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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

NEUTRON STARS AND THEIR TERRESTRIAL ANALOGUES

by Michael Hogg

When we consider in detail the behaviour of a fluid consisting of two (or possibly more)

interpenetrating components, the likelihood of dynamical instabilities induced by cou-

pling between the two fluids cannot be ignored. The phenomenon is generic to all such

multifluid systems and as such is appellated the two-stream instability. Mathematically

this class of instability is somewhat akin to the more well known Kelvin Helmholtz insta-

bility, but is distinguished by the fluids flowing through each other rather than having

a clearly defined interface between them. In this thesis we describe in some detail the

mechanisms underlying this instability in a simple linear flow scrutinising in particular

the growing (unstable) solutions for small harmonic perturbations. We further consider

the application of this genre of instabilities to other physical systems, most conspicu-

ously to that of a rotating superfluid body with rotational lag between the components.

This case is of particular interest in neutron star physics, where it offers possibilities for

exploring behaviour within the core. There also seems to be the chance of exploring this

example in laboratory systems. We also take a tentative first step to extending the ap-

plication and understanding of the two-stream instability by flirting with the analogous

observations in a laboratory realisable binary Bose-Einstein Condensate. This labora-

tory realisation is a first step towards being able to explore physically issues relating

to neutron star dynamics. We further discuss general analogue systems for modelling

key features of neutron stars in terrestrial laboratories. The possible applications, along

with some of the difficulties in using these analogues, are explored.
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Chapter 1

Introduction

1.1 Prelude

In studying and extending our knowledge of neutron stars, we are very much at the

mercy of nature. The extreme conditions present cannot be reproduced on Earth and,

as a consequence, we can not instigate experiments that directly replicate the behaviour

of these bodies. We can only watch and wait, hoping that some event will occur, that

can be observed and dissected. We watch, for example, for changes in rotation or in-

creases in activity that might further our understanding and improve our model. We

are impotent to initiate change in the prevailing conditions of the stars, such as a large

accretion of matter or the gravitational effects of nearby bodies. We can only make our

observations and interpret.

There is a bitter irony in this state of affairs. Neutron stars are, in themselves, ideal lab-

oratories for the physics of extreme environments. Nowhere else in our Universe are such

severe temperature, pressure and gravity combined in a single body. Under this inim-

itable combination of conditions, we can learn much that can not be studied elsewhere.

Yet, we are and will remain (for any foreseeable future time) unable to influence; power-

less to set in chain some required set of circumstances designed to further our knowledge.

Considering our purely passive role in the operation of these distant laboratories, it

seems remarkable how much has been learned. Through observation alone of the stars,

their influence on surrounding bodies and behaviour when influenced by said bodies, we

have built an amazing store of knowledge. When combined with known physics, our

measurements have enabled an accepted model of the structure of a neutron star to be

constructed; allowed us to make testable predictions of their future behaviour. Yet so

much remains hidden, impenetrable, in the nature of these Lilliputian, but awe inspiring,

1



2 Chapter 1 Introduction

stars.

Yet, what we have learned through observation of these stars and their environs suggests

that, even in the ferocious conditions prevailing, much of the physics remains recognis-

able. From this familiar nature of a star’s behaviour, one can infer that key features

of this might be successfully modelled using materials that share these features. Let us

assume that materials can be found that, in a terrestrial laboratory, can mimic elements

of neutron star physics. Then one might realistically produce laboratory experiments

that could enhance our understanding of the observed phenomena associated with neu-

tron stars.

Much of this thesis focusses on the ubiquitous two-stream instability [2]. This is de-

scribed in some detail below. In Chapter 4 we demonstrate an important application

of this instability in neutron stars. Elsewhere we explore this instability in other fluid

systems and consider whether these might be used to model the behaviour of neutron

stars. We further consider different low temperature systems and demonstrate how ad-

vances in these fields have led to the possibility of using them as models of some aspects

of neutron star behaviour.

1.2 Neutron Stars

Since this thesis is concerned with neutron stars and their laboratory analogues, we

commence with a brief overview of their standard model. We include a brief history of

how this model was built up over the last eighty years and describe its principal features.

1.2.1 A Brief History of Neutron Stars

In 1932, Sir James Chadwick, working at the Cavendish Laboratory in Cambridge,

showed experimentally the existence of the neutron [10]. Only a year later Walter Baade

and Fritz Zwicky proposed a star composed of these neutrons [11]. They further sug-

gested, with remarkable prescience, that such stars were born in super-nova explosions.

They hypothesised that these bodies would be very dense and much smaller than other

stars, with very high gravitational binding.

The earliest theoretical calculations regarding the proposed neutron stars were published

in 1939 by Oppenheimer and Volkoff [12]. In these calculations it was assumed that the
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stars were composed of an ideal gas of free neutrons at high density. The work was

chiefly motivated by the idea that massive normal stars might have cores that consist

largely of free neutrons. The behaviour of these neutrons might contribute a significant

portion of the stars energy output [10].

As the mechanisms relating to nuclear fusion within stars became better understood,

interest in these ‘neutron cores’ faded somewhat. However, several physicists continued

to produce theoretical works, for example [13][14][15], where such topics as the compo-

sition and the equation of state of these still unconfirmed bodies were discussed. This

work was very much at the fringes of the astrophysics community as it was believed that

such stars were unlikely to be visible to the optical telescopes of the time [10].

The discovery of non solar x-ray sources in 1962 [16][17] and the first identification of

a quasi stellar object (quasar) in 1963 [18] triggered further interest in neutron stars.

It was speculated that the x-ray source might be a young warm neutron star and this

inspired theoretical work on neutron star cooling [10]. The observation of the high red-

shift of the quasar led to suggestions that this was associated with a compact object.

However it was shown, as more quasars were detected, that the red-shift from these

exceeded the maximum gravitational red-shift from a stable neutron star [19]. With

this observation any link between quasars and neutron stars was dispelled [10].

It was the discovery of pulsars in 1967 [20] that brought neutron stars to the fore. The

original observations were made by Jocelyn Bell, who was working as part of a team

using a radio telescope to study quasars. She noted a signal pulsing with great regu-

larity at a rate of approximately one pulse per second. This pulse was so regular that

it was even suggested that it might be artificial in nature. This led to the source being

given the cognomen LGM-1 (Little Green Men -1). This observation, along with its

astrophysical interpretation, was seen to be of such significance that Anthony Hewish,

the leader of the group that made the detection was awarded the Nobel Prize in 1974. It

was proposed that this pulsar, along with others that had been observed, was a rapidly

rotating neutron star [21]. However, it should be noted that this discovery was not made

in a theoretical vacuum. It had previously been surmised that neutron stars, as the rem-

nants of super-novae explosions, would be rapidly rotating [22][23][24]. It had also been

proposed that they would possess strong magnetic fields [22][25] and that a neutron

star might be the energy source of the Crab nebula [26]. Further a simple magnetic

dipole model for the conversion of a neutron stars rotational energy to electro-magnetic

radiation had already been produced at the time of Hewish’s discovery [27].
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After the first observation of a pulsar, progress in neutron star physics was rapid. A

review of the subject published in 1971 [28] gave a description of the structure for these

stars that contains most the features in today’s standard model. Such features as a

superfluid core, a solid crust, an atmosphere, a strong magnetic field and its associated

braking were included (See Figure 1.1)

Figure 1.1: Figures from 1971 review showing basic structure of a pulsar. It can
be seen that within a few years of the discovery of pulsars, most of the features
of today’s standard model were already included. V.L.Ginzburg, Soviet Physics
Uspekhi 14 83

As was noted in the review, neutron stars undergo continuous spin-down through mag-

netic braking. However, in 1969 a significant and rapid increase in the rotational veloc-

ity of the Vela pulsar was observed [29]. Similar phenomena, which were referred to as

glitches, were observed in many other pulsars, as well as regular occurrences in both the

Vela and Crab pulsars [30][31]. Several explanations were originally put forward for these

glitches. The two most likely candidates are the star quake model [32][33] and the vortex

unpinning model [34][35][36]. These two mechanisms are discussed in more detail later

in this thesis. However, it is worth noting that they are not mutually exclusive. It is pos-

sible that both may be causes of glitches at differing times in a neutron stars life [37][38].

Whilst this by no means brings us up to the present in terms of neutron star research;

most of the standard model had been established by the early 1970s. The structure and

formation of the stars had been explained. As described in [39], research became more

diverse and specialised, focussing on individual elements of a star’s behaviour.

1.2.2 The Standard Model of Neutron Star Structure

Whilst predominantly ‘text book’ material, it is of some value to include a description of

the main components of a neutron star’s structure at this point. Throughout this thesis,

references are made to various parts of the star and a synopsis of the structure provides

a useful context. Before proceeding to the specifics of the structure of a neutron star,
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we include some more general points.

The mass of an ‘average’ neutron star is approximately 1.4 solar masses, although more

massive stars, close to two solar masses have been observed [40]. The radius is of the

order of 104 m and the average density, depending on the mass, is approximately 1017 kg

m−3. Of course, the density is not constant throughout the star and increases markedly

as one approaches the centre. It has been theorised that this increase in density is

roughly quadratic in nature [41]. (This density profile will prove useful when we discuss

modelling elements of the superfluid core using Bose Einstein Condensates, as quadratic

profiles can be relatively easily achieved in the latter). This high density, alongside the

resulting pressures and gravitational fields, are not found anywhere else in our known

Universe. The average density of a neutron star is of the order of 1014 times that of our

sun and, within the interior of the star, it is greater than that of atomic nuclei. Under

such extreme conditions much of the physics we use to describe the rest of the Universe

is inadequate. Neutron stars are also observed to spin rapidly with rotation rates up to

the order of tens of thousands of revolutions per minute. A neutron star also possesses

a strong magnetic field, of the order of 1012 Gauss, compared to a strength of one tenth

of a Gauss for the Earth’s field and one Gauss for the Sun. There also exists a class of

neutron star with magnetic fields one thousand time stronger. These are referred to as

magnetars.

These intense magnetic fields are a simple consequence of the conservation of magnetic

flux from the progenitor star. As the star shrinks, its magnetic field intensifies by an

inverse square law.[91]

The misalignment between the rotational and magnetic axes is more problematic. There

is as yet no explanation for the evolution of the magnetic fields that account for this.

Our evidence for this misalignment is purely observational. It is worth noting that with-

out such a misalignment, pulsars would not pulse.

The strong magnetic fields lead to charged particles from the star magnetosphere being

concentrated at the poles. These particles are highly energetic, owing to the strength

of the field and the rapid rotation of the star, and cause emissions at the poles that are

very bright in the radio and x-ray bands. Since the magnetic poles are not necessarily

aligned with the rotation of the stars, these jets give us the regular pulses by which

neutron stars are most easily observed. Matter may also be accreted from the detritus

of a star’s progenitor or a nearby companion. This accretion can also contribute to the

concentration of charged particles.
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An illustration of a neutron star’s structure is given in Figure 1.2. It is interesting to

compare this with image from 1971, Figure 1.1. It can be seen that the earlier image

displayed most of the features (with the notable exception of a distinct atmosphere) of

the now, universally accepted model. We continue with a concise description of each

layer of the star. We note that Figure 1.2 shows the crust as a single layer, whereas we

separate this into inner and outer crusts for reasons that will become apparent.

Figure 1.2: The Structure of a neutron star, indicating the different regions of
the star and the basic internal properties. Dense Matter in Compact Stars: The-
oretical Developments and Observational Constraints. Page and Reddy 2006.

Atmosphere. Owing to the very strong gravitational field at the surface of the star,

the atmosphere is compressed down to less than a metre thick. The composition of

the atmosphere can vary, but is most commonly made up from hydrogen, Helium

or gaseous iron in plasma form. Recently a neutron star with an atmosphere

composed largely of carbon has also been observed [42].

Envelope This is a thin dense Coulomb liquid, consisting of partially and completely

ionised atoms surrounded by free electrons. Whilst the bottom interface of this

‘ocean’ layer with the solid crust is clearly defined; the interface with the atmo-

sphere is more tenuous. For this reason the atmosphere and the envelope are not

distinguished from each other in some descriptions [39].
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Outer Crust This is composed largely of a lattice of iron ions. There are few free

nucleons, although free electrons are abundant. This lattice is, at most, a few

hundred metres thick.

Inner Crust This layer is up to one kilometre thick. As pressure increases, so the

lattice ions are compressed further, leading to heavier nuclei being formed. As

we go deeper into the star and there is a further increase in pressure, it becomes

energetically favourable for neutrons to ‘drip’ out of the nuclei. It is the region

where this process begins that we define as the boundary between the outer and

inner crust. As the pressure continues to increase, so the number of free neutrons

also increases. So the inner crust is composed of a sea of free neutrons coexisting

with atomic nuclei and free electrons.

Outer Core At higher still pressures, atomic nuclei can no longer exist and we have

a region composed entirely of superfluid neutrons, superconducting protons and

free electrons. Within the outer core, the density can exceed that of atomic nuclei.

This layer may be up to nine kilometres thick, although estimates for this are

largely hypothetical and depend on the mass of the star.

Inner Core. At and very close to the centre of the neutron star the density may exceed

nuclear density to such a degree that even the nucleons decompose into their con-

stituent parts. At such densities, with the resultant pressures, our understanding

of the composition of the star becomes problematic. Some have hypothesised that

this part of the star consists of a quark-gluon ‘soup’[43], although this is almost

pure conjecture.

The insets in Figure 1.2 also show interesting features of the neutron stars interior.

The top inset shows the interface between the inner crust and the outer core. Here

the structure changes from that of a lattice surrounded by superfluid neutrons to a

multi-component fluid of said superfluid neutrons, superconducting protons and highly

energetic free electrons. The two lower insets show the existence of vortices in both the

inner crust (left) and the outer core (right).

It is interesting at this point to consider the evidence for the existence of superfluid

neutrons within the core of a neutron star. The assumption of a core consisting of such

a superfluid is the basis for much of the work in this thesis and, as such, it is appropriate

to briefly expand on the theory underlying this assumption.

The first major piece of evidence comes from the post glitch relaxation times. Early

work by Alpar et al [44][45] indicated that the relaxation times were consistent with the
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presence of a superfluid core rather than a normal fluid or solid core. This is discussed

further in Chapter 2.

Further evidence emerged from studies of the cooling rates and subsequent calculations

of neutrino emission rates. These were consistent with the formation and separation of

neutrons into Cooper pairs. Such behaviour is consistent with the likely formation of a

superfluid by the neutrons [46].

1.3 Superfluidity

We now move on to a short introduction to superfluids and their relation to neutron

star physics. Again much of this section is text book material with any additions clearly

indicated. The major sources for this section are Putterman [47], Li & Lam [48] and

Khalatnikov [49].

Superfluidity is a state of matter in which the material under consideration behaves

like a fluid with zero viscosity (under some circumstances [50]) and zero entropy. This

occurs when the temperature of a material, which obeys Bose statistics, drops below

some critical value. At temperatures below this critical value, a macroscopic proportion

of the particles occupy the lowest energy, or ground, state for that material. Such a

circumstance can only occur with a bosonic fluid, since the energy levels of fermions are

restrained by Pauli’s exclusion principle, as shown in Figure 1.3.

Since the first discovered and most widely known superfluid is that produced from He-

lium (4He), much of the research into superfluidity has been based upon this.

1.3.1 Superfluidity in Helium-4

The superfluidity effect was first observed in 1937 [51][52] within liquid 4He. Instead

of freezing, as might be expected, the Helium underwent a phase transition. Before

this change of state the experimenters were looking at a clear colourless liquid, whilst

after the change, they were looking at a clear colourless liquid. But there were clearly

observable changes in the liquids characteristics. The most easily observable was the

way in the evaporation of the liquid. Above the critical temperature the liquid boiled

like water in a saucepan. Below this temperature the fluid became still, with no vis-

ible bubbles rising through it [50]. This phenomenon is explained by the enormously
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Figure 1.3: Comparison of Possible Energy States of Bosons and Fermions. In
the case of bosons, there is no limit to the number of particles that may occupy
any energy level. Whilst only one fermion with a particular spin may occupy
each state. We note that, in the case of the fermions, the highest occupied energy
state, Ef , is referred to as the Fermi energy. www.quantum bits.org

increased thermal conductivity below the critical temperature. In a normal liquid local

hotspots develop, causing the vapour pressure to rise; resulting in a bubble, which rises

to the surface. However, below the critical temperature, the high thermal conductivity

does not allow such hot spots to form. So, even though evaporation continues at the

surface, the bulk of the liquid appears undisturbed.

The cognomen superfluid comes from the most spectacular property of this new state

of matter. This is the ability of the liquid to flow through fine holes without resistance.

This has some interesting consequences. If an ordinary liquid were allowed to flow

through a capillary, we would observe a pressure gradient across the tube to overcome

the effect of shear viscosity. In the case of superfluid Helium, no such pressure gradient

is observed. This suggests that, in this sense, the Helium has zero viscosity.

The differences between the two states of Helium are so great that it became necessary

to distinguish between them in any discussion. To this end normal Helium is indicated

by He I, whilst its superfluid cousin is indicated by He II. We use this method of distin-

guishing the two materials throughout this thesis.

We can see from Figure 1.4 that this critical temperature is somewhat pressure de-

pendent and that there is a maximum pressure at which this phase transition occurs.

Figure 1.5 shows the change in specific heat capacity of Helium with temperature. The

shape of this plot resembles the Greek lambda and so, for Helium, this phase transition

temperature has become known as the λ-point. This occurs, at normal atmospheric
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pressure at about 2.17 K.

Figure 1.4: Pressure/Temperature plot for 4He indicating phase transition.[1]

Figure 1.5: Plot of specific heat vs. temperature for 4He indicating the λ point.
So named because of the shape of the curve. This figure also demonstrates the
dependence on pressure of the onset of superfluidity. [1]

As mentioned, superfluidity occurs when a proportion of the particles of a material oc-

cupy the lowest energy (or ground) state. As temperature decreases further, the fraction

of particles in this ground state increases until, at about 1 K the overwhelming major-

ity of particles are at their lowest energy. Between the λ-point and 1 K there exists
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a mixture of normal fluid and these lowest energy particles. This coexistence of two

differing groups of particles is the basis for the two fluid model for He II as put forward

by Landau [53]. In this model He II is assumed to consist of two inter-penetrating fluid

components. The first an ideal superfluid, the second a normal fluid component with

which the entropy is associated. This is discussed in more detail in Chapter 2. In Chap-

ter 6 we consider the entropy as a dynamical quantity in its own right.

As a final feature of superfluidity in this section we discuss the existence of quantised

vortices in He II. Vorticity, itself, is not a unique feature of superfluids. The generation

of vortices in a normal fluid can most easily be described as the result of shear when a

fluid flows past a solid boundary. Vorticity is one of the properties of shear [54] and so,

as a result of the no-slip condition and resulting velocity gradient, vortices are formed

at the boundary. In a normal fluid the motion of such vortices (vorticity transport) can

be considered somewhat analogous to heat conduction and convection [55]. This can be

seen by considering the Navier-Stokes equation;

ρ (∂tv + v · ∇v) = −∇p+∇ · T + f , (1.1)

where v is the fluid velocity, ρ is the density, p is the pressure, T is the (deviatoric)

component of the total stress tensor and f represents the body forces per unit volume

acting on the fluid.

The vorticity, ω, of the fluid is defined as the curl of the velocity. So we can express this

by

ω = ∇× v. (1.2)

So, if it is assumed that the fluid is incompressible, taking the curl of the Navier-Stokes

equation, (1.1), and assuming no external forces, gives us the equation for vorticity

transport equation in a two dimensional plane.

∂tω + (v · ∇)ω = v∇2ω. (1.3)

Here ω is the vorticity component perpendicular to the plane. This equation is analogous

for the heat equation for vanishing dissipation [54]. The v · ∇ term is representative of

the convection, whilst the ∇2 represents the diffusion.
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This is clearly a two-dimensional projection onto a plane. A full three-dimensional anal-

ysis would be considerably more complicated. However, this serves as a proof of principle

and, since this subject does not form a critical part of the thesis, suffices for our purpose.

However, in the case of the superfluid component, the absence of viscosity does not

enable vortices to form in this way. In this case the rotation of part of the fluid is not

past to an adjoining region. We can regard the rotation as being ‘captive’ in one part

of the fluid. If the energy of the rotation is high enough, a vortex becomes the lowest

energy state and forms in the area of rotation. If the energy reaches a sufficient level

another vortex forms and so on. The energy steps between the formation of an extra

vortex are quantised, although there are different energies associated with individual

configurations [54]. The lowest energy configuration in the absence of boundaries (hence

the most common) is the Abrikosov lattice1 where, in an idealised case, the vortices

form equilateral triangles [54].

Whilst superfluidity has been observed in other materials, their critical temperatures

are generally much lower than the λ-point of 4He. In the cases of fermionic materials

there are other effects that allow superfluidity to occur. These are discussed below. In

chapter 3 we also examine Bose-Einstein Condensates which also exhibit superfluidity.

1.4 The Superfluid Two-Stream Instability

In considering the physics of a neutron star core, one of the key features is the existence

of two distinct components, superfluid neutrons and superconducting protons, sharing

the same physical space. Any full description of the dynamics of the core must include

an analysis of the behaviour of such a composite fluid. In this section we describe a class

of dynamical instabilities pertaining to such a composite superfluid. We reference much

of the work on this subject of Andersson et al. [2], which itself references seminal works

relating to other dynamical instabilities in fluid dynamics and plasma physics [57], [58].

In their paper [2], Andersson et al. describe a new dynamic instability in a two compo-

nent superfluid, which they christen the superfluid two-stream instability. They assume

the existence of a fluid consisting of two interpenetrating superfluid components with

some form of coupling between them. They go on to show that this instability can occur

when the relative motion of the two components exceeds some critical velocity. As is

1Whilst in the absence of boundaries, the Abrikosov lattice is the lowest energy configuration, this is
not necessarily true for bounded or distorted superfluids. In these cases some deviation from the pattern
of regular equilateral triangles is observed [56].
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shown here the instabilities are somewhat analogous with the Kelvin-Helmholtz insta-

bility along the interface between two fluids [59], although in this case the two fluids

occupy the same space.

Since the example which we cite in this thesis [2] was predominantly motivated by

research into neutron stars, we assume a two component superfluid consisting of inter-

penetrating superfluid neutrons and superconducting protons indexed in equations by n

and p respectively. This choice of materials is almost arbitrary since the initial model

makes no mention of the charge in relation to the fluids in question. It does have one

advantage that simplifies the algebra considerably, in that the particle masses of the two

components can be treated as identical [60] without unduly affecting the result. As a

further simplification it is assumed that there are no entrainment effects between the

two fluid components. The inclusion of entrainment is discussed in both the paper under

discussion and, in more detail, in later work by the paper’s authors [61]. This leaves

only the chemical coupling between the components as given by the variation,

dε = µndnn + µpdnp, (1.4)

where nx and µx are respectively the particle density and chemical potential of the in-

dexed fluid component, and ε is the total internal energy.

With regard to the environment, it is assumed that any gravitational field is constant

and unperturbed, and that the protons are at rest in the reference frame being used;

whilst the neutrons flow with constant velocity, v0. A new variable, µ̃x (= µx/mx), the

chemical potential per unit mass, is also defined. Whilst it is true that these assumptions

may not be valid when we come to apply this work to neutron stars, at this stage they

simplify the problem, enabling the main features of the instability to be studied.

These assumptions lead to two dynamical equations for each fluid. A conservation

equation,

∂tnx +∇ · (nxvx) = 0, (1.5)

and an Euler-type equation,

∂vx

∂t
+ (vx ·∇) vx +∇µ̃x = 0. (1.6)
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It is assumed that the background state is disturbed by sufficiently small perturbations,

such that the two component velocities may be written as:

vn = [v0 + δvn (t, x)] x̂ (1.7)

and

vp = δvp (t, x) x̂, (1.8)

where x̂ is the unit vector in the direction of flow. The perturbations in question are

assumed to be longitudinal in nature, thus relating them to sound waves.

Combining equations (1.5) to (1.8) and linearising gives four perturbation equations,

two for each component:

∂tδnn + v0∂xδnn + nn∂xδvn = 0, (1.9)

∂tδnp + np∂xδvp = 0, (1.10)

∂tδvn + v0∂xδvn + ∂xδµ̃
n = 0 (1.11)

and

∂tδvp + ∂xδµ̃
p = 0. (1.12)

It is then assumed that the perturbations are plane waves, that is, they harmonically de-

pendent on both time, t, and position, x. It is further assumed that these perturbations

are of fixed amplitude. This gives

δvx (t, x) = v̄x exp [i (ωt− kx)] , (1.13)

where ω and k are the frequency and wave number respectively.

It would be more realistic, at this stage to consider obtaining solutions through use of a

full Laplace/Fourier transform. However, we are, at this stage, only searching for a proof
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of principle and, therefore, it is convenient to make as many simplifying assumptions as

possible while still preserving the key features of our model.

The above assumption, combined with the four perturbation equations gives the follow-

ing four equations:

i (ω − kv0) n̄n − iknnv̄n = 0, (1.14)

iωn̄p − iknpv̄p = 0, (1.15)

i (ω − kv0) v̄n − i ¯̃µn = 0 (1.16)

and

iωv̄p − ik ¯̃µp = 0. (1.17)

The other two equations to enable this system in six variable to be solved can be obtained

from the equation (1.4), where it was assumed that the energy functional, ε, is a function

of np and nn only. From this, the following are obtained:

δµ̃n =

(
∂µ̃n

∂nn

)
np

δnn +

(
∂µ̃n

∂np

)
nn

δnp

(1.18)

=
∂2ε

∂n2
n

δnn +
∂2ε

∂np∂nn
δnp,

and similarly

δµ̃p =

(
∂µ̃p

∂nn

)
np

δnn +

(
∂µ̃p

∂np

)
nn

δnp

(1.19)

=
∂2ε

∂np∂nn
δnn +

∂2ε

∂n2
p

δnp.

At this point three new constants for the two component fluid are defined. The sound

speed for each individual fluid component, cx, is given by:
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c2
n = nn

(
∂µ̃n

∂nn

)
np

= nn

(
∂2ε

∂n2
n

)
, (1.20)

c2
p = np

(
∂µ̃p

∂np

)
nn

= np

(
∂2ε

∂n2
p

)
, (1.21)

and a coupling parameter, C, given by,

C = nn

(
∂µ̃n

∂np

)
nn

= np

(
∂µ̃p

∂nn

)
np

= nn

(
∂2ε

∂np∂nn

)
. (1.22)

It is worth pausing here to consider the physical significance of the parameter C. If we

consider the energy, ε, as a function of both particle densities then we have

ε = εnp, nn. (1.23)

The first derivative of this gives us the chemical potential of each component by

∂ε

∂np
= µp (1.24)

∂ε

∂nn
= µn (1.25)

So the individual chemical potentials apparently have no dependence upon the presence

of the other component. But when we take the second derivative we arrive at equations

(1.18) and (1.19). These equations have some term that relates to the sound speed plus

some cross term, which couples the changes in chemical potential of one component to

the particle density of the other.

This coupling parameter represents the mixed derivatives of the energy functional and

it can be seen that it also has units of velocity squared.

Removal of this term, in the absence of entrainment, removes all coupling between the

two components so the energy, ε, of the mixed fluid could be written as

ε = F (nn) +G (np) . (1.26)
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From the above definitions it is possible to obtain the chemical potentials in terms of

the other variables:

nnδµ̃
n = c2

nδnn + Cδnp, (1.27)

npδµ̃
p = c2

pδnp +
np

nn
Cδnn. (1.28)

Combining these with the plane wave perturbation equations above (1.14) to (1.17),

leads to a relatively simple dispersion relation,

[(ω
k
− v0

)2
− c2

n

] [(ω
k

)2
− c2

p

]
=
np

nn
C2. (1.29)

This dispersion relation can be simplified further by the introduction of the phase ve-

locity, σ = ω/k, for the harmonic perturbations. In this case, assuming k is real, σ

will be real or complex identically with ω. The presence of complex roots for equation

(1.29) indicates a dynamical instability. As a result of this substitution equation (1.29)

becomes

[
(σ − v0)2 − c2

n

] (
σ2 − c2

p

)
=
np

nn
C2. (1.30)

At this point, for completeness only, the case with zero chemical coupling is considered.

In the case of a totally uncoupled system, that is C = 0, the roots of this equation are

σ = ±cp, σ = v0 ± cn. (1.31)

This demonstrates that our model is consistent with sound speed in Galilean relativity.

At this stage it would be simple to produce numerical solutions for our problem, but we

wish to continue analytically as far as possible to give us greater understanding of the

physics underlying the model.

To solve analytically for a more general case, where C 6= 0, is a little more involved.

To this end, two new dimensionless variables are introduced, x = σ/cn and y = v0/cn.

The problem is further simplified by combining some of the parameters to produce the

constants a and b, given by
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a2 ≡ np

nn

C2

c4
n

and b2 ≡
c2

p

c2
n

. (1.32)

So equation (1.30) becomes

1

a2

[
(x− y)2 − 1

] (
x2 − b2

)
= 1. (1.33)

To demonstrate the existence of unstable solutions, we need to find complex roots for

this equation. This occurs when two real modes merge to give a conjugate pair of com-

plex modes, one of which will be a growing solution, whilst the other will be a damped

solution. Of particular concern is whether such a mode merger occurs at differential

velocity between the two fluid components which is likely to be achieved in real life

situations. It would also be useful to consider whether linear flow is likely to cease at

the relative velocities of these mergers.

As this work is chiefly motivated by astrophysical applications, particularly those rele-

vant to neutron star dynamics, it is sensible to investigate this instability in this situa-

tion. To this end, the PAL equation of state was chosen, as it allowed analytic solutions

for the required parameters. The key feature of this equation of state, as it relates to

our problem, is the assumption of incompressibility [62]. Other features of the equa-

tion of state, such as energy per baryon are also somewhat germane to our problem.

Based upon this equation of state [63], values for the sound speeds, chemical coupling

parameter and proton fraction were derived. These then led to the values a2 = 0.0249

and b2 = 0.0379. A full analysis of how these values were arrived at is not really ma-

terial to our discussion and full details may be obtained from [2]. Plots of the real and

imaginary parts of the four roots of the dispersion relation (1.33) are shown in Figure 1.6.

The values of y which yield complex roots illustrated in Figure 1.6 are then substituted

to give v0 and ω. This shows that this type of dynamical instability can occur at ve-

locities between v0 ∼ 0.6cn and v0 ∼ 1.5cn. It should be noted that when v0 nears cn,

one would expect to have exceeded the critical velocity beyond which frictionless flow

between the two fluid components can not occur. It is also found that the corresponding

frequency of the unstable perturbation is given by ω = 0.1kcn.

The values given in the previous paragraph are those for the onset of the two-stream

instability and, naturally, are dependent upon our choice of the equation of state. It

should be noted that, after this onset and up to relative flow associated with the failure

of superfluidity, there exists a continuous spectrum of unstable waves. The full Laplace/-

Fourier analysis would have revealed this in detail and such work is ongoing for our more
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Figure 1.6: Real and imaginary parts of the four roots of the dispersion relation
(1.33). Complex roots, indicating the presence of the two-stream instability, can
be seen to begin at y ∼ 0.6 and end at y ∼ 1.5, well beyond the superfluid limit.
(Whilst we place no definite upper limit on superfluidity we would certainly
expect such behaviour to be destroyed for supersonic flows [2]. We note that the
two routes not shown in the right plot are always real. Images from Andersson
et al [2]

.

realistic model discussed in Chapter 4 [64]. At this stage of our investigation, we were

merely interested in establishing the principle.

Of course, it is useful to describe the resulting instability in more detail. Unfortunately,

a full time evolution of this unstable behaviour is beyond the scope of this thesis. How-

ever, a few salient points can be made. Firstly, the instability leads to the breakdown of

laminar flow in both components. How this manifests as the instability grows is unclear

because of the absence of said time evolution. But we can be reasonably certain that,

owing to the vorticity imparted by the instability, vortices form in both fluids. Again,

since our analysis covers only the onset of the instability, the future behaviour of these

vortices is uncertain.

The example we have discussed in this section of the report establishes in principle the

two-stream superfluid instability as existent. It further gives the conditions under which

a two component superfluid becomes vulnerable to such instabilities. Once this has been

done it is becomes possible to expand the relatively simple linear model to include more

detailed models of physical phenomena. For instance, the initial model excludes such

features as entrainment between the fluids and any external forces applied to the fluid

body [2]. The forces that we may wish to consider include gravity and internal friction.

In a more realistic neutron star model, it may also prove desirable to examine, for ex-

ample, the effects of magnetic fields and the elasticity of the crust. It also is predicated

upon only the most simple form of relative motion between the two fluids.
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Here, the principle of the superfluid two-stream instability has been established. It has

further been demonstrated that this instability has applications in neutron star dynam-

ics. This application has been the subject of further investigations [65][66] and many

others. This study has also been extended beyond a simple linear flow into the realms

of rotating two component fluids; where the differential velocity is replaced by a differ-

ential bulk rotation of the fluids [67][68]. Applications of this instability have also been

considered beyond the sphere of astrophysics; for example in superfluid Helium [8].

1.5 The Kelvin-Helmholtz Instability

As has been mentioned, the two stream instability is somewhat analogous to the Kelvin-

Helmholtz (KH) instability. To this end there follows a brief derivation of the KH insta-

bility, with some discussion of its salient features. It should be emphasised that there is a

major difference between the two instabilities. The KH instability occurs at the interface

between two fluids, whereas the two-stream instability is manifest in two fluids essen-

tially occupying the same space. But we note there are also similarities between the two.

Let us consider two fluids with some clearly defined interface between them as shown

in Figure 1.7. Purely for convenience it is assumed that the background velocity of the

lower layer is zero. We further assume that the background densities of the two fluids

are each constant. So for the upper fluid we have:

u = U0, (1.34)

ρ (z) = ρ1, (1.35)

p (z) = p0 − gρ1z. (1.36)

Here g is the acceleration due to gravity. Similarly for the lower fluid we have:

u = 0, (1.37)

ρ (z) = ρ2, (1.38)
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p (z) = p0 − gρ2z. (1.39)

Figure 1.7: Definition sketch for Kelvin-Helmholtz theoretical stability analysis.
University of Karlsruhe

.

Next we impose small disturbances on the background laminar flow. Without yet spec-

ifying their form, we define the velocity disturbances in the upper and lower layers as

q1 and q2 respectively. Thus the disturbed velocity profiles become

u1 = U0 + q1, (1.40)

and

u2 = q2. (1.41)

Substituting the disturbances into the conservation of mass and the inviscid Navier-

Stokes equations and linearising in the convective terms, we obtain the following set of

governing equations:

∇ · q1 =∇ · q2 = 0, (1.42)

∂q1

∂t
+ U0

∂q2

∂x
=
∇p1

ρ1
, (1.43)

∂q2

∂t
=
∇p2

ρ2
. (1.44)
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Here p1 and p2 are the dynamic pressures of the disturbances.

To complete this step, it is necessary to specify boundary conditions. Firstly the kine-

matic boundary condition is specified: fluid particles can only move tangentially to the

fluid interface. The interface location is defined by the function

F = zi − ζ (x, t) = 0, (1.45)

where ζ (x, t) is the interface disturbance (refer to Figure 1.7). The normal velocity, qs,

at the interface is given by the material derivative of F :

∂F

∂t
+ qs · ∇F = 0 (1.46)

After linearising for the top and bottom layers respectively, we obtain

∂ζ

∂t
+ U0

∂ζ

∂x
= w1, (1.47)

∂ζ

∂t
= w2 (1.48)

taken at z = 0, where w1 and w2 are the vertical velocities of the upper and lower layers

respectively.

The second boundary condition is a dynamic one: the normal stress of the fluid is con-

tinuous at the interface. For an inviscid fluid, this means that the pressure is continuous

at the interface. For irrotational flow, the total pressure at the interface has a dynamic

and a gravitational component, giving

p1 − ρ1gζ = p2 − ρ2gζ (1.49)

applied at the linearised interface, z = 0.

The final boundary condition is simply that the disturbances only exist close to the

interface and die away far from it.

We next assume that our disturbances are sinusoidal in nature, taking the forms
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(
p1

w1

)
=

(
P1

W1

)
ekzei(kx−ωt) (1.50)

for the lower layer and

(
p2

w2

)
=

(
P2

W2

)
e−kzei(kx−ωt) (1.51)

for the upper layer. Here k and ω are the wave number and the wave frequency of the

disturbances. P and W are the constant coefficients of the sinusoidal functions. For the

interface we have

ζ = Zei(kx−ωt), (1.52)

where Z is the constant coefficient.

Combining the disturbances with the governing equations and boundary conditions gives

the following matrix:


i (kU0 − ω) −1 0 0 0

−iω 0 −1 0 0

g (ρ2 − ρ1) 0 0 1 −1

0 0 −iω 0 k/ρ2

0 i (kU0 − ω) 0 −k/ρ1 0




Z

W1

W2

P1

P2

 =


0

0

0

0

0

 (1.53)

This a classical eigenvalue problem for ω and k. To have a non-trivial solution the

determinant of the coefficient matrix must be zero, which leads to

(ρ1 + ρ2)ω2 − 2kU0ρ1 + k2U2
0ρ1 − kg (ρ2 − ρ1) = 0. (1.54)

This dispersion relation leads us to a solution in ω of

ω =
kU0ρ1 ± i

√
k2U2

0ρ1ρ2 − kg (ρ2 − ρ1) (ρ1 + ρ2)

(ρ1 + ρ2)
. (1.55)

We, at this point, assume k to be real leading us to unstable behaviour if

k2U2
0ρ1ρ2 − kg (ρ2 − ρ1) (ρ1 + ρ2) > 0. (1.56)
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When we compare this to the solution for the two stream instability above we note that

in both cases there is some critical value of background velocity, above which there is a

range of critical frequencies.



Chapter 2

Laboratory Analogues for

Superfluid Neutron Star Cores

As discussed in Chapter 1, direct experimentation with neutron stars is not something

we can undertake. Nor can the conditions present in the star be reproduced on earth.

However, our observations indicate that there are characteristics of the star that are

well understood in terrestrial laboratory systems. For instance, we have sufficient data

to be confident of the superfluid nature of a neutron star’s core. From this we can

infer aspects of the nature of the star that we can then use to make predictions about

its future behaviour. The development of a laboratory analogue for the physics of a

neutron star would represent a significant advance and, to some degree, allow research

to initiate, rather than observe and interpret, major aspects of neutron stars’ behaviours.

So, continuing with the theme of superfluidity, can we model in the laboratory the key

points relating to this feature of a neutron star? Let us quickly summarise these key

points, whilst discussing whether and how these might be reproduced experimentally in

some laboratory analogue.

Firstly, the superfluidity. This is straightforward. Superfluids are readily available for

experimental use. Secondly, the two component nature of the outer core, neutrons and

protons. Again, this should not present any difficulties in a laboratory. Depending on

the nature of the analogue used, one might use two distinct components or, as in the

previously discussed use of He II, a fluid which can be modelled as having two compo-

nents. Thirdly, the vortices formed by a rotating neutron superfluid component. This is

a feature that applies to all superfluids and, therefore, poses no problems in a laboratory

analogue. Finally, the pinning of these vortices to the crust. This is the feature that

seems to present the biggest issue in any analogue system. However, as we shall see,

25
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these issues are by no means insurmountable.

In this chapter, we review progress towards possible analogues for the behaviour of neu-

tron star cores. We describe two distinct sorts of materials and discuss literature that

relates, either directly and indirectly, to building such analogues. We firstly consider the

most obvious candidate, superfluid Helium. We then move on to Bose-Einstein Conden-

sates and review the properties that might offer analogous behaviour to that of neutron

star cores. Finally, we discuss turbulence in quantum vortices and how this might relate

to neutron stars.

It is both interesting and surprising to note the paucity of research, particularly with

respect to Bose-Einstein Condensates, into how these materials could be used to model

neutron star behaviour. Even in the case of superfluid Helium, much of the most relevant

research was conducted several decades ago in the former Soviet Union and has since

been discontinued. When the opportunities offered by laboratory analogues to enhance

understanding are considered, this pretermission appears even more remarkable.

2.1 Superfluid Helium Analogues

Although discovered experimentally by Kapitsa [49], much of our current understanding

of superfluid Helium comes from the seminal works of Landau [53] and Tisza [69]. In

these works, amongst many other features, the key characteristics of the “two-fluid”

model are laid out. It is this model that is most significant in attempts to model facets

of a neutron star core. In this model it is shown that superfluid Helium can be described

as a two component fluid. The first is an ideal superfluid, where all of the atoms occupy

the lowest possible energy level. The second is a “normal” fluid component governed by

the rules of fluid dynamics. The ratio of these two components vary with temperature,

as discussed in Chapter 5. Below about 1K the proportion of the normal component

becomes insignificant [47] and we are left with essentially an ideal superfluid. It is the

temperature range where the concentrations of the two components are of similar that is

of greatest interest in modelling core behaviour. Here we can hope to mimic the presence

in the neutron star of superfluid neutrons by the superfluid component of Helium and

that of superconducting protons by the normal component. Ratios of the two can be

fine tuned by changes in temperature.

In Chapter 5 we consider whether Helium might offer a laboratory analogue for the

r-mode instabilities described in Chapter 4. We shall show that the mutual friction

coefficients for Helium were not sufficiently close to those of the neutron star to allow
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such instabilities to become manifest. As such, we see both some of the limitations in

Helium as an analogue and a more general problem in the construction of other ma-

terials whose behaviour might initially appear similar to that of a neutron star core.

Unfortunately for attempts to mirror the behaviour of a star, some features are signif-

icantly “parameter dependent”, in that they are only observable in the star because of

the extreme conditions of density etc. This suggests that we would like any analogue

to be sufficiently tunable so as to allow for such extremes. It not expected that the

conditions of a neutron star core be replicated, but that ratios between parameters (and

other similar phenomenology) in an analogue system can be tuned so as to reproduce

important features.

The discovery of pulsars [20] and the development of the ideas that these were neutron

stars with a core composed predominantly of superfluid neutrons with an admixture of

protons and electrons [70] led to an interest in the use of Helium as a model for these

stars. The observation of glitches in neutron star spin [29] further inspired a series of He-

lium experiments in an attempt to discover the mechanisms underlying this phenomenon.

In considering how one might use Helium to model glitches, it is useful to briefly note the

observed features of a glitch that one is attempting to realise. The first feature observed

is the initial rapid increase in rotation rate. This is followed by a slowing of the rotation

which is more rapid than the normal spin down rate, which over some time period

returns to this normal rate [71]. This indicates the presence of relaxation processes in the

acceleration of the star [72]. This time period varies significantly between different stars.

Further, on rare occaisions, there are decaying oscillations of the rotation rate during

this period of increased deceleration [73]. It has been stated that one can demonstrate

all of these observed astrophysical phenomena in a low temperature laboratory [72].

Much of the early work on the properties of rotating Helium was carried out by the low

temperature school of Georgian physicists in the 1960s [72][74]. Studies were made of

the creation, decay and elastic properties of vortices [72]. It is interesting to note that

long before their physical observation, the existence of stars with super-nuclear densities

had been predicted [75]. Several predictions as to the nature of these dense stars were

made through the study of Helium. For instance, Migdal [76] showed in 1959 that if

neutron stars exist, the neutrons in them must form a superfluid with transition tem-

perature to the superfluid state of between 1010K and 1012K. It was further shown that

the superfluid neutrons in these stars must be penetrated by quantised vortices if the

rotation exceeds some critical angular velocity [77].

This research played a fundamental part in the recognition of neutron stars. It was

shown that only a superfluid required the long relaxation times observed in the return
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to equilibrium after glitches. In a normal viscous fluid, this relaxation time would be

much shorter than that observed (of the order of microseconds) and in a solid, shorter

still [78]. So, through kinematic considerations one can arrive at the conclusion that a

pulsar consists predominantly of a superfluid liquid.

The observations from neutron stars and the experimental work on superfluids led to

some of the earliest attempts to directly model a neutron star. These were undertaken

by Tsakadze and Tsakadze in the USSR. The primary aims were to produce and to

measure the relaxation times after rapid spin ups [79][80][81].

It should be clearly emphasised that initially these experiments were concerned exclu-

sively with the relaxation time associated with pulsar glitches. They were designed to

demonstrate the presence of superfluid neutrons (and their vortices) within the core and

did not concern themselves with the mechanisms that might instigate said glitches.

The model pulsar was a glass sphere, radius 3.4 cm, attached to a drive shaft (in some

experiments a cylinder of similar size was used), which was suspended without support

by a magnetic field. The sphere was filled with liquid Helium by immersion in a Helium

bath and suspended in the vapour from this bath. The sphere was then set in motion

by an electric motor, it’s rotation being measured by a light spot on the shaft. Once a

predetermined rate of rotation was reached, the motor was switched off and the sphere

was allowed to spin freely. As the initially immobile liquid was accelerated by the walls

of the rotating vessel, the rotary speed of the vessel decreased. At first there was an

abrupt decrease which, after a period of a few seconds, evolved into an exponential decay

with a small damping factor. To increase the angular momentum of the rotating parts,

a brass disc was secured to the drive shaft. This led to a markedly slower decay in the

rotary speed [79].

These experiments were conducted at a range of temperatures and modifications were

made to the equipment to make the model more relevant to the conditions present in

a pulsar core. For instance, impurities, in the form of Plexiglas crystals were added to

bind the normal component of Helium; thus increasing friction between this component

and the inner wall of the sphere. To pin the vortices to the moving surface of the sphere,

Plexiglas crystals were glued to the inside of the sphere.

Whilst these improvements to the equipment made small quantitative changes to the

results [82], particularly to the damping coefficient, there was one major result of the

experiments. At the λ point of Helium there was a large jump in the relaxation time.
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This time increases as temperature decreases and the ratio of superfluid to normal com-

ponents increases. It was stated [79] that the value for relaxation time obtained by

extrapolating the experimental results to pulsars agree “in order of magnitude with the

observed relaxation times of the two pulsars (Vela and the Crab)”.

One unexpected result appeared when the spin down of the sphere was observed over

a longer period. The experimenters noted a spontaneous acceleration in the rotation

rate. This is shown in Figure 2.1 [72]. Despite the poor quality of this figure, it seemed

appropriate to reproduce the original image.

Figure 2.1: This plot shows the time dependence for later time of the rotational
velocity for the vessel containing pinned HeII. A relatively rapid spin up can be
observed at about 3500 seconds, followed by a resumption of the spin down.[3]

The observation of this increase reinforced some, at the time, novel ideas regarding

glitches in neutron stars. Prior to this, it was largely assumed that such glitches were

solely the result of star-quakes [33]. Clearly, no such phenomenon was present in the

Helium experiments. It was hypothesised that this spin up was as a result of the de-

cay of vortices as angular velocity decreased. The angular momentum of these vortices

was then transferred to the normal component and subsequently to the vessel [72] in

close agreement with the recent theoretical work [36]. An outline of how such a transfer

should cause a sudden jump, rather than a slow steady transfer was given [81]. It was

suggested that such a mechanism could also operate in neutron stars and shown that,

in the case of the Vela pulsar, this matched well with the observed interval between the

glitches.

Limited investigations were performed into the use of a rotating 3He-4He solution [83].

Here the 3He acted as the normal component, whilst the 4He was the superfluid. Results

similar to those in pure 4He were obtained but there was a notable increase in the critical

rotation rate for vortex formation and in the observed relaxation times.

This was really the highpoint for the attempts to physically model neutron stars using

superfluid Helium. It seems a shame that such experiments have not been repeated with
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more modern laboratory equipment, as the advances made in the 1970s furthered our

understanding in many ways.

2.2 Bose-Einstein Condensates

“If the condensed atoms in a BEC were to attract each other, then the whole condensate can

collapse. People have actually predicted that the physics is the same as that of a collapsing neu-

tron star. So it’s one way, maybe, to realise a tiny neutron star in a small vacuum chamber”

Wolfgang Ketterle - NASA Science 2002.

A Bose-Einstein Condensate (BEC) is a state of matter of weakly interacting bosons

confined in an external potential and cooled to temperatures very near absolute zero. In

such a state a sizeable fraction of bosons occupy the lowest quantum state of the external

potential. Under these conditions quantum effects become apparent on the macroscopic

scale [84].

Such a state of matter was first hypothesised in 1924-25 following collaboration between

Einstein and Bose. It was demonstrated that, if they were cooled to very low tempera-

tures, bosonic atoms would condense into the lowest accessible quantum state. Such a

state of matter was first realised experimentally in 1995 with a diffuse gas of rubidium

atoms [85].

After this physical realisation of the previously theorised state of matter, there followed

a series of experiments to test and confirm the predicted properties of such a material.

Here we mention only those that are pertinent to the use of BEC’s as possible analogues

for neutron star cores.

Most obviously for any physical analogue of a neutron star core using Bose-Einstein

Condensates is the existence of a binary mixture of condensates to simulate the two

component nature of said core. This was first observed, almost accidentally, in 1997

[86]. In this example the binary condensate consisted of a condensate of two differing

spin states of 87Rb, rather than distinct elements. Even so, differences in the behaviour

of the two condensates were observed. It was also noted that, in this particular mixture,

there was a repulsive interaction between them.

Another feature that we would like to see is the presence of collective excitations, which

we can describe as coherent fluctuations in the density distribution. The motivation

for such experiments can be considered as two fold [87]. Firstly, if, as was expected,
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BEC’s exhibited superfluidity, then this is defined by their dynamical behaviour. The

study of excitations is an initial step toward understanding this. Secondly, the observed

frequency of standing wave excitations is a precise test of understanding of the effect

of interactions [87]. These excitations were observed within months of the first reali-

sation of a BEC [88]. Further to this, and also of interest in our search for analogues,

the damping rates of such modes were also studied and found to show a roughly linear

dependence on temperature [89][90].

These excitations in BEC’s also offer the prospect of modelling some aspects of the

seismology of neutron stars. By studying the oscillations of neutron stars, we are able,

through analysis of their modes, to draw conclusions regarding density and composition

[91]. The ability to model various density profiles in a laboratory might further enhance

our understanding, particularly of the inner core.

Of crucial importance in mimicking the behaviour of the neutron star core is the pres-

ence of quantised vortices within the BEC’s. These were first observed in 1999 in a

binary condensate [92]. Using an interference technique, the phase of the vortex state

was mapped, confirming that it possessed angular momentum. It was also demonstrated

that vortices could be created independently in each condensate, with observed differ-

ences in the dynamics and stability.

In the accepted model for a neutron star core, the vortices within the core extend into the

inner crust. These vortices are pinned energetically to the crust [93] and it is suggested

that their unpinning and re-pinning might be a mechanism for neutron star glitches

[94]. The pinning of the vortices in BEC’s might appear to present a problem, since it is

difficult in the extreme to pin them to any physical material. However, this problem is

overcome by pinning using an optical lattice [95] and such a technique may be extended

to cover two component BEC’s [96]. Again the vortices are pinned by energy consider-

ations and so mirror the pinning of those in a neutron star.

In order to investigate the superfluid two-stream instability in BEC’s, in Chapter 3 we

apply the hydrodynamic equations for two component BEC’s. Naturally, this approach

to BEC instabilities is only justified if there is evidence of superfluid condensate flow.

This flow was observed as recently as 2011 [97]. The experiments conducted also showed

a critical velocity for the onset of a pressure gradient, as a function of density of the

BEC, indicating the beginning of dissipation and the break down of superfluidity. This

led to further studies on the details of drag forces and their dependence on size and

density of the condensate.
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In Chapter 4 we discuss r-mode instabilities of a neutron star, which are dependent

upon the relative motion of the neutrons and protons. In the simpler case of linear

flow, we observe some critical relative velocity between the two components at which

the flow becomes unstable to plane wave perturbations [2]. It is important that a similar

instability should be present in BEC’s, if we are to model most neutron star phenomena

that depend upon, for example, differential rotation. The existence of a critical relative

velocity was shown in 2001 for a binary mixture of moving BEC’s [6]. This is reviewed

in more detail in Chapter 3, but we can see immediately the relevance of such an insta-

bility to neutron star analogues. A natural extension of this is the investigation of two

component BEC’s in rotating traps. The physics of such a system has been shown to be

very rich, with four classes of instability appearing in the mixture [98]. Whether the two

types of ‘centre of mass’ instability (classical and intra-species) are of great interest in

neutron star physics seems debatable. However, the other two classes, ripple and catas-

trophic instabilities, suggest turbulence in the BEC’s and, at first impression, appear

more closely related to previously observed instability phenomena previously observed

in superfluid Helium.

The effects of differential velocity (and counterflow) between the two components of bi-

nary BEC’s has been further explored, at times with direct reference to the similarities

(and differences, particularly with reference to Helium) when compared with astrophysi-

cal applications and Helium [99]. The advantages of studying these phenomena in BEC’s

are that they are easily controlled and that the dynamics of topological defects can be

easily visualised. Such counterflow instabilities in a quasi one dimensional system has

been observed [100][101].

Further work in comparing BEC’s with Helium includes the calculations regarding the

first sound and second sound of two component condensates [102]. The approach adopted

is similar to that used in Chapter 3 of this thesis. The hydrodynamic approximations

are used to show these phenomena are present in BEC’s and they are calculated in terms

of the scattering lengths of the condensates. The problem with these calculations, when

compared to higher density superfluids, is that they do not take into account the entrain-

ment effect between the two components. The absence of entrainment is a non-trivial

problem when it comes to the use of BEC’s as an analogue for neutron star cores.

It is worthwhile at this point to emphasise the key feature that distinguishes entrainment

from friction, with which it, at first glance, appears closely related. Whilst friction is a

dissipative process, entrainment is entirely non-dissipative. There is no loss of energy

associated with entrainment making it almost impossible to model using either linear or

non-linear frictional processes. This issue is key when we consider any attempt to model
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a neutron star core with diffuse condensates.

The observation of differing types of dynamical instabilities in two component BEC’s

should give pause for thought. In modelling neutron star cores we are looking to model

a particular mechanism and there appear to be many varying mechanisms that mani-

fest instabilities in binary BEC’s. As a relatively simple example, there are energetic

considerations that, under the correct circumstances, induce phase separation in two

component BEC’s [103][104]. It has been shown that in the regime of strong mutual

repulsion between the two components, an inhomogeneous state (complete phase sep-

aration) is the most stable. This suggests that some caution needs to be applied in

selection of the particular combination of condensates used in any analogue. A pair of

condensates free from any such effects would be necessary to simulate the homogeneity

of the neutron star core components, where phase separation of this type is not expected.

Having sounded a slightly pessimistic cautionary note, we move on to consider a major

advantage that BEC’s possess over superfluid liquids in constructing analogues of other

physical systems. This is the ability to manipulate the physical characteristics of a two

component condensate through environmental means. Density profiles can be arranged

almost at will by the use of external potentials and motion of the two components can

be similarly induced [87]. This allows construction of almost any physical configuration

that might be desired.

Of as great a significance in the use of BEC’s as analogues is the ability to fine-tune

some parameters of a two component BEC, so as to match those of the core components

of a neutron star. This can be achieved due to the existence of Feshbach resonance.

It was calculated, even before the physical realisation of BEC’s, that there was some

dependence in the collisions between atoms upon the presence of a magnetic field [105].

It was shown that there were dramatic resonances in all cross sections as a function of

magnetic field. These became known as Feshbach resonances because they are similar

in nature to scattering resonances in nuclear collisions described by Herman Feshbach

[87]. It was calculated that the presence of these resonances would allow the tuning of

the s-wave scattering length of the atoms in a condensate. By varying the magnetic field

over a few gauss in the vicinity of a Feshbach resonance these scattering lengths could

be readily adjusted [106]. These resonances were first observed experimentally in 1998

in various different condensates [107][108][109].

Further experimentation in Feshbach resonances led to a most interesting observation

[110][111]. Although not really pertinent to our subject, it is included as the observed

phenomenon is, superficially, similar to the birth of a neutron star. When the magnetic
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field interacting with a condensate was suddenly switched so that the self interaction

became strongly attractive, the condensate became unstable and collapsed. The dynam-

ics of this collapse were remarkable. The condensate was seen to shrink slightly, before

undergoing an explosion. A substantial fraction of the atoms were simply blown off,

leaving a small cold stable remnant. Because of its resemblance to a core collapse super-

nova, this became known as a Bosenova [87]. This brings us full circle to the quotation

with which we begin this section.

One other aspect of BEC research that appears to have implications for neutron star

physics is that of topological defects. This suggest that we may be able to model, to

some degree, the interfaces between the differing layers of a star. Of particular interest

is the investigation of the behaviour of vortices at interfaces between two condensates

with differing spins [112][113]. It has been established that vortices are continuous across

these boundaries. This may help in understanding how neutron star vortices behave at

the interface between the inner crust and the outer core. This research may have fur-

ther implications for how vortices penetrate the problematic inner core. Naturally this

research is only relevant to neutron star physics if the inner core retains the property of

superfluidity.

In conclusion, we see that BEC’s offer the hope of qualitatively simulating the behaviour

of neutron star cores. They offer all of the key characteristics desired, with one notable

exception, and are tunable in many respects to offer the desired responses. The ma-

jor issue that remains is that of entrainment. This problem does not seem likely to be

insurmountable and recently there has been theoretical work on superfluid drag (entrain-

ment) in two component BEC’s and the effect of optical lattices on this phenomena [114].

As a final consideration of possible analogues, we mention that research in low temper-

ature physics has expanded into the realm of ultracold atomic Fermi gases. These gases

share many of the observed features of BEC’s: superfluidity; quantised vortices; fine tun-

ing of interactions [115]. However, unlike BEC’s, Fermi gases are generally more strongly

interacting and are not so diffuse. This raises the possibility of modelling neutron star

cores where the difficulties with the absence of entrainment do not occur. Most research

thus far has been related to determining the fundamental properties of these gases. More

recently the qualitative similarities between Fermi gases and neutron matter has been

explored [116]. It can be seen that there is a chance that analogues might be produced

in Fermi gases, but this is a relatively new science and there remains much to be learned.



Chapter 2 Laboratory Analogues for Superfluid Neutron Star Cores 35

2.3 Vortex Instability and Turbulence

Phenomena exhibited by superfluids that are of particular interest in the study of neu-

tron stars are those of instabilities in vortices and turbulence in fluid flow. The study of

these phenomena in superfluids may offer an insight into, amongst others, irregularities

in the precession of the star, as well as post glitch behaviour [54].

Before proceeding with a discussion of these phenomena, it should be made clear that,

unless otherwise stated, the text refers to the behaviour of superfluid 4He. Whilst there

are other materials that exhibit superfluidity, their characteristics result in noticeably

different behaviour in the superfluid phase. For instance, 3He atoms are fermions and, as

such, superfluidity requires the condensation of pairs of atoms through Cooper pairing.

Whilst the superfluid is similar to that of 4He, there are important differences. For

instance, the viscosity of the normal fluid component of 3He is many orders of magnitude

higher than that of 4He. Further, the nature of the vortices differs, being much larger

and enclosing a high density of bound quasi particle states within the core [117].

2.3.1 Vortex Instabilities

An early theoretical prediction was that of a relatively simple hydrodynamic instability

involving vortex lines [118][119]. It was shown that in the presence of counterflow along

the vortex lines an instability is manifest through the mutual friction force in the two

component model. This form of instability is important in the differential rotation dis-

cussed in Chapter 3. This analysis was extended to include impurities (3He) into the

superfluid and this was shown to cause major changes in the critical velocity for the

onset of this instability [119].

This work was largely motivated by previous experimental work [120]. Here it was

shown that the trapping of ions by quantised vortex lines was inhibited by a small ther-

mal counterflow parallel to the axis of rotation. It was hypothesised that this was due to

a vortex array instability [54]. Direct observation of this instability was later obtained

[121], where the attenuation of the second sound was measured in a direction perpen-

dicular to an array of rotation induced vortices. A large increase in attenuation was

observed at critical counterflow velocities.

Also of interest was theoretical work regarding the properties of vortex waves [4]. Here

the effects of the mutual friction and the Magnus force upon waves propagating through

a vortex array are considered. It is demonstrated that these forces produce, along with
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attenuation of the waves, a shift in frequency.

2.3.2 Superfluid Turbulence in 4He

‘Turbulence is widespread, indeed almost the rule, in the flow of classical fluids. It is a

complex non-linear phenomenon, for which the development of a satisfactory theoreti-

cal framework has long been a challenge. That framework remains incomplete, but it is

crucial to our understanding of many natural phenomena and a wide range of technical

applications.’ W.F. Vinen, Quantum Turbulence - 2002.

We see that, even in classical fluid mechanics, turbulence is a complex matter, where

investigations into the associated phenomena are still active. Turbulence is also found

in superfluid flow and an understanding of this is an important feature in describing the

observed behaviour of 4He. Much of the early motivation for the study of this turbu-

lence came from the use of 4He as a coolant for superconducting devices [117]. However,

the previously discussed analogies between superfluid Helium and the outer core of a

neutron star suggest strongly that this has applications in astrophysics.

As discussed in numerous texts [47][50][48][51] and others, superfluid flow is strongly

influenced by quantum effects. As such, it is appropriate to refer to the resulting tur-

bulence as ‘quantum turbulence’. It is noted that superfluid flow differs from that of

a classical fluid in three important respects, all related to quantum effects: the super-

fluid exhibits two-fluid behaviour; the superfluid component can flow without viscous

dissipation; and the flow of the superfluid component is subject to quantum restrictions

[117]. In this section we review progress in the phenomena of quantum turbulence, both

theoretical and experimental. Where appropriate, similarities to and differences from

the observations of classical turbulence are included.

Before considering research into quantum turbulence, it is useful to review turbulence in

classical fluids. In an interview with USA Today in 2006, Richard Feynman described

turbulence as ‘the most important unsolved problem of classical physics.’ The behaviour

of a classical fluid is described by the Navier Stokes equations. At low velocity the flow

is laminar and can be accurately predicted using a linear model. However, at higher ve-

locities (and Reynolds number) this laminar flow breaks down and is replaced by highly

non-linear dynamics. It becomes impossible and increasingly meaningless to follow the

change of fluid velocity in a turbulent flow.
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However, it has been known since the 1940s that turbulent flow exhibits some charac-

teristic behaviour that is statistical in nature [122][123]. It was shown that, for some

volume of a fluid away from a boundary, a region of an incompressible classical fluid is

locally approximately both homogeneous and isotropic. This leads to the statistics of

the energy spectrum defined by what has become known as Kolmogorov’s Law, which

gives the energy per unit mass as a spectrum of wavenumbers from the Fourier transform

of the velocity field [124]. These results were later demonstrated experimentally [125].

These early musings are particularly interesting in that they demonstrated the need for

probabilistic description of what is, in essence a deterministic system. This was an early

step in the description of many non-linear systems and was a key component in Chaos

Theory [125]

Most research into classical turbulence, both experimental and theoretical, has been

guided by this probabilistic approach [125]. Researchers have relied heavily on the

assumptions of local homogeneity and isotropy. In the experimental community the

problem of achieving these conditions was solved by the relatively simple expedient of

placing a grid into a near laminar flow. This is shown in Figure 2.2, where we see tur-

bulence generated as the interaction of the flows having passed through the grid.

Figure 2.2: Turbulence produced by inserting a grid into a laminar flow. [4]

Another key area of investigation is the turbulence of classical fluids associated with flow

around blunt objects. An example of this is shown in Figure 2.3. This is an excellent

example of how, as the Reynolds number (or velocity) increases, the flow passes from

laminar, through instability and into turbulence. This area of research has wide ranging
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engineering applications, particularly in aeronautics and naval architecture.

Figure 2.3: The flow of a classical fluid past a circular cylinder. The left hand
figure shows the flow for a Reynolds number of 26, whilst that on the right has
a Reynolds number of 2000. [4]

Some more recent experiments have focussed upon the flow of cryogenic He I (that is

liquid helium at temperatures close to but above the λ point) in a small pipe. This

is significant in that it enables the generation and study of extremely high Reynolds

numbers [126]. Such experiments are at an early stage but offer the hope of significant

advances by studying classical turbulence in its most extreme circumstances.

Having briefly discussed research in classical turbulence, we move on to consider super-

fluid 4He. Unlike the classical fluid, the superfluid is described by a two fluid model.

This would imply that it is likely to display, along with some of the more familiar phe-

nomena, causes of turbulence that are not present in the classical fluid. As we shall see,

this is indeed the case.

By its nature, turbulence in classical fluids must involve rotational motion [117], which

is eventually dissipated by viscosity. We can regard the normal component of superfluid
4He as a classical viscous fluid, so it would be expected that it can support a turbulent

velocity field as described above. Any such field may be modified by the existence of

mutual friction resulting from the presence of quantised vortex lines in the superfluid

component. Such rotational motion in the superfluid component, whilst not prohibited,

is restricted to these quantised line vortices and is free from viscous dissipation. As-

suming that turbulence in the superfluid component can be established, the absence of

viscosity implies that this should differ in general from that present in classical fluids

[117].

This leads to a considerably more complex set of possibilities for turbulence in superfluid
4He than in a classical fluid. Summarising, as well as the turbulent behaviour of the

normal component, it is necessary to consider the following: interaction between the
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two components; mutual friction; quantum restrictions; and the inviscid nature of the

superfluid component.

In fact, aspects of quantum turbulence can be observed that are similar to those in the

classical case. But there are also important differences. These similarities and differ-

ences appear generally to depend upon the length scale involved, with longer length

scales exhibiting features that are closer to classical behaviour [124][117].

Most early experimental studies on superfluid turbulence focussed on thermal counter-

flow, clearly a phenomenon that can not be observed in a single component classical

fluid. This is the phenomenon described in the previous section when discussing vortex

instabilities. The flow is driven by an injected heat current which leads to a differ-

ential velocity between the two components [124]. It was observed that, above some

critical relative velocity, the superflow becomes dissipative [127][122][123]. It was later

proposed that this demonstrates a superfluid turbulent state and that this state consists

of a tangle of quantised vortices [128]. This is illustrated in Figure 2.4. This view was

confirmed experimentally by demonstrating that the dissipation is a product of mutual

friction between the vortices and the normal flow [5][129][130]. This type of instability is

of particular interest in neutron star physics, where the two fluid model is often applied

to the physics of the core [39].

Figure 2.4: A vortex line illustrating the onset of quantum turbulence from: (a)
stability; through (b) instability; to (c) and (d) turbulence and a vortex tangle.
[5]
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Whilst these counterflow experiments were useful in furthering our understanding of

superfluid behaviour, there is no classical analogue. As such it does little to contribute

to the understanding of the relation between quantum turbulence and its classical cousin.

However, from the mid 1990s a series of experimental studies were undertaken involving
4He that did not feature thermal counterflow [124]. One of the earliest significant con-

tributions was made at the Ecole Normale Supériere in Paris [131]. Here, in a series of

experiments, a turbulent flow was induced in a cylinder containing two counter rotating

disks. These experiments were conducted at temperatures both above and below the λ

point, so as to compare results for classical and superfluid flows. By observation of the

local pressure fluctuations the energy spectrum was obtained. This revealed the first

experimental confirmation of the Kolmogorov spectrum.

This was followed by significant advances made at the University of Oregon. Here, there

was (these are still ongoing [54]) a series of experiments investigating grid turbulence

[132][133][134][135]. This uses a method to produce turbulence similar to that used in

earlier investigations into classical turbulence. However, in this case, rather than the

placement a grid in a laminar flow, the grid is dragged through a fluid at rest. This has

the advantage in that the relative velocity of the grid and fluid can be much higher, so

creating the equivalent of higher Reynolds numbers in the normal component. It was

shown that the coupling between the superfluid and normal fluid components through

mutual friction produced a quasi-classical flow at length scales greater than the mean

spacing between the vortices. This causes the fluid to behave as though it had only

one component. Further observations of the decay of turbulence showed that this was

consistent with the classical Kolmogorov spectrum.

One other significant observation made by the Oregon group was that of four distinct

regimes of decaying grid turbulence [135]. The timescales of the decay were demon-

strated to switch between these regimes with varying Reynolds number.

Further ongoing research includes the comparison of the decay of grid turbulence with

that of counterflow turbulence. These have been shown to be distinct and several re-

search teams are investigations these differences and their underlying physics [126][136].

Research also continues that aims to account for the critical velocity in counterflow

instability and its temperature dependence [126]. In the past, the study of superfluid

turbulence in relation to flow around blunt objects has been largely neglected [126]. How-

ever, there has been relatively recent study of turbulence generated by high Reynolds

number flows over a sphere [137]. The proposed development of ‘wind tunnels’ (at the

University of Oregon) capable of operating in the superfluid regime offers the chance of
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further experimentation in this area [126].

2.3.3 Further Examples of Quantum Vortices and Turbulence

The realisation of Bose-Einstein condensation in trapped atomic gases opened new av-

enues for the investigation of quantum turbulence [124]. BEC’s have several advan-

tages over superfluid helium in this area of study. Most obviously, quantised vortices in

BEC’s can be directly visualised1. Also, owing to the weakly interacting nature of these

condensates, their behaviour can be mathematically described by the Gross-Pitaevski

equations. Theoretical work has shown that quantum turbulence can be generated in

trapped BEC’s and, importantly, that the energy spectrum obeys Kolmogorov’s law

[139][140]. Whilst not wishing to reiterate all of the features of BEC’s, it is clear that

their relative ease of manipulation and ideal superfluidity make them prime candidates

for the investigation of quantum turbulence.

Until relatively recently, the use of superfluid Helium-3 to investigate quantum turbu-

lence has been restricted because of the difficulty of production at the low temperatures

required. There is also a major issue with the paucity of this isotope in naturally oc-

curring Helium, where it constitutes only one part in a million [141]. The quantities

required for experimentation are only available through the nuclear reactions resulting

from bombarding Lithium-6 with neutrons. Such were the issues associated with the

production that the first condensation of Helium-3, which occurs at approximately 3.2

K, was not achieved until 1949 [142].

Larger quantities of Helium-3 did not become readily available until the 1960’s [141]

. With the increased quantities at their disposal, researchers undertook numerous ex-

periments, many of which mirrored those previously performed with Helium-4. There

was also great interest in the realisation of the predicted superfluid phase. Owing to

the fermionic nature of Helium-3 atoms, their behaviour is governed by the predictions

of Bardeen-Cooper-Shcrieffer (BCS) theory and superfluidity was predicted to occur at

temperatures well below that for Helium-4. This predicted superfluid behaviour, analo-

gous to that previously observed for electrons in superconducting metals [143], was first

observed in 1971 [141].

Soon after the realisation of superfluidity, it was shown that Helium-3 undergoes at least

two phase transitions close to the critical temperature [144][145]. As such it exhibits

1In recent years, advances in experimental techniques have allowed direct vortex visualisation in
superfluid Helium-4. In some aspects this exceeds that available in BEC’s. For example, reconnection
of individual vortices have been observed in Helium but not in BEC’s [138].
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more than one superfluid phase, with different properties for each. Initially only two

phases were observed, which became known simply as Helium-3A and Helium-3B. The

existence of these two superfluid phases offered scope for a new range of experimental

works that are not available with the single superfluid phase of Helium-4.

Of particular interest to neutron star physics are experiments relating to the behaviour

of quantised vortices where an interface exists between volumes of the two phases [146].

Here the two superfluid phases are held in a cylindrical container, a distinct junction

between the two being magnetically maintained. The two fluids are spun up until a

condition exists where a steady array of vortices, perpendicular to the plane of the in-

terface, but passing through it can be observed. We note that one of the superfluids

has these vortices pinned to its end of the container, whilst the other has no such re-

striction. Once a satisfactory condition, where the two fluids are rotating at the same

rate, is achieved, the system is allowed to spin down. Owing to the differing properties

of the two phases, along with the pinning of one end of the vortices, the unpinned phase

slows more rapidly. As this happens the vortices in the unpinned phase drift to the

outside of the container causing those in the pinned phase to bend outwards close to

the interface. This eventually leads to a vortex plane at the interface and subsequently,

turbulent behaviour in both phases. It is hoped that further study of this phenomenon

will enhance understanding of the behaviour of vortices within neutron stars. This is of

greatest relevance at the interface between the outer core, where the vortices are free to

drift, and the inner crust, where they are generally pinned to the lattice. The experiment

mirrors the build up of differential rotation between the neutrons in the crust and those

within the core, and may offer further insight into phenomena related to pulsar glitches.

2.3.4 Cosmic Strings

Moving beyond the terrestrial laboratory and into the realms of cosmology, we discover

a very different application for the study of vortices, that of cosmic strings. Early in its

evolution, as it grew and became less dense, the Universe underwent numerous phase

changes. These were associated with many different phenomena, from the appearance

of nuclear material to the separation of fundamental forces. It has been theorised that

some of these phase changes may have produced effects that are still observable today.

One such effect may be the existence of cosmic strings.

The search for cosmic strings began in the 1970’s when it was theorised that phase

changes in the early universe might produce symmetry breaking in a scalar field. It was

conjectured that this might occur as a result of the separation of the strong nuclear force

from the electro-weak force. A similar, although less significant, phenomenon was also
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suggested for the separation of the weak and electromagnetic forces [147].

It is theorised that this symmetry breaking leads to topological defects which may have

zero-dimension (monopoles), one dimension (strings) or two dimensions (domain walls)

[148]. The existence of domain walls appears to be ruled out by gravitational considera-

tions [149], whilst the topic of monopoles goes beyond the scope of this review. However,

the nature of the hypothesised cosmic strings is of interest as these one dimensional de-

fects can be viewed as analogous in some ways to vortices [147].

The nature of these strings suggests that they may have had great significance in the

evolution of the Universe. They are believed to be stable over very long time scales, so

it is expected that they would still be existent. They grow with time and so would be

expected to now be of great length, almost certainly as large (or larger) as the diameter

of our galaxy [147]. However, their radius would still be on the atomic scale. Accord-

ing to the theory underlying these strings, they would be under tension and, as such,

they would have mass. It has been suggested that, if such an object existed, a cosmic

string that was as long as the diameter of our sun would have a mass equal to the sun

[149]. It has been proposed that the advent of these strings in the early Universe may

have acted as ‘seeds’ for galaxy formation, since they would produce local gravity effects.

The most obvious method of detection of these strings is as a result of their mass. One

would expect them to be a source of observable gravitational lensing [147]. Whilst the

current lack of such observations might appear discouraging, it is thought that there

are likely to be very few strings within the observable Universe. Efforts continue to

detect the effects of strings on signals reaching the earth and, if they are ever found,

the analogous natures of these one dimensional defects to quantum vortices would open

new areas of research in cosmology and low temperature physics.

In the spirit of this chapter, where we are discussing laboratory analogues, it is en-

couraging to note the development of experimental models for cosmic strings. These

experiments, conducted at Lancaster University, use superfluid 3He to study the for-

mation and decay of cosmic strings [150]. In recent years the experiments have been

extended to consider how brane collisions and annihilations in the early universe may

have created topological defects that persist to the current time [151][152]. It has been

suggested that this work may enhance our understanding of inflationary epochs in the

early Universe, which may have been initiated and terminated by such brane collisions

[151]. These experiments show clearly how advances in one field of physics may have

unforeseen applications in other fields, which is the major argument put forward in this
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chapter.

The scope of quantum turbulence encompasses the physics of many different fields of

studies. Research into its causes and effects stretches from traditional superfluid helium

through BEC’s to compact stars. With the advent of cosmic strings in the early universe,

quantum turbulence could also be stretched to truly cosmological scales [153]. Whilst

this section is by no means an all encompassing review of the field, it includes many of

the salient features when considering applications in neutron star physics.



Chapter 3

Binary Bose-Einstein

Condensates as Analogues for

Two Component Superfluids.

3.1 The two-stream Instability in Binary BEC’s without

Entrainment

In this chapter we explore the nature of a class of dynamical instabilities in binary

Bose-Einstein Condensates (BEC’s) and the two stream instabilities described in chap-

ter 2. To assist in our endeavour we make use of material from both the fluid dynamics

and condensate communities. Our aim in investigating the analogous nature of the two

classes of instabilities is to understand to what extent the BEC instability is related to

those expected to be present in the superfluid cores of neutron stars.

If we are to consider the two instabilities as in some way analogous, then it would be

advantageous that BEC’s exhibit attributes similar to those seen in superfluids. For

instance, it would be seem to be of paramount importance that BEC’s manifest a super-

fluid flow so that their behaviour might, to some degree, mirror that of the superfluid

neutrons in a neutron star. Such a flow was observed by Onofrio [97] in 2011 and this

was followed by the observation of several other related phenomena. One such example

which is of particular importance in considering analogous behaviour was the observa-

tion of a critical velocity for such a flow [154]. These observations lend credence to

the possibility of analogous behaviour of binary BEC’s and two component superfluids.

However, even before these phenomena had been established, it was muted that BEC’s

might have some use in modelling some aspects of ultra low temperature fluid behaviour.

45
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Superfluids.

An early discussion as to how BEC’s might be used to model some features of superfluid

behaviour appeared in a paper by Ho & and Shenoy [155] in 1996. In this case the

authors discussed how coexisting regions in a binary BEC are an analogue for 3He-4He

interpenetrating superfluids. In the paper, they consider various possible compositions

of binary condensates, which fall into three categories. The first is a mixture of two

different alkalis; in the analysis presented they consider 87Rb-23Na. The second is a

mixture of different isotopes of the same alkali, the example being 87Rb-85Rb. Finally

they consider a mixture of different hyperfine states of 87Rb. By hyperfine states, they

are referring to a difference in spin between the two samples. It is discussed how, by

varying the trap potentials for the two ‘species’ of condensates, it is possible to pro-

duce configurations of coexistence that mirror almost any required density profile for

interpenetrating superfluids. Although the paper does not extend the analysis to dy-

namical analogues of two component superfluids, when considered alongside some of the

aforementioned work of Onofrio et al [97] and Raman et al [154], it appears that such

analogues are, at the very least, worthy of investigation.

3.2 Instability in a Binary Mixture of Moving Bose-Einstein

Condensates

The existence of an instability in binary BEC’s analogous to the superfluid two-stream

instability is reinforced by the work of Law et al [6]. Here, the dynamic stability of two

interacting BEC’s moving through each other with some fixed relative velocity, vr, is

investigated. The details of inducing relative motion between the two components is not

of great importance at this stage. The method suggested involves “stirring” the con-

densates by a moving laser potential barrier. It is shown that there exists some critical

relative velocity, v
(c)
r , such that relative flows with vr > v

(c)
r cause the condensate mix-

ture to become unstable. Further an analytic expression is constructed for the unstable

collective modes. Since this forms an important part of our investigations, the relevant

material is reproduced (and, where this facilitates understanding, expanded upon) here.

To remain consistent with [6], we retain the notation used by the author in discussions

specific to this work.

Initially, two interacting BEC’s, labelled by species 1 and species 2 are considered. A

frame co-moving with species 1 is used and species 2 is assumed to be moving in this

frame with velocity, vr. According to the mean-field description, the condensate wave
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functions, ψj (x, t) (j = 1, 2), are governed by the coupled non-linear Schrödinger equa-

tion, giving

i~
∂ψ1

∂t
=

(
− ~2

2m1
∇2 +

4π~2a11

m1
|ψ1|2 +

2π~2a12

m12
|ψ2|2 − µ1

)
ψ1 (3.1)

and

i~
∂ψ2

∂t
=

(
− ~2

2m2
∇2 +

4π~2a22

m2
|ψ2|2 +

2π~2a21

m21
|ψ1|2 − µ2

)
ψ2. (3.2)

Here, mj and µj are respectively the atomic masses and the chemical potential associated

with the two species. The m12 term refers to the reduced mass for interspecies interac-

tion, such that m12 = (m1m2) / (m1 +m2). The intra-species and interspecies s−wave

scattering lengths are denoted by ajj and a12 respectively. We note that a12 = a21.

Using the hydrodynamic equations, it can be seen that, since species 2 has a velocity

vr, a solution of the wave functions is given by ψ1 =
√
ρ1 and ψ2 =

√
ρ2eik·x, where

k = m2vr/~ and ρj (= Nj/V ) are the particle densities.

Next the evolution of the described condensate system is examined, assuming that ψ1

and ψ2 deviate slightly from the above solution. This is expressed by:

ψ1 (x, t) =
√
ρ1 + φ1 (x, t) , (3.3)

ψ2 (x, t) =
√
ρ2eik·x.+ φ2 (x, t) (3.4)

Here φ1 and φ2 are small perturbations to the wave functions, ψ1 and ψ2, of the non-

linear Schrödinger equations, (3.1) and (3.2). In a manner analogous with the superfluid

two-stream instabiliy, it is assumed that the condensate mixture is stable if φ (x, t)

remains small at all times. To this end, the linearised forms of (3.1) and (3.2) are

considered:

i~
∂φ1

∂t
=

(
−~2

2m1
∇2 − µ1 + 2g11 + g12

√
ρ2

ρ1

)
φ1 + g11φ

∗
1

+
(
g12e−ik·xφ2 + g12e−ik·xφ∗2

)
, (3.5)
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i~
∂φ2

∂t
=

(
−~2

2m2
∇2 − µ2 + 2g22 + g12

√
ρ1

ρ2

)
φ2 + g22e2ik·xφ∗2

+
(
g12eik·xφ1 + g12eik·xφ∗1

)
, (3.6)

where gjj = 4π~2ajjρj/mj and g12 = 2π~2a12
√
ρ1ρ2/m12. An assumption that g2

12 �
g11g12 is made, as this is a condition of the stability of the stationary (vr = 0) case with

no phase separation.

Using a form explained in [156], expansions in terms of φ1 and φ2 are obtained,

φ1 =
∑
q

(
u

(1)
q eiq·xcqe−iωqt + v

(1)
q e−iq·xc∗qeiωqt,

)
(3.7)

φ2 = eik·x
∑
q

(
u

(2)
q eiq·xcqe−iωqt + v

(2)
q e−iq·xc∗qeiωqt,

)
(3.8)

where cq are the amplitudes associated with the collective excitation modes formed by

the condensate mixture. In equations (3.7) and (3.8), the terms containing uq and vq

are the left and right moving waves respectively. The normal modes of each condensate

component are defined, as in [157] and others, as a two component object by

φ
(i)
q =

(
u

(i)
q

v
(i)
q .

)
(3.9)

Then, by substituting equations (3.7) and (3.8) into equations (3.5) and (3.6) and using

the notation from [157],

Wq ≡
(
u

(1)
q , u

(2)
q , v

(1)
q , v

(2)
q

)
, (3.10)

we arrive at the eigenequation,

MqWq = ωqWq, (3.11)

where
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Mq = g11


γmq̃

2 + 1 γ12 1 γ12

γ12 q̃2 + 2k̃q̃ cos θ + γ2 γ12 γ2

−1 −γ12 −γmq̃2 − 1 −γ12

−γ12 −γ2 −γ12 −q̃2 − 2k̃q̃ cos θ − γ2.

 (3.12)

Equation (3.12) introduces the following variables. The angle θ is defined by θ =

cos−1 (k · q) /kq. Two dimensionless momenta are introduced; k̃ = ~k/
√

2m2g11 and

q̃ = ~q/
√

2m2g11. The following ratios are also defined; γ2 = g22/g11, γ12 = g12/g11 and

γm = m2/m1.

Equation (3.11) determines collective excitation frequencies, ωq, of the condensate mix-

ture [158]. Using essentially the same reasoning as that for demonstrating dynamical

instability in a two component superfluid, the condensate mixture is assumed to be dy-

namically stable when all ωq are real and dynamically unstable when there exist modes

with complex ωq.

By a simple rearrangement, the relative velocity, vr, can be expressed as vr = ~k/m2.

Given such an expression it is possible to examine all collective excitation frequencies,

ωq, for all q. Before discussion of analytical results, a range of typical stability phase

diagrams are produced in Figure 3.1 for a range of parameters. In each case the shaded

area corresponds to an unstable region in which ωq are complex. There are two main

features of these diagrams. Firstly, they show that for each set of parameters there

exists a critical k̃c, such that for all k̃ < k̃c, all ωq are real. This indicates the existence

of a critical velocity, v
(c)
r = k̃c

√
2g11/m2 below which the condensate mixture is stable.

Secondly, there is only a finite range of values for k̃c for which ωq take complex value

for some given q̃. This indicates a finite range of relative velocities that manifest the

instability being considered. When compared with Figure 1.6 from Chapter 2 of this

thesis, we see that these results add further credence to the analogous behaviour of the

condensate mixture and the two component superfluid with relation to this class of dy-

namical instability.

It is also interesting to note that the shaded bands in these graphs become narrower as

the interspecies interactions are weakened. Whether this is in some way analogous to

decreasing the chemical coupling in the two component superfluid case, as discussed in

Chapter 2, may prove an interesting question for the future.
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Figure 3.1: Stability phase diagrams of the system with different dimensionless
parameters. The collective excitation frequencies, ωq, are complex inside the
shaded region. The dashed lines show the value of k̃c. Both k̃ and q̃ are dimen-
sionless, being defined after equation (3.12). The interaction parameters are (a)
γ2 = 1, γ12 = 0.1 and γm = 1; (b) γ2 = 1.5, γ12 = 1 and γm = 0.5; (c) γ2 = 1.5,
γ12 = 1 and γm = 2; (d) γ2 = 1, γ12 = 1 and γm = 1. Note that only the region
with positive cos θ is shown. The negative cos θ region is simply a reflection in
the horizontal axis. Figure reproduced from [6]

In considering a full analytic solution to the problem, it is noted that Equation (3.11)

yields a quartic in ωq when expanded using det [Mq − ωqI] = 0. So if the mode q is

stable, the above equation in ωq has four real roots. Whilst this may appear difficult

here, it is essentially the same problem as that presented by equation (1.33) from chapter

2, the onset of instability occurring when a pair of these real roots merge and become

complex. Whilst a full analytic solution can be found for this quartic, the number of

terms in the matrix, Mq, suggest that this will be too complicated to easily yield useful

information about the nature of such a solution. It may be that a numerical treatment

of the problem will be necessary to yield full results. However, some insight on k̃c can

be gained by considering the weak and strong interspecies coupling limits.

Firstly, consider the weak-coupling regime. In this case we have g12 �
√
g11g22, which

leads to
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k̃2
c =

(√
γm +

√
γ2

)2
2

− (γmγ2)1/4 (
√
γm +

√
γ2)

γ12√
γ2

(3.13)

+O
(
γ12√
γ2

)2

.

Whilst in the strong coupling regime, we have g12 ≈
√
g11g22, which gives

k̃2
c =

(√
γm +

√
γ2

)
√
γm

(√
γ2 − γ12

)
− (γm − γ2)2

2γ2 (γm + γ2)

(√
γ2 − γ12

)2
(3.14)

+O
(

1− γ12√
γ2

)3

.

Using the two limiting cases from equations (3.13) and (3.14), an approximate solution

for k̃c is constructed, which approximates the solution for the entire parameter ranges;

2k̃2
c ≈ (

√
γm +

√
γ2)2

(
1− γ12√

γ2

)
(3.15)

+ αγ12

(√
γ2 − γ12

)2
βγ2

12

(√
γ2 − γ12

)
,

where

α = (
√
γ2 +

√
γm)

(√
γ2 − 2γ1/4

m γ
1/4
2 +

√
γm

)
γ
−3/2
2 (3.16)

and

β = (γm − 2
√
γ2γm + γ2) γ

−3/2
2 . (3.17)

Whilst the approximate formula, equation (3.15), is not an exact solution to the quartic

obtained from equation (3.11), it is constructed so that it matches the values of k̃2
c and

their first derivatives with respect to γ12 in the limits of equations (3.13) and (3.14).

The approximate formula was also tested against numerical solutions for exact values

for k̃c and found to be in reasonable agreement over a wide range of parameters. This

formula is sufficiently tractable to allow information with regard to how the dimensionless
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parameters affect k̃c. This is shown in Figure 3.2. The approximations used show that

the instability is present in both the strong and weak coupling limits. From this it is

reasonable to infer that it is manifest across the full range of coupling parameters, as is

the case with the approximate general solution, (3.15).

Figure 3.2: k̃c as a function of the dimensionless interaction parameters. Figure
reproduced from [6]

In common with the superfluid two-stream instability, the BEC instability associated

with k̃c depends only on the relative velocity of the two components. It is present for

relative velocities well below the speed of sound. This result tells us that the instability

represents an analogue for the two-stream instability discussed in Chapter 2. Mathe-

matically modelling this instability in more complex situations, such as rotating bodies,

requires considerable further work.
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3.3 The Hydrodynamic Approximation

In further considering the analogous nature of the instability in a condensate mixture

and the superfluid two-stream instability [2], it is useful to apply the hydrodynamic

approximation from Pethick and Smith [84] to the problem posed by Law et al [6]. At

this juncture we return to the use of the more standard notation used throughout the

rest of this thesis, rather than that used in [6], although to simplify comparison with

the original text, we make use of some of the notation from [84]. The hydrodynamic

equations are derived from the single component, time-dependent Gross-Pitaevskii (GP)

equation (which is also referred to as the non-linear Schrödinger equation). If we define

ψ (r, t) as the wave function (or order parameter) associated with a single species BEC,

where r is the vector representing position in three dimensions, then the time dependent

behaviour given by the GP equation,

− ~2

2m
∇2ψ (r, t) + V (r)ψ (r, t) + U0 |ψ (r, t)|2 ψ (r, t) = i~

∂ψ (r, t)

∂t
. (3.18)

Here V is the external potential. U0 is the effective (long range) interaction between two

particles in the condensate. This is obtained from the Born approximation [159] and is

related to the s-wave scattering length by

U0 =
4π~2a

m
, (3.19)

where m is the particle mass.

Firstly, we note that this equation is identical to equations (3.1) and (3.2), with one ex-

ception. The earlier equations include a term for the chemical potential. With relation

to the application we are considering here, this does not really need to concern us. In

the analysis that follows, terms relating to potentials will cancel and will not appear in

the final result.

Without loss of generality, we consider only equation (3.1), which we reproduce here for

convenience.

i~
∂ψ1

∂t
=

(
− ~2

2m1
∇2 +

4π~2a11

m1
|ψ1|2 +

2π~2a12

m12
|ψ2|2 − µ1

)
ψ1. (3.20)

In order to obtain the conservation and Euler equations from equation (3.20), we firstly

rearrange and multiply this by the complex conjugate of ψ1, which we denote ψ∗1. This

yields
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− i~ψ∗1
∂ψ1

∂t
− ~2

2m1
ψ∗1∇2ψ1 +

(
4π~2a11

m1
|ψ1|2 +

2π~2a12

m12
|ψ2|2 − µ1

)
|ψ1|2 = 0. (3.21)

We then subtract equation (3.21) from its own complex conjugate. The bracketed terms,

being wholly real, disappear (including the ‘extra’ chemical potential term) and we are

left with

∂t |ψ1|2 +∇i ·
[

~
2m1i

(
ψ∗1∇iψ1 − ψ1∇iψ∗1

)]
= 0. (3.22)

We associate the order parameter, ψ1, with the particle density, n, by

ψ1 =
√
n1eiS1 , (3.23)

where S1 represents the phase of ψ1. This leads to

n1 = |ψ1|2 . (3.24)

We further recall that, in quantum mechanics, the momentum operator is defined [160]

by

pi1 =
~
2i

1

|ψ1|2
(
ψ∗1∇iψ1 − ψ1∇iψ1

)
. (3.25)

Assuming that the equation, pi = mvi, holds in this case, then we can express the

velocity as

vi1 =
1

|ψ1|2

[
~

2m1i

(
ψ∗1∇iψ1 − ψ1∇iψ∗1

)]
. (3.26)

It can now be seen that, by combining equations (3.24) and (3.26), equation (3.22) can

be expressed in the form

∂tn1 +∇i
(
n1v

i
1

)
= 0. (3.27)

This is the particle number conservation equation from fluid mechanics.

We now allow our second degree of freedom to be represented by the phase of ψ1. We

express this by
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ψ1 =
√
n1eiS1 . (3.28)

This allows us to express the velocity by

vi1 =
~
m1
∇iS1. (3.29)

This further allows us to rewrite the real part of the Gross-Pitaevskii equation, (3.18)

as

− ~∂tS1 = U0n1 + Vext +
m1v

2
1

2
− ~2

2m1

1
√
n1
∇2√n1. (3.30)

By combining equations (3.29) and (3.26) we obtain

~2

2m1
(∇iS1)

(
∇iS1

)
=
m1v

2
1

2
. (3.31)

By taking the gradient of equation (3.30) and using the irrotational nature of the flow,

we arrive at

m1

(
∂t + vj1∇j

)
v1
i +∇i (U0n1 + Vext)−∇i

(
~2

2m1

1
√
n1
∇2√n1

)
= 0. (3.32)

This is similar to the standard fluid result with only the last term differing. This term

retains the quantum origin of the model through the presence of Planck’s constant. We

can, however, take our calculations a little further. If we assume that the density is

spatially uniform then

∇2√n1 = 0, (3.33)

and the last term disappears. It may appear that this assumption is rather arbitrary

but we can justify this if we consider the lengthscales with which we are working. If we

assume that the order parameter varies on some length scale, L, it follows that

∇µ ∼ nU0

L
(3.34)

and

∇
(

~2

2m

1√
n
∇2√n

)
∼ ~2

mL3
. (3.35)
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So our assumption is simplification is justified if

~2

mnL2U0
� 1. (3.36)

To give this relation some physical meaning, we introduce the ‘coherence length’, ξ,

which is roughly the length scale on which kinetic energy balances the pressure. This

leads to

~2

2mξ2
≈ nU0. (3.37)

So we need

(
ξ

L

)
� 1. (3.38)

Then, if we consider sufficiently large scale variations, this becomes a valid assumption

and we are left with classical hydrodynamics.

To make this problem as close as possible to that posed in the basic two-stream instability

analysis from Chapter 2, we assume there is no external potential present. This condition

is equivalent, to some degree, to the exclusion of gravitational potential from the two-

stream instability calculation. This leads us to

−m1∂tv
i
1 = ∇i

(
1

2
m1v

2
1

)
+∇i (U0n1) . (3.39)

We make use of the vector identity, expressed here in index form,

vj∇jvi =
1

2
∇i
(
vkvk

)
− εijkvjεklm∇lvm, (3.40)

along with the definition of irrotational flow, that tells us that

εijkvjεklm∇lvm = 0. (3.41)

Substituting equations (3.40) and (3.41) into equation (3.39) gives the much simpler

∂tv
i
1 + vj1∇jv

i
1 +

1

m1
∇i (U0n1) = 0. (3.42)
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This is the Euler equation and is identical in structure to equation (1.6) from Chapter

2. The chemical potential term has simply been replaced with a term that includes the

interaction terms as well as the chemical potential.

As the above exercise did not rely on properties peculiar to any one BEC, it can equally

be applied to the second species in our condensate mixture, as described by equation

(3.2). So we have shown that, by using the hydrodynamic approximation, we can pro-

duce a description of the behaviour of the two individual condensates in the mixture.

This suggests that we may use the two-stream instability as an analogue to a class of

dynamical instabilities in a binary BEC.

It is, however, necessary to sound a note of caution at this stage. Firstly, in using

the hydrodynamic approximation, we have made several assumptions that may not be

fully applicable to the condensates in all cases. In particular, the approximations are

reasonable only if we have a sufficiently large number of particles in our condensates.

Further, we have made assumptions dependent on the lengthscales of variations in the

wave functions. Such may not be fully valid in practice.

Possibly of greater concern is the existence, in the neutron star, of entrainment between

the two fluid components and its absence in BEC’s. In our analysis this has been totally

ignored, which, in any attempt at using BEC’s as a physical model for multi compo-

nent superfluids, will introduce major discrepancies. In our analysis in Chapter 4, we

show that the exclusion introduces large quantitative changes in the unstable modes

of differentially rotating superfluids. In the next section, we discuss the inclusion of

entrainment and how this would impact on the governing equations, (3.1) and (3.2) for

a two component BEC.

One further issue is that, although they are governed by the same equations, we do not

yet know if the physical characteristics of the BEC’s allow these instabilities to be ex-

hibited in our simple two-stream model. (Although the generic nature of the two-stream

instability suggests very strongly that such instabilities will occur.) To this end we con-

sider two condensates of known characteristics and assume them to be co-existing. By

substituting the scattering lengths (the only property that influences the instabilities in

our model) into our hydrodynamic approximation equations, (3.27) and (3.42), we are

able to calculate where the BEC analogue exhibits unstable tendencies.

In our example we choose two different hyper-states of Rubidium-87 (87Rb); the first,

designated species 1, having spin 1, the other, designated species 2, having spin 2.

The scattering length for species 1 is given by a11 = 5.315nm, that for species 2 by
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a22 = 5.052nm, and the inter-species scattering length by a12 = a21 = 5.191nm. Since

we are considering two species of Rubidium-87 condensates [161], m1 = m2. For con-

venience, we assume the particle density has been arranged to be the same for each

BEC. By substituting the scattering lengths into equations (3.1) and (3.2) we are able

to calculate the a and b in equation (1.32) from Chapter 1. This leads to the constants

a2 = 0.905 and b2 = 0.9539, which we now substitute into the two-stream dispersion

relation equation (1.33).

It should be noted at this point, that the sound speed calculations are made using the

hydrodynamic approximation. In this calculation there are some issues that may in-

troduce minor errors when applying the hydrodynamic limit directly to real BEC‘s. It

has been shown in one dimension by integration of the Gross-Pitaevskii equation that a

disorder potential present in a BEC leads to a marginally lower actual speed of sound,

depending on the level of disorder, than that calculated using the hydrodynamic approx-

imation [162]. This produces only small variations in the speed of sound and will not

affect our model in a significant way. There also exists a relationship between the speed

of sound and the trap potential. However, this is actually a rather complex subject and,

for now at least, we shall not attempt to include it in our analysis. (In our simple model,

we assume no trap potential is in place and so this does not apply here.)

Figure 3.3: Real and imaginary parts of the two roots of the dispersion relation,
equation (1.33), for the binary BEC. Complex roots, mirroring the two-stream
instability of the two component superfluid, exist at approximately 30% of the
speed of sound and continue beyond the speed of sound.

With this in mind, the above values are substituted into equation (1.33) and we obtain

the results shown in Figure 3.3. It can be seen that these graphs exhibit essentially the

same characteristics as those seen in the two component superfluid case. Most impor-

tantly there exists a critical relative velocity in the background, above which the binary

BEC exhibits dynamical instabilities. In this particular case the instabilities are existent
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at a much lower percentage of the speed of sound than was obtained in the example given

for the two-stream instability in Chapter 2. Of course, we are discussing an analogue

here, rather than an identity, so the important fact is that the two models display the

same phenomenon but do not need to be quantitatively identical. These results suggest

that experimental work with such a condensate mixture could offer insight into non

linear behaviour of multi component superfluids and shed further light on mechanisms

associated with neutron star glitches.

We note that, in the example shown here, we have the strong interaction case (g12 ≈
√
g11g22) from [6]. We note that, as in Figure 3.1, the range of unstable relative veloci-

ties in our example is wide, extending well beyond the speed of sound (and, ipso facto,

beyond the speed where super fluidity breaks down and our model ceases to be valid).

It might be interesting to explore the results of the weak coupling case and compare this

with the figures in [6]. However, we have in essence already produced results equivalent

to weaker interaction. It can be seen that the effect of such weaker interaction is to

produce values for a2 and b2 in equation (1.33) that are further from being equal than

those in the two Rubidium species example we have chosen here. Such ‘less equal’ values

have already been used in the calculation for the two-stream instability in Chapter 2.

So it is not unreasonable to use these results as an example of a more weakly interacting

condensate mixture. (The g12 �
√
g11g22 case.)

If we compare the results shown in Figure 1.6 and Figure 3.3, we can see that they con-

form with those shown in Figure 3.1. Firstly we have a much narrower range of relative

velocities for the instability in the case of the weaker interaction. This is consistent with

[6]. Secondly, we note that the instabilities are present at a lower percentage of the

speed of sound in the strongly interacting case. Again this is consistent with [6]. These

two features show that the hydrodynamic approximation shares key characteristics in

common with the BEC’s behaviour. It appears by varying the interaction between the

two condensates we can model with increased accuracy the superfluid behaviour.

Of course, we should bear in mind that we have, as yet, only produced a proof of princi-

ple for the analogous behaviour of the two instabilities. In considering our simple linear

model, we should recall that examples in nature (in our case, neutron stars) are neither

simple nor linear. This is, however, a significant first step. We should note that through

the use of external potentials, we can manipulate the condensate mixture into almost

any configuration we may desire. For example, of more practical use, rotating binary

condensates can be produced [163]. With such an arrangement it should be possible to

extend the model to include the r-mode instabilities in differentially rotating neutron

stars as discussed in Chapter 4.
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Another advance of recent years is the observation of vortex pinning in BEC’s [164].

Since the unpinning and re-pinning of vortices is central to some existing models of

neutron star glitches, [37, 165] and many others, this may offer an opportunity to model

these features. Whether the analogue we have demonstrated here can be expanded to

encompass this last feature has not yet (as far as we are aware) been considered. How-

ever, it certainly warrants investigation.

In summary, we have shown in this section that the dynamical instability of a condensate

mixture is sufficiently analogous to that of a two component superfluid, that the former

offers the prospect of “neutron star physics in a laboratory”. There still remains much

work to be done to extend this model so that it more completely mirrors the features of

a neutron star core.

3.4 Binary BEC’s with Entrainment

We have shown that the superfluid two-stream instability can be observed in a purely

chemically coupled binary BEC, using the hydrodynamic equations. This is, at least, a

start along the path to modelling this class of instability within a neutron star core. It

should be noted that, as described in Chapter 1, the original mathematical demonstra-

tion of this new instability [2] assumed that the two component fluids were themselves

coupled chemically. However, for a more complete model of the super-dense neutron-

proton conglomerate at the core of these stars, we need to include some means of mod-

elling the entrainment between the components.

Before proceeding, it is useful to consider what entrainment is and why it is present in a

neutron star core, yet absent from a diffuse condensate. Put very simply, entrainment,

in this context, is an effect whereby the strong nuclear interaction causes one component

to be endowed with a virtual cloud of particles from the other. There is a symmetry

to this effect so that the second component is similarly endowed by particles from the

first [61]. This, in turn alters the individual momenta of the two components, with each

possessing a term dependent upon the strength of this effect and the relative velocity of

the two components.

The explanation of the absence of such an effect in binary BEC’s is, therefore, relatively

easily explained. The particle density of a typical BEC is of the order of 10−13 − 10−15

cm−3 [84], giving an average particle separation of approximately 10−7m. Given that

the range of the strong interaction is of the order of 10−15m, it is clear that it plays no

significant role in the dynamical behaviour of BEC’s. In the case of neutron stars, we
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are considering nuclear densities, approximately 1038 particles cm−3, and greater. This

gives us average separations comfortably within the range of the strong interaction.

Here we explore how this effect might be reproduced in a BEC. Previously we showed

that, given the Gross-Pitaevskii (GP) equations, we could obtain the hydrodynamic

equations for an entrainment free two-component fluid. Here we start with the hydro-

dynamic equations for a two component fluid and see how these might alter the standard

GP equations.

We start with a two component fluid whose components are represented by the con-

stituent indices x and y. It is assumed that each of these components is both incom-

pressible and irrotational. As such we can describe their dynamics by the standard Euler

equations:

∂tp
x
i +∇i

(
µx −

mx

2
v2

x + vjxp
x
j

)
= 0 (3.43)

and

∂tp
y
i +∇i

(
µy −

my

2
v2

y + vjyp
y
j

)
= 0. (3.44)

Owing to the symmetry of these fluid equations, we need only consider the x component.

The inclusion of entrainment means that the momentum term, px
i , can be expressed by

px
i = mx (vx

i + εxw
yx
i ) , (3.45)

where εx is the entrainment parameter for x, and wyx
i (= vy

i −vx
i ) is the relative velocity

of the two components.

We assume that we are dealing with some local region of the condensate where the par-

ticle density, nx, is constant (implying a uniform condensate [84]), as is the entrainment

and the velocity. So

nx = const, (3.46)

εx = const, (3.47)

∇ivix = 0. (3.48)
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Using the method followed previously, we now express our fluid parameters in terms of

the condensate parameters. From [84] we have

ψx =
√
nxeiSx , (3.49)

where Sx is real.

We also make use of the standard momentum operator,

px
i =

~
2

1

|ψx|2
(ψ∗x∇iψx − ψx∇iψ∗x) . (3.50)

When combined with equation (3.49), this gives

px
i = ~∇iSx. (3.51)

From our previous assumption, equation (3.48), we have

∇ipx
i = 0 ⇒ ∇2Sx = 0. (3.52)

It is convenient to express the entrainment parameters, εx, in terms of a single coefficient.

Since the change in momentum of the two fluid components as a result of entrainment

must be equal and opposite, we have

mxεx = myεy (3.53)

This allows us to use a single coefficient, α, to describe the entrainment, where

α =
εxρx

2
, (3.54)

where ρx (= mxnx) is the fluid density.

So we can express the entrainment parameter in terms of this entrainment coefficient as

εx =
2α

mxnx
. (3.55)

We can now rewrite the momentum, equation (3.45), as
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px
i = mx

(
vx
i +

2α

mxnx
wxy
i

)

=
ρx

nx

(
vx
i +

2α

mxnx
vy
i −

2α

mxnx
vx
i

)
(3.56)

=
1

nx
{(ρx − 2α) vx

i + 2αvy
i }.

This enables us to express the momentum density for the two components as,

nxp
x
i = (ρx − 2α) vx

i + 2αvy
i (3.57)

and

nyp
y
i = 2αvx

i + (ρy − 2α) vy
i . (3.58)

It would be helpful if we could express the individual velocities in terms of the momenta.

We do this via

(
vix

viy

)
=

1

D

(
ρy − 2α −2α

−2α ρx − 2α

)(
nxp

i
x

nyp
i
y,

)
(3.59)

where D is the determinant such that

D = (ρx − 2α) (ρy − 2α)− 4α2 = ρxρy − 2α (ρx + ρy) . (3.60)

This gives us the two components velocities as

vix =
1

D
{(ρy − 2α)nxp

i
x − 2αnyp

i
y}, (3.61)

viy =
1

D
{−2αnxp

i
x + (ρx − 2α)nyp

i
y}. (3.62)

So having calculated the individual velocities in terms of the component momenta, we

return to our Euler equations, (3.43) and (3.44). We would like to eliminate the velocity

terms from these equations. This can be most conveniently achieved by first considering

the
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− mx

2
v2

x + vjxp
x
j (3.63)

term. For convenience we express this using vector notation,

−mx

2
|vx|2 + vx · px =

mx

2
|vx|2 +mxvx · {vx + ε (vy − vx)}

=
mx

2ρx

(
|vx|2 ρx + 4αvx · vy − 4α |vx|2

)
. (3.64)

Substituting the expressions for velocity, (3.61) and (3.62), into equation (3.64) gives

us, after some manipulation

− mx

2
|vx|2 + vx · px

=
1

2nxD2
{
(
ρxρ

2
y − 4αρxρy + 4α2ρx − 4αρ2

y + 8α2ρy

) (
n2

x |px|
2
)

− 4α2ρxn
2
x

∣∣py

∣∣2
+ 8α2ρ2nxnypx · py}. (3.65)

For expedience sake we write this as

− mx

2
|vx|2 + vx · px

=
1

2nxD2

(
Axn

2
x |px|

2 +Bxn
2
x

∣∣py

∣∣2 + Cxnxnypx · py

)
, (3.66)

where

Ax = mxm
2
ynxn

2
y − 4αmxmynxny + 4α2mxnx − 4αm2

yn
2
y + 8α2myny,

Bx = −4α2mxnx,

Cx = 8α2myny. (3.67)

Note that these factors are expressed in terms of the particle density as this is more

customary in the BEC community. Similarly, we can express the factor D in this manner

as
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D = mxmynxny − 2α (mxnx +myny) . (3.68)

We can now make the substitution from equation (3.51) into equation (3.66) giving

− mx

2
|vx|2 + vx · px (3.69)

=
~2

2nxD2
{Axn

2
x (∇iSx)

(
∇iSx

)
+Bxn

2
y (∇iSy)

(
∇iSy

)
+ Cxnxny (∇iSx)

(
∇iSy

)
}.

We now consider how we might express this in terms of the wave function, ψx. To this

end we use

ψ∗x∇2ψx =
√
nxe−iSx∇2

(√
nxeiSx

)
= nxe−iSx∇i{eiSx

(
i∇iSx

)
}

= nx{− (∇iSx)
(
∇iSx

)
+ i∇2Sx}. (3.70)

But we recall from our condition of incompressibility that

∇2Sx = 0. (3.71)

So we can rewrite equation (3.70) as

(∇iSx)
(
∇iSx

)
= − 1

nx
ψ∗x∇2ψx. (3.72)

We also need to consider mixed terms using

(ψ∗x∇iψx)
(
ψ∗y∇iψy

)
= −nxny (∇iSx)

(
∇iSy

)
. (3.73)

or

(∇iSx)
(
∇iSy

)
= − 1

nxny
(ψ∗x∇iψx)

(
ψ∗y∇iψy

)
. (3.74)

To fully express the Euler equation, (3.43), in terms of the wave function we still to to

address ∂tp
x
i .
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∂tp
x
i = ~∂t (∇iSx) = ~∇i (∂tSx) . (3.75)

But

ψ∗x∂tψx = nx (i∂tSx) , (3.76)

which leads to

∂tp
x
i = − i~

nx
∇i (ψ∗x∂tψx) . (3.77)

By combining equations (3.72), (3.74) and (3.77) with the Euler equation, (3.43), we

have

0 =−∇i

{
i~
nx
ψ∗x∂tψx

}
+∇iµx

+∇i

{
1

2nxD2

(
− ~2

nx
Axn

2
xψ
∗
x∇2ψx

)}

+∇i

{
1

2nxD2

(
−~2

n2
y

Bxn
2
yψ
∗
y∇2ψy

)}

+∇i

{
1

2nxD2

(
− ~2

nxny

)
(ψ∗x∇iψx)

(
ψ∗y∇iψy

)}
. (3.78)

By integrating this total derivative, we arrive at

0 =− i~ψ∗x∂tψx + nxµx (3.79)

+
~2

2D2

{
− Ax

nx
n2

xψ
∗
x∇2ψx −

Bx

ny
n2

yψ
∗
y∇2ψy −

Cx

nxny
nxny (ψ∗x∇iψx)

(
ψ∗y∇iψy

)}
.

We can now factor out ψ∗x and simplify to give

0 =− i~∂tψx + µxψx (3.80)

+
~2

2D2

{
−Axnx∇2ψx −Bx

ny

nx
ψx

(
ψ∗y∇2ψy

)
− Cx∇iψx

(
ψ∗y∇iψy

)}
.
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Similarly for the second component we have

0 =− i~∂tψy + µyψy (3.81)

+
~2

2D2

{
−Ayny∇2ψy −By

nx

ny
ψy

(
ψ∗x∇2ψx

)
− Cy∇iψy

(
ψ∗x∇iψx

)}
,

where

Ay = mym
2
xnyn

2
x − 4αmymxnynx + 4α2myny − 4αm2

xn
2
x + 8α2mxnx,

By = −4α2myny,

Cy = 8α2mxnx. (3.82)

At this point it is profitable to reproduce the non linear Schrödinger equations for a two

component BEC [6]:

0 = −i~∂tψx +

(
− ~2

2mx
∇2 +

4π~2axx

mx
|ψx|2 +

2π~2axy

mxy
|ψy|2 − µx

)
ψx, (3.83)

and

0 = −i~∂tψy +

(
− ~2

2my
∇2 +

4π~2ayy

my
|ψy|2 +

2π~2axy

mxy
|ψx|2 − µy

)
ψy. (3.84)

To show the proposed effect of entrainment that we would like to realise in a composite

BEC, we can compare equations (3.80) and (3.83). An obvious disparity is the omission

of the terms that relate to the scattering length. This is a potential term that in a

uniform condensate, as we have assumed, is equal to the product of the chemical poten-

tial and the particle density [84]. As such, we can treat this as being included in any

chemical potential term in our solution.

We also have the terms including Bx and Cx. These terms each include ψ∗y∇iψy and

indicate some additional interaction (the entrainment) between the two components.

Finally, we have the term

− ~2

2D2
Axnx∇2ψx

(
6= − ~2

2mx
∇2ψx

)
. (3.85)
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To extract the part of this term that has been introduced as a result of the entrainment

effect, we introduce a new term, ADiff
x , which we define as

ADiff
x =

1

2D2
Axnx −

1

2mx
. (3.86)

This leads to

ADiff
x = − 1

2D2

4α2m2
yn

2
y

mx
. (3.87)

This gives us a final equation that includes the original non-linear Schrödinger equation

with additional terms indicating the effects of entrainment.

0 =− i~∂tψx −
(

~2

2mx
∇2 + µx

)
ψx (3.88)

+
~2

2D2

{
4α2m2

yn
2
y

mx
∇2 + 4

ny

nx
α2myny

(
ψ∗y∇2ψy

)
− 8α2mxnx

(
ψ∗y∇2ψy

)}
ψx.

This simplifies slightly to

0 =− i~∂tψx −
(

~2

2mx
∇2 + µx

)
ψx (3.89)

+
~2

2D2

{
4α2m2

yn
2
y

mx
∇2 + 4α2

(
n2

ymy

nx
− 2mxnx

)(
ψ∗y∇2ψy

)}
ψx.

It can be seen that we have cross terms in equation (3.89) indicating some additional

coupling between the two condensates. This is what we would intuitively expect if we

add entrainment that couples our two components in the fluid model.

Having arrived at the governing non-linear Schrödinger equations for a two component

BEC with entrainment, the next step is to calculate the Hamiltonian for this system.

This, in turn, would lead to a physical realisation. However, the next step is not so

obvious. The inclusion of the
(
ψ∗y∇2ψy

)
ψx term in equation (3.89) tells us that the

fine tuning of any interspecies interaction needs to be position sensitive. Experimental

configurations of this nature are currently being considered but this is new physics [166].
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The multi-fluid equations are derived directly from a Lagrangian using the variational

principle [167]. Here the problem is similar, in that we are endeavouring to find a Hamil-

tonian (and the experimental set up) that will produce the governing equations for a

two-component BEC. This problem is far from trivial and is not persued further at this

time.

It is interesting to note that recently a small number of cold atom physicists have begun

research on modelling entrainment in BEC’s [114]. Others have been considering the

effects of significant quantities of the normal diffuse gas (from which condensates were

formed) on the dynamics of BEC’s [168]. This includes the consideration of entrainment

effects between the superfluid and the BEC. Whilst these experiments are starting from

the “other end” of the problem, in that they are working directly with BEC’s; they may

offer insights into our own research.

The next step would seem to be to include entrainment in the two stream instability

and compare the results with the BEC case. Unfortunately, since we did not proceed

any further with the BEC case, it was decided to pursue other areas of research.





Chapter 4

Instabilities in a Differentially

Rotating Neutron Star Core

Having established the phenomenon of the two-stream instability in a simple linear

model and shown that this is analogous to the behaviour of binary Bose-Einstein con-

densates, we now apply it the more mathematically complex environment of rotating a

two component fluid. In this configuration we are able to model some of the key features

of the neutron star outer core and explore instabilities, as discussed in our introduction,

that may act as a trigger for vortex unpinning. Such action is considered a promising

mechanism for the glitches in neutron star spin down rates.

4.1 Neutron Star Glitches as a Result of Vortex Pinning/Un-

pinning

Before proceeding to the analysis of our model, it is relevant to touch upon glitches in

neutron star spin down in a little more detail than in the introduction to this thesis; the

mechanisms with which physicists endeavour to explain them and their importance to

gravitational physics.

Radio pulsars were first discovered in 1968 [20] and were quickly identified as rotating,

strongly magnetic neutron stars [21]. It was also observed that the rotational period of

these bodies increased slowly and monotonically with time [91]. This was believed to be

as a result of magnetic breaking. However, in early 1969 it was noticed that the Vela

pulsar showed a significant and sudden increase in its rotational frequency [29]. Since

this first observation, these sudden increases, given the cognomen glitch, have been ob-

served to occur regularly in the Vela and Crab pulsars, as well as less frequently in

71
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other pulsars [31, 30]. Owing to the large number of observations, it is against the data

obtained from the two named stars that any physical theory to explain the mechanism

(or mechanisms) underlying these glitches will most likely be measured [34].

In fact there have been several competing, or possibly complimentary, mechanisms sug-

gested for these glitches. Today the two most widely accepted candidates to explain the

observed glitch phenomena are the ‘star-quake’ model and that of ‘vortex unpinning’.

There exists the possibility that both may be correct, either as mechanisms that can

both happen at any time or that the prevalent cause depends on the age and spin rate

of the star [37].

The first of these mechanisms, the star-quake model [32, 37], postulates that in a newly

formed, rapidly rotating neutron star a small equatorial oblateness in the crust may

develop. As the star slows under magnetic breaking and the centrifugal pressure from

the core is reduced, the crust can no longer support this. The core may then crack

under gravity and reform into a more spherical configuration. As the star resumes its

spin down, this process may recur until there is no energetic advantage to any further

repetition. This suggests that the star-quake model is most prevalent in younger neutron

stars [38].

The second model involves the unpinning of the vortices in the core from the inner crust

and their subsequent re-pinning. The transfer of angular momentum from the core to

the crust during this process results in a rapid, but short lived acceleration in the spin

speed of the crust [44, 34, 36]. To explain this mechanism is more than lambent detail, it

is necessary to give a somewhat more detailed description of the structure of a neutron

star than that provided in the introduction to this thesis.

The description of the outer core as coexisting superfluid neutrons and superconduct-

ing protons, where the neutrons form large numbers of vortices parallel to the axis of

rotation of the star is sufficiently detailed for our purpose. An explanation of vortex

formation in highly rotational superfluids is given in many standard text books, for ex-

ample, Landau & Lifshitz [169].

It is regarding the structure of the crust that our description requires elucidation. As

previously stated, the outer crust consists of a crystalline structure of heavy, neutron

rich nuclei. As we move inward toward the centre, the pressure increases. Once the pres-

sure exceeds the ‘neutron drip pressure’ (approximately 4.3 × 1014kgm−3), it becomes

energetically favourable for the neutrons to ‘drip’ out of the nuclei [93]. It is the zone

where the density reaches this level that we define as the transition from the outer to
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inner crust. As we continue inwards, the density continues to increase until we reach

a density at which the nuclei dissolve (approximately 2 × 1017kgm−3). This marks the

end of the inner crust and the start of the outer core.

Throughout much of the inner crust, the neutrons pair, as in the core, to produce a

superfluid. This superfluid is, in some manner, coupled to the vortices in the outer core

and enables them to effectively extend into the inner crust. These vortices then interact

with the nuclei in the crust. Depending on the local density, such interaction may be

either attractive or repulsive [93]. Regardless of the sense of the interaction, the vortex

line ‘strives’ to follow a path that minimises its energy. This essentially pins the vortex

to the crust.

The vast majority of the angular momentum possessed by the superfluid is a conse-

quence of the vortices. If we assume that all vortices are pinned to the crust, then the

neutron superfluid has its angular momentum, to all intents, fixed. As the surface of the

star undergoes magnetic braking, the vortices act as a ‘momentum reservoir’, since this

braking cannot impact upon the pinned vortices, and the neutron fluid maintains its

angular momentum. This leads to a growing velocity difference between the superfluid

in the core and the crustal lattice.

We note at this juncture that the superconducting particles in the core are also slowed

by the magnetic damping. The resulting difference in velocity between the two compo-

nents of the core suggests that we can apply some variant of the two-stream model to

the core in the search for a related class of instabilities in the interpenetrating fluids.

Returning to the pinned vortices in the crust, not only can the magnetic breaking have

only a minor effect upon them, but they are, in this state, unable to transfer momentum

to the crust. As such, both the momentum reservoir and the difference between charged

and uncharged particles in the core increase in size. To allow the vortices to be dis-

placed and, as a consequence, transfer angular momentum to the crust, we require some

mechanism that is able temporarily to break their pinning. It is here that the differen-

tial velocities mentioned in the preceding paragraph offer the beginnings of a credible

explanation and forms the basis of this chapter. We demonstrate, in a somewhat sim-

plified case, that the two-stream instability can apply to the differentially rotating fluids

in the neutron star core. We show that this instability depends upon the difference in

rotational velocity between the two components. We suggest that such instabilities may

account for the unpinning and the associated transfer of angular momentum from the

core to the crust. This transfer of momentum evinces itself to the observer as the glitch
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in spin down.

Taking this explanation one step further, it can be seen that once any disturbances

to the normal state of affairs have been smoothed out, the vortices will seek the low-

est energy state and become pinned again. Once this occurs the differences in angular

momentum between crust and superfluid, as well as the differences in angular velocity

between charged and uncharged particles within the core, will start to increase again.

This suggests that the unpinning will occur at fairly regular intervals and may account

for the behaviour of such stars as the Vela pulsar, which has been observed to glitch

many times [34].

4.2 Superfluid Instability as a Trigger for Neutron Star

Glitches - The Strongly Coupled Case

As previously discussed, one of the more prominent theories to explain the glitches in

neutron star spin down is that of vortex unpinning. Whilst the physics underlying the

transfer of angular momentum from the core to the crust has been well documented, as

yet very little has been published regarding possible triggers for such an event.

Here we consider the basic mechanism of such a possible trigger as discussed by An-

dersson and Glampedakis [7], namely a superfluid instability in a system of two in-

terpenetrating components with differing angular velocities. They argue that unstable

r-modes may be generated by the differential rotation of the two fluid components and

demonstrate that such modes exist in a strongly coupled system. They further show

that viscosity does not fully suppress these instabilities. We include the main points of

the paper here as it is a logical precursor to the work that follows.

To set up the problem, a standard two-fluid model for superfluid neutron stars is used

[170]. In this case it is assumed that the two components are the neutron superfluid,

indexed n, and a conglomerate of all off the charged particles, indexed p. It is assumed

that both fluids rotate rigidly with differing angular velocities. These velocities are given

by

vix = εijkΩx
jxk. (4.1)

Here Ωi
x is the angular velocity of the indexed fluid, where, as a consequence of the

differential velocity,
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|Ωn| 6= |Ωp|. (4.2)

It is assumed that the background is perturbed by small linear oscillations with time

dependency of the form exp(iωt), where ω is simply the perturbation frequency. The

linear perturbations of the system are, in the inertial frame, described by the pair of

coupled Euler equations,

(
iω + vjn∇j

)
δvin + δvjn∇jvin +∇iδψn = δf imf (4.3)

and

(
iω + vjp∇j

)
δvip + δvjp∇jvip +∇iδψp = −

δf imf

xp
. (4.4)

In the above equations

δψx = δµ̃x + δΦ, (4.5)

where µ̃x and Φ represent the specific chemical potential and the gravitational potential

respectively. The term xp represents the proton fraction by

xp =
ρp

ρn
. (4.6)

We note that ρp � ρn.

To simplify the problem at this early stage, a few basic assumptions are made. Firstly

it is assumed that both fluids are incompressible, so

∇iδvix = 0. (4.7)

Secondly the effects of entrainment are ignored. This means that the two components are

coupled chemically, gravitationally and by the vortex mediated mutual friction, which

is denoted in equations (4.3) and (4.4) by f imf . When considering inertial modes, this

mutual friction force is the major mechanism for coupling the two components. The

general expression for such a force is given by [171],

fmf
i = Bεijkεkmlω̂jnωn

mw
np
l + B′εijkωjnwknp. (4.8)
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In equation (4.8) winp = vin − vip, ωin = εijk∇jvnk and ω̂jn is the unit vector. It is shown

that if the interaction between the vortices and the charged fluid, henceforth referred to

as the drag force, is represented by some dimensionless parameter R, then,

B′ = RB = R2/
(
1 +R2

)
. (4.9)

Referring back to some older papers on the subject of r-modes in superfluid neutron

stars [172][173][174], we are told that, when expressed in terms of spherical harmonics,

the r-mode velocity fields can be expressed in the form

δvix =

(
−
imUx

l Y
m
l

r2sin2θ
êiθ +

Ux
l ∂θY

m
l

r2sin2θ
êiϕ

)
eiωt. (4.10)

We discuss the meaning of this equation in more detail later, but essentially this is re-

ducing the problem to a one dimensional problem with angular dependencies expressed

in terms of the spherical harmonics, Y m
l (θ, ϕ). Because of the symmetry of the prob-

lem, the m-contributions decouple and can be considered separately. Ux
l represent the

perturbed velocity of each component associated with the different l multipoles.

Obtaining solutions for all values of R may prove difficult. But we are given a solution

where the problem simplifies in the strong coupling limit, that is where R � 1, which

gives B = 0 and B′ = 1. The solution is expressed in terms of dimensionless parameters

κ, where

κ =
ω +mΩp

Ωp
, (4.11)

and ∆, where

∆ =
Ωn − Ωp

Ωp
. (4.12)

There are two frequency solutions obtained for κ,

κ1,2 = − 1

(m+ 1)xp

[
1− xp + ∆±D1/2

]
, (4.13)

where

D = (1 + xp)2 + 2∆ [1 + xp{3−m (m+ 1)}] +O
(
∆2
)
. (4.14)
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The amplitudes of the perturbations of the two components are related by

An

Ap
=

2 (1 + ∆)

(m+ 1)κ
, (4.15)

where

Ux
m = Axr

m+1. (4.16)

Focusing on the short length scale modes, m� 1, it is shown that there is some critical

mode, mc, for which Im (κ) changes from positive to negative, indicating instability. By

assuming both ∆ and xp are small with, in general, ∆� xp, an approximate value for

mc is given by

mc ≈
1√

2xp∆
. (4.17)

The growth scale of unstable modes are approximated, where m� mc, as

τgrow ≈
P

2π

√
xp

2∆
, (4.18)

where P is the observed spin frequency. This tells us that the instability can grow

rapidly on the timescale of the rotation period of the neutron star.

The next consideration is that of viscous damping, which, depending on relative time

scales, may suppress the instability. Using the canonical values for a typical neutron

star and applying the method from [175] the shear viscosity is calculated, since it is

this force that dominates the dissipation. For the instabilities to withstand being sup-

pressed by this damping, their growth timescale needs to be less than that of the shear

viscosity. This produces a range of m modes that remain unstable in the presence of

viscous damping and a critical lag between the two components above which the system

becomes unstable.

As a reality check, the model’s predictions are compared with observational glitch data.

It is noted that the observational estimate for the rotational difference for large glitches

is close to that predicted by the model for the onset of the superfluid r-mode instability.

A note of caution is sounded when it is stated that, even though these instabilities grow

on a timescale of a few rotations, it is uncertain as to their characteristics beyond linear

amplitudes.
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The model is then compared with other observed traits of neutron star glitches and is

found to be consistent with several of these idiosyncrasies. These include the prediction

of small but frequent glitches in young, hot, rapidly spinning stars; with the magnitude

of, and time between, glitches increasing with age. Since the rotational velocity de-

creases with age, the build up of lag between the two components takes an increasingly

long time. This implies that, as the star ages, it will eventually cease to glitch.

Finally, it is also noted that since no magnetic field has been included in the model,

except as an initial mechanism to account for the differential rotation, then it is really

impossible to confidently apply the model to magnetars. Whether it can reasonably be

extended to allow for the strong magnetic fields associated with these bodies is left as

an open question.

4.3 Beyond the High Drag Limit - A More General Case

We consider a more general case of the r-mode instability, where we extend the analysis

beyond the high drag limit, although we still restrict ourselves to the Newtonian case.

Some of the work presented in this section will duplicate the structure of the previous

fragment but will be discussed with greater prolixity. As previously our aim is to explore

r-mode instabilities in the core of a neutron star by considering linear perturbations of

a two component fluid that exhibits rotational instability. Because of this set-up, it is

natural to work in the inertial frame (rather than choosing one of the rotating frames).

It is also natural, given the complex nature of the perturbed velocity fields et cetera to

carry out the analysis in a coordinate basis. This means that vectors, like the velocity,

are expressed in terms of their components, vi (say), and a distinction is made between

co- and contra-variant objects, with the former following from the latter as vi = gijv
j

where gij is the flat three-dimensional metric. This description of the problem is also

advantageous since it involves the use of the co-variant derivative ∇i associated with the

given metric, which automatically encodes the scale factors associated with the curvi-

linear coordinates that are appropriate for the problem we consider.

As previously, we consider a fluid consisting of two interpenetrating components, which

we index n and p to represent the neutron superfluid and the conglomerate of charged

particles respectively. The previously stated case for Cooper pairing of the neutrons and

the subsequent superfluid behaviour is taken as read. We assume that these components

are each rotating rigidly such that,

vix = Ωxê
i
ϕ , x = n,p. (4.19)
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We further assume that the two components are free to rotate independently so in-

troducing the differential rotation between them. It is assumed that the axes of the

independent rotations are the same, as this simplifies the analysis considerably without,

we feel, losing any of the key features of the model. We also continue to take no ac-

count of the complexities introduced by the star’s magnetic field, with the exception of

it acting to slow some components of the star more than others, leading to the differen-

tial rotation. In this case, if we assume the observed angular rotation frequency of the

star to be Ωi, then it is further assumed that the charged components in the core have

undergone identical slowing and so

Ωi
p = Ωi. (4.20)

However, the uncharged neutron superfluid component has been less affected by the

magnetic braking and so retains a higher angular rotation frequency. We express this

by

Ωi
n = (1 + ∆)Ωi, (4.21)

where ∆ represents the fractional difference in spin down between the two components.

We would expect ∆ to be small even at the time of glitch, a figure of the order of 10−4

being the generally accepted value [165].

We reassert the statement from Glampedakis and Andersson [7] regarding the bulk rota-

tion of the neutron superfluid being accounted for by the formation of quantised vortices.

It is established [176] that the quantisation condition is imposed on the momentum, pn
i ,

that is conjugate to the velocity, vin, and this is given by

pn
i = m (vn

i + εnw
pn
i ) . (4.22)

Here, m is the mass of the nucleon1, εn is the entrainment with the protons and wpn
i is

the relative velocity between the two components. This is given by

wipn = vip − vin. (4.23)

1We assume that the mass of neutrons and protons are identical. This is sufficiently accurate for our
purposes.
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We now introduce another assumption that has the effect of simplifying the problem.

We assume the fluid components are each incompressible and this allows us, at least

in the case of small ∆, to treat the entrainment coefficients as constants. Taking the

quantisation conditions and combining with the above we arrive at a local vortex density

per unit area expressed by

nvκ
i = εijk∇j

[
vn
k + εnw

pn
k

]
= 2

[
Ωi

n + εn

(
Ωi

p − Ωi
n

)]
= 2 [1 + (1− εn) ∆] Ωi. (4.24)

Here nv is the vortex density and κi is the vector aligned with the vortex array with

magnitude κ = h/2mp (h is Planck’s constant).

Making use of our assumption of incompressibility, we consider linear perturbations of

the configuration we have described. As a consequence of this assumption we have

∇iδvix = 0. (4.25)

Also the perturbed momenta satisfy

δpx
i = δvx

i + εxδw
yx
i , (4.26)

and are governed by the Euler equations;

Ex
i = iωδpx

i + δvjx∇jpx
i + vjx∇jδpx

i + εx(δwyx
j ∇iv

j
x + wyx

j ∇iδv
j
x) +∇iδΨx = δfx

i . (4.27)

As earlier Ψx is the sum of the gravitational potential Φ and the specific chemical po-

tential µ̃x = µx/m. Also in common with Glampedakis and Andersson we assume the

time dependence of the perturbation equations is harmonic in nature ∼ exp(iωt). The

right hand side (after the second “equals” sign) of (4.27) describes any external forces

acting on the fluid components.

At this point we introduce a new variable, W i
x, for the perturbed “vorticity”, defined by

W i
x = εijk∇jEx

k . (4.28)
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Although, we have stated that fx
i from (4.27) represents external forces, this also in-

cludes any forces that result from interactions between the components. As such, fx
i

is dominated by the mutual friction force arising from the quantised vortices [44][177].

This force is expressed as in (4.8) , although here we include nv and κx, by

fx
i =

ρn

ρx
B′nvεijkκjwkxy +

ρn

ρx
Bnvεijkκ̂jεklmκlwxy

m . (4.29)

As previously we shall relate the coefficients B and B′ to the dimensionless coefficient

R, which represents the drag force. A detailed explanation of these coefficients and how

they are obtained appears in Hall and Vinen [171]. In equation (4.29) we introduce a

term for mass density, ρx = mnx, of the respective fluid components. Perturbing the

force equation (4.29), we obtain

δfx
i =

ρn

ρx
B′
[
δ(nvκ

j)εijkw
k
xy + nvκ

jεijkδw
k
xy

]
+
ρn

ρx
Bεijkεklm

[
δ(nvκl)κ̂

jwxy
m + nvκl(w

xy
m δκ̂

j + κ̂jδwxy
m )
]
. (4.30)

To evaluate this we need

δ(nvκ
i) = εijk∇jδpn

k (4.31)

and

δκ̂i =
1

nvκ

(
δij − κ̂iκ̂j

)
εjlm∇lδpn

m, (4.32)

where κ̂i is a unit vector aligned with κi, together with the norm of (4.24),

nvκ
i = 2[1 + (1− εn)∆]Ωi. (4.33)

We wish now to isolate the two dynamical degrees of freedom. To this end, rather than

use the momentum equations (4.27) per se, we use two combinations of the perturbed

equations for each fluid; namely the sum and the difference of the two momentum

equations. So we need the following:

ρnδf
n
i + ρpδf

p
i = 0 (4.34)

and
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δfp
i − δf

n
i = − 1

xp
δfn
i . (4.35)

As a consequence, only the second degree of freedom is explicitly affected by the mutual

friction.

Rather than consider the full range of oscillatory modes associated with a neutron star,

we restrict our analysis to the possibility of how the rotational lag might impact upon

the r-modes of a star. In connection with the model we have adopted, particularly with

respect to the assumed solid rotation of the component fluids, we would not really expect

radial instabilities to occur. However, it is expected that any instabilities of the system

would have major repercussions for any axial modes. This suggests that the purely axial

r-modes would make an excellent candidate for our deliberations. It is also known that

r-modes have a strong instability with respect to gravitational waves [172] [67] and that

they are associated with simple velocity fields [94]. This leads us to perturbed velocities

of the form

δvix = − im

r2 sin θ
U lxY

m
l êiθ +

1

r2 sin θ
U lx∂θY

m
l êiϕ. (4.36)

As discussed in the previous section, Y m
l (θ, ϕ) are the standard spherical harmonics and

U lx are the mode amplitudes. As a result of the symmetry, the problem is such that the

m-multipoles decouple.

Also previously we stated that we would work with the sum and difference momentum

equations, (4.34) and (4.35). As such we need to consider variables that are most easily

accommodated in this and the choice of operating with the total momentum flux seems

particularly favourable. This is given by

ρU l = ρnU
l
n + ρpU

l
p. (4.37)

We also introduce a difference term, this time for the perturbed velocities only,

ul = U lp − U ln. (4.38)

In the calculations that follow we make use of several new simplifying variables in order

to stop the equations becoming unmanageable. For convenience, we define all of these
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variables here, rather than introduce them piecemeal during the analysis. We can achieve

some simplification of the final perturbation equations if we express the frequency in a

rotating frame. To this end we define κ̃ such that

ω +mΩ = κ̃Ω, (4.39)

We also introduce

L = l(l + 1), (4.40)

Z = 1− xp − εp, (4.41)

and

Z̄ =
xpZ

1− xp
. (4.42)

Finally, we use the scaled mutual friction coefficients [178], again to reduce the number

of terms in the equations that follow;

B̄′ = B′/xp (4.43)

and

B̄ = B/xp. (4.44)

Throughout the calculations that follow extensive use was made of MAPLE and GRten-

sorII.

We now obtain the perturbation equations by combining the expected velocity field,Wr
x

with the sum (4.37) and difference (4.38) equations above. Firstly, we consider the sum,

where ρnWr
n + ρpWr

p yields

[Lκ− 2m]U lY m
l = −m∆(L− 2)[U l − Z̄ul]Y m

l . (4.45)

The difference equation, Wr
p −Wr

n, gives us
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[
LκZ̄

xp
− 2m(1− B̄′)− 2iB̄(L−m2)

]
ulY m

l

= −m∆

{
[(L− 4)xp + 2]Z̄

xp
− 2(1− xp)

}
ulY m

l +m∆

(
L− 2Z̄

xp

)
U lY m

l

+m∆LB̄′(Z̄ul − U l)Y m
l − 2mB̄′∆(Z̄ + 1− xp)ulY m

l

+ iB̄∆L[Z̄(r∂ru
l − ul)− r∂rU l + U l]Y m

l + 2iB̄∆(L−m2)(Z̄ + 1− xp)ulY m
l

+ iB̄L∆[r∂rU
l − 3U l − Z̄(r∂ru

l − 3ul)] cos2 θY m
l

+ iB̄∆[2r∂rU
l − LU l − Z̄(2r∂ru

l − Lul)] cos θ sin θ∂θY
m
l . (4.46)

We also make use of the same sum and difference equations in the case of the radial

Euler equations. The sum, ρnErn + ρpErp, giving us

[xpr∂rδΨ
l
p + (1− xp)r∂rδΨ

l
n]Y m

l − 2ΩU l sin θ∂θY
m
l

=−∆Ω(1− xp)[(xp − Z̄)r∂ru
l + 2Z̄ul − 2U l] sin θ∂θY

m
l . (4.47)

Whilst the difference equation, Erp − Ern, gives

(r∂rδΨ
l
p − r∂rδΨl

n)Y m
l − 2Ω(1− B̄′)ul sin θ∂θY m

l − 2imB̄Ωul cos θY m
l

=−∆Ω

{(
1− Z̄

xp

)
r∂rU

l +
2Z̄

xp
U l + (1− 2xp)

[(
1− Z̄

xp

)
r∂ru

l +
2Z̄

xp
ul
]

− 2(1− xp)ul

}
sin θ∂θY

m
l

+ B̄′∆Ω[r∂rU
l − Z̄r∂rul − 2(1− xp + Z̄)ul] sin θ∂θY

m
l

+ imB̄∆Ω[r∂rU
l − Z̄r∂rul + 2(1− xp + Z̄)ul] cos θY m

l . (4.48)

Lastly we apply the same equations to the divergence equation. This yields, from the

sum,

sin θ∂θ[sin θ(ρnEθn + ρpEθp)] + ∂ϕ[ρnEϕn + ρpEϕp ]

→ −L[xpδΨ
l
p + (1− xp)δΨl

n]Y m
l + 2ΩU l[L cos θY m

l + sin θ∂θY
m
l ]

=−∆Ω(1− xp)
{

2U l[L cos θY m
l + sin θ∂θY

m
l ]

−Lxpu
l[2 cos θY m

l + sin θ∂θY
m
l ] + (L− 2)Z̄ul sin θ∂θY

m
l

}
. (4.49)
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Considering the difference gives us

sin θ∂θ[sin θ(Eθp − Eθn)] + ∂ϕ[Eϕp − Eϕn ] −→

L(δΨn − δΨp)Y m
l + 2Ω(1− B̄′)ul[L cos θY m

l + sin θ∂θY
m
l ]

+ 2imΩB̄ul[2 cos θY m
l + sin θ∂θY

m
l ]

=∆ΩL(U l − xpu
l)[2 cos θY m

l + sin θ∂θY
m
l ]

−∆Ω

[
(L− 2)Z̄

xp
(U l + ul)− (L− 2)(1− xp + 2Z̄)ul

]
sin θ∂θY

m
l

+ ∆ΩB̄′
{
−LU l + [2(Z + xp)− (1− xp)]Lul

}
[2 cos θY m

l + sin θ∂θY
m
l ]

−∆ΩB̄′(L− 2)(Z + xp)ul sin θ∂θY
m
l

− 2imΩB̄∆(xp + Z)ul[2 cos θY m
l + sin θ∂θY

m
l ]

− imΩB̄∆[2r∂rU
l + LU l + (1− 2xp − Z)(2r∂ru

l + Lul)] cos θY m
l . (4.50)

Our aim at this stage is to separate the m-multipoles. This we do by means of the

standard recurrence relations,

cos θY m
l = Ql+1Y

m
l+1 +QlY

m
l−1 (4.51)

and

sin θ∂θY
m
l = lQl+1Y

m
l+1 − (l + 1)QlY

m
l−1, (4.52)

where

Q2
l =

(l −m)(l +m)

(2l − 1)(2l + 1)
. (4.53)

In the context of our problem we also need to have recurrence relations involving

cos2 θY m
l and cos θ sin θ∂θY

m
l . These we calculate as

cos2 θY m
l = (Q2

l+1 +Q2
l )Y

m
l +Ql+1Ql+2Y

m
l+2 +QlQl−1Y

m
l−1 (4.54)

and

cos θ sin θ∂θY
m
l = [lQ2

l+1 − (l + 1)Q2
l ]Y

m
l + lQl+1Ql+2Y

m
l+2 − (l + 1)QlQl−1Y

m
l−2. (4.55)
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Having laid the foundations for a very general problem, we simplify the problem by

considering the only the purely axial r-modes. We make use of the fact that, in their

simplest setting, the eigenfunctions of these modes cut off at l ≥ m. This feature sur-

vives the transition to the two fluid co-rotating model [173]. We show here that, in the

case involving rotational lag, the same type of relatively simple r-mode solutions exist.

We note that from equation (4.53) that Qm = 0. We further assume that the perturbed

velocity fields can be expressed as the co-rotating case [172]. This means

U lx =

{
Axr

m+1 for l = m

0 for l ≥ m
(4.56)

This assumption leads us to two much simpler expressions for the relation for the am-

plitudes. These are expressed in terms of the sum and difference velocities as

[(m+ 1)κ̃− 2 + ∆(1− xp)(m− 1)(m+ 2)]Um

− (1− xp − εp)∆xp(m− 1)(m+ 2)um = 0 (4.57)

and

−
[
(m− 1)(m+ 2) + 2ε̄−m(m+ 1)(B̄′ + iB̄)

]
∆Um

+
{

(1− ε̄)(m+ 1)κ̃− 2(1− B̄′ + iB̄) + ∆xp(m− 1)(m+ 2)

− ε̄∆ {[m(m+ 1)− 4]xp + 2} −m(m+ 1)∆xp(1− ε̄)(B̄′ + iB̄)

+ 2(1− εn)(B̄′ − iB̄)∆
}
um = 0, (4.58)

where we have again simplified by defining

ε̄ = εn/xp = εp/(1− xp). (4.59)

It is clear that if we assume all coefficients to be constant then the above equations will

result in a quadratic in κ̃. However, the general solution to this contains too many terms

to offer much elucidation regarding the behaviour of the modes in question. To obtain

some insight into the problem we consider several ‘special cases’, where we examine the

effects of constraining certain of the parameters.
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As will become apparent, the instabilities found in our investigation fall into two cate-

gories, dynamical and secular. Whilst these were not necessarily found independently

of each other, for convenience, we separate the analysis of the two categories.

4.3.1 Dynamical Instabilities

We first consider the case of vanishing entrainment, where ε̄ = 0, which appears to offer

a suitable simplification. Whilst this simplifies the solution markedly, we still arrive at

a rather long winded quadratic in κ̃ where

(m+ 1)2κ̃2 + P1κ̃+ P0 = 0. (4.60)

This looks quite straightforward until we express P1 and P0 fully as

P0 =2(m− 1)(m+ 2)
(
B̄′ − iB̄

)
∆2 + 4

[
1− (1 + xp)

(
B̄′ − iB̄

)]
+ 2∆

[
(m− 1)(m+ 2)(xpB̄′ − 1)

+
(
B̄′ − iB̄

)
(m2 +m− 4) + ixpB̄(m2 +m+ 2)

]
(4.61)

and

P1 =(m+ 1)
{
− 4 + 2 (1 + xp)

(
B̄′ − iB̄

)
+ ∆

[
2
(
B̄′ − iB̄

)
+ (m− 1)(m+ 2)(1− xpB̄′)− ixpB̄(m2 +m+ 2)

] }
. (4.62)

Whilst not as clear as we might wish, if we apply the limit of strong mutual friction

coupling (R →∞), such that B ≈ 0, B′ ≈ 1, then our solution simplifies to

κ̃ = − 1

(m+ 1)xp

[
1− xp + ∆±D1/2

]
, (4.63)

where

D = (1 + xp)2 + 2∆ {1 + xp [3−m(m+ 1)]} . (4.64)

If we consider the higher modes where m� 1, then we obtain
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D ≈ (1 + xp)2 − 2xpm
2∆. (4.65)

This clearly means that we have, for sufficiently high m, complex roots for κ̃. Since

these roots will form complex conjugates, one will have a negative imaginary part, the

condition for a growing (unstable) solution. This is in agreement with the results of [7].

We can identify the value of m at which this instability sets in, which we denote as mc,

as

mc =
1 + xp√

2xp∆
. (4.66)

Using the same method as in [7] we can express the growth timescale, τgrow, of the

unstable modes in terms of the rotation period of the star, P , by

τgrow ≈
mP

2π

(
xp

1 + xp

)(
m2

m2
c

− 1

)−1/2

. (4.67)

If we consider multipoles well above this critical value, that is m� mc, then this growth

timescale can be reasonably approximated by

τgrow ≈
P

2π

( xp

2∆

)1/2
. (4.68)

This can be more clearly expressed as

τgrow ≈ 3
( xp

0.05

)1/2
(

10−4

∆

)1/2

P. (4.69)

As in [7], using the same scaling we can express mc as

mc ≈ 300
( xp

0.05

)−1/2
(

∆

10−4

)−1/2

. (4.70)

So we have a growth timescale that is directly proportional to the orbital period of the

star and is also dependent upon the rotational lag and the proton fraction. The approx-

imation for the critical multipole depends only upon the latter two parameters.

Equation (4.70) corresponds to length scales for the critical mode in a typical neutron

star of a few tens of metres. As we increase m, the growth time of the unstable r-modes

will decrease. We return to this point in our concluding paragraphs.
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Figure 4.1: Real and imaginary parts (solid and dashed lines respectively) of the
roots of the dispersion relation in the strong coupling limit (with R = 103). Plots
without (εp = 0) and with (εp = 0.6) entrainment. In both cases ∆ = 5× 10−4.
We can see a critical value for m, mc, where real roots merge, beyond which the
modes are unstable. We see that the inclusion of entrainment shift mc upwards.

The results obtained thus far take no account of entrainment and its inclusion in our

analysis further complicates this. However, in the strong coupling limit, B ≈ 0, B′ ≈ 1,

the issue remains tractable. In this case we obtain roots

κ̃ =
γ

(m+ 1)xp

[
− (1 + εn) + (1− εn) (xp −∆)±D1/2

]
(4.71)

where

γ = (1− εn − εp)−1 (4.72)

and

D =

(
1 +

xp

γ

)2

+ 2 (1− εn)

[
1−

(
m2 +m− 3

) xp

γ

]
∆

+ (1− εn)2

[
1− 2xp

γ
(m+ 2) (m− 1)

]
∆2. (4.73)
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If we assume small scale modes (m � 1) and small differential rotation (∆ � 1), then

we have the approximation for equation (4.73)

D ≈ (γ + xp)2

γ2

(
1− m2

m2
c

)
, (4.74)

where

mc =
(γ + xp)√

2xp∆γ (1− εn)
. (4.75)

This leads to a growth time for unstable modes expressed by

τgrow ≈
mP

2π

(
xp

γ + xp

)(
m2

m2
c

− 1

)−1/2

. (4.76)

If we consider the case where m� mc, then equation (4.76) reduces to

τgrow ≈
P

2π

( xp

2∆

)1/2
ε
1/2
∗ . (4.77)

Here we have introduced a new variable, ε∗, which is defined as

ε∗ =
1− εn − εp

1− εn
≈
m∗p
mp

, (4.78)

where m∗p is the effective proton mass [68]. Given that, in a neutron star core, we would

expect this effective proton mass to be in the range of 0.5 − 0.9 times that of the rest

mass, we conclude that the inclusion of entrainment has a minor impact on the growth

timescale. This is illustrated in Figure 4.1 where we show the imaginary and real roots

with εp = 0 and εp = 0.6.

We can summarise these results as follows. For the typical magnitude of rotational lag

inferred from radio pulsar glitches [30], we predict unstable modes with a characteristic

horizontal length scale of some tens of metres. Smaller scale r-modes would also be

unstable and these would have growth times that would be as short as a few rotation

periods. These unstable modes grow very quickly when we compare with the evolution-

ary timescale of a star’s cooling, spin-down etc. Therefore, it is not unreasonable to

conclude that they will affect a star that develops sufficient lag, ∆.
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4.3.2 Secular Instability

Having confirmed the results of [7], (the existence of an instability in the strong-coupling

limit), and extended the analysis of this instability to include entrainment, we move away

from this limit and consider a more general case. It is helpful, to get a ‘feel’ for the be-

haviour away from the strong coupling limit, to solve equation (4.60) for a range of

fixed parameters. We consider the problem for fixed R, leading to the mode frequencies

depending on m. The results are shown in Figures 4.2, 4.3 and 4.4 , which show the

behaviour of r-mode solutions for decreasing values of R (that is, as we move away from

the strong coupling limit).

Figure 4.2: Real (left hand panel) and imaginary (right hand panel) parts of
r-modes for R = 100, xp = 0.1 and ∆ = 5 × 10−4. Beyond the critical value,
mc, the modes are dynamically unstable. The onset of the dynamical instability
is associated with the near merger of the of the real parts of the two frequencies.
(Because of the scaling of the plot it is not obvious that these do not merge. This
is more apparent in Figure 4.3 and Figure 4.4 where R takes lower values.) The
absence of a sign change in either imaginary branch is indicative of a secular
instability.

Figure 4.3: As Figure 4.2 but with R = 10. Note that the absence of merger of
the real parts becomes clearer.
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Figure 4.4: As Figure 4.2 but with R = 2.

We can make some interesting observations from these figures which are not easily seen

in the analysis. Firstly, it can be seen that for R > 10 (approximately), there are modes

with with a noticeably larger imaginary part to their frequency. These modes are seen

to ‘set in’ near the critical value, mc. These modes are associated with the dynamical

instability as discussed in the previous section.

However, as R decreases further, we see (this is particularly clear in the R = 2 graph,

Figure 4.4) that there is no longer any clear change in the imaginary part near to mc.

Also, it can be seen that there is no longer the exact mode merger but that the dynami-

cal instability ‘sets in’ at decreasingly near misses in the complex frequency plane. From

this we infer that the dissipative aspect of the mutual friction becomes more significant

away from the strong coupling limit. So far as the increase in the importance of the

mutual friction is concerned, such results are to be expected.

Considering Figures 4.2, 4.3 and 4.4 in more detail, with particular reference to the right

hand panels, we see that neither imaginary part changes sign in the displayed interval.

As we are aware that one of the modes is unstable beyond mc, the absence of a change

in sign tells us that it is also unstable for all lower values of m. This is a significant

departure from the linear models discussed in Chapters 2 & 3, where the instability is

present only for a limited range of frequencies. (We rather blur the difference between

spherical modes and plane waves in making this comparison, but it is clear that some-

thing unexpected is occurring in our differentially rotating model.) We should note that

equations (4.69) and (4.76) are approximations based on the assumption that m� mc

and do not apply to this regime, where m < mc. We would, however, assume that for

smaller m the growth time is much longer than for the dynamical unstable modes. We

return to discuss this later in this chapter, where we show that this is a new secular
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instability linked to the mutual friction parameters [66][179][180].

Of particular interest is the observation that this instability is active not only for small

scale modes but also for large scale modes. Such large scale modes, in particular the

m = 2 r-mode are also secularly unstable to gravitational wave emission [181]. Our re-

sults suggest that, for such large scale modes, the mutual friction, rather than damping,

may provide an additional driving mechanism for the instability. Further, we explore

whether, considering the scaling of the gravitational radiation reaction with the star’s

spin rate, the mutual friction instability is the dominant mechanism for slowly rotating

stars.

Before considering such issues in detail, we consider whether we can find approximate

solutions that mirror the behaviour shown by the numerical results. If sufficiently sim-

ple approximations can be produced, whilst retaining the key features of the numerical

solutions, the key parameters that affect the behaviour of the instabilities can be distin-

guished.

By our use of the sum and difference velocities, Um and um respectively, we obtained

our two working equations, (4.57) and (4.58), which have these velocities as their two

degrees of freedom. We can see that these variables are coupled solely by ∆. If this is

small, then we will have modes that are either predominantly co-moving with the star,

in which case Um dominates over um, or counter moving, where um is dominant.

We first consider the co-moving case. Here we can assume that um approximates to zero

in comparison with Um. Since we are looking for solutions for κ̃, we chose whichever of

the two equations has Um depending on this. So equation (4.57) reduces to

(m+ 1)κ̃− 2 + ∆(1− xp)(m− 1)(m+ 2) = 0, (4.79)

which leads to

κ̃0 =
1

m+ 1
[2−∆(1− xp)(m− 1)(m+ 2)] . (4.80)

This is clearly real for all real parameters and so, in this simplified model, all modes are

stable.

Moving on to the counter-moving case, we assume that Um approximates to zero in

comparison with um. Here we use equation (4.58) which gives us
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(1− ε̄)(m+ 1)κ̃− 2(1− B̄′ + iB̄) + ∆xp(m− 1)(m+ 2)− ε̄∆ {[m(m+ 1)− 4]xp + 2}

−m(m+ 1)∆xp(1− ε̄)(B̄′ + iB̄) + 2(1− εn)(B̄′ − iB̄)∆ = 0. (4.81)

So we have modes with frequency

κ̃ =
1

(1− ε̄)(m+ 1)

{
2(1− B̄′ + iB̄)−∆xp(m− 1)(m+ 2) + ε̄∆ {[m(m+ 1)− 4]xp + 2}

+m(m+ 1)∆xp(1− ε̄)(B̄′ + iB̄)− 2(1− εn)(B̄′ − iB̄)∆
}
. (4.82)

We are, initially at least, only interested in the imaginary part of this solution as this is

the indicator of instability. This is proportional to

2 +m(m+ 1)∆xp(1− ε̄) + 2(1− εn)∆. (4.83)

In the case of zero entrainment, this is always positive and so the modes are stable.

So far we have seen that in our simplest approximation the model remains stable for all

modes. However, we have have only considered leading order terms in ∆ to this point.

If we consider both of our original equations, (4.57) and (4.58), in combining these we

will clearly have terms in ∆2. So we can estimate a solution to next order by

κ̃ = κ̃0 + κ̃2∆2. (4.84)

After considerable manipulation (mostly performed by Maple) we arrive at

κ̃2 =
(m− 1)(m+ 2)

2(m+ 1)

xp(1− xp)

(B̄′ − iB̄)

[
(m− 1)(m+ 2)−m(m+ 1)(B̄′ + iB̄)

]
. (4.85)

As previously, it is the imaginary part of this solution that interests us. Since, from both

earlier in our work and [7], we know that instability exists in the strong coupling limit,

this leads to a simplifying approximation of B̄′ ≈ 1/xp. This gives us, to first order in

B̄,

Im κ̃2 = −(m− 1)(m+ 2)

2(m+ 1)
xp(1− xp)[m(m+ 1)(2− xp) + 2xp]B̄. (4.86)
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This is clearly always negative and tells us that these modes are unstable for all ∆. We

can see that the growth of these unstable modes scales a 1/B̄, which tells us that this is

a secular instability (B̄ depends upon R, the mutual friction coefficient). The relatively

simple nature of equation (4.86) enables us to see more clearly the dependence of the

instability on the parameters.

It is also relevant to establish the critical value for R, Rc, at which these instabilities

‘appear’. This is clearly associated with a change of sign in the imaginary part of

equation (4.85). This occurs when Im κ̃2 = 0, giving

B′c
(

=
R2
c

1 +R2
c

)
=

(m− 1) (m+ 2)

2m (m+ 1)
xp. (4.87)

Having established the instability in the strong coupling case, we expand our analysis to

the weak coupling case. It should be recalled that the assumption of zero entrainment

still holds here. This is useful as it will confirm the expectation that, for R � Rc, the

system should be stable. In the weak coupling case we have B̄′ ∼ B̄2 and this gives a

solution of

Im κ̃2 =
(m− 1)2(m+ 2)2

2(m+ 1)
xp(1− xp)

1

B̄
. (4.88)

Here the modes are clearly always stable, as expected.

Whilst the approximation, equation (4.85), is more tractable than the full solution, its

usefulness can only be determined when its prediction are compared with the numerical

solutions. This comparison is best shown graphically and appears in Figure 4.5. Since

all modes are unstable for R > 1, we select a value for R such that Rc < R < 1. In this

domain, the solution for all R is qualitatively the same. The instability is present for

a range of multipoles up to some critical value, after which the modes become stable.

To this end we select R = 0.5 for Figure 4.5. It can be seen that equation (4.85) shows

reasonable correspondence with the numerical results for low m, but becomes unreliable

as m nears the critical value and fails to change sign at said value.

We can gain further insight into this new instability by producing plots with fixed m

and varying R. This is done in Figures 4.6 and 4.7, where we have chosen values of

m = 2, Figure 4.6, and m = 100, Figure 4.7. From these figures we see that, as pre-

viously stated, the instability is present throughout the R ≥ 1 domain. We further

see that it extends into the weak coupling regime as well. The approximation from
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equation (4.85) is also included in these plots and we see that, for the low m (= 2) plot,

Figure 4.6, this mirrors the numerical solutions. It does not, however, perform well for

higher m (= 100) Figure 4.7. This is not surprising, since in equation (4.85) we have

neglected the higher order terms in ∆. These terms become significant when multiplied

by powers of a larger value for m. We conclude, nevertheless, that the approximation is

useful, in so far as it indicates the behaviour in an important part of the parameter space.

Figure 4.5: As Figure 4.2 but with R = 0.5. The inset panel shows the change
of sign, from negative to positive, for the imaginary part of κ̃. This indicates
that the secular instability is turning off. The dashed curve in the right hand
panel corresponds to the approximate solution given by equation (4.85). This is
accurate for low m but fails, in this case, near to the onset of the instability.

Returning to the numerical results, it would be illuminating if we could show the details

of our previous plots in a single plot. To this end Figure 4.8 is a 3-d plot which shows the

key features of our solution for a range of value of both R and m. The ‘trench’ feature

running through the graph represents the change of sign associated with the onset of

the instability.

Whilst Figure 4.8 gives a ‘feel’ for what is happening as we vary the parameters, Fig-

ure 4.9 is possibly clearer, where we summarise the behaviour in the phase plane. This

shows the unstable region in the m−R plane, with other key features indicated.

4.3.3 Astrophysical Context for the Dynamical Instability

As stated at the outset of this chapter, our aim was to show that the superfluid two-

stream instability (as discussed in Chapter 2) might have applications in improving our

understanding of some features of neutron star behaviour. In particular, we were hoping
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Figure 4.6: Real and imaginary parts of r-modes with m = 2, xp = 0.1 and
∆ = 5 × 10−4. The inset panel on the right hand side shows a change of sign
for an imaginary root, indicating that there is some critical value of R beyond
which unstable modes are present. The approximation from equation (4.85) is
again included as a dashed line. As was suggested by Figure 4.5, this is a good
match at this low m.

Figure 4.7: As Figure 4.6, but with m = 100. Here we see that equation (4.85)
is no longer a good approximation for the imaginary part.

to show it as a possible trigger mechanism for vortex unpinning and the associated pul-

sar glitches. Whilst we have demonstrated the existence of both dynamical and secular

instabilities in our model, we have yet to show that these are sufficient to cause the

phenomenon in question. The first requirement in this case is that any instability grows

quickly enough to overcome the dissipative action of viscosity within the neutron star.
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Figure 4.8: Surface plot for the imaginary part of one of roots of equation (4.60).
The ‘trench’ running through the plot indicates a change in sign. This shows
the onset of the instability moving across the trench from left to right.

We should ask whether the conditions prevailing in a neutron star (and especially within

the core) are such that our model is relevant. Recent evidence suggests that both super-

fluid neutrons and protons will be present in the core temperature of a neutron star with

Temperature below 109K [182][183]. (For our purpose, a mature neutron star is a star

that has ‘settled down’ into a state where there is no longer rapid cooling, has a steady

spin down and whose magnetic field is not rapidly altering.) Under such circumstances,

and taking into account particle density and pressure, the core is sufficiently cold to

contain both superfluid neutrons and protons.
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Figure 4.9: Summary of the parameter space R vs m, indicating the different
regions of instability for xp = 0.1 and ∆ = 5 × 10−4. The vertical dashed
line indicates the critical multipole, mc, where, in the strong coupling regime,
the behaviour changes from secularly to dynamically unstable. The horizontal
dashed line estimates the critical drag, Rc, where the secular instability sets in
for low m. We see that higher modes are always stable for R . 1.

Under these conditions there are two mechanisms which we would expect to damp the

fluid motion [61][184][185]. The first is the vortex mutual friction. This, as we have

seen, drives the instability under consideration, rather than suppressing it. The second

of these mechanisms is the shear viscosity from electron-electron collisions [175]. The

underlying physics of this mechanism has been discussed elsewhere [67] and does not

greatly impinge upon our investigation. Of greater import is the shear viscosity damping

timescale and how this compares with the growth timescale of the instability. We can

estimate this damping timescale using an energy integral approach by
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τsv =
Emode

2Ėsv

, (4.89)

where Emode is the mode energy and Ėsv is the shear viscosity damping rate. Since we

are only interested in an approximate value to give us a feel for how this compares with

the instability time scale, we use the results for single fluid r-modes in a uniform density

star as previously calculated in [186];

τsv =
3

4π

M

ηeeR

1

(2m+ 3) (m− 1)
≈ 1.3× 106

m2

(
0.05

xp

)3/2 R
7/2
6

M
1/2
1.4

T 2
8 s, (4.90)

where R6 = R/106cm and M1.4/M� represent the radius and mass of the star, respec-

tively. The shear viscosity coefficient, ηee (= ρpνee), is given by [175]

ηee = 1.5× 1019
( xp

0.05

)3/2
ρ

3/2
14 T

−2
8 g cm−1 s−1, (4.91)

where ρ14 = ρ/1014 g cm−3 and T8 = T/108 K.

Using this approximation, we are able to make a comparison between the growth timescale

for the instability, τgrow, and that for the shear viscosity damping, τsv. We consider first

the modes that exhibit dynamical instability (in the strong coupling regime). Such a

comparison is indicated in Figure 4.10. We show the timescales as functions of the

multipoles, m, and we include plots for the same two entrainment parameters used in

Figure 4.1. The damping rate, τsv, is shown for two temperatures, 107 K and 5× 107 K.

(We discuss the relevance of these temperatures below)

Dynamically unstable r-modes exist for the range of m where the dashed line, represent-

ing τsv lie above the solid line, representing τgrow. We can see that τgrow levels off for

m & mc, with increasing entrainment having a small effect on τgrow above this critical

value. However, as suggested by equation (4.75), the inclusion of entrainment has a

significant effect on the value of mc.

As a final observation, returning to the selected temperatures, we note that the range of

unstable modes decreases as the star cools. Generally, glitches are observed in younger

pulsars and this is qualitatively consistent with the results displayed in Figure 4.10. It

appears that the dynamical r-mode instabilities are ‘squeezed out’ of existence once the

core temperature drops much below 107K. However, it has been shown [187] that the
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Figure 4.10: A comparison of the r-mode instability and viscous damping
timescales, τgrow and τsv respectively, as obtained from equations (4.69) and
(4.90). These are shown as functions of m for pulsar parameters: P = 0.1 s,
xp = 0.1 and R = 104. Stellar mass and radius are set at the canonical values
M1.4 = R6 = 1. The shear viscosity damping rate, τsv, is shown for two tem-
peratures, 107 KK and 5× 107 K. ∆ is fixed at 5× 10−4 and τgrow is shown for
two values of entrainment, εp = 0 and εp = 0.6. As an example, the unstable
r-modes for T= 107 K are given by the shaded region.

core temperature of a neutron star may remain above 108K for in excess of 105 years

from the star’s formation.

There remains one further piece of observational data that suggests a link between pul-

sar glitches and the r-mode instability for large m. By setting τgrow = τsv, we can find a

critical spin lag, ∆c, above which the instability grows more quickly than it is damped

[7]. By combining equations (4.69) and (4.90), and by setting m at the critical value,

mc, we obtain

∆c ≈ 3.3× 10−5
( xp

0.05

)2/3
(
P

1 s

)2/3(m∗p
mp

)−1/3

T
−4/3
8 . (4.92)

It is necessary to compare this prediction for the onset of instability with the extrap-

olation of observed data. Fortunately [7], our model has only two components and, if

we assume angular momentum is conserved (that is Ic∆Ωc ≈ −Is∆Ωs where Ic and

Is are the two moments of inertia, while ∆Ωc and ∆Ωs represent the changes in the
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corresponding spin frequencies) it is relatively straightforward to estimate the critical

lag required.

The data regarding glitches suggests that approximately 2% of the total spin down is

reversed in glitches [30] which implies Ic/Is ≈ 0.02. For a large glitch of the order of

that observed in the Vela pulsar, we have ∆Ωc/Ωc ∼ 10−6. This gives us a lag at the

time of the glitch, ∆g, of

∆g ≈
Ic
Is

∆Ωc

Ωc
≈ 5× 10−4. (4.93)

This is sufficiently close to our estimate from equation (4.92) to suggest that the r-mode

instability plays a role in large pulsar glitches. In common with the phenomenological

discussion of glitches [30], our two fluid model operates in the strong drag limit where

vortices are pinned to the charged lattice components. As discussed in Chapter 1, in

this ‘pinned’ state a rotational lag will develop between the two components as the crust

spins down. Once the critical lag is reached, a range of r-modes become unstable, with

a growth time of only a few periods of rotation. It is reasonable to assume that it is

the fluid motion associated with this instability that breaks the vortex pinning, which

in turn triggers the glitch.

We note at this point that, as yet, we have made no detailed study of the non-linear

behaviour of the fluid once the modes reach large amplitude. It has been demonstrated

that the onset and initial growth of this instability in 1+1 dimensions are well described

by linear perturbation theory [64]. The behaviour at late stages, when the instabilities

dominate, has yet to be satisfactorily resolved.

To further relate the predictions of our model to available data regarding neutron star

glitches, we reproduce a figure from [7], Figure 4.11. This figure details the maximum

glitches allowed assuming a completely relaxed system, with ∆g = ∆c and Ic/Is = 0.02.

Accurate temperature data is not available for most pulsars that exhibit glitches, so

an estimation has been made using the ‘heat blanket’ model [188] and calibrating this

model to the Vela pulsar (T ≈ 6.9× 107 K) [189]. This leads to the following expression

for pulsar temperature

T ≈ 3.3× 108

(
tc

1yr

)−1/6

K, (4.94)
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Figure 4.11: Figure from [7]. The maximum glitches predicted by equation (4.92)
compared with observations. The mc curve represents the onset of the dynamical
instability, with the shaded region unstable.

where tc = P/2Ṗ is the characteristic pulsar age.

The results from Figure 4.11 are encouraging in appraising our model. In particular, the

model performs well when predicting the maximum glitch one would expect to see. It

further lends credence to the idea that the system carries on evolving into the instability

before the glitch happens. This is consistent with the more rapid growth of the higher

modes. It is noted that both Vela and PSR B1706-44, for which temperature data

is available, glitch when our model shows m = 1.6mc, suggesting that the instability

continues its evolution, after the first m-modes become unstable, until it is sufficiently

widespread to trigger unpinning.

Whilst this model shows promising results, there is much to do to establish its validity

completely. As well as the previously discussed non-linear evolution of the instability,

further understanding of mutual friction parameters are required. To improve testing

of the model, more accurate temperature data for glitching pulsars is needed. But none

of these present insurmountable problems and this model offers real hope of modelling
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neutron star glitches quantitatively as well qualitatively.

4.3.4 Discussion and Future Work

We have in this chapter provided an analysis of superfluid r-modes in a case of solid

body rotation with lag between the two components. Whilst this has been considered in

more detail than in previous work on the subject [7], (uncovering secular instability as

well as somewhat extending the dynamical instability analysis from the strong coupling

limit to a more general case) there remain many assumptions in the model that may

need to be discarded if we are to obtain a more accurate picture of neutron star glitches.

As examples, we have assumed both uniform density and solid rotation. Clearly neither

is physical and it would clearly improve the accuracy of the model if a more ‘realistic’

set of assumptions were used. However, such changes would remove several layers of

simplification from the problem we addressed and may make an analytic approach in-

tractable.

Overall the analysis shown in this chapter offer some results that have not been consid-

ered previously elsewhere. Whilst there has been much previous work on instabilities

triggering superfluid turbulence and and results in the context of pulsar precession, we

provide the first demonstration of this kind of instability for global mode oscillations.

This work, along with [7], also considers perturbations in a new background configu-

ration, that of differential rotation. The extra degree of freedom that this affords over

previous studies leads to a problem that is in many ways richer and more enlightening.

One of the most interesting results was also the most unexpected, the secular instability.

This was totally new to us as the previous work on this topic [7] had given no hint of its

existence. We were surprised to find both secular and dynamical instabilities occupying

almost distinct parts of the parameter space as shown in Figure 4.9. Again, as far as we

are aware, the analysis in this chapter represents the first detailed study of a problem

that has secularly unstable modes entering a regime in which they become dynamically

unstable.

The analysis reveals that, instead of modes becoming unstable where real roots merge

and form complex conjugate pairs, we have dynamical instabilities associated with near

misses in the complex plane. This phenomenon certainly warrants further investigation.



Chapter 5

Superfluid Helium II as a Model

for Neutron Star Cores

In Chapter 4 we considered r-mode instability for a differentially rotating, two compo-

nent superfluid neutron star core. We showed that such a two component superfluid

configuration exhibited unstable r-modes (both secularly and dynamically) and sug-

gested that these may act as a trigger mechanism for vortex unpinning and the observed

neutron star glitches. In this initial mathematical model, we have endeavoured to in-

clude as much detail as possible whilst keeping the mathematics tractable. As discussed

in the closing remarks to Chapter 4, having produced such a model, we would like to

investigate whether such a mechanism acts in other systems. In particular, we would be

interested in some system that is realisable within a laboratory.

In Chapter 3, we discuss the possibility of using a mixture of Bose-Einstein Condensates

as an analogue for a two component superfluid. We show that, although this approach

shows promise, there remain several issues to overcome before such an analogue becomes

fully realisable. Fortunately, there are other possible laboratory systems that offer the

hope of demonstrating the key features of our model. One such candidate is the Helium

II (He II). In the following sections we discuss why an appropriate laboratory set up us-

ing He II might exhibit these r-mode instabilities. We obtain the relevant parameters for

He II over a range of temperatures, and apply these to the model used for a neutron star.

105
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5.1 Why We Might Consider Helium II as a Good Ana-

logue for Neutron Star Core

Our aim is to develop an analogue for the superfluid neutron - superconducting proton

conglomerate of a neutron star core in a laboratory environment. It would seem logical

that we should use materials that display similar properties to those making up said

core. It would also make the realisation of such an analogue clearer if the physics of

these laboratory materials were well understood. From what we know of its properties,

He II leaps to mind as a candidate. The most obvious reasons for such a selection are

listed here.

Firstly, this is well established science. The superfluidity effect was first observed in

1937 [52][51] and has since been described through phenomenological and microscopic

theories. The properties of superfluid Helium are, by now, well understood and no ‘new’

physics seems to be required to fit it into the analogue of the neutron star model.

Secondly, we can describe superfluid Helium as a two component fluid, as is the case

for the outer core of a neutron star. This description follows from the work of Landau

[53] and Tisza [69], where it was noted that the entropy flow of He II does not always

follow that of the centre of mass. From this it was “postulated that the velocity of flow

of entropy was, for He II, a new variable independent of v (the velocity of the centre of

mass)” [54]. This led to a description of He II as a fluid with two distinct, but coexisting,

components. The first, an ideal superfluid component with all of the characteristics of

such a state of matter. The second, a ‘normal’ fluid component, governed by the well

known laws of fluid dynamics. It is this second component with which the entropy of

the fluid is associated. As we demonstrate later in this chapter, the ratio of these two

components present in the composite fluid varies with temperature; the proportion of

the superfluid component increasing as we approach 0K. It is of particular interest for

us to note the similarity with the neutron star core, which is composed of superfluid

neutron vortices arranged in a lattice and a coexisting component of superconducting

protons. In the case of He II under rotation, the superfluid component would form a

vortex lattice coexisting with a ‘sea’ of normal fluid.

The formation of vortices in the superfluid component of He II was established in the

1950s, most notably by Hall and Vinen [171]. We also note that the normal fluid com-

ponent can be modelled by solid rotation [180]. So, if He II is suitably confined and

rotated, we have a structure that is qualitatively analogous to the standard model of a

neutron star core.
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Naturally, there are some issues with using He II as an analogue for the two component

fluid of the neutron star core. In particular, our model of the core depends on the differ-

ential rotation between the two components. This builds up as a result of the pinning

of the neutron vortices to the crystal lattice. Fortunately, an analogue for this system

was constructed in the 1970s by Tsakadze and Tsakadze [79], where He II was placed

in a spherical container, which was then rotated. Whilst we discuss their work in more

detail in Chapter 2, we note that they were able to effectively pin the vortices by use of

Plexiglass crystals glued to the inside of the container.

5.2 Instabilities in Rotating Helium II

We should note that the similarities discussed in the preceding section do not guarantee

that rotating He II will display the same instabilities as those observed in our neutron

star model. We are constrained by the physical nature of the Helium model with regard

to mutual friction parameters as a function of temperature. In selecting a suitable tem-

perature for the model, we are further restricted by the effect this has on the ratio of the

two components. Such parameters have been established experimentally [54]. However,

before considering applying such data, we first establish how these parameters relate to

those used for the neutron - proton composite fluid.

In comparing the He II case with that of the neutron star, we consider the mutual fric-

tion force for each. To avoid confusion in comparing the dynamical equations governing

the behaviour of He II with those from the neutron star model, we label variables as

follows [54]:

In the Helium case we use the subscripts ‘S’ and ‘N’ for quantities relating to the super-

fluid and normal fluid components respectively. The non dimensional mutual friction

coefficients we denote by ‘BHV’ and ‘B′HV’. The solid angular velocity of the superfluid

component is Ω and from this, a unit vector Ω̂ is defined by

Ω̂ =
Ω

|Ω|
. (5.1)

The relative linear velocity between the two components, W is given by

W = vS − vN. (5.2)
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Finally, the overall density is given by ρ, whilst those of the superfluid and normal com-

ponents are given by ρS and ρN respectively. We note that, since the two components

have the same particle mass, the density fraction for each component is the same as the

particle density ratio.

In the case of the differentially rotating neutron star model we follow the convention

used in Chapter 4.

Hall and Vinen proposed that the mutual friction force, Fns between the normal and

superfluid components could be expressed by

Fns = − (BHVρNρS/ρ) Ω̂× (Ω×W )−
(
B′HVρNρS/ρ

)
(Ω×W ) . (5.3)

For comparison we reproduce the mutual friction equation for the neutron star model,

equation (4.29) from Chapter 4.

fx
i =

ρn

ρx
B′nvεijkκjwkxy +

ρn

ρx
Bnvεijkκ̂jεklmκlwxy

m . (5.4)

This we can rewrite in vector form as

fx = −
(
ρn

ρx
Bnv

)
κ̂× (κ×wxy)−

(
ρn

ρx
B′nv

)
(κ×wxy) . (5.5)

We can see that equation (5.5) is simply equation (5.3) , with the minor exception that

B′/B′HV = B/BHV = 1/2xp. Here xp is the proton fraction in the neutron star case,

which translates to the fraction of the normal fluid component in the Helium II case.

This difference follows directly from our definition of κ̃ in the neutron star model.

So, by comparing the two mutual friction equations in component form, we have shown

that the experimental parameter values for Helium II can also be applied, with the

modification mentioned above, to equations (4.57) and (4.58) from Chapter 4. For

convenience, said equations, without entrainment terms which we set to zero in this

calculation, are reproduced here.

[(m+ 1)κ̃− 2 + ∆(1− xp)(m− 1)(m+ 2)]Um

− (1− xp)∆xp(m− 1)(m+ 2)um = 0 (5.6)
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T (K) xp BHV B′HV
1.30 0.045 1.526 0.616
1.35 0.058 1.466 0.535
1.45 0.091 1.351 0.385
1.50 0.111 1.296 0.317
1.55 0.135 1.243 0.255
1.60 0.162 1.193 0.198
1.65 0.193 1.144 0.149
1.70 0.771 1.100 0.107
1.75 0.268 1.059 0.075
1.80 0.313 1.024 0.052
1.85 0.364 0.996 0.041
1.90 0.420 0.980 0.040
1.95 0.482 0.981 0.045
2.00 0.553 1.008 0.043
2.10 0.741 1.298 -0.065
2.12 0.788 1.476 -0.143
2.14 0.842 1.790 -0.297
2.16 0.907 2.420 -0.683
2.17 0.950 3.154 -1.272
2.172 0.961 3.538 -1.549
2.174 0.973 4.227 -2.048
2.176 0.988 6.391 -3.613

Table 5.1: Experimental values for the normal fluid component fraction and
the dimensionless mutual friction coefficients from equation (5.3) for a range of
temperatures [54].

and

−
[
(m− 1)(m+ 2)−m(m+ 1)(B̄′ + iB̄)

]
∆Um

+
{

(m+ 1)κ̃− 2(1− B̄′ + iB̄) + ∆xp(m− 1)(m+ 2)

−m(m+ 1)∆xp(B̄′ + iB̄) + 2(B̄′ − iB̄)∆
}
um = 0. (5.7)

Here we use B̄′ (= B′/xp) and B̄ (= B/xp), so our substitution simplifies further to

B̄′/B′HV = B̄/BHV = 1/2. It simply remains to obtain values for the parameters B′HV,

BHV and ρN/ρ (= xp) for various values of temperature at which Helium II exhibits

superfluidity. The required parameters were obtained from [54] and are reproduced in

Table 5.1

A cursory inspection of this data suggests that we may observe different behaviour in

the He II model from that manifested in the neutron star case. In the case of the

neutron star, the terms B̄′ and B̄ are derived from a single dimensionless mutual friction

coefficient, R, which is assumed to be always positive. These two coefficients are related

by
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B′ = RB = R2/
(
1 +R2

)
. (5.8)

In the case of the Helium data, this equation does not hold true. The ratio of B′HV and

BHV cannot be used to generate the original values using equation (5.8). In some cases

the ratio of the two parameters is negative, which is certainly not within the range of

allowed parameters for the original model. This would seem to imply that we would

expect quantitatively different behaviour from He II.

Further to this point, in Chapter 4 it can be seen that there exists some minimum critical

value for R, Rc ≈ 0.2, below which all modes are stable. Let us, for the moment, ignore

the problems mentioned in the above paragraph and assume that it is predominantly the

ratio of the two parameters that is critical as to when the instability occurs. Then we

can see that, above a temperature of about 1.6K, the ratio of B′HV and BHV is smaller

than the neutron star critical value for R of 0.2. This suggests that we are unlikely to

find instabilities above this temperature. This assumption along with the neutron star

results would lead us to, initially at least, to use data from the temperature for which

this ratio is the highest, that is T = 1.3K.

A further difference between the experimentally determined data for He II and that used

for our neutron star model is that of the ratio of the two components. In the case of

He II, the particle ratio of the superfluid component to the normal fluid, xp, increases

as temperature falls. However, in the neutron star case, we assume, quite reasonably,

that this ratio is a constant. As explained previously, in the neutron star case we used

xp = 0.1

Having discussed how we might apply the Helium data mathematically, we still have

the question as to whether such a system might be physically realisable in a laboratory.

As mentioned in section 5.1, experiments using He II in a similar manner were actually

undertaken in the Soviet Union in the 1970s [79]. Whilst we discuss these experiments

in more detail in Chapter 2, a brief description of the key features of the required ex-

perimental set up is included here.

To most accurately mimic the behaviour of the neutron star core, it would be required

that the He II sample fill a sealed spherical container. This container would be free

to rotate about a single axis and the rate of this rotation would ideally be externally

controllable. It is then necessary that the rotation of the container can be transferred

to the two components so as to create a differential rotation between the normal and

superfluid components. This can be achieved by pinning, through the introduction of



Chapter 5 Superfluid Helium II as a Model for Neutron Star Cores 111

impurities to the container wall, the vortices generated in the superfluid component to

the inside of the container so that they rotate exactly with the container. The rotation

of the normal component can be coupled to the inner wall of the container by friction

alone, so that it will ‘lag’ any change in rotation in the container. So, by spinning up

the container, the two components can be made to exhibit, at least until the nouqrmal

component catches up, a measurable differential rotation.

Having established that such an experiment is physically realisable and pointed out the

inconsistencies with the neutron star case, we still have a table of ’real world’ data that

we can apply to our model. It seems sensible to consider first the data that most closely

matches that which we used in the neutron star model. This is the data at T = 1.3K,

which has a ratio of BHV to B′HV which is within the range that produced instabili-

ties in the neutron star model and a value for xp that is reasonably close. We note,

though, that the values of B̄′ and B̄ that we obtain are much lower than those used

in the neutron star model. The results of substituting the parameters given for this

temperature into equations (4.57) and (4.58) are shown in Figures 5.1, 5.2 and 5.3. For

this first group of figures we have set ∆ = 1×10−5. We show the real parts of both roots

in Figure 5.1, whilst the two imaginary parts are shown separately in Figures 5.2 and 5.3.

Figure 5.1: Both real roots for κ̃ with T = 1.3K and ∆ = 1× 10−5.

To show the presence of unstable modes, we require that the imaginary part of one of

the roots be negative for these modes. It can be seen in Figure 5.3 that the imaginary

part of one root is always positive and no instability is present. However, we see that in

Figure 5.2, the solution dips below the x-axis, indicating a region of instability. Unfor-

tunately, from the point of view of using Helium II as an analogue for our neutron star
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Figure 5.2: Imaginary part of the first root for κ̃ with T = 1.3K and ∆ =
1× 10−5.

Figure 5.3: Imaginary part of the second root for κ̃ with T = 1.3K and ∆ =
1× 10−5.

model, this imaginary part of κ̃ becomes positive again before the m = 2 mode. This

tells us that all modes are stable in this instance.

It should be pointed out that, in reality, m can take only positive integer values. In the

graphs we treat it as a continuous variable only because this helps us to visualise the

behaviour. So, where the function σ has a negative imaginary part for non-integer m
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only, this has no physical meaning. Hence, in Figure 5.2, where both m = 1 and m = 2

are stable and the graph only dips below the x-axis only between these modes, this tells

us all modes are stable.

We next consider the impact on our results of changing the differential rotation between

the two component, ∆. We show the results for the imaginary part of the first root with

∆ = 1 × 10−3 in Figure 5.4 and with ∆ = 1 × 10−1 in Figure 5.5. The graphs for the

real parts and the second imaginary part are not shown here as they show essentially

the same structure as the graphs for ∆ = 1 × 10−5. It is, at this stage where we are

endeavouring to show the existence of unstable modes, the imaginary part of only one

root that is of real interest.

Figure 5.4: As Figure 5.2 but with ∆ = 1× 10−3.

We see in Figures 5.4 and 5.5 the same behaviour as in Figure 5.2, with the imaginary

part only becoming negative for a range of unphysical values between m = 1 and m = 2.

This implies that a change in ∆ does not significantly alter the qualitative behaviour of

Helium II with regard to unstable modes.

When we compare the values of B̄ and B̄′ generated by Table 5.1, it was the parameters

at T = 1.3K that suggested we would be most likely to find behaviour similar to the

neutron star model. It is, however, worth exploring the behaviour at other tempera-

tures as these give a range of parameters unconsidered in Chapter 4. Rather than repeat

the procedure for all of the values given in the table, we select temperatures that offer

extremes for our parameters, for instance close to a change of sign in B̄′. To this end

we show plots for T = 1.9K (B̄′ small but positive), T = 2.1K (B̄′ small negative) and
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Figure 5.5: As Figure 5.2 but with ∆ = 1× 10−1.

T = 2.17K (B̄′ more negative). These examples are shown in Figures 5.6, 5.7 and 5.8

respectively. In all cases, we use ∆ = 1× 10−3.

Figure 5.6: As Figure 5.4 but with 1.9K.

We note that whilst the overall shape of the plots remains the same as we vary the

temperature upwards, they become less like the results for the neutron star model. It

is interesting to note, but only in passing, that the values of m, when we treat it as

continuous variable, where the imaginary part of σ becomes negative shifts to the left

of m = 1 when B̄′ becomes negative. More significantly, we note that there is still no
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Figure 5.7: As Figure 5.4 but with T = 2.10K.

Figure 5.8: As Figure 5.4 but with T = 2.17K.

instability present for any real modes (that is, positive integer values of m).

The results from these plots lead us to the conclusion that we are unable to test for

the neutron star r-mode instability using the two fluid model of He II as an analogue.

It was earlier suggested that there might be issues in trying to reproduce this form of

instability owing to discrepancies between the He II parameters and the single mutual

friction coefficient in the neutron star model. However, it would be helpful if we could
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express this failure in rather more concrete terms.

In Chapter 4 we showed, using equation (4.87), that there is a critical value for the

parameter B′ below which, for particular modes, m, the instability cannot manifest. In

the case of the He II model, this translates to

B′HV (c) =
(m− 1) (m+ 2)

4m (m+ 1)
m ∈ N : m ≥ 2 (5.9)

It is clear that this is a minimum when m = 2, so this is the mode that will possess the

lowest critical value for B′HV . For the m = 2 mode, we have B′HV (c) = 0.667. The highest

value in Table 5.1 for B′HV is 0.616, when T = 1.3K. So we can see that, with the range

of data available, He II would not be expected to exhibit the r-mode instability being

considered.

This might suggest that this experimental set up cannot be used to model the neutron

star instability. There are, however, possibilities that might be considered to extend the

range of parameters for BHV and B′HV .

From Table 5.1, it can be seen that the value of both of these parameters increases

as the temperature falls. If we infer from this feature that at a range of temperatures

lower than those for which we have data, B′HV > B′HV (c). So, initially, it might appear

that finding data for lower temperatures or, failing this, extrapolating from existing

data, might offer the chance to model the desired instability. This line of reasoning,

unfortunately for our model, contains a major flaw. Again from Table 5.1, it can be

seen that, as the temperature falls, the ratio of normal to superfluid components also

decreases. It should be considered as to whether such a ratio of the two components

can truly be regarded as a two component fluid, or whether it enters a single compo-

nent regime. In particular, the low concentration of the normal fluid component implies

that its behaviour can no longer be modelled as that of a liquid, but rather as a dilute gas.

We should note that this does not necessarily mean that such an experimental set up

has no possible use in modelling the r-mode instability. It simply tells us that the

physical parameters of the two components of He II are not appropriate. There might

be other fluid combinations that exhibit the desired parameters. A possible example

might involve a mixture of superfluid 4He and normal 3He, with the composite fluid at a

temperature where the superfluid component of 4He dominates. Unfortunately, mutual

friction parameters are not readily available for this combination of fluids.
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Another possibility for an analogue is the use of superfluid 3He. Although this is not

usually described by the two fluid model, it does form several superfluid phases [141].

Whether some composite of these phases might produce the desired parameters is open

to question. Measurements have been undertaken for the B and B′ in 3He [190]. How-

ever, they appear to display strange characteristics near the critical temperature and

further work is needed.

As a final remark, we should note that the mutual friction parameters used for the He-

lium calculations assumed that the vortices were free to move. It has been calculated

[191] that in the case of pinned vortices the effective parameters are increased. At low

temperatures, below about 1.3 K, this difference is marginal. It has been shown that,

as the temperature increases towards the lambda point, the differences become more

significant. It is, therefore, possible that an experiment with pinned vortices may raise

the effective mutual friction sufficiently so that it exceeds the critical value given by

equation (4.87). This offers an interesting extension to the work in this chapter.





Chapter 6

Heat Flow Instability with

Entropy as a Dynamical Entity

6.1 Introduction

In this chapter we consider a somewhat unusual application of the two-stream instabil-

ity, that of thermodynamical instabilities associated with heat flow in a fluid. This is

motivated by previous work in causal heat conductivity [192] which describes a mech-

anism for the transfer of heat at finite speed. We first consider why such instabilities

might occur in the case of heat flow.

We initially recall the two fluid model for superfluid Helium-4 developed by Landau

[53][193]. Here the Helium was described as a composite of two inter-penetrating fluids:

a perfect, zero entropy superfluid; and a normal fluid component with which the en-

tropy of the Helium-4 is associated. This model has been the accepted standard for the

macroscopic description of superfluid Helium-4 almost since its inception [47]. Whilst

it has been refined over the years [194][49], the Landau model has proved invaluable in

furthering our understanding of superfluid behaviour and remains a cornerstone of low

temperature fluid dynamics.

However, it is possible to refine this model by considering entropy itself to be a dynam-

ical entity. In fact, such a concept can be extended to a fluid that is not necessarily

a superfluid. The foundation of this is the concept of variational multifluid dynamics

[170]. Building upon this approach, the inclusion of entropy as a dynamical entity, with

many of the properties of a classical fluid, leads to a description of heat transfer that

was compatible with relativity [192]. The use of Fourier’s law contravenes one of the

principal tenets of special relativity, in that heat is propagated instantaneously, whereas

119
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the treatment of entropy as a dynamical entropy leads to heat propagation at finite speed.

The idea of treating entropy as a massless component in a composite fluid (along with

a massive component constituted by the atomic material) suggests that a variation of

the two-stream instability might become manifest. A brief consideration of this shows

that we have the conditions, with some modifications, present in the analysis in Chapter

1. We have a two component fluid and, via entrainment, these two components are

coupled. We have the possibility of a relative flow between the components. The major

difference, from a mathematical standpoint, between this case and the case of two mas-

sive components lies in the particle conservation laws when applied to entropy.

The treatment of entropy in this manner has already been of some interest in describing

heat flow in relativity and other cosmological applications [195][196][197]. Because of

the similarities with the two fluid case, it seems reasonable that we investigate possible

thermodynamical instabilities that might arise in Newtonian physics. We begin this

analysis with a description of the mathematics of causal heat flow as given in [192].

6.1.1 Causal Heat Flow

We start by considering a simple system, that of two interpenetrating fluid components.

The first, which we identify by the constituent index n, consists of “massive” particles

with mass m and number density n. We assume this component to possess a velocity

vn
i . The second, identified by the constituent index s, is the massless entropy. This

has number density s and velocity vs
i . It is assumed that there exists some entrainment

between the two fluids, denoted by the parameter α. Following the variational analysis

[170], the canonical momentum of each component is

πn
i = mnvn

i − 2αwns
i , (6.1)

for the massive component and

πs
i = 2αwns

i , (6.2)

for the entropy.

Here we have used the relative velocity between the two component, wns
i , which is given

by
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wns
i = vn

i − vs
i . (6.3)

From the variational analysis, which starts with the energy functional E, it can be shown

that

α =

(
∂E

∂w2
ns

)
n,s

. (6.4)

It has been shown [198][61] that, the momentum equations for a dissipative two-component

system can be written as

fn
i = ∂tπ

n
i +∇j

(
vjnπ

n
i +Dnj

i

)
+ n∇i

(
µn −

1

2
mv2

n

)
+ πn

j∇ivjn (6.5)

and

f s
i = ∂tπ

s
i +∇j

(
vjsπ

s
i +Dsj

i

)
+ s∇iT + πs

j∇ivjs . (6.6)

Here Dnj
i and Dsj

i represent the dissipation from n and s respectively, whilst f in and f is

indicate the forces acting on each of the two components. The chemical potentials of

the two components are given by the normal definition, that is

µn =

(
∂E

∂n

)
s,wns

(6.7)

and

µs =

(
∂E

∂s

)
n,wns

≡ T. (6.8)

Although we should note that equation (6.8) gives the definition of temperature for

thermal equilibrium, its use here seems to fit with the model naturally.

Assuming no particle creation or destruction gives rise to mass conservation, leading to

∂tn+∇j
(
nvjn
)

= 0. (6.9)

However, we must allow for the possible increase in entropy. So the equivalent of equation

(6.9) for the entropy component is



122 Chapter 6 Heat Flow Instability with Entropy as a Dynamical Entity

∂ts+∇j
(
svjs
)

= Γs, (6.10)

where Γs ≥ 0.

It is assumed that we are working with a closed system with no external forces and no

energy is added, so

f s
i = −fn

i (6.11)

and

Dij = Dn
ij +Ds

ij , (6.12)

where Dij is the total dissipation.

By considering (for the sake of keeping our algebra manageable) only the linear friction

component of the total dissipative forces [61], we arrive at

TΓs = −fn
i w

i
ns (6.13)

and

− fn
i = 2Rwns

i , (6.14)

where R is the resistivity coefficient. This is essentially the classic approach to heat

conductivity.

Next a heat flux vector is introduced, which is defined by

qi = sTwisn, (6.15)

and equation (6.10) is rewritten as

∂ts+∇i
(
svin + swisn

)
= Γs. (6.16)
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This leads to a expression for Γs given by

Γs = 2R
( q

sT

)2
, (6.17)

with R ≥ 0.

If we consider the case of vanishing entrainment, it follows from equation (6.6) that

qi = −1

2

s2T

R
∇iT. (6.18)

Thus far, the traditional approach to heat flow has been followed, even though entropy

has been used as a dynamical variable. It is, therefore, hardly surprising that Fourier’s

law, qi = −κ∇iT , has been recovered. But this does give an expression for the thermal

conductivity, κ, in terms of the preferred variables;

κ =
1

2

s2T

R
. (6.19)

Having recovered Fourier’s law through following the traditional approach, the analysis

moves on to apply the model in the context of extended irreversible thermodynamics

[199]. For the sake of simplicity, it first considers heat conduction in a solid, as the

absence of a mobile massive fluid component makes this a simpler case. As such this

is not, in detail, of great interest at this juncture. However, there are some concepts

introduced that are of major import to our work and these are included here.

By considering the solid case, we can assume that vn = 0. Also by only including the

resistive contribution to the dissipation, we have

Ds
ij = 0 (6.20)

and

f s
i = 2Rwns

i . (6.21)

Under these conditions equation (6.6) reduces to the more tractable

∂tπ
s
i −∇j

(
1

2α
πjsπ

s
i

)
− πs

j∇i
(

1

2α
πjs

)
+ s∇iT =

R
α
πs
i . (6.22)
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By recalling that πsi = 2αns
i and wns

i = −wsn
i , this can be rewritten as

− ∂t (2αwsn
i )−∇j

(
2αwjsnw

sn
i

)
− α∇w2

ns + s∇iT + 2Rwsn
i = 0. (6.23)

By making use of equation (6.15) and then linearising equation (6.23) with respect to

thermal equilibrium (qi = 0), we arrive at

− ∂t
(

2α

sT
qi

)
+ s∇iT +

2R
sT

qi = 0. (6.24)

This is in the form of a Cattaneo equation and can rewritten, by the introduction of a

thermal relaxation time, τ (= −α/R), as

τ∂tqi + qi = −κ∇iT. (6.25)

From the definition of the thermal relaxation time, we can infer that α ≤ 0. It can be

seen that, by this approach, a model for the propagation of heat at finite speed has been

produced.

The inclusion of non-local terms is considered and finally a more general model with

vn 6= 0 is developed. This contains some very long winded algebra which is not included

here. We do include the resulting momentum equations for the two components as this

is central to the instability analysis that follows. To keep the problem tractable, the

non-local terms are not included here. Firstly we have the massive component,

ρ
(
∂t + vln∇l

)
vn
i +∇ip = 0, (6.26)

and then for the entropy component

(
∂t + vjn∇j

)
qi +

1

τ
qi + qi∇jvjn + qj∇ivjn = −κ

τ
∇iT. (6.27)

We now have two conservation equations, (6.9) (6.16), and two momentum equations,

(6.26) (6.27), which ”fully” describe the fluid’s macroscopic behaviour. In the following

sections of this chapter we explore the dynamical stability of this two fluid model.
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6.2 Dynamical Stability in a Static Background

Before moving on to consider a more general case, we first look at the dynamical sta-

bility of the fluid model in the simplest case, that of a static background. Here, we

assume that our two component fluid is of uniform temperature, pressure and density.

We further assume that the fluid is at rest with respect to the reference frame used. As

such, the fluid can be said to be in thermodynamic equilibrium, with no net heat flow,

and, so, the entropy density is both constant and uniform. To this background we apply

small plane wave perturbations and search for frequencies at which these perturbations

grow, indicating dynamical instability.

It may seem that this configuration is relatively trivial but it provides some understand-

ing of the behaviour of our fluid mode under perturbation. Also, since we use a different

method of calculation in the more general case, it serves as a ”sanity check” for our later

calculations.

One further observation is that, in the static case, we work in one spatial dimension

only. This is such that the results are consistent with those from the more general case

discussed later. Although it is the case that a full three dimensional solution to the

more general case might be found, the algebra for this quickly becomes intractable. As

is seen in the next section, the ”more general case” mentioned here is not a fully general

solution for the same reason.

As our starting point, we take, in one dimensional form, the conservation equations

and the momentum equations derived for each of our two components above. That is

equations (6.9), (6.16), (6.24) and (6.26). We note that equation (6.24) is equivalent

to equation (6.27). It is preferred as it is a simplification of the momentum equation,

better suited to our problem.

∂tρ+ ∂x (ρv) = 0, (6.28)

∂ts+ ∂x (sv + sw) =
2R
T

( q

sT

)2
= Γs, (6.29)

ρ (∂t + v∂x) v + ∂xp = 0, (6.30)

− ∂t
(

2α

sT
qi

)
+ s∇iT +

2R
sT

qi = 0 (6.31)
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Here, for convenience only, we have neglected the indices n and s. It should be made

clear that, from here onwards, w relates to wsn, and v is vn. We note also that, because

of the static nature of the background, for any variable X with background value X0,

∂xX0 = 0 and ∂tX0 = 0. This background is perturbed such that for a variable, X we

have

X = X0 + δX, (6.32)

where X0 is the background value of the variable. So the four equations above give us

four perturbation equations (where the background has been removed.):

∂tδρ+ ∂x (ρv) = 0, (6.33)

∂tδs+ ∂x

(
sv +

q

T

)
= 0, (6.34)

ρ∂tv + ∂xδp = 0, (6.35)

∂t

(
2α

sT
q

)
+ s∂xδT + 2R q

sT
= 0. (6.36)

We should note that equation (6.33) has density, ρ, rather than particle density as a

parameter.

At this point we have four equations in six unknowns. To resolve this we make the not

unreasonable assumption that both entropy density and total pressure are functions of

temperature and the density of the massive components. So the perturbed terms in

entropy number density and total pressure can be rewritten as

δs =

(
∂s

∂ρ

)
T

δρ+

(
∂s

∂T

)
ρ

δT (6.37)

and

δp =

(
∂p

∂ρ

)
T

δρ+

(
∂p

∂T

)
ρ

δT. (6.38)
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We can simplify the perturbed equations by substituting in the previously defined re-

laxation time, τ , and thermal conductivity, κ. These definitions are reproduced here for

ease of reading:

τ = − α
R
, (6.39)

κ =
s2T

R
. (6.40)

We further assume that the perturbations of our four remaining variables are plane

waves. This leads us to

v = v̄ei(ωt+kx), (6.41)

q = q̄ei(ωt+kx), (6.42)

δρ = ρ̄ei(ωt+kx), (6.43)

δT = T̄ ei(ωt+kx). (6.44)

Here X̄ represents the magnitude of the plane wave perturbation applied to the variable

X. Applying these various substitutions to our four perturbed equations leads us to:

iωρ̄+ ikρv̄ = 0, (6.45)

iω

[(
∂s

∂ρ

)
T

ρ̄+

(
∂s

∂T

)
ρ

T̄

]
+ ik

[
sv̄ +

q̄

T

]
= 0, (6.46)

iωρv̄ + ik

[(
∂p

∂ρ

)
T

ρ̄+

(
∂p

∂T

)
ρ

T̄

]
= 0, (6.47)

iωτ q̄ + q̄ + ikκT̄ = 0. (6.48)

It can clearly be seen that the first of these equations, equation (6.45), gives ρ̄ as a

function of v̄. Similarly, the fourth of these, equation (6.48), gives T̄ as a function of q̄.
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Substituting the relationships from these equations into the two remaining equations,

(6.47) and (6.46), whilst multiplying the first, (6.47), by k leads to the following two

intermediate equations:

[
ω − k2

ω

(
∂p

∂ρ

)
T

]
(ρv̄k)−

(
iωτ + 1

iκ

)
(kq̄)

(
∂p

∂T

)
ρ

= 0, (6.49)

(ρkv̄)

[
ρ

(
∂s

∂ρ

)
T

− s
]
− (kq̄)

[
1

T
− ω (iωτ + 1)

iκk2

(
∂s

∂T

)
ρ

]
= 0. (6.50)

At this point we consider the partial differentials and whether substitutions for known

quantities can be found for any of them. To this end we consider the speed of the

first sound in the medium, c0. If we consider that only a pure sound wave is present,

then we can assume that q = 0, as any heat flow in a super-fluid is related to the second

sound[49]. The absence of heat flow implies uniform temperature[200], so we can assume

that δT = 0. If we apply this to the second of our intermediate equations, (6.50), we

arrive at

ω2

k2
=

(
∂p

∂ρ

)
T

≡ c2
0, (6.51)

by the usual definition for the speed of the first first sound.

We next consider the case where, as a first approximation, heat is transferred solely

by thermal diffusion. This implies that there is no thermal relaxation time, so τ = 0.

Further, no heat is transferred by convection, hence v̄ = 0. If we substitute these

assumptions into the first of our intermediate equations, (6.49), we obtain

1

T
− ω

iκk2

(
∂s

∂T

)
ρ

= 0. (6.52)

But the standard definition of specific heat capacity, cv, is given by [160]

cv = T

(
∂s

∂T

)
, (6.53)

with all other variables held constant. So the specific heat capacity can be written as

cv =
iκk2

ω
. (6.54)
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At this juncture it is also convenient to introduce two new constants. The first is a

‘thermal diffusivity’ term1 χ, which we define by

χ =
κ

cv
. (6.55)

The second term is a diffusion time,

td =

∣∣∣∣ 1ω
∣∣∣∣ . (6.56)

It should be noted that in both the case of the thermal diffusivity and diffusion time,

the ω referred to relates to the diffusive case discussed above and not to the general

case. So, in general, ωtd 6= 1.

This also gives us a relation between the thermal diffusivity and the diffusion time,

td =
1

k2χ
=

cv
κk2

. (6.57)

Including these new constants in the two intermediate equations, (6.49) and (6.50), leads

us to

k2

ω

[
ω2

k2
− c2

0

]
(ρkv̄) +

i

κ

(
∂p

∂T

)
s

(1 + iωτ) (kq̄) = 0, (6.58)

[(
∂s

∂ρ

)
T

− s

ρ

]
(ρkv̄)− 1

T
[1 + iωtd (1 + iωτ)] (kq̄) = 0. (6.59)

We can now combine these two equations, which, after some manipulation, gives the

dispersion relation

[
ω2

k2
− c2

0

]
[1 + iωtd (1 + iωτ)]

+
iω

κk2

(
∂p

∂T

)
s

(1 + iωτ)

[(
∂s

∂ρ

)
T

− s

ρ

]
= 0. (6.60)

Before progressing to a more general solution to the stability of a static background, we

solve the simpler, purely diffusive case for pure sound waves. Here the relaxation time,

1We define this term, for convenience, using the specific heat capacity, rather than the standard
definition which uses the volumetric heat capacity[201].
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τ is zero. We shall assume that the diffusion time is sufficiently large such that ωtd � 1.

So, we are able to divide through by iωtd. This reduces equation (6.60) to

[(ω
k

)2
− c2

0

](
1− i

ωtd

)
+

T

tdκk2

(
∂p

∂T

)
ρ

[(
∂s

∂ρ

)
T

− s

ρ

]
= 0. (6.61)

As we are now discussing the purely diffusive case, we can no longer assume zero heat

flow. Under these circumstances, the previously stated identity for the speed of sound

no longer applies. Instead, it would be more accurate to write

ω

k
∼ c0. (6.62)

It is more useful to interpret this as

ω

k
= c0 (1 + a+ ib) , (a, b� 1) , (a, b ∈ <) . (6.63)

This leads us to the (first order in a and b) approximation

[(ω
k

)2
− c2

0

]
= 2c2

0 (a+ ib) , (6.64)

which enables us to express ω, to first order again, by

1

ωtd
∼ (1− a− ib)

kc0td
. (6.65)

Here we note that, in the case of the plane wave perturbations applied in this exercise,

growing solutions (instabilities) occur when the real part of i (ωt+ kx) is positive, lead-

ing to exponential growth. If we assume that the wave number, k, is always real and

positive, then we have instabilities when the imaginary part of ω is negative. Consider-

ing this, it can be seen that instabilities will only be observed if b < 0.

For convenience, we reproduce equation (6.61).

[(ω
k

)2
− c2

0

](
1− i

ωtd

)
+

T

tdκk2

(
∂p

∂T

)
ρ

[(
∂s

∂ρ

)
T

− s

ρ

]
= 0. (6.66)

We note that the second term in this equation is wholly real. Hence, the first term must

also be wholly real. Using this and making the substitutions suggested above, we have
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[(ω
k

)2
− c2

0

]
(1 + iωtd) = 2c2

0

[(
a+

b

kc0td

)
+ i

(
b− a

kc0td

)]
. (6.67)

Having already established that the right hand side of this equality must be real, it

follows that the imaginary part of the left hand side must be zero. This can only be the

case if

b =
a

kc0td
. (6.68)

As all of the constants used here are positive, this also reveals that a and b must share the

same sign. This tells us that it is sufficient to solve for a to find if there are instabilities

present. So we can substitute for b into equation (6.67), obtaining

2c2
0

(
a+

a

kc0td

1

kc0td

)
+

T

k2κtd

(
∂p

∂T

)
ρ

[(
∂s

∂ρ

)
T

− s

ρ

]
= 0. (6.69)

As we previously stated that ωtd � 1, then we can make the approximation that

(
1

kc0td

)2

� 1. (6.70)

Substituting this into preceding equation, (6.69), and making the earlier substitution

for heat capacity, (6.54), gives us

a ∼ − T

2cvic2
0

(
∂p

∂T

)
ρ

[(
∂s

∂ρ

)
T

− s

ρ

]
. (6.71)

Upon initial inspection this gives us no real clue as to the sign of a. This is because, in

our rather naive model, we have made no mention of the relationship between pressure

and temperature or of that between the density of the massive component and entropy

density. Intuitively, as well as from the gas laws (Amonton’s Law), it is reasonable to

assume that pressure increases in some manner with increasing temperature. We fur-

ther assume that entropy does not substantially depend upon the density of the massive

component. This leads us to the conclusion that a is always positive and so, in the

diffusion only case, the pure sound wave perturbations are always stable.

We return to a more general dispersion relation for our static background. To make this

easier to follow, we here reproduce equation (6.60).
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[
ω2

k2
− c2

0

]
[1 + iωtd (1 + iωτ)]

+
iω

κk2

(
∂p

∂T

)
s

(1 + iωτ)

[(
∂s

∂ρ

)
T

− s

ρ

]
= 0. (6.72)

Since we are no longer dealing with a purely dispersive case, we must assume that we

have a non-zero thermal relaxation time. It is also convenient, and serves to condense

the algebra, if we introduce a phase velocity, σ, for our perturbations. This is defined

by

σ =
ω

k
. (6.73)

Clearly, as k is assumed to be always real and positive, the real and imaginary parts of

σ will always have the same sign as ω.

For further convenience, we can condense equation (6.72) by defining

A =
T

κk

(
∂p

∂T

)
ρ

[
s

ρ
−
(
∂s

∂ρ

)
T

]
.

So, with a little manipulation, equation (6.72) becomes

(
σ2 − c2

0

) [(
k2σ2tdτ

)
− ikσtd − 1

]
+ iσ (1 + ikστ)A = 0. (6.74)

Since we have already established the first sound as stable solutions, we shall assume

that any further solutions represent second sound waves. We, therefore, assume that

the speed of these solutions is much lower than that of pure sound waves. From this,

we can make use of the approximation that σ2 � c2
0, and so we can rewrite the above

equation, (6.74), as

σ2

(
k2tdτ +

kτA

c2
0

)
− iσ

(
ktd +

A

c2
0

)
− 1 = 0. (6.75)

We can, with some justification, assume that ktd � A/c2
0. And, recalling our definition

for thermal diffusivity, χ, the quadratic in σ, equation (6.75), becomes

σ2 − i

kτ
σ − χ

τ
= 0. (6.76)
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This solves to

σ =
1

kτ

(
i

2
±
√
−1

4
+ k2τχ

)
. (6.77)

We note that k2τχ is always positive. Here there are three ‘families’ of solutions depen-

dent on the value of k2τχ:

i) k2τχ < 1/4. This gives two oscillation free solutions, both of which decay exponen-

tially with time.

ii) k2τχ = 1/4. This gives a single oscillation free solution which decays exponentially

with time.

iii) k2τχ > 1/4. This gives two, out of phase, wave solutions of the same frequency,

which decay exponentially at the same rate.

There are no growing solutions in this model and, hence, there are no instabilities inher-

ent to the two component model in the static background. Our model also suggests that

wave solutions only exist for wave numbers above the k2τχ = 1/4 threshold, dependent

upon the relaxation time and the thermal diffusivity.

It is interesting to note that these Newtonian results are consistent with the relativistic

two-stream results from Samuelsson et al[202], which also shows that the static case is

dynamically stable. In the next section we consider the dynamical stability of a non-

static (stationary) background.

6.3 Stationary Background with Zero Flow in the Massive

Component

Here we consider the flow between two reservoirs as shown in Figure 6.1. As described,

the background represents a stationary flow for the entropy with the massive component

static. This represents a “half way house” between the static case above and a more

general solution. As the background is no longer truly static, some of the previous as-

sumptions will no longer apply. Therefore the mathematical treatment requires a rather

different approach.
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Figure 6.1: Relative flow induced by “pumping” heat through a recipient con-
taining He II. The heater on the left is the source, while the thermal bath on the
right is the sink. The 4He fluid is static (vn =0) but there is stationary entropy
flow (vs 6= 0). [8]

As in the static example, we take four ”governing” equations from [192]. In common

with the this static case, non-local terms are not included. In this case we use equation

(6.27) rather than (6.24), as we believe the information is easier to manage in this form

for the approach used in this section. In order to keep the algebra simple at this stage,

we reproduce these equations here in a one dimensional form:

∂tρ+ ∂x (ρv) = 0, (6.78)

∂ts+ ∂x (sv) + ∂x (sw) =
2R
T

( q

sT

)2
=

2R
T
w2, (6.79)

ρ (∂t + v∂x) v + ∂xp = 0, (6.80)

∂tq + v∂xq +
1

τ
q + 2q∂xv = −κ

τ
∂xT. (6.81)

We first consider the background. We denote all variables in the background with the

subscript 0. Since this is stationary, for any variable X0 we have ∂tX0 = 0. Further,

as the massive component is static, we have v0 = 0. Substituting this into equations

(6.78), (6.79), (6.80) and (6.81) gives us these relations in the background.

From (6.80) we have
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∂xp0 = 0. (6.82)

And from (6.81) we recover Fourier’s law

q0 = −κ∂xT0. (6.83)

Since the fluid is stationary we can assume that the heat flow is constant. This leads to

a linear temperature distribution in the background, so

T0 = Ax+B, (6.84)

and, hence

q0 = −A, (6.85)

Where A and B are real constants.

It is also reasonable to assume that the entropy at any point within the region under

consideration remains constant. So we can make the assumption that the velocity of the

entropy flow is the same across this region 2 and state that

∂xw0 = 0. (6.86)

Returning to our original equations, (6.78), (6.79), (6.80) and (6.81), we have four equa-

tions in eight unknowns. This assumes that we treat the conductivity, κ and the relax-

ation time, τ , as constants. It is necessary that we eliminate three of these unknowns.We

start with the entropy density, s. We consider the entropy density of a phonon gas given

by [43]

s =
16π5

45
kB

(
kBT

2π~c0

)3(
1− w2

c2
0

)
, (6.87)

where ~ is the reduced Planck constant and kB is the Boltzmann constant. If we assume

the relative velocity to be much lower than the speed of sound, c0 � w, then we can

simplify this expression to

2This is slight oversimplification and is made only to keep the algebra manageable. We discuss this
later.
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s = DT 3, (6.88)

where

D =
16π5

45

k4
B

(2π~c0)3 . (6.89)

Secondly, we can eliminate the resistive friction coefficient, R, by using equation (6.19).

Rearranging this and using the above substitution for s gives

R =
D2T 7

2κ
. (6.90)

Thirdly, we address the pressure. We assume that there are two distinct parts to

this pressure. One is associated with the massive component, which is assumed to

be barotropic. This will be denoted by pBaro. We can define small changes in this part

of the pressure by

δpBaro =
∂p

∂ρ
δρ. (6.91)

The other part, ψ, comes from the phonon gas pressure and is given by [43]

ψ =
1

4
DT 4. (6.92)

Finally, the heat flow, q, needs to be considered. Whilst we have defined the background

flow as q = −κA, this will not apply to small perturbations of the fluid. To this end we

use equation (6.15). Substituting for the entropy density gives

q = DT 4w. (6.93)

This leads to perturbations in q being given by

δq = DT 4
0 δw + 4DT 3

0w0δT. (6.94)

Before going further, it can be seen that applying these substitutions to equation (6.79)

considerably simplifies the problem. Substituting for s and T gives

D∂tT
3 +D∂x

(
T 3v

)
+D∂x

(
T 3w

)
=
D2T 6w2

κ
. (6.95)
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This leads to

3DT 2∂tT +DT 3∂xv + 3DT 2v∂xT

+DT 3∂xw + 3DT 2w∂xT =
D2T 6w2

κ
, (6.96)

which simplifies to

3∂tT + T∂xv + 3v∂xT

+ T∂xw + 3w∂xT −
DT 4w2

κ
= 0. (6.97)

We are now in a position to apply small perturbations, such that X = X0 + δX to our

starting equations, (6.78), (6.79), (6.80) and (6.81). This gives us

∂t (ρ0 + δρ) + ∂x [(ρ0 + δρ) v0 + δv] = 0, (6.98)

3∂t (T0 + δT ) + (T0 + δT ) ∂x (v0 + δv) + 3 (v0 + δv) ∂x (T0 + δT )

+ (T0 + δT ) ∂x (w0 + δw) + 3 (w0 + δw) ∂x (T0 + δT )

− D (T0 + δT )4 (w0 + δw)2

κ
= 0, (6.99)

(ρ0 + δρ) ∂t (v0 + δv) + (ρ0 + δρ) (v0 + δv) ∂x (v0 + δv)

+ ∂x (p0 + δp) = 0, (6.100)

∂t (q0 + δq) + (v0 + δv) ∂x (q0 + δq) +
1

τ
(q0 + δq)

+ 2 (q0 + δq) ∂x (v0 + δv) +
κ

τ
∂x (T0 + δT ) = 0. (6.101)

Making the suggested substitutions, eliminating background and zero terms, and lin-

earising in perturbations yields
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∂tδρ+ ρ0∂xδv = 0, (6.102)

3∂tδT + T0∂xδv + 3δv∂xT0 + T0∂xδw

+ 3w0∂xδT + 3δv∂xT0 −
2D

κ
T 4

0w0δw −
4D

κ
T 3

0w
2
0δT = 0, (6.103)

ρ0∂tδv + ρ0v0∂xδv + c2
0∂xδρ+DT 3

0 ∂xδT + 3DT 2
0 δT∂xT0 = 0, (6.104)

DT 4
0 ∂tδw + 4DT 3

0w0∂tδT +
1

τ
DT 4

0 δw

4

τ
DT 3

0w0δT − 2κAδv +
κ

τ
δT = 0. (6.105)

For the sake of tractability we assume that the perturbations applied are plane waves

of the form δX = X̄ exp [i (ωt+ kx)], where X̄ is the amplitude. We then introduce

a phase velocity for these perturbations, σ (= ω/k). Our four perturbation equations

become

0 = σρ̄+ ρ0v̄, (6.106)

0 =3iσT̄ + iT0v̄ +
3A

k
v̄ + iT0w̄ + 3iw0T̄

+
3A

k
w̄ − 2DT 4

0w0

κk
w̄ − 4DT 3

0w
2
0

κk
T̄ , (6.107)

0 = iσρ0v̄ + ic2
0ρ̄+ iDT 3

0 T̄ +
3ADT 2

0

k
T̄ , (6.108)

0 =iσDT 4
0 w̄ + i4σDT 3

0w0T̄ +
DT 4

0

τk
w̄

+
4DT 3

0w0

τk
− i2κAv̄ +

iκ

τ
T̄ . (6.109)

We can now solve to obtain a dispersion relation for σ by simple Gaussian elimination.

As previously, the solution will represent unstable perturbations if the imaginary part
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of σ is negative. Before proceeding with a stationary solution, it is worthwhile to make

a sanity check with regard to the previous static case. This can be achieved by setting

A and w0 to zero. Further, to be consistent with the previous calculation, we assume

that the pressure contribution from the phonon gas, ψ, is insignificant when compared

with that from the massive component, pBaro. It is also useful, in this context, to find

a substitution for D. Given our previous definition for the entropy we can express the

heat capacity, cv, as

cv = T

(
∂s

∂T

)
= 3DT 3. (6.110)

But in equation (6.55) we defined

cv =
κ

χ
. (6.111)

So we can approximate D by

D ≈ κ

3χT 3
0

.

In this static case we obtain

(
c2

0 − σ2
) (
σ2kτ − σ − χk

)
= 0. (6.112)

This is identical to our previous solution, equation (6.76) and tells us that all values of σ

are stable. Having obtained the same solution through two differing methods reinforces

the validity of our results.

We now return to the stationary case. We would first like to obtain w0 in terms of the

other parameters. This we can do from the early definition of heat flow, equation (6.15).

From this we obtain

w0 =
−κA
DT 4

0

=
−κA

D (Ax+B)4 , (6.113)

which approximates to a constant (which was our earlier assumption) for small A and x.

So the previous statement that ∂xw0 = 0 is valid for small temperature gradients over

short length scales.
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If we apply this substitution, along with that for D, we arrive at a full dispersion relation

for σ,

0 =
(
c2

0 − σ2
) [
−σ2T 2

0 τ + σ

(
iT 2

0

k
+
i24χτ

k
−AχT0τ

)
− i4AχT0

k
+

24χA2

k2
+ χT 2

0

]
.

(6.114)

So we again have the speed of the first sound as two of the solutions. The remaining

two solutions are given by

σ =
1

2T 2
0 kτ

[
i
(
T 2

0 + 24χA2τ
)
−AχT0kτ

±
(
−T 4

0 + 48T 2
0χA

2τ − 576χ2A4τ2 +A2χ2T 2
0 k

2τ2

+4T 4
0 τχk

2 − i18T 3
0Aχkτ − i48χ2A3τ2T0k

)1/2]
. (6.115)

Whilst the behaviour of the fluid is not clear from this, there are some limiting cases

that offer a measure of illumination. Firstly, we consider the short wavelength (high

frequency) limit. Here, as k →∞, we have

σ → −1

2T0τ

(
Aχτ ±

√
A2χ2τ2 + 4T 2

0χτ

)
. (6.116)

It is clear that the discriminant of this solution is always positive. So, for very high k

and its associated short wavelength, the perturbations are stable.

The second limiting case is that of small temperature gradient. Here we assume that

A� 1 (Consistent with the assumption ∂xw0 = 0). This allows us to linearise in A and

so equation (6.115) becomes

σ ≈ 1

2T 2
0 kτ

[
iT 2

0 −AχT0kτ

±
(
−T 4

0 + 4T 4
0 τχk

2 − i18T 3
0Aχkτ

)1/2]
. (6.117)
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Assuming that we have some relaxation time much greater than one second , we can

further approximate using 3

τχk2 � 1, (6.118)

Applying this to equation (6.117) gives us

σ ≈ 1

2T 2
0 kτ

[
iT 2

0 −AχT0kτ ± 2T 2
0 k
√
τχ

(
1− i 9A

T0k

)1/2
]
. (6.119)

But we know that for some real positive number y

=
(√

1− iy
)

= −1

2

√
2
√

1 + y2 − 2. (6.120)

For positive y, this is always negative. So the perturbations are unstable if

T 2
0 < =

[
2T 2

0 k
√
τχ

(
1− i 9A

T0k

)1/2
]
, (6.121)

or (squaring both terms to remove the first layer of square roots)

T 4
0 <

(
4T 4

0 k
2τχ

) [1

4

(
2

√
1 +

81A2

T 2
0 k

2

)
− 2

]
. (6.122)

Rearranging gives

T 4
0

(
1 + 2k2τχ

)
< 2k2T 4

0 τχ

√
1 +

81A2

T 2
0 k

2
. (6.123)

Linearising a binomial expansion in A2 (justified for small A) and squaring, we have

(
1 + 2k2τχ

)2
<
(
2k2τχ

)2(
1 +

81A2

T 2
0 k

2
+O

(
A4
))

. (6.124)

Which leads to

3This assumption is a little more involved than this. From equation (6.89), we have a value for D of
approx 980 J K−4. Equation (6.55), shows that the value of χ depends on T−3 and the thermal con-
ductivity, κ. Regardless of the relaxation time, this restricts the range of k to which this approximation
can be applied, making it valid only for k greater than some critical value. This assumption is valid for
the greatest range of k in a low temperature fluid possessing high thermal conductivity.
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1 + 4k2τχ <
162τχA2

T 2
0

. (6.125)

This tells us that the perturbations are unstable for temperature gradients, A, such that

A >

√
1 + 4k2τχT 2

0

162τχ
. (6.126)

This can be further simplified if we again use the assumption (6.118) that τχk2 � 1.

This yields

A >

√
2kT0

9
, (6.127)

or, more usefully

k <
9
√

2A

2T0
. (6.128)

Since we have assumed that A is small, we have shown that the instabilities of the de-

scribed background occur only at very long wavelengths. It is possible that, at such

frequencies, some of the assumptions made (particularly that w0 is a constant) are not

valid. It is also unclear as to whether, with the assumption of small x, these low fre-

quency instabilities lie within the regime our model covers.

This does, however, serve as a first proof of principle that the two-stream instability

might manifest as a thermodynamical instability when heat flows in a fluid. It remains

to find a way such that the simplifications do not exclude the range of wavelengths where

the instabilities seem most likely to be observed.

6.4 The Problems Associated with a more General Case

After calculating the stability of the special cases, we would like to consider a more

general case. Here, we look at some 1-d region of the fluid, where the temperatures

at the ends of this region are kept constant. The mechanism by which this is achieved

does not concern us. The important difference with the previous example is that both

components of the fluid are free to flow. Again, if the system is left to ‘settle’ for a long

period, we can assume that the background will be stationary.
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This initially appears to be a relatively simple extension of the earlier examples. The

only immediately obvious difference being that v0 6= 0. Unfortunately, the analysis is

far more complicated than this and many of the previous assumptions are no longer valid.

The major problem arises from the temperature gradient. Since we have two flows in the

background, we can no longer really justify the heat flow being constant at all points.

As such, we can no longer assume that the temperature gradient is linear over the re-

gion under consideration. Two possible solutions to this issue were tried each of which

presented their own issues.

The first was that, as a simplifying approximation, a linear gradient was simply imposed

on the fluid in the background. This was initially alluring but it quickly became appar-

ent that this condition made the combination of a consistent background and a soluble

problem impossible. Here we briefly discuss the approach followed and the inconsisten-

cies that resulted.

To maintain some degree of tractability, it is clear that we would like the gradient of as

many variables as possible to be zero. By imposing a linear temperature gradient and

assuming Fourier’s Law, we have ∂xq0 = 0. We further adopted the approximations that

both p0 and ρ0 were spatially constant. From equation (6.78), this led to

∂xv0 = 0. (6.129)

However, when the substitution s = DT 3 was applied to equation (6.79), we arrived

at values for both v0 and w0 that were dependent upon non linear powers of T0. This

inconsistency made it necessary to linearise in T0 and we were forced to assume that the

temperature gradient could on be regarded as linear on small length scales. When we

continued, instabilities were shown to manifest only at low frequencies. It was unclear

whether that these instabilities were a genuine phenomenon or simply a result of the

linearising approximations we made. Even if they could be shown to be genuine, it is

again unclear if the length scales used to linearise T0 encompasses these longer wave-

length instabilities.

The second approach was considerably more involved. It was suggested that by injecting

energy continuously along the region under consideration, a linear temperature distri-

bution might be imposed. This approach did not lead to any results as it was necessary

to first have the initial temperature distribution, which was not known.
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In summary, although we failed to establish a general case for this class of thermody-

namical instability, we did demonstrate a first proof of principle of its existence in a

limited stationary background.

Given the ubiquitous nature of the two-stream instability it was certainly a worthwhile

exercise to investigate it in the context of causal heat flow. The similarities between

the governing equations for such heat flow and those for a simple two fluid case, it still

seems likely that this instability can still be demonstrated.

The difficulties in the problem, distinct from the two fluid case, arose because of allowing

for increasing entropy. Even in the case where the flow of the massive component in

the background was restricted to zero, this presented difficulty. This led to a number

of assumptions and linear approximations that restricted the validity of the analysis to

shorter wavelengths, where we had shown the perturbations to be stable.

The major issue that was encountered involved developing a background state that was

self consistent but tractable to analysis. Clearly the simplest background state would

to have all variables constant, both spatially and temporally. This, of course, gave us a

static background where the system was shown to be stable.

The introduction of entropy flow into the background immediately led to difficulties, as

this affected all of the other parameters, with the exception of the flow of the massive

component. The main issue arose from the need to find a substitution for the entropy

density in terms of the other variables. The use of the phonon gas model, whilst initially

appealing, gave to numerous terms that were non-linear in temperature. The use of

linear approximations maintained relative simplicity at the expense of restricting the

regime where the solutions apply.

Considering the time that went into this problem, the paucity of results at first appears

disappointing. However, we have identified why the problem presents so many difficul-

ties. It is hoped that the problem may be addressed at some future time with many of

the pitfalls already known.



Chapter 7

Summary and Discussion

The aim of this thesis has been throughout to consider whether some characteristics of

neutron star physics might be modelled in terrestrial laboratories. This appears to be a

sadly neglected area where researchers from different disciplines have been unaware of

applications of their work outside of their own area of speciality. As can be seen from the

literature cited in Chapter 2, the range of analogous behaviour between low temperature

physics and astrophysics is enormous. As stated, the review of possible analogues is by

no means comprehensive. To discuss in any detail all of these methods for modelling

neutron star behaviour is well beyond the scope of a single thesis.

It was decided that it was better to focus on a single feature and to consider in more

detail its role in neutron star behaviour and that of any possible analogue systems. The

feature chosen was the two-stream instability, which previous research had shown was

likely to be important in the understanding of neutron star physics [2]. The study of this

instability in neutron stars was worthwhile in itself as it was believed that it may play a

role in triggering neutron star glitches [7]. This instability is a widespread phenomenon,

manifesting in many areas of physics including: plasma physics [57]; cosmology [203];

superfluid Helium [8]; and pulsar magnetospheres [204]. The ubiquitous nature of this

instability suggests that it is likely to be found in almost any two component system

that we might chose to model neutron star cores.

With this in mind, in Chapter 3 we showed that previously observed dynamical instabili-

ties in binary Bose-Einstein Condensates [6] were a variant of the two-stream instability.

By using the hydrodynamic equations for a two component condensate, we showed that

there existed a critical relative velocity for the onset of this instability. Whilst showing

that a binary condensate was mathematically analogous to a chemically coupled two

component fluid, attempts to model entrainment in Bose-Einstein Condensates proved

more difficult. The problems arose not in the mathematics, where it was a relatively
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simple task to produce the governing equations for the binary condensate. It is the

physical realisation of these governing equations into a working model that still presents

us with a problem. It is to be hoped the foundations laid here be built upon to fully

realise a solution.

In Chapter 4, we considered some of the implications of the two-stream instability for

actual neutron star physics. By considering a differentially rotating two component

fluid, we showed that the instability could locally stimulate growth in the r-modes. It

was seen that, if these local instabilities were sufficiently widespread and growth was

rapid enough to overcome any damping effects, this might act as a trigger mechanism

for pulsar glitches through vortex unpinning. In an example of serendipity, our research

in this area also found a previously unknown secular instability which drifts into the

regime of dynamical instability with increasing differential rotation.

Having established an important consequence of the two-stream instability in neutron

stars, we considered in Chapter 5 whether it might be possible to find an analogue for

this in superfluid Helium. Here we observed some of the limitations of an apparently

appealing analogue. It was seen that the mutual friction parameters for the two fluid

model of Helium did not fall within the range required for the instability to manifest. So

we showed that, even though two physical systems might appear qualitatively similar,

they will not necessarily be quantitatively close enough to serve as analogues for each

other. It remains the case that some other fluid/superfluid combination may produce

better results.

Finally, in Chapter 6, we attempted to extend the scope of the two-stream instability

into the realm of heat flow. This represents a natural extension of variational multi-fluid

dynamics. It also proved the most frustrating topic included in this thesis, in that the

large amount of time invested failed to produce results for a general case. We were,

however, able to produce results for special cases and establish, in principle, that a ther-

modynamical instability becomes manifest at some critical temperature gradient in a

fluid.

Overall, in this thesis we have extended the realm of the two-stream instability into the

areas of Bose-Einstein Condensates and heat flow; we have shown that, by applying it

to differential rotation, it produces r-mode instabilities which might act as triggers for

pulsar glitches; and we have demonstrated a wide range of analogues for neutron star

physics, highlighting their possible applications along with some of their limitations.
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