Chapter 1
Open-model Forecast-error Taxonomies

David F. Hendry and Grayham E. Mizbn

Abstract

We develop forecast-error taxonomies when there are unieduariables, forecast ‘off-line’. We estab-
lish three surprising results. Even when an open systentisatty specified in-sample with zero intercepts,
despite known future values of strongly exogenous varglgleanges in dynamics can induce forecast fail-
ure when they have non-zero means. The additional impaatrecdst failure of incorrectly omitting such
variables depends only on unanticipated shifts in theirmae8Vith no such shifts, there is no reduction
in forecast failure from forecasting unmodeled variabkative to omitting them in 1-step or multi-step
forecasts. Artificial data illustrations confirm these tesu

JEL classificationsC51, C22.
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1.1 Introduction

It is a pleasure to contribute a chapter on forecasting tolanve in honor of Hal White, as forecasting
has long been a salient aspect of his research. We condeatidhon his major research findings and look
forward to many more.

There are a number of taxonomies of the sources of foreqassén closed systems where every variable
to be forecast is modeled: see for example, [Clements andig®98), Clements and Hendry(2006)] and
[Hendry and Hubrich(2011)]. Such taxonomies have clarifiedoroblems facing forecasters when parame-
ters change. Forecasting variables as part of systemsrthatibject to unanticipated changes is difficult, as
recent floods, tsunamis, and the financial crisis demomesiggistematic forecast errors and forecast failures
are mainly due to location shifts, namely changes in theipuswnconditional means of the variables being
forecast, and changes in other parameters can be hard &, destshown in [Hendry(2000)] and illustrated
by [Hendry and Nielsen(2007)].

* Financial support from the Open Society Institute and this@kMartin School is gratefully acknowledged. We are ingeb
to Anindya Banerjee, Jennifer L. Castle, Mike ClementsgdnrA. Doornik, Neil Ericsson, Katarina Juselius and Johi N.
Muellbauer for helpful discussions about and comments ogsaler version.
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In practice, many forecasting systems include unmodeléetadnants, whose future values are deter-
mined ‘off-line’ by a separate process: examples includaroodity prices, exchange rates, and outputs of
trading partners. There are many reasons for not modelimg s@riables, namely those that are exception-
ally difficult to forecast accurately, other variables thed policy instruments determined outside the system
in use, and some weakly exogenous variables where condiiam them incurs no loss of information for
modeling (see [Engle et al(1983)Engle, Hendry, and Ridhatéking a taxonomy of the consequences of
including or excluding ‘off-line’ variables as inputs inriecasting models, we clarify the forecasting prob-
lems which could result. Even when the forecasting modediieectly specified in-sample having accurately
estimated coefficients, with unmodeled variables thattaoagly exogenous arkhowninto the future, nev-
ertheless changes in the dynamics of the system can induexaki failure simply because the unmodeled
variables have non-zero means.

At first sight such a claim seems counter-intuitive: if a abitey; is determined by

Vi =Wie1+Az + &

say, wherg; ~ IN[0, 62], andz is strongly exogenous, then for knowiz :

Vi —Az) =W 1+& (1.1)

where the right-hand side has no intercept. Hence it migithsiiat (1.1) is in the class of models where
change is hard to detect. Howeveizihas a non-zero mean, then so dgeand that alone makes the model
susceptible to forecast failure after any parameters ahaargl as we show below, that result holds whether
or notz is included in the model.

There are four distinct scenarios to consider for 1-stepalffierecasts, when facing parameter shifts in
the data-generation process (DGP). First, where stronglgenous variables with known future values are
correctly included in the forecasting model and all pararssare known (or sufficiently precisely estimated
that sampling variation is a second-order issue). Seconenhe strongly exogenous variables are unknow-
ingly and incorrectly omitted. Third, when the strongly geomous variables need to be forecast, either within
the system or ‘off-line’. Finally, allowing for parametestimation uncertainty, model mis-specification for
the DGP and measurement errors at the forecast origin,iagsettich in principle is applicable to all three
previous cases but here is only considered for the third. Malagous four scenarios arise for multi-step
forecasts, but as the key results seem little affected, wasf@n the first four scenarios and briefly note
extensions to forecasting more than one period ahead.

Section 1.2 investigates a correctly-specifi@ open system to consider the sources of forecast failure
that can result from changes in the parameters whemtik@modeled strongly exogenous variablgs,
have non-zero means. Section 1.2.1 investigates any acaiimpacts from unknowingly omitting the,
and section 1.2.2 compares 1-step forecasts one periagdnab®th those settings. Section 1.3 develops
1-step taxonomies, first for excluding thg then in§1.3.1 when they are forecast ‘off-line’, also allowing
for parameter-estimation uncertainty, measurement®eothe forecast origin, and mis-forecasting zhe
Section 1.4 provides an artificial data illustration of tmalgtical results. Section 1.5 considers multi-step
forecasts when the exogenous process is known in the fuher§1.5.1,81.5.2 ands1.5.3 respectively
consider the impacts of omitting the unmodeled variableszdasting them, then parameter estimation.
Section 1.6 briefly notes the transformations needed toceedn initiallyl(1) system tol(0). Section 1.7
concludes. The appendit.8 compares forecasting in open and clogéilsystems.



1 Open-model Forecast-error Taxonomies 3

1.2 Forecasting in an operi(0) system

Consider an opeih(0) system conditional on a set ofi strongly exogenous variablgg; },?> which are
known into the future (lagged unmodeled variables can beksthwithinz) where the conditional DGP
overt=1,...Tis:

Ve=T+YV 1+l z+é& (1.2)
wheng; ~ IN, [0, 2] andE [&|z3 . .. zT 1] = 0. A system which i$(1) and cointegrated is consideredih 6.
When all the variables are weakly stationary in-samplehsee@tgenvalues of lie within the unit circle, and
we initially set all parameters to be constant, taking elquemns in (1.2) wherk [z] = p:

Elyl=@=1+Y@+TE[z]=1+Yo+Ip,
so the in-sample equilibrium meanypfs:
¢=(n=Y)""(T+7p) (1.3)
Consequently, we can re-write (1.2) as:
Vi—@=Yi1— @+l (z2—p)+& (1.4)

Below, we use whichever parametrization (1.2) or (1.4) psawost convenient, although it must be remem-
bered that how the meagsandp are connected in (1.3) depends on the invariants of the lyigbehavior
represented by agents’ plans. For example, (1.3) onlylerdaibreaking betwee@ andp so long as the
other parameters remain constant wipeshifts (see e.g., [Hendry and Massmann(2007)], for an aisabf
co-breaking). Concerning notation for forecast val§edgnotes a correctly specified model with known fu-
turez; y denotes wheam is omitted from the model; arglis when thez are included in the model, but future
values need to be forecast; and if needefibr that last case when parameters are estimgtedenotes an
estimated forecast-origin value.

We first consider a 1-step ahead forecast from timr known z7,; from a model that is correctly
specified in-sample with known parameter values, denoted:

Yo =T+Yyr+lzr1 (1.5)
However, the DGP in the next period in fact changes to:
YT+1=T"+Y'yr 4+ 2101+ 61401 (1.6)

where all the parameters shift, including the dynamic feeltbando shifts toE [zr1] = p*. The resulting
forecast error between (1.5) and (1.6¥4s, 11 = Y1+1— Y1417 @nd hence:

ey =(T" =)+ (V" =YV)yr+ (T =)z 1+ €142 (1.7)

so that:

2 Corresponding té, = 0in §1.8.
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Eferiyr] = (T =0+ (Y =Y)E[yr]+ (7" = NE[zr4]
(=D + (Y =Y)o+ (" =I)p° (1.8)

Consequently, even if* = 1 = 0 so (1.7) has no intercept ad = " andp* = p, so (1.8) then does not
depend directly ozt 1 which anyway has constant parameters, nevertheless &ifadare can occur for
p #0whenY* #£ Y as then:

E[Eriyr] = (Y= (Ia=Y)"'rp (1.9)

which reveals an equilibrium-mean shift occurgin}.
This outcome may be clearer when (1.4) is written using (@s3)

Vi=(n=Y) T+TP)+Y (i 1—@)+T (z—p)+& (1.10)

so that even when = 0, although(y:—1 — @), I' (z: — p) ande; all have expectations of zero, (1.10) entails
an equilibrium mean of

(In—Y)"'rp (1.11)

which is zero only ifp = 0 whenl” # 0.

This is our first main resultdespite correctly including unmodeled strongly exogenariables; with
known future values in a forecasting equation with no irgpt@nd known parameters, a change in dynamics
alone can induce forecast failure when théave non-zero means.

More surprising still is that such failure is little differeto that resulting either from modeling and
forecastingz; (see§l1.3) possibly by a vector autoregression (VAR) say, or ewetuelingz entirely from
the model, either deliberately or inadvertently, as we nbamnsin §1.2.1.

1.2.1 Omitting the exogenous variables

If it is not known thatz is relevant, so it is inadvertently omitted, the mis-spedifinodel of (1.4) is:

Ve =@+ Ye(Yi—1— @) + Ut (1.12)

where the subscriptin (1.12) denotes the finite-sample expected value follgwims-specification (i.e.,
E[Y] = ¥e). Thenu; = l(z — p) + & with E[u] = 0. Provided there have not been any equilibrium-mean
shifts in-sample, thep, = @. The forecast using the expected parameter values (tcaabfiom sampling
uncertainty) is:

Y17 = @+ Ye(YT — @) (1.13)
with Ut 7 = Y141 — Y744/7 Where (1.6) is reparametrized as:

Y1 =@ +Y (yr =@ )+ (Zr11—p") + €112 (1.14)
whereg* = (In— Y*) "1 (t* +*p*). Then:

Urpr = (@ =@+ Y (yr—¢") —Ye(yr— @)+ (zr11—p") + €111
=(n=Y) (@ -+ (Y =Y)(yr =)+ " (zr42—pP") + €711 (1.15)



1 Open-model Forecast-error Taxonomies 5
with:
E[Uriar] =Un—Y") (@ —0)
= (T =D+ =Y)@+ (" —T)p*+T (p* —p) (1.16)

Thus, (1.16) and (1.8) only differ bl (p* — p), and hence are the same wheh= p despite the mis-
specification. When also* =1 = 0 andl"* = I, both are non-zero at the value in (1.9). However, the
forecast-error variances will differ between (1.15) and@)lwith the former being larger in general.

This is our second main resuthe additional impact on forecast failure of incorrectiyitting strongly
exogenous variables depends only on shifts in their meam®bihing these first two results, as the com-
parison of (1.16) and (1.8) shows, when their means are @onat zero, then irrespective of whether or not
these strongly exogenous variables are included in thedsting system, they neither cause nor augment
forecast failure.

1.2.2 1-step forecasts one period later

The analyses of forecasting one period after a break in [Efsrand Hendry(2011)] show that results can
be substantively altered because of the impacts of the bi@malater data. From (1.6):

Y142 =T"+Y'yr 1+l " 710+ €742 (1.17)
so that a€ [z12] = p*:
Elyrez] = T+ YElyria) + T Elzrizl = (In— (Y)?) @+ (v 0
=0 — (V)¢ — ) (1.18)

as@’ = (In—Y*) 1 (" +*p*) andE [y1 1] = @* — Y* (¢" — ¢). Forecasting from (1.5) updated one pe-
riod, but still with in-sample known parameters,%o:

Vriom+1 =T+ Y¥rp1+ 12142 (1.19)

the resulting forecast err@k ot 11 = Y142 — Y7 o741 IS

Erpgri=(n+Y =Y)(In=Y") (9"~ @) (Ia)
+ (Y =Y) (yr+1—Elyr41]) (la)
T ETi0 (Illa)
+(F*=r)(zr42—p") (IVa)
I (p*~p) va) (1.20)
with
ElErioria) =(n+Y =) (ln=Y")(¢"—9) —T (p"—p) (1.21)

8 Recursive or moving-windows updating will drive the forstiag system towards the robust device considered id.3.
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Similarly, omitting thezt, 2, so using:

Y1141 =@+ Ye(YT11— @) (1.22)
then as: ,
YTi2=¢ —(Y) (@ = @)+ Y (Yyry1—Elyra]) + T (zZr12—pP") + €742 (1.23)
the forecast errogr, ov11 = Y142 — Y142741 IS:
Erioria=(n+Y =Y (In—Y") (¢" — ) (Ib)
+(Y" = Ye) (Yr+1— E[yT+1]) (Ib)
+E142 (I1b)
+ I (zr42—p%) (IVb) (1.24)
with:
Elerioria] =(n+Y = Ye) (In—Y") (¢" — ) (1.25)

Consequently, unlike [Clements and Hendry(2011)], coimgafl.21) and (1.25) shows that there are no
substantive changes compared to the baseline case herthomediwo formulae are essentially the same
whenp* = p.

1.2.3 Avoiding systematic forecast failure

One implication 0f§1.2.2 is that until the forecasting model is changed, syatenforecast failure will
persist. Out of the many possible methods for updating a hMydatercept corrections, modeling the break,
recursive or moving window re-estimation and differencing only note the last here (see [Hendry(2006)]).
In place of (1.22), consider simply using the first-diffemerﬁorecastA?TJrz‘TH =0:

VT m1=YT41 =@ + Y (Y1 = ¢@") + " (Zr11—P*) + €111
so that using (1.23r 2741 = YT+2 — YT42741 IS:
Eriri=0 — (V)@ — @) + Y (Yro1— Elyrea]) + ¥ (zra2—p*) + €742

gY@ -0 =Y (yr—@) " (zr1—p") — €111
=Y (In=Y) (@ = @)+ Y (yr+1—Elyr+a]) =Y (yr — @) + " Azr 2+ AT 2
SO:
E[&rigrea) =Y (In—=Y") (9" —0) (1.26)

which considerably dampens the forecast-error bias velati (1.20) and (1.24) (e.g., for a univariate
thenY* (1—Y*) <0.25).
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1.3 1-step taxonomies

We now also allow for parameter estimation uncertainty,rttie-specification of omitting, and possible
mis-measurement at the forecast origin, so the forecagi¢ppGP remains (1.14), whereas the forecasting

model becomes: - -
YT =0+ Y(VT - ‘P) (1.27)

The forecast erro@TH‘T =Y141 *7T+1\T can be decomposed into eleven empirically-relevant ssurce
wheng, # ¢:
Eryr = (In=Y") (¢" — @) [1] equilibrium-mean shift

+(Y*"=Y)(yr— @) [2] dynamic shift

+(n—Ye) (@— @) [3] equilibrium-mean mis-specification

+(Y—=Yo) (yr — @) [4] dynamic mis-specification

+(n—Ye) ( (p) [5] equilibrium-mean estimation

+ ( Y) (yr — @) [6] dynamic estimation (1.28)
+Ye(yr —y71) [7] forecast origin mis-measurement

+ (Y— \6) (6— (p) [8] estimation covariance

+ (\77 \@) (yr —yt) [9] measurement covariance

+&141 [10] innovation error
+ I (zry1—pY) [11] omitted variables

As with earlier taxonomies, terms in (1.28) can be dividdd those with non-zero expected values that
lead to forecast biases, namely [1] and possibly [3] and fidlifig that [8] isOp(Tfl)), and those with
zero means that only affect forecast-error variances, haalethe other terms, noting thdtyt — ¢] =
E[zr+1— p*] = 0. Thus, despite estimating a mis-specified system with erhitariables:

E[eriyr] = (In—Y") (¢ — @)+ Ye(@—E[yr])
which matches (1.16) wheh[yt] = @.
This outcome could be compared directly with that from idahg the knowrg; in estimation and fore-

casting by dropping line [10], stacking = (y; Z) and redefining parameters, estimates and variables ac-
cordingly. Indeed, wheh* =T =0, (1.28) becomes the forecast-error taxonomy for a VAR.

1.3.1 Forecasting the unmodeled variables

However, the more interesting and realistic case is whgere is known to be relevant and has to be forecast
with its parameters estimated in (1.2), which we now conside
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Yroar =0+ ?@T - @) +T (Zr+1-P) (1.29)

compared to (1.6). Although the following derivation is @ndhe correct specification of (1.29), the results
above show that mis-specification does not create impoatddgitional problems, and for the dynamics, is
already reflected in (1.28). Then, IettiﬁgH‘T =YT41 —?TH‘T, all the terms from (1.28) remain other than
[11] (still allowing for finite-sample biases in the dynamisoYz # Y, but for simplicity takingE[p] = p
andE[f] ~ [) with the following 9 terms replacing the old [11].

v = [1]-{10]in (1.28)
- (p*—p) [11] exogenous mean shift
+(F*=r)(zry+1—p*) [12] exogenous slope shift
+r(p—-p) [13] exogenous-mean estimation
— (F — I') (zr11—p*) [14] exogenous slope estimation (1.30)

+ T (zr41—E[Zr44)) [15] exogenous mean mis-forecast

+ (F - I') (p—p) [16] estimation covariance

- (F — r) (p*—p) [17] exogenous mean shift covariance
+ T (E[Zr41] —Zr41) [18] exogenous mis-forecast.

+ (F— I') (zr41—7Zr41) [19] exogenous mis-forecast covariance

We focus on the terms in (1.30) with non-zero expectation®reE [zr1] = p*, and for simplicity
covariances are ignored as a smaller order of magnitudex dtvabined with (1.28):

Eferigr] = (In=Y") (@ — @)~ T (p"—p)+ Ye(@—E[yr]) + I (0" — E[2744])
= (T =D+ =Y+ (" =T)p"+Ye(¢—ENT)) +T (p" —E[Zr11])

from (1.16). As before, when* =t =0andl"* =T, with E[y1] = ¢:
Eleriar] = (Y =Y)@+T (p* —E[Zr41])
compared t& [Urq7] = (Y* = Y)@+T (p* —p), so:

E([&riar] —E[Uryyr] = —T (EZr11] —p) (1.31)

This is our third main resuitexogenous variable forecasts have to be closer to the nanpig¢han the old
meanp to deliver a smaller forecast-error bias than arises froritmg them.

Whenp* = p, E[Zr1] = p is necessary fdk [£7. 47| = E [Ur, 7], and even then there will be variance
effects both from parameter estimation aitzr 1] — Z1+1). This is our fourth main resuliwhen p* =
p, there is no reduction in forecast failure from accuratele€asting the exogenous variables relative to
omitting them.

Our fifth main result isthis outcome does not depend on the strong exogeneity afrthrodeled vari-
ables, and holds even when they are only weakly exogenous.
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Without strong assumptions about the dependencies betiwe@many mean-zero terms in the taxonomy,
it is not possible to derive explicit forecast-error vadas, but it is clear there are many contributions beyond
the innovation error variance, some of which could wellg1), such as mis-forecasting the unmodeled
variables, and forecast-origin mis-measurement. Mone@aeeforecast errors could arise from every possi-
ble (non-repetitive) selection from the 19 terms, namgy, 19!/ (19— k)! ~ 3.3 x 10%, delineating their
source must be nearly impossible.

1.4 Artificial data illustration

We consider a bivariate system with one unmodeled (straggigenous) variable, with known future values,
where the baseline parameter valuesmate0 andp = 0 when:

05 0 1
Y= < 0 0.5> r= <1> (1.32)
with > =1,, T =100, anch=1,...,5 one-step ahead forecasts after the break. The paramitémststi-
gated is:
075 0
Y= < 0 0.5) (1.33)
first for the baseline, then whgn= 0 but:
5
T= <0) (1.34)
and finally wherr = 0 butp = 5.
The two equations are decoupled in this first experimentredsin the second:
05 05
v= (0.3 0.5) (1.35)

again for the same scenarios.

The results of the first set are reported in Figure 1.1.

Panel arecords forecastg 1 n7,h-1 from a single draw of the initial process in (1.32) when pagters
are estimated, shown with error bands=6251,, and when including parameter estimation uncertainty,
shown with bars. There is a very small increase in forecastuainty from adding parameter variances,
consistent with a®(1/T) effect.

Panel breports forecasts when is omitted both in estimation and forecasting. Although filveecast
intervals are wider, forecasts are similar and remain witheirex anteforecast intervals.

Panel cis for the correct specification but after the shift in (1,32l with T = 0 andp = 0. Despite the
break in the dynamics, forecasts remain within tleiranteforecast intervals, even though those are now
incorrect.Panel daugments the problem by the incorrect omission plbut hardly differs fromPanel b

Although we do not report the outcomes for a constant modelrem-zeror, they are well behaved
around the new data outcomes. The same cannot be said fauttt@ees inPanels e & ffor the non-zero
value of T in (1.34) after the break ity in (1.33): forecast failure is manifest, and almost unaéddy
whetherz is included or omitted.
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Fig. 1.1 Forecast failure for correct and mis-specified models

Finally, for p = 5, Panels g & hshow the forecasts for the same break when the model is tyrrec
specified by including;, and incorrect by omitting it. Despite the known future \&dwfz and the absence
of forecast failure after the break when= 0, failure is again manifest and similarBanels e & f

The second setting in (1.35) yielded similar results, ehewgh throughout both sets of experiments, the
second variable was correctly forecast. All these resuttgansistent with the implications of the taxonomy
in (1.28).

1.5 h-step ahead forecasts

We now consider the outcomes when an investigator needseodsth-steps ahead) > 1. As the im-

pacts of parameter-estimation uncertainty, mis-forémgshe unmodeled variables, and forecast-origin
mis-measurement are similar to those derived above, wedirite the outcomes for known parameters
to highlight the impacts of breaks when there are unmodaedbies. Thus, the in-sample system remains:

Ve=0+Y(Vi-1— @) +T (z—p)+&

forecasting fromT +h—1to T +h by:
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YTihT+h-1= @+ Y (YTh-1T+h2— @) + T (Z11h—P)
leading to the multi-step forecast:

h-1
Vit =@+ 3 YT (zrni=p)+ Y (yr — ) (1.36)

If the system remained constant, the outcome would be:

ho1 _
YT+h = @+ 20 [Y'T (zr4n-i—p) + Yierini] + Y (yr — @) (1.37)

so a known futurg/z;} enters the same way as the cumulative error process. If‘g@w’ ET4+h-i would
be the only source of forecast error when equation (1.36)usad. However, that will not remain the case
once there are changes in parameters, mis-specificatidreahbdel, or mis-estimation d@f in (1.2), or
unanticipated changes pin the forecast period when tHer_n_;} are not known with certainty.

As before, we allow for structural change in the DGP, but ghlight the key problem, we first analyze
a setting without estimation of, or mis-specification irg #ftonometrician’s model for the DGP in-sample,
so the in-sample parameter values are known. Under changdisgarameters of (1.37), the actual future
outcomes will be:

o1
YT+h =@ + Zo (YY) M Zrni — P*) + &roni] + (V)" (yr — ¢) (1.38)

When (1.36) is used, the forecast eVl 1 = y11h — Y14hT DECOMES:
Vit = 0" — @+ (V) (yr — ) - Y (yr — 9)

h-1 ) h-1
+ ; (Y)'T* (Zren-i—p") — _;Y‘r (zr4ni—p)

h-1
+ ; (V) e1ini

Taking these rows one at a time, and using:

first:

o — o+ (V) (yr—0) =Y (yr — 9)
= (=) (g =)+ ()= Y") (yr — )

where the terms respectively represent equilibrium-medrstope shifts. Next:
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h-1 ) h-1

2, (V) T (zrsn-i—p*) — _Zow'r (Zrh-i— P)

- h—1 ) . h-1
=3 [T =¥ =) - S V(0 )

where the first component has mean zero and the second if plaetexogenous mean shift. Finally, com-
bining:

Vet =(ln=(r)") (9"~ 9) [A] equilibrium-mean shift
+ ((W)h - Yh) (yr— o) [B] dynamic shift
- (I n— Yh) (In—Y)"'r (p*—p) [C] exogenous mean shift (1.39)

h-1 . _

+ 20 [(Y”‘)' r*— Y‘I‘} (zr4n_i —p*) [D] exogenous slope shift
i=
h-1

+ Z) (Y e14ni [E] innovation error
i=

This outcome matches the earlier taxonomy specializedogpiately, namely [1], [2], [9], plus new [11]
and [12]. As terms [A] and [C] have non-zero means, and thersthave zero means:

ENvrenl = (In= (")) (@ = @) = (1n=Y") (la =) T (0"~ p) (1.40)
Thus, everh-steps ahead, whem* = p, forecast biases depend 6@ — @) which is non-zero whenever

p # 0despitet* =17 =0.
This is our sixth main resulthe first two results continue to hold for multi-step forsisa

1.5.1 Omitting the unmodeled variablesin h-step ahead forecasts

The forecasting model in-sample is now (1.4) leading to tlétirstep forecasts:

VronT = 0+ ()" (yr — @) (1.41)

When (1.41) is used, the forecast eNeIt = Y1 h — Y14h1 becomes:
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Vrinr = (@ — @)+ (V)" (yr — ¢) — (%) (yr — @) +V1in
(' n— (W)h (9" — o)

+(0r)" =) r - 9)
hl
+ Y (V) erini
1
+5 (Y)' T (zreni—pY) (1.42)

matching the four terms in (1.15), where:
h—-1 _
VTih= Z} (Y)' M (zren-i — ") + ET4ni]
i=

with E [vr4n] = 0, so that:
E[Vront] = (1= (V)") (0"~ ) (1.43)

This is our seventh main resuthe previous conclusions about forecast failure baseti®d tstep analyses
are essentially unaltered: whpi = p, (1.40) and (1.43) are equal, so forecast failure is onlyced by the
inclusion of unmodeled variables when they have mean shifts

1.5.2 Forecasting the unmodeled variablesin h-step ahead forecasts

Now:
h—1

YT ihT = @+ _zOYi’_ Zrini—p)+ Y (yr - 0) (1.44)

with the forecast errovy it = Y1 1h— Y14n:

h—-1 .
Vet =@ - @)+ 07" 57— 9) = 00" @)+ 3 () eren

h—1 , h-1
+ zo(w)lr*(znhfi—l)*)—_ZOY"_(?thi—P)

= (=) (@ =)+ ()= 9)") (yr - ) +§<Y*>‘ Eren)

h—-1 h-1

+; ((Y*)i’_*—yi’_) (ZT+hi—P*)—zYir(?T+hi—zT+hi)—.Z)Y"I'(p*—p) (1.45)
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In the second block, the first three terms are identical tedtfio (1.42), an({{‘z‘ol (Y”‘)i I (zryni — p*) has
been replaced by terms relating to the shift in the dynamiith (mean zero), the forecast mistake, and the
shift in the mean of the exogenous variables, as in (1.16).

1.5.3 Parameter estimation in h-step ahead forecasts

The estimated model forecasts are now:

Vrint =0+ 3 VT @ran=P)+ ¥ (3r-0) (1.46)
1=

Thus, facing (1.38), the forecast er@mh“ =VYTih —§T+h” is:
e =0 — 0+ (Y)"(yr— ) - Y" (VT - (AD)
oo h-1_ _ha1 o
+ izo(w) M (zron-i—p")] - izowr (Zrini—p)+ go(w) ET+h-i

which can be decomposed into the equivalent 19 terms as theredastep taxonomy ir31.3, analogous
to the relation between (1.39) and (1.7). However, no newlitis seem to be gained by doing so, and it is
clear that the third result above still holds.

1.6 Transforming anl(1) system tol(0O)

Consider am-dimensional(1) VAR with p lags and an innovation errgg ~ IN, [0, Q] written as:

p
Wi = T+ le_lth_i + Ny (1.47)
i<

where some of thap eigenvalues of the polynomi*ailn — zip:ll'liLi \ in L lie on, and the rest inside, the unit
circle. Then™ = (I, — 3P, M) has reduced rank@ r < n, and can be expressedfas= a8’ wherea and
B aren x r with rankr (see e.g., [Johansen(1995)]). Alge= y+ a, so when (e.g.p = 2:

AW = y+ (M1 —1n) (AWe_1 — Y) — a (B'Wez — p) +ny (1.48)

with E [B'w;]| = u andE [Aw] = y where bothAw; andB'w; arel(0) even thoughw, is I(1). Thenr of the
x above areg8’w; andn—r area’, Aw; wherea | isnx (n—r)with o’ a =0and(a : a ) is non-singular.

Partitioningw; into endogenous (modeled) variablgesconditional on unmodeled then produces an
open system as analyzedgh.8. Thus, our results hold in an open cointegrated system.
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1.7 Conclusion

Even when a model is correctly specified in-sample, and theogieled variableg;, are strongly exogenous
with the correctly estimated coefficients, changes in theadyics alone can induce forecast failure simply
because the unmodeled variables have non-zero means. Wharean of; is constant, this forecast bias
does not depend substantively on whether orzads included in the forecasting model, but only on its
non-zero mean. Including in the forecasting model is beneficial when its mean shifisttat advantage
can be lost when future values., have to be forecast ‘off-line’. These results are expiaitérived for
one-step ahead forecasts and known parameters, but cemntimold when extended to estimated models,
to multi-step forecasting, and to a later forecast origitofeing a break.
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1.8 Appendix: comparing open with closed(0) systems

Here, we relate the forecast-error taxonomy of the openitionél [(0) system in (1.2) to that for a closed
VAR(1). Letx{ = (y;Z), then the DGP over=1,..., T for y; andz is now:

Xt = P+ Wxi—1+ v (1.49)
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Qyy Qy,
-sz -sz
stationary in-sample, taking expectations in (1.49):

whenv = (V{;, Vi) ~ INntm[0, Q] andQ = ) with Qzy= Qy,. When all the variables are weakly

Ex]=¢+WEX-1]=¢+¥u=yp,

U= (lnem—®) Ty = (Egﬂ) - (ﬁ). (1.50)

Consequently, we can re-write (1.49) as:

SO:

Xt — =W (X-1—H)+W (1.51)

fort=12,..T.
We first consider a one-step ahead forecast from Tirfrem a model that is correctly specified in-sample
with known parameter values:

Ty = P+ WXt (1.52)
but where the DGP in the next period has shifted to:
X741 =Y +Wxr +vri1 (1.53)

with vr11 ~ INnym [0, Q]. The resulting forecast error between (1.52) and (1.58) it = X141 — X717
and hence:

Vrpr =W =)+ (W =W)Xt +vra (1.54)

so that:
E[Vriar] = (W' — @)+ (W = W)E[xr] = (0 — ). (1.55)
From (1.50), we can partition (1.55) as:

E[Vriar] = (z*_ﬁ)
_ ( (w5 —wy) ) N ((‘%—%/) <w;z—%z>) («p)
(W - (Wy— W) (Y= %) ) \ P
() (358 ()
Uy, U4y 0%z ) \ p
where[d denotes a change in a parameter, with:

Owy = (@5 — wy) Og,= (Y5 —W,) O%y= (¥, — Ky)
UKz = (sz— Wz) D%y = (W{;_ W) OWz= (¥ —my)

Partitioningt = (Intm— W)~y yields:

4 Note that althougtE [x] = ¢ + WE[x_1) = ¢+ W =pfort =1,2,..T whent > T E[xr4] = Zij;g(w*)ilﬂ* + (Wi
for j = 1 which for a stationanyfx; } process converges ftn,m— W*) " 1¢* = u* asj — .
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(«p) _ ((Inw ~% )‘1(wy)
P %y (Im— %) Y,

R ]()

_ AilWy_Ail%Z(lm_%Z)illpz
< By, — (Im— %) 1WA 1Yy )

B = (Im— %) Im+ YA 1H,(Im — Wp) 1. Therefore (1.55) has the form:

_ _ (Dy OWy OW,\ (A7, — A7, (Im— ) 1y,
E [VTJrl\T} - <DWZ) + <quzy Dq"zz) < BL,UZy* (|m* LIJZZ)—quZyA—lwy

Hence, if the mean of théz } process is constanfl{y, = 0, 0%y = 0,0%;, = 0), and there is no intercept
in the{y:} process g5 = ¢, = 0), the mean of the forecast error becomes:

_ -1 _ -1
o] - ( (098 SA Wl 1))

(1.56)

so if there is a change in the dynamics of the} process andz} has a non-zero mean, there will be
forecast failure. Further, evenZf is strongly exogenous for the parameters of fig process .y = 0),
there will be forecast failure as:

E [Vryar] =

( {0%z— D%yA*“é{/z} (Im— wzz>1wz)

which will be non-zero providegy, # 0 and there is a change in the dynamics of{y¢ process, consistent
with the closed system results in [Clements and Hendry (1999

These closed system results can be mapped to an open systgna eenditional and marginal factor-
ization of the joint distribution. From (1.49), the conditial distribution ofy; givenz and the past is:

Vo= (Wy—ZW,) + (Hy— Z¥y) Yyt 1+ 22+ (Kz— Z¥)z 1+ (Ve + Zvar)
=0+0y,_1+Zz+Nz_1+Wwn (1.57)
when= = Q,,Q;!. The initial VAR formulation induces one lag longerinwith:
E[yi] =0+ OE[y;_1]+ZE[z] +AE[z_1] =0+ 0@+ (Z+A)p=0¢
so that:
9=(n—0) {8 +(Z+A)p}

and:

V=9 =01-9)+=(z2—p)+A(2-1—Pp)+Wt.

The forecast error from predicting ;.1 by Y17 = 6+ Oyr_1+ =271+ Az7 with known parameters and
Z141 andzy is:
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Vrir=Yr41—Yroqr =004+ 00y 1+ 0=77 11+ UAZT + V14
hence:
E [VT+1] =06+ mCJES (DE+ D/\)p
=00+00(In—0) MO+ (Z+A)p}+(0=+0A)p
with
P =By~ (Im— %) WHA 1y,
0e = (Dlpy_ 0=y, —=0y,)

00 = (OWy — 0=Yy— =04)
OA = (OW,— 0=Y,,— 204

If the {2} process is constanfl(y, = 0, 0%,y = 0, 0%, = 0) and there is no intercept in tHg } process
(yy = Y, = 0) thenp = By, and the mean of the forecast error becomes:
E[Vr 1] = —[0Z + (0% — D=y (In— Yy + ) ' 2]y,
+ [(ORy— OZ%y) (In— Wy+ Ty) 1 (Z+A)+ (0 +0A)| By,

which, whenz is strongly exogenous for the parameters of{g process Yy = 0), simplifies to:

E[Vrsa] = —[0= + 0%y (In— Ky) " 4,
+ D%y (In— W) H(Z+A)+ (DZ+04)| (Im— %504,

so again will be non-zero wheti, # 0 and there is a change in the dynamics of {lyg} process (i.e., at
least one ofl¥,y, 0= andOA is non-zero). This result mirrors that in (1.8) noting tpat (Im— W)~ ty,
in this case.

An analogous result is obtained when we close the open d¢ondit(0) system in (1.2) by endogenizing
z in:

Vi=T+YVi1+Tz+é& (1.58)
Z=A+®y 1+Mz 1+, (1.59)
so that:
Elzz] =A + ®E[yi_1] + ME[z_1]=A+ P+ p=p
or:
A=(m—M)p—2p
leading to:

(z—p)=P(Yi-1— @)+ (z-1—p)+ 1y
Then,asp=(In—Y) *(1+p):>

5 This is true whether or na is strongly exogenous (i.e® = 0) for the parameters of, in the VAR.
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Vi—@=Y(Yi—1— @)+ (zz—p) + &
=(Y+T®)(Yi-1— @)+ 1 (z-1—p) + (I Ny + &)

These results allow a general evaluation of the relativeairtgoof breaks when is treated as ‘external’ or
‘internal’.



