0) j

S5 (i,0,k,l)
S1 (k,n,l,m) i

S5 (k,0,l,m) i

the network. Since the DP network remains the same for a given value of n, it

is generated and stored off-line. The dynamic programming algorithm calls the

network when required.

The dynamic programming algorithm needs to keep the take-off time of the three

departure aircraft and the take-off time of the candidate aircraft for take-off in

addition to the total waiting time aircraft in the partial sequence for each node.

Since all the possible feasible sequence have been considered in the network, it

can be concluded that DP finds the optimal solution with respect to minimizing

the take-off time of the last aircraft in the sequence. The experimental results are

presented in Section 6.4.
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6.3.4 Descent local search

In this section, a descent local search algorithm is introduced to sequence depar-

ture flights in the holding area. The initial solution for the descent local search

(DLS) is constructed based on the FCFS method which is considered as a current

solution. Solutions represented as a take-off sequence of aircraft can be defined

as σ = (σ(1), . . . , σ(n)). The best improvement strategy has been used when

searching the neighbourhoods. The DLS algorithm is based on one type of neigh-

bourhood move. The neighbourhood move, called insert, has been considered

which has similar concept of the insert move used in ID algorithm in Chapter 5.

It compromises all feasible sequences that can be obtained from the current so-

lution by removing an aircraft from its current position and inserting it into a

new position in the sequence. Then the best feasible neighbourhood is selected by

using the FC algorithm. If it improves the current solution, it replaces the current

solution and search continues. If the best neighbourhood does not improve the

current solution, then the algorithm terminates with a local optimal solution. The

experimental results are shown in Section 6.4.

6.3.5 Beam search

The next proposed method for sequencing and scheduling departure flight in the

holding area is Beam Search (BS). The BS is a heuristic method originated from

branch-and-bound. Beam search saves the computational time and memory space

by pruning branches of the search tree by applying local and global evaluations.

The increment cost of the adding a new take-off aircraft to the partial sequence

is measured by local evaluation. Therefore, it gives us a local view of the node.

The global evaluation attempts to estimate the minimum total cost of the best

solution that can be reached from the current node. Thus, it provides a global

view of the node. This approach attempts to maximize the probability of finding

a good solution with minimal effort.

The tree represents the construction of a partial sequence where each node corre-

sponds to a new take-off aircraft. Set of starting nodes S in Level 0 includes all

possible combinations of available aircraft in the holding area for take-off. Each
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node at Level 0 is considered to generate the offspring nodes at level 1 in the

tree. Offspring nodes are generated based on the transition tables (see Tables 6.3,

6.4 and Tables B.1, B.2 and B.3 in the Appendix A) provided for each layout

configuration.

All nodes at Level 1 are selected as nodes to branch from. Child nodes branching

from the same parent node compete with each other based on the local evaluation

cost function which is also called filtering. A subset of α value of the best nodes

based on the local evaluation is selected for each parent node; α is the so-called

filter width. Later, selected filter nodes are evaluated based on global evaluation

cost function. The global evaluation procedure selects the most promising β nodes

for branching in Level 2; β is the so-called beam width and the remaining nodes

are pruned out permanently. This procedure is repeated until all the aircraft are

sequenced. Number of the level is equal to the number of the aircraft, n, to be

sequenced.

If the number of nodes available for local evaluation and global evaluation are

fewer than α and β, respectively, then all of these nodes are chosen. It has to be

mentioned that selected nodes in the local evaluation step should satisfy the CTOT

constraints as well as assignment of Heavy aircraft to the last runway entrance.

A larger beam width β causes the fewer nodes to be pruned and more chance of

reaching the high quality solution at the expense of higher run-time.

The following four criteria have been used for the local evaluation:

PTmax: take-off time of the last aircraft (Cmax) scheduled in the partial sequence;

ATT: average take-off time of the aircraft scheduled in the partial sequence;

TWT: total waiting time of aircraft scheduled in the partial sequence;

BSID: total balance between the number of aircraft from each SID category in

the partial sequence relative to whole set of aircraft. The aim is to minimize

deviation of percentage of the sequenced aircraft from each category in the

partial sequence relative to total number of aircraft in each category from

percentage of number of aircraft in the partial sequence relative to the total

number of aircraft.
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Minimizing the Tmax which can be also called Cmax is chosen as the main objective

for the global evaluation and the total waiting time of the aircraft according to

(6.1) is selected as the second objective. In order to perform the global evaluation,

descent local search method which is explained in Section 6.3.4 has been used to

construct the rest of the partial sequence. First, unscheduled aircraft are sequenced

using the FCFS algorithm and the FCFS sequence is considered as an initial

solution for the DLS. Then, the DLS obtain the local optimal solution for the rest

of the sequence. The descent local search algorithm aims to estimate the minimum

Cmax of the sequence that can be reached from the current node.

6.4 Computational experiment

6.4.1 Random test data

In order to evaluate the performance of the developed algorithms, six data sets

have been randomly generated. Each data set includes 10 problem instances.

Problem instances are generated for the experimental analysis based on the fol-

lowing parameters in regard to the opinion of the air traffic control experts. Each

problem instance includes 20 aircraft. In practice, less than 15 aircraft typically

need to be considered simultaneously for sequencing in the departure holding area.

We assume that the inter-arrival times between successive aircraft reaching the

holding area are exponentially distributed with arrival rate λ = 1/75, 1/80 and

1/85, where the data set with λ = 1/75 has the highest-density traffic volume and

data set with λ = 1/85 has the lowest-traffic density volume. Moreover, CTOTs

are assigned to 20% of flights in Set1, Set3 and Set5 and 40% of flights in Set2,

Set4 and Set6 (Table 6.5). If the CTOT is needed to be assigned to aircraft j, it

is generated based on a uniform distribution defined as U(atj, atj − 300) with the

probability of 25% and another uniform distribution as U(atj + 600, atj) with the

probability of 75%.

Five weight classes of aircraft including Heavy (H), Upper medium (U), Lower

medium (M), Small (S) and Light (L) have been considered. In addition, three

departure routes (SID) are taken into account. SID categories are assigned to
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Table 6.5: Departure data sets

Set1 Set2 Set3 Set4 Set5 Set6
λ 1/75 1/80 1/85 1/75 1/80 1/85

% of CTOT 20 20 20 40 40 40

each aircraft with equal probabilities. Aircraft weight classes are assigned to each

aircraft based on the probabilities given in Table 6.6.

Table 6.6: Weight class of departure flights

H U M S L
Probability 0.35 0.15 0.55 0.04 0.01

The generator does not guarantee that the resulting data set has a feasible sched-

ule. So the feasibility of each problem instance has been checked using introduced

dynamic programming algorithm and any problem instance with no optimal solu-

tion has been ignored.

6.4.2 Experimental design

All the algorithms are implemented in MS Visual C++ 2008 and run on a PC with

a dual core, 2.13GHz and 2GB RAM. We report on the comparison of the proposed

methods using the generated test data in Section 6.4.3. We refer to the first-come

first-served, descent local search, beam search and dynamic programming as FCFS,

Algorithm DLS, Algorithm BS and Algorithm DP, respectively.

The minimum separation time between each pair of aircraft has been calculated

based on weight classes of two aircraft and their SID routes. However, airspeed

has not been taken into account. In the following, we talk about tuning of the

beam search parameters regarding same performance statistics.

Beam search parameters

Beam search parameters, α and β, need to be empirically tuned for achieving

acceptable performance. Considering the transition tables (Tables 6.3, 6.4 and

Tables B.1, B.2 and B.3 in Appendix B), the maximum value for the filter width
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parameter, α, in Layout A, Layout B and Layout C are 4, 4, and 17, respectively.

Therefore, performance of the BS algorithm for α = 2, 3, 4 for Layout A and B

and α = 2, 3, . . . , 8 for Layout C have been tested using data Set1. Moreover, the

effects of the beam width parameter on the performance of the BS algorithm have

been investigated for β = 80, 140, 200, 260, 320, 380.

Table 6.7: Average PI of Algorithm BS relative to FCFS for Layout A

α
Local Evaluation β

Criteria 80 140 200 260 320 380

2

Average 17.11 17.64 17.74 17.74 17.81 17.89
PTmax 17.68 18.31 18.64 18.64 18.64 18.64
ATT 17.68 18.31 18.64 18.64 18.64 18.64
TWT 15.55 15.85 15.57 15.57 15.85 16.17
BSID 17.55 18.10 18.10 18.10 18.10 18.10

3

Average 19.45 19.60 19.75 19.75 19.67 19.60
PTmax 19.87 19.88 19.88 19.88 19.58 19.58
ATT 19.87 19.88 19.88 19.88 19.58 19.58
TWT 19.06 19.33 19.92 19.92 20.20 19.92
BSID 19.00 19.32 19.32 19.32 19.32 19.32

4

Average 19.87 20.85 20.85 20.85 20.85 20.85
PTmax 19.87 20.85 20.85 20.85 20.85 20.85
ATT 19.87 20.85 20.85 20.85 20.85 20.85
TWT 19.87 20.85 20.85 20.85 20.85 20.85
BSID 19.87 20.85 20.85 20.85 20.85 20.85

Table 6.8: Average CT of four local evaluation criteria of beam search for
Layout A (in seconds)

α
β

80 140 200 260 320 380

2 0.33 0.52 0.63 0.76 0.92 1.20
3 0.51 0.80 1.11 1.40 1.70 2.32
4 0.58 0.88 1.21 1.59 1.88 2.55

Tables 6.7, 6.9 and 6.11 show the Average percentage improvement (PI) of the

beam search for ten test data relative to FCFS solutions for various combinations

of the α and β parameters, respectively for Layout A, Layout B and Layout C.

The average PI for four local evaluation functions including PTmax, ATT, TWT

and BSID as well as the average PI of these four criteria have been presented in

these tables. The average computation times of beam search algorithms in seconds
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for Layout A, Layout B and Layout C are also displayed in Tables 6.8, 6.10 and

6.12, respectively.

Table 6.9: Average PI of Algorithm BS relative to FCFS for Layout B

α
Local Evaluation β

Criteria 80 140 200 260 320 380

2

Average 18.59 19.18 19.12 19.41 19.19 19.37
PTmax 18.95 19.57 19.57 19.57 19.57 19.57
ATT 18.95 19.57 19.57 19.57 19.57 19.57
TWT 17.56 18.29 17.65 18.56 18.25 18.65
BSID 18.91 19.28 19.68 19.96 19.36 19.68

3

Average 21.00 21.60 21.68 22.07 22.14 22.07
PTmax 20.84 21.45 21.45 22.06 22.06 22.06
ATT 20.84 21.45 21.45 22.06 22.06 22.06
TWT 20.84 21.73 21.73 22.06 22.06 22.06
BSID 21.46 21.77 22.10 22.10 22.38 22.10

4

Average 21.16 21.16 22.05 22.05 22.05 22.05
PTmax 21.16 21.16 22.05 22.05 22.05 22.05
ATT 21.16 21.16 22.05 22.05 22.05 22.05
TWT 21.16 21.16 22.05 22.05 22.05 22.05
BSID 21.16 21.16 22.05 22.05 22.05 22.05

Performance of the BS algorithm for four local evaluation criteria is almost similar

for various combinations of the filter width and beam width parameters in Layout

A other than TWT criterion which has the worst performance among all other

criteria for α = 2 (see Table 6.7). Based on the average PI and the computation

time of the BS algorithms, it can be concluded that α = 4 and β = 140 can give

the best results in less than one second run-time (see Table 6.8). Since for α = 4,

all the child nodes branching from the same parent node are accepted, the local

evaluation procedure has no effect on the solution.

Table 6.10: Average CT of four local evaluation criteria of beam
search for Layout B (in seconds)

α
β

80 140 200 260 320 380

2 0.43 0.66 0.84 1.01 1.17 1.51
3 0.61 1.00 1.36 1.73 2.06 2.87
4 0.76 1.10 1.52 1.98 2.41 3.06
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Table 6.9 shows that the performance of TWT criterion is not as good as the

other criteria for α = 2 and BSID function has the best performance among the

other criteria for α = 3 for Layout B. By increasing the filter width from 3 to 4,

the average performance of the algorithm has been reduced for β = 260, 320, 380.

It can be due to the fact that some good solutions have been ignored because of

the low acceptance rate of the nodes in global evaluation. Table 6.10 shows the

computation times of different combinations of the filter width and beam width

for Layout B. Based on the analysis, the conclusion is that the BS algorithm can

provide the best solution using α = 3 and β = 140 after one second run-time (see

Table 6.10) for layout B.

Based on the analysis of filter width and beam width parameters presented in

Table 6.11 and Figure 6.5, the performance of the BSID criterion for α = 2, 3

is significantly better than the other local evaluation objectives. Considering the

filter more than 4 does not show an improvement on the average PI and even can

reduce the performance of the algorithm in some cases. According to the average

PI and computation time of the BS algorithm, α = 4 and β = 80 can reach the

best solution in one second run-time (see Table 6.12). The TWT local evaluation

function looks more promising than the other criteria.

6.4.3 Results

Tables 6.13, 6.14 and 6.15 present the summary performance of the schedule ob-

tained from first-come first-served, descent local search, beam search and dynamic

programming approaches described in the earlier section for Layout A, Layout B

and Layout C, respectively. These tables display the average performance of al-

gorithms using six data sets where each data set consists of 10 problem instances.

Result tables for layout A and Layout B include the take-off times provided by the

FCFS, DLS, BS and DP algorithms. The take-off times produced by the FCFS,

DLS and BS algorithms are included in result table for Layout C. Percentage im-

provements (PI) of DLS, BS and DP solutions relative to the FCFS schedule are

given in these tables. Results of the algorithms have been verified to make sure

that the models meet the requirements and specifications of the problem and they

perform as expected.
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Table 6.11: Average PI of Algorithm BS relative to FCFS for Layout C

α
Local Evaluation β

Criteria 80 140 200 260 320 380

2

Average 17.91 19.38 20.25 20.08 20.39 20.65
PTmax 17.66 18.85 19.89 20.19 20.51 20.84
ATT 17.66 18.85 19.89 20.19 20.51 20.84
TWT 15.12 18.64 19.28 18.06 18.63 19.03
BSID 21.19 21.19 21.92 21.87 21.92 21.89

3

Average 21.44 22.59 22.92 22.94 22.91 22.94
PTmax 20.54 22.17 22.54 22.54 22.54 22.54
ATT 20.54 22.18 22.22 22.22 22.22 22.22
TWT 21.11 21.88 22.77 23.15 23.39 22.85
BSID 23.54 24.15 24.15 23.86 23.49 24.15

4

Average 23.62 23.62 23.70 23.86 23.86 23.86
PTmax 23.53 23.53 23.53 23.86 23.86 23.86
ATT 23.53 23.53 23.53 23.86 23.86 23.86
TWT 23.86 23.86 23.86 23.86 23.86 23.86
BSID 23.54 23.54 23.87 23.87 23.87 23.87

5

Average 23.45 23.61 23.69 23.78 23.69 23.69
PTmax 23.20 23.53 23.86 23.86 23.86 23.86
ATT 23.20 23.53 23.86 23.86 23.86 23.86
TWT 23.86 23.86 23.53 23.53 23.53 23.53
BSID 23.53 23.53 23.53 23.86 23.53 23.53

6

Average 23.28 23.53 23.53 23.77 23.77 23.77
PTmax 23.20 23.53 23.53 23.86 23.86 23.86
ATT 23.20 23.53 23.53 23.86 23.86 23.86
TWT 23.53 23.53 23.53 23.52 23.52 23.52
BSID 23.20 23.53 23.53 23.86 23.86 23.86

7

Average 23.61 23.61 23.53 23.78 23.78 23.86
PTmax 23.53 23.53 23.53 23.86 23.86 23.86
ATT 23.53 23.53 23.53 23.86 23.86 23.86
TWT 23.86 23.86 23.53 23.86 23.86 23.86
BSID 23.53 23.53 23.53 23.53 23.53 23.86

8

Average 23.53 23.53 23.53 23.53 23.86 23.86
PTmax 23.53 23.53 23.53 23.53 23.86 23.86
ATT 23.53 23.53 23.53 23.53 23.86 23.86
TWT 23.53 23.53 23.53 23.53 23.86 23.86
BSID 23.53 23.53 23.53 23.53 23.86 23.86
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Figure 6.5: Average PI of Algorithm BS relative to FCFS for Layout C

Table 6.12: Average CT of four local evaluation criteria of beam search
for Layout C (in seconds)

α
β

80 140 200 260 320 380

2 0.56 0.90 1.15 1.43 1.67 2.29
3 0.72 1.20 1.67 2.13 2.65 3.62
4 1.01 1.54 2.18 2.77 3.42 4.67
5 1.17 1.82 2.43 3.21 3.96 5.33
6 1.22 2.25 2.84 3.47 4.36 5.81
7 1.28 2.32 3.00 3.70 3.70 6.03
8 1.32 2.47 2.81 3.66 4.65 6.11

Algorithms are compared based on the following performance statistics:

Tmax: take-off time of the last aircraft in a given set of aircraft in seconds;

PI: percentage improvement in the solution objective function relative to the so-

lution of the FCFS algorithm;

TWT: total waiting time of the solution take-off sequence;

CT: computation time in seconds for scheduling a given set of aircraft;
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Table 6.13: Results for Layout A
Data

λ CTOT
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
set Evaluation α = 4, β = 140

Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

Set1 1/75 20%

PTmax

1,842 10,108 1,536 16.1 6,982 0.003

1,446 20.9 6,022 0.9

1,422 22.1 5,806 9
ATT 1,446 20.9 6,022 0.9
TWT 1,446 20.9 6,022 0.9
BSID 1,446 20.9 6,022 0.9

Set2 1/75 40%

PTmax

1,842 10,108 1,560 14.7 7,285 0.002

1,500 18.0 6,556 0.9

1,470 19.5 6,232 8
ATT 1,500 18.0 6,556 0.9
TWT 1,500 18.0 6,556 0.9
BSID 1,500 18.0 6,556 0.9

Set3 1/80 20%

PTmax

1,884 8,891 1,674 11.2 6,908 0.002

1,458 22.5 4,631 0.9

1,446 23.1 4,481 8
ATT 1,458 22.5 4,631 0.9
TWT 1,458 22.5 4,631 0.9
BSID 1,458 22.5 4,631 0.9

Set4 1/80 40%

PTmax

1,884 8,891 1,732 8.2 7,223 0.002

1,470 21.8 4,823 0.9

1,446 23.1 4,517 8
ATT 1,470 21.8 4,823 0.9
TWT 1,470 21.8 4,823 1.0
BSID 1,470 21.8 4,823 0.9

Set5 1/85 20%

PTmax

1,824 6,129 1,626 10.6 4,239 0.002

1,578 13.2 3,849 0.8

1,566 13.9 3,729 8
ATT 1,578 13.2 3,849 0.8
TWT 1,578 13.2 3,849 0.8
BSID 1,578 13.2 3,849 0.8

Set6 1/85 40%

PTmax

1,824 6,129 1,644 9.6 4,419 0.002

1,584 12.9 4,131 0.8

1,578 13.2 4,023 8
ATT 1,584 12.9 4,131 0.8
TWT 1,584 12.9 4,131 0.8
BSID 1,584 12.9 4,131 0.8

The first column in the result table shows the problem instance number. The

second column lists the local evaluation function for the beam search algorithm.

Tmax and total waiting time of the schedule generated by each algorithm is also

presented in the result table. Moreover, the computation time of the DLS, BS

and DP methods are presented in Tables 6.13, 6.14 and 6.15. The complete re-

sults for 60 randomly generated problem instances for each layout are provided in

Appendix B.

Tables 6.13, 6.14 and 6.15 show an improvement in the main objective relative

to the FCFS schedule across all methods. Dynamic programming provides the

optimal solution with respect to the Tmax. DP has the highest computation time

compared to the other approaches and DLS has the shortest one. For three con-

figurations of the departure holding area, BS approach obtains the solution in one

second.

Table 6.13 presents our computational results for Layout A. Since the filter width

is equal to the maximum number of the child nodes branching from each parent
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Table 6.14: Results for Layout B
Data

λ CTOT
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
set Evaluation α = 4, β = 140

Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

Set1 1/75 20%

PTmax

1,842 10,108 1,524 16.8 6,854 0.003

1,434 21.4 5,614 1.0

1,404 23.2 5,440 73
ATT 1,434 21.4 5,614 1.0
TWT 1,428 21.7 5,572 1.0
BSID 1,428 21.7 5,596 1.0

Set2 1/75 40%

PTmax

1,842 10,108 1,536 16.1 7,027 0.003

1,464 19.8 5,956 1.0

1,446 20.9 5,800 69
ATT 1,464 19.8 5,956 1.0
TWT 1,476 19.2 6,082 1.0
BSID 1,482 19.0 6,166 0.9

Set3 1/80 20%

PTmax

1,884 8,891 1,614 14.4 6,453 0.003

1,440 23.3 4,229 1.0

1,416 24.6 4,205 69
ATT 1,440 23.3 4,229 1.0
TWT 1,434 23.7 4,247 1.0
BSID 1,440 23.4 4,379 1.0

Set4 1/80 40%

PTmax

1,884 8,891 1,690 10.5 6,920 0.002

1,446 23.1 4,259 1.0

1,428 24.0 4,193 73
ATT 1,446 23.1 4,259 1.0
TWT 1,440 23.3 4,241 1.0
BSID 1,464 22.1 4,443 1.0

Set5 1/85 20%

PTmax

1,824 6,129 1,626 10.6 4,239 0.003

1,566 13.9 3,813 0.9

1,566 13.9 3,627 71
ATT 1,566 13.9 3,813 0.9
TWT 1,566 13.9 3,897 0.9
BSID 1,566 13.9 3,891 0.9

Set6 1/85 40%

PTmax

1,824 6,129 1,626 10.6 4,203 0.002

1,578 13.2 4,053 0.9

1,578 13.2 3,867 67
ATT 1,578 13.2 4,053 0.9
TWT 1,578 13.2 4,047 0.8
BSID 1,578 13.2 4,083 0.9

node, the performance of the beam search does not depend on the local evaluation

criteria. BS can find the optimal solution with respect to the Tmax in 70% of

the problem instances, whereas DLS has reached the optimal solution in 11% of

the cases (see Table B.4-B.9). In case of higher number of aircraft with CTOT

constraints, total waiting time increases and PI decreases.

In Layout B, BS method can find the optimal solution for 80% of the problem

instances and DLS approach can obtain optimal solution for 15% of test data

(see Table B.10-B.15). However, beam search has almost the same performance

regarding four local evaluation functions across all data sets other than TWT

which has the best performance in data Set1, Set3 and Set4; and BSID which

has the worst performance in data Set2. Considering average run-time, dynamic

programming has the highest value which is 70 seconds. In general, PI in Layout

B is 4.1% higher than PI in Layout A. Moreover, total waiting time in Layout B

is 5.8% less than total waiting time in Layout A (see Table 6.14).

The required memory space for storing the DP networks of 20 aircraft for Layout

A, Layout B and Layout C are 2MB, 16MB and 750MB, respectively. Therefore,
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Table 6.15: Results for Layout C

Data
λ CTOT

Local
FCFS Algorithm DLS

Algorithm BS
set Evaluation α = 4, β = 140

Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT

Set1 1/75 20%

PTmax

1,842 10,108 1,452 20.5 6,022 0.004

1,398 23.5 5,362 1.1
ATT 1,398 23.5 5,362 1.1
TWT 1,392 23.9 5,320 1.1
BSID 1,398 23.5 5,386 1.1

Set2 1/75 40%

PTmax

1,842 10,108 1,506 17.8 6,481 0.003

1,446 20.9 5,813 0.9
ATT 1,446 20.9 5,812 0.9
TWT 1,446 20.9 5,839 0.9
BSID 1,452 20.5 5,980 1.0

Set3 1/80 20%

PTmax

1,884 8,891 1,596 15.5 6,141 0.003

1,422 24.4 4,090 0.9
ATT 1,422 24.4 4,090 1.0
TWT 1,416 24.7 4,248 0.9
BSID 1,416 24.7 4,266 0.9

Set4 1/80 40%

PTmax

1,884 8,891 1,684 10.9 6,776 0.002

1,422 24.3 4,121 0.9
ATT 1,422 24.3 4,121 0.9
TWT 1,428 23.9 4,144 0.9
BSID 1,422 24.3 4,169 1.0

Set5 1/85 20%

PTmax

1,824 6,129 1,608 11.5 3,945 0.003

1,548 14.8 3,633 0.8
ATT 1,548 14.8 3,633 0.8
TWT 1,548 14.8 3,741 0.8
BSID 1,560 14.2 3,849 0.8

Set6 1/85 40%

PTmax

1,824 6,129 1,626 10.6 4,101 0.002

1,566 13.9 3,903 0.9
ATT 1,566 13.9 3,903 1.0
TWT 1,566 13.9 4,023 0.9
BSID 1,578 13.2 4,041 1.0

Table need 6.15 does not include the computational results of the dynamic pro-

gramming method because of the limited computational resources. We expect the

run-time of the DP method for Layout C to be more than one hour. In average,

runway throughput of Layout C is higher than the one in Layout B.

6.5 Concluding remarks

In this chapter, we have defined departure scheduling problem with the focus on

the impact of the departure holding area configurations on take-off scheduling.

Three types of constraints, introduced in this problem, include calculated take-off

time constraints, separation time constraints and layout constraints. Then, we

have proposed the dynamic programming, descent local search and beam search
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Table 6.16: Average PI of Algorithm BS relative to FCFS for three layouts

Data Tmax TWT
set Layout A Layout B Layout C Layout A Layout B Layout C

Set1 20.85 21.60 23.62 39.82 43.76 46.36
Set2 17.98 21.60 23.62 34.69 39.59 41.53
Set3 22.50 23.45 24.53 46.16 51.28 53.15
Set4 21.83 22.90 24.19 46.16 51.28 53.18
Set5 13.24 13.88 14.69 30.87 30.87 32.02
Set6 12.90 13.20 13.71 24.54 24.54 26.68

Average 18.22 19.44 20.72 37.04 40.26 42.15

algorithms to solve the problem. Finally, experimental test have been performed

on the generated data sets.

Our experimental results show a strong performance of the beam search and dy-

namic programming algorithms relative to the take-off schedule based on the FCFS

sequence. The average run-time of the BS method with n = 20 is 1 seconds. Short

run-time of the algorithm, and ability to find either the optimal solution or near-

optimal solution, make the BS approach suitable for implementation in practice.

Performance of the DLS approach is not as good as BS or DP algorithms. But it

is a desirable heuristic for estimating the objective function value in global evalua-

tion step of beam search algorithm due to the very short run-time of DLS. Results

show that the performance of the BS approach is acceptable in terms of the com-

putation times and quality of solutions. If computation time is not an issue, then

the DP method can provide the best results for Layout A and Layout B.

A comparison of Layout A and B and C indicates that adding extra holding points

and entrance to the runway can increase the utilization of take-off runway as it

gives more flexibility to re-order aircraft. They also reduce the total waiting time

of the aircraft in the holding area (Table 6.16 and Figure 6.6). In average, value of

the Tmax and TWT increase by allocating the CTOT to more number of aircraft.

The proposed solution methods can be used to compare more complicated layouts

of departure holding section. Increasing the flexibility of movements in departure

holding area does not necessarily increase the runway throughput. Finding a layout

that offers the highest opportunity for increasing throughput, while not causing
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Figure 6.6: Average PI of Algorithm BS relative to FCFS for three layouts

air traffic controllers to make a large number of complex ground movements of

aircraft remains an interesting challenge for the future.





Chapter 7

Concluding Remarks

7.1 Conclusion

This thesis looked at finding optimal or near-optimal solutions for landing and

take-off problems. The aim was to design algorithms to obtain good solutions in a

very short running time so that they can be used in practice. The proposed algo-

rithms for scheduling of aircraft landings were discussed in Chapter 5. Chapter 6

presented the proposed algorithms for take-off scheduling problem.

We have introduced models and algorithms for the static/off-line aircraft landing

problem and the dynamic/on-line version of the problem. A special feature of our

model is the multi-objective approach that takes into account the interests of the

various stakeholders that are affected by the scheduling of an airport’s runway.

Dynamic programming, iterated descent and simulated annealing algorithms were

proposed for the solution of the static problem. The dynamic problem was tack-

led using iterated descent and dynamic programming algorithms providing the

solution method for periodically updating the previous schedule based on rolling

horizon approach. The length of the freeze time and the time horizon were inves-

tigated. The freeze time specifies the period during which changes to the schedule

are forbidden, while the time horizon defines which aircraft are to be considered

whenever the previous schedule is updated.

109
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A thorough computational evaluation is performed using data from Heathrow air-

port. Results for the static problem show that all of the proposed algorithms are

effective in achieving an efficient runway throughput compared to FCFS which

is the common approach in practice. In addition, the algorithms are capable of

finding solutions that perform well in terms of minimizing delay and minimizing

the cost of extra fuel which is used to achieve the desired landing schedule. Iter-

ated descent has the advantage of faster and more predictable run-times, and is

therefore preferred to dynamic programming and simulated annealing.

Iterated descent and dynamic programming are used as scheduling algorithms for

the dynamic problem. Experimental tests have been performed for using 10 days

data from Heathrow airport and 40 days randomly generated problem instances

based on the characteristics of the real data. Results show that it is worthwhile

to have a time horizon of at least 30 minutes, and a slightly longer time horizon

is recommended if the freeze time is more than 5 minutes.

The second part of the research is dedicated to the aircraft take-off problem. The

aim is to investigate the impact of the runway holding area on scheduling of aircraft

take-off. Three common layouts of the departure holding area are considered. A

hierarchical objective function has been considered. Minimizing the maximum

take-off time (or runway throughput) is considered as the main objective function.

Minimizing the total waiting time is chosen as the second objective.

The proposed methods obtain the sequence and schedule of take-off flights subject

to timing, minimum separation and holding area configuration constraints. Per-

formance of the algorithms and comparisons of their effectiveness for three holding

area layouts are investigated using randomly generated test data. Two entrances

to the departure runway and one holding position between two entrances are con-

sidered for Layout A. Layout B has the same configuration as Layout A in addition

to an extra holding position between runway entrances. Layout B has more flex-

ibility in moving the position of aircraft in the sequence relative to Layout A.

Experimental results show that adding one holding position improves the quality

of take-off sequence. Departure holding area with three entrances to the runway

and one holding position between entrances are designed in Layout C. Layout C

is more complicated than the other layouts in terms of sequencing take-off flights.
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Quality of the solutions for Layout C has better quality than the other two layouts

in terms of runway throughput and waiting times in the holding area.

Descent local search is the fastest algorithm among the other but the solutions

are not as good as dynamic programming and beam search. Although dynamic

programming method can find the optimal solution, it is expensive in terms of

run-time for complicated configurations such as Layout B and Layout C. Beam

search has the advantage of being fast and obtaining optimal solution or near-

optimal solution. Some remarks for ALP and ATP are mentioned in the following

section.

7.2 Extensions and future work

In this thesis, we have studied aircraft landing and departure scheduling problems.

An static and a dynamic version of landing problems are considered. The effect of

holding area on take-off scheduling is considered in take-off problem. Both prob-

lems are formulated as multi-objective models subject to operational and safety

constraints. Various algorithms such as dynamic programming, iterated descent,

simulated annealing, descent local search and beam search have been developed

to provide optimal or near-optimal solutions in a very short time. Experimental

tests show promising results for solving these problems both in terms of solution

quality and run-time.

There are some directions for the future work based on this thesis which are as

below.

• Integration of aircraft landing problem with en-route and taxi-in scheduling

problems can be studied.

• Approaching routes constraints can also be considered for arrival scheduling

problem.

• Since departure holding area has the main effect on the sequencing of aircraft

take-off, more complicated configurations such as parallel holding positions
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can be studied. Moreover, overtaking constraint for some holding positions

can be relaxed.

• Impact of the increasing rate of the departure flights with CTOT constraint

on take-off sequencing problem can be investigated.

• Patterns and relations between feasible deviations of the departure sequence

from FCFS sequence for different departure layout configurations can be

studied.
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ALP: Experimental Results
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Table A.1: Complete Heathrow data: static environment: Weights
(0.3, 0.5, 0.1, 0.1)

Algorithm DP Algorithm ID Algorithm SA
# n Obj. PI TD ND CT PI TD ND CT PI TD ND CT

P1 22

Overall 2.89

22 11 0.06

2.89

16 10 0.08

2.89

22 11 0.05
LTmax 0.18 0.18 0.18
ALT 0.15 0.14 0.15
TW 7.96 7.96 7.96
EF 6.27 6.27 6.27

P2 41

Overall 9.02

42 18 0.39

8.96

34 16 0.34

9.02

40 19 0.41
LTmax 0.42 0.42 0.42
ALT 0.28 0.27 0.28
TW 48.49 48.49 49.49
EF 11.65 11.65 11.65

P3 21

Overall 1.20

18 8 0.06

1.20

32 13 0.08

1.20

18 8 0.6
LTmax 0.40 0.04 0.04
ALT 0.05 0.05 0.05
TW 0.00 0.00 0.00
EF 8.03 8.03 8.03

P4 42

Overall 3.51

40 18 0.14

3.51

74 32 0.38

3.51

40 18 0.63
LTmax 0.15 0.15 0.15
ALT 0.08 0.07 0.08
TW 0.00 0.00 0.00
EF 15.22 15.22 15.22

P5 20

Overall 0.33

6 5 0.36

0.33

6 5 0.11

0.33

6 5 0.09
LTmax 0.00 0.00 0.00
ALT 0.01 0.01 0.01
TW 0.00 0.00 0.00
EF 10.77 10.77 10.77

P6 42

Overall 0.69

22 13 1.16

0.69

26 19 0.45

0.69

14 12 0.53
LTmax 0.00 0.00 0.00
ALT 0.01 0.01 0.01
TW 0.00 0.00 0.00
EF 4.64 4.64 4.64

P7 84

Overall 7.08

74 30 7.73

7.08

90 36 2.36

7.05

84 36 8.94
LTmax 0.00 0.00 0.00
ALT 0.09 0.09 0.08
TW N/A N/A 0.00
EF 24.27 24.27 23.65

Average

Overall 3.53

32 15 1.41

3.52

40 19 0.54

3.53

32 16 1.53
LTmax 0.11 0.11 0.11
ALT 0.09 0.09 0.09
TW 9.41 9.41 8.06
EF 11.55 11.55 11.46
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Table A.2: Complete Heathrow data: static environment: Weights
(0.2, 0.4, 0.3, 0.1)

Algorithm DP Algorithm ID Algorithm SA
# n Obj. PI TD ND CT PI TD ND CT PI TD ND CT

P1 22

Overall 3.53

22 11 0.16

3.53

24 13 0.11

2.89

14 9 0.05
LTmax 0.18 0.18 0.18
ALT 0.15 0.14 0.15
TW 7.96 7.96 7.96
EF 6.27 6.27 6.27

P2 41

Overall 13.71

42 18 0.53

13.71

32 16 0.45

13.71

36 16 0.41
LTmax 0.42 0.42 0.42
ALT 0.28 0.27 0.28
TW 48.49 48.49 48.49
EF 11.65 11.65 11.65

P3 22

Overall 1.51

18 8 0.14

1.51

34 16 0.06

1.51

18 8 0.05
LTmax 0.04 0.04 0.04
ALT 0.05 0.05 0.05
TW 0.00 0.00 0.00
EF 8.03 8.03 8.03

P4 42

Overall 4.34

40 18 0.28

4.33

56 25 0.50

4.33

40 18 0.58
LTmax 0.15 0.15 0.15
ALT 0.08 0.07 0.08
TW 0.00 0.00 0.00
EF 15.22 15.22 15.22

P5 20

Overall 0.43

6 5 0.45

0.43

6 5 0.09

0.43

6 5 0.05
LTmax 0.00 0.00 0.00
ALT 0.01 0.01 0.01
TW 0.00 0.00 0.00
EF 10.77 10.77 10.77

P6 42

Overall 0.87

22 13 1.33

0.87

38 19 0.56

0.87

14 12 0.56
LTmax 0.00 0.00 0.00
ALT 0.01 0.01 0.01
TW 0.00 0.00 0.00
EF 4.64 4.64 4.64

P7 84

Overall 8.56

82 33 7.74

8.56

98 41 2.48

8.51

106 39 7.28
LTmax 0.00 0.00 0.00
ALT 0.09 0.08 0.09
TW 0.00 0.00 0.00
EF 23.66 23.66 23.52

Average

Overall 4.71

33 15 1.52

4.71

41 19 0.61

4.70

33 11 1.28
LTmax 0.11 0.11 0.11
ALT 0.09 0.09 0.09
TW 8.06 8.06 8.06
EF 11.46 11.46 11.44
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Table A.3: Complete Heathrow data: static environment: Weights
(0.4, 0.6, 0.0, 0.0)

Algorithm DP Algorithm ID Algorithm SA
# n Obj. PI TD ND CT PI TD ND CT PI TD ND CT

P1 22

Overall 0.36

48 17 0.16

0.36

62 21 0.06

0.36

26 13 0.05
LTmax 0.36 0.36 0.36
ALT 0.08 0.19 0.17
TW −239.32 −195.81 −52.34
EF 5.55 7.31 6.79

P2 41

Overall 0.51

102 34 0.55

0.51

78 25 0.16

0.51

62 19 0.34
LTmax 0.51 0.51 0.51
ALT 0.18 0.29 0.24
TW −35.05 −12.03 7.33
EF 9.70 12.08 11.58

P3 22

Overall 0.04

40 13 0.16

0.04

40 13 0.05

0.04

6 2 0.05
LTmax 0.04 0.04 0.04
ALT 0.05 0.04 0.04
TW −0.01 N/A 0.00
EF 1.94 6.94 6.50

P4 42

Overall 0.19

94 31 0.31

0.19

56 24 0.36

0.19

20 9 0.53
LTmax 0.19 0.19 0.19
ALT 0.03 0.06 0.07
TW N/A 0.00 0.00
EF 9.27 13.34 13.48

P5 20

Overall 0.00

22 10 0.45

0.00

26 13 0.05

0.00

0 0 0.05
LTmax 0.00 0.00 0.00
ALT −0.11 −0.09 0.00
TW 0.00 N/A 0.00
EF −98.32 86.13 0.00

P6 42

Overall 0.00

68 30 1.34

0.00

0 0 0.23

0.00

0 0 0.53
LTmax 0.00 0.00 0.00
ALT −0.28 0.00 0.00
TW −1388.64 0.00 0.00
EF −101.37 0.00 0.00

P7 84

Overall 0.00

204 69 7.77

0.00

96 31 0.69

0.00

0 0 7.59
LTmax 0.00 0.00 0.00
ALT −0.43 −0.08 0.00
TW N/A N/A 0.00
EF −124.88 −23.25 0.00

Average

Overall 0.16

83 28 1.53

0.16

51 18 0.23

0.16

16 6 1.31
LTmax 0.16 0.16 0.16
ALT −0.08 0.06 0.07
TW −415.75 −51.96 −6.43
EF −42.59 −9.96 5.48
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Table A.4: Complete Heathrow data: static environment: Weights
(1.0, 0.0, 0.0, 0.0)

Algorithm DP Algorithm ID Algorithm SA
# n Obj. PI TD ND CT PI TD ND CT PI TD ND CT

P1 22

Overall 0.26

38 15 0.16

0.26

50 19 0.05

0.26

18 8 0.05
LTmax 0.36 0.36 0.36
ALT 0.19 0.19 0.19
TW −115.31 −222.40 −134.68
EF 7.58 7.13 7.13

P2 41

Overall 0.40

64 25 0.53

0.40

94 32 0.14

0.40

94 29 0.29
LTmax 0.51 0.51 0.51
ALT 0.32 0.32 0.32
TW −11.28 −34.76 −43.69
EF 12.76 12.68 12.89

P3 22

Overall 0.05

18 8 0.16

0.05

24 12 0.08

0.05

14 6 0.03
LTmax 0.04 0.04 0.04
ALT 0.05 0.05 0.05
TW 0.00 N/A N/A
EF 8.03 8.03 8.03

P4 42

Overall 0.12

74 26 0.31

0.12

86 32 0.48

0.12

48 19 0.53
LTmax 0.19 0.19 0.19
ALT 0.08 0.08 0.08
TW N/A N/A N/A
EF 14.37 14.97 14.97

P5 20

Overall 0.01

10 5 0.44

0.01

10 5 0.13

0.01

10 5 0.05
LTmax 0.00 0.00 0.00
ALT 0.01 0.01 0.01
TW N/A N/A N/A
EF 8.12 8.12 8.12

P6 42

Overall 0.01

50 19 1.33

0.01

56 22 0.47

0.01

42 17 0.48
LTmax 0.00 0.00 0.00
ALT 0.02 0.02 0.02
TW −861.45 −774.07 −637.21
EF 5.03 4.72 5.45

P7 84

Overall 0.05

88 34 7.64

0.05

126 46 2.08

0.05

96 34 7.14
LTmax 0.00 0.00 0.00
ALT 0.09 0.09 0.09
TW N/A N/A N/A
EF 23.70 23.66 24.02

Average

Overall 0.13

49 19 1.51

0.13

64 24 0.49

0.13

46 17 1.22
LTmax 0.16 0.16 0.16
ALT 0.11 0.11 0.11
TW −247.01 −343.74 −271.86
EF 11.37 11.33 11.51
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Table A.5: Heathrow data: dynamic environment: Weights
(0.3, 0.5, 0.1, 0.1)

FCFS Algorithm DP Algorithm ID
# n Obj. Sep. PI TD ND CT CTmax Sep. PI TD ND Sep.

D01 616

Overall

52,267

14.93

322 152 0.04 1.94 51,303

14.93

332 156 51,303ALT 0.06 0.06
TW 82.61 82.61
EF 21.64 21.64

D02 631

Overall

53,813

22.07

482 245 0.13 6.11 52,535

22.07

510 248 52,535ALT 0.13 0.13
TW −278.96 −278.96
EF 29.37 29.37

D03 617

Overall

52,557

25.37

522 221 0.45 58.60 51,226

25.38

586 244 51,226ALT 0.14 0.14
TW 76.41 78.2
EF 31.64 31.6

D04 635

Overall

54,199

23.53

492 221 0.08 7.22 52,897

23.77

474 222 52,897ALT 0.14 0.14
TW 53.48 53.48
EF 28.26 28.57

D05 644

Overall

54,891

19.78

386 196 0.06 3.30 53,732

19.78

436 215 53,732ALT 0.09 0.09
TW 75.58 75.58
EF 26.4 26.4

D06 639

Overall

54,731

26.93

528 206 0.18 14.5 53,404

24.12

504 201 53,499ALT 0.15 0.14
TW 54.26 37.72
EF 32.26 29.53

D07 642

Overall

54,903

30.66

572 231 0.04 2.37 53,670

30.87

602 240 53,647ALT 0.19 0.19
TW 81.43 81.43
EF 36.65 36.91

D08 632

Overall

53,811

25.31

522 196 0.05 2.15 52,599

25.31

512 190 52,599ALT 0.13 0.13
TW 82.28 82.28
EF 30.20 30.20

D09 642

Overall

54,456

15.78

501 209 0.02 0.76 53,178

16.50

500 196 53,154ALT 0.08 0.09
TW 41.72 39.43
EF 20.37 21.34

D10 648

Overall

55,885

33.25

712 302 0.05 1.48 53,835

33.31

776 307 53,811ALT 0.27 0.27
TW 73.63 75.26
EF 37.77 37.79

Average

Overall

54,151

23.76

504 218 0.11 9.84 52,838

23.76

523 222 52,840ALT 0.14 0.14
TW 34.24 32.70
EF 29.46 29.33
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Table A.6: Heathrow data: dynamic environment: Weights
(0.2, 0.4, 0.3, 0.1)

FCFS Algorithm DP Algorithm ID
# n Obj. Sep. PI TD ND CT Max CT Sep. PI TD ND Sep.

D01 616

Overall

52,267

16.57

314 152 0.03 1.49 51,303

16.57

334 157 51,303ALT 0.06 0.06
TW 95.03 95.03
EF 21.61 21.61

D02 631

Overall

53,813

22.26

422 223 0.14 6.22 52,607

22.26

458 235 52,607ALT 0.12 0.12
TW −4.95 −4.95
EF 27.26 27.27

D03 617

Overall

52,557

29.08

522 236 0.43 52.9 51,274

29.19

564 240 51,250ALT 0.13 0.14
TW 98.57 94.60
EF 30.48 30.89

D04 635

Overall

54,199

26.49

460 213 0.08 6.52 52,897

26.73

490 221 52,897ALT 0.14 0.14
TW 54.58 54.58
EF 213.00 28.48

D05 644

Overall

54,891

22.02

384 195 0.05 3.09 53,731

22.02

424 203 53,731ALT 0.09 0.09
TW 79.27 79.27
EF 26.36 26.36

D06 639

Overall

54,731

30.83

486 196 0.15 12.10 53,404

26.71

504 206 53,499ALT 0.15 0.14
TW 58.06 40.80
EF 31.90 29.29

D07 642

Overall

54,903

33.15

558 229 0.04 2.34 53,718

33.36

620 255 53,695ALT 0.18 0.18
TW 86.45 86.45
EF 34.94 35.19

D08 632

Overall

53,811

28.98

536 216 0.05 2.17 52,574

30.45

524 197 52,598ALT 0.12 0.13
TW 84.27 84.27
EF 28.03 30.00

D09 642

Overall

54,456

17.17

483 207 0.02 0.72 53,226

17.90

496 205 53,202ALT 0.08 0.08
TW 78.63 78.63
EF 19.42 20.33

D10 648

Overall

55,885

36.68

690 289 0.05 1.55 53,955

36.75

696 285 53,931ALT 0.26 0.26
TW 91.76 91.76
EF 36.35 36.44

Average

Overall

54,151

26.32

486 216 0.10 8.91 52,869

26.19

511 220 52,871ALT 0.13 0.13
TW 72.17 70.04
EF 46.93 28.59



120 Appendix A ALP: Experimental Results

Table A.7: Heathrow data: dynamic environment: Weights
(0.4, 0.6, 0.0, 0.0)

FCFS Algorithm DP Algorithm ID
# n Obj. Sep. PI TD ND CT Max CT Sep. PI TD ND Sep.

D01 616

Overall

52,267

0.03

390 178 0.03 1.56 51,472

0.03

426 192 51,472ALT 0.07 0.07
TW −649.48 −942.65
EF 21.51 21.44

D02 631

Overall

53,813

0.06

544 251 0.14 6.18 52,560

0.06

586 262 52,560ALT 0.13 0.13
TW −699.22 −654.94
EF 28.95 28.79

D03 617

Overall

52,557

−0.09

1,015 315 0.27 26.40 51,540

0.07

714 271 51,227ALT −0.19 0.14
TW −2775.29 −60.25
EF −69.28 31.14

D04 635

Overall

54,199

0.07

716 288 0.07 6.57 52,944

0.07

702 274 52,920ALT 0.15 0.16
TW −45.80 −53.04
EF 27.07 28.37

D05 644

Overall

54,891

0.05

618 250 0.05 3.09 53,780

0.05

660 260 53,780ALT 0.10 0.10
TW −502.52 −647.02
EF 25.75 25.68

D06 639

Overall

54,731

0.08

686 242 0.15 12.20 53,429

0.08

702 246 53,428ALT 0.16 0.16
TW 6.04 8.09
EF 31.88 31.72

D07 642

Overall

54,903

0.10

846 282 0.04 2.34 53,671

0.10

824 278 53,671ALT 0.21 0.21
TW −66.88 −123.81
EF 38.71 38.55

D08 632

Overall

53,811

0.04

781 285 0.06 2.28 52,768

0.07

750 255 52,744ALT 0.09 0.14
TW −20.88 −20.46
EF 19.06 29.39

D09 642

Overall

54,456

0.04

747 273 0.02 0.80 53,323

0.04

784 273 53,274ALT 0.09 0.10
TW −550.52 −673.50
EF 19.39 20.53

D10 648

Overall

55,885

0.13

1,014 354 0.05 1.51 53,956

0.13

1,064 349 53,980ALT 0.29 0.29
TW −78.41 −114.83
EF 38.42 37.94

Average

Overall

54,151

0.05

736 272 0.09 6.29 52,944

0.07

721 266 52,906ALT 0.11 0.15
TW −538.30 −328.24
EF 18.14 29.37
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Table A.8: Random data, Set1: dynamic environment: Weights
(0.3, 0.5, 0.1, 0.1)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G01 611

Overall 12.72

340 195 0.03 0.78

12.72

370 205
ALT 0.06 0.06

TW −119.26 −119.26

EF 18.46 18.46

G02 608

Overall 13.48

430 220 0.06 1.92

13.48

444 224
ALT 0.07 0.07

TW 22.59 22.59

EF 18.34 18.34

G03 611

Overall 13.11

352 196 0.04 1.84

13.11

392 204
ALT 0.07 0.07

TW 49.71 49.71

EF 18.07 18.07

G04 608

Overall 16.04

436 237 0.02 0.70

16.04

450 241
ALT 0.08 0.08

TW 24.42 24.42

EF 21.49 21.49

G05 608

Overall 17.09

352 196 0.05 2.99

17.09

372 200
ALT 0.09 0.09

TW 54.85 54.95

EF 18.73 18.73

G06 614

Overall 15.65

454 227 0.06 4.93

15.65

482 236
ALT 0.09 0.09

TW 73.86 76.00

EF 19.75 19.72

G07 621

Overall 12.11

366 214 0.02 0.46

12.11

376 203
ALT 0.06 0.06

TW 44.44 44.44

EF 16.46 16.46

G08 615

Overall 17.10

428 217 0.07 4.96

17.10

444 221
ALT 0.09 0.09

TW 73.57 73.57

EF 20.51 20.51

G09 616

Overall 9.73

370 207 0.02 1.12

9.73

380 203
ALT 0.05 0.05

TW −96.92 −96.92

EF 13.88 13.88

G10 620

Overall 14.36

394 207 0.16 7.67

14.36

420 217
ALT 0.06 0.06

TW 95.18 95.18

EF 18.78 18.78

Average

Overall 14.14

392 212 0.05 2.74

14.14

413 215
ALT 0.07 0.07

TW 22.24 22.47

EF 18.44 18.44
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Table A.9: Random data, Set2: dynamic environment: Weights
(0.3, 0.5, 0.1, 0.1)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G11 629

Overall 19.57

524 255 0.09 4.92

19.57

572 279
ALT 0.12 0.12

TW 57.08 57.48

EF 23.31 23.29

G12 635

Overall 19.65

544 275 0.02 0.47

19.62

564 283
ALT 0.12 0.12

TW 50.51 56.44

EF 23.71 23.51

G13 638

Overall 14.91

522 265 0.16 11.00

14.91

536 271
ALT 0.09 0.09

TW 49.62 49.62

EF 17.77 17.77

G14 628

Overall 20.29

454 247 0.03 1.86

20.29

514 271
ALT 0.11 0.11

TW 90.33 90.33

EF 23.62 23.62

G15 628

Overall 16.68

478 236 0.06 2.80

16.63

506 233
ALT 0.10 0.10

TW 35.59 39.70

EF 21.12 20.97

G16 634

Overall 14.65

436 234 0.03 0.69

14.65

446 228
ALT 0.07 0.07

TW −9.47 −9.47

EF 19.94 19.94

G17 635

Overall 29.01

536 267 0.1 5.53

29.01

552 263
ALT 0.18 0.18

TW 78.10 78.10

EF 31.32 31.32

G18 648

Overall 36.90

522 254 0.08 2.32

36.90

562 260
ALT 0.25 0.25

TW 94.33 94.33

EF 38.98 38.98

G19 634

Overall 16.13

450 239 0.02 0.53

16.18

484 245
ALT 0.09 0.09

TW 66.85 66.85

EF 20.54 20.62

G20 634

Overall 27.75

534 273 0.06 2.06

27.77

588 291
ALT 0.19 0.19

TW 67.81 67.95

EF 31.72 31.74

Average

Overall 21.56

500 255 0.07 3.22

21.55

532 262
ALT 0.13 0.13

TW 58.08 59.13

EF 25.20 25.18
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Table A.10: Random data, Set3: dynamic environment: Weights
(0.3, 0.5, 0.1, 0.1)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G21 655

Overall 26.25

520 259 0.25 21.10

26.25

578 274
ALT 0.18 0.18

TW 71.51 71.51

EF 29.06 29.06

G22 653

Overall 25.76

580 284 0.11 5.27

25.76

684 319
ALT 0.19 0.19

TW 81.16 81.16

EF 28.18 28.18

G23 653

Overall 28.28

436 231 0.05 1.80

27.89

470 239
ALT 0.20 0.20

TW 73.14 74.08

EF 31.30 30.78

G24 650

Overall 20.52

518 268 0.17 22.50

20.54

578 281
ALT 0.13 0.13

TW 53.58 53.58

EF 24.44 24.47

G25 659

Overall 27.82

528 267 0.18 7.36

27.82

552 271
ALT 0.18 0.18

TW 70.72 70.72

EF 33.09 33.09

G26 654

Overall 30.17

578 292 0.14 5.60

30.23

642 305
ALT 0.20 0.20

TW 83.74 83.74

EF 30.09 30.17

G27 652

Overall 24.27

562 287 0.02 0.54

24.27

608 301
ALT 0.17 0.17

TW 68.37 68.37

EF 25.57 25.57

G28 657

Overall 43.64

662 308 0.18 6.07

43.64

740 329
ALT 0.38 0.38

TW 94.46 94.46

EF 46.49 46.49

G29 652

Overall 34.12

506 259 0.09 3.15

34.12

596 281
ALT 0.25 0.25

TW 84.53 84.53

EF 38.89 38.89

G30 655

Overall 27.31

562 285 0.12 3.48

27.31

626 312
ALT 0.19 0.19

TW 67.42 67.42

EF 31.96 31.96

Average

Overall 28.81

545 274 0.13 7.69

28.78

607 291
ALT 0.21 0.21

TW 74.86 74.96

EF 31.91 31.87
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Table A.11: Random data, Set4: dynamic environment: Weights
(0.3, 0.5, 0.1, 0.1)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G31 676

Overall 49.31

690 335 0.17 11.40

48.99

734 346
ALT 0.46 0.46

TW 89.49 89.62

EF 47.03 46.58

G32 660

Overall 26.11

596 312 0.07 2.98

26.11

680 334
ALT 0.17 0.17

TW 58.54 58.54

EF 29.74 29.74

G33 679

Overall 54.62

668 332 0.10 3.69

54.62

750 362
ALT 0.62 0.62

TW 94.64 94.64

EF 50.55 50.55

G34 679

Overall 55.97

724 351 0.10 1.87

55.97

800 360
ALT 0.58 0.58

TW 95.47 95.47

EF 56.31 56.31

G35 670

Overall 42.19

684 316 0.32 18.6

42.19

734 330
ALT 0.36 0.36

TW 79.67 79.67

EF 43.57 43.58

G36 675

Overall 57.28

698 324 0.86 68.7

57.21

772 342
ALT 0.61 0.61

TW 95.40 95.15

EF 52.44 52.41

G37 668

Overall 43.97

670 327 0.11 4.95

43.97

732 347
ALT 0.36 0.36

TW 94.66 94.66

EF 39.98 39.98

G38 672

Overall 34.03

628 300 0.05 1.44

33.99

658 294
ALT 0.28 0.28

TW 86.70 87.65

EF 33.02 32.87

G39 666

Overall 43.84

686 332 0.07 6.13

43.84

738 341
ALT 0.39 0.39

TW 91.91 91.91

EF 41.22 41.22

G40 666

Overall 39.46

678 311 0.12 5.74

39.26

734 328
ALT 0.30 0.30

TW 85.09 85.77

EF 37.42 37.03

Average

Overall 44.68

672 324 0.2 12.55

44.61

733 338
ALT 0.41 0.41

TW 87.16 87.31

EF 43.13 43.03
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Table A.12: Random data, Set1: dynamic environment: Weights
(0.2, 0.4, 0.3, 0.1)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G01 611

Overall 13.65

300 183 0.03 0.82

13.65

326 203
ALT 0.05 0.05

TW 77.49 77.49

EF 17.55 17.55

G02 608

Overall 14.67

420 219 0.06 1.96

14.67

432 218
ALT 0.07 0.07

TW 58.00 58.00

EF 17.64 17.64

G03 611

Overall 14.20

350 195 0.04 1.87

14.20

382 204
ALT 0.07 0.07

TW 68.79 68.79

EF 18.05 18.05

G04 608

Overall 17.65

434 241 0.02 0.73

17.65

422 231
ALT 0.08 0.08

TW 49.44 49.44

EF 20.85 20.85

G05 608

Overall 22.34

336 191 0.55 3.17

22.34

374 199
ALT 0.09 0.09

TW 57.20 57.20

EF 18.32 18.32

G06 614

Overall 18.18

438 222 0.58 5.07

18.18

460 232
ALT 0.08 0.08

TW 84.73 84.73

EF 19.54 19.54

G07 621

Overall 13.22

360 212 0.02 0.52

13.22

388 221
ALT 0.06 0.06

TW 75.56 75.56

EF 16.37 16.37

G08 615

Overall 20.50

416 220 0.07 5.38

20.50

434 225
ALT 0.09 0.09

TW 92.77 92.77

EF 19.11 19.11

G09 616

Overall 10.58

360 204 0.03 1.13

10.58

372 198
ALT 0.05 0.05

TW 87.69 87.69

EF 13.79 13.79

G10 620

Overall 17.36

386 205 0.17 8.10

17.36

406 208
ALT 0.06 0.06

TW 97.69 97.69

EF 18.72 18.72

Average

Overall 16.24

380 209 0.16 2.88

16.24

400 214
ALT 0.07 0.07

TW 74.94 74.94

EF 17.99 17.99



126 Appendix A ALP: Experimental Results

Table A.13: Random data, Set2: dynamic environment: Weights
(0.2, 0.4, 0.3, 0.1)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G11 629

Overall 22.68

476 239 0.09 4.65

22.68

498 253
ALT 0.11 0.11

TW 68.62 68.62

EF 22.28 22.28

G12 635

Overall 22.51

528 271 0.01 0.44

22.51

564 278
ALT 0.11 0.11

TW 61.36 61.36

EF 23.26 23.26

G13 638

Overall 17.38

524 263 0.15 10.30

17.38

536 267
ALT 0.09 0.09

TW 60.72 60.72

EF 17.33 17.33

G14 628

Overall 24.92

448 244 0.03 1.72

24.92

532 270
ALT 0.11 0.11

TW 96.82 96.82

EF 23.20 23.21

G15 628

Overall 18.39

462 234 0.07 2.67

18.39

496 231
ALT 0.10 0.10

TW 41.92 41.92

EF 20.91 20.91

G16 634

Overall 15.80

424 228 0.03 0.67

15.80

454 228
ALT 0.07 0.07

TW 54.13 54.13

EF 19.90 19.90

G17 635

Overall 35.77

534 267 0.09 5.32

34.16

462 265
ALT 0.18 0.18

TW 78.18 74.97

EF 31.31 29.82

G18 648

Overall 45.44

504 249 0.08 2.29

45.44

524 250
ALT 0.25 0.25

TW 96.45 96.45

EF 38.69 38.69

G19 634

Overall 18.16

454 237 0.02 0.52

18.22

510 243
ALT 0.09 0.09

TW 77.22 77.22

EF 20.38 20.46

G20 634

Overall 31.84

522 279 0.07 1.98

31.31

576 298
ALT 0.18 0.18

TW 74.80 73.78

EF 30.67 30.13

Average

Overall 25.29

488 251 0.07 3.06

25.08

515 258
ALT 0.13 0.13

TW 71.02 70.60

EF 24.79 24.60
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Table A.14: Random data, Set3: dynamic environment: Weights
(0.2, 0.4, 0.3, 0.1)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G21 655

Overall 30.83

514 255 0.23 19.30

30.33

550 265
ALT 0.18 0.18

TW 71.81 70.30

EF 29.03 28.61

G22 653

Overall 30.04

570 282 0.11 4.80

30.04

644 297
ALT 0.18 0.18

TW 86.32 86.32

EF 27.03 27.03

G23 653

Overall 32.58

430 233 0.05 1.76

32.58

460 241
ALT 0.20 0.20

TW 77.83 77.83

EF 30.13 30.13

G24 650

Overall 22.94

482 250 0.15 19.80

22.94

546 263
ALT 0.12 0.12

TW 80.72 80.72

EF 22.77 22.77

G25 659

Overall 30.46

502 265 0.14 6.08

30.46

526 269
ALT 0.17 0.17

TW 75.74 75.74

EF 32.05 32.05

G26 654

Overall 38.96

540 283 0.15 5.35

39.01

612 302
ALT 0.20 0.20

TW 86.67 86.67

EF 29.42 29.50

G27 652

Overall 29.35

534 274 0.02 0.56

29.35

578 289
ALT 0.17 0.17

TW 71.04 71.04

EF 24.40 24.40

G28 657

Overall 50.41

638 305 0.16 2.98

50.41

684 314
ALT 0.37 0.37

TW 98.12 98.39

EF 45.75 45.69

G29 652

Overall 38.27

468 258 0.11 3.10

38.27

528 280
ALT 0.24 0.24

TW 89.81 89.81

EF 38.00 38.00

G30 655

Overall 30.27

552 285 0.12 3.48

30.25

596 302
ALT 0.18 0.17

TW 83.23 82.82

EF 30.34 30.34

Average

Overall 33.41

523 269 0.12 6.72

33.36

572 282
ALT 0.20 0.20

TW 82.13 81.96

EF 30.89 30.85
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Table A.15: Random data, Set4: dynamic environment: Weights
(0.2, 0.4, 0.3, 0.1)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G31 676

Overall 58.43

636 323 0.14 8.96

58.43

700 335
ALT 0.43 0.43

TW 90.21 90.21

EF 44.10 44.10

G32 660

Overall 29.88

560 303 0.07 2.85

30.09

640 314
ALT 0.17 0.17

TW 61.08 61.12

EF 28.98 29.26

G33 679

Overall 65.22

598 312 0.09 3.25

65.24

696 355
ALT 0.60 0.60

TW 94.84 94.84

EF 49.24 49.27

G34 679

Overall 64.99

682 347 0.09 1.73

64.99

752 350
ALT 0.57 0.57

TW 97.57 97.57

EF 55.66 55.66

G35 670

Overall 49.71

602 302 0.35 18.10

49.73

682 322
ALT 0.35 0.35

TW 82.86 82.86

EF 42.57 42.59

G36 675

Overall 69.12

632 314 0.99 77.50

69.12

678 336
ALT 0.60 0.60

TW 96.28 96.28

EF 51.67 51.67

G37 668

Overall 56.11

648 321 0.10 4.99

56.11

696 334
ALT 0.35 0.35

TW 95.40 95.40

EF 38.81 38.81

G38 672

Overall 42.90

564 285 0.04 0.96

42.90

632 306
ALT 0.27 0.27

TW 90.53 90.53

EF 31.76 31.76

G39 666

Overall 54.91

664 324 0.07 5.60

54.91

704 323
ALT 0.39 0.39

TW 93.43 93.43

EF 40.47 40.47

G40 666

Overall 49.99

644 309 0.13 5.00

49.99

692 325
ALT 0.29 0.29

TW 86.80 86.80

EF 36.38 36.38

Average

Overall 54.12

623 314 0.21 12.89

54.15

687 330
ALT 0.40 0.40

TW 88.90 88.90

EF 41.96 42.00
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Table A.16: Random data, Set1: dynamic environment: Weights
(0.4, 0.6, 0.0, 0.0)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G01 611

Overall 0.03

460 246 0.03 0.75

0.03

542 267
ALT 0.06 0.06

TW −1076.54 −1609.05

EF 17.25 17.41

G02 608

Overall 0.04

584 269 0.06 1.94

0.04

560 255
ALT 0.08 0.08

TW −402.75 −514.06

EF 17.91 17.81

G03 611

Overall 0.03

570 271 0.04 1.83

0.03

636 283
ALT 0.07 0.07

TW −5578.96 −6973.76

EF 17.30 17.34

G04 608

Overall 0.04

528 265 0.02 0.73

0.04

544 271
ALT 0.09 0.09

TW −97.49 −182.11

EF 21.52 21.39

G05 608

Overall 0.05

534 242 0.05 3.02

0.05

604 258
ALT 0.10 0.10

TW 2.16 −20.68

EF 18.88 18.86

G06 614

Overall 0.05

620 273 0.06 4.88

0.05

618 267
ALT 0.10 0.10

TW −188.17 −276.14

EF 20.59 20.55

G07 621

Overall 0.03

566 272 0.02 0.46

0.03

516 248
ALT 0.07 0.07

TW −2276.33 −1980.74

EF 15.51 16.22

G08 615

Overall 0.05

676 271 0.07 4.32

0.05

738 277
ALT 0.10 0.10

TW −165.84 −200.22

EF 19.21 19.65

G09 616

Overall 0.02

456 236 0.03 1.09

0.02

504 240
ALT 0.05 0.05

TW −6732.31 −10463.08

EF 13.75 13.67

G10 620

Overall 0.03

502 233 0.16 7.79

0.03

506 234
ALT 0.07 0.07

TW −112.47 −141.34

EF 18.22 17.97

Average

Overall 0.04

550 258 0.05 2.68

0.04

577 260
ALT 0.08 0.08

TW −1662.87 −2236.12

EF 18.01 18.09
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Table A.17: Random data, Set2: dynamic environment: Weights
(0.4, 0.6, 0.0, 0.0)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G11 629

Overall 0.06

668 293 0.09 4.92

0.06

712 299
ALT 0.14 0.13

TW −78.44 −102.61

EF 24.46 24.20

G12 635

Overall 0.06

730 326 0.02 0.47

0.06

774 324
ALT 0.13 0.13

TW −74.14 −103.17

EF 23.39 23.18

G13 638

Overall 0.05

782 326 0.17 11.70

0.05

788 319
ALT 0.11 0.11

TW −174.95 −220.77

EF 17.93 17.83

G14 628

Overall 0.06

710 303 0.03 1.78

0.06

758 313
ALT 0.12 0.12

TW −50.10 −110.22

EF 23.22 22.71

G15 628

Overall 0.05

710 304 0.05 1.95

0.05

716 299
ALT 0.11 0.11

TW −203.29 −242.62

EF 21.24 20.53

G16 634

Overall 0.04

560 283 0.03 0.73

0.04

544 266
ALT 0.08 0.08

TW −5117.07 −5649.33

EF 18.97 18.76

G17 635

Overall 0.09

664 302 0.09 5.64

0.09

704 300
ALT 0.20 0.20

TW 41.58 26.68

EF 33.13 32.29

G18 648

Overall 0.12

738 297 0.08 2.34

0.12

784 300
ALT 0.26 0.26

TW 58.04 53.74

EF 39.17 39.16

G19 634

Overall 0.05

668 292 0.02 0.53

0.05

704 297
ALT 0.10 0.10

TW −378.35 −482.44

EF 21.08 20.92

G20 634

Overall 0.10

710 306 0.06 2.04

0.10

808 340
ALT 0.20 0.20

TW −18.76 −37.69

EF 31.79 31.46

Average

Overall 0.07

694 303 0.06 3.21

0.07

729 306
ALT 0.14 0.14

TW −599.55 −686.84

EF 25.44 25.11
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Table A.18: Random data, Set3: dynamic environment: Weights
(0.4, 0.6, 0.0, 0.0)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G21 655

Overall 0.09

792 331 0.22 19.70

0.09

822 342
ALT 0.20 0.20

TW −19.45 −15.99

EF 28.66 29.15

G22 653

Overall 0.10

908 343 0.10 3.98

0.10

978 363
ALT 0.21 0.21

TW −41.03 −62.21

EF 29.12 28.99

G23 653

Overall 0.10

790 334 0.05 1.82

0.10

774 322
ALT 0.22 0.22

TW −8.51 −13.18

EF 32.25 31.84

G24 650

Overall 0.06

758 333 0.11 5.54

0.06

746 327
ALT 0.13 0.14

TW −163.24 −169.98

EF 23.16 22.74

G25 659

Overall 0.09

736 326 0.16 7.24

0.09

748 343
ALT 0.19 0.19

TW −69.72 −97.38

EF 33.31 32.99

G26 654

Overall 0.11

806 337 0.13 5.47

0.11

902 358
ALT 0.23 0.23

TW 46.06 31.07

EF 31.85 31.85

G27 652

Overall 0.09

896 362 0.02 0.54

0.09

970 368
ALT 0.19 0.19

TW −3.26 −21.35

EF 26.67 26.41

G28 657

Overall 0.19

934 364 0.16 3.48

0.19

958 358
ALT 0.39 0.40

TW 40.64 35.15

EF 46.95 47.34

G29 652

Overall 0.12

692 312 0.09 3.14

0.12

776 332
ALT 0.26 0.26

TW −1.11 −22.49

EF 39.71 39.02

G30 655

Overall 0.09

785 337 0.13 3.98

0.09

792 339
ALT 0.19 0.19

TW −43.67 −73.95

EF 32.10 31.87

Average

Overall 0.10

810 338 0.12 5.49

0.10

847 345
ALT 0.22 0.22

TW −26.33 −41.03

EF 32.38 32.22
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Table A.19: Random data, Set4: dynamic environment: Weights
(0.4, 0.6, 0.0, 0.0)

Algorithm DP Algorithm ID

# n Obj. PI TD ND CT Max CT PI TD ND

G31 676

Overall 0.24

920 370 0.17 11.30

0.24

996 385
ALT 0.48 0.48

TW 77.59 74.34

EF 47.69 47.54

G32 660

Overall 0.09

786 364 0.07 3.08

0.09

836 373
ALT 0.18 0.19

TW 6.54 −10.45

EF 29.58 30.30

G33 679

Overall 0.30

1,008 418 0.09 2.74

0.30

1,124 430
ALT 0.64 0.63

TW 81.87 77.42

EF 51.31 51.03

G34 679

Overall 0.28

1,030 395 0.09 1.65

0.28

1,094 396
ALT 0.59 0.59

TW 72.58 68.72

EF 56.00 55.93

G35 670

Overall 0.18

974 372 0.31 18.60

0.18

1,032 380
ALT 0.37 0.37

TW 57.54 52.39

EF 43.92 43.76

G36 675

Overall 0.30

976 372 0.95 71.60

0.30

1,034 394
ALT 0.63 0.63

TW 84.66 83.15

EF 52.95 52.85

G37 668

Overall 0.18

1,062 391 0.07 3.41

0.18

1,182 412
ALT 0.38 0.38

TW 67.52 62.96

EF 40.23 40.13

G38 672

Overall 0.14

1,010 380 0.04 0.96

0.14

1,120 417
ALT 0.30 0.30

TW 41.55 35.85

EF 33.58 33.55

G39 666

Overall 0.20

1,006 401 0.06 4.83

0.20

1,080 409
ALT 0.42 0.42

TW 63.41 58.99

EF 41.87 41.85

G40 666

Overall 0.15

848 348 0.14 5.27

0.15

888 350
ALT 0.32 0.31

TW 62.71 60.99

EF 37.87 37.66

Average

Overall 0.21

962 381 0.20 12.34

0.21

1,039 395
ALT 0.43 0.43

TW 61.60 56.44

EF 43.50 43.46
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Table B.1: Generating nodes in stage u+1 in regarding to stage
u based on Layout C, (R1,R2,R3,M1,M2)

Stage u Stage u + 1
Take-off aircraft

Type State Type State

S1 (i,j,k,l,m)

S1 (l,j,k,m,n) i

S2 (l,j,k,0,m) i

S3 (l,j,k,m,0) i

S1 (i,m,k,l,n) j

S5 (i,0,k,l,m) j

S3 (i,m,k,l,0) j

S1 (i,j,f ,l,m) k

S6 (i,j,0,l,m) k

S2 (i,j,k,0,m)

S4 (0,j,k,0,m) i

S1 (i,m,k,n,o) j

S3 (i,m,k,n,0) j

S2 (i,m,k,0,n) j

S10 (i,m,k,0,0) j

S2 (i,j,n,0,m) k

S9 (i,j,0,0,m) k

S3 (i,j,k,l,0)

S10 (l,j,0,m,0) i

S8 (i,0,l,l,0) j

S1 (i,j,l,l,o) k

S3 (i,j,l,l,0) k

S4 (0,j,k,0,m)

S1 (n,m,k,o,p) j

S3 (n,m,k,o,0) j

S2 (n,m,k,0,o) j

S10 (n,m,k,0,0) j

S13 (0,m,k,0,0) j

S4 (0,m,k,0,n) j

S4 (0,j,n,0,m) k

S11 (0,j,0,0,m) k

S5 (i,0,k,l,m)

S1 (l,n,k,m,o) i

S5 (l,0,k,m,n) i

S3 (l,n,k,m,0) i

S8 (l,0,k,m,0) i

S5 (i,0,n,l,m) k

S7 (i,0,0,l,m) k

S6 (i,j,0,l,m)

S1 (l,j,o,m,n) i

S6 (l,j,0,m,n) i

S9 (l,j,0,0,m) i

S1 (i,m,o,l,n) j

S6 (i,m,0,l,n) j

S7 (i,0,0,l,m) j
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Table B.2: Generating nodes in stage u+1 in regarding to stage
u based on Layout C, (R1,R2,R3,M1,M2) (Continued)

Stage u Stage u + 1
Take-off aircraft

Type State Type State

S7 (i,0,0,l,m)

S1 (l,n,o,m,p) i

S1 (l,n,p,m,o) i

S6 (l,n,0,m,o) i

S3 (l,n,o,m,0) i

S5 (l,0,o,m,n) i

S7 (l,0,0,m,n) i

S8 (i,0,k,l,0)

S12 (l,0,k,0,0) i

S1 (i,o,n,l,p) k

S5 (i,0,n,l,o) k

S8 (i,0,n,l,0) k

S3 (i,o,n,l,0) k

S9 (i,j,0,0,m)

S11 (0,j,0,0,m) i

S1 (i,m,p,n,o) j

S1 (i,m,o,n,p) j

S6 (i,m,0,n,o) j

S2 (i,m,o,0,n) j

S9 (i,m,0,0,n) j

S3 (i,m,o,n,0) j

S10 (i,j,k,0,0)

S13 (0,j,k,0,0) i

S12 (i,0,k,0,0) j

S1 (i,j,n,o,p) k

S3 (i,j,n,o,0) k

S2 (i,j,n,0,o) k

S10 (i,j,n,0,0) k

S11 (0,j,0,0,m)

S1 (n,m,q,o,p) j

S1 (n,m,o,p,q) j

S1 (n,m,p,o,q) j

S6 (n,m,0,o,p) j

S3 (n,m,p,o,0) j

S3 (n,m,o,p,0) j

S10 (n,m,o,0,0) j

S2 (n,m,p,0,o) j

S2 (n,m,o,0,p) j
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Table B.3: Generating nodes in stage u+1 in regarding to stage
u based on Layout C, (R1,R2,R3,M1,M2) (Continued)

Stage u Stage u + 1
Take-off aircraft

Type State Type State

S12 (i,0,k,0,0)

S14 (0,0,k,0,0) j

S1 (i,p,n,o,q) j

S1 (i,o,n,p,q) j

S2 (i,o,n,0,p) j

S5 (i,0,n,o,p) j

S8 (i,0,n,o,0) j

S10 (i,o,n,0,0) j

S3 (i,o,n,p,0) j

S3 (i,p,n,o,0) j

S13 (0,j,k,0,0)

S14 (0,0,k,0,0) j

S1 (o,j,n,p,q) k

S3 (o,j,n,p,0) k

S2 (o,j,n,0,p) k

S10 (o,j,n,0,0) k

S4 (0,j,n,0,o) k

S13 (0,j,n,0,0) k

S14 (0,0,k,0,0)

S1 (o,p,n,q,r) k

S1 (o,q,n,p,r) k

S1 (p,o,n,q,r) k

S5 (o,0,n,p,q) k

S2 (o,p,n,0,q) k

S2 (p,o,n,0,q) k

S2 (o,q,n,0,p) k

S3 (p,o,n,q,0) k

S3 (o,q,n,p,0) k

S3 (o,p,n,q,0) k

S4 (0,o,n,0,p) k

S8 (o,0,n,p,0) k

S10 (o,p,n,0,0) k

S10 (p,o,n,0,0) k

S13 (0,o,n,0,0) k

S12 (o,0,n,0,0) k

S14 (0,0,n,0,0) k
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Table B.4: Results for Layout A, data Set1 (λ = 1/75, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 4, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D01

PTmax

1,620 11,074 1,440 11.1 9,334 0.002

1,380 14.8 8,434 0.8

1,380 14.8 8,434 9
ATT 1,380 14.8 8,434 0.8
TWT 1,380 14.8 8,434 0.7
BSID 1,380 14.8 8,434 0.7

D02

PTmax

1,800 9,485 1,560 13.3 7,385 0.003

1,500 16.7 6,545 1.0

1,440 20.0 6,305 9
ATT 1,500 16.7 6,545 1.0
TWT 1,500 16.7 6,545 1.0
BSID 1,500 16.7 6,545 1.0

D03

PTmax

2,040 13,415 1,500 26.5 8,255 0.003

1,560 23.5 7,835 0.9

1,440 29.4 7,475 8
ATT 1,500 23.5 7,835 0.8
TWT 1,500 23.5 7,835 1.0
BSID 1,500 23.5 7,835 0.9

D04

PTmax

1,860 8,930 1,440 22.6 5,210 0.004

1,380 25.8 4,370 0.9

1,380 25.8 4,370 8
ATT 1,380 25.8 4,370 0.9
TWT 1,380 25.8 4,370 0.9
BSID 1,380 25.8 4,370 1.0

D05

PTmax

2,160 10,854 1,620 25.0 5,814 0.004

1,380 36.1 3,414 0.9

1,380 36.1 3,414 8
ATT 1,380 36.1 3,414 0.9
TWT 1,380 36.1 3,414 0.9
BSID 1,380 36.1 3,414 0.9

D06

PTmax

1,920 10,861 1,680 12.5 8,821 0.002

1,620 15.6 8,581 0.9

1,560 18.8 8,211 8
ATT 1,620 15.6 8,581 0.8
TWT 1,620 15.6 8,581 0.9
BSID 1,620 15.6 8,581 0.8

D07

PTmax

1,860 10,867 1,560 16.1 7,507 0.002

1,380 25.8 4,627 1.0

1,320 29.0 3,427 8
ATT 1,380 25.8 4,627 1.0
TWT 1,380 25.8 4,627 1.0
BSID 1,380 25.8 4,627 1.0

D08

PTmax

1,800 8,665 1,560 13.3 5,605 0.004

1,500 16.7 5,305 1.1

1,500 16.7 5,305 8
ATT 1,500 16.7 5,305 1.0
TWT 1,500 16.7 5,305 1.0
BSID 1,500 16.7 5,305 1.0

D09

PTmax

1,860 9,892 1,560 16.1 6,052 0.005

1,440 22.6 5,572 0.7

1,440 22.6 5,572 9
ATT 1,440 22.6 5,572 0.7
TWT 1,440 22.6 5,572 0.7
BSID 1,440 22.6 5,572 0.7

D10

PTmax

1,500 7,040 1,440 4.0 5,840 0.001

1,380 8.0 5,540 0.8

1,380 8.0 5,540 8
ATT 1,380 8.0 5,540 0.8
TWT 1,380 8.0 5,540 0.8
BSID 1,380 8.0 5,540 0.8

Ave.

PTmax

1,842 10,108 1,536 16.1 6,982 0.003

1,446 20.9 6,022 0.9

1,422 22.1 5,806 8
ATT 1,446 20.9 6,022 0.9
TWT 1,446 20.9 6,022 0.9
BSID 1,446 20.9 6,022 0.9
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Table B.5: Results for Layout A, data Set2 (λ = 1/75, 40% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 4, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D11

PTmax

1,620 11,074 1,500 7.4 9,334 0.002

1,440 11.1 8,434 0.9

1,440 11.1 8,434 9
ATT 1,440 11.1 8,434 0.8
TWT 1,440 11.1 8,434 0.7
BSID 1,440 11.1 8,434 0.9

D12

PTmax

1,800 9,485 1,560 13.3 7,385 0.003

1,500 16.7 6,545 1.0

1,440 20.0 6,305 7
ATT 1,500 16.7 6,545 1.2
TWT 1,500 16.7 6,545 1.0
BSID 1,500 16.7 6,545 1.2

D13

PTmax

2,040 13,415 1,500 26.5 8,255 0.001

1,560 23.5 8,795 0.9

1,440 29.4 7,475 8
ATT 1,560 23.5 8,795 0.9
TWT 1,560 23.5 8,795 0.9
BSID 1,560 23.5 8,795 0.9

D14

PTmax

1,860 8,930 1,560 16.1 6,050 0.004

1,500 19.4 5,450 1.0

1,500 19.4 5,450 7
ATT 1,500 19.4 5,450 0.9
TWT 1,500 19.4 5,450 1.0
BSID 1,500 19.4 5,450 0.9

D5

PTmax

2,160 10,854 1,620 25.0 5,814 0.001

1,440 33.3 4,434 0.6

1,440 33.3 4,434 8
ATT 1,440 33.3 4,434 0.6
TWT 1,440 33.3 4,434 0.6
BSID 1,440 33.3 4,434 0.7

D16

PTmax

1,920 10,861 1,740 9.4 9,867 0.001

1,680 12.5 9,241 0.8

1,620 15.6 8,281 7
ATT 1,680 12.5 9,241 0.8
TWT 1,680 12.5 9,241 0.9
BSID 1,680 9.4 9,241 0.9

D7

PTmax

1,860 10,867 1,560 16.1 7,507 0.003

1,440 22.6 4,987 1.0

1,440 22.6 4,807 8
ATT 1,440 22.6 4,987 1.0
TWT 1,440 22.6 4,987 1.1
BSID 1,440 22.6 4,987 1.0

D18

PTmax

1,800 8,665 1,560 13.3 5,845 0.004

1,560 13.3 5,665 1.0

1,560 13.3 5,665 8
ATT 1,560 13.3 5,665 1.1
TWT 1,560 13.3 5,665 1.0
BSID 1,560 13.3 5,665 1.0

D19

PTmax

1,860 9,892 1,560 16.1 6,952 0.003

1,500 19.4 6,472 0.7

1,440 22.6 5,932 7
ATT 1,500 19.4 6,472 0.7
TWT 1,500 19.4 6,472 0.7
BSID 1,500 19.4 6,472 0.7

D20

PTmax

1,500 7,040 1,440 4.0 5,840 0.002

1,380 8.0 5,540 0.8

1,380 8.0 5,540 9
ATT 1,380 8.0 5,540 0.9
TWT 1,380 8.0 5,540 0.8
BSID 1,380 8.0 5,540 1.0

Ave.

PTmax

1,842 10,108 1,560 14.7 7,285 0.002

1,500 18.0 6,556 0.9

1,470 19.5 6,232 8
ATT 1,500 18.0 6,556 0.9
TWT 1,500 18.0 6,556 0.9
BSID 1,500 18.0 6,556 0.9
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Table B.6: Results for Layout A, data Set3 (λ = 1/80, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 4, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D21

PTmax

1,560 6,116 1,380 11.5 4,316 0.003

1,260 19.2 3,536 1.1

1,260 19.2 3,176 8
ATT 1,260 19.2 3,536 1.1
TWT 1,260 19.2 3,536 1.2
BSID 1,260 19.2 3,536 1.1

D22

PTmax

1,800 8,058 1,740 3.3 7,264 0.001

1,380 23.3 3,918 0.8

1,380 23.3 3,918 8
ATT 1,380 23.3 3,918 0.7
TWT 1,380 23.3 3,918 0.7
BSID 1,380 23.3 3,918 0.7

D23

PTmax

1,680 6,059 1,380 17.9 3,719 0.003

1,380 17.9 3,479 1.1

1,380 17.9 3,179 8
ATT 1,380 23.5 3,479 1.1
TWT 1,380 23.5 3,479 1.2
BSID 1,380 23.5 3,479 1.1

D24

PTmax

1,980 9,891 1,800 9.1 7,640 0.001

1,500 24.2 4,491 0.8

1,500 24.2 4,491 8
ATT 1,500 24.2 4,491 0.8
TWT 1,500 24.2 4,491 0.8
BSID 1,500 24.2 4,491 0.9

D25

PTmax

2,040 9,534 1,860 8.8 8,025 0.001

1,560 23.5 3,534 0.9

1,500 26.5 3,534 8
ATT 1,560 23.5 3,534 1.0
TWT 1,560 23.5 3,534 0.9
BSID 1,560 23.5 3,534 1.0

D26

PTmax

1,920 7,851 1,620 15.6 4,371 0.005

1,440 25.0 2,991 0.7

1,440 25.0 2,991 8
ATT 1,440 25.0 2,991 0.8
TWT 1,440 25.0 2,991 0.7
BSID 1,440 25.0 2,991 0.7

D27

PTmax

1,920 11,581 1,500 21.9 8,101 0.002

1,380 28.1 6,421 1.0

1,380 28.1 6,421 8
ATT 1,380 28.1 6,421 1.0
TWT 1,380 28.1 6,421 1.1
BSID 1,380 28.1 6,421 1.0

D28

PTmax

1,980 7,653 1,680 15.2 5,433 0.003

1,560 21.2 4,593 1.1

1,560 21.2 4,593 8
ATT 1,560 21.2 4,593 1.1
TWT 1,560 21.2 4,593 1.0
BSID 1,560 21.2 4,593 1.1

D29

PTmax

2,040 12,817 1,920 5.9 11,246 0.001

1,620 20.6 8,197 0.8

1,560 23.5 7,357 8
ATT 1,620 20.6 8,197 0.8
TWT 1,620 20.6 8,197 0.8
BSID 1,620 20.6 8,197 0.8

D30

PTmax

1,920 9,353 1,860 3.1 8,965 0.001

1,500 21.9 5,153 1.0

1,500 21.9 5,153 8
ATT 1,500 21.9 5,153 0.9
TWT 1,500 21.9 5,153 1.0
BSID 1,500 21.9 5,153 0.9

Ave.

PTmax

1,884 8,891 1,674 11.2 6,908 0.002

1,458 22.5 4,631 0.9

1,446 23.1 4,481 8
ATT 1,458 22.5 4,631 0.9
TWT 1,458 22.5 4,631 0.9
BSID 1,458 22.5 4,631 0.9
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Table B.7: Results for Layout A, data Set4 (λ = 1/80, 40% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 4, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D31

PTmax

1,560 6,116 1,380 11.5 4,316 0.003

1,260 19.2 3,536 1.2

1,260 19.2 3,176 8
ATT 1,260 19.2 3,536 1.1
TWT 1,260 19.2 3,536 1.3
BSID 1,260 19.2 3,536 1.2

D32

PTmax

1,800 8,058 1,740 3.3 7,264 0.001

1,380 23.3 3,918 0.7

1,380 23.3 3,918 8
ATT 1,380 23.3 3,918 0.7
TWT 1,380 23.3 3,918 0.7
BSID 1,380 23.3 3,918 0.7

D33

PTmax

1,680 6,059 1,440 14.3 3,419 0.006

1,440 14.3 3,539 1.1

1,380 17.9 3,179 7
ATT 1,440 14.3 3,539 1.1
TWT 1,440 14.3 3,539 1.1
BSID 1,440 14.3 3,539 1.2

D34

PTmax

1,980 9,891 1,800 9.1 7,640 0.001

1,500 24.2 4,491 0.7

1,500 24.2 4,491 8
ATT 1,500 24.2 4,491 0.8
TWT 1,500 24.2 4,491 0.7
BSID 1,500 24.2 4,491 0.7

D35

PTmax

2,040 9,534 1,860 8.8 8,025 0.001

1,560 23.5 3,534 1.1

1,500 26.5 3,534 8
ATT 1,560 23.5 3,534 1.0
TWT 1,560 23.5 3,534 1.0
BSID 1,560 23.5 3,534 1.2

D36

PTmax

1,920 7,851 1,620 15.6 4,371 0.002

1,440 25.0 2,991 0.5

1,440 25.0 2,991 8
ATT 1,440 25.0 2,991 0.5
TWT 1,440 25.0 2,991 0.5
BSID 1,440 25.0 2,991 0.5

D37

PTmax

1,920 11,581 1,800 6.3 9,867 0.001

1,440 25.0 7,921 1.0

1,380 28.1 6,421 8
ATT 1,440 25.0 7,921 1.1
TWT 1,440 18.8 7,921 1.3
BSID 1,440 25.0 7,921 1.0

D38

PTmax

1,980 7,653 1,900 4.0 7,135 0.001

1,560 21.2 5,133 1.1

1,560 21.2 4,713 8
ATT 1,560 21.2 5,133 1.1
TWT 1,560 21.2 5,133 1.0
BSID 1,560 21.2 5,133 1.1

D39

PTmax

2,040 12,817 1,920 5.9 11,246 0.001

1,620 20.6 8,077 1.0

1,560 23.5 7,357 8
ATT 1,620 20.6 8,077 1.0
TWT 1,620 20.6 8,077 1.0
BSID 1,620 20.6 8,077 1.0

D40

PTmax

1,920 9,353 1,860 3.1 8,965 0.001

1,500 21.9 5,093 1.0

1,500 21.9 5,153 8
ATT 1,500 21.9 5,093 1.0
TWT 1,500 21.9 5,093 1.0
BSID 1,500 21.9 5,093 1.0

Ave.

PTmax

1,884 8,891 1,732 8.2 7,223 0.002

1,470 21.8 4,823 0.9

1,446 23.1 4,517 8
ATT 1,470 21.8 4,823 0.9
TWT 1,470 21.8 4,823 1.0
BSID 1,470 21.8 4,823 0.9
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Table B.8: Results for Layout A, data Set5 (λ = 1/85, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 4, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D41

PTmax

1,860 4,039 1,800 3.2 3,924 0.001

1,740 6.5 3,139 0.4

1,740 6.5 3,139 8
ATT 1,740 6.5 3,139 0.6
TWT 1,740 6.5 3,139 0.6
BSID 1,740 6.5 3,139 0.6

D42

PTmax

1,680 5,764 1,680 0.0 5,764 0.001

1,620 3.6 5,464 0.8

1,620 3.6 5,344 8
ATT 1,620 3.6 5,464 1.0
TWT 1,620 3.6 5,464 0.8
BSID 1,620 3.6 5,464 0.8

D43

PTmax

1,740 2,746 1,740 0.0 2,746 0.001

1,680 3.4 3,646 0.6

1,620 6.9 3,346 8
ATT 1,680 3.4 3,646 0.6
TWT 1,680 3.4 3,646 0.6
BSID 1,680 3.4 3,646 0.6

D44

PTmax

1,800 6,121 1,560 13.3 4,021 0.002

1,500 16.7 3,481 0.5

1,500 16.7 3,481 8
ATT 1,500 16.7 3,481 0.5
TWT 1,500 16.7 3,481 0.5
BSID 1,500 16.7 3,481 0.5

D45

PTmax

1,980 7,953 1,740 12.1 5,133 0.002

1,620 18.2 3,753 0.9

1,620 18.2 3,573 9
ATT 1,620 18.2 3,753 0.9
TWT 1,620 18.2 3,753 0.9
BSID 1,620 18.2 3,753 0.9

D46

PTmax

1,980 6,554 1,680 15.2 3,314 0.004

1,680 15.2 2,834 1.0

1,680 15.2 2,894 8
ATT 1,680 15.2 2,834 1.0
TWT 1,680 15.2 2,834 1.0
BSID 1,680 15.2 2,834 0.9

D47

PTmax

1,680 4,581 1,620 3.6 3,501 0.002

1,620 3.6 3,561 0.9

1,620 3.6 3,501 8
ATT 1,620 3.6 3,561 0.9
TWT 1,620 3.6 3,561 1.0
BSID 1,620 3.6 3,561 0.9

D48

PTmax

1,920 5,833 1,620 15.6 4,093 0.003

1,500 21.9 3,373 0.6

1,500 21.9 3,133 10
ATT 1,500 21.9 3,373 0.6
TWT 1,500 21.9 3,373 0.6
BSID 1,500 21.9 3,373 0.6

D49

PTmax

1,980 10,071 1,560 21.2 6,111 0.003

1,560 21.2 5,631 1.0

1,500 24.2 5,211 8
ATT 1,560 21.2 5,631 1.0
TWT 1,560 21.2 5,631 1.0
BSID 1,560 21.2 5,631 1.0

D50

PTmax

1,620 7,625 1,320 18.5 4,265 0.003

1,260 22.2 3,605 1.0

1,260 22.2 3,605 8
ATT 1,260 22.2 3,605 1.0
TWT 1,260 22.2 3,605 1.0
BSID 1,260 22.2 3,605 1.0

Ave.

PTmax

1,824 6,129 1,626 10.6 4,239 0.002

1,578 13.2 3,849 0.8

1,566 13.9 3,729 8
ATT 1,578 13.2 3,849 0.8
TWT 1,578 13.2 3,849 0.8
BSID 1,578 13.2 3,849 0.8
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Table B.9: Results for Layout A, data Set6 (λ = 1/85, 40% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 4, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D51

PTmax

1,860 4,039 1,740 6.5 3,439 0.001

1,740 6.5 3,139 0.6

1,740 6.5 3,139 8
ATT 1,740 6.5 3,139 0.6
TWT 1,740 6.5 3,139 0.6
BSID 1,740 6.5 3,139 0.6

D52

PTmax

1,680 5,764 1,680 0.0 5,764 0.001

1,620 3.6 5,464 0.8

1,620 3.6 5,284 8
ATT 1,620 3.6 5,464 0.7
TWT 1,620 3.6 5,464 0.7
BSID 1,620 3.6 5,464 0.7

D53

PTmax

1,740 2,746 1,740 0.0 2,746 0.001

1,680 3.4 4,486 0.7

1,680 3.4 4,186 8
ATT 1,680 3.4 4,486 0.7
TWT 1,680 3.4 4,486 0.7
BSID 1,680 3.4 4,486 0.7

D54

PTmax

1,800 6,121 1,620 10.0 4,861 0.002

1,560 13.3 4,681 0.6

1,560 13.3 4,681 8
ATT 1,560 13.3 4,681 0.6
TWT 1,560 13.3 4,681 0.6
BSID 1,560 13.3 4,681 0.6

D55

PTmax

1,980 7,953 1,740 12.1 5,133 0.001

1,620 18.2 3,753 0.8

1,620 18.2 3,573 8
ATT 1,620 18.2 3,753 0.9
TWT 1,620 18.2 3,753 0.8
BSID 1,620 18.2 3,753 0.8

D56

PTmax

1,980 6,554 1,680 15.2 3,314 0.003

1,680 15.2 3,014 1.0

1,680 15.2 3,014 8
ATT 1,680 15.2 3,014 1.0
TWT 1,680 15.2 3,014 0.9
BSID 1,680 15.2 3,014 0.9

D57

PTmax

1,680 4,581 1,620 3.6 3,501 0.002

1,620 3.6 3,561 0.9

1,620 3.6 3,501 8
ATT 1,620 3.6 3,561 0.9
TWT 1,620 3.6 3,561 1.0
BSID 1,620 3.6 3,561 0.9

D58

PTmax

1,920 5,833 1,620 15.6 4,093 0.001

1,500 21.9 3,973 0.6

1,500 21.9 3,973 8
ATT 1,500 21.9 3,973 0.6
TWT 1,500 21.9 3,973 0.6
BSID 1,500 21.9 3,973 0.5

D59

PTmax

1,980 10,071 1,560 21.2 5,631 0.003

1,560 21.2 5,631 1.0

1,500 24.2 5,211 8
ATT 1,560 21.2 5,631 1.0
TWT 1,560 21.2 5,631 1.0
BSID 1,560 21.2 5,631 1.0

D60

PTmax

1,620 7,625 1,380 14.8 5,225 0.003

1,260 22.2 3,605 0.9

1,260 22.2 3,605 9
ATT 1,260 22.2 3,605 1.0
TWT 1,260 22.2 3,605 0.9
BSID 1,260 22.2 3,605 1.0

Ave.

PTmax

1,824 6,129 1,644 9.6 4,419 0.002

1,584 12.9 4,131 0.8

1,578 13.2 4,023 8
ATT 1,584 12.9 4,131 0.8
TWT 1,584 12.9 4,131 0.8
BSID 1,584 12.9 4,131 0.8
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Table B.10: Results for Layout B, data Set1 (λ = 1/75, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 3, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D01

PTmax

1,620 11,074 1,440 11.1 9,334 0.002

1,440 11.1 8,434 0.9

1,380 14.8 8,434 75
ATT 1,440 11.1 8,434 0.8
TWT 1,440 11.1 8,434 0.8
BSID 1,440 11.1 8,434 0.8

D02

PTmax

1,800 9,485 1,500 16.7 6,485 0.004

1,500 16.7 6,545 1.1

1,440 20.0 5,585 74
ATT 1,500 16.7 6,545 1.1
TWT 1,500 16.7 6,545 1.2
BSID 1,500 16.7 6,545 1.1

D03

PTmax

2,040 13,415 1,500 26.5 8,255 0.003

1,440 29.4 7,175 1.0

1,440 29.4 7,175 71
ATT 1,440 29.4 7,175 1.0
TWT 1,440 29.4 7,175 1.0
BSID 1,440 29.4 7,235 1.0

D04

PTmax

1,860 8,930 1,440 22.6 5,210 0.003

1,380 25.8 4,250 1.0

1,380 25.8 4,130 71
ATT 1,380 25.8 4,250 1.0
TWT 1,380 25.8 4,130 1.1
BSID 1,380 25.8 4,130 1.1

D05

PTmax

2,160 10,854 1,620 25.0 5,634 0.004

1,440 33.3 3,594 1.1

1,380 36.1 3,414 75
ATT 1,440 33.3 3,594 1.0
TWT 1,380 36.1 3,414 1.0
BSID 1,440 33.3 3,474 1.1

D06

PTmax

1,920 10,861 1,680 12.5 8,821 0.003

1,500 21.9 7,081 1.0

1,500 21.9 7,021 73
ATT 1,500 21.9 7,081 1.1
TWT 1,500 21.9 7,021 1.0
BSID 1,500 21.9 7,081 1.0

D07

PTmax

1,860 10,867 1,560 16.1 7,507 0.003

1,380 25.8 3,727 1.1

1,320 29.0 3,427 72
ATT 1,380 25.8 3,427 1.0
TWT 1,380 25.8 3,427 1.1
BSID 1,320 29.0 3,427 1.0

D08

PTmax

1,800 8,665 1,560 13.3 5,545 0.005

1,500 16.7 5,305 1.2

1,500 16.7 5,305 73
ATT 1,500 16.7 5,305 1.2
TWT 1,500 16.7 5,305 1.1
BSID 1,500 16.7 5,305 1.1

D09

PTmax

1,860 9,892 1,560 16.1 6,052 0.003

1,380 25.8 4,552 0.9

1,380 25.8 4,552 72
ATT 1,380 25.8 4,552 0.8
TWT 1,380 25.8 4,552 0.8
BSID 1,380 25.8 4,852 0.8

D10

PTmax

1,500 7,040 1,380 8.0 5,720 0.003

1,380 8.0 5,480 0.9

1,320 12.0 5,360 71
ATT 1,380 8.0 5,480 0.9
TWT 1,380 8.0 5,480 0.9
BSID 1,380 8.0 5,480 0.9

Ave.

PTmax

1,842 10,108 1,524 16.8 6,854 0.003

1,434 21.4 5,614 1.0

1,404 23.2 5,440 73
ATT 1,434 21.4 5,614 1.0
TWT 1,428 21.7 5,572 1.0
BSID 1,428 21.7 5,596 1.0
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Table B.11: Results for Layout B, data Set2 (λ = 1/75, 40% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 3, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D11

PTmax

1,620 11,074 1,500 7.4 9,334 0.002

1,440 11.1 8,434 0.9

1,440 11.1 8,434 71
ATT 1,440 11.1 8,434 0.8
TWT 1,440 11.1 8,434 0.7
BSID 1,440 11.1 8,434 0.9

D12

PTmax

1,800 9,485 1,500 16.7 6,485 0.004

1,500 16.7 6,545 1.4

1,440 20.0 5,585 65
ATT 1,500 16.7 6,545 1.2
TWT 1,500 16.7 6,485 1.2
BSID 1,500 16.7 6,545 1.2

D13

PTmax

2,040 13,415 1,500 26.5 8,255 0.001

1,440 29.4 7,595 0.9

1,440 29.4 7,355 69
ATT 1,440 29.4 7,595 1.0
TWT 1,560 23.5 8,735 1.0
BSID 1,560 23.5 8,915 0.9

D14

PTmax

1,860 8,930 1,500 19.4 5,510 0.004

1,440 22.6 4,610 1.0

1,440 22.6 4,610 66
ATT 1,440 22.6 4,610 1.0
TWT 1,440 22.6 4,610 1.1
BSID 1,440 22.6 4,610 0.9

D15

PTmax

2,160 10,854 1,620 25.0 5,814 0.001

1,440 33.3 4,254 0.7

1,440 33.3 4,254 68
ATT 1,440 33.3 4,254 0.7
TWT 1,440 33.3 4,434 0.7
BSID 1,500 30.6 4,974 0.7

D16

PTmax

1,920 10,861 1,740 9.4 9,867 0.001

1,560 18.8 7,201 0.9

1,500 21.9 7,141 67
ATT 1,560 18.8 7,201 0.9
TWT 1,560 18.8 7,201 0.9
BSID 1,560 18.8 7,441 0.9

D17

PTmax

1,860 10,867 1,560 16.1 7,507 0.003

1,440 22.6 4,087 1.1

1,440 22.6 4,807 67
ATT 1,440 22.6 4,087 1.1
TWT 1,440 22.6 4,087 1.1
BSID 1,440 22.6 4,087 1.1

D18

PTmax

1,800 8,665 1,560 13.3 5,785 0.004

1,560 13.3 5,845 1.2

1,560 13.3 5,665 72
ATT 1,560 13.3 5,845 1.2
TWT 1,560 13.3 5,845 1.1
BSID 1,560 13.3 5,725 1.1

D19

PTmax

1,860 9,892 1,500 19.4 5,992 0.004

1,440 22.6 5,512 0.8

1,440 22.6 5,512 72
ATT 1,440 22.6 5,512 0.8
TWT 1,440 22.6 5,512 0.8
BSID 1,440 22.6 5,452 0.8

D20

PTmax

1,500 7,040 1,380 8.0 5,720 0.004

1,380 8.0 5,480 1.2

1,320 12.0 5,360 72
ATT 1,380 8.0 5,480 1.0
TWT 1,380 8.0 5,480 0.9
BSID 1,380 8.0 5,540 0.9

Ave.

PTmax

1,842 10,108 1,536 16.1 7,027 0.003

1,464 19.8 5,956 1.0

1,446 20.9 5,800 69
ATT 1,464 19.8 5,956 1.0
TWT 1,476 19.2 6,082 1.0
BSID 1,482 19.0 6,166 0.9
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Table B.12: Results for Layout B, data Set3 (λ = 1/80, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 3, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D21

PTmax

1,560 6,116 1,380 11.5 4,316 0.002

1,260 19.2 3,176 1.2

1,260 19.2 3,176 71
ATT 1,260 19.2 3,176 1.2
TWT 1,260 19.2 3,176 1.3
BSID 1,260 19.2 3,296 1.2

D22

PTmax

1,800 8,058 1,440 20.0 4,338 0.004

1,380 23.3 3,918 0.7

1,380 23.3 3,918 73
ATT 1,380 23.3 3,918 0.8
TWT 1,380 23.3 3,918 0.8
BSID 1,380 23.3 4,518 0.7

D23

PTmax

1,680 6,059 1,380 17.9 3,719 0.003

1,440 14.3 3,419 1.2

1,320 21.4 3,419 70
ATT 1,440 14.3 3,419 1.1
TWT 1,380 17.9 3,539 1.2
BSID 1,380 17.9 3,479 1.1

D24

PTmax

1,980 9,891 1,800 9.1 7,640 0.001

1,500 24.2 4,491 0.9

1,500 24.2 4,491 68
ATT 1,500 24.2 4,491 0.9
TWT 1,500 24.2 4,491 0.9
BSID 1,500 24.2 4,491 0.9

D25

PTmax

2,040 9,534 1,860 8.8 8,025 0.001

1,620 20.6 3,594 1.0

1,500 26.5 3,534 8
ATT 1,620 20.6 3,594 1.0
TWT 1,620 20.6 3,594 1.1
BSID 1,620 20.6 3,594 1.0

D26

PTmax

1,920 7,851 1,500 21.9 4,191 0.003

1,440 25.0 2,991 0.9

1,440 25.0 2,991 68
ATT 1,440 25.0 2,991 0.8
TWT 1,440 25.0 2,991 0.9
BSID 1,440 25.0 3,231 0.8

D27

PTmax

1,920 11,581 1,500 21.9 7,921 0.004

1,380 28.1 6,481 1.1

1,380 28.1 6,421 68
ATT 1,380 28.1 6,481 1.0
TWT 1,380 28.1 6,481 1.1
BSID 1,380 28.1 6,481 1.0

D28

PTmax

1,980 7,653 1,500 24.2 4,173 0.005

1,500 24.2 3,993 1.1

1,500 24.2 3,993 69
ATT 1,500 24.2 4,993 1.2
TWT 1,500 24.2 4,173 1.1
BSID 1,560 21.2 4,233 1.1

D29

PTmax

2,040 12,817 1,920 5.9 11,246 0.001

1,440 29.4 6,037 1.0

1,440 29.4 6,037 67
ATT 1,440 29.4 6,037 1.0
TWT 1,440 29.4 6,037 0.9
BSID 1,440 29.4 6,037 1.0

D30

PTmax

1,920 9,353 1,860 3.1 8,965 0.001

1,440 25.0 4,193 1.0

1,440 25.0 4,073 67
ATT 1,440 25.0 4,193 1.1
TWT 1,440 25.0 4,073 1.0
BSID 1,440 25.0 4,433 1.0

Ave.

PTmax

1,884 8,891 1,614 14.4 6,453 0.003

1,440 23.3 4,229 1.0

1,416 24.6 4,205 69
ATT 1,440 23.3 4,229 1.0
TWT 1,434 23.7 4,247 1.0
BSID 1,440 23.4 4,379 1.0
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Table B.13: Results for Layout B, data Set4 (λ = 1/80, 40% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 3, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D31

PTmax

1,560 6,116 1,380 11.5 4,316 0.002

1,260 19.2 3,296 1.4

1,260 19.2 3,176 70
ATT 1,260 19.2 3,296 1.4
TWT 1,260 19.2 3,296 1.3
BSID 1,260 19.2 3,296 1.3

D32

PTmax

1,800 8,058 1,440 20.0 4,398 0.003

1,380 23.3 4,098 0.9

1,380 23.3 3,918 67
ATT 1,380 23.3 4,098 0.8
TWT 1,380 23.3 3,918 0.8
BSID 1,380 23.3 4,518 0.8

D33

PTmax

1,680 6,059 1,440 14.3 3,419 0.003

1,440 14.3 3,599 1.1

1,380 17.9 3,179 66
ATT 1,440 14.3 3,599 1.4
TWT 1,440 14.3 3,539 1.4
BSID 1,440 14.3 3,479 1.7

D34

PTmax

1,980 9,891 1,800 9.1 7,640 0.001

1,500 24.2 4,491 1.0

1,500 24.2 4,491 70
ATT 1,500 24.2 4,491 0.9
TWT 1,500 24.2 4,551 0.9
BSID 1,500 24.2 4,611 0.8

D35

PTmax

2,040 9,534 1,860 8.8 8,025 0.001

1,620 20.6 3,594 1.0

1,500 26.5 3,534 68
ATT 1,620 20.6 3,594 1.1
TWT 1,560 23.5 3,534 1.2
BSID 1,620 20.6 3,594 1.1

D36

PTmax

1,920 7,851 1,500 21.9 4,191 0.002

1,440 25.0 2,991 0.5

1,440 25.0 2,991 71
ATT 1,440 25.0 2,991 0.6
TWT 1,440 25.0 2,991 0.5
BSID 1,440 25.0 3,171 0.5

D37

PTmax

1,920 11,581 1,800 6.3 9,867 0.001

1,380 28.1 6,481 1.2

1,380 28.1 6,421 92
ATT 1,380 28.1 6,481 1.1
TWT 1,380 28.1 6,481 1.1
BSID 1,440 25.0 6,601 1.0

D38

PTmax

1,980 7,653 1,900 4.0 7,135 0.001

1,500 24.2 3,993 1.0

1,500 24.2 3,993 80
ATT 1,500 24.2 3,993 1.1
TWT 1,500 24.2 3,993 1.0
BSID 1,560 21.2 4,173 1.1

D39

PTmax

2,040 12,817 1,920 5.9 11,246 0.001

1,500 26.5 5,977 1.0

1,500 26.5 5,979 72
ATT 1,500 26.5 5,977 1.0
TWT 1,500 26.5 5,977 1.0
BSID 1,560 23.5 6,757 1.0

D40

PTmax

1,920 9,353 1,860 3.1 8,965 0.001

1,440 25.0 4,073 1.0

1,440 25.0 4,073 72
ATT 1,440 25.0 4,073 1.0
TWT 1,440 25.0 4,133 1.0
BSID 1,440 25.0 4,133 1.0

Ave.

PTmax

1,884 8,891 1,690 10.5 6,920 0.002

1,446 23.1 4,259 1.0

1,428 24.0 4,139 73
ATT 1,446 23.1 4,823 1.0
TWT 1,440 23.1 4,931 1.0
BSID 1,464 22.1 4,775 1.0
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Table B.14: Results for Layout B, data Set5 (λ = 1/85, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 3, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D41

PTmax

1,860 4,039 1,740 6.5 3,439 0.002

1,740 6.5 3,199 0.7

1,740 6.5 3,139 70
ATT 1,740 6.5 3,199 0.7
TWT 1,740 6.5 3,199 0.7
BSID 1,740 6.5 3,199 0.7

D42

PTmax

1,680 5,764 1,680 0.0 5,764 0.001

1,620 3.6 5,464 1.0

1,620 3.6 4,984 66
ATT 1,620 3.6 5,464 0.9
TWT 1,620 3.6 5,464 0.9
BSID 1,620 3.6 5,464 0.9

D43

PTmax

1,740 2,746 1,740 0.0 2,746 0.001

1,620 6.9 3,586 0.7

1,620 6.9 3,346 67
ATT 1,620 6.9 3,586 0.7
TWT 1,620 6.9 3,526 0.7
BSID 1,620 6.9 3,526 0.7

D44

PTmax

1,800 6,121 1,560 13.3 3,661 0.002

1,500 16.7 3,481 0.7

1,500 16.7 3,421 80
ATT 1,500 16.7 3,481 0.7
TWT 1,500 16.7 3,481 0.7
BSID 1,500 16.7 3,421 0.7

D45

PTmax

1,980 7,953 1,740 12.1 5,133 0.003

1,620 18.2 3,813 0.9

1,620 18.2 3,573 76
ATT 1,620 18.2 3,813 1.0
TWT 1,620 18.2 3,753 0.9
BSID 1,620 18.2 3,753 0.9

D46

PTmax

1,980 6,554 1,680 15.2 3,314 0.003

1,680 15.2 3,434 1.0

1,680 15.2 2,834 68
ATT 1,680 15.2 3,434 1.0
TWT 1,680 15.2 2,254 1.0
BSID 1,680 15.2 3,374 1.0

D47

PTmax

1,680 4,581 1,620 3.6 3,501 0.002

1,620 3.6 3,741 1.0

1,620 3.6 3,561 68
ATT 1,620 3.6 3,741 1.0
TWT 1,620 3.6 4,041 1.0
BSID 1,620 3.6 4,041 1.0

D48

PTmax

1,920 5,833 1,620 15.6 4,093 0.003

1,500 21.9 3,073 0.7

1,500 21.9 3,073 70
ATT 1,500 21.9 3,073 0.7
TWT 1,500 21.9 3,193 0.7
BSID 1,500 21.9 3,193 0.7

D49

PTmax

1,980 10,071 1,560 21.2 6,111 0.004

1,500 24.2 4,731 1.1

1,500 24.2 4,731 72
ATT 1,500 24.2 4,731 1.1
TWT 1,500 24.2 5,331 1.1
BSID 1,500 24.2 5,331 1.1

D50

PTmax

1,620 7,625 1,320 18.5 4,265 0.004

1,260 22.2 3,605 1.1

1,260 22.2 3,605 77
ATT 1,260 22.2 3,605 1.1
TWT 1,260 22.2 3,725 1.1
BSID 1,260 22.2 3,605 1.0

Ave.

PTmax

1,824 6,129 1,626 10.6 4,203 0.003

1,566 13.9 3,813 0.9

1,566 13.9 3,627 71
ATT 1,566 13.9 3,813 0.9
TWT 1,566 13.9 3,897 0.9
BSID 1,566 13.9 3,891 0.9
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Table B.15: Results for Layout B, data Set6 (λ = 1/85, 40% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Algorithm DP
Evaluation α = 3, β = 140
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT Tmax PI TWT CT

D51

PTmax

1,860 4,039 1,800 3.2 3,924 0.001

1,740 6.5 3,859 0.5

1,740 6.5 3,139 66
ATT 1,740 6.5 3,859 0.6
TWT 1,740 6.5 3,199 0.5
BSID 1,740 6.5 3,199 0.5

D52

PTmax

1,680 5,764 1,680 0.0 5,764 0.001

1,620 3.6 5,584 1.1

1,620 3.6 5,284 68
ATT 1,620 3.6 5,584 0.9
TWT 1,620 3.6 5,404 0.9
BSID 1,620 3.6 5,704 0.8

D53

PTmax

1,740 2,746 1,740 0.0 2,746 0.001

1,680 3.4 4,366 0.8

1,680 3.4 4,066 66
ATT 1,680 3.4 4,366 0.8
TWT 1,680 3.4 4,366 0.8
BSID 1,680 3.4 4,126 0.8

D54

PTmax

1,800 6,121 1,560 13.3 3,841 0.002

1,560 13.3 3,841 0.7

1,560 13.3 3,841 68
ATT 1,560 13.3 3,841 0.8
TWT 1,560 13.3 3,841 0.7
BSID 1,560 13.3 3,841 0.8

D55

PTmax

1,980 7,953 1,740 12.1 5,133 0.002

1,620 18.2 3,753 0.9

1,620 18.2 3,573 67
ATT 1,620 18.2 3,753 1.0
TWT 1,620 18.2 3,753 0.9
BSID 1,620 18.2 3,753 0.9

D56

PTmax

1,980 6,554 1,680 15.2 3,314 0.004

1,680 15.2 3,134 1.0

1,680 15.2 2,954 67
ATT 1,680 15.2 3,134 1.0
TWT 1,680 15.2 3,014 1.0
BSID 1,680 15.2 3,134 1.0

D57

PTmax

1,680 4,581 1,620 3.6 3,501 0.001

1,620 3.6 3,741 1.0

1,620 3.6 3,501 66
ATT 1,620 3.6 3,741 1.1
TWT 1,620 3.6 4,041 1.0
BSID 1,620 3.6 4,041 1.0

D58

PTmax

1,920 5,833 1,620 15.6 4,093 0.001

1,500 21.9 3,913 0.7

1,500 21.9 3,913 67
ATT 1,500 21.9 3,913 0.6
TWT 1,500 21.9 3,913 0.6
BSID 1,500 21.9 3,973 0.6

D59

PTmax

1,980 10,071 1,500 24.2 5,451 0.004

1,500 24.2 4,731 1.3

1,500 24.2 4,731 68
ATT 1,500 24.2 4,731 1.1
TWT 1,500 24.2 5,331 1.1
BSID 1,500 24.2 5,331 1.1

D60

PTmax

1,620 7,625 1,320 18.5 4,265 0.004

1,260 22.2 3,605 1.0

1,260 22.2 3,605 67
ATT 1,260 22.2 3,605 1.1
TWT 1,260 22.2 3,605 1.0
BSID 1,260 22.2 3,725 1.0

Ave.

PTmax

1,824 6,129 1,626 10.6 4,203 0.002

1,578 13.2 4,053 0.9

1,578 13.2 3,867 67
ATT 1,578 13.2 4,053 0.9
TWT 1,578 13.2 4,047 0.8
BSID 1,578 13.2 4,083 0.9
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Table B.16: Results for Layout C, data Set1 (λ = 1/75, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Evaluation α = 4, β = 80
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT

D01

PTmax

1,620 11,074 1,440 11.1 8,554 0.004

1,320 18.5 7,714 0.8
ATT 1,320 18.5 7,714 0.9
TWT 1,320 18.5 7,714 0.9
BSID 1,320 18.5 7,714 0.9

D02

PTmax

1,800 9,485 1,440 20.0 5,585 0.004

1,440 20.0 5,585 1.2
ATT 1,440 20.0 5,585 1.3
TWT 1,440 20.0 5,645 1.1
BSID 1,440 20.0 5,585 1.2

D03

PTmax

2,040 13,415 1,440 29.4 7,595 0.005

1,440 29.4 7,175 1.0
ATT 1,440 29.4 7,175 1.1
TWT 1,440 29.4 7,475 1.0
BSID 1,440 29.4 7,055 0.9

D04

PTmax

1,860 8,930 1,440 22.6 5,210 0.003

1,380 25.8 4,130 1.0
ATT 1,380 25.8 4,130 1.0
TWT 1,380 25.8 4,130 1.1
BSID 1,380 25.8 4,130 1.0

D05

PTmax

2,160 10,854 1,440 33.3 4,134 0.004

1,380 36.1 3,354 1.0
ATT 1,380 36.1 3,354 0.9
TWT 1,380 36.1 3,354 1.0
BSID 1,380 36.1 3,354 1.2

D06

PTmax

1,920 10,861 1,560 18.8 7,861 0.004

1,500 21.9 6,961 1.1
ATT 1,500 21.9 6,961 1.1
TWT 1,500 21.9 6,961 1.1
BSID 1,560 18.8 7,921 1.4

D07

PTmax

1,860 10,867 1,440 22.6 5,347 0.003

1,380 25.8 3,427 1.2
ATT 1,380 25.8 3,427 1.3
TWT 1,320 29.0 3,487 1.3
BSID 1,320 29.0 3,427 1.3

D08

PTmax

1,800 8,665 1,560 13.3 5,725 0.004

1,440 20.0 4,465 1.3
ATT 1,440 20.0 4,465 1.3
TWT 1,440 20.0 4,465 1.3
BSID 1,440 20.0 4,465 1.3

D09

PTmax

1,860 9,892 1,380 25.8 4,492 0.003

1,380 25.8 4,552 1.0
ATT 1,380 25.8 4,552 1.0
TWT 1,380 25.8 4,612 1.0
BSID 1,380 25.8 4,852 0.9

D10

PTmax

1,500 7,040 1,380 8.0 5,720 0.003

1,320 12.0 5,360 1.0
ATT 1,320 12.0 5,360 1.1
TWT 1,320 12.0 5,360 1.0
BSID 1,320 12.0 5,360 1.1

Ave.

PTmax

1,842 10,108 1,452 20.5 6,022 0.004

1,398 23.5 5,362 1.1
ATT 1,398 23.5 5,362 1.1
TWT 1,392 23.9 5,320 1.1
BSID 1,398 23.5 5,386 1.1
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Table B.17: Results for Layout C, data Set2 (λ = 1/75, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Evaluation α = 4, β = 80
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT

D11

PTmax

1,620 11,074 1,440 11.1 8,554 0.003

1,440 11.1 8,374 0.8
ATT 1,440 11.1 8,374 0.9
TWT 1,440 11.1 8,434 0.8
BSID 1,440 11.1 8,434 0.9

D12

PTmax

1,800 9,485 1,440 20.0 5,585 0.003

1,440 20.0 5,585 1.2
ATT 1,440 20.0 5,585 1.2
TWT 1,440 20.0 5,405 1.1
BSID 1,440 20.0 5,645 1.3

D13

PTmax

2,040 13,415 1,500 26.5 8,255 0.001

1,500 26.5 8,255 0.9
ATT 1,500 26.5 8,255 0.9
TWT 1,440 29.4 7,415 1.0
BSID 1,440 29.4 8,495 0.9

D14

PTmax

1,860 8,930 1,500 19.4 5,510 0.005

1,440 22.6 4,550 0.9
ATT 1,440 22.6 4,550 0.9
TWT 1,440 22.6 4,700 0.8
BSID 1,440 22.6 4,550 0.8

D15

PTmax

2,160 10,854 1,620 25.0 5,814 0.001

1,380 36.1 4,014 0.9
ATT 1,380 36.1 4,014 0.9
TWT 1,380 36.1 4,014 0.9
BSID 1,380 36.1 4,014 0.9

D16

PTmax

1,920 10,861 1,740 9.4 9,867 0.001

1,560 18.8 7,021 1.0
ATT 1,560 18.8 7,021 1.0
TWT 1,620 15.6 7,921 0.9
BSID 1,620 15.6 7,921 0.9

D17

PTmax

1,860 10,867 1,440 22.6 4,087 0.007

1,440 22.6 4,207 1.0
ATT 1,440 22.6 4,207 1.0
TWT 1,440 22.6 4,207 1.0
BSID 1,440 22.6 4,207 1.0

D18

PTmax

1,800 8,665 1,560 13.3 5,965 0.004

1,500 16.7 5,185 1.1
ATT 1,500 16.7 5,185 1.1
TWT 1,500 16.7 5,425 1.1
BSID 1,560 13.3 5,665 1.1

D19

PTmax

1,860 9,892 1,440 22.6 5,452 0.004

1,440 22.6 5,572 0.8
ATT 1,440 22.6 5,572 0.8
TWT 1,440 22.6 5,512 0.8
BSID 1,440 22.6 5,572 0.8

D20

PTmax

1,500 7,040 1,380 8.0 5,720 0.003

1,320 12.0 5,360 0.8
ATT 1,320 12.0 5,360 0.9
TWT 1,320 12.0 5,360 0.9
BSID 1,320 12.0 5,300 0.9

Ave.

PTmax

1,842 10,108 1,506 17.8 6,481 0.003

1,446 20.9 5,812 0.9
ATT 1,446 20.9 5,812 0.9
TWT 1,446 20.9 5,839 0.9
BSID 1,452 20.5 5,980 1.0
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Table B.18: Results for Layout C, data Set3 (λ = 1/80, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Evaluation α = 4, β = 80
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT

D21

PTmax

1,560 6,116 1,320 15.4 3,236 0.003

1,260 19.2 3,056 1.1
ATT 1,260 19.2 3,056 1.0
TWT 1,260 19.2 3,236 1.0
BSID 1,260 19.2 3,056 1.0

D22

PTmax

1,800 8,058 1,440 20.0 4,338 0.005

1,320 26.7 3,498 0.7
ATT 1,320 26.7 3,498 0.8
TWT 1,320 26.7 3,558 0.7
BSID 1,320 26.7 3,498 0.8

D23

PTmax

1,680 6,059 1,320 21.4 3,119 0.003

1,320 21.4 3,179 1.1
ATT 1,320 21.4 3,179 1.0
TWT 1,320 21.4 3,179 1.0
BSID 1,320 21.4 3,179 1.1

D24

PTmax

1,980 9,891 1,800 9.1 7,640 0.001

1,500 24.2 4,611 0.8
ATT 1,500 24.2 4,611 0.9
TWT 1,500 24.2 4,611 0.8
BSID 1,500 24.2 4,611 1.0

D25

PTmax

2,040 9,534 1,860 8.8 8,025 0.001

1,560 23.5 3,534 0.9
ATT 1,560 23.5 3,534 1.0
TWT 1,560 23.5 3,534 0.9
BSID 1,560 23.5 3,714 1.0

D26

PTmax

1,920 7,851 1,500 21.9 3,831 0.004

1,440 25.0 2,991 0.8
ATT 1,440 25.0 2,991 0.9
TWT 1,440 25.0 3,051 0.8
BSID 1,440 25.0 3,471 0.8

D27

PTmax

1,920 11,581 1,440 25.0 6,901 0.006

1,500 21.9 6,700 0.9
ATT 1,500 21.9 6,700 1.0
TWT 1,500 21.9 8,941 0.9
BSID 1,440 25.0 7,381 0.9

D28

PTmax

1,980 7,653 1,500 24.2 4,113 0.003

1,500 24.2 3,813 1.0
ATT 1,500 24.2 3,813 1.1
TWT 1,440 27.3 3,393 1.1
BSID 1,500 24.2 3,993 1.1

D29

PTmax

2,040 12,817 1,920 5.9 11,246 0.001

1,440 29.4 5,867 0.7
ATT 1,440 29.4 5,867 0.8
TWT 1,440 29.4 5,147 0.8
BSID 1,440 29.4 5,867 0.6

D30

PTmax

1,920 9,353 1,860 3.1 8,965 0.001

1,380 28.1 3,653 1.0
ATT 1,380 28.1 3,653 1.1
TWT 1,380 28.1 3,833 1.0
BSID 1,380 28.1 3,893 1.0

Ave.

PTmax

1,884 8,891 1,596 15.5 6,141 0.003

1,422 24.4 4,090 0.9
ATT 1,422 24.4 4,090 1.0
TWT 1,416 24.7 4,248 0.9
BSID 1,416 24.7 4,266 0.9
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Table B.19: Results for Layout C, data Set4 (λ = 1/80, 40% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Evaluation α = 4, β = 80
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT

D31

PTmax

1,560 6,116 1,320 15.4 3,236 0.003

1,260 19.2 3,176 1.1
ATT 1,260 19.2 3,176 1.0
TWT 1,260 19.2 3,236 1.1
BSID 1,260 19.2 3,176 1.1

D32

PTmax

1,800 8,058 1,440 20.0 4,398 0.002

1,320 26.7 3,498 0.7
ATT 1,320 26.7 3,498 0.7
TWT 1,380 23.3 4,338 0.8
BSID 1,380 23.3 3,738 0.7

D33

PTmax

1,680 6,059 1,440 14.3 3,419 0.003

1,440 14.3 3,359 1.1
ATT 1,440 14.3 3,359 1.1
TWT 1,440 14.3 3,419 1.0
BSID 1,440 14.3 3,659 1.0

D34

PTmax

1,980 9,891 1,800 9.1 7,640 0.001

1,500 24.2 4,611 0.8
ATT 1,500 24.2 4,611 0.9
TWT 1,500 24.2 4,611 0.8
BSID 1,500 24.2 4,611 1.0

D35

PTmax

2,040 9,534 1,860 8.8 8,025 0.001

1,560 23.5 3,714 0.9
ATT 1,560 23.5 3,714 1.0
TWT 1,560 23.5 3,714 0.9
BSID 1,560 23.5 3,714 1.0

D36

PTmax

1,920 7,851 1,500 21.9 3,831 0.003

1,440 25.0 2,931 0.7
ATT 1,440 25.0 2,931 0.8
TWT 1,440 25.0 3,171 0.7
BSID 1,440 25.0 3,471 0.8

D37

PTmax

1,920 11,581 1,800 6.3 9,867 0.001

1,440 25.0 7,141 1.0
ATT 1,440 25.0 7,141 1.1
TWT 1,440 25.0 7,261 1.0
BSID 1,380 28.1 6,421 1.2

D38

PTmax

1,980 7,653 1,900 4.0 7,135 0.001

1,440 27.3 3,453 1.0
ATT 1,440 27.3 3,453 0.9
TWT 1,440 27.3 3,393 1.0
BSID 1,440 27.3 3,393 1.0

D39

PTmax

2,040 12,817 1,920 5.9 11,246 0.001

1,440 29.4 5,677 1.0
ATT 1,440 29.4 5,677 1.0
TWT 1,440 29.4 4,641 0.8
BSID 1,440 29.4 5,677 0.9

D40

PTmax

1,920 9,353 1,860 3.1 8,965 0.001

1,380 28.1 3,653 1.0
ATT 1,380 28.1 3,653 0.9
TWT 1,380 28.1 3,653 1.0
BSID 1,380 28.1 3,833 0.9

Ave.

PTmax

1,884 8,891 1,684 10.9 6,776 0.002

1,422 24.3 4,121 0.9
ATT 1,422 24.3 4,121 0.9
TWT 1,428 23.9 4,144 0.9
BSID 1,422 24.3 4,169 1.0
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Table B.20: Results for Layout C, data Set5 (λ = 1/85, 20% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Evaluation α = 4, β = 80
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT

D41

PTmax

1,860 4,039 1,740 6.5 3,439 0.002

1,740 6.5 3,259 0.7
ATT 1,740 6.5 3,259 0.7
TWT 1,740 6.5 3,199 0.7
BSID 1,740 6.5 3,199 0.6

D42

PTmax

1,680 5,764 1,680 0.0 5,764 0.001

1,560 7.1 4,804 0.9
ATT 1,560 7.1 4,804 0.9
TWT 1,560 7.1 4,684 0.8
BSID 1,560 7.1 4,864 0.9

D43

PTmax

1,740 2,746 1,740 0.0 2,746 0.001

1,620 6.9 3,826 0.7
ATT 1,620 6.9 3,826 0.7
TWT 1,620 6.9 3,826 0.7
BSID 1,620 6.9 3,826 0.7

D44

PTmax

1,800 6,121 1,560 13.3 3,661 0.003

1,500 16.7 3,361 0.7
ATT 1,500 16.7 3,361 0.6
TWT 1,500 16.7 3,361 0.6
BSID 1,560 13.3 3,721 0.7

D45

PTmax

1,980 7,953 1,680 15.2 4,833 0.002

1,620 18.2 3,873 0.8
ATT 1,620 18.2 3,873 0.8
TWT 1,620 18.2 3,873 0.9
BSID 1,620 18.2 3,873 0.8

D46

PTmax

1,980 6,554 1,620 18.2 3,014 0.005

1,620 18.2 3,014 1.1
ATT 1,620 18.2 3,014 0.9
TWT 1,620 18.2 3,254 0.9
BSID 1,620 18.2 3,254 0.9

D47

PTmax

1,680 4,581 1,620 3.6 3,021 0.002

1,620 3.6 3,261 1.0
ATT 1,620 3.6 3,261 0.9
TWT 1,620 3.6 4,401 1.0
BSID 1,620 3.6 3,801 0.9

D48

PTmax

1,920 5,833 1,620 15.6 4,093 0.004

1,500 21.9 2,953 0.6
ATT 1,500 21.9 2,953 0.7
TWT 1,500 21.9 2,953 0.6
BSID 1,500 21.9 3,253 0.7

D49

PTmax

1,980 10,071 1,500 24.2 4,611 0.008

1,440 27.3 4,311 0.9
ATT 1,440 27.3 4,311 0.9
TWT 1,440 27.3 4,191 1.0
BSID 1,500 24.2 5,151 1.0

D50

PTmax

1,620 7,625 1,320 18.5 4,265 0.003

1,260 22.2 3,665 1.0
ATT 1,260 22.2 3,665 1.2
TWT 1,260 22.2 3,665 1.0
BSID 1,260 22.2 3,545 1.0

Ave.

PTmax

1,824 6,129 1,608 11.5 3,945 0.003

1,548 14.8 3,633 0.8
ATT 1,548 14.8 3,633 0.8
TWT 1,548 14.8 3,741 0.8
BSID 1,560 14.2 3,849 0.8
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Table B.21: Results for Layout C, data Set6 (λ = 1/85, 40% CTOT)

#
Local

FCFS Algorithm DLS
Algorithm BS

Evaluation α = 4, β = 80
Criteria Tmax TWT Tmax PI TWT CT Tmax PI TWT CT

D51

PTmax

1,860 4,039 1,800 3.2 3,924 0.001

1,740 6.5 3,259 0.7
ATT 1,740 6.5 3,259 0.8
TWT 1,740 6.5 3,199 0.7
BSID 1,740 6.5 3,199 1.0

D52

PTmax

1,680 5,764 1,680 0.0 5,764 0.001

1,560 7.1 4,804 0.9
ATT 1,560 7.1 4,804 1.2
TWT 1,560 7.1 4,684 1.1
BSID 1,560 7.1 4,864 1.3

D53

PTmax

1,740 2,746 1,740 0.0 2,746 0.001

1,680 3.4 4,426 0.8
ATT 1,680 3.4 4,426 0.8
TWT 1,680 3.4 4,426 0.8
BSID 1,680 3.4 4,426 0.9

D54

PTmax

1,800 6,121 1,560 13.3 3,841 0.001

1,560 13.3 4,561 0.7
ATT 1,560 13.3 4,561 0.7
TWT 1,560 13.3 4,561 0.8
BSID 1,620 10.0 4,081 0.7

D55

PTmax

1,980 7,953 1,740 12.1 5,133 0.002

1,620 18.2 3,873 1.0
ATT 1,620 18.2 3,873 1.0
TWT 1,620 18.2 3,753 0.9
BSID 1,620 18.2 3,873 0.8

D56

PTmax

1,980 6,554 1,680 15.2 3,314 0.004

1,680 15.2 3,374 1.0
ATT 1,680 15.2 3,374 1.3
TWT 1,680 15.2 3,494 0.9
BSID 1,680 15.2 3,854 1.1

D57

PTmax

1,680 4,581 1,620 3.6 3,021 0.002

1,620 3.6 3,261 1.0
ATT 1,620 3.6 3,261 1.1
TWT 1,620 3.6 4,401 1.2
BSID 1,620 3.6 3,801 1.0

D58

PTmax

1,920 5,833 1,620 15.6 4,093 0.001

1,500 21.9 3,493 0.7
ATT 1,500 21.9 3,493 0.6
TWT 1,500 21.9 3,553 0.7
BSID 1,500 21.9 3,613 0.8

D59

PTmax

1,980 10,071 1,500 24.2 4,911 0.005

1,440 27.3 4,311 1.0
ATT 1,440 27.3 4,311 1.1
TWT 1,440 27.3 4,311 1.1
BSID 1,500 24.2 5,091 1.1

D60

PTmax

1,620 7,625 1,320 18.5 4,265 0.003

1,260 22.2 3,665 1.2
ATT 1,260 22.2 3,665 1.2
TWT 1,260 22.2 3,665 1.1
BSID 1,260 22.2 3,665 1.2

Ave.

TTmax

1,824 6,129 1,626 10.6 4,101 0.002

1,566 13.9 3,903 0.9
ATT 1,566 13.9 3,903 1.0
TWT 1,566 13.9 4,023 0.9
BSID 1,578 13.2 4,041 1.0
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