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Valves

by Charles William Heppell

This study investigates the fluid flow through tissues where lymphatic drainage
occurs. Lymphatic drainage relies on two unidirectional valve systems, primary
and secondary. The primary system is located in the initial lymphatics with,
it is presumed, overlapping endothelial cells around the circumferential lining of
lymphatic capillaries which act as unidirectional valves. The secondary lymphatic
system is located in the lumen of the collecting lymphatics and is well studied in
contrast to the primary system. We propose two models for the drainage of fluid
by the lymphatic system that includes the primary valve system. The analysis
identifies four key areas that affect lymphatic drainage. These are: the regular
tissue deformations, the mechanics of the primary lymphatic valves, the fluid flow
through the interstitium and that through the walls of blood capillaries. The
models outline a new way of modelling the primary valve system that appears to
be more relevant to experimental studies than previous models.

The first model presented in this thesis describes a permeable membrane
around a blood capillary, an elastic primary lymphatic valve and the intersti-
tium lying between the two. Here we pay special attention to the mechanics of
the primary valve system, by assuming that lymphatic endothelial cells (primary
valve system) deflect into the lumen (allowing fluid drainage) in response to pres-
sure differences between the interstitium and the lumen. The model predicts a
piecewise linear relation between the drainage flux and the pressure difference
between the blood and lymphatic capillaries.

The second model presented in this thesis includes the regular tissue defor-
mations in modelling lymphatic drainage. We propose a ’sliding door’ theory of
how lymphatic drainage occurs, which we base upon the premise that when the



interstitium expands (due to excess fluid) the surrounding matrix pulls open the
lymphatic valves creating a gap for the interstitial fluid to drain into the lumen.
The model predicts that after a certain number of valve cycles (close to open to
close) the system relaxes to a steady state, in which the lymphatic valve stays
open.
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Chapter 1

Introduction to the Lymphatic

System

This thesis is arranged as follows: this chapter provides a general introduction

to the entire lymphatic system, in particular, the primary lymphatic system.

Then we discuss previous models of the lymphatic system and derive two model

hypotheses for primary lymphatic drainage, which will be the main focus of this

thesis.

In Chapter 2 we develop the model of primary lymphatic drainage of hypoth-

esis 1. We present our findings and compare them to the experimental literature.

We conclude by comparing our model to previous models of primary lymphatic

drainage.

In Chapter 3 we develop the model of lymphatic drainage of hypothesis 2. And

in Chapter 4 we numerically solve the model. Again, we conclude by comparing

results to previous models of primary lymphatic drainage.

Finally, in Chapter 5 we provide a summary of the work done in this thesis

and conclude by considering which model surpasses the other. We also address

possible future work.

1



2 CHAPTER 1. INTRODUCTION TO THE LYMPHATIC SYSTEM

1.1 Background to the Lymphatic System

The structure and importance of the lymphatic system is similar to the circulatory

system [21, 94]. However, the lymphatic system is not as well understood as its

counterpart. The lymphatics have been recognised both as a drainage system

and as immunological control system for over a century now [110]. However, the

mode of operation and mechanisms of this complex system have evaded a detailed

analysis. This is primarily due to a failure to comprehend the full importance

of the lymphatic system. Considerable progress in understanding the lymphatic

system has been made in the last 20 years at the microcirculatory level [3, 47, 110].

Interest in the lymphatic system has grown in the biomedical research community

as a result of its importance in cancer growth and metastasis [32, 93, 120].

Every day 2-4 litres of fluid are pushed into the interstitium by the pressure

difference between the interior of blood capillaries and their surroundings [76, 136].

The lymphatic system, a network of capillaries adjacent to blood capillaries, drains

this interstitial fluid and returns it to the blood circulation. This system in verte-

brates is a network of conduits with clear fluid inside called lymph. The lymphatic

system also includes the lymphoid tissue through which the lymph travels. These

structures dedicated to the circulation and production of lymphocytes include:

the spleen, lymphatic nodes, thymus gland and bone marrow [102].

If the exudate from blood capillaries is not drained efficiently by the lymphatic

system then an abnormal accumulation of interstitial fluid causes the tissue to

deform [122]. Edema, an abnormal accumulation of fluid in the interstitium, is the

common outcome if the lymphatic system is damaged or becomes compromised.

In addition to regulating the tissue fluid balance, the lymphatics serve as a major

transport route for immune cells and interstitial macromolecules [128]. Cells and

particles that flow in the lymphatic system experience lower flow rates and smaller

shear stresses than they would in the blood circulation [1]. This is due to the high
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permeability of the lymphatics [111]. There is little, if any, exclusion of interstitial

molecules from the primary lymphatics. This is because of the nature of the one

way valve system that allows the fluid and proteins to enter the lymphatic system

but not leave it. Mediated immune responses occur in lymphatic nodes, which are

part of the lymphatic system where mature lymphocytes reside. Lymph travels

through many of these nodes before returning to the bloodstream. The lymph

is cleaned by the removal of foreign materials and microorganisms (bacteria) in

lymphatic nodes. For these reasons many studies have investigated drug delivery

into the lymphatics [38, 45, 46, 57, 62, 132]

In the lymphatics there are two types of valve systems, both provide unidirec-

tional flow. One at the level of the primary lymphatics, overlapping endothelial

cells line the lymphatic capillaries and act as the primary valves; they open to

drain interstitial and close to prevent back flow. The interstitial fluid first enters

the lymphatic system through the primary lymphatic valves [105]. The other uni-

directional valve system occurs in the lumen of the collecting lymphatics. These

valves open to drain lymph through the capillary network to the blood circulation.

The structure and mechanism of the secondary valve system is well recognized

[70, 83, 131], and will only be briefly summarized in this introductory chapter.

1.2 History of the Lymphatic System

Hippocrates was one of the first persons to mention the lymphatic system, back

in the fifth century BC. In his work “On Joints”, he briefly mentioned lym-

phatic nodes. Which we now know plays an important role in mediating im-

mune responses. The first mention of lymphatic vessels was in 3rd century BC by

Herophilus, a Greek anatomist living in Alexandria. He incorrectly concluded that

the “absorptive veins of the lymphatics”, by which he meant the lacteals, drained
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into the hepatic portal veins, and thus into the liver. Next, Rufus of Ephesus, a

Roman physician, identified the axillary, inguinal and mesenteric lymph nodes as

well as the thymus gland during the first to second century AD [35]. Findings of

Ruphus and Herophilus were further propagated by the Greek physician Galen,

who described the lacteals and mesenteric lymph nodes in his dissection of apes

and pigs in the second century A.D [35]. In the sixth century AD Procopius

discovered a disease that he claimed “attacks the lymphatic glands” around the

body. This disease was known as the Plague of Justinian (a disease supposed to

be identical to the plague known as the Black Death), which had its origin in

the east, and made its first appearance in Europe 543 AD, at Constantinople.

Dr Musgrave discovered a disease in the ninth century AD called elephantiasis

that was due to a migratory inflammation of the lymphatic system. According

to Dr. Musgrave, this disease may affect many organs of the body, more often

the legs. Eustachius was the first to discover the thoracic duct in a horse, around

1563. In 1622, Gaspare Aselli, an Italian physician, discovered the “milky veins”

in the intestines of dogs. This is documented as the first historical discovery of the

lymphatic vessels. In 1746, William Hunter thoroughly analyzed the function and

the role of lymph ducts. Manual lymphatic drainage was introduced in the 1930s

by a German doctor, Emil Vodder, for the treatment of immune disorders such

as chronic sinusitis. While treating chronic colds he noticed that many of his pa-

tients had swollen lymph nodes. Although at the time the lymphatic system was

poorly understood by the medical profession, Dr Vodder developed careful hand

movements to aid lymph movement. Many scientists have studied the lymphatic

system and have tried to model the system, mathematically. More recently, in

2002, Swartz modelled the lymphatic system in a mouse’s tail [124]. In 2003, Men-

doza modelled the mechanics of primary lymphatic valves and concluded that the

overlap between neighbouring lymphatic endothelial cells in primary lymphatics
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may serve as the primary valve system required for unidirectional transport from

the interstitium into the lymphatic system [85]. The reason that the lymphatic

system is becoming studied more in recent years is that it is now believed to play

an important role in the development of diseases, such as certain types of cancer

[66, 82, 86]. If we improve our understanding of the lymphatic system, we can

improve our techniques in the methods that we use to cure these diseases.

1.3 Lymphatic Organs

An accumulation of lymphiod tissue can be found all around the body. For exam-

ple, the tonsils (found in the back of the throat and nasal cavity) are an accumu-

lation of lymphoid tissue. Below we describe the major primary and secondary

lymphatic organs.

1.3.1 Primary Lymphatic Organs

Bone Marrow

Bone marrow is the flexible tissue found in the hollow interior of bones. There

are two types of bone marrow: red marrow (consisting mainly of hematopoietic

tissue) and yellow marrow (consisting mainly of fat cells). In adults, marrow in

large bones produces new blood cells. Bone marrow contributes around 4 percent

of our total body weight [122].

Stem cells in the bone marrow grow into immature B cells and T cells (lym-

phocytes). These cells are a group of white blood cells that are responsible for

specific immune responses. B and T cells mature in primary lymphatic organs

(thymus gland and the bone marrow). After maturity they migrate via the blood

circulation to secondary lymphatic organs (lymph nodes and the spleen). Upon

activation by specific antigens, B cells proliferate and differentiate into antibody–
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secreting plasma cells. B cells also process and present antigens to helper T cells.

B cells mature in the bone marrow. The T in “T cells”, refers to the thymus gland,

which is where they mature. This group of lymphocytes includes three subclasses:

cytotoxic T cells, helper T cells and suppressor T cells. Immature T cells migrate

from the bone marrow to the thymus gland. Upon activation by specific antigens,

cytotoxic T cells directly attack cells bearing the same type of antigen. Helper T

cells help to activate B cells and T cells, and suppressor T cells inhibit cytotoxic

T cells and antibody production, i.e. turning off an immune response [122].

Thymus Gland

The thymus gland is colonized by immature T cells. It is a soft structure consisting

of two lobes. It is located in the thorax, which is behind the sternum. At birth it

weighs about 15 grams and by puberty weighs approximately 30 to 40 grams. It

atrophies in old age and weighs about 15 grams again. The cortex has a sponge–

like texture and consists of a network of epithelial reticular cells bound together

by desmosome. Dense granules in the cytoplasm of these cells secrete hormones

that promote the differentiation of T cells. Epithelial reticular cells envelop groups

of T cells in the process of mitotic division and maturation. They also surround

all blood vessels in the cortex, providing a blood–thymus barrier that prevents

antigens in the blood from making contact with developing T cells. T cells in

various stages of differentiation and maturation reside in the spaces between the

reticular cells of the cortex. T cells develop into mature T cells here and are

released into the blood circulation. These mature cells travel via the blood to

the lymph nodes, where they reside and are responsible for cell mediated immune

responses [122].
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1.3.2 Secondary Lymphatic Organs

Lymphatic Nodes

All lymph passes through at least one lymphatic node before returning to the

blood circulation [39, 48, 81]. There are hundreds of lymphatic nodes in an adult

and they vary in size from 1 mm to 10 mm in diameter. White blood cells incu-

bate and proliferate in these nodes. Lymphatic nodes consist of connective tissue

with various types of white blood cells, most numerous being the lymphocytes. A

lymph node is an organized collection of lymphoid tissue, through which lymph

passes on its way to return to the blood circulation. Afferent lymphatic vessels

carry in lymph, which percolates through the substance of lymphatic nodes, and

is drained out by efferent lymphatic vessels. Lymphatic nodes are particularly nu-

merous in the mediastinum in the chest, neck, pelvis, axilla (armpit) and inguinal

(groin) region [1]. They are spherical in shape and are covered by a capsule of

dense connective tissue. Lymphatic nodes filter the lymph by removing foreign

material and micro–organisms (bacteria). Antibody–mediated and cell–mediated

immune responses occur in these nodes [8, 122].

Spleen

The spleen is the largest of the lymphatic organs, about 12 cm long. It is located

in the upper left portion of the abdominal cavity, just beneath the diaphragm

and adjacent to the 10th rib. Its shape resembles a large lymphatic node. The

main function of the spleen is to filter the blood, as lymphatic nodes filter lymph.

Antigens in the blood activate B and T cells residing in the spleen, triggering

immune responses [122].
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1.4 Lymphatics Development

Lymphatic tissues begin to form by the end of the fifth week of embryonic devel-

opment [95]. They emerge from lymphatic sacs that arise from developing veins.

The first lymphatic sacs to appear are the paired jugular sacs at the junction of the

internal jugular and subclavian veins [103]. From the jugular lymphatic sacs, lym-

phatic capillary plexuses spread to the thorax, upper limbs, neck and head. Some

of these plexuses grow and form lymphatic vessels in their respective regions. Each

jugular lymphatic sac retains at least one connection with its jugular vein [41].

The next lymphatic sac to appear is the unpaired retroperitoneal lymphatic sac at

the root of the mesentery of the intestine. It evolves from the primitive vena–cava

and mesonephric veins. Capillary plexuses and lymphatic vessels spread from

the retroperitoneal lymphatic sacs to the abdominal viscera and the diaphragm

[18, 36]. This sac establishes connections with the cisterna chyli, but loses its con-

nections with neighbouring veins. The last of the lymphatic sacs to form are the

paired posterior lymphatic sacs, which mature from iliac veins [29]. The posterior

lymphatic sacs produce capillary plexuses and lymphatic vessels on the abdominal

wall, pelvic region, and lower limbs. The posterior lymphatic sacs join the cisterna

chyli and lose their connections with adjacent veins. Lymphatic endothelial cells

accumulate along the lymph vessels and sacs, and as connective tissue invades the

sacs, the cells are caught in the developing mesh. Their rapid proliferation then

forms the typical postnatal cortical nodules and medullary cords. The cortical

nodules are small nodules of microscopically normal tissue. Medullary cords are

the portions of the lymph node that contain lymphatic tissue [112]. Most of these

sacs become lymphatic nodes.
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1.5 Damaged Lymphatics

If the lymphatic system becomes damaged or has malformations, abundant accu-

mulation of lymph is often observed and this can cause swelling in the tissue [24],

usually affecting the lower limbs, although the face, neck and abdomen may also

become affected. Also, the immune response system becomes weaker, i.e. more

susceptible to foreign particles [50, 87]

1.5.1 Edema

Edema or oedema, formerly known as dropsy or hydropsy syndrome, is an ab-

normal accumulation of fluid beneath the skin. Many factors contribute to the

formation of edema. We have summarised them into five key factors below [67],

1. An increase in hydrostatic pressure inside blood vessels.

2. A reduction in osmotic/oncotic pressure within blood vessels.

3. An increase in the blood vessel wall’s permeability (as in inflammation).

4. An obstruction of fluid clearance via the secondary lymphatics.

5. Changes in the water retaining properties of the tissues themselves.

1.5.2 Lymphedema

Lymphedema, also known as lymphatic obstruction, is a condition of localized

fluid retention and tissue swelling caused by a compromised lymphatic system

[84]. There are two types of lymphedema: primary lymphedema and secondary

lymphedema. It may be inherited (primary) or caused by an injury to the lym-

phatic system (secondary). It is most frequently seen after lymph node dissection,

surgery, radiation therapy or the treatment of cancer, most notably breast cancer
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[101, 127]. This condition might not even develop until months or years after

therapy has concluded. Lymphedema may also be caused by accidents, certain

diseases, or problems that may inhibit the lymphatic system from functioning

properly. In tropical areas of the world, a common cause of secondary lymphedema

is filariasis, a parasitic infection. While the exact cause of primary lymphedema is

still unknown, it generally occurs due to poorly–developed or missing lymphatic

nodes in the body. Secondary lymphedema affects both men and women. In

women, it is most prevalent in the upper limbs after breast cancer surgery and

lymphatic node dissection, occurring in the arm on the side of the body, where

the surgery was performed. In men, lower–limb secondary lymphedema is most

common, occurring in one or both legs [59, 60]. Head and neck lymphedema can

be caused by surgery or radiation therapy for tongue or throat cancer.

The symptoms of lymphedema may include: a heavy swollen limb or localized

fluid accumulation in other body areas, discoloration of the skin overlying the

lymphedema, all accompanied by severe fatigue. When the lymphatic impairment

becomes so great that the lymph exceeds the lymphatic system’s ability to drain

it, an abnormal amount of fluid collects in the tissues of the affected area. If left

untreated, this stagnant, fluid will cause tissue to deform. This interferes with

immune responses and provides a rich culture medium for bacterial growth.

Whether primary or secondary, lymphedema develops in stages, from mild to

severe. Methods of staging are numerous and inconsistent. They range from three

to as many as eight stages [107]. Here are the most common stages.

Stage 0 (latent)- The lymphatic capillaries have sustained some damage that

is not yet apparent. Transport capacity is still sufficient for the amount of lymph

being drained. Lymphedema is not present.

Stage 1 (spontaneously reversible)- When pressed by the fingertips, the af-

fected area indents and holds the indentation. Usually upon waking in the morn-
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ing, the limb or affected area is normal or almost normal in size.

Stage 2 (spontaneously irreversible)- The tissue is now “spongy”. When

pressed by the fingertips, the tissue bounces back without any indentation. The

limbs are now hardened and increased in size.

Stage 3 (lymphostatic elephantiasis)- The swelling is irreversible and usually

the limbs or affected area are very large. The tissue is hard and unresponsive;

This generally occurs only in the legs.

Lymphedema can also be categorized by its severity:

Grade 1 (mild lymphedema)- Lymphedema involves the distal parts such as,

your forearm, your hand and your lower leg or foot. The difference in circumfer-

ence is less than 4 cm, and other tissue changes are not yet present.

Grade 2 (moderate lymphedema)- Lymphedema involves an entire limb or

corresponding quadrant of the trunk. Difference in circumference is more than 4

cm but less than 6 cm.

Grade 3a (severe lymphedema)- Lymphedema is present in one limb and its

associated trunk quadrant. The difference in circumference is greater than 6 cm.

Significant skin alterations are present. Additionally the patient may experience

repeated attacks of erysipelas.

Grade 3b (massive lymphedema)- The same symptoms as Grade 3a except

that two or more extremities are affected.

Grade 4 (gigantic lymphedema)- Also known as elephantiasis. In this stage of

lymphedema, the affected extremities are huge due to an almost complete blockage

of the lymphatic channels.
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1.6 Lymphatic Drainage

There are two lymphatic valve systems in the lymphatics, primary and secondary

that drain interstitial fluid. They are distinguished by their valves. Primary valves

are at the level of the initial lymphatic endothelium and secondary valves are po-

sitioned in the lumen of secondary lymphatic vessels. Micro–spheres (0.3µm in

diameter) deposited in the immediate proximity of an initial lymphatic channel

readily enter into the primary lymphatics. Once inside the lymphatic channel they

are not able to return back into the interstitial space without rupture of the lym-

phatic wall because of the unidirectional feature of the valve [104]. The secondary

valve system provides unidirectional transport of lymph to the blood circulation

via lymphatic nodes. The structure and mechanics of the secondary valve system

is well recognized. Unlike the cardiovascular system, the lymphatic system is not

a closed loop and has no central pump (i.e., heart). Lymph movement through

secondary lymphatic vessels occurs due to peristalsis, valves, compression during

contraction of adjacent skeletal muscles and arterial pulsation [4, 51, 91, 135]. A

drawing from Leak [72] of a short segment of a lymphatic capillary was recon-

structed from election micrographs, see Figure 1.1.

As the blood travels from the branching arteries down to the smallest capillar-

ies, plasma fluid and proteins are forced out of the capillaries and into the inter-

stitial space. Most of the exudate actually gets reabsorbed into the post–capillary

venules, but because of the osmotic forces resulting from protein extravasation,

there is a small net fluid flux out of the vasculature into the interstitium [125].

This excess fluid builds up in the interstitium and forces itself to convect through

the tissue and to be drained by the lymphatics. The primary lymphatic sys-

tem is freely permeable to macromolecules and thus serves as a primary role in

maintaining osmotic and hydrostatic pressures within the interstitial space. The

protein composition of the lymph is nearly equivalent to that of the interstitial
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Figure 1.1: Figure from Leak [72]. A diagram of a short segment of a lymphatic
capillary that was reconstructed from collated electron micrographs.

fluid, which in turn, is similar to, but usually less concentrated than, that of blood

plasma.

1.6.1 Primary Lymphatics

Blood capillaries supply nutrients and important metabolites to all tissues in the

body [30, 92, 123]. The exchange of respective constituents between the blood

and the tissues is not direct, it travels through an intermediary called interstitial

space [115, 138]. The interstitial space occupies the spaces between the cells and

acts as their immediate environment. As blood capillaries and surrounding cells

continually add and remove substances from the interstitial space, its composi-

tion will be constantly changing. Interstitial fluid forms at the arterial end of

blood capillaries because of the high pressure inside these capillaries. Some of the

exudate from blood capillaries, which amounts to 10 to 20 percent of interstitial

fluid, enters the lymphatic capillaries as lymph [117]. About three litres of excess

interstitial fluid is produced daily by the filtration of the blood plasma. Thus,

lymph, when formed, is a watery clear liquid with a similar composition to the
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interstitial fluid [113].

(a) (b)

Figure 1.2: Both images (a) and (b) are micrographs from Leak [72]. (a) Cross
section of a lymphatic capillary (in a guinea pig); CT and J refer to connective
tissue elements and intracellular junctions. × 7000. (b) A micrograph that il-
lustrates the overlap of lymphatic endothelial cells. Fig. 2, × 89, 500; Fig. 3,
× 21, 000; Fig. 4, × 39, 000; Fig. 5, ×28, 000.

Lymphatic capillaries are tiny thin–walled structures (around 20µm in di-

ameter) that are closed at one end and are located in the spaces between cells

throughout the body. The main purpose of these capillaries is to drain excess

interstitial fluid from around the cells ready to be filtered and returned to the

blood circulation. Figure 1.3 shows a cross–sectional drawing of the primary lym-

phatics, while Figure 1.2a and 1.2b, images from Leak [72], illustrate the circular

nature of a lymphatic capillary and the short lymphatic endothelial cell overlap.

Lymphatic capillaries are slightly larger in diameter than blood capillaries and

they have a unique structure that allows interstitial fluid to drain into them, but

not out. The ends of the endothelial cells that make up the wall of a lymphatic

capillary overlap [16, 23, 111] and are the primary lymphatic valves. Swartz [126]

proposed that the lymphatic valves open in response to different pressures be-

tween the lymphatic lumen and the surrounding interstitial space. The lymphatic
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lumen fluid pressure will start to increase due to the incoming fluid from the

interstitium and eventually become comparable to that in the interstitial space,

which would result in the cells adhering more closely and the lymph not being

able to escape back into the interstitium. Another theory of how the primary

lymphatic valve system functions is that the lymphatic valves open in response to

interstitial deformations [20, 22, 55]. Attached to lymphatic valves are anchoring

filaments that contain elastic fibres. They extend out from lymphatic capillaries,

creating a normal force to the wall. These anchoring filaments maintain the firm

attachment of the capillary network to their surrounding matrix. Thus when the

interstitial space surrounding lymphatic capillaries deform, it must have an affect

on lymphatic drainage [27, 52, 77].

Figure 1.3: Cross–sectional view of the initial lymphatics [8].

1.6.2 Secondary Lymphatics

There are five main categories of conduits in the lymphatic system: the capillaries,

the collecting vessels, the lymph nodes, the trunks and the ducts [19]. Their sizes

range from 10 µm to 2 mm in diameter. An illustration of fluid flow through the

secondary lymphatics is shown in Figure 1.4. Fluid travels from one segment to

another, illustrated by the arrows in Figure 1.4, by contractions of the surrounding
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skeletal muscles and the unidirectional feature of secondary valve system. All of

the five conduits have secondary valves that keep the flow unidirectional [134].

Once in the lymphatic lumen the fluid is drained down the collecting vessels

and into lymphatic nodes. Then the lymph drains into larger lymphatic vessels

called lymphatic trunks, which, in turn, lead into the lymphatic ducts. The

lymphatic trunks are the largest structures that drain lymph from the final set

of lymph nodes into the ducts. Finally, the ducts return the lymph back into

the bloodstream via the subclavian vein, completing the circuit of fluid transport.

There are two types of lymph ducts: the right lymphatic duct and the thoracic

duct (aka the left lymphatic duct). The right lymphatic duct drains lymph from

the right arm, the right side of the head and the neck, and the lower lobe of the

left lung into the right subclavian vein. All other sections of the body are drained

by the thoracic duct. The right lymphatic duct stems from the subclavian and

bronchomediastinal trunks and rarely extends beyond a centimeter at most. It lies

in front of the scalenus anterior muscle. The thoracic duct drains the lymph into

the blood circulation at the left subclavian vein. It starts in the upper abdomen

at a small sac named the cisterna chyli. The morphology of the thoracic and right

lymphatic ducts conforms to other large lymphatic vessels, although the walls are

often thicker. Both ducts are guarded at their central ends by valves that stop

the back flow of blood.

The term, “lymphatic trunk”, is often used loosely, being properly defined as

those named structures that drain the major regions of the body and that form

the larger tributaries of the ducts. The walls of the lymphatic trunks are also

thin, although thicker than their tributaries. The trilaminar structure is usually

evident by light microscopy and the valves are plentiful [1, 26].

Lymphatic capillaries lack a definitive basal lamina around their wall [90, 69].

This is a structural feature that serves as a major criterion for the identification
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Figure 1.4: Shows the expansion and contraction of the secondary lymphatics.
Fluid travels from one segment to another by contractions of the surrounding
skeletal muscles and the unidirectional feature of secondary valve system. The ar-
rows in the lumen illustrate the fluid movement, while the arrows outside illustrate
tissue dilation.

of these capillaries at the electron microscopic level. The short segments of a

basal lamina around the wall are presumed to represent the transitional region

between lymphatic capillaries and the larger lymphatic collecting conduits that

contain a continuous basal lamina. Segments of newly formed or regenerated

blood capillaries also lack a continuous basal lamina, and they are likewise very

permeable to large molecules.

1.7 Previous Models of the Lymphatic System

Despite the importance of the lymphatic system, relatively few people have at-

tempted to model it. Below are brief descriptions of a few models for the flow

through collecting lymphatics followed by models of the flow though the primary

lymphatics.

In the work by Macdonald et. al [78], the flow in collecting lymphatic vessels

is modelled. They measure the static and dynamic mechanical properties of ex-

cised bovine collecting lymphatics and develop a one–dimensional computational

model of the coupled fluid flow/wall motion. The computational model is able to

reproduce the pumping behaviour of the real vessel.
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Reddy and Patel [99] developed a mathematical model of the fluid flow through

terminal lymphatics. Their computer simulation results concluded that fluid ab-

sorption and flow through the terminal lymphatics occur due to suction mecha-

nisms of the adjacent contractile lymphatic segments and due to periodic fluctu-

ations in the interstitial fluid pressure.

Swartz and Boardman [124] have investigated normal lymphatic functions in a

mouse tail skin and used it in various capacities for multi level studies of lymphatic

function, physiology, and biology. The technique they used to image lymphatic

flow is called microlymphangiography. It involves injecting fluid tracer interme-

diately into the tail tip. As the fluid tracer travels into the lymphatics, it reveals

the functional vessels through which it flows. Also, an injection of fluid tracer at

the tail tip allows transport only in the proximal direction, first within the tissue

interstitium and then within the lymphatic network. Their work was initially used

to characterize and quantify flow velocities within the lymphatic network, then

went onto evaluating mechanical events at the interstitial lymphatic interface.

They developed a theoretical model to describe the balance between lymphatic

uptake, fluid flow, and fluid pressure in the tail. By measuring transient and

spatial distributions of interstitial fluid pressure with micropipettes, they vali-

dated the model and it was estimated that there are three key bulk parameters

of tissue fluid balance: lymphatic conductance, hydraulic conductivity and extra-

cellular matrix elasticity. The extracellular matrix is the extracellular part of a

tissue that usually provides structural support to the cells in addition to perform-

ing various other important functions. Their unique model provided the first in

situ measurements of these parameters. They also modified their model to study

the changes in these fluid transport properties during altered conditions such as

chronic lymphedema [124].

Another paper by Swartz et. al [126], aimed to test their hypothesis that bulk
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tissue fluid movement can be evaluated in situ and described by a linear bipha-

sic theory which integrates the regulatory function of the lymphatics with the

mechanical stresses of the tissue. They accomplished this by developing an exper-

imental and theoretical model using the skin of a mouse’s tail. The model pro-

duced here was based on a previously developed model to describe fluid movement

in solid tumours with capillary re–absorption (Netti et al [89]). They expanded

on this model by focusing on the role of the lymphatics in controlling this me-

chanical relationship. The results shown in their paper validated their hypothesis.

This model is useful for examining potential treatments for edema and lymphatic

disorders as well as substances which may alter the lymphatic drainage.

Reddy et al [100] developed an in vivo model for evaluating interstitial convec-

tion of injected macromolecules and nanoparticles. Fluorescently labelled macro-

molecules and particles are injected into a mouse tail tip. The relative convection

coefficients are determined from spatial and temporal interstitial concentration

profiles. In their sensitivity analysis, they compare the effects of size, shape, and

charge on interstitial convection.

Dixon et al [31] measured lymphocyte velocity, lymphatic contraction, and

shear stress in phasically contracting lymphatics in situ. They used a high speed

video system to capture multiple contraction cycles. Ikomi et al [56] examined

the protein transport, and the transport of leukocytes in prenodal lymph vessels

in the skin with and without massage. A comparison is made under similar

circumstances in a region of the skin where the microanatomy of the lymphatic

network has previously been delineated.

Mendoza and Schmid–Schönbein [85] proposed a model for primary lymphatic

valves at the junctions between lymphatic endothelial cells. The model consists of

two overlapping endothelial extensions at a cell junction in the initial lymphatics.

One cell extension is firmly attached to the adjacent connective tissue while the
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other cell extension is not attached to the interstitial collagen. It is free to bend

into the lumen of the lymphatics. This analytical model illustrates the mechanics

of the valve’s movement, the model also provides analysis of the mechanisms

underlying fluid collection in the initial lymphatics and lymph transport in the

microcirculation.

Galie and Spilker [42] utilizes a finite element model to characterize the transendothe-

lial transport through overlapping endothelial cells in primary lymphatics during

the uptake of interstitial fluid. They produced a computational model which is

built upon the analytic model created by Mendoza and Schmid–Schönbein [85].

Their goal was to investigate how adding more sophisticated biomechanics affects

the model’s prediction of fluid uptake. One of the outcomes they found was that

the cell deflection was less in the computational model than in the analytical

model at each point along the endothelial cell. The main differences in the cell

deflection was that the computational model used a porous medium to represent

the interstitial space and they used both components of the velocity, whereas in

the analytical case they did not use a porous medium to represent the interstitial

space and they only used the velocity tangent to the attached endothelial cell.

1.8 Lymphatic Drainage Model Hypotheses

It is still unclear how primary lymphatic valves truly operate due to the complexity

of the system and the scarcity of research in this field. Previous models of the

drainage of the primary lymphatic valve system need further investigation to add

more physiological detail, which has a significant affect to primary lymphatic

drainage. For example, to include the curved nature of primary lymphatic valves,

a short lymphatic endothelial cell overlap, resistance to flow from the interstitium

and through the blood capillaries and the regular deformation of surrounding
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tissues. Primary lymphatic valves are presumed to open to drain interstitial fluid

and close to prevent back flow. This opening could for instance be driven by the

pressure difference between the interior and exterior of the lymphatic capillaries

[42, 49, 78, 85, 99], or open in response to the surrounding interstitial space

deforming [5, 6, 17, 65, 98]. Below two hypotheses of how the primary lymphatic

valve opens and closes are discussed, with predictions of the fluid flux into the

lymphatic system from both hypotheses, see Figure 1.6 and Figure 1.8. These two

hypotheses are the focus of this thesis, and are evaluated in Chapters 2, 3 and 4.

1.8.1 Hypothesis 1: Fluid drainage Through a Bending

Lymphatic Valve

The focus of this section is to introduce to the reader a model of primary lymphatic

drainage. We start with the exudate from blood capillaries (the first resistance to

fluid flow), then the flow through the interstitial space (another resistance to flow),

opening of the lymphatic valve and the drainage into the lymphatic lumen (the

last resistance to fluid flow). These stages of lymphatic drainage are displayed in

Figure 1.5. This approach to modelling lymphatic drainage, similar to primary

lymphatic valve models in [42, 49, 85, 99], is limited to the analysis of junctions

formed by overlapping endothelial cells around lymphatic capillaries. Studying the

mechanics of these valves will help our understanding of the interstitial fluid flow

rates into lymphatic capillaries. The interstitial fluid is assumed to be Newtonian

and inertial forces are neglected since the Reynolds number for the flow is small

[42, 85, 110].

We formulate a model that consists of the interstitium (modelled as a porous

medium), the blood capillary wall (modelled as a permeable membrane that pro-

duces a linear resistance to flow) and a geometrically nonlinear elastic primary

lymphatic valve. The lymphatic valve is modelled in two states, closed and open.
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Figure 1.5: A cross sectional view of a tissue where lymphatic drainage occurs.
Fluid travels from the blood capillary through the interstitial space into the lym-
phatics as shown by the arrows in the above drawing. The overlapping lymphatic
endothelial cells make up the primary valve system.

When a lymphatic valve is closed, no interstitial fluid enters or exits via the pri-

mary lymphatic valves. When a lymphatic valve is open, interstitial fluid drains

into the lumen of the lymphatics. The fluid that resides in the lymphatic capillary

lumen is thought to drain through the collecting lymphatics by expansions and

compressions of skeletal muscle around secondary lymphatic vessels [122].

Most of our attention was to the mechanism of the primary lymphatic valves.

We were motivated by anatomical studies of Leak [73], to consider a lymphatic

valve formed by endothelial cells that span a quarter of the circumference of the

capillary, anchored at one end and with a relatively small region of overlap with

the next endothelial cell. Assuming that the valve is unstressed when straight,

but under stress in its usual curved configuration leads to the predictions (that

we shall elucidate further in Chapter 2) that the lymphatic valve opens when the

pressure difference between the exterior (Pl) and interior (P0) of the lymphatic

lumen exceeds a certain critical pressure Pcrit, and that the minimum resistance

of an open lymphatic valve is constant and proportional to Pcrit. In other words
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either the volumetric fluid flow rate per unit length into the lymphatic capillary

is zero or proportional to the pressure difference Pl−P0 = Pcrit. Once this critical

pressure difference has been reached it takes little extra pressure difference to

open the valve further and allow appreciably more flow. In other words the major

resistance to extra flow is nearly all due to the resistance of the interstitial space.

Our reason for believing this to be true is the small overlap between the valve

and the endothelial wall which is incapable of providing much resistance to flow

through it. Mathematically this statement when combined with the linear fluid

flow through the interstitium and the blood capillary wall, can be formulated in

terms of the following piecewise linear relation between the volumetric fluid flow

rate per unit length Q between the blood capillary and the lymphatic capillary,

Q =

 0 if P̂ < P0 + Pcrit

Λ(P̂ − (P0 + Pcrit)) if P̂ > P0 + Pcrit.

Here Λ is a geometric constant taking into account the specific arrangement of

lymphatic capillaries with respect to blood capillaries and P̂ is the lumen fluid

pressure in the blood capillary. The predicted flux Q is plotted in Figure 1.6.

Figure 1.6: The predicted piecewise linear fluid flux per unit length through the
interstitial space and the initial lymphatics as a function of the pressure difference
between the blood and lymphatic lumen P̂ − P0.

This work is presented in Chapter 2, and published in [49].
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1.8.2 Hypothesis 2: Fluid Drainage Through a Sliding

Lymphatic Valve

The models in [42, 49, 85, 99] for the mechanism of primary lymphatic valves have

lymphatic valves open in response to pressure differences between the interstitium

and the lymphatic lumen. In [49], for example, a single lymphatic valve is treated

as a geometrically nonlinear elastic beam that is deformed by the pressure differ-

ences between the interstitium and the lymphatic lumen. However, the model did

not include the frequent expansions and contractions of the interstitium (that con-

tains lymphatic capillaries) throughout the body. These changes in the tissue’s

matrix are likely to affect lymphatic drainage because anchoring filaments at-

tached to the lymphatic valves are believed to maintain firm attachment between

the lymphatic capillary wall and the surrounding interstitium [20, 22, 27, 74, 77].

Hence when the interstitium deforms these anchoring filaments get pulled, cre-

ating normal tensions inside the capillary wall. Lymphatic anchoring filaments

are presumed to increase the lumenal volume when the interstitium is undergoing

swelling [55, 99, 122]. The effects of tissue expansions on interstitial drainage has

not been previously included in models of the primary lymphatic system.

In this Hypothesis we propose a ’sliding door’ theory of how lymphatic valves

drain interstitial fluid that is different to the premise of hypothesis 1. This theory

incorporates regular tissue deformations, which occur when the lymphatic sys-

tem is unable to drain the excess interstitial fluid. This model is based upon the

premise that when the interstitial space around the lymphatic capillary expands

it pulls open the lymphatic valves. This creates a gap for the interstitial fluid

to drain into the lumen. We predict a smooth transition from a closed to open

lymphatic valve in this model. In Figure 1.7, we demonstrate the opening of the

lymphatic valve in this ’sliding door’ fashion. The thick arrows in both draw-

ings Figures 1.7a and 1.7b indicate the deflection of the interstitial space, while
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(a) (b)

Figure 1.7: Two cross sectional drawings of a lymphatic capillary. The lymphatic
valve cycles from closed (a) to open (b) by the expansion of the surrounding
interstitium. The thick arrows in (a) and (b) indicate the direction of the tissue
deformation, while the thin arrows in (b) indicate fluid motion.

the thin arrows indicate the fluid movement. Around a lymphatic capillary we

presume there are four valves. We are unaware of any previous analysis of this

’sliding door’ hypothesis of primary lymphatic drainage. Rossi et al [106] hypoth-

esized that interstitial fluid drainage is accommodated by the act of pulling apart

interendothelial junctions on the lymphatic capillary wall. Based on their results

they speculated that lymphatic anchoring filaments do help in the drainage of

interstitial fluid. The predicted flux Q is plotted in Figure 1.8.

Figure 1.8: The predicted non–linear fluid flux per unit length through the in-
terstitial space and the initial lymphatics as a function of the pressure difference
between the blood and lymphatic lumen P̂ − P0.





Chapter 2

Model of Hypothesis 1: Fluid

drainage Through a Bending

Lymphatic Valve

2.1 Introduction

In this chapter we formulate and solve a model for lymphatic drainage, that was

discussed in section 1.8.1 (hypothesis 1). Firstly, we derive and solve the inter-

stitial fluid flow (i.e. for a Darcy flow through a porous medium). This results

in one second order partial differential equation for the fluid flow through the

interstitium. Due to the complex geometric nature in this problem we use a con-

formal mapping approach to determine all the geometrical parameters. Then we

formulate and solve a model for the mechanism of the lymphatic valve (based

upon the hypothesis that the overlapping lymphatic endothelial cells act as unidi-

rectional valves). In order to do this we use geometrically non linear beam theory

to model the deflection of the lymphatic valve. This results in a third order or-

dinary differential equation. Finally we couple the model for the interstitial fluid

27
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flow with the model for the deflection of the lymphatic valve to give the reader a

complete picture of lymphatic drainage from the vascular capillaries, through the

interstitium and into the lymphatic system. At the end of this chapter we draw

our conclusions and compare our results to similar studies by others.

2.2 Modelling the Interstitial Fluid Flow

The model formulated in this chapter demonstrates how the drainage of fluid from

tissues occurs. In our treatment of the fluid flow we concentrate on the regions

across which we expect the major pressure drops to occur. There are three: (I)

when the fluid moves through the wall of the blood capillary into the interstitium,

(II) when the fluid passes through the interstitial space, and (III) when the fluid

travels into the lumen of the lymphatic capillary.

Pressure variation in the capillary lumen occurs over relatively long length

scales in the z–direction (out of the the plane shown in Figure 2.1). This suggests

that a two dimensional analysis restricted to the x-y plane is sufficient in order to

provide a good understanding of the functioning of the initial lymphatic valves.

Figure 2.1: An idealised drawing of a cross–sectional view of lymphatic and blood
capillaries. The white and gray circles correspond to lymphatic and blood capillar-
ies, respectively. The arrows indicate the fluid’s movement across the interstitial
space filling the regions between the lymphatic and blood capillaries. The dotted
square represents a periodic tile that we model the fluid flow from a single blood
capillary to a single lymphatic capillary, 117 µm× 117 µm.



2.2. MODELLING THE INTERSTITIAL FLUID FLOW 29

In order to further simplify the modelling we assume that the lymphatic and

blood capillaries are arranged in a square lattice, as displayed in Figure 2.1. The

symmetry of this lattice means we need only consider a representative tile as illus-

trated by the dotted square in Figure 2.1. We take an average distance between

blood and lymphatic capillaries to be 150µm [72], so that the periodic tile has

sides of length
√

(150µm)2/2 ≈ 117µm. The symmetry of the pattern ensures

that the pressure gradients normal to the walls of the tile are zero. Figure 2.2

provides a detailed schematic of this tile. We assume that lymphatic valves oc-

cur quarterly around the circumferential lining of lymphatic capillaries (see, for

example [72]).

Figure 2.2: (a) Successive blow ups of the periodic tile in Figure 2.1 and around
the lymphatic capillary. (b) Magnification of the lymphatic capillary from the
first figure (a), delivering a more detailed view.

Blood capillaries are the smallest vessels in the body’s circulatory system and

typically measure 5− 10 µm in diameter. Furthermore, they are small compared

to the separation between blood and lymphatic capillaries (150µm). So we can

assume that the flow in the immediate vicinity of the blood capillary is radially

symmetric about the centre of the blood capillary and can be approximated by
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the solution to Laplace’s equation, P = χ+ γ ln(r), for arbitrary constants χ and

γ, where r = (x2 + y2)
1
2 . Without loss of generality we can rewrite this in the

form,

P ≈ P̂ + χ+ γ ln

(
r

rb

)
, (2.2.1)

where χ and γ are constants and rb is the radius of the blood capillary. We discuss

the local form of the solution further in section 2.2.4.

2.2.1 Model Development for the Fluid Flow

In this section we introduce a model of the fluid flow through the interstitial space

and into the lymphatic capillary. We focus on the three areas of high resistance

to flow that were mentioned in the previous section.

The first of these regions occurs as the fluid passes through the permeable wall

of the blood capillary. This wall has a very low permeability, preventing excessive

leakage of fluid, and can be modelled by a boundary condition on the wall, of

the form n ·uB = −β(P − P̂ ), where β (µm2s kg−1) describes the semipermeable

membrane of blood capillaries (the permeability of the blood capillary wall divided

by the product of the viscosity of the lymph and the thickness of blood capillary

wall), n is the normal vector to the blood capillary wall pointing in the direction

of the interstitial space, uB (µms−1) is the fluid velocity in the blood capillary

and P (Pa) and P̂ (Pa) are the fluid pressures in the interstitium and in the blood

capillary lumen, respectively.

The next major source of resistance to flow is from the interstitial space, which

is modelled as a porous medium. Darcy’s Law, together with incompressibility

of the fluid, characterizes the interstitial flow, such that the fluid velocity (u)

satisfies,
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u = −κ
µ
∇P, (2.2.2)

∇ · u = 0, (2.2.3)

where P (Pa) is the interstitial fluid pressure, κ (µm2) is the permeability of the

interstitium and µ (kgm−1s−1) is the viscosity of the fluid. Since n · uB = n.u on

the blood capillary wall, we can rearrange the boundary condition in terms of the

interstitial fluid pressure, giving

∂P

∂n

∣∣∣∣
r=rb

= α(P |r=rb − P̂ ), (2.2.4)

where α = µβ/κ (µm−1), r is the radial distance from the centre of the blood

capillary and rb is the radius of the blood capillary. On the edge of the periodic

tile we impose the symmetry boundary conditions

∂P

∂n
= 0. (2.2.5)

The final boundary condition required to close the interstitial fluid flow prob-

lem is provided by assuming a spatially independent pressure on the edge of the

lymphatic capillary wall,

P |r̂=rl = Pl, (2.2.6)

where r̂ is the radial distance from the center of the lymphatic capillary and rl is

the radius of the lymphatic capillary1. The boundary conditions on the periodic

tile are shown in Figure 2.2a.

The final major source of resistance to flow occurs in the initial lymphatics

1The assumption of a spatially independent pressure is not unrealistic since the capillary is
much smaller than the separation between it and the blood capillary and there are a number of
valves lying along its circumference
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formed by the overlapping endothelial cells, see Figure 2.2b. The lymphatic valve

is comprised of endothelial cells that can only deflect into the lumen of the cap-

illary. We assume that the four fluid pressures P0 (lumen fluid pressure) , Pl, P̂

and Pcrit are all functions of time only. The lymphatic valve cycles from closed

to open and repeats on a time scale of around 3 seconds [110] due to the pressure

fluctuation in the secondary lymphatics, i.e. drainage of fluid into the collecting

lymphatics. In section 2.3, we formulate and solve a model for the deflection of

the lymphatic valve.

2.2.2 Parameter Values

Measurement from Butler et al [14] for the value of the interstitial permeability

was 7.6× 10−3 µm2, which is consistent with measurements from Levick [76] who

recorded many values of the interstitial permeability in different tissues of the

body, a range between 1× 10−2 µm2 to 1× 10−6 µm2. Therefore, in this chapter

we take the value of κ to be of the order 7.6× 10−3 µm2.

We take the average distance between blood and lymphatic capillaries to be

150µm [72]. Therefore our periodic tile has approximate dimensions of 117µm×117µm

(Lx = Ly = 117µm).

The parameter values used in §2.2.1 are shown in the table below.
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Parameter Value Units Description Source
β 1.7× 104 µm2skg−1 The permeability of the blood capil-

lary wall (1×10−5µ m2) divided by the
product of the viscosity of the lymph
(1.5×10−3kgm−1s−1) and the thickness
of blood capillary wall (0.4µm)

[31, 76]

κ 7.6× 10−3 µm2 Permeability of the interstitium [14, 76]

µ 1.5× 10−3 kgm−1s−1 Viscosity of the lymph [31]

Lx, Ly 117 µm Side lengths of the periodic tile (see
Figure 2.1 and 2.2)

[72]

Table 2.1: Summary of dimensional parameters used in this chapter along with
their reference

2.2.3 A Conformal Mapping Approach for the Interstitial

Fluid Flux

Problem formulation

The purpose of this section is to find an expression for the fluid flux per unit

length through the interstitium. With a closed lymphatic valve there is no fluid

flow into the lymphatic capillary (∂P/∂n = 0 on the exterior of the lymphatic

valve) and therefore no fluid flow through the blood capillary wall since our model

does not include tissue expansion. A very trivial solution to this is for the fluid

flow through the interstitium to be P = P̂ , making ∂P/∂n = 0 on the wall of

the blood capillary. For the rest of this section we investigate an open lymphatic

valve. Darcy’s law, u = −κ
µ
∇P , characterizes the fluid flow in the interstitium.

Assuming the fluid is incompressible, ∇ · u = 0, and κ/µ is constant, reveals

Laplace’s equation when we take the divergence of Darcy’s Law,

∇2P = 0. (2.2.7)
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Figure 2.3 displays the complex domain in which Laplace’s equation is to be

solved as well as all the boundary conditions. The periodic tile now has non–

circular boundaries for the capillaries because polygonal boundaries are sufficient

in representing the morphology of capillaries and in addition this simplifies the

analysis later on. Since Laplace’s equation holds under conformal mapping, we

use a transformation technique to simplify our domain.

Figure 2.3: A cross–sectional view of the interstitium.

The dotted lines in Figure 2.3 are where we impose a constant pressure. The

pressure profile near the blood capillary will be calculated in section 2.2.4. It

demonstrates a constant pressure of the form Pb = (P̂ παrb + 2ξPl)/(παrb + 2ξ)

on the blood capillary wall, where ζ is a dimensionless geometric factor.

Conformal Mapping

The conformal map used in this chapter is the Schwarz–Christoffel’s transfor-

mation. We describe the Schwarz–Christoffel’s transformation in detail since we

believe it is useful to understand how the transformation works and how we in-

terpret the transformation for our model. Schwarz–Christoffel’s transformation is

a conformal map of the upper half–plane onto the interior of a polygon. Proof of
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the Schwarz–Christoffel’s Formula is shown in appendix A.

Mapping to the periodic tile from the upper half plane can be accomplished by

using the Schwarz–Christoffel’s transformation formula. Solving Darcy’s law in

the upper half plane is less challenging than inside the polygonal area. However,

we can still simplify the new domain further, a square or a rectangle would suffice

since we could engineer it to have only one boundary condition on each side.

Therefore, the two maps that we will investigate are: a transformation from a

rectangle to the upper half plane, Figure 2.5, and another transformation from

the upper half plane to the periodic tile, Figure 2.4 (the original domain,).

The method behind the Schwarz–Christoffel’s transformation is that a confor-

mal transformation f may have a derivative that can be expressed as

f ′ =
∏
m

fm,

for certain functions fm.

We assume that a polygon has vertices q1, ..., qn and interior angles ϑ1π, ..., ϑnπ

in counterclockwise order and let f be any conformal map from the upper half–

plane to the interior of the polygon with f(±∞) = qn. Then the Schwarz–

Christoffel’s formula for a half plane is

f(z) = A+ C

∫ z n−1∏
m=1

(ζ − zm)ϑm−1dζ, (2.2.8)

for some complex constants A and C, where qm = f(zm). Derivation of this

formula uses the method of the Schwarz reflection principle [33]. The exponents

in the integrand in equation (2.2.8) induce the correct angles in the image of the

half plane, regardless of where the pre–vertices lie on the polygon. In order to

map to a given target, we determine the locations of the pre–vertices by enforcing
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conditions involving the side lengths,

∣∣∣∫ zm+1

zm
f ′(ζ)dζ

∣∣∣∣∣∣∫ z2z1 f ′(ζ)dζ
∣∣∣ =

|qm+1 − qm|
|q2 − q1|

, (2.2.9)

where m = 2, ..., n− 2 [33]. This formula produces simultaneous equations where

one can confidently solve if good starting values are known.

The Schwarz–Christoffel mapping integral below maps from the upper half

plane to the polygon (the original domain):

Φ = f(z) =

∫ z

0

(ζ − c) 1
4 (ζ − d)

1
4 (ζ + k)

1
4 (ζ + l)

1
4

(ζ − a)
1
2 (ζ − b) 1

2 (ζ − e) 1
2 (ζ + h)

1
2 (ζ + p)

1
2

dζ, (2.2.10)

with a = 0 µm, b = 0.1 µm, c = 0.1006 µm, d = 0.1023 µm, e = 0.103 µm,

h = −0.148 µm, k = −0.151 µm, l = −0.156 µm, p = −0.159 µm being the

prevertices on the real axis, obtained by solving equations (2.2.9) and (2.2.10).

Only the ratio between each prevertex not the magnitude creates our desired

domain. Using the conditions on the side lengths, equation (2.2.9), the prevertices

are comfortably determined. Figure 2.4 shows to where each prevertex transforms

in our polygon.

Figure 2.4: The Schwarz–Christoffel’s transformation from the upper half plane
to the polygon.
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For the transformation from a rectangle to the upper half plane needs the

inversion of the Schwarz–Christoffel’s formula (2.2.8). To decipher the inverse of

this formula is difficult, because in general no formula exists [33]. The two main

strategies for inversion are, Newton iteration on the forward map f(z) − q = 0,

and a numerical solution of the initial value problem,

dz

dq
=

1

f ′(z)
, z(q0) = z0. (2.2.11)

The Newton iteration method is attractive because f ′(z) is known. However,

in practice one may need a rather good starting guess to avoid divergence. Solving

the initial value problem, on the other hand, is more reliable, but considerably

slower [33].

By using Jacobian elliptic functions we can invert the Schwarz–Christoffel’s

formula for the transformation from the upper half plane to a rectangle, in this

case, the Jacobian elliptic sine function. The Schwarz–Christoffel’s formula for a

map to a rectangle is,

w = g(Φ) = A+ C

∫ Φ 4∏
m=1

(ζ − Φm)−
1
2dζ,

= A+ C

∫ Φ dζ√
(ζ − b)(ζ − e)(ζ − k)(ζ − l)

. (2.2.12)

For the sake of argument we assume the complex constants to be, A = 0 and

C = 1, because we have no preference where and how large the rectangle is in the

complex v–plane. If we had a symmetrical polygon (the diameter of the blood

and lymphatic capillaries are the same i.e. b = −k and e = −l), the inverse of

equation (2.2.12) would become simple because we can change the variable of the

mapping function by ζ = sin θ, which results directly to the Jacobi elliptic sine

function. However, the sizes of the blood and lymphatic capillaries are different,
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so a different approach is required. To acquire the inverse, we need to integrate

equation (2.2.12) before inverting. Integrating equation (2.2.12) gives

w =
2(l − b)

√
(b−k)(Φ−l)
(b−l)(Φ−k)

(Φ− k)2
√

(k−l)(Φ−e)
(e−l)(Φ−k)

√
(k−l)(Φ−b)
(b−l)(Φ−k)

EllipticF
(√

(b−k)(Φ−l)
(b−l)(Φ−k)

,
√

(k−e)(l−b)
(l−e)(k−b)

)
(b− k)(k − l)

√
(Φ− b)(Φ− e)(Φ− k)(Φ− l)

,

(2.2.13)

which simplifies to

w =


2√

b−k
√
e−lEllipticF

(√
(b−k)(Φ−l)
(b−l)(Φ−k)

,
√

(e−k)(b−l)
(e−l)(b−k)

)
if l < Φ < k,

−2√
b−k
√
e−lEllipticF

(√
(b−k)(Φ−l)
(b−l)(Φ−k)

,
√

(e−k)(b−l)
(e−l)(b−k)

)
if l > Φ > k.

(2.2.14)

This inverts to

Φ =


l−k b−l

b−kJacobiS
(√

b−k
√
e−l

2
w,
√

(e−k)(b−l)
(e−l)(b−k)

)2
1− b−l

b−kJacobiS
(√

b−k
√
e−l

2
w,
√

(e−k)(b−l)
(e−l)(b−k)

)2 if l < Φ < k,

l−k b−l
b−kJacobiS

(
−
√
b−k
√
e−l

2
w,
√

(e−k)(b−l)
(e−l)(b−k)

)2
1− b−l

b−kJacobiS
(
−
√
b−k
√
e−l

2
w,
√

(e−k)(b−l)
(e−l)(b−k)

)2 if l > Φ > k,

(2.2.15)

where w are points in the rectangle. Therefore, we now have a map to our polygon

from a rectangle via the upper half plane. Figure 2.5 shows to where each prevertex

transforms in the upper half plane. The vertices on the rectangle are w1 = 0 µm,

w2 = 100.06 µm, w3 = 30.26ı µm, w4 = 100.06 + 30.26ı µm map to l, e, k, b,

respectively.

Solving Laplace’s equation inside the rectangle to acquire the stream–lines

of the flow has become trivial because we have assumed that the pressure is

approximately constant on the wall of the blood capillary. Using separation of

variables on Laplace’s equation leads to,

P =
Pl − Pb
w2

u+ Pb. (2.2.16)
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Figure 2.5: The Schwarz–Christoffel’s transformation from a rectangle to the
upper half plane.

The instantaneous discharge rate through the interstitium, Q, is

Q = ξ
k

µ
(Pb − Pl), (2.2.17)

where ξ corresponds to the height divided by the length of the rectangle in Figure

2.5 which represents the interstitial space (zeta = 0.302).

Figure 2.6 graphically demonstrates the Schwarz–Christoffel’s transformation

from a rectangle to the upper half plane. The stream–lines in each region are

plotted in Maple.

An initial glance at the solution concurs that the Schwarz–Christoffel’s map-

ping technique was a success in predicting the fluid flow. The accuracy of our ana-

lytical solution is compared to a numerical solution from a finite element package,

Comsol Multiphysics. Figure 2.7 compares the numerics to the analytics and we

can see they are very similar. We have plotted the numerical solution on its own

to give the reader a basic visual interpretation between the two solutions.
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Figure 2.6: Solution of Darcy’s Law in the rectangle mapped to our polygon via
the upper half plane by the Schwarz–Christoffel integral equations.

Figure 2.7: (1) Stream–lines of the fluid flow in the interstitium plotted in Comsol.

2.2.4 Model Solution for the Interstitial Fluid Flow

We seek a solution to the problem discussed in section 2.2.1. This involves solving

for a Darcy flow (2.2.2)-(2.2.3) in the interstitial space. In this section, we derive

the volumetric fluid flow rate per unit length through the interstitium as a function
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of the pressure difference between the exterior of the blood capillary and the

lymphatic capillary.

Here we investigate the flow in the interstitium by solving Laplace’s equation

for pressure

∇2P = 0, (2.2.18)

which arises as a consequence of (2.2.2) and (2.2.3), and applying appropriate

boundary conditions on the edges of the blood and lymphatic capillaries and on

the boundary of the periodic tile (see Figure 2.2).

In general when solving for the Darcy flux through the interstitium the pres-

sures on the exterior of the blood and lymphatic capillaries must be known. Since

the blood capillary is small in comparison to its separation from the adjacent lym-

phatic capillary, we can assume the flow in its immediate vicinity is approximately

radially symmetric, so that the pressure takes the form

P ∼ P̂ + χ+ γ ln

(
r

rb

)
, (2.2.19)

where χ and γ are constants that are related by the pressure boundary condition

(2.2.4) on r = (x2 + y2)
1
2 = rb (the blood capillary wall). This takes the form

dP

dr

∣∣∣∣
r=rb

= α
(
P |r=rb − P̂

)
, (2.2.20)

where α = µβ/κ (see equation 2.2.4) and results in the relation χ = γ/αrb. In

turn we can relate γ to the total fluid flux per unit length flowing out the blood

capillary,

QI =

∫
n · u ds = −k

µ

∫ π
2

0

r
∂P

∂r

∣∣∣∣
r=rb

dθ,

= −kγπ
2µ

, (2.2.21)
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From which it follows that γ = −2µQI/kπ so that the pressure near the blood

capillary takes the form,

P ∼ Pb −
2µQI

kπ
ln

(
r

rb

)
as r → rb, (2.2.22)

where Pb = P̂ − 2µQI/αkπrb.

The linearity of Darcy’s Law, for the fluid flow through the interstitium, im-

plies that the total fluid flux from the blood capillary to the lymphatic capillary

is linearly related to the pressure difference between the walls of these two vessels

by an equation of the form

QI = ξ
k

µ
(Pb − Pl), (2.2.23)

where ξ is a dimensionless geometric factor, Pb is the pressure on the outer edge of

the blood capillary, k is the permeability of the interstitium and µ is the viscosity

of the interstitial fluid. The method for calculating ξ from the solution to equation

(2.2.18) with the boundary conditions, P |r=rb = Pb, P |r̂=rl and ∂P/∂n = 0 on

the boundary of the periodic tile, is presented in section 2.2.3. Where the circular

boundaries of the vessels were replaced by polygons and conformal transformation

techniques were used to find the approximate solution.

2.3 Modelling the Deflection of the Lymphatic

Valve

The model formulated in this section demonstrates how the mechanics of the

lymphatic valve affects lymphatic drainage. The model couples fluid flow effects to

elastic effects in the primary lymphatics. Mendoza and Schmid–Schönbein (MSS)

[85] investigated an analogous problem for the drainage of fluid into the initial
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lymphatics, considering the case where the curvature of the wall of the lymphatic

capillary is neglected, and the case where the lymphatic valve is modelled by

a linear elastic beam. Their flat beam model for a primary valve is unrealistic

since given any fluid pressure on the exterior of the valve will open it. Here, we

will formulate the problem in which the curvature of the wall of the lymphatic

capillary is significant, and make use of nonlinear beam theory to model the

lymphatic valve. Thus the beam is pre–stressed, so the interstitial fluid pressure

has to overcome the elastic forces of the beam to enter the lumen. We believe these

changes are important in achieving more realistic results because the geometrical

structure of lymphatic capillaries is cylindrical, not planar and there are only 4-5

lymphatic endothelial cells per circumference [71, 73].

2.3.1 Model Development for the Deflection of the Lym-

phatic Valve

In this section we outline how to model potentially large deflections of the lym-

phatic valve by using a nonlinear beam equation. The lymphatic valve has two

states as described in the Introduction, closed and open. We model the lymphatic

valve as a beam that is clamped at one end and closes onto a rigid substrate (see

Figure 2.8). Inertial forces can be neglected for this problem [31, 76].

The main differences between this model of the lymphatic valve and the model

created by Mendoza and Schmid–Schönbein [85] is that we take into account the

curvature of the lymphatic capillary wall and make use of geometrically nonlinear

beam theory [122] (rather than linear beam theory) to model the relatively large

deflections of the lymphatic valve, which we assume tries to be straight.

We describe the valve deformation using arc length s along the beam and the

angle θ(s) between the beam and the x–axis, as shown in Figure 2.8, and assume

the beam to be inextensible, so that the arc–length is conserved by the deformation
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[54]. The transverse displacement is given parametrically by x = x(s), y = y(s),

where

dx

ds
= cos θ,

dy

ds
= sin θ. (2.3.1)

The nonlinear beam equation that models the deflection of the lymphatic valve,

is derived in Appendix B, is

d3θ

ds3
+

1

2

(
dθ

ds

)3

=
Pl − P0

D
, (2.3.2)

where D (kgµm2s−2) is the flexural rigidity of the valve. Here D is given in terms

of the Young’s modulus (E), the Poisson ratio (ν) and the beam thickness (ι) by

D = Eι3/12(1− ν2).

Equation (2.3.2) is the Euler–Bernoulli beam equation for large deformations

in terms of angle and arc–length, which we solve together with the two first

order ordinary differential equations (2.3.1) for x(s) and y(s) between s = 0 (the

anchored end of the valve) and s = sf (the far end of the valve).

In its closed state the valve takes one of two configurations, which we denote

as Case 1 and Case 2, and is illustrated in Figure 2.8a and 2.8b. In Case 1 the

valve is shut so firmly that a portion of the flap between s1 and sf is pushed flat

onto the underlying substrate. In Case 2 the valve is less firmly shut and only the

end of the flap s = sf impacts on the substrate. Case 1 corresponds to having all

of the overlapping portion of lymphatic valve in contact with the anchored end

of another lymphatic endothelial cell (the capillary wall). In Case 2 only the end

of the lymphatic valve is in contact with an anchored end of another lymphatic

endothelial cell.

Finally we look at a configuration modelling the instantaneous open state

after a sudden decrease in lymphatic lumen pressure. In practice this state always

rapidly relaxes as the lymphatic valve equilibrates to a state that is only just open
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(at the bifurcation point) since the resistance provided by a fully open lymphatic

valve is negligible in comparison to that of the interstitium. In Figure 2.8c below,

the lymphatic valve has deflected into the lumen and has lost contact with the

anchored end of the other lymphatic endothelial cell (the capillary wall), resulting

in fluid flow into the lumen of the lymphatics, Case 3. The three figures below

are sketches of possible valve geometries.

(a) (b) (c)

Figure 2.8: (a) Case 1 models the lymphatic valve when the fluid pressure in the
lumen is far greater than the interstitial fluid pressure; the valve is firmly closed.
(b) Case 2 models the lymphatic valve when just the end of the valve is in contact
with the capillary wall. (c) Case 3 models the lymphatic valve when it is open,
allowing fluid to enter lymphatic lumen, therefore, ∂P/∂n < 0 and Pl−P0 ≥ Pcrit.

Since we define the anchored end of the valve to lie on s = 0, s1 has the property

that
√
y2

0 + x2(s1) ≤ s1 ≤ sf . x(s1) is where the beam makes first contact

with the capillary wall. The value of y0 has been deduced from prior research

of the geometry of the initial lymphatics, i.e. the valve length, the diameter of

the lymphatic capillary and assuming valves occur quarterly around lymphatic

capillaries [71, 73]. We take y0 to be of the order 3 µm.

In Case 1, a portion of the beam is forced onto the underlying substrate (which

here lies on the x-axis) between x(s1) and x(sf ). Since s1 is unknown we have a

free boundary value problem and the closed state of the valve implies no flow such

that ∂P/∂n = 0 on the exterior of the lymphatic valve and Pl − P0 < Pcrit. As

the pressure drop across the initial lymphatics (Pl − P0) increases, the distance

between x(s1) and x(sf ) decreases until only one point remains in contact with the
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substrate s = sf , which is described by Case 2. In Case 2 the lymphatic valve is

still closed preventing back flow of fluid into the interstitium, so that ∂P/∂n = 0

on the exterior of the lymphatic valve and Pl − P0 ≤ Pcrit.

To solve Case 1, six boundary conditions are required. By inspecting Figure

2.8 Case 1, we have an initial deflection of −π/2 (since the lymphatic capillary is

cylindrical), an initial height of y0 and a starting value for x, say x(0) = 0. At

the ’moving’ boundary, s = s1, we assume no bending moment and y equals zero

since the lymphatic valve is in contact with the capillary wall. To determine the

value of s1, we require one more boundary condition. Assuming the angle θ is

zero at the free boundary and θ < 0 when s < s1 will be sufficient to close the

problem. Thus, the boundary conditions are,

θ(0) = −π
2
, dθ

ds
(s1) = 0,

y(0) = y0, y(s1) = 0,

x(0) = 0, θ(s1) = 0.

To solve Case 2, only five boundary conditions are required since s1 = sf . The

boundary conditions are almost identical to those in Case 1 with the exception

that the angle at the end of the beam is unknown and the end boundary sf is

known. The boundary conditions in Case 2 are thus

θ(0) = −π
2
, dθ

ds
(sf ) = 0,

y(0) = y0, y(sf ) = 0,

x(0) = 0.

In Case 3 the pressure drop across the initial lymphatics has risen to the

critical pressure value and lifted the beam off the underlying substrate. Five

boundary conditions are required in this case to close the problem. At the fixed

end of the beam (s = 0), the boundary conditions are the same as in Case 1 and

Case 2, which are, an initial deflection of −π/2, an initial height of 3 µm and
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an initial value for x, x(0) = 0. The boundary conditions are different at the

free end of the beam (s = sf ) to Case 1 and Case 2 because the lymphatic valve

has lost contact with the capillary wall. However, we still assume no bending

moment applied to the boundary s = sf . The last condition arises from the loss

in contact between the lymphatic valve and the underlying substrate. When there

is a flux through the initial lymphatics the normal force (N) acting on the end

of the lymphatic valve from the underlying substrate vanishes. To be consistent

with the other boundary conditions we relate the normal force N to the angle θ,

N = −D d2θ/ds2. Physically this condition means the shear force is zero at the

end of the beam. Thus, the boundary conditions in Case 3 are,

θ(0) = −π
2
, dθ

ds
(sf ) = 0,

y(0) = y0,
d2θ
ds2

(sf ) = 0,

x(0) = 0.

It is reassuring to confirm that the nonlinear beam theory reduces to the linear

beam theory in MSS’s paper [85] for cases where deflections are small. For small

θ, we can simplify the geometric relations in equation (2.3.1) to the lowest order,

to give, x = s, dy
dx

= θ, and thus the Euler–Bernoulli beam equation for small

deflections becomes (as in MSS’s model),

d4y

dx4
=
Pl − P0

D
. (2.3.3)

2.3.2 Parameter Values

The parameter values used in §2.3.1 are shown in Table 2.2.
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Parameter Value Units Description Source
E 1000 kgm−1s−2 Young’s modulus for lymphatic

endothelial cells
[129]

sf 6 µm Length of the lymphatic valve [73]

y0 3 µm Initial height of the lymphatic
valve in our geometry

[71, 72]

ι 0.4 µm Thickness of lymphatic endothe-
lial cells

[73]

ν 0.5 − Poisson ratio [78]

Table 2.2: Summary of dimensional parameters used in this chapter along with
their reference.

In Mendoza’s and Schmid–Schönbein’s model, a Young’s modulus of 1, 000

Pa was used for a lymphatic endothelial cell; this was obtained by experimental

measurements by Theret et al [129]. In our model of the lymphatic valve we also

use the results from Theret et al [129] for the Young’s modulus of a lymphatic

endothelial cell. Thus we can directly compare our results with MSS’s model.

The structure of lymphatic capillaries is relatively well understood. The stud-

ies by Leak [73] on lymphatic capillaries described their irregular shapes and large

diameters, which are created by circumferentially oriented, overlapping endothe-

lial cells. Lymphatic capillaries have measured diameters of around 20 µm; the

largest diameter measured is nearly 60 µm [73]. In this model we consider a

lymphatic capillary diameter of 20 µm. The endothelial cells that make up the

lymphatic valve are presumed to be of the order of 6 µm long in this work with an

overlapping portion of 0.7 µm to 2 µm [71, 72]. Using these values and assuming

that the lymphatic valves occur quarterly around the capillary wall lets us choose

the value of y0, the initial height of the lymphatic valve, see Figure 2.8. The

thickness of the endothelial cells near the lymphatic valve is of the order 0.1 µm

to 0.7 µm from values shown by Leak [71, 72]. We take an average thickness of
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lymphatic endothelial cells of the order 0.4 µm.

2.4 Solution to the Model of Hypothesis 1

We seek a solution to the problem discussed in section 2.3.1. This involves solving

the nonlinear beam equation (2.3.2) conjoint with the transverse displacements

equation (2.3.1), for all three cases. In this section, we model the deflection of

the lymphatic valve by using the Euler Bernoulli beam equation, and we use this

to relate the pressure inside the lymphatic capillary to that immediately outside

it. Finally we combine the results of interstitial fluid flow and valve mechanics to

arrive at an algebraic relation for the fluid flux in terms of the pressure difference

between the interior of the blood capillary and the lymphatic capillary.

Cases 1 and 2 model a closed lymphatic valve while Case 3 models an open

lymphatic valve. The Euler Bernoulli beam equation describes the relationship

between the beam’s deflection and the applied load. In our case the applied load

per unit area is the pressure difference between the lymphatic capillary lumen

and the exterior of the lymphatic valve. The nonlinear beam equation and the

equations for the Cartesian x− y positions of the lymphatic valve are,

d3θ

ds3
+

1

2

(
dθ

ds

)3

=
Pl − P0

D
, (2.4.1)

dx

ds
= cos θ,

dy

ds
= sin θ, (2.4.2)

where Pl and P0 are the pressures on the exterior of the lymphatic capillary and

in the lumen of the lymphatic capillary, respectively. Solving the nonlinear beam

equation analytically is challenging, because of the cubic term. This will result

in incomplete elliptic integrals of the first and third kind. We choose instead a

numerical method.
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Solving equations (2.4.1) and (2.4.2) numerically is accomplished by using a

boundary value problem solver, bvp4c, in Matlab for all three cases described

in section 2.3. Bvp4c is a finite difference solver that implements shooting and

Runge Kutta methods. The boundary conditions for each case are shown in the

table below.

Case 1 Case 2 Case 3

θ(0) = −π
2

dθ
ds

(s1) = 0 θ(0) = −π
2

dθ
ds

(sf ) = 0 θ(0) = −π
2

dθ
ds

(sf ) = 0

y(0) = y0 y(s1) = 0 y(0) = y0 y(sf ) = 0 y(0) = y0
d2θ
ds2

(sf ) = 0
x(0) = 0 θ(s1) = 0 x(0) = 0 x(0) = 0

Table 2.3: The boundary conditions for Cases 1, 2 and 3.

The initial height of the beam, y0, is assumed to be of the order 3 µm. Figure

2.9 displays plots from Matlab of the geometric shape of a closed and open valve.

Also these plots demonstrate the position of the valve for when the pressure

difference is varied.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 2.9: In the three plots above we show valve positions for successively
increasing pressure drops, Pl−P0. Plots (a) and (b) show a closed valve in cases 1
and 2 respectively. Plots (c) show an open valve, case 3. (a) The dotted line has a
pressure drop of −0.134 Pa. The other positions of the lymphatic valve decrease
in steps (of the pressure) of 0.192 Pa. (b) The dotted line is identical to that in
(a). Here we have increased the pressure drop by a step of 0.137 Pa for the each
position of the lymphatic valve. (c) The dashed line is identical to that in (b).
The positions plotted are for increases in the pressure in steps of 0.007 Pa.
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In Figure 2.9a, Case 1 is plotted. To visualize each deflection of the lymphatic

valve we have varied the pressure drop (Pl − P0) by a step of 0.192 Pa. The

dotted line in Case 1 corresponds to a pressure drop of −0.134 Pa. In practice

the pressure drop does not vary much from the critical pressure drop which will

be revealed shortly. In this scenario the lymphatic valve is firmly closed and the

fluid pressure drop is less than the critical fluid pressure. As the pressure drop

increases, the valve contact with the capillary wall decreases, as demonstrated in

Figure 2.9a. This results in the value of x(s1) increasing until it equals the value

of x(sf ). When x(s1) merges into x(sf ) only the end of the lymphatic valve is in

contact with the capillary wall (Case 2).

In Figure 2.9b, Case 2 is plotted as the dashed curve. In Case 2, the lymphatic

valve is still closed but only the end of the valve contacts the capillary wall. When

the pressure drop exceeds 0.277 Pa the valve opens (Case 3).

In Figure 2.9c, the solution to Case 3 is plotted. As the pressure drop rises

above the critical pressure value of 0.277 Pa, the lymphatic valve deflects further

from the capillary wall, resulting in a larger gap for the fluid to convect into

the lumen of the lymphatic capillary. In practice this open valve configuration is

unrealistic since the fluid flow will cause the pressure to (almost) equalize between

the two sides of the lymphatic valve. In reality the pressure drop for an open valve

must remain close to the critical value of 0.277 Pa.

Figure 2.10 shows the valve deflection when the pressure drop equals the crit-

ical fluid pressure of 0.277 Pa (dashed line). Since we have assumed that the

lymphatic valve is very flexible, i.e. having a low Young’s modulus, the low value

of the critical fluid pressure is reasonable. In MSS’s model, they varied the pres-

sure drop by 0.1 Pa, 0.25 Pa, 0.5 Pa and 1 Pa to see how the deflection of the

lymphatic valve changed.

To summarize, the fluid flux per unit length through the initial lymphatics
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Figure 2.10: The lymphatic valve’s deflection in each case on a single graph. Case
1 is the dotted line with a pressure drop of −0.134 Pa, Case 2 is the dashed line
with a pressure drop of 0.277 Pa and Case 3 is the solid line with a pressure drop
of 0.300 Pa.

(QL) is

Pl < P0 + Pcrit ⇒ QL = 0,

if QL > 0 ⇒ Pl = P0 + Pcrit.

Amalgamating this result with that for the interstitial fluid flow (2.2.23) leads

to the follow critical state model,

if P̂ < P0 + Pcrit then Q = 0 closed valve

if P̂ > P0 + Pcrit then Q = ξαπrb
απrb+2ξ

k
µ
(P̂ − (P0 + Pcrit)) open valve.

We note that if we took a different geometry we would obtain the same result,

but with a modified dimensionless interstitial domain shape coefficient ξ.

A comparison of our model and the resulting flow rates to MSS’s model of the

lymphatic valve [85] is shown in Figure 2.11. Figure 2.11a and 2.11b show the

geometric interpretation of the lymphatic valve in each model while Figure 2.11c

displays a plot of the fluid flux per unit length through the initial lymphatics

against the pressure difference Pl − P0.

In comparing the two models depicted in Figure 2.11a and Figure 2.11b we

can appreciate why the flux plots in Figure 2.11c are different. At first glance we

notice the geometric interpretation of the lymphatic valve is significantly different
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(a) (b)

(c)

Figure 2.11: (a) Displaying the geometry of the lymphatic valve in our model.
(b) Displaying the geometry of the lymphatic valve in Mendoza’s and Schmid–
Schönbein’s model [85]. (c) Displaying plots of the fluid flux per unit length
through the initial lymphatics in our model (dashed line) and in Mendoza’s and
Schmid–Schönbein’s model (solid line) [85].

in each model. This results in two major differences between the models that

influences the fluid flow. Firstly, the lymphatic endothelial cells’ overlap is small

(as seen in the anatomical literature [73]) in our model compared to MSS’s model.

With a small overlap in these cells the resistance to fluid flow between the valve

and the capillary wall becomes negligible. While in MSS’s model the large overlap

of lymphatic endothelial cells results in a geometry in which one dimension is con-

siderably smaller than another (lubrication theory). The fluid must pass through

this channel created by the endothelial cells in order to enter the lymphatic lumen

and the channel produces a non–negligible resistance to the flow. The consider-
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ably different lengths in the overlap of lymphatic endothelial cells give rise to

different gradients in the fluid flux, see Figure 2.11. If we were to modify MSS’s

model to have a small lymphatic endothelial cell overlap, the pressure gradient vs

fluid flux graph in Figure 2.11c would still be significantly different from the one

based on our model. The MSS’s flat valve assumption implies that any positive

pressure gradient opens the valve. In our model the pressure gradient has to over-

come the elastic forces of the valve to allow entry into the lumen, which compares

better to the physiological details of primary lymphatic valves. Secondly, we no-

tice that the curvature of the lymphatic valve is different in each model. In our

model (Figure 2.11a) the curvature of the lymphatic valve is large compared to

that in MSS’s model (Figure 2.11b). As a result, in our model we use nonlinear

beam theory rather than linear beam theory. Realistically lymphatic capillaries

are surrounded by the interstitium, which has an influence on the fluid flow. In

our model we have included the resistance from interstitial space, while MSS’s

model does not include it. The improvements we have made to MSS’s model in

trying to make it more realistic has resulted in a slightly larger fluid flux through

the initial lymphatics around 10×10−3µm2/s in comparison to MSS’s fluid flux of

around 7.5× 10−3µm2/s. To further validate our result for the fluid flux through

the initial lymphatics we have compared it with other experimental data. This

will be further discussed in the next section.

2.5 Conclusion

This chapter has briefly outlined the fluid drainage problem that arises from the

exuded fluid from blood capillaries. Around 20% of the body’s mass is assumed

to be interstitial fluid that is in constant slow motion [76]. Thus understanding

the mechanics of the lymphatic system is essential in understanding how our
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bodies drain interstitial fluid. Special attention was given to the behaviour of the

overlapped endothelial cells around lymphatic capillaries that were assumed to

act as a unidirectional valve system.

An introduction of the lymphatic system was provided in the first chapter for

the reader to gain the required background knowledge of this complex system to

understand how and why the model was developed. The model covers the three

key areas of resistance to fluid flow in tissues where lymphatic drainage occurs.

These are: the permeable membrane around blood capillaries, the resistance of the

interstitium and that of the overlapped endothelial cells that form the lymphatic

valve. We showed that to a good approximation the complex model that we

formulated to describe the 2-D fluid flow through the interstitium, the blood

capillary membrane and the nonlinear elastic behaviour of lymphatic valves can

be approximated by the following simple critical state model for the fluid flux per

unit length Q in terms of the pressure difference between blood and lymphatic

capillaries P̂ − P0. This takes the form

Q =

 0 if P̂ < P0 + Pcrit,

ξαπrb
απrb+2ξ

k
µ
(P̂ − (P0 + Pcrit)) if P̂ > P0 + Pcrit,

(2.5.1)

where Pcrit is a critical fluid pressure difference that needs to be exceeded before

the lymphatic valve opens, ξ is a dimensionless parameter that describes the effect

the geometry has on the fluid flux, k is the permeability of the interstitium and

µ is the viscosity of the interstitial fluid.

The results in this chapter were compared with the results obtained in MSS’s

model [85]. The value of the fluid flux per unit length in our model and in MSS’s

model were very similar. This was due to us assuming that the flow through the

open valve causes the pressure difference on either side of the valve (Pl − P0) to

equalize at the critical opening pressure. In effect we assume that the intersti-
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tium always provides significantly more resistance to flow than that of an open

lymphatic valve. This is one of the reasons why we have such a sharp transition

in the flow rate in Figure 2.11c. For an open lymphatic valve the fluid flux per

unit length was 10 × 10−3µm2/s in our model and 7.5 × 10−3µm2/s in MSS’s

model, see Figure 2.11c. The most significant differences between these models

that resulted in different flow rates was the geometric view of the lymphatic valve

and the fact that Mendoza and Schmid–Schönbein did not take into account the

resistance to flow from the interstitium. In MSS’s model a flat valve was consid-

ered, which we believe to be biologically unrealistic because lymphatic capillaries

are cylindrical. The geometry Mendoza and Schmid–Schönbein used to model the

lymphatic valve is shown in Figure 2.11(b). In our model of the lymphatic valve

we had a significant curvature in the valve that caused it to spring shut sharply in

contrast to that of MMS (see Figure 2.11(a)). In addition Mendoza and Schmid–

Schönbein assumed the endothelial cell overlap is large compared with the valve

length. MSS’s model had the fluid experience a long narrow gap when entering

the lymphatic capillary, which results in a high resistance to flow. In our model,

we assumed a small overlap and a heavily curved endothelial cell, which from the

anatomical data [71, 73, 116] we believe to be more realistic than the more flaccid

valve behaviour in MSS’s model [85]. It is this that gives the sharp transition be-

tween a closed and open valve. Also we note that changing the stiffness (Young’s

modulus) of the lymphatic valve in our model would only change the critical fluid

pressure Pcrit. However, in MSS’s model it would change the gradient of the fluid

flux.

Two benchmark problems are discussed to validate the assumptions made in

our model compared to those made in MSS. These benchmark problems inves-

tigate how manipulating each model in a certain way influences the fluid flow.

Firstly, our model could be used to describe an intervention in which a synthetic
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chemical that affects the permeability of the interstitial space is injected into the

tissue. This is turn would directly affect lymphatic drainage, through the inter-

stitium. Tissue permeability is not included in MSS’s model. The effects of the

interstitium to the resistance to fluid flow could be applied to MSS’s model. How-

ever we still believe, on the basis of anatomical differences [73], that the resistance

the valve is providing due to the elastic force required to open it (as in our model)

is much larger than the drag it exerts on the fluid flowing through it (as in MSS’s

model). Secondly, if we inject different synthetic chemicals that just change the

elastic properties of lymphatic endothelial cells, it would also influence the re-

sistance to fluid flow. Changing the elastic properties of lymphatic endothelial

cells in our model would affect the critical pressure at which the valve opens but

not the slope of the subsequent flow rate as a function of pressure. In our model

multiplying D (the flexural rigidity of the valve) by a factor Γ results in the value

of Pcrit being scaled by the same factor Γ. Scaling D in MSS’s model by a factor

Γ results in a change in the fluid flux by a factor 1/Γ3.

Mendoza and Schmid–Schönbein estimated the total length of endothelial junc-

tions in the initial lymphatics to convert the fluid flux per unit length into the

volumetric flow rate, thus comparing results with other work was achievable. Con-

verting the fluid flux per unit length in our model gives us the volumetric flow

rate of 4.4×10−11m3s−1. We also realize that the qualitative features of the model

presented in this study are little changed by changes to the lymphatic capillary

and interstitial geometries because the fluid flow up until the lymphatic valve is

described by a linear model. Thus changing the geometry will only affect Pcrit

and ξ.

Validating the model presented in this chapter was made difficult by the mag-

nitude of variation of the geometrical and physical parameters of lymphatic cap-

illaries and in the environment surrounding these capillaries. Several papers have
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investigated the volumetric flow rate through the lumen of lymphatic capillaries

in different animals [31, 78, 124, 126]. Although these papers focus on the lymph

flow inside the capillary, it should still provide a crude comparison for the fluid

flux into lymphatic capillaries. In the study by Dixon et al [31], the volumetric

flow rate through the collecting lymphatics was measured in situ by tracking the

movements of lymphocytes in the lymphatic system of a rat. This method found

the volumetric flow rate to be of the order 1.9× 10−11m3s−1, which was a couple

of magnitudes lower than the study by Macdonald et al [78]. Macdonald’s et al

computational model was designed to reproduce the pumping behaviour of the

collecting lymphatics in bovine mesenteric vessels. The method found volumetric

flow rates through the collecting lymphatics of around the order of 1.5×10−8m3s−1.

Swartz et al [126] measured the volumetric flow rate through the collecting lym-

phatics of the skin in a mouse’s tail to be 4.2×10−12m3s−1. However, more recently

they measured a larger value of the volumetric flow rate through the collecting

lymphatics, around the order of 1.7×10−10m3s−1 [124], which seems to agree more

with the other cited experimental data. An alternate source of validation is the

study by Levick on the flow through the interstitium for a rabbit knee synovium

and a bovine femoral condylar cartilage [76]. Levick measured volumetric flow

rates of the order 3× 10−7m3s−1 in the rabbit knee synovium and 3× 10−10m3s−1

in the bovine femoral condylar cartilage. To finish with a study by Ikomi et al

[56] on the fluid uptake into initial lymphatics of a rabbit’s hindleg found a vol-

umetric flow rate of the order 2.7× 10−11m3s−1. On average, the volumetric flow

rate through the lumen of lymphatic capillaries is similar in magnitude to the

volumetric flow rate into lymphatic capillaries, which is to be expected according

to our model. Thus we conclude that our model provides results of comparable

magnitude to that of experimental data. In addition we have identified potential

experiments to further validate the model.



Chapter 3

Model of Hypothesis 2: Fluid

Drainage Through a Sliding

Lymphatic Valve

3.1 Introduction

In this chapter we propose a ’sliding door’ theory of how the primary lymphatics

drain interstitial fluid; this is different to the premise modelled in Chapter 2,

that lymphatic valves deflect into the lumen in response to a pressure difference

between the interstitium and the lumen. The theory in this chapter incorporates

regular tissue deformations that occur when the exudate of blood capillaries fills

up all the pores of the surrounding interstitial space. This model is based upon

the premise that when the interstitial space surrounding lymphatic capillaries

expands, it pulls open their valves in a sliding fashion. This creates a gap in

the lymphatic capillary wall for the interstitial fluid to drain into the lumen. In

Chapter 1 we illustrated the hypothesised valve opening mechanism in Figure 1.7.

To our knowledge there is no previous analysis of this sliding door mecha-

59
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nism in the primary lymphatics. The only hypothesis found in the literature was

by Rossi et. al [106], where they hypothesized that interstitial fluid drainage

is accommodated by the act of pulling apart interendothelial junctions on the

lymphatic capillary wall. Based on their results they speculated that lymphatic

anchoring filaments help in the drainage of interstitial fluid.

We begin this model by defining an idealized tissue that contains a periodic

array of blood and lymphatic capillaries separated by the interstitium. Then we

go on to describe the fluid flow from the blood capillary (through the intersti-

tium) to the lymphatic capillary, and the tissue deformation using the theory of

poroelasticity.

3.2 Model Development

Here we develop a model for lymphatic drainage of a tissue comprising a peri-

odic array of blood and lymphatic capillaries (as illustrated in Figure 3.1). We

treat the interstitial space lying between the blood and lymphatic capillaries as

a linear poroelastic medium. Blood enters the interstitium from blood capillaries

in response to the pressure difference between the blood and the interstitial fluid

(the resistance of the blood capillary membrane to this flow is considered to be

linearly proportional to the flow rate). Drainage of fluid from the interstitium

takes place through lymphatic valves in the wall of the lymphatic capillary that

open in response to the local deformation of the interstitium (i.e. they only open

once the circumference of the lymphatic capillary has exceeded a critical size).

The model geometry is designed to be consistent with the literature. Mea-

surements by Leak [72] found the radii of lymphatic capillaries to be of the order

of 10× 10−6m, i.e. slightly larger than an average blood capillary [13]. Measure-

ments by Geleff et al and Sauter et al [44, 109] found distances between blood and
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lymphatic capillaries of the order of 10−4m. Lymphatic capillaries are known to

follow blood capillaries in close proximity around the entire body [15, 71]. This

motivates us to consider an idealized periodic geometry, displayed in Figure 3.1

(arrows indicate the fluid movement), in which blood and lymphatic capillaries

are distributed uniformly through a tissue. Choosing such a periodic array allows

us to characterize the behaviour of the entire tissue by a single periodic tile (rep-

resented by the dotted square in Figure 3.1). This single periodic tile contains

the fluid flow from one blood capillary to one lymphatic capillary.

Figure 3.1: A cross sectional view of an idealized tissue with blood (grey) and
lymphatic (white) capillaries surrounded by the interstitium. The arrows indicate
the fluid’s movement. The dotted box is a periodic tile used to model the fluid
flow.

Valve Mechanics

The primary lymphatic valve system controls the rate at which interstitial fluid

drains into the lymphatics. We model this valve as a sliding door that opens and

closes in response to the expansions and contractions of the surrounding intersti-

tium, respectively. That is, we take the valve to be closed if its circumference,

C(t), is less than or equal to a critical value Ccrit, and open if it exceeds this value.

Thus,
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if C(t) < Ccrit then valve closed,

if C(t) > Ccrit then valve open.
(3.2.1)

3.2.1 Governing Equations

Here we model the coupled interstitial fluid flow and deformations by Biot’s equa-

tions of poroelasticity [11] (these describe the flow of a Newtonian fluid through

a deformable linear elastic porous medium). This approach has been adopted

previously in biological tissues, and validated against experiments, in [53, 126]. A

comprehensive review of the theory is provided in [12].

The Fluid Equations

In the Biot model, the fluid flux relative to the solid (Qf ) is related to the fluid

pore pressure gradient (∇P ) by Darcy’s law,

Qf = −K∇P, (3.2.2)

where K (m3skg−1) is the interstitial hydraulic conductivity. Here we assume that

K is constant (i.e. independent of tissue deformation), an assumption that is only

valid when tissue deformations remain small. We can write the fluid flux Qf in

terms of the difference in velocities of the fluid (vf ) and solid (∂u/∂t) by,

Qf = φ

(
vf − ∂u

∂t

)
, (3.2.3)

where φ is the fluid volume fraction.

Both the interstitial fluid and the solid material making up the matrix are

assumed to be separately incompressible. The assumption that the solid matrix

is incompressible does not however imply that the interstitium as a whole is in-



3.2. MODEL DEVELOPMENT 63

compressible since it can be compressed by allowing fluid to flow out of its pores.

Conservation of fluid and solid volumes gives,

∂φ

∂t
+∇ · (φvf ) = 0, (3.2.4)

−∂φ
∂t

+∇ ·
(

(1− φ)
∂u

∂t

)
= 0. (3.2.5)

The addition of (3.2.4) and (3.2.5) results in the relation,

∇ ·
[
φ

(
vf − ∂u

∂t

)]
= −∇ ·

(
∂u

∂t

)
. (3.2.6)

On subtracting for the factor φ(vf − ∂u/∂t) for −K∇P , using equations (3.2.2)-

(3.2.3), in the above we obtain the following equations for the conservation of

fluid. Furthermore, since the geometry we consider is 2-d we need only consider

plane–strain and pressure variation within the plane,

u = (u1(x, y, t), u2(x, y, t), 0) and P = P (x, y, t), (3.2.7)

∇ · (K∇P ) = ∇ ·
(
∂u

∂t

)
. (3.2.8)

Solid Governing Equations

In Biot’s model, the elastic stress strain relation is linear, but crucially depends

upon the fluid pore pressure [11]. It thus takes the form,

σij = 2µεij + λδijεkk − Pδij, (3.2.9)

εij = εji =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.2.10)

where σij is the stress tensor, εij is the strain tensor, ui is the tissue displacement,

δij is the Kronecker delta tensor and λ (Pa) and µ (Pa) are the first and second
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drained Lamé parameters.

These drained Lamé parameters are calculated by subjecting a material volume

of the porous medium to an external load and measuring the resulting strains while

allowing the fluid contained within the volume to freely drain out of it (or enter

it) at constant fluid pressure P . Generally parameters in problems where the

movement of fluid and solid needs to be calculated independently are calculated

under drained conditions.

Neglecting inertial forces and any external body forces in the solid leads to a

force balance equation of the form,

∂σij
∂xj

= 0. (3.2.11)

Substituting the stress strain relationship (3.2.9) into (3.2.11) under the assump-

tion of plane strain, (3.2.7), yields two equations for the displacements u1 and u2

in terms of pressure gradient, i.e.,

(2µ+ λ)
∂2u1

∂x2
1

+ λ
∂2u2

∂x1∂x2

− ∂P

∂x1

+ µ

(
∂2u1

∂x2
2

+
∂2u2

∂x1∂x2

)
= 0, (3.2.12)

µ

(
∂2u1

∂x1∂x2

+
∂2u2

∂x2
1

)
+ (2µ+ λ)

∂2u2

∂x2
1

+ λ
∂2u1

∂x2∂x1

− ∂P

∂x2

= 0, (3.2.13)

where ui is the tissue displacement.

The three equations (3.2.8), (3.2.12) and (3.2.13), for three unknown variables

(u1, u2 and P ), are the governing poroelastic equations that model the interstitial

deformation and the interstitial fluid flow.

3.2.2 Boundary Conditions

The periodicity of the geometry illustrated in Figure 3.1 allows us to reduce the

problem to that on a single periodic tile containing one blood and one lymphatic
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capillary, see Figure 3.2. The arrows in Figure 3.2 indicate the fluid movement.

(a) (b)

Figure 3.2: (a) The single periodic tile, containing one lymphatic and blood cap-
illary separated by the interstitium. (b) A zoom of the lymphatic capillary iden-
tifying different parts of the capillary wall. Arrows in (a) indicate fluid motions.

Evaluation of ∂Ω4a and ∂Ω4b

The lymphatic capillary wall (∂Ω4) is split into two parts, which are denoted by

∂Ω4a and ∂Ω4b (see Figure 3.2b). Here ∂Ω4a represents the interface between the

lymphatic lumen and the interstitium not covered by lymphatic endothelial cells

(through which the interstitial fluid flows), while ∂Ω4b represents the endothelial

cell wall (through which there is no flow). We assume that the open section of

the lymphatic capillary valve is located half way along the capillary boundary, as

illustrated in Figure 3.2b. C(t) is given by the length of the circumference of the

lymphatic capillary

C(t) = 4

∫
∂Ω4

ds, (3.2.14)

and

∂Ω4a is defined by s ∈ [−∆,∆] where ∆ = max

{
0,
C(t)− Ccrit

8

}
,

(3.2.15)
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∂Ω4b is defined by s ∈
[
−C(t)

8
,−∆

]
and s ∈

[
∆,

C(t)

8

]
. (3.2.16)

We note that ∂Ω4 is the union of ∂Ω4a and ∂Ω4b, and when the lymphatic valve

is closed (∆ = 0) ∂Ω4 = ∂Ω4b. With this in mind we calculate the length of the

open section of the valve (Lv(t)), in the relation,

Lv(t) =
C(t)− Ccrit

4
, (3.2.17)

where Ccrit is the total length of the endothelial cells forming the valve (thus

when C < Ccrit the valve is closed). We note that using (3.2.17) to determine

the length of the open section of the valve uses the fact that the length of the

endothelial cell wall (∂Ω4b) does not change (while undergoing the sliding motion).

This assumption however does imply that the endothelial cell wall cannot deflect

in the normal direction of the lymphatic capillary.

Fluid Boundary Conditions

The Lymphatic capillary, boundary ∂Ω4

The opening and closing of the lymphatic valve requires us to formulate two sets

of fluid flow boundary conditions on the lymphatic valve.

When the lymphatic valve is closed (C(t) < Ccrit) there is no normal fluid flow

through the capillary wall relative to the tissue. Once the surrounding interstitium

expands enough to open the lymphatic valve (C(t) > Ccrit), i.e., to slide the

neighbouring lymphatic endothelial cells apart, fluid flow into the lumen occurs

through the gap between the endothelial cells, i.e., through boundary ∂Ω4a. We

model this by imposing continuity of pressure on the open part of the lymphatic

valve (∂Ω4a) while keeping the no flux condition on the remaining part of the



3.2. MODEL DEVELOPMENT 67

lymphatic wall (∂Ω4b). Thus

P = P l for x ∈ ∂Ω4a, (3.2.18)

∇P · n = 0 for x ∈ ∂Ω4b, (3.2.19)

where P l is the fluid pressure of the lymphatic lumen and n is the unit normal

vector (∂Ω4) pointing into the lumen.

The blood capillary, boundary ∂Ω1

The blood capillary wall is permeable to fluid flow, but provides a resistance to

it. This behaviour is modelled by imposing a linear permeability condition on the

wall,

K∇P · n = Lp(P − P b) for x ∈ ∂Ω1, (3.2.20)

where Lp is the vascular hydraulic permeability and n is the unit normal vector

to ∂Ω1 pointing into the capillary lumen.

Remaining edges of the periodic tile, boundaries ∂Ω2, ∂Ω3, ∂Ω5 and ∂Ω6

Due to the periodicity of the geometry the fluid only enters the interstitium

through the blood capillary and only exits via the lymphatic capillary (once the

valve has opened). Thus there is no fluid flux across the boundaries ∂Ω2, ∂Ω3,

∂Ω5 and ∂Ω6, namely

(vf − ∂u

∂t
) · n = 0 for x ∈ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω5 ∪ ∂Ω6, (3.2.21)

where n is the unit outward normal vector to each edge. It follows from Darcy’s

equation (3.2.2) that,

∇P · n = 0 for x ∈ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω5 ∪ ∂Ω6. (3.2.22)
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Solid Boundary Conditions

Here we restrict our attention to uniform dilations (and contractions) of the pe-

riodic tile so that it remains square. This assumption disallows buckling of the

lymphatic capillary and is reasonable for the small deformations considered in

this chapter. Since we are looking for a uniform dilation (or contraction) of the

interstitium the edges of the periodic tile have to remain horizontal (∂Ω2 and ∂Ω5)

and vertical (∂Ω3 and ∂Ω6).

Edges adjacent to the blood capillary, boundaries ∂Ω2 and ∂Ω6

Edges ∂Ω2 and ∂Ω6 of the periodic tile are only displaced in the tangential di-

rection, keeping the tile square. Thus without loss of generality we impose zero

normal displacement of boundaries ∂Ω2 and ∂Ω6. However, we allow boundaries

∂Ω2 and ∂Ω6 to deform freely in the tangential direction; which is equivalent to

imposing zero tangential shear stress conditions. These two conditions can be

formulated as

u1 = 0 and σ12 = 0 for x ∈ ∂Ω2, (3.2.23)

u2 = 0 and σ21 = 0 for x ∈ ∂Ω6. (3.2.24)

Edges adjacent to the lymphatic capillary, boundaries ∂Ω3 and ∂Ω5

The symmetry of the problem requires that edges ∂Ω3 and ∂Ω5 are allowed to

deform freely in the tangential direction, but can be displaced normally only by

a prior unknown distance uc, which we shall calculate. These quantities can be

formulated in the form,

u1 = uc and σ12 = 0 on x ∈ ∂Ω3, (3.2.25)

u2 = uc and σ21 = 0 on x ∈ ∂Ω5, (3.2.26)
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and the challenge now is how to compute uc.

Assuming that the periodic tile deforms uniformly (remains square), which en-

sures that the normal displacements on both the edges ∂Ω3 and ∂Ω5 are equal, this

displacement uc may then be calculated as follows. Integration of the continuity

equation (3.2.8) leads to,

∫∫∫
Ω

∇ · (K∇P ) dV =

∫∫∫
Ω

∇ ·
(
∂u

∂t

)
dV, (3.2.27)

which gives, on use of the divergence theorem (2D plane),

∫∫
∂Ω

K∇P · n dS =
∂

∂t

∫∫
∂Ω

u · n dS, (3.2.28)

where ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4 ∪ ∂Ω5 ∪ ∂Ω6. We can rewrite the right hand

side of equation (3.2.28) as,

∂

∂t

∫∫
∂Ω

u · n dS =
∂

∂t

 ∫
∂Ω3∪∂Ω5

u · n dS +

∫
∂Ω1∪∂Ω4

u · n dS +

∫
∂Ω2∪∂Ω6

u · n dS


=

∂

∂t
(2ucL(t)) +

∂

∂t

∫
∂Ω1∪∂Ω4

u · n dS, (3.2.29)

where L(t) is the width of the periodic tile (which is square) minus the radius of

the lymphatic capillary. Combining equations (3.2.28) and (3.2.29) together and

integrating with respect to time gives the following relationship for the normal

tissue displacement on boundaries ∂Ω3 and ∂Ω5 of the periodic tile,

uc =
1

2L(t)

 ∫
∂Ω1∪∂Ω4

[∫
K∇P · n dt

]
dS −

∫
∂Ω1∪∂Ω4

u · n dS

 . (3.2.30)

The first integral term on the right hand side of equation (3.2.30) is only over

the blood and lymphatic capillary wall boundaries because the other boundaries of



70 CHAPTER 3. MODEL OF HYPOTHESIS 2

the periodic tile have zero normal component of the pressure gradient. The second

integral term on the right hand side of equation (3.2.30) is only over ∂Ω1 and ∂Ω4

because the boundaries ∂Ω2 and ∂Ω6 have zero normal tissue displacement.

The blood and lymphatic capillary wall, boundaries ∂Ω1 and ∂Ω4

The fluid pressure in the lumen of the blood and lymphatic capillaries exert a

normal force on their walls. We assume that both capillary walls are not capable

of exerting a significant elastic force so that the normal stress exerted by the

solid matrix on each wall is balanced by their lumen fluid pressure. Furthermore,

since we assume that lymphatic valves are allowed to slide freely, we require the

tangential component of the solid stress on the capillary wall to be zero. These

two conditions can be formulated as follows,

σijnj = −P bni for x ∈ ∂Ω1, (3.2.31)

σijnj = −P lni for x ∈ ∂Ω4, (3.2.32)

where P b and P l denote the lumen fluid pressure in the blood and lymphatic

capillaries, respectively.

Initial conditions

We consider a problem in which the tissue is initially undeformed and at the

uniform reference pressure zero, that is

P

∣∣∣∣
t=0

= u1

∣∣∣∣
t=0

= u2

∣∣∣∣
t=0

= 0 in Ω. (3.2.33)

We then track the subsequent evolution until the deformation on the lymphatic

capillary wall is such that its circumference is C(t) = Ccrit and the valve starts to

slide open. We then use the resulting configuration as the initial condition for a
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problem in which the valve is open.

3.2.3 Parameter Values

There are 9 material parameter values in our governing equations and boundary

conditions, namely Lp, K, Li, E, ν, P l, P b, Ccrit, Loverlap, see table 3.1 for their

values. Appropriate values for these are discussed below.

The first and second Lamé constants, λ and µ, appear in (3.2.12) and (3.2.13).

The elasticity of drained soft tissues (2µ + λ) was measured by Swartz [126]

to be in the range of 104 Pa to 2 × 104 Pa. The Poisson’s ratio (ν) and the

Young’s Modulus (E) are given in [61] for soft tissue as ν = 0.35 and E = 104

Pa. This gives λ = 8642 Pa and µ = 3704 Pa. We note that the Poisson ratio

thus calculated is consistent with measurements made in [10, 108]. With these

parameter ranges E is in the range 5× 104 Pa to 1.3× 105 Pa, which is consistent

with the studies by [42, 61].

The interstitial hydraulic conductivity, K (permeability/viscosity) appears in

(3.2.8). Levick [76] measured fluid flow through the interstitium and other fibrous

matrices to determine values for the interstitial permeability, finding it to be

in the range 1.5 × 10−14m2 to 1.5 × 10−19m2. We choose the average value of

7.6× 10−15m2 [85]. The viscosity of interstitial fluid was measured by Dixon [31]

to be 1.5×10−3 kgm−1s−1. This leads to a value K of 5.07×10−12 m3skg−1. Basser

[7] and Swartz’s [126] experimentally determined values of the same quantity are

in broad agreement at 7.5×10−12 m3skg−1 and 1.123×10−12 m3skg−1, respectively.

The vascular hydraulic permeability of a blood capillary, Lp, was measured

in various normal tissues by Jain et al [58], Levick [76], Pusenjak [96], Baxter

and Jain [10] and Sarntinoranont et al [108] and estimated to be in the range

2.78 × 10−11 m2skg−1 to 1.37 × 10−9 m2skg−1. We take the average value Lp =

7.0× 10−10 m2skg−1.
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The blood capillary pressure (average radius 5µm) is normally in the range

2666 Pa to 4000 Pa [13, 58]. Lymphatic lumen pressures have been measured

by Lee [75] to be in the range up to 440 Pa. Lymphatic capillaries normally

have a radius in the range of 5 µm to 15 µm [99]. However, more recent studies

show that in rare cases lymphatic capillaries can reach a large radius of 30 µm

[80, 122]. In this model we assume a lymphatic capillary radius of 10 µm. There-

fore Ccrit = 4Lovlap+2πRl = 66.8 µm, where Rl is the radius of the blood capillary

and Lovlap = 1µm is the length of the lymphatic endothelial cell overlap, ranging

from 0.1µm to 2µm [71, 72]. Measurements from Leak [72] show that the distance

between lymphatic and blood capillaries can be up to 400 µm apart. However,

more recent studies [44, 109] found distances between lymphatic and blood capil-

laries between 50 µm and 250 µm. In this chapter we assume the distance between

lymphatic and blood capillaries is 150 µm.

Parameter Value Units Description Source
Lp 7.0× 10−10 m2skg−1 The vascular hydraulic perme-

ability.
[10, 58, 108]

K 5.07× 10−12 m3skg−1 Hydraulic conductivity of the in-
terstitium

[10, 58, 108]

Li 1.17× 10−4 m The initial width of the periodic
tile, which is square, minus the
radius of the lymphatic capil-
lary. So L(0) = Li.

[44, 109]

ν 0.35 The Poisson ratio [61, 108, 126]

E 104 Pa The Young’s modulus [61, 126]

P l 100 Pa Pressure in lymphatic lumen [75]

P b 3333 Pa Blood capillary pressure [13]

Ccrit 66.8 µm Critical lymphatic circumfer-
ence

[71, 72]

Lovlap 1 µm Lymphatic endothelial cell over-
lap

[71, 72]

Table 3.1: Summary of dimensional parameters used in the model along with their
references. Note the values of E = µ(3λ+2µ)/(λ+µ) and ν = λ/(2(λ+µ)) above
correspond to λ = 8642 and µ = 3704.
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3.2.4 Nondimensionalization

We nondimensionalize the model to determine which key combination of parame-

ters in the governing equations and boundary conditions are of most importance.

A reasonable length scale for the problem is Li, the initial width of the periodic

tile minus the radius of the lymphatic capillary. With this in mind, we scale the

governing equations and boundary conditions by

P = (2µ+ λ)P , σij = (2µ+ λ)σij, u = Lu, t =
L2

K(2µ+ λ)
t. (3.2.34)

Dimensionless Model

The dimensionless governing equations are (after dropping the bars),

∂

∂t

(
∂u1

∂x1

+
∂u2

∂x2

)
=

∂2P

∂x2
1

+
∂2P

∂x2
2

, (3.2.35)

∂2u1

∂x2
1

+
∂2u2

∂x1∂x2

− µ̂
(

∂2u2

∂x1∂x2

− ∂2u1

∂x2
2

)
=

∂P

∂x1

, (3.2.36)

∂2u1

∂x1∂x2

+
∂2u2

∂x2
2

+ µ̂

(
∂2u2

∂x2
1

− ∂2u1

∂x1∂x2

)
=

∂P

∂x2

. (3.2.37)

The dimensionless fluid flow boundary conditions on the lymphatic capillary are1,

P = P̂ l on x ∈ ∂Ω4a, (3.2.38)

∇P · n = 0 on x ∈ ∂Ω4b. (3.2.39)

On the blood capillary wall we have,

∇P · n = Rb(P − P̂ b) on x ∈ ∂Ω1, (3.2.40)

1See Table 3.2 for definitions of all the dimensionless parameter groupings.
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and on the remaining edges of the periodic tile we have,

∇P · n = 0 on x ∈ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω5 ∪ ∂Ω6. (3.2.41)

The dimensionless solid boundary conditions are,

u1 = σ12 = 0 on x ∈ ∂Ω2, (3.2.42)

u2 = σ21 = 0 on x ∈ ∂Ω6, (3.2.43)

u1 = uc and σ12 = 0 on x ∈ ∂Ω3, (3.2.44)

u2 = uc and σ21 = 0 on x ∈ ∂Ω5, (3.2.45)

where uc is calculated by,

uc =

∫
∂Ω1∪∂Ω4

∫
∇P · n dt dS −

∫
∂Ω1∪∂Ω4

u · n dS. (3.2.46)

On the blood and lymphatic capillary wall we have,

σijnj = −P̂ bni on x ∈ ∂Ω1, (3.2.47)

σijnj = −P̂ lni on x ∈ ∂Ω4. (3.2.48)

The dimensionless initial conditions are,

P

∣∣∣∣
t=0

= u1

∣∣∣∣
t=0

= u2

∣∣∣∣
t=0

= 0 in Ω. (3.2.49)

Table 3.2 shows the definitions and values of all the dimensionless parameters.
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Parameter Definition Estimated Value
µ̂ µ

2µ+λ
= 1−2ν

2(1−ν)
0.23

Rb
LLp
K

0.016

P̂ b P b

2µ+λ
= P b(1+ν)(1−2ν)

E(1−ν)
0.21

P̂ l P l

2µ+λ
= P l(1+ν)(1−2ν)

E(1−ν)
0.02

Table 3.2: The values of the dimensionless groupings.

3.3 Conclusion

In conclusion we have built a model based on Hypothesis 2. This states that

lymphatic drainage occurs when the expansion of the interstitial space surround-

ing the lymphatic capillaries exceeds a certain amount. We were motivated to

consider lymphatic drainage in an idealized 2D periodic geometry, in which blood

and lymphatic capillaries were distributed uniformly through the tissue (see Fig-

ure 3.1). In contrast to earlier studies [42, 85, 99], in which lymphatic valves are

presumed to open in response to fluid pressure differences between the intersti-

tium and lymphatic lumen, here we considered valves comprised of overlapping

lymphatic endothelial cells that slide apart (and open) in response to interstitial

deformations. We assume that no buckling occurs in both the blood and lym-

phatic capillaries. The model treated solid matrix deformations in conjunction

with three significant sources of resistance to fluid flow. The latter are: the per-

meable membrane around the blood capillaries, the resistance of the interstitium

and that of the overlapping endothelial cells forming the lymphatic valve.





Chapter 4

Solution to the Model of

Hypothesis 2

4.1 Introduction

In this chapter we numerically solve the model of Hypothesis 2 by using the finite

element package, Comsol Multiphysics. We begin by formulating the numerical

solution to give the reader a better understanding of how and why we solve the

model this way. We present our results graphically and draw our conclusions. We

also investigate the effects of parameter influence on lymphatic drainage.

4.2 Numerical Model Formulation

Here we describe how we use the finite element package Comsol Multiphysics

(CM) to solve the model formulated in Chapter 3 for fluid drainage by the lym-

phatic system. CM is an engineering, design, and finite element analysis software

environment for the modelling and simulation of physics–based problems. CM

facilitates all the steps in the modelling process, defining the geometry, meshing,

specifying the physics, solving, and visualization.

77
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Here we use the poroelastiticity equations defined in CM and compare them to

our equations in Chapter 3, equations (3.2.8) and (3.2.11). Also we interpret the

boundary conditions, (3.2.18) to (3.2.32), used in CM in differential form. Then

we use CM to model the solid matrix deformations and the interstitial fluid flow.

Solution of Poroelastic Equations using Comsol

The poroelastic module in CM describes the interaction between the fluid motion

and the interstitium deformation in a porous medium. Solving the poroelasticity

equations in CM involves coupling of its Darcy’s law Interface (which describes the

fluid flow in a porous medium) with its solid mechanics Interface (which has the

equations for structural displacement) via Biot’s constitutive equations. Below

we describe each of these interfaces.

4.2.1 Darcy’s Law Interface

The Darcy’s Law Interface, found under the porous media and subsurface flow

module, can be used to solve for the fluid movement through interstices in a

porous medium. Darcy’s law states that the flux of fluid (vf ) is determined by

the pressure gradient (∇P ), the fluid viscosity (µ), and the permeability of the

porous medium (κ),

vf = −κ
µ
∇P. (4.2.1)

The Darcy’s Law Interface combines Darcy’s Law with the fluid continuity equa-

tion,

∂

∂t
(ρφ) +∇ · (ρφvf ) = Qm, (4.2.2)

where ρ is the density of the fluid, φ is the porosity of the tissue and Qm is the

mass source term. In our case the mass source term (Qm) is zero. Porosity is
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defined as the fraction of the control volume that is occupied by pores. Thus,

porosity can vary from zero for pure solid regions to unity for pure fluids.

4.2.2 Solid Mechanics Interface

The solid mechanics interface, found under the structural mechanics module, can

be used to solve (linear) elasticity problems for displacements, strains and stresses

in a material.

Following the small displacement assumption, the normal strain components

and the shear strain components, εij, are given from the deformations, ui, as

follows,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.2.3)

The stress in a material is described by the symmetric stress tensor (σij). The

stress strain relationship in CM is written in matrix form as,

σij = Dεij, (4.2.4)

where D is a 3×3 elasticity matrix. This is because of our plain strain assumption

(ε13 = ε23 = ε33 = 0). Dij is described in terms of the Young’s modulus E and

the Poisson’s ratio ν. The stress and strain components are described in vector

form with the three stress and strain components in column vectors defined as,


σ11

σ22

σ12

 =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2



ε11

ε22

ε12

 . (4.2.5)

The equilibrium equations for the structural mechanics module in a 2D geometry
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are,

∂σ11

∂x1

+
∂σ12

∂x2

= −F1, (4.2.6)

∂σ21

∂x1

+
∂σ22

∂x2

= −F2, (4.2.7)

where F = (F1, F2) denotes the body forces. In our case the body forces are

negligible, and we take F1 = F2 = 0, so that equations 4.2.6 and 4.2.7 can be

expressed in compact form as

∂σij
∂xj

= 0. (4.2.8)

4.2.3 Poroelasticity Interface

As noted earlier, the Poroelasticity Interface is the combination of the Darcy’s

Law Interface with the Solid Mechanics Interface. It modifies the fluid continu-

ity equation (4.2.2), to include a time rate of change of strain, from the solid

deformation equations, as follows

∇ · (vf ) = −αb
∂

∂t
(∇ · u), (4.2.9)

where αb = 1 is the Biot–Willis coefficient. The Poroelastic module also adds

the pore pressure to the stress–strain relationship, equation (4.2.4), so that the

governing solid displacement equation is

σij = Dεij − αbPδij. (4.2.10)

The governing equations (4.2.8) and (4.2.9), with input parameters κ, µ, αb and

D, are numerically solved to determine the Darcy’s flux and the deformations of

the solid matrix. Combining equations (4.2.1), (4.2.8) and (4.2.9) results in the

same governing equations derived in Chapter 3, equations (3.2.8) and (3.2.11).
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4.2.4 Boundary Conditions

Here we interpret the boundary conditions used in CM in differential form. Figure

4.1 reproduces our single periodic tile which we use as the domain in CM.

(a) (b)

Figure 4.1: Our single periodic tile, displaying interstitial fluid flowing from a
blood capillary to a lymphatic capillary. The arrows in (a) indicate the direction
of the fluid movement.

We decouple the boundary conditions into fluid and solid conditions (i.e. one

from the fluid flow module and two from the structural mechanics module). In

the next two subsections we display, in differential form, the boundary conditions.

Fluid boundary conditions

Darcy’s Law is evaluated on a given boundary to determine the fluid boundary

conditions.

Evaluation of ∂Ω4a and ∂Ω4b

The lymphatic capillary wall (∂Ω4) is split into two parts, which are denoted

by ∂Ω4a and ∂Ω4b, see Figure 4.1. Here boundary ∂Ω4a represents the interface

between the lymphatic lumen and the interstitium not covered by lymphatic en-

dothelial cells (through which interstitial fluid flows) while ∂Ω4b represents the
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endothelial cell wall (through which there is no flow). We assume that the open

section of the lymphatic valve is located half way along the capillary boundary,

as illustrated in Figure 4.1.

There are two possible ways of evaluating ∂Ω4a and ∂Ω4b in CM. One is using

length constrictions i.e. fix the length of the boundary ∂Ω4b, and the other is

building a function that determines where ∂Ω4a and ∂Ω4b lie along the boundary.

Using length constrictions in this numerical package is a crude way of evaluating

each part of this boundary, so we use the other approach. We introduce two new

variables,

θs =
πCcrit
4C(t)

(4.2.11)

θf =
π(2C(t)− Ccrit)

4C(t)
(4.2.12)

where θs and θf are the angles from the horizontal to the start of ∂Ω4a and the

end of ∂Ω4a respectively, to determine where ∂Ω4a and ∂Ω4b lie along ∂Ω4. So,

θs < ∂Ω4a < θf and ∂Ω4b > θf ∪ ∂Ω4b < θs.

Using these angles in CM allows us to use only one boundary condition on the

lymphatic capillary and still incorporate the valve mechanics. To determine C(t)

we introduce a boundary integral unit with respect to the material coordinates

and integrate over ∂Ω4.

The lymphatic capillary wall, boundary ∂Ω4

We assume the lymphatic valve is closed when C(t) < Ccrit, and open when

C(t) > Ccrit. When the lymphatic valve is closed there is no flow into the lumen

and when the valve is open fluid flows into the lumen only through ∂Ω4a.
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The boundary condition we use in CM on the lymphatic capillary is

∇P · n = (∇P · n + P − P l)× if(θs < θ < θf , 1, 0), (4.2.13)

where θ is the angle from the horizontal. This condition then gives

P = P l on x ∈ ∂Ω4a (θs < ∂Ω4a < θf ), (4.2.14)

∇P · n = 0 on x ∈ ∂Ω4b(∂Ω4b > θf ∪ ∂Ω4b < θs), (4.2.15)

where P l is the fluid pressure of the lymphatic lumen. These are the same as the

boundary conditions derived in Chapter 3 on boundary ∂Ω4, equations (3.2.18)-

(3.2.19).

The blood capillary wall, boundary ∂Ω1

The blood capillary wall is permeable to fluid but provides a resistance to it. We

model this behaviour by using a permeability condition on the wall.

We use the boundary condition Pervious Layer in CM to model the fluid flow

through the blood capillary wall. The Pervious Layer feature provides a boundary

condition that describes a mass flux through a semi–pervious layer connected to

an external fluid source (P b) at a different pressure. This condition is represented

by the following differential equation,

κ

µ
∇P · n = Lp(P − P b) on x ∈ ∂Ω1, (4.2.16)

where n is the unit outward normal vector to the blood capillary wall. This is the

same as the boundary condition derived in Chapter 3 on boundary ∂Ω1, equations

(3.2.20).
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Remaining edges of the periodic tile, boundaries ∂Ω2, ∂Ω3, ∂Ω5 and ∂Ω6

Due to the periodicity of the geometry the fluid only enters the interstitium

through the blood capillary and only exits via the lymphatic capillary (once the

valve has opened). Thus there is no fluid flux across the boundaries ∂Ω2, ∂Ω3,

∂Ω5 and ∂Ω6 of the periodic tile.

The No Flow feature in CM defines a condition that there is no fluid flow

across a given boundary. This effect is represented with the No Flow boundary

condition,

∇P · n = 0 on x ∈ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω5 ∪ ∂Ω6, (4.2.17)

where n is the unit outward normal vector to each edge. This is the same as the

boundary condition derived in Chapter 3 on boundaries ∂Ω2, ∂Ω3, ∂Ω5 and ∂Ω6

(equation (3.2.22)).

Solid Boundary Conditions

Here we restrict our attention to uniform dilations (and contractions) of the pe-

riodic tile so that it remains square. We note that since we are looking for a

uniform dilation or contraction of the interstitium that the edges of the periodic

tile have to remain horizontal (∂Ω2 and ∂Ω5) and vertical (∂Ω3 and ∂Ω6).

Edges adjacent to the blood capillary, boundaries ∂Ω2 and ∂Ω6

As stated earlier, edges ∂Ω2 and ∂Ω6 of the periodic tile have to be displaced

tangential to keep the tile square. Thus, without loss of generality we impose zero

normal tissue displacement on boundaries ∂Ω2 and ∂Ω6. We allow the boundaries

∂Ω2 and ∂Ω6 to deform freely in the tangential direction; this is equivalent to

imposing zero tangential shear stress along the boundaries.

The Roller feature in CM adds a roller constraint as the boundary condition,
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that is, the tissue displacement is zero in the direction perpendicular to the bound-

ary, but the boundary is free to move in the tangential direction. This effect is

represented with the Roller condition,

u1 = 0 and σ12 = 0 on x ∈ ∂Ω2, (4.2.18)

u2 = 0 and σ21 = 0 on x ∈ ∂Ω6. (4.2.19)

These are the same as the boundary conditions derived in Chapter 3 on bound-

aries ∂Ω2 and ∂Ω6, equations (3.2.23)-(3.2.24).

Edges adjacent to the lymphatic capillary, boundaries ∂Ω3 and ∂Ω5

Keeping the symmetry in this problem, we allow edges ∂Ω3 and ∂Ω5 of the periodic

tile to deform freely in tangential direction; this is equivalent to imposing zero

tangential shear stress along the boundaries. However, we must allow both of

these edges to deform normally by a distance uc, which we shall calculate.

The Prescribed Displacement feature in CM adds a condition where the tissue

displacement is prescribed in one direction to the boundary. If a displacement is

prescribed in one direction, this leaves the solid free to deform in the other direc-

tion. These effects are represented with the Prescribed Displacement condition,

u1 = uc and σ12 = 0 on x ∈ ∂Ω3, (4.2.20)

u2 = uc and σ21 = 0 on x ∈ ∂Ω5, (4.2.21)

where uc is calculated by

uc =
1

2L(t)

 ∫
∂Ω1∪∂Ω4

[∫
K∇P · n dt

]
dS −

∫
∂Ω1∪∂Ω4

u · n dS

 , (4.2.22)

where L(t) is the width of the periodic tile, which is a square, minus the radius
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of the lymphatic capillary.

The first integral term on the right hand side of equation (4.2.22) cannot be

implemented directly in CM because it is a time dependent integral and the inbuilt

time integrals in CM (timeint and timeavg) are only available during the results

evaluation. We require access to a continuously evolving time integral on this

boundary. So we introduce a new time dependent variable, T1, as well as defining

line integrals over the blood and lymphatic capillaries. We assume that T1 is

defined as the time integral of K∇P · n. Using the boundary conditions on the

blood and lymphatic capillary wall, T1 can be defined as

dT1

dt
= K∇P · n on x ∈ ∂Ω1,

= Rb(P − P b) on x ∈ ∂Ω1, (4.2.23)

dT1

dt
= K∇P · n on x ∈ ∂Ω4,

= K|(∇P · n)n + (∇P · t)t| on x ∈ ∂Ω4,

= K

√(
∂P

∂x1

)2

+

(
∂P

∂x2

)2

on x ∈ ∂Ω4, (4.2.24)

with initial conditions T1(0) = 0, where n and t are the normal and tangential

components.

To implement the second integral term on the right hand side of equation

(4.2.22) in CM, we just use our newly defined line integrals over the blood and

lymphatic capillaries,

∫
∂Ω1∪∂Ω4

u · n dS =

∫
∂Ω1

|(u · n)n + (u · t)t| dS +

∫
∂Ω4

|(u · n)n + (u · t)t| dS,

=

∫
∂Ω1

√
u2

1 + u2
2 dS +

∫
∂Ω4

√
u2

1 + u2
2 dS. (4.2.25)

Hence conditions (4.2.20), (4.2.21) and (4.2.22) are the same as the boundary
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conditions derived in Chapter 3 on boundaries ∂Ω3 and ∂Ω5, equations (3.2.25),

(3.2.26) and (3.2.30).

Blood and lymphatic capillary, boundaries ∂Ω1 and ∂Ω4

The fluid pressure in the lumen of the blood and lymphatic capillaries exerts a

normal force on their walls. We assume that both capillary walls are not capable

of exerting a significant elastic force so that the normal stress exerted by the solid

matrix on each wall is balanced by their lumen fluid pressure. Furthermore, since

we assume the valves are allowed to slide freely we require that the tangential

component of the solid stress on the capillary wall to be zero.

The Boundary Load feature in CM provides a pressure acting on a boundary

that equals the normal stress on the boundary. This is represented with the

boundary load condition,

σijnj = −P bni on x ∈ ∂Ω1, (4.2.26)

σijnj = −P lni on x ∈ ∂Ω4. (4.2.27)

These are the same as the boundary conditions derived in Chapter 3 on bound-

aries ∂Ω1 and ∂Ω4, equations (3.2.31)-(3.2.32).

Dependence of the steady state solution on P̂ b and P̂ l. We note that

the steady state solution satisfies (3.2.39)-(3.2.48) and that these equations are

invariant under the transformation

P → P + c, P̂ b → P̂ b + c, P̂ l → P̂ l + c, u→ u,

σ11 → σ11 − c, σ12 → σ12, σ21 → σ21, σ22 → σ22 − c,

where c is an arbitrary constant. Such a transformation leaves the Darcy flow

in the tissue −∇P and the tissue deformation u unchanged and thus leads to a
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physically identical solution. It is thus clear that the steady state solution does

not depend independently on lymphatic lumen pressure P̂ b and blood capillary

pressure P̂ l (neither of which are invariant under the transformation) but depends

solely on the pressure difference P̂ b − P̂ l (which is invariant under the transfor-

mation).

4.3 Solution and Results

Here we display the numerical solutions for the Darcy flux and the deformations of

the solid matrix. We solve the model numerically using the Comsol Multiphysics

Finite element package.

We produce plots of the interstitial deformation to demonstrate three key

stages of the drainage process. In Figure 4.2, we plot the interstitial deformation

at times during the drainage process (the arrows in each plot indicate the direction

of the fluid flow). In Figure 4.2a, the lymphatic valve is closed and since the

inflowing interstitial fluid cannot escape the interstitium it causes it to deform,

resulting in the boundaries of the periodic tile moving outwards. At a later stage in

the process (Figure 4.2b), the interstitial expansion about the lymphatic capillary

is sufficiently large to cause the lymphatic endothelial cells to slide apart creating

a gap for the interstitial fluid to drain into the lymphatic lumen. For sufficiently

small gaps, the resistance to drainage is sufficiently large so that the net flow into

the interstitium remains positive and the solid matrix keeps expanding. Once the

interstitial deformation is large enough (Figure 4.2c), the gap length of the open

section of the valve becomes sufficient to lower the resistance to drainage to a level

where the drainage rate through the lymphatic valve exceeds the fluid inflow (from

the blood capillary), and the solid matrix begins to contract. The gap length here

has reached its peak and the interstitium contracts until the lymphatic endothelial
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cells slide together again, closing the lymphatic valve.

(a) (b)

(c)

Figure 4.2: These three plots display the solid matrix deformations. The colour
map shows the interstitial deformations in µm, the black lines are the streamlines
and the arrows show the fluid flow direction. We have marked the undeformed
configuration in each plot. (a) The initial deformation of the solid matrix when
the lymphatic valve is closed. (b) The deformation of the solid matrix once the
lymphatic endothelial cells side apart (C(t) > Ccrit). (c) The maximum expansion
of the solid matrix before it starts to contract, i.e. the maximum gap length of
the open section of the lymphatic valve.

Figures 4.3a, 4.3b and 4.3c correspond to Figures 4.2a, 4.2b and 4.2c respec-

tively, but have zoomed into the area around the lymphatic capillary. These plots

show how the flow in the vicinity of the lymphatic valve changes as the valve

opens. Since it is still hard to see the sliding action of the lymphatic valve, we

have sketched the three key stages of the lymphatic valve opening in the sliding

door fashion in Figure 4.4.
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(a) (b)

(c)

Figure 4.3: These display the solid matrix deformations of the lymphatic capillary.
The colour map shows the interstitium deformations in µm, the black lines are
the streamlines and the arrows show the fluid flow direction. We have marked the
undeformed configuration in each plot. (a) The initial solid matrix deformation
of the lymphatic capillary. (b) The solid matrix deformation of the lymphatic
capillary once the endothelial cells side apart (C(t) > Ccrit). (c) The maximum
expansion of the lymphatic capillary before it starts to contract.

The gap length of the open section of the lymphatic valve is initially zero

in Figure 4.5a (i.e. when the valve is closed). It remains closed until enough

fluid enters the interstitium to cause an expansion that slides open the valve (this

happens at t = 128s). The length of this gap increases until the outflow into

the lymphatics exceeds the inflow from the blood capillary. Then the gap length

decreases until the lymphatic valve closes. In this first cycle the gap length reached

a maximum length of 0.045 µm. After two valve cycles the interstitium relaxes

into a steady state, where the gap length is constant, 0.01 µm.
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Figure 4.4: A drawing of the three stages described earlier that the lymphatic
valve undergoes in draining interstitial fluid.

The Darcy flux into the lymphatic lumen was also calculated (Figure 4.5b).

This is initially zero when the valve is closed and first becomes non zero when the

valve opens (t = 128s). Integrating the velocity around the capillary gives us the

Darcy flux into the lumen. It reaches a maximum of 9.74× 10−11m2/s when the

gap length is at its maximum in the first valve cycle. After two valve cycles the

interstitium relaxes into a steady state, where the Darcy flux is constant, 0.35×

10−11m2/s. This corresponds to a net Darcy flux per unit length of lymphatic

capillary of 1.41× 10−11m2/s, since we hypothesize four valves around the edge of

the capillary.

(a) (b)

Figure 4.5: (a) This plot displays how the length of the open section of the
lymphatic valve changes over time. (b) This plot displays the Darcy flux into the
lymphatic lumen against time.
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4.3.1 Parameter Influence

Here we investigate the role of parameter variations on lymphatic drainage by

independently varying: (i) Young’s modulus, (ii) pressure difference, (iii) vascular

permeability, and (iv) initial length of lymphatic endothelial cell overlap in a

series of numerical experiments. In Table 4.1 we provide a key that can be used

to interpret the results of these experiments which are presented in Figures 4.6-4.9.

In all of these figures, as the parameter of interest is varied, we plot the steady

state Darcy flux through the tissue (from blood capillary to lymphatic capillary)

and the total steady state area of the tissue as a proportion of the undeformed area

of the tissue. These quantities are both physiologically important, particularly the

latter which gives a measure of tissue swelling, and thus also of oedema.

Young’s
modulus
E

Pressure
Difference
P b − P l

Vascular Perme-
ability Lp

Endothelial
cell overlap
Lovlap

Figure 4.6 Varying 3233 Pa 7× 10−10 m2skg−1 1 µm

Figure 4.7 104 Pa Varying 7× 10−10 m2skg−1 1 µm

Figure 4.8 104 Pa 3233 Pa Varying 1 µm

Figure 4.9 104 Pa 3233 Pa 7× 10−10 m2skg−1 Varying

Table 4.1: A key to the parameter variations in Figures 4.6-4.9 (all other param-
eters as in Table 3.1).

A brief summary of the results plotted in figures 4.6-4.9 is made below in Table

4.2 which shows how the steady state Darcy flux and the gap length are affected

as the model parameters are varied.
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Steady
State Darcy
Flux

Tissue
Expansion

Young’s Modulus E
30% ↑ 18% ↓ 0.158% ↓
50% ↓ 50% ↑ 0.819% ↑

Pressure Difference P b − P l 24% ↑ 39% ↑ 57% ↑
69% ↓ 90% ↓ 85% ↓

Vascular Permeability Lp
43% ↑ 46% ↑ 1.26% ↑
96% ↓ 55% ↓ 1.85% ↓

Overlap Length Lovlap
100% ↑ 55% ↓ 9.26% ↓
75% ↓ 65% ↑ 4.07% ↑

Table 4.2: Quantifying how the model parameters effect the steady state Darcy
flux and the gap length of the open section of the lymphatic valve.

Young’s Modulus. The Young’s modulus is an important measure of the phys-

iological state of a tissue. It is known for example that tissue elasticity decreases

with old age [28, 64, 114], pregnancy [63] and obesity [25, 133]. The effects of vary-

ing the Young’s modulus on the fluid flux into the lymphatic lumen are shown

in Figure 4.6. As might be expected increases in stiffness (corresponding to an

increase in Young’s modulus) lead to significant decreases in the fluid flux through

the tissue and a decrease in time to reach steady state. Perhaps somewhat sur-

prisingly increases in Young’s modulus result only in very slight decreases in the

steady–state tissue area/undeformed area. However this may be explained by

noting that a sliding valve opens in response to tissue deformation (rather than

pressure difference) and so acts to control tissue dilatation. We have been unable

to find physiological evidence, in the literature, that demonstrates a clear negative

correlation between edema and the Young’s modulus of tissues.
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(a) (b)

(c) (d)

Figure 4.6: Exploring the effects of changes to the Young’s modulus on the
drainage behaviour. (a) The steady state gap length of the open section of the
lymphatic valve. (b) The steady state Darcy flux into the lymphatic lumen. (c)
The time it takes to relax to steady state. (d) Final area divided by undeformed
area.

Pressure Difference. Increases in blood pressure in hypertensive patients re-

sult in increases in the pressure difference, P b−P l, between the blood capillaries

and the lymphatic capillaries. Hypertension occurs more frequently in patients

with diabetes compared with patients without the disease [119]. It is also more

common in obese patients [97, 118], cancer patients [88] and in pregnancy [79].

The effects of varying the pressure difference, P b − P l, on the fluid flux into

the lymphatic lumen are shown in Figure 4.7. As might be expected physiological

increases in the pressure difference result in a significant increase in the Darcy flow

through the tissue but also in a significant increase in the steady state dilatation of



4.3. SOLUTION AND RESULTS 95

the tissue (as measured by the steady–state tissue area/undeformed tissue area).

Given that we previously stated that a sliding valve is good at controlling tissue

deformation (even as other parameters change) the latter statement may seem

slightly surprising. However it must be remembered that the lymphatic valve

opens in response to the local dilatation about the lymphatic capillary (where

the pressure is relatively low) and that an increase in pressure difference causes

an increase in the deformation gradient within the tissue in which larger dilata-

tions occur about the blood capillary (where the pressure is high) than about the

lymphatic capillary. It is for this reason that even a sliding valve (that opens in

response to tissue deformation) is unable to control increases in tissue dilatation

brought about by increases in the pressure difference between blood capillaries

and the lymphatic capillaries. We therefore conclude (from figure 4.7d and the

above argument) that our postulated mechanism for valve opening would lead to

hypertensive patients being particularly susceptible to oedema; this conjecture is

backed up by clinical observations [43].
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(a) (b)

(c) (d)

Figure 4.7: Exploring the effects of changes to the lymphatic lumen pressure on
the drainage behaviour. (a) The steady state gap length of the open section of the
lymphatic valve. (b) The steady state Darcy flux into the lymphatic lumen. (c)
The time it takes to relax to steady state. (d) Final area divided by undeformed
area.

Vascular Permeability. The effects of varying the vascular permeability on

the fluid flux into the lymphatic lumen are shown in Figure 4.8. Of particular

note is that physiological increases in vascular permeability result in significant

increases in the flow through the tissue (figure 4.8b) but that the same increase

in permeability result in only slight increases in tissue deformation (figure 4.8d).

Once again, as in the case of the Young’s modulus, the small change in tissue

deformation with increase in permeability may be attributed to the fact that it

is the tissue expansion that is responsible for opening the sliding valve. Clinical

studies show that in obesity [37], pregnancy [2, 79] and in the elderly [40, 68], that
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vascular permeability increases and furthermore that cases of oedema are common

in patients who have a high vascular permeability [9, 121]. This is slightly at

odds with the results of our model. However we note that increases in vascular

permeability may also be associated with the entry of white blood cells and other

large objects into the tissue that can act to block fluid drainage paths and cause

swelling. Another possibility, that should perhaps be considered in future, is that

real valves may actually be activated by a combination of tissue dilatation and

pressure differences across the lining of the lymphatic capillaries.

(a) (b)

(c) (d)

Figure 4.8: Exploring the effects of changes to the hydraulic conductivity on the
drainage behaviour. (a) The steady state gap length of the open section of the
lymphatic valve. (b) The steady state Darcy flux into the lymphatic lumen. (c)
The time it takes to relax to steady state. (d) Final area divided by undeformed
area.
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Length of the Lymphatic Endothelial Cell Overlap. The effects of varying

the length of the lymphatic endothelial cell overlap on the fluid flux into the

lymphatic lumen are shown in Figure 4.9. The lymphatic endothelial cell overlap

(Ccrit − C(0)) values fluctuate for different lymphatic capillaries throughout the

body, most ranging between 0.1µm to 2µm [71, 72]. As shown in figure 4.9(d),

increasing this length increases the tissue dilatation; this is because it takes a

greater local tissue deformation to slide open the valve. As also might be expected

the fluid flux through the tissue (figure 4.9b) also decreases with increases in

overlap length.

(a) (b)

(c) (d)

Figure 4.9: Exploring the effects of changes to the overlap length on the drainage
behaviour. (a) The steady state gap length of the open section of the lymphatic
valve. (b) The steady state Darcy flux into the lymphatic lumen. (c) The time it
takes to relax to steady state. (d) Final area divided by undeformed area.

We have been unable to find physiological evidence, in the literature, that
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lymphatic endothelial cell overlap length varies in different disease states. However

it does vary in different organs, but there seems to be no physiological evidence

that it changes in old age, pregnancy and obesity.

4.3.2 Fluctuation to the Lymphatic Lumen Pressure.

The lumen pressure in the primary lymphatic system fluctuates as a consequence

of pressure variations in the secondary lymphatic system [34, 130, 137]. In order

to model this fluctuation in lymphatic lumen pressure we apply a periodic lym-

phatic pressure P l and investigate its effects on primary lymphatic drainage. In

particular we take the lymphatic lumen pressure equals 100 Pa for t < 300s and

100(1 + sin(2πt/n)) Pa for t > 300s (where the period n = 2s) and, as in the pre-

vious dynamic simulation, we start the tissue from its undeformed state at t = 0.

This profile for the lumen pressure has been chosen so that it begins to fluctuate

only after the system has relaxed to a steady state. This choice was made because

we believe that the magnitude of pressure fluctuations are sufficiently small that

they cause only minor perturbations to the steady state. This belief is borne out

by the results to the numerical solution plotted in figure 4.10.

Figure 4.10 displays the effects of periodic fluctuations to the lymphatic lu-

men pressure on the Darcy flux. Figure 4.10a shows the Darcy Flux against time.

This graph is identical to Figure 4.5b with the exception that after the system

has relaxed to a steady state physiologically small perturbations to the lymphatic

lumen pressure are applied. As can be seen this results in only very small pertur-

bations to the Darcy Flux about its steady state value. Figures 4.10b and 4.10d,

show blow ups of the Darcy flux as it oscillates about the steady state and of the

driving lymphatic lumen pressure.
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(a) (b)

(c) (d)

Figure 4.10: Exploring the effects of changes to the lymphatic lumen pressure on
the drainage behaviour. (a) The Darcy Flux against time. (b) The steady state
Darcy flux into the lymphatic lumen against time. (c,d) The lymphatic lumen
pressure against time.

In the following section we discuss our results and compare them with other

lymphatic drainage models.

4.4 Discussion

20% of the body’s mass is thought to be interstitial fluid [76]. Thus understanding

the mechanics of the lymphatic system and its role in interstitial drainage is of sig-

nificant physiological importance. This work outlined a hypothesis for lymphatic

drainage of interstitial fluid that flows into the interstitium from blood capillar-

ies. This hypothesis is based on the conjecture of Rossi [106] that endothelial gap

junctions on the lymphatic capillary walls are pulled open when the surround-
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ing tissue swells in response to fluid influx. In order to model this we needed to

account for interstitial flow and the swelling and deformation of the interstitial

matrix as fluid enters it. We modelled the lymphatic valve cycle and concluded

that the interstitial deformations relax to a steady state, with a net Darcy flux

per unit length of lymphatic capillary of 1.41× 10−11m2/s and the gap length of

the lymphatic valve is 0.01 µm based on our physiological parameter estimates.

Validating our estimated volumetric flow rate through the initial lymphatics

against experimental data is not straight forward because of the magnitude of vari-

ations in the geometrical and physical parameters of different lymphatic capillaries

and in the surrounding environment. Nonetheless, we attempt to compare our re-

sults to the experimental literature on initial lymphatic uptake [100, 124, 126]

(on mice) and [56] (on rabbits). Ikomi et al [56], measured volumetric flow rates

of the order of 1.1 mL/h in the initial lymphatics of a rabbits hindleg. Using a

conversion factor of 0.9 calculated in [85], which estimates the length of a single

initial lymphatic channel and the total length of endothelial cell junctions in the

initial lymphatics of a rabbits hind leg gives a fluid flux of 2.78× 10−10 m2/s per

initial lymphatic channel. Swartz et al [126] measured volumetric flow rates in the

collecting lymphatics of a mouse tail skin vs the infusion pressure of the order of

10−8 cm2/s per mmHg to 10−9 cm2/s per mmHg. Applying an infusion pressure

of 30 mmHg (similar to the infusion pressure in our model) gives a fluid flux of

3 × 10−11 m2/s to 3 × 10−12 m2/s per initial lymphatic channel. However, more

recently they measured a value of the volumetric flow rate through the initial

lymphatics, of the order 0.01 mL/min [124]. They assumed 14 initial lymphatic

vessels in the tail (plus the assumption of 4 valves per vessel); giving a fluid flux

through the initial lymphatics of the order of 4.8 × 10−11 m2/s per initial lym-

phatic channel. Reddy et al [100] measured the volumetric flow rates in the initial

lymphatics of the order of 1×10−8 mL/s through a length of 0.25 mm. Thus con-
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verting to fluid flux through the initial lymphatics per µm junction length gives

the value of 4 × 10−11 m2/s for the fluid flux. Thus we conclude that our model

provides flow rates that are comparable in magnitude to those in the experiential

literature. Our model also utilizes more aspects of the entire lymphatic drainage

(e.g. the regular deformations of the surrounding matrix to lymphatic capillaries)

than previous models of the primary lymphatic valve system [42, 85, 99].

It is commonly supposed that variations in lymphatic pressure play a signif-

icant role in interstitial drainage [34, 130, 137]. The size of such variations is

typically around 100 Pa which compares to a mean pressure difference between

blood and lymphatic capillaries of around 3000 Pa. Earlier we noted that the

steady state solution to the model depends only on lymphatic pressure P l and

blood capillary pressure P b through their difference P b − P l. It is thus apparent

that fluctuations in the lymphatic lumen pressure provide only a small perturba-

tion to the steady–state solution, and that the physiological state of the tissue is

predominantly determined by the mean pressure difference P b−P l (as opposed to

the relatively small fluctuations in the lymphatic pressure); this is borne out by

the time–dependent calculations performed in figure 4.10. This led us to investi-

gate the effects of parameter variations on the steady–state in section 4.3.1. With

reference to oedema we found that (I) physiological increases in Young’ modulus of

the tissue (see figure 4.6) lead to small decreases in tissue swelling but significant

decreases in the flow rate through the tissue; (II) physiological increases in the

blood–lymphatic pressure difference (see figure 4.7) lead to significant increases in

both tissue swelling and flow; (III) physiological increases in the blood capillary

permeability (see figure 4.8) lead to relatively small increases in tissue swelling

but significant increases in the flow rate through the tissue; and (IV) physiological

increases in endothelial cell overlap (see figure 4.9) lead to significant increases in

tissue swelling and significant decreases in the flow rate through the tissue. It is
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interesting to speculate on the possible advantages of a sliding valve over those

of a conventional valve operated by pressure differences between the lymphatic

lumen and the surrounding tissue (as described in [49]). It seems to us that the

major advantage of the sliding valve system over the pressure operated valve is

that it responds directly to tissue swelling. It is therefore better at controlling

oedema (than the pressure operated valve) even if the properties of the tissue

change over time as, for example, in pregnancy, or with age. This is reflected in

the fact that the extra swelling due to decreases in the tissues Youngs’ modulus

or increases in the blood vessels permeability are both relatively small. However

the increase in swelling due to increases in the pressure difference between the

blood and lymphatic capillary is much more significant. This is perhaps not that

surprising as the valve only responds to local swelling around the lymphatic vessel

(where the pressure is relatively low). However increases in the pressure difference

cause an increases in the difference between swelling around the blood capillary

(where the pressure is relatively high) and that around the lymphatic capillary.

The increase in the total tissue swelling observed in our numerics, as the pressure

difference between blood and lymphatic capillaries increases, can thus largely be

attributed to the increase in swelling around the blood capillary. The model also

predicts that the degree of swelling is fairly sensitive to endothelial cell overlap

and this suggests that the valve can be modified to give an appropriate level of

tissue fluid content.





Chapter 5

Overall Conclusions

In this chapter we briefly discuss and compare the two different approaches that

we have taken to modelling primary lymphatic drainage, and indicate the main

results.

Conclusions

We began this thesis with a discussion of the lymphatic system. Followed by an

explanation of the aims and motivation of this thesis. In particular we sought

to model the functioning of primary lymphatic valves in two different ways. By

examining the consequences of different hypotheses we hoped to better understand

the mechanism of the primary valve system. In order to achieve this, we developed

our understanding of the physiological detail surrounding lymphatic capillaries

and examined images of electron micrographs of lymphatic capillaries.

In this study, we have presented and applied methods for the design and anal-

ysis of lymphatic drainage. Each of the three technical chapters of this thesis was

concerned with the modelling of lymphatic drainage. We provided the reader with

two approaches to modelling primary lymphatic drainage, in the first approach

(Chapter 2) we investigated the opening of primary lymphatic valves in response
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to pressure differences between the interstitium and the lymphatic lumen, and in

the second approach (Chapters 3 and 4) we investigated interstitial deformations

as the main mechanism in the opening (and closing) of primary lymphatic valves.

In Chapter 2, we modelled the fluid flow through tissues where lymphatic

drainage occurred. The model incorporated the mechanics of the primary lym-

phatic valves as well as the fluid flow through the interstitium and that through the

walls of blood capillaries. We gave special attention to the mechanics of primary

lymphatic valves. In this approach to modelling primary lymphatic drainage,

we considered overlapping lymphatic endothelial cells (primary lymphatic valve)

deflecting into the lymphatic lumen in response to pressure differences on either

side of the valve to drain interstitial fluid. This created a narrow passage for the

interstitial fluid to enter the capillary network.

Darcy’s Law and nonlinear beam theory are used to model the fluid flux

through the tissue and the mechanics of the lymphatic valve, respectively. The

linearity of Darcy’s Law, for the fluid flow through the interstitium, implied that

the total fluid flux from the blood capillary to the lymphatic capillary was linearly

related to the pressure difference between the walls of these two vessels multiplied

by a dimensionless geometric factor. Conformal transformation techniques were

used to find an approximate solution to this dimensionless geometric factor. After

solving the geometrically nonlinear beam equation that modelled the deflection of

the lymphatic valve, we combined the results with the interstitial fluid flow, which

produced a fully working model, published in Bulletin of Mathematical Biology

[49], that calculated the fluid flux into the lymphatic lumen.

The second part of this thesis, Chapters 3 and 4, began by explaining the rea-

sons behind the new method of modelling the mechanism of primary lymphatic

valves, and then went on to solve the model. Predominantly, mathematical mod-

els of the primary lymphatic valve system have been based entirely on the theory
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that it is pressure differences between the lymphatic lumen and the interstitium

that cause the valve to open and lymphatic drainage to occur. The motivation

for this new way of modelling the primary valve system came from the experi-

mental literature. The aim of these chapters was to create a model for lymphatic

drainage that incorporated regular tissue deformations. Interstitial deformations

occur when blood capillaries leak fluid into the interstitium. This causes the inter-

stitial space around lymphatic capillaries to expand and pull open (via anchoring

filaments attached on the capillary wall) the primary lymphatic valves. The model

predicts a smooth transition between a closed and an open lymphatic valve, and

after a couple of valve cycles, relaxes to a steady state, where there is a constant

flow into the capillary.

In both models we produced graphs that illustrate how the pressure difference

(blood capillary lumen pressure minus lymphatic capillary lumen pressure) effect

the fluid flux into the lymphatics system. Due to the significant differences in

both models their pressure–flux graphs had evident discrepancies. The pressure–

flux graph in Hypothesis 1, shown in Figure 5.1a, has a piecewise linear relation

between the pressure difference and the fluid flux. The fluid flux remains zero

until the pressure difference increases enough to overcome the elastic forces of the

primary lymphatic valve (Pcrit), then the flux increases linearly. The pressure–flux

graph in Hypothesis 2, shown in Figure 5.1b, has a non–linear relation between

the pressure difference and the fluid flux. As the pressure difference increases the

surrounding interstitial space expands making the gap length of the open section

of the lymphatic valve increase, which results in a larger fluid flux. The fluid

flux into the lymphatic system per primary lymphatic valve was calculated in

Hypothesis 1 to be 1 × 10−14 m2/s and in Hypothesis 2 to be 3.5 × 10−12 m2/s.

Due to the varied data set for the fluid flux values in the literature, our fluid flux

values from both hypotheses are comparable to the literature. However, the flux
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value for Hypothesis 2 is a better fit to the experimental data.

(a) (b)

Figure 5.1: The fluid flux per unit length through the interstitial space and the
initial lymphatics as a function of the pressure difference between the blood and
lymphatic lumen P̂ − P0 for Hypothesis 1 is displayed in (a) and for Hypothesis
2 is displayed in (b).

The importance of the models presented in this thesis is that they give insight

into how the primary lymphatic system functions. The first method explored the

lymphatic valve opening in response to pressure differences between the inter-

stitium and the lymphatic lumen. The second method was entirely novel, and

explored solving the governing equations of fluid flow and poroelasticity to model

the opening of lymphatic valves, where they open in response to interstitial de-

formations; to the author’s knowledge, this has not been explored before.

On consideration of the results of both models we believe that Hypothesis 2

(lymphatic valve opening in response to interstitial deformations) is better able

to represent the experimental data than Hypothesis 1. In particular, its results

correlated better with the fluid flux values in the experimental literature than

those of Hypothesis 1. Also, the experimental data (electron micrographs) illus-

trate lymphatic capillaries changing shapes (shear forces), from circular to oval,

in a 2-D cross sectional view. This is due to the quantity of fluid drainage and the

surrounding interstitial deformations. Since Hypothesis 2 includes this, we con-

clude that it is the better model of primary lymphatic drainage and hope future

models take this into consideration.
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In conclusion we have shown that by stripping biological processes back to

simpler forms we can derive mathematical models that accurately replicate the in

vivo and in vitro experiments. As a result of this work, new methods now exist

for modelling primary lymphatic valves.

Finally we observe that there is scope for future work if we use asymptotic

methods for the model in Hypothesis 2. In the future it is hoped that asymptotic

methods (based on the disparity in the scales between the radii of both capillary

networks and capillary separation) can be used to derive simple ODE models for

the drainage process. The simplicity of these models should help us to more easily

explore their results. Also it will enable us to see how drainage properties change

as parameters are varied more easily. For example, it could allow us to investigate

perturbations about the steady state as the lymphatic lumen pressure is varied.





Appendix A

Proof of the

Schwarz–Christoffel’s Formula

This proof is quoted from Driscoll’s and Trefethen’s book [33].

The Schwarz–Christoffel formula is

f(z) = A+ C

∫ z n−1∏
k=1

(ζ − zk)αk−1dζ. (A.0.1)

For simplicity, we can treat just the case where all prevertices are finite and

the product ranges over indices 1 to n. By the Schwarz reflection principle, the

mapping function f can be analytically continued into the lower half plane; the

image continues into the reflection of the polygon about one of the sides. By

reflecting again about a side of the new polygon, we can return analytically to the

upper half plane; the same can be done for a even number of reflections of P. Let

A and C be any complex constants, then,

(A+ Cf(z))′′

(A+ Cf(z))′
=
f ′′(z)

f ′(z)
. (A.0.2)

Therefore, the function f ′′/f ′ can be defined by continuation as a single–valued
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analytic function everywhere in the closure of the upper half plane, except at

the prevertices of the polygon (where derivatives may fail to exist). Similarly,

considering odd numbers of reflections, we see that f ′′/f ′ is single–valued and

analytic in the lower half plane as well.

At a prevertex zk, we can rewrite equation (A.0.1) as f ′(z) = (z− zk)αk−1ψ(z)

for a function ψ(z) analytic in a neighborhood of zk. Therefore, f ′′/f ′ has a simple

pole at zk with residue αk − 1, and

f ′′

f ′
−

n∑
k=1

αk − 1

z − zk
(A.0.3)

is an entire function. Because all the prevertices are finite, f is analytic at z =∞,

and a Laurent expansion implies that f ′′/f ′ → 0 as z → ∞. By Liouville’s

theorem, it follows that the expression in equation (A.0.3) is identically zero.

Expressing f ′′/f ′ as (ln(f ′))′ and integrating twice results in the formula (A.0.1).



Appendix B

Derivation of the Non–Linear

Beam Equation

We describe the valve deformation using arc length s along the beam and the angle

θ(s) between the beam and the x–axis, as shown in Figure B.1a, and assume the

beam to be inextensible, so that the arc–length is conserved by the deformation

[54]. The transverse displacement is given parametrically by x = x(s), y = y(s),

where

dx

ds
= cos θ,

dy

ds
= sin θ. (B.0.1)

To obtain the nonlinear loaded beam equation we first consider a small element

of the lymphatic valve of length ds, and derive the equations that govern the

balance of forces and moments on this element. The element is held under tension

T at each end. A force Fds is applied in the direction normal to the valve, with

a tangential component, Gds. M is the bending moment at each end of the valve

and N is the normal force at the ends of the valve [54]. The forces acting on the

lymphatic valve are summarized in Figure B.1b.

By carrying out a force balance in the standard fashion, we obtain an expres-

sion for the resultant forces acting in the x and y directions. Since damping forces
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Figure B.1: (a) A geometrical view of the lymphatic valve. (b) The forces acting
on a small section of the lymphatic valve.

are large we assume a quasistatic configuration in which the resultant forces are

both zero, so that

d

ds
(T cos(θ)−N sin(θ)) = F sin(θ)−G cos(θ), (B.0.2)

d

ds
(T sin(θ) +N cos(θ)) = −F cos(θ)−G sin(θ). (B.0.3)

Using the product rule to expand the above equations, multiplying equation

(B.0.2) by cos(θ) and adding it to equation (B.0.3) multiplied by sin(θ), leads

to

dT

ds
−N dθ

ds
= −G. (B.0.4)

Similarly, taking the product of equation (B.0.2) with sin(θ) and adding this to

the product of equation (B.0.3) and cos(θ), gives

dN

ds
+ T

dθ

ds
= −F. (B.0.5)

In order to derive a moment balance equation, we assume that the infinitesimal

section of the lymphatic valve, see Figure B.1b, is approximately straight and of

length ds. Balancing moments about the left hand point of the valve in Figure
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B.1b, gives

N = −dM
ds

. (B.0.6)

As a constitutive relation we expect the bending moment (M) to be propor-

tional to the valve curvature, which is given by dθ/ds. Since we consider small

strains in the geometrically nonlinear beam, we assume that the constant of pro-

portionality is the same as in a linear case, that is

M = D
dθ

ds
, (B.0.7)

where D (kgµm2s−2) is the flexural rigidity of the valve. We use plate theory to de-

scribe the flexural rigidity of the lymphatic valve in terms of the Young’s modulus

(E), the Poisson’s ratio (ν) and the beam thickness (ι) by D = Eι3/12(1− ν2).

We seek an equation that only depends on the angle θ and the arc length

s. To achieve this we eliminate N , T and M from the force balance equations

(B.0.4)-(B.0.7) and equate F , the normal force acting on the lymphatic valve,

with the pressure drop across the initial lymphatics, Pl − P0. Assuming the no

slip boundary condition on the exterior of the lymphatic valve (no shear force)

results in the tangential force G applied on the valve to be zero. It follows that

d3θ

ds3
+

1

2

(
dθ

ds

)3

=
Pl − P0

D
. (B.0.8)

Equation (B.0.8) is the Euler–Bernoulli beam equation for large deformations

in terms of angle and arc–length.





Glossary

• Afferent lymph vessels The lymphatic vessels that enter at all parts of

the periphery of lymphatic nodes.

• Basal lamina The surface on which epithelial cells are attached to.

• Cisterna chyli A dilated sac at the lower end of the thoracic duct into

which lymph from trunks flow.

• Cytokines Small proteins that are important in cell signaling.

• Schwarz reflection principle A way to extend the domain of definition of

an analytic function of a complex variable F, which is defined on the upper

half–plane and has well–defined and real number boundary values on the

real axis. In that case, writing * for complex conjugate, the extension of F

to the rest of the complex plane is F (z∗)∗ or F (z∗) = F ∗(z).

• Desmosome A cell structure specialized for cell–to–cell adhesion.

• Efferent lymph vessels The lymphatic vessels that exit at all parts of the

periphery of lymphatic nodes.

• Elephantiasis A disease that is characterized by the thickening of the skin

and underlying tissues.

• Erysipelas A bacterial infection in the outer most layer of the skin (epi-

dermis).
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• Extravasation Is the leakage of a fluid out of its container.

• Iliac vein A vein that drains blood from the pelvis and lower limbs.

• Jugular Veins that bring deoxygenated blood from the head back to the

heart.

• Lacteals Lymphatic capillaries that absorbs dietary fats in the small intes-

tine.

• Lobe A clear anatomical division or extension that can be determined with-

out the use of a microscope.

• Lumen The inside space of a tubular structure.

• Lymphocytes A type of white blood cell.

• Mediastinum It is the central compartment of the thoracic cavity, sur-

rounded by loose connective tissue.

• Mediated immune responses A immune response that involves the ac-

tivation of phagocytes, antigen–specific cytotoxic T–lymphocytes, and the

release of various cytokines in response to an antigen.

• Mesentery The double layer of a smooth membrane that forms the lining

of the abdominal cavity, which suspends the middle section of the small

intestine and the final section from the posterior wall of the abdomen.

• Metastasis The process by which cancer spreads from the place at which

it first arose as a primary tumour to distant locations in the body.

• Nodules A relatively hard, roughly spherical abnormal structure.

• Osmotic pressure The pressure that must be applied to a solution to

prevent the inward flow of water across a semipermeable membrane.
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• Peristalsis The propulsion of lymph due to alternate contraction and re-

laxation of smooth muscles.

• Phagocyte Are cells that protect the body by ingesting harmful foreign

particles, bacteria, and dead or dying cells.

• Plexus A part of the nervous system.

• Retroperitoneal The anatomical space in the abdominal cavity behind the

membrane that forms the lining of the abdominal cavity.

• Scalenus anterior muscle A muscle that lies at the side of the neck.

• Situ A polymerization mixture.

• Sternum A long flat bone shaped like a capital “T” located in the center

of the thorax.

• Subclavian Two large veins, one on either side of the body.

• Vena cava A large vein that carries de–oxygenated blood from the body

into the right atrium of the heart.

• Venule A small blood vessel in the microcirculation that allows deoxy-

genated blood to return from the capillaries to the larger blood vessels called

veins.

• Viscera The organs contained within the abdominal cavity.
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