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ABSTRACT 
FACULTY OF HUMANITIES 

Archaeology 

Thesis for the degree of Doctor of Philosophy 

THE GREAT FOSSIL MINE OF THE SOUTHERN NORTH SEA: EXPLORING THE 

POTENTIAL OF SUBMERGED PALAEOLITHIC ARCHAEOLOGY 

Rachel Bynoe 

This research explores the potential of the submerged Palaeolithic archaeology of the 
southern North Sea for answering questions about how hominins occupied and adapted 
within their environments in these northerly latitudes throughout the Pleistocene. Recent 
coastal discoveries in East Anglia have demonstrated occupation as far back as ~1 million 
years, and yet our appreciation of the how, why and who of this occupation is missing a 
crucial piece of its puzzle; excluding these now-submerged landscapes is an active bias on 
our understanding, truncating the archaeological record. 
 
Having been subjected to repeated glaciations, trans- and regressions, the very processes 
that led to the terrestrial exposure of these areas have subsequently led to their neglect: 
the assumption that pre-LGM deposits will have been eroded or re-worked has prevailed. 
Recent work, however, has demonstrated the inaccuracy of this assumption, with evidence 
for extant Pleistocene-age deposits, landscape features and archaeology. Unlocking the 
clear potential of these submerged landscapes now relies on the approaches that we take 
to their investigation as, to-date, all archaeological finds have been entirely by chance. In 
order to move beyond this reactive style of archaeology, methodologies must be 
developed which tackle these areas in a more focused and reasoned way. 
 
The research undertaken throughout this PhD makes steps towards this. Starting from no 
baseline understanding of the nature of the existing resource, this work located, collated 
and analysed a prolific collection of 1,019 faunal specimens. Recovered by the 19th and 
20th Century UK trawling industry, the development of historical methods has elucidated 
their locations and conditions of collection. Combining this locational information with 
species taxonomic evolution, the emergent spatio-temporal patterns provide a fresh 
understanding of the integrity of the extant deposits and unique opportunities for locating 
them on the seabed. These results are presented at a range of scales:  
 
• First, a broad-scale understanding of offshore regions across the southern North 
Sea which have demonstrated a dominance of cold-stage species from MIS 8-MIS 2.  
• Secondly, a local scale: linking faunal remains with seabed features in the near 
shore area off Happisburgh, identifying Early and early Middle Pleistocene assemblages 
related to exposures of the CFbF.  
• Finally, a discrete, high resolution area of seabed off the coast of Clacton has been 
identified. Through the collection of swath bathymetry, this area has shown the exciting 
correlation of Pleistocene seabed deposits and faunal remains.  
 
This research presents a significant move towards a proactive approach to these 
submerged landscapes and represents a step-change in our ability to understand, locate 
and engage with this undervalued archaeological resource. 
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Chapter 1:  Introduction 

 Introduction 1.1

Over recent years internationally significant research from the coastal sites of 

Happisburgh and Pakefield in East Anglia has transformed our understanding of 

the antiquity of hominin presence in Britain, with major implications for 

movement and dispersals on a global scale (Parfitt et al. 2005, 2010). These 

discoveries have reframed the questions we are asking about the Palaeolithic 

occupation of North West Europe and highlighted the importance of looking to the 

submerged archaeological record of the southern North Sea, an unexplored 

landscape demonstrably used by these hominins. We now know that the deposits 

of the southern North Sea represent multiple layers of landscapes laid down 

throughout the Pleistocene epoch (Long et al. 1988; Cameron et al. 1992; Gibbard 

1995; Rose 1999; 2001; Hijma et al. 2012), with those being archaeologically 

relevant spanning the Palaeolithic ~1Ma-0.01Ma (latest Early – Late Pleistocene). 

Climatic fluctuations throughout the Pleistocene dramatically altered these 

landscapes; ecologically they may represent areas for which we have no modern 

analogue, the faunal and floral communities that we recognise as ‘native’ would 

appear unfamiliar and the shorelines delineating the landmasses have undergone 

significant fluctuations, sometimes on human timescales. The sea level changes, 

climate and geology of these landscapes are increasingly understood from both a 

terrestrial as well as offshore perspective; by contrast, the Palaeolithic 

archaeological record remains unknown. 

From an archaeological point of view, trawled bone remains which have been 

stored in museums’ collections since the 19th Century tell us that these were 

important landscapes for diverse species of fauna (eg. Van Kolfschoten and Laban 

1995; Mol et al. 2006; Reumer et al. 2003) and a recovered Neanderthal (Dutch 

waters, Text Box 1 [Hublin et al. 2009]), as well as a dredged assemblage of 

handaxes (UK sector; Text Box 1 [Russell and Tizzard 2011]), tells us that it was 

similarly important for our hominin ancestors. Despite these finds there are still 

huge gaps in our knowledge, specifically from a Palaeolithic archaeological 
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perspective, and the appreciation of this record, which potentially represents 

repeated episodes of terrestrial occupation, is often reduced to a homogenous 

mass or simply a means by which hominins moved from A to B. With the drowning 

of these areas leading to the invisibility of large portions of Palaeolithic landscape, 

there are significant repercussions for our understanding of the physical record 

and its social and behavioural implications. 

Frameworks to investigate and work towards management strategies for this 

archaeology have been set up between European countries bordering the North 

Sea (Peeters et al. 2009), which is a step forward in acknowledging the potential of 

these areas, as well as the risk they face (see also the Marine Management 

Research Framework 2012). Recent practical advances in Palaeolithic research in 

the offshore zone has mirrored the terrestrial situation in that it has been largely 

development-led, with much funding and work coming out of commercial projects. 

Terrestrially, gravel extraction and commercial development (such as the CTRL 

[Wenban-Smith et al. 2006]) has led to the investigation and drive to understand 

these deposits and their archaeology (Hosfield 1999; Wenban-Smith and Hosfield 

2001; Hosfield and Chambers 2004; Ashton and Hosfield 2010). Offshore, the 

increase in activities such as dredging and wind farms has led to developer funding 

(such as the Aggregate Levy Sustainability Fund) into the exploitation of these 

areas, which has revealed both Palaeolithic features as well as associated extant 

deposits (Wessex Archaeology 2008; Russell and Tizzard 2011; Dix and Sturt 

2011). What is even more astounding, however, is the discovery of Area 240, an in 

situ Palaeolithic site 30m below sea level off the coast of Great Yarmouth (Text Box 

1; Russell and Tizzard 2011). It is increasingly clear that, despite years of neglect, 

there is a strong case for research into the submerged Palaeolithic of the North Sea.   

A similar situation as regards interest and research is also developing on the other 

side of the southern North Sea, in Holland. Dutch archaeologists have been 

working on the use of faunal remains dredged from the Eurogeul (the deep water 

shipping lane of the Port of Rotterdam) to look at the development of 

palaeoenvironments and hominin use of the area during the Late Pleistocene (Mol 

et al. 2006) and have also discovered part of a Neanderthal skull from the Zeeland 

Ridges (Text Box 1; Hublin et al. 2009) as well as, more recently, modern human 
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remains (Parfitt pers. comm.). This record is demonstrably both extant and 

significant, with fossil material being preserved alongside palaeoenvironmental 

proxies (Mol et al. 2006) demonstrating, for example, the prevalence of Coelodonta 

antiquitatis (woolly rhinoceros) in the southern North Sea relative to any other 

location in the Late Pleistocene (Section 4.6.2). This pattern appears to indicate the 

potential for non-analogue fauna existing in environments for which we currently 

have no evidence. It is these types of information that will help build up a picture 

of the varied ecologies that existed in this area throughout the Palaeolithic and the 

dynamic landscapes of contemporary hominins.        

 History of the study 1.2

The existence of both pre- and post-Weichselian landscapes has been recognised 

since the mid-late 19th Century (eg. Davies 1878; Reid 1882; 1890; 1913), with 

fossils of long-extinct megafauna recovered from the seabed since the early days of 

trawling. The presence of peats and submerged forests along the coastlines also 

piqued curiosity, with Clement Reid and the British Geological Survey even going 

to far as to search for Pleistocene (then ‘Pliocene’) deposits on the seabed off 

Happisburgh (Reid 1890, 173), and publishing on species distributions from the 

Dogger Bank (eg. Davies 1878; Reid 1913). Submerged Forests, published by 

Clement Reid in 1913, discusses these drowned landscapes around the coast of 

Britain. Although concentrating on the post-glacial (i.e. post-Last Glacial Maximum) 

deposits, Reid does note that the older, Early to early Middle Pleistocene deposits 

of the East Anglian Cromer Forest-bed Formation (CFbF, Text Box 3) are extant 

(albeit in a rather disregarding manner: “this need not now detain us” [Reid 1913, 

39]). What is striking about this work is that Reid is adamant that the systematic 

examination of these deposits for geology, archaeology or natural history is 

extremely important in answering questions about sea level, climate, hominin 

species and how they lived, migrated and interacted with their environments. He is 

also very perceptive, stating that “…the archaeologist is inclined to say that they 

belong to the province of geology, and the geologist remarks that they are too 

modern to be worth his attention; and both pass on.” (Reid 1913, 2). Although 
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Quaternary geologists would not these days consider these deposits insignificant, 

or too recent, it is certainly true that the potential Palaeolithic archaeology they 

contain has often been overlooked. Thus, although Reid’s focus was not primarily 

archaeological, he is acutely aware of the implications of these submerged deposits 

and is advocating a multidisciplinary approach; it all sounds very familiar and it is 

remarkable to see it being promoted a hundred years ago. Even more remarkable 

is the lack of interest since.   

After the work of people such as Reid and Clark during the late 19th Century and 

early 20th Century, the issue was all but dropped. Thankfully, the ‘speculative 

survey’ of Bryony Coles (1998) saw a return to an acceptance of the North Sea as a 

viable area of archaeological research, and the coining of the term ‘Doggerland’. 

Although it was purely theoretical and aimed at the post-Weichselian potential, the 

broader importance of this research lies in the way that it challenged attitudes 

towards these submerged landscapes. Coles redefined these now-submerged areas 

as habitable land, in contrast to their previous image as a kind of highway between 

Britain and the continent. She stressed the importance of viewing them as they 

would have been experienced by the contemporary hominins and the images she 

used to illustrate her work stress this (Figure 1.1). 
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Figure  1.1 Bryony Coles’ image which discarded modern land-sea boundaries in favour of 

promoting a more inclusive picture of Palaeolithic/Mesolithic landscapes (Coles 1998). 

 

Over the past few decades, research that has been conducted in the UK sector has 

been pre-dominantly focused on the post-Last Glacial Maximum (LGM) 

archaeology of the region, most likely because of its increased chances of survival 

(e.g. Coles 1998; Fischer 1993; 2007; Gaffney et al. 2007; 2009; Fitch et al. 2011; 

van Kolfschoten and Laban 1995; cf. ongoing work by AHOB). Nevertheless, recent 

work has demonstrated the potential for preservation of Palaeolithic archaeology 

in the southern North Sea (e.g. Wessex Archaeology 2008; Russell and Tizzard 

2011; Dix and Sturt 2011), an idea that has been gaining support over recent years 
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(e.g. Peeters et al. 2009; Marine Management Research Framework 2012). 

However, this work is still very much focused on geophysical imaging and 

Quaternary deposit models, rather than the physical archaeological remains.  

In terms of the Palaeolithic before the LGM, engagement with these areas has been 

largely limited to speculative statements accepting that they were terrestrial and 

exploring how that might have affected the record (eg. Ashton and Lewis 2002; 

White 2006; Ashton et al. 2011). Other work has focused on the potential of these 

areas to provide information on Palaeolithic coastal exploitation and migrations 

(Westley and Dix 2006; Bailey and Fleming 2008) as well as the survival of 

deposits and archaeology (Wenban-smith 2002; Dix et al. 2004; Hosfield 2007; 

Ward and Larcombe 2008). So despite current research providing us with very 

good reasons for, and approaches to, the submerged record, methodologies - at 

least for the UK - are still largely speculative and based on questions of potential. 

As a result we do not understand the extent or nature of the artefactual 

Palaeolithic record from these submerged landscapes; there has been no 

overarching assessment of the material the southern North Sea has yielded. We 

therefore have no foundation of knowledge from which we can begin to work and 

so we cannot begin to investigate the timing of hominin occupation, or, as 

importantly, the timing and reasons for abandonment.  

Appreciating this record is clearly a priority and we must strive towards a 

situation where the onshore and offshore records are understood seamlessly, not 

as separate entities. Moreover, a move away from a finds-driven, serendipitous 

approach (highlighted by projects such as Area 240 (Text Box 1) and towards a 

bottom-up, focused approach informed by an understanding of geological and 

archaeological signatures, must be aimed for if we are to successfully move 

research in this area forward. Integration of data from submerged regions will 

allow us to piece together these wider environments and fully understand the 

hominins within them.  

This research therefore proposes to redress the balance by carrying out the first 

quantitative analysis of the existing resource from the UK offshore sector.  The 

specimens collated are primarily faunal, with 1,019 individual elements, although 

coastal lithics are also examined.  This research adopts a multi-scalar approach, 
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with higher resolution, local investigations (Chapter Five and Section 4.2.1, 4.6.3) 

presented alongside broader, regional analyses (Section 4.2.2, 4.2.3). Linking this 

long-forgotten faunal material, spanning the Early to Late Pleistocene, with 

available geophysical and geotechnical data will provide the framework for us to 

begin actively engaging with these unexplored landscapes, bringing context to the 

contemporary hominins within them.  

 Geographical focus 1.3

Geographically, the focus of this research is broadly defined by a flexible 

interpretation of the modern boundaries of the southern North Sea basin. This 

interpretation essentially respects this boundary, which reflects the shallowest 

area of the North Sea and is bordered by the Dogger Bank and German Bight at its 

northernmost extent and the Southern Bight in the south (Figure 1.2).  

This study area has been defined by several factors: 

• The cyclical exposure of the southern North Sea basin as dry, habitable land 

throughout the period of Palaeolithic occupation, making this area 

archaeologically relevant.  

• The avoidance, at its southerly extent, of major glacial advances (Figure 1.2) 

as well as its net subsidence throughout the Pleistocene period, acting as a 

‘depocentre’ for major European rivers (Figure 1.3, Figure 2.2). 

• Centuries of trawled fossil remains of Pleistocene dating from the southern 

North Sea as well as lithic and faunal material recovered from beaches, 

demonstrating the existence of these landscapes and the preservation, 

albeit fragmentary, of associated deposits. 

• The historical locations of fishing activities (via British trawlers) in the 

approximate vicinity of the southern North Sea. 

• The discovery of exceptionally early sites, Happisburgh 3 and Pakefield, on 

the coast of East Anglia and western shore of the southern North Sea, 

demonstrating the earliest occupation so far known from North West 

Europe (c. 814-914kya and 700kya respectively [Parfitt et al. 2005; 2010]) 
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in a unique preservational environment (eg. Cohen et al. 2012; Section 

2.1.1). 

 

Although using the entire southern North Sea as a broad study area, the 

trawler-derived specimens that this research concentrates on are from the UK 

fishing industry alone. In this respect, when this work refers to the UK sector, it 

is referring to the UK based industries exploiting the southern North Sea. 
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Figure  1.2 Broad area of study showing positions of the German and Southern Bights as 

well as the Dogger Bank. Mapped glacial extents are also shown (Graham et al. 2011; Lee 

et al. 2012). 
 

The geological history of the southern North Sea basin has facilitated the survival 

of Pleistocene deposits and the artefacts they contain, making it a key area for this 

research (Ward and Larcombe 2008). In addition, the development of the trawling 

industry in this area throughout the 19th Century provided the means by which the 

faunal specimens that relate to these submerged deposits were recovered, with the 
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emergence of the aggregate industry in the later 20th Century further adding to this 

resource.    

The North Sea is within an area of tectonic subsidence that has been active since 

the Oligocene (Cloetingh et al. 2006), with the hinge zone running approximately 

along the East Anglian coastline (Figure 1.3; Hijma et al. 2012). These conditions 

have facilitated rapid burial and preservation of deposits over relatively short 

timescales (Long et al. 1988; Cameron et al. 1992; Rose 1999; 2001; Cohen et al. 

2012). A shallow marine embayment characterised the northerly section of the 

southern North Sea of the Early – early Middle Pleistocene period (Figure 1.3, 

Figure 2.1), fed by a series of large European and British rivers (Thames-Meuse-

Rhine, Bytham) that which deposited their bedloads into the basin. A constant 

terrestrial connection existed to the south – in large part due to the existence of the 

Weald-Artois anticline (Figure 1.3). Britain was essentially a peninsula of Europe; a 

constant exchange of fauna and flora was possible, as indicated by the finds of 

Pakefield and Happisburgh 3 (Parfitt et al. 2005; 2010).  

During the Elsterian glaciation major landscape reorganisation occurred 

(throughout this thesis the Elsterian glaciation is taken as being synonymous with 

the Anglian glaciation and Marine Isotope Stage 12 [Toucanne et al. 2009a; Graham 

et al. 2011; Bose et al. 2012]): the breaching of a pro-glacial lake which built-up in 

the southern North Sea, bounded in the south by the Weald-Artois anticline, 

eventually led to the catastrophic breaching of this chalk ridge (Gupta 2007) and 

initiated the change to the cyclical pattern of terrestrial land/sea that 

characterised this area until the Holocene transgression (although not immediately, 

with a connection still apparent in MIS 11, 9 and early 7. Section 2.1.1, Section 

2.3.2.1, Section 2.3.3.1). Submerged terrestrial deposits dating to these later 

periods are therefore varied in their extent and location, but increasingly 

restricted to periods of lower sea level (and colder climate), or to areas of 

increased sedimentation that were then terrestrial at times of high sea level. Of 

course erosion and deformation has still occurred through fluvial, tidal and glacial 

forces, dissecting and fragmenting the record (eg. discussions between Lee et al. 

2004, 2006 and Preece and Parfitt 2008; Preece et al. 2009, Section 2.2), making 

interpretation problematic but by no means impossible. However, the southern 
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North Sea has managed to avoid the extremely erosive powers that have affected 

the Channel to the south, and (much of) the direct glacial erosion of the northern 

North Sea (Cohen et al. 2012). So, the relatively good preservation of deposits, a 

long history of artefact collection and remarkable contemporary terrestrial 

archaeology combine to provide a strong case for the southern North Sea as a 

study area. 

 

Figure  1.3 Major rivers and highstand coastal plain areas during the early Middle 

Pleistocene period (after Rose et al. 2001; Cohen et al. 2012; Hijma et al. 2012. Elevation 

data source: Smith and Sandwell 1997) 
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 Questions 1.4

Assessing why we should attempt to use these areas, which are expensive to 

investigate and hard to reach, depends on the kinds of Palaeolithic questions 

where they have the potential to assist us. Given the role that the southern North 

Sea basin would have played in the occupation of North West Europe (Britain in 

particular, see Section 2.3) throughout the Palaeolithic, there are several key 

questions that research into the submerged zone can look to address: 

• With the potential for the existence of non-analogous environments, can we

use the submerged material to redefine and further inform our current

conceptions of the palaeoecological contexts of hominins throughout the

Palaeolithic?

• Given that the pattern of occupation of Britain appears to be more sporadic

than constant, can the inclusion of evidence from the southern North Sea aid

our understanding of the patterning of hominin movements?

• Later Palaeolithic evidence shows that when marine resources are exploited

they are exploited close to the shore. Are our preconceptions about a lack of

early hominin coastal and marine adaptation and interactions therefore

based on the invisibility of this record rather than its non-existence?

With the current state of knowledge regarding the offshore record, however, we 

are nowhere near being able to address these questions. Can we therefore begin to 

address the lacunae in the current datasets that make them unanswerable? First, it 

is important to define what it is that the submerged zone can offer that terrestrial 

archaeology cannot. Aside from the fact that we should avoid automatically biasing 

our interpretations by knowingly ignoring a particular area of the Palaeolithic 

landscape, these areas have the potential to add significantly to the fragmentary 

evidence available from the terrestrial realm. Not only are we talking about a large 

area of low-lying, dynamic ecosystems, potentially rich in resources and with no 

modern analogue, but also coastal areas of the hominin landscape that we have 

little or no access to otherwise.  These questions cannot be answered by looking at 

any other resource, and in the case of raised-beach deposits (which are the only 

other situation where we have access to the coastal record) have begun to provide 
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evidence that is significantly altering the way we view past species’ adaptations 

(Brown et al. 2011). We are currently missing the broader context of North West 

European hominin occupation; a huge swathe of complex and dynamic landscape, 

shallow coastline, estuaries and deltas. This was not a homogenous landmass any 

more than Britain is today, and to understand the capabilities of early hominins to 

survive at these latitudes we must also understand their contemporary ecologies. 

In order, then, to move our understanding of these submerged areas forward, 

these are the questions that this research will address:   

 

• What is the nature of these specimens and the deposits they are contained 

within? 

• What do their distribution and patterning tell us about the offshore resource? 

 

This research aims to chip away at these questions through an investigation of the 

derived material that forms the bulk of the offshore archaeological record. In a 

similar way to the terrestrial work that has been conducted using derived lithics, a 

historical approach will be taken to the majority of these artefacts, which were 

largely collected throughout the 19th Century and where we have little information 

regarding their exact provenance. A combination of antiquarian letters, fishing 

charts and acquisition registers will be used to try to narrow these locations down 

as much as possible. The distribution of these artefacts will allow an examination 

of any patterning in the material that may indicate areas of Palaeolithic potential 

on the seabed, with further investigation leading to ground-truthing and practical 

engagement with these deposits.  

The recovered material spans the Palaeolithic period and so this research presents 

the relevant issues relating to the study of submerged archaeology within the 

context of current Palaeolithic and associated geological research. Since the LGM 

has largely been the temporal ceiling for past research of submerged prehistory, 

this work will concentrate on the questions of the pre-LGM record. In addition to 

being far more invisible - from a current research point of view - this is a 

significantly different period in terms of the processes that have affected the 
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record and therefore in the ways that we need to approach it. The nature of the 

majority of the record available will play a central role in this approach; with the 

non-site-based character of the archaeology lending itself to interpretations that 

draw from the continuous nature of the landscape, and the way in which these 

hominins inhabited it. Case studies will be presented, which will show how the use 

of material from extant deposits can begin to characterise these environments, 

developing new methods for understanding these landscapes.   

 Thesis Structure 1.5

The unorthodox nature of the material being examined in this thesis has led to a 

structure that is not standard. With specimens that encompass the entire 

Palaeolithic period, Chapter Two sets out the archaeological and environmental 

picture throughout this vast period from the early Middle Pleistocene through until 

the LGM. It first discusses the broad geological history of the southern North Sea, 

with landscape reorganisation and fluvial patterning being significant factors for 

hominin movements and subsistence. It then looks at the way in which we 

understand the chronology of the Palaeolithic, focusing on biostratigraphy because 

of the importance of faunal species as chronological indicators in this work. The 

patterning of changing archaeological signatures with relation to their 

corresponding environments will form the remainder of the chapter, drawing out 

pictures of presence and absence, related faunal communities and ecological 

preferences. These patterns of occupation and related mammalian assemblages 

will then be linked with patterning identified through the results of this research. 

In terms of methodology, Chapter Three forms a discussion of the recovery of the 

specimens from the southern North Sea via the 19th and 20th Century trawling 

industry and introduces the faunal collections and main fishing ports. It focuses on 

fishing locations from each port, as well as information regarding the collectors 

themselves, in order to define areas of seabed that groups of specimens have 

derived from. It also discusses the development of trawling as an industry, both in 

terms of the technology and the social aspects, and how these may have affected 

the offshore record. 
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The areas of seabed defined within Chapter Three are applied to the analysis of the 

specimens in Chapter Four, which examines the distribution and patterning of the 

species from each distinct area. Both broad- and small-scale patterns are identified 

and it is argued that significant spatio-temporal patterning exists within the 

resource. To further test the potential of these methods and the robustness of the 

results, Chapter Five then uses two of the areas with small-scale patterns as case 

studies to investigate further with the addition of geophysical data for the most 

significant area.  

Finally, Chapter Six pulls all of the themes that have emerged throughout the 

course of this research into a more in-depth discussion before Chapter Seven 

concludes and looks at the further work to be done.             
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Chapter 2:  Investigating the unconventional 

An ecological approach to the Palaeolithic through the integration of 

submerged archaeology  

Our understanding of the Palaeolithic, both Lower, Middle and Upper, is based on 

an extremely fragmentary dataset which we rely upon to answer big questions 

about the behaviour of our extinct hominin ancestors. It can be argued that our 

lack of engagement with the submerged landscapes of the southern North Sea, and 

the resultant void in information, present an avoidably large gap in our Palaeolithic 

knowledge of this region. 

This chapter provides the backdrop to the study of these submerged landscapes 

and explores the current state of knowledge with regard to both the offshore zone 

as well as its terrestrial counterpart. It will argue that the picture of occupation of 

this region throughout the Palaeolithic is clouded by the exclusion of the 

invaluable resource of these submerged landscapes and that an unbiased 

understanding of the impact that they had on hominin movements, and on the 

record that we see in Britain, cannot be known without their exploration and 

inclusion. Given the temporal span of the material represented from this area, this 

work does not attempt to provide an in-depth assessment of the entire record, but 

rather to draw out the relevant issues, such as: the changing palaeogeographies of 

this area, the nature of hominin occupation through space and time and how these 

issues interrelate.  

The ecological approach taken by this research views hominins and their 

environments as interlinked, where environments present constraints and 

opportunities within which fauna and flora, including hominins, exist and 

adapt (e.g. Butzer 1982). Adopting this approach means that an understanding of 

both the environments and the archaeological patterning throughout the 

Palaeolithic is crucial if we are to appreciate the variety of ecologies 

exploited and of the range of scales at which they can be viewed.
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With common discrepancies between the environmental and archaeological 

resolution, as well as the non-organic nature of much of the Palaeolithic record, 

understanding the potential of varied ecologies for hominin subsistence can be 

extremely useful (e.g. the river valley subsistence of Brown et al. 2013). Whilst the 

offshore zone is currently characterised by faunal remains, as well as Quaternary 

deposit models and occasional geotechnical work, this type of work highlights the 

possibilities provided by a greater ecological understanding of these areas. 

Furthermore, given the importance of a bottom-up approach to the investigation of 

submerged landscapes over the longer term, being able to understand 

archaeological patterning within the context of changing ecologies and to use this 

to pinpoint areas of potential, is vital for the development of the discipline.        

Conventions 

Figure 2.1 introduces the various terms used throughout for defining chronology. 

The two main overarching terms used are ‘Palaeolithic’ and ‘Pleistocene’, which 

broadly correlate, the difference being that the first is an archaeological construct 

and the second geological. In terms of archaeological patterning, Section 2.3 sets 

out the earliest Palaeolithic as distinct from the Lower Palaeolithic, with the 

earliest occurring entirely during the early-Middle Pleistocene, with the Lower 

spanning MIS 13-9. From this point onwards, the archaeology is discussed in terms 

of the Palaeolithic: Lower Palaeolithic, Early Middle Palaeolithic, Late Middle 

Palaeolithic and Upper Palaeolithic. Since the archaeological signatures of the 

Lower Palaeolithic are found both sides of the Elsterian glaciation, a defining 

marker for faunal turnover, the species are discussed in terms of pre-Elsterian and 

post-Elsterian in order to make this distinction clear.  

When it comes to further subdividing this period of time, the widely-used Marine 

Isotope Stages have been adopted (e.g. Shackleton 1987; Lisiecki and Raymo 2005). 

These are isotopically defined periods of time based on the records from marine 

core sediments and represent the broadest climatic capsules of time with which to 

look at glacial-interglacial stages for the Palaeolithic. Within each stage multiple 
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fluctuations occur, becoming more rapid (or more apparent) through time (e.g. 

Dansgaard et al. 1993). These fluctuations are difficult to tie in with any specific 

archaeological sites because of discrepancies in dating resolution, but through the 

use of local pollen, molluscan and mammalian biostratigraphy, as well as 

lithostratigraphy, it is possible to recognise small-scale environmental changes 

that relate broadly to the contemporary archaeological picture.  

In terms of dates used, when within the range of radiocarbon dating (i.e. 

approximately 50ka onwards), where possible the calibrated dates have been used 

(e.g. 36ka BP). This makes their correlation with other dating methods throughout 

earlier periods possible. 

The European terms for the periods which correlate with these Marine Isotope 

Stages are used throughout the text and are shown in Figure 2.1. The European as 

opposed to British terms for glacial and interglacial stages have been used so as to 

highlight the continuous nature of the landscape throughout most of the period in 

question.  
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Figure  2.1 Conventions and terms used throughout the text 
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 Palaeogeography: placing the archaeology in the context of 2.1

landscape and movement 

Current evidence from the site of Happisburgh 3, Norfolk, points to the earliest 

occupation of Europe north of the Alps being at approximately 900ka on the 

western edge of the southern North Sea in East Anglia (Text Box 2 [Parfitt et al. 

2010]). This discovery, coming soon after that of nearby Pakefield (c.700ka [Parfitt 

et al. 2005]), has begun to rewrite our understanding of the early hominin 

occupation of Europe, highlighting the great time-depth that we are dealing with. 

This research, concentrating on the periodically terrestrial landscapes of the 

southern North Sea, therefore addresses a period of close to a million years, with 

this section concentrating on the palaeogeographical context of these episodes of 

occupation.     

The seeming remoteness of the landscapes that once existed in the southern North 

Sea often makes it difficult to perceive them as dynamic and heterogeneous. 

However, understanding these changing landscapes has important implications for 

how we think about occupation patterns through time as well as hominin 

adaptations to changing ecologies. Broadly speaking, a range of environments 

would have existed, some of which we may have no modern analogue for and thus 

no way to understand them other than through their direct investigation. 

Pleistocene coastal environments, for example, are predominantly now submerged, 

as are the lowest reaches of the major river systems and the associated ecotones of 

the estuaries. Similarly, some areas of higher ground from earlier periods have 

been eroded away (Gibbard 1995; Clayton 2000; Toucanne et al. 2009; Hosfield 

2011), leaving their exploitation by hominins as merely theoretical.    
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2.1.1 Landscape reorganisation 

During the early Middle Pleistocene (c.780ka – 450ka), the most significant of 

these areas of higher ground in southern Britain was a chalk bedrock interfluve 

(the Weald-Artois ridge) which ran across the Dover Straits, linking Britain to the 

continent and creating a variable, shallow marine embayment of the southern 

North Sea (Figure 2.1). The area to the west of the Dover Strait was dominated by 

The Channel River, fed by fluvial systems such as the proto-Somme, Seine and 

Solent (Gupta et al. 2007).  The existence of this higher ground had implications for 

landscape organisation as well as the movement of fauna and flora as it would have 

meant that constant interchange was possible. Presumably this would also have 

been an attractive place to be situated, overlooking expanses of lower ground as 

well as being at the ecotone between several environments: fluvial, terrestrial and 

shallow marine. However, the build-up of a pro-glacial lake during the Elsterian 

glaciation (also Anglian, MIS 12, c. 478Ka, Figure 2.1), bounded in the south by this 

chalk anticline, eventually led to its catastrophic breaching (Gibbard 1995; Gupta 

et al. 2007; Toucanne et al. 2009), the ensuing landscape reorganisation having a 

significant impact on the geographies and environments of the entire North 

Western peninsula. The timing and nature of this breach are therefore very 

important, but the scales at which we recognise these processes are frustratingly 

at odds with the archaeological resource, providing us with often confusing and 

conflicting stories. 

At the earliest point of occupation (early Middle Pleistocene) Britain was 

permanently joined to the European continent throughout both cold and warm 

climatic stages. Sea levels of course fluctuated throughout this period, in response 

to both global eustatic changes (eg. Lambeck et al. 2002) as well as sedimentation 

from the major European rivers that drained into what was then a North Sea 

embayment (Cameron et al. 1992; Bridgland and D’Olier 1995; Funnell 1995; 

Gibbard 1995; Meijer and Preece 1996; Rose et al. 1999, 2000, 2001; Bridgland 

2000; Toucanne et al. 2009a; Hijma et al. 2012). However it was not until the major 

glaciation of the Elsterian and the first coalescence of the Fennoscandinavian and 

British ice sheets that this situation began to change (Toucanne et al. 2009a). 

Evidence of glaciolacustrine sediments in the southern North Sea, which date to 
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the Elsterian glaciation and form part of the tripartite Swarte Bank Formation (SBF 

[Long et al. 1988]), point to the formation of an extensive lake at the foot of the 

glacier from a combination of glacial meltwater and outflow from the impounded 

northward-draining rivers, bounded in the south by the Ridge (Gibbard 1995; 

1998; Murton and Murton 2012). High-resolution swath bathymetry data of the 

seabed immediately to the south of the Dover Straits (and throughout the Channel) 

indicates that the breaching of this ridge was catastrophic and suggests that it was 

caused by the eventual overtopping of this North Sea lake (Gupta et al. 2007), with 

bench morphology signifying that this overtopping may have occurred twice (ibid.). 

Given the lithostratigraphic evidence as well as evidence from the eroded 

sediments being deposited distally in the Bay of Biscay it seems highly likely that 

the initial breach occurred during the Elsterian glaciation (Long et al 1988; 

Toucanne et al. 2009a, 2009b). A second major breach is argued to have taken 

place during MIS 6, based on proglacial fluvial sediments from the Rhine-Meuse in 

the Netherlands (Busschers et al. 2008), as well as faunal evidence pointing to a 

full marine connection from MIS 5e onwards (Preece 1995). Debate is ongoing as 

to the nature and the timings of these events (see for example Westaway and 

Bridgland 2010 and Toucanne et al. 2010). However, despite these disagreements, 

what is clear is that the Elsterian glaciation marks the start of a major 

reorganisation of the drainage patterns and geography of the North Western 

peninsula of Europe throughout the Middle to Late Pleistocene.      

The status of Britain’s connection to the continent has implications for hominin 

movements and the resultant archaeological signatures that we see. Without a 

terrestrial connection, groups of hominins would either not have been able to 

move into Britain, or would have become isolated and potentially locally extinct, as 

indeed would the contemporary fauna and flora. The timing of the terrestrial 

connection has therefore been the subject of hypotheses attempting to understand 

the hypothetical impact of these cyclical changes (e.g. Ashton and Lewis 2002; 

White and Schreve 2006; Ashton and Hosfield 2010; Ashton et al. 2011; Pettit and 

White 2012). However the actual evidence, both archaeologically and 

environmentally, is often fragmented and unclear. This is especially true for earlier 

periods, whose deposits have been subjected to repeated changes in sea level and, 

in places, glaciations.   
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Further difficulties arise when attempting to superimpose past eustatic sea-level 

data onto the modern bathymetry of the southern North Sea in order to define 

island/peninsula status. This is due to the bathymetry having seen significant 

alterations through time because of erosion, subsidence, burial and the impact of 

crust-depressing ice sheets. As well as erosion and burial of deposits and 

topographic features, the difficulties of understanding glacio-isostatic adjustment 

(GIA) for periods before the Last Glacial Maximum are compounded by the lack of 

extant deposits that can be correlated enough to provide chronologically secure 

and accurate information on relative sea levels throughout the Pleistocene.  

The North Sea is within an area of tectonic subsidence that has been active since 

the Oligocene (Cloetingh et al. 2006), with the hinge zone running approximately 

along the East Anglian coastline (Hijma et al. 2012). Although this means that the 

deposits have escaped the major erosional processes associated with tectonic 

uplift, and also the burial processes of the depo-centre, the deposits are generally 

stacked with little vertical separation (Rose 1999; 2001), making it extremely 

difficult to discern relative dates and lateral cohesion.  Consequently what we can 

discern from these deposits about the palaeogeographies of these areas 

throughout the Palaeolithic is at two differing scales: at the very local scale there 

can be fine-grained palaeoenvironmental reconstructions, but our understanding 

of the wider landscapes is generally far coarser. 

Recent work on the formation and deposits of the southern North Sea has drawn 

together several lines of research looking at the changes to the landscape 

throughout the Pleistocene (Cohen et al. 2012; Hijma et al. 2012). The evolution of 

the fluvial systems that developed in this section of North West Europe throughout 

the Pleistocene also impacted greatly on the formation of the contemporary 

landscape and has seen work on both sides of the North Sea (Bridgland et al. 1993; 

Bridgland and D’Olier 1995; Funnell 1996; Roe 1999; Rose et al. 1999; 2001; 

Antoine et al. 2003; Bridgland 2000; 2003; 2006; 2010; Busschers et al. 2005; 

2007; 2008; Kemna 2008; Westerhoff et al. 2008; Toucanne et al. 2009a, 2009b; 

Roe et al. 2009; Rose 2009; Westerhoff 2009; Roe and Preece 2011; Roe et al. 

2011). 
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2.1.2 Fluvial landscapes 

Over 90% of Palaeolithic archaeology in Britain, as well the northern European 

coastal zone has been found contained within river terraces (e.g. Wymer 1999; 

Ashton and Lewis 2002; Brown et al. 2013). Whether this is a response to the 

preservation conditions that fluvial/floodplain environments offer, the modern 

exploitation of gravel pits, a reflection of actual hominin preference or, most likely, 

some combination, this means that understanding these fluvial systems is crucial 

for understanding the Palaeolithic world.  

The formation of the fluvial terraces that contain this archaeology is naturally an 

important issue and, whilst these processes may differ depending on the types of 

landscape processes dominant in different areas (e.g. Bridgland and Westaway 

2008), a scheme has been developed for the Middle and Lower Thames which 

allows terraces to be distinguished and defined (Text Box 3, Bridgland 1994, 2000; 

Maddy et al. 2000; 2001; Westaway et al. 2002; 2003). This has meant that the 

contained archaeology, whether in situ or derived, can be assigned a degree of 

chronology and context (Bridgland 1994; Hosfield 1999; Brown et al 2009). Text 

Box 3 describes this process as defined for the Lower Thames.  It is important to be 

aware, however, that this process does not appear to work for all terrace systems 

(Brown et al. 2010) including those of the upper Thames (Bridgland 1994).     

Traditionally thought of as impossible to use in any meaningful and secure way, 

recent work (Hosfield 1999; Hosfield and Chambers 2004; Howard et al. 2007; 

Brown et al. 2010; Basell and Brown 2011; Brown et al. 2013) has focused on the 

application of this vast archive and has dealt with the principle of whether it is 

possible to ‘tack’ between the large-scale, coarse-grained information contained 

within these terraces and the fine grained, ‘15 minute’ episodes represented by in 

situ sites such as Boxgrove (Wylie 1993, 24; Gamble 2001; Hosfield 1999; 2005). 

Understanding the processes which modified the lithic assemblages, as well as the 

post-depositional implications for the artefacts arising from differences in the 

dynamics of river systems, are both extremely important for deciphering how far 

these assemblages have moved and the levels of information they contain (Hosfield 

1999; Brown et al. 2013). 

31 



Recent work has demonstrated that much of the secondary context lithic resource 

has not moved a significant distance, often despite rolled or abraded appearances 

(Basell and Brown 2011; Brown et al. 2013). Despite its coarse nature the 

secondary-context archive can therefore provide insights into large-scale changes 

in the archaeological signature, including changes in population densities (Ashton 

and Lewis 2002), first appearances or absences of hominins in the landscape, and 

the introduction of new technologies (e.g. Levallois at MIS 9/8; Bridgland 2001; 

Westaway et al. 2006; Scott 2006; Bolton 2010; Scott 2011).  

2.1.2.1 Pleistocene fluvial systems of the southern North Sea 

There are several interrelating factors that affect the behaviour of fluvial systems. 

Sea level plays a significant role in controlling the base level of the system that 

controls the level to which the river can erode (Schumm 1993). The degree of 

sediment supply in relation to sediment removal affects the gradient of the system 

and is largely controlled by climate-related factors; glacial periods result in a 

decline or even total lack of vegetation growth, which leads to increased sediment 

input from unstable banks. Conversely, in interglacial periods vegetation locks-up 

the river bank material, which leads to increased river-bed incision. Furthermore, 

the deposition of fluvial sediments on the continental shelf leads to isostatic uplift 

of associated upland areas (Westaway et al. 2002), all of which plays a part in the 

formation of the river terraces so important to Palaeolithic archaeology (Text Box 

3). 

The changing dynamics displayed through extant fluvial sediment stratigraphies 

allow us to infer at least broad palaeoenvironmental changes through geological 

time. For example, the southern North Sea has acted as a depocentre for rivers 

flowing through Britain and North West Europe throughout the Pleistocene period 

(although only intermittently after the Elsterian glaciation [Westaway and 

Bridgland 2010]), the final output of these rivers fluctuating in relation to the ever-

changing coastlines. The extant deposits from these rivers provide us with 

information, albeit fragmentary, about their catchments and changing energy 

levels through their unique lithological signatures.  
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The dominant rivers flowing into the southern North Sea throughout the 

Palaeolithic were far from static. The Thames, originally flowing out of north 

Norfolk during the Early Pleistocene (Rose 1999; Parfitt et al. 2010), was gradually 

diverted south before being pushed into its current course after the Elsterian 

Glaciation, whilst palaeo-rivers such as the Bytham and Ancaster were obliterated 

(Figure 2.2; Rose et al. 1999; Clayton 2000). Another major European river 

supplying sediment to the southern North Sea basin includes the Rhine-Meuse 

system (Bridgland 2000, 2002; Busschers et al. 2005; 2007; Figure 2.2) which, 

during the early-Middle Pleistocene, had its river mouth on the north-eastern 

extent of the southern North Sea (Hijma et al. 2012). Its associated formation in the 

Netherlands is known as the Sterksel Formation and represents a period of 

significant basin-ward progradation of the major rivers in this area (ibid.; Zagwijn 

1989; Westerhoff 2009). Contemporary with and to the west of this formation are 

the offshore deposits of the Yarmouth Roads Formation, the onshore Cromer 

Forest-bed Formation (CFbF, Text Box 4) and shallow marine Wroxham Crag 

Formation (Rose et al. 2001). 

In contrast to the pre-Elsterian situation, fluvial sedimentation in the southern 

North Sea after the Elsterian glaciation is intermittent (Westaway and Bridgland 

2010). This probably reflects the altered drainage route of the major fluvial 

systems through the (at least partially) opened Dover Straits (Gupta et al. 2007; 

Westaway and Bridgland 2010) and results in a less extensive record of deposits in 

this area. In addition, the terrestrial record from eastern England after the 

Elsterian glaciation was far less influenced by fluvial activity, with this being 

replaced by glacial terrain (e.g. Blakeney Esker, Cromer Moraine [Rose 2008] and 

the formation of small landforms, such as the lake deposits at Hoxne, which 

developed on the glacial landscape [West 1956; Singer et al. 1993]) and smaller 

river systems driven by glacial relief and sub-glacial melt-water drainage routes. 

These smaller fluvial systems were less well organised. In contrast with the 

lithologically uniform pre-Elsterian fluvial and crag deposits, however, they had far 

more complex sedimentologies, which formed far less coherent parts of the 

landscape (Rose 2008). Rivers such as the Trent/River Witham, draining out of the 

Wash Basin (Bridgland 2010; White et al. 2010), the Palaeo-Yare (associated with 

Area 240 [Text Box 1]), Waveney (Mathers et al. 1993; Wymer 1999), Thames 
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(Bridgland 1994; 2000; 2004) and Medway (Bridgland 1988; Bridgland et al. 1999) 

formed post-Elsterian fluvial systems along the East Coast of England, their 

terraces providing much of the associated Palaeolithic archaeology (Wymer 1999). 

After the Elsterian no glaciation covered the southern North Sea, or came further 

south than the Midlands (Figure 1.2, although see Beets et al. 2005 for possible 

glaciation in the Southern Bight area). This is reflected by the paucity of glacial-

associated deposits in the UK sector. Saalian pro-glacial lake deposits are found in 

the northern part of the southern North Sea (north of 53°) but with only 2m – 8m 

of thickness (Cameron et al. 1992). However, during these periods (as well as 

‘failed interglacials’ such as MIS 3 [Section 2.3.4]), the southern North Sea would 

have been dry land, with the most extreme low-stands seeing sea level drops 

of >100m below modern sea level (Busschers et al. 2007). The unusually large 

expanse of continental shelf in North West Europe means that during these periods 

there was increased opportunity for the development of fluvial systems converging 

across these landscapes. A good example is that of the Channel River (or Fleuve 

Manche [e.g. Antoine et al. 2003; Toucanne et al. 2009a]) which saw input from 

French rivers such as the Seine and Somme, English rivers such as the palaeo-

Solent and Thames, and continental rivers such as the Rhine-Meuse (although 

input from this system is not without debate [Oele and Scuttenhelm 1979; Gibbard 

1995; 1998; Lericolais 1997; Lericolais et al. 1997; Petit-Maire 1999; Bridgland 

2002]). 

Given the relatively continuous nature of fluvial terraces throughout the 

Pleistocene, and the fact that >90% of Pleistocene rivers have extended onto the 

shelf (Bridgland 2002), these low-stand systems may provide us with much 

archaeological and environmental information about the Pleistocene of the 

submerged zone. Because of subsequent marine erosion as well as the 

practicalities of offshore imaging, however, they are difficult to reconstruct and 

investigate. Furthermore, given that the main source of geophysical and 

geotechnical exploration of these deposits is by aggregate-extraction companies, 

the information is often sensitive and restricted.  

These restrictions do not always hold true, and the use of industry-collected 3D 

seismic data has recently shown the preservation of a large area of submerged Late 
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Pleistocene/Early Holocene landscape in the area of the Dogger Bank (Gaffney et al. 

2007; 2009), with a dynamic range of landscapes recognised. Further to the south 

and on the other side of the southern North Sea basin, the extensive deposits of the 

Rhine-Meuse system have been mapped through from the Early Pleistocene (Hijma 

et al. 2012) demonstrating the changing landscapes through processes such as 

progradation and subsequent erosion. Associated with this system are the 

intriguing finds of the Zeeland Ridges Neanderthal (Hublin et al. 2009, Text Box 1), 

demonstrating the worth of understanding these deposits from an environmental 

point of view, as well as contextually for associated archaeological finds.  

As one of the major fluvial systems draining into the southern North Sea 

throughout the Pleistocene, the offshore Thames-Medway terraces have been 

mapped through seismic profiling to investigate their low-stand expressions 

(D’Olier 1975; Bridgland et al. 1993). Three buried channels have been recognised 

and it has been suggested that they represent cold-stage gravels from MIS 6, 4 and 

2. They appear to run east and south into the Southern Bight, where considerable

dissection has occurred through subsequent marine transgression (Figure 1.1; 

Bridgland et al. 1993). This appears to indicate the existence of post-Elsterian 

fluvial systems draining through the eroded Dover Straits during low-stand 

conditions. 

Low-stand periods were not the only points at which terrestrial deposits were 

forming in the now offshore zone. Due to changing palaeogeography and 

corresponding relative sea levels, even during some of the highest post-Elsterian 

sea level interglacials (for example the Eemian), parts of the eastern British 

coastline extended further east than they do today (Figure 2.2). Examples of these 

from offshore eastern Essex are the Clacton Channel system, which can be 

demonstrated to extend into the offshore zone and represents fluvial deposition 

during the first post-Elsterian interglacial (MIS 11, Holstenian [Bridgland et  al. 

1999; Roe and Preece 2011]), the Cudmore Grove Channel, which shows estuarine 

conditions during the interglacial conditions of MIS 9 (Schreve et al. 2002; Roe et al. 

2009; Roe et al. 2011; Roe and Preece 2011) and the East Mersea Restaurant Site, 

whose Eemian fluvial deposits are now buried by beach shingle (Roe and Preece 

2011). Further evidence for Eemian fluvial deposits in areas now submerged 
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comes from geophysical and geotechnical investigation of a multi-period fluvial 

system off the coast of Essex, as part of the Outer Thames Regional Environmental 

Characterisation (REC) project (Dix and Sturt 2011 [see Chapter Five for further 

discussion of the deposits in this area]).  
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Further mapping of offshore deposits has recently taken place through another of 

the REC projects, this time of the East Coast (Limpenny et al. 2011). This project 

has provided a further level of detail to that of the preceding British Geological 

Survey work during the 1970s and 80s (Cameron et al. 1992) and demonstrates 

how extrapolating from widely spaced geophysical lines can introduce 

interpretative error and smooth over detail.   

There is clearly a wealth of Pleistocene deposits in the southern North Sea, albeit 

fragmentary (as they are terrestrially), and the landscapes of the southern North 

Sea and surrounding areas throughout the Palaeolithic were clearly very different 

from the way we think of them now. This is especially so during the early-Middle 

Pleistocene when they were dominated by large rivers and sea embayments. This 

therefore returns us to the question of our perceptions of these landscapes and of 

how contemporary hominins would have engaged with them. Returning to the 

broader research questions outlined in Chapter One, can investigation of these 

deposits shed light on the differing ecologies of these now offshore areas and, if so, 

can we relate this back to hominin engagement and preferences? The identification 

of these deposits is a necessary first step in this process, but further exploration 

(or direct investigation, for example of over-sized aggregate such as that which led 

to the discovery of Area 240 [Text box 1]) is required if we are to start addressing 

archaeological questions. 
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Figure  2.2  Changing position of rivers and sea levels through the Pleistocene. a: Early 

Pleistocene (after Parfitt et al. 2010); b: early-Middle Pleistocene, also showing highstand 

coastal zone (after Rose 1999; 2001; Hijma et al. 2012), c: Elsterian cold-stage, showing 

the pro-glacial lake build-up (after Parfitt et al. 2010; Murton and Murton 2012), d: Late 

Middle Pleistocene, showing a partially eroded Weald-Artois ridge but the possible 

existence of an area of terrestrial land to the north-east is shown, made up of till sheets in 
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its northwestern extent and Palaeogene outcrop in its southeast extent. Modest marine 

exchange was possible with overtopping (after Hijma et al. 2012), e: Last Interglacial, 

showing the marine highstand and a prograding Rhine delta in the northeast (after Hijma 

et al. 2012), f: early Weichselian low-stand landscape, showing rivers flowing south into 

the Channel River (After Gibbard et al. 1988; http://www.qpg.geog.cam.ac.uk). (Elevation 

data source: Smith and Sandwell 1997) 

2.1.3 Linking fluvial and shallow marine sequences 

The unique lithologies and sedimentation patterns of each river can inform us 

about the general climatic processes prevailing throughout the relevant catchment. 

However, it is only really through the joint study of related deposits that a wider 

picture emerges. This has been highlighted, for example, through looking at the 

most extensive Early- early Middle Pleistocene deposits in Britain, which occur in 

East Anglia. The changing dominance of lithologies within the shallow marine 

Wroxham Crag members (early Middle Pleistocene) has been used to infer the 

dominance of the ancestral Thames system over the Bytham at that time (Rose et 

al. 2001) and the identification of these deposits within exposed sections has 

further allowed the details of the course of the systems to be mapped more fully.  

Given the shallow gradient of East Anglia and the southern North Sea, oscillations 

in the relative sea level in this area are likely to have been fairly noticeable 

(Nicholls 2010), with the deposition of shallow marine interspersed with organic 

floodplain sediments demonstrating these fluctuations (Rose et al. 2001). It is 

impossible to divorce the fluvial deposits from the marine crag deposits in this 

area; sediment input from the varied catchments of the rivers is present within the 

crag deposits and allows us to correlate the two through lithological comparisons 

(Figure 2.3).  
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Figure  2.3 lithologies and stages of the early Middle Pleistocene in East Anglia (after 

Cameron et al. 1992; Rose et al. 1999; 2001; Zagjwin 1989) 

Analysing and correlating the currently onshore and offshore components of these 

deposits is key to understanding the landscapes in their original context, but at 

present this is fraught with difficulties. The Wroxham Crag, for example, is defined 

through its lithological components (Rose et al. 2001) and is made up of shelly 

sands, gravels and muds formed over a period of approximately 1.4Myr (Rose et al. 

2001). Its earliest deposits therefore lie outside the current date-range of 

occupation, but many of those that are younger are extremely relevant 

archaeologically (Figure 2.3, e.g. Parfitt et al 2005). Its deposits represent what 

were, during the Pleistocene, shallow marine environments, as demonstrated by 

the presence of marine molluscan faunas (Rose et al. 2001).  

Offshore the deposits are defined on a predominantly seismostratigraphical basis 

(i.e. through geophysical imaging), ground-truthed by occasional boreholes and 

cores, and they have been defined over a short period, relative to the length of time 

for which the currently terrestrial deposits have been investigated. Furthermore, 

the investigation of the two areas has been undertaken separately, and this results 

not only in the emergence of different terminology for onshore as opposed to 

offshore deposits, but in a difference in the recorded detail. For example, the 

onshore deposits that relate to the early Middle Pleistocene period include several 

facies of both the CFbF and the Wroxham Crag, such as the Mundesley member of 

the Wroxham Crag or the Pakefield Member of the CFbF, whereas offshore these 

deposits are referred to simply as the Yarmouth Roads Formation (Cameron et al. 

1992), simplifying the offshore deposits and hindering the integration of the two 

zones (Figure 2.4).  
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Figure  2.4 location of CFbF onshore and the corresponding locations of the Yarmouth 

Roads and Wroxham Crag Formations offshore (after Cameron et al. 1992; Rose et al. 

2001. Elevation data source: Smith and Sandwell 1997)  

The few boreholes that sample the Yarmouth Roads Formation (Cameron et al. 

1992; Limpenny et al. 2011) allow correlation with the onshore Ormesby borehole 
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(Harland et al. 1991) as well as outcroppings of Wroxham Crag along the coastline 

and in quarry sections. Importantly, the Yarmouth Roads Formation represents 

deposits which formed under both terrestrial and shallow marine conditions 

during the Pleistocene and are now submerged offshore. The distinction between 

the two is not however defined as it is for the currently terrestrial deposits of the 

CFbF and Wroxham Crag, which formed under the same terrestrial and shallow 

marine conditions respectively. 

Importantly, the input that we see in fluvial and related shallow marine deposits 

from their catchment areas can help to define the environmental processes at the 

time.  Let us take the Wroxham Crag again as an example.  In the case of the 

earliest member, Dobb’s Plantation, clast sizes and the proportions of 

allochthonous to autochthonous rocks indicate that the rivers were then 

transporting bedload from throughout their catchments. This contrasts with the 

preceding period of the Early Pleistocene Norwich Crag, where bedload was 

predominantly local, with far-travelled components represented solely as 

suspended sediment. This indicates a larger catchment area (Rose et al. 2001; Rose 

2008; Lee et al. 2008). The change reflects a fundamental shift in the dynamics of 

the river systems of southern Britain and has been linked to intensified climatic 

changes from the Middle Pleistocene onwards (ibid; Rose 2010). With this 

intensification, periglacial processes became part of the dominant climatic 

repertoire and coarse-grained materials began to be eroded and transported 

around the landscape; bedload and palynomorphs from all areas of the river 

catchments define the lithologies of these periods and allow us to reconstruct the 

migrations and energy levels of the major fluvial regimes.   

2.1.4 Summary 

Given the amount of archaeology contained within river terraces, their formation 

is an important consideration for the chronology of the artefacts they contain. The 

work on the Lower Thames brings a varied degree of chronological control over 

fluvial terraces (Bridgland 1994; 2000; Maddy et al. 2000; 2001; Westaway et al. 

2002; 2003; Bridgland and Westaway 2008), combined with recent work drawing 
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out the significance and wealth of information contained within these (often) 

derived assemblages (Hosfield 1999; Hosfield and Chambers 2004; Howard et al. 

2007; Brown et al. 2010; Basell and Brown 2011; Brown et al. 2013). The potential 

for applying these combined techniques to submerged deposits is clear.  

Despite the likelihood for disturbed offshore deposits, especially further to the east 

(Bridgland et al. 1993), these techniques demonstrate how we can link offshore 

terrace deposits, even where disturbed, back in with the archaeological picture 

(Hosfield 2007), and so address questions about the occupation of the submerged 

zone.    

 

 Patterns and chronologies   2.2

 

The Palaeolithic of Britain, and to a lesser degree North West Europe, is generally 

characterised by a pattern of discontinuous occupation, with an extremely 

ephemeral Early Pleistocene presence (Dennell 2003; Parfitt et al. 2010; Voinchet 

et al 2010). Although from approximately MIS 13 (528-478Ka) onwards there is a 

significant increase in the numbers of sites, apparently decreasing again from MIS 

10 (c.364Ka) (Ashton and Lewis 2002; McNabb 2007; Lewis et al. 2011; Ashton 

and Lewis 2012; Pettit and White 2012), chronological resolution often means that 

it is very hard to place these sites accurately within specific periods of interglacial-

glacial cycles. Identifying what assemblage density at these younger sites actually 

means for occupation (re-occupation of a site or an intensive afternoon’s knapping 

[Ashton and Lewis 2002]) is a further problem when thinking about what these 

patterns represent, as the two scenarios have different implications for hominin 

behaviour within these landscapes.  

Chronological control of the Palaeolithic record therefore necessarily relies on 

taking a multidisciplinary approach, to piece together evidence such as dating 

techniques (e.g. Walker 2005; Penkman 2005; Penkman et al. 2007; 2011), 

lithostratigraphy and pollen/mammalian biostratigraphy. Despite the availability 

of an array of techniques (especially the recent developments in OSL and AAR for 
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earlier parts of the Palaeolithic [Walker 2005]) this section will focus on 

biostratigraphy (primarily mammalian), as it is faunal specimens that form the 

basis of the chronological framework adopted by this research in Chapters Four 

and Five. 

Biostratigraphy, in its various forms, is an extremely important component in the 

environmental reconstruction of Pleistocene sites and underpins much of what we 

understand about the formation and character of these landscapes (e.g. it 

underpins the chronologies of the river terrace formation model [Bridgland 1994; 

2000; 2006; Maddy et al. 2000, Bridgland and Westaway 2008]). However, it is 

important to recognise the limitations implicit in considering assemblages that 

may be representative only of a local environment, and of species that may be 

spatially restricted or diachronous across continents. This becomes ever more 

important with Britain’s increasing insularity, as, in the Later Pleistocene, we begin 

to see what look like impoverished ‘island’ faunas and floras (Currant and Jacobi 

2011).  

Biostratigrahical groupings are most reliable when they include several lines of 

evidence - mammalian, pollen and molluscan, for example - and many stages 

within interglacial-glacial sequences are characterised in terms of these specific 

assemblages (e.g. Preece and Parfitt 2000; 2012). The Holstenian (Hoxnian) 

interglacial (broadly correlated with MIS 11) has been characterised primarily 

through its palynology at the sites of Hoxne and Marks Tey (Turner 1970), with 

complex stages and substages acknowledged (Turner 1970; Ashton et al. 2008). 

Further supporting environmental characterisation has been acquired from 

mammalian and beetle remains (Coope 1993; Stuart et al. 1993). Of course, the 

development of an interglacial stage is often very similar from one interglacial to 

the next and the taxa involved may make it difficult to distinguish distinct marine 

isotope stages. MIS 11 and MIS 9, for example, have very similar biostratigraphical 

signatures, and differentiating one from the other generally relies on several lines 

of evidence (Schreve 2001; Roe and Preece 2011) and often comes down to 

absolute dating techniques (generally with errors in the 10kys (Grun and Schwarcz 

2000) and relative dating techniques such as Amino Acid Racemisation (AAR e.g. 

Penkman 2005; Penkman et al. 2011).        
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On the other hand, some interglacial/glacial periods are characterised by very 

distinct biostratigraphical signatures. The Last Interglacial/Eemian (MIS 5e) for 

example, is characterised by an absence of Abies, Equus and Corbicula fluminalis 

and the presence of Hippopotamus. Similarly, at the site of Happisburgh 3, the 

discovery of the Early Pleistocene species Tsuga (hemlock) and Ostrya-type (hop-

hornbeam type) combined with other lines of biostratigraphical and 

palaeomagnetic data helped to place the site in the Early Pleistocene (Parfitt et al. 

2010; cf. Westaway 2011).  

Given the range of environments where archaeological sites are found, 

biostratigraphical evidence is not always preserved, but sites of purely 

environmental data are used instead, in an attempt to slot the sites into a likely 

environmental picture. Marks Tey (Turner 1970), for example, has no associated 

archaeology but forms a continuous sequence throughout the MIS 11 interglacial, 

and provides the backbone of our knowledge about the changing environments 

throughout this time. Similarly, most of the fluctuation within the early Middle 

Pleistocene is defined on the basis that mollusc, pollen and faunal data (Preece and 

Parfitt 2012) can help to inform where the sporadic archaeological sites are 

situated chronologically. However, although these techniques are undeniably 

important, there are risks with extrapolating interglacial characteristics from a 

single depositional environment. Types of pollen will disperse at varied rates and 

over varied differences; these problems of abundance are well studied (Vera 2000).  

It is the absence of taxa however that can be problematic. It was long thought that 

MIS 3 was characterised by an absence of tree cover (Coope et al. 1997; Coope 

2002), a view heavily supported by molluscan and insect evidence, but more 

recent work by Caseldine et al. (2008) at Lancaster Hole has reliably demonstrated 

a dominance of arboreal pollen (Pettit and White 2012, 314). Whilst this does not 

by itself render previous interpretations incorrect, it should remind us that basing 

region-wide reconstructions on localised sequences is likely to over-simplify a 

reality that is more complex.  
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2.2.1 Mammalian biostratigraphy  

Mammalian biostratigraphy is based on understanding the taxonomic evolution of 

species and uses first- and last-appearance dates (Preece et al. 2009; Preece and 

Parfitt 2012). Distinguishing specific periods within the early Middle Pleistocene is 

problematic at present because of a lack of chronological control over deposits (cf. 

Penkman et al.  2011, with a relative AAR dating framework). For this period, then, 

mammalian biostratigraphy is based on informally-defined groups of important 

micro-and macro-fauna, such as the evolution of the water vole Mimomys savini to 

Arvicola terrestris cantiana and the presence of certain species of mammoth (e.g. 

Mammuthus meridionalis [Lister and Bahn]) and deer (e.g. Cervus savini [Lister et 

al. 2010]) (Preece and Parfitt 2000; 2012). However, for the Middle and Later 

Pleistocene a series of formal Mammal Assemblage Zones have been published 

(Figure 2.5 [Schreve 2001; Currant and Jacobi 2001; 2011]). Although these 

examples are not exhaustive or infallible, they provide a useful starting point for 

the types of groupings of fauna that are representative of certain interglacial-

glacial stages. In terms of this research, they also form a reference for the potential 

ages of the specimens being recovered from areas of the seabed. 

There are twelve Mammal Assemblage Zones (MAZs) identified for the Middle and 

Late Pleistocene in Britain which, when compared with the North Western 

European counterparts provide interesting inferences about Britain’s peninsular 

status (Schreve 1996; 1997; Schreve et al. 2002; Currant and Jacobi 2001; 2011). 

Figure 2.5 shows a list of these MAZs along with a list of fauna that are present or 

absent throughout these periods. Although there are breaks in the lines, indicating 

absence, it is possible that particular fauna are simply not represented by present 

knowledge. This comes back to issues of basing an evidence of absence on an 

absence of evidence, and of extrapolating faunal assemblages from one distinct site 

over entire landscapes.  
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Figure  2.5 Defined MAZs present through Middle and Later Pleistocene periods (after 

Schreve 2001; 2004; Currant and Jacobi 2001; 2011;) and faunal species present during 

the pre-Elsterian, Early – early Middle Pleistocene (after Lister et al. 2010; Breda et al. 

2010; Preece and Parfitt 2012). Black squares indicate the First Appearance and Last 

Appearance dates of species, where known.   

 

Some of the interesting patterns that may be discerned relate to the isolation of 

Britain from MIS 5e through until MIS 4. MIS 5e appears to be the first interglacial 

to demonstrate continued isolation from the continent, with the absence of 

Rhenish molluscan fauna (Meijer and Preece 1995). A reconnection is not likely 

until the cold of MIS 4 ([e.g. Keen 1995], although we must recognise the 

possibility of certain species to make shorter sea crossings during the lowered sea 

levels of MIS 5d and 5b [Currant and Jacobi 2011]). Consequently there appears to 

be an increasing impoverishment in interglacial fauna throughout this period 

(Currant and Jacobi 2011). This contrasts with the picture to the south, specifically 

in regions such as Picardie (Northern France: Locht 2005), which have several 

sites yielding fauna from MIS 5c and MIS 5a, including species such as Coelodonta 

antiquitatis (woolly rhinoceros), Equus ferus (horse) and Mammuthus primigenius 

(woolly mammoth) (Simonet 1992). Combined with the picture of hominin 

absence from this period (but see Wenban-Smith et al. 2010 for possible evidence 

of occupation), this evidence does appear to indicate an island status for Britain 

throughout this time. Access to Britain would therefore have been impossible 

without a sea crossing and any hominins existing there before the rise in sea level 

would have faced isolation and potential local extinction.    

The stratigraphic relationship of a site with the broader landscape is also a vital 

tool for placing it in relative date order, so long as we have a good understanding 

of the emplacement and taphonomy of the deposits. An example of the 

complexities of this issue can be found in the early Middle Pleistocene 

environments of East Anglia. Here, the fortuitous capping by Elsterian till (a 

combination of the North Sea Drift Formation and the Lowestoft Formation) of 

many of the early Middle Pleistocene deposits has not only led to their 

preservation, but provided them with a known age-marker., Understanding the 

ages of these markers is not necessarily straightforward, however. This  has been 
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demonstrated by a recent debate over the age of the till deposits, with recent 

British Geological Survey (BGS) lithostratigraphic mapping suggesting that the 

earlier till deposits were emplaced during an earlier MIS 16 glaciation (Hamblin et 

al. 2000; Lee et al., 2004a,b, 2006a, 2008a; Hamblin et al., 2005; Rose, 2009; Candy 

et al., 2006) and that the various tills represent glaciations from MIS 16 through to 

MIS 6.  This does not, however, agree with biostratigraphic (Preece 2001; Stuart 

and Lister 2001; Preece and Parfitt, 2008; Preece et al. 2009), aminostratigraphic 

(Preece et al. 2009; Penkman et al. 2011) or lithostratigraphic (Hoare et al. 2005; 

2006; Lewis and Hoare 2012) evidence, all of which place all till deposits within 

MIS 12. There are problems in assuming that lithostratigraphic markers (or the 

lack of) defined at singular points of a spatially and temporally variable deposit 

will be representative of the whole deposit (Bose et al. 2013). This highlights the 

difficulties of understanding complex landscape (in this case, glacial) processes 

from such fragmentary and dispersed deposits.     

 

2.2.2 Summary 

Chronological resolution for the Palaeolithic relies heavily on non-archaeological 

proxies, with that most relevant to this research, mammalian biostratigraphy, 

being discussed above. As Lang and Keen (2005) state (although referring to the 

use of secondary-context material), much Palaeolithic archaeology is “most 

profitably viewed through the multidisciplinary prism of Quaternary Science, in 

which archaeology and the environment form an interlinked whole”. This is true, 

but there is also the question of scale, and whether these proxies are understood at 

a scale relevant to one another. Issues of resolution plague the Palaeolithic, 

especially the earlier record, and it is often the case that extremely localised, high-

resolution environmental records allow us to understand snapshots of these 

periods, but that these records are then confusingly at odds with the 

archaeological record that could often feasibly have been deposited over several 

episodes of occupation. Several lines of biostratigraphical, lithostratigraphical and 

archaeological data are, where possible, combined in order to deal with these 

issues, and for the most part these limitations simply need to be explicitly 
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recognised so that we can extract an appropriate amount of data from the record. 

Therefore, although this record is inherently fragmented, there is an ever-

increasing amount of information that can be derived from it, with the inclusion of 

the offshore record potentially representing a step-change in the amount and 

nature of the information available.   

 The changing archaeological record 2.3

2.3.1 The earliest Palaeolithic (early Middle Pleistocene: c.780 – 478ka) 

The constant exchange of fauna and flora that was possible throughout the early 

Middle Pleistocene (Cameron et al. 1992; Gibbard 1995; Toucanne et al. 2009a; 

Hijma et al. 2012; Murton and Murton 2012) had important implications for the 

dispersal of early hominin species, although to what degree these once-terrestrial 

landscapes were exploited remains unknown. This section will explore the picture 

of occupation of Britain and North Western Europe through the early Middle 

Pleistocene until the arguably different picture of MIS 13, which here will be taken 

as the start of the traditional Lower Palaeolithic.  

2.3.1.1 Environmental context 

Understanding the environments of the Palaeolithic often relies on evidence from 

single, well-preserved sites being correlated and extrapolated to much larger 

regions. The picture for the early Middle Pleistocene of Britain is no exception, but 

relies on a far more laterally-extensive, high-resolution deposit from the coast of 

East Anglia: the CFbF (Textbox 4 [Preece and Parfitt 2000, 2012]). 

Providing an unprecedented expanse of Pleistocene deposits to investigate, the 

CFbF allows a detailed examination of environments at points throughout the early 

Middle Pleistocene, even though these are generally no more than relative in date 

to one another (e.g. Preece and Parfitt 2012).  

The early Middle Pleistocene comprises four interglacial phases (MIS 13-19) and 

two glacial phases (MIS 14 and 16, although neither of these periods saw lowland 

Britain glaciated [cf. Lee et al. 2004]). All of these phases have traditionally been 

thought of as less extreme than the succeeding Pleistocene stages (MIS 12-1 
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[Section 2.1.2]), with no interglacial periods reaching the warmth of the Holocene 

(Flower et al. 2000; EPICA 2004).  This would mean that hominins inhabiting these 

environments would have to have been able to cope with much cooler 

environments than the apparently balmy Hoxnian of MIS 11 (Ashton et al. 2008). 

However, having the detailed record of the CFbF for this period allows the global 

ice core record to be tested at a local scale. 

Despite the detail of the CFbF, the vertical separation of the deposits it contains is 

negligible (Rose 1999; 2001), as they formed on what is essentially the hinge zone 

between uplifting and subsiding areas. Furthermore, absolute dating techniques 

for this period are associated with large margins of error and understanding the 

character of each of the interglacials is complex (Preece and Parfitt 2001; 2012). It 

can therefore be difficult to place sites confidently within specific interglacial 

periods. The faunal turnover throughout the period, despite not existing as 

formalised MAZs, is a useful tool for clarifying this issue and is shown in Figure 2.5.  

Recent research using oxygen and stable isotope carbonates from these deposits 

has shown that sites such as Pakefield and West Runton (both MIS 19/17 [Parfitt 

et al. 2005; Stuart and Lister 2010]), formed under climates either the same as or 

much warmer than today’s (Candy et al. 2011). Moreover, recent work by Candy 

and McClymont (2013) demonstrates that in the mid-latitude North Atlantic (40-

56°N), none of the interglacial periods from MIS 19-13 were subjected to the 

‘global’ (Lang and Wolff 2010) pattern of cooler interglacials. Nevertheless, the 

cooling that would have affected the surrounding oceans, leading to an increased 

temperature gradient between the mid-latitudes and the northern latitudes, could 

have affected other aspects of interglacial climates such as precipitation and 

seasonality. So whilst temperatures of these early Middle Pleistocene interglacial 

periods would have been similar to those of the proceeding marine-isotope stages, 

and to the Holocene, the configuration of the environments may have been 

significantly different, compounding the need to investigate them directly.  
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The dispersals of early hominins into North West Europe are therefore set within 

the context of interglacial cycles that warm and cool to extremes similar to those of 

the proceeding periods, and with lithic technologies associated with both extremes 

(eg. Parfitt et al. 2005; Ashton et al. 2008a; Parfitt et al. 2010). The major 

difference to these environments and landscapes was the configuration of the 

southern North Sea (Section 2.1) and what this means for the archaeological 

record. With the majority of early Middle Pleistocene sites situated in or towards 

the lower reaches of East Anglian rivers (specifically the Bytham River [Hosfield 

2011]), this raises the issue of the importance of the submerged record for 

providing missing aspects of hominin interaction with lower-lying, potentially non-

analogous environments.   

In terms of faunal species, no formal MAZ exists for this period, as assigning 

specific sites to specific periods within the early Middle Pleistocene is still complex 

and difficult. Figure 2.5, however, shows species that have been demonstrated to 

exist throughout this period as well as the preceding Early Pleistocene.  

2.3.1.2 The archaeological picture 

The early Middle Pleistocene archaeological picture of Britain could arguably be 

split into two categories: first, the much earlier additions of Happisburgh 3 and 

Pakefield falling into that of the Early – early Middle Pleistocene forays north, and, 

secondly, the sites of MIS 13, falling into the traditional Lower Palaeolithic 

category (Figure 2.6). Both groups (if we follow the traditional glacial stratigraphy 

model, [e.g. Preece et al. 2009] have strikingly different patterns: the earlier 

picture of a few ephemeral, small assemblages of simple cores and flakes (Text Box 

2; Parfitt et al. 2005; 2010), appearing almost unanimously with the earliest 

incursions of early hominins into new territories (Pettit and White 2012), and this 

contrasted with increasing site numbers within MIS 13 (Figure 2.6) and the 

emergence of handaxe technology across (most of) Europe (i.e. the Lower 

Palaeolithic [Roebroeks 2006; Scott and Gilbert 2009]). 
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Figure  2.6 Earliest Palaeolithic sites (pre-MIS 13) of North West Europe, shown with those 

of MIS 13. Sites in italics are purely palaeoenvironmental. 

 

 

If we assess the evidence from British early Middle Pleistocene sites we can more 

easily interpret the nature of these occupation episodes.  Were they occasional 

forays north or repeated visits? The number of these sites has increased 

dramatically in recent years, and this has forced many who previously subscribed 

to a ‘short chronology’ of Europe (one where hominins did not enter this 

geographical area until after 500ka) to reconsider (Dennel 1983; Roebroeks and 

van Kolfschoten 1994;Dennel and Roebroeks 1996; Roebroeks 1996). Before even 

the discovery of the British sites, the Sierra de Atapuerca (Spain [Carbonell et al. 

1995; Bermudez de Castro et al. 2004; Pares et al. 2006]), showed lithics and 

hominin remains in layer TD6 at the Trinchera Dolina site stratified well below the 

Bruhnes-Mutayama boundary (0.78ka).  This made it clear that the earlier model 
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of European occupation needed to be modified. The warmer climates of the 

Mediterranean region leant themselves easily to this modification, but, the sites of 

Pakefield and then Happisburgh 3 within the CFbF of East Anglia (Parfitt et al 2005, 

2010) were more difficult to reconcile. Providing evidence for occupation at 

approximately 700kya and 814 – 970kya (MIS 17/19 or MIS 21/25 [Parfitt et al 

2005; 2010]), in warm interglacial and boreal conditions respectively, and far 

north of the contemporary occupation seen in southern Europe, they represent 

occupation in environments unprecedented for hominins of this period. Further 

work over recent years has to some extent solidified the integrity of this ‘long 

chronology’, with occupation of Sima del Elephante, Atapuerca, at 1.1-1.2Ma 

(Carbonell et al. 2008), Orce, Spain, at 1.4Ma and  Pirro Nord, Italy, at 1.3-1.7Ma 

(Arzarello et al. 2007). But questions remain about the reliability of these early 

European dates (Dennel and Roebroeks 1996; Roebroeks 2001; Villa 2001; Antón 

and Swisher 2004; Muttoni et al. 2013), especially after the re-assignment of 

Ceprano to ~0.45Ma (Muttoni et al. 2009) after initial dates of ~0.78Ma (Manzi 

2004).  

Whether these sites are quite as early as believed (for example, Muttoni et al. 2013 

would place them at between 0.78 and 0.99Ma, based on the combination of date 

ranges and faunal zonations), this is still a significant modification of the short 

chronology. The interesting implications that this has for early hominin 

capabilities facilitate a new way of thinking about these patterns: do they indicate 

limitations to hominins’ abilities to cope with the climatic conditions associated 

with being at these latitudes for prolonged periods? Questions are therefore raised 

about how and why they were here.  Do these periods of occupation demonstrate 

adaptations to these environments, especially those of HSB3, or are we seeing the 

limits of occasional migrations north, facilitated by familiar habitats or 

unrecognised climatic pulses and resulting in localised extinctions? On the other 

hand, with Pleistocene coastlines predominantly now submerged, are we still 

simply missing the evidence?   

Dispersals from areas of southern Europe along the Atlantic margin, utilising lower 

reaches of rivers and coastal resources, has been proposed by Cohen et al. (2012), 

and relies on an oceanic effect creating buffered ‘refugia’-style areas, where 
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populations could survive year-round (also see Candy and McClymont 2013). 

Despite the frustrating scarcity for the evidence of such sites, or of adaptations to 

the winter temperatures, which, oceanic effect or not, would still have been 

regularly below zero (Hosfield 2011), the evidence that does exist suggests either 

coastal or fluvial environments along the edge of Western Europe (e.g. Parfitt et al 

2005; 2010; Cohen et al. 2012). Given the loss of the great majority of these coastal 

areas since the last transgression, this emphasises again the need to investigate the 

areas now submerged.     

Britain, at the most North Westerly point of the European continent, has a well-

documented yet complex record of occupation (MacDonald et al. 2012), with much 

dating of sites relying on stratigraphic relationships with complicated glacial 

stratigraphy (Section 2.2). Understanding the ecological preferences, tolerances 

and adaptations of these early hominins may help to pin down areas where we 

could focus our investigations, and an appreciation of their associated 

environments - in the areas that we assume they are migrating from - should 

provide the framework for this understanding. Given the dates and relative 

abundance of sites in southern and south-eastern Europe during the Early – early 

Middle Pleistocene, it seems likely that these areas provided at least one source for 

the populations migrating northwards.  It has been pointed out by Ashton and 

Lewis (2012) that few of these sites are associated with good environmental 

evidence, but what does exist points towards open grasslands with deciduous 

forests and moderate temperatures (Gabunia et al. 2000; Arzarello et al. 2007; 

Scott et al. 2007; Blain et al. 2008; Messager et al. 2010; Rodrigues et al. 2009; 

2010). Again, Cohen et al.’s (2012) Atlantic coastal hypothesis offers a potential 

clue to how hominins then survived in the harsher, seasonal northerly 

environments, but the evidence is still sparse. Nevertheless, these ideas provide us 

with a point to start thinking about how and why hominins made it so far north so 

early, where we might be likely to locate such early sites, and what we should be 

doing to maximise the archaeological potential of the extant record.   
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2.3.1.3 Summary 

Given the connected, terrestrial nature of the geography of the southern North Sea 

during this pre-breach period, the potential contained in the offshore resource 

could help us to further address some of these questions, particularly about the 

ecologies, migrations and exploitation patterns of early hominins. These issues are 

central to our understanding of hominins throughout the Palaeolithic and provide 

insight into preferences and behaviour, which will feed back into research on 

patterns of movement throughout the period.  

The acceptance or consideration of this framework for the early occupation of 

North West Europe, one that presents a rather discontinuous picture facilitated by 

the use of coastal areas, highlights the importance of investigating submerged 

deposits. 

2.3.2 Lower Palaeolithic (MIS 13 – MIS 9, 533 – 300ka) 

The archaeological picture of MIS 13 is significantly different from that of the 

earlier, core and flake-type archaeology of Happisburgh 3 and Pakefield, the 

environments of which have been discussed above (also see Text Box 2). Argued to 

reflect the arrival of a new species, Homo heidelbergensis (Roberts and Parfitt 1999; 

Roebroeks 2006; Ashton and Lewis 2012), this shift in the record marks the start 

of the traditional ‘Lower Palaeolithic’ of Britain, which as defined for this work 

encompasses five marine isotope stages, three interglacial (MIS 13, 11, 9) and two 

glacial (MIS 12, 10), and covers a period of approximately 230Kyrs (524 – 300Ka). 

The Elsterian (MIS 12) is here accepted as the first lowland glaciation of Britain 

and the most extreme, reaching as far south as London (Figure 4.15 [Bridgland 

1994]), and lasting 47Kyrs. 

The production of Acheulean handaxes in this period (bifacially worked and 

shaped larger cutting tools, with a [nearly always] cutting edge all the way around, 

variable in size and shape [see Roe 1968; Goren-Inbar and Sharon 2006; McNabb 

2007; Cole 2011], and remaining approximately static from c. 1.7mya BP – 200kya 

BP [Clark 1994; Gamble 1999; Santonja and Villa 2006]) marks the start of the 

61 



traditional Lower Palaeolithic in Britain. We see their first appearance in Britain at 

approximately MIS 13 (Section 2.3.2.2), with their gradual demise from MIS 9 

representing the transition into the Early Middle Palaeolithic.          

Their distribution throughout North West Europe is patchy, with an apparent 

absence in Belgium and the Netherlands, suggested to be a result of the extensive 

ice sheets which later covered this area (Vos and Kidden 2005).  This also makes it 

very difficult to assess what the absence of evidence really means (Figures 2.6 and 

2.7). Their archaeological distribution will be discussed in more detail in Section 

2.3.2.2, after a discussion of their contemporary environments. 

2.3.2.1 Environmental context 

The severity of the Elsterian glaciation (Figures 1.2 & 2.2) caused a dramatic 

reconfiguration of the peninsula of North West Europe, both in terms of the 

previously-discussed Weald Artois ridge (Section 2.1, Figure 2.2) but also in terms 

of the landscape, with much of the chalk-rich uplands being significantly eroded 

(Lewis 1992; Clayton 2000; Busschers et al. 2008; Toucanne et al. 2009; Hosfield 

2011; Hijma et al. 2012) and potentially eroding, or altering some previous 

archaeological signals (e.g. High Lodge [Lewis 1998]). Reconfiguration of this 

magnitude will have had implications for hominin, as well as floral and faunal, 

dispersals, but it is not yet certain at which point Britain was totally cut off; its 

immediate effect is likely to have been limited. Marked fluctuations are seen in the 

record, both locally within sedimentary sequences (e.g. Ashton et al. 2008a) as well 

in big-picture ice core data (e.g. Bassinot et al. 1994). Although on timescales not 

necessarily discernible through modern dating techniques, these would have had a 

dramatic effect on the environment, landscape (especially through changing sea 

levels and availability of landmass) and its contemporary inhabitants.   

Given the continued subsidence of the North Sea basin throughout the Pleistocene 

(Busschers et al. 2008) and the level of deposits at sites such as Clacton and 

Swanscombe (Bridgland et al. 1999; Ashton et al. 2008b), it appears that only a 

small drop in relative sea levels would have been enough to expose the 

contemporary shallow sea-floor (Ashton et al. 2011). This sea-floor becoming 
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increasingly less shallow through time and leading to ever more periods of 

isolation from the continent as the Pleistocene progressed.  

The association of Homo heidelbergensis (Roberts and Parfitt 1998), or early 

Neanderthals ([from c.MIS 11] Stringer 2012; McNabb 2014) with the increase in 

both number and density of sites from MIS 13 – MIS 11/9 (Figures 2.6 and 2.7), 

occurs in an array of environmental conditions. From the cooler, boreal-type 

environments of Happisburgh 1 (MIS 13 [Ashton et al. 2008a), Boxgrove (MIS 

13/12 [Roberts and Parfitt 1998]), and Cagny la Garenne (MIS 13/12 [Bridgland et 

al. 2006; Antoine et al. 2010]) to the more traditionally interglacial sites of Beeches 

Pit (MIS 11 [Wymer 1985; Preece et al. 2000; 2006; Gowlett et al. 2005; Gowlett 

2006]), Swanscombe (MIS 11 [Wenban-Smith et al. 2001]) and Bilzingsleben II 

(MIS 11/9 [Mania 1995; Mania and Mania 2005]), the sites are almost all situated 

within river valleys or, occasionally (as at Hoxne [West 1956; Ashton et al. 2008b; 

Ashton and Lewis 2012]), by freshwater lakes. Presumably this is due to the 

resources, ease of movement and visibility afforded by these areas (Ashton et al. 

2006; 2008b; Brown et al. 2013), although the preservation and research biases 

(i.e. modern gravel extraction) of these environments may also have at least some 

role to play. The ability to survive at these latitudes and in a wide range of 

conditions, including harsher conditions (with sites such as High Lodge and 

Happisburgh 1 indicating winter temperatures several degrees below freezing 

[Hosfield 2011]), at such relatively increased densities implies that these hominins 

had developed or intensified their means of coping, be it clothing, shelter or the 

controlled use of fire (e.g. Beeches Pit [Gowlett et al. 2005]). 

MIS 11 and MIS 9 have remarkably similar palynological signatures (e.g. Cudmore 

Grove [Roe et al. 2009], Hoxne [West 1956, Ashton et al. 2008b; Ashton and Lewis 

2012]), often being distinguished on the basis of mammalian assemblages (Schreve 

2001; 2004), lithostratigtraphy and, more recently, OSL dating (e.g. Briant et al. 

2012). Isotopically, MIS 11 and MIS 9 both have rapid warming at the start, but MIS 

9 has an isotopic pattern similar to other interglacials (e.g. MIS 5) showing a series 

of warm and cold periods: MIS 9e, 9c and 9a are warmer periods and MIS 9b and 

9d cooler, with each warm stage being isotopically cooler than the last (Bassinot et 

al. 1994; Hopkinson 2007; Currant and Jacobi 2011). The pollen isotopic signature 
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for MIS 11 also demonstrates warm peaks, but only two are consistently 

recognised: MIS 11c and MIS 11a (Ashton et al. 2008b).  

2.3.2.2 Archaeological picture 

Changing patterns of glacio-isostatic uplift throughout different Lower Palaeolithic 

glacial-interglacial stages point to changing patterns of connection and isolation 

(Roe 2001; Preece and Penkman 2005; Ashton et al. 2008b; Ashton et al. 2011). 

Ashton and Lewis (2002; Ashton et al. 2011), looking at artefact densities through 

time, suggest that Britain’s separation was not complete until right before the 

Eemian interglacial (MIS 5e), a theory supported by the biostratigraphical work of 

Meijer and Preece (1995), Currant and Jacobi (2011) and more recently 

bathymetric and sedimentological research (Gupta et al. 2007; Toucanne et al. 

2009a). They argue that the Lower Palaeolithic has a rich signal relative to both 

earlier and later phases, despite changing patterns of landscape use and lithic 

technologies (e.g. White et al. 2006; Scott 2006; Scott et al. 2011). Having been 

retested using several different regions and lithic groupings (Ashton and Hosfield 

2010; Ashton et al. 2011), the observed patterns are likely to be due in part to the 

changing patterns of isolation. This was driven by a combination of the breaching 

of the Weald-Artois ridge, with the interplay between the subsiding southern 

North Sea basin and changing sea levels (Busschers et al. 2008). Movement across, 

and occupation of, the southern North Sea would therefore have been variably 

possible for significant parts of the Lower Palaeolithic.   

MIS 13 (533 – 478ka) 

The British archaeological signature of MIS 13 is marked by the apparently sudden 

production of Acheulean handaxe technology at Bytham river sites such as 

Happisburgh 1 (Figure 2.6, Ashton et al. 2008b), High Lodge (Ashton et al. 1992), 

Waverley Wood (Shotton et al. 2003, although see Preece et al. 2009 for potential 

MIS 15 date through AAR dating), and Warren Hill (Roe 1968; Wymer 1985; 

Wymer et al. 1991; but cf. Lee et al. 2004; Gibbard et al. 2009), as well as the (non-

Bytham) site of Boxgrove (Roberts and Parfit 1999). The chronological debate over 

these sites is by no means resolved and disagreement still exists surrounding, for 

example, whether the archaeological gravels are fluvial or glacial in origin (e.g. 
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Warren Hill [Gibbard et al. 2009]), whether the traditional Biostratigraphic Model 

is still followed (Section 2.2) and how the lowest Bytham terraces are interpreted 

(e.g. Bridgland et al. 1995; Lewis 1998; Preece and Parfitt 2008 for hypotheses 

regarding multiple MIS 12 terraces in the Bytham system in a similar way to the 

Thames terraces [Bridgland 1994]). This is by no means an exhaustive list of sites, 

with several such as Brandon and Mildenhall, both in East Anglia, of uncertain 

chronology (for a full discussion see Hosfield [2011] and references therein). 

The Solent River and its tributaries contain artefacts, but there is doubt as to the 

dating of these terraces. The archaeology is generally considered to be restricted to 

MIS 13, on the basis of OSL dates on lower terrace sequences (Briant et al. 2009; 

Briant and Schwenninger 2009). Furthermore, with regard to the pre-diversion 

Thames, there are strikingly few examples of lithics from any of these terraces, 

with only find spots, a few flakes and a handaxe, none of uncontroversial 

provenance (Wymer 1999; Hosfield 2011). 

North West European sites with Acheulean technology can be found in France in 

the area of Abbeville (Tuffreau and Antoine 1995; Tuffreau 2001), with the sites of 

Saint Acheul (MIS 12: 403±73 ka) and Cagny la Garenne (MIS 12: 443±53 and 

448±68 ka). More recently, claims have been made for a handaxe assemblage from 

the terraces of the Cher River (La Noira, Middle Loire Basin), with ESR dates of 

665±55 ka; (MIS 15/17 [Moncel et al. 2013]), significantly older than those from 

Britain. Potentially pushing the European Acheulean back even further are the 

Spanish sites of Solana del Zamborino (750-770ka) and Estrecho del Quípar (c 900 

ka [Scott and Gibert, 2009]), although at present the especially early date seems 

anomalous, the discovery and dating of La Noira is potentially supportive (McNabb 

2013). Are we missing these early examples of Acheulean technology in Britain 

because they have not been preserved or because we have dated them wrongly? 

On the other hand, are the hominins using this technology simply not present?  

The earlier appearance of handaxe technology on the Continent (e.g. Tuffreau et al 

2008; Barsky and de Lumley 2010; Jimenez-arenas et al. 2011 ; Moncel et al. 2013) 

may reflect the movement of hominins using this toolkit and appear in younger 

settings than the initial appearance of core and flake assemblages in these regions. 

There is still of course debate whether these handaxe makers reflect the 

65 
 



movement of a new species such as Homo antecessor to Homo heidelbergensis, 

bringing with them a new lithic repertoire (Moncel et al. 2013). The paucity of a 

reliable fossil record makes this hard to clarify, with the much-debated Atapuerca 

sites having by far the richest record (see Arsuaga 1997; Bermudez de Castro et al. 

1997; 1999; 2003; Carbonelle et al. 2008; Stringer 1993; 2012). With recent 

mitochondrial evidence pointing to the emergence of early Neanderthals at 538-

315 kya, and hominins at Swanscombe now re-assigned to this species (Stringer 

2012; McNabb 2013), early Neanderthals must also have played a part in the 

emergence and evolution of the Acheulean tradition.     

Northern German sites allow an interesting comparison, with the sites of 

Miesenheim I and Kärlich G both assigned an early Middle Pleistocene date of MIS 

13/15 (van Kolfschoten and Turner 1996; Turner 2000; Bosinski 2008; Parfitt and 

Preece 2012). Both of these sites are characterised by flake technology with 

apparently no bifacial components. Bifacial technology is clearly being used in 

contemporary sites elsewhere in Europe, so this raises two questions: first, does 

the lack of bifacial technology at the German sites simply represent a different 

response to a situation, on the basis that handaxes were not needed and so were 

not made, raw material constraints precluded their manufacture, or that they were 

brought and taken away?  Or, secondly, does it represent occupation by different 

groups or ‘cultures’ of hominins from different regions using different knapping 

techniques? A similar argument has dominated British archaeological discussion of 

the succeeding interglacial, but it is by no means resolved.  

MIS 11 (424-374ka) 

The MIS 11 (Holstenian) interglacial is represented by several sites in a range of 

environments such as Clacton, Swanscombe, Hoxne, Barnham and Beeches Pit 

(Figure 2.7). Ranging from cold, boreal environments (although with warm 

summer temperatures) at Hoxne (Ashton et al. 2008b), to fully interglacial, closed 

forest environments at Beeches Pit (Gowlett et al. 2005; Preece et al. 2006), these 

sites attest to hominin occupation throughout the interglacial. They are generally 

associated with fluvial environments, leading Ashton et al. (2006) as well as, more 

recently, Brown and colleagues (2013) to suggest that these were hominins’ 

preferred locations for nutrients and resources, as well as movement, with the 
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paucity of environmental information associated with interfluve environments 

making these sites difficult to tie in. The Holstenian sites have also yielded some of 

our earliest evidence in North West Europe for wood working (the Clacton spear 

[Warren 1911]) and the use of fire (Beeches Pit [Gowlett et al. 2005; Preece et al. 

2006]). The Schöningen throwing spears (Thieme 1997; Thieme 2007; van 

Kolfschoten 2013) had been assigned to the Holstenian period, but recent work 

(van Asperen 2012; Schreve 2012; van Kolfschoten 2013) has indicated that, 

although archaeological sites from the Holstenian do exist at Schöningen, the 

spears are more likely to derive from MIS 9.     

 

Figure  2.7 MIS 11 sites, palaeoenvironmental sites in italics 

 

 

Patterning in the archaeological signatures at these sites has led to the long-

running ‘Clactonian’ debate (Wenban-Smith 1998; White 2000, but see McNabb 
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2007 for a full discussion). This has to do with the occurrence of assemblages 

without evidence for any handaxe manufacture (Clactonian) at the same time, 

broadly speaking, as Acheulean, handaxe assemblages. The question is whether 

this is a real picture: two assemblage types produced by different hominin cultures, 

with Clactonians during the initial stages of the interglacial (also potentially at the 

start of MIS 9 at Little Thurrock [Wymer 1957; Snelling 1964; Bridgland and 

Harding 1993; McNabb 2007]), followed by an Acheulean replacement (e.g. 

Swanscombe [White 2000 based on Bridgland 1994; Schreve 1997, 2001]); or two 

distinct assemblage types produced perhaps as a response to different conditions, 

by indeterminate hominins. With sites such as Barnham producing evidence of 

Clactonian and Acheulean industries with at least geological contemporaneity and 

within the same strata (Cobble band [Ashton et al. 2006]), arguments relying on 

different environmental conditions have at least a shadow of doubt cast over them. 

Such close proximity is also difficult to imagine from the point of view of territory, 

but geological timescales are of course very different from human timescales.    

     

Given the implications for the occupation of north west Europe being attributable 

to movement from the continent, the outcome of the Clactonian problem may 

allow us to recognise different hominin cultures within what is probably the same 

species - Homo heidelbergensis (e.g. Boxgrove, Mauer) or early Neanderthals (e.g. 

Swanscombe) - throughout different areas of Europe (White and Screve 2000). 

With Eastern and Central European sites such as Vértesszőlős (McNabb and Fluck 

2007; Fluck 2010) and Bilzingsleben (Mania and Mania 2005) being devoid of 

handaxe technology, compared with handaxe yielding sites in Western and 

Southern Europe (e.g. Cagny la Garenne [Lamotte and Tuffreau 2001], Saint-Pierre-

lès-Elbeuf, lower Seine valley [Cliquet et al. 2009], this interpretation does seem 

attractive.  This is especially the case when we take into account the recent 

evidence pointing to complex species interactions and existence throughout Asia, 

Africa and Europe throughout the Pleistocene (e.g. Stringer 2012: Denisovans, 

Floresiensis; Lordkipanidze et al. 2006). Work by Dennell et al. (2011), which 

paints a picture of waves of hominin movement, sits well with this interpretation, 

as it expects differing ‘cultural’ elements associated with multiple phases of 

abandonment and re-colonisation under varying climatic regimes.  
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However, as attractive as identifying movements of Lower Palaeolithic cultures 

may seem, it is important to point out that the chronologies of Clactonian and 

Acheulean industries are based on environmental data and are therefore quite 

temporally broad. There are only a small number of sites to work with and, given 

how hard it is to ascertain the functionality of lithic technologies with any certainly, 

is not the assumption that they were used by the same groups, possibly at different 

times but for different reasons, the most elegantly parsimonious?  

These arguments are not resolved and we still do not know what the Clactonian 

means for the Palaeolithic. The discovery of more sites and a broader 

understanding of hominins within their varied ecologies from areas now 

submerged may help to elucidate these issues. Moreover, archaeology from late in 

MIS 12 or early in the interglacial - when sea levels were still rising – may be 

undertaken in areas that are now submerged, and these areas may well shed light 

on the earlier movements of the hominins.  

 

MIS 9 (337-300ka) 

After several hundred thousand years of handaxe-dominated assemblages, the 

latter stages of MIS 9 sees the emergence of a different type of stone tool 

technology with the development of Simple Prepared Cores (SPCs) alongside the 

use of handaxes (Bolton 2010; Scott 2011). Appearing in the literature under an 

array of terms, for example proto-Levallois, pseudo-Levallois (from here on: 

Simple Prepared Cores [SPCs] after Bolton 2010), this appears essentially 

(although not without on-going debate) to represent the development in situ of a 

new way of thinking about lithic manufacture.  It is seen at sites such as Botany 

Gravel, Purfleet (MIS 9 [Wymer 1968; 1985; Roe 1981; Bridgland et al. 2013]) and 

Cuxton (?early MIS 8 [Bolton 2010]) (Figure 2.8). SPCs are defined by their clear 

use of hierarchical surfaces, striking versus flaking and parallel removals to the 

plane of intersection, but in contrast with later ‘developed’ prepared core 

technology (i.e. Levallois), SPCs do not necessarily show maintenance of distal and 

lateral convexities and there is minimal preparation of surfaces (White and Ashton 

2003; Bolton 2010).  
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An earlier ‘proto’ stage has been seen as the precursor to Levallois, the emergence 

of which defines the start of the Early Middle Palaeolithic.  This argues against the 

hypothesis that the technology was brought into Europe with the spread of a new 

hominin species (e.g. Homo helmei [Lahr and Foley 1997]). In fact, not only do we 

see a clear development in situ of the technique (Moncel and Combier 1992; Scott 

and Ashton 2011; Moncel et al. 2012; Picin et al. 2013), but in areas of the world 

with a paucity of handaxe assemblages, Levallois never fully develops (Gao and 

Norton 2002). White and Ashton (2003) have argued that Levallois represents the 

principles of façonnage exapted to those of débitage: in other words Levallois 

technology took the principles behind the shaping of a core of material to produce 

a final tool (the handaxe) and applied this to the principles of flake production, 

both techniques fully developed within Lower Palaeolithic handaxe technology. 

Levallois therefore seems to represent a new way of thinking about the use of 

material, and is perhaps a response by hominins to changing exploitation of their 

surroundings.  
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Figure  2.8 MIS 9 sites in Britain and North West Europe 

The appearance of SPCs on the continent occurs earlier than MIS 9, at sites such as 

Cagny la Garenne (MIS 12/11), where there is argued to be a clear conceptual link 

between the manufacture of handaxes and that of Levallois (Tuffreau and Antoine 

1995).  This adds further weight to the argument of development in situ. The much 

earlier appearance in France may reflect a geographically and temporally 

diachronic pattern of development, perhaps related to the ease of movement 

through these areas at this time. However, the haphazard nature of the study of 

this lithic phenomenon in Britain as well as the continent, reflected by the plethora 

of terms adopted for what is essentially the same thing, may be confusing the 

picture. New research addressing this issue should clarify the situation (Bolton 

pers. comm.), with re-analysis of lithic assemblages in Britain and North West 
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Europe potentially identifying SPCs at ever earlier sites and clarifying their 

relationship with both the Acheulean and Levallois traditions. 

 

2.3.2.3 Summary 

During the Lower Palaeolithic Britain and North West Europe were relatively 

intensively occupied, but this was not by any means continuous. The contention 

that occupation of Britain occurred as a response to constantly expanding and 

contracting populations from more southerly, less climatically severe areas of 

Europe and the Near East (Dennell 2003), fits this occasional signal of occupation. 

The emergence of SPCs, apparently in situ, at approximately corresponding points 

throughout the continent and Britain further highlights this movement of hominins 

and reflects the peninsula status of Britain for at least some if not most of this time.  

Analysis of lithic concentrations in the Thames valley, as well as more recent 

analysis of concentrations further west (Ashton and Lewis 2002; Ashton and 

Hosfield 2010; Ashton et al. 2011), imply a decline in populations throughout the 

Lower Palaeolithic, culminating in an absence from MIS 6 – late MIS 4/early MIS 3 

(Section 2.3.3.3). The changing palaeogeography of the southern North Sea basin 

and consequent decrease in opportunities for access seem like a logical 

explanation for this.  

How these patterns of occupation relate to changes in palaeogeography requires a 

greater understanding of the now-submerged deposits as well as their potential 

associated archaeology. With Britain at the edge of the hominin range throughout 

the Palaeolithic, are the expressions of occupation we are seeing merely the 

excursions of occasional hominin groups, increasingly hindered by 

palaeogeographic and climatic changes? Engagement with the record from the 

southern North Sea may help to clarify this, as well as provide records of 

associated (potentially non-analogous) ecological and environmental changes and 

how Lower Palaeolithic hominins were interacting with them.       
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2.3.3 Early Middle Palaeolithic (EMP, late MIS 9 - 6, c.300 – 191kya)  

This section on the Early Middle Palaeolithic will concentrate on the picture from 

late MIS 9 – MIS 6, which encapsulates a period dominated by Levallois technology 

in association with a suite of Middle Palaeolithic behaviours such as changes in 

landscape use, hunting and curation of materials (Geneste 1989; Feblot-Augustins 

1999; Gaudzinski 2006).  

The advent of the persistent use of Levallois technology marks the start of the 

Early Middle Palaeolithic at approximately late MIS 9 until MIS 6 (325ka – 180ka 

[Gamble and Roebroeks 1999; White et al. 2006; Richter 2011]). Long thought of 

as the ‘muddle in the middle’, biostratigraphic (Schreve 1997; 2001) and 

chronostratigraphic (Penkman 2005; Briant et al. 2006) frameworks have now 

allowed these two previously unrecognised interglacials to be defined as distinct 

periods, together with a number of archaeological sites (e.g. Roe et al. 2009; Roe 

and Preece 2011; Scott 2011). Few hominin fossils exist for this period in Britain 

or North West Europe and so (aside from the Neanderthal dental evidence at 

Pontnewydd cave, Wales [Aldhouse-Green et al. 2012]), assigning sites to species is 

not possible. However, it would appear from later fossils as well as DNA (Stringer 

2012) that we are dealing with Neanderthals, as seen at sites in northern Spain, 

such as those from Atapuerca (Bischoff et al. 2007; Stringer 1993; 2012). 

2.3.3.1 Environmental context 

The environments of the Early Middle Palaeolithic are characterised by two glacial 

phases, MIS 8 and MIS 6 and one interglacial, MIS 7, with the succession of phases 

often referred to as the Saalian Complex. For the whole of this succession of 

periods, containing only one interglacial, there is little information available about 

environments, especially for the severe glaciation of MIS 6. With little 

palaeoenvironmental evidence available for anything other than the early and later 

stages of MIS 7 (Pettit and White 2012), the majority of information for this period 

has been gleaned from the mammalian record (Schreve 2001; 2004; Pettit and 

White 2012).  
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MIS 8 was a long glaciation, lasting approximately 50kyrs, but it was less severe 

than others (Bassinot et al. 1994; Ehlers et al. 2004). Glaciation of Britain, although 

elusive, can now be demonstrated for areas of the Southern Bight, in the southern 

North Sea (Beets et al. 2005) and northwards of Lincolnshire (White et al. 2010; 

Graham et al. 2011). With two warming phases during MIS 8 and a longer warming 

period towards the end of the glaciation (Toucanne et al. 2009a), there are 

archaeological sites associated with the end of MIS 8, notably at Baker’s Hole and 

Purfleet (Scott et al. 2010; Bridgland et al. 2013).  

MIS 8 sees the first incursions of the ‘mammoth steppe’ environment, at Bakers 

Hole as well as continental sites such as Mesvin VI and Markleeberg (Gamble and 

Roebroeks 1999). Hominin adaptation to this has been argued to be reflected in 

the technological and hunting strategies adopted from the Middle Palaeolithic 

(Gaudzinski 2006; Scott 2012). Species such as Coelodonta antiquitatis (woolly 

rhino) and Mammuthus primigenius (woolly mammoth) make their first 

appearance in Britain within this glacial period (Schreve et al. 2002). 

The interglacial of MIS 7 begins and ends with the usual vegetation succession, 

showing cooler and more open conditions moving into a more closed, wooded 

environment. However, global ice core records show that this interglacial is 

characterised by three warm peaks, MIS 7e, MIS 7c and MIS 7a, (with high sea 

levels but not to modern levels [Waelbroeck et al. 2002]) and two intervening cold 

peaks at MIS 7b and MIS 7d; d apparently far more severe, with sea levels dropping 

by ~85m compared to ~25m for MIS 7b. 

Evidence from the Norton – Brighton raised beach deposits indicate marine 

transgression at points throughout MIS 7 (Bates et al 1997; 1998; 2000; 2003; 

2010), with deposits at Norton Farm indicating that, in contrast with the abrupt 

climatic deterioration at the end of MIS 7(~180Ka), sea levels remained high for a 

time after glacial inception. This has potential implications for hominin movements 

as it shows that climatic deterioration is not automatically associated with lowered 

sea levels.   

The faunal evidence, as shown in Figure 2.5, has elucidated the changing 

environments of MIS 7 further. The original interpretation of two warm phases 
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separated by a cooler period was based on the identification of a mixture of 

wooded and open species. It was thought that there was a warmer, more wooded 

period first (Ponds Farm) followed by a cooler, more open phase (Sandy Lane) 

after the climatic deterioration. Although this holds true, it is clearly more 

complicated, with these MAZs being applicable to multiple stages of MIS 7.  For 

example Ponds Farm could apply to MIS 7e and 7c [Candy and Schreve 2007]. In 

general, there are more species indicative of open, cooler environments (e.g. 

Mammuthus primigenius [woolly mammoth], Equus ferus [wild horse], 

Stephanorhinus hemitoechus [narrow nosed rhinoceros], Coelodonta antiquitatis 

[woolly rhinoceros] and Megaloceros giganteus [giant deer]; derived from 30 

stratigraphic horizons from 22 archaeological and palaeontological sites). The 

smaller proportions of woodland species (such as Palaeoloxodon antiquus [straight 

tusked elephant] and Ursus arctos [brown bear]) demonstrate the mosaic of 

environments that would have existed as well as significant fluctuations in climate.   

MIS 6 was a severe glaciation, with a warming event at the start (possibly 

comparable to MIS 7e) but subsequently descending into extreme glacial 

conditions (Dansgaard et al. 1993) with ice reaching as far south as the Midlands 

(Lowe and Walker 1997). Its ending was characterised by a two-stage deglaciation, 

with the Zeifen interstadial followed by the Kattegat Stadial before amelioration 

into the Eemian (Binka and Nitychoruk 2001).  

2.3.3.2 Archaeological picture 

Compared with the abundance of sites in the Lower Palaeolithic, Early Middle 

Palaeolithic occupation appears to be less intensive (Figure 2.8 – 2.9; Ashton and 

Lewis 2002; Ashton et al. 2011; cf. Scott 2012). Part of this picture of decline may 

be attributable to technological change, with Levallois and handaxe technologies 

not being directly interchangeable (see Scott 2006; White et al. 2006; Scott et al. 

2010), but recent analyses of Levallois sites by Ashton et al. (2011) would suggest 

that the picture of decreasing populations may in fact be real. Undoubtedly, the 

difficulties of reaching Britain during high-sea-level periods will also have played a 

part in this apparent decline in populations, with evidence pointing to decreasing 
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terrestrial connection or at times during MIS 7, possible isolation (Bates et al. 1997; 

1998; 2000; 2003; 2010).  

The environments of the Early Middle Palaeolithic appear to be more open than 

the wooded environments of previous interglacials (Guthrie 1990; Schreve 2001; 

2004; Candy and Schreve 2007) and the widespread adoption of Levallois is often 

seen as an adaption to this. Although transport distances in Britain are not as 

significant as on the Continent (Scott 2011), this change in environmental 

structure would have meant a change to the faunal elements that hominins were 

exploiting (e.g. Sandy Lane, Pond Farm MAZs, Figure 2.5), with more open herd 

species (e.g. Stephanorhinus kirchbergensis [Merk’s rhinoceros] and Equus ferus 

[wold horse]), meaning a more mobile, potentially unpredictable hunting pattern. 

In this case, the curation of lithic technology could lead to a reduced discard rate, 

with removals occurring only when necessary, resulting in a reduced 

archaeological visibility (White et al. 2006; Scott 2011).   

MIS 8 (300-243ka) 

MIS 8 sees archaeological sites in North West Europe using a range of technologies 

in cool and open conditions characterised by palynology as well as species such as 

Coelodonta antiquitatis (woolly rhino) and Equus ferus (Horse) (e.g. Mesvin IV, La 

Salouel [Van Neer 1986; Ameloot-van der Hiejden et al. 1996; Scott and Ashton 

2011; Pettit and White 2012]). In Britain, however, there are no sites until the end 

of this period (Figure 2.9). This demonstrates the speed at which recolonisation 

could take place and probably reflects the less severe nature of this glacial 

compared with those from earlier and later periods (Scott and Ashton 2011).  
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Figure  2.9 Sites from MIS 8/7 (MIS 8) and MIS 7/6 (MIS 7) in Britain and North West 

Europe 

 

 

The sites that appear during late MIS 8 (possibly early MIS 7) are characterised by 

the early appearance of Levallois technology:  Ebbsfleet (Scott et al. 2010), Lion 

Tramway Cutting (Schreve et al. 2006), West Drayton and Creffield Road (Scott 

2006), the former two both in demonstrably open environments. However, the 

(rare) persistence of handaxe technology is also seen at Harnham in open and cool 

conditions (Whittaker et al. 2004).    

MIS 7 (243 - 191ka) 

The interglacial of MIS 7 presents a different picture. This interglacial has a 

complex history of warming and cooling (Section 2.3.3.1) with the Norton – 
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Brighton raised beach deposits indicating high sea levels in the Channel for at least 

some of the stage (Bates et al. 1997; 1998; 2000; 2003; 2010). 

Archaeologically, few sites in Britain or the Continent exist during the warm phase 

of MIS 7, with most British sites within the warming limb of the interglacial (e.g. 

Figure 2.9: Crayford [Scott 2006] and Pontnewydd [Green 1984; Aldhouse-Green 

et al. 2012]) or at the MIS 8/7 transition. The dominant technology being used was 

Levallois, although handaxe manufacture is also seen at Pontnewydd. Sites on the 

continent are less prevalent at this point (although see Le Pucheuil [Ropars et al. 

1996]) but increase in number through mid-MIS 7 and the transition to MIS 6 (e.g. 

Figure 2.9 -2.10, Maastricht C&K [van Kolfschoten and Roebroeks 1985], Tourville 

[Guilbaud and Carpentiere 1995], Rheindalen [Bosinski 1995] Therdonne [Scott 

and Ashton 2011], Biache [Tuffreau and Somme 1988] and Pecheuil [Ropars et al. 

1996]).  
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Figure  2.10 Sites from MIS 6 through MIS 5e, showing the abandonment of Britain at this 

time  

 

 

Roebroeks and Speelers (2002) have argued that the prevalence of sites at this 

cooler transitional stage could be due to increased sedimentation rates and loess 

cover in cooler periods, but this could also reflect the increasing adaptation to 

cooler, more open environments that is seen throughout the Early Middle 

Palaeolithic. Of course, there are always exceptions to these rules, such as the site 

of Maastricht Belvedere in the Netherlands with faunal elements indicating warm 

and wet interglacial conditions (although an early TL date of 250-290ka places it 

within MIS 8 [Huxtable and Aitken 1985]) and where hominins are applying a 

range of Levallois techniques to varied situations (Schlanger 1996; Scott et al. 

2011). For Britain, the apparent absence of hominins in late MIS 7 is perhaps due 

to a situation of isolation from the continent at the time, or to the movement-
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barrier of the Channel River once sea levels had fallen at the start of MIS 6.  

Climatic reasons for an absence in phases within much cooler periods of MIS 6 

would appear to be negated by the presence of archaeological sites in areas of 

northern France (e.g. La Cotte de St Brelade [Callow and Cornford 1986; Bates et al. 

2013]), perhaps occupied through the utilisation of fire (Herisson et al. 2013). 

Perhaps La Cotte was offering hominins something unique which made occupation 

during these inhospitable times worthwhile; access to and visibility across a vast 

landscape, ideal for the hunting of prey (Scott et al. 2014).    

The site of Area 240 appears to sit within the transitional phase of MIS 8/7 and 

represents the only submerged Palaeolithic site in the UK sector of the southern 

North Sea to-date (Figure 2.9, Text Box 1; Russell and Tizzard 2011). 

Approximately 13km off Great Yarmouth and with cordate handaxes, flakes 

(including levellois) and faunal remains, this site is thought to have existed within 

an estuarine environment on the banks of the Palaeo-Yare River.  

Geographically there are also some interesting patterns to note with regard to 

Levallois versus handaxe manufacture within this period. Handaxes still persisted 

in some areas (Monnier 2006), although in North West Europe they are generally 

rare (Scott 2011) and where they do occur alongside Levallois technologies they 

are in reduced quantities (Ruebens 2011).  Their east – west patterning has drawn 

the attention of some researchers.  The areas where handaxes persisted were 

limited to the west of Britain (e.g. Broom, Dorset dated to MIS 9-7 [Toms et al. 

2005; Hosfield and Chambers 2009] and Harnham, Wiltshire [Whittaker et al. 

2004]) and also to the west of France, with Levallois technology dominating 

heavily to the east (>1000 in the Thames Valley and only 67 in the Solent Basin 

[Ashton et al. 2011]). McNabb (2007) and Ashton et al. (2011) have suggested that 

this may reflect the routes of hominins with differing toolkits throughout Europe, 

with movement from northern and western French rivers and the English Solent, 

both feeding into the Channel region, although this hypothesis requires further 

testing.  If a true pattern, this would appear to provide more evidence of handaxe 

manufacture towards the west, contrasting with those following rivers from the 

east of England and Belgium and the Netherlands (Scott and Ashton 2011), 

dominated by Levallois technology, feeding into the North Sea basin. These 
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patterns, if proved to be robust, may indicate the migration patterns of groups of 

Levallois- versus handaxe-using hominins.  

The evaluation of archaeological signatures from the southern North Sea basin as 

well as the Channel region could have significant implications for the analysis of 

these patterns. Interestingly, Area 240, thought to date to c.250ka, is argued to 

have both Levallois and handaxe technology (De Loecker 2010), as does the site of 

Pontnewydd (Green 1984; Aldhouse-Green et al. 2012); it is not a clear cut matter.       

 

2.3.3.3 Abandonment (MIS 6 – late MIS 4, c.191 – 64ka) 

The period marking out the Early and the Late Middle Palaeolithic is defined by a 

period of apparent abandonment of Britain (Currant 1986; Wymer 1988; Sutcliffe 

1995; Currant and Jacobi 2001; Ashton 2002; Ashton and Lewis 2002; White and 

Jacobi 2002; Lewis et al. 2011 cf. Wenban-Smith et al. 2010) from MIS 6 until late 

MIS 4 and including the Mediterranean-like environments of the Eemian (MIS 5e).  

Despite the intensive investigation of palaeoenvironmental deposits from the 

Eemian (e.g. Trafalgar Square [Franks et al. 1958; Franks 1960], Victoria Cave 

[Currant and Jacobi 2001; Schreve 2001], Saham Toney [Ashton pers. comm.], Joint 

Mitnor [Currant and Jacobi 2001]), no evidence for hominin occupation has been 

found. Because of perceived difficulties of occupying heavily forested 

environments – for example, MIS 5e had a strong presence of Carpinus, a tree 

which brought a lot a shade (Wenzel 2007) making hunting and socialising more 

difficult; prey species would be more dispersed; there was high productivity but 

this was in the leaves of trees, not in their edible components - Gamble (1986; 

1987) suggested that hominins may have avoided Britain at this time. However, 

their clear contemporary presence in German forested environments (e.g. Grobern, 

Lehringen, Taubach, Neumark-Nord II) as well as Caours in northern France 

(Figure 2.10, Antoine et al. 2006) makes this seem less feasible. Although it is 

possible that these environments show more dispersed prey species (e.g. Grobern, 

Lehringen), the inhabiting Neanderthals are certainly coping with them (Bynoe 

2012).  
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An alternative hypothesis, which does not necessarily exclude that just described 

as a reason for at least decreased population, concerns access. As discussed, by the 

time of the Last Interglacial it seems that Britain was totally isolated at high sea 

levels (Meijer and Preece 1995; Gupta et al. 2007). With the severity of the 

preceding MIS 6 (Dansgaard et al. 1993) precluding occupation and the rapid rise 

in sea levels at the start of MIS 5e (Streif 1989; Siddall et al. 2006), was there just 

not enough time for hominins to re-occupy this corner of the European landmass? 

The site of Veldwezelt-Hezerwater, Belgium, demonstrates occupation at a point 

within the Zeifen interstadial (a few thousand years long) during the final stages of 

MIS 6 (Figure 2.10, Bringmans 2007; Meijs, 2011), implying that hominins were 

capable of reaching these latitudes relatively quickly. There is nothing to suggest, 

however, that Neanderthals would have reached this far north in large numbers; 

there is no reason to think that Neanderthals would have been rushing for Britain 

as soon as the ice started to melt. 

Given these issues of access, it is unlikely that hominins were able to reach Britain 

during the Eemian, or at least not in any great numbers. Roebroeks and Speelers 

(2002) have pointed to the dearth of available accommodation space, or catchment 

areas, for sediment from this period in North West Europe relative to the German 

glacial landscape of kettle holes and lakes. With the lack of a second half of 

interglacial environmental evidence in Britain (nothing exists from the Carpinus 

stage - mid-interglacial onwards [Bynoe 2012]) this lack of accumulation of 

evidence may have a part to play in the picture of absence. This does seem 

unlikely, however, given hominins’ persistent absence throughout the accumulated 

initial stages when access would also not have been an issue.   
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Figure  2.11 Sites in North West Europe during MIS 5d-a and MIS 4 

 

The occurrence of sites towards the end of, as well as during, MIS 6 (e.g. La Cotte 

de St Brelade [Callow and Cornford 1986; Bates et al. 2013], Biache-saint-Vaast 

[Tuffreau and Somme 1988), may indicate occupation of areas now submerged in 

both the Channel and the southern North Sea. Furthermore, investigation of 

deposits from these areas may elucidate the environmental landscapes that were 

available during this time, as well as the changing configuration of the landmass, 

that may have provided context for hominins in these marginal areas.            
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2.3.3.4 Summary 

Interesting patterns between the British and continental evidence emerge during 

this period with the potential for looking at the movement of different groups of 

hominins using different toolkits. The adaptation to cooler, more open 

environments, as seen through the changing faunal communities and introduction 

of species such as Coelodonta antiquitatis (woolly rhino), can arguably be 

associated with the development of technological strategies such as the adoption 

of Levallois, and this can be seen further by the development of faunal 

specialisation from MIS 7 onwards (e.g. Gaudzinski and Roebroeks 2000).   

The patterns seen throughout this period may therefore indicate changing 

ecological preferences to cooler, more open environments with predictable herd 

species (e.g. Salzgitter Lebenstedt [Gauszinski and Roebroeks 2000]). If we return 

to the questions raised in Chapter One regarding palaeoecological preferences 

throughout the Palaeolithic, the analysis of archaeological sites on what would 

have been presumably productive, resource-rich landscapes across the southern 

North Sea basin may help to clarify hominin subsistence and ecological context 

within these environments.  

Furthermore, despite an abundance of sites on the continent during these cooler 

periods (MIS 6 through MIS 4: Figure 2.11), occupation of Britain appears to be in 

decline (Ashton and Lewis 2002; Ashton et al. 2011) with the final sites occurring 

in MIS 7 before a long period of abandonment (Currant and Jacobi 2001; Ashton 

and Lewis 2002; Ashton et al. 2011). The existence of sites from the terminal 

stages of MIS 7, or even MIS 6 (e.g. Veldwezelt Hezerwater [Bringmans 2007]), 

implies the possibility of further sites below current sea-levels, and, if located, 

could help to shed light on this apparent abandonment.  

 

2.3.4 Late Middle Palaeolithic (LMP, late MIS 4 – MIS 3, c.64 – 35ka)  

The small-scale Neanderthal reoccupation of Britain in late MIS 4/ early MIS 3 (64-

67 ka ± 5000BP from OSL at Lynford [Boismier et al. 2003; 2012], Figure 2.12) 

coincides with lowered sea levels and resumed peninsularity, as evidenced by the 
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re-enriched faunal assemblages of the time (e.g. Pin Hole MAZ, Figure 2.5). This 

forms the start of the Late Middle Palaeolithic. Characterised by the classic 

Neanderthals, the Late Middle Palaeolithic lasts until approximately 35Ka with 

their disappearance from Europe, and is mostly encapsulated by the highly 

variable ‘failed interglacial’ (White and Jacobi 2002; Pettit and White 2012) of MIS 

3.  

From this period comes the first discovery so far of hominin fossils from the 

southern North Sea (Hublin et al. 2009). They were recovered from a context that 

also yielded faunal remains and stone tools, demonstrating the potential of these 

fossil-bearing deposits for preserving archaeology. It highlights in turn the 

importance of developing a broader and more ecologically inclusive understanding 

of these landscapes.    

2.3.4.1 Environmental context 

Much work over recent years has concentrated on the environments and 

occupation of MIS 3 (e.g. Van Andel and Davies 2003). Environmental evidence 

points to a relatively cold, open and treeless environment (hence ‘failed 

interglacial’), although as previously noted there are exceptions to this picture 

(Section 2.2, Stuart and Lister 2001; Caseldine et al. 2008). Climatically, this is 

supported by evidence from the Greenland Ice Core Project (Bond et al. 1993; 

Dansgaard et al. 1993), North Greenland Ice Core Project (Andersen et al. 2006; 

Svensson et al. 2008) and Greenland Ice Sheet Project (Grootes et al. 1993), which 

show an unstable environment characterised by high amplitude oscillations of 

500-2000 years (Dansgaard-Oescher events), of which fifteen are evident. These 

are contrasted with 6 records of cold Heinrich events, which are the result of 

massive discharges of ice from ice sheets (Heinrich 1988). The visibility of these 

fluctuations in the record may have to do with the more recent time-scale, meaning 

that less of the detail of the sediments is obscured. It is likely that these patterns of 

rapid changes were also occurring in earlier stages, but that we are simply not able 

to recognise them because of the age and depth of the sediments concerned (e.g. 

Oppo et al. 1998; McManus et al. 1999; Pettit and White 2012).     
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The high resolution picture of environmental variability throughout MIS 3, seen 

through the isotope record, is difficult to reconcile with the more coarsely-grained 

terrestrial record. The Stage 3 Project (Van Andel and Davies 2003) therefore 

developed three main phases through which these sites could be placed and 

viewed: an initial stage with a mild climate at ~59 -43ka; a second stage of 

increased variability, with more closely spaced D-O events from 42 – 36ka; and a 

final stage which descended into cold stages comparable with MIS 2 from 37ka 

onwards.  

Sea levels during the milder phase, after the demise of the MIS 4 ice sheets, were at 

approximately 50m below modern sea level (bmsl), with a subsequent fall to 

around 60-80m bmsl after 50ka (Shackleton 2000; Waelbroek et al. 2002). 

Projecting this onto the modern bathymetry of the southern North Sea and 

Channel implies that Britain was connected to the continent throughout, allowing a 

constant interchange of floral, faunal and hominin species (Keen 1995). It is 

important to note, however, that this projection is fraught with difficulties and 

errors, given the bathymetric changes – such as subsidence, erosion and deposition 

- that would have occurred since (Busschers et al. 2008; Cohen et al. 2012).  

This picture of a fluctuating climate is supported by the Pin Hole MAZ (Currant and 

Jacobi 2001), which is a mixture of cold-climate species such as Mammuthus 

primigenius (woolly mammoth), Rangifer tarandus (reindeer) and Coelodonta 

antiquitatis (woolly rhino) with forested species such as Cervus elaphus (red deer) 

and Megaloceros giganteus (giant deer), reflecting the existence of varied 

environments and climatic signatures throughout the stage. The presence of 

carnivores such as Panthera leo (lion) and Crocuta crocuta (hyaena) throughout 

the period also indicates a rich resource of herbivores (Turner 2009).     

 

2.3.4.2 Archaeological picture 

Archaeologically speaking there are relatively few sites when compared with the 

Continent (Figure 2.12), and the Neanderthal occupation of the Late Middle 

Palaeolithic in Britain appears to be intermittent and low-density (Roe 1981; 

Wymer 1988; Currant and Jacobi 2001; 2002; Ashton 2002; White and Jacobi 2002; 
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Wragg-Sykes 2009; White and Pettit 2011; Pettit and White 2012). Of course, areas 

of intensive occupation like South-West France are the exception rather than the 

rule in this period (e.g. Le Moustier, Pech de l’aze, Combe Grenal [Soressi et al. 

2002), with most other areas of Europe displaying small assemblages with 

densities varying between up to 400 lithics at Saint-Brice-sous-Rânes but around 1 

per m² at Oosthoven (Belgium) (Cliquet et al. 2009; Wragg-Sykes 2009). The 

comparison of these areas is potentially unfavourable because the presence of long 

cave assemblages in South-West France distorts the picture (Wragg-Sykes 2011). 

Given Britain’s marginal location at the edge of the Neanderthal world, however, 

this pattern is not entirely surprising (Figure 2.12). Furthermore, much of the 

archaeology from this period in Britain was excavated by antiquarians with poor 

sampling strategies. This, combined with a subsequent loss of material, has caused 

significant difficulties in understanding and interpreting these sites (Pettit and 

White 2012).      

Given the small assemblage sizes and small number of sites, it would seem logical 

that population sizes must also have been low (Pettit and White 2012; cf. Gamble 

2002): the record has been argued to reflect small groups of highly mobile 

Neanderthals (Wragg-Sykes 2009; 2011). The lithics are characterised by a lack of 

Levallois or backed knives, but regular presence of bifaces, including distinctive 

bout coupés, which are the hallmark of the recolonisation of Britain in the Late 

Middle Palaeolithic (White and Jacobi 2002; Ruebens 2012). Many of these sites 

are within cave systems, the most significant being Robin Hood’s Cave within the 

Creswell Crags system, but these appear to record ephemeral visits, possibly 

because of the co-occurrence of hyaenas (White and Pettit 2011, 68). Open-air 

sites are also small in density and number apart from the early MIS 3 site of 

Lynford Quarry where 70 bifaces and 489 flakes (some retouched) were found 

associated with a Pin Hole MAZ (Boismier et al. 2003; 2012; Smith 2012; Ruebens 

2013).  
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Figure  2.12 Sites from the Late Middle Palaeolithic of MIS 3, those with asterix’s have 

yielded Neanderthal fossils. British sites are generally dominated by small numbers of 

lithics, with Coygan Cave having as few as 5 and Hyaena Den with 11 (although Lynford is 

the exception, with 2700). In contrast, European sites such as Les Amand-les-Eaux have 

10,000 and Saint Brice sous Ranes has c.100,000, although there are still smaller 

assemblages, such as Villeneuve-l'Archevêque with 130.  

 

In contrast with the preceding Early Middle Palaeolithic, the Late Middle 

Palaeolithic in Britain therefore sees the return of Neanderthals with a completely 

different toolkit, and despite an absence of Levallois, the concepts of flexibility and 

mobility still appear to hold true with a highly curated biface-centred technology 

(Boeda et al. 1990; Soressi and Hays 2003; Pettit and White 2012), perhaps 

relating to incursions of small numbers of Neanderthals into these unfamiliar 

territories (Pettit and White 2012). Although demonstrating the use of a high 

proportion of local materials for the construction of less formalised tool types 

(ibid.), typologically the sites fit into the broad Mousterian of Acheulean Tradition 
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(MTA), found from South-West France to the Netherlands (Ruebens 2012; 2013), 

the British variety mainly characterised by bout coupé handaxes (e.g. Scuvee and 

Verague 1988; Boismier et al. 2012).  

It is interesting that the British record has similarities to that of the continent, but 

its own distinct signature of bout coupé handaxes yet no backed knives or Levallois 

(Ruebens 2012; 2013). With Britain at the furthest edge of their world, is this 

unique pattern linked to the isolation of these populations? The LMP in the 

Netherlands, for example, although sparse and badly understood, demonstrates 

the occurrence here of classic Mousterian handaxes, but no bout coupés. Similarly, 

but with a far richer record, northern French sites are dominated by bifacial tools 

(e.g. Villeneuve-L’Achevêque A and Lailly <Beauregard> A [Depaepe 2007], Saint-

Brice-sous-Ranes, [Cliquet et al. 2009]). Belgium, on the other hand, presents an 

interesting mix of bifacial tools (such as classic handaxes) occurring alongside 

backed and leaf-shaped tools, which perhaps suggests a region of mixed cultural 

traditions (Ruebens 2012; 2013). The detail in assemblages of this time may 

therefore give a better indication of the movement of hominins across these 

landscapes.   

Given the paucity of sites in Britain, it is interesting to note several hominin fossils 

from MIS 3 from the surrounding areas of the continent. The Neanderthal remains 

from Belgium, all recently radiocarbon dated between 40 and 36ka uncal. BP (Spy, 

Trou Walou, Goyet [Pirson et al 2011]) as well as those (OSL dates) from La Cotte 

de St Brelade from the second half of MIS 3 between 48ka and 25.7 ±3.0 ka (Bates 

et al. 2013) provide evidence for the existence of groups of Neanderthals in 

extremely close proximity to Britain. Even more significant is the spectacular find 

of the Zeeland Ridges Neanderthal brow ridge as well as bout coupé handaxes and 

a Later Pleistocene faunal assemblage from the Zeeland Ridges in the North Sea 

(Text Box 1, Hublin et al. 2009). Although with no formal date available, this fossil 

is assumed on the basis of related faunal groupings and their associated dates to 

date from the Late Pleistocene, and, from correlation with mapped offshore 

deposits, potentially from 50-30ka BP (Hijma et al. 2012). Its provenance from the 

submerged zone, c.15km from the Dutch coast, has implications for the 

preservation of deposits and archaeology of Palaeolithic date in this area, and 
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corresponds with the many Later Pleistocene faunal remains that are regularly 

trawled up in the same broad locality (Verhart 2004; Mol et al. 2006; Peeters et al. 

2009). This is the first incidence of the co-occurrence of a hominin fossil with 

faunal communities from the submerged zone and, as well as helping to define the 

associated Neanderthal ecology, demonstrates the relevance and therefore 

importance of investigating these faunal remains.    

2.3.4.3 Summary  

The Late Middle Palaeolithic of Britain contrasts with the record from North 

Western Europe - France especially - in its paucity and the picture of pulses of 

occupation. As with its earlier picture of occupation Britain appears to be 

intermittently occupied, possibly only during its mildest periods. This brings up 

the issue again of geographical position; with Britain at the most North Westerly 

point of the continent, Neanderthals would have been  at the very edge of their 

range, presumably with smaller populations reflected by the fewer numbers of 

sites (or at least sites with smaller numbers of finds [Pettit and White 2012]). This 

pattern, when seen against that of neighbouring landscapes, makes investigating 

the now-submerged zone ever more intriguing, especially with the associated 

faunal and hominin finds from the Zeeland Ridges.   

2.3.4.4 Transitional industry (MIS 3, c. 38-35ka) 

The end of the Late Middle Palaeolithic and the start of the Upper Palaeolithic, still 

within the climatic zone of MIS 3, are marked by the demise of the Neanderthals 

and the first appearance of Homo sapiens across Europe (approximately 45-35ka 

BP). The general lack of associated fossil material during the Palaeolithic, with this 

period being no exception, has meant that this transitional time is plagued by 

issues of who-made-what. Debates over lithic industries which appear more 

technologically advanced, such as the Châtelperronian (e.g. Mellars et al. 2007; 

Higham et al. 2010; Bar-Yosef and Bordes 2010; Hublin et al. 2012), concentrate on 

the issues of behavioural complexity among species: whether Neanderthals were 

the independent authors, whether they were acculturated by modern humans, or if 

the industries were, in fact, created by moderns. The British record, although 

impoverished, does not escape these debates and contains a significant proportion 
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of a so-called ‘transitional’ industry (Flas 2011). Recent advances in Radiocarbon 

dating (e.g. Higham et al. 2006; Talamo et al. 2012) have made a significant 

contribution to the resolution of debates surrounding its makers.   

2.3.4.4.1 Archaeological picture  

The earliest marker of the Early Upper Palaeolithic is the presumably Neanderthal-

made leaf point assemblages. Found across Western and Eastern Europe (Figure 

2.13), these have their typological roots in the Middle Palaeolithic and may form a 

northern and central European aspect of the more standardised transitional lithic 

technology seen across Europe at this time, such as Ulluzian (Riel-Salvatore 2009) 

and the Châtelperronian (Harrold 1983; 1989; Pelegrin 1990; 1995; Pelegrin and 

Soressi 2007; Soressi 2005; Hublin et al. 2012; Talamo et al. 2012; Roussel 2013). 

Given the similarities of these leaf point assemblages across Britain – Belgium – 

Northern Germany, this phenomenon is now grouped under the heading 

Lincombian–Ranisian–Jerzmanowican (LRJ [Flas 2011; Pettit and White 2012]). A 

second, British component of this technology is blade points, or blade leaf points 

(Jacobi and Higham 2011). These appear to be relatively basic in terms of retouch 

and, given that they are generally mutually exclusive, are perhaps a response to 

local raw materials forming taxonomically different entities of the British LRJ 

(Pettit and White 2012).  

Continental dates for the LRJ are 42-44ka BP (Joris and Street 2008; Flas 2008), 

with a similar pattern of dates from the British sites of Kent’s Cavern, Bench 

Quarry and Badger Hole (Jacobi et al. 2006; Higham et al. 2011), the most recent 

and most reliable date associated with the industry now coming from Glaston, 

Leicestershire at ~42-44ka BP (Cooper et al. 2012). These dates demonstrate that 

this is a technology and occupation that is distinct from that of the Late Middle 

Palaeolithic and from the Homo sapien-made Aurignacian (contrary to how they 

had commonly been considered [Allsworth-Jones 1990; Aldhouse-Green 1998]).  

In terms of their distribution they are widespread across Britain, with their 

northern extent a likely result of the limits of the LGM (Figure 2.13, Pettit and 

White 2012).   
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Figure  2.13 Distribution of LRJ sites throughout North West Europe 

 

Although well dispersed, the majority of the find-spots are associated with single 

artefacts only, with the exception of a few more significant sites: Beedings (n=2300) 

and Glaston (n=83) (Cooper 2004; Cooper et al. 2012; Jacobi et al. 2007; Pope 2008; 

Pope et al. 2013). However, when compared with the continent, LRJ assemblages 

are remarkably high in number (Flas 2011), possibly because of their non-

recognition and therefore absorption within other, mixed assemblages in Europe 

(Flas 2011).  

Given the dates (44-42ka BP) it is likely that the LRJ occupation of Britain was a 

very brief phenomenon, which occurred during a distinct period after the Late 

Middle Palaeolithic and before the arrival of the Aurignacian and the final demise 

of Neanderthal populations in Britain. 
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2.3.5 Early Upper Palaeolithic (EUP: MIS 3 – 2, c.36 – 26ka) 

The start of the Early Upper Palaeolithic is recognised by the spread of Aurignacian 

technology across Europe, now accepted to be associated with the corresponding 

spread of Homo sapiens (Davies 2001; Conard and Bolus 2003; Mellars 2005; Joris 

and Street 2008). With the earliest British date at approximately 35Ka BP, the 

Early Upper Palaeolithic of Britain can be viewed as part of the expansion of 

Aurignacian-using hominins through Europe, with the earliest dates in southern 

Europe at ~42ka BP (Joris and Street 2008).  

The Early Upper Palaeolithic of Britain and much of northern Europe comes to an 

end with the start of the Last Glacial Maximum (24–18ka BP) and its associated 

period of abandonment of much of northern Europe. As with the preceding Late 

Middle Palaeolithic in Britain, the Early Upper Palaeolithic is characterised by 

intermittent and small-scale occupation patterns.  

Despite lying within the range of radiocarbon dating, with its increasing resolution 

(Higham et al. 2006; Talamo et al. 2012), the chronology of the Early Upper 

Palaeolithic, and even the Late Upper Palaeolithic, is not wholly reliable, often as a 

result of stratigraphic uncertainty (e.g. KC4, Kents Cavern [Higham et al. 2011]).  

The defining markers of the Early Upper Palaeolithic are therefore lithic typologies 

and at this stage these can also be clearly associated with a European counterpart 

(Figure 2.14).   

2.3.5.1 Environmental context 

The period from 38-28ka BP has at least eight recognised interstadials from the 

NGRIP record, GI8-3 (Svensson et al. 2008). It is most likely that hominin 

expansion occurred during the warmer periods (GI7, GI5, GI3), but, given the 

difficulties of dating the associated archaeology, it is currently impossible to 

resolve this question. Dinnis (2008) has suggested that the Aurignacian phase in 

Britain is correlated with one such phase (a phase of warming known as GI7), but 

without further fieldwork and the identification of new sites with modern 

excavation techniques this remains an educated guess.     
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In terms of the MIS 3, three-phase model mentioned above (Section 2.3.4.1 [Van 

Andel and Davies 2003]), the period of the Aurignacian in Britain sits within a 

phase of climatic deterioration, perhaps explaining the relative paucity of sites 

compared with the continent. Despite this deterioration, the presence of organic 

deposits just south of the margins of the British-Irish Ice Sheet demonstrate that 

the open tundra landscape that was so characteristic of MIS 3 persisted until the 

LGM (Chiverrell and Thomas 2010). 

As with the preceding Section 2.3.4, this period was characterised by the variable 

Pin Hole MAZ (Currant and Jacobi 2001; 2011). However, there are some 

distinctions between the two, as would be expected by the increasing climatic 

deterioration: Coelodonta antiquitatis (woolly rhinoceros) and Crocuta crocuta 

(hyaena) appear to have become extinct in Britain by 36-37ka BP (Stuart and 

Lister 2007). Furthermore, part of a mandible of Homotherium latidens, the 

scimitar-toothed cat, has been found in the North Sea, south-east of the Brown 

Bank and dated to ~31-32ka BP (Reumer et al. 2003), which indicates the 

presence of this species as late as the Late Pleistocene.  

The changes that take place regarding this MAZ, perhaps identifiable through the 

increased accuracy of dating methods (Talamo et al. 2012) and the large number of 

climatic fluctuations identified for MIS 3, serve as a good reminder that these 

assemblage zones are based on the amalgamation of evidence from several sites 

over long periods. They represent the range of species present throughout a period 

but they do not necessarily define specific faunal communities that you would 

expect to find. 

The Dimlington Stadial MAZ represents the species that you would expect to find 

in the early part of MIS 2 and, as a result of the marked deterioration of climate, 

reflects a massively impoverished faunal record (Figure 2.5).          
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2.3.5.2 Archaeological picture 

2.3.5.2.1 The Aurignacian  

Signalling the arrival of Homo sapiens across Europe (Davies 2001; Conard and 

Boulas 2003; Mellars 2005; Joris and Street 2008), the Aurignacian is generally 

defined on typological grounds, arriving in the west of Europe by approximately 

~36ka BP after apparently dispersing from the south and east (Joris and Street 

2008; Flas 2008; Dinnis 2009; Flas et al. in press). It is therefore distinguished from 

the preceding LRJ by a hiatus of several thousand years, but is also geographically 

defined, with the Aurignacian being very common in northern continental Europe 

but rare in Britain (Flas 2011).  

The presence of burin busqués and the associated Dufour bladelet as well as the 

association of typically Aurignacian carinated end-scrapers characterise the British 

Aurignacian (Pettit and White 2012, 400). This is a similar picture to that seen in 

Northern France, but, as usual, the continental picture is far less impoverished 

(Figure 2.14). In Britain these assemblages are found in small numbers (often just 

single finds) at the sites of Ffunen Bueno, north Wales (n=1), Goat’s Hole, Paviland 

(n=41), Hoyle’s Mouth, near Tenby (n=1) and Kents Cavern, Devon (n=3) (Jacobi 

and Pettit 2000; Dinnis 2009; Dinnis 2012; Pettit and White 2012). In further 

contrast with the preceding LRJ, these Aurignacian sites are exclusively restricted 

to the South West of Britain (Figure 2.14). 
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Figure  2.14 Aurignacian sites from MIS 3  

 

The British record is impoverished in terms of both numbers and density of sites 

but also for the lithic and organic diversity present, with far more examples of 

organic technology in use on the continent (Pettit and White 2012). However, the 

sites of Uphill Quarry and Hyaena Den, Wookey Cave have yielded bone and antler 

points, which not only have extremely similar dates (31,731 +/_ 250 and 31,550 

+/- 340 radiocarbon years respectively [Higham et al. 2006]) but are also 

typologically similar to one another and to those found on the continent (Jacobi 

and Pettit 2000; Jacobi 2007).   

Given this westerly spatial distribution and the paucity of sites, it seems apparent 

that this phase of Aurignacian occupation of Britain was relatively brief and 

represents ephemeral occupation at the edge of hominin range, possibly dealing 

with ecologies and landscapes that were verging on the unfamiliar. However, there 
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is a definite lack of well-dated assemblages, and assemblages in general, making 

this comparison all the more difficult. This may, of course, be subject to change 

with the future location and excavation of sites (if they exist).  

Parallels exist with continental sites, such as Paviland-style burins at Spy in 

Belgium (Dinnis 2009) and Le Piage in South West France (ibid.), which appear to 

link the populations of the continent with those sporadically exploiting Britain. 

This has led Pettit (2008) to suggest a possible Atlantic coastal dispersal into 

familiar landscapes with predictable patterns of prey movement. This hypothesis 

then raises questions about the amount of archaeology that may now be 

submerged in the region of the Channel, which remained a river system 

throughout this period.  

2.3.5.2.2 Gravettian 

The final phase of occupation before the occupational hiatus of the LGM relates to 

the Mid Upper Palaeolithic Gravettian. Dated to 33-34ka BP (with nothing 

convincing after 33ka, probably because of the increasingly glacial environments 

[Pettit and White 2012]), this occupation occurred well into the growth of the 

British Ice Sheet and, as with the previous forays, appears to have been very sparse. 

The assemblage associated with the ‘Red Lady’, a male burial in Goat’s Hole, 

Paviland, is from the only site dated to this period that has yielded an actual 

assemblage and it is dated to 33.3-34ka BP (GI5 or 6 [Jacobi and Higham 2008]).  

All other evidence for occupation is based on typology: tanged Font Robert points 

made on blades, also a distinctive part of the Gravettian seen contemporaneously 

on the continent (Pettit and White 2012). The fauna present at Gravettian sites 

represents a rich mammoth steppe, so although the distribution of Gravettian 

material seems dispersed relative to its Aurignacian predecessor, this is perhaps 

due to its purpose as a hunting technology associated with highly mobile groups of 

hominins active in these harsh environments.  

The distribution of this Gravettian material has more of an eastern spread than the 

preceding Aurignacian (Figure 2.15), perhaps indicating affinities with hominins 

moving from areas such as Belgium (Maisières Canal) and the Paris Basin (Cirque 

de la Patrie [Jacobi 1980; Jacobi et al. 2010]). This would make the deposits now 

97 
 



submerged in the southern North Sea and eastern Channel more relevant to 

looking for hominin and environmental evidence for this period. Given the small 

numbers of finds for this period, however, these interpretations must be made 

with a degree of caution. 

 

Figure  2.15 Gravettian sites during the EUP 

2.3.5.3 Summary 

Overall, the Early Upper Palaeolithic is at present characterised by ephemeral 

phases of archaeology, temporally distinct from one another. The changing 

patterns of spatial distribution offer interesting insights into the movements of 

these groups of hominins, with the Neanderthal LRJ appearing to spread into 

Britain from the east and exploiting areas across all regions of the country, 

disappearing (forever, in Britain) by approximately 40ka BP. In contrast, the 

proceeding Aurignacian is very much spatially restricted to the west of Britain, 

possibly representing only a few forays this far north by modern humans following 
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the rugged Atlantic coast. Finally, the picture of the Gravettian occupation appears 

to be far more dispersed. This is possibly the result of small groups of highly 

mobile hunters, perhaps moving from the East, following herds that were 

exploiting the mammoth steppe of these much colder periods. Each distinctive 

period of occupation highlights the discontinuous occupation of Britain and its 

status as a periphery of both Neanderthal and Homo sapien range.     

Let us return to the questions raised in Chapter One. Given these patterns, what 

potential do the submerged landscapes of the southern North Sea hold for 

illuminating our understanding and interpretations? Dispersals of hominins from 

the east or west are assumed based on current site distribution, but movement 

across major fluvial zones such as the Channel, or the southern North Sea, can only 

be guessed at. An examination of the record from these submerged areas could 

help us to examine how hominins are dealing with these areas; do the confluent 

river systems present barriers, ecological niches, or both? Furthermore, how do 

the timings of these occupational episodes tie-in with the rest of the picture from 

North West Europe? These areas therefore have the potential to address questions 

which could add significant information to our understanding of Neanderthal and 

Homo sapiens dispersals through varied ecologies at the edge of their range.  

  

2.3.6 Archaeological implications and relation to the submerged zone 

 

The archaeology dealt with in this chapter covers a vast time span. It is not 

appropriate therefore to treat it exhaustively but simply to highlight the changing 

occupation patterns of various (usually not distinct) hominin species throughout 

the Palaeolithic of Britain and the near continent. Two clear themes emerge. The 

first is the very occasional nature of the occupation; even at periods relatively rich 

in archaeology there is no evidence to show that this is in any way continuous. 

Higher-accuracy dating methods may improve our ability to resolve the 

archaeological picture against the fine-grained environmental one, but at present 

this remains an unavoidable issue and would no doubt still leave us with 
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thousands of years of apparent absence in each interglacial. The second theme is 

just that: the mismatch in resolution of data. This is seen clearly in the Lower 

Palaeolithic where dating techniques have much larger margins of error, or are 

relative, and reconciling archaeological data against a wider landscape picture 

relies on a best-fit approach. Although much of this resolution becomes clearer 

with decreasing age (for example, environmental and climatic records are far more 

detailed), dating for the Later Palaeolithic remains difficult; it often comes down to 

the context of dateable artefacts (e.g. fossils [Hublin et al. 2009], cut-marked bones, 

bone tools or ornaments), how these relate to the higher-resolution environmental 

proxies and also to the rapid typological changes and inferred hominin movement 

that is seen. 

Britain therefore appears to be a peripheral area of occupation. This is not 

surprising given its geographical position. We should not see this negatively but, as 

highlighted by Pettit and White (2012), as an insight into how hominins through 

time have adapted and dealt with different environments. How we recognise and 

deal with the pattern of archaeology in these more marginal environments has 

important implications for how we interpret these signals: a small-scale record 

may not necessarily mean little occupation just as a lithic-rich site does not 

necessarily denote repeated occupation. In this sense too, it makes the record of 

the southern North Sea an invaluable resource both from the perspective of 

environmental proxies for areas where we have potentially no terrestrial 

equivalent, as well as from an archaeological perspective. The finds from Area 240 

(Wessex Archaeology 2008; Russell and Tizzard 2011), the Zeeland Ridges (Hublin 

et al. 2009) and the Dutch Sector (Mol et al. 2006), as well as the faunal patterns 

presented through this research, all signify the preservation of a fragmentary and 

temporally-diverse submerged record over a vast area of seabed that was once 

terrestrial. Given the highly fragmentary terrestrial record, the investigation of 

these landscapes is crucial if we are to understand these dynamic peripheral 

landscapes and the hominins who demonstrably exploited them.     
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 Conclusions 2.4

There have been fascinating developments in both the onshore and offshore 

records over the past decade. The Early Pleistocene record of Northern Europe has 

begun to emerge, giving archaeologists the information and evidence necessary to 

ask previously ignored or taboo questions, such as early hominin environmental 

tolerances, and the place of coastal interactions in the Palaeolithic. Submerged 

deposits as well as in situ archaeology of the hostile North Sea region are similarly 

reaching a point where their discussion is both accepted and necessary. However, 

these questions are still in their infancy.  There is a severe dearth of archaeological 

investigation of the submerged areas from a pre-LGM Palaeolithic perspective (cf. 

Wessex Archaeology 2008; Russell and Tizzard 2011; Cliquet et al. 2011), which 

makes such research essential and long overdue.  

To return to the questions highlighted in Chapter One, what can the current state 

of research add to them? Given the focus on an ecological approach to these early 

hominins, the questions are necessarily focused on preferences, adaptations and 

use of a landscape that we are only just beginning to explore. But a broader 

appreciation of the European archaeological record also emphasises what this 

pattern of discontinuous forays into northern latitudes means for hominin 

preferences and mobility. As it stands, we have a limited knowledge of who was 

occupying these areas, why they were here and how they were surviving, and with 

the traces of occupation extremely scarce it is not likely that the answers will be 

found any time soon. Examination of the submerged zone therefore has the 

potential to begin addressing these gaps in our knowledge.  

The lack of previous research into the Palaeolithic of the southern North Sea 

means that this research starts from the very beginning, using all available data, 

from that of private collectors to the contents of the stores of the Natural History 

Museum, and creating an important resource for future research. This thesis will 

explore the distribution and patterning within the data available in order to 

ascertain the different levels at which it can be interrogated. The ultimate aim is to 

pin-point areas of seabed that have the best Palaeolithic potential. 

101 
 



There are many preconceptions that can cloud our perception of the offshore zone.  

Being characterised as one, single ‘offshore’ area renders it environmentally and 

archaeologically homogenous instead of recognising its spatial extent and diversity. 

Access to, and interpretation of, this resource is admittedly a challenge, but it is a 

challenge that must be tackled. It is essential that we begin to develop new 

methodologies to acquire this data and analyse it in conjunction with the evidence 

that we already have. This is not only a practical and methodological issue, but one 

of attitude and willingness to confront an unexplored aspect of archaeology. Whilst 

scientific techniques are advancing and providing us with ever more sophisticated 

means of imaging and deciphering submerged deposits, the archaeological 

questions that this allows us to address must remain our focus.  Through 

investigating this archaeological material and addressing the ecological settings of 

the contemporary landscapes of early hominins, this work can provide new 

insights into fundamental questions in Palaeolithic research.  
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Chapter 3:  Historiographical methods for 

Palaeolithic fossils 

Chapter Two set out the main issues surrounding the submerged archaeology of 

the southern North Sea throughout the Palaeolithic, providing a review of the 

existing record as well as discussing the nature of the offshore deposits in which 

material is found. This chapter presents and discusses the main resource that we 

have from the UK sector of the southern North Sea, the remains of Pleistocene 

fauna, in the context of their recovery via the fishing and aggregate-extraction 

industries of the 19th and 20th Centuries. It presents a historiography of the 

development of the trawler fishing industry, as well as of the antiquarians who 

collected these more unusual catches.  

Given the non-routine nature of the study area as well as the resource associated 

with it, the methods developed for this research are fairly unorthodox. The faunal 

specimens are almost entirely without detailed provenance, being, for example, 

from ‘off Lowestoft’ or ‘off Great Yarmouth’, they lack collection notes from their 

historical collectors and they are time-transgressive. Furthermore, their 

identification to species level is not always complete, with some of the specimens 

still undergoing analysis.  

Despite these factors having led many people to believe that these data are without 

use, this research will demonstrate that this is not actually the case. However, in 

order to get the most information from this record it will be necessary to resolve a 

few crucial points: 

• Where the material could derive from (in other words which areas of the 

seabed were being exploited throughout the 19th and 20th Century); 

• How geographical differences in developments in the fishing industry may 

have influenced the different exploitation of these areas; 

• How these differences in exploitation affected the recovery of specimens; 

• How the specimens are distributed throughout museums’ archives today; 
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• How both the modern locations, as well as the trawling ports the specimens

were landed at, relate to the locations and lives of the antiquarians who

were curating the material.

Using historical fishing sources, including contemporary charts, oral histories and 

historical documents, this chapter begins with a discussion of the favoured fishing 

grounds, as disclosed by oral history, that were exploited during this time, 

including an assessment of the relevance of these grounds to more historic periods 

of trawling. Most significant is the identification of specific fishing ground 

territories to particular ports.  This enables us to link groups of specimens to 

groups of grounds. The discussion then moves on to the ways in which trawling 

techniques developed through time, in different locations.  

Moving on from the fishing itself, the location of the specimens today is then 

presented: how they were located, collated and analysed. Finally, the important 

factor of the antiquarians is discussed; does where they were living and why they 

were collecting shed light on the ports that they were each collecting from? The 

level of information that they recorded may also depend on the reasons behind 

their interest; whether they were natural history enthusiasts (e.g. Rev.’s Layton, 

Gunn, Text Box 5), or general collectors of ‘curiosities’ (e.g. Colman, Text Box 5).  

These methodological strands are then drawn together in Section 3.5, providing a 

framework within which we can begin to contextualise and place the collated 

specimens. This will demonstrate how we can address spatio-temporal patterning 

of the submerged resource in a way that completely alters our appreciation of the 

integrity of submerged deposits and facilitates a far more focused approach to the 

search for archaeology.  

 Fishing Locations 3.1

Having been largely overlooked since their initial acquisition, the first step for this 

methodology is to attempt to provide some broad context to the specimens in 

question. Understanding the locations favoured by trawlers across the southern 

North Sea is therefore necessary. This first section will address the range of 
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potential locations the specimens have come from, which can be whittled down 

through the use of further historical evidence.  

A reconstruction of the favoured grounds that were historically worked was 

derived from discussions with a local Lowestoft historian, David Butcher, as well as 

the information he had collated through a series of fishermen’s oral histories 

during the 1970s (Butcher 1985). Plotting the results of this information has 

revealed the various areas of seabed exploited and this is presented in Figure 3.1. 

The locations shown relate to fishing grounds throughout the early - mid 20th 

Century, but for this research the case is being made that they also relate to those 

finds (indeed the majority of the historic finds) from the mid-late 19th Century. 

This is argued on the basis of broad-scale changes to the seabed which, according 

to several recent studies of seabed morphology (Collins et al. 1995; Burningham 

and French 2009), as well as the historic charts evaluated as part of this research, 

are negligible at the scale of large bank morphologies.       

 

105 
 



 

Figure  3.1 Favoured fishing locations identified through the oral histories of Butcher 

(1985). Insert map at the top right shows the location.   
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3.1.1 Assessing the stability of fishing grounds through historic charts 

A series of charts are held by the Lowestoft Records Office which refer to the local 

area (Lowestoft and Great Yarmouth) as well as the southern North Sea in general. 

Thirteen relevant charts were located and photographed, however none of these 

are specifically fishing charts. Despite this, these local-area charts can show small-

scale changes to the seabed and indicate more localised areas of exploitation.  

The chart makers Imray Laurie Norie & Wilson were also found to have retained 

copies of a series of their 18th, 19th and 20th Century charts, including a few ‘Blue 

Back’ fishing charts from the 1960s as well as detailed charts from throughout the 

19th Century. In total, six charts were located and photographed from their 

archives. Through these charts, in combination with charts from the Lowestoft 

Records Office, it has been possible to assess the degree of movement of fishing 

grounds throughout the 19th and 20th Centuries in the areas indicated by Butcher 

(1985).  
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Figure  3.2 A selection of charts showing the same area of seabed through time, 

demonstrating the changing levels of detail available. Sources: a. 1826 Imray Laurie Norie 

& Wilson; b. 1856 Admiralty chart (Lowestoft Records Office); c. 1888 Admiralty chart; d. 

1964. Imray Laurie Norie & Wilson ‘Blue Black’ fishing chart.    
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Despite the high-energy environment of the southern North Sea and the effects this 

may have on the seabed, the locations of favoured fishing grounds have remained 

relatively static since the industry began (Butcher pers. comm.). On charts, these 

are generally represented by ‘Shoals’ and ‘Banks’, but there are a wide variety of 

terms used (‘shoal’ being dialect for a bank) and we can look at their positioning 

through time to investigate seabed mobility. Some of the difficulties of looking at 

this accurately are the other things that have progressed through time, the most 

significant being technologies and our abilities to image the seabed; charts from 

1826 are less likely to show a great degree of detail than those from 1964, which 

display many aspects at once (e.g. Texture and banks, Figure 3.2). Similarly, charts 

designed specifically for fishing are more likely to show greater detail than those 

designed purely for navigation. Figure 3.3 shows a series of charts from 1826, 

1856, 1888 and 1964. Of these charts the most recent (1964) is the only one 

designed as a fishing chart.  This, combined with its more recent manufacture, does 

bias it slightly. Its level of detail also makes it difficult to define the edges of named 

banks from past charts. However, by highlighting banks that are shown in several 

of the charts it has been possible to look at their movement through time. Figure 

3.3 demonstrates that over a period of approximately 140 years there has been 

little movement of these targeted banks and shoals, with the main difference being 

the greater amount of detail added to the later maps.  

The implications of this is that the fishing grounds being exploited over recent 

years would have been the same grounds, in approximately the same locations, as 

those being exploited in the mid-19th Century. Finds recovered in 1880 from the 

Great Silver Pit, for example, would be from the same location of the Great Silver 

Pit in 2014. This is supported by recent work on the Outer Thames and Norfolk 

Banks (Collins et al. 1995; Burningham and French 2009), which has demonstrated 

remarkable stability of broad-scale seabed morphology (i.e. the locations of banks) 

over the past 180 years and even as far back as the 17th Century.  
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Figure  3.3 Charts showing the locations of mapped banks through time. Chart sources: a. 

1826 (Imray, Laurie, Norie and Wilson); b. 1856 (Admiralty Charts; Lowestoft Records 

Office); c. 1888 (Admiralty Charts); d. 1964 (Imray, Laurie, Norie and Wilson ‘Blue Backed’ 

fishing chart). 

 

Given the static nature of these locations, various groups of finds that have been 

recovered from them can be refined. There are of course some issues with this, 

since trawlers will occasionally work on an ad hoc basis and preference for 

particular grounds may differ slightly from year to year. When it comes to historic 

collections, there are no clear and simple answers to these questions, but explicitly 

building our analysis of them by adding layer on layer of the information that can 

be gleaned from the record helps to clarify patterning and to highlight avenues of 

research. This allows areas of higher resolution to emerge and draws out questions 

that can reasonably be asked of the record.  

The locations of favoured fishing grounds have therefore been ascertained for the 

19th and 20th Centuries, which allow us to gauge the most likely locations for the 

sources of the specimens recovered. However, the next step is to refine these 

further, assigning groups of the material to specific groups of grounds. Using 

historical sources (e.g. Butcher 1980; Robinson 1996; Smylie 1999), the next 

section will discuss the methods used in order to determine this next level of detail.     

 Territorial trawling locations in the southern North Sea; 3.2

the development of an industry 

The development of certain coastal towns into larger trawling ports forms the 

basis of the broad locations defined for this research. As with any industry, the 

fleets and individual owners of the trawlers were in competition to make a profit, 

and locating and exploiting productive fishing grounds was central to this. So it 

was not long before territories became annexed by competing groups. Defining 

these territories allows us to attribute specimens landed at specific locations to a 

specific area of seabed.  
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This section will discuss the growth of the trawling industry, providing context for 

the development of these territories. The main ports of Great Yarmouth and 

Lowestoft will be introduced, as well as the ports of the northeast, which are 

important in the industry but have not yielded fossils.   

3.2.1 Defining broad seabed areas: The Great Yarmouth and Lowestoft 

grounds 

The practice of trawler fishing has been in existence since at least the 14th Century, 

when a royal commission under King Edward III (1376/77) prohibited the use of 

the ‘wondyrchoun’ (a 10 foot wide beam trawl) then being used in the Thames 

Estuary and blamed for destroying fish and oyster stocks (Engelhard 2008). Its 

major expansion into the North Sea however was not seen until much later, in the 

19th Century (Butcher 1980; Robinson 1996). This period saw the practice expand 

rapidly northwards, demand being greatly increased by the industrial revolution 

and consequent population growth and increasing food requirements (Engelhard 

2008).   
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Figure  3.4 Favoured fishing grounds exploited by the Great Yarmouth and North-eastern 

fleets. Insert shows exploitation patterns and port locations. 

 

Although local, small-scale trawling had been practised previously (e.g. Layton 

1827, Section 3.2.2), it was not until the widespread development of the railways 

from the 1840s on, making feasible the rapid distribution of fish across the country, 
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that it became a dominant, year-round practice in the North Sea (Robinson 1996). 

The towns of Hull, Scarborough and Grimsby (from 1857) were the main north-

eastern ports throughout the 1840s and 1850s, developing large fleets of boats 

which had moved from more southerly areas and, latterly, from the local 

population (Robinson 1996, 46), in order to more easily exploit the recently 

discovered rich fishing grounds of the Dogger Bank and Great Silver Pit (as well as 

surrounding grounds). The ports of Lowestoft and Great Yarmouth, the most 

significant ports for this research, were on the increase at a similar time, also aided 

by the arrival of railways to those towns. 

Great Yarmouth grew rapidly in the 1840s and 1850s, most significantly in 1854 

under the influence of Samuel Hewett, the owner of a large trawling fleet originally 

based further south in Barking. Hewett moved to Great Yarmouth, bringing with 

him 82 trawling vessels in order to gain more rapid access to the Dogger grounds 

and set up the Hewett Short Blue Fleet (Butcher 1980; Robinson 1996). Although 

both the north-eastern and the Great Yarmouth fleets were therefore trawling 

northwards on the Dogger Bank grounds, there were certain differences to their 

patterns. Whilst there is no accounting for ad hoc trawling on the way home, in 

general the ports of Hull and Grimsby exploited the more northerly grounds of the 

Dogger Bank such as the Silver Pits, moving further north towards the entrance to 

the Skagerrak during summer, whereas the Great Yarmouth fleets remained north 

of the Leman and Ower Banks but never north of 55°N (Figure 3.4).    

Lowestoft, although technically a larger trawling town, developed differently from 

Great Yarmouth and the north-eastern ports. Its railway was built in 1847, 

facilitating an increase in the size of the catches through their rapid dispersal to 

consumers across the country (Robinson 1996; Butcher 1980). However, with the 

Dogger Bank grounds tied up by the Grimsby and Great Yarmouth fleets, the 

Lowestoft trawlers began to exploit the grounds to the east of East Anglia “from the 

Gabbards and Galloper down south, up to the Leman and Ower in the north, and out 

eastwards to the Brown Ridges”  (Figure 3.5. Butcher 1980, 14; Robinson 1996, 66).  

Territories had begun to develop among the trawling communities, and this 

polarisation is the framework within which the broad seabed locations of finds 

from certain ports can be distinguished. However, it was not as clear-cut as a series 
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of fleets running identical, but territorial, operations out of a series of different 

towns. Instead, there are significant differences that become apparent for each of 

the locations regarding the nature of their businesses and the techniques used. 

Each of these differences are discussed below, with their implications for the 

recovery of fossil specimens highlighted for discussion through the results of this 

research. 

3.2.1.1 Fleeting 

A method of trawling known as ‘fleeting’ began to be used in Great Yarmouth as 

well as out of the north-eastern ports during the 1870s. Fleeting involved spending 

anywhere from six to eight weeks trawling favoured fishing locations on the 

Dogger Bank and surrounding areas, employing small cutters to sail precariously 

back and forth with the catches. Many lives were lost both trawling and whilst 

transporting catches, especially the hazardous moment of transfer between 

trawling vessels and small cutters (Butcher 1980). The dangers were more than 

just from seas and equipment; it was a very tense, difficult life and violence was 

common: in 1883 it was reported to the House of Commons that ballast stones and 

firearms were being used by competing fishermen as a result of close proximity 

leading to the damaging of nets (Hansard 1883; Robinson 1996).  There were also 

the more welcome hazards of ‘bumboats’ which targeted fishing grounds in 

international waters, often bartering with alcohol, tobacco and obscene playing 

cards, the resulting inebriation often leading to drunken, dangerous actions1 

(Higgins 1881; Robinson 1996, 78).  

This method of trawling, on a social level, may have a part to play in the perceived 

patterns of fossil recovery. With Great Yarmouth and the north-eastern towns 

involved in the method of ‘fleeting’ and Lowestoft remaining with smaller-scale, 

shorter-duration trips, could this have had an impact on the trawlermen’s desire, 

ability or willingness to preserve what were sometimes large, heavy fossils?  

1 On a spring day in 1880, the master and a few crew of the Grimsby smack Cossasck rowed across to a 
Dutch vessel, returning with 9 bottles of gin, rum and whisky; by 3pm they were well and truly drunk. As 
the (sober) helmsman was passing two other smacks, the drunken master attacked him and steered the 
boat hard to one side. They ran into another smack, causing £40 worth of damage and enraging the 
master even more who thereupon threatened to sink the smack. He then threw all the fishing 
equipment overboard, set off all of their signal rockets and rowed away to another boat, never 
returning (Higgins 1881; Robinson 1996).    
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3.2.1.2 Ownership 

Ownership of fishing boats may also have important implications for any resulting 

patterns, with a divide in tradition between the north-eastern towns and Great 

Yarmouth, as against Lowestoft. The fleets from the former towns, being owned 

predominantly by large companies, were often heavily dependent on mortgaging 

to buy their fleets of boats, whereas Lowestoft remained dominated by individual 

ownership (Robinson 1996; Engelhard 2008).  

Since the larger companies associated with the north-eastern towns and Great 

Yarmouth were also those employing the fleeting method, not only would the 

trawlermen involved with these companies be working under the rules of a larger 

company, but they would also be working under strained and difficult conditions. 

The length of time that these fleets were at sea (up to 8 weeks) and the conditions 

they faced (known as being “sentenced to the Dogger” [Butcher 1980]), do not 

seem conducive to fossil collection and storage. In contrast the individually owned 

Lowestoft trawlers, which recovered the bulk of the specimens, remained 

relatively local, with fishing expeditions that were on average three to ten days 

long.  Of course, the fact that there were fossils collected from Great Yarmouth 

indicates that this cannot be the sole cause for the discrepancy, but perhaps it 

played a role. 
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Figure  3.5 Favoured fishing grounds of the Lowestoft trawlers. Insert showing the location 

of the main map as well as main exploitation patterns. 
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3.2.1.3 Sailing smacks 

Developments in trawler design and the differences in where these technologies 

were adopted add further information to how and where boats from these ports 

were trawling, and this can provide additional insights into the recovery of 

Pleistocene fossils. The main differences were in the design of the trawling gear - 

otter or beam - and the use of steam versus sail, both of which were intricately 

linked.  

Sailing smacks were the traditional boats used to trawl the southern North Sea in 

the early days of the industry, and sail provided an effective and long-standing 

means by which to propel the vessels. However, as with any sailing vessel, this 

method relied greatly upon weather conditions and provided the trawler with 

limited power. As such, the distances travelled (especially during rougher winter 

months) were smaller. For example, the Great Yarmouth sailing smacks worked 

the Dutch coast from Terschelling to Ameland (Figure 3.6), approximately c.300km 

away, during the summer months, and the Great Silver Pits and southerly Dogger 

Grounds during the winter months, c.200km away. The Lowestoft trawlers 

generally worked closer to home, exploiting grounds such as the Leman and Ower 

in the north (Figure 3.5, c. 50km away) and Gabbards and Galloper in the south 

(c.50km away) during winter months, and over towards the Dutch coast on, for 

example, the Brown Bank during the summer (c.100km away). The differences 

between the two ports may be attributable to the fleeting method operated out of 

Great Yarmouth, which allowed trawlers to operate at greater distances for longer, 

as they did not have to make constant return journeys with their catches (Section 

3.2.1.1; Robinson 1996, 71).      

3.2.1.4 Steam power 

The large-scale introduction of steam-trawling in the 1880s meant a step-change 

in the productivity of these boats; they could travel further, reach greater depths 

and all for a longer time (Robinson 1996, 105). However, this practice was not 

adopted everywhere and in many ports trawler fishing remained on a relatively 

small scale throughout the 19th Century. Lowestoft and Great Yarmouth were two 

of these areas and despite having impressively large fleets of trawlers (Lowestoft 
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had approximately 300 throughout the 19th and early 20th Centuries) remained 

predominantly sail-powered, and therefore relatively restricted spatially (Butcher 

1980; Robinson 1996).  

By 1900 the north-eastern ports had moved almost entirely to steam power, and 

with the discrepancies this presented between the capabilities of Great Yarmouth 

and the steam-powered trawlers, both exploiting the Dogger Grounds, the Great 

Yarmouth fleets were struggling to compete. The explosion that this new 

technology saw in the numbers of trawlers had a knock-on effect on the 

productivity of the trade; the numbers of trawlers in the North Sea throughout the 

1890s increased by 250% but each catch fell by nearly a half (Garstang 1900). As a 

result, many of the steam-powered north-eastern fleets began to move further 

afield and the 20th Century saw the move towards the exploitation of distant 

fishing grounds such as the Barents Sea and the Greenland coasts (Robinson 1996, 

111). 

In terms of modern trawling, the industry has changed dramatically since the 19th 

and early 20th Centuries, with resulting changes to the patterns of trawling 

grounds. World War 2 marked the end of commercial sail-trawling and, in order to 

meet the previous levels of catch, distant grounds became the dominant source (e.g. 

Greenland coast, Iceland grounds), working from the towns of Grimsby and Hull 

(Figure 3.4). Of course, trawling still persists today in the southern North Sea but 

only at a far smaller scale and with far more restrictions (e.g. Common Fisheries 

Policy 1970; 1983; 1992; 1995); the practice of collecting has also declined. But 

this does not mean that trawlers no longer recover fossils: in fact the Dutch 

trawlers, who still have a relatively strong industry (Glimmerveen et al. 2004; Mol 

et al. 2006), regularly trawl bones from the Dogger Bank and Brown Bank (Figure 

1.2), and supply many of the fossil shops throughout Britain. More positively, for 

this research, there are active trawlers working on a small scale and bringing this 

material up as an interesting – and profitable - by-product of their trade. An 

example of this from the coast of Essex will be discussed in detail in Chapter Five.   
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3.2.1.5 Trawl design 

Along with the increased power that steam technology gave the trawling industry, 

new types of trawler design were being developed. The technique of beam 

trawling had been the traditional method, whereby a long wooden beam, often 

made of elm, was held a couple of feet above the seabed by two riders, which were 

attached to a line of weights that would drag along the seabed, drawing bottom-

dwelling fish into the nets (Figure 3.6). These weights, which held one edge of the 

net, were often attached to teeth designed to dig further into the seabed and bring 

up oysters, scallops and other kinds of molluscs. Depending on the type of seabed 

sediment, these weights and added teeth could have quite a significant effect on 

the seabed surface, remodelling the landscape of the sea floor (Løkkeborg 2005). 

However, the design of the otter trawl (Figure 3.6), first mentioned in 1880s but 

with usage properly starting from 1895, proved a more effective method of 

catching fish (Robinson 1996, 112). The otter trawl, instead of relying on a wooden 

beam, uses two ‘otter boards’, one at each end of the net mouth, which are 

positioned so that when dragged through the water they are forced outwards, 

which prevents the mouth of the net from closing. A lighter weighted rope, relative 

to beam trawling, is used to keep the bottom edge of the mouth of the net in 

contact with the seabed and is therefore less destructive than those associated 

with beam trawls. The only parts of an otter trawl that are more destructive are 

the otter boards, which can dig up to 20cm into the seabed (ibid.).  

Otter trawling therefore seems less likely to disturb seabed sediments enough to 

recover fossil specimens, unless at the point of the otter boards. It was also a 

technique that was most effective when applied by steam trawlers and the otter 

trawl became synonymous with its use. The adoption of steamers in the north-east, 

therefore, also saw the predominant use of otter trawl technology, with those 

working out of Lowestoft and Great Yarmouth retaining the beam trawl, sailing 

method. Despite the Lowestoft trawlers’ making this pattern work until 1939, the 

Great Yarmouth fleet was eventually out-competed by its steam-trawling 

competitors from the north-eastern ports. Its major operations ceased in 1901 

when the Hewett Short Blue Fleet ceased business, leaving only a few local 

trawlers working (Butcher 1980, 15).  
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Figure  3.6 Images of Beam and Otter trawl (Source: Bickerdyke 1895) 

 

  

From a practical perspective, these distinctions in trawling methods between the 

north-eastern ports, Great Yarmouth and Lowestoft may have important 

implications for the patterning of the recovery of specimens.  

With the beam trawls having a more widespread destructive effect on the seabed, 

it would make sense to expect a higher volume of specimens to be recovered when 

they are used. Given their more prolific and longer-term use from the harbours of 

Lowestoft and Great Yarmouth, we should therefore expect these areas to have the 

highest volumes of specimens. However, although this might be a pattern to expect 

for periods after the adoption of steam and otter trawling, there are three decades 

between the development of these areas as at least seasonal trawling towns and 
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the beginning of steam-powered trawling. It would therefore seem reasonable to 

expect three decades of fossil recovery from these north-eastern towns.  

 

3.2.1.6 Seasonal territories  

Trawling in the southern North Sea was heavily seasonal, with the Dogger Bank 

grounds, such as the Silver Pits and Botney Gut (at the southern extent) being 

worked by the north-eastern fleets during the cold winter months when dover sole 

sought refuge in deeper waters (Butcher 1985) and the weather made further 

travel dangerous (Robinson 1996, 66). The grounds north of Heligoland (near the 

Dutch coast), over to Horn Reef and Amrun Ground and up to the Little Fisher 

Bank near the entrance to Skaggerack were exploited during the calmer spring and 

summer months (ibid.).  

Sticking well south of 55°, the Lowestoft fleets tended to be able to work their 

grounds all year round, exploiting those such as the Gallopers and Gabbards for 

their dover sole during the winter months. The dover sole was a highly valued and 

could be caught at various locations throughout the seasons, generally preferring a 

muddy or sandy seabed. It may also be significant that a heavy ground-rope was 

required to drag the bottom properly to catch these favourite fish, with chains 

often wrapped around the trawl gear and a slow and steady towing speed. With 

the increased destructive effect that this would have had on the seabed, would this 

have had implications for fossil displacement and recovery? Oral histories from 

trawlermen who worked in the southern North Sea claim that it was the sailing 

smacks with their beam trawls (technologies which persisted in Lowestoft and 

Great Yarmouth, but were replaced by steam and otter trawls in the north-east 

[Section 3.2.1.4/5]) that were most successful with this method, perhaps providing 

another reason why it was at these East Anglian ports that the fossils were 

predominantly brought in. 

Another factor in the recovery of specific fish species, as well as fossil material, is 

mesh size. Fishing for species like dover sole requires a smaller mesh net 

(approximately 78mm), whereas when fishing for pelagic species, such as cod or 

haddock, a larger mesh of approximately 120mm is used (Brand pers. comm.). Of 
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course, when recovering mammoth bones it is unlikely that any mesh size would 

be too large, but the smaller sizes would certainly aid in the recovery of smaller 

species such as bovids and cervids. Another important factor is that dover soles 

prefer mud bottoms; the combination of soft seabed, allowing the trawl to sink far 

deeper, with small mesh sizes would certainly increase the chances of fossil 

recovery from these areas.  

Knowing where the ‘fossil- trawlers’ were working at points throughout the year 

as well as what they were fishing for could, through seabed preferences, allow a 

correlation of seabed deposits with recovered bones. Although oral sources report 

that dover sole and plaice were the main species being sought by trawlers 

(especially beam trawlers, with the later otter trawlers also catching pelagic fish 

such as cod and haddock [Butcher 1985, 82]), the coarseness of the data regarding 

individual trawlers is such that linking any specific boat to any fossil assemblages, 

or with any specific fish species that they may have been trawling for while the 

fossils were recovered, is simply not possible. Unfortunately, this also extends to 

the seasonality of fishing grounds, so whilst it is possible to refine the areas of 

seabed being exploited at various parts of the year, this cannot be linked to fossil 

recovery. Broad patterns of favoured grounds must therefore be used to define 

various regions in the southern North Sea that were being exploited by trawlers 

from each port.  

Summary 

The ability to distinguish between the development of the main ports and the 

seabed territories that they exploited allows us to further refine the original 

favoured grounds into separate groups: 

• Lowestoft Grounds (Figure 3.5) 

• Great Yarmouth Grounds (Figure 3.4) 

• North-eastern Grounds (Figure 3.4) 

 

The differential development of these industries may have a significant impact on 

the recovery of fossils throughout the period in question and provides the 
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historical resource with another level of context, further refining their implications 

for Palaeolithic deposits.   

 

3.2.2 Small-scale trawling along the coastal strip 

The development of these large ports and the information it provides for us about 

trawling locations is not the only pattern of exploitation seen, there was also 

trawling closer to land. Fishing from villages such as Happisburgh would have 

been on a far more local scale, launching from beaches (Figure 3.7). The boats 

would have been smaller and with reduced ranges; almost certainly sail-powered 

and not leaving sight of the coastline (i.e. within a couple of kilometres [Smylie 

1999]). Exploiting resources closer to shore, and with no formalised large-scale 

fishing port to work from, this may be a largely invisible activity, seen only through 

oral histories and written sources that refer to specimens being recovered from 

these areas (e.g. Layton 1827).  

 

 

 

Figure  3.7 Southwold beach at around the turn of the 20th Century showing typical beach 

punts above the tide line (from Smylie 1999) 
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An example of this kind of ‘invisible’ trawling can be seen through the publications 

of Clement Reid and Reverend James Layton. The 1820s saw the discovery of a bed 

of oysters off the coast of Happisburgh which was exhaustively trawled until the 

oysters were eradicated only four years later (Layton 1827). Within these four 

years Rev. James Layton, who lived locally in Catford, recovered and collected 

many fossil specimens (Layton 1827; Reid 1890). These fossils, many of which are 

still held in the Natural History Museum, London, are predominantly of the early 

Pleistocene species Mammuthus meridionalis, and come from an unusually discrete 

area of seabed ‘about three-quarters of a mile from the shore, opposite Happisburgh’ 

(Reid 1890, 174).  

This type of trawling can be inferred from specimens that cite a smaller location, 

such as Happisburgh or Sea Palling, as their landing location. There is of course an 

alternative possibility, which is that larger trawlers provided the collector with an 

area of land they were trawling by when the specimen was recovered. This seems 

relatively unlikely, given the vast majority of finds stating their landing port 

location, but is certainly possible. However, the implications are not negative: the 

assumption that smaller-scale trawling took place in close proximity to (within 

sight of) the coastline realistically places them within a few miles of shore. 

Similarly, for a larger trawler (operating from one of the main ports) to provide an 

accurate location of the small town/village that they were trawling off when they 

recovered a fossil implies that they were in sight of this location and that the shore 

was their most immediate reference point. In each case, the deposits being 

indirectly exploited would be within the same coastal strip. 

The specimens recovered from these smaller-scale or shoreward locations, may 

provide higher-resolution patterns and will be discussed separately within the 

succeeding chapters.    

3.2.3 Summary   

This section has demonstrated how, through the use of historical sources, favoured 

fishing locations for the 19th and 20th Centuries can be refined into territories that 

125 
 



relate back to the home ports from which the trawlers worked. It is clear that there 

were significant differences between the north-eastern ports and those of Great 

Yarmouth and Lowestoft in terms of their social approaches to trawling as well as 

their methods used. Whether these factors will have implications for the 

geographic patterning of the recovery of fossil specimens will be addressed in the 

following sections.    

 

 

 Locating collections 3.3

Having discussed historical methods for refining the locations of groups of finds, 

this section will present the data that has been collated for this research. Since they 

form the majority of the record it will concentrate on the historic specimens, but 

will also include the finds that have been collected from the seabed in recent years. 

There are therefore distinctions made between the ‘historic collections’ (those 

deposited in museums by collectors before 1970), the ‘modern collection’ 

(collected since 1970) and the ‘entire collection’ (which includes the specimens 

collected over recent years by modern trawlers and aggregate dredgers as well as 

the historic specimens).     

With this research concentrating on the southern North Sea, seventeen county 

museums’ services and town museums from along the East Coast (and one in 

Dublin) were contacted regarding dredged material within their collections. The 

large collections held by the Natural History Museum (NHM) (n=339), London, the 

Norwich Castle Museum (n=263) and Colchester Museums Service (n=342) have 

been collated, with smaller collections from Dublin and Ipswich added remotely. 

None of the remaining museums was aware of any relevant information in its 

collections. The online resources of the Portable Antiquities Scheme (PAS) and 

county Historic Environment Records (HERs) were also consulted (Figure 3.8).  

The introduction of the British Marine Aggregate Producers Association protocol 

for reporting archaeological finds (in association with English Heritage and 

Wessex Archaeology) has also meant an increase in finds being reported over 
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recent years (Figure 3.9), with these being from aggregate dredging as opposed to 

trawling. Because of the legislation and restrictions on where aggregate dredging 

can take place, these activities are spatially well-constrained, resulting in an 

increased chance that the finds can be located accurately on the seabed (e.g. Area 

240). Importantly, and in contrast with the lithics recovered through the aggregate 

industry, the bones reported to BMAPA are recovered on board before landing and 

crushing, as they are conspicuous among the aggregate.  

 

 

Figure  3.8 Map showing locations of museums and museums services, with table showing 

those that have trawled specimens. 

 

The accuracy of this process relies on when and where the specimen is found. The 

ships will dredge the seabed until they are fully loaded, which may mean only one 
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length of a licensed zone (c.3km), or several (Bellamy pers. comm.). The important 

point is that since this information is logged, any finds that come out of a dredging 

expedition can, in theory, be pinned down to a known area. In reality, the majority 

of the records simply state which licensed zone the find is from, but the potential is 

there, as has been demonstrated by Area 240 (Russell and Tizzard 2011). To date, 

approximately 139 faunal specimens have been recovered through this process.  

 

Figure  3.9 Frequency of finds per decade. The acquisition data, showing when the 

specimens were acquired by the museums, is shown in blue. The collection year data 

(where available), showing when the specimens were recovered from the seabed, is 

shown in red. † indicates a year where a major collector has died. Red asterixes represent 

decades that include recently trawled collections and black asterixes represent the 

inclusion of aggregate (BMAPA) data. 

 

In terms of the historic collections, it became apparent through discussions with 

museums that the smaller, local museums generally do not keep un-exhibited 

material on site, but that this is stored by more centralised museums’ services. The 

museums that were individually contacted were singled out because they had a 

specifically maritime theme, and often at the suggestion of a larger museums’ 
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service, such as Aberdeen Maritime Museum. The exceptions are museums such as 

the Norwich Castle Museum and the Natural History Museum, which are not 

museums’ services but retain large collections from their respective counties 

within their storage facilities. Perhaps for these reasons, the distribution of 

material does not always appear to be directly linked with where the antiquarians 

lived, although it is usually in relatively close proximity. We know that the 

Reverend James Layton collected mostly in Happisburgh while living at Catfield, 

Norfolk, but his collection is held by the Natural History Museum in London. 

However, when he died in 1859 he was living in Sandwich, Kent, so the NHM was 

relatively close; it was (and is) also one of the most prominent museums of natural 

history, which makes it an obvious place for the specimens to be donated or sold to. 

The fact that there is southern North Sea material located at the NHM in Dublin 

further indicates that specimens have not always ended up close to where they 

were recovered; a publication from the New York Times (1907) describes an 

auction of a ‘James Backhouse’ collection in London, with specimens being 

dispersed globally (including to Dublin) as a result.      

Given the prolific 19th Century trawling trade which developed out of the north-

eastern towns of Hull and Grimsby (Section 3.2, Butcher 1980; Robinson 1996), it 

is surprising that no records of trawled remains have been found at these locations. 

Reasons for this are not clear, but could include a lack of collectors, the collections 

having been lost within vast stores of acquisitions, or the style of trawling that 

developed in these areas. This will be discussed further in Section 3.5. Museums 

from this area have, however, recorded fossil material that is pre-Quaternary, 

perhaps relating to the more northerly grounds that were exploited by fleets from 

these areas in the late 19th and early 20th Centuries (Figure 3.4; Robinson 1996, 

110).  These areas were further north than the formation, or outcropping, of 

terrestrial Pleistocene deposits.  In keeping with the historic evidence, the main 

towns represented by trawled remains are stated as Lowestoft and Great 

Yarmouth, as well as a significant collection from Happisburgh. These collections 

have almost entirely ended up in either the Natural History Museum, London, the 

Norwich Castle Museum or Colchester Museums Service.  
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3.3.1 Method of collation  

The collections that have been identified are unsearchable to researchers as they 

do not exist on any external databases (the exception being the PAS, as well as an 

internal database that exists at the Norwich Castle Museum but which cannot be 

externally interrogated). They therefore had to be identified through discussions 

with the museums’ curators and visits to museums’ stores.  

Once located, the available specimens from each museum were then photographed, 

recorded and entered onto a working database (see Appendix CD). The Norwich 

Castle Museum has computerised acquisitions and so the information could be 

extracted from this, worked through for relevant information and added to the 

database. This collation therefore brings together for the first time the existing UK 

offshore resource from the southern North Sea, allowing it to be quantified and the 

distribution and patterning of the specimens analysed. 

In addition to the rows of specimens, the original acquisition registers were 

extremely useful for finding extra information about collectors and years of 

acquisition (Figure 3.10). They also revealed the amount of specimens that are 

missing from the physical collections that had once been acquired; the Owles 

collection, for example, is missing 119 specimens. Although this is by no means 

ideal, the detail in the acquisitions registers first helped to identify the specimens 

and then provided information, allowing the record of the specimens’ species and 

location to be used.  
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Figure  3.10 An example of an acquisition register (NCM) 
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In total, 1,119 specimens were recorded, with all but 139 (BMAPA) derived from 

trawling. Of these, 76% (n=741) are historic, with the remaining 24% (n=239) 

modern specimens, having been recovered since the 1970s. Although these are 

considered as a whole, the modern material is important for two reasons. First, the 

locational information is far more precise and so whilst the methods adopted for 

discussing the historic patterning are not necessary for these specimens, they add 

an interesting component for assessing the strength of the identified historic 

patterns. Secondly, they demonstrate that, although the seabed in the southern 

North Sea has been extensively trawled and commercially worked, there are still 

Palaeolithic deposits yielding faunal material: a point returned to in Section 3.5.   

There were eighteen locations recorded for the specimens, which range from 

‘North Sea’ to ‘Happisburgh’: extremely broad to very local. Recording the accurate 

species identification of the specimens was extremely important, as understanding 

the evolution of taxonomic lineages has implications for the environments we 

recognise as well as date-ranges represented by the parent deposits, as species 

evolve and become extinct in certain areas at certain times. Groups of fauna also 

imply climatic conditions.   For example a cold stage fauna would typically include 

Mammuthus primigenius (woolly mammoth) and Rangifer tarandus (reindeer), 

whereas warmer conditions would be indicated by Palaeoloxodon antiquus 

(straight-tusked elephant) and hippopotamus. Correct identification of the faunal 

material from the submerged zone is therefore crucial for recognising patterning, 

potentially telling us the broad periods that their parent deposits date from. 

However, despite many of the collectors being avid natural historians and 

spending their lives working on material of this kind, much has changed over the 

past few centuries as regards knowledge about the evolution of these lineages. For 

example, we now know that there are several pre-Elsterian Rhinoceros species 

within these collections, previously all identified as Rhinoceros etruscus (which is 

now believed to have lived much earlier [Breda et al. 2010]). Similarly, with 

mammoth teeth being some of the most prevalent fossils, their identification has 

the potential to yield a lot of information. However, one mammoth species 

Mammuthus trogontherii (steppe mammoth), contemporary with the earliest 
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occupation of this area, was not discovered until 1885 (Maglio 1973). It is 

therefore possible that specimens identified as the earlier species, Mammuthus 

meridionalis (southern mammoth), are in fact Mammuthus trogontherii (steppe 

mammoth) and that significant patterns are being missed. In this case, where 

elements are identifiable to species level (teeth and whole elements in particular), 

further work will be carried out to ensure their correct identification.  

Further details available for these records include who the collector was, the 

acquisition (if not collection) year (Figure 3.9), species and element (if identifiable) 

and location. The accuracy of this information varies and in some cases has been 

altered from the original description or is entirely absent (Figure 3.11). To 

supplement the metadata acquired from the museum’s acquisitions registers and 

on the specimen’s labels, collectors’ diaries or catalogues were searched for. 

Unfortunately they were not found, and in many cases may not have existed, but 

some important information was gleaned from letters written and published by 

various collectors (e.g. Layton 1827; Woodward 1891). Furthermore, indirect 

information such as where the collectors lived, worked and collected has been 

used to infer how and where they were collecting their artefacts (Section 3.4).  

 

Figure  3.11 Specimen’s label showing the amount it has been changed since acquisition 

(Source: Simon Parfitt) 

 

Locating and collating the material from these museums was not a straightforward 

process. Many museums were unsure whether they held any collections and of the 

associated information. Moreover, once identified, the entire collections had to be 
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retrieved from storage, laid out and analysed, sometimes for the first time. This is 

therefore the first time that all this information has been brought together and 

evaluated; an important first step allowing us, through metadata, to link it back in 

with the historic record and to begin characterising the submerged resource.  

   

 Antiquarians 3.4

The link between fossils being recovered by trawlers and their ending up in 

museums’ stores lies with their collection and curation by antiquarians and 

collectors throughout the 19th and 20th Centuries. This section will look at who 

they were, where they lived and how this may relate to the patterns of fossil 

collection which have been made apparent throughout this chapter as well as 

those that become apparent through the results (Chapter Four).      

3.4.1 Who were they? 

The collecting mania that was such an essential feature of the 19th Century in 

Britain drove many enquiring minds into quests for knowledge about the 

development of our natural world, especially since this was a period of great 

religious turmoil (McNabb 2012). Antiquarians avidly collected all kinds of 

curiosities, and with the coincident increase in trawler fishing a wealth of 

Pleistocene fossil material was made available. In a similar fashion to the handaxe 

collectors of the terrestrial gravel pits (see Hosfield 1999), antiquarians would 

purchase fossils from trawlermen to add to their collections. Of course, this 

method of collection may add a certain bias to the material: handaxes over flakes 

in the former, and distinctive, intact bones over smaller elements in the latter. 

However, what is arguably more important in the case of faunal remains is simply 

the ability to identify the presence or absence of particular species (or even that 

the bones exist at all) and with many hundreds of these fossil remains now curated 

within museums across the country they will form a significant part of this thesis.   

There are 63 named collectors responsible for the collection of the trawled 

specimens in the database developed for this thesis. However, the majority of the 
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collection can be attributed to five people: Reverend James Layton, Reverend John 

Gunn, John Owles, J.J. Coleman and Les Brand (a modern collector). These 

antiquarians were well off and well educated (see text boxes): clergymen (James 

Layton, John Gunn), businessmen (J.J. Colman) and magistrates (John Owles). Their 

interests were diverse and they were often collectors of many kinds of curiosities 

(for example J.J. Colman collected many anthropological finds as well as a library of 

historical documents and John Owles had a large collection of porcelain 

[www.greatyarmouthhistory.com]).  

The majority of the collectors, and certainly those mentioned above, lived in close 

proximity to the East Anglian coastline. The richness of this coastline, and indeed 

region, is likely to have its roots in the preservation of Quaternary deposits, capped 

by the Elsterian till, as well as the prevalence of quarries in this flint-rich area (e.g. 

Ashton and Lewis 2002; Ashton et al. 2011), facilitating the disturbance and 

recovery of Pleistocene material.  Given the renowned Quaternary deposits along 

the coastline of this area, it is not a surprise that these people had their interest 

sparked by the bones and plant remains eroding from their local coasts (see Reid 

1890), and a history of collection in this area is well documented. It is also clear 

that several of these collectors were contemporaries and had often learnt from or 

acted as mentors to other natural historians (e.g. Text Box 5).  

The fact that these collectors were also drawn to the faunal remains brought in by 

the local trawlers is not surprising, and the rapid development of the trawling 

industry in this area throughout the middle to late 19th Century would have 

provided ample opportunity for this. The development of Lowestoft and Great 

Yarmouth, two of the most prolific ports for the landing of these fossils, was clearly 

taken advantage of by local collectors. But what was it that drove this abundance of 

fossil material? The development of trawling communities further to the north-

east in Grimsby and Hull should surely be reflected by collections from these areas, 

but this appears not to be the case (Figure 3.8). Alternatively, was it the areas of 

seabed these trawlers were exploiting, the social conditions on board various 

vessels and within companies, or are we simply missing evidence? These questions 

will be explored further within Section 3.5.  
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3.4.2 Their collections 

The notes of collectors such as Layton, Gunn and Owles show that by the mid-19th 

Century collectors were well aware of the types of species they were finding, and 

of their significance (Layton 1827; Davies 1878). It has been noted by Reid (1913, 

39-42), for example, that the majority of fossils found off Happisburgh belong to 

Mammuthus meridionalis (an Early Pleistocene Mammuthus [Lister and Bahn 

1995]), whereas those from the Dogger Bank appear to represent younger species 

from after the Elsterian Glaciation, which already indicates an acknowledgement 

that certain deposits outcropping in areas of the seabed were temporally distinct 

from one another. This is something that has also been noted by various historic 

labels on trawled specimens, which refer to ‘bonebeds’ and ‘graveyards’ offshore 

(Figure 3.12); people were clearly aware of defined locations where this material 

was exposed.  

The collections accumulated by collectors were usually sold off to museums or, in 

some cases, to auction houses.  As a result, the specimens sometimes became 

globally dispersed (e.g. New York Times 1906). This was usually around the time 

of death, by the collectors themselves, or later by members of the family. For 

example, records show that Reverend James Layton sold his collection to the 

British Museum/Natural History Museum in 1858, and died the following year 

(pers. comm. Ian Layton), whereas John Owles died in 1873 

(www.greatyarmouthhistory.com) with his collection being registered in 1874, 

and J.J. Colman died in 1898, the same year as his specimens were acquisitioned to 

the Norwich Castle Museum.   
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Figure  3.12 Elephas sp. molar with a label noting ‘dredged from “Grave Yard”’ (Colchester 

Museums Service) 

 

The collections have been held by museums since then, but nearly always with 

little attention, trawled material being seen as without location and therefore 

without value. With their respective collectors appearing to have been primarily 

interested in either ‘curiosities’ or natural history, there is a collection bias which 

affects the associated information. In the latter case it is more likely that there will 

be documentation about the finds, at least in a general sense (e.g. Layton 1827; 

Williams 1878). However, in either case it is unlikely that there will be any exact 

account of provenance for the specimens as this level of information was simply 

not relevant to them, and labels are reduced to a very generalised location such as 

‘off Lowestoft’ or even ‘North Sea’. In a few cases this might be more specific, for 

example ‘40miles E of Lowestoft’, or refer to specific locations such as ‘Hasbro 

Oyster Bed’. Unfortunately, however, these are rare examples and so a broader 

perspective must be taken with the vast majority of the material.  
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Knowing when a specimen was dredged from the seabed also has implications for 

potential groupings and locations. The vast majority of the specimens, however, 

provide only the date of acquisition, which as discussed generally correlates with 

the death of the collector and the sale or donation of their collections. These dates 

therefore provide a kind of terminus post quem for the specimens’ collection date, 

with only the occasional instance of being more precise (21% of the entire 

collection, 3% of the historic collection: this is an important distinction, as the 

recently-collected material has good provenance, whereas the locations of historic 

material rely on the trawling patterns).     

3.4.3 Summary  

Understanding the inspirations and locations of the antiquarians responsible for 

specimen curation helps to clarify the locations of their collections. Furthermore, 

the date of death often corresponds with the date of acquisition in the museums’ 

registers, which helps to explain what could appear to be prolific collection years 

in the recovery record (see Figures 3.9, 3.11) but which actually represent the 

purchase or donation of huge collections. Investigating these kinds of issues can 

therefore help to elucidate patterning in the record, drawing out biases and 

important relationships.      

 Discussion 3.5

The preceding sections have discussed the various strands of evidence that have 

significant bearings on the recovery and location of Pleistocene fossil material: the 

trawling grounds, the development of the fishing industry, the collectors and their 

collections, and the myriad social implications of this. Pulling all of this information 

together allows an assessment of how far we can refine the locations of these 

fossils and why they are derived from the fleets that they appear to be derived 

from.  

Significant changes have occurred throughout the 200 years since the inception of 

the trawling industry, with the introduction of steam being arguably the most 

influential (Butcher 1980; Robinson 1996; Engelhard 2008). Throughout this time, 

great social changes were also at play, with the industrial revolution giving rise to 
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the modern capitalist economy.  This in turn drove much of the development of the 

larger trawling businesses in the north-east, as well as Great Yarmouth (Section 

3.2.1), and, at another level, the emergence of a more questioning and secular 

society pushing the boundaries of science. Furthermore, the increasing 

polarisation of amateur and professional roles throughout this time (McNabb 

2012), in this case within the roles of natural historians and museums, meant that 

the numbers of specimens being both recovered and reported began to decline.  

Figure 3.13 shows the combination of a timeline of the development of the 

trawling industry with the acquisition and collection of finds through the same 

period. Perhaps the broadest, yet most important, pattern is the changing 

frequencies of fossil recovery through time. As discussed, the majority of these 

dates act as a terminus ante quem for the specimens meaning that where peaks in 

numbers are seen, these could have been recovered at any point up to and 

including this date (with the exception of the BMAPA/Colchester peak, which is 

well constrained). The † symbol shown in Figure 3.13 shows the death of a major 

collector, which has had a dramatic effect on the numbers per decade. J. Owles, for 

example, whose collection numbers 207 specimens, died in 1873 and his collection 

was acquired in 1874. Interestingly, it was not only death that prompted donations 

of collections: J.J. Colman donated his collection of 34 specimens in 1877 but did 

not die until 1898. However, in 1878 he acquired a prolific library collection and 

began to invest heavily in its curation and expansion (Norfolk.gov.uk – special 

collections), which perhaps indicates that the sale or donation of his fossil 

collection was a tactical move and a precursor to this new literary passion.  
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Figure  3.13 Timeline of the development of the trawling industry in the North Sea against 

the frequency of specimens recovered. The red columns show the frequency of fossils by 

collection year (where known), with the blue showing the same information by acquisition 

year. 

 

The discrepancies between the actual collection and acquisition dates do present a 

potential bias. Where we can investigate the lives of the collectors we can account 
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for this, but for the majority of the collectors this is not the case and some 

specimens that have been collected throughout the 19th Century may have been 

kept in families for generations and donated much later. Unfortunately, with the 

level of detail available for most the specimens this is impossible to account for, 

but given the smaller sample sizes attributable to the majority of collectors it 

should not present a major bias.  

The increase in numbers throughout the 19th Century correlates with the increase 

in trawler fishing in the southern North Sea and is likely to be due to the 

combination of this and the collecting mania of the Victorian era. Increasing 

polarisation between professionals and amateurs during the early-mid 20th 

Century (McNabb 2012) may have played a part in the decline that we see 

throughout this later period, with fewer collectors interacting with museums and, 

potentially, fewer actual collectors. The mid-20th Century saw a drastic decline in 

the British trawling industry, especially in the depleted stocks of the southern 

North Sea, with trawlers moving further afield to more northerly grounds around 

Greenland and Iceland from the late 1890s. European Union laws and regulations 

from the 1970s also massively curtailed the amount of trawling that could take 

place and, in consequence, the numbers of fossils collected.    

One of the most significant points highlighted by Figure 3.13 is the abundance of 

fossil material still extant today. If it were not for the collections of the modern 

trawler off Clacton and the BMAPA material from the 1980s onwards, the picture 

would imply that the seabed resource was seriously depleted, if not eradicated. 

However, the inclusion of these datasets presents an entirely different, far more 

positive, picture of the situation, with an abundance of fossil material. Recent work 

conducted by Dutch researchers in the same sea supports this assertion (van 

Kolfschoten and Laban 1995; Flemming 2004; Glimmerveen et al. 2006; Mol et al. 

2006), and yet the reinvigoration of reporting and recording fossils from the UK 

sector is still embryonic and our relationships with the trawling and dredging 

industries relatively poor. Initiatives such as the BMAPA protocol and a recent 

project to engage with our dwindling trawling industry (Fishing Industry Protocol 

for Archaeological Discoveries) provide an opportunity to redress this problem 

and provide the details necessary to really get to grips with the extant resource on 
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the seabed. But since these initiatives do not specifically focus on this kind of 

material, the level of detail available at present is frustratingly low. The spatial 

patterns identified through this research, as well as projects aimed at engagement 

with current fossil collectors, take this a stage further. By focusing on species 

identifications as well as locations, Chapter Four will present these results. 

 

3.5.1  Geographical patterning 

A clear pattern which emerges throughout this chapter is the lack of fossil material 

recovered from the north-eastern towns, despite the thriving trawling industries 

there during the 19th and 20th Centuries. Possible reasons for this discrepancy are: 

• The method of fleeting’s leading to difficult conditions and discontent 

among trawlermen, resulting in conditions not conducive to fossil 

collection.   

• Company ownership associated with fleeting, meaning trawlermen were 

working for someone else and to someone else’s timetable; again, the 

possibility that there was less flexibility with collection and sale of fossil 

material.   

• The differences in the uses of otter versus beam trawling and the associated 

effects on the seabed that this produces, potentially resulting in a different 

degree of fossil recovery.  

• An absence of antiquarian community in the north-east, perhaps owing to 

the relative lack of fossiliferous Quaternary deposits or gravel quarries to 

prompt or encourage such interests.   

 

Several of these points, however, also apply to the Great Yarmouth fleets as well as 

those from the north-east: Great Yarmouth had fleeting as well as company 

ownership. The one difference was that Great Yarmouth remained a port 

dominated by sail, not steam, but the social issues outlined above would still apply. 

There must therefore be other factors causing these discrepancies.  
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The clear picture from the collectors is that they are almost entirely located in East 

Anglia, at least for a significant part of their lives. Is this due to the existence of 

renowned geology in this area, both invoking and encouraging interest in natural 

history? With the highly significant and well-preserved Quaternary coastal geology 

being on the door-step, there appears to have been a group of interested and 

socially-interrelated people that were involved with its study (Text Box 5). 

Furthermore, there existed a well-developed Natural History Society in and around 

Norwich, and Norfolk generally, possibly driven by the prolific quarrying industry 

exploiting the flint-rich deposits in this area, something that the towns in the 

northeast were lacking. 

The presence of the East Anglian collectors could in fact be the impetus behind the 

curation-for-sale of fossils by the trawlermen, in a supply-and-demand sense. 

There are examples of the kinds of fates that the fossils befell otherwise, with 

Layton (1827, 200) recounting trawlermen finding: “…various large bones…being 

found in great quantities…and as thrown away into deeper water” as well as Reid 

(1890, 174): “…many hundred specimens of the molar teeth…were destroyed by the 

fishermen, who amused themselves by breaking them…”. Once these trawlermen 

knew that there was interest in these specimens they began to bring them to shore 

for collectors and museums (Layton 1827, 200), but this was only after being 

encouraged to do so. If there was nobody requesting this material from areas such 

as Hull and Grimsby, perhaps this explains why nothing is recorded.  Of course, 

there is always the possibility that the material has yet to be located within 

collections, but based on conversations with museum staff who have searched the 

archives, this seems increasingly unlikely.  
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Figure  3.14 Distribution of Great Yarmouth and Lowestoft grounds relative to the three 

major glaciations (glacial limits after Graham et al. 2011; Lee et al. 2012. Elevation data 

source: Smith and Sandwell 1997)  
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The lack of inspiring Quaternary deposits, and resulting collectors, is probably very 

significant for the faunal collections, but the roots of this may also highlight why 

these fleets may not have been bringing back large amounts of  material (if any). 

Cyclical glaciations which affected this part of North West Europe throughout the 

Middle – Late Pleistocene had a seriously detrimental effect on the preservation of 

Quaternary deposits. Whereas Britain, south of the Midlands, escaped direct 

glaciation after the extremes of the Elsterian, areas further north were subject to 

constant cycles of glaciation and its associated erosive effects (Figure 3.14). The 

southern North Sea would have been no exception, which may relate back to the 

negative pattern of finds from the fleets exploiting grounds to the north (Figure 

3.4). This will be discussed further in Chapter Six, when the results of the species 

distributions will also be taken into account.    

However the towns of Great Yarmouth and Lowestoft came to be the dominant 

areas of fossil recovery, using the territorial patterning of their trawling fleets will 

facilitate spatial analysis of where groups of fossils came from. If we apply what is 

known about the evolution of the taxonomic lineages of the species identified 

within these groups (Section 2.2.1), we can make an assessment of any temporal 

patterning.  

The combination of these two elements will provide an insight into any spatio-

temporal patterning with these assemblages, and this will have implications for the 

integrity of the seabed deposits. Are the specimens constantly being transported 

around the seabed in a totally derived, mixed state, or do they retain a Pleistocene 

context? In the latter case it would still be likely that some material will have been 

displaced, so presenting some background ’noise’ in the results. This is 

demonstrated at a very local scale by the Area 240 results. These show 70% of 

species which belong to the in situ deposit and 30% material that is external 

(Russell and Tizzard 2011). This statistic will have important implications for the 

results seen in Chapter Four, as it suggests that you would expect to find a small 

proportion of species within any trawled assemblage that are not in fact 

representative of the deposit being disturbed.   
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 Lithic component 3.6

Since lithics form the vast majority of the Palaeolithic archaeological record, it 

would be logical to start by looking for them from the submerged zone.   This 

research initially set out to do so. As with the fauna, museums along the East Coast 

were contacted to ascertain what, if anything, they had in their collections. 

Other than the aggregate-dredging site of Area 240, no lithic finds were recorded 

as coming in from the trawling industry or at all from the offshore zone. This was 

surprising, given the large collection of Mesolithic tools that have been recovered 

by an oyster dredger in the Solent (Momber et al. 2011), which indicates that 

recovering this material through trawling is not impossible. What some of the 

museums did have, however, were collections of material from the foreshore. All of 

this material was from the East Anglian and Essex coastlines.   

From beach and foreshore collections along the East Anglian and north Essex 

coasts, one hundred and fifty two lithics were recorded, including the handaxes 

from beaches published in a short paper by Robins et al. (2008). These were 

collated from online resources such as the Portable Antiquities Scheme (PAS), 

Historic Environment Records (HERs) as well as identified museums’ collections at 

Southend-on-Sea, Ipswich Museum, Norwich Castle Museum and records at Bury-

St-Edmunds County Council. Their condition and location (from 6-figure grid 

references to simply a beach name, but often little else) was recorded and plotted 

in order to look for any significant patterning in the record. 

Presented in Chapter Four, this work provides a baseline understanding of the 

lithics in this area and their locations along the foreshore. The question of whether 

they have been eroded from coastal deposits or washed in from the sea will be 

discussed, as well as the potential for looking at the movement of this material 

along the coast. The ongoing collation and analysis of these lithics is being 

conducted further by researchers at the Natural History and British Museums.   
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 Conclusion   3.7

The development of this historical methodology allows the submerged resource to 

be redefined by imbuing it with a new level of context. With no previous research 

into the existing record from these landscapes, our understanding of what is 

available to work with was almost non-existent - with rare stumbled-upon sites 

floating among deposit models and abstract theories. Applying this methodology 

will allow a refinement of this dataset, demonstrating spatio-temporal patterning 

within broad areas of seabed and drawing out higher-resolution patterns from the 

coastal strip.  

Returning to the questions posed in Chapter One, (What is the nature of these 

specimens and the deposits they are contained within?; What do their distribution 

and patterning tell us about the offshore resource?) this methodology has provided 

the framework within which we can place the specimens, directly addressing these 

questions and working towards a baseline understanding from which we can begin 

to delve deeper. It has also highlighted further issues worth investigating, such as 

the discrepancies between the records from the trawling industries of the north-

eastern and East Anglian ports. Does this reflect offshore deposit patterning, does 

it suggest problems in actually finding datasets, or does it have its roots in more 

social factors?  

Chapter Four will present this investigation beginning on a broad scale, examining 

the range of species represented from the entire areas, with more focused analyses 

of smaller, higher-resolution groups of data leading out of this. Using the same 

approach, but with additional focused datasets, Chapter Five will then present a 

case study demonstrating how this approach can be used to form an 

understanding of discrete areas of Palaeolithic deposits on the seabed.         
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Chapter 4:  Spatial and temporal patterning 

of the submerged resource 

Having set out the various means by which the prolific faunal resource from the 

southern North Sea can be investigated and refined, using inferences based on the 

development of the 19th Century trawling industry and contemporary antiquarians, 

this chapter examines its distribution and patterning.  Given the nature of the 

information available - broad scale and historically derived - the statistical analysis 

has been kept to a level appropriate to the qualities of the data. Through using 

information about the territories of fleets from the fossil-yielding ports, groups of 

fossils will be assigned to broad regions of seabed. The taxonomic evolution of 

each of the species from these groups will then be ascertained in order to assess 

the spatio-temporal patterning within each area. Given the different types of 

trawling being practised - both broad territories as well as local, shoreward 

exploitation - the levels of resolution at which these spatio-temporal trends will be 

available will differ substantially, allowing a multi-scalar approach to this offshore 

picture. 

It will be argued that there is significant spatial patterning emerging from these 

specimens, at all scales, and that this patterning indicates distinct areas of 

Palaeolithic potential on the seabed.  The chance for this to be investigated further 

will be discussed and a case study doing so will be presented in the succeeding 

chapter. These results demonstrate for the first time the significance of the 

submerged faunal resource, as well as the potential that the existing record holds 

for furthering our knowledge about the occupation and use of these areas 

throughout the Palaeolithic.  

 The fauna 4.1

A database of 1,119 faunal specimens has been created through the collation of 

material in the museums’ collections and online databases shown in Figure 3.2 

(see Appendix of the raw data for this in the attached CD). Figure 4.1 details the 
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species identified within this collection, showing the Latin name and common 

counterpart as well as the temporal range of each. Given the distinctiveness of 

species during the pre-Elsterian (Early and early Middle Pleistocene) compared 

with those from the post-Elsterian (late Middle to Late Pleistocene), at least in part 

owing to the faunal turnover that occurred during the Elsterian glaciation, these 

are the broad temporal ranges that have been adopted.  

Latin name General Name Temporal range (UK) 

Balcena biscayensis Whale Pleistocene 

Bison priscus Bison Post-Elsterian 

Bison sp. Bison Pleistocene 

Bos primigenius Aurochs Post-Elsterian 

Bos sp. Aurochs Indeterminate 

Canis lupis Grey wolf Pleistocene 

Castor fiber Beaver Pleistocene 

Cervus elaphus Red Deer Pre-Elsterian 

Cervalces latifrons Deer Pre-Elsterian 

Cervus polignacus robert Deer Pre-Elsterian 

Cervus sedgwicki 

falconer 

Deer Pre-Elsterian 

Cervus sp. Indet. Deer Indeterminate 

Cetacean Whale Indeterminate 

Coelodonta antiquitatis Woolly Rhinoceros Post-Elsterian 

Delphinapterus leucas Beluga whale Post-Elsterian 

Elephas sp. Mammoth/Elephant Indeterminate 

Equus caballus Horse Pleistocene 

Equus sp. Indet. Horse Indeterminate 

Euctenoceros sedgwicki 

(Falconer) 

Deer Pre-Elsterian 

Crocuta sp. Hyena Indeterminate 

Hippopotamus sp. Hippopotamus Pleistocene 

Mammuthus 

meridionalis 

Southern Mammoth Pre-Elsterian 

152 
 



Mammuthus primigenius Woolly Mammoth Post-Elsterian 

Mammuthus trogontherii Steppe Mammoth Pre-Elsterian 

Praemegaceros 

dawkinski 

Giant Deer Pre-Elsterian 

Megaloceros giganteus Giant Deer Post-Elsterian 

Megaloceros savini Giant Deer Pre-Elsterian 

Megaloceros sp. Indet. Giant Deer Indeterminate 

Praemegaceros 

verticornis 

Giant Deer Pre-Elsterian 

Odobenus rosmarus Walrus Post-Elsterian 

Ovibos moschatus 

Zimmermann 

Musk Ox Post-Elsterian 

Palaeoloxodon antiquus Straight tusked 

elephant 

Pleistocene 

Rangifer tarandus Reindeer Post-Elsterian 

Stephanorhinus etruscus Rhinoceros Pre-Elsterian 

Stephanorhinus 

hemitoechus 

Narrow nosed rhino Post-Elsterian 

Rhinoceros sp. Indet. Rhinoceros Indeterminate 

Ruminant Ruminant Indeterminate 

Sus sp. Indet. Pig Indeterminate 

Trichechus huxleyi Walus Pre-Elsterian 

Trichechus sp. Walrus Indeterminate 

Turtle Turtle Indeterminate 

Table  4.1  The species discussed in the text. Pre-Elsterian are not found after the Elsterian 

glaciation (in Britain), post-Elsterian species are only found after the Elsterian glaciation 

(in Britain), Pleistocene species are found both before and after the Elsterian glaciation, 

and Indeterminate specimens refer to material which is not able to be assigned to a 

species level and therefore does not have chronological information. Note that these are 

broad terms and that occurrence of species within these periods will fluctuate (see Figure 

2.5) 
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The faunal specimens are represented by 42 genera, with 28 identified species. Of 

the collection, 78% (n=873) have been identified to genera with the remaining 22% 

(n=246) either identified to family level e.g. Bovid (16%, n=179) or unidentifiable 

(6%, n=67).  

Figure  4.1 Proportions of all specimens recovered to family level or higher. Red = pre-

Elsterian; Blue = post-Elsterian; Green = Species which span the Elsterian; Grey = Species 

only identified to genus. 
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Figure 4.1 shows the proportions of specimens that have been identified at least as 

far as genus level, with pre-Elsterian species in red (i.e. early Middle Pleistocene), 

post-Elsterian in blue (i.e. late Middle – Late Pleistocene) and species that are 

found throughout these periods in green. Those specimens that are only identified 

as far as genus are shown in grey. These are the colour distinctions that will be 

used throughout this thesis to denote these broad temporal patterns. The Elsterian 

has been taken as a marker point because of the significant effect that it had on 

species turnover in Britain as well as on the palaeogeography of the southern 

North Sea (and therefore available terrestrial landmass. See Chapter Two, Section 

2.1. [Gibbard 1995; Gupta et al. 2007; Toucanne et al. 2009]). This will help to 

define broad spatio-temporal patterns, with the potential in some cases for more 

in-depth analysis of species’ temporal distribution. 

Within the assemblage there are clearly dominant species. Unsurprisingly, owing 

to their increased robusticity, these are all large-boned mammals such as 

mammoths, elephants and whales. Large bovids such as aurochs (Bos) and 

rhinoceros are also well represented. These large bones would not only stand a 

better chance of survival but would be more easily picked up by, and far more 

conspicuous, in trawling nets.  

At 48% (n=538), mammoth and elephant species represent almost half the entire 

collection, with those identified to species representing 29% (n=323). The 

unidentified Elephas sp. represents 19% (n=215). Similarly, Rhinoceros sp. (7%, 

n=73) and Bos sp. (3%, n=30) could represent species from both pre and post 

Elsterian, which limits their use as chronological markers. Further work on these 

specimens may help to clarify them to species, but this would require the use of 

reference collections and a new in-depth analysis. It is not therefore within the 

remit of this PhD but forms part of suggested future work. So, taking these 

indeterminate groups out leaves us with a clearer picture of what there is to work 

with ([n=434] Figure 4.2). 
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Figure  4.2 Proportions of specimens recovered that are identified to species level 

 

The species-level collection (n=434) is dominated by species from the post-

Elsterian, late Middle and Late Pleistocene (67%), with the similar proportions of 

mammoth or elephant specimens from each broad period indicating that this 

pattern is not biased by the large numbers of woolly mammoth specimens.  

The post-Elsterian species offer further scope for narrowing down the faunal 

groupings, as several species appear at different points and commonly form part of 

a common assemblage type (Mammal Assemblage Zone [MAZ]). There are 10 

species identified as post-Elsterian, 74% of which are Mammuthus primigenius 

(Woolly Mammoth, n=216), 11% are Coelodonta antiquitis (woolly rhino n=31), 7% 

of which are Bos primigenius (Aurochs, n=20), 2% of which are Rangifer tarandus 

(Reindeer, n=7), 1% are Odobenus rosmarus (walrus, n=4), Equus (horse, n=3), 

Stephanorhinus hemitoechus (narrow nosed rhino, n=3), Bison priscus (n=3) and 

Megaloceros giganteus (giant deer, n=3) and <1% of which are Ovibos moschatus 

Musk Ox (n=1) (Figure 4.3). It is clear that all the species (aside from Bos 

primigenius and Stephanorhinus hemitoechus) from the offshore dataset could be 
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associated with the ‘mammoth steppe’ assemblage type (Guthrie 1982), which 

potentially links them to the periglacial environments that prevailed in the 

southern North Sea throughout the Late Pleistocene period. However, several of 

these species (Coelodonta antiquitatis, Mammuthus primigenius, Equus and Bison 

priscus) have also been found within coombe rock deposits in the Ebbsfleet Valley 

dated (by association with overlying interglacial deposits of MIS 9 fluvial ‘Mucking 

Terrace’ [Bridgland 1994]) to MIS 8. These species therefore appear to have been 

present within this earlier, Middle Pleistocene glacial period, making their 

association with the Late Pleistocene less conclusive but placing them within the 

period of the mammoth steppe environments (Guthrie 1982). 
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Figure  4.3 Pie chart displaying the post-Elsterian, Middle – Late Pleistocene species 

represented in the dataset, with the table showing the ‘Mammoth fauna’ species found 

during MIS 3 (after Linnaeus 1758; Mol et al. 2006; Currant and Jacobi 2011)  
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The dominance of post-Elsterian species is unsurprising for several reasons. 

Having been in existence the most recently, they would not only have had less time 

to be eroded or destroyed but are also more likely to be found in outcropping or 

more surficial deposits. Furthermore, the change in intensity of the glaciations that 

occurred, starting with the Elsterian glaciation (the first major expression of a 

dominant eccentricity forcing in Britain [Rose 2010]), led to far lower sea levels 

than had previously been witnessed during pre-Elsterian stages. These cold-stage 

periods of lowered sea level would therefore have provided dry land further north 

than the preceding low stands of the early Middle Pleistocene (Figure 2.2), so that 

species from this period would be more geographically dispersed.    

Despite the dominance of younger species, the relatively high number of pre-

Elsterian species (22%, n=97) also demonstrates the survival of these specimens 

over significant periods of time and the potential for archaeologically-relevant 

deposits of different ages surviving on the seabed. However, the burial of deposits 

from these earlier periods means that their potential for outcropping on the 

seabed is reduced, as seen through modern geological maps, which makes these 

specimens fewer and farther between but potentially narrows down their 

locations.  

In terms of narrowing the species within this group down further, the pre-

Elsterian species (other than Stephanorhinus etruscus, which is an Early 

Pleistocene  species) are all found within the early Middle Pleistocene, although 

Mammuthus meridionalis is at the latter stages of its evolution and is also 

representative of the Early Pleistocene. It is not possible to distinguish between 

stages of the early Middle Pleistocene with this amount of evidence, but this is 

being investigated with respect to some recently-collected beach material (Parfitt 

pers. comm.).  

4.1.1 Element types 

A brief discussion of the types of bone elements recovered is necessary in order to 

assess biases both in terms of recovery (significant enough to get caught in nets) 

and curation (interesting to collectors). Suggesting what would and would not be 

interesting to collectors is always going to involve assumptions about preference 
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but, given that many collectors would have been looking for the spectacular (as 

they are today, hence these fossils selling globally), large and identifiable bones are 

likely to dominate. Clearly, large bones are also likely to dominate as they are 

easier to catch in nets and to notice.  

Figure 4.4 shows two graphs, which demonstrate the frequency of the elements 

recovered for both the entire collection as well as the collection with Mammuthus 

specimens removed. From Figures 4.1 and 4.2 it is clear that Mammuthus sp. form a 

large proportion of the collection.  The reasons for removing Mammuthus were 

therefore to assess the distribution of species (and hence elements) of a smaller 

size.        
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Figure  4.4 Showing the frequency of elements recovered. Top graph shows these elements 

for the entire collection, the bottom graph shows them with Mammuthus sp. removed. 

Figure 4.4 demonstrates the prevalence of large and immediately-identifiable 

bones such as teeth and vertebrae. The smaller long bones, such as the ulna and 

metapodials, are more poorly represented than the larger long bones such as the 

femur and humerus. Crania are well represented in both cases, probably owing 

more to its thick, robust bone than to recognition, as many crania fragments are far 

from easily identifiable.    

The main point that the removal of Mammuthus material demonstrates is the 

better representation of smaller elements such as foot bones for these much larger 
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species. The astragalus of a Mammuthus sp. is relatively large compared with a 

species such as Equus sp. (Figure 4.5) and would be far less likely to slip through 

the net.  

Figure  4.5 Two astragali showing the difference in size. a. Mammuthus meridionalis 

(southern mammoth); b. Equus sp. (horse) 

Importantly, Figure 4.4 also shows that the collection has representation from 

almost all elements of the skeleton and that even smaller elements of smaller 

species are being preserved and recovered. This is supported by Figure 4.6, which 

(although based only on the specimens from the NHM [n=339]) shows a wide 

range of sizes represented. It is interesting to note that the specimens recovered 

within this collection are no smaller than approximately 0.1m in either width or 

length; this corresponds with the net mesh size of 0.08m for dover sole, one of the 

dominant fish species exploited (Section 3.2.1).   
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Figure  4.6 Showing the relationship between maximum length and maximum width of the 

specimens from the NHM, London (n=339) 

4.1.2 Condition of the specimens 

The condition of the specimens collated range from well preserved to almost 

entirely rounded, as well as displaying different degrees and types of marine 

growth. However, because of time limitations whilst recording the material this 

information is not available for the entire collection. A subset of the collection (the 

Natural History Museums’ collection) will therefore be examined and presented as 

a case study here in order to give an idea of its potential for future work. This was 

a subjective study, without scientific or specific quantification and, at this stage, is 

useful to present the range of conditions and their proportions within the 

collection, and subsequently for making broad assertions about possible 

movement and exposure. 

In terms of abrasion there are different distinctions to be made between bones 

with surface weathering and rounded edges and those which are generally 
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unabraded but have weathering to their extremities. In terms of the formation of 

these patterns it is difficult to determine the cause: were they in this condition 

before submergence through surface, chemical or fluvial weathering, or is this a 

result of movement in the marine zone? These are questions that are more able to 

be addressed when the nature of the deposit the specimens are derived from is 

known and, as such, will be far more influential in any future work which deals 

with pinpointing specific areas of seabed.  

Out of 205 specimens from the NHM which have recorded information (a large 

collection (n=121) are missing): 58% (n=119) have marine growth, 27% (n=56) 

are broken, 11% (n=22) show abrasion, and 21% (n=43) have both abrasion and 

breakage. Breakage is generally of the more delicate extremities and the numbers 

shown refer to specimens showing significant breaks of the bone ends or edges, 

with visual inspection of the bones indicating that the majority do, in fact, show 

signs of smaller breaks to the thinner, less robust areas. Figure 4.7 gives examples 

of the range of conditions present.  
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Figure  4.7 Bones showing a range of conditions. a. a cervus antler base, with very rounded 

edges and breakage; b. a mandible of Trichechus huxleyi showing surface abrasion and 

some marine growth; c. atlas of rhinoceros sp. showing marine growth as well as extensive 

breakage; d. Coelodonta antiquitatis mandible showing some breakage of extremities but a 

well preserved bone surface; e. pelvis of Cervus sp. showing breakage at the extremities 

but sharp edges and a relatively well preserved bone surface; f. an atlas of Canis lupus 

showing a well preserved bone surface and no breakage.   
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Abrasion is also often present at the extremities of the specimens, but can also 

refer to weathering of the bone surface. This type of surface weathering is often 

seen with terrestrial archaeological collections and may relate to chemical 

weathering that may be pre-submergence.  

In terms of the types of bones affected, the larger bones, such as the humerus and 

pelvis, appear to have more breakage than the smaller bones, such as foot bones 

(Figure 4.8). This is probably because of their larger surface area presenting more 

opportunities for being struck or crushed. Many of the shafts of the larger bones 

also have hollow cavities and a greater bone thickness to overall size ratio; smaller 

bones, such as foot bones or ribs, are either solid or have a lower bone thickness to 

size ratio, potentially making them relatively more robust. It is also interesting to 

note that the bones which display the most recorded breakage are those with 

vulnerable extremities, such as the spinal processes of vertebrae.     

 

Figure  4.8  Frequencies of bones displaying breakage 

 

Marine growth is present on most specimens to some degree, with those included 

in the 56% above demonstrating obvious growth (see Figure 4.7). Other associated 

indications are where the marine growth is restricted to only one side of a 
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specimen, or to only one portion, possibly indicating only partial exposure. The 

species of colonising marine creature may also be able to demonstrate water 

depths and seabed type, although this would require a far closer examination of 

the collections. A potential issue with this (especially in terms of historic 

collections) is discerning the degree to which the specimens have been cleaned-up 

and therefore had this evidence removed. Modern sources have indicated that the 

removal of marine growth is common both for aesthetic reasons as well as because 

of the resulting smell if they are left (Brand pers. comm.). This may therefore be 

best addressed by future studies utilising recently collected material.   

This is useful for highlighting the possible degree of movement of the specimens 

on the seabed prior to recovery as well as their exposure. However, there are 

factors that will need to be taken into account before this approach is taken 

further:  

• Is there a way to determine whether the breakage is pre- or post-

depositional? 

• Is there a significant difference in the condition of recent seabed breaks 

compared with those received whilst being trawled from the seabed; can 

the two be distinguished? 

• Is bone surface weathering something that occurs in marine conditions, or 

is this type of weathering a terrestrial phenomenon?   

 

Given that the majority of archaeological specimens are not pristine, it would be 

interesting to assess the amount of weathering and erosion that bone specimens 

are subject to purely from marine erosion – can the patterns indicate whether 

erosion has come from mobile sediments as opposed to actual movement as part of 

bedload, for example -  with these patterns helping to understand the histories of 

the specimens and therefore helping to further characterise the nature of their 

yielding deposits.   
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 Locations 4.2

 

Figure  4.9 Range of locations given for the recovery of specimens, with the purple 

representing local, small-scale trawling and the blue representing the broader areas 

exploited by more formalised fleets. 
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The various locations that the specimens derived from are shown in Figure 4.9. 

Whilst some of these are a little too broad to be of any specific value, such as ‘North 

Sea’ (n=42) and ‘England’ (n=18), others have more potential, albeit at varying 

levels. Working from the information derived from the development of the 

trawling industry, and the territorial nature of the exploitation of the seabed, it is 

clear that the trawlers working out of Great Yarmouth were exploiting grounds to 

the north of the Leman and Ower Banks on and around the Dogger Bank, but south 

of 55°N (Butcher 21980; Robinson 1996), whereas those off Lowestoft were 

moving from the Galloper in the south up to the Leman and Ower and across to 

near the Dutch coast (ibid. Section 3.2.3). In this case, it is possible to group the 

Great Yarmouth specimens with those from the Dogger Bank, and the specimens 

off Lowestoft with those off Norfolk and Suffolk. The information gleaned about the 

collectors can also help to refine some patterning, for example we know that Owles 

collected from the fleets at Great Yarmouth so his ‘East Coast’ specimens are 

synonymous with the grounds that these trawlers were exploiting. There are also 

smaller-scale patterns that can be derived where the trawling took place closer to 

the shore, off the beaches.  

4.2.1 Small-Scale locations 

The locations shown in purple bars on Figure 4.9 are all relatively localised and are 

also located on the map. These locations, such as Happisburgh or Southwold, are 

likely to represent smaller-scale, off-the-beach exploitation as they had no formal 

harbours from which to work (Smylie 1999; Butcher pers. comm.). It is always, 

however, possible that these smaller grounds were opportunistically exploited en-

route to more substantial grounds (Layton 1827; Reid 1890, 174). 

There are seven of these smaller-scale locations in this dataset, exploiting the 

seabed within sight of the shore: located off the Tendring Peninsula, Happisburgh, 

Cromer, Overstrand, West Runton, Sea Palling and Southwold. Figure 4.10 shows 

the distribution of species represented from these areas, showing the change in 

relative proportions along the coastline. 
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Figure  4.10 Proportions of species from small-scale locations along the coastline: red: pre-

Elsterian; blue: post-Elsterian; green: spanning species.  
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North of (and including) Happisburgh, the majority of the species are pre-Elsterian 

(n=34), with these being dominated by Mammuthus meridionalis (Southern 

Mammoth [n=31]), which has its last appearance in this part of the world between 

MIS 19 and MIS 15 (0.8 and 0.6Ma [Lister and Stuart 2010]). Of the species that 

span the early Middle – Late Pleistocene, Palaeoloxodon antiquus (straight-tusked 

elephant) is the only one identified to species level and represented by more than 

one element in this assemblage (n=4, Figure 4.11). Palaeloxodon antiquus is an 

interglacial species and inhabited similar wooded environments to Mammuthus 

meridionalis, feeding off trees and shrubs and having a direct impact on their 

surrounding environments (Lister and Bahn 1995). However, the likelihood of 

these two species overlapping temporally is small, given that the first appearance 

of Palaeoloxodon antiquus in Britain is thought to be towards the later end of the 

early Middle Pleistocene (Preece and Parfitt 2012) and therefore more likely to 

coincide (temporally, at least) with the steppe mammoth, Mammuthus trogontherii 

(descended from, but overlapping with, Mammuthus meridionalis).   

Figure  4.11 Species represented north of and including Happisburgh 
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South of Happisburgh the situation is reversed, with these areas dominated by 

post-Elsterian species (Figure 4.12). Sea Palling is a notable case, with only one 

specimen identifiable as being from this period (and a further one unidentifiable) 

and yet in such close proximity to Happisburgh, which is so heavily dominated by 

pre-Elsterian species. Such small sample sizes, from here as well as several of the 

north Norfolk locations, are potentially unreliable and so it is best to view them as 

part of a wider pattern as shown by Happisburgh, Southwold and Tendring. What 

is interesting about Sea Palling, and illustrates this point, is the existence of a large 

collection of faunal remains from the beach at this location that are heavily 

dominated by a pre-Elsterian assemblage and an Early Pleistocene assemblage 

(Parfitt pers. comm.). Although not recovered from the offshore zone, the matrix 

associated with these specimens is extremely similar to that recorded by Reid 

(1890, 173) as coming from the offshore deposits just off Happisburgh and Eccles 

(right next to Sea Palling) and form part of an ‘Eccles’ preservation type. Taking 

these specimens into account implies that this area, as seems logical, would be a 

very significant part of the pre-Elsterian group (Section 4.2.1.1).  
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Figure  4.12 Species represented south of, not including, Happisburgh 

 

 

The prevalence of post-Elsterian Mammuthus primegenius (woolly mammoth) is 

unsurprising, given the widespread occurrence of this species throughout the last 

glacial period and its dominance in the offshore assemblage overall. This species 

would not have been contemporary with Mammuthus meridionalis, or any of the 

pre-Elsterian species. Similarly it would not have been associated with 
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Palaeoloxodon antiquus, the most prolific of the species spanning the glaciation, but 

could have been associated with Bison priscus, Bos primigenius, Cervus elaphus, 

Coelodonta antiquitatis or Megaloceros giganteus (Figure 4.3 and Figure 2.5).  

An assemblage containing all the post-Elsterian species would not be uncommon 

(e.g. Mammoth fauna; Gough’s Cave MAZ; Pin Hole MAZ; Currant and Jacobi 2001), 

nor would an assemblage containing all the pre-Elsterian species (e.g. Breda et al. 

2010; Lister and Stuart 2010). 

Removing the areas with sample sizes of only one, Figure 4.13 shows the changing 

dominant proportions as you move north to south, moving from assemblages 

dominated by pre-Elsterian specimens to those dominated by post-Elsterian 

assemblages. The detail of the specific species is shown by figures 4.11 and 4.12.  

The vast majority of the finds from off Happisburgh are due to the prolific local 

collector Rev. James Layton and his Oyster Bed collection (Layton 1827; Owen 

1846). Of the surviving and collated Layton collection, 71% (n=44) are from 

deposits off Happisburgh, 95% of which are either exclusively pre-Elsterian 

species (79%, n=35) or existed throughout (16%, n=7), with only 5% (n=2) 

belonging to the post-Elsterian. The assemblage is heavily dominated by 

Mammuthus meridionalis (63%, n=31), an interglacial species, with 8% (n=4) 

Palaeoloxodon antiquus, also interglacial but present throughout the early Middle – 

Late Pleistocene, 6% (n=3) Mammuthus primigenius, cold stage and seen at the 

earliest during the latter stages of MIS 8 and decreasing proportions of other 

species, mostly those that are identified only to genus or are characteristic of the 

pre-Elsterian period (Megaloceros savini and Rhinoceros etruscus).  

As we move further south to Southwold, the assemblages are dominated by 

Mammuthus primigenius (60%, n=6), with the interglacial, pre-Elsterian species 

Mammuthus meridionalis at 30% (n=3) as well as the post-Elsterian Bos 

primigenius and Megaloceros giganteus (both 10%, n=1). Of the 11 specimens 

within this assemblage 6 of them were collected by Mr J. J. Colman. 

Finally, the Tendring Peninsula has 36% (n=15) Mammuthus primigenius, 26% 

(n=11) Coelodonta antiquitatis and smaller numbers of Stephanorhinus 

hemitoechus (n=2), Bos primigenius (n=1) and Megaloceros giganteus (n=1). A 
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dominant proportion of these would fit into a later Pleistocene, cold-stage 

assemblage, but several (Megaloceros giganteus: MIS 11, MIS 5e; Bos primigenius: 

MIS 11, MIS 7) are also, or only (Stephanorhinus hemitoechus: MIS 11, MIS 9, MIS 7, 

MIS 5e, MIS 5c), present during interglacials.  

   

 

Figure  4.13 Proportions of species moving from north (Happisburgh) to south (Tendring) 

 

The majority of the collection (of those that have been identified to species level 

[48%, n=15]) from off Tendring comes from Mr. Brand, a local trawlerman, who 

has collected over thirty years and will be looked at more specifically in an 

individual case study in Chapter Five. Of the collection off Tendring, 68% are from 

the post-Elsterian, 7% are pre-Elsterian species and 22% are from species 

indicative of either (Figure 4.13).  

Sea Palling, Clacton, West Runton and Cromer all have only one associated 

specimen. These sample sizes are clearly too small to be relied on statistically, but 

combined with the larger samples from Happisburgh, Southwold and Tendring do 

fit within a trend towards broad spatio-temporal patterning of species as you move 
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from north to south along the coast (Figure 4.10 and 4.13). The pre-Elsterian 

species appear to be fairly spatially distinct, occurring in the area of known cliff 

outcroppings and inter-tidal/submerged deposits from just north of Happisburgh 

to around the level of Sea Palling (Figure 4.14 and 4.15). The post-Elsterian species, 

on the other hand, dominate towards the south. This implies that the specimens 

being procured from the seabed are coming up not haphazardly, but from 

temporally definable Palaeolithic deposits that are potentially intact.   
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Figure  4.14 Locations of offshore deposits, known cliff/foreshore deposits of the Cromer 

Forest bed Formation (and Wroxham Crag) and significant locations (after Cameron et al. 

1992; Rose et al. 2001; Robins et al. 2008; Limpenny et al. 2011) 
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The deposits around the location of Happisburgh, shown in Figure 4.14 and 4.15, 

belong to the Cromer Forest-bed Formation (corresponding with the offshore 

Yarmouth Roads) which is pre-Elsterian, Early to early Middle Pleistocene in date 

and in many places is formed of a distinctive iron-rich matrix. As far back as 1890, 

Reid was publishing about blocks of this deposit being washed onto the beach after 

a big storm on the 30th January 1877, and, as part of a British Geological Survey, 

attempted to drag for it off a boat, using grapples. Unfortunately although located 

“…half-a-mile north-north-east of the Low Lighthouse…” (Reid 1890, 173) the 

deposit was too concreted to recover. But owing to the preservation of this deposit 

offshore and the time-transgressive nature of the CFbF, it is likely that the pre-

Elsterian specimens from this area are derived from it.  

The dominance towards the south of post-Elsterian species is likely to reflect the 

general dominance of species from these periods, but given the increased 

resolution with regard to their locations, allows this to be more accurately refined. 

For example, the deposits immediately off Clacton, close to where a large 

proportion of the material comes from (n=342), have been shown to include MIS 

11, MIS 9, possibly MIS 7 and MIS 5e (Roe et al. 2009; Roe and Preece 2011; Brack 

et al. 2011), but the addition of information from the trawlerman who recovered 

the bones, as well as geophysical data over that location, should allow us to 

enhance this further (Chapter Five).             
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Figure  4.15 Outcropping foreshore deposits of the CFbF (Source: Simon Lewis) 

 

4.2.1.1 The Eccles bone-beds 

Discussed above, the area of Sea Palling, immediately to the south of Happisburgh, 

has only one specimen relating to it and that is of Mammuthus primigenius (woolly 

mammoth). Being a sample size of one, this is not reliable; it is also unexpected 

given its proximity to the deposits of - and off - Happisburgh. The collection of a 

large number of specimens from the beach in this area, however, is significant for 

this research. These specimens have been recovered, often following storms, along 

a distinct area of coast at Sea Palling by recent collectors as well as historic 

collectors (the Savin Collection at the NHM). Importantly, the vast majority of these 

specimens are associated with the iron-rich matrix that characterises the CFbF in 

this location and have fallen into two pre-Elsterian assemblage types: Early 

Pleistocene and early Middle Pleistocene (Parfitt pers. comm.).  

The collection is very large, with over 1000 specimens, most of which fall into the 

(late) early Middle Pleistocene group. These include: Palaeoloxodon antiquus 
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(straight-tusked elephant), Mammuthus meridionalis (southern mammoth), 

Mammuthus trogontherii (steppe mammoth), Equus ferus (wild horse), 

Stephanorhinus hundsheimensis (Rhinoceros), Cervalces latifrons (Moose), 

Hippopotamus and Megaloceros (giant deer). The Early Pleistocene group also 

includes Mammuthus meridionalis (southern mammoth) but includes distinctly 

Early Pleistocene species such as Cervalces cf. gallicus (Early Pleistocene elk, 

present until approximately 1.5ma) and Microtus sp. (allophaiomys morphology – 

no younger than ~1ma). Significantly, the early Middle Pleistocene species, 

assigned to a late stage within this period (~MIS 15/13) are contemporary with 

archaeological sites from this Formation (e.g. Happisburgh 1 [Ashton et al. 

2008a]).   

These specimens have not been included within this research’s collation as they 

are from beach contexts. Whilst they are extremely likely to have washed in from 

the offshore zone (many have marine growth on them), they are not demonstrably 

from there and so have been only discussed briefly as an addendum to this work. 

On-going work looking at the onshore – offshore landscapes of Happisburgh will 

include more work on these specimens (their species characterisation has in fact 

been a part of that project [Parfitt pers. comm.]), and will be discussed more in the 

further work section of Chapter Seven.   

 

4.2.1.2 BMAPA 

Finds recovered as part of the BMAPA protocol again show the prolific nature of 

faunal and lithic finds extant in the offshore zone. Figure 4.16 shows these finds 

plotted for the areas offshore from the East Coast, with recent publications 

indicating that the recovery of such material is continuing (BMAPA 2013). 

The visibility that this project affords these specimens is extremely important for 

increasing our understanding of the abundance and locations of fossiliferous and 

implementiferous deposits. Given the nature of the reporting, however, the 

artefacts themselves are not available for study and so their use as a tool for 

further research is limited. Furthermore, they represent the record from distinct 

aggregate deposits which, for economic reasons, will avoid the exploitation of 
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unnecessary materials and thereby limit the type of environments viewed. 

Nevertheless, as part of a wider issue, the frequency and patterning of finds can be 

used to highlight high potential areas to target.   

 

Figure  4.16 Showing find locations from BMAPA as plotted by the East Coast REC project 

(Limpenny et al. 2011) 

 

4.2.2 Offshore Fishing Areas 

The majority of the specimens collated relate to larger fishing industries from 

Great Yarmouth and Lowestoft (Figure 4.9), which, although only 10 miles apart, 

had significantly different trawling communities (see Chapter Three, Section 3.2). 
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The former was smaller in size, but far larger in terms of scale, predominantly 

exploiting areas of and around the Dogger Bank (Figure 3.4), whereas the latter 

exploited eastern grounds all the way across to the Dutch coast (Figure 3.5).  

4.2.2.1 The Great Yarmouth Grounds 

 There are 52 specimens that are specifically recovered from the Dogger Bank.  

Based on the understanding of targeted grounds from specific ports, however, 

taking those labelled as Great Yarmouth as being from the Dogger Bank area 

increases this sample to 115. In addition, Joseph Owles (Section 3.4) was a prolific 

collector from Great Yarmouth (which he also printed on his specimens: Figure 

4.17) and so his collection of ‘East Coast’ specimens could be added to this group, 

which takes the number to 283 (Figure 4.18). 

 

Figure  4.17 Crania from Owles’ collection, showing his stamp 

 

The data from this area will initially be presented with Owles’ ‘East Coast’ 

specimens removed. In this case there are nineteen types of fauna represented, six 

of which are not identified to species level. The sample size remains at 115 
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specimens, 64 of which are identifiable to species level and represent 13 species 

(alternative columns of Figure 4.18).  

Within this dataset, there is an abundance of post-Elsterian species (44%, n=51 of 

the total, 80% of the total without the indeterminate species), Mammuthus 

primigenius in particular (45%, n=29, without indeterminate species included). 

The pre-Elsterian is represented by 9% (n=10), which are spread mainly between 

Cervus polignacus Robert (a giant deer species, n=4) and Mammuthus meridionalis 

(southern mammoth, n=3). There are only two species which span these periods of 

the Pleistocene, Cervus elaphus (red deer, n=2) and Equus caballus (horse, n=1). In 

addition, the specimens that are indeterminate could be refined further through 

re-analysis, as can certainly three of the Elephas sp. molars.  

If we assume that Owles’ ‘East Coast’ specimens are synonymous with the Great 

Yarmouth grounds, does this pattern hold true? Of the subsequent 283 specimens, 

there are 25 types of fauna represented, 16 of which have been identified to 

species level. In total, 39% (n=110) are indeterminate to species level with 52% 

(n=147) identifiable as post-Elsterian species, 5% (n=15) pre-Elsterian and 4% 

(n=11) for species spanning early Middle through to Late Pleistocene. Of the 

indeterminate species at least 32% (n=35) have the potential to be further 

identified to species level: determining whether specimens have the potential to be 

defined further relies on the element present. Teeth are easily distinguishable, but 

many other elements rely on size ranges to be assigned to species, or to minor but 

very specific morphologies. If we have enough of the bone present to work with, 

size (which is also variably understood for different species), or a specific part of 

an element with a distinguishing aspect, is necessary for assignment to be made to 

species level and will need to be assessed for each of the elements in the dataset. 

Identifying certain elements further will be a priority for future work. 
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Figure  4.18 Specimens from the Great Yarmouth grounds, showing the inclusion of Owles’ 

collection for each species in the left hand column, as well as it’s exclusion in the columns 

to the right. 

 

As these are currently undistinguishable, however, removing these indeterminate 

specimens shows a clear dominance of post-Elsterian species, the majority of 

which (68%, n=118), as usual, belong to Mammuthus primigenius (woolly 
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mammoth), with the second and third-most prevalent species belonging to 

Coelodonta antiquitatis (woolly rhino) and Bos primigenius (aurochs). In fact all the 

post-Elsterian species are cold-adapted and commonly associated with one 

another in later Pleistocene ‘mammoth steppe’ environments. Similarly, the pre-

Elsterian species are all associated with the extensive Cromer Forest-bed 

Formation, which outcrops along the East Anglian coast and appears to follow into 

the offshore zone. Interestingly, all of the species that span both these broad 

periods would sit happily within a Forest-bed assemblage but would also, aside 

from the interglacial Palaeoloxodon antiquus (straight-tusked elephant), not look 

out of place in the landscapes of the Late Pleistocene.    

The pattern of the more parsimonious assemblage is very similar to the more 

inclusive assemblage but with fewer identified species: not surprising with a 

smaller sample size. It is clear however that the pattern still holds and this 

reinforces the interpretation that Owles’ collections were from grounds exploited 

by the Great Yarmouth trawlers.  

 

4.2.3 Lowestoft Grounds: The Galloper to the Ower 

The Lowestoft trawlers, having been kept out of the Dogger Bank by dominant 

Great Yarmouth and north-eastern fleets, exploited grounds to the east of East 

Anglia along the Norfolk and Suffolk coasts during the winter and over to the coast 

of Holland during the summer(Figure 3.5; Butcher 1980; Robinson 1996).   

There are 174 specimens in this group, with 24 fauna represented, 16 of which are 

recorded to species level (Figure 4.19). Removing those fauna not identified to 

species level leaves a total of 93 specimens. Of these, 71% (n=66) are post-

Elsterian, 20% (n=18) are pre-Elsterian and 9% (n=8) are species that span both 

periods.    
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Figure  4.19 Proportions of species from the Lowestoft grounds, with pie chart showing 

these proportions with the indeterminate specimens removed 

The species Mammuthus primigenius dominates the assemblage by a large margin 

at 27% (n=47), or 51% of those identified to species level. With the indeterminate 

collection of elephant bones also significantly large (20%, n=34), including nine 

molars that could be clarified to species level with further work, this picture of 

dominance parallels what is found on and around the Dogger Bank. The one 

difference with these areas is that the proportion of post-Elsterian species is less 
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than for the Dogger Bank group, which perhaps reflects a relative paucity of extant 

(or exposed) deposits from this date range.  

These more southerly grounds also see the inclusion of, and increase in, Later 

Pleistocene species that are interglacial in character, for example Stephanorhinus 

hemitoechus (narrow-nosed rhino). Palaeoloxodon antiquus has increased numbers 

relative to the northern grounds, which only have examples of this species with the 

inclusion of Owles’ collection. The smaller-scale, more localised examples from the 

Tendring Peninsula clearly support this pattern, with six Palaeoloxodon antiquus 

(straight tusked elephant) identified so far as well as two Stephanorhinus 

hemitoechus (narrow nosed rhinoceros), with a large number of rhinoceros and 

elephant remains yet to be identified to species. The possible presence of 

hippopotamus further supports this interglacial element.       

4.2.4 Dogger Bank 

The species represented for the Great Yarmouth grounds are dominated by post-

Elsterian species, with all these species fitting into the Late Pleistocene ‘mammoth 

steppe’ fauna (e.g. Guthrie 1982; Mol et al. 2006). Given that the Great Yarmouth 

fleets were exploiting the area of and around the Dogger Bank, recent work in this 

area may help to clarify these patterns.      

Spatially extensive 3D seismic data obtained from the oil industry have been used 

by Gaffney and colleagues to investigate the area from the north Norfolk coast to 

the Dogger Bank (Figure 4.20, Gaffney et al. 2007; 2009), where they have mapped 

an unprecedented swathe of late Weichselian/Early Holocene landscape. Although 

the uppermost deposits in this area are predominantly Early Holocene, they 

overlie (in some areas only to a depth of 1m [Fitch et al. 2005]) Late Pleistocene 

deposits.     
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Figure  4.20 Late Weichselian/Early Holocene landscapes (Gaffney et al. 2009) with 

associated fishing grounds. Red box in the insert shows location of main map and the pie 

chart in the centre of the polygon demonstrates the proportions of pre-Elsterian species 

(red), post-Elsterian species (blue) and those that span these two periods of the 

Pleistocene (green). 
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The dominance of post-Elsterian species across both broad areas of northern and 

southern grounds exploited by the Great Yarmouth and Lowestoft fleets could 

indicate a lack of spatial organisation. However, when combined with the above 

geophysical results this is not unexpected, at least for the Great Yarmouth grounds. 

Figure 4.20 shows a shapefile of an area of seabed identified as late 

Weichselian/early Holocene, which corresponds to the areas that these species are 

being recovered from (Gaffney et al. 2009). The increase in numbers of post-

Elsterian species in the Dogger Bank area relative to the Lowestoft areas may be 

explained by this large area of extant deposits. The Lowestoft grounds’ avoidance 

of direct glaciation after the Elsterian (Section 6.1.2), and so potential preservation 

of more temporally diverse deposits, is another possible reason for this pattern. 

This is especially so with the Lowestoft trawlers exploiting grounds close to the 

coastline of East Anglia, where pre-Elsterian deposits are clearly extant (Section 

4.2.1).    

 

 Grounds per collector 4.3

Given what is known about the various main collectors (Section 3.4 and textboxes 

therein), what can looking at their individual collections tell us? Their sample sizes 

will automatically be smaller than the analyses conducted on all of the material 

from large trawling towns. However, accepting that they were likely to be 

collecting from a regular set of trawlers may tell us something about the integrity 

of the deposits at some of the grounds being exploited.  

4.3.1 Owles   

Owles has 204 specimens in total, 35 of which are from the Dogger Bank and 169 

from the East Coast. Since Owles lived in Great Yarmouth all his life, as is printed 

on many of his specimens (Figure 4.16), it is likely that these were collected from 

local trawlers fishing on the Dogger Bank and surrounding grounds (Section 3.2.1).  

Of the 204 specimens, 134 are identifiable to species level and are dominated by 

86% post-Elsterian specimens (Figure 4.21). Only seven specimens out of the 
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entire collection are pre-Elsterian with five Mammuthus meridionalis, and one of 

each Megaloceros savini and Cervalces latifrons (extinct deer species). These may 

represent one of three things: remains from an extant deposit, a background ‘noise’ 

of loose specimens (Section 3.4) or, possibly, the result of ad hoc trawling on pre-

Elsterian deposits on their way back into Great Yarmouth (e.g. Section 3.2.1). 

  

Figure  4.21 Owles’ home and collection locations 
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4.3.2 Gunn Collection 

Living at Irstead but collecting half of his specimens from Great Yarmouth and half 

from ‘off Norfolk’, Gunn may display in his collection specimens from smaller-scale 

local deposits as well as those from the Dogger grounds.  

Figure 4.22 shows the proportions of these species from each area, with the pie 

chart over the Dogger grounds displaying finds from Great Yarmouth and the chart 

to the south displaying results from the grounds ‘off Norfolk’. 
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Figure  4.22 Gunn’s home and collection locations 

 

The Great Yarmouth specimens are dominated, once again, by post-Elsterian 

species at 82% (n=9), compared with a dominance of pre-Elsterian species from 

the Norfolk grounds at 67% (n=8), possibly reflecting the trawling of pre-Elsterian 

CFbF deposits off the Norfolk coast compared with Later Pleistocene deposits 

further to the north. 
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4.3.3 Jeremiah James Colman  

J. J. Colman’s collection is made up of specimens from grounds off Norfolk and out 

of Lowestoft, local Southwold grounds, a few ‘North Sea’ and one Great Yarmouth 

specimen (which is an indeterminate Elephas sp.).   

The collection from deposits near Southwold is 100% post-Elsterian (n=6) with 

five Mammuthus primigenius (woolly mammoth) and a Bos primigenius (Aurochs). 

The Mammuthus primigenius remains demonstrate a date for these specimens that 

is, at the earliest, late MIS 8 (Figure 2.5). Similarly, the specimens off Lowestoft are 

also dominated by post-Elsterian species, at 94% (Figure 4.23). 
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Figure  4.23 J.J.Colman’s home and collection location 

4.3.4 Layton’s collection 

Layton collected his offshore material almost entirely from the oyster dredgers 

working out of Happisburgh on what is almost certainly a local deposit (Section 

4.2.1, 4.5.3, 3.1). His specimens which are from the ‘East Coast’ (n=19) are 63% 

(n=12) cetacean and the remainder are not identified to species. Forty-two out of 
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forty-six of his remaining specimens are identified to species, with 83% (n=35) of 

these being pre-Elsterian (Figure 4.24) 

 

Figure  4.24 Layton’s home and collection location 
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4.3.4.1 Antiquarian patterns 

The patterns of the results for each collector, which have, to a large degree, been 

collected from the same grounds, demonstrate temporal trends. There are no 

collections that display a wide variety of species, but, instead, each collection tends 

to group towards either Later Pleistocene species, or those from the pre-Elsterian. 

Reflecting the broader patterns, the majority of the collector’s material is from the 

later Pleistocene, with Layton’s collection being the only one to be dominated by 

pre-Elsterian material. It seems reasonable to assume that this reflects a good 

degree of integrity to the bone-yielding deposits being disturbed from each area.    

 Dutch comparisons 4.4

Table 4.2 lists the species being trawled from the locality of the Eurogeul (the 

shipping lane into the port of Rotterdam [Mol et al. 2006]) and which are 

commonly associated with the Late Pleistocene ‘mammoth fauna’ (Guthrie 1982; 

Vereshchagin and Baryshnikov 1982) 
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Table  4.2 A typical mammoth fauna (after Mol et al. 2006 [Table 3]): fauna from the 

Eurogeul locality  

 

The parallels between the species being recovered by Dutch researchers (van 

Kolfschoten et al. 1995; Mol et al. 2004; Glimerveen et al. 2004) and those 

dominating the offshore trawling grounds from the UK sector are interesting. The 

Dutch researchers’ relationship with their modern trawling industry are extremely 

well developed so they are able to pinpoint where individual finds that are being 

currently recovered come from on the seabed (Figure 4.25; van Kolfschoten et al. 

1995; Glimerveen et al. 2004; Mol et al. 2006). This is in addition to the work being 

conducted on the dredged shipping land into and out of the Eurogeul, producing a 

fine-grained case study of the submerged deposits from this location (Glimerveen 

et al. 2004; Mol et al. 2006).  
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The Brown Bank, a favoured ground for the Dutch trawlers (and one exploited by 

the Lowestoft trawlers during the summer: Section 3.2.3), appears to be heavily 

dominated by Late Pleistocene ‘mammoth fauna’ material, 17 of which have been 

radiocarbon-dated to this period (Table 4.3, Mol et al. 2006). Given the length of 

time this faunal assemblage could have been present in this broad area (From MIS 

5d until after the Last Glacial Maximum, so approximately 100kys [Lambeck et al. 

2002; White and Schreve 2001; Hijma et al. 2012]), and the fact that, although sea 

levels would have been dynamic, the associated deposits would have been 

subjected to only one major glacial period and its associated effects, the dominance 

of these species relative to those of earlier periods is not surprising.        

 

Table  4.3 from Mol et al. 2006. Radiocarbon dated bones from the Brown Bank locality. 

 

The locations where Dutch trawlers throughout the 1960s-80s were recovering 

large quantities (>100) of remains are shown in Figure 4.25. These remains span 

the Early to Late Pleistocene but are dominated by early Middle and Late 

Pleistocene, with only a few Early Pleistocene species found (Mammuthus 

meridionalis and Anancus arvernensis, both early forms of mammoth [van 

Kolfschoten and Laban 1995]). The accuracy of the points, or how they were 
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arrived at, is not known, nor is the association of species with specific points. 

However, the similarities with the UK data are striking, with a dominance of 

Mammuthus primigenius, good representation pre-Elsterian species, a very good 

representation of Late Pleistocene species and a scarcity of carnivore remains (cf. 

Remuer et al. 2003; Mol and van Logchem 2009).  

 

It is suggested that this species patterning may be due to the presence of 

Pleistocene outcroppings underneath (and therefore between) sand banks in this 

part of the southern North Sea, especially in the deeper water channel shown in 

purple in Figure 4.25.  
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Figure  4.25 Points at which Dutch fishermen have retrieved fauna from 1960s until 1990s, 

also showing the location of the Eurogeul and the Brown Bank (after van Kolfschoten  and 

Laban 1995; Mol et al. 2006). 

 

The Lowestoft trawlers during the 19th Century would have been exploiting the 

seabed in a similar locality to the areas the Dutch trawlers are working now, 

although with the addition of a far wider scope of grounds (Figure 3.5). Table 4.4 
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shows the cross-over with the species recognised from the Dutch lists and the 

Lowestoft lists. Whilst there is only a 42% cross-over, these include the prevalent 

species such as all three mammoths, Palaeoloxodon antiquus, Coelodonta 

antiquitatis and Cervus elaphus. The differences between the datasets appear to be 

a greater distinction of species (e.g. three types of horse recognised) within the 

Dutch list.  This is probably because this study was made by a faunal specialist (van 

Kolfschoten), and because of the presence of several CFbF-specific species 

(Megacerine deer species) with the Lowestoft list.     

 

Species Dutch lists Lowestoft 
lists 

Alces alces (moose) *  
Bison priscus (Bison) * * 
Bos primigenius (aurochs) * * 
Canis lupus (grey wolf) * * 
Capreolus capreolus (roe deer) *  
Castor fiber (European beaver) * * 
Cervus elaphus (red deer) * * 
Cervalces latifrons (moose) *  
Coelodonta antiquitatis (woolly rhino) * * 
Crocuta crocuta (spotted hyaena) *  
Equus bressanus (horse) *  
Equus caballus (horse) * * 
Equus hydruntinus (horse) *  
Eutenoceros sedgwicki (giant deer)  * 
Hippopotamus antiquus (hippopotamus) *  
Lutra lutra (eurasian otter) *  
Mammuthus meridionalis (southern mammoth) * * 
Mammuthus primigenius (woolly mammoth) * * 
Mammuthus trogontherii (steppe mammoth) * * 
Megaloceros dawkinski (giant deer)  * 
Megaloceros giganteus (giant deer)  * 
Megaloceros verticornis (giant deer)  * 
Ovibos moschatus (musk ox) * * 
Palaeoloxodon antiquus (Straight tusked elephant) * * 
Panthera leo (lion) *  
Rangifer tarandus (reindeer) * * 
Stephanorhinus etruscus (early rhino) *  
Stephanorhinus hemitoechus (narrow nosed rhinoceros)  * 
Sus scrofa (wild boar) *  
Ursus arctos (brown bear) *  
Ursus spelaeus (cave bear) *  
Table  4.4 Comparison of Dutch with Lowestoft lists, showing species occurring within 

both in blue (Dutch data after van Kolfschoten and Laban 1995) 

 

The Dutch comparison, using modern trawlers, demonstrates the potential for 

pinpointing ever more direct parts of the seabed when fishermen are available to 
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work with and modern GPS techniques can be used. Whilst the species lists are not 

refined to specific areas, the potential is clearly there, but this will require the 

development of relationships with current trawling communities.  

The association of species from this area with the known location of both early 

Middle and Late Pleistocene deposits lends weight to the hypothesis that these 

specimens are deriving from intact seabed deposits. The implications that this has 

for the Palaeolithic are substantial, as it indicates that fragments of Palaeolithic 

landscape are still preserved.   

 Ecologies  4.5

Having talked about the fauna with respect to broad seabed locations and the 

range of time periods that they may represent, it is also necessary to highlight 

them as broad-scale ecological markers. In this way they are able to shed light on 

the types of environments that they derive from, be it, for example, interglacial, 

periglacial, open or wooded and, in turn, whether these are likely to be related to 

high- or low-stand periods.   

Given the vast time-span of this research, few species within the collection are 

indicative of a definite period of time but several are present throughout, such as 

Cervus elaphus (red deer) and Palaeoloxodon antiquus (straight-tusked elephant). 

In addition, the majority of the species are present throughout at least several MI 

stages, as indicated by Figure 2.5, making their attribution to various ecologies 

potentially useful for their further refinement. 

The results presented indicate a prevalence of low-stand, cold-stage (and hence 

post-Elsterian) species relative to those representing high-stand interglacials. This 

is potentially to do with the availability of the terrestrial land throughout post-

Elsterian and the difference in its morphology during high-stand versus low-stand 

periods; its implications will be discussed further within Chapter Six.           
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 Lithic Results 4.6

With no lithics recovered from the offshore trawling industry, a brief analysis of 

those from beach locations has been carried out. Table 4.5 shows the 152 lithics 

collated from foreshore or beach locations. The collection is dominated by flakes 

but with 38% (n=57) handaxes which is likely to be due to the inclusion of the 

results from the (exclusively) handaxe focused paper by Robins et al. (1998).  

Site Core Flake Handaxe 

Aldeburgh 0 1 0 

Area 240 1 1 4 

Arwarton 0 0 1 

Bacton 0 0 1 

Bawdsey 0 30 1 

Benacre 0 0 1 

Casiter on sea 0 0 2 

Clacton on sea 0 0 1 

Cley next the sea 0 1 0 

East Mersea 0 0 1 

Eccles Cart Gap 0 2 0 

Felixstowe Ferry Beach 0 11 2 

Great Yarmouth beach 0 0 1 

Happisburgh beach 3 16 10 

Harwich 0 0 1 

Herne Bay 0 0 1 

Hopton on Sea 0 0 1 

Horsey Beach 0 0 7 

Happisburgh site 1 0 2 0 

Lessingham 0 1 5 

Mundesley Besch 0 1 0 

Overstrand 0 2 1 

Pakefield 0 1 0 

Sea Palling 0 1 7 
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Sherringham 1 0 0 

Shotley 0 0 1 

Sidestrand 0 1 4 

West Mersea 0 14 0 

West Runton 2 3 3 

TOTAL 7 88 57 

Table  4.5 showing the frequency of lithic-types at locations 

The lithic finds that were collated from beach and foreshore locations have been 

plotted to look at clusters of this material. Figure 4.26 shows the bulk of the 

material clusters at, and to the south of, an outcropping of CFbF near Happisburgh. 

This correlates with the dominant direction of shoreline current in that area and 

may indicate movement of the lithics by long-shore drift (Vincent 1979). There 

have also been a series of sea defences created just to the south of Happisburgh at 

Sea Palling which may be influencing the movement of material from the 

immediately offshore zone onto the beaches, or further down-current.  

Questions therefore arise whether these lithics are washing in from offshore, or 

simply being eroded from existing cliff deposits. The cliff and foreshore deposits to 

the south of Sea Palling (c.7km south of Happisburgh) are largely Holocene, so any 

Palaeolithic stone tools in these locations are likely to be intrusive, having been 

transported from further to the north (although see the two outcroppings of CFbF 

deposits south of Great Yarmouth). The patterns of sediment transport in this area 

are currently being explored to further inform this work (e.g. Thomalla & Vincent 

2003; Nicholls et al. 2012). 

This work provides a baseline understanding of the lithics in this area, with much 

work to be done on forming an understanding of their provenance and movement. 

Synchronous and on-going work by researchers at the Natural History Museum 

and British Museum is developing this picture further, as well as integrating it with 

some specific faunal remains from the beaches in this area.   
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Figure  4.26 Clustering of lithic artefacts along the coast of East Anglia, with arrows 

showing dominant current direction (CFbF and current info after Vincent 1980; Robins et 

al. 2008). 
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 Discussion 4.7

This chapter has applied the methods developed in Chapter Three to the 1,119 

specimens recovered from the southern North Sea since the early 19th Century. 

Generally overlooked or considered without use, these results have now 

demonstrated that there is a significant amount of information that can be derived 

from this material. They have also highlighted the limitations of the record as well 

as areas where more work would be beneficial. 

Returning to the questions posed in Chapter One: 

• What is the nature of these specimens and the deposits they are contained 

within? 

• What do their distribution and patterning tell us about the offshore resource? 

 

What can now be said?   

4.7.1 The nature of the specimens  

The specimens recovered are made up of a variety of element types and sizes, 

representing all parts of the skeleton, but with a definite dominance of identifiable 

elements such as teeth and vertebrae. This is likely to reflect collector preference 

in terms of element but also potentially collector and trawler preference in terms 

of size, with bones such as mammoth humeri taking up far more room on board 

vessels and much less easy for a dock-side collector to transport.  

In terms of the species found, there are several interesting patterns that can be 

observed. There is a clear dominance of post-Elsterian species, with a high 

proportion of unidentified Elephas sp. (mammoth) remains. This holds true 

throughout the southern grounds as well as those to the north on and around the 

Dogger Bank.   

The dominance of Mammuthus primigenius (woolly mammoth) is unsurprising 

given their size, from the perspective of preservation as well as recovery. This 
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species were present from late MIS 8 and through all subsequent cold stages (later 

MIS 5, MIS 4, MIS 3 and MIS 2 [Currant and Jacobi 2001; Schreve 2001]), and most 

iconic during the cold stages of the Weichselian (MIS 5d – 2, c.110ka – 10ka). Given 

its recent occurrence in North Western Europe, its dominance in the record 

relative to species that went extinct earlier in the Pleistocene is to be expected; 

although these earlier deposits do exist, they are likely to be more fragmented than 

those formed during the Weichselian, as they have undergone a higher number of 

destructive periods of trans- and regression as well as glaciation.  

The high numbers of Rhinoceros sp. remains, and relatively high numbers of 

Coelodonta antiquitatis (woolly rhinoceros) so far identified, makes sense from the 

perspective of timescale but is still an unusual picture. Coelodonta antiquitatis are 

(so far) only recognised from the British record in MIS 8, late MIS 7 and MIS 3 and, 

for example, their prevalence at Lynford is very low, forming only 1.3% of the 

faunal assemblage (Smith 2012). It is noted by Mol (et al. 2006) that the abundance 

of this species in the deposits from the Brown Bank are unusually high, more so 

than any other area of Eurasia, which is a picture supported by this research. This 

leads to the question: does this have something to do with the ecologies of these 

areas during the Late Pleistocene being particularly attractive for this species? This 

is a question that will be returned to in the discussion of Chapter Six.  

The patterning identified for the broader offshore areas, both out of Lowestoft as 

well as Great Yarmouth, are the dominance of post-Elsterian species. Combined 

with a scarcity of species indicating interglacial conditions (such as Palaeoloxodon 

antiquus [straight tusked elephant] or Stephanorhinus hemitoechus [narrow-nosed 

rhinoceros]), it is likely that this pattern is due to the palaeogeography and 

associated sea levels of the southern North Sea throughout the Pleistocene (e.g. 

Figure 2.3 showing a lack of extensive terrestrial deposits in the southern North 

Sea after the Elsterian interglacial). As touched on in Section 4.4, Chapter Six will 

look at the combination of these remains with known seabed geology in order to 

explore these ideas further and to address the second part of the first question, the 

nature of the deposits.      
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4.7.1.1 Higher resolution patterns 

Evidence from smaller-scale areas closer to the coastline is easier to interpret, 

since we know that these locations were likely to have been exploited by smaller, 

local boats, launched from the beach (Section 3.2.1). In terms of spatial refinement, 

the collection from these areas is made up of two types of data - modern and 

historic - with the modern data being generally more spatially accurate than the 

historic, if only because the collector is still alive to speak with. Both types of data, 

however, have provided examples of higher-resolution areas which can be further 

investigated. Results from these areas show a definite distinction between, for 

example, the locations of Happisburgh and the Tendring Peninsula (Fig 4.13). 

Although several other locations have been identified with an extremely small 

number of specimens, both Happisburgh and the Tendring Peninsula have larger, 

more reliable sample sizes. In these two areas the results have demonstrated the 

possibility of significantly refining the search for Palaeolithic deposits on the 

seabed and, whilst these will be discussed as case studies in Chapter Five, it is 

important to note the implications that this has for the overall results. 

What these areas demonstrate is that these methods not only have the ability to 

refine this dataset into broad assemblages characterising broad areas of seabed, 

but that this can be pushed even further to singling out specific locations. 

Furthermore, it shows the range of possible scales, and therefore questions, which 

can be addressed through these datasets. The potential for higher-resolution 

information tackles local insights into hominin behaviour or ecologies of 

submerged landscapes, with broader evidence addressing longer-term patterning 

of environmental and archaeological change.    

4.7.2 What do their distribution and patterning tell us about the offshore 

resource? 

The broader patterns in the data suggest that the material being dredged from the 

Dogger Bank area is similar in character to that being dredged off the southern 

fishing grounds and that both are dominated by post-Elsterian species. This 
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contrasts with Happisburgh, Cromer and West Runton, areas closer to the coast, 

which show pre-Elsterian assemblages. Southwold and the Tendring Peninsula to 

the south, are, by contrast, dominated by post-Elsterian species (although 

Southwold has less of a distinction between the two, and a smaller sample size 

[Figure 4.10]). Do these patterns imply total reworking of the fauna on the seabed, 

or can we infer that this material derives from distinct Pleistocene deposits?  

To address this question it is important to understand the processes that will have 

affected deposits from these areas, and where once-terrestrial areas would have 

been. During the early Middle Pleistocene, the North Sea formed a shallow marine 

embayment with coastlines (during high stands) seaward of where they are today 

along the East Anglian coast, and forming a coastal plain at approximately 52°N 

(Figure 4.26). Although these areas were not directly glaciated throughout this 

time, during cold, low-stand periods (broadly speaking MIS 18, 16 and 14) the area 

to the north of the highstand coastline formed part of the Rhine-Thames-Meuse 

delta system (Hijma et al 2012).  
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Figure  4.27 Pre-Elsterian, early Middle Pleistocene coastline showing with dry land to the 

south. (after Hijma et al. 2012).  

 

 

After the Elsterian glaciation and at least the initial breaching of the higher ground 

where the Dover Straits exist today, the southern North Sea was variably 

submerged at each high stand. Higher sea levels would have created an island out 

of modern-day Britain or at least created a coastline that is unfamiliar in modern 

standards (Gibbard 1995, 2007; Gupta et al. 2007; Hijma et al 2012; Toucanne et al. 

2009a; Busschers et al. 2008). During low stands, however, Britain became a 
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peninsula of North West Europe; faunal and floral exchange was once again 

possible and the southern North Sea would have been occupied by varied and 

dynamic communities. This does present an oversimplified picture, but essentially 

this cyclical pattern of sea level change occurred in complex patterns throughout 

the Pleistocene.  

Despite these issues, what this means for the patterning of the specimens is that 

deposits of post-Elsterian date which yield terrestrial remains are more likely to 

reflect a cold-stage fauna than an interglacial one. This pattern is certainly seen 

within the species recovered for this research, with the collection clearly 

dominated by ‘mammoth steppe’ fauna (Figure 4.3). Areas that have yielded 

relatively high numbers of pre-Elsterian or interglacial species have all been along 

the coastal strip, reasonably within areas that, because of differences in 

topography and bathymetry, could have been terrestrial even during high sea level 

stands (Figure 2.3). 

The fact that we see any patterning to the submerged Pleistocene resource is 

extremely encouraging, and that the patterns are those that we would expect to 

see has even more positive implications for the integrity of the record. A more in-

depth discussion of these patterns, as well as how they relate to the bigger 

Palaeolithic questions will be discussed in Chapter Six, after the case studies of the 

smaller-scale, high-resolution locations have been presented.   

 

 Conclusions 4.8

The results of this analysis demonstrate the amount of latent information 

contained within the prolific faunal resource from the submerged zone. Despite 

being overlooked for over a century, the combination of a historiography of the 

trawling industry with information about collectors can re-imbue these finds with 

varied levels of context.  

Although predominantly at a broad scale the observed patterning is arguably 

significant and is likely to reflect the more fragmented picture of pre-Elsterian 

deposits relative to those from the more recent post-Elsterian: a fragmentary 
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landscape, primarily dominated (at least superficially) by later Pleistocene 

material. Fragmentary patches of earlier material are likely to exist throughout, 

but are prevalent in distinct areas of good preservation. The fact that areas of 

higher resolution with coherent results exist provides an encouraging and exciting 

route to more in-depth analysis and, potentially, to ways of further interrogating 

the lower-resolution data from further offshore. Chapter Five will present these 

case studies and discuss the potential for tangible engagement with these deposits.  

These results therefore present a substantial increase in what we know about the 

submerged Palaeolithic record and what it can tell us about contemporary deposits. 

Moving the situation from one dominated by Quaternary deposit models, it has 

brought the artefactual record into focus and provides foundations from which we 

can begin to understand and interrogate the submerged zone.     
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Chapter 5:  Investigating higher 

resolution patterns  

The case studies of the Oyster Bed and the Tendring Peninsula 

 

The patterns identified throughout the course of this research have significant 

implications for the potential of intact Pleistocene deposits to be discovered on the 

seabed. Chapter Three saw the teasing-out of small-scale historic trawling 

practices (Section 3.2.2) which were analysed as distinct locations in Chapter Four 

(Section 4.4.2.1). The specific areas of the Happisburgh Oyster Bed and the seabed 

off the Tendring Peninsula (i.e. off Clacton, see Figure 5.1), both with larger sample 

sizes, move from the broad-scale patterns to increasingly refined locations. This 

chapter will focus on the specimens recovered from these areas, looking also at 

how these fit into the wider picture. The case study of the Tendring Peninsula, with 

fossil specimens recovered over the past thirty years, will be a specific focus and 

will demonstrate the ability to recognise and target defined fossil-bearing locations 

on the seabed.   

Groupings within the collections will be analysed and discussed with regards to 

species associations, skipper-identified locations and the incorporation of new 

geophysical data collected for this research. The potential for this to develop the 

way we work with submerged data, moving towards a more focused approach, will 

be explored and the methods for detecting human agency within such collections 

discussed. 
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Figure  5.1 Sites discussed in the text, showing the interpreted location of the Oyster Bed 

off Happisburgh, and the Wallet Study Area off Clacton.  

 Case Study 1: The Happisburgh Oyster Bed 5.1

Chapter Four identified a broad trend among the coastal locations of East Anglia 

(Figure 4.8, 4.11), with higher proportions of pre-Elsterian species in the north, 

moving to post-Elsterianin the south. The area near Happisburgh was one of the 

best represented locations with 49 specimens (42 that were identified to species), 

predominantly derived from one collector: Reverend James Layton (Figure 5.2; 
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Text Box 5). This section will begin by characterising the geological setting of the 

area onshore and offshore Happisburgh, before looking in more detail at the 

species recovered from the Oyster Bed and its potential location.  

5.1.1 Archaeological and Geological background 

The area around Happisburgh is dominated by Pleistocene deposits of the CFbF, 

overlain by cliffs made up from Elsterian till (Rose et al. 1999; 2000; 2008; Preece 

and Parfitt 2001; 2012). As shown in Text Box 4 the deposits of the CFbF are 

extensive but by no means continuous, forming from c.1.8Ma until the Elsterian 

glaciation, with significant hiatuses throughout. Recently, deposits at the site of 

Happisburgh 3 have been excavated (Text Box 2; Parfitt et al. 2010), identifying 

Early Pleistocene deposits with evidence of hominin occupation in the upper 

estuarine reaches of a large river system (Parfitt et al. 2010; Ashton et al. 2014). 

Coastlines were clearly further eastwards than today, implying the potential for 

the existence of fragments of these deposits in the currently submerged zone.  

The foreshore deposits shown in Figure 4.13 demonstrate the lateral extension of 

these deposits into the inter-tidal zone and have yielded archaeology from younger 

CFbF dates (e.g. Happisburgh 1 [MIS 13]: Ashton et al. 2008a). In addition, large 

quantities of pre-Elsterian remains have been found washed up onto the beaches 

in this area, as well as within these deposits. Understanding the deposits offshore 

is therefore a priority for placing the finds into some kind of context, as well as 

linking the onshore and offshore zones.  

Recent geophysical mapping in the offshore vicinity (Limpenny et al. 2011), 

combined with a coarser-grained record (Cameron et al. 1992) shows the 

existence of the Yarmouth Roads Formation (Figure 4.12), the offshore correlative 

of the CFbF. These deposit models, however, are based on widely-spaced 

geophysical lines ground-truthed by occasional cores, meaning that extrapolation 

is necessary and localised deposits may be missed. Higher resolution swath 

bathymetry (Environment Agency, Norfolk County Council) in conjunction with 

onshore ERT (Electrical Resistivity Tomography) and EM (Electromagnetic 

methods) shows what appears to be a series of channels running into the offshore 

zone which are thought to tie-in with early Middle Pleistocene deposits extant 
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within the cliff section (ongoing work being undertaken by University of Wales 

Trinity Saint David, University of St Andrews, Queen Mary University, University of 

Southampton, British Museum and Natural History Museum). At present, there are 

two scales being worked at for the cliff deposits: the larger scale (with 5m 

spacings) which shows large channel systems down to a depth of around 40m, and 

a smaller scale which, with 1m spacings, shows smaller channels nested inside the 

larger (Bates pers. comm.). Sub-bottom seismic data was collected by Wessex 

Archaeology in 2006, however, which came to within 400m of the shoreline and 

comprised four parallel lines immediately offshore from Happisburgh. This data, 

which did not include any corresponding cores, only recognised deposits of the 

Westkapelle Formation (approximately corresponding with the upper deposits of 

the Early Pleistocene Norwich Crag onshore), overlying either late Pliocene Red 

Crag or Upper Cretaceous chalk (Wessex Archaeology 2008). Given the distance of 

this survey from the shore (necessary due to the presence of groynes), and the 

difference in height (OD) of the seabed at this point (between 11.1m and 15.9m) 

compared with that of the foreshore deposits (~0m), it is possible that younger 

deposits are extant in the intervening zone.  

The discovery of the archaeological site of Happisburgh 1 indicates the existence of 

younger early Middle Pleistocene deposits in the vicinity (Ashton et al. 2008a). 

Attributed on largely biostratigraphical grounds to MIS 13 (due to the presence of 

the vole Arvicola cantiana as well as a similar coleopteran assemblage to High 

Lodge and Waverley Wood shown to have formed within late aggradations of the 

Bytham river [Ashton et al. 1992; ibid.]) this site highlights the lack of vertical 

separation of deposits along this stretch of the coastline, demonstrating how sites 

separated by several hundred thousand years can exist at much the same elevation 

(Rose et al. 2001). Moreover, it draws attention to the difficulties involved with 

having chronological control over these deposits, compounded by the lack of 

reliable dating techniques (cf. Penkman et al. 2011).  

Deposits in the vicinity of the Oyster Bed therefore appear to be a mixture of 

Yarmouth Roads (CFbF) and Westkapelle (youngest Norwich Crag) Formations.    
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5.1.2 Species characterisation 

The species from the area of Happisburgh were predominantly recovered by 

Reverend James Layton (Figure 5.2) who was extremely interested in natural 

history (Text Box 5).  He paid particular attention to the specimens that were 

dredged from the location of the ‘Oyster Bed’ by oyster dredgers during the 1820s 

and published a letter on these finds in the 1827 volume of Edinburgh Journal of 

Science (1827, 199). His collection was eventually deposited with the Natural 

History Museum, London.  

Figure  5.2 Species off Happisburgh, showing those collected solely by Layton. As 

throughout Chapter Four, red shows pre-Elsterian, Blue shows post-Elsterian, Green 

indicates species which span these periods and grey are indeterminate to species level. 
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The wider collection from Happisburgh also includes five specimens recovered 

from other collectors; their inclusion in the assemblage does not change the 

patterning observed (Figure 5.2). Given Layton’s explicit interest in the Oyster Bed, 

however, this study will concentrate solely on his specimens. Analysing this 

collection shows a striking dominance (83% [n=33] out of those identified to 

species [n=40]) of pre-Elsterian species (Figure 5.2).  

Figure  5.3 Palaeoloxodon antiquus from Layton’s Oyster Bed collection 

The addition of the species Palaeoloxodon antiquus (straight tusked elephant, 

Figure 5.3), the only species within this assemblage that spans the early Middle – 

Late Pleistocene, seen at sites such as Pakefield, could reasonably be added to this 

group, increases the number to 95% (n=37). But how likely are these associations? 

Previous assemblages attributed to this pre-Elsterian period have included 

quantities of Mammuthus meridionalis (Southern mammoth) in association with 

typical pre-Elsterian species such as Megaloceros dawkinski and Cervus latifrons 

(pre-Elsterian giant deer species). This works well due to the extension of 

Mammuthus meridionalis into the later part of the early Middle Pleistocene 
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(~0.6Ma, MIS 15/14). However, the association of this species with Stephanorhinus 

etruscus (Early Pleistocene rhinoceros [Breda et al. 2010]) implies that it is more 

likely that the Oyster Bed, where they’re deriving from, is an Early Pleistocene 

deposit. The single presence of Megaloceros savini (pre-Elsterian giant deer) 

possibly supports this, with its appearance in Europe during the Early Pleistocene 

(~1.3-0.5Ma [van der Made and Tong 2008; Kahlke et al. 2011]), although this 

species does not appear to have been found in Britain earlier than at Pakefield (i.e. 

MIS 17/19 [Parfitt et al. 2005; Preece and Parfitt 2012]). It is therefore most 

probable that the Oyster Bed, at least in part, is an Early Pleistocene deposit, in 

which case the Palaeoloxodon antiquus (straight tusked elephant) specimens are 

likely to be deriving from a deposit of different age. Given the time transgressive 

nature of the CFbF deposits in this area, the existence of early Middle Pleistocene 

deposits in the immediate offshore area is likely and is supported by geophysical 

mapping (Figure 4.12; Cameron et al. 1992; Limpenny et al. 2011).     

5.1.2.1 Locating the collection 

What is most exciting about these finds is that there is the potential for locating 

them on the seabed. The oyster bed was an ephemeral occurrence and one which 

(apparently) was not formally mapped, making its location somewhat ambiguous. 

Despite this, with the finding of archived maps at the offices of Imray, Laurie, Norie 

and Wilson, inspection of a chart from 1826 was possible. This chart shows a few 

areas that could be likely candidates and Figure 5.4 shows a modern (1964) fishing 

chart with an insert of the area concerned. The insert shows two obstruction/ridge 

areas, the smaller of which is approximately ¾ mile from the shore opposite 

Happisburgh, which is the approximate location described by Reid in his 1890 

publication (1890, 174). The correlation of this seabed feature with the original 

description supports the interpretation that this could be the location of the Oyster 

Bed and therefore seems like a logical place to begin ground-truthing for deposits 

and faunal remains.  
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Figure  5.4 Imray, Laurie, Norie & Wilson fishing chart from 1964 with expanded 

box of an 1826 chart showing the presence of a ridge/area of seabed obstruction in 

the location of the described Oyster Beds. 
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In the vicinity of Happisburgh there are some other interesting correlations, 

specifically the specimens from the Sea Palling area, immediately to the south. 

These have been recovered after being washed onto a specific section of the beach 

and fall into two pre-Elsterian assemblage types: a later early Middle Pleistocene 

assemblage and an Early Pleistocene assemblage (Chapter Four, Section 4.2.1.1 

[Parfitt pers. comm.]). This is especially significant given the known hominin 

occupation of these landscapes in the early Middle Pleistocene (Ashton et al. 

2008a).  

An English Heritage funded project is currently underway investigating these 

offshore deposits and how they relate to those of the onshore CFbF in this area. 

This project will hopefully be shedding light on the correlation of these spatially 

restricted assemblages, linking them in with fragments of Early to early Middle 

Pleistocene deposits offshore. The differences between sediment transport 

regimes in the near-shore areas versus those further offshore may also shed light 

on the patterning and movement of specimens and improve our ability to 

provenance material. 

 

 Case Study 2: The Tendring Peninsula 5.2

In a similar way to Happisburgh, the majority of the specimens recovered from the 

seabed off the Tendring Peninsula were recovered by one man - Mr Les Brand - 

over the past thirty years. In addition, the historic collections of bones from this 

location also appear to have been derived from the seabed within a few kilometres 

of the coast. This section will provide a geological and archaeological background 

to the area in question before looking in more detail at the collection itself.  

5.2.1 Archaeological and geographical background 

The Tendring Peninsula and surrounding coastal areas of South-East Essex are 

dominated by various spreads of low-lying fluvial terrace gravels cut into the 

underlying London Clay, relating to river systems which both pre and post-date the 

Elsterian Glaciation (Bridgland et al. 1999; Roe et al. 2009; Roe and Preece 2011; 
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Roe et al. 2011). The northern extent of the area, near Little Oakley, contains 

deposits which document the position of the Thames whilst it was depositing its 

pre-Elsterian Kesgrave Sands and Gravels: sites such as Little Oakley (Preece et al. 

1990), Wivenhoe and Ardleigh (Bridgland 1988; Rose et al. 1999; Rose et al. 2010). 

Despite their extensive nature, these sands and gravels are surprisingly lacking in 

archaeology, with only a few potential find spots (Hosfield 2011 [as well as the 

Happisburgh 3, which has been assigned as part of a converged Thames/Bytham 

system flowing out of north Norfolk in the Early Pleistocene (Parfitt et al. 2010)]).  

During the Elsterian stage, glacial ice diverted the Thames south to its current 

course (Bridgland 1988; 1994). The deposits to the south of the Tendring 

Peninsula are representative of these late Middle Pleistocene fluvial landscapes, 

differentiated from the earlier Medway gravels by their distinctively post-Elsterian 

clast composition (Bridgland 1988). Several sites of archaeological importance 

have been discovered associated with these myriad channel systems and a 

complex set of biostratigraphic and amionostratigraphic criteria, as well as river 

terrace positions, have been used to assign them to specific interglacial periods 

(Bridgland 1994; Roe et al. 2009; Roe and Preece 2011).  

The internationally important site of Clacton, type-site of the Clactonian industry, 

is part of this fluvial sequence and, forming part of the first interglacial, post-

diversion drainage route taken by the Thames river system, has been 

unequivocally dated to the first post-Elsterian interglacial: the Holstenian (MIS 11) 

(Bridgland 1988; Bridgland et al. 1999). The channel-fill sequence which 

encompasses these richly fossiliferous deposits is the downstream equivalent of 

the Swanscombe sequence in Kent, supported by biostratigraphy, 

aminostratigraphy and terrace stratigraphy (McNabb 2007). The amount of 

evidence from these sites (in addition to archaeological sites in other locations 

such as Hoxne, and purely environmental sites such as Marks Tey) provides a rich 

database of information for at least part of the Holstenian interglacial, meaning 

that an array of marker species are known:  Dama dama clactoniana, Ursus 

spelaeus, Talpa minor (small mole), Trogontherium cuvieri (giant beaver), 

Oryctolagus cuniculus (rabbit) and Microtus subterraneus (European pine vole) 

make up a distinctly Holstenian indicator group (Schreve 2001).  
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There exist two further interglacial channel deposits in the vicinity which have 

been extensively studied: Cudmore Grove and the East Mersea Restaurant Site. 

Contained within estuarine silts and clays in a steep-walled channel-like 

depression in the London Clay, the Cudmore Grove Channel site has produced 

several flint flakes (Roe and Preece 2011). Accumulating throughout much of an 

interglacial sequence, this channel sequence was deposited in a dynamic and 

varied coastal environment (ibid.). Distinguished biostratigraphically from the 

Holstenian through the early interglacial presence of the bivalve Corbicula 

fluminalis (which occurs later in all Holstenian assemblages [Meijer and Preece 

2000]), this early presence links this site to others which are thought to be 

attributed to a post-Holstenain stage, MIS 9 (Barling and Hackney Downs 

[Bridgland et al. 2001; Green et al. 2006]). Furthermore, the presence of the bear 

Ursus arctos as opposed to the Holstenain-type Ursus spelaeus, and recent 

convincing AAR evidence, place Cudmore Grove within MIS 9 (Roe and Preece 

2011).        

The East Mersea Restaurant Site is located just 2km along the foreshore from 

Cudmore Grove and, characterised by a non-marine mollusc assemblage and 

indicative vertebrates including Hippopotamus, can be reliably placed within the 

Last Interglacial (MIS 5e [Roe and Preece 2011]). 

Along with Holocene channels, there are therefore four post-Elsterian interglacials 

represented in the vicinity of the Tendring Peninsula as well as that of the pre-

diversion Thames represented at Little Oakley, tentatively assigned to 

approximately MIS 15 (Preece et al. 1990; Preece and Parfitt 2000; 2012). 

The offshore zone has had limited investigation and the offshore picture is 

generally highly speculative, but several studies have demonstrated the existence 

of the continuation of these deposits on and under the seabed (eg. Dix and Sturt 

2011; DONG Energy 2011). The identification of a pre-Elsterian fluvial system in 

the north of the Outer Thames Estuary (Dix and Sturt 2011) is likely to be linked to 

the pre-diversion Thames deposits flowing across the Tendring Peninsula (Preece 

et al. 1990; ibid.) and, although initially incised in the early Middle Pleistocene, has 

yielded deposits from a range of Early to Late Pleistocene and Holocene dates (Dix 

and Sturt 2011), indicating cyclical re-activation of this system. The potential 
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therefore exists for a range of Pleistocene – Holocene deposits on the seabed in this 

area.  

The continuation of the Clacton Channel has been inferred offshore by Bridgland 

and D’Olier (1995). More recently, geophysical and geotechnical work in the area 

has picked up a Pleistocene palaeochannel system immediately offshore Clacton 

(DONG Energy 2011; Heamagi pers. comm.), although these deposits have yet to be 

dated.  The same work has also identified Holocene Channels cut into these 

Pleistocene deposits. Although in approximately the same location as the proposed 

Clacton Channel continuation, evidence from the offshore channel deposits 

appears to correlate with either the Cudmore Grove channel system (MIS 9) or, 

potentially, the following interglacial, MIS 7 (Figure 5.7; Dong Energy  2011, 154).  

In terms of a later Pleistocene signal Bridgland and D’Olier (1995) have presented 

offshore maps of Late Pleistocene deposits of the Thames – Medway system. 

However, due to a relative dearth of deposits, much information about the 

evolution and direction of these systems is unknown (ibid.). It is thought that 

during the Late Pleistocene this area would have been dry land at the head of these 

Thames-Medway systems (Bridgland 1995). There is therefore potential for Late 

Pleistocene terrestrial deposits in the vicinity, although these have yet to be 

identified. 

In summary, deposits from a range of ages exist in this offshore area documenting 

the evolution of a dynamic sea/landscape throughout the Pleistocene and into the 

early Holocene. Archaeologically speaking, the coastal areas are dominated by late 

Middle Pleistocene sites although these are still few. The small number of MIS 3 

sites, when much of this area would have been dry land, is surprising, especially 

given the clear presence of Neanderthals on the other side of what is now the 

southern North Sea basin (Hublin et al. 2009; Semal et al. 2009). Perhaps the low-

stand Channel River, although with productive tributaries and lower energy areas, 

provided a significant barrier to cross.  

Faunal specimens recovered from this area will need to fit into distinctive 

biostratigraphical assemblages if they are to provide clear signals for the age of 
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their parent deposit, but the addition of new geophysical as well as future 

geotechnical and ground-truthed data should help to clarify this position.    

 

5.2.2 Locating the collection 

The specimens recovered by Mr Brand can be well refined on the basis of his 

localised trawling patterns, meaning that we can begin to link collections back to 

areas of seabed. The significance of this lies in the leap in approaches to the 

submerged zone that this provides: being able to engage with specific Pleistocene 

seabed deposits which are known to be yielding Pleistocene fauna. This section 

will discuss the ways in which these locations have been refined, present new 

geophysical data collected for this research and link this back in with current 

geological knowledge to provide a clearer picture of the context for these 

specimens. 

    

5.2.2.1 Understanding trawling patterns 

Having trawled the seabed off Clacton for several decades, Mr Brand had 

developed well refined trawling patterns all within close proximity to the coastline. 

Describing the process as like “a game of cat and mouse”, these trawling grounds 

depend, unsurprisingly, on the areas of seabed inhabited by fish at any particular 

time. This knowledge is not only built-up over many years but also extremely 

seasonal, with the gutting of fish and observing the types of foods in their stomachs 

guiding the trawlers to different grounds at different times of year.  

In terms of seabed morphologies, trawling will take place across all areas: flat 

muddy areas, sand banks, gravels, the only area that is avoided would be areas 

with large boulders or known obstructions (such as wrecks or unexploded 

ordnance, of which there are many in the area).  

Mr Brand trawled with a twin-rigged Otter Trawl, which used four inch rubber 

weights tied together by a rope of chain to drag across the seabed. Given the earlier 

assertion that otter trawls may be less likely to recover fossil material (Section 
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3.2.1.5), this large faunal collection is evidence to the contrary (or, potentially, 

indicates an abundance of material in this location). The implications of this for 

recovery patterning in the historic record will be discussed in Chapter Six.     

 

5.2.2.2 Refined locations 

Through working with the Colchester Museums Service, it was possible to meet Mr 

Brand and discuss the location and recovery of his specimens. Although there are 

several areas where bones have been recovered, these are all fairly distinct from 

one another. For example, one area was well known to local skippers as the 

location of a large, probably relatively modern, whale carcass yielding bright white 

bones (Figure 5.5). He also identified two crucial areas: one that has yielded 

approximately 80% of his specimens, an area 1km x 3km in the Wallet, near 

Gunfleet Sands as well as another area which corresponds to a core through 

submerged palaeochannel deposits identified as Last Interglacial in date (OSL 

dated to c.116ka [Dix and Sturt 2011]). 

Figure 5.5 shows a chart documenting the areas of seabed that have yielded bones, 

and highlighting the area of The Wallet, where the vast majority of bone material 

has come from. 
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Figure  5.5 showing areas that have yielded bones (Brand collection only). (Data 

source: UKHO bathymetry) 

 

The Wallet is a seabed feature situated approximately 4km off the coast of Clacton 

on Sea running parallel with the coastline in this area (Figure 5.5). From Admiralty 

Charts the seabed around the Wallet is defined as coarse sands with black shells 
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and rocks, to mud, coarse sands and black shells. BGS seabed sediment maps have 

similarly shown the area to be dominated by muddy, sandy, gravel (Figure 5.6), but 

as illustrated, this mapping is on quite a crude scale and cannot provide a great 

deal of detail about the nature of the deposits in question. The presence of black 

shell material, however, as noted on the chart, has also been found by Mr Brand 

occurring in areas where he has recovered Pleistocene bone material and 

described as ‘old fused-together oyster shells’; a potentially significant correlation.  
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Figure  5.6 British Geological Survey seabed sediments in and around the Wallet study 

area, shown in red hatches. (www.bgs.ac.uk) 

 

 

Despite being several kilometres in total length, the area defined as producing 

material from the Wallet is a fraction of this and the study area is located at the 

north-eastern extent (Figure 5.5-5.9). At approximately 1km by 3km, this defines 
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the main study area for this work. Despite several other areas of seabed within 40 

kilometres also yielding faunal material, the Wallet has not only produced the most, 

but been the most consistent in terms of recovery. Since specific faunal remains 

cannot be attributed to specific locations, however, the faunal material is described 

as a whole (Section 5.2.3). 

Having these locations, although not precise GPS coordinates, provides a 

significant advantage over the historic collections as they reduce the area over 

which the specimens may yield from. A 1kmx3km square may not be insignificant 

in size, but it is far reduced from the Dogger Banks 260km x 97km (Stride 1959), 

for example. Working with the combination of this more detailed information and 

the faunal identifications for this area means that we can begin to engage with 

these areas of seabed in significantly more detail.        

In October 2013, swath bathymetry data acquisition by the Environment Agency 

was commissioned by Southampton to specifically cover the 1kmx3km study area 

within the Wallet. This was done using state of the art attitude and position 

measuring system and a multibeam bathymetry sonar system. The vessel was 

positioned using an Applanix POSMV-320 (S/N 3878) system and post-processed 

using an Applanix Singlebase™ RTK solution. The bathymetry was collected using a 

Reson 7101 multibeam sonar system (S/N 1810014).  This data collection allows 

the majority of the finds to be slotted into a constrained and interpreted context. 

 

What does this data show? 

Data from the surrounding area, as discussed in Section 5.2.1, show a multitude of 

deposits from various stages of the Pleistocene, which potentially correlate with 

the largely post-diversion southward-migrating Thames sequences mapped in the 

onshore zone (Figure 5.7). Whilst these are based on field observations their 

extension into the offshore zone is speculative, with the only known and mapped 

deposits relating to recent windfarm developments (e.g. DONG Energy). 

Interpretation about seabed deposits, however, can be made from bathymetric 

data. 
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Figure  5.7 Showing the location of the Wallet Study are in its broader context: the mapped 

onshore channels (after Bridgland et al.), offshore DONG Energy (2011) channels, the 

speculative extension of the (MIS 9) Cudmore Grove channel system (Roe and Preece 

2011; Roe et al. 2009; 2011) and the channel system yielding an MIS 5e date from core 

VC15, shown in detail in the expanded box with seismic section beneath (Dix and Sturt 

2011). (Data source: UKHO bathymetry) 
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Broader patterns   

Although United Kingdom Hydrographic Office (UKHO) swath bathymetry exists 

for the area, the majority of this was based on 2D data and is at a relatively low 

resolution. Using this data can reveal topographic highs of, for example, Gunfleet 

Sands, but on a finer scale it is difficult to discern whether what you can see is a 

real feature or the product of issues with the data collection or processing. With 

the addition of higher resolution data sets, such as that collected here (in addition 

to windfarm data), the existing background UKHO data can be shown to be largely 

revealing verifiable features rather than data errors.  

From the UKHO data, a meandering river system is apparent to the north-east of 

the study area (Figure 5.7). Seismic sections, analysed through the Outer Thames 

REC (Dix and Sturt 2011), identified buried aggregate bodies associated with the 

now buried northern section of this river system and which, through OSL dates 

and AAR results, have been correlated with regression after the Last Interglacial 

(Eemian, MIS 5e) high stand (ibid.). Combining this with the onshore evidence of 

terrestrial gravel bodies from MIS 18 – 4, and the coastal deposits from Cudmore 

Grove and the East Mersea Restaurant Site (Roe et al. 2011), there is potential for a 

range of deposits in the area.        

In terms of the morphology of the seabed off Clacton, there are obvious 

topographic highs (Figure 5.8): the Gunfleet Sands is a large sand bank made up of 

fine to medium grained sands laid down in a Holocene, post-transgressive 

environment on what is an almost horizontal bedrock (Dix Pers. comm.). This is 

unequivocally Holocene in date and we would not expect to find any Pleistocene 

deposits or specimens associated with it. Similarly, in the first couple of kilometres 

of the near-shore strip is a wedge-shaped body of Holocene sands which pinch out 

offshore. Between the two of these features is the area that is most 

archaeologically interesting: a plateau at approximately -10 to -12mOD which 

contains the study area within the Wallet.  
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Figure  5.8 Showing the locations and higher resolution datasets of the Wallet study area 

(outlined in red) as well as the Gunfleet Windfarm and associated cable routes. (Data 

source: UKHO bathymetry)  
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Within this plateau zone there are three different sedimentary environments: 

firstly, zones of clear bedform development suggesting mobile, probably Holocene, 

sands;  secondly,  seabed exposures of Tertiary London Clay bedrock, identified by 

characteristic polygonal faulting associated with the original lithification process 

of these fine grained sediments; and thirdly, areas which represent competent 

immobile unconsolidated sediments interpreted as probable earlier Quaternary 

sediments.  

The Wallet data 

This 1km x 3km strip has two distinct areas of bedforms: the north-eastern extent 

displays a few scales of mobile sediments, from very small-scale in the southerly 

edge of this area to larger towards the northern edge (Figure 5.9). These are likely 

to be the unconsolidated sandy, modern sediments which have broadly been 

identified for this area by BGS grab samples (Figure 5.6) and sit at approximately -

12mOD. The area to the south-western extent is the most interesting from the 

perspective of this research. In contrast to the north-easterly extent, this area is 

characterised by very little evidence of mobile bedforms and is also at a higher 

elevation at -9.7mOD at the highest, with areas within this of – 11mOD and 

dropping off to -12mOD where it meets the more mobile section. There are also 

features which appear to have steep edges associated with them, indicating that 

they are made up of consolidated material and unlikely to be modern sediments. 

Furthermore, they do not have the characteristic polygon features associated with 

the earlier London Clay or the linear furrows associated with the Holocene 

sediments; instead they are likely to be Quaternary in date and the probable 

source of the fossil material collected. Finally, it is interesting to note that Mr 

Brand, whilst refining the entirety of the Wallet to the location of the study area 

shown, marked this south-western end of the study area as the location most likely 

to be productive.     

234 



Figure  5.9 Higher resolution swath bathymetry collected for the study area within 

the Wallet. Showing more competent bedforms in the south-western extent and 

mobile bedforms towards the lower, north-eastern extent. Value is in metresODN 

From the combination of this higher resolution data with the mapping of several 

channel systems onshore as well as a few offshore (Dix and Sturt 2011; Dong 

235 



Energy 2011), the interpretation that the deposits emerging from the Wallet data 

are associated with the margins of one or more of these systems is gaining ground. 

This interpretation therefore further reduces the already relatively small size of 

1km x 3km down to an area of approximately 1km x 1km for future ground-

truthing and diver survey. The following section will now look at the species 

recovered from this area, before discussing the implications of all of these lines of 

data for understanding this submerged deposit.           

5.2.3 Species Characterisation 

Two hundred and thirty nine bones make up the modern collection from the 

Tendring Peninsula, all recovered by Mr Brand. Throughout his trawling career he 

has collected many historic and prehistoric finds from the seabed and, although 

the majority of these relate to modern historical periods, he has built up a large 

collection of Pleistocene faunal remains which have been donated to Colchester 

Museums Service.  

5.2.3.1 The Brand Collection       

The relatively new recovery of these specimens means that their species 

identification is currently on-going, but there are still interesting patterns that can 

be investigated in terms of the types and numbers of fauna present. This research 

has begun to work through the species identifications for the specimens within the 

collection, identifying them initially to family or genus and later attempting to 

narrow this further to species level. At present, 88% (n=210) of the specimens can 

identified to family, 72% (n=173) can be further identified genus and 8% (n=18) to 

species (Figure 5.10).  

A sub-set of the bones – the rhinoceros remains - were concentrated on for further 

species evaluation as they formed such an unusual abundance within the collection. 

Due to the number of these specimens (n=81), it was not possible to take them 

away from Colchester Museums’ Service for comparison with reference collections. 

As such, literature was used to attempt to gain a comparison (primarily: Kahlke 

and Lacombat 2008; Guerin 2010; van de Made 2010). Measurements of more 
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complete bones were taken, as well as scale photographs, and as a result five 

specimens were identified more robustly and all were brought within broad size 

categories.  

Below are a series of questions which draw out the importance and the potential of 

this collection.   

• What is the potential for specifying the age range of the bone-yielding

deposits through an in-depth study of the genus and species of the bones

themselves?

With 239 specimens comprising the Brand Collection, it is dominated by the 

remains of Elephas sp. (n=72), closely followed by Rhinoceros sp. (n=59) and other 

undetermined bovids (n=37) (Figure 5.10). The dominance of Elephas remains is 

likely to do with a combination of original presence, taphonomy – and robusticity - 

and collection bias; significantly these are factors that have not changed since 

antiquarian times.  Unusually, Mammuthus primigenius (woolly mammoth) is only 

securely represented by one specimen, possibly due to the amount of post-cranial 

remains within the sample that have yet to be analysed (the entire collection of 

mammoth material is 96% post-cranial [n=72]). Similarly unusually, there are 10 

specimens of Coelodonta antiquitatis (woolly rhinoceros, e.g. Figure 5.11) so far 

recognised. 

Given the early stages of species identification, patterns in the data are potentially 

subject to some change. However, broader patterns using genus identification are 

very worthwhile, especially in terms of abundance of particular fauna such as, in 

this case, the massive dominance of rhinoceros and elephant remains (Figure 5.10) 

and how these relate to those specimens identified to species as well as current 

terrestrial patterns.  

To some extent this pattern may be biased by size and robusticity, elephant 

remains are larger and easier to recover. However, rhinoceros remains are not 

significantly different to other large bovid remains, such as aurochs or bison, 
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making their abundance in the sample less easy to explain. Historically, another 

bias was that of the exotic nature of the specimen, but the sample recovered by Mr 

Brand was not subjected to this as he recovered and kept material regardless of 

element or species, discarding only the material which was extremely fragmented.  

Figure  5.10 Specimens present within the Brand collection 

The fact that the collection is dominated almost entirely by terrestrial mammals 

(there are two cetacean remains) indicates that the bone-yielding deposits are 

terrestrial and not marine. Aside from the preservational advantages offered by 

the robusticity of elephant/mammoth remains, the large sample size tells us little 

about environment or temporal stage at this point. These remains could represent 

interglacial species, such as Palaeoloxodon antiquus, Mammuthus meridionalis or 

Mammuthus trogontherii, or the cold-adapted mammoth, Mammuthus primigenius. 

Significantly, an early form of Mammuthus primigenius, called the Ilford Mammoth, 

has been found in abundance at MIS 7 sites in Britain alongside Coelodonta 

antiquitatis, indicating these species’ adaptation to open environments, rather than 

specifically, or exclusively, to temperature (Schreve 2004). 
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Figure  5.11 Coelodonta antiquitatis mandible, off Clacton, Brand Collection 

The large numbers of rhinoceros remains could equally represent a range of 

temporal stages and environments. There is an abundance of pre-Elsterian 

rhinoceros remains known from the CFbF, but these are so far unrepresented by 

the trawled material, historic or otherwise.  

For the post-Elsterian there are three known species, two of which are seen in the 

trawled collections as a whole, as well as in this collection: Coelodonta antiquitatis 

and Stephanorhinus hemitoechus, with Stephanorhinus kirchbergensis as yet 

unknown from offshore. Although Stephanorhinus kirchbergensis (Merk’s 

rhinoceros) and Stephanorhinus hemitoechus (narrow nosed rhinoceros) are both 

interglacial species, their adaptations represent different types of environment, 

browsing and grazing respectively, and despite having a mutual existence in 

several interglacials (MIS 11, 9 and 7), Stephanorhinus kirchbergensis had 

disappeared from the British record by MIS 5e, leaving only Stephanorhinus 

hemitoechus present during the Last Interglacial (MIS 5e, c.125-115ka). The other 

species, Coelodonta antiquitatis (woolly rhinoceros), is first seen in late MIS 8 

(Schreve et al. 2002), but more prevalently in late MIS 7 alongside interglacial 

species including both Stephanorhinus kirchbergensis and Stephanorhinus 
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hemitoechus, appearing again during MIS 3 (Pine Hole MAZ) associated with a cold-

stage fauna (Schreve 2001).        

Unidentified bovids are also well represented and, although few are as yet 

identified to species, these are likely to have a substantial impact on the character 

of the assemblage. Despite some difficulties in discerning the environments that 

pre-Elsterian bovids were adapted to (e.g. forests and / or open environments 

[Sher 1997; Sala 1986]), refining them to specific species will at least aid in 

determining their temporal nature and, in terms of ecologies, the later species are 

far more defined (Schreve 2001; 2004).     

Hippopotamus, although only identified to genus within this assemblage, is only 

found in Britain in the pre-Elsterian (Hippopotamus antiquus) or the Last 

Interglacial (Hippopotamus amphibious), making it a distinctive marker species for 

this more recent stage if associated with other Last Interglacial species and an 

absence of horse (Currant and Jacobi 2001). Although low in numbers, its 

association with Palaeoloxodon antiquus and Stephanorhinus hemitoechus, both 

Last Interglacial species, is therefore potentially significant; Palaeoloxodon 

antiquus is also found in the pre-Elsterian period (e.g. Pakefield [Preece and Parfitt 

2012]) but in smaller numbers (Lister 1996).   

• Looking at the small numbers of specimens identified to species, is there

anything that can be inferred?

Proportionally, the collection exhibits 78% (n=14) post-Elsterian species with 17% 

(n=3) from species that span the Pleistocene and only 5% (n=1) pre-Elsterian. 

What is interesting about the combination of these two sets is the increase in the 

numbers of interglacial species relative to more northerly grounds. Here we have 

Palaeoloxodon antiquus (straight tusked elephant), Hippopotamus and 

Stephanorhinus hemitoechus (narrow nosed rhino); three species characteristic of 

the Last Interglacial (MIS 5e, c.125-115ka) in Britain (Currant and Jacobi 2001). 

There are therefore two apparent patterns in the dataset: one cold stage, typically 
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Late Pleistocene ‘mammoth steppe’ fauna and another interglacial, typically Last 

Interglacial fauna. 

With the bulk of the specimens identified to Coelodonta antiquitatis (woolly 

rhinoceros) pointing towards an age of either MIS 8, MIS 7 or MIS 3 (Schreve 2001; 

2004), and all of the other species (apart from Mammuthus meridionalis [southern 

mammoth]) also present during this period, this may indicate potential ages for 

the richest bone-bearing deposit, The Wallet. The large size of much of the deer 

material may lend support to this being during MIS 3, rather than MIS 7, as it has 

been noted that this species is especially large during this time (Jacobi et al. 1998; 

Currant and Jacobi 2001).  

Similarly, Stephanorhinus hemitochus, Palaeoloxodon antiquus and Hippopotamus 

could indicate a Last Interglacial (MIS 5e) date for another of the smaller, less 

productive deposits.   

Since it is known that these specimens are being recovered from more than one 

area of seabed it is not surprising that within this collection there are species 

which do not fit together in any known assemblage (e.g. Mammuthus meridionalis 

with Coelodonta antiquitatis). There is also the possibility that environments 

offshore may contain species groupings that we are so-far unfamiliar with, 

although for landscapes as proximal as a few kilometres off Clacton this seems less 

likely. At this early stage of identification, any groupings are tenuous, with the only 

species known in any kind of abundance being Coelodonta antiquitatis and 

therefore indicating a post-Elsterian age for at least some of the parent deposits.   

• Are there any historic specimens from comparable areas that can shed light

on these patterns?

The inclusion of faunal specimens trawled from the vicinity off Clacton and 

Harwich during historic times increases the overall sample to 275. Figure 5.12 

shows that the relative proportions of the historic specimens identified to genus 

are similar to the more recently collected material from Colchester, with only very 

few of them falling into the grey (only to genus) category. Most of the historic 

collection has been identified to species level and so its inclusion can help to 
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provide some kind of indication of the relative proportion of species’ temporal 

distributions. The species which now dominate are Mammuthus primigenius 

(woolly mammoth), Coelodonta antiquitatis (woolly rhino) and Palaeoloxodon 

antiquus (straight tusked elephant). As with the Brand Collection, these species 

indicate a post-Elsterian date for bone bearing deposits in this area.  

 

Figure  5.12 Faunal representation with historic specimens (left hand, darker 

coloured columns) and without historic specimens (right hand, lighter columns). 

 

The collection is now dominated by Mammuthus primigenius (woolly mammoth), 

with 15 examples of Mammuthus primigenius and 11 of Coelodonta antiquitatis 

(woolly rhino). Although small in number, these 15 Mammuthus primigenius 

specimens represent 36% of those identified to species level, still reflecting this 

bulk of material in need of further assessment.   

Proportionally the collection exhibits 71% (n=30) post-Elsterian species with 21% 

(n=9) from species that span the Pleistocene and 8% (n=3) from the pre-Elsterian. 

What is interesting about the combination of these two sets is, again, the increase 

in the numbers of interglacial (specifically MIS 5e) species relative to more 
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northern grounds: here we have straight tusked elephant, hippopotamus and 

narrow nosed rhino. There are therefore two apparent patterns in the dataset: one 

cold stage, typically Late Pleistocene ‘mammoth steppe’ fauna and another 

interglacial, typically Last Interglacial fauna. Whilst these are patterns that hold 

true for the Brand Collection on its own, the increase in identified specimens that 

the historic collection gives makes these patterns more robust. 

 

5.2.3.2 Bone patterns – condition and scalloping  

Bone condition 

The condition of the specimens ranges from light in colour and mineralisation to 

dark and more heavily mineralised (Figure 5.13). They also range in their level of 

abrasion, with some displaying more rounded edges than others. What this can tell 

us about the deposit they derive from is not certain, as bone abrades differently at 

different stages of mineralisation and it is often difficult to tell whether the 

abrasion is recent or not (Thompson et al. 2011). On the other hand, many of the 

bones display modern breaks (e.g. Fig 5.13c.), which are potentially a result of the 

traumatic process of being trawled from the seabed and dropped onto a boat. 
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Figure  5.13 Series of bones from the Brand Collection, showing a range of conditions, 

colours and marine growth 

 

Due to time constraints in the recording process the level of abrasion has not been 

quantified or recorded for all specimens, as such it is difficult to assess how, or 
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whether, this relates to specific groups of fauna. Combining this with their degree 

of mineralisation and colour could be an interesting study for the future. The 

phenomena of ‘black bone’ from the North Sea (e.g. Hooyer 1957), and the use of 

this as some kind of age or deposit indicator, has been cautioned against due to the 

unreliability of assigning colour and the occurrence of these ‘black bones’ from a 

range of deposits (e.g. Drees 1986; van Kolfschoten and Laban 1995). However, 

when dealing with an assemblage of specimens from a defined area of seabed, 

investigating broad groupings within this category could still be useful.  

Scalloping 

A final point to note about this collection refers not to the species found or to their 

location, but to their condition. A significant number of the specimens (across all 

bones types) appeared to have had their cancellous (spongey) bone been scalloped, 

or scooped, away. This occurs from a minor to a very significant amount (Figure 

5.14).  

A few questions are immediately apparent: first, do they relate to anthropogenic 

activity or to post-depositional taphonomy? And secondly, in either case, what 

would be the purpose, or cause, of this? No archaeological examples have been 

seen from any other sites either from experience (Parfitt pers. comm.) or from a 

search of the literature. In terms of human groups utilising this part of the bone, it 

seems reasonable to expect that it would be on a larger scale, with all of the 

cancellous bone exploited, not just parts of the cancellous bone scooped away. 

Furthermore, humans exploiting these ends would be more likely to smash the 

cancellous bone open and not need to rely on eroding it away gradually, as appears 

to be the case here. Other archaeological examples come from carnivore 

consumption due to their grease content (Marean et al. 1999), but in these cases 

the entire ends of the bones are removed. The bones within the Brand collection do 

not exhibit obvious carnivore gnawing patterns, and, as stated, the cancellous bone 

appears to be scooped out, not gnawed away.   

245 
 



  

Figure  5.14 Scooped effect on various bones. a. a whale bone from an experiment in an 

aquarium, showing sea urchin grazing after a few years (Source: Nicholas Higgs); b. distal 

radius from the Brand Collection showing scooping effect; c. distal tibia from Brand 

Collection almost entirely scooped out. 
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In terms of post-depositional processes, the fact that this pattern has not been seen 

on any terrestrial sites implies that in this case it may be the result of marine 

organisms. Studies into deep-sea fauna (specifically Rubyspira) have shown the 

occurrence of a scooping effect, but this is on a much smaller scale and relates to 

faunas that exist in entirely different conditions (Johnson et al. 2010). One example 

that has been highlighted through these searches, but which is very under-

researched, is the potential for sea urchin grazing. Discussions with researchers at 

Plymouth University have revealed that, although there is no grazing on such a big-

scale shown in the literature, this is in fact known to occur (Figure 5.14a [Higgs 

and Pokines 2013]). At present this is thought to be the most likely cause of this 

phenomenon, and potentially relates to the type of seabed present in the area. 

Future work into this may be useful for looking at refining seabed locations using 

marine organisms that are either present (see Section 4.1.2) or inferred from these 

kinds of exploitation.     

Further issues to tackle in the future relate to the identification of elements. These 

problems were to do with preservation of identifiable portions as well as the 

erosion or aspects of the bones making exact measurements reliable. Moreover, 

the measurement categories per species are reliant on few specimens, leaving little 

room for within-species variation to be recognised. In terms of taking this further, 

it is important that these bones are compared with reference collections, in order 

to get a more secure idea of morphological features than is possible from 

photographs. Other groups of species will be analysed in the future with the help of 

faunal experts from the Natural History Museum, London (Simon Parfitt and 

Adrian Lister).      

 Discussion 5.3

The two higher resolution case studies presented within this chapter demonstrate 

the potential of this derived faunal material for locating discreet areas of extant 

Pleistocene deposits. The inclusion of a modern collection shows that despite 

many years of trawling the seabed, this resource is still very much in existence. 

Furthermore the identification of the higher resolution pattern from the historic 

data is both unique and encouraging.   Specifically, whilst the spatial accuracy may 
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at times be vague, it can be usefully enhanced through the use of contemporary 

charts.  

What do these more refined areas tell us about the submerged resource? 

With these assemblages deriving from discreet locations there is the potential to 

say more about their parent deposits based on the material they are producing. In 

contrast to the way that the broader analysis provides a large-scale picture of the 

offshore zone but, presumably, does not pick-up on fragments of deposits from less 

well-represented periods, these more refined locations should represent 

correspondingly refined deposits. Of course, deposits have the potential to be re-

worked and become time-transgressive (e.g. the glacially reworked deposits 

towards the north of the southern North Sea [Jeffrey et al. 1988]) but this cannot 

be known without further investigations of the deposits in question. There is also 

the issue of background noise, with the Area 240 project demonstrating an 

approximately 70:30 ratio of specimens deriving from the deposit to specimens 

that were extraneous (Russell and Tizzard 2011). This ‘noise’ in the deposit is an 

interesting concept, potentially explaining the discrepancies seen within expected 

assemblages, for example, the sole Mammuthus primigenius (woolly mammoth) 

found among the pre-Elsterian remains off and around Happisburgh.  

Understanding these patterns and the nature of the parent deposit has 

implications for the questions we can ask of the material they yield. In these two 

cases, this has so far been possible with the material from The Wallet, which is the 

first instance of the focused investigation of a Pleistocene deposit through the 

investigation of faunal remains. This will be discussed below with reference to the 

geophysical data collected for this location. 

5.3.1 The Wallet           

Current geophysical and geotechnical data demonstrate the existence of deposits 

from a range of dates in the area immediately offshore Clacton (Bridgland 1995; 

Bridgland and D’Olier 1995; Roe et al. 2006; Roe and Preece 2011; DONG Energy 

2011; Dix and Sturt 2011). We know that there are palaeochannel deposits in the 

area dating from all the Middle Pleistocene interglacial periods (MIS 11, 9, and/or 
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7) with MIS 5e also represented (Dix and Sturt 2011). The onshore area further 

shows deposits ranging from the pre-Elsterian (which are non-archaeological 

[Preece et al. 1990]), to MIS 9 (Cudmore Grove [Roe et al. 2009; Roe and Preece 

2011; Roe et al. 2011; Briant et al. 2012]) and MIS 5e (East Mersea Restaurant Site 

[Roe et al. 2009]).  

The situation whereby there are a range of fragmentary deposits of different dates 

in close proximity is not uncommon, especially where there is re-activation of 

existing channel systems (e.g. Outer Thames REC project [Dix and Sturt 2011]). In 

some areas, younger migrating channel systems may have truncated the fill-

deposit of older channels, exposing deposits of variable ages. What this does mean, 

however, is that the current situation of broad-scale mapping, and extrapolation 

from small numbers of boreholes and cores, is highly likely to be smoothing over 

this picture of complexity. The Wallet is a case in point, along with sites such as 

Area 240 (Hijma et al. 2012). 

In terms of the specimens recovered from the seabed off-Clacton, we know – from 

Mr Brand - that approximately 80% of the total specimens have been recovered 

from the study area within the Wallet. Since it is not possible to know which 

specific faunal specimens relate to this 80%, the patterning within the collection as 

a whole has been analysed.  

The assemblage appears to show three main things: 

• It shows a dominance of species associated with the cooler ‘mammoth 

steppe’ environments present from approximately MIS 8 onwards such as 

Coelodonta antiquitatis and Mammuthus primigenius, although these species 

appear to be most prevalent in the Weichselian landscape. 

• The combined remains of Palaeoloxodon antiquus, Stephanorhinus 

hemitoechus and Hippopotamus potentially indicate the exploitation of an 

Last Interglacial (MIS 5e) deposit. The very small signal of these species 

(although subject to change with further species assessment) potentially 

relates to a smaller area identified in a location which corresponds with a 

core of Last Interglacial date to the north-east of the study area (Section 

1.2.2; Dix and Sturt 2011).   
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• Despite the existence of the Clacton Channel deposits and the distinctive 

nature of the Swanscombe MAZ (Holstenian/MIS 11), nothing specifically 

from this date has been recovered.  

 

Given the proportions of a later Pleistocene assemblage relative to those which 

represent a potential Last Interglacial date, there is a strong chance that the 

deposit being exploited in the Wallet is representative of the former. Given the 

dominance of Coelodonta antiquitatis (woolly rhino) in the collection, it is likely 

that this was formed from MIS 8 onwards, but specifically in MIS 8, 7 or 3 (Schreve 

2001; 2004). This is supported by the Mammuthus primigenius (woolly mammoth) 

remains which further point to cold, steppe landscapes during later stages of the 

Pleistocene and future analysis will aid these interpretations. The small proportion 

of possible Last Interglacial material is potentially coming from the area shown in 

Figure 5.5 that corresponds with core - VC15 (Figure 5.7) – which has been OSL 

dated to 116+/- 6.5 ka (Dix and Sturt 2011). At the very least, this demonstrates 

the fragmentary existence of Last Interglacial deposits in the vicinity.  

From the swath bathymetry collected in the study area, the depths of the deposits 

interpreted as likely to be those yielding Pleistocene material are at approximately 

-10mOD. Within the onshore terrace gravels of the surrounding coastal locations, 

those that are measured at this depth (e.g. basal sands and gravels of the Cudmore 

Grove channel [although this unit (Unit 1) is potentially of a different origin: from a 

smaller river re-working Thames-Medway gravels], Shoeburyness Channel, 

Burnham Channel Gravels [Roe et al. 2009; Roe and Preece 2011; Briant et al. 

2012]) are, through terrace stratigraphy, biostratigraphy and lithostratigraphy 

dated to a post-Holstenian interglacial, probably MIS 9 forming part of a large, 

dissected interglacial estuary (Roe and Preece 2011; Briant et al. 2012). Being over 

15km away, height-based correlation with these deposits (that are at these depths 

at a maximum), would require almost no gradient across the now-submerged 

landscape. Their correlation is, therefore, uncertain and purely speculative but 

does provide hypotheses to begin thinking about and, with future ground-truthing 

and physical investigation, testing.    
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What is important to note, however, is the significance of this work as it stands, 

regardless of its potential for the future. Having geophysically investigated an area 

of seabed - targeted purely due to the recovery of faunal remains - and managed to 

link specimens to what appears to be a discrete area of Pleistocene deposits, is a 

substantial step forward in the way that we explore the offshore zone. In contrast 

to the reactive, chance-driven approach that we currently see, it represents the 

proactive, bottom-up approach that this research has been working towards.   

 Conclusions 5.4

This chapter has demonstrated how, from collections of derived Pleistocene faunal 

remains, it is possible to identify discrete areas of Pleistocene deposits on the 

seabed. The case of the Oyster Bed is an example of this from 19th Century finds, 

showing the potential of an array of historic sources for providing locations for 

groups of these specimens. The research in the Tendring Peninsula took this a 

stage further through targeted geophysical investigations of an identified bone-

yielding locality, which provided encouragingly positive results. Combining this 

with wider offshore and onshore terrace mapping, and an analysis of the current 

species identification, indicates an array of variably dated Pleistocene deposits in 

the vicinity. Furthermore, the geophysical data shows the potential for identifying 

such deposits as distinct from both older, tertiary bedrock and modern, Holocene, 

unconsolidated deposits. The level of detail made available through this 

geophysical data emphasises the issues we face with the more widely available 

broad-scale geophysical mapping smoothing over pictures of complexity on the 

seabed. This therefore highlights the need for, and potential of, higher resolution 

investigation of seabed deposits, as well as the caution needed when basing 

interpretations on extrapolated datasets. This leads onto themes picked-up in the 

following chapter, specifically the use of offshore data in combination with known 

deposits and processes to assess the patterns seen through this research.   
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Chapter 6:  Discussion  

At the start of this research it was noted that the prevailing attitude towards pre-

LGM archaeology in the southern North Sea is that it is entirely reworked, with 

resulting finds being unstratified and of little value (Flemming 2002). This attitude, 

which is reflected by the lack of engagement with submerged areas in the 100 

years since Reid’s Submerged Forests (1913), has resulted in our current 

interpretations of hominin interaction with them; they are little more than abstract 

ideas. Over the past decade, Palaeolithic research along coastal locations has been 

progressing (e.g. Parfitt et al. 2005; 2010; Ashton et al. 2008a), with occasional 

offshore sites such as Area 240 (Russell and Tizzard 2011) and the Zeeland Ridges 

(Hublin et al. 2009) slotting into this picture. However, work on all these sites has 

been responsive - carried out after chance finds revealed greater potential at a 

given location.   While the significance of the finds made is hard to overstate, it is 

not possible to advocate a reactive ‘luck based’ approach to the investigation of 

this material as the most efficient or practical means of answering key questions 

with regard to the Palaeolithic of North West Europe.   

The research presented in this thesis comes at the matter from a different angle, 

one which aims to create a more focused, bottom-up and proactive approach. 

Reliant on this, however, is the establishment of a baseline understanding of the 

resource available, a resource which falls into two categories: that of the 

archaeology and that of the landscape. Recent years have seen the latter benefit 

from increased coverage via Regional Environmental Characterisation projects as 

well as engagement with broader industry datasets (e.g. Gaffney et al. 2007; 2009), 

and these have increasingly demonstrated the existence of pre-LGM deposits in the 

southern North Sea (e.g. Dix and Sturt 2011). The former, archaeological category, 

however, has seen little in the way of research. This thesis therefore set out to re-

evaluate the existing artefactual record from the UK sector of the southern North 

Sea and its value to our understanding of hominin migrations, subsistence and 

occupation patterns.         

Chapter Three demonstrated how the methods developed through this research 

can be applied to the existing (faunal) offshore resource. These methods have 
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stemmed from the fact that most of the specimens were collected historically. Once 

the potential in the patterning of the resource was understood, the methods were 

then expanded and developed to include modern collections. Through a new 

understanding of the integrity of the specimens’ parent deposits, we can therefore 

begin to engage with these areas in very different ways, using this prolific resource 

to start focusing on and exploring deposits of archaeological relevance. Whilst the 

results from each analysis have been discussed within their respective sections, 

this chapter will look at the possible reasons behind these patterns, from collection 

biases to glacial erosion.   

 Contextualising the patterns 6.1

Chapter One asked two achievable questions of this research: 

• What is the nature of these specimens (of faunal material) and the deposits

they are contained within?

• What do their distribution and patterning tell us about the offshore resource?

These have been explored through Chapters Four and Five, assessing the types 

of material that make up the existing offshore record, the various methods that 

we can employ to interrogate it and the patterns seen as a result. 

Demonstrating spatio-temporal patterning to the resource has meant that a 

significant degree of integrity can be inferred for these deposits. Previous 

chapters have highlighted possible reasons for this patterning, and this section 

will explore them further, in order to assess their respective relevance to the 

research. First, the main patterns can be briefly stated: 

• Both the northerly Great Yarmouth grounds as well as the more southerly

Lowestoft grounds are dominated by post-Elsterian species (more

specifically, MIS 8 onwards).
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• The Lowestoft grounds have an increased number of pre-Elsterian and 

‘spanning’ species relative to the Great Yarmouth grounds. 

o The Dutch work has a corresponding pattern for the same area 

(Figure 4.22).  

• The coastal areas of East Anglia are dominated by pre-Elsterian species to 

the north, with later Pleistocene species dominating in the south.  

• The Tendring Peninsula area has a small number of interglacial species 

which is at a relatively high proportion relative to the other collections. 

 

In order to appreciate these patterns in their broader context, we have to discuss 

the formation and investigation of the deposits that contain them. This first section 

will evaluate how we can attempt to understand these deposits, the processes that 

have determined their distribution and the resulting implications for the patterns 

seen.  

6.1.1 Data issues in the offshore zone 

As with the terrestrial realm, to understand the offshore Palaeolithic 

archaeological record requires an understanding of the associated geology; the two 

are very much intertwined. Developing an understanding of the nature of the 

deposits that the specimens derive from, and their occurrence on the seabed, 

therefore relies on successful determination of any correlations. In terms of the 

buried deposits of the offshore zone this engagement is almost invariably through 

seismic imaging, its interpretation tested by occasional cores. Whilst the situation 

onshore is one of a relatively rich record of physical investigation and well-

mapped deposits, the offshore zone is of a lower resolution with much 

extrapolation. Consequently, whilst developments in seismic imaging have allowed 

the mapping of vast areas of seabed - far larger than anything that would be 

possible onshore – for the most part this has been at the expense of the finer-

grained interpretations that we, as archaeologists, often rely on.   
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The broad-scale pictures developed for the offshore zone since the 1980s (e.g. 

Cameron et al. 1992; Limpenny et al. 2011), which present extensive polygons for 

long periods of time as ‘marine’ or ‘glaciolacustrine’, for example, almost certainly 

miss the smaller-scale pictures of deposits within the blocks. The in-depth analysis 

and interpretation of Area 240 and the Outer Thames Estuary, Humber and East 

Coast REC projects, recognising multiple-age deposits, are cases in point. Moreover, 

the use of extant museums’ collections to recognise a discrete Pleistocene bone-

yielding deposit of 1km x 3km in the Wallet, presented in Chapter Five, further 

demonstrates the scale at which these deposits exist and at which they can be 

recognised. It is important to remember, therefore, that when dealing with these 

offshore geological datasets we are working with estimations and extrapolations 

from a small sample of known points. Figure 6.1 illustrates this, showing a large 

number of geophysical lines which have been ground-truthed by only a handful of 

cores. Given the fragmentary nature of Pleistocene deposits, both onshore and 

offshore - and increasingly so with increasing time-depth - the potential for 

smoothing over expressions of alternate landscapes is clear. 
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Figure  6.1 British Geological Survey geophysical line and core spacing: an example of 

extrapolation. (Source: www.bgs.ac.uk)  
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In addition the level of detail shown by these geophysical techniques depends on 

the reasons for the capture of the data, an issue well illustrated by recent 

archaeological analysis of geophysics from the Dogger Bank (Gaffney et al. 2007; 

2009; Fitch et al. 2011). Using seismic data collected by oil companies, this work 

identified and characterised an unprecedented area of submerged landscape 

relating predominantly to the early Holocene period. The resolution of the data 

used, however, was relatively low, as the deposits that the oil companies are 

interested in are far below those relevant to the archaeologist; there is a trade-off 

between depth and resolution. Furthermore, the cores used to complement the 

geophysical data were widely spaced (Bailey 2010). Despite the fact that this work 

has revolutionised what we know about the Mesolithic landscapes of the Dogger 

Bank and how we can go about interrogating them, there is a clear requirement for 

more finely-tuned, archaeologically-focused data collection if we wish to move 

understanding forward. This has significant implications for the work presented 

here, which, through a large faunal resource, attests to a range of broad 

environments from a range of Pleistocene periods, but which also relies – in part - 

on an understanding of seabed deposits in order to further understand the higher 

resolution images that emerge. 

Given the patterns seen through the specimens, the broad picture of later 

Pleistocene, cold-stage dominance is therefore likely to be both a pattern that we 

would expect but also a potential product of the scales at which we image the 

seabed. More focused investigations utilising faunally derived patterns are 

required to determine the relative importance of each of these points for 

individual areas of the seabed.  

6.1.2 Deposits and processes 

The Quaternary deposit models which characterise the offshore zone, despite 

being rather broad-scale, are currently the best means by which we can 

understand the area. So, in addition to considering the geophysical limitations, it is 

vital that we understand the various taphonomic factors that may have affected the 

distribution and preservation of deposits. The erosion of large portions of 
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palaeogeographic evidence for periods before the late Weichselian (MIS 2), 

however, means that it is hard to draw out the relationships between sea levels, ice 

volume and topography. Moreover we have very little concept of isostasy prior to 

the LGM at present, we can really only look at mapped ice extents, global ice 

volume and our modern bathymetry to create best-fit images of likely land-sea 

configuration. Reconstructions of the changing landscapes of the Early and Middle 

Pleistocene are therefore full of caveats. There are two means by which this can be 

addressed: 

 

• First, the most recent glaciation, the late Weichselian (MIS 2) is by far the 

best understood. It lies within the range of radiocarbon dating and features 

the deposits most recently laid down. Using this as a proxy, we can attempt 

to understand how the landscapes changed through earlier glacial periods: 

the dynamic interplay between land, sea and ice.  

• Secondly, we can combine modern bathymetry with mapped glacial limits 

and global sea levels to create these best-fit images. Whilst this is crude, it 

helps to conceptualise the landscapes as they changed through time (e.g. 

Coles 1998).  

 

If we appreciate these issues we can address questions about how Palaeolithic 

deposits may have been affected by the repeated glaciations and inundations, what 

these glaciations meant for the configuration of terrestrial landscapes and, 

consequently, how this relates to the patterning identified through the research.  

6.1.2.1 The late Weichselian as a proxy  

Seismic evidence from tunnel valleys in the North Sea basin indicate that it may 

have been glaciated on as many as seven occasions between MIS 13 and MIS 2: at 

times in quick succession – possibly within interstadials of the same broad 

glaciation (Stewart and Lonergan 2011). Evidence that these were extensive 

throughout the southern North Sea is patchy, but we can infer that this area was at 

least periglacial or steppe-tundra landscape for much of these periods. 

Furthermore, the associated development of features such as pro-glacial lakes 
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(Toucanne et al. 2009a; Murton and Murton 2012) will have had a significant effect 

on the configuration of the landscapes as well as the preservation of underlying 

deposits.  

These glaciations will all, of course, have been different, but it is fair to assume that 

the associated processes will have been similar and, by using the higher-resolution 

records of the late Weichselian as a proxy, it is possible to get an idea how dynamic 

and oscillatory the ice sheets were. Evidence from the late Weichselian maximum 

suggests that the British Ice Sheet (BIS) and Fenno-Scandinavian Ice Sheet (FIS) 

coalesced in the North Sea basin between the Dogger Bank and western Denmark 

and that the ice extended to the north-western edge of the continental shelf 

(Figure 6.2; Sejrup 1994; 2000; 2009; Carr et al. 2006; Graham et al. 2007; 

Bradwell et al. 2008). It is important for this work, however, to ascertain the effect 

that the glaciations would have had on the configuration of available land and, in 

particular, the situation moving into and out of glacial maxima: periods more 

conducive to floral and faunal – including hominin - occupation.  
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Figure  6.2 Maximum glacial extent for the Elsterian, Saalian and Weichselian glaciations 

(after Graham et al. 2011; Lee et al. 2012. Elevation source data: Smith and Sandwell 1997) 

 

Impact on land 

The deglaciation of the late Weichselian in the North Sea was widespread but still 

characterised by still-stands and occasional re-advances (Graham et al. 2011). The 
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relationship that these changes had with sea levels was not linear, and although 

rises in sea levels appear to have influenced the break-up of ice at the deeper 

northern shelf-edge, the southern North Sea remained dry land for many 

thousands of years; the Channel and North Sea were not confluent until 9-7ka BP 

(Graham et al. 2011).  This pattern of ice retreat, with marine incursions from the 

northern North Sea potentially acting as a catalyst (Bradwell et al. 2008), implies 

that whilst ice sheets still inhabited the northern parts of Britain and the North Sea 

the areas to the south were fit to be occupied, probably in part because of the 

shallower bathymetry of the southern North Sea in relation to its northern extent. 

This is supported by the earliest incursions of post-LGM hominins at 

approximately 14ka cal BP (Jacobi and Higham 2011) and through into the 

Mesolithic. These are, of course, Homo sapiens - our understanding of the climatic 

tolerances of earlier hominins cannot be directly correlated – but evidence that our 

earliest ancestors occupied sites such as Happisburgh 3 and Boxgrove (Section 

2.3.1; Roberts and Parfitt 1999; Parfitt et al. 2010) in cooler climates implies that 

they coped with harsh environments from an early date. Furthermore, 

Neanderthal sites such as Biache-St-Vaast and Veldwezelt-Hezerwater in Belgium 

during MIS 6 of the Saalian Complex show occupation of these landscapes during 

glacial and interstadial periods (respectively Tuffreau and Sommé 1988; 

Bringmans 2007).   

Applying this patterning to earlier periods suggests that the later stages of de-

glaciation may have been associated with faunal, floral and hominin re-occupation 

of north-western Europe before fully interglacial conditions prevailed. This is 

especially pertinent to periods after the initial breaching of the Weald-Artois ridge 

in MIS 12 (Gupta et al. 2007; Toucanne et al. 2009), which were associated with 

basin depths increasingly lowered as a result of progressive subsidence (Busschers 

et al. 2008): it is hypothesised that the basin floor has subsided from 0 to -40m OD 

since MIS 11 (Ashton et al. 2011); ever more substantial drops in sea level were 

therefore required to create dry land and connection. In addition to the long-term 

subsidence experienced by the North Sea basin, however, more directly related 

glacio-isostatic movement associated with the loading and unloading of the crust 

by ice will have altered the elevation and configuration of specific areas of land. 

Although for the pre-LGM period the specific ways that this would have played out 
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for Pleistocene environments is not understood, using the LGM as a proxy 

indicates that in places this would have been on metre to decametre scales (Brooks 

et al. 2011; Sturt et al. 2013). This would not only have altered land in a 

terrestrial/marine way, but would have changed the finer qualities of these areas: 

the nature of the ecologies and environments (Sturt et al. 2013). The terrestrial 

availability that this configuration implies, therefore, would have had significant 

implications for occupation of both Britain and the southern North Sea basin 

before subsequent transgression.  

In addition to this issue of terrestrial availability, however, is the effect that the ice 

sheets will have had on the previous deposits. Although in some cases, such as the 

Cromer Forest bed Formation along the coast of East Anglia, glacial till can work in 

favour of preservation (Cohen et al. 2012), sub-glacial processes are also extremely 

erosive. The patterns of subglacial drainage in the form of tunnel valleys, mapped 

extensively across the North Sea and adjacent landmasses, are one example of this 

(Huuse and Lykke-Andersen 2000; Stewart and Lonergan 2011), with the 

damming and subsequent overtopping of pro-glacial lakes as inferred for MIS 12 

and MIS 6 (Gupta et al. 2007; Gibbard 2007; Toucanne et al. 2009) and the 

resulting erosion seen through the Dover Straits and Channel another, larger-scale 

example. Deposits formed previously, which have been subjected to later 

glaciations, are therefore likely to have been either capped and buried, or eroded.  

 

6.1.2.2 How can we relate these issues to the patterning seen in this 

research?  

Figure 6.3 shows the locations of the main fishing grounds in relation to the 

mapped extents of the three major Pleistocene glaciations: the Elsterian, the 

Saalian and the Weichselian, with the grounds of the Lowestoft trawlers being by 

far the least impacted. If we combine this with what we know about their species 

patterning we can see that the areas that have been affected by several glaciations 

have a reduced temporal range of fauna. There are two possible reasons for this: 
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• Having been subjected to at least three glacial advances (possibly up to

seven in some locations [Stewart and Lonergan 2011]), the deposits have

been entirely eroded or reduced to extremely fragmentary expressions.

• Owing to the continued subsidence of the North Sea basin, they are buried

below more recent deposits.
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Figure  6.3 Glacial extents and their relationship to the favoured fishing grounds identified 

in Chapter Three (ice extents after Graham et al. 2011; Lee et al. 2012, elevation data: 

Smith and Sandwell 1997). 
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With the change during the Elsterian from the southern North Sea being a 

predominantly depositional, deltaic environment (depositing the Yarmouth Roads 

Formation) to one dominated by glacial landforms and deposits (Cameron et al. 

1987; Graham et al. 2011), the thickness of the deposits from the post-Elsterian is 

far reduced (Cameron et al. 1992). Deposits forming throughout this time would 

have been subjected to trans- and re-gressive episodes, as well as cyclical patterns 

of glacial erosion, particularly in the northern-most section. For them to be 

extremely fragmented is therefore perhaps more likely than their extensive 

preservation and burial. If that is the case, the most extensive deposits are 

therefore likely to be those of the Yarmouth Roads Formation and those that 

formed more recently, during the Weichselian. The deposits of the intervening 

interglacial periods are likely to be relatively lacking and, as shown in Chapters 

Four and Five (as well as Section 6.2.1), this does appear to be the case. 

Furthermore, with glacial effects felt most severely in the northern sector of the 

North Sea basin, and actual glacial limits (after the Elsterian, MIS 12) appearing to 

stay to the north of the Dogger Bank and the north-west section of the Netherlands 

(Figure 6.3; Graham et al. 2011), the deposits to the south of these limits could be 

expected to show a relatively greater temporal diversity as a result of being 

subjected to fewer episodes of direct glacial erosion. 

The dominance of Weichselian deposits to the north of the southern North Sea is 

supported by reports that the Dogger Bank area consists of reworked Pleistocene 

glacial deposits overlying those of the Yarmouth Roads and Swarte Bank (MIS 12) 

Formations, and covered by early Holocene tidal flat deposits (Jeffrey et al. 1988; 

Fitch et al. 2005; Gaffney et al. 2007; 2009). This further supports the faunal 

picture of a significant dominance of later Pleistocene, cold-stage species from this 

location. In addition to suggesting glacial re-working, this highlights the two 

problems of subsidence-induced burial and of, often, thick Holocene deposits 

overlying those of the Pleistocene. This has important implications for the 

potential for the buried deposits to be retrieved by trawlers, and this will be 

returned to below. 
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Figure  6.4 Mapped Pleistocene deposits in the southern North Sea and their relationship 

to the points mapped by van Kolfschoten and Laban (1995) as well as the Eurogeul (Mol et 
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al. 2006). (geological deposit data source: Cameron et al. 1992; Limpenny et al. 2011. 

Elevation data source: Smith and Sandwell 1997) 

The extent, currently known, of the relevant Pleistocene formations is shown by 

Figure 6.4. It demonstrates the presence of both the pre-Elsterian, Early to early 

Middle Pleistocene Yarmouth Roads and Eemian to early Weichselian Eem/Brown 

Bank Formation deposits within the vicinity of the find spots from both Lowestoft 

and the Dutch trawlers. Given the recognition in this area of the Yarmouth Roads 

and Brown Bank deposits, it is interesting to note that no large-scale deposits of 

the intervening or younger Formations have been recognised and mapped. This 

perhaps explains the paucity of Holocene remains within the collections (those 

collected for this research, as well as: van Kolfschoten and Laban 1995), the 

dominance of later Pleistocene species and the smaller proportion of those from 

the pre-Elsterian.  

What is important to note about these formations, which is significant to the 

recovery of specimens and the targeting of deposits, is the issue of outcropping. 

The large-scale deposit maps shown (Cameron et al. 1992; Limpenny et al. 2011) 

deal with the locations of Pleistocene formations, whether on the surface or 

beneath several metres of subsequent deposition. A major feature of the seabed in 

southern North Sea, however, is the varied scales of movement seen. First, there 

are areas of sedimentation that are broadly static over long periods. Secondly, 

there are large morphological features, such as the Wallet, whose margins may 

fluctuate slightly but which remain essentially in the same place. And, thirdly, 

there are areas of high seabed mobility. Whether the finds are from areas of high 

sedimentation or high mobility may affect how often deposits are exposed and, 

consequently, the likelihood of recovery through trawling. At this stage, it is 

impossible to pinpoint the historic finds to specific fishing grounds, but we can 

think about the proportions of seabed locations in various environments. If we 

combine the Wallet data, as well as other areas of bones recovered from the 

surrounding seabed, with recent investigations into sediment-transport in this 

area, it appears that the finds are being recovered from areas of high 

sedimentation but of varied levels of movement (Figure 6.5). This implies that 
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deposits may be covered and exposed quite rapidly, and that may mean that some 

specimens recovered from this area are being trawled from relatively fresh 

deposits.               

 

Figure  6.5 Rates of movement in metres per year in the Outer Thames Estuary and the 

relationship of this to the bone-yielding deposits presented in Chapter Five (after 

Burningham and French 2008) 
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6.1.2.2.1 Patterns of changing land/sea boundaries 

At the heart of understanding the archaeology of these areas is the issue of 

reconstructing periods of dry land in the southern North Sea when climate would 

also have been conducive to occupation. The changing palaeogeography of the area 

throughout the early Middle to Late Pleistocene would have played one important 

role in this. Figure 6.6 demonstrates the inferred availability of terrestrial land for 

the early Middle Pleistocene before the initial Weald-Artois breach against a map 

of the modern bathymetric contours at -100m and -60m. This gives an idea of the 

availability of dry land associated with drops of this kind, which were common 

throughout glacial periods (even MIS 3 saw sea levels of approximately -60m - -

80m [Shackleton 2000; Waelbroek et al. 2002]). Clearly, this relies on modern 

bathymetry, but, given that the sea-floor was at progressively higher elevations 

with increasing age, should present a conservative estimate.  
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Figure  6.6 Difference in available landmass between the early Middle Pleistocene and the 

periods of lowered sea level discussed in the text. (Highstand sea level image after Hijma 

et al. 2012. Elevation data source: Smith and Sandwell 1997)   
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Although this does not take into account the presence of ice-sheets at points 

throughout glacial periods, the broad picture of low-stand landscapes would have 

been similar throughout the post-Elsterian (Hijma et al. 2012) and they would 

have extended further north than during the early Middle Pleistocene. The 

importance of this for the resulting patterning of specimens is twofold: 

• The more northerly areas of the Dogger Bank were terrestrial on several

occasions after the Elsterian period, but not terrestrial (or at least not

typically so) during the early Middle Pleistocene.

• The more extensive landscapes available throughout the late Middle and

Late Pleistocene will have undergone fewer episodes of submergence the

younger they become, with deposits relating to the late Weichselian/post-

Weichselian period (associated with the Mammoth Steppe fauna) being

relatively undisturbed.

Consequently, the expected patterning from the southern North Sea would be one 

of younger Pleistocene species being more abundant towards the north, with an 

increasingly mixed pattern further south. Given the relatively recent formation of 

these deposits it is highly likely that Late Pleistocene deposits and specimens 

would dominate throughout. As discussed above, however, outcroppings of 

deposits of multiple ages should be expected. In terms of the results presented in 

Chapter Four and summarised at the start of this chapter, we see both these 

patterns. 

Summary 

There is clearly a multitude of landscape processes at play, which will have 

affected, and continue to affect, the Pleistocene deposits. Understanding their 

influence can help to broadly predict, or at least appreciate, the locations of 

offshore deposits and then the specimens that they contain. Added to this complex 

picture, however, is the issue of visibility. Whilst geophysical imaging allows us to 

engage with large tracts of these offshore areas in ways that we could never 

imagine for the onshore zone, its advantages come with their own attendant 
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drawbacks, as it may smooth over the finer pictures that, as archaeologists, we are 

often most concerned with. The results of this research have indicated that 

concern about ‘smoothing’ over a more complex picture is indeed justified, as there 

appear to be fragmentary deposits of a nature that is unrecognised by current 

mapping. However, applying the methodology to draw-out smaller-scale patterns, 

in combination with higher-resolution areas of geophysical work, demonstrates 

that resolving these issues is certainly possible.     

 

6.1.3 How does this relate to the patterns seen? 

 

The faunal specimens derived from the southern North Sea and collated and 

presented through this research demonstrate significant spatio-temporal 

patterning, and, when combined with the factors referred to above, appear to show 

the patterns that we would expect. So, what does this tell us about the deposits 

from which the specimens were recovered? If you follow the argument that the 

faunal material recovered from the seabed is entirely out of context, and has been 

so for tens of thousands of years, you would not expect to see any patterning 

within the resource. If that were the case, the species that represent pre-Elsterian 

times should be approximate to those representing the post-Elsterian periods. 

That they do not could be argued to be due to preservation over such long 

timescales (although let us remember that none of these timescales is short, and 

erosive forces should have also significantly affected later Pleistocene species).  

But it is possibly also to do with the deeper burial of the deposits in question under 

others of more recent age. As a general idea, this is supported by broad-scale 

seismic mapping, which shows the Yarmouth Roads Formation of the early Middle 

Pleistocene to be largely buried by more recent Pleistocene and Holocene deposits 

(Cameron et al. 1992, fig. 93). As discussed above, however, smaller, unmapped 

fragmentary outcroppings are not just possible but likely.      

Potentially, the specimens’ condition could reflect their depositional histories. 

Recent work looking at the preservation of bone in aquatic environments has 
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shown differences in wear patterns depending on the age of the bone, with 

archaeological and fossilised bone weathering less quickly (Thompson et al. 2011). 

It also demonstrates that bones caught up in bedload movement are subject to the 

most erosion, with those that develop scour pits having reduced surface wear. In 

future, this, alongside patterns of marine growth on bone surface, may help to 

determine whether specimens are being recovered out of in situ archaeological 

deposits which have become recently exposed, or whether they are out of context 

and being regularly moved around the seabed.  Significantly for the current 

research, the specimens do not exhibit weathering or erosion patterns that are 

related to their age, which indicates that they are (at least in large part) being 

trawled directly from their parent deposits, not as loose material.  

The dominance of species that represent cold stages, such as Mammuthus 

primigenius (woolly mammoth) and Coelodonta antiquitatis (woolly rhino) relative 

to interglacial species such as Palaeoloxodon antiquus (straight-tusked elephant) 

probably relates to the palaeogeographies of these areas in high-stand to low-

stand periods. As discussed in Section 6.1.2, large portions of the southern North 

Sea basin would have been terrestrial during post-Elsterian low-stand periods, 

with now-submerged terrestrial deposits from high-stands likely to have formed 

mainly close to modern coastlines (Hijma et al. 2012). The exception to this picture 

is the deposits of parts of MIS 11, 9 and 7, with the discrepancies in evidence 

pointing to marine incursions as opposed to connection to the continent, as 

discussed in Chapter Two. It is clear that throughout these interglacial periods 

Britain was periodically joined to the continent it is just not clear how or in what 

way, with even the early cold-stage of MIS 7 showing evidence for persisting high 

sea levels (Bates et al. 1997; 1998; 2000; 2003; 2010). As discussed, however, 

terrestrial deposits from these interglacial periods are rarely recognised in the 

offshore zone (cf. Urk Formation [Hijma et al. 2012]) and no distinguishing species 

have been found within the collections. Such period-specific species exist for the 

Eemian, such as Hippopotamus antiquus, as well as the Holstenian: Dama dama 

clactoniana and Ursus spelaeus. If either any these species were identified within 

collections, that would strongly indicate deposits of these dates. The recovery of 

Hippopotamus sp. specimens from the grounds off Clacton, discussed in Chapter 

Five, alongside Palaeoloxodon antiquus (straight-tusked elephant) and 
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Stephanorhinus hemitoechus (narrow-nosed rhinoceros) appears to indicate, 

therefore, that there are bone-yielding Eemain deposits being exploited in the 

vicinity. The further distinction between Hippopotamus antiquus (pre-Elsterian) 

and Hippopotamus amphibious (post-Elsterian [specifically, Eemian]), if possible, 

will secure this further, but the presence of deposits of Eemian date in a location 

where bones were recovered (Brand pers. comm.; Dix and Sturt 2011) strongly 

suggests that this is the case. The lack of species indicative of the Holstenian 

implies either that the deposits are lacking (not extant or buried) or, possibly, that 

they have not yet been identified. The proximity of the Holstenian-aged Clacton 

Channel deposits in the foreshore implies that it may be the latter.   

The patterns identified throughout this research sit well with the dominant 

patterns that are expected from the offshore zone, with the abundance of cold-

stage, later Pleistocene species probably deriving from the most prevalent and 

outcropping deposits. The picture of a smaller proportion of interglacial and 

earlier Pleistocene species demonstrates the existence of fragmentary deposits 

from more marginal, high-stand locations generally unrecognised by broad-scale 

seismic mapping. Crucially, this is a pattern supported by high-resolution work in 

Area 240 (Russell and Tizzard 2011) and the Outer Thames Estuary (Dix and Sturt 

2011; Chapter Five: the Wallet).    

6.1.3.1 Coastal areas 

Chapter Five concentrated on two locations where higher-resolution pictures have 

emerged, the Happisburgh Oyster Bed and the Tendring Plateau, specifically the 

Wallet. Aside from demonstrating the potential for the remains to pinpoint such 

refined locations, these areas allow us to further investigate the spatio-temporal 

patterning of the small-scale coastal deposits. With the northern coastal section 

dominated by pre-Elsterian species, and the south increasingly by later Pleistocene 

species, what does this tell us about the nature of the seabed deposits in these 

areas? 

The existence of the Oyster Bed in the near-shore zone is likely to be related to 

outcroppings of Cromer Forest-bed extending into the submerged zone in the 

vicinity of Happisburgh. Reasons for the excellent preservation of these extensive 
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but fragmentary deposits, explored by Cohen et al. (2012), have been discussed in 

Chapter 2 and may relate to serendipitous capping by Elsterian till, so as to avoid 

the major erosive forces associated with the breaching of the Elsterian pro-glacial 

lake and being outside subsequent glacial limits. In addition to this, many facies of 

the CFbF appear to be iron-rich, as described by Reid (1890) and currently 

witnessed, which increases the chances of bones within this matrix being 

preserved. What are the possible reasons behind the geographical patterning of 

this deposit offshore, as seen through this research?  

Figure 6.7 shows the predicted high-stand coastlines during the early Middle 

Pleistocene. Given what we know about the deposits in this area, that they are 

associated with complex patterns of channel systems, often within the estuarine 

zone, it is not surprising that, at the level of north Norfolk, these are the deposits 

that are currently being mapped in the coastal (Parfitt et al. 2010; Bates pers. 

comm.) and offshore zone (Dix and Sturt Pers comm.). Areas of the southern North 

Sea more to the south are more likely to yield such deposits further offshore, as 

shown by the mapping of the Yarmouth Roads Formation and the recovery of pre-

Elsterian species by Dutch trawlers (Figure 6.3).     

276 
 



 

Figure  6.7 early Middle Pleistocene highstand seas (after Hijma et al. 2012) in relation to 

East Anglian coastline. (Elevation data source: Smith and Sandwell 1997) 

 

Off the Clacton coast, in areas where we know a range of Pleistocene (and earlier, 

e.g. Pliocene Crags) deposits exist (Dix and Sturt 2011), are the deposits discussed 

in the Tendring Peninsula section of Chapter Five. Faunal analysis currently points 

to a date from MIS 8 onwards for the majority of these specimens, which are 
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representative of a mammoth steppe fauna. In contrast to the early Middle 

Pleistocene deposits, therefore, and bearing in mind the lowered sea levels 

throughout much of the Late Pleistocene, the deposits associated with these 

remains are likely to have been spatially extensive.  

Swath bathymetry data collected for the 1km x 3km study area within the Wallet – 

where the vast majority of the bones were recovered from – has shown what have 

been interpreted as Quaternary sediments at the south-western extent of the study 

area. Potentially associated with the margins of local channel systems, the clear 

demarcation of these deposits within the study area further refines the size of the 

seabed to begin groundtruthing.       

What explanation can then be offered for the north-south spatial patterning in the 

two areas? The extensive nature of the glacially-capped early Middle Pleistocene 

CFbF deposits towards the northern East Anglian coast relative to deposits from 

any other period prior to the Holocene is probably the answer. Whereas towards 

Essex the offshore deposits are dominated by the migrating and multi-stage fluvial 

and estuarine deposits associated with the Thames-Medway system, where 

fragmentary deposits from a range of periods are preserved, eroded and/or buried 

by subsequent activity, the extant deposits from the northern shores are 

dominated by the erosion of the CFbF from cliff, foreshore and offshore deposits. 

Whilst these two periods both represent significant periods of time (the CFbF 

actually covers a far longer period from approximately 1.8ma until 0.48ma [Preece 

and Parfitt 2012]), the change in the nature of glaciations and dominant landscape 

processes after the Elsterian (Rose 2010), as well as the intensity of research into 

the later deposits (usually archaeologically based) and more refined dating 

techniques (Walker 2005), means that distinguishing between the deposits of the 

post-Elsterian, late Middle – Late Pleistocene is comparatively easy, providing a 

more detailed picture.   

The fact that these deposits are close to shore may be the reason both for their 

preservation and for their discovery. If we discern the different trawling patterns 

from smaller-scale locations we can identify and analyse specific groups of 

material that would otherwise be subsumed within the broader dataset. In effect it 
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is like being able to analyse distinct groups of fauna from the broader collections, 

having secured them to a small group of trawling grounds.  

The current invisibility of small-scale deposits is a situation that, with the 

application of modern methods, can change. Building relationships with the 

modern trawling industry, as the Dutch have been doing, and recording where and 

when bones are recovered, will allow a far better insight into the offshore 

landscape fragments.     

6.1.4 Social implications 

The processes discussed above determine the deposits that are extant in the 

southern North Sea and so the types of specimens that we are likely to derive from 

them. In addition to the locations of the deposits, however, is the way in which 

they are recovered from the seabed and the interplay between the influence of the 

type of deposits being exploited (i.e. Pleistocene or otherwise) and the social 

factors relating to the trawlermen collecting them. To return to some questions 

posed in Chapter Three, then, what implications do the locations of deposits have 

for trawlers recovering and collecting fossils and for the resulting geographical 

patterns of these remains? 

Chapter Three presented the discrepancy between the lack of collections from the 

north-eastern museums with the abundance from East Anglia, Essex and London. 

Several reasons were hypothesised: 

• Differences in trawler design (beam as opposed to otter) which were linked 

to differences in means of powering the vessel (sail as opposed to steam, 

respectively); 

• The methods of trawling (fleeting as opposed to shorter duration trips);   

• The means of vessel ownership, related to the methods of trawling 

(company ownership and fleeting; personal ownership and shorter 

duration trips); 

• The dominance further north of reworked glacial deposits, rather than 

environmentally and archaeologically rich interglacial deposits, leading to a 
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lack of interest, or absence of communities of collectors, and therefore to 

less incentive for trawlers to recover fossil material. 

• The north-eastern fleets exploiting grounds to the far north, beyond the 

terrestrial limits of the Pleistocene.  

 

The collectors described in Chapter Three (Text Box 5) were all wealthy, well-

educated men who lived along or close to the East Anglian coastline. They were 

also intimately related by marriages, friendships and as mentors to each other. In 

this area, as well as the nearby large urban centres of the south, were natural 

history societies promoting and encouraging interest in the subject (such as the 

Suffolk Institute of Archaeology and Natural History [1848]; Prehistoric Society of 

East Anglia [1908]). The proximal location of the deposits of the fossiliferous CFbF 

appears to have played an important part in forming and promoting this interest.  

So did the many local quarries, exploiting the aggregate-rich geology.  

In contrast, the northern towns of Grimsby and Hull were not close to quarries 

exploiting Quaternary materials nor to the extensive deposits of the CFbF but had 

local Quaternary geology largely dominated by glacial material. From the early 19th 

Century, however, they began developing societies. Hull saw the development of 

the Hull Literary and Philosophical Society in 1822.  In the same year the nearby 

city of York developed the Yorkshire Philosophical Society and a few years 

previously (in 1819) Leeds developed the Leeds Literature and Philosophy Society. 

These societies, despite their names, concentrated largely on natural history (then 

known as ‘philosophy’). An interest in trawled fossils would seem to be in keeping 

with this, yet no material has been found in the collections of the local museums. 

For the Hull society, this may have something to do with the fact that the museum 

housing its collection was bombed in 1943, resulting in the loss of most of the 

artefacts as well as registers (Imrie pers. comm.). Recently, it has been found that 

minutes from local council meetings - since the society’s establishment - contain 

information about museums’ acquisitions and so, through future work, may help to 

clarify this issue further. But the other local societies appear to show the same 

pattern. The annual reports of both the Leeds and the York societies refer only to 

Pleistocene faunal material that has been recovered terrestrially from gravel pits 
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or, at best, coastal deposits. Interestingly, the deposits that these come from are 

overwhelmingly those at and around Happisburgh and are even recorded as being 

donated by East Anglian collectors such as James Layton (York Phil and Lit 1823).  

In part, then, the lack of trawled material in the north-eastern towns appears to be 

a combination of differing collection interests and, possibly, the loss of collections 

that had been curated. This, combined with the social aspects of the trawling 

industries in these areas - long, laborious and dangerous weeks of fleeting in the 

employment of owners who did not appear to care about the poor conditions, 

contending with drunkenness and fighting between (and among) fleets - may not 

have been conducive to the time, space and spirit for retrieving and storing fossils. 

With no major incentive from the communities at their ports, this may have been 

enough of a reason for these trawlermen not to bother collecting material. The avid 

collectors present at Great Yarmouth, on the other hand, would have given the 

trawlermen the incentive they needed. The shorter-duration trips out of Lowestoft, 

although still subject to the general dangers of trawling, are likely to have been 

more suited to the recovery of fossil material. Shorter working periods, better 

conditions and self-ownership would lead to a greater degree of control over what 

was kept on-board and subsequently sold. In addition, for Lowestoft as with Great 

Yarmouth, there was an abundance of local collectors providing an economic 

incentive for the trawlermen to bring back their fossils.  

 

6.1.4.1 Trawling terrestrial deposits? 

The social aspects described above present reasons for the lack of collections from 

the north-eastern ports, but is this the whole picture? Is it really feasible that over 

nearly 200 years of trawling, no fossil finds were recovered and curated and 

survived the bombing of WWII? The following will address this problem from the 

perspective of seabed deposits that the fleets of trawlers were inadvertently 

exploiting and the effect that this may have had on the resulting pattern.  

As discussed above, how we map sea levels throughout the Pleistocene is often 

based on broad global data, tied in with relative sea-level proxies and therefore 

much of what is shown for the offshore zone is extrapolated from a few known 
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markers. Furthermore, how this ties in with glacial extents is difficult to decipher 

for the earlier glaciations. The extension of glacial limits across much of the 

northerly areas exploited by the north-eastern fleets has been shown in Section 

6.1.2.2. This would clearly have had a detrimental impact on the existing deposits, 

whether through burial or erosion, and may be part of the reason for the lack of 

faunal material from these towns. In addition, sections throughout Chapter Two 

discussed the approximate sea levels throughout MI Stages, which can help us to 

visualise the related changes in landscape and the potential locations of habitable 

Pleistocene land; Figure 6.8 shows these modern contours at -40m, -60m and -

100m. Despite being based on modern bathymetry, and not taking into account the 

level of potentially co-occurring ice sheets, this shows that even a drop of 40m 

creates a significant amount of dry land out of the southern North Sea basin. If we 

take into account the subsidence discussed in Section 6.1.2.2 (0 to -40m OD since 

MIS 11 [Ashton et al. 2011]), any contemporary basin depth will have been 

elevated in relation to today, so that these contours are conservatively estimated.  

When these levels are considered alongside the finds that have been recovered 

from different fleets, it is clear that the most northerly grounds exploited from the 

north-eastern ports would have been dry land only at the most extreme low-stand 

points (often associated with glaciation), if at all. Furthermore the increasing 

distances travelled by the north eastern fleets, with journeys over to the Barents 

Sea and Greenland made possible by the adoption of steam power (Figure 6.8, 

insert), mean that the deposits being trawled would also be increasingly non-

Pleistocene. On the other hand, drops of only 40m would have created dry land in 

the southern North Sea out of the areas exploited by both the Great Yarmouth and 

Lowestoft fleets.  

The glacial extents discussed in Figure 6.3 also appear to have had an effect on the 

deposits exploited and are shown in relation to the contours in Figure 6.8. From 

this distribution it is clear that whilst the northernmost grounds have been 

glaciated at least three times (see Section 6.1.2 [Stewart and Lonergan 2011]), and 

the Great Yarmouth grounds have been glaciated at least once or twice, depending 

on their east-west location, the Lowestoft grounds have only had one main period 

of glaciation during the Elsterian, with the Saalian reaching a few of the most 
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north-easterly grounds (see Beets et al. 2005 for evidence of glaciation of the 

Southern Bight during MIS 8).    

It complicates matters, however, that the north-eastern ports were also known to 

exploit the grounds on and around the Dogger Bank; indeed the discovery of these 

banks was the driving force behind the ports’ development (Butcher 1980; 

Robinson 1996). So their use of grounds beyond the reach of terrestrial 

Pleistocene deposits can only explain in part their lack of specimens. As to this, a 

potentially significant pattern emerges from looking at the patterning of the glacial 

limits in Figure 6.8. We know from the specimens recovered that the vast majority 

are from the Late Pleistocene, either because of repeated erosion or burial.  We 

also know that the area of the Dogger Bank, where the clustering of the eastern 

Great Yarmouth grounds are shown, is dominated by reworked glacial deposits 

overlain by Holocene tidal flat deposits (Jeffrey et al. 1988; Fitch et al. 2005; 

Gaffney et al. 2007; 2009).  It may be that the most productive grounds for 

Pleistocene specimens therefore lie outside the limits of the Weichselian and 

further to the east, towards the Dutch coast. If this is the case, this would help to 

explain the lack of specimens recovered by the north-eastern fleets, as even while 

they were exploiting similar grounds as were the Great Yarmouth fleets at certain 

times of year, the grounds may have been those easternmost grounds dominated 

by Holocene deposits.     
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Figure  6.8 Position of northernmost, Great Yarmouth and Lowestoft grounds with relation 

to glacial extents on the left and contours, showing potential available landmass during 

low-stands, on the right. Insert shows the direction of travel and exploitation of the main 

trawling fleets. (Glacial limit sources: Graham et al. 2011; Lee et al. 2012. Elevation data 

source : Smith and Sandwell 1997) 
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It appears, therefore, that the negative pattern in the north-eastern towns may be 

the result of the combined effects of several factors: 

• A lack of interested collectors;  

• The lack of incentive for trawler collection that this would create, and; 

• The relative decrease in the amount of targeted seabed that would have had 

Pleistocene terrestrial deposits. 

  

The dominance of cold-stage faunas within the collections from Great Yarmouth 

and Lowestoft can also be appreciated within the context of these figures, which 

indicate that the exploited areas were exposed for much of the Middle Pleistocene 

cold/low-stand stages, often when the area was apparently also free of ice.   

6.1.5 Summary 

The distribution and history of terrestrial deposit formations in the southern 

North Sea throughout the Pleistocene can be compared with the locations of 

trawling grounds in order to assess the broad ages of deposits that the trawlers 

exploit.  In this section factors relating to the formation and preservation of the 

deposits in the offshore and coastal zones have been discussed, as well as to the 

social issues surrounding the recovery and collection of the specimens.  

The temporal patterning of the observed species appears to correlate with the 

proportions expected for species for each of the broad areas. Specifically, the 

northernmost ‘Great Yarmouth’ group of grounds yielding fauna - those that were 

dry land only during Middle and Late Pleistocene low-stands - have the highest 

proportion of post-Elsterian species, and these all fit comfortably within the later 

Pleistocene ‘mammoth steppe’ fauna. The Lowestoft group, exploiting more 

southerly grounds, which have early Middle Pleistocene as well as later Pleistocene 

deposits, show a definite dominance of ‘mammoth steppe’ species, but with higher 

proportions of earlier and interglacial species. Lastly, the coastal areas 

demonstrate discrete locations yielding fauna from defined periods of time. These 

patterns imply that many of the deposits from which they originate are intact and 

have the potential to present us with a new level of insight into the archaeology, 
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ecologies and environments of these submerged landscapes. The multi-scale detail 

further allows insight into the nature of the deposits offshore, implying relatively 

broad preservation of more recent deposits with fragmentary outcrops of earlier 

landscape. 

The fragmentary preservation of the offshore deposits and the broad-brush nature 

of our comprehension of them mean that tying the broader collections into a more 

refined area of seabed is presently difficult. By using this analysis, however, to lay 

the foundation for understanding the broad patterns of these geographical areas, 

in conjunction with new work involving modern trawlers and more detailed 

analyses, we can begin to pinpoint and assess locations of potential on the seabed.   

  

 Species issues and fragmentary deposits 6.2

Three scales of approach have so far been defined by the current dataset: the 

broadest scale, applicable to the majority of the specimens recovered historically, 

the smaller scale identified from the historic data, which give a more localised 

location but are still ephemeral (e.g. The Oyster Bed off Happisburgh), and finally, 

the much smaller scale that can be identified from some of the modern specimen 

collections (e.g. Chapter 5: the Wallet). Within these spatial groups is the potential 

to identify both temporal and ecological patterning from the species identified. 

This section will first address the complexities of spatial patterns before looking at 

the ecological implications of some of the species recovered.  

6.2.1 Species attributions and complex patterns 

As discussed, analysis of the faunal specimens indicates a good degree of integrity 

for the deposits from which they derive and may allow us to pinpoint areas of high 

potential. There are difficulties, however, with the discrepancies between knowing 

the species-identifications of groups of specimens, knowing groups of locations 

from which these could have derived, and being able to assign the groups to the 

locations. Furthermore, an issue with the dominant temporal grouping is that it 

can be difficult to group post-Elsterian specimens into specific temporal groupings 

when their provenance is broad. This is due to the occurrence of specific species in 
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different groupings throughout different periods. For example, although the 

dominance of Coelodonta antiquitatis (woolly rhino) and Mammuthus primigenius 

(woolly mammoth) may point to a Late Pleistocene, Weichselian assemblage, these 

species are also present together in the cold stage of MIS 8 and the latter stages of 

MIS 7 (Schreve 2001; 2004). So, although we can make inferences based on 

prevalence of certain types of species, such as ‘mammoth steppe’, and their likely 

time-frame, a margin of flexibility is required.  

The species that span the early Middle to Late Pleistocene may also appear 

problematic because they are time-transgressive. Like all species, however, their 

lineages underwent both phenotypic changes as well as changes to their 

distribution and abundance. It is these changes that can help us to distinguish them 

throughout the Pleistocene. Cervus elephus (red deer), for example, is present 

today and was present during the Early Pleistocene. It appears in abundance 

throughout, but appears to have had a particularly large form during MIS 3 

(Currant and Jacobi 2001). Palaeoloxodon antiquus (straight-tusked elephant), on 

the other hand, is present from the early Middle Pleistocene through until MIS 3, 

but its abundance clearly fluctuates: whilst it is seemingly present at sites such as 

Pakefield (Stuart and Lister 2001, but there are issues with its provenance, see 

Preece and Parfitt 2012), it is present in far greater numbers during the Late 

Pleistocene (e.g. Franks et al. 1958; Franks 1960; Stuart 2005).   

Several of these spanning species occur within each of the broader datasets. Given 

that we know that large areas of the Dogger Bank are dominated by Late 

Pleistocene/Early Holocene deposits (Gaffney et al. 2007; 2009), the interpretation 

that the specimens within these assemblages derive from Late Pleistocene deposits 

(rather than late Middle Pleistocene) seems fair. The presence of pre-Elsterian 

species such as Trichechus huxleyi (walrus) and Megaloceros savini (giant deer), 

however, implies the existence of a multitude of unrecognised fragmentary 

deposits which, in this case, perhaps does not extend as far into the offshore zone 

as the subsequent deposits (Figure 6.2/6.7). The situation is clearly very complex, 

but a greater understanding of the patterning of species in combination with 

deposit models, especially smaller-scale and higher resolution ones, is gradually 

clarifying the picture.   
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The statistic revealed by the work in Area 240, which showed a 70:30 ratio of 

faunal specimens that were in situ to those that were effectively ‘background noise’, 

provides an interesting way of thinking about these complex patterns. Is this the 

kind of ratio we should expect to find in any situation, representing those bones 

which are, in fact, kicking about the seabed? Or is this an artefact of a heavily-

dredged (and so disturbed) area of seabed? Presumably, the ‘background’ signal 

could be represented by specimens from any period, which could in fact fit with 

the broader assemblage pattern being seen. An assessment of the importance of 

this would therefore need to concentrate not just on species attributions but also 

on factors such as abrasion, marine growth, colour and degree of mineralisation, if 

we are to attempt to determine anomalous specimens within an assemblage (see 

Chapter 2, Section 4.1.2). At this stage it is unclear to what extent this statistic 

represents the rule as opposed to the exception, but it is certainly worth further 

investigation.     

The patterns from the more refined areas demonstrate the preservation of 

deposits which are pre-LGM, and this supports the hypothesis that bone-yielding 

deposits of multiple ages are extant. The ‘Oyster Bed’ off Happisburgh 

demonstrates an Early to early Middle Pleistocene deposit, with recently-collected 

beach specimens from immediately south, at Sea Palling, also falling into an 

apparently later early Middle Pleistocene assemblage (Parfitt pers. comm.). The 

material from the Wallet also implies earlier assemblage groupings. Although the 

bulk of them do appear to form either a MIS 8/7 or MIS 3/2 assemblage, there are 

hints of an interglacial environment represented, possibly one of Last Interglacial 

date (from the presence of Hippopotamus, Stephanorhinus hemitoechus [narrow 

nosed rhino] and Palaeoloxodon antiquus [straight tusked elephant]). Nearby 

deposits have yielded estuarine fauna associated with regression after the Last 

Interglacial highstand, as well as supporting OSL (116+/- 6.5 ka) and AAR dates 

(Dix and Sturt 2011). In terms of their location, these correspond remarkably well 

with the given location of a seabed area that has yielded a small number of bones 

(Brand pers. comm.). Potentially, the small numbers of seemingly Eemian fauna 

described above have therefore been recovered from this area of seabed, which 

provides another possible area of investigation. 
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6.2.2 Ecological patterning 

Taxonomic evolution has been used throughout this research as a chronological 

control on the groups of specimens recovered. Issues with this, in terms of many of 

their time-transgressive natures, have been discussed, but the ecological 

information that they can provide is also crucial to this research. Characterising 

and understanding the changing environments within which hominins went about 

their lives is arguably as important as understanding the archaeological proxies 

left behind. One without the other tells us little about the bigger Palaeolithic 

picture.  

The level that submerged Palaeolithic research is now at, however, does not yet 

permit us to appreciate the finer aspects of dynamic ecologies, although this 

should form a vital aspect of future work. Rather it is one of a coarser picture 

derived from large-bodied, mainly herbivorous mammals. Broadly speaking, they 

fall into the categories of cold-stage as opposed to warm-stage fauna, with the cold-

stage faunas heavily dominating the assemblage. 

The robustness of the most dominant fauna, Mammuthus primigenius (woolly 

mammoth), clearly has a part to play in its abundance. The relative lack of 

Palaeoloxodon antiquus (straight tusked elephant) remains on the other hand 

implies that there are other factors at play. With Palaeoloxodon antiquus specimens 

remaining at a low-level of abundance throughout the collection, a low-level 

interglacial component is inferred. This is supported by the proportions of the 

other of the species present: examples include Castor Fiber (European beaver), 

whose presence indicates riparian, woodland habitats, and Stephanorhinus 

hemitoechus (narrow-nosed rhinoceros) an interglacial species often associated 

with Palaeoloxodon antiquus. As we discuss in section 6.1.1, this picture is likely to 

be due to higher sea levels resulting in the relative paucity of offshore interglacial 

deposits.  

The prevalence of Mammuthus primigenius (woolly mammoth) is also significant 

from an ecological point of view as an early form of this mammoth - called the 

Ilford Mammoth – is especially abundant throughout MIS 7 alongside Coelodonta 

antiquitatis (woolly rhino). Although MIS 7 is, at times, cooler than previous 
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interglacial periods (Candy and Schreve 2007), the presence of this species 

indicates that it is adapted to open environments, not simply to temperature. Its 

dominance is, therefore, not necessarily an indication of glacial environments, but 

of the increasing occurrence of the mammoth steppe from MIS 8 onwards.   

One unusual pattern that has been noted here and elsewhere (Mol et al. 2006) is 

the large numbers of specimens of Coelodonta antiquitatis (woolly rhino) from the 

southern North Sea. This species, although having nowhere near the prevalence of 

Mammuthus primigenius (woolly mammoth), has a consistently high frequency and 

is proportionately especially high within the well-confined Wallet/Tendring 

dataset. Similarly, this dataset has a very high proportion of Rhinoceros sp. remains. 

It will be interesting to see if these specimens too fall into the Coelodonta 

antiquitatis category: their largely robust nature appears, so far purely as an 

impression, to support this.  

Having these patterns recognised within two southern North Sea datasets may 

indicate that there was something about these ecologies that Coelodonta 

antiquitatis found preferable. From their skeletal morphology it is now clear that 

they were a grazing species, probably with fat humps on their backs – indicated by 

their long anterior thoracic spinal processes – similar to Mammuthus primigenius, 

which implies adaptation to seasonal variability (Khalke and Lacombat 2008). 

They exploited open grasslands as well as glacial tundra steppe (e.g. Ariendorf 1 

[van Kolfschoten 1990; Turner et al. 1997]) and, although present during British 

cold-stands as well as cooler interglacial episodes, were most prolific throughout 

MIS 3 (Khalke and Lacombat 2008). Did these areas of the southern North Sea 

epitomise these types of environment more than the surrounding landscapes? 

Further work into the environmental signature of related deposits is needed to 

address issues such as this. The identification of refined seabed locations brings 

this possibility ever closer.  

A final pattern relates to the near absence of carnivores within the assemblage. As 

they were top predators this is likely to be due to their general scarcity relative to 

herbivores. Whilst there are a few finds from the southern North Sea (Canis lupus 

[grey wolf] within British collections, therefore, as well as an Ursus sp. specimen 
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and two Dutch Homotherium specimens [Reumers et al. 2003; Mol and Logchem 

2009]) these are by no means prolific.  

As ecological indicators these specimens still only give a coarse-grained idea of 

their environments, mostly, at this stage, as an addition to the chronological 

information. Future work within more refined locations, targeting specific deposits, 

will aim to strengthen this considerably. As another strand of chronological 

evidence, however, this coarse information supports the dominance of later 

Pleistocene, mammoth-steppe-adapted species.  

6.2.3 Summary  

The methods developed within this research have provided the means to use the 

most prolific resource from these landscapes. In combination with geophysical 

data it therefore allows us to focus our efforts on areas of higher potential and to 

appreciate the landscapes at increasing levels of detail.  

The picture of the seabed presented by these specimens is clearly complex, with 

patches of deposit apparently representing a range of periods and environments. 

Whilst the specimens in the minority groupings are few, it is significant that we get 

these pictures from areas where, in terms of mapped Quaternary deposits, we 

would not expect them. Given the extrapolation that occurs for much of these 

deposit models between widely-spaced geophysical lines and only very occasional 

cores, this pattern is likely to be picking up on fragmentary seabed deposits of 

which we are currently unaware but which, once identified, can drastically alter 

our knowledge of these areas.    

 Implications for the bigger Palaeolithic picture 6.3

We have discussed the finer points that emerged from this research and how they 

apply to issues raised in Chapter Three.  In this section the broader research 

questions that apply to the study will be addressed. These questions are central to 

the importance of research into Palaeolithic submerged landscape as they relate to 

the crux of the matter: what these areas mean for our understanding of hominins 
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throughout the Palaeolithic, their behaviour, occupation patterns and capabilities. 

Three broad questions were raised in Chapter One: 

 

• With the potential for the existence of non-analogous environments, can we 

use the submerged material to redefine and further inform our current 

conceptions of the palaeoecological contexts of hominins throughout the 

Palaeolithic?  

• Given that the pattern of occupation of Britain appears to be more sporadic 

than constant, can the inclusion of evidence from the southern North Sea aid 

our understanding of the patterning of hominin movements?   

• Later Palaeolithic evidence shows that when marine resources are exploited 

they are exploited close to the shore. Are our preconceptions about a lack of 

early hominin coastal and marine adaptation and interactions therefore 

based on the invisibility of this record rather than its non-existence?  

 

Addressing these questions has the potential to redefine our interpretations of 

changes in hominin lifeways throughout the Palaeolithic. Identifying deposits, both 

archaeological and non-archaeological, will allow us to interpret the range of 

environments present in the southern North Sea and, possibly, those which are not 

known from any currently terrestrial sites. Furthermore, the discovery of 

archaeological traces would facilitate a greater understanding of the timing and 

nature of the movements of hominins in North West Europe. Through these 

archaeological traces the possibility of identifying exploitation within 

coastal/marine areas could raise interesting questions about how we currently 

perceive the use of alternative food sources. It is necessary to make it clear, 

however, that these questions remain presently unanswerable; their resolution 

still an ambitious task. The research presented here began from a point of knowing 

almost nothing about the submerged landscapes of the southern North Sea and so 

presents the first steps towards this. Through developing the foundations of an 

understanding of these landscapes it brings us closer to engaging with specific 

deposits and, therefore, to identifying and analysing deposits and artefacts. This is 
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a significant step forwards in understanding the nature of both the ecological as 

well as archaeological signatures. Sites such as Area 240 and the Zeeland Ridges 

are examples of the fragmentary archaeological landscapes that we cannot simply 

engage with on a purely serendipitous basis but which require the more focused, 

bottom-up approach aimed at here. 

Chapter Two of this thesis highlights the problems of assessing presence or 

absence of hominins throughout the Palaeolithic. With data resolution for 

archaeological signatures at such a mismatch to environmental proxies, and dating 

techniques either relative or with large margins of error, understanding the timing 

and nature of occupation for such a fragmentary terrestrial record is not easy. The 

problems that we will face when we have further evidence from the submerged 

zone will of course be no different, but increasing the amount of data available, as 

well as securing data that is likely to be ecologically different from that obtained 

from the currently terrestrial zone, should allow us to address these questions 

more broadly and more holistically. Evidence from the southern North Sea, being a 

swathe of landscape between a discontinuously-occupied and peripheral Britain 

and the northernmost extent of the more archaeologically-rich European continent, 

may hold the clues to the reasons for these discrepancies.  

Sitting at the peripheries of Palaeolithic hominin occupation, the record from 

Britain can provide us with information about how hominins through time have 

engaged with marginal environments. For example, does the relatively high 

number of sites seen through MIS 11 relate to the preferences of Homo 

heidelbergensis, or early Neanderthals, or is this simply an artefact of the available 

evidence? Moreover, with this pattern of ephemerality or sporadic occupation 

continuing through the Middle and into the Upper Palaeolithic, is this a continued 

ecological preference or a pattern common to these hominins’ changing 

exploitation behaviours? Although the answers are not provided here, there is 

great potential in the submerged zone for exploring these questions through a 

broader understanding of ecological niches and archaeological signatures.    

We know from biostratigraphical data that, despite the initial MIS 12 breaching of 

the Weald-Artios ridge and the high interglacial sea levels of the succeeding 

interglacial, the British landmass remained a peninsula of Europe at least 
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throughout the early stages of MIS 11. Probably a result of different seabed height 

and glacial isostatic adjustments, as well as the uncertain degree of ridge erosion, 

this meant that fauna, flora and hominins could continue to move across what is 

now the southern North Sea. Deposits, such as those of the Clacton Channel, 

demonstrate hominin occupation on the edge of the now submerged zone and 

imply that these occupation signals are likely to continue in deposits that are now 

offshore. This pattern of at least partial interglacial connection to the continent 

appears to continue until the Last Interglacial (MIS 5e [Preece and Meijer 1995]) 

and implies that a similar pattern of offshore deposits may be preserved for MIS 9 

and 7 (e.g. Roe and Preece 2009; DONG 2011). After MIS 5e, the generally cooler 

environments of MIS 5d – 2 (the Weichselian) are likely to have provided periods 

of significantly lowered sea levels (Chappell et al. 1996; Siddall et al. 2003) with 

the emergent coastlines providing either tracts of near-coastal, habitable 

landscape, or landscape that stretched across to the continent. It is clear is that it is 

these lowered sea levels, regardless of the precise configuration of the resultant 

landmass, that have dominated throughout the Palaeolithic (Bailey and Flemming 

2008).   

Within these areas, then, what are we trying to get at? What do we expect from 

these ecologies that is so different from what we find in the terrestrial record? The 

most obvious answer is the potential for coastal and near-coastal environments: 

the environments for which we have little evidence throughout the Palaeolithic of 

north-western Europe (cf. Roberts and Parfitt 1998). These environments are 

significant for several reasons. They may contain evidence for exploitation of 

coastal resources as well as hominin occupation itself, and, beyond the 

archaeological record, they provide the opportunity to explore the dynamic 

ecologies of these coastlines. Understanding these ecologies moves us beyond the 

limits of the archaeological site to the wider landscape of occupation, allowing us 

to engage with hominin lifeways on a broader scale.     

Studies of modern human marine resource exploitation have shown that marine 

resources are not transported great distances (<10km: Erlandson 2001; Bailey and 

Craighead 2003), which indicates that we are not likely to find evidence for marine 

exploitation at significant distances from the contemporary coastlines of the 
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hominins in question. Given the submergence of these coastlines, this therefore 

presents a reasonable explanation why this evidence is currently missing. 

Furthermore, where large, archaeological shell middens are found, they are 

generally associated with shallow marine conditions, such as intertidal and 

lagoonal areas that support large numbers of shellfish. Given their shallow 

gradients, these are also areas that are rapidly affected by any rise in sea level and 

therefore either buried or eroded, which obscures and biases the archaeological 

picture (Bailey and Flemming 2008). The submerged zone plays a key role in the 

clarification of this apparently scarce Palaeolithic record.   

An additional point relates to the nature of the wider environments in the now-

submerged zone.  It is important to remember that many of these landscapes were 

as far from coastal as some of our most landlocked counties are today. What is of 

potentially essential importance about these areas, then, aside from the basic fact 

of their being a large area of unexplored Palaeolithic landscape, is that they 

represent the lowland areas to what would then have been the uplands, now our 

modern landmass. When we think about the high potential areas for terrestrial 

Palaeolithic archaeology we think of lowlands and fluvial landscapes, whether this 

is entirely related to increased preservation in these areas or not. Given the 

confluences of several major fluvial systems and their tributaries across what is 

now the southern North Sea, it seems likely that these areas were attractive for 

hominins, both from the perspective of static resources, such as water, as well as 

for the targeting of prey species and, possibly, as corridors of movement through 

landscapes (Roebroek and Tuffreau 1999; Davies 2001).  

In terms of archaeology within these fluvial corridors, Brown et al. (2013) have 

proposed some interesting ecological and taphonomic arguments for site 

distribution as a real phenomenon. With a large proportion (12/19) of British 

‘super-sites’ (i.e. sites with >500 lithics) being located at tributary junctions where 

larger swathes of floodplain habitats existed, there is a strong bias towards these 

locations that prevails throughout the last four interglacial periods. Furthermore, 

the spatial patterning of finds being strongly concentrated in fluvial environments 

(relative to extensively field-walked interfluves in areas that never saw glaciation 

during the Pleistocene), has been argued to hold true for the Bose Basin, China, as 
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well as pre-agricultural America. Ecological arguments have been proposed that 

these floodplain areas provide key nutrients from the plant and animal resources 

needed for development throughout all stages of life, including pregnancy and 

childhood, and fundamental to occupation of less productive latitudes  (Brown and 

Basell 2013). This aquatic exploitation is interesting in its implications for the use 

of either coastal zones or areas of high fluvial confluence. Although Brown and 

Basell’s research, based on existing site locations, indicates that coastal resources 

are probably not a primary source of nutrition, the persistent use of tributary 

junction environments may indicate that the southern North Sea basin, with its 

many fluvial confluences, was an attractive location for hominins and perhaps 

influenced movement or dispersal along these fluvial landscapes.   

The lithic record also presents possible evidence of movement, with the potential 

for different technological groups occupying different areas of landscape. Ashton 

and Scott (in press; Scott et al. 2011) have suggested that both the typological and 

chronological aspects of the Levallois/handaxe record in Britain and north-

western Europe throughout the Early Middle Palaeolithic (MIS 8-6) suggest 

patterns that relate to hominin movement and the use of the now-submerged zone. 

With the British sites apparently absent after mid MIS 7 but the north-west 

European sites from MIS 8-6 occupied far more regularly, this may have something 

to do with Britain’s possible island status from this point onwards (Bates et al. 

1998; 2000; 2003; 2010), coupled with inhospitable conditions throughout MIS 6 

(presumably until the time of Lynford in MIS 3 when sea levels had dropped 

sufficiently to allow re-colonisation [Boismier et al. 2012]).   

In discussing the potential avenues for new interpretation that the submerged 

landscapes may present we may risk presenting them as the answer to all our 

Palaeolithic questions. This is not what this research argues, regardless of how 

true or false that may turn out to be. With sporadic occupation patterns known 

from traditional archaeological landscapes on both sides of the southern North Sea 

(although generally more towards the continent), it is unlikely that the southern 

North Sea was a habitation hub. The available resources may have made it an 

attractive place to be, but it still existed at the edge of the (north-west European) 

Palaeolithic world. The important point is that these landscapes were present 
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throughout the entire Palaeolithic and are totally unexplored: they are the relative 

lowland to our upland landscapes, the coastal zones and the interface between the 

continental record and the British.    

Building a clearer picture of the distribution of extant Palaeolithic deposits in the 

southern North Sea, as discussed in the initial sections of this chapter, helps us to 

target specific areas so as to begin addressing these questions from both an 

archaeological and an ecological viewpoint. The timing of episodes of occupation 

within specific ecologies can help us to understand better the how and the why of 

our current patterns of occupation - and could see these patterns change.          

 Conclusions 6.4

Through investigating the patterning and distribution of the faunal resource from 

the southern North Sea, this research has allowed fresh insights into the nature 

and potential of an under-explored area of the Palaeolithic landscape. It has 

demonstrated the integrity of the deposits from which the specimens that we have 

considered derive and the possibilities, through understanding their recovery, for 

provenancing them on the seabed. This is a significant step forwards in our 

approaches to, and understanding of, the submerged Palaeolithic. 

Appreciating their associated landscape formation has reinforced the observed 

patterning, with cold-stage – and therefore predominantly low-stand - species 

more prolific than those associated with higher sea levels. Recognising interglacial 

species in small numbers, however, demonstrates the existence of these general 

unmapped landscapes offshore (also supported by recent offshore projects [Dix 

and Sturt 2011]), and this further implies the complex organisation of fragmentary 

outcroppings of deposits and the need to understand them at a more local scale.  
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Chapter 7:  Conclusions and Future Work 

 Conclusions 7.1

Understanding the submerged archaeology of the southern North Sea requires an 

understanding of the associated geology and seabed processes, but it is important 

that the archaeological questions remain our focus. Chapter One raised three 

overarching questions that research in this area has the potential to address: that 

of redefining palaeoecological adaptations, the timing and context of hominin 

movements, and the possibility for identifying marine exploitation. Despite the 

present capacity to answer these questions remaining frustratingly out of reach, 

the more focused questions which subsequently emerged have brought their 

elucidation significantly closer. These achievable questions focused on identifying, 

collating and analysing the existing resource from the southern North Sea in an 

attempt to do two things: first, identify what this can tell us about the nature of the 

specimens and their deposits. Secondly, determine what the distribution and 

patterning of these specimens can tell us about the submerged Palaeolithic record 

and how we can move this research forwards.  

The geological history implies that a dominance of low-stand - and therefore 

generally cold-stage - deposits is the expected picture. This results from two main 

factors: 

• Progressive subsidence of the North Sea basin meant that whilst

interglacials immediately post-Elsterian (e.g. MIS 11)  required only a small

drop in sea levels to maintain a connection to the continent, the required

drop grew increasingly large through time (Busschers et al. 2008; Ashton et

al. 2011).

o The proportion of warm stage to cold stage deposits would therefore

have changed: towards the Late Pleistocene deposits forming in the

southern North Sea basin would be increasingly from cold-stage
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periods, including regressive phases at the ends of interglacials and 

transgressive phases at their beginnings. 

• Those deposits subjected to the least amount of glacial, transgressive and

regressive periods – and their associated effects – are also likely to be these

later Pleistocene deposits which, furthermore, are less likely to be deeply

buried than those from earlier periods.

So combining these two factors means that, although pre-Elsterian deposits should 

be present and potentially extensive, these are more likely to be buried beneath 

later Pleistocene deposits which have also undergone fewer potentially erosive 

phases. In addition, the later Pleistocene deposits that we would expect to find are 

those related to low-stand, cooler environment periods that prevailed throughout 

the Late Pleistocene. 

Occasional fragmentary deposits from Early to early Middle Pleistocene, as well as 

immediately post-breach periods (e.g. MIS 11) of warm climate with a terrestrial 

connection should also be present, but their existence is largely inferred rather 

than demonstrated given the extrapolated nature of much offshore deposit 

mapping.  In this case, then, the deposits in the near-shore areas, which – through 

differing trawling patterns – are at a higher resolution, are more likely to reveal 

such fragmentary, potentially interglacial, earlier deposits.     

The results that emerged from the data in Chapter Four demonstrate the spatio-

temporal nature of the resource, and are in agreement with this geological picture: 

• Broad scale trends showing the dominance of post-Elsterian species, but

which appear to lean towards the later end of this time-range (i.e. MIS 8

onwards)

o Within this, the collections are dominated by species adapted to

open, cooler environments such as those of late MIS 7 and MIS 3

such as Mammuthus primigenius (woolly mammoth) and Coelodonta

antiquitatis (woolly rhino).

• Smaller scale trends from near-shore locations which show the existence of

deposits of varied time periods:
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o Deposits off the north East Anglian coast are dominated by pre-

Elsterian species that most likely related to the CFbF / Yarmouth 

Roads Formation (related to the Oyster Bed and Sea Palling 

collections respectively), for example Mammuthus meridionalis 

(southern mammoth) and species of pre-Elsterian giant deer. 

o Deposits off the south East Anglian/Essex coast (especially the 

Tendring Peninsula) are dominated by later Pleistocene, probably 

Late MIS 7 or MIS 3 species. 

 Smaller patterns of interglacial species such as Palaeoloxodon 

antiquus (straight tusked elephant) within the Tendring 

dataset also demonstrate the likelihood of outcropping 

fragments of these deposits.     

 

Chapter Five looked at the smaller scale areas of the Oyster Bed, off Happisburgh, 

and the seabed off the Tendring Peninsula in more detail. High resolution swath 

bathymetry data collected for a refined location within the Wallet – identified 

using derived faunal material - demonstrated the preservation of what are 

interpreted as competent Quaternary deposit bedforms, distinct from other 

Tertiary- and Holocene–type bedforms in the vicinity.  The correlation of the 

deposits identified using this geophysical data with the faunal specimens collated 

from this area shows significant progress in our approach to exploring the 

submerged Palaeolithic. Not only is this the first instance of a focused identification 

- defined entirely by derived fauna - of pre-LGM deposits offshore, but it highlights 

the potential of taking a proactive, reasoned approach to their location and 

investigation. The combination of this geophysical data with the observed faunal 

patterns increasingly implies that there are fragments of Pleistocene submerged 

deposits, potentially – at least in this area – associated with the margins of relict 

channel systems.    

The importance of this research lies not so much in the details it provides but in 

the step-change in knowledge that it delivers for the offshore zone and the 

questions and opportunities that this raises. It has changed our understanding of 

the Palaeolithic of the southern North Sea from one dominated by abstract 
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concepts of hominin occupation, punctuated by the occasional chance-find of a site, 

to a complex landscape characterised by fragmentary and multi-period deposits. 

This is an aspect of this area that was hitherto largely invisible, and highlights the 

emerging potential to begin engaging with these deposits in a more focused and 

targeted way.    

Exploiting a unique and forgotten resource, this research provides both a broad 

and fine scale understanding of the archaeological picture of the southern North 

Sea. It will ultimately allow us to address Palaeolithic questions about the timing 

and nature of occupation that are otherwise heavily biased by the truncated 

terrestrial record. As a unique area of work that challenges our attitudes to the 

Palaeolithic record, its further development is essential.   

 Future Work 7.2

As the research presented here was the first study of this nature and scope, there is 

much work that can be done in the future to build-upon and investigate specific 

aspects of it. Furthermore, we have the opportunity at this stage to be very specific 

about targets for future work. These should look to advance the Palaeolithic 

investigation of the southern North Sea by addressing three essential questions: 

• Further and more detailed chronological control of the collections, through

species-level taxonomy

• The identification of human agency in the faunal record

• Site-specific interaction with the submerged deposits through geophysics,

diving and sampling procedures.

The three main foci for this future work are proposed below: 

1 – Age Range Determination and Environment Characterisation through 

Species Level Taxonomy  
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Of the existing specimens recovered from the southern North Sea, only a third have 

been identified to species level. The remainder are, to varying degrees, uncertain, 

and with an increasing number of modern collections being discovered it is crucial 

that this work is carried out. Understanding the evolution of taxonomic lineages 

has implications for the environments we recognise as well as date-ranges, as 

species evolve and become extinct in certain areas at certain times. Groups of 

fauna also imply climatic conditions, for example a cold stage fauna would typically 

include woolly mammoth and reindeer, whereas warmer conditions would be 

indicated by straight-tusked elephant and hippopotamus. Moreover, many of these 

groupings are specific to particular periods. Correct identification is thus 

absolutely crucial to furthering this research as it forms the backbone of the 

spatio-temporal patterning of the fauna telling us where these deposits are and the 

broad periods they date from. Robust and specific identifications must be acquired 

for as many of the specimens as possible. 

 

Methods    

Reference collections for Pleistocene fauna are not prolific, but several do exist. A 

good place to start would be the NHM, London, as well as the Naturalis Museum, 

Leiden, where a large comparative collection of Dutch trawled remains resides. 

Literature is also available for determining size and morphological features of 

specific species, but this is most beneficial when used alongside physical 

collections.  

Identifying patterning in the distribution of these species, as well as any 

statistically significant links to seabed geology, could be carried out using 

Geostatisics in a GIS platform. 

 

2 – Identifying human agency  
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Faunal remains allow us to ascertain ecologies and temporally specific 

environments which can be linked with hominin occupation, however, they do not 

give us the crucial evidence of this occupation. For the Palaeolithic, such activity is 

primarily identified in three ways: Stone tools, hominin fossils and cut-marked 

bones. Stone tools have been recovered by the offshore aggregate industry, but 

access to this potential resource is heavily restricted for health and safety reasons 

and the trawling industry is not recovering this type of material (due to net sizes). 

A Neanderthal fossil has been found off the Dutch coast (Hublin et al. 2009), but 

these are extremely rare in any context. However, increasing numbers of cut 

marked Pleistocene bones are being found washed onto beaches, demonstrating 

the potential of trawled specimens for adding this crucial aspect of occupation 

(Parfitt pers. comm.).  

Surface marks on faunal specimens from the seabed indicate their post-

depositional history, which can reflect conditions related to their terrestrial 

deposition as well as their subsequent submergence. Although important for 

recording a history of the bones, from an archaeological perspective distinguishing 

natural marks from any human signal is crucial. Looking to identify diagnostic, 

anthropogenic marks from tool use and processing is therefore a crucial aspect of 

any future work.    

Methods 

For the analysis of this material it will be necessary to involve the use of macro and 

micro techniques such as high resolution Microscopes, Reflectance Transformation 

Imaging as well as Scanning Electron Microscopes. This will enable a detailed 

assessment of the specimens, allowing potential cut marks to be analysed in an 

objective and quantifiable way.   

Potentially, radiocarbon dating of appropriate specimens could be an option, 

strengthening species-related temporal patterns as well as occupation signals and 

tying deposits to specific date ranges.   
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3 – Resolving abstract concepts of submerged landscapes  

Although most specimens identified so far have been from historic collections, 

Pleistocene bones are still being recovered from the southern North Sea. 

Frameworks have been set up to record this material, such as the British Marine 

Aggregate Producers Association protocol for archaeological recovery and the 

Fishing Industry Protocol for Archaeological Discoveries which is currently being 

piloted off the Sussex coast. These reflect a growing engagement with collectors 

over recent years, however, where they work well for much archaeology, for the 

Palaeolithic they are of limited use. Being reported via photograph, faunal 

elements are extremely difficult to identify and tool marks are impossible to 

recognise; a more targeted approach is required.  

This doctoral research has already identified one area off the coast of Essex, with 

close to 300 bones from an individual trawler-man (Chapter Five). Having 

indicated where these specimens derive from, geophysical data collected across 

the study area demonstrated correlation of these faunal remains with a Pleistocene 

deposit on the seabed. The future potential of this work is clear and could be 

expanded upon by using the increased resolution offered by the initial foci of this 

future work to developed a site-specific aspect to this research. This potentially 

allows questions to do with the interaction between hominins and their ecologies 

at particular points in time and space to be addressed.  

Where this approach differs, and which is a vital distinction for developing our 

attitude to the offshore zone, is that with specifically targeted areas this phase will 

be active rather than responsive. Furthermore, it will introduce a dissemination 

aspect to the programme, with outreach into specific trawling communities 

discussing the importance of understanding and reporting such finds for future 

research. 
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Methods 

Further work on the historical specimens will define high potential areas within 

which to search for intact deposits. Through establishing relationships with 

current fishing communities in these identified locations, providing a much higher 

level of locational information, a series of investigative case studies based upon the 

specimens they are recovering could be developed. The potential for modern GPS-

based recordings of the locations of the material and the integration of these with 

recent geophysical data would add exciting layers of increasing resolution to this 

picture. Tying-in with research on geological seabed deposits and outcroppings, 

this will in turn feed back into the temporal component.  

Any new collections could be analysed using the techniques from points 1 and 2 

resulting in a finer-grained map of the archaeological and ecological composition 

of particular seabed areas. Diver-based ground-truthing would be essential to fully 

investigate the identified areas, providing first-hand experience of the nature of 

the deposits, sampling and in situ artefact recovery.  

 

The work presented in this thesis began from a situation where our engagement of 

the Palaeolithic of the southern North Sea was from a purely abstract perspective. 

Through a detailed assessment of the existing faunal resource and the 

development of methodologies for analysing their patterns and distributions, new 

insights have been gained about the nature of these landscapes. This is allowing us 

to begin appreciating the submerged Palaeolithic in a more tangible way than was 

previously possible, opening up exciting new avenues of research.  
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Chapter 8:  Appendices 

Please see attached CD for the raw faunal data (.xlsx) 
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