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Open-model Forecast-error Taxonomies

David F. Hendry and Grayham E. Mizon∗

Abstract
We develop forecast-error taxonomies when there are unmodeled variables, forecast ‘off-line’. We estab-

lish three surprising results. Even when an open system is correctly specified in-sample with zero intercepts,
despite known future values of strongly exogenous variables, changes in dynamics can induce forecast fail-
ure when they have non-zero means. The additional impact on forecast failure of incorrectly omitting such
variables depends only on unanticipated shifts in their means. With no such shifts, there is no reduction
in forecast failure from forecasting unmodeled variables relative to omitting them in 1-step or multi-step
forecasts. Artificial data illustrations confirm these results.
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1.1 Introduction

It is a pleasure to contribute a chapter on forecasting to a volume in honor of Hal White, as forecasting
has long been a salient aspect of his research. We congratulate Hal on his major research findings and look
forward to many more.

There are a number of taxonomies of the sources of forecast errors in closed systems where every variable
to be forecast is modeled: see for example, [Clements and Hendry(1998), Clements and Hendry(2006)] and
[Hendry and Hubrich(2011)]. Such taxonomies have clarifiedthe problems facing forecasters when parame-
ters change. Forecasting variables as part of systems that are subject to unanticipated changes is difficult, as
recent floods, tsunamis, and the financial crisis demonstrate. Systematic forecast errors and forecast failures
are mainly due to location shifts, namely changes in the previous unconditional means of the variables being
forecast, and changes in other parameters can be hard to detect, as shown in [Hendry(2000)] and illustrated
by [Hendry and Nielsen(2007)].

∗ Financial support from the Open Society Institute and the Oxford Martin School is gratefully acknowledged. We are indebted
to Anindya Banerjee, Jennifer L. Castle, Mike Clements, Jurgen A. Doornik, Neil Ericsson, Katarina Juselius and John N.J.
Muellbauer for helpful discussions about and comments on anearlier version.
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In practice, many forecasting systems include unmodeled determinants, whose future values are deter-
mined ‘off-line’ by a separate process: examples include commodity prices, exchange rates, and outputs of
trading partners. There are many reasons for not modeling some variables, namely those that are exception-
ally difficult to forecast accurately, other variables thatare policy instruments determined outside the system
in use, and some weakly exogenous variables where conditioning on them incurs no loss of information for
modeling (see [Engle et al(1983)Engle, Hendry, and Richard]). Using a taxonomy of the consequences of
including or excluding ‘off-line’ variables as inputs in forecasting models, we clarify the forecasting prob-
lems which could result. Even when the forecasting model is correctly specified in-sample having accurately
estimated coefficients, with unmodeled variables that are strongly exogenous andknowninto the future, nev-
ertheless changes in the dynamics of the system can induce forecast failure simply because the unmodeled
variables have non-zero means.

At first sight such a claim seems counter-intuitive: if a variableyt is determined by

yt = γyt−1+λzt + εt

say, whenε t ∼ IN[0,σ2
ε ], andzt is strongly exogenous, then for knownλzt :

(yt −λzt) = γyt−1+ εt (1.1)

where the right-hand side has no intercept. Hence it might seem that (1.1) is in the class of models where
change is hard to detect. However, ifzt has a non-zero mean, then so doesyt , and that alone makes the model
susceptible to forecast failure after any parameters change, and as we show below, that result holds whether
or notzt is included in the model.

There are four distinct scenarios to consider for 1-step ahead forecasts, when facing parameter shifts in
the data-generation process (DGP). First, where strongly exogenous variables with known future values are
correctly included in the forecasting model and all parameters are known (or sufficiently precisely estimated
that sampling variation is a second-order issue). Second, when the strongly exogenous variables are unknow-
ingly and incorrectly omitted. Third, when the strongly exogenous variables need to be forecast, either within
the system or ‘off-line’. Finally, allowing for parameter-estimation uncertainty, model mis-specification for
the DGP and measurement errors at the forecast origin, a setting which in principle is applicable to all three
previous cases but here is only considered for the third. An analogous four scenarios arise for multi-step
forecasts, but as the key results seem little affected, we focus on the first four scenarios and briefly note
extensions to forecasting more than one period ahead.

Section 1.2 investigates a correctly-specifiedI(0) open system to consider the sources of forecast failure
that can result from changes in the parameters when them unmodeled strongly exogenous variables,zt ,
have non-zero means. Section 1.2.1 investigates any additional impacts from unknowingly omitting thezt ,
and section 1.2.2 compares 1-step forecasts one period later in both those settings. Section 1.3 develops
1-step taxonomies, first for excluding thezt , then in§1.3.1 when they are forecast ‘off-line’, also allowing
for parameter-estimation uncertainty, measurement errors at the forecast origin, and mis-forecasting thezt .
Section 1.4 provides an artificial data illustration of the analytical results. Section 1.5 considers multi-step
forecasts when the exogenous process is known in the future,then§1.5.1,§1.5.2 and§1.5.3 respectively
consider the impacts of omitting the unmodeled variables, forecasting them, then parameter estimation.
Section 1.6 briefly notes the transformations needed to reduce an initially I(1) system toI(0). Section 1.7
concludes. The appendix§1.8 compares forecasting in open and closedI(0) systems.
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1.2 Forecasting in an openI(0) system

Consider an openI(0) system conditional on a set ofm strongly exogenous variables{zt},2 which are
known into the future (lagged unmodeled variables can be stacked withinzt ) where the conditional DGP
overt = 1, . . .T is:

yt = τ +ϒyt−1+Γ zt + εt (1.2)

whenε t ∼ INn [0,Σ ] andE [εt |z1 . . .zT+H ] = 0. A system which isI(1) and cointegrated is considered in§1.6.
When all the variables are weakly stationary in-sample, so the eigenvalues ofϒ lie within the unit circle, and
we initially set all parameters to be constant, taking expectations in (1.2) whenE [zt ] = ρ:

E [yt ] = φ = τ +ϒ φ +ΓE [zt ] = τ +ϒ φ +Γ ρ,

so the in-sample equilibrium mean ofy is:

φ = (In−ϒ )−1 (τ +Γ ρ) (1.3)

Consequently, we can re-write (1.2) as:

yt −φ =ϒ (yt−1−φ)+Γ (zt −ρ)+ εt (1.4)

Below, we use whichever parametrization (1.2) or (1.4) proves most convenient, although it must be remem-
bered that how the meansφ andρ are connected in (1.3) depends on the invariants of the underlying behavior
represented by agents’ plans. For example, (1.3) only entails co-breaking betweenφ andρ so long as the
other parameters remain constant whenρ shifts (see e.g., [Hendry and Massmann(2007)], for an analysis of
co-breaking). Concerning notation for forecast values,y denotes a correctly specified model with known fu-
turez; ỹ denotes whenz is omitted from the model; and̂y is when thez are included in the model, but future
values need to be forecast; and if needed,̂̂y for that last case when parameters are estimated.ŷT denotes an
estimated forecast-origin value.

We first consider a 1-step ahead forecast from timeT for known zT+1 from a model that is correctly
specified in-sample with known parameter values, denoted:

yT+1|T = τ +ϒyT +Γ zT+1 (1.5)

However, the DGP in the next period in fact changes to:

yT+1 = τ∗+ϒ ∗yT +Γ ∗zT+1+ εT+1 (1.6)

where all the parameters shift, including the dynamic feedback, andρ shifts toE [zT+1] = ρ∗. The resulting
forecast error between (1.5) and (1.6) isεT+1|T = yT+1− yT+1|T and hence:

εT+1|T = (τ∗− τ)+ (ϒ ∗−ϒ )yT +(Γ ∗−Γ )zT+1+ εT+1 (1.7)

so that:

2 Corresponding toΨzy= 0 in §1.8.
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E
[
εT+1|T

]
= (τ∗− τ)+ (ϒ ∗−ϒ )E [yT ]+ (Γ ∗−Γ )E [zT+1]

= (τ∗− τ)+ (ϒ ∗−ϒ )φ +(Γ ∗−Γ )ρ∗ (1.8)

Consequently, even ifτ∗ = τ = 0 so (1.7) has no intercept andΓ ∗ = Γ andρ∗ = ρ, so (1.8) then does not
depend directly onzT+1 which anyway has constant parameters, nevertheless forecast failure can occur for
ρ 6= 0 whenϒ ∗ 6=ϒ as then:

E
[
εT+1|T

]
= (ϒ ∗−ϒ )(In−ϒ )−1Γ ρ (1.9)

which reveals an equilibrium-mean shift occurs in{yt}.
This outcome may be clearer when (1.4) is written using (1.3)as:

yt = (In−ϒ )−1 (τ +Γ ρ)+ϒ (yt−1−φ)+Γ (zt −ρ)+ εt (1.10)

so that even whenτ = 0, although(yt−1−φ), Γ (zt −ρ) andε t all have expectations of zero, (1.10) entails
an equilibrium mean of

(In−ϒ )−1Γ ρ (1.11)

which is zero only ifρ = 0 whenΓ 6= 0.
This is our first main result: despite correctly including unmodeled strongly exogenous variableszt with

known future values in a forecasting equation with no intercept and known parameters, a change in dynamics
alone can induce forecast failure when thezt have non-zero means.

More surprising still is that such failure is little different to that resulting either from modeling and
forecastingzt (see§1.3) possibly by a vector autoregression (VAR) say, or even excludingzt entirely from
the model, either deliberately or inadvertently, as we now show in §1.2.1.

1.2.1 Omitting the exogenous variables

If it is not known thatzt is relevant, so it is inadvertently omitted, the mis-specified model of (1.4) is:

yt = φ +ϒe(yt−1−φ)+ut (1.12)

where the subscripte in (1.12) denotes the finite-sample expected value following mis-specification (i.e.,
E[ϒ̃ ] =ϒe). Thenut = Γe(zt −ρ)+ εt with E [ut ] = 0. Provided there have not been any equilibrium-mean
shifts in-sample, thenφ e = φ . The forecast using the expected parameter values (to abstract from sampling
uncertainty) is:

ỹT+1|T = φ +ϒe(yT −φ) (1.13)

with ũT+1|T = yT+1− ỹT+1|T where (1.6) is reparametrized as:

yT+1 = φ∗+ϒ ∗ (yT −φ∗)+Γ ∗ (zT+1−ρ∗)+ εT+1 (1.14)

whereφ∗ = (In−ϒ ∗)−1 (τ∗+Γ ∗ρ∗). Then:

ũT+1|T = (φ∗−φ)+ϒ ∗ (yT −φ∗)−ϒe(yT −φ)+Γ ∗ (zT+1−ρ∗)+ εT+1

= (In−ϒ ∗)(φ∗−φ)+ (ϒ ∗−ϒe)(yT −φ)+Γ ∗ (zT+1−ρ∗)+ εT+1 (1.15)
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with:

E
[
ũT+1|T

]
= (In−ϒ ∗) (φ ∗−φ)
= (τ∗− τ)+ (ϒ ∗−ϒ )φ +(Γ ∗−Γ )ρ∗+Γ (ρ∗−ρ) (1.16)

Thus, (1.16) and (1.8) only differ byΓ (ρ∗−ρ), and hence are the same whenρ∗ = ρ despite the mis-
specification. When alsoτ∗ = τ = 0 andΓ ∗ = Γ , both are non-zero at the value in (1.9). However, the
forecast-error variances will differ between (1.15) and (1.7), with the former being larger in general.

This is our second main result: the additional impact on forecast failure of incorrectly omitting strongly
exogenous variables depends only on shifts in their means. Combining these first two results, as the com-
parison of (1.16) and (1.8) shows, when their means are constant at zero, then irrespective of whether or not
these strongly exogenous variables are included in the forecasting system, they neither cause nor augment
forecast failure.

1.2.2 1-step forecasts one period later

The analyses of forecasting one period after a break in [Clements and Hendry(2011)] show that results can
be substantively altered because of the impacts of the breaks on later data. From (1.6):

yT+2 = τ∗+ϒ ∗yT+1+Γ ∗zT+2+ εT+2 (1.17)

so that asE [zT+2] = ρ∗:

E [yT+2] = τ∗+ϒ ∗
E [yT+1]+Γ ∗

E [zT+2] =
(

In− (ϒ ∗)2
)

φ ∗+(ϒ ∗)2 φ

= φ ∗− (ϒ ∗)2 (φ∗−φ) (1.18)

asφ∗ = (In−ϒ ∗)−1 (τ∗+Γ ∗ρ∗) andE [yT+1] = φ ∗−ϒ ∗ (φ ∗−φ). Forecasting from (1.5) updated one pe-
riod, but still with in-sample known parameters, so:3

yT+2|T+1 = τ +ϒyT+1+Γ zT+2 (1.19)

the resulting forecast errorεT+2|T+1 = yT+2− yT+2|T+1 is:

εT+2|T+1 = (In+ϒ ∗−ϒ )(In−ϒ ∗)(φ ∗−φ) (Ia)

+ (ϒ ∗−ϒ ) (yT+1−E [yT+1]) (IIa)

+ εT+2 (IIIa)

+ (Γ ∗−Γ )(zT+2−ρ∗) (IVa)

−Γ (ρ∗−ρ) (Va) (1.20)

with
E
[
εT+2|T+1

]
= (In+ϒ ∗−ϒ )(In−ϒ ∗) (φ∗−φ)−Γ (ρ∗−ρ) (1.21)

3 Recursive or moving-windows updating will drive the forecasting system towards the robust device considered in§1.2.3.
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Similarly, omitting thezT+2, so using:

ỹT+2|T+1 = φ +ϒe(yT+1−φ) (1.22)

then as:
yT+2 = φ∗− (ϒ ∗)2 (φ ∗−φ)+ϒ ∗ (yT+1−E [yT+1])+Γ ∗ (zT+2−ρ∗)+ εT+2 (1.23)

the forecast error̃εT+2|T+1 = yT+2− ỹT+2|T+1 is:

ε̃T+2|T+1 = (In+ϒ ∗−ϒe) (In−ϒ ∗) (φ ∗−φ) (Ib)

+ (ϒ ∗−ϒe)(yT+1−E [yT+1]) (IIb)

+ εT+2 (IIIb)

+Γ ∗ (zT+2−ρ∗) (IVb) (1.24)

with:
E
[
ε̃T+2|T+1

]
= (In+ϒ ∗−ϒe)(In−ϒ ∗)(φ∗−φ) (1.25)

Consequently, unlike [Clements and Hendry(2011)], comparing (1.21) and (1.25) shows that there are no
substantive changes compared to the baseline case here, andthose two formulae are essentially the same
whenρ∗ = ρ .

1.2.3 Avoiding systematic forecast failure

One implication of§1.2.2 is that until the forecasting model is changed, systematic forecast failure will
persist. Out of the many possible methods for updating a model by intercept corrections, modeling the break,
recursive or moving window re-estimation and differencing, we only note the last here (see [Hendry(2006)]).
In place of (1.22), consider simply using the first-difference forecast,∆ ỹT+2|T+1 = 0:

ỹT+2|T+1 = yT+1 = φ ∗+ϒ ∗ (yT −φ∗)+Γ ∗ (zT+1−ρ∗)+ εT+1

so that using (1.23),̃εT+2|T+1 = yT+2− ỹT+2|T+1 is:

ε̃T+2|T+1 = φ ∗− (ϒ ∗)2 (φ∗−φ)+ϒ ∗ (yT+1−E [yT+1])+Γ ∗ (zT+2−ρ∗)+ εT+2

−φ∗+ϒ ∗ (φ∗−φ)−ϒ ∗ (yT −φ)−Γ ∗ (zT+1−ρ∗)− εT+1

=ϒ ∗ (In−ϒ ∗)(φ ∗−φ)+ϒ ∗ (yT+1−E [yT+1])−ϒ ∗ (yT −φ)+Γ ∗∆zT+2+∆εT+2

so:
E
[
ε̃T+2|T+1

]
=ϒ ∗ (In−ϒ ∗) (φ ∗−φ) (1.26)

which considerably dampens the forecast-error bias relative to (1.20) and (1.24) (e.g., for a univariateyt ,
thenϒ ∗ (1−ϒ ∗)≤ 0.25).
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1.3 1-step taxonomies

We now also allow for parameter estimation uncertainty, themis-specification of omittingz, and possible
mis-measurement at the forecast origin, so the forecast-period DGP remains (1.14), whereas the forecasting
model becomes:

ỹT+1|T = φ̃ +ϒ̃
(

ỹT − φ̃
)

(1.27)

The forecast error,̃εT+1|T = yT+1 − ỹT+1|T can be decomposed into eleven empirically-relevant sources
whenφe 6= φ :

ε̃T+1|T = (In−ϒ ∗) (φ ∗−φ) [1] equilibrium-mean shift

+(ϒ ∗−ϒ ) (yT −φ) [2] dynamic shift

+(In−ϒe) (φ −φe) [3] equilibrium-mean mis-specification

+(ϒ −ϒe)(yT −φ) [4] dynamic mis-specification

+(In−ϒe)
(

φ e− φ̃
)

[5] equilibrium-mean estimation

+
(

ϒe−ϒ̃
)
(yT −φ) [6] dynamic estimation (1.28)

+ϒe(yT − ỹT) [7] forecast origin mis-measurement

+
(

ϒ̃ −ϒe

)(
φ̃ −φ

)
[8] estimation covariance

+
(

ϒ̃ −ϒe

)
(yT − ỹT) [9] measurement covariance

+ εT+1 [10] innovation error

+Γ ∗ (zT+1−ρ∗) [11] omitted variables

As with earlier taxonomies, terms in (1.28) can be divided into those with non-zero expected values that
lead to forecast biases, namely [1] and possibly [3] and [7] (noting that [8] isOp(T−1)), and those with
zero means that only affect forecast-error variances, namely all the other terms, noting thatE[yT − φ ] =
E[zT+1−ρ∗] = 0. Thus, despite estimating a mis-specified system with omitted variables:

E
[
ε̃T+1|T

]
≈ (In−ϒ ∗)(φ ∗−φ)+ϒe(φ −E [ỹT ])

which matches (1.16) whenE [ỹT ] = φ .
This outcome could be compared directly with that from including the knownzt in estimation and fore-

casting by dropping line [10], stackingx′t = (y′t z′t) and redefining parameters, estimates and variables ac-
cordingly. Indeed, whenΓ ∗ = Γ = 0, (1.28) becomes the forecast-error taxonomy for a VAR.

1.3.1 Forecasting the unmodeled variables

However, the more interesting and realistic case is wherezT+1 is known to be relevant and has to be forecast
with its parameters estimated in (1.2), which we now consider via:
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ŷT+1|T = φ̂ +ϒ̂
(

ŷT − φ̂
)
+ Γ̂ (ẑT+1− ρ̂) (1.29)

compared to (1.6). Although the following derivation is under the correct specification of (1.29), the results
above show that mis-specification does not create importantadditional problems, and for the dynamics, is
already reflected in (1.28). Then, lettingε̂T+1|T = yT+1− ŷT+1|T , all the terms from (1.28) remain other than
[11] (still allowing for finite-sample biases in the dynamics, soϒe 6=ϒ , but for simplicity takingE[ρ̂] = ρ
andE[Γ̂ ]≈ Γ ) with the following 9 terms replacing the old [11].

ε̂T+1|T = [1]–[10] in (1.28)

−Γ (ρ∗−ρ) [11] exogenous mean shift

+(Γ ∗−Γ )(zT+1−ρ∗) [12] exogenous slope shift

+Γ (ρ̂ −ρ) [13] exogenous-mean estimation

−
(

Γ̂ −Γ
)
(zT+1−ρ∗) [14] exogenous slope estimation (1.30)

+Γ (zT+1−E [̂zT+1]) [15] exogenous mean mis-forecast

+
(

Γ̂ −Γ
)
(ρ̂ −ρ) [16] estimation covariance

−
(

Γ̂ −Γ
)
(ρ∗−ρ) [17] exogenous mean shift covariance

+Γ (E [̂zT+1]− ẑT+1) [18] exogenous mis-forecast.

+
(

Γ̂ −Γ
)
(zT+1− ẑT+1) [19] exogenous mis-forecast covariance

We focus on the terms in (1.30) with non-zero expectations, whereE [zT+1] = ρ∗, and for simplicity
covariances are ignored as a smaller order of magnitude. Then combined with (1.28):

E
[
ε̂T+1|T

]
≈ (In−ϒ ∗) (φ∗−φ)−Γ (ρ∗−ρ)+ϒe(φ −E [ỹT ])+Γ (ρ∗−E [̂zT+1])

= (τ∗− τ)+ (ϒ ∗−ϒ )φ +(Γ ∗−Γ )ρ∗+ϒe(φ −E [ỹT ])+Γ (ρ∗−E [̂zT+1])

from (1.16). As before, whenτ∗ = τ = 0 andΓ ∗ = Γ , with E [ỹT ] = φ :

E
[
ε̂T+1|T

]
≈ (ϒ ∗−ϒ )φ +Γ (ρ∗−E [̂zT+1])

compared toE
[
ũT+1|T

]
= (ϒ ∗−ϒ )φ +Γ (ρ∗−ρ), so:

E
[
ε̂T+1|T

]
−E

[
ũT+1|T

]
≈−Γ (E [̂zT+1]−ρ) (1.31)

This is our third main result: exogenous variable forecasts have to be closer to the new meanρ∗ than the old
meanρ to deliver a smaller forecast-error bias than arises from omitting them.

Whenρ∗ = ρ , E [̂zT+1] = ρ is necessary forE
[
ε̂T+1|T

]
= E

[
ũT+1|T

]
, and even then there will be variance

effects both from parameter estimation and(E [̂zT+1]− ẑT+1). This is our fourth main result: whenρ∗ =
ρ, there is no reduction in forecast failure from accurately forecasting the exogenous variables relative to
omitting them.

Our fifth main result is: this outcome does not depend on the strong exogeneity of theunmodeled vari-
ables, and holds even when they are only weakly exogenous.
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Without strong assumptions about the dependencies betweenthe many mean-zero terms in the taxonomy,
it is not possible to derive explicit forecast-error variances, but it is clear there are many contributions beyond
the innovation error variance, some of which could well beOp(1), such as mis-forecasting the unmodeled
variables, and forecast-origin mis-measurement. Moreover, as forecast errors could arise from every possi-
ble (non-repetitive) selection from the 19 terms, namely∑19

k=119!/(19− k)! ≈ 3.3×1017, delineating their
source must be nearly impossible.

1.4 Artificial data illustration

We consider a bivariate system with one unmodeled (stronglyexogenous) variable, with known future values,
where the baseline parameter values areτ = 0 andρ = 0 when:

ϒ =

(
0.5 0
0 0.5

)
Γ =

(
1
1

)
(1.32)

with Σ = I2, T = 100, andh= 1, . . . ,5 one-step ahead forecasts after the break. The parameter shift investi-
gated is:

ϒ ∗ =

(
0.75 0

0 0.5

)
(1.33)

first for the baseline, then whenρ = 0 but:

τ =

(
5
0

)
(1.34)

and finally whenτ = 0 butρ = 5.
The two equations are decoupled in this first experiment, whereas in the second:

ϒ =

(
0.5 0.5
−0.3 0.5

)
(1.35)

again for the same scenarios.
The results of the first set are reported in Figure 1.1.
Panel arecords forecastŝy1,T+h|T+h−1 from a single draw of the initial process in (1.32) when parameters

are estimated, shown with error bands of±2σ̂11, and when including parameter estimation uncertainty,
shown with bars. There is a very small increase in forecast uncertainty from adding parameter variances,
consistent with anOp(1/T) effect.

Panel breports forecasts whenzt is omitted both in estimation and forecasting. Although theforecast
intervals are wider, forecasts are similar and remain within theirex anteforecast intervals.

Panel cis for the correct specification but after the shift in (1.33), still with τ = 0 andρ = 0. Despite the
break in the dynamics, forecasts remain within theirex anteforecast intervals, even though those are now
incorrect.Panel daugments the problem by the incorrect omission ofzt , but hardly differs fromPanel b.

Although we do not report the outcomes for a constant model and non-zeroτ , they are well behaved
around the new data outcomes. The same cannot be said for the outcomes inPanels e & f for the non-zero
value ofτ in (1.34) after the break inϒ in (1.33): forecast failure is manifest, and almost unaffected by
whetherzt is included or omitted.
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Fig. 1.1 Forecast failure for correct and mis-specified models

Finally, for ρ = 5, Panels g & hshow the forecasts for the same break when the model is correctly
specified by includingzt , and incorrect by omitting it. Despite the known future values ofzt and the absence
of forecast failure after the break whenρ = 0, failure is again manifest and similar toPanels e & f.

The second setting in (1.35) yielded similar results, even though throughout both sets of experiments, the
second variable was correctly forecast. All these results are consistent with the implications of the taxonomy
in (1.28).

1.5 h-step ahead forecasts

We now consider the outcomes when an investigator needs to forecasth-steps ahead,h > 1. As the im-
pacts of parameter-estimation uncertainty, mis-forecasting the unmodeled variables, and forecast-origin
mis-measurement are similar to those derived above, we firstderive the outcomes for known parameters
to highlight the impacts of breaks when there are unmodeled variables. Thus, the in-sample system remains:

yt = φ +ϒ (yt−1−φ)+Γ (zt −ρ)+ εt

forecasting fromT +h−1 to T +h by:
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yT+h|T+h−1 = φ +ϒ
(
yT+h−1|T+h−2−φ

)
+Γ (zT+h−ρ)

leading to the multi-step forecast:

yT+h|T = φ +
h−1

∑
i=0

ϒ iΓ (zT+h−i −ρ)+ϒ h (yT −φ) (1.36)

If the system remained constant, the outcome would be:

yT+h = φ +
h−1

∑
i=0

[
ϒ iΓ (zT+h−i −ρ)+ϒ iεT+h−i

]
+ϒ h (yT −φ) (1.37)

so a known future{zt} enters the same way as the cumulative error process. Then∑h−1
i=0 ϒ iεT+h−i would

be the only source of forecast error when equation (1.36) wasused. However, that will not remain the case
once there are changes in parameters, mis-specification of the model, or mis-estimation ofΓ in (1.2), or
unanticipated changes toρ in the forecast period when the{zT+h−i} are not known with certainty.

As before, we allow for structural change in the DGP, but to highlight the key problem, we first analyze
a setting without estimation of, or mis-specification in, the econometrician’s model for the DGP in-sample,
so the in-sample parameter values are known. Under changes in all parameters of (1.37), the actual future
outcomes will be:

yT+h = φ∗+
h−1

∑
i=0

(ϒ ∗)i [Γ ∗ (zT+h−i −ρ∗)+ εT+h−i]+ (ϒ ∗)h (yT −φ∗) (1.38)

When (1.36) is used, the forecast errorvT+h|T = yT+h− yT+h|T becomes:

vT+h|T = φ ∗−φ +(ϒ ∗)h (yT −φ∗)−ϒ h (yT −φ)

+
h−1

∑
i=0

(ϒ ∗)i Γ ∗ (zT+h−i −ρ∗)−
h−1

∑
i=0

ϒ iΓ (zT+h−i −ρ)

+
h−1

∑
i=0

(ϒ ∗)i εT+h−i

Taking these rows one at a time, and using:

h−1

∑
i=0

A i =
(

In−Ah
)
(In−A)−1

first:

φ ∗−φ +(ϒ ∗)h (yT −φ∗)−ϒ h (yT −φ)

=
(

In− (ϒ ∗)h
)
(φ∗−φ)+

(
(ϒ ∗)h−ϒ h

)
(yT −φ)

where the terms respectively represent equilibrium-mean and slope shifts. Next:
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h−1

∑
i=0

(ϒ ∗)i Γ ∗ (zT+h−i −ρ∗)−
h−1

∑
i=0

ϒ iΓ (zT+h−i −ρ)

=
h−1

∑
i=0

[
(ϒ ∗)i Γ ∗−ϒ iΓ

]
(zT+h−i −ρ∗)−

h−1

∑
i=0

ϒ iΓ (ρ∗−ρ)

where the first component has mean zero and the second is part of the exogenous mean shift. Finally, com-
bining:

vT+h|T =
(

In− (ϒ ∗)h
)
(φ ∗−φ) [A] equilibrium-mean shift

+
(
(ϒ ∗)h−ϒ h

)
(yT −φ) [B] dynamic shift

−
(

In−ϒ h
)
(In−ϒ )−1Γ (ρ∗−ρ) [C] exogenous mean shift (1.39)

+
h−1

∑
i=0

[
(ϒ ∗)i Γ ∗−ϒ iΓ

]
(zT+h−i −ρ∗) [D] exogenous slope shift

+
h−1

∑
i=0

(ϒ ∗)i εT+h−i [E] innovation error

This outcome matches the earlier taxonomy specialized appropriately, namely [1], [2], [9], plus new [11]
and [12]. As terms [A] and [C] have non-zero means, and the others have zero means:

E [vT+h] =
(

In− (ϒ ∗)h
)
(φ ∗−φ)−

(
In−ϒ h

)
(In−ϒ )−1Γ (ρ∗−ρ) (1.40)

Thus, evenh-steps ahead, whenρ∗ = ρ , forecast biases depend on(φ ∗−φ) which is non-zero whenever
ρ 6= 0 despiteτ∗ = τ = 0.

This is our sixth main result: the first two results continue to hold for multi-step forecasts.

1.5.1 Omitting the unmodeled variables in h-step ahead forecasts

The forecasting model in-sample is now (1.4) leading to the multi-step forecasts:

ỹT+h|T = φ +(ϒe)
h (yT −φ) (1.41)

When (1.41) is used, the forecast errorṽT+h|T = yT+h− ỹT+h|T becomes:
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ṽT+h|T = (φ∗−φ)+ (ϒ ∗)h (yT −φ∗)− (ϒe)
h (yT −φ)+ vT+h

=
(

In− (ϒ ∗)h
)
(φ ∗−φ)

+
(
(ϒ ∗)h− (ϒe)

h
)
(yT −φ)

+
h−1

∑
i=0

(ϒ ∗)i εT+h−i

+
h−1

∑
i=0

(ϒ ∗)i Γ ∗ (zT+h−i −ρ∗) (1.42)

matching the four terms in (1.15), where:

vT+h =
h−1

∑
i=0

(ϒ ∗)i [Γ ∗ (zT+h−i −ρ∗)+ εT+h−i ]

with E [vT+h] = 0, so that:

E
[
ṽT+h|T

]
=
(

In− (ϒ ∗)h
)
(φ ∗−φ) (1.43)

This is our seventh main result: the previous conclusions about forecast failure based on the 1-step analyses
are essentially unaltered: whenρ∗ = ρ, (1.40) and (1.43) are equal, so forecast failure is only reduced by the
inclusion of unmodeled variables when they have mean shifts.

1.5.2 Forecasting the unmodeled variables in h-step ahead forecasts

Now:

ŷT+h|T = φ +
h−1

∑
i=0

ϒ iΓ (̂zT+h−i −ρ)+ϒ h (yT −φ) (1.44)

with the forecast error̂vT+h|T = yT+h− ŷT+h|T :

v̂T+h|T = (φ ∗−φ)+ (ϒ ∗)h (yT −φ∗)− (ϒe)
h (yT −φ)+

h−1

∑
i=0

(ϒ ∗)i εT+h−i

+
h−1

∑
i=0

(ϒ ∗)i Γ ∗ (zT+h−i −ρ∗)−
h−1

∑
i=0

ϒ iΓ (̂zT+h−i −ρ)

=
(

In− (ϒ ∗)h
)
(φ ∗−φ)+

(
(ϒ ∗)h− (ϒe)

h
)
(yT −φ)+

h−1

∑
i=0

(ϒ ∗)i εT+h−i

+
h−1

∑
i=0

(
(ϒ ∗)i Γ ∗−ϒ iΓ

)
(zT+h−i −ρ∗)−

h−1

∑
i=0

ϒ iΓ (ẑT+h−i − zT+h−i)−
h−1

∑
i=0

ϒ iΓ (ρ∗−ρ) (1.45)
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In the second block, the first three terms are identical to those in (1.42), and∑h−1
i=0 (ϒ ∗)i Γ ∗ (zT+h−i −ρ∗) has

been replaced by terms relating to the shift in the dynamics (with mean zero), the forecast mistake, and the
shift in the mean of the exogenous variables, as in (1.16).

1.5.3 Parameter estimation in h-step ahead forecasts

The estimated model forecasts are now:

̂̂yT+h|T = φ̂ +
h−1

∑
i=0

ϒ̂ iΓ̂ (ẑT+h−i − ρ̂)+ϒ̂ h
(

ŷT − φ̂
)

(1.46)

Thus, facing (1.38), the forecast error̂̂εT+h|T = yT+h−
̂̂yT+h|T is:

̂̂εT+h|T = φ ∗− φ̂ +(ϒ ∗)h (yT −φ∗)−ϒ̂ h
(

ŷT − φ̂
)

+
h−1

∑
i=0

(ϒ ∗)i [Γ ∗ (zT+h−i −ρ∗)]−
h−1

∑
i=0

ϒ̂ iΓ̂ (ẑT+h−i − ρ̂)+
h−1

∑
i=0

(ϒ ∗)i εT+h−i

which can be decomposed into the equivalent 19 terms as the earlier 1-step taxonomy in§1.3, analogous
to the relation between (1.39) and (1.7). However, no new insights seem to be gained by doing so, and it is
clear that the third result above still holds.

1.6 Transforming an I(1) system toI(0)

Consider ann-dimensionalI(1) VAR with p lags and an innovation errorηt ∼ INn [0,Ωη ] written as:

wt = π +
p

∑
i=1

Πiwt−i +ηt (1.47)

where some of thenpeigenvalues of the polynomial
∣∣In−∑p

i=1ΠiLi
∣∣ in L lie on, and the rest inside, the unit

circle. ThenΓ = (In−∑p
i=1 Πi) has reduced rank 0< r < n, and can be expressed asΓ = αβ ′ whereα and

β aren× r with rankr (see e.g., [Johansen(1995)]). Alsoπ = γ +αµ , so when (e.g.)p= 2:

∆wt = γ +(Π1− In) (∆wt−1− γ)−α
(
β ′wt−2− µ

)
+ηt (1.48)

with E
[
β ′wt

]
= µ andE [∆wt ] = γ where both∆wt andβ ′wt areI(0) even thoughwt is I(1). Thenr of the

xt above areβ ′wt andn− r areα ′
⊥∆wt whereα⊥ is n× (n− r) with α ′

⊥α = 0 and(α : α⊥) is non-singular.
Partitioningwt into endogenous (modeled) variablesyt conditional on unmodeledzt then produces an

open system as analyzed in§1.8. Thus, our results hold in an open cointegrated system.
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1.7 Conclusion

Even when a model is correctly specified in-sample, and the unmodeled variables,zt , are strongly exogenous
with the correctly estimated coefficients, changes in the dynamics alone can induce forecast failure simply
because the unmodeled variables have non-zero means. When the mean ofzt is constant, this forecast bias
does not depend substantively on whether or notzt is included in the forecasting model, but only on its
non-zero mean. Includingzt in the forecasting model is beneficial when its mean shifts, but that advantage
can be lost when future valueszT+h have to be forecast ‘off-line’. These results are explicitly derived for
one-step ahead forecasts and known parameters, but continue to hold when extended to estimated models,
to multi-step forecasting, and to a later forecast origin following a break.
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1.8 Appendix: comparing open with closedI(0) systems

Here, we relate the forecast-error taxonomy of the open conditional I(0) system in (1.2) to that for a closed
VAR(1). Let x′t = (y′t z′t), then the DGP overt = 1, . . . ,T for yt andzt is now:

xt = ψ +Ψxt−1+ vt (1.49)
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whenv′t =
(
v′yt,v

′
zt

)
∼ INn+m[0,Ω ] andΩ =

(
Ωyy Ωyz

Ωzy Ωzz

)
with Ωzy=Ω ′

yz. When all the variables are weakly

stationary in-sample, taking expectations in (1.49):

E [xt ] = ψ +ΨE [xt−1] = ψ +Ψµ = µ,

so:

µ = (In+m−Ψ)−1ψ =

(
E [yt ]
E [zt ]

)
=

(
φ
ρ

)
. (1.50)

Consequently, we can re-write (1.49) as:

xt − µ =Ψ (xt−1− µ)+ vt (1.51)

for t = 1,2, ...T.
We first consider a one-step ahead forecast from timeT from a model that is correctly specified in-sample

with known parameter values:
xT+1|T = ψ +ΨxT (1.52)

but where the DGP in the next period has shifted to:

xT+1 = ψ∗+Ψ∗xT + vT+1 (1.53)

with vT+1 ∼ INn+m[0,Ω ]. The resulting forecast error between (1.52) and (1.53) isvT+1|T = xT+1−xT+1|T
and hence:

vT+1|T = (ψ∗−ψ)+ (Ψ∗−Ψ)xT + vT+1 (1.54)

so that4:
E
[
vT+1|T

]
= (ψ∗−ψ)+ (Ψ∗−Ψ)E [xT ] = (µ∗− µ) . (1.55)

From (1.50), we can partition (1.55) as:

E
[
vT+1|T

]
=

(
φ ∗−φ
ρ∗−ρ

)

=

((
ψ∗

y −ψy

)
(
ψ∗

z −ψz

)
)
+

(
(Ψ ∗

yy−Ψyy) (Ψ∗
yz−Ψyz)

(Ψ∗
zy−Ψzy) (Ψ∗

zz−Ψzz)

)(
φ
ρ

)

=

(
∇ψy
∇ψz

)
+

(
∇Ψyy ∇Ψyz

∇Ψzy ∇Ψzz

)(
φ
ρ

)

where∇ denotes a change in a parameter, with:

∇ψy =
(
ψ∗

y −ψy

)
∇ψz =

(
ψ∗

z −ψz

)
∇Ψyy = (Ψ ∗

yy−Ψyy)

∇Ψyz= (Ψ∗
yz−Ψyz) ∇Ψzy= (Ψ∗

zy−Ψzy) ∇Ψzz= (Ψ ∗
zz− zz)

Partitioningµ = (In+m−Ψ)−1 ψ yields:

4 Note that althoughE [xt ] = ψ +ΨE [xt−1] = ψ +Ψ µ = µ for t = 1,2, ...T whent > T E [xT+ j ] = ∑ j−1
i=0 (Ψ

∗)iψ∗+(Ψ ∗) j µ
for j ≧ 1 which for a stationary{xt} process converges to(In+m−Ψ ∗)−1ψ∗ = µ∗ as j → ∞.
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(
φ
ρ

)
=

(
(In−Ψyy) −Ψyz

−Ψzy (Im−Ψzz)

)−1(ψy
ψz

)

=

(
A−1 −A−1Ψyz(Im−Ψzz)

−1

−(Im−Ψzz)
−1ΨzyA−1 B

)(
ψy
ψz

)

=

(
A−1ψy−A−1Ψyz(Im−Ψzz)

−1ψz
Bψz− (Im−Ψzz)

−1ΨzyA−1ψy

)
(1.56)

whenA =[(In−Ψyy)−Ψyz(Im−Ψzz)
−1Ψzy] and

B = (Im−Ψzz)
−1[Im+ΨzyA−1Ψyz(Im−Ψzz)

−1]. Therefore (1.55) has the form:

E
[
vT+1|T

]
=

(
∇ψy
∇ψz

)
+

(
∇Ψyy ∇Ψyz

∇Ψzy ∇Ψzz

)(
A−1ψy−A−1Ψyz(Im−Ψzz)

−1ψz
Bψz− (Im−Ψzz)

−1ΨzyA−1ψy

)

Hence, if the mean of the{zt} process is constant (∇ψz = 0,∇Ψzy= 0,∇Ψzz= 0), and there is no intercept
in the{yt} process (ψ∗

y = ψy = 0), the mean of the forecast error becomes:

E
[
vT+1|T

]
=

({
∇ΨyzB−∇ΨyyA−1Ψyz(Im−Ψzz)

−1
}

ψz
0

)

so if there is a change in the dynamics of the{yt} process and{zt} has a non-zero mean, there will be
forecast failure. Further, even ifzt is strongly exogenous for the parameters of the{yt} process (Ψzy= 0),
there will be forecast failure as:

E
[
vT+1|T

]
=

({
∇Ψyz−∇ΨyyA−1Ψyz

}
(Im−Ψzz)

−1ψz
0

)

which will be non-zero providedψz 6= 0 and there is a change in the dynamics of the{yt} process, consistent
with the closed system results in [Clements and Hendry(1999)].

These closed system results can be mapped to an open system using a conditional and marginal factor-
ization of the joint distribution. From (1.49), the conditional distribution ofyt givenzt and the past is:

yt =
(
ψy−Ξψz

)
+(Ψyy−ΞΨzy)yt−1+Ξzt +(Ψyz−ΞΨzz)zt−1+(vyt +Ξvzt)

= θ +Θyt−1+Ξzt +Λzt−1+νt (1.57)

whenΞ = Ω yzΩ−1
zz . The initial VAR formulation induces one lag longer inzt with:

E [yt ] = θ +ΘE [yt−1]+ΞE [zt ]+ΛE [zt−1] = θ +Θφ +(Ξ +Λ)ρ = φ

so that:
φ =(In−Θ)−1{θ +(Ξ +Λ)ρ}

and:
(yt −φ) =Θ (yt−1−φ)+Ξ (zt −ρ)+Λ (zt−1−ρ)+νt .

The forecast error from predictingyT+1 by yT+1|T = θ +Θyt−1+ΞzT+1+ΛzT with known parameters and
zT+1 andzT is:
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νT+1 = yT+1− yT+1|T = ∇θ +∇Θyt−1+∇ΞzT+1+∇ΛzT +νT+1

hence:

E [νT+1] = ∇θ +∇Θφ +(∇Ξ +∇Λ)ρ

= ∇θ +∇Θ (In−Θ)−1{θ +(Ξ +Λ)ρ}+(∇Ξ +∇Λ)ρ

with
ρ = Bψz− (Im−Ψzz)

−1ΨzyA−1ψy
∇θ = (∇ψy−∇Ξψz−Ξ∇ψz)

∇Θ = (∇Ψyy−∇ΞΨzy−Ξ∇Ψzy)
∇Λ = (∇Ψyz−∇ΞΨzz−Ξ∇Ψzz)

If the {zt} process is constant (∇ψz = 0,∇Ψzy= 0,∇Ψzz= 0) and there is no intercept in the{yt} process
(ψ∗

y = ψy = 0) thenρ = Bψz and the mean of the forecast error becomes:

E [νT+1] =−[∇Ξ +(∇Ψyy−∇ΞΨzy)(In−Ψyy+ΞΨzy)
−1 Ξ ]ψz

+
[
(∇Ψyy−∇ΞΨzy)(In−Ψyy+ΞΨzy)

−1 (Ξ +Λ)+ (∇Ξ +∇Λ)
]

Bψz

which, whenzt is strongly exogenous for the parameters of the{yt} process (Ψzy= 0), simplifies to:

E [νT+1] =−[∇Ξ +∇Ψyy(In−Ψyy)
−1 Ξ ]ψz

+
[
∇Ψyy(In−Ψyy)

−1(Ξ +Λ)+ (∇Ξ +∇Λ)
]
(Im−Ψzz)

−1ψz

so again will be non-zero whenψz 6= 0 and there is a change in the dynamics of the{yt} process (i.e., at
least one of∇Ψyy,∇Ξ and∇Λ is non-zero). This result mirrors that in (1.8) noting thatρ = (Im−Ψzz)

−1ψz
in this case.

An analogous result is obtained when we close the open conditional I(0) system in (1.2) by endogenizing
zt in:

yt = τ +ϒyt−1+Γ zt + εt (1.58)

zt = λ +Φyt−1+Πzt−1+ηt (1.59)

so that:
E [zt ] = λ +ΦE [yt−1]+ΠE [zt−1] = λ +Φφ +Πρ = ρ

or:
λ = (Im−Π)ρ −Φφ

leading to:
(zt −ρ) = Φ (yt−1−φ)+Π (zt−1−ρ)+ηt

Then, asφ = (In−ϒ )−1 (τ +Γ ρ):5

5 This is true whether or notzt is strongly exogenous (i.e.,Φ = 0) for the parameters ofyt in the VAR.
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yt −φ =ϒ (yt−1−φ)+Γ (zt −ρ)+ εt

= (ϒ +Γ Φ)(yt−1−φ)+Γ Π (zt−1−ρ)+ (Γ ηt + εt)

These results allow a general evaluation of the relative impacts of breaks whenzt is treated as ‘external’ or
‘internal’.


