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Abstract

The overwhelming majority of bacteria live in slime embedded microbial communities termed biofilms, which are typically
adherent to a surface. However, when several Staphylococcus epidermidis strains were cultivated in static liquid cultures,
macroscopic aggregates were seen floating within the broth and also sedimented at the test tube bottom. Light- and
electron microscopy revealed that early-stage aggregates consisted of bacteria and extracellular matrix, organized in sheet-
like structures. Perpendicular under the sheets hung a network of periodically arranged, bacteria-associated strands. During
the extended cultivation, the strands of a subpopulation of aggregates developed into cross-connected wall-like structures,
in which aligned bacteria formed the walls. The resulting architecture had a compartmentalized appearance. In late-stage
cultures, the wall-associated bacteria disintegrated so that, henceforth, the walls were made of the coalescing remnants of
lysed bacteria, while the compartment-like organization remained intact. At the same time, the majority of strand-
containing aggregates with associated culturable bacteria continued to exist. These observations indicate that some strains
of Staphylococcus epidermidis are able to build highly sophisticated structures, in which a subpopulation undergoes cell
lysis, presumably to provide continued access to nutrients in a nutrient-limited environment, whilst maintaining structural
integrity.
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Introduction

In their native habitats, bacteria grow predominantly in multi-

cellular communities, which are universally named biofilms [1].

Biofilms are typically found at solid-liquid, solid-gas or liquid-gas

interfaces [2,3]. Nevertheless, most research was done on biofilms

at solid-liquid boundaries, which pass through five distinct stages

during their development: I) planktonic bacteria, which are

suspended in the liquid phase; II) attachment of planktonic

bacteria to a solid substrate; III) formation of microcolonies; IV)

development into a mature biofilm; V) dispersal of planktonic

bacteria from the biofilm [4]. The architecture of mature biofilms

varies with the bacterial species and the prevailing physical and

physiological conditions. Many reports describe biofilms with an

array of mushroom-like towers or with a lawn-like appearance

[5,4]. More infrequent are descriptions of biofilms with a veil- [6],

parachute- [7], or honeycomb-like architecture [8]; [9]. Staphylo-

coccus epidermidis is a common member of the human skin flora and

an important pathogen in nosocomial infections [10]. Whenever S.

epidermidis is grown at solid-liquid or solid-gas interfaces, they either

show a tower or lawn-like biofilm architecture [11,12]. In static

liquid cultures, however, a certain strain of S. epidermidis (MH

strain), which was isolated from a dog’s canine lymphoma

specimen, formed sophisticated structures with ‘‘capillary-like

networks’’ or ‘‘tissue-like sheets’’ [13]. When a number of

randomly chosen strains (none of them tumor associated) of S.

epidermidis were tested for their ability to also form the previously

observed structures, it became evident that this trade was not an

uncommon phenomenon. While the ‘raison d’être’ of these
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structures is still subject to speculation, the work here presented

seeks to reconstruct the chronological development of this unusual

biofilm architecture.

Results

Early Stage Structures
Twenty-four hours after the inoculation, floating macroscopic

aggregates of all tested strains were visible throughout the liquid

volume of the test tube (Fig. 1A–C). Larger aggregates had settled

to the bottom of the test tube and formed a sediment (Fig. 1C).

Scanning electron microscopic (SEM) examination of floating

aggregates (only the MH strain was prepared) from early stage

cultures (days 1–3) revealed that they consisted of few aggregated

bacteria, which were held together by elements of extracellular

matrix (Fig. 1D). In larger aggregates, the extracellular matrix and

the bacteria had formed sheet-like structures under which short

strands originated and laterally spread (Fig. 1E). Aggregates of 3–5

day old cultures consisted of sheets over a widespread network of

strands (Fig. 1F). The strands in this network had a predominantly

parallel orientation to each other (Fig. 1G) and were cross-

connected with thin fibers (Fig. 1H). The strands themselves were

composed of extracellular matrix material and embedded bacteria

cells (Fig. 1H). When supernatants of 10-day old cultures were

stained with ConA (which binds to a-linked mannose and terminal

glucose residues), the uniformly aligned strands and the strand-

associated particulate material took up this stain, while the nucleic

acid specific stain Syto59 labeled the bacteria (Fig. 1I). During the

first week of incubation, the number and size of aggregates in the

supernatant increased visibly, with larger aggregates settling to the

test tube bottom thereby contributing to the progressively

enlarging sediment.

Compartmentalization
On the tenth day of cultivation, some regions of the aggregates

underwent extensive phenotypic changes, while the majority

merely continued to grow in size without changing their sheet-

strand architecture. During the first stage of this transfiguration,

the strands become gradually more solid (Fig. 1J), and turned into

compact, but still aligned, wall-like structures (Fig. 2A). Mean-

while, the sheets had become thicker and larger and were found on

top of vertically stacked walls (Fig. 2B). When corresponding

structures of 14-day old cultures (MH strain) were imaged in the

transmission channel of the CLSM, they showed the same general

architecture: vertically aligned walls under a noticeably denser and

more randomly organized upper-area (Fig. 2C). In regions of the

aggregate, where the missing top-sheet allowed an unobstructed

view from above onto the overall architecture, a compartmental-

ized organization with parallel walls and cross-connecting walls

became apparent in the SEM (Fig. 2D). Such a structure could

extend over large areas of several hundred micrometers. The

pronounced compartmentalized architecture was also observed,

when walls and cross-walls were visualized under fully hydrated,

unfixed conditions in the light microscope (Fig. 2E). A closer

examination of the compartment-walls with the SEM showed how

the bacteria themselves were aligned as walls (Fig. 2F). A similar

pattern of neatly organized bacteria (MH strain) was also observed

in the CLSM under unfixed, hydrated conditions (Fig. 2G).

Labeling of 14-day old cultures (MH strain) with LIVE/DEAD

cell viability staining showed that on average only one third of the

cells had intact cell membranes (green staining), while the other

two thirds revealed varying stages of compromised cell membranes

as evidenced by the yellow-red staining (Fig. 2G).

Late Stage Structures
Commencing on approximately the 12th day of cultivation,

several areas of the regular compartmentalized structure contained

notably fewer bacteria, while directly adjacent regions still

remained unchanged (Fig. 2H). The resulting structure consisted

of thin, cross-linked compartment walls with fewer bacteria than

previously seen (Fig. 3A), while the majority of the walls were

largely devoid of bacteria (Fig. 3B). Only very few bacteria in the

walls exhibited still intact cell membranes (Fig. 3C). Most bacteria,

however, appeared to be in varying stages of lysis, ranging from

partially collapsed cell membranes to completely disintegrated cells

with disrupted intracellular morphology (Fig. 3B–C). At higher

magnifications, large amounts of dispersed fibers and electron-

opaque particles were visible in the compartment walls between

the lysing bacteria (Fig. 3D). A SEM examination of bacteria-

depleted areas revealed thin walls with no obvious trace of bacteria

(Fig. 3E). The overall structure of the now empty compartments

still showed the previous organization of walls and cross-walls

(Fig. 3F) present over large areas (.500 mm2) (Fig. 3G). CLSM

imaging of bacteria-depleted compartment walls (MH strain)

under unfixed, hydrated conditions confirmed the pattern that was

observed by the SEM (Fig. 3H). The concomitant disintegration of

cocci, the development of wall-like structures, and the tenor of the

TEM pictures (Figs. 3B–D) suggested that the compartment walls

were formed from the coalescing remnants of lysed cells. If this

assumption was correct, the walls should contain typical intracel-

lular biomolecules such as DNA or ribosomes. To test this

hypothesis, specific stains and probes were used. When material

from the bottom of the test tube of 14-day old cultures (MH strain)

was hybridized with the EUB338 probe, which specifically

recognizes a conserved sequence of the 16S rRNA in most

bacteria, the compartment-like structures as well as intact bacteria

were strongly labeled (Fig. 4A). Additional staining with the DNA

specific stain Syto59 in contrast labeled exclusively intact bacteria,

while the hybridization with the NONEUB probe (negative

control) produced no signal (data not shown). The lectin ConA,

with which the strands from the early stages had been successfully

stained, also showed affinity to the compartment walls (Fig. 4B),

whereas labeling with Wheat Germ Agglutinin (WGA binds to N-

acetyl glucosamine groups and sialic acid) proved to be

inconsistent - only in one out of five times the walls resulted in a

signal (data not shown). Co-staining of late-stage cultures with

Syto59 and the total protein stain Sypro Orange strongly labeled

the cocci, while the space between the bacteria presented only a

weak, diffuse signal (Fig. 4C). Labeling with Nile Red, which

selectively binds to hydrophobic moieties, produced a signal on the

general biofilm matrix, but left the compartment walls unlabeled

(Fig. 4D). The attempt to stain possible amyloid structures with

Thioflavin T did not result in a signal (data not shown). In

summary, strands and compartment walls seemed to consist

predominantly of sugars and bacteria, while extracellular DNA,

proteins and lipids did not contribute significant amounts. As

indicated before, the above-described differentiation concerned

only certain regions, while the majority of aggregates increased in

size and continued to consist of top-sheets and bacteria-associated

strands (Figs. 4E). Although the formation of macroscopic

aggregates, strands and compartments was observed in all

examined strains, they were more pronounced in cultures of the

strains #49134 and MH. The attempt to cultivate late-stage

material (28-day old cultures) on agar plates resulted in the

formation of colonies with densely arranged cells and interspersed

water channels, which are the archetypical features of biofilms at

solid-gas interfaces (Fig. 4F). In order to provide a conclusive

overview of all structures and their timely appearance, the
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captured stages were used as raw material to create a basic

development model of the aggregates (Fig. 4G).

CFU Time-course
At the end, a CFU time-course was made to test the assumption,

if the observed lysis of a considerable number of bacteria would

liberate nutrients and thereby stimulate growth again. The

number of bacteria in the time-course peaked around day seven

(7.26108 bacteria mL21), decreased sharply around the tenth day

and had a local minimum at the twelfth day of cultivation

(1.06108 bacteria mL21). Between the days 14–18 the number of

bacteria recovered again (4.56108 bacteria mL21) (Fig. 4G).

Figure 1. Early stage structures. A–C. Camera pictures, MH strain: floating and sedimented macroscopic aggregates of a 1-day culture. D.
Scanning electron microscopy (SEM) picture, MH strain, 1-day culture: bacteria (arrow 1) and matrix elements (arrow 2) form small aggregates. E. SEM
picture, 3-day culture, MH strain: a fibrous sheet (region 1) and short strands (arrow 2) form larger aggregates. F. SEM picture, 5-day culture, MH strain:
aggregates consist of solid sheets (region 1) and subjacent a network of strands (region 2). G. SEM picture, 5-day culture, MH strain: predominantly
parallel orientation of the strand network. H. SEM picture, 5-day culture: bacteria-associated strands (arrow 1), cross-connected by fibers (arrow 2). I.
Confocal laser scanning microscopy (cLSM) picture, MH strain, 10-day culture: strands and associated particulate material (arrows 1, 2) are stained
with Concanavalin A; bacteria are labeled with Syto59 (arrow 3). J. SEM picture, 10-day culture, MH strain: almost solid, parallel strands with cross-
connecting fibers.
doi:10.1371/journal.pone.0100002.g001
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Discussion

Complementary use of Imaging Techniques
The goal of this examination was to reconstruct the develop-

mental stages of an uncommon biofilm structure by S. epidermidis.

Plunge freezing in liquid propane and freeze substitution, as was

employed for all SEM preparations in this study, provides

considerably superior structural preservation than chemical

fixation [14], although local artifact-formation due to insufficient

local freezing is almost unavoidable. In contrast, high pressure

freezing in combination with freeze substitution has been proven

to be virtually free of artifacts [15,16]. However, to rule out any

Figure 2. Compartmentalization. A. SEM picture, 10-day culture, MH strain: solid, parallel, wall-like structures. B. SEM picture, 14-day culture, MH
strain: the top sheet (region 1) is situated on vertically stacked walls (region 2). C. cLSM transmission mode, 14-day culture, MH strain: a dense,
horizontal top plate (region 1) is located on top of vertically stacked walls (region 2). D. SEM picture, 14-day culture, MH strain: compartmentalized
structure of aligned walls and cross-walls without top sheet. E. cLSM transmission mode, 14-day culture, MH strain: aligned bacteria form
compartment walls. F. SEM picture, 14-day culture, MH strain: matrix (arrow 1) embedded bacteria (arrow 2) form compartment walls. G. cLSM picture,
14-day culture, MH strain: LIVE/DEAD staining of compartment wall forming bacteria show varying stages of membrane integrity (arrows). H. SEM
picture, 14-day culture, MH strain: compartment structure with abundant bacteria (region 1) adjacent to an area with bacteria-depleted
compartments.
doi:10.1371/journal.pone.0100002.g002
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possibility that the observed structures (especially late-stage

compartments) were artifacts caused by phase separation, com-

plementary light microscopy was also used, since the direct

observation of biofilm structures under fully hydrated and unfixed

conditions remains the ultimate gold standard [17]. The fact that

all main features of the above-described structures were present

and had the same arrangement under unfixed and fully hydrated

conditions in propane-frozen preparations and with high-pressure

processing confirms the reliability of our observations.

Auto-aggregation
Lotic microbial aggregates have been found in various aquatic

systems [3]. Typically, these biofilms form on or adhere to small

particles, which are buoyant enough to float. Although floating,

Figure 3. Late stage structures. A. SEM picture, 14-day culture, MH strain: the thin compartment walls contain only few bacteria. B. Transmission
electron microscopy (TEM) picture, 14-day culture, MH strain: the few bacteria (arrow 1) are a part of otherwise in ‘empty’ walls (arrow 2). C. TEM
picture, 14-day culture, MH strain: an intact bacterium (arrow 1) and a partly disintegrated bacterium (arrow 2) are both integrated in the wall
structure (arrow 3). D. TEM picture, 14-day culture, MH strain: the bare walls consist of fine, dispersed fibers (arrow 1) and intensely stained dots
(arrow 2). E. SEM picture, 14-day culture, MH strain: empty compartment walls. F. SEM picture, 14-day culture, MH strain: bacteria depleted
compartment walls. G. SEM picture: 14-day old cultures (MH strain) showed large compartmentalized areas. H. cLSM transmission mode, 14-day
culture (MH strain): ‘empty’ compartment walls under hydrated conditions.
doi:10.1371/journal.pone.0100002.g003
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Figure 4. Specific staining, time-course and development model. A. cLSM picture, 14-day culture, strain #49134: the EUB338 probe labels
the compartment structure (red), while the bacteria are double-stained by the EUB338 probe and Syto59 (yellow). B. cLSM picture, 14-day culture, MH
strain: Concanavalin A stains the compartment structure, but not the bacteria (arrow 1). C. cLSM picture, 14-day culture, strain #49134: the Sypro
protein stain (green) and the Syto59 nucleic acid stain label both the bacteria (yellow) but not the compartment structure. D. cLSM picture, 14-day
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the aggregates in the test tube did not adhere to the walls of the

test tube, even though S. epidermidis is well known to adhere avidly

to certain types of plastic, including the polystyrene of the test

tubes that was used in this study [18]. Bacterial auto-aggregation

enables the development of biofilm by simple cell-to-cell adhesion

without the necessity of a solid surface or interface, and is wide

spread among oral bacteria and has also been observed in Yersinia

pestis biofilm formation [19,20]. In S. epidermidis biofilms, intercel-

lular adhesion is commonly mediated by the polysaccharide

intercellular adhesin (PIA), and controlled by the icaADBC operon

[21,22]. The strains in this study included three ica-negative strains

(#12228, #14990 and #49134), the strain #35547 was positive

for ica A, icaC’ and ica R [23], whereas the ica-status of the MH-

strain was not established. Since all strains showed auto-

aggregation and the development of aggregates, their formation

cannot be based on PIA alone. Instead of PIA, ica-negative S.

epidermidis strains appear to use a number of proteins (e.g. Embp,

Aap and Bhp) for auto-aggregation and biofilm formation [24]. A

strong hint for the involvement of protein in the auto-aggregation

was delivered during the attempt to embed chemically fixed

aggregates for TEM. After the specimen was stained with 1%

osmium tetroxide at room temperature the entire structure broke

apart within minutes into little fragments. The proteolytic

properties of osmium tetroxide have been described previously

[25]. The above-described observation would be consistent with a

model, in which proteins are associated with auto-aggregation and

the integrity of aggregates.

Aggregate Assembly
As the term ‘auto’-aggregation implies, the first stages in

aggregate formation are probably based on the binding of specific

proteins on the bacterial surface. But only if the resulting sheet-

aggregate were assumed to float, the associated strands would be

able develop underneath of such a structure. The parallel

alignment of the strands in static liquid media seems to have

one obvious source, gravitation force, along which the strands

apparently develop and prolong, as indicated in the model in

Fig. 4G.

Subpopulation, Mass Transfer and Cell Death
Between the seventh and tenth day of cultivation a subpopu-

lation of bacteria-associated strands transformed into compart-

ment walls, and eventually underwent cell lysis. Phenotypic

variations of a subpopulation have been reported at frequencies

between 1023 and 1024, although to date only for ica-positive S.

epidermidis strains, when they were cultivated for an extended

period (5–7 days) [26]. Similarly, programmed cell death in

biofilms is also known to only affect a subpopulation of a bacterial

community [27,28]. So far, several reasons for this phenomenon

have been discussed, two of which seem suitable to shed some light

on the scenario observed in this study. At first, the numeric

reduction of competing individuals in a stage of nutrient limitation

is posited to release the pressure on nutritive substances; and

second, bacterial cell lysis is hypothesized to liberate fresh nutrients

in a nutrient-limited situation [29,28], The numeric reduction of

bacteria numbers in the CFU time-course coincides with the

formation of compartment walls and bacterial lysis, while the

concomitant appearance of walls without intact bacteria and the

slow rise in CFU counts could hint at a putative release and

recycling of nutrients. In contrast to the classic biofilm architecture

with comparatively densely packed cells, the strand network as

well as the compartment structure has a more ‘‘open space’’

architecture, which implies a significantly better mass transfer

between nutrients and bacteria [30]. In view of the static

conditions in the test tube it is likely that the late-stage

compartment walls serve, indeed, as a nutrients source with

advantageous mass transfer properties.

Specific Staining
The strands and the compartment walls evolving from the

strands revealed both a strong affinity for the ConA lectin, which

underlines their close structural ties. ConA specifically binds to a-

linked mannose and terminal glucose residues and has been used

to type S. epidermidis strains [31]. Whereas a-mannose has never

been detected in S. epidermidis biofilms, 1,6-b-D- glucosaminogly-

can is a well-known component of their biofilm matrix [32].

However, only ica-positive strains should have the genetic traits to

produce this sugar polymer. The origin of the glucose residues in

the strands and in the compartment walls is therefore not clear.

The bacterial cytoplasm contains larger amounts of proteins and

nucleic acids, which were released during the observed cell lysis

according to the TEM pictures, and formed the late-stage

compartment walls. Consequently, one would expect to find

detectable amounts of cytoplasmic proteins and nucleic acids in

these structures. But neither strands nor walls were labeled with

stains for proteins, lipids or DNA, only the FISH probe was able to

detect ribosomes in the compartment walls. It is conceivable that

the denaturating conditions of the fluorescence in situ hybridiza-

tion process created the access for the probes to the target, while in

non-denaturating situations the target moieties in the walls are

masked.

In Search of a Habitat
Our observations raise an interesting question: in which natural

habitats are S. epidermidis likely to form such structures? It is

difficult to imagine that S. epidermidis can take advantage of its

aggregate-forming abilities in its classic habitats, since human skin,

the nasal mucus membrane, food, and polymer surfaces are mostly

environments at solid-gas interphase or at solid-liquid-film

interphases at best. Nevertheless, Staphylococci are also known

for blood stream infections [10]. The laminar flow in this habitat

could offer the physical preconditions for the formation of

aggregates with cross-connected long strands. Analogous struc-

tures are formed by neutrophils, which function as filters to

capture microbial pathogens [33]. It is possible that the strands

might provide a similar protection of the bacteria from host

defenses. However, teleological driven considerations suggest a

habitat with static or low flow liquid conditions, as might be found

in an abscess, where the possession of an appropriate set of genes

are of advantage for the strains to survive periods with limited

access to nutrients, whilst still maintaining structural integrity.

culture, strain #49134: the lipophilic stain Nile Red (green) does not label compartment walls, only diffuse biofilm matrix. E. SEM picture, 28-day
culture, MH strain: huge aggregates with intact bacteria and strands continued to be present in long-time cultures. F. SEM picture, MH strain,
overnight grown colony on agar. G. The model depicts the main development stages and their timely appearances in the context with the CFU time-
course (MH strain).
doi:10.1371/journal.pone.0100002.g004

Static Staphylococcus epidermidis Cultures

PLOS ONE | www.plosone.org 7 June 2014 | Volume 9 | Issue 6 | e100002



Materials and Methods

Strains
All strains of S. epidermidis (ATCC #14490, #12228, #35547

and #49134) were obtained from the American Type Culture

Collection (Manassas, VA, USA), except the ‘‘MH’’ strain, which

was isolated from a canine lymphoma as described previously [13].

The strains #14490, #12228, and #35547 were only prepared

for light microscopic examination and served as confirmation that

the observed structures were not restricted to a very limited

number of S. epidermidis strains.

Static Cultivation in Liquid Media
15 mL plastic test tubes (polystyrene) were filled with 7 mL

trypticase soy broth (Thermo Fisher Scientific Remel Products,

Lenexa, KS, USA), inoculated from an overnight agar plate with a

single S. epidermidis strain, vortexed for 30 sec and incubated at

37uC without shaking or media change.

CFU Time-course
Triplicates of test tubes cultures (MH strain) were cultivated for

0, 2, 4, 6, 8, 10, 12, 14, 16 and 18 days as described above. For the

CFU determination, the cultures were vortexed for 30 sec, diluted

appropriately, plated on tryptic soy agar plates and incubated over

night. The CFUs were counted and the median determined.

Cultivation on Agar
Sterile IsoporeTM membrane filters (0.4 mm, HTTP, Millipore,

Ireland) were placed on tryptic soy agar plates (Thermo Fisher

Scientific Remel Products, Lenexa, KS, USA). The test tube of 28-

day old static cultures (MH strain) was vigorously vortexed for

30 sec, 50 mL were spot deposited on each filter, spread with a

spatula and incubated for one day at 37uC. The filters were then

prepared for SEM imaging as described below.

Macroscopic Imaging
The development of the macroscopic structures (MH strain) in

the test tubes was documented under back lighting conditions with

a digital camera and a macro lens (Nikon D70s, Nikon, Inc.

Melville, NY, USA. Sigma 28–300 mm F3.5–6.3 Macro, Sigma

Corp. Ronkonkoma, NY, USA).

Specific Staining and Confocal Laser Scanning
Microscopy (CLSM)

Material from the upper test tube volume and the test tube

bottom of 14-day old cultures (#49134 and MH strain) was

removed by gentle suction using a cut-off 1 mL pipette tips (to

minimize shearing), and labeled with LIVE/DEAD BacLight

(Invitrogen, Carlsbad, CA, USA) according to the manufactures

instructions. In the same way, more 14-day old cultures were

stained with Concanavalin A (25 mg mL21, (ConA, Vector

Laboratories, Inc., Burlingame, CA, USA) and Syto59 (5 mM,

Invitrogen, Carlsbad, CA, USA), or Wheat Germ Agglutinin

(25 mg mL21) (Vector Laboratories, Inc.) and Syto59, or Sypro

Orange and Syto59, or Nile Red (5 mg mL21, Sigma-Aldrich

Corp. St. Louis, MO, USA), or Thioflavin T (20 mM, Sigma-

Aldrich). Fluorescence in situ hybridization (FISH) was performed

on material collected from the test tube bottom, which was

hybridized with the EUB338-Cy3 probe [34] or the NONEUB-

Cy5 probe [35] at a final concentration of 5 ng mL21 for 90 min at

46uC. These specimens were counter-stained with Syto59. All

samples were examined either with a Leica DM RXE microscope

with a TCS SP2 AOBS confocal system (Leica Microsystem,

Exton, PA, USA) or a LSM710 (Carl Zeiss MicroImaging, Inc.,

Thornwood, NY, USA.) using confocal and transmitted imaging

with the appropriate laser wavelengths lines and detection

windows.

Time-course for SEM
S. epidermidis cultures (MH strain) were cultivated for of 1, 2, 3, 5,

7, 10, 14 and 28-days as described above. 100 mL from the

sedimented material at the test tube bottom was removed by gentle

suction using cut-off 1 mL pipette tips, spot deposited on a round

glass cover slip (12 mm) and rapidly frozen by immersion in liquid

propane. The same protocol was repeated with 100 mL media of

the supernatant. For freeze substitution, all specimens were quickly

transferred, (still frozen) to pre-cooled vials containing 100%

ethanol, which were placed in a Styrofoam container with dry ice.

Subsequently, the container was left at 220uC overnight and then

warmed to 4uC over a period of 8 h. Afterwards, the specimens

were critical point dried, mounted on a stub with adhesive carbon

tape, sputter coated with a 25 nm layer of platinum and examined

in the SEM operating at 5 kV in the secondary electron mode (XL

30 S, FEG, FEI Company, Hillsboro, OR, USA).

Failed Attempt to Embed Chemically Fixated Aggregates
S. epidermidis (MH strain) was cultivated for 14 days as described

above. Material from the bottom of the test tube was chemically

fixed (2.5% glutaraldehyde, 4% paraformaldehyde in 50 mM

HEPES buffer) for 48 h, stained with 1% osmium tetroxide at

room temperature. Since the aggregates disassembled into small

fragments during this step the embedding was not further

processed.

Cryo-fixation, Freeze-substitution and TEM
Autoclaved 1 mm segments of Spectra/Por in vivo microdialysis

hollow fibers (MWCO 13 kD, Spectrum Laboratories, Inc.

Rancho Dominguez, CA, USA) were incubated in S. epidermidis

(MH strain) cultures as described above for 14 days. The micro-

dialysis tubes at the bottom of the test tube were removed, their

ends crimped shut and placed in aluminum planchettes, in which

the remaining space was filled with a 20% (w/v) bovine serum

albumin buffered solution. The samples were high pressure frozen

(Bal-Tec HPM-010, Bal-Tec, Inc., Carlsbad, CA, USA), held at

liquid nitrogen temperature after freezing and then gradually

warmed to 290uC over a period of 16 h in an ASF2 (Leica

Microsystems, Inc., Deerfield, IL, USA) in the presence of 100%

ethanol containing 1% osmium tetroxide. Subsequently, the

specimens were warmed to 260uC over a 24 h period and held

for another 24 h in fresh 100% ethanol (without osmium tetroxide)

with three changes of ethanol. All specimens were finally warmed

to ambient temperature (22uC) overnight and embedded in epoxy

resin (Epon 812 substitute, EMS Hadfield, PA, USA). Thin

sections (50–70 nm) were prepared using an Ultracut UC6 (Leica

Microsystems, Inc., Deerfield, IL, USA) and post-stained with 1%

aqueous uranyl acetate and Reynold’s lead citrate for examination

by transmission electron microscopy operating at 80 kV (FEI

CM120, FEI Inc., Hillsboro, OR, USA). TEM images were

collected in negative film and digitally scanned.

Image Processing
Images have been cropped and adjusted for optimal brightness

and contrast (applied to the whole image) using Photoshop (Adobe

Systems, San Jose, CA, USA).
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