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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF SOCIAL AND HUMAN SCIENCES 

Mathematics 

Doctor of Philosophy 

DEVELOPING A MULTI-METHODOLOGICAL APPROACH TO HOSPITAL 

OPERATING THEATRE SCHEDULING 

by Marion Louise Penn 

 Operating theatres and surgeons are among the most expensive resources in any 

hospital, so it is vital that they are used efficiently.  Due to the complexity of the 

challenges involved in theatre scheduling we split the problem into levels and address 

the tactical and day-to-day scheduling problems. 

 

  Cognitive mapping is used to identify the important factors to consider in theatre 

scheduling and their interactions.  This allows development and testing of our 

understanding with hospital staff, ensuring that the aspects of theatre scheduling they 

consider important are included in the quantitative modelling. 

 

  At the tactical level, our model assists hospitals in creating new theatre timetables, 

which take account of reducing the maximum number of beds required, surgeons’ 

preferences, surgeons’ availability, variations in types of theatre and their suitability for 

different types of surgery, limited equipment availability and varying the length of the 

cycle over which the timetable is repeated.  The weightings given to each of these factors 

can be varied allowing exploration of possible timetables. 

 

  At the day-to-day scheduling level we focus on the advanced booking of individual 

patients for surgery.  Using simulation a range of algorithms for booking patients are 

explored, with the algorithms derived from a mixture of scheduling literature and ideas 

from hospital staff.  The most significant result is that more efficient schedules can be 

achieved by delaying scheduling as close to the time of surgery as possible, however, 

this must be balanced with the need to give patients adequate warning to make 

arrangements to attend hospital for their surgery.  

 

  The different stages of this project present different challenges and constraints, 

therefore requiring different methodologies.  As a whole this thesis demonstrates that a 

range of methodologies can be applied to different stages of a problem to develop better 

solutions.
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Chapter 1: Introduction 

Across the world operating theatres are among the most expensive of hospital resources 

and are in high demand with surgical groups competing for theatre time in many cases.  

In the UK hospitals face increasingly demanding targets for reducing waiting times and 

avoiding cancellations, whilst at the same time having to address the patient choice 

agenda (DoH, 2012b), payment by results (DoH, 2012a) and generally the need to work 

within tight budgetary and resource constraints.   Therefore, it is important that hospitals 

make efficient use of their resources through detailed planning and efficient systems.  

The use of operating theatres plays a significant role in this, as discussed in the 

literature. Our literature review (Chapter 2) demonstrates that there have been a number 

of studies across the world exploring various aspect of the planning of operating theatre 

schedules.  However, there has been limited implementation of the results of these 

studies, possibly because individually they only consider some aspects of theatre 

scheduling. 

 

This introduction provides a brief background to the challenges involved in theatre 

scheduling; sets out the objectives for the project, including those of the separate stages; 

describes the contribution made by the thesis overall; and sets out the structure of the 

remainder of the thesis. 

 

1.1 Background 

This section introduces the terminology used throughout this thesis, the literature review 

(Chapter 2) describes the various aspects of theatre scheduling and challenges 

surrounding them in much greater detail. 

 

Hospital operating theatres or operating rooms are specially designed spaces within 

hospitals where surgery is conducted.  The types of surgery are grouped based on the 

specialty areas of the surgeons within the hospitals and surgeons only conduct operations 

within their areas of expertise. 

 

Patients are also separated into priority groups based on how urgently they require 

treatment based on their clinical need.  The highest priority patients are emergency 

patients, also referred to as non-elective patients, who have the most serious conditions 
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and require treatment as soon as possible and whose operations are not planned in 

advance.  All other patients are classified as elective patients and their surgery is planned 

in advance.  Elective patients are divided again based on urgency into urgent and 

routine.  Urgent patients need to be treated within the next few weeks (the exact details 

will vary for different specialties).  Routine patients will benefit from surgery, but they 

can wait without impacting on their expected clinical outcomes. 

 

A further grouping within elective patients are referred to as day cases or surgical 

outpatients, this group includes those having less invasive surgery who will not usually 

require a stay in hospital after surgery. 

 

The ways in which decisions are required in theatre scheduling are generally divided 

into three levels: strategic, tactical and day-to-day.  At the strategic level decisions 

include the likes of: the number and type of theatres a hospital should have; the opening 

times of operating theatres; how the theatre time available should be divided between 

specialties and individual surgeons.  The tactical level decisions tend to focus on the 

master timetable of which theatre slot is taken by which surgeon over a planning period.  

The day-to-day decisions include both the advanced scheduling of patients when they 

are booked into particular theatre slots and the ordering of operations each day.  These 

levels and the reasons for using them are covered in detail in Chapter 2. 

 

Within the literature on theatre scheduling, waiting time is taken to mean the time 

patients wait between the decision that they require surgery and the operation taking 

place. 

 

1.2 Objectives 

The objective of this study is to combine the use of different operational research 

techniques to develop methodologies for use in hospitals to improve the scheduling of 

operating theatres. This work will focus on tactical and day-to-day scheduling of elective 

cases.  Our analysis will take into account such considerations as the availability of 

operating theatres, equipment, staff, and beds, the stochastic nature of the time taken for 

individual operations and length of stay, along with other considerations as proves 

feasible.  The potential impact of non-elective cases will be considered as appropriate. 
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Due to the complexity of the challenges involved in hospital theatre scheduling, 

including the variation between different levels of decision making, it is necessary to 

apply a variety of techniques in order to address the problem as a whole.  This approach 

is supported by the literature review, which demonstrates that other studies have treated 

the different levels of theatre scheduling separately.  The case for a multimethodological 

approach is further set out in Chapter 3, while making the case for including qualitative 

modelling with otherwise quantitative research. 

 

The initial objective for the qualitative modelling is to identify the significant factors 

that affect theatre scheduling and the importance of improving theatre schedules within 

the running of the hospital as a whole. 

 

At the tactical level the objective is to use of linear programming to generate cyclic 

master theatre timetables assigning surgeons to theatre slots, taking into account a 

variety of factors identified in the literature review and from the qualitative study with a 

local hospital. 

 

At the day-to-day scheduling level the objective is to generate and objectively compare a 

variety of scheduling algorithms that could be used when booking individual patients, 

considering their implications for waiting times and efficient use of operating theatres. 

 

1.3 Contribution 

The most significant difference between this study and previous work in the area is the 

close link to how UK hospitals currently work, which has been maintained in order to 

ensure that the findings can be used by such hospitals.  This approach is demonstrated in 

the emphasis placed on understanding the current challenges around operating theatre 

use faced by hospitals in general, before developing quantitative models.   

 

At the master theatre timetable generation stage a wider range of factors are considered 

than in any previous study and flexibility is incorporated to allow hospital managers to 

explore how changes like providing evening theatre sessions could impact on other 

aspects of the hospital such as bed usage.  The consideration of surgeon’s availability 

enables managers to run the model both with and without the restrictions imposed by the 

preferences and other activities of surgeons, allowing assessment of the impact those 
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restrictions are having on the timetable.  Thus, indicating the desirability of discussing 

changes to those restrictions and providing quantifiable evidence to determine the 

potential effects of such changes.  The consideration of restrictions based on equipment 

availability allows limitations on the availability of resources including particular staff 

as well as items of equipment to be considered at the master theatre timetabling stage. 

 

In the day-to-day scheduling stage surgeons ideas about how to improve the scheduling 

algorithm are combined with ideas from the machine scheduling literature to allow 

exploration of a diverse range of theatre scheduling algorithms, providing new insights 

into how different algorithms deal with the challenges of online scheduling with a 

variety of due dates. 

 

1.4 Structure 

Following this introduction, Chapter 2 gives a detailed review of the literature applying 

operational research techniques to different aspects of operation theatre scheduling. This 

includes consideration of the operational research methods applied to theatre scheduling; 

the levels of theatre scheduling; the aspects of theatre scheduling the papers consider; 

the way in which uncertainty is incorporated and the level of implementation of the 

literature in this area. 

 

Chapter 3 discusses the reasons for including the soft operational research technique of 

cognitive mapping, before describing its implementation in this case and giving the 

implications for following chapters.  

 

Chapter 4 considers the tactical problem of developing master theatre timetables giving 

details of the methods used and the reasoning behind their selection. Then the 

mathematical formulation used is given and justified.  This is followed by discussion of 

the implementation of the method and discussion of the results and the conclusions 

drawn from them. 

 

Chapters 5 and 6 explore the day-to-day scheduling problem of booking individual 

patients into theatre slots.  This begins with discussion of the literature on applying 

scheduling techniques in other application areas.  Details of the modelling and data used 
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are set out along with the results and discussion of the implications for selecting 

appropriate scheduling algorithms. 

 

Finally Chapter 7 summarises the work undertaken throughout the thesis and explores its 

implications for theatre scheduling, as well as making suggestions for further work in the 

field. 
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Chapter 2: Literature Review 

 

This chapter reviews the academic literature on the application of operational research  

techniques to hospital operating theatre scheduling, considering what has been done and 

how.  This is done with a view to understanding the work that has already been 

undertaken in the field and to identify the gaps in that work for exploration later in this 

thesis.    

 

The importance of scheduling the use of operating theatres has long been recognised and 

as far back as 1978, when Magerlein and Martin (1978) published a review paper on the 

subject.  More recently Cardoen et al. (2010a) and Guerriero and Guido (2011) have 

published reviews of the literature in this area.  The former focusses on allowing the 

reader to identify manuscripts relevant to their research interests as well as identifying 

areas to be addressed in future.  The second review paper focuses on identifying the 

most mathematically interesting optimisation and simulation models.  Our review does 

not specifically aim to assist the reader in identifying studies most relevant to each area 

of theatre scheduling, as these are identified in the chapters where they are relevant. Our 

overall aim is to identify gaps in the work undertaken by others to enable the selection of 

new areas for research later in the thesis. We look at the range of modelling techniques 

used in each area of theatre scheduling, with the aim of understanding how they have 

been used in the past to inform our decisions on which techniques to implement. 

Therefore, while our aims are similar, we have a different emphasis and there are 

differences between the groups of papers reviewed. 

 

Like Cardoen et al. (2010a) and Guerriero and Guido (2011), we do not include clinical 

considerations and our scope is limited to those papers that address issues related to the 

planning and scheduling of operating theatres.  Cardoen et al. (2010a) limit the papers 

considered to those published in or after 2000, while we predominantly consider such 

papers, some earlier publications are included, particularly if they address an area not 

covered in more recent contributions to the field.  Cardoen et al. (2010a) also consider a 

number of conference papers; these have largely been omitted from this review in favour 

of journal articles.  The exclusion of older conference papers is particularly valid as it is 

likely that the authors will have also written papers on similar work, so this avoids 

duplication. 
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The papers included in this review have been identified by a combination of searching 

OR journals and web facilities like Google Scholar using terms relating to theatre 

scheduling, identifying relevant references from papers, searching the journals that 

published these papers and expanding the list of search terms based on the titles of 

papers found via references.  This search has identified a wide variety of papers 

including some published in clinical journals. 

 

This review begins with a brief examination of the methods that are used in the papers 

considering various aspects of theatre planning and scheduling.  Followed by 

consideration of the different types of surgery and discussion in detail of the extent to 

which they are covered in the literature, breaking them down into the different stages of 

planning where relevant.  In later sections we discus where there are variations in the 

ways the different types of surgery and levels of planning are treated. 

 

This is followed by discussion of the studies which look at particular details of the 

planning process and those considering issues related to theatre scheduling.  Then we 

explore the different objectives or performance measures used and other aspects of 

surgery considered by the various papers.  We proceed by considering of the extent to 

which the stochastic aspects of the problem are addressed, before exploring the extent to 

which the work in the literature has been implemented.  The review concludes with 

discussion of the implications of the literature review for further work in the area in 

general and the remainder of this thesis in particular. 

 

2.1 Methods 

The most common operational research techniques to be applied to theatre planning and 

scheduling are variations on mathematical programming, simulation and heuristics.  This 

section discusses each of these methods in turn, giving a brief description of the method 

and examples of how it is used in the literature.  This is followed by examples of papers 

using multiple methods and less commonly used methods. 

 

2.1.1 Mathematical Programming  

Linear programming (LP) is a method of optimisation first developed by Dantzig in the 

1940s, for “finding the maximum or minimum of a linear function subject to linear 

restrictions” (Maros and Mitra, 1996).  It is a widely used operational research 
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technique, so much so that approximately 40% Winston’s (1994) text book on 

‘Operations Research’ is “devoted to linear programming and related optimisation 

techniques”. 

 

LP is used by Dexter et al. (2002a, 2002b), firstly to determine the worst case scenario 

for the cost of preoperative care by using LP “to determine by how much changing the 

mix of surgeons can increase total variable costs while maintaining the same total hours 

of OR [operating room] time for elective cases”.  The results demonstrate that changes 

to the operating schedule have the potential to have a significant adverse effect on costs, 

so this should be considered in allocating operating room time.   In the second paper 

(Dexter et al., 2002b), LP is used again to consider the financial implications of the 

operating time allocated to surgeons.  This time the conclusion is that up to 22% of 

surgeons could have their operating time reduced inappropriately because of sampling 

error generated from error in the data or processes used to analyse it, so confidence 

intervals should be used when making such decisions. 

 

Integer Programming (IP) “is an LP in which some or all of the variables are required to 

be nonnegative integers” (Winston, 1994); usually if the variables are a mixture of those 

required to be integers and those which can take real number values then we have a 

Mixed Integer Programing (MIP) problem.  Winston (1994) states that “many real life 

problems can be formulated as IP’s” and it would seem that this includes a number of 

problems associated with theatre planning and scheduling.  While operating room hours 

can be treated as positive real numbers, as in the studies discussed in the previous 

paragraph, factors such as the day on which an operation is to be performed and by 

which surgeon, require integer variables.   

 

Gallivan and Utley (2005) use a MIP to assign the procedures taking place in a treatment 

centre to a cyclic timetable, with the goal of smoothing the use of hospital beds.  They 

conclude that the use of such methods to achieve intelligent scheduling can “have a 

major impact on the variation in expected bed demand during the planning cycle”.  

Blake et al. (2002), Vissers et al. (2005) and Santibanez et al. (2007) all use MIPs to 

assign blocks of time in theatres to surgeons.  Demonstrating that such methods can 

“reduce resource requirements needed to care for patients after surgery, while 

maintaining throughput of patients” and confirming that “there is potential to 
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significantly reduce post-surgical bed requirements while maintaining throughput of 

patients” (Blake et al., 2002). 

 

Zang et al. (2008) consider both the allocation of operating room time to specialities and 

the assigning of blocks of theatre time to groups of surgeons.  They use MIP modelling 

for both of these problems.  Overall MIP has been used by a number of authors, 

including a significant number using it to assign blocks of theatre time to surgeons. 

 

There is a specific type of MIP problem known as job shop scheduling, which is one of 

the most studied scheduling problems due to its industrial applications (Pham and 

Klinkert, 2008).  Classically it involves the scheduling of n jobs to be processed on m 

resources.  Variations include jobs with due dates, available dates and penalties for jobs 

done outside of these dates.  At first glance this seems like a methodology that it would 

be straight forward to adapt to operating theatres, by considering the operations to be 

jobs and the theatres resources.  However, the problem in theatre scheduling is more 

complex as the surgeons and other equipment need to be scheduled as well as the 

operating room.  Pham and Klinkert (2008) are rare among researchers in this field in 

that they use job shop scheduling for the scheduling of surgical cases.  Even with 

adaptations to the method, their study only considers the theatre time available and not 

the surgeons’ time or other resource availability.  Su et al. (2011) treat operation room 

scheduling as a flexible job-shop scheduling problem, which is one of the hardest 

combinatorial optimisation problems.  They assign surgeons to cases, but do not take 

account of surgeon availability or other resource constraints.  Therefore, it would seem 

that this well-studied formulation is less generally suitable for the type of problems we 

will be looking at. 

 

Part of the complexity of operating theatre scheduling is that the duration of the patients 

operation and their length of stay in hospital can vary widely between patients, even 

those undergoing the same procedure.  Gerchak et al. (1996), Denton et al. (2007) and 

Adan et al. (2009) all make use of the branch of mathematical programming called 

stochastic programming, in order to take account of such variations.  Adan et al. (2009) 

work with stochastic length of stay, which they find compares favourably with the 

results from a similar model with deterministic length of stay.   Gerchak et al. (1996) and 

Denton et al. (2007) both consider the scheduling of individual patients taking account 
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of other stochastic aspects of the problem, including patient arrivals to the system and 

operation duration. 

 

Goal programming is another variation on LP, which applies when a problem can be 

formulated as an LP with several (possibly conflicting goals) and the goals can be 

written as an additive linear objective function (Winston, 1994).  Arenas et al. (2002) 

select this method because other health care studies show “that the flexibility of 

choosing the priorities of the model is a special advantage because it permits the 

decision maker to make different choices to find the one that represents the best option 

under each circumstance.”  Thus, goal programming applies to decisions with multiple 

objectives and allows the consideration of different balances of those objectives. 

 

Arenas et al. (2002) proceed by applying goal programming to theatre scheduling with 

the overall aim of reducing the time patients spend on surgical waiting lists.  Their first 

formulation ensures that no patient waits more than six months while maintaining the 

level of what they call “extraordinary interventions (which refer to operations in the 

hospital taking extra time, or referrals to other centres)”.  After attempting to find a 

solution with a maximum waiting time of 4 months, their second goal program 

incorporates operating theatre availability as a goal.  Thus, they identify the 

interventions required to achieve a maximum waiting time of 4 months. 

 

Goal programming is also used by Ozkarahan (2000) and Blake and Carter (2002).  The 

objectives of the former are to be as close as possible to allocating the correct amount of 

time to each surgical specialty, to achieve the desired level of utilisation of the operating 

theatres; to assign cases to the best operating room for the case; to meet surgeons 

preferences with regard to the day of operation; and to ensure that the number of cases 

requiring intensive care is not more than the number of intensive care beds available.  

The objectives of the latter are more financial, so as not to breach a revenue cap; to 

recoup the costs; to provide surgeons with their preferred level of income; and to reduce 

deviations from the providers preferred volume of cases.  Both of these studies have 

what might traditionally be considered constraints forming part of the objective function.  

Using goal programming in this way allows the relaxation of some of the constraints on 

a problem that might otherwise be infeasible, so that the solution closest to meeting the 

desired criteria can be obtained. 



 

12 

 

 

Column generation is a method that can be used to efficiently solve LPs that have large 

numbers of variables, as it increases the efficiency of the algorithm used to solve them.  

It has only been applied to theatre scheduling problems in the last few years.   Belien and 

Demeulemeester (2008) and van Oostrum et al. (2008) both apply column generation to 

the problem of obtaining master surgical schedules, the former integrating the nurse 

scheduling into the process.  Fei et al. (2008, 2009b) apply column generation to the 

scheduling of individual patients.  

 

From the above, there are a range of papers that use LP and variations on it to solve 

different theatre scheduling problems; the aspects of theatre scheduling being considered 

and the aims of the study determine which is most appropriate for the specific problem 

considered by each paper. 

 

2.1.2 Heuristics 

Reeves and Beasley (1995) define a heuristic as “a technique which seeks good (i.e. near 

optimal) solutions at a reasonable computational cost without being able to guarantee 

either feasibility or optimality, or even in many cases how close to optimality a 

particular feasible solution is.” 

 

The development of heuristics has arisen largely from the issue that to solve some 

problems using linear programming techniques the “computational effort required was 

an exponential function of the problem size” (Reeves and Beasley, 1995).  In other 

words, for some problems solving via linear programming might take an unreasonable 

amount of time so heuristic solutions are developed to solve specific problems in a 

reasonable amount of time.   

 

Reeves and Beasley (1995) also argue that any optimisation routine is not actually 

finding an optimal solution to a model of the real-world, whereas heuristics can work 

with the real-world problem to find good solutions.  For example in LP the objective and 

constraints have to be formulated as linear equations, which may well require 

simplification of the problem. 
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Some of the heuristics that have been applied to operation theatre scheduling are based 

on MIP or other mathematical programming methods.  For example Cardoen et al. 

(2009b) explore a mixture of MIP solution techniques including heuristic methods in 

their consideration of the sequencing of patients receiving surgery each day.  Fei et al. 

(2009b) apply column generation based heuristics to the problem of generating master 

surgical schedules; these are developed further by Liu et al. (2011a) who improve the 

efficiency of the algorithm enabling the solving of larger problem instances. 

 

There are a range of heuristic algorithms which do not use aspects of mathematical 

programming methods, but use other methods to search for optimal solutions.  Simple 

heuristics involve making small changes to the solution and moving to the new solution 

if it is better than the first until no similar changes generate an improvement on the 

current solution.  Denton et al. (2007) develop a stochastic optimisation model for daily 

scheduling; having developed their model as a stochastic MIP it is particularly difficult 

to solve so they apply a selection of interchange heuristics, which they then use 

numerical analysis based on historical data to evaluate. 

 

Metaheuristics have also been developed, often based on processes from other sciences 

to effectively search for an optimal solution.   One such method is Simulated Annealing 

(SA).  Briefly, this involves starting with an initial solution and then searching in the 

neighbourhood of that solution for a better solution: if a better solution is found the 

algorithm moves to that solution and repeats the process; if a better solution is not found, 

then the algorithm moves to the new solution with a given probability, where the 

probability of a move reduces as time passes (Dowsland, 1995).  This method is applied 

by Sier et al. (1997) to the problem of scheduling individual patients. 

 

Genetic algorithms (Goldberg, 1989) are another example of a metaheuristic, which 

works in a similar way to the selective breeding of plants and animals, in that parts of 

existing solutions are combined to form new solutions in the search for better overall 

solutions.  This method is used by Roland et al. (2009) to simultaneously schedule 

patients operations and the staff who will be needed for those operations. 

 

Tabu search is further example of a metaheuristic, which works by keeping a ‘tabu’ list 

of areas of the search area which have already been explored to encourage a wider 
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search for better solutions.  This type of method is implemented by Dekhici and Belkadi 

(2010) in their exploration of theatre scheduling. 

 

Riise and Burke (2011) use a metaheuristic algorithm based on iterated local search for 

the problem of scheduling admissions for patients. 

 

Hans et al. (2008) explore a range of heuristics for assigning patients to days and 

theatres for surgery, including methods of obtaining the initial solution.  They then 

compare simulated annealing with constructive approaches, including regret-based 

random sampling and random exchange; in the latter two randomly selected surgeries 

are exchanged if this yields an improved solution.  They find that combining sampling 

methods and random exchange performs similarly to simulated annealing, but with much 

less computation time required. 

 

Belien and Demeulemeester (2007a) explore the capacity of MIP based heuristics and 

metaheuristics to address the uncertainty involved in minimising the number of beds 

required by changing the master surgical schedule.  For the MIP based approaches the 

non-linear objective function is replaced with a linear approximation, where the original 

objective can be kept for the heuristics.  They obtained the best solutions with the SA 

metaheuristic, but with long processing times, compared to the MIP methods. 

 

In conclusion, a variety of heuristics have been applied to different aspects of operation 

theatre scheduling.  Heuristics are efficient at solving complex problems and can be used 

on formulations of the problem that are closer to the real world problem in some 

circumstances. However, there is no guarantee of an optimal solution and heuristics can 

still take a long time to obtain a good solution for some problems.   

 

2.1.3 Simulation 

Pidd (1998) summarises simulation as follows; 

 

“The analyst builds a model of the system of interest, writes computer programs which 

embody the model and uses a computer to imitate the system’s behaviour when subject 

to a variety of operating policies. Thus, the most desirable policy may be selected.”  
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It is also one of the more popular Operational Research techniques according to 

Robinson (2005) and Hollocks (2005) states that; “Discrete-event simulation first 

emerged in the late 1950s and it has grown in popularity steadily to be now recognised 

as the most frequently used of the classical Operational Research techniques across a 

range of industries – manufacturing, travel, finance, health and beyond.”  

 

So simulation allows the user to test scenarios on a model of the system of interest, thus 

allowing the exploration of effects of different policies or scenarios.  Simulation has 

been used across a wide range of health applications (Anderson et al., 2003), including a 

number of studies on theatre scheduling.  These go back as far as Barnoon and Wolfe’s 

(1968) study using Monte Carlo simulation to evaluate various operating room 

schedules. 

 

More recently simulation has been used by Dexter and Traub (2002) to investigate the 

effects of variations in case durations on the performance of scheduling heuristics; by 

Dexter et al. (2000a) to investigate the effects of scheduling strategies on labour costs; 

by Dexter et al. (1999a, 1999b) to explore scheduling methods to maximise the use of 

operating room time; and by Sciomachen et al. (2005) to investigate the effects on wards 

of various scheduling policies. 

 

These studies are all similar in that they are evaluating different policies for the 

scheduling of individual patients; the differences are mainly in the performance 

measures considered.   

 

Some studies use simulation to explore operating room utilisation. For example Tyler et 

al. (2003) ran simulations to determine the highest utilisation that can be achieved, 

whilst staying within the goals of operations starting within 15 min of scheduled time 

and having cases end no more than 15 min past the end of the day.  With these 

restrictions they found that the highest utilisation that can be achieved is between 85% 

and 90%.  Dexter et al. (1999c) use simulation to evaluate strategies to decrease 

variability in utilisation and Mazzei (1999) also use simulation to explore methods of 

increasing utilisation. 
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A number of studies use simulation to evaluate scheduling policies for surgical 

departments or to investigate how such departments should be set up.  For example 

Marcon et al. (2003a) use simulation to determine the number of post anaesthesia care 

beds required.  Bowers and Mould (2005) use simulation to determine the effects on bed 

usage and theatre utilisation of treating ambulatory care (those who go home on the day 

of surgery) in separate theatres.  Marcon et al. (2003b) also use simulation this time to 

evaluate scheduling policies based on the risk that the expected schedule is not realised. 

 

Simulation is also used by Epstein and Dexter (2002) to consider the potential effects of 

errors in the data on previous theatre use for the allocation of operating room time to 

surgeons.  They find that such effects are sufficiently small that it is not necessary to 

undertake data cleansing on this aspect of theatre data. 

 

Everett (2002) describe a simulation model, which they claim can be used to allocate 

resources day-to-day, monitor how the current system is performing or for strategic 

decisions about the long term redeployment of resources. 

 

Simulation is often used in studies that consider more than one decision level within 

operation theatre scheduling. Of the thirteen papers covering ‘mixed decision level’ 

identified by Guerriero and Guido (2011), nine use either simulation alone or simulation 

in combination with another method. 

 

In some of the studies discussed above, simulation is used to compare heuristics for 

scheduling patients.  In other studies, it is used to evaluate other methods or combined 

with other methods as part of a system addressing several aspects of theatre scheduling; 

these studies are discussed in the following two subsections.  Simulation has not been 

used to suggest good/optimal schedules in the way LP methods and heuristics have.  

This is not generally a feature of simulation modelling, although work is on-going to 

implement optimisation through simulation (Fu, 2002). 

 

2.1.4 Other Methods 

There are also papers that use other methods or numerical analysis of theatre data or 

compare data from different hospitals.  For example Longo and Masella (2002) discuss a 

benchmarking study comparing the organisation of operating theatres in eight Italian 
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hospitals, Basson and Butler (2006) use data-envelopment analysis and Sobolev et al. 

(2008) using the statecharts paradigm to capture the behavioural aspects of the delivery 

of surgical care.  Dexter (2000) and Dexter et al. (2000b) are examples of studies using 

statistical analysis of data rather than particular OR techniques.  

 

2.1.5 Combining Methods 

As well as studies that focus on applying one method, there are examples where several 

types of method are used.  For example, Lamiri et al. (2009) consider the problem of 

scheduling elective surgery, when operating space is shared by elective and non-elective 

cases using a range of methods.  They begin by approximating the stochastic elements of 

this problem with deterministic values for use in Monte Carlo simulation and MIP to 

investigate convergence.  They go on to consider several heuristic and meta-heuristic 

methods, including constructive heuristics, improvement heuristics and simulated 

annealing. They observe that “the quality of heuristics’ solutions degrade as the 

uncertainty’s variability increase”.  Thus, when using heuristics they found that the 

stochastic problem was easier than the deterministic one, which is counter intuitive as 

the stochastic problem would seem to be more complicated. 

 

The previous section mentioned studies that combine simulation with other methods to 

evaluate those methods.  A further example of this is Ogulata and Erol (2003), who 

describe a hierarchical system of goal programs, when scheduling operations, to take 

account of acceptability of slots to patients and assigned surgeons, and then use 

simulation to evaluate the methods on a case study. 

 

Persson and Persson (2010) use optimisation within their simulation model to determine 

the schedule each day for use in the simulation model. 

 

Testi et al. (2007) divide the problem of scheduling operating theatres into three phases, 

which they call ‘session planning’, ‘master surgical schedule’ and ‘scheduling individual 

patients’.  They solve MIP problems for the first two stages and use simulation to solve 

the third phase.  Thus, they are dividing the problem into stages and applying 

appropriate methods to each.  
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Tanfani and Testi (2010) take a more integrated approach using optimisation for one 

stage of the problem and feeding the results into a simulation for the next stage.  This is 

a more integrated approach but still requires different methods for the various stages of 

the problem considered.  

 

2.1.6 Discussion of Methods 

The methods most commonly applied to theatre scheduling problems can be divided into 

three groups, mathematical programming techniques, heuristics and simulation.  Within 

these groups there are a number of methods used as demonstrated above. 

 

As well as studies that focus on applying one method, there are examples where several 

methods have been applied to different aspects of the problem.  Thus, a range of 

operational research techniques have been applied to different aspects of operating 

theatre scheduling, with some studies combining methods to solve different aspects of 

the problem or using simulation to compare methods.  In late chapters we refer back to 

this discussion of the methods used in theatre scheduling, to inform the selection of 

appropriate methods for each of the aspects of theatre scheduling that we model. 

 

2.2 Types of Operating Theatre Scheduling 

In this section we breakdown the problem of hospital operation theatres scheduling into 

stages, based on the types of patient considered and the types of decision being made.  

As well as defining the stages, the studies addressing each stage of the problem are 

discussed. 

 

The highest level of classification of hospital patients is whether they are inpatients or 

outpatients.  The former are those patients who stay overnight ‘in’ the hospital and the 

latter those who visit for an appointment during the day and return home, spending the 

night ‘out’ of hospital.  The majority of patients receiving surgery are inpatients, 

although there are a number who are able to return home on the day of their operation, 

these are referred to as daycases in the UK although elsewhere they may be referred to 

as receiving “outpatient and same-day surgery” (Dexter et al., 2002a).  Outpatients 

receiving surgery can be treated as inpatients with a length of stay of one day as is done 

by Adan and Vissers (2002).  Outpatients who do not receive surgery are not involved in 

theatre scheduling and are therefore not considered further in this review. 
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The more significant distinction in terms of operating theatre scheduling is whether 

patients are elective or non-elective.  Cardoen et al. (2010a) define these thus: “The 

former class represents patients for whom the surgery can be well planned in advance, 

whereas the latter class groups patients for whom surgery is unexpected and hence needs 

to be performed urgently.” The remainder of this section will discuss how the literature 

covers these two types of patients. 

 

2.2.1 Non-Elective Surgery 

Cardoen et al. (2010a) divide the studies they have analysed into those that consider 

electives only, those that consider non-electives only and those that consider both.  Of 

the 124 papers they list as references only one (Bhattacharayya, 2006) is identified as 

restricting consideration to non-electives; while a further 20 references consider both 

electives and non-electives. 

 

We have identified a further four papers where non-electives alone are considered.  

Jones (2002) explore the extent to which it is possible to forecast the demand for 

emergency care (including both patients requiring surgery and those who do not), 

demonstrating that the number of beds required by emergency patients is more 

predictable than the number or such patients arriving each day.  They also find that while 

temperature and influenza rates affect emergency demand, including them in a model 

based on seasonal demand does not improve the predictions.  Perhaps this is because 

temperature changes and influenza rates are subject to seasonal patterns and had 

therefore to some extent been included in the seasonal model.  It is desirable to be able 

to predict demand for emergency beds because it affects the number of beds available 

for elective patients. 

 

Bhattacharayya et al. (2006) explore the value of having a dedicated operating theatre 

specifically for orthopaedic non-electives.  Bowers and Mould (2002) also consider 

orthopaedic cases, this time in terms of the increased efficiency that may be derived 

from concentration of care in one hospital.  Dexter and Epstein (2006) consider how to 

plan the staffing requirements for care required on weekends and during holidays, as 

only non-elective care is taking place at these times and staff are needed to have the 

theatres open, this is effectively considering non-elective scheduling. 
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A further two papers consider the use of separate non-elective theatres; Wullink et al. 

(2007) demonstrate that closing dedicated emergency rooms and treating non-electives 

in the same theatres as electives can increase efficiency; while Bowers and Mould 

(2004) discuss the improvements in throughput that can be achieved by scheduling 

patients willing to accept a higher probability of cancellation to have elective care in 

non-elective theatres. 

 

Like Cardoen et al. (2010a) we also found a handful of other studies which consider both 

elective and non-elective operations.  The majority of these, for example Lamiri and Xie 

(2007), Bowers and Mould (2004) and Everett (2002), use simulation models to consider 

changes to or how to plan the use of the surgical unit.  Others, such as Sier et al. (1997) 

and Van Houdenhoven et al. (2007b), consider non-electives, by allowing for an average 

daily number of such cases. 

 

Zonderland et al. (2010) provide a detailed consideration of the balance of allowing time 

for more urgent cases to reduce overtime, with the possibility of underutilisation.  They 

use queuing theory and Markov decision processes to do this. 

 

Patrick and Puterman (2007) explore the potential of increasing utilization if some of the 

non-elective cases can be carried over to the next day, rather than assuming that they 

must all be treated on the day of arrival.  They conclude that if only 10% of non-

electives have the flexibility to be carried over to the next day this can have a significant 

reduction in the growth of waiting times for electives. 

 

It is clear that only a small proportion of studies consider non-elective surgery, Cardoen 

et al. (2010a) consider this surprising given “that the larger degree of uncertainty is the 

main reason why operating room scheduling [literature] urges other scheduling 

methodologies than the machine scheduling procedures developed for industrial 

systems”.  It may be that forecasting the unplanned non-elective surgeries has appealed 

less than the more complex problem of planning for the predictable elective cases.  Also 

more efficiency can be achieved by adjusting elective surgery. 
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2.2.2 Elective Surgery 

As implied above there are considerably more studies that consider the various aspects 

of planning and scheduling elective surgery.  Indeed as there are so many studies that 

consider elective surgery, we divide them into those dealing with strategic, tactical and 

day-to-day decisions.  The separation of theatre management decisions into these three 

levels occurs in several papers for example Hans et al. (2007), Santibanez et al. (2007), 

Wachtel and Dexter (2008), Cardoen et al. (2009b, 2010a) and Guerriero and Guido 

(2011).  This section takes each of these levels in turn, defining the problems at each 

level and giving examples of the work that has been undertaken to address them. 

2.2.2.1 Strategic decisions 

Wachtel and Dexter (2008), define strategic decisions as the highest level of decisions 

that may require years of planning before implementation, such as the building of a new 

unit.  Hans et al. (2007) and Cardoen et al. (2010a) include a broader range of decisions 

in the strategic level.  They consider strategic decisions to be those assigning theatre 

capacity to specialties / surgical services / individual surgeons and regarding long term 

staffing.  We take the latter definition of strategic level for this review, as well as 

including concepts from the higher level of long term strategic planning. 

 

There are a number of studies addressing different aspects of changing the operating 

room time allocated to surgeons involving Franklin Dexter (Dexter et al. 2000 a, b, 

2001a, 2003, O’Neill and Dexter, 2007, Wachtel and Dexter, 2008).  These studies 

explore the factors that should be considered in allocating theatre time to surgeons, the 

potential effects of poor data on this process and the financial impacts of changes at this 

level.   

 

Operating room utilization has also been a focus for papers at this level.  It is considered 

in some of the studies by Dexter mentioned above as well as by Tyler et al. (2003), 

Mazzei (1999), Strum et al. (1999), Van Houdenhoven et al. (2007a) and Olivares et al. 

(2008). Tyler et al. (2003) examine the highest level of utilization that can be achieved, 

without delay or running late.  As mentioned in Section 2.1.3, they find that 85-90% 

utilization can be achieved, with increased variability in case duration reducing the 

achievable utilization. 
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There are studies at a strategic level that consider the potential effects of policy changes 

that hospitals could make with regard to the use of their operating theatres.  For example 

studies by Utley et al. (2003) and Gallivan et al. (2002a, b) explore the impact on 

capacity of hospitals changing from a system where patients are put on a waiting list and 

given an operating date at short notice to booking patients when the decision to operate 

is made potentially months in advance.  The latter resulted in some discussion in the 

letters pages of the British medical journal with responses from Rogers et al. (2002) and 

Castille et al. (2002). 

 

Another policy change that could occur at the strategic level is the degree of pooling of 

operating rooms and/or surgical lists, compared with using dedicated operating theatres 

for different surgical groups and assigning patients to surgeons at an early stage.  Batun 

et al. (2010) demonstrate that pooling of operating theatres and parallel surgery could 

lead to significant cost reductions.  Vasilakis et al. (2007) show that pooling of 

outpatient clinic patients can reduce waiting times, which implies that pooling of 

surgical patients could also reduce waiting times.  The extent to which pooling is 

possible depends on clinical considerations, as some cases will require a specific 

surgeon and operating theatre to provide appropriate care. 

 

Other strategic level studies look at evaluating the efficiency of the entire operating suite 

across multiple inputs and outputs using data-envelopment analysis(Basson and Butler, 

2006); planning to reduce waiting lists (Arenas et al., 2002 and Mullen, 2003); strategies 

for the use of recovery beds (Augusto et al., 2010); the number of recovery beds needed 

(Marcon et al., 2003a).  Thus, a variety of issues affecting the longer term planning and 

operating unit wide policies are explored in the literature covering strategic level 

decisions relating to operating theatre planning. 

Peltokorpi’s (2011) findings question the effectiveness of changes at strategic level, 

concluding that “Based on the results, it could be argued that proper operative practices 

are more important than correct strategic decisions in terms of improving OR [operating 

room] performance.  This also offers a good opportunity for operating units in which 

implementing new operative practices is typically easier than changing strategic 

orientation.”  This implies that focussing on tactical and day-to-day decisions will be 

more effective as well as more straightforward than exploring strategic issues. 
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2.2.2.2 Tactical decisions 

Once the amount of operating theatre time per group has been defined at the strategic 

stage the next stage is to assign that time to surgeons.  Hans et al. (2007) describe two 

different methods for doing this, the open and closed block methods.  “In the open block 

method, OR time is assigned following the arrival of specialties or specialists [with cases 

to schedule]” with patients then scheduled on a first come first served basis.  The closed 

block method is more commonly used (Guerriero and Guido, 2011), it involves 

assigning blocks of theatre time to specialties or surgeons.  Indeed Cardoen et al. 

(2010a) only mention the closed block method at the tactical level, defining the process 

of assigning blocks of theatre time as the development of a master surgical schedule.  

Pham and Klinkert (2008) argue that “Non-block scheduling systems have turned out to 

have lower utilization and more case cancellations”, and they also indicate that these 

systems are not favoured by surgeons as their surgery times are more spread out without 

a closed block system. 

 

Given that the tactical stage is primarily concerned with assigning blocks to surgeons or 

groups of surgeons, there is not really a tactical planning stage for an open block 

booking system.  Thus, the papers at this level are all considering closed block systems. 

 

Adan et al. (2009), Belien and Demeulemeester (2007a), Blake et al. (2002), Hans et al. 

(2007), Van Houdenhoven et al. (2008), Zang et al. (2008), van Oostrum et al. (2008) 

and Santibanez et al. (2007) all consider the generation of master surgical timetables (or 

schedules) assigning time to surgeons or surgical groups in a cyclic timetable for a 

closed block system.  The problem considered by these studies is essentially the same; 

how to assign the theatre time available to individual surgeons or surgical groups. All of 

these studies use variations on mathematical programming to solve the problem.  The 

differences between them are in the detail of the methods used and the aspects of surgery 

included in the objectives and constraints, which are discussed in the relevant sections of 

this review. 

2.2.2.3 Day-to-day decisions 

This level comprises the advance scheduling of individual elective patients into the 

available blocks and also the sequencing of patients on the day of surgery. It is addressed 

by studies from as far back as the studies of Barnoon and Wolfe (1968) and Ernst et al. 
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(1977).  Since then a significant number of papers have considered various aspects of 

this stage of the scheduling process.  This subsection discuss studies covering just 

advance scheduling, then just sequencing, followed by those that cover both.  There are 

variations in the methods used at this level so the studies are grouped by method within 

the areas of scheduling; the methods themselves are discussed above in Section 2.1. 

 

Simulation is used in the majority of studies that assess strategies for the advanced 

scheduling of patients.  Dexter et al. (2000a) use simulation to explore strategies for 

scheduling cases that cannot be completed in the block time assigned to surgeons into 

‘overflow’ time.  They find that the lowest staffing costs are achieved if surgeon and 

patient preferences are not taken into account; however, some flexibility can be given to 

surgeon and patient with only a small impact on costs.  Sciomachen et al. (2005) use 

simulation to apply scheduling rules to the whole of the advanced scheduling process, 

scheduling first by longest waiting time, then longest processing time and finally by 

shortest processing time.  They also test scenarios around the use a master surgical 

schedule and introducing a recovery room.  They conclude that a flexible master surgical 

schedule can reduce the number of overruns significantly and that the introduction of a 

recovery room would reduce overruns and allow more operations to be performed.  The 

results from comparing scheduling rules indicate that the best rule to use depends on the 

objectives in terms of reducing overruns or total overtime.  Dexter and Traub (2002) also 

use simulation to compare scheduling rules based on scheduling patients to the earliest 

or latest start times available.  Van Houdenhoven et al. (2007) apply the bin-packing 

problem algorithms Best Fit Decreasing heuristic and Regret-Based Random Sampling 

again testing the models with simulation. Dexter et al. (1999b) also apply bin packing 

algorithms and test them with simulation. However, their focus is slightly different as 

they are looking at adding additional cases once the schedule has been planned, rather 

than general routine scheduling.   

 

All of the above studies test and compare different scheduling policies that could be 

applied by hospitals for the advanced scheduling of patients.  This demonstrates how 

effective simulation can be for comparing methods, but also its weakness; simulation 

only compares the methods considered and does not suggest alternate methods or when 

exception should be made to the rules. 
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Gerchak et al. (1996) apply stochastic dynamic programming to the advance scheduling 

problem; they focus on the need to allow unscheduled time for a variable number of 

emergency (non-elective) cases.  This type of mathematical programming technique 

finds the best solution to the problem of when to schedule groups of cases, given the 

information available.   

 

Guinet and Chaabane (2003) also formulate the problem as a mathematical 

programming model, although they conclude that it is an NP hard problem and give 

heuristic methods that find solutions quickly.  Guinet and Chaabane (2003) assume that 

the cases to be booked over the next two weeks are known when the problem is solved.  

This demonstrates the limitation of optimisation methods compared with heuristics, 

since they require sufficient cases to require scheduling to be able to consider the 

possible solutions; this is in contrast to heuristics, which allow small numbers of cases to 

be scheduled at once by following the heuristic rules. 

 

Thus, for the advanced day-to-day scheduling problem a significant number of studies 

use simulation to find good heuristic rules for scheduling, while a few others have used 

optimisation techniques to find optimal solutions each time further cases are scheduled.  

There do not appear to be papers comparing the results of such techniques with the types 

of heuristic tested in the simulations, which would be of interest in terms of comparing 

the resulting theatre utilisation. 

 

As the cases to be scheduled are known when sequencing patients assigned for surgery 

on a given day, this problem is more suited to mathematical programming techniques.  

Jebali et al. (2006) and Pham and Klinket (2008) both apply MIP to the problem, with 

the latter using the type of formulation used for job shop problems.  Cardoen et al. 

(2009b) compare the results of using exact or heuristic methods to solve the problem 

formulated as a MIP.  They find that such procedures could produce much better 

schedules than a human planner, with greater success at finding feasible solutions.  

Cardoen et al. (2009a) find that a dynamic programming approach is also effective on 

real-life problems.   
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Denton et al. (2007) use stochastic modelling for the daily sequencing problem, taking 

account of the variable nature of duration of operations to produce a sequencing rule that 

reduces both the turnover time between operations and overtime costs. 

 

Heuristic techniques have also been applied to the problem.  For example, Sier et al. 

(1997) used simulated annealing to schedule the patients for surgery the next day.  So a 

variety of methods have been applied to the sequencing problem.  However, Marcon and 

Dexter (2007) compare the sequencing of individual surgeons theatre slots with that 

recommended by software, focussing on the effects on the staffing required for post-

surgery care and found that “the uncoordinated decision-making of multiple surgeons 

working in different ORs [operating rooms] can result in a sufficiently uniform rate of 

admission of patients into the PACU [post-surgery unit]”.  Thus, the value of computer 

aided sequencing depends on the objectives of the process. 

 

There are also a small number of papers which consider both the advanced scheduling 

and sequencing problems.  Ogulata and Erol (2003), Roland et al. (2009) and Fei et al. 

(2010) all do this by splitting the problem up and solving the stages separately.  While 

Lamiri et al. (2009) consider both stages at once, the advantage of which is that better 

solutions to the second stage are not ruled out by keeping to the framework set out in the 

first stage; however, the problem is significantly more complex. 

 

There are also studies looking at other aspects of day-to-day scheduling.  Related to 

advance scheduling of cases, Dexter and Macario (2004) consider a system in which 

operating room time has been allocated to surgical services and when unfilled time 

should be released to services that have filled their allocated time.  In the on the day 

level of scheduling, Dexter (2000) considers the circumstances under which moving the 

last case of the day in one theatre to a different theatre will reduce staffing costs.  Also at 

the on the day level, Dexter et al. (2007) investigate the potential of real time status 

displays and computer recommendations to assist theatre staff in making effective 

decisions when changes to the schedule are required on the day of surgery.  

 

Taking a wider view of day-to-day scheduling Dexter et al. (2000b) discuss the potential 

pit falls of a system for combing the scheduling of outpatient appointments and surgery; 

particularly if new patients requiring outpatient appointments are always assigned to the 
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surgeon with the shortest wait for surgery, which can result in cyclic variations in 

waiting times. 

 

Related to the sequencing problem, Basson et al. (2006) explore methods of predicting 

which patients will fail to attend for surgery.  They recommend that those with a high 

probability of non-attendance should be scheduled at the end of the day to minimise 

disruption. 

 

Both Hans et al. (2007) and Cardoen et al. (2009b) mention a further level of online 

planning and monitoring, where the schedule is adapted to take account of changes such 

as the need to account for the inclusion non-elective cases.  As non-electives are 

discussed above this in Section 2.2.1 this does not require further consideration here. 

2.2.2.4 Research at more than one level 

A small number of papers address two or more of the levels of elective scheduling, using 

the results from one level to schedule the next.  For example, Hans et al. (2007) start 

with an IP model to allocate operating theatre capacity to surgical specialties, with the 

aim of ensuring that each specialty will have sufficient theatre time to complete their 

cases.  Then they go on to develop a master surgical schedule to allocate blocks of time 

to each specialty so that each is assigned the correct amount of theatre time based on the 

first stage. 

 

Testi et al. (2007) address all three levels; dividing theatre time between surgical groups, 

producing a master schedule and then using simulation to explore the day-to-day 

scheduling problem, as discussed in Section 2.1.5. 

 

2.2.3 Discussion of Types of Operation 

The studies exploring operation theatre scheduling do divide broadly into three levels, 

strategic, tactical and day-to-day.  Even where studies cover more than one of these 

levels, they address each separately.  Suggesting that this is a complex problem that 

requires division into smaller problems in order to make it manageable and that this 

division is logical based on the structure of the problem.  Following this example from 

the literature we consider the tactical (Chapter 4) and day-to-day (Chapters 5 and 6) 
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aspects of theatre scheduling separately and apply different modelling techniques to 

each. 

 

2.3 Studies Related to Theatre Scheduling 

In addition to the papers mentioned above which directly address various aspects of 

theatre scheduling there are also a number of studies addressing topics related to it.  This 

subsection will briefly discuss the types of topics that are related to theatre scheduling 

and give examples of papers for each. 

 

In order to schedule patients to make full use of the theatre time available, it is necessary 

to know how long each patient’s procedure will take.  However, due to variability in the 

complexity of cases this varies even among patients undergoing the same procedure.  

Studies focussing on predicting operation duration include those by Strum et al. (2000) 

and Combes et al. (2008), both using data mining techniques, and Dexter et al. (2002d) 

who use pooling of cases to assist the prediction of cases with little historical data.  

Pandit and Carey (2006) compare the predictions made by surgeons, anaesthetists and 

nurses with those made by computer systems and find that "surgeons are not more 

optimistic than anaesthetists or nurses in their estimates of the time needed for 

operations. Furthermore, these subjective estimates are all in agreement with more 

objective data from the theatre computer."  This suggests that it would be valid to use 

surgeon’s predictions of operation times when scheduling surgery. 

 

Also, considering surgery durations, Dexter and Macario (1999) consider the decrease in 

case durations that would be required to complete additional cases without going into 

overtime.  They conclude that this is unlikely to create sufficient additional time, so 

cases are best added by optimising the overall operating schedule. 

 

Following surgery the majority of patients require a hospital bed, so if no bed is 

available then their surgery cannot take place.  This has already been mentioned in 

Section 2.2.1 in discussion of Jones (2002) and the number of beds required for 

emergency care, and is considered in the following section as one of the factors affecting 

theatre scheduling.  Examples of studies taking broader view of bed capacities for the 

whole hospital are by Harper and Shahani (2002) and Gorunescu et al. (2002).   
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Vanberkel et al. (2011a) consider how to calculate the effects of the master surgical 

schedule on other areas of the hospital, so there is also research exploring how theatre 

scheduling fits into the rest of the hospital.  

 

Just as predicting operation durations is necessary for planning theatre schedules, 

predicting length of stay in hospital is necessary for predicting bed usage.  This is 

addressed on a general level by Lee et al. (2001), Atienza et al. (2008), Gustafson 

(1968), Cleary et al. (1991), Lee et al. (2005), Riihimaki et al. (2010) and Singh and 

Ladusingh (2010).  Ridley et al. (1998) address the issue of predicting length of stay 

specifically for intensive care (an area where the number of beds can be particularly 

tight). 

 

In addition to theatres and beds, appropriate staff members are required for operations to 

take place.  Dexter and Epstein (2006) consider the staffing required for dealing with 

emergencies at weekends and on bank holidays as discussed in Section 2.2.1.  Belien 

and Demeulemeester (2007b) address a more general staffing problem using column 

generation. 

 

There are also a number of studies considering the potential impact on efficiency of 

changes to the way operating rooms are used (Bowers and Mould, 2005, Cantlay et al., 

2006), anaesthesia is conducted (Bellamy, 2002, Broadway et al., 2001, Bromhead and 

Jones, 2002) and how patients recover after surgery (Augusto et al., 2010).  Such 

changes may increase efficiency, but can only take place if the clinical judgement is that 

they will not cause a decrease in the quality of care provided to patients. 

 

The discussion above covers just a sample of the studies covering topics related to 

operating theatre scheduling. These studies demonstrate that the scheduling of operating 

theatres is a complex process and links into the running of the hospital as a whole.  

There are also a large number of studies on clinical aspects of surgery, which are beyond 

the scope of this review. 

 

2.4 Aspects of Surgery 

Given that surgery is in itself a complex process it is unsurprising that the process of 

scheduling when it will take place is also complex with a number of factors to be 
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considered.  As some aspects are treated as constraints by some studies and objectives 

by others, we have not separated out constraints and objectives, but consider each aspect 

in turn including discussion of how it is used by the various studies.   

 

The most obvious factors and also the most significant for theatre scheduling are the 

theatre time available and the availability of surgeons; there are a significant number of 

other aspects of surgery to consider.  Cardoen et al. (2010a) identify the following 

aspects of surgery used as performance measures (objectives); 

 Waiting time, either of patients or surgeons 

 Utilization, either undertime, overtime or general utilization of operating rooms 

or wards, including separate types of wards such as intensive care unit (ICU) and 

post anaesthesia care unit (PACU) 

 Levelling of operating room time, ward usage, PACU, holding area or patient 

volume 

 Makespan 

 Numbers of patients deferred/refused 

 Various financial considerations 

 Preferences of surgeons or patients 

 

They also identify the following aspects of surgery that are treated as hard constraints; 

 Holding area  

 Ward  

 ICU  

 PACU 

 Equipment 

 Surgical staff 

 Budget 

 Regular operating room time 

 Operating room overtime/undertime 

 Precedence constraints/time lags 

 Release/due dates 

 Demand constraints 
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Comparing these two lists reveals that there are a number of factors that can be treated 

either as objectives or constraints of a model to support operating theatre scheduling.  

The remainder of this section will consider each of these factors in turn discussing 

whether they are used as objectives or constraints of the model at each of the levels of 

scheduling and giving examples of the studies that use them.  As many of the studies 

have been discussed above in previous sections, they are for the most part only 

mentioned briefly in this section.  This is followed by detailed discussion of the 

objectives and constraints of a small number of studies, to illustrate how many factors 

are considered in each individual study.   

 

2.4.1 Waiting Time 

The length of time that they have to wait for surgery is particularly important to patients 

as no one wants to suffer with a condition while waiting for surgery to cure it.  In recent 

years, UK governments have made reducing waiting times a major target for the NHS, 

which highlights the importance of this area.  Papers which do not explicitly consider 

waiting lists are perhaps assuming that increasing efficiency with which theatres are 

used will decrease waiting lists.   

 

There are studies that focus on the waiting lists, such as Mullen (2003), who consider 

how to prioritise waiting lists.  Arenas et al. (2002) and Everett (2002) both consider 

waiting times explicitly in their studies. 

 

At the strategic level, Bhattacharayya et al. (2006) consider the value of a dedicated 

theatre for orthopaedic trauma in terms of the reduction in waiting times of running such 

a system. 

 

At a tactical level, Santibanez et al. (2007) consider waiting list management to be an 

important part of scenario planning and Testi et al. (2007) consider waiting lists in the 

tactical phase of their study. 

 

At day-to-day scheduling level Dexter et al. (2000b) consider the potential impact on 

waiting times of different strategies.  Minimising waiting time for patients forms part of 

the objective function for Guinet and Chaabane (2003), Ogulata and Erol (2003) and 

Denton et al. (2007). 
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In considering sequencing of patients for each day of surgery, Denton et al. (2007) 

consider the waiting time of each patient from the scheduled time of the operation, 

which is slightly different from the other papers incorporating waiting times where the 

wait from referral or decision to admit is counted. 

 

Thus, a number of studies have waiting time as part of the objective or as a performance 

measure.  At the day-to-day scheduling level, a number of studies have waiting time as a 

constraint on the date on which a patient’s treatment can be scheduled.  For example 

Pham and Klinkert (2008) have a constraint on the maximum waiting time and Fei et al. 

(2009a) have a deadline for each surgical case.  Thus, consideration of waiting time is 

particularly relevant at the day-to-day scheduling level, when the waiting times of 

individual patients are considered, so it is an important factor in Chapters 5 and 6. 

 

2.4.2 Numbers of Patients Deferred/Refused  

The number of patients deferred or refused treatment under different scheduling policies 

is considered at the strategic level by Gallivan et al. (2002a) and at the day-to-day 

scheduling level by Arenas et al. (2002), Sciomachen et al. (2005) and Testi et al. 

(2007).  Other studies assume that all the patients will be treated and the schedule will 

run as expected.  As is discussed in Section 6.6 including cancellation and rebooking of 

patients would make it hard to judge how effective a booking algorithm is before the 

cancellations occur, so we do not include cancellations in our day-to- day scheduling 

model in Chapter 6. 

 

2.4.3 Financial  

The significant contribution of operating theatres to hospital budgets is highlighted by a 

number of papers (Lamiri et al., 2008, Hans et al., 2007 and van Oostrum, 2008), the 

majority of which mentioning that they consider how this costly resource can be best 

used.  The studies with financial performance measures are generally by research groups 

working in the USA; Abouleish et al. (2003), Batun et al. (2010), Dexter et al. (2001a, 

2002a, 2002b, 2002c, 2003, 2005), Dexter and Ledolter (2003), O’Neill and Dexter 

(2007) and Strum (1999) all include financial performance measures while considering 

strategic level aspects of operation theatre scheduling.  Zang et al. (2008) from 

California and Blake and Carter (2002) from Canada have financial objectives in their 
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tactical level studies.  Given the strong emphasis given to financial considerations in the 

USA, it is not surprising that researchers there have a stronger emphasis on finances than 

in other areas.   

 

Our discussions with local hospital staff (see Chapters 3 and 4) concurred with the 

observation in the literature that finance is not a direct consideration in the European 

literature on hospital theatre scheduling and it is therefore not considered directly in our 

models. 

 

2.4.4 Preferences of Surgeons or Patients  

Ideally, the preferences of surgeons and patients would be considered when scheduling 

theatres; however, only a few studies take account of this.   

 

At a tactical level Blake and Carter (2002) consider surgeons’ ability to ‘generate 

preferred level of income’. 

 

Belien et al. (2009) consider surgeons’ preferences for repetitive schedules and for 

different case mixes at a tactical level, thus allowing a limited influence to surgeon 

preferences.  Also, at a tactical level, Testi et al. (2007) take account of preference of 

surgical groups for particular days during pre-processing. They define a surgeon 

preference objective, but this appears to relate to the case mix on the waiting list rather 

than actual preferences of surgeons.  Ozkarahan (2000) considers surgeons’ preferred 

operating rooms. 

 

At the level of sequencing patients on the day of surgery, Cardoen et al. (2009b) 

consider surgeons preferences for the surgery they perform at the beginning of the 

session. 

 

Perhaps the consideration of preferences is so limited because of the large number of 

other considerations involved in theatre scheduling and a drive towards efficiency.  In 

Chapter 4 we explicitly consider the preferences of surgeons for theatre slots in our 

tactical level modelling. 
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2.4.5 Holding Area  

Hospitals usually have a holding area where patients wait prior to surgery.  It would 

seem that the capacity of this area is rarely considered limiting enough to include in a 

study of theatre scheduling.  Only Pham and Klinkert (2008) consider it at a tactical 

level and Marcon and Dexter (2007) at day-to-day scheduling level.    

 

Holding areas did not arise as a limitation in our discussions with hospital staff (see 

Chapter 3) so they are not included in our modelling. 

 

2.4.6 Ward  

As is discussed above in Sections 2.2.1 and 2.3, the majority of patients require a stay in 

a hospital ward following their operations, so the availability of hospital beds directly 

affects the ability to perform operations.  This aspect is generally not considered at a 

strategic level, although Adan and Vissers (2002).  Dexter et al. (2002a. 2002c, 2003) 

include overall annual ward time at a strategic level, rather than considering the beds 

used each day as at other levels of operation theatre scheduling.   

 

At a tactical level, Vissers et al. (2005) consider bed availability.  Levelling of demand 

for beds is the main objective for Gallivan and Utley (2005), Hans et al. (2007) and 

Belien and Demeulemeester (2007a) in their studies on the development of cyclic 

surgical schedules.  Santibanez et al. (2007) also aim to minimise the number of beds 

required and van Oostrum et al. (2008) aim to level bed usage.  These last two studies 

are also mentioned below as they also consider post anaesthesia care unit and intensive 

care unit usage, respectively.  Also, at a tactical level, Blake and Carter (2002) treat the 

number of beds available as a constraint on the model. 

 

At the day-to-day scheduling level, Bowers and Mould (2002) consider use of ward 

capacity as a performance measure in their simulation study, while Testi et al. (2007) 

and Guinet and Chaabane (2003) consider ward capacity as a constraint.  Bekker and 

Koeleman (2011) provide an in-depth consideration of the potential for theatre 

scheduling to create variability in bed demand and develop models for which the 

objective is to reduce such variability.  
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Given that the way individual patients are scheduled on a day-to-day basis has greater 

potential to make best use of ward capacity than the scheduling of blocks in the master 

schedule, it seems strange that ward capacity is considered more at the tactical than day-

to-day level.  This implies that space available on wards should be considered in both 

tactical and day-to-day scheduling. 

 

2.4.7 Intensive Care Unit 

An intensive care unit (ICU) is effectively a small ward where small numbers of patients 

with high levels of need are cared for.  As for wards, if an intensive care bed is not 

available for a patient expected to require one after surgery, then the surgery will be 

cancelled.  Given the small number of beds in most ICU units this can be an important 

consideration, particularly for surgical units conducting more complex cases likely to 

require ICU beds following surgery.  

 

Adan and Vissers (2002) are rare among strategic level studies in considering this aspect 

of theatre scheduling.  As for wards, Dexter et al. (2002a, 2002c, 2003) include annual 

ICU usage rather than the number of ICU beds used each day.   

 

Van Oostrum et al. (2007), Hans et al. (2007) and Van Houdenhoven et al. (2008) 

consider ICU capacity as a major objective in their tactical level studies.  Also, at a 

tactical level, Vissers et al. (2005) consider ICU capacity, as their study focuses on 

cardiothoracic surgery, among the more complex types of surgery, so the ICU is of 

particular importance. 

 

At day-to-day scheduling level Jebali et al. (2006) consider the number of ICU beds 

available when scheduling patients. 

 

As the ICU is effectively a specialist ward, it is possible that it is included implicitly in 

other studies that consider bed usage.  

 

2.4.8 Post Anaesthesia Care Unit 

It is common practice for patients to move to a post anaesthesia care unit (PACU) after 

surgery before being moved to beds in wards, so the number of spaces in the PACU has 

a similar effect on the ability to perform surgery as the number of ward beds.  At the 
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strategic level, Marcon et al. (2003a) use simulation to determine the number of beds 

required in such a unit. Marcon and Dexter (2007) explore the impact of surgeons’ 

scheduling practice on PACU usage. 

 

At the tactical level, Santibanez et al. (2007) consider the impact of the schedule on 

recovery beds, including the staff and equipment required for recovery.   

 

At the day-to-day level, Marcon and Dexter (2007) consider the impact of surgeons’ 

sequencing of cases on the PACU.  Also, at the day-to-day level, Fei et al. (2008, 2010) 

consider the availability of recovery beds when scheduling patients. 

 

At the level of sequencing patients for surgery each day, Cardoen et al. (2009b) consider 

the affect the sequence will have on the closing time of the PACU at the end of the day, 

to avoid staff overtime and other costs associated with the unit remaining open longer 

than planned.  Cardoen et al. (2009a, 2009b) both consider levelling of the number of 

bed spaces required in the PACU over the course of each day as an objective. 

 

2.4.9 Equipment 

It is possible particularly for large and/or expensive equipment, that only a very limited 

number of sets are available for use at the hospital.  It is also possible that due to the 

need to sterilise equipment between patients such equipment might only be available for 

use once each day.  This restriction does not appear to be taken into account by studies at 

strategic or tactical level, which makes sense as it is only at the day-to-day planning 

stage that individual patients and their needs are considered. Guinet and Chaabane 

(2003) and Jebali et al. (2006) consider whether required equipment will be available in 

each operating theatre. 

 

At the day-to-day scheduling level, the required equipment is considered by Sier et al. 

(1997).  At the level of sequencing patients for surgery each day, Cardoen et al. (2009a, 

2009b) both consider the available equipment as constraints on the problem. 

 

This limited consideration of the availability of equipment in the literature, is a gap in 

the research that has been done to date and is considered further in Chapter 4. 
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2.4.10 Surgical Staff  

The most important staff for operation theatre scheduling are the surgeons.  Papers vary 

as to whether they schedule individual surgeons or surgical groups, depending on the 

level of detail required.  Virtually all studies addressing aspects of operation theatre 

scheduling consider surgeons in some way. 

 

A number of other types of staff are involved in surgery, from anaesthetists and other 

theatre staff to the porters who bring patients from the wards to the theatres.  At the 

strategic level, McIntosh et al. (2006) and Pandit et al. (2007) explore how best to plan 

the staffing of theatres with the objective of reducing labour costs.  Dexter et al. (2003) 

and Dexter and Epstein (2006) also consider reducing staffing costs.  McIntosh et al. 

(2006) explore how far in advance staffing should be planned to increase productivity.  

Marcon et al. (2003a) investigate the number of porters available, because they are 

focused on the number of PACU beds required and the speed at which porters remove 

patients to other parts of the hospital can affect this. 

 

At a tactical level, Belien and Demeulemeester (2008) consider the objective of 

integrating nurse and surgical scheduling.  Also, Belien et al. (2006) demonstrate how 

the demand for nursing staff can be visualised based on the master theatre schedule, to 

aid planning. 

 

At the day-to-day scheduling level, Marcon and Dexter (2007) and Roland et al. (2009) 

consider scheduling patients whilst considering staffing requirements/constraints. Also, 

Dexter et al. (2000a) and Dexter (2000) consider the effects of different strategies on 

labour costs.  

 

This demonstrates that while surgeons time is clearly an important factor in theatre 

scheduling, the scheduling of other staff groups can also be significant.  

 

2.4.11 Operating Room Time  

Considering the amount of operating room time available is central to any study 

concerning operation theatre scheduling. It is considered by all studies on the topic either 

via constraints on the time used or in the form a performance measure around theatre 

utilisation. 
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At the strategic level, van Houdenhoven et al. (2007a) and Tyler et al. (2003) consider as 

a performance measure, the highest level of operating theatre utilization that can be 

achieved with limits on the acceptability of sessions running overtime.  100% utilization 

cannot reached due to the variability in operating times, although if a higher risk of 

running overtime is accepted and the case mix is uncomplicated, then utilisation close to 

this figure can be achieved (van Houdenhoven et al., 2007a).  As discussed in Section 

2.1.3 more realistic goals for utilisation are between 85-90% depending on the case mix 

(Tyler et al., 2003). 

 

Also, at the strategic level, Mazzei (1999), Dexter et al. (1999a) and Dexter and Macario 

(2002) consider how to allocate theatre time to surgeons or surgical groups with the aim 

of maximizing theatre utilization.   

 

As papers at the tactical level are generally considering the allocation of theatre time to 

surgeons or surgical groups, as such it is necessary that they consider the theatre time 

available as a constraint (e.g. Blake and Carter, 2002, Gallivan and Utley, 2005, van 

Oostrum et al., 2008 and Fei et al., 2009). 

 

At the day-to-day scheduling level, operating theatre time is either considered as a 

constraint on the operations that can be scheduled each day or as a performance 

measure.  For example, Guinet and Chaabane (2003) have constraints relating to the 

regular and overtime theatre hours, for days where overtime is allowed.  Gerchak et al. 

(1996) consider the trade-off between maximising utilization of theatres and reducing 

overtime and delays.  Basson et al. (2006), Dexter et al. (1999b) and Van Houdenhoven 

(2007a) all aim to maximise utilisation.  Murat and Nepal (2010) consider the effect of 

different policies for the order of operations each day on the overtime performance of 

operating rooms. 

 

This shows that there are different ways of considering operating room time depending 

on the level of scheduling being undertaken.  This is reflected in the difference between 

treating available time as a constraint in Chapter 4 when we are scheduling at tactical 

level and as both a constraints and performance measures for day-to-day scheduling in 

Chapters 5 and 6. 
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2.4.12 Makespan 

Cardoen et al. (2010a) define makespan as ‘the time between the entrance of the first 

patient and the finish of the last’.  So it is in effect a measure of how operating room 

time is used.  It is considered at the day-to-day scheduling level by Marcon and Dexter 

(2007) and Pham and Klinkert (2008).  It is effectively a variation on theatre utilisation 

so is not considered separately in the rest of this study. 

 

2.4.13 Precedence Constraints 

At a detailed level of scheduling, there are likely to be differences in patients levels of 

clinical need, with some studies dealing with this implicitly by using different due dates 

for patients (see Section 2.4.14), while others address it directly. For example, Ogulata 

and Erol (2003) have three different priority levels for patients, allowing them to give 

precedence to some patients.  Min and Yin (2010) prioritise patients based on a weighted 

sum of numerical values representing clinical criteria, such as disease progression, pain 

or dysfunction, they then schedule based on this priority order.  They assume that the 

priority of a patient does not change until they are removed from the waiting list, and 

include a cost penalty relating to the waiting time in the objective function, thus also 

providing some degree of priority to those who have waited longest. 

 

For the problem of sequencing patients on the day of surgery there are further priorities 

to consider.  Cardoen et al. (2009a, 2009b) give precedence to scheduling young 

children at the start of the day, followed by prioritised patients “for instance, patients 

who already had a cancelled surgery once or surgeries that the surgeon preferably 

performs at the beginning of the slot”.  Precedence is also given to children, in the order 

youngest first by Sier et al. (1997). 

 

The question of how to prioritise patients has its own field of literature, which is 

summarised by MacCormick et al.’s (2003) paper.  They conclude that the debate over 

the ethical basis for prioritisation is on-going and that the impacts of assumptions made 

during prioritisation have yet to be explored.  The question of how prioritisation is 

achieved is a clinical decision so we will not consider it in further detail here.  However, 

in Chapters 5 and 6 we do take account of the prioritisation created by surgeons 

specifying how urgently each patient requires treatment. 
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2.4.14 Release/Due Dates 

Patients become available for operation over time as the decisions to operate are made; 

rather than all being available at the start of a planning period.  They may also have due 

dates for their operations based on their clinical need or targets for limiting waiting 

times.  Where they are considered release dates and due dates are treated as constraints 

on the model. 

 

At the strategic level Marcon et al. (2003a, 2003b) use release dates for simulation of 

patients operations.   

 

At tactical and day-to-day scheduling levels, Jebali et al. (2006), Fei et al. (2008, 2009a, 

2009b, 2010) all use due dates to ensure that patients operations are scheduled on time.  

Guinet and Chaabane (2003) and Lamiri et al. (2008, 2009) use both release dates and 

due dates for the scheduling of individual patients. 

 

Cardoen et al. (2009a, b) give consideration the distance patients are travelling for their 

surgery, and penalise a sequence in which these patients have operations starting before 

11am.  This is in effect a release time treated as a soft constraint by making it part of the 

objective. 

 

Due dates in particular are in effect a way of restricting the waiting time of patients, so 

these examples also relate to Section 2.4.1.   

 

As due dates are particularly important when scheduling individual patients they are an 

important factor in the day-to-day scheduling considered in Chapters 5 and 6. 

 

2.4.15 Demand for Surgery/Theatre Time 

The demand for surgery is an important consideration in advanced planning of theatre 

scheduling.  At the strategic level Adan and Vissers (2002) consider demand by having 

‘target patient through-put’, and Dexter et al. (2002b, 2005) consider surgeons’ demand 

for theatre time.  Generally at the strategic level, consideration is given to the demand 

for different types of surgery when allocating theatre time to surgeons/surgical groups 

and Testi et al. (2007) have this as an objective for the strategic phase. 
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At the tactical level, if is necessary to know how much demand for theatre time each 

surgeon/surgical group has in order to assign theatre slots to them.  Therefore, we expect 

to see demand constraints at this level, as is the case in Blake and Donald (2002), 

Santibanez et al. (2007), Belien and Demeulemeester (2007a), Zang et al. (2008), Belien 

et al. (2010) and other tactical level studies.   

 

At the day-to-day level of theatre scheduling, demand is considered implicitly as the 

individual patients requiring surgery are considered. 

  

We follow these trends in the consideration of demand by using known demand for 

theatre slots per surgeon in Chapter 4 and dealing with demand implicitly as individuals 

arrive for booking in Chapters 5 and 6. 

 

2.4.16 Examples of Bringing Factors Together 

Thus far we have only discussed separately the types of objectives/performance 

measures and given examples of the constraints.  The studies discussed in this section 

are examples of the way in which objectives and constraints combine in different papers. 

 

Marcon et al. (2003a) is an example of the use of simulation at strategic level, the 

objective of the study is to determine the minimum number of PACU beds required.  To 

do this they take account of the efficient use of theatre time, the staff available for the 

theatre including surgeons an anaesthesiologists, the number of porters available and 

patients’ length of stay in the PACU unit.  Thus, they combine the more significant 

factors for theatre scheduling (surgeons and theatre time) with the porters available and 

the use of the PACU. 

 

Utley et al. (2003) have the objective of determining the number of beds required if 

patients are booked further (potentially months) in advance.  They also take into account 

other ward admissions including emergencies and the demand for beds.  In focussing on 

bed usage, they do not consider other factors including theatre time or staff availability. 

 

Santibanez et al. (2007) explore the tactical problem of allocating blocks to surgeons, 

with the objective of minimise the peaks in use of post-surgery resources, such as beds, 
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whilst maximising throughput.  They include as constraints, the theatre time available, 

the time required by surgical groups, the throughput of patients over the planning 

horizon and the desire to have a schedule that repeats weekly.  Since they are working at 

the level of surgical groups rather than individual surgeons they do not consider staff 

such as individual surgeons or equipment constraints. 

 

Thus, studies bring together some of the aspects of theatre scheduling, depending on the 

focus of their studies, but as these examples show not all of the aspects that could be 

considered relevant are considered by any individual study.   

 

2.4.17 Discussion of Aspects of Surgery 

This section demonstrates that a wide range of aspects of operation theatre scheduling 

are covered in the operational research literature on the area.  There is variation in the 

aspects considered both between and within the different levels of scheduling.  Also 

there is variation in how the aspects are considered; as performance measures for 

comparing different scheduling methods, objectives to be achieved as much as possible 

or constraints within which scheduling must take place``.   

 

The aspects considered by any particular study depend on the focus and objectives of the 

authors, as it is logical to only include those aspects which are relevant to the problem 

considered to avoid over complications. 

 

Looking at the broader picture, it is interesting to note that the effect on wards is 

considered more frequently at the tactical level than the day-to-day level.  One might 

expect that in the scheduling of individual patients, there would be further scope to 

consider the beds that will be required to reduce the risk of cancellation due to lack of 

beds. 

 

The number of factors considered in scheduling operating theatres demonstrates the 

complexity of working in this area as well as the extent of the potential for affecting the 

rest of the hospital. 

 

The selection of objectives is important and different selections can give rise to distinct 

solutions as found by Riise and Burke (2011).  
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The aspects of theatre scheduling covered by the literature has directly affected the 

consideration of which aspects to consider in our work as is discussed in more detail in 

Section 4.1.3. 

 

2.5 Uncertainty 

Any attempt to improve the scheduling of hospital operating theatres is further 

complicated by uncertainty over the patients who will arrive over the planning horizon, 

the duration of operations and the lengths of stay of patients following operations.  The 

stochastic nature of these factors means that a scheduling technique which performs well 

on average may perform badly in practice. 

 

There are some studies that focus specifically on tactics to address these aspects of the 

uncertainty surrounding theatre scheduling.  For example, Dexter et al. (2001b) consider 

how much delay to schedule between patients to improve the likelihood of each surgical 

case starting on time given the uncertainty over case durations.  In their exploration of 

the potential effects of advanced booking, Gallivan et al. (2002 a, b) conclude that the 

variability of emergency admissions, length of stay and cancellations means that any 

attempt to make a firm commitment by booking patients months in advance may well 

reduce capacity. 

 

Simulation models are particularly effective at considering this variation as such models 

can be run many times to explore the best and worst case scenarios as well as to 

calculate the expected average performance.  Thus, the studies discussed in Section 2.1.3 

incorporate the uncertainty surrounding operation theatre scheduling, via the method 

used.  This aspect of simulation is demonstrated well by Marcon et al. (2003) who use 

tables to illustrate the maximum, average and minimum numbers of beds and porters 

needed over a number of runs of each of different simulation scenarios. 

 

Simulation is used by Batun et al. (2010) to demonstrate the benefits of pooling 

operations between surgeons (rather than assigning surgeons before booking) can reduce 

the costs caused by uncertainty within the system. 

 

Due to the unpredictable nature of demand for non-elective care, uncertainty is 

particularly important for any study considering it.  As discussed in Section 2.2.1, 



 

44 

 

studies either forecast such demand for care by looking at the factors that cause 

variability or incorporate it via simulation. 

 

Deterministic methods such as IP and MIP, which Section 2.1.1 discusses, are used by a 

significant number of studies on operation theatre scheduling, but do not take account of 

any of the stochastic aspects of theatre scheduling.  Zhang et al. (2008a) recognise this, 

so having obtained a weekly operating room allocation from their MIP they run a 

simulation model to test the performance of the resulting allocation taking account of the 

stochastic nature of the “surgery time, demand, arrival time and no-show rate”.    

Similarly, Lamiri et al. (2009) use simulation to test a variety of methods including 

heuristic and meta-heuristic methods. 

 

Other studies using a range of LP related and heuristic methods do not go as far as 

testing with simulation, but evaluate the results by using instances of the problem.  

Roland et al. (2010) “perform 10 experiments in order to estimate the performance of the 

genetic algorithm” and Jebali et al. (2006) use 25 problem instances to evaluate their 

models. Fei et al. (2009b), Cardoen et al. (2009a) and van Oostrum et al. (2008) all use 

test data generated from real life data from specific hospitals to test how their models 

would perform under uncertainty. 

 

There are studies which explicitly consider the stochastic aspects of theatre scheduling 

while using methods other than simulation.  Gallivan and Utley (2005) consider booking 

of individual cases into a cyclic timetable; working at this level allows the clever 

construction of a linear program that uses the probability of different lengths of stay.   

 

Also considering the variability of length of stay, Belien et al. (2009) incorporate the 

variance into their MIP.  Belien and Demeulemeester (2007a) give a formulation for 

taking account of such variability, but as it is non-linear they consider various methods 

of approximation and using heuristics to solve the problem. 

 

Stochastic programming is a variation on LP which takes account of the stochastic 

elements of the problem under consideration.  The first application of this to operation 

theatre scheduling appears to be by Gerchak et al. in 1996, where only the stochastic 

nature of the number of requests for surgery each day is considered.  More recently 
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Denton et al. (2007) apply stochastic programming to consider uncertainty around 

operation durations; Adan et al. (2009) apply it to the tactical scheduling problem 

considering uncertainty around length of stay; and Min and Yin (2010) apply it to the 

day-to-day scheduling problem whilst considering patient priority.  

 

So aside from the studies using simulation there are relatively few papers that take 

account of the stochastic elements of operating theatre scheduling in their main 

methodology and those that do focus on the stochastic nature of just one factor.  There 

are a number of other studies using experimentation to test how their methods perform 

under uncertainty.   This shows that uncertainty is an important aspect of theatre 

scheduling; in later chapters it is considered as much as possible, and where it is not 

considered the reasons are clearly set out. 

 

  2.6 Implementation of Research 

Given the potential for improvements in operation theatre scheduling demonstrated by 

the models discussed above their findings have the potential to make significant 

improvements in hospitals, one might expect to find them in use across a range of 

hospitals. 

 

In their review of surgical scheduling, Magerlein and Martin (1978) note that in general 

the schemes for supporting scheduling that they discuss have not been implemented; 

suggesting that early studies in the area were not generally implemented in hospitals.  It 

appears that a lack of implementation of modelling has been an issue in healthcare as 

whole not just in relation to operating theatres as Lagergren (1998) cites a 1981 survey 

which found that only 16 out of 200 health related project recommendations had been 

acted upon.  Eldabi et al. (2007) review the use of simulation in healthcare, they observe 

that the impact of simulation is weak and Jun et al. (1999) expect that “future modellers 

will continue to face difficulties implementing their results”.  Taking a further 

generalisation Wiers (1997) discusses concern that despite the large volume of studies 

considering various aspects of scheduling with operational research and artificial 

intelligence techniques implementation of these techniques in scheduling is rare. 
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Lagergren (1998) suggest that the situation in health care in general is improving as 

about a third of the studies they reviewed had been implemented to some extent.  So 

what is the situation with regard to operation theatre scheduling? 

 

Gemmel and Dierdonck (1999) conducted a thorough literature review and a telephone 

survey of Belgian hospitals to assess the extent to which the methods used for the 

scheduling of admissions for surgery fits with the theoretical models available on the 

topic.  The conclude that “most hospitals have not worked out an admission scheduling 

policy indicating which resources are critical in the scheduling process and how 

information on the availability of these resources is captured”.  Therefore, hospitals are 

often not aware of the issues affecting their scheduling process, let alone employing 

operational research methods to overcome them. 

 

Also, Cardoen et al. (2010b) discuss the results of a survey of hospitals in Flanders, in 

which they asked about the systems used for scheduling operating theatres. They found 

that “despite the proliferation of computerised planning and scheduling procedures 

proposed by the scientific community, the implementation of such systems still seems to 

be low”.   This suggests that there has been a consistent lack of implementation of 

research in this area. 

 

This lack of evidence of implementation is also apparent in the studies we have 

discussed.  While a significant number of the studies use data from hospitals, and as 

discussed above in Section 2.5 some test their methods with data from hospitals, only a 

handful of papers discuss the implementation of their methods. 

 

The earliest paper that we have found mentioning implementation is from 1977 by Ernst 

et al., who state that their method had at that time been in use for more than 2 years.  

More recently Kusters and Groot (1996) state that in two out of the three test 

environments their system was accepted and used as the basis for admissions decisions.  

Blake and Donald’s (2002) integer programming model for the tactical level scheduling 

problem had been in use for several years when they wrote the paper.  Testi et al. (2007) 

state that “the approach has been accepted and implemented by the surgical units of the 

department involved in our study”.  There are also some papers where implementation is 
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implied, for example, Arenas et al. (2002) comment that the decision makers were 

satisfied with the methodology, but do not explicitly say that it was used. 

 

Even in the papers that do indicate that the models have been implemented it is only in 

the hospitals/units that the researchers worked with on the study, although there must be 

other hospitals with similar problems.  Also, the methods that have been implemented 

are from different levels of theatre scheduling, suggesting that there is not a particular 

problem with implementation at any of the levels. 

 

It is possible that for some of the papers which do not mention implementation, the 

models have been implemented since publication of the paper.  However, there are 

papers that give the reasons for non-implementation.  For example, Sier et al. (1997) 

discuss the need to develop a ‘front end’ for the system and to integrate it with hospital 

systems before implementation can take place.  Also, if implementation was taking place 

post publication, then we would expect the surveys by Gemmel and Dierdonck (1999) 

and Cardoen et al. (2010b) to have found evidence of this. 

 

There are a few more recent papers which suggest that implementation has occurred.  

Vanberkel et al. (2011b) discuss some of the ways in which their model aided the 

development of a master surgical schedule, implying that it was used as part of the 

process. Isken et al. (2011) mention use of their model in several hospitals and have 

made it available as open source software. 

 

Cardoen et al. (2010a) conclude that it is “somehow contradictory to see that in a domain 

as practical as operating room planning and scheduling, so little seems to be effectively 

applied”.  The remainder of this section explores possible reasons for the lack of 

implementation and strategies to overcome it in future. 

 

Discussing the lack of implementation of scheduling techniques in general, Wiers (1997) 

comments that most papers “focus on the system’s architecture and implementation 

issues are apparently regarded as trivial.  The success of scheduling techniques in 

practice can only improve when researchers are aware of the implementation pitfalls 

through learning from each other’s experiences”.  This suggests that greater sharing of 
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ideas and experiences is required to improve the chances of implementation, which does 

not seem to be occurring in the literature on scheduling hospital operating theatres. 

 

In discussing possible reasons for the lack of implementation, Eldabi et al. (2007) 

comment that “while it is possible to assess the simulation benefits on defence and 

manufacturing systems, such benefits seem less tangible when it comes to healthcare 

simulation”.  So in comparison with other application areas, it is harder to demonstrate 

the benefits of modelling in healthcare.   

 

A common theme in the papers discussing the lack of implementation is the lack of 

awareness of operational research techniques among hospital decision makers, with 

Cardoen et al. (2010 a, b) suggesting more training for managers in the area, for example 

thorough games to illustrate the effects that applying the principles of operational 

research can have on scheduling of patients.   

 

Harper and Pitt (2004) propose a ‘project life cycle for successful implementation’ of 

healthcare modelling, in which several stages involve working with hospital staff to: 

understand the problem form their point of view; build credibility of the modellers; and 

model and acknowledge the politics within the organisation.  They proceed to list 

examples of projects where this life cycle has been successfully implemented in 

healthcare.  This demonstrates the importance of working with hospital staff alongside 

undertaking of quantitative analysis. 

 

There is also a need to allow flexibility in the model, both to take account of changes 

within a hospital and differences between hospitals, if the model is to be more widely 

applicable (Gemmel and Dierdonck, 1999). 

 

Due to the lack of implementation of research into hospital operating theatre scheduling, 

this section includes consideration of implementation within the wider areas of 

healthcare and scheduling.  On these broader levels, there is also evidence of a lack of 

implementation.  However, there are indications that implementation is improving and 

this section identifies the need to work closely with hospital staff and incorporate 

flexibility into modelling to create a more implementable model.  Jun et al. (1999) 
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mention that even if implementation does not occur, modelling can have benefits such as 

developing a greater understanding of the system and identifying unexpected problems. 

 

The identification of this gap in the literature directly influenced our decision to work 

closely with local hospitals to understand their needs, particularly though the cognitive 

mapping exercise described in Chapter 3.  

 

2.7 Discussion 

This section both summarises this review of the operational research literature on 

operating theatre scheduling in hospitals and discusses the implications for future work. 

 

At the start of this review (Section 2.1), we identify simulation, linear programming and 

heuristics as the three main classes of methods applied to theatre scheduling problems.  

Simulation models are effective for evaluating policies or testing scenarios, particularly 

for comparing the effectiveness of different scheduling policies.  However, they do not 

directly suggest alternative policies and they do not necessarily give an indication of 

how much potential there is to improve on current methods.  Linear programming 

methods (including variations on LP) do give optimal solutions for the criteria specified, 

if it is possible to specify the problem with linear equations and inequalities.  However, 

for some problems, the computation time may be excessive.  Heuristics have been 

shown to be effective for finding faster solutions and it is not necessary to specify the 

problem in linear form, but the solution they find is likely to be suboptimal and it may 

not be possible to determine how far it is from optimal.  Therefore, the decision over 

which of these methods to use depends on the type of problem being considered and 

how it is possible to formulate the problem, as well as the speed with which solutions are 

required. 

 

In Section 2.2 we discuss how the problems relating to operation theatre scheduling can 

be broken down into those considering elective or non-elective surgery, with the former 

category further dividing into strategic, tactical and day-to-day scheduling problems.  

The majority of the papers discussed consider problem(s) at one or another of these 

levels and where more than one level is considered the different levels are explored 

separately.  This suggests that it would be sensible for future research to make use of 
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these levels and if more than one is to be considered that this should be done 

sequentially. This is done in Chapters 4, 5 and 6. 

 

There are a range of factors with the potential to influence theatre schedules, as the 

number of factors considered as objectives or constraints in the literature demonstrates 

(Section 2.4).  This has formed part of the consideration of the factors to consider in our 

models, particularly in Section 4.1.3. 

 

Section 2.6 shows that there is a general lack of implementation of the research done in 

this area within hospitals and suggests working closely with them to understand the 

challenges they face.  Suggesting that the decisions over which factors to include in 

future work, should come from such collaboration.  Chapter 3, Sections 4.1.2 and 6.1 

give further details of the collaboration with local partner hospitals include in our 

modelling. 

 

The stochastic aspects of theatre scheduling (Section 2.5) should also be considered 

where appropriate to ensure that the modelling reflects the real situation sufficiently to 

be useful in practice.  These are considered where possible in later chapters and where 

they are not included the reasons are explicitly discussed. 

 

Overall we perceive that the strategic level of operating theatre scheduling is subject to 

greater political considerations, as there are more subjective factors involved.  Also, 

changes at this level occur less frequently, so it would be harder to achieve 

implementation at this level.   Therefore, given our goal of implementation, in Chapter 4 

we focus on addressing the tactical scheduling problem and in Chapter 5 we focus on the 

day-to-day scheduling problem.  Discussions of the selection of methods for each of 

these levels are given in the appropriate chapters. 
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Chapter 3: Qualitative Modelling – Understanding the 

Problem 

 

The literature review gives us a clear understanding of previous academic work on 

operating theatre scheduling, with a lack of evidence of implementation of that work in 

hospitals.  In order to increase the potential of our work to be implemented in hospitals it 

is necessary to gain an understanding of the challenges hospitals face surrounding 

theatre scheduling; the intention being both to gain some insight into the lack of 

implementation and the needs of hospitals. 

 

In recent years there has been increasing use of multimethodology in studies across a 

range of applications, from taxation systems (Brown et al., 2006) to assessing fitness to 

drive (Hindle and Franco, 2009) and combining a variety of methods such as mixtures of 

qualitative methods for example, problem structuring with ethnography (Horlick-Jones 

and Rosenhead, 2006); or mixing qualitative and quantitative methods (Kotiadis and 

Mingers, 2006).  These studies demonstrate that the application of multimethodological 

research can successfully enhance the scope and effectiveness of research in a range of 

areas.  This chapter provides an example of how such a study can be implemented in a 

healthcare setting. 

 

The inclusion of qualitative modelling in this study allows us to gain an understanding of 

the challenges hospitals face surrounding theatre scheduling; the intention being both to 

gain some insight into the lack of implementation and the needs of the particular hospital 

studied. 

 

This chapter firstly explores the reasons for using a multimethodological approach, 

particularly including qualitative modelling (soft OR) in a research area that has thus far 

been dominated by quantitative methods (hard OR).  We then go on to explain the 

qualitative method chosen in this case, how it was implemented and the effects of its 

implementation. 
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3.1 Why Qualitative Modelling 

Qualitative modelling also referred to as soft OR, allows the incorporation of factors that 

are difficult to quantify and thus cannot be included in the type of quantitative methods 

generally applied to operation theatre scheduling (Cardoen et al, 2010a). Often 

qualitative modelling includes the production of diagrammatic representations of the 

system and how different factors influence one another. 

 

A number of healthcare related studies use the technique known as System Dynamics 

(SD), which combines qualitative and quantitative modelling.  For example, SD has 

been used to model the implications of future demands for social services, where the 

qualitative modelling aspect of SD was particularly helpful in developing an 

understanding of the problem and being able to test that understanding with social 

services employees (Desai et al., 2008).  Rohleder et al. (2007) also found the qualitative 

side of SD particularly useful, concluding that the creation of a simple causal loop 

diagram “may provide valuable insight”.  Lane et al. (2003) conclude that using system 

dynamics can be particularly successful with respect to involving clients in the process.  

This suggests that qualitative methods are valuable for gaining understanding of the 

problem and keeping clients involved. 

 

There is plenty of evidence in the OR literature for the use of qualitative modelling, both 

as a tool in itself and in combination with quantitative modelling: 

• “it has simply been argued that describing a system is, in itself, a useful thing to 

do and may lead to better understanding of the problem in question.” (Coyle, 2000).  

• “The need to build models interactively with participants (managers, owners and 

associated actors) of problem situations.” (Wolstenholme, 1993). If participants are 

actively involved they will have greater understanding and acceptance of the results of 

the models. 

• “SD combines qualitative and quantitative aspects, and aims to enhance 

understanding of a system and the relationships between different system components” 

(Brailsford et al., 2004). Combining qualitative and quantitative modelling can enhance 

the value of the work overall. 

 

The combining of qualitative and quantitative modelling is not limited to those using 

SD.  Mingers and Brocklesby’s (1997) “Framework for Mixing Methodologys” sets out 
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how the attributes of a variety of methods should be considered when combining 

methodologies, and is clear that qualitative and quantitative methods and/or aspects of 

these methods can be combined.  Mingers (2001) considers combining methods and 

concludes that “soft methods and techniques should be used in combination, both with 

themselves and with more traditional quantitative modelling, to yield a richer form of 

multimethodology”. 

  

In their survey of practitioners’ use of multimethodology, Munro and Mingers (2002) 

find that the majority of those combining methodologies use either only soft or only hard 

techniques, while “Relatively few combine both hard and soft approaches in a single 

intervention”.  Their study identified 21 such examples and they observe that: 

“although most uses of multimethodology are based on a single paradigm, there is a 

small but significant movement within OR/MS that is both multimethodological and 

multiparadigmatic”. 

 

The term paradigm is defined by Mingers and Brocklesby (1997) as “a very general set 

of philosophical assumptions that define the nature of possible research and 

intervention”.  A number of authors considering multimethodology discuss potential 

issues with the mixing of methods from different paradigms: Mingers and Brocklesby 

(1997) and Kotiadis and Mingers (2006) discuss “paradigm incommensurability” in 

some depth, while others like Eden at al. (2009) mention it with limited detail.  In 

practice, all of these authors and many others have used multimethodology with no 

apparent problems arising from mixing methods from different paradigms. Pidd (2004) 

sums this up by saying “The bumblebee flies, but we just do not understand how”, since 

mixing methodologies works in practice but not in theory.  Others, like Zhu (2011), have 

made a more considered attempt to explore the theoretical basis for mixing 

methodologies from different paradigms.  It seems that a consensus on the topic has yet 

to be reached, with Harwood’s (2011) discussion on the topic attracting swift responses 

from Mingers (2011) and Jackson (2011). 

 

Kotiadis and Mingers (2006) identify the difficulties of shifting between paradigms for 

the practitioner as a possible reason for the low incidence of multimethodological studies 

combining qualitative and quantitative methods, but state that “it is possible for a person 

to become multimethodology literate given sufficient determination”.  They go on to 
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give examples where “both paradigms have been adopted at different stages in the 

project”.  This use of different methods at different stages makes the mental adaptation 

between paradigms easier as it creates some separation between them.  This supports the 

use of soft methods to develop an increased understanding of the problem before 

applying hard OR methods, which is how the methods are combined in our study on 

operation theatre scheduling.  Such combining of soft and hard OR in series is 

recognised by Pollack (2009) as a common format for multimethodological projects. 

 

There are other examples of combining hard and soft OR methods in the literature. For 

example, Robinson (2001) combines simulation with facilitation, Brown et al. (2006) 

apply hard and soft OR to the tax system and Ackermann et al. (1997) combine 

simulation and decision analysis to assist with litigation relating to the channel tunnel.  

Also, Sobolev et al. (2008) provide an example of mixing methodologies in a healthcare 

setting by incorporating aspects of statecharts in their simulation of patient flow in 

surgical care. 

 

Perhaps the most relevant example of mixing methodologies is that of Sachdeva et al. 

(2006), who looked specifically at the effects of mixed methodologies on 

implementation of operational research in healthcare.  Their study combines cognitive 

mapping and simulation and illustrates that mixed methodologies can be effectively 

applied in a healthcare setting.  Furthermore, their conclusions include: 

• “there is a greater likelihood of acceptance of results emerging from a positivist 

paradigm, with a unique role for outcomes research for healthcare, which has been 

enhanced with soft OR” (Sachdeva et al., 2006). 

• “after obtaining a holistic understanding of the system using hard and soft OR, 

stakeholders were willing to implement results from each independently” (Sachdeva et 

al., 2006) 

 

As discussed in the introduction, one of the gaps observed in the literature on operating 

theatre scheduling is a lack of implementation (Cardoen et al., 2010a).  Since the use of 

mixed methodologies enhances the chances of implementation, this suggests a strong 

argument for the application of mixed methodologies. 
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Overall, the literature suggests that mixing qualitative and quantitative methodologies 

has been undertaken successfully in a variety of contexts including healthcare and may 

have a particular advantage in terms of increased implementation in healthcare. The 

latter point is particularly important given the lack of evidence of implementation of 

academic work on operation theatre scheduling. 

 

3.2 Why Cognitive Mapping 

In SD, the type of qualitative modelling used is known as influence diagrams.  These 

focus on the interactions, particularly feedback loops, involving different aspects of the 

system.  They form the basis of the quantitative model that can be simulated on a 

computer in the qualitative modelling.  

 

Based on the methods used in the literature, it is likely that we will be using methods 

such as Mathematical Programming and Discrete Event Simulation rather than the 

population level simulation of SD in this project. Mathematical Programming is 

particularly relevant at the tactical level, as the literature demonstrates (Adan et al. 

(2009), Belien and Demeulemeester (2007a), Blake et al. (2002), Hans et al. (2007), Van 

Houdenhoven et al. (2008), Zang et al. (2008), van Oostrum et al. (2008) and Santibanez 

et al. (2007)) that it has proved possible to formulate and optimize aspects of the 

problem.  Also, in this case, it is desirable to include an awareness of concepts and the 

links between them as much as the feedback loops of a system, so while previous work 

with SD illustrates the value of combining quantitative and qualitative modelling, we do 

not consider SD the best tool for this problem. 

 

Cognitive mapping involves forming of influence diagrams superficially similar to those 

used in SD (Pidd, 2003).  Eden and Ackermann (2001) define a cognitive map as “a 

model designed to represent the way in which a person defines an issue.  It is not a 

general model of someone’s thinking, neither is it intended to be a simulation model of 

decision making.  It is a network of ideas linked by arrows ... . The arrows indicate the 

way in which one idea may lead to, or have implications for, another.”  

 

The objective, given in the introduction to this chapter, from the researcher’s point of 

view is to gain an understanding of the challenges surrounding operating theatre 

scheduling in hospitals.  A model that illustrates the connections between ideas will 
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allow us to explore these challenges in a structured way including consideration of their 

interconnections.  The production of such a model with hospital staff will enable us to 

test the correctness of our understanding, as they can see it represented on the map.  

Therefore, we will use cognitive mapping for the qualitative modelling.  This is similar 

to the approach taken by Franco and Lord (2011), who use cognitive mapping in the first 

phase of their multimethodological study to “elicit, share and examine stakeholders’ 

views of the situation so that an improved understanding of the issues ... could be 

achieved among stakeholders”.  Indeed such use of soft methods at the start of a project 

is included in Mingers and Brocklesby’s (1997) framework, where they refer to it as 

‘front-ending’. 

 

Other visual mapping methods that could be used are mind mapping and rich pictures; 

these do not have a cause-and-effect relationship (Daellenbach and McNickle, 2005) and 

so do not give as much detail on the interrelationships between concepts.  

 

3.3 Implementation  

3.3.1 Overall Approach to Cognitive Map Development 

Specific methodologies have been developed for the development and analysis of 

cognitive maps, notably that known as SODA (Strategic Options Development and 

Analysis).  Eden and Ackermann (2001) describe the relation between cognitive 

mapping and SODA as “SODA is the approach to working with clients, out of which 

has grown the particular technique of cognitive mapping.”.  There are two versions of 

SODA. The original methodology (SODA I) is based on individual interviews to create 

individual cognitive maps which are merged and used to explore the problem, while the 

latter version (SODA II) dispenses with the individual interviews and builds the map 

directly with the team (Pidd, 2003). 

 

For this study, fifteen individual unstructured interviews were conducted to gain an 

understanding of the physical restrictions on Operating Theatre Scheduling for including 

in the hard OR as well as the wider context being explored by the cognitive mapping.  

Due to restrictions on the availability of hospital staff, there was not sufficient time for 

individual cognitive maps to be constructed during the interviews that were undertaken. 

The author also attended meetings and discussions at the hospital on topics related to 

theatre management; including attending a half day Theatre Workshop lead by the 



 

57 

 

Theatre division’s Clinical Lead and a ten monthly theatre management group meetings. 

To see the theatres in action a half day of day case orthopaedic surgery was also 

observed. Information was also drawn from the understanding gained from the review of 

academic literature. 

 

Given the restrictions on the availability of hospital staff, we adapted SODA I by 

including individual interviews, but without developing individual maps; this 

information was then combined with ideas from other sources to create a single map.  

This map was then presented to hospital staff in a workshop, giving them the 

opportunity to improve it and work with it to explore future actions.   

 

Figure 1 is the resulting cognitive map summarising the factors affecting theatre 

management, including potential changes and their likely effects.  We do not include 

financial considerations explicitly as this would over complicate the map because cost 

affects almost every aspect of theatre management.  Also, in the NHS, financial 

implications are not given the same importance as they would be in a private hospital, 

since costs are closely linked to the amount of theatre hours available (due to the high 

staffing costs) and targets like reducing cancellations do not have financial implications.  

Clinical considerations are not included, except implicitly, as the focus of this work is on 

the management of theatres. These limitations have restricted the size of the map making 

it more accessible to hospital staff members who were unfamiliar with cognitive 

mapping and had limited time available to learn about it and explore the map.   

 

As the concepts have been written concisely on the map Appendix A uses the numbering 

on the map to give further explanations for many of them. 

 

The meeting with hospital staff to improve the map resulted in the addition of nodes 35, 

36, 41, 42, 65, 66 and 67 and a couple of additional arcs.  This shows that the original 

map had captured the majority of relevant concepts and that the meeting allowed 

refinements to take place.
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Meet 
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assessent
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contacting 
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before op

Reduce 

occurrence of 

missing notes/ 

admin error

More beds 

available

Bring more 

patients in early 

to make sure 

they get beds

Reduce use of 

beds by medical 

patients

-

-

Improve 

predictability of 

medical case 

load

Understand 

seasonal 

variations – is this 

significant?

Increase 

understanding of 

variability of 

demand

-

Ability to 

predict bed 

usage

Improved ability 

predict to LOS

Use a diary 

system, booking 

only if bed, 

theatre time, 

equipment all 

available

Ability to plan to 

smooth demand 

for beds

Ability to book 

patients further in 

advance

Ability to include 

bed usage in 

planning

Have coordinator 

to oversee 

bookings/theatres

Reduce over 

booking/

overruns

Increase 

capacity

Reduce 

demand for 

surgery
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proportion of out 

patients need 

surgery

-

More filtered 

by physio
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activities in the 

community

Reduce 

Outpatient 

numbers

Raise GP awareness 

of when to refer 

(consider availability) 

and fitness for surgery 

Raise GP 

awareness of 

capacity and 

surgeons 

specialisations so 

refer appropriately

Introduce regular 

GP newsletter/ 

booklet of surgeon 

info/website 

Increase face to face 

contacts with GPs e.g. 

quarterly meetings 

cycling through specs

Advertise 

via practice 

managers

Increase 

proportion of 

sessions that 

start on time

Have notes 

ready

Have necessary 

facilities open, 

before surgery 
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Get ordered 

list to wards 

sooner

Run 3 

session days

Whole hospital 

work later on 

specific days

Increased 

staff flexibility
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quality mix of 

theatre staff / re-

design roles

Use capacity 

when surgeons 

on leave etc

Increase matching 

of bookings to 

available time

Equipment 

availability less 
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Book in front of 

target i.e. shorter 

waits

Book at 

decision to 

operate

Reduce number 

of self heal/die 

on list

Where appropriate have 
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running surgeries with 

consultants moving 

between them.
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major/minor 
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opt in to receive  
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Increase efficiency of 

bed usage – needs 
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determine how to do 

this effectively

More all day 

lists

-
Increase time 

available for 

infection control

Computerise 

notes
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system e.g. 

theatre type 

required
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Optimise 

Theatre 

Timetable

-
Lists are 

available on 

central drive
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list availability

-
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delays

Procedures 
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coordinated in 

advance
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Development of 

bed model for 

medicine
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Dedicate lists LA 

or GA to make 

best use of 

anaesthetists

Figure 1: Cognitive map of issues surrounding theatre scheduling 
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3.3.2 Detail of Map Construction 

The following paraphrases the process of drawing a cognitive map given by Pidd (2003): 

1. Goals should be identified early since these are the aims and provide the context 

for the rest of the map. 

2. Place other concepts leading to the goals – identify concepts that may be 

‘strategic issues’ 

 The concepts should be expressed as bipolar concepts; that is as pairs 

of psychological (not necessarily logical) opposite ideas. 

 Arrows are placed between pairs of concepts giving the direction of 

causality, with negative arrows implying that the concept at the tail of 

the arrow has a negative effect on the concept at the head of the 

arrow. 

3. If possible concepts should be action oriented. 

4. The map should ideally be drawn so that it flows upwards with goals at the top. 

 

Due to the complexity of the links between concepts, spreading out the targets (Reduce 

waiting lists, Reduce Cancellations and Increase productivity) allows much better 

spacing of the concepts on the map, making it easier to interpret than if we followed the 

ideal of placing targets at the top of the map. 

 

Also, due to the complexity of the map, only one side of the bipolar construct is included 

in each case.  We have selected the positive side of the construct in most cases to keep 

the process positive psychologically.  This is supported by the statement by Pidd (2003) 

that “If the concept is clear without the second pole, then one is not needed”. 

 

The majority of the links are positive (an increase in the construct at the base of the 

arrow is expected to result in an increase in the construct at the head of the arrow) so 

positive signs have not been included; where necessary, negative signs have been 

included beside the arrows. 

 

The constructs where there is potential for changes to be made, via changes to hospital 

policy and actions, are represented by tan coloured boxes and the effects of these 

changes are coloured in blue, which fits with the idea of identifying ‘strategic concepts’.     
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The key targets are in larger boxes and font size so that they stand out.  The pale blue 

concept boxes to the upper left of the map relate to issues out of the control of the 

hospital, the paler tan coloured boxes are possible long term changes and the dashed 

arrows indicate connections about which there is considerable uncertainty over both 

their existence and strength. 

 

3.4 Analysis and Discussion 

Daellenbach and McNickle (2005) describe the process of analysing cognitive maps as; 

• Starting with a detailed examination of the map by the clients to ensure it is 

accurate and there are no other concepts to add to it.   

• Checking for feedback loops, identification of core constructs (those with many 

arrows to/from them) 

• Looking for emerging themes (highly interlinked groups of constructs with few 

links to the rest of the map).   

Eden and Ackermann (2001) also emphasise the consideration of clusters of nodes on 

the map.  Such analysis of our map is described in the paragraphs that follow. 

 

At the workshop mentioned previously, the map was examined in detail, with hospital 

staff using large printouts to which additions and corrections could easily be made by 

hand.  The staff attending this workshop were a mixture of hospital theatre managers and 

other theatre staff; the meeting was advertised to all staff whose work related to theatres 

and those who were available attended.  The workshop lasted for an hour and a half and 

was led by the author.  It enabled us to explain the content of the cognitive map to staff 

as well as involving them in checking its accuracy and adding extra concepts.  The 

purpose of the workshop was both to test our understanding of the problem and to help 

participants develop ideas and consider the interactions between concepts.  As the 

analysis of the map had been begun before the workshop, this could be continued in the 

workshop to provide feedback to participants.   

 

It is interesting to note the low number of feedback loops in the diagram, which may be 

due to the small size of the map.  Figure 2 reproduces a particularly significant feedback 

loop with regard to the availability of hospital beds, if more patients are brought in early, 

then there will be fewer beds available, which will reduce use of beds by medical 

patients, encouraging surgeons to continue to bring patients in early.  Conversely, if 
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fewer patients are brought in early, more beds will be available and the use of beds by 

medical patents may increase.  Bringing patients in early increases their length of stay in 

hospital and thus increases the cost of providing their treatment as well as being an 

inefficient use of beds. This suggests that the use of beds by medical patients can cause 

surgeons to act defensively and thus use beds less efficiently, and this is an area worthy 

of further attention. 

 

More beds 

available

Bring more 

patients in early 

to make sure 

they get beds

Reduce use of 

beds by medical 

patients

-

- -

 

Figure 2: Feedback loop regarding bed availability 

 

The potential change of ‘Use a diary system, booking only if bed, theatre time and 

equipment are available’ links into a significant number of areas and affects all of the 

targets (some more directly than others), making this a core construct.  This 

demonstrates the significance of the potential effects of the tool being developed by this 

research.  Reducing cancellations is core target, reflecting the significance of this in 

meeting other targets and the disruption that cancellations cause to individual patients.   

Demand for healthcare, including operations is increasing, so action that will allow more 

operations to take place is seen as important and therefore increasing capacity is a core 

construct.  Increasing capacity also has the advantage of allowing greater flexibility. 

 

In the upper left corner of the map, the cluster of nodes relating to communication with 

GPs is highly interconnected with only one connection to the rest of the map and is thus 

an emerging theme.  It is an area that has received less attention recently, which is being 

considered for further work within the hospital theatre management team. 

 

The other clusters are less well defined, but are predominantly groups of concepts 

surrounding the main targets. 
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Overall the map illustrates the complexity of the issues surrounding operating theatre 

management and scheduling.  The significant number of nodes relating to improving the 

use of beds and the effects of such on cancellations demonstrates the importance of 

considering the effects on bed usage within a theatre scheduling system.  Since the map 

shows that theatre scheduling can have a significant effect on the efficiency with which 

theatres are used, and influences the number of cancellations both directly and via the 

effect on bed usage, it illustrates the importance of considering operating theatre 

scheduling.  The map also demonstrates that there are a range of other factors affecting 

cancellations (upper right corner) and there are other considerations which the 

scheduling method cannot be expected to consider, such as the emerging theme 

surrounding contact with GPs (upper left corner). 

 

Some of the concepts included on the map have direct implications for the creation of 

methods to support operating theatre scheduling.  For example, the middle of the left 

hand side of the map has concepts relating to the possibility of running more theatre 

sessions per day on some days of the week, suggesting this should to be considered in 

any further work to support theatre scheduling.  To the right of that is the concept of 

running more all day lists (that is the same surgeon in a theatre all day).  The extent to 

which this is desirable should also be considered. 

 

3.5 Conclusions 

In addition to developing our understanding of the issues surrounding theatre scheduling 

the cognitive map illustrates the importance of some of the decisions being taken within 

the hospital.  In addition to our research aims, one of the directors who requested a copy 

of the cognitive map, and found it particularly helpful in explaining links between 

concepts, which he found obvious, to others. 

 

The process in itself was considered valuable within the hospital, as it increased their 

understanding of the interactions between the changes they were considering and their 

targets.  Additionally, the cognitive mapping allowed the author to meet the hospital 

staff and introduced them to the project as a whole and its potential significance to the 

hospital. 
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This mapping process demonstrated the need for research to improve theatre scheduling 

in hospitals, thus providing motivation for the work discussed in the chapters that 

follow.  The detailed understanding of the running of theatres and challenges faced by 

staff proved invaluable in determining the factors to consider in designing master theatre 

timetables, as is discussed in Sections 4.1.2 and 4.1.3.  In particular the inclusion of 

consideration of flexibility over the number of theatre slots per day, the desirability of 

having the same surgeon having consecutive slots in one theatre on the same day, the 

importance of bed availability and the need to smooth bed usage have all been taken 

directly from this process in to the modelling in Chapter 4.  

 

For the day-to-day scheduling case study (Chapter 6) we worked with a surgeon at a 

different hospital and the understanding of the issues surrounding theatre scheduling 

gained from the cognitive mapping assisted greatly with understanding his concerns.  

The importance of using theatre time effectively, reducing waiting times and avoiding 

cancellations identified by the cognitive mapping transferred over, as did many of the 

other aspects from the map.  We also continued the practice of working closely with 

hospital staff and discussing the modelling with them throughout Chapter 6. 

  

Thus, the cognitive mapping process has developed the understanding of the issues 

surrounding theatre scheduling of both the author and the hospital theatre managers.  A 

benefit of this approach is to ensure that the researchers are aware of the important 

factors to include in further modelling work and of the wider context into which such 

modelling fits. This is proving invaluable in our on-going modelling work with both the 

original partner hospital and an additional local hospital.  
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Chapter 4: Developing Master Surgical Timetables 

 

This chapter describes the development of the system to facilitate the generation of 

master surgical timetables.  Starting by defining the problem, followed by the process of 

selecting an appropriate method, we describe the mathematical formulation of the 

problem and how the formulation is implemented.  Then results from running the model 

are presented, and consideration is given as to how the formulation could be improved. 

The chapter ends with sensitivity analysis and discussion of the conclusions that can be 

drawn from this process. 

 

4.1 Defining the Problem 

The different levels of theatre scheduling are discussed in detail in the literature review, 

Chapter 2, along with the reasons for giving consideration to the master surgical 

timetable.  This section recaps some of the findings from the literature review adding 

information from contact with the collaborating hospital to define the problem in detail. 

 

4.1.1 The Literature 

A number of papers have addressed the development of master surgical timetables (or 

schedules).  Belien and Demeulemeester (2007a) define the master surgical schedule 

thus: “a cyclic timetable that defines the number of operating rooms available, the hours 

that the rooms will be open, and the surgical groups or surgeons who are to be given 

priority for the operating room times.” Similar definitions are also given by Blake et al. 

(2002), Blake and Donald (2002), Santibanez et al. (2007), Testi et al. (2007), Oostrum 

et al. (2008), Belien et al. (2006) and Hans et al. (2007,  2008).  Thus, there is 

considerable agreement in the literature about the definition of the overall problem.   

 

All of the papers on the topic consider the amount of operating time available and the 

amount required by each specialty (surgical group) or surgeon.  As discussed in Chapter 

2, Cardoen et al.’s (2010a) review of the literature on operating room scheduling 

includes a table of the other aspects considered including wards, ICU (intensive care 

unit), equipment, surgical staff, budget and operating room overtime/undertime.  The 

various studies relating to operation scheduling have considered different combinations 

of these, usually as constraints on the timetables generated.  There are other factors that 
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have been considered in some studies, for example, the only study we have found that 

gives explicit consideration to surgeons’ preferences for particular days or times of day 

is Santibanez et al. (2007).  Thus, there are a significant number of factors involved in 

theatre scheduling and we will need to decide which to include in to our approach to the 

problem. 

 

There is recognition in the literature of the stochastic nature of operation scheduling (see 

Section 2.5), as the operation duration and the patients’ length of stay in hospital will 

vary between individual patients.  Cardoen et al. (2010a) identify a substantial number 

of studies that take account of the stochastic nature of at least one aspect of theatre 

scheduling, although they are considering all levels of theatre scheduling not just master 

surgical timetable development.  Many of these studies consider the stochastic aspects of 

the problem by using simulation techniques, examples of which can be found in Arenas 

et al. (2002), Ballard and Kuhl (2002), Bowers and Mould (2005) and Testi et al. (2007).   

 

A limited number of studies incorporate stochastic aspects of the problem, while using 

methods other than simulation.  Belien et al. (2007) explore various methods of 

incorporating the stochastic nature of patients’ length of stay in hospital following 

surgery.  However, they only consider the specialties allocated and the operating room 

time available, so the study is limited.  Gallivan and Utley (2005) also consider the 

stochastic nature of length of stay, for scheduling individual procedures rather than 

blocks assigned to surgeons over a cyclic timetable. 

 

As discussed in Section 2.6, the majority of studies regarding the development master 

surgical timetables do not mention implementation in real hospitals, or only mention 

having obtained data from hospitals, so it is unclear if they have been implemented.  A 

notable exception to this is the work of Blake and Donald (2002), which has been in use 

at Mount Sinai hospital since 1996.  The model in question assigns theatre time to 

surgical divisions, when changes to the current allocation are required.  The model is 

relatively straightforward, which implies that perhaps some of the models that have been 

developed may not be implemented because they are too complex for hospital staff to 

understand.  The complexity of the model needs to be balanced with the need to model 

the system accurately and take account of sufficient factors within it.  
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4.1.2 Interviews with Hospital Staff 

As discussed in Chapter 3, interviews with staff at a collaborating hospital were 

conducted as part of this study.  In addition to developing the cognitive map, these 

interviews have greatly assisted the author in understanding the constraints on the master 

surgical timetable.  Of the constraints identified in the literature review, the interviews 

revealed that operating room time, surgeons (and other staff) availability and the 

equipment required are all significant.   

 

Notably the interviews have raised the issue of the operating room type required for 

different operations, which is not mentioned in Cardoen et al. (2010a).  Indeed the 

literature generally considers the theatres to be identical and this is mentioned explicitly 

by Fei et al. (2008), Hans et al. (2008), Lamiri et al. (2009) and Oostrum et al. (2008).  

The exceptions to this are Santibanez et al. (2007), Testi et al. (2007) and Zhang 

(2008a).  The former “require compatibility between the operating room and the 

specialty”.  Testi et al. (2007) and Zhang (2008a) consider theatres with particular 

characteristics, but they do not allow any theatre to belong to more than one type, which 

can be the case in reality. 

 

Surveys of operating theatres in Great Britain and Ireland by Humphreys et al. (1995) 

and Smyth et al. (2005) indicate that the majority of hospitals have different theatre 

types for different types of surgery.  In 1995 “only 32% did not have a designated 

theatre for any specialist surgery” (Humphreys et al., 1995) and in 2005 the extent of 

theatre designation has increased so that 80% of hospitals have designated theatres for 

orthopaedic surgery and 50% have “designated theatres for a variety of other surgical 

subspecialties”.  Thus, not only do the vast majority of British hospitals have different 

types of theatre for specific types of operation, but also the extent to which this is the 

case is increasing.  This implies that any model that is to be useful to hospitals in 

carrying out their theatre scheduling must take account of theatre types. 

 

The list of constraints from Cardoen et al. (2010a) given above includes wards and ICU, 

the latter being a specialised type of ward.  The cognitive mapping exercise highlights 

the constraints on the availability of beds, particularly in ICUs, as important in reducing 

the number of cancellations, and therefore in enabling hospitals to meet the targets set by 
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the government.  The interviews also reveal that the type of ward is important as patients 

are separated based on their needs and the infections they have been screened for. 

 

The hospital has 11 theatres of 6 different types and they operate a cyclic timetable over 

two weeks with morning and afternoon slots in all theatres.  For some theatres, the 

afternoon slot is extended into an afternoon/evening slot. 

 

Discussions with surgeons and other surgical staff have revealed that they find it 

significantly reduces pressure on them if the same surgeon has an all-day slot, i.e. the 

same surgeon is assigned the morning and afternoon slots for a particular day.  On the 

other hand, having the same surgeon assigned a morning slot in one theatre followed by 

an afternoon slot in another theatre is undesirable, as if the morning slot runs late then 

the afternoons surgery for two theatres will start late causing considerable disruption.  It 

is also preferable to have the timetable repeating weekly if possible, so that it is easier to 

remember it, which is one of the objectives in Blake et al. (2002) and Belien et al. (2009) 

for tactical scheduling. 

 

The hospital recently redesigned their master theatre timetable to take into account 

changes in staffing.  This was a substantial project for the hospital managers, which took 

place over a 4 month period and culminated in a small number of managers spending a 

weekend rearranging a paper timetable to achieve the final version. At the start of this 

project, the intention was to ask surgeons for their preferences and incorporate these into 

the final schedule.  This was not possible due to the complexity of finding a feasible 

timetable by hand, but it does raise the desirability of taking account of the preferences 

of those involved in developing timetables.  The literature review (Chapter 2) discusses 

studies that include preferences in the objectives.  Of these studies four are considering 

preferences while generating master surgical timetables. Specifically, Ozkarahan (2000) 

and Belien et al. (2009) consider preferred operating rooms, Blake and Carter (2002) 

consider ensuring that “physicians are able to generate a preferred level of income”, and 

Testi et al. (2007) define surgeon preference based on length of stay, with the aim of 

scheduling short stay patients at the start of the week so that wards can close at 

weekends, which is more a preference relating to wards than to surgeons.  Thus, some 

surgeons’ preferences are considered in the literature, but they are not asked to provide a 

full list of their preferences by theatre, day of the week and time of day. 
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The difficulties experienced by the hospital, with which I was working, in obtaining a 

feasible timetable, highlight how constrained the timetable is.  This is largely due to the 

desirability of using theatres as much as possible and the constraints on the availability 

of surgeons and is considered further in Section 4.3.3. 

 

The staff at the hospital with which I was working were also unable to take account of 

the potential effects on bed usage of the new timetable, as computerised support was not 

used.  This highlights the need of a model that can take into account the relevant factors 

to assist hospital surgical divisions in devising new timetables. 

 

4.1.3 Identifying the Important Factors 

Based on the interviews with hospital staff and the areas mentioned in the literature 

review, in order to develop useful master surgical schedules the following factors should 

be taken into account: 

 The amount of theatre time available. 

 The types of the theatres, as some procedures will require equipment that is not 

available in all theatres. 

 The availability of beds in wards. 

 The amount of theatre time to be assigned for each specialty or surgeon. 

 The availability of surgeons and if possible their preferences. 

 The availability of other resources, such as other staff and equipment. 

 The desirability of all day slots and repeating slots weekly. 

 The desirability that the same surgeon does not have a morning slot in one 

theatre followed by an afternoon slot in a different theatre on the same day. 

 The stochastic nature of the problem. 

 

The factors of theatre scheduling considered in the literature listed in Section 2.4 also 

include the waiting times, numbers differed/refused, precedence constraints, release 

dates and due dates.  These are all aspects of theatre scheduling that relate to individual 

patients and are therefore not relevant at the tactical level of scheduling, when we are not 

considering individual patients.   
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Holding areas for before surgery starts and post anaesthesia care are also not included in 

our model because they did not arise as a limitation theatre scheduling in our discussions 

with hospital staff.  While space in intensive care units is not explicitly included in this 

list they are a type of ward and can be included as such if wards are considered. 

 

Staff other than surgeons can be considered by modelling them using the ability to limit 

the availability of equipment.  They’re scheduling is not modelled explicitly as within 

the partner hospital this is done on a rolling bases independent from the creation of the 

master theatre timetable.  

 

Some of the factors considered will form hard constraints on the model and some are 

objectives to be aimed for in the timetables produced.  As discussed in Sections 4.1.1 

and 4.1.2, there are other studies that have looked at various combinations of these 

factors, but we have been unable to find an example incorporating all of them. 

 

4.2 Method Selection 

4.2.1 Type of Method 

The variety of methods that have been applied to operation theatre scheduling are 

discussed in the literature review (Chapter 2), so this section will give a brief overview 

of the methods considered and the reasons for the selections made. 

 

The types of method applied to operation theatre scheduling fall into three broad groups, 

simulation, optimisation using variations on linear programming and heuristics.  All of 

these methods and the ways in which they have been applied to the different aspects of 

operation theatre scheduling are discussed in the literature review (Chapter 2). 

 

Running a simulation model only distinguishes between the polices that are tested.  In 

the case of the master surgical timetable, there may be a large number of feasible 

timetables to consider and running separate simulations for each would take an 

unreasonably long time.  Also, a significant part of the problem for some instances will 

be finding feasible timetables to compare and simulation is not able to help with this.  

Therefore, while simulation is used by a number of authors to address aspects of theatre 

scheduling, it is not the method best suited to assist with the development of master 

surgical timetables. 
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The literature review reveals that the majority of studies have tackled the problem of 

developing master surgical timetables using IP or MIP techniques, so it seems 

reasonable to assume that such techniques can find optimal solutions in reasonable time, 

and therefore it is not necessary to develop heuristics to solve the problem.  As discussed 

in Section 4.1, there are a significant number of factors to be considered in planning the 

master surgical timetable, and none of the studies reviewed addresses all of them.  Thus, 

it may be that when all of these factors are included it is not possible to obtain a solution 

in reasonable time and heuristics may be required.   

 

Based on the discussion above, we will first address the problem using IP/MIP 

techniques. However, if this does not give solutions in reasonable time we will consider 

the use of heuristics. 

 

4.2.2 Type of Optimisation 

The available techniques for solving IP/MIP problems include branch and bound, 

applying cutting planes, branch and cut and price and cut.  For some problems the choice 

of technique affects the ability to produce solutions in a reasonable amount of time.  The 

software available to us on existing licences, and therefore easiest to access, uses branch 

and bound.  Therefore, branch and bound methods will be implemented first. If this 

approach does not produce acceptable results in reasonable time, then we will first look 

for cutting planes to improve the solution, if the results are still not acceptable then we 

will move to branch and cut and then if necessary branch and price. 

 

4.2.3 Addressing Multiple Objectives 

As discussed in Section 4.1.3, our problem has multiple objectives – it is desirable to 

smooth bed usage, give surgeons slots they prefer, have all day slots and repeat 

assignments weekly.  This can be addressed using multi-objective mixed integer 

programming (Winston, 1994), where the objective function is the sum of weighted 

objectives.  The ability to weight the importance of the various objectives is particularly 

desirable in this case as different hospitals may have different priorities and the objective 

function can therefore be adapted accordingly. 
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4.2.4 Cyclic or Dynamic? 

There are fluctuations in demand at different times of year, so ideally the timetable 

would change dynamically to take account of demand variations and any other changes 

in the hospital.  Currently cyclic timetables are used in this country, including at the 

partner hospital, so as one of the goals is to propose a model for implementation we will 

aim to stay close to the current system and produce a cyclic timetable.   

 

Providing a computerised tool that allows hospitals to quickly find new timetables, 

rather than the lengthy paper exercise discussed in Section 4.1.2, creates the possibility 

of creating a new timetable several times during the year to reflect the changes that 

occur.  Thus, with cyclic master surgical timetable the advantages of considering 

changes over the year can still be obtained, without a truly dynamic timetable. 

 

4.3 Integer Programming Model Formulation 

This section begins by describing the required elements of the mathematical formulation, 

before going on to set out the formulation in detail.  The reasons for the various 

components of the model and how they are formulated are discussed in detail where this 

is appropriate. 

 

4.3.1 Selecting Objectives 

The most important objective is to find a feasible solution, which may not be straight 

forward given how heavily constrained the problem can be.  Using MIP does not 

guarantee to find a feasible solution, but if such a solution exists, a computer can search 

faster than working by hand.  Feasibility will be discussed in more detail later in Section 

4.4.4.   

 

For now, we will assume that a feasible solution exists, and the following are the 

objectives for the MIP: 

 To schedule theatre slots such that the expected bed usage is smoothed.  This is 

important since avoiding high bed usage will reduce the likelihood of 

cancellations being necessary due to lack of beds. 

 To assign surgeons to slots for which they have high preference scores. 

 To avoid assigning surgeons to slots for which they have low preference scores. 
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 To schedule two consecutive slots on the same day were one surgeon is in the 

same theatre as often as possible. 

 To avoid scheduling consecutive slots on any day where the same surgeon is in 

two different theatres. 

 To repeat the scheduling of the same surgeon in the same theatre each week as 

much as possible. 

 

The relative importance given to each of these constraints may vary between hospitals. 

Indeed a hospital may wish to explore the effects on the suggested timetable of varying 

the weightings given.  Therefore, each of these factors is given a weighting in the 

objective, which can be adjusted as required. 

 

4.3.2 Selecting Variables 

The aim of the master timetable is to assign theatre slots to surgeons, so the first variable 

is an array indicating if each surgeon is assigned to each slot, for all slots, theatres and 

days of the cycle. 

 

The objective function needs to be linear, so further variables are required enable the 

counting of the number of times the following occur for use in the objective function: 

 Slots that have been assigned to surgeons with low preference scores for those 

slots. 

 If the same surgeon is in the same theatre for consecutive slots on the same day. 

 If any surgeon is in the different theatres for consecutive slots on the same day. 

 If the same surgeon is in the same theatre at the same time in consecutive weeks. 

These will all be binary variables, set to be 1 if the condition specified holds and 0 

otherwise. 

 

Similarly, variables are required to keep track of the number of beds required for each 

day of the cycle. 

 

4.3.3 Selecting Constraints 

Some of the constraints on this problem are more straight forward than others.  The more 

obvious constraints are: 

 Slots can only be used if they are available and can only be used once. 
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 Each surgeon can be in at most one theatre at any time. 

 Surgeons can only be assigned to slots when they are available to work in those 

slots. 

 There may be a limit on the number of slots a surgeon can do in one day. 

 The schedule must not require more of any equipment/ resource than is available. 

 

Constraints are also required to set the binary variables discussed above in Section 4.3.2, 

based on the values of the array assigning surgeons to theatre slots. 

 

If all of the theatres were of the same type or each type of operation could only be done 

in one type of theatre, then the constraint to meet demand would also be straightforward.  

However, as some types of operation could be done in more than one type of theatre 

more complex constraints are required.  This is discussed in detail with the mathematical 

formulation of the constraints below in Section 4.3.6.3. 

 

Further constraints are required to set the values of the variables used to count the 

expected number of beds required each day. These are discussed in Section 4.3.6.4. 

 

4.3.4 Notation 

The following sets out the notation used for the mathematical formulation of the 

problem; 

C  = The cycle length in days 

d  = The days of the cycle Cd 1  

T  = The number of theatres 

t  = The individual theatres Tt 1  

H  = The number of sets of theatre types 

h = The individual sets of theatre types  Hh 1  

I  = The number of surgeons 

i  = The individual surgeons Ii 1  

S  = The maximum number of slots in a theatre each day 

s  = The individual theatre slots Ss 1  

E  = The number of equipment (recourse) types to consider 

e  = The individual equipment types Ee 1  
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J  = The maximum number of days a patient spends in a bed (this is set to be a 

large enough value that the number of patients with longer stays is negligible and 

can be ignored). 

j  = The different numbers of days patients spend in beds Jj 0  

K = The number of wards to consider  

k  = The individual wards Kk 1  

w = The desired frequency of repeating with in the cycle, set to 0 if no repeats are 

considered desirable, otherwise it must divide the cycle length exactly (usually weekly 

repeats will be desirable). 






Otherwise 0

 .set  within  typea  typeof is  If  1
,

ht
G th

     th,  

For example the set of types that can be used for daycase surgery includes most of the 

theatre types, but the set of types that can be used for major orthopaedic surgery is 

limited to a particular type of main theatres with special air filtration systems. 

ihR ,
 the number of slots of within the set of types h required by surgeon i over the 

whole cycle (these values come from the strategic theatre scheduling decisions). ih,  










Otherwise 0

available. is  in theatre day on  slot  If  1

,,

tds

A sdt
     sdt ,,  

r  = The value below which a preference score is considered low, this must be a non-

negative number. 

sdtiP ,,,
 The score given by surgeon i, for slot s on day d in theatre t, these must be non-

negative numbers.        sdti ,,,  














Otherwise 0

 .    theatre

in  day on  slot in  operate  toavailable is surgeon  If  1

,,,

t

dsi

Q sdti    sdti ,,,  

ef  The number of sets of equipment of type e available.     e  










Otherwise 0

 

. in theatrein  are  when theyequipment  requires surgeon  If  1

,,

tei

F eti
  eti ,,  

kjtiB ,,,
 The number of patients who are still in beds used in ward k, j days after having 

an operation by surgeon i in theatre t (allowing for the long term cyclic implementation 

of the theatre schedule, see Section 4.3.6.4, for explanation of how this is used). kjti ,,,  
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kdD ,
 the max number of beds available on day d in ward k.  kd ,  

iM  the max number slots surgeon i can do in a day.   i  

 

α, , , , ,  are multipliers for use in the objective function. 

 

4.3.5 Variables 

The variables described in Section 4.3.2 can be defined as follows; 

 










Otherwise 0

 

. in theatre day on  slot in  operate  toassigned is surgeon  If  1

,,,

tdsi
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        sdti ,,,  














Otherwise 0

. than less issuch for  score  preference their and  

  in theatre day on  slot in  operate  toassigned is surgeon  If  1

,,,

r

tdsi

Y sdti       sdti ,,,  


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














Otherwise 0
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,,, t
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tdsi

U sdti
     

1

,,


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dti
 


















Otherwise 0

. other than   theatre
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,,, t
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1

,,




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dti
    


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


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


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



Otherwise 0

. theatre

in  day on  slot in  operate  toassigned also are they and

  in theatre day on  slot in  operate  toassigned is surgeon  If  1

,,, t

wds

tdsi

W sdti
 swdti ,,,   

kd ,  Is the expected number of beds required in ward k on day d.       kd ,  

kZ   The minimum difference between the expected number of beds  

required and the beds available on each of the days of the cycle k.                  k  
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4.3.6 Mathematical Formulation of Constraints 

4.3.6.1 Constraints linking other variables to X 

The constraints on the type of value X, Y, U, V and W can take and setting Y, U, V and W 

from the value of X are; 

X, Y, U. V and W are all binary. 

To assign Y; 

   
sdtisdtisdtisdti rYXPrX ,,,,,,,,,,,,    sdti ,,,     (1)  

To assign U for s = S; 

  0,,, SdtiU      dti ,,      (2)  

To assign U for s < S; 

   
sdtisdtisdti UXX ,,,1,,,,,, 2 
    Ssdti  ,,,     (3)  

To assign V for s = S; 

  0,,, SdtiV         dti ,,      (4) 

To assign V for s < S; 

   
sdti

T

tvv

sdvisdti VXX ,,,

,1

1,,,,,, 1 



   Ssdti  ,,,      (5)  

To assign W for d > w; 

   
sdtiswdtisdti WXX ,,,,,,,,, 2 
    swdti ,,,      (6)  

To assign W for wd  ; 

   
sdtiswdCtisdti WXX ,,,,,,,,, 2 
   swdti ,,,      (7)  

The inclusion of both constraints (6) and (7) means that each repeat is counted once for 

each time it repeats within the cycle.  For a 2 weekly cycle with weekly repeats desirable 

this counts each repeat twice, for a 3 weekly cycle with weekly repeats it counts each 

repeat three times, if it occurs in all 3 weeks.  In cycles of 3 or more weeks this allows 

counting of repeats that occur in some but not all pairs of weeks of the cycle. 

4.3.6.2 Other straight forward constraints 

The straight forward constraints, based on 4.3.3 are given below.  Where a summation is 

used then unless otherwise specified it is over all possible values of the case values 

given. 
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Slots can only be used if they are available; 

sdt

i

sdti AX ,,,,,                  (8)  

Each surgeon is in at most one theatre at any time; 

1,,, 
t

sdtiX                  (9)  

Surgeons’ availability constraint; 

sdtisdti QX ,,,,,,     sdti ,,,           (10)  

Limit on number of slots each surgeon can do per day; 

i

ts

sdti MX 
,

,,,     di,         (11)  

 

Equipment constraint; 

e

ti

etisdti fFX 
,

,,,,,
 eds ,,        (12)  

4.3.6.3 Demand constraints   

Since the theatres could theoretically belong to any mix of sets of types and the demand 

is by set of types of theatre, it is not trivial to ensure that each surgeon’s theatres are 

meeting their demand for different sets of types of theatre, without adding an additional 

variable for the set of types that each theatre is being used as to a problem with a large 

number of variables.  Additionally if surgeons have 2 slots in a theatre which can deal 

with cases of the types they would do in type A or type B theatres, then they have more 

flexibility if they can schedule either type of case into either slot, rather than having to 

treat one slot as type A and one as type B, so additional variables would not be a good 

match for what is likely to occur in practice.  Hence, there is a need for the following 

three constraints; 

 

At least meet each surgeon’s demand for each set of types of theatre; 

ih

t sd

sdtith RXG ,

,

,,,,     ih,        (13)  

Each surgeon’s overall demand is met exactly; 

 
h

ih

sdt

sdti RX ,

,,

,,,   i        (14)  

 

sdt ,,

sdi ,,
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Each surgeon does not use each theatre more times than their total demand for its sets of 

types; 

 
h

thih

sd

sdti GRX ,,

,

,,,
 ti,        (15)  

 

As each surgeon must have at least their demand for each set of types of theatre met, we 

require constraint (13). 

 

Suppose that we just count the number of theatres a surgeon has of each set of types 

against their demand for that set of types (just constraint (13)). This could allow 

surgeons to be assigned more slots than they need, which would not fit with the 

objective of using theatre time as efficiently as possible so an additional constraint is 

needed to say that the number of theatre slots assigned to each surgeon is equal to the 

total of their demand for theatre slots; hence constraint (14). 

 

Suppose we have sets of theatre types A, B and C, with theatre 1 in set A and theatre 2 in 

sets B and C. If a surgeon requires two slots in set of types B and one in set of types C 

then assigning them 1 slot in theatre 1 and 2 slots in theatre 2 will meet the constraints so 

far, as the two slots in theatre 2 mean there are two potential slots of set of types B or C 

available (meeting constraint (13)) and the total number of slots assigned is 3 (meeting 

constraint (14)), but there is no way that 1 slot in theatre 1 and 2 in theatre 2 can be 

assigned to be two slots of set of types B and one of set of types C as theatre 1 can only 

be of type A.  Hence the need for constraint (15) that a surgeon is not assigned more 

slots in a theatre than their total demand for its sets of types.  Thus, in this example, 

theatre 1 could not be assigned and this difficulty is resolved. 

 

The above argument demonstrates the need for the constraints given, but it does not 

exclude the possibility that there are other possible situations where the demand is not 

met as intended, while these constraints hold, i.e. another constraint may be required.  

The following argument uses induction to show that these three constraints are 

sufficient, by showing that the constraints ensure that it would always be possible to 

assign a set of types to each theatre and thus the demand for each set of types is met. 
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Case 1: If all of the theatres are of all sets of types then th,  thG ,
 1, and effectively H 

= 1 as we only need to consider one set of types, so they can be ignored in the 

constraints, which become; 

 

i

sdt

sdti RX ,1

,,

,,,    i         (13)  

i

sdt

sdti RX ,1

,,

,,,   i         (14)  

i

sd

sdti RX ,1

,

,,,   ti,         (15) 

In fact in this case constraints (13) and (15) are redundant as constraint (14) is a tighter 

version of either of them.  In this case as all theatres are of all set of types we just need 

the number of theatres each surgeon requires to be able to assign the relevant types to 

each theatre and meet each surgeons demand.  If the problem is feasible then the demand 

can be met and only constraint (14) is needed. 

 

Case n-1: The demand has been met with the current mix of sets of types for each 

theatre. 

 

Case n: The theatres remain of sets of types as in case n1 except theatre K which is of 

all sets of types as in case n-1 except k (when it was assigned set of types k for some part 

of the solution in case n1), then; 

 

Constraint (13) remains as in case n1 except for theatre K and set of types k, as now 

thG ,  0 when h = k and t = K so one term is removed from the sum which is greater 

than or equal to the demand for type k.  This ensures that where in the solution to case 

n1 theatre K was being assigned set of types k then in the solution to case n theatre K 

cannot be treated as meeting some of the demand for set of types k.   And the demand for 

the other types is met as in the case n1.  

 

Constraint (14) continues to say that the total demand for theatres for each surgeon 

remains equal to the total number of theatres they are assigned. 
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Constraint (15) becomes tighter as 
thih GR ,,
= 0 when h = k and t = K, where it was 1 

before, so for each surgeon the limit on then number of times theatre K can be used 

reduced by their demand for set of types k, ensuring that the demand for set of types k is 

met by other theatres where a slot in theatre K had been assigned as set of types k that 

demand must now be met by a different theatre. 

 

So where in a solution to case n1 the demand for type k was met by theatre K then in 

case n that demand cannot be met by type k so the number of times theatre K can be used 

is reduced by constraint (15) and constraint (13) ensures that there must be available 

capacity in other theatres of type k to continue to meet the demand.  In other words 

where a slot theatre K was being assigned type k, it must no longer be assigned as type k 

and a different theatre must be assigned instead. 

 

So by induction we can move from case 1 to any combination of the possible sets of 

types of theatre and the demand constraints are sufficient to ensure that demand is met 

(N.B. the problem may be infeasible for some combinations of sets of theatre types, so 

going from case n-1 to case n may make the problem infeasible). 

 

Along with the consideration of types of theatres this set of constraints to address the 

possible combinations of ways of meeting the requirements for theatres of different 

types is a new addition to the literature on tactical theatre scheduling. 

4.3.6.4 Constraints relating to use of beds 

The constraints relating to the availability of beds are: 

0,0,  kkd Z       kd ,      (16) 

To assign
kd , ; 

 
 

 









tsi

C

m Nn

kmdnCtismtikd BX
,, 1

),(,,,,,,   kd ,      (17)  

where N is the set of values of n such that;  

C

dmJ
n

C

dm 



 

To assign kZ ; 

kdkdk DZ ,,      kd ,      (18)  
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This method of smoothing bed usage is based on that used by Gallivan and Utley (2005) 

in their work on booking patients into a treatment centre.  In their study, individual 

procedures are scheduled into a cyclic timetable and the probability that a patient is still 

in a bed a number of days after their operation is used to calculate the expected number 

of patients in beds on each day of the cycle. 

 

For the master timetable, we are scheduling slots to surgeons, rather than individual 

procedures.  As the case mix of each surgeon and the number of cases they treat in a slot 

can vary, it is not possible to work at the level of individual patients.  Thus, our variation 

of the model used by Gallivan and Utley (2005) includes changes to adapt it to the new 

context, including moving from the probability of a patient being in a bed, to the 

expected number of beds used on each day of the cycle resulting from a surgeon’s use of 

a theatre slot. 

 

Using historical data, the expected number of patients in beds in ward k for each of the j 

days after each surgeon i has had a theatre slot in each theatre t is calculated, for 

inputting into the model as
kjtiB ,,,
.  Constraint (17) uses this information to calculate the 

sum of the expected number of patients from each assigned theatre slot to each day of 

the cycle.  This is similar to Gallivan and Utley’s (2005) method for counting the 

expected contribution of each timetabled procedure to the number of patients in beds on 

each day of the cycle. 

 

Constraint (17) is constructed as follows; 

 As defined in Section 4.3.4 
kjtiB ,,,
  is the number of patients in beds in ward k, j 

days after surgeon i has a slot in theatre t, and j starts at 0 on the day of surgery. 

 To calculate the number of patients in beds in ward k on day d of the cycle 

resulting from surgeon i having a slot in theatre t on day m of that cycle if m ≤ d, 

then we require j = d m, so that j is the number of days between m and d,  

giving 
kmdtiB ),(,, 
.  If m > d then day m occurs after d in the cycle so its 

occurrence in the current cycle does not make any contribution to the number of 

patients in beds on day d of that cycle. 

 To calculate the number of patients in beds in ward k on day d of the cycle 

resulting from surgeon i having a slot in theatre t on day m of the previous cycle,  
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we require j = C + d m giving 
kmdCtiB ),(,, 

.  This applies to any day m of the 

previous cycle. 

 Similarly for the contribution from day d, n cycles previously; we calculate the 

number of patients in beds in ward k on day d of the cycle resulting from surgeon 

i having a slot in theatre t on day m of that cycle, then j = nC + d m giving 

kmdnCtiB ),(,, 
.   

 As patients can stay in hospital for longer than the cycle length, to obtain the 

total contribution to the number of patients in beds in ward k on day d of the 

cycle resulting from surgeon i having a slot in theatre t on day m, it is necessary 

to sum the contributions from all of the previous cycles. 

 The maximum length of stay to be considered is J so only values of n such that 

nC + d m ≤ J should be considered.  Similarly operations from future days do 

not contribute so nC + d m ≥ 0.  Rearranging these equations gives the set N of 

values for n as set out above. 

 Therefore, the sum




Nn

kmdnCtiB ),(,,
calculates the number of patients in beds in 

ward k on day d of the cycle resulting from surgeon i having a slot in theatre t on 

day m of the cycle.   

 The contribution to number of patients in beds in ward k on day d of surgeon i 

having a slot in theatre t on day m is only 




Nn

kmdnCtiB ),(,,
if surgeon i is assigned 

slot in theatre t on day m.  The summation  
 

 








tsi

C

m Nn

kmdnCtismti BX
,, 1

),(,,,,,  

ensures that the contribution is only counted if the slot has been assigned as 

smtiX ,,,
is 1 in this case and 0 otherwise.  Summing over i, s, t and m ensures that 

the contribution from every scheduled theatre slot is included. 

 Therefore, constraint (17) sets the value of 
kd ,  to be the expected number of 

beds required in ward k on day d. 

 

Constraint (18) then sets the value of kZ  to be the minimum difference between the 

number of beds available on day d in ward k and kd , . 
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4.3.7 Mathematical Formulation of the Objective 

Maximise 

 
sdti

sdti

sdti

sdti

sdti

sdti

sdti

sdti

sdti

sdtisdti

k

kk WVUYXPZ
,,,

,,,

,,,

,,,

,,,

,,,

,,,

,,,

,,,

,,,,,,   

k , , , , ,  are weighting values and can be adjusted by the user to reflect the values 

of their hospital and/or to explore how the balance effects the suggested timetable.  This 

is to be solved subject to constraints 1 to 18. 

 


k

kkZ is the sum of the weighted minimum difference between the number of beds 

available and the number required for each ward k, so by maximising this we make the 

tightest difference between beds used and beds available as large as possible, and it is a 

measure of how well the bed usage is smoothed in the timetable.  These are weighted 

separately to allow ward size and the importance of particular wards (such as ICU) to be 

taken into account. 

 


sdti

sdtisdti XP
,,,

,,,,,, is the sum of the preference scores for the slots that have been assigned, 

so it is a measure of how well the preferences of surgeons are met by the timetable.  

 


sdti

sdtiY
,,,

,,, is the number of times any surgeons are assigned to slots for which they have 

low preference scores.  This allows additional penalisation of assigning a surgeon to a 

slot they consider undesirable.  Without this constraint, a timetable where some surgeons 

have slots for which they have very high preference scores and others have slots for 

which they have very low preference scores could give a high score for the sum of the 

preference scores and appear to be meeting the preferences of surgeons when it is not 

doing so fairly. 

 


sdti

sdtiU
,,,

,,, is the number of times that any surgeon is assigned to consecutive slots in the 

same theatre on the same day, and measures how often this occurs in the timetable. 
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
sdti

sdtiV
,,,

,,,
 is the number of times that any surgeon is assigned to consecutive slots in 

different theatres on the same day, and measures how often this occurs in the timetable. 

 


sdti

sdtiW
,,,

,,,
 is the number of times that any surgeon is assigned to repeat the same slot in 

the same theatre at the interval specified for such repeats (usually weekly), and measures 

how often this occurs in the timetable. 

 

Thus, we have defined the problem and formulated it as a multi-objective MIP, the next 

stage is to implement this with both real and randomly generated data and evaluate its 

performance. 

 

4.4 Implementation 

This section explains how the formulation developed in the previous section is 

implemented.  Firstly the data requirements are discussed, along with how the data was 

prepared.  This is followed by consideration of the software to be used and how the data 

is entered into the software. The validation and verification of the model is then 

discussed.  Lastly, the reasons for not considering the stochastic elements of the problem 

are considered.  

 

4.4.1 Data 

The hospital staff working on the timetable would know the values to enter for the 

majority of the data that is required.  This information for our example case is obtained 

from the interviews with staff.  This includes the cycle length required, the repeat 

frequency that is desirable (weekly), the number of theatres, the types of those theatres, 

the maximum number of theatre slots available on any day in the schedule, the 

availability of the theatres, the number of surgeons, the availability of 

equipment/resources that needs to be considered at this level of scheduling, the 

maximum number of days that patients spend in beds to be used for modelling purposes, 

the number of wards and the maximum number of beds available in each ward. 

 

Other information such as the surgeons’ availability and preferences requires 

consultation with individual surgeons and in our tests a mixture of random sample data 

and data devised to test specific aspects of the model is used for these values. 
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We use the existing hospital timetable to give the number of slots in each type of theatre 

required by each of the surgeons.  This information would usually come from the 

decisions made within the hospital in their strategic planning. 

 

The values of 
kjtiB ,,,
 the expected number of patients still in beds used in ward k, j days 

after being operated on by surgeon i in a slot  in theatre t, are less straight forward to 

assign, but are obtained by collating the hospital records of cases carried out.  They are 

calculated based on the historical number of patients in the beds of each ward on the 

days following operations by each surgeon in theatre t, if no such data exists then the 

data from a theatre of the same type as t or the type most similar to t.  

 

4.4.2 MIP Software 

Of the software available for solving MIP problems, FICO
TM

 Xpress Optimization Suite 

is used for this case.  This software was selected because the author already had access 

to a licence for the full version with the ability to handle problems of this size.  Had it 

not proved capable of dealing with the problem effectively then we would have 

investigated using alternative software. 

 

4.4.3 User Interface Spreadsheet 

Hospital staff members are not expected to be familiar with optimisations programs like 

Xpress. Also entering the data directly into the arrays Xpress works with would be 

difficult to do accurately, since there is such a large quantity of data to load.  However, 

hospital staff members in general are familiar with Excel and as setting out the data 

entry for the arrays in a spreadsheet makes it much easier to see what data goes where, 

Excel is used for the date entry for the model.  Excel is also used as the front end of 

Blake and Donald’s (2002) model, for similar reasons. 

 

Due to the volume of data, the data entry is split over several spreadsheets.  The main 

spreadsheet contains all of the general data that is the same for all surgeons as well as 

controls for loading the data and setting parameters for the optimisation.  The 

worksheets for data entry and running the model contained in this spreadsheet is as 

follows. 
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 Controls: This worksheet contains the command buttons for implementing the 

VBA code as discussed in Section 4.4.4.1 below. 

 General: This spreadsheet is for data relating to the cycle length, number of slots 

per day and the range of surgeons preference scores that the surgeons sheets will 

accept. 

 Theatres and Types: This sheet is for data relating to the possible types of the 

theatres as well as the theatres and their sets of types. 

 Theatre availability: Contains a table for the data on which theatres are available 

for which slots over the cycle. 

 Resources: This sheet is for the data on which equipment or other resources are 

to be considered in the model and the numbers of each that are available. 

 Surgeons: This sheet contains space for the data on the surgeons, their 

specialities, the maximum number of slots that they can work in a day and where 

their individual data entry sheets are stored. 

 Beds: For data relating to the wards to be considered and the numbers of beds 

available in them. 

 Weightings: This sheet is for the weightings to be applied to the objective 

function. 

 Solver Setup: Is for setting the max runtime of the model, so that it will return 

the best solution found after a set amount of time, if the optimal has not been 

found at that stage.  

 Quick update: This allows the user to update a selection of the data, from this 

workbook, which is faster than reloading everything including the data in the 

surgeons’ workbooks. 

 

Figure 3 illustrates an example of the sheet ‘Theatres and Types’ and demonstrates the 

type of layout used throughout the spreadsheet. 
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Figure 3: Example of the Theatres and Types worksheet 

 

In addition to facilitating the input of data the main spreadsheet also contains sheets for 

displaying the results of the optimisation; this is done via the following worksheets; 

 Suggested Timetable: Gives the timetable produced by the solver as a grid 

showing which surgeon is assigned to each theatre for each slot. 

 Timetable Analysis: Gives details of how the timetable performs in relation to 

each of the objectives and a table of the expected bed requirements if the 

timetable is implemented. 

 Beds Chart: Gives a graphical representation of the number of beds required 

compared with the number available over the course of the cycle of the timetable. 

 

The spreadsheet also contains some workbooks used to store data to facilitate the quick 

update process and the raw results from the optimisation. 

 

Figure 4 illustrates an example of the worksheet that gives the analysis of the suggested 

timetable. 
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Figure 4: Example of the Timetable Analysis worksheet 

 

There are separate workbooks for the loading of each surgeon’s data, where their 

availability, preference scores, theatre and equipment requirements and expected bed 

usage can all be entered.  These contain the following worksheets; 

 General: Reads across the data on the surgeon from the ‘Surgeons’ worksheet of 

the main spreadsheet, and has a data entry table for the number of slots that the 

surgeon requires in each type of theatre. 

 Preferences: Contains a table for the entry of the surgeon’s preferences for 

theatre slots on each day of the cycle, by slot and theatre. 

 Availability: Contains a table for the entry of the surgeon’s availability for 

theatre slots on each day of the cycle, by slot and theatre. 

 Resources: Contains a table for entry of the resources that are required by theatre 

type for the surgeon. 

 Beds: Contains a table for the entry of the numbers of beds expected to be 

required on different days after the surgeon has had a theatre slot in each theatre. 

 

4.4.4 Inputting and Examining the Data  

4.4.4.1 Loading data 

Visual basic for applications (VBA) coding is used to load all of the data from the 

spreadsheets, format it and save it as a text document ready for use as input by Xpress.  

Similar code is also used to read data from an output file produced by Xpress, to bring 

the results back into Excel and display them to the user in the output worksheets 

described above. 



 

90 

 

4.4.4.2 Validating data 

To reduce the scope for error in entering the data, Excel’s validation function has been 

used on the majority of the data entry cells, to specify the type of data that can be 

entered.  For example, on the surgeons’ availability worksheets only binary values can 

be entered for the availability, the data is also assessed in the VBA code to identify 

potential issues so that they can be corrected before being entered into the model. 

4.4.4.3 Basic feasibility testing 

Given the complexity of the problem and that hospitals are expected to be using their 

theatres at close to capacity (close to infeasibility), it is possible that the problem entered 

will be infeasible.   

 

The problem of diagnosing the cause of infeasibility in MIP and IP has been studied by a 

number of researchers; Chinneck and Greenberg have both produced a number of papers 

on the subject for example Chinneck (1997, 2001),  Greenberg (1988), Greenberg and 

Murphy (1991) and Guieu and Chinneck (1999), all discuss aspects of the topic.  The 

methods they describe for diagnosing infeasibility or subsets of constraints that are 

infeasible all require considerable knowledge of MIP/IP and the methods used to solve 

such problems.  As the intention is that the model will be used by hospital staff with 

limited if any knowledge of these areas, it would be unreasonable to expect them to be 

able to interpret the results of the type of analysis conducted in these studies.  Therefore, 

a more basic approach to resolving infeasibility is required. 

 

Basic feasibility testing has been built into the VBA code that uploads the data from the 

spreadsheet and formats it for the solver.  This will raise an appropriate error message to 

the user if the following arise; 

 The values entered for any of the data are of the wrong type, e.g. non-binary 

numbers where binary is expected, preference scores higher than the maximum 

allowed etc. 

 The number of sessions that a surgeon is available to operate in is less than the 

number of slots they are to be assigned overall. 

 The number of sessions that a surgeon is available to operate in the theatres of 

each type is less than the number of slots they are to be assigned for that theatre 

type. 
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 The overall theatre availability is exceeded by the total demand for theatre slots. 

 The theatre availability is exceeded by the total demand for theatre slots, by set 

of theatre types. 

 

These are quick checks to identify the more obvious ways in which a problem could be 

infeasible, thus avoiding the user wasting time trying to run the solver on a problem that 

has a data entry error or is infeasible for straightforward reasons. 

 

There are numerous more complex ways in which the problem could be infeasible, for 

example a subset of surgeons, may have similar, limited availability and therefore 

require the same set of theatre types to be used more often than is possible over a small 

period of time. 

 

To enable users to find feasible solutions, we recommend that they firstly ensure that the 

current timetable would be feasible for the data that they enter (with any additional 

surgery to be added available for scheduling, either in currently empty slots or in the 

slots of that are not required in the new timetable).  This ensures that a feasible solution 

will be found.  Analysing the resulting timetable, and adding in the additional constraints 

that are required, should enable the user to identify compromises to their original 

problem that will yield a feasible timetable. 

 

4.5 Verification and Validation of the Model 

“One of the most important and difficult tasks facing a model developer is the 

verification and validation of the ... model.” Banks et al. (1999) 

 

This section describes the methods of verification and validation that have been applied 

in order to ensure that our model works as intended and is a sufficiently accurate to 

suggest timetables taking into account the objectives set out in Section 4.3.1. 

 

4.5.1 Verifying the model 

In the following description of model verification Anderson et al. (2003) are referring to 

the verification of a simulation model, although the goal is the same for verifying any 

model;  
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“… the process of determining that the computer procedure that performs the simulation 

calculations is logically correct.  Verification is largely a debugging task to make sure 

that no errors are in the computer procedure that implements the simulation.” (Anderson 

et al., 2003) 

 

In summary, verification is checking that the model performs correctly and as intended 

by the modeller.   

 

In the case of our theatre timetabling model verification involves testing that the 

constraints and objectives are constructed to perform as expected.  This is done using a 

very simple example of the problem, with a three day cycle, two theatres and two 

surgeons.  Having run the model on the basic example, small changes are made to the 

data and the model is rerun to check that the resulting changes to the timetable are as 

expected.  For example checking that increasing the preference score a surgeon has for a 

particular slot above all of the other preference scores (calculated to ensure it will 

outweigh the other objectives and there is a feasible timetable with that surgeon assigned 

to that slot) results in a timetable where the surgeon is assigned that particular slot. 

 

This process is conducted rigorously for all of the constraints and the model does behave 

as intended. 

 

The VBA codes to upload the data and downloading the results to the spreadsheet were 

also verified by making small changes to the data and checking that these were correctly 

reflected in the data loaded and the way the results were set out. 

 

4.5.2 Validating the model  

Again in the following Anderson et al. (2003) are referring to the validation of a 

simulation model, although the goal is the same for validating any model;  

 

“… the process of ensuring that the simulation model provides an accurate 

representation of a real system. Validation requires an agreement among analysts and 

managers that the logic and the assumptions used in the design of the simulation model 

accurately reflect how the real system operates.” Anderson et al. (2003) 
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For the master surgical timetable the partner hospital has an existing timetable, so the 

conditions can be set so that only the existing timetable is feasible and the values of the 

objectives can be checked against the real values.  This is achieved by limiting the 

availability of surgeons to only their slots in the existing timetable, with their demand by 

theatre type set to the number of slots of each type that they have in the current 

timetable, thus forcing the selection of the current timetable. As expected this produces 

the current timetable, with surgeons assigned their current slots, and the objective 

function value as expected.  Thus, the model is validated against the real-life system. 

 

4.6 Stochastic Considerations 

In Sections 2.5 and 4.1 the stochastic elements of the problem are raised as important 

factors in theatre scheduling, but this is not addressed in the formulation set out above.   

 

For the master surgical timetable, the most significant area of variability in the results is 

around the number of beds required.  This arises from both variability in the length of 

time patients stay in beds after their operations and in the number of patients each 

surgeon treats in a theatre slot, which in turn is results from the stochastic nature of 

demand.  Combining the effects of these two factors over all theatre slots would require 

excessive amounts of calculation and thus considerably increase computational time, 

making the use of the model less attractive to hospital managers 

 

Given that the timetable will be repeated throughout the year in a cyclic fashion, over the 

year the bed usage will average out, but not considering the stochastic nature of the 

problem means that no consideration is made of the variation around the average.  

However, as no consideration of the effects of the surgical timetable on bed usage is 

currently made in producing the timetable, employing the average usage will be a 

considerable improvement on the current situation. 

 

The most significant argument for not considering the stochastic nature of the problem at 

this level is that once a master surgical timetable is selected and implemented the 

variations in length of stay can be considered at the day-to-day scheduling level, when 

the combinations of individual patients to book into slots are considered.   At this level 

the expected number of patients for each slot will be known and the stochastic elements 

of the problem can be much more effectively considered.  Ideally, the master timetable 
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would be implemented using the recommended booking strategy from Chapter 6 and 

then rerun with the data collected on bed usage from the theatre slots using both results 

to investigate the potential for further improvements. 

 

4.7 Improving the Formulation 

This section discusses how the formulation of the problem was investigated and adapted 

by the addition of cutting planes to reduce computation time. 

 

4.7.1 Exploring the Linear Relaxation 

In order to gain further insight into the running of the model the values of variables in 

the solution to the LP relaxation of the MIP can be considered.  In this case many of the 

values for binary variables in the solution to the LP relaxation of the problem are 0.5.  

Therefore, additional constraints to bring the solution to the LP relaxation closer to 

having binary variable values where relevant will assist with finding a solution to the 

original MIP problem more efficiently. 

  

The variables Ui,t,d,s and Wi,t,d,s have positive coefficients in the objective function, so the 

optimisation process will be looking to make their values as big as possible.  The upper 

values of these variables are limited by constraints (3), (6) and (7)  and these make use 

of the fact that these are binary variables to set the values of Ui,t,d,s and Wi,t,d,s correctly 

from the value of Xi,t,d,s.  In the linear relaxation of the problem non-binary values of Ui,t,d,s 

and Wi,t,d,s  are permitted so these constraints are not having the intended effects. 

 

If Xi,t,d,s is 0 then both Ui,t,d,s and Wi,t,d,s  should also be zero, as if a surgeon is not operating 

in a slot in a particular theatre then they can’t be operating in that slot in that theatre and 

the one after it in the same theatre or in the same slot and theatre with the desired repeat 

frequency in the timetable, but there are examples in the solutions to LP relaxations 

where this is not the case. 

 

It is reasonable to expect that adding constraints that reduce the feasible region for the 

LP relaxation, but not the feasible region of the original problem would speed up the 

solution process as the solution to the LP relaxation should be closer to the solution of 

the MIP problem.  Thus, the following constraints can be added to the problem. 
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Tighter constraints from 3; 

sdtisdti UX ,,,,,,    Ssdti  ,,,        (3a) 

sdtisdti UX ,,,1,,,    Ssdti  ,,,        (3b) 

Tighter constraints from 6; 

 sdtisdti WX ,,,,,,    wdsti  ,,,        (6a)  

sdtiswdti WX ,,,,,,    wdsti  ,,,        (6b)  

Tighter constraints from 7; 

sdtisdti WX ,,,,,,    wdsti  ,,,        (7a)  

sdtiswdCti WX ,,,,,,    wdsti  ,,,        (7b) 

This does in fact increase the speed at which the solver optimises the MIP, with the 

solution gap (between the best bound and best solution) after 100 seconds going from 

9.44% without the extra constraints, down to 4.04% with them.  A similar improvement 

is seen after 200 seconds with the solution gap going down from 6.27% to 3.99% when 

the constraints are added (all of these results were obtained on the same computer with 

the same settings). 

 

Therefore, the constraints set out in this section are included in the formulation used to 

obtain the results set out in the remainder of this chapter. 

 

4.8 Results 

This section gives the results obtained from the model, compared with the current 

timetable, to demonstrate the improvements that can be achieved.  The example used is 

for a hospital with 11 operating theatres, which can be split into 6 sets of types, 54 

surgeons, with up to 3 slots per day, 9 equipment types to consider and we are looking 

for a 2 weekly repeated cycle.  The information on bed requirements by ward was not 

available so we treat all of the beds available as belonging to one ward and use a 

maximum length of stay of 30 days.   This results in a problem with 124755 variables, 

124740 of which are binary variables, 15 non-negativity constraints and 138366 other 

constraints.  

 

As mentioned in Section 4.4.4, the model has been run with the surgeons availability set 

to ensure that the current timetable is produced, this means that the data on the current 
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timetable has been collected in the same manner as the data on the suggested timetable, 

allowing them to be easily compared. 

 

The suggested timetable discussed in this section is based on the assumption that all of 

the surgeons are available all of the time.  In reality this is not the case, but as full 

information on surgeon’s availability and preferences is not available (due to the time 

and effort as well as raising of expectations that would be involved in collecting this data 

when the hospital does not intend to change the timetable in the near future) any other 

version would have required further assumptions and potentially taken us further from 

reality.  It is in any case interesting to see how much the usage of beds could be 

smoothed if the surgeons where all available for all slots.   

 

In looking at the results, it should be remembered that this kind of improvement could 

not be expected for a real problem due to the restrictions on the availability of surgeons.  

It is hoped that in future when the partner hospital wishes to change the theatre 

timetable, it will be worth while collecting data on surgeons availability and preferences 

and using the model to assist in the development of the new timetable. 

 

 

 

Table 1 and Figure 5 give the comparison of the original timetable with the timetable 

suggested by the MIP when run in Xpress-IVE. 

 

Table 1: Comparison of objectives for current and suggested timetables 

Indicator Original Timetable MIP Timetable 

Max beds used 90 83 

No. Surgeons changing theatres 0 0 

No. of all day slots 30 55 

Repeat weekly 166 178 
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Figure 5: Graph to illustrate the bed smoothing achieved by the model compared 

with the existing timetable. 

 

These results demonstrate that considerable improvements in the smoothing of bed 

usage, numbers of all day slots and numbers of slots repeated weekly can be achieved.  

The extent to which such improvements can in fact be achieved will depend on how 

limited surgeons’ availability is.  The bed usage shown in the graph are the expected 

averages for each day of the 14 day scheduling cycle, so increasing the gap between 

these and the number of beds available increases the flexibility for the variations around 

the averages. 

 

4.9 Sensitivity Analysis 

This section discusses what is involved in sensitivity analysis before going on to show 

how this applies to the linear programming formulation for the master surgical timetable. 

 

In linear programming, sensitivity analysis involves calculating the extent to which the 

problem can change before the optimal solution changes.  This is particularly useful if 

there is uncertainty around the values of the data for the objective or constraints.  For 

linear programming, standard calculations can be used to perform sensitivity analysis 

(Winston, 1994). 
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Sensitivity analysis for problems involving integers is more complex as the calculations 

based on the linear programming sensitivity analysis only apply if the solution to the LP 

relaxation of the IP is integer.   

 

For this problem there are some inputs for which it is straightforward to predict that the 

solution will be particularly sensitive to changes in their values.  For example if a 

surgeons availability changes for a theatre slot to which they are assigned, in the optimal 

timetable then that timetable will no longer be feasible.  However, it is much harder to 

predict if a surgeon becoming available for a slot for which they were previously 

unavailable would change the optimal solution, as it depends if that surgeon operating in 

that particular slot would provide a better solution. 

 

The following describes our consideration of the effects of the changes felt to be most 

significant to the problem of finding good master surgical timetables. 

 

4.9.1 Sensitivity to Objective Function Weightings 

For this particular problem it is desirable that changes to the weights in the objective 

function result in changes to the optimal solution.  This is so that users can quickly 

obtain solutions for different objectives so that they can compare the effects on the 

timetable produced.  Therefore, this section explores the sensitivity of the solution to 

changes in the objective function coefficients. 

 

Table 2 gives the results of running the model with identical problems, except that the 

objective function weightings are adjusted slightly each time.   

 

As only one ward is considered in the example we use a single value of α for these tests.  

The relative sensitivity to the weightings for different wards would depend on the 

relative sizes of those wards. 

 

Changes to the value of β are not considered as preference scores have not been entered 

for this data set. 
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Table 2: Exploring the effects on the results of small changes in the weightings used 

in the objective function, all of the other data entered was identical each time. 

Weightings used Results 

α     Difference 

between beds 

available  and 

max beds used 

All 

day 

slots 

Changing 

theatres 

Weekly 

repeats 

Low 

pref. 

scores 

5 5 5 5 10 9.69 4 0 162 1 

6 5 5 5 10 22.09 5 0 159 1 

5 6 5 5 10 9.62 4 0 162 1 

5 5 6 5 10 9.43 4 0 158 1 

5 5 5 6 10 9.69 4 0 162 1 

5 5 5 5 5 11.02 4 0 156 0 

5 20 5 5 10 10.75 14 0 155 1 

 

This table illustrates that just small changes to the weights are required to produce 

different timetable suggestions, so the solution values are sensitive to the weightings 

used.  Note that changes to the value of ε are not resulting in changes to the results as 

none of the timetables are including any surgeons operating in different theatres in 

consecutive slots on the same day. 

 

4.9.2 Flexibility in the Surgeons’ availability 

Initially, we did not have access to information on the availability of surgeons, so the 

model was run as if they are all available all of the time.  This is not only far from the 

case in real life; it also took so long to run the model that the computer ran out of 

memory, before reaching a solution.  Therefore, in order to explore the effects on 

solution time and how good a solution (based on the gap between the best bound and the 

best solution after 10 minutes) could be obtained trials with random data have been run. 

 

To do this random data samples, all with a two week timetable, in a hospital with 11 

theatres, of 6 sets of type of theatre, 54 surgeons, up to 3 slots per day and 9 equipment 

types to consider were generated.  Each of these problems will have in access of 100,000 

variables and 100,000 constraints. In order to ensure that the problems would be 

feasible, a random assignment of surgeons to slots is generated and then the availability 
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of surgeons is set to ensure that they are available for the slots assigned on that timetable 

and a percentage of the rest of the time.  To explore the effects of different limitations on 

surgeons’ availability the model was run for five instances each time with the percentage 

of the time (other than the feasibility check timetable) that surgeons were available set to 

each of 100%, 90%, 75%, 50% and 25%. 

 

Figure 6 and Figure 7 are scatter graphs showing how the solution gap and time vary 

with the availability of surgeons.  They both demonstrate that as surgeon’s availability 

decreases the best available solutions under the new constraints are found faster.  This is 

to be expected because as surgeons’ availability becomes more limited there are fewer 

possible solutions to explore in the attempt to find an optimal solution. 

 

Figure 6: How the solution gap varies with the availability of surgeons 

 

Some of the values are too close to each other to be distinguished in the graph: there are 

5 points marked for each level of surgeon availability. 

Solution gap after 10 mins with different levels of surgeon availability

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0.300%

0.350%

0.400%

0.450%

20% 30% 40% 50% 60% 70% 80% 90% 100%

Surgeon availability (in addition to sample timetable used in creating random timetable)

G
a
p

 b
e
tw

e
e
n

 b
e
s
t 

s
o

lu
ti

o
n

 a
n

d
 b

e
s
t 

b
o

u
n

d

gap



 

101 

 

 

Figure 7: How the solution time varies with the availability of surgeons, where 

optimal solutions were found. 

 

In reality the availability of surgeons is quite constrained as they have outpatient clinics 

and other tasks that have to be conducted at specific times.  For example, some surgeons 

work at other hospitals at certain points in the week.  Therefore, it is useful that better 

solutions are found faster with more limited surgeons’ availability as this means that 

solution times for real life problems will be reasonable. 

 

4.10 General Flexibility and Limitations 

The previous section has shown that the model can be adapted to incorporate variations 

in the availability of surgeons.  This could be particularly useful in demonstrating how 

much difference changes in particular surgeon’s availability makes to possible 

timetables, which would facilitate discussion on changing availability.  

 

The model will not directly suggest where changes to surgeons’ availability would help 

to improve the timetable.  Although comparing the timetable produced with no 

limitations on surgeons’ availability with that where the surgeon’s availability 

constraints are included would suggest changes to try. 
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In fact, if adjustments to the surgeons’ outpatient clinics where also being considered the 

clinic spaces could be considered as theatres in the system and the outpatient and 

surgical slots could be allocated simultaneously. 

 

As discussed in Section 4.4.4.3 it is possible that changes to the availability could result 

in the problem becoming infeasible, hence the recommendation to ensure that the current 

timetable with any additional sessions fitted into it is feasible initially.  Additional 

constraints on availability can then be incorporated gradually allowing the user to 

identify any that make the problem infeasible.  This addresses the limitations on the 

extent to which the model can identify the constraints that make problems infeasible. 

 

The ability to vary the weightings of the objectives (see Section 4.9.1) allows users to 

adapt the model to their priorities and to generate and compare different timetables 

based on variations around these priorities. 

 

The data entry process is structured so that the numbers of surgeons, theatres, slots per 

day, wards and beds can be adapted to reflect the structure of any size of hospital.  The 

other features like theatre types and equipment considered are also fully adjustable.  The 

use of an Excel interface ensures that the data entry process is accessible to hospital staff 

so that the full extent of its flexibility can be taken into account. 

 

The ability to include limited availability of equipment in the model allows not only 

equipment, but also other staff limitations to be taken into account.  It is possible that 

there are other limitations on the timetable that another hospital would want to include 

that cannot be taken into account by the model.  For example, we have not considered 

the possibility that some equipment can only be used once on any day, this is mentioned 

in the literature review in Section 2.4.9.  However, this level of detail is better addressed 

at the day-to-day scheduling level when it would be possible to consider if a particular 

patient’s treatment would require particular equipment. 

 

The most significant limitation of the model is that it does not take account of variations 

in the case mix of each surgeon from week to week and the variations in patients’ 

lengths of stay.  Users should be particularly aware of this when considering the 

expected bed usage, as the values given are averages and the actual usage will vary.  
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Even so this inclusion of bed usage is a significant step from previous models which 

have not considered it when constructing master theatre timetables. 

 

Any limitations on the accuracy of the data for predicting bed usage, particularly when 

new surgeons are starting and the data would need to be estimated, should also be 

considered when interpreting the results. 

 

4.11 Conclusions 

This chapter illustrates that it is possible to solve the MIP for the problem of finding 

master surgical timetables in a reasonable amount of time using a standard MIP solver. 

Therefore, no further work is planned to apply column generation or heuristics. 

 

The stochastic nature of some aspects of the problem has not been incorporated at this 

level as it is felt that this can be addressed more effectively in the day-to-day scheduling 

process.  All of the other factors identified in Section 4.1.3 have been included in the 

formulation, which as far as we are aware has not been done before.  The specific 

elements of this model that are new contributions compared with what is done elsewhere 

in the literature are; 

 The consideration of the availability of beds; particularly that this is done at 

ward level and in the tactical rather than day-to-day scheduling.   

 The inclusion of the expected contribution to bed usage of surgeons having 

particular slots is new, as is allowing the number of beds available to vary over 

the course of the repeat cycle for the timetable. 

 In the literature different theatre types are rarely considered, so our inclusion of 

not only different theatre types, but also the way in which sets of theatres can 

meet different demand is novel. 

 Consideration of the availability of surgeons is limited in the literature and the 

ability to consider their preferences is new. 

 The ability to allow for the availability of other resources, such as staff and 

equipment, by using the equipment availability function is new. 

 The inclusion of weekly (or other) repeats in a cycle of longer than one week is 

unusual, as is allowing for the need to avoid the same surgeon having 

consecutive slots in different theatres. 

 



 

104 

 

It did not prove possible to implement this model within a local hospital within the 

timescale of this project, due to the pressures on hospital staff.  However, it is hoped that 

such implementation will take place in due course. 

 

It is also possible to consider scheduling surgeons’ outpatient clinics at the same time as 

their slots in theatre, if the clinic spaces are treated as theatres in the model; this would 

increase the availability of surgeons and should allow further improvements in the 

objective function. 

 

It would also be interesting to investigate the improvements that could be achieved with 

a truly dynamic timetable. 
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Chapter 5: Booking individual Patients 

This chapter describes the exploration of scheduling rules for booking individual 

patients;  starting with the definition of this aspect of theatre scheduling, going onto 

explore the implications of both the healthcare scheduling literature and more general 

scheduling literature.  The chapter concludes with discussion of methodology for 

exploring scheduling algorithms including providing a general model, the focus of 

Chapter 6 is then to populate and test the model with exemplar data. 

 

5.1 Defining the Problem 

The advanced booking of surgery for elective patients, involves scheduling individual 

patients into the available theatre slots.  Patients are not available for booking until the 

decision has been made to treat them and they require treatment within a certain time 

period, based on either clinical urgency or waiting time targets such as those in the UK.  

The underlying problem is similar to an online machine scheduling problem with due 

dates.  There is variability in time remaining until due date as well as inter arrival and 

service times.  

 

Patients may be urgent or routine based on clinical assessment of their need for surgery.  

As the names suggest urgent patients need to be given priority and have target treatment 

dates closer to the dates on which the decisions are made to treat them.  For routine 

patients the target treatment dates are the NHS target of referral to treatment in 18 

weeks, less the time already elapsed since referral when the decision that surgery is 

required is made.  This creates two types of priority base on clinical need and the 

administrative priority of meeting the 18 week target.  The importance placed on not 

breaching the 18 week target means that a patient who is close to breaching it may be 

treated as being as urgent as someone whose surgery is clinically urgent.  This 

consideration is made clear in the theatre scheduling literature and is based on strategic 

level decisions regarding the urgency of patients and acceptable waiting times. 

 

There are a number of other factors to consider as well, so that the problem of booking 

patients into theatre slots involves: 

 predicting surgery time; 

 maximising utilisation of theatre (and surgeons) time; 
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 meeting waiting time targets; 

 allowing slots for more urgent patients, than those currently under consideration; 

 being fair in terms of the time waited by similar patients; 

 avoiding overtime – including allowing for emergencies (this could also be seen 

as minimising cancelations depending on the mix of use of overtime and 

cancellation of surgery that occurs when a slot is over booked); 

 patient’s preferences (for example to avoid pre-booked holidays); 

 considering the length of time for which beds will be needed after surgery; 

 availability of the equipment required; 

 suitability of the mix of cases for each theatre slot (allowing for surgeons’ 

preferences). 

 

In developing the algorithm used to book patients into theatre slots, other factors to 

consider are: 

 how far into the future to have theatre slots open for accepting bookings; 

 whether to book patients as soon it has been decided that they need surgery or 

nearer to their due dates; 

 whether to book patients in batches or not; 

 if batches are used, how big should they be. 

 

As discussed in the literature review (Chapter 2), targets to book patients as soon as the 

decision that an operation was needed were introduced in 2002.  This resulted in some 

discussion in the British Medical Journal with Gallivan et al. (2002a, 2002b) describing 

how this would inevitably reduce efficiency, while Rogers et al. (2002) disagreed.  Since 

then this target has been dropped, however, it would be in the interests of patients to let 

them know the time of their operations well in advance and this feeds into the 

considerations listed above. 

 

Currently there is variation in the methods used, not just between different hospitals and 

specialties, but even within teams of booking clerks working for surgeons in the same 

specialties.  The scheduling is generally done by hand, with some hospitals still using 

paper diaries and cards with patient details.  Thus, there is considerable scope for 

improvement. 
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5.1.1 Online verses offline scheduling 

The distinction between online and offline scheduling is important in this chapter.  

Online scheduling involves scheduling jobs (in our case patients) as they arrive into the 

system overtime, without knowledge of what jobs will arrive later.  Offline scheduling 

involves having information on all of the jobs to be scheduled at the point when 

scheduling takes place.  Our problem as defined above is an online scheduling problem 

as the patients will arrive overtime and the scheduler will only have information on each 

patient when they arrive.  In discussing the literature we will include studies that use 

both online and offline scheduling in order to avoid missing potentially useful methods 

discussed in the offline scheduling literature. 

 

5.2 The literature 

The literature review (Chapter 2) has already considered the coverage of day-to-day 

scheduling in the literature on theatre scheduling.  This section briefly recaps this before 

going on to discuss relevant literature from other areas of scheduling. 

 

5.2.1 Theatre Scheduling Literature 

Simulation is used in the majority of studies that assess strategies for the advanced 

scheduling of patients.  Dexter et al. (2000) use simulation to explore strategies for 

scheduling cases into ‘overflow’ time.  Sciomachen et al. (2005) use simulation to apply 

scheduling rules to the whole of the advanced scheduling process, scheduling first by 

longest waiting time, then longest processing time and finally by shortest processing 

time.  They also test scenarios around the use of a master surgical schedule and 

introducing a recovery room. The results from comparing scheduling rules indicate that 

the best rule to use depends on the objectives in terms of reducing overruns or total 

overtime.   

 

Dexter and Traub (2002) also use simulation to compare scheduling rules based on 

scheduling patients to the earliest or latest start times available.  Van Houdenhoven et al. 

(2007) apply the bin-packing problem algorithms, Best Fit Descending heuristic and 

Regret-Based Random Sampling again testing the models with simulation. Dexter et al. 

(1999) also apply bin packing algorithms and test them with simulation, but their focus 

is slightly different as they are looking at adding additional cases once the schedule has 

been planned, rather than general on-going scheduling.   
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All of these examples are testing and comparing different scheduling policies that could 

be applied by hospitals for the advanced online scheduling of patients.  This 

demonstrates how effective simulation can be for comparing methods, but also its 

weakness; simulation only compares the methods considered, it does not suggest 

alternate methods or when exceptions should be made to the rules. 

 

Gerchak et al. (1996) apply stochastic dynamic programming to the advance scheduling 

problem; they focus on the need to allow unscheduled time for a variable number of 

emergency cases.  This type of mathematical programming technique finds the best 

solution to the problem of where to schedule cases, given the information available, but 

is only suitable for offline scheduling.  

 

Guinet and Chaabane (2003) also formulate the problem as a mathematical program 

formulation, although they conclude that it is NP hard and give heuristic methods which 

find fast solutions.  They assume that the cases to be booked over the next two weeks are 

known when the problem is solved, but patients are generally booked several weeks in 

advance with the expectation that their surgery dates will not be rescheduled.  This 

demonstrates the limitation of optimisation methods compared with heuristics is that 

they are only suitable for offline scheduling; in contrast heuristics allow online 

scheduling by following the heuristic rules. 

 

In summary, for the advanced day-to-day scheduling problem, a significant number of 

studies use simulation to find good heuristic rules for scheduling, while a few others use 

optimisation techniques to find optimal solutions each time further cases are scheduled.   

 

5.2.2 More General Scheduling Literature 

As discussed in the introduction to this chapter the problem of scheduling individual 

patients for surgery is a specific example of the wider field of machine scheduling, if we 

consider the operating theatres to be the machines and the patients jobs to be processed 

on those machines.  Thus, considering the methods used in the literature on general 

scheduling may provide useful insights.   
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The literature relevant to this problem includes a number of studies on appointment 

scheduling, as well as more general scheduling, so these two areas are considered 

separately below. 

5.2.2.1 Appointment scheduling literature  

Scheduling patients for surgery is similar to making appointments for any type of 

service, so literature on appointment scheduling should be considered when looking for 

inspiration to improve the process of booking patients.  The majority of papers relating 

to appointments scheduling refer to other aspects of the health system, for example 

outpatient or GP appointments.  It would seem that managing bookings from waiting 

lists is a significant problem across many aspects of the health care sector and that is 

why so many applications arise in this area.  This section will briefly consider 

appointment scheduling, to investigate whether the literature on this topic has useful 

insights for the problem of booking individual patients. 

 

Appointment systems in healthcare have been considered by operational researchers 

since the 1960’s.  Jackson (1964) advocates the use of appointment systems in hospitals 

and general practice, to replace systems where patients arrived and then waited to be 

served.  This reduces the time patients spend waiting, but if the doctor gets ahead of 

schedule then their time can be wasted waiting for the next patient, so making best use 

of the doctors’ time should also be considered.  This is addressed by Welch (1964), who 

introduced what is now known as the Welch rule, that if 2 patients are booked into the 

first slot, then the doctor will be slightly behind and have patients available if one does 

not arrive at some point in that block of appointments. 

 

This balance of reducing patients waiting times, but avoiding doctors idle time within 

the order of the schedule on a given day is the main theme of appointment scheduling 

literature relating to healthcare.  Klassen and Rohleder (2000) apply dynamic 

programming to analyse scheduling rules for this aspect of scheduling and they also 

apply simulation to the same problem (Klassen and Rohleder, 1996, 2002).  Brahimi and 

Worthington (1991) use queuing models to suggest scheduling rules at this level.  Ho 

and Lau (1999) also use simulation to explore the effects of changes in the length of 

appointments in the schedule given the variation in treatment times.  Jerbi and Kamoun 

(2011) consider this aspect of scheduling using goal programming.  This is just a sample 



 

110 

 

of the studies considering the structure of the day aspect of scheduling, from the point of 

view of balancing reducing patient waiting time and avoiding doctors’ idle time.  Even 

this small sample demonstrates that a range of methods have been used to consider this 

aspect of scheduling. 

 

In surgical scheduling, this balance is less important, as surgeons see all patients before 

the start of the surgical session, so they must all arrive at the same starting time and wait 

to be seen.  This is because the time taken to leave surgery, see individual patients as 

they arrived and return to sterile clothes in between operations would be detrimental to 

efficient use of operating theatres.   

 

Klassen and Rohleder (1996) suggest booking the types of patients whose treatment 

times have lower standard deviations (i.e. are more predictable) first in the schedule.  

This may be useful in operating theatres, because staff in the rest of the hospital can be 

given a better idea of when the next patient needs to be ready.  However, as the order of 

patients on the day of surgery is not decided at the time of booking, this is not important 

to the problem considered in this chapter. 

 

Tai and Williams (2011) consider adaptations to the daily schedule to allow for patient 

arriving late, but again this is less relevant to our problem as all patients are expected to 

arrive in good time before the start of the session. 

 

Su and Shih (2003) consider managing an appointment system where ‘walk-ins’ are 

expected in addition to the patients already booked for the session.  This is similar to the 

arrival of emergency patients requiring surgery, but they are concerned with when gaps 

in the daily schedule should be left rather than the amount of time needed to allow for 

emergencies. 

 

Patrick et al. (2008) consider scheduling with patients with multiple priority ratings.  

They assign time in each slot to different priority levels, which works well when a 

reasonable number of patients are treated in each slot, but is not so effective in theatre 

scheduling where one case may take up a large proportion of a theatre session. 
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Bowers (2010) and Gupta and Denton (2008) consider waiting lists and appointment 

scheduling in healthcare more broadly.  Bowers (2010) points out that queues of the 

sizes found in healthcare act “as a buffer absorbing much of the stochastic variation”.  

Therefore, getting rid of queues entirely would not be desirable as then the amount of 

treatment time available would need to match the variation in arrival rates. 

 

Bowers (2010) also states that the some simulation models for hospital management are 

“essentially based on the assumption of a first in first out (FIFO) queue discipline.  The 

FIFO assumption is reasonable in most simulations of systems involving inert entities 

but it may be less appropriate for healthcare simulations in which patients have very 

different priorities reflecting their individual needs.”  They recommend systems that 

consider the urgency of patients and prioritise accordingly.  This suggests that 

exploration of booking rules should include prioritisation of urgent patients and that the 

extent to which this is achieved can be compared with the results of a FIFO scheduling 

rule. 

 

Gupta and Denton (2008) also stress the importance of “reserve capacity for urgent 

appointment requests” in healthcare scheduling, confirming that it is important that any 

booking system allows space for the arrival of urgent patients.  At the same time the 

system should aim to “realize high utilization of more-expensive specialists’ time”.  This 

is the same balance of patient waiting time, compared to avoiding wasting doctors time 

considered in outpatient appointment ordering above.  In this case, it is allowing space to 

have short waiting times for urgent patients, without allowing under booking of 

surgeons’ time.   Gupta and Denton (2008) also comment on the lack of implementation 

of studies on appointment scheduling, which is similar to that in theatre scheduling as 

discussed in Section 2.6. 

 

While a large number of studies dealing with appointment systems consider healthcare 

related problems, there are studies considering appointment systems in general.  

Creemers and Lambrecht (2009) describe how queuing models can be used to analyse 

the expected waiting times and size of waiting list under varying conditions.  This is 

particularly relevant in the service industry where companies need to consider how many 

servers to provide to deal with their customers.  However, it is less relevant to the 
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surgical booking problem as we are trying to manage the waiting list with given 

resources, rather than consider the resources required. 

 

The above discussion indicates that aspects of the problems considered by a number of 

the studies in the appointment scheduling literature are closely enough related to the 

problem under consideration in this chapter to provide useful insights.  They suggest that 

it is worth considering how a range of algorithms compare to FIFO in their ability to 

deal with a mix of priority levels among patients and that similar issues arise in 

appointment scheduling in general and theatres scheduling in particular. 

5.2.2.2 Introduction to General Scheduling Literature 

As with the discussion of appointment scheduling above, this is not intended to be a 

thorough review of general scheduling literature.  The objective is to consider studies in 

areas of scheduling with similar features to the problem of booking individual patients 

for surgery, to see what implications their results have for the booking problem. 

 

Booking patients with different expected operation durations into theatre sessions of 

fixed duration is effectively a bin packing problem in the terminology used in general 

literature.  Patients arriving over time requiring booking is effectively the same as 

objects requiring scheduling online, rather than all of the objects to be scheduled being 

known at the start of the process.  Our problem also has due dates, by which patients 

should ideally be treated, so in scheduling terms the problem is an online bin packing 

problem with due dates and we are also concerned with the fairness with which patients 

are treated.  Thus, the literature on dealing with problems concerning some or all of 

these aspects of scheduling may contain relevant methods and this is explored below, 

along with discussion of the methods used in scheduling literature. 

5.2.2.3 Bin Packing Problems in the Literature 

Bin packing problems are discussed by Chen et al. (1998) as approximations for 

scheduling problems.  This, along with similarity of the need to fill operating theatre 

slots to classical bin packing problems, suggests that it would be worth considering the 

algorithms used to solve bin packing problems.  The main difference from day-to-day 

scheduling is that all of the items to be packed are general known in advance. The 

evidence to 1998 suggests that the best algorithms for bin packing problems are 

variations on first-fit decreasing (FFD), which involves ordering the items in non-
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increasing order of size and then packing them into the first available bin (Chen et al., 

1998).  This suggests that prioritising patients with longer expected durations should be 

explored.  Wong and Lee (2009) consider two dimensional bin packing, and as for FFD 

the algorithms they consider start by ordering the objects in non-increasing order of 

length.  Then they place them in the bin with the most space available, with algorithms 

differing over how the most space is determined.  This suggests that booking into the 

available theatre slot with the most remaining space should be considered.   

 

Shi and Ye (2008) consider online bin packing, where they refer to first fit, any fit and 

best fit algorithms, suggesting that exploration of these as rules for choosing a viable 

theatre slot should be considered.   While they are considering online bin packing, it is 

not bins that close over time with jobs arriving over time, but bins that are continuously 

available, with items that must be packed into the bins after their release time.  Thus, the 

algorithms they prove to be most effective are not relevant to booking patients. 

 

While we have not identified an online bin packing studies considering due dates this 

brief discussion of bin packing has yielded some potential algorithms to consider. 

5.2.2.4 Literature Concern Scheduling with Due Dates 

In the scheduling literature, two classes of problem that deal with due dates are relevant, 

involving minimising the number of late jobs or minimizing the sum of the tardiness (the 

amounts by which due dates are exceeded) (Chen et al. 1998).  In theatre scheduling we 

care both about the number of patients who are treated late and about the extent to which 

they are treated late, so we discuss both below. 

 

For the problem of minimising the number of late jobs, Chen et al. (1998) describe 

algorithms by Moore (1968), which involve arranging jobs in order of due date.  Then 

scheduling in this order and when one does not fit within its due date removing one of 

the jobs (e.g. with the longest processing time) to put at the end of the schedule.  

Scheduling jobs in order of due date is possible for hospital theatre scheduling when 

more than one job is scheduled at once and should therefore be considered.  However, 

the extent to which jobs are late does matter, just moving patients who are going to be 

late to be very late is not acceptable, so it would not be sensible to test this strategy as 

part of an algorithm. 
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For minimising the sum of the tardiness Cheng et al. (2005) and Kolliopoulos and 

Steiner (2007) both provide complex algorithms using dynamic programming for offline 

scheduling with due dates, using relatively complex orderings of jobs before scheduling 

them.  Both of their methods work well offline, but without knowledge of all the jobs to 

be scheduled they are not applicable to online scheduling.  

 

Schmidt (1988) considered the problem of scheduling tasks with deadlines, starting with 

all tasks having identical deadlines; in which case sorting the tasks into non-decreasing 

order of processing time before booking is recommended.  When the tasks have groups 

of deadlines, sorting within each group in the same way is recommended, before 

booking the groups in order.  For booking patients the deadlines are grouped by day, so 

they could be booked in order of deadline in this way. 

 

Huegler and Vasko (1997) recommend using swaps of jobs in a simulated annealing 

algorithm to improve on solutions obtained from simple heuristics.  Angel and Bampis 

(2005) also use search methods, this time based on dynamic programming, to improve 

solutions. These work well for offline scheduling.  However, for theatre scheduling 

where patients are booked firmly in an online problem, such search methods are not 

feasible. 

 

Thus, generally the methods used for scheduling with deadlines make use of the 

knowledge of all of the jobs to be scheduled in finding a schedule.  As this knowledge is 

not available for online scheduling such methods are unsuitable for our problem. 

5.2.2.5 Literature concerning online scheduling 

Thus far we have found some simple heuristic methods that could be applied to the 

problem of scheduling individual patients, although many of the methods used in the 

scheduling literature are not suitable for online scheduling.  This section provides an 

overview of the methods that have been used for online scheduling. 

 

Pruhs et al. (2004) review of online scheduling and list the following standard 

algorithms found in the literature: 
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 Shortest remaining processing time – runs the job with the least remaining work.  

This is not suitable for theatre scheduling as each job must be completed in one 

go and not interrupted. 

 First in first out – schedule all jobs in arrival order, this would be feasible for 

booking patients. 

 Shortest job first (or shortest processing time – SPT) – schedules the jobs in non-

deceasing order of processing time.  For booking patients that would equate to 

scheduling in non-decreasing order of expected operation duration. 

 Highest density first – if the jobs have weights, then schedule them in weight 

order.  This could be applied to booking patients by taking the due dates as 

weights. 

 

The other algorithms they suggest assume that jobs can be interrupted, as for shortest 

remaining processing time, and as such are unsuitable when booking patients for 

surgery. 

 

There is general agreement in the literature on online scheduling that delayed versions of 

SPT work best (Lu et al., 2003, Anderson and Potts (2004), Liu et al., 2009, Potts and 

Strusevich, 2009, Tao et al., 2010 and Liu et al. 2011b).  Such algorithms involve 

delaying the scheduling decision until all of the jobs to be scheduled over a certain 

horizon are known, or as late as possible, in order to obtain the best schedule.  This does 

not fit with theatre bookings having a target of scheduling all patients as it is decided 

that they require surgery.  However, it does suggest that the effects of this target should 

be explored. 

 

None of these algorithms have the bin packing aspect of theatre scheduling where the 

theatre runs for chunks of time rather than continuously.  The bin packing literature 

suggests arranging items in non-increasing size order before placing them in bins, as do 

Khammuang et al. (2007) who do consider a different online scheduling problem with a 

bin packing element to it. 

 

Thus, the extent of the effect of this bin packing element will determine whether it is 

better to book a group of patients in non-increasing or non-decreasing order of expected 

operation duration and this should be explored. 
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Liu et al. (2009) is the only study we have identified that considers due dates in an 

online scheduling problem and it uses similar methods to the online problems without 

due dates. 

5.2.2.6 Literature concerning fairness in scheduling 

As we are concerned with the fairness of the scheduling of theatre slots it is also worth 

considering the literature on fairness in general scheduling problems.  This is a relatively 

new field of research and arises from concerns that while algorithms like SPT can do 

very well in terms of mean response time they may be unfair to jobs with large 

processing times (Wiermann, 2011). 

 

A considerable proportion of the literature concerning fairness in scheduling relates to 

the transfer of data across computer networks; such as wireless networks (Kim and Han, 

2005 and Bu et al. 2006) and the internet (Kelly et al. 1998).  This area of literature does 

make some recommendations similar to those in the general scheduling literature: for 

example Zaharia et al. (2010) recommend delaying scheduling as much as possible to 

produce fairer schedules, the same type of recommendation that arises in the literature 

on on-line scheduling above.  There is also a suggestion of grouping the items being 

scheduled based on their characteristics and then comparing how fairly the groups are 

treated relative to each other (Greenberg, 1992).   This idea may be helpful in reducing 

the amount of computation required to undertake in order to evaluate the fairness of a 

theatres scheduling algorithm. 

 

Generally the literature on fairness in data transfer is considering a rather different 

problem to theatre scheduling, because in a data transfer parts of two or more jobs could 

be undertaken simultaneously and pre-emption can occur, that is a job may be 

interrupted to allow another job to be worked on.  Neither of these can occur within an 

operating theatre.  Therefore, while the literature on fairness in data transfer and similar 

situations does provide some insights the rest of this section will focus on scheduling 

that does not involve data flows.  This still includes studies that allow pre-emption and 

are thus considering a problem which while rather different from what is possible in 

theatre scheduling may still offer useful insights; for example Schwiegelshohn and 

Yahyapour (2000) also suggest considering groups of jobs when testing for fairness. 
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Another variation on fairness in scheduling involves long term fairness where the same 

jobs require repeated scheduling.  This is particularly apparent in the carpooling 

problem, where a different selection from a group of travel together regularly and wish 

to share out the driving fairly (Ajtai et al., 1998).  As very few patients return frequently 

for operations this is less relevant to our problem, although in areas of a hospital like 

radiography where some patients require repeated treatment it could prove useful. 

 

Wiermann’s (2011) review of fairness in relation to scheduling single server queues is 

relevant to our study as the study considers scheduling jobs of a variety of sizes, for a 

single machine.  This is similar to scheduling patients for a single operating theatre, 

although no account is made of due dates. 

 

Wiermann (2011) defines 3 types of fairness; 

1. ‘That it is more fair to serve jobs in the order that they arrive’ which they refer to 

as temporal fairness. 

2. ‘It is quite acceptable to allow small jobs to bypass big jobs’ so the small jobs do 

not have to wait for the big jobs, which they refer to as proportional fairness. 

3. ‘It is more fair to serve the more urgent jobs, regardless of job sizes or arrival 

order’.   

The last of these is by far the most relevant to operating theatre scheduling, but 

unfortunately it is the one Wiermann (2011) does not consider.  However, his insights 

into fairness in scheduling are still relevant. 

 

With regard to proportional fairness he groups the jobs by size and considers whether or 

not each job size is treated fairly, by considering the expected waiting time for each 

group.  This type of fairness is also considered by Sandmann (2011) and Avi-Itzhak et 

al. (2007), both of whom refer to it as ‘slowdown fairness’ because the aim is to be fair 

to jobs with longer processing times in terms of the extent to which they are slowed 

down by waiting for shorter jobs. 

 

Wiermann (2011) demonstrates that first come first served (FCFS) is always unfair 

under this measure, while shortest remaining processing time (SRPT) is sometimes 

proportionally fair depending on the service distributions.  SRPT assumes that pre-
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emption is permitted; the closest to this that is possible in operating theatre scheduling is 

SPT.  The other algorithms they discuss for proportional fairness assume pre-emption is 

permitted and are therefore not considered here. 

 

Wiermann (2011) goes on to discuss ‘proportional fairness in expectation’ that is not 

only should algorithms be fair to each group of jobs but also within each group.  This 

stems from concerns that larger jobs may experience a wider variation in waiting times.  

Thus, if we do compare groups of patients, the variation within groups should be 

considered as well as the average waiting times. 

 

In terms of temporal fairness, Wiermann (2011) defines the ‘politeness experienced by a 

job of size x … is the fraction of the response time of a job of size x during which the 

seniority of the job is respected’.  FCFS, while being always unfair under slowdown 

fairness, is always polite under this measure as is jump to front (JTF) which is based on 

FCFS but allows jobs to jump to the front of the queue with a set probability. 

 

Thus, a policy can be always unfair under one definition whilst also being always fair 

under the other.  This suggests that to find a policy which is fair under both measures 

will be complex if indeed it is feasible. 

 

Raz et al. (2004) study this problem using queueing theory and devise a resource 

allocation queueing fairness measure, which combines both temporal and priority 

fairness, based on the proportion of server capacity given to each job.  Wiermann (2011) 

and Sandmann (2011) propose a simpler measure of combined fairness, which involves 

counting the number of times a job is discriminated against.  This is done by the 

summation of the number of jobs that arrive no earlier than and are completed no later 

than the job under consideration and the number of remaining jobs with a size no smaller 

than that in question when it arrives and are complete no later than it.  A calculation 

similar to this could be used to consider fairness with respect to due dates for hospital 

theatre scheduling. 

 

In this section we have seen that while none of the studies relating to fairness in 

scheduling consider online scheduling with due dates, they still provide insights into 

what scheduling policies are fair and how to assess fairness.  With regard to fair policies, 
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FCFS and SPT should both be considered.  In terms of judging the fairness of 

algorithms, comparing the waiting times of different groups of patients could prove 

useful as could consideration of some form of discrimination measure. 

 

5.2.2.7 Methods used in the scheduling literature 

This section briefly reviews the types of method used in the scheduling literature with a 

view to identifying those that could be used in our study of the advanced scheduling of 

individual patients. 

 

A significant proportion of scheduling problems are known to be generally NP-complete 

optimisation problems, meaning that they cannot necessarily be solved to optimality in a 

reasonable amount of time (Chen et al. 1998, Cheng et al, 2005, Lin, 2007 and Zhang et 

al. 2008b). Branch and bound and dynamic programming techniques are often applied to 

such problems (Huegler and Vasko, 1997, Chen et al. 1998, Angel and Bampis, 2005 

and Cheng et al., 2005).   

 

A range of simple heuristics is used, such as SPT and variations on it (Schmidt, 1988, 

Liu et al, 2009 and Wong and Lee, 2009).  Simulation can be used to test these methods.  

Metaheuristics such as simulated annealing or tabu search are also used, for example by 

Zhang et al. (2008b).   

 

In order to apply techniques like branch and bound, dynamic programming and 

metaheuristics, it is necessary to have knowledge of all of the jobs that require 

scheduling.  In online scheduling such as our theatre scheduling problem, this is not the 

case.  That leaves simple heuristics to be tested and a number of such have been 

suggested in the literature discussed above. 

 

5.2.3 Discussion and Implications of Literature 

Throughout this section a variety of scheduling algorithms have been suggested, which 

should be considered in our search to improve the process of booking patients for 

surgery.  FIFO has come up in several sections and should therefore be considered.  The 

literature on bin packing problems suggests algorithms such as booking into the slot for 

which the patients expected theatre time is the best fit to the remaining unbooked theatre 

time.   It also suggests booking in decreasing order of expected treatment time, while the 
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literature concerning due dates and online scheduling recommend increasing order of 

expected treatment time.  The literature on due dates recommends arranging jobs in 

increasing due date order before scheduling them.  Also, the online scheduling literature 

recommends delaying the decisions as much as possible. 

 

Some of the above could be used to complement each other, for example using a second 

rule for tie breaks, while others are completely contradictory. Thus, a thorough 

consideration of a range of algorithms is required. 

 

The scheduling literature also suggests the use of more optimisation methods that apply 

in some cases and more complex heuristics.  However, as discussed in Section 5.2.2.7 

these are not suitable for online scheduling and will therefore not be considered further 

in this document. 

 

Simulation is used for testing booking rules in a number of studies in the theatre 

scheduling literature relating to bookings, which suggests it would be appropriate for 

testing the types of algorithms identified here. 

 

5.3 Methodology 

5.3.1 Method Selection 

As discussed above, the majority of studies considering this type of problem have used 

simulation.  This is a sensible place to start because simulation: 

 provides a visual representation of the problem, allowing clients to see how the 

model reflects reality; 

 allows a variety of scenarios, in this case booking algorithms, to be tested in a 

short period of time; 

 incorporates variability, such as that associated with arrivals, service times and 

time remaining to due date when a patient becomes available for surgery. 

 

Given the apparent lack of implementation of academic work in this area the first of 

these points is particularly significant: if hospital staff can see the differences made by 

different algorithms on the schedules created, they are more likely to be convinced to 

adopt the recommended algorithms. 
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However, simulation can only test the algorithms that are given to it and does not make 

recommendations about generating completely different algorithms.  The methods given 

in the scheduling literature described above are used as inspiration for the algorithms to 

be tested using the simulation model. 

 

5.3.2 Algorithms to Consider 

The list below gives a variety of algorithms that could be considered for each type of 

decision required in the advanced scheduling of individual patients; 

1. At what stage to make bookings 

a. Book each patient as soon as it is known that they require treatment, 

which fits with the target described in the definition of the problem 

(Section 5.1) for booking patients, and gives patients the maximum 

possible notice of their operation date. 

b. Wait until the end of the day/week and book all patients together, which 

creates batches and allows some knowledge of other patients who require 

booking at the same time. 

c. Only book if the rest of algorithm determines that the booking should be 

made within the next x weeks of the current time, where the value of x 

remains constant throughout.  This is inspired by the success of delay 

algorithms in dealing with online problems as illustrated in Sections 

5.2.2.5 and 5.2.2.6 above.  Varying the value of x allows exploration of 

the balance between the desirability of giving patients sufficient notice of 

their operation date and the scheduling improvements gained by delaying 

booking decisions. 

2. What booking priority rule to use (this will only have an effect if there is more 

than one patient being considered for booking at a given time, as it determines 

the order in which patients are considered by the algorithm); 

a. First come first served/ First in first out – fair in terms of waiting times, 

but does not take account of varying urgency of patients. 

b. Last come first served – this is particularly unfair in terms of waiting 

times, but has some applications in more general scheduling. 

c. Most urgent first – this will ensure that urgency is considered, but if there 

are a large number of urgent patients, routine patients could wait an 

unacceptably long time. 
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d. In order of due date – this means that more urgent patients will be 

considered before routine patients arriving at the same time as them, and 

it also effectively makes routine patients become more urgent as their due 

dates approach. 

e. In decreasing order of operation duration – inspired by the longest 

processing time algorithms discussed in Section 5.2.2.4. 

f. A variation on due dates, using operation duration as a tie breaker. 

g. A variation on operation duration, incorporating due dates as a tie 

breaker. 

3. The selection of the order in which potential dates are searched and which 

feasible date is selected; 

a. First available slot – book each patient into the earliest slot with sufficient 

unallocated theatre time for the expected duration of their operation.  

Given the bin packing aspect of the problem this is as close as possible to 

the FIFO scheduling rule (see Section 5.2.2.1) when combined with 2a) 

above. 

b. Book to due date – book each patient into the first suitable slot moving 

back from their due date.  If no such slot exists, then select the first 

available slot after their due date.  This algorithm is based on a suggestion 

from the surgeon that he has considered booking in this way, it has the 

advantage of leaving spaces for the arrival of more urgent cases after the 

patient currently under consideration has been booked. 

c. Exact fit – find a slot which the expected duration of the patients 

operation will fill exactly the available theatre time, taking account of 

patients already booked.  If no such slot exists, then another rule will be 

required in addition. If more than one such slot exists, then the patient can 

be booked; 

i. As soon as possible 

ii. As late as possible within their due date 

iii. Randomly 

d. Most empty slot – book the patient into the slot with the most available 

theatre time.  If several slots have joint most time available, then the same 

rules as in c above could be used to decide between them.  This is 

inspired by the scheduling algorithm discussed in Section 5.2.2.3 above. 
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To generate a booking algorithm a selection must be made from the stages at which to 

book given in 1; the booking priorities given in 2 (if 1a was not selected); and the 

method of choosing the booking date given in 3.  It is possible to combine different 

rules, with groups of patients treated according to different rules or those booked within 

different time frames booked according to different rules.  This is particularly relevant to 

3c, where an alternative rule is required if there is no slot that the expected duration will 

fill exactly. 

 

Following testing of the a limited number of combinations, it is possible to consider the 

reasons behind their effects and thus assess which combinations should be tested rather 

than testing all possible combinations, as the latter would be rather time consuming. 

 

The straightforward performance measures against which these algorithms can be judged 

include; 

 the percentage of patients (of each type) seen within their due dates; 

 the percentage of available theatre time used, including allowing for turnaround 

time between operations; 

 the percentage utilisation of theatres (the percentage of slots spent operating not 

including turnaround time as this is considered an important performance 

measure in hospitals); 

 the number of overruns greater than allowable overtime; 

 the number of cancellations or other rearrangements of operations. 

 

These will assess the ability of the algorithms to respect due dates and use theatres 

efficiently. 

 

Given that some of these algorithms involve booking patients as late as possible and the 

need to book urgent patients earlier than routine patients; it is also desirable to measure 

the following to test how fairly the algorithms treat patients: 

 The expected waiting time for patients of varying urgencies, to check that more 

urgent patients are indeed seen faster. 

 That patients with similar needs are booked in order, so a once a patient is 

booked another patient with a later due date and similar operation time is not 
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booked before them.  This is testing for the first type of fairness discussed in 

Section 5.2.2.6. 

 

5.4 Simulation Model 

5.4.1 The Model 

 

Figure 8, shows the setup of the simulation model.  The system itself is quite simple; 

however the complexity comes in the visual logic used to implement the booking 

algorithms at the ‘Booking’ workstation. 

 

Figure 8: The simulation model  

 

The model is set up as follows: 

1. Depending on the urgency of their surgery patients enter via the ‘Urgent Entry’ 

or ‘Routine Entry’ when the decision that they require surgery has been taken; 

2. The inter arrival times are sampled from the distributions given in the data; 

3. The due dates of the patients are set at the entry points based on distributions 

from the data; 

4. They go to the ‘Q for Booking’ where the depending on the algorithm in use 

they may be held for a certain amount of time and/or sorted by due date or 

expected operation duration; 

5. The ‘Booking’ workstation uses visual logic to implement the algorithm and 

book the patients into a spreadsheet used to record bookings; 

6. The entry process for emergencies is similar, although they are only held in a 

queue if another emergency is in the process of being booked and the booking 

rules are different as overtime may be used if necessary; 

7. Once patients have been booked, they move to the queue for theatre, which only 

releases them to the theatre once their booked date has arrived; 
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8. The ‘Theatre’ workstation represents the operating theatre and applies a 

variation to the duration of the operation, which is sampled form a distribution 

of the difference between predicted and actual operation durations, it also 

records various data about the patient; 

9. The model is also able to deal with the impact of the schedule on bed usage, by 

sending those patients who require an overnight stay to wards and those without 

an overnight stay directly to the exit. 

 

Following discussion with theatre staff it was decided that once a patient was booked, 

their theatre slot could not be rearranged.  This is because cancellations and re-bookings 

are particularly disruptive for patients, so the hospital would avoid them as much as 

possible.  Also, allowing re-arrangement of patients might disguise how well or 

otherwise an algorithm is doing at creating a good schedule. 

 

It is necessary to have at least a small amount of time between the decision to book a 

patient and their surgery taking place, to allow them to consider what is going to happen 

and give informed consent.  The amount of time required will vary with the 

circumstances as emergency patients need to be treated quickly, for other patients we 

allow a week before we consider a slot to be suitable. 

 

The algorithms’ results are also be influenced by the amount of time considered 

available for booking each day, which needs to take account of the amount of time 

expected to be required for emergency patients out of the actual length of the theatre 

slots.  Unless otherwise stated, the expected duration of the average number of 

emergencies per slot will be withheld from the time allowed for booking other patients 

while the rest of the theatre slot is available for booking.   

 

5.5 Discussion 

This chapter has briefly explored the aspects of the general literature on scheduling that 

are most relevant to the day-to-day theatre scheduling problem and used this to inform 

the suggestion of a range of algorithms for theatre scheduling.  It has also proposed a 

simulation model for testing the algorithms.  In order to conduct such testing, the 

simulation model needs to be populated with realistic hospital data, which will be 

undertaken in Chapter 6. 
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Chapter 6: Booking individual Patients: Case Study 

This chapter follows on from the theoretical consideration of Chapter 5, in the form of a 

case study using a specific ophthalmologist’s surgical data.  Consideration is given to the 

ability to generalise these results by approximately fitting distributions to the data and 

comparing the results of the best booking algorithms identified so far, with these 

distributions input into the model and variations from some of them.  

 

We start by considering the adaptions required to the simulation model proposed in 

Chapter 5 and discuss other aspects of the model set up.  Followed by, discussion of the 

data preparation, for both the initial tests with empirical data and the fitting of 

algorithms for the variation from initial data.  Then the results are set out and 

conclusions drawn from them. 

 

6.1 Case Study to the Simulation Model Adaptions and Detailed 

Modelling 

While this model was in development Stephen Lash, a local ophthalmic surgeon, 

contacted the University wanting to explore how he could improve his booking of 

surgical patients. Therefore, the model is tested using his data as a case study to explore 

the potential of different algorithms to improve the number of patients seen within their 

target times. 

 

6.1.1 Adaptions to the model 

As the cases treated by this surgeon are all (virtually all) treated as daycases, that is the 

patients do not stay overnight in hospital, there is no need to consider the effects of the 

schedule on wards so this part of the model is not needed for the specific case study, as 

the data does not contain any patients who stay overnight. 

 

Lash’s patients split more naturally into those requiring cataract surgery and those 

requiring Vitreoretinal (VR) surgery, than just urgent and routine.  This is because the 

two types of patient have different arrival and treatment time distributions (as shown 

below in Section 6.3).  So rather than having separate entry points for urgent and routine 

patients the model is adapted to have entry points for Cataract and VR patients, with 
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labels used to assign these patients as either urgent or routine based on the time 

remaining to their due dates. 

 

Also there are surgical slots on at most two days per week, one on Tuesday mornings 

and the other on alternate Thursday afternoons, with these slots having different 

durations and overtime limits.  In order to model this more accurately, a second theatre 

and queue are added to the model along with an entry for emergency patients going to 

those theatre sessions.  In order to only have emergency patients arrive on the alternate 

Thursdays when there are slots, those who arrive on other Thursdays are routed straight 

out of the system. 

 

The final addition to the basic model is a dummy queue and workstation above the 

queue for booking, which creates the possibility of running algorithms that look through 

all of those in the queue in priority order each day (by keeping those who have been 

checked in the dummy queue so that they don’t go to the start of the queue for booking 

and become stuck in a loop).  These adaptions to the model are illustrated in Figure 9. 

 

 

Figure 9: The adapted simulation model 
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6.1.2 Detail behind the model 

The list below describes the actions taken by the settings and visual logic at each stage 

of the model; 

1. Cataract Entry – Arrivals of cataract patients occur following a specified 

distribution.  As each patient arrives they are assigned: 

a. A label containing a unique number (and the unique number counter is 

increased by one ready for the next patient). 

b. A label containing their arrival time. 

c. Labels (both numeric and text) to specify that they are a cataract patient 

d. A due data is created for each patient by adding to their arrival time a 

value sampled from the distribution of time remaining to due date when a 

cataract patient arrives. 

e. Based on the time remaining to the due date, a patient is assigned as 

either urgent or routine patients a numeric label with urgent patients 

assigned a value of 1 and routine patients a value of 2. 

f. An expected duration sampled from the data on the duration of cataract 

operations. 

g. An emergency tag indicating that they are not an emergency case. 

h. A booking priority value equal to their due date minus a number obtained 

by dividing the expected duration by a large number (the later part is to 

act as a tie break between those with the same due date). If there is still a 

tie then the patient who arrived first will be considered for booking first. 

2. VR Entry – Exactly the same as for cataract entry except that there are separate 

distributions for VR patients throughout, and the relevant labels specify that they 

are a VR patient. 

3. Queue for Booking – This queue holds all of the patients waiting to be 

considered by the Booking workstation.  Unless otherwise specified by the 

algorithm they are released in order of the priority code described in 1h above 

(the reasons for this are discussed with the algorithms below in Section 6.4). 

4. Booking – At this workstation, the Visual Logic relating to the relevant booking 

algorithm is implemented.  If the algorithm books the patient, then they are 

routed to the queue for the theatre in which they have been booked; if not they 

are routed to the dummy queue above the booking workstation, where they will 

be held until the end of the day, as described above in Section 6.1.2 to prevent 
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the same patient getting stuck looping between the booking queue and 

workstation.  Once the patient has been booked, data on the booking is recorded 

into the relevant spreadsheet for Tuesdays or Thursdays. 

5. Workstation 6 – This is a dummy workstation and merely returns patients to the 

queue for booking when they have waited in the dummy queue described above. 

6. Queue for Theatre Tuesday – This queue holds the patients that have been 

booked into theatre slots on Tuesdays and only releases to the workstation 

representing Tuesday’s Theatre slot on the day that they have been booked into, 

and if the theatre is not currently busy. 

7. Queue of Theatre Thursday – as for Tuesday but with those scheduled on 

Thursdays. 

8. Theatre Tuesday – The operation duration is adjusted based on the distribution of 

variation between predicted and actual operation durations and the turnaround 

time is sampled from the turnaround time distribution.  These figures are added 

together to give the time taken in theatre.  The visual logic at this stage 

undertakes a number of steps to record information about the time the patient has 

waited to arrive at theatre. 

a. If the patient is an emergency, then the count of emergency patients 

treated is increased by one; the patients waiting time is added to the sum 

of emergency waiting times; if the patient is being seen within their due 

date then the number of emergencies seen in target is increased by one; if 

the patient has waited longer than the value recorded as the longest 

emergency wait then this is replaced with their waiting time. 

b. If the patient is a cataract patient, then the count of cataract patients 

treated is increased by one; the patients waiting time is added to the sum 

of cataract waiting times; if the patient is being seen within their due date 

then the number of cataract patients seen in target is increased by one; if 

the patient has waited longer than the value recorded as the longest 

cataract wait then this is replaced with their waiting time.  For cataract 

patients, the same data as above is recorded in a spreadsheet called 

Fairness Testing, separated into different rows depending on the number 

of weeks to their target when they arrived. 

c. The same data is recorded with appropriate headings for VR patients as 

for cataract patients. 
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d. The same data is recorded for urgent and routine patients as for 

emergency patients, with appropriate changes to the headings. 

e. Information on the duration of the operation and turnaround time are 

added to the spreadsheet storing information about patients treated on 

Tuesdays. 

f. A separate spreadsheet containing information about treated patients has 

the following data added to it; 

i. Unique number of the patient 

ii. Type of patient (cataract or VR) 

iii. The effective referral date of the patient 

iv. The due date of the patient 

v. Arrival time 

vi. Emergency tag (if the case was an emergency) 

vii. Expected operation duration 

viii. Actual operation duration 

ix. Time when they are treated 

x. Time spent waiting 

xi. Turnaround time at the start of their surgery 

xii. Booking priority 

xiii. The amount of time they had to their target when they arrived at 

the system 

xiv. An indicator storing whether they were seen before their due date 

9. Theatre Thursday - Operates in the same way as for Tuesday, with a separate 

spreadsheet for recording patient information. 

10. Once patients have been treated in a theatre, they got to the exit point and leave 

the model. 

11. Emergency Entry Tuesday – Is very similar to the entry points for cataract and 

VR patients except that the type is set to emergency and no other level of 

urgency is set. 

12. Emergency Entry Thursday – Is as for Tuesday, with the major difference being 

that as operations only occur every other Thursday if the simulation time at 

arrival rounded to the nearest week is even, then the patients are routed straight 

to a dummy exit. 
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13. The queues following the emergency entry points are dummy queues, which will 

only be needed if emergency patients arrive at the same time and one waits for 

the Booking workstation to book the other. 

14.  Emergency Booking Tuesday – Books each emergency patient to be treated on 

the day of arrival and sends them to queue of the Tuesday Theatre so that they 

can be treated with the other patients that day. 

15. Emergency Booking Thursday – Works in the same way for Thursday’s 

emergencies. 

16. At the end of the warm up time, the following values are reset so that they only 

include data from the results collection period of the simulation; 

a. All of the data described in 8f and 9 (above) for individual patients. 

b. The numbers of each type of patient treated. 

c. The numbers of each type or patient treated by their due dates. 

d. The sums of waiting times for each type of patient. 

e. The maximum waiting times for each type of patient. 

f. The ‘fairness testing’ data mentioned in 8b and c above. 

17. At the end of each run of the simulation, further results are calculated in End Run 

Logic; 

a.  For each of urgent, routine, emergency, VR and Cataract patients 

i. The percentage of that type of patient seen treated by their due 

dates (from the count of those treated by their due dates and the 

total number treated for each type). 

ii. The average waiting time for that type of patient (from the sum of 

the waiting times and the number treated for each type). 

b. For patients treated on Tuesdays or Thursdays the following are 

calculated; 

i. The maximum length of a theatre session on that day of the week. 

ii. The minimum length of a theatre session on that day of the week. 

iii. The maximum utilization of a theatre session on that day of the 

week (where utilization is defined as the time spent actually 

operating). 

iv. The minimum utilization of a theatre session on that day of the 

week. 
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v. The number of sessions that went over the overtime limit for that 

day of the week. 

vi. The average (mean) session length and utilization for that day of 

the week. 

vii. The values needed to calculate the standard deviation of session 

length and utilization for that day of the week. 

viii. Data items are set to take a selection of the Fairness Testing 

spreadsheet to the results collection. 

ix. The spreadsheet with information on individual patients is used to 

count the number of times a patient with the same or greater 

amount of time until their due data who arrives later is treated 

earlier for each patient, as a measure of how fair the algorithms 

are. 

18. On reset the values of all items changed during the running of the model are reset 

and the spreadsheets for storing data are all cleared. 

 

Appendix B lists all of the different types of information stored in the model, with 

references to the list above to show when they are used. 

 

The values output at the end of each simulation run or over which average data are 

returned at the end of a trial are as follows: 

 

 The average and maximum waiting times for each type of patients – VR, and 

cataract as well as emergency, urgent and routine. 

 The percentage of each type of patients treated before their due date. 

 The number of session that ran ‘too long’ on either day of the week, along with 

the number of sessions that took place on each day of the week. 

 The minimum, maximum and mean length of slots used on Tuesdays and 

Thursdays. 

 The minimum, maximum and mean utilization of slots used on Tuesday and 

Thursday, where utilization is defined to be the amount of time spent operating. 

  Separately for cataract and VR patients, the minimum, maximum and mean 

waiting time for those patients with initial time remaining to target of 4, 10 and 

16 weeks. 
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 Sums of squares for each of the values for the 3 points above, to be used in 

calculating standard deviations. 

 The number of occasions on which patients have been scheduled so that they 

exactly fill the remaining theatre time in the slot. 

 A count of the number of times patients are overtaken, as a measure of fairness. 

 

6.1.3 Setting up the simulation clock 

In order to run the simulation model it is necessary to define the units of time over which 

the simulation will run, the length of the warm up period before results are collected, the 

length of time to run the simulation while collecting results and the number of times to 

repeat the simulation in each trial.  This section will cover all of these factors including a 

brief description of the decision required and the reasons for the selections made in each 

case. 

 

The units of time over which the simulation will run, is the smallest unit of time for 

which data can be collected. Simul8’s online help desk describes the selection process 

thus:  

 

“Simulate an amount of time that makes sense to your client in terms of the performance 

measure you are using. For example if you simulate the factory for a year and report to 

your client that you expect the factory to produce 14,500 boxes in a year this might be 

useful information in itself but might hide the information that any given week's 

production might be as low as zero or as high as 500. Conversely, your client may be 

unconcerned by information about the output in any given hour. Choose a time that 

makes sense to the client.” (Simul8, 2012a). 

 

In the case of our simulation, we wish to collect data such as the theatre utilisation and 

whether a day’s surgery over ran the length of theatre slot available, so it makes sense to 

run the simulation in time units of one day.  As the theatre slots each only occur on one 

day of the week and all of the week’s arrivals can be simulated in one day, we use a day 

to represent each week. 

 

The principle behind using a warm up time, before which no data is collected, is “simply 

to ensure that the simulation is not in some atypical start-up state caused by the 
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simulation starting empty” (Simul8, 2012b). For the problem we are considering, the 

surgeon’s waiting list does not start empty, but always has some patients waiting to be 

seen so a warm up period is necessary.   

 

The length of the warm up period should be sufficient to allow the simulation to reach a 

steady state.  In order to determine an appropriate warm up period, the model was run 

without a warm up period for increasing durations and average waiting times and queue 

length recorded at intervals.  The results are averages over 100 runs for the waiting times 

and 250 runs for the queue lengths to reduce the effects of data variations and are shown 

in Figure 10 and 11 below. 

 

 

Figure 10: Investigating the time taken for the average waiting times to stabilise. 

 

 

Figure 11: Investigating the time taken for the queue length to stabilise. 

 

As can be seen on the graphs, the average waiting times and queue length are stabilising 

after 200 days.  The amount of time taken for them to stabilise reflects the high traffic 

intensity of the system, which is slightly greater than 1 as can be seen from the results in 

Section 6.7 and is addressed by theatre sessions regularly running into overtime. 
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Consequently a warm up period of 300 days is selected for further simulations.  

Following the warm up period a results collection period of 300 days is used. 

 

Next we consider the number of times each simulation will be run, so that the averages 

of the results over all of the simulation runs will be the averages we would expect in the 

long run of the real system.  In order to be able to distinguish which is the better of two 

algorithms we will require the 95% confidence intervals for the values of the output 

variables to be non-overlapping (Simul8, 2012a).  This will be more easily achieved if 

sufficient trials are done that the 95% confidence intervals are quite narrow to start with.  

To ascertain how many trails will be necessary to achieve this, simulations were run 

with varying numbers of trials and the results are given in Figure 12 and Figure 13 

below. 

 

 

Figure 12: Investigating the effect of increasing the number of trials on the 95% 

confidence interval (CI) for waiting times. 
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Figure 13: Investigating the effect of increasing the number of trials on the 95% 

confidence interval (CI) for queue length after the model has been run for 300 days. 

 

Initially as the number of trials increases the confidence intervals decrease rapidly, after 

150 trials the decrease has begun to level out for the variables considered.  After 250 

trials the improvement in these key outputs is considerably reduced, so 250 trials will be 

run for each variation on the simulation model. 

 

To summarise, the simulation models will be run with time units of 1 day, with a 300 

day warm up period, a 300 day results collection period and each trial will be repeated 

250 times with the average and 95% confidence interval recorded for all of the output 

data. 

 

This model can now be populated with data and used to test algorithms as described in 

the following two sections.  

 

6.2 Data 

This section describes the data used to test the model with the individual surgeon’s case 

mix as a case study.  Following consideration of the data required, the data sets obtained 

are first described, then the way the data required is calculated and the information thus 

obtained are discussed. 
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6.2.1 Data required 

In order for the simulation model to represent a particular surgeon’s case mix it needs to 

be set up with data representing his patients.  In this case the data required includes: 

 The inter arrival time distributions for cataract and VR patients arriving to the 

system in need of treatment. 

 The distribution of time remaining until due dates for both cataract and VR 

patients; this includes the proportion who are urgent and the number of weeks in 

which they need to be seen, and for routine patients the time remaining on the 18 

weeks from referral to treatment target. 

 The distribution of theatre times for cataract and VR patient groups, for creating 

the predicted operation durations. 

 The variation from expected operation duration for all patient types. 

 The expected turnaround time between patients (the time needed to prepare the 

theatre between patients). 

 The distribution of actual turnaround times. 

 The expected arrivals of emergency patients requiring treatment in each slot. 

 The distribution of operation durations for emergency patients. 

 The frequency and duration of the theatre slots considered. 

 The level of overtime considered acceptable for the theatre slots considered. 

 The frequency with which theatre slots are closed, e.g. by annual leave. 

 

Some of this data, for example the duration of theatre slots and acceptable overtime, can 

be obtained from discussion with the surgeon.  The remainder needs to be extracted from 

recent hospital data. 

 

6.2.2 Data obtained  

The data was obtained in a number of data sets, the contents of which are set out below, 

before the subsequent section describes how the desired data was obtained from them.  

The data sets included unnecessary data as well as that required; only the relevant data is 

listed below: 

  

 Theatre Times data, containing data from May to October 2010 (later data was 

not available due to a change in the database), including the following for each 

operation; 
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o Operation date 

o The planned start and end times for sessions 

o The time at which anaesthesia commenced 

o The times at which the operation started and ended 

o The time at which the patient entered recovery (left the theatre) 

o The procedure or procedures carried out 

o The consultant in charge 

o Whether the case was elective or emergency surgery 

o Transformed NHS number (so that it would not be identifiable but could 

be used as a unique identifier when compared to other data sets) 

 Sample data looking at the accuracy of predicting operation durations collected 

by the surgeon, as this is not routinely collected; 

o Procedure 

o Predicted and actual operation durations 

 

 Inpatient data set including; 

o Codes for the type of operation and specific procedure along with brief 

descriptions of the procedure 

o The date of surgery 

o The date of admission to hospital 

o A code identifying the consultant and name of consultant 

o The date of decision to admit 

o The expected length of stay (almost all zero, as they do not stay 

overnight) 

o Whether the patient was elective or emergency 

o The waiting time of the patient 

o A transformed version of the patients NHS number (as above) 

 An outpatient data set; 

o Referral date 

o Appointment date 

o Consultant 

o Outcome of appointment 

o Transformed NHS number (as above) 
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6.2.3 Data preparation 

We start with the data derived from the theatre timing data. 

 

For a significant number of cases, the anaesthetics for one case are started before the 

previous case had left theatre, so the anaesthetics are included in the turnaround times 

rather than the operation times.  Also, some minor cases involving injections can be 

dealt with by a fellow (training to be a surgeon) in the anaesthetics room while the 

surgeon is operating on minor cases.  As these do not affect the other operation 

durations, etc., they have been completely excluded from the analysis, by looking up and 

removing their procedure codes. 

 

Starting times for the surgeon under consideration are shown in Figure 14; these are the 

difference between the expected and actual start time for his theatre slots. 

 

Figure 14: Morning and afternoon starting times – variation from planned start of 

session.  

 

The division between pm and am slots is for afternoon and morning theatre sessions.  

This shows that the majority of the sessions start within 10 minutes of the expected start 

time.  There are a number of reasons why a session might start late, such as an 

overrunning morning session delaying the start of an afternoon slot.  For the simulation 

model, we are concerned with knowing when sessions start, not why they might start 

late. 
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Operation durations for the surgeon under consideration are shown in Figure 15. 

 

Figure 15: The frequency with which different operation durations occur in the 

data. 

 

Figure 15 shows a smooth distribution to the durations of operations.  Following 

discussions with the surgeon, we looked at separating those having cataract and VR 

surgery in the data.  The results of this are shown in Figure 16. 

 

Figure 16: Comparison of the distributions of operation durations for cataract and 

VR patients. 

 

It is clear that the distribution the durations of cataract operations is different from the 

distribution of durations for VR patients.   

 

The durations of emergency operations are shown in Figure 17 below.  The number of 

such operations over the time period for which data was available is low.  Therefore it 

would be hard to fit a distribution to this data, but it can still be sampled within a 

simulation model. Also due to the low number of emergency patients in the sampled 
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time period, it was not considered sensible to separate out their turnaround times, so 

these are included with the elective cases. 

  

Figure 17: The distributions of operation durations for emergency patients. 

 

Turnaround time is defined as the time between the end of one operation and the start of 

the next; this includes anaesthetic time and recovery time as well as cleaning and 

preparation of the theatre between patients.  Figure 18 below shows the distributions of 

turnaround times. 

 

Figure 18: The distribution of turnaround times. 

 

Figure 18 shows that the majority of turnaround times are 10 minutes or less, but some 

take considerably longer.  When these results were shown to the surgeon involved he felt 

that they were considerably longer than expected, so further consideration of their 

composition was required.  Figure 19 below shows the distribution of anaesthetic times. 
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Figure 19: The distribution of the time taken to administer anaesthesia. 

 

Figure 19 shows that in some cases the anaesthetic can take considerably longer than 

average to administer, enough to explain the longer turnaround times.  Given that the 

modal anaesthetic time is longer than the modal turnaround time, it is clear that time 

savings are being made by starting one patient’s anaesthesia before the previous 

operation is completed.  Following discussion of these results the surgeon was happy the 

distribution of turnaround times above is appropriate. 

 

Based on this data, a mean turnaround time of 10 minutes is used in the simulation 

model as the expected turnaround time and then the actual turnaround time is sampled 

from the turnaround times given above.  This is rounded up from the actual mean of 7.4 

minutes calculated from the data, so that 75% of turnaround times will be less than the 

time allowed when planning operations. 

 

From the predicted and actual operation duration data, it is possible to estimate the 

variation from predicted durations.  Using these times directly is not so useful, because if 

for example the expected duration of an operation is 20 minutes and sampling from this 

data gives an adjustment of minus 30 minutes then that gives us an actual duration of -10 

minutes, which is not possible.  So the data values were recalculated looking at the 

percentage change in duration as shown in Figure 20. 
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Figure 20: The distribution of percentage deviations from the expected to actual 

duration of operations. 

 

Originally, the intention was to use the transformed NHS numbers to link records 

between the inpatient and outpatient data sets, to obtain the referral dates for the surgical 

cases from the outpatient data.  This matched only 121 out of 642 inpatient data records 

to outpatient data and graphing the time from referral to surgery yielded the results 

below; 

 

Figure 21: The frequencies with which different times from referral to treatment 

occurred when looking at combined inpatient and outpatient data sets. 

 

As Figure 21 suggests that the majority of patients wait much longer than the 18 weeks 

from referral to treatment target.  This graph tells us that the linking of the inpatient and 

outpatient data sets to find the time remaining to target has not been successful.  Thus, it 
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is not possible to obtain a time remaining to due date by linking the inpatient and 

outpatient data sets.   

 

This may be due to many patients being monitored as outpatients before their conditions 

reach the stage where surgery is required, which creates significant gaps between 

referrals and decisions to operate.  Meaning that for those patients the clock will start on 

the 18 week target when the decision to operate is made or the urgency will be based on 

clinical need. 

 

As it did not prove possible to combine the inpatient and outpatient data sets in order to 

obtain the target dates, the best approximation for this is to assume that all patients were 

treated on their due dates and take the time waited as the time to due dates from when 

the decision to operate is made.  This will result in overly constrained due dates as at 

least some of the patients will have been treated before their due dates.  Figure 22 shows 

the spread of waiting times for both cataract and VR patients. 

 

Figure 22: The waiting time distributions for cataract and VR patients, with times 

rounded to the nearest 2 weeks. 

 

This gives the best approximation that the data allows for the number of weeks from the 

decision to treat until the patient is due for treatment.  Of the VR patients whose waiting 

time rounded to zero weeks are included in those with a 2 week target in the simulation 

model as otherwise they should be emergencies.  The cataract patients who waited 20 

weeks are included in the 18 week target as the maximum target is 18 weeks.  The peak 

in cataract patients at 18 weeks is due to the 18 week target. 
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The inpatient data set can be used to calculate the number of decisions to operate each 

week for cataract and VR patients, by using the decision to admit date and not including 

the more recent cases (as some of those may not have been treated yet).  Figure 23 below 

shows that there is a reasonable amount of variation in the number of patients added to 

the waiting list each week. 

 

Figure 23: The number of patients added to the waiting list each week. 

 

Table 3 gives the frequencies with which different inter arrival times occur. 

 

Table 3: The frequencies with which different inter arrival times (in weeks) 

occurred for elective surgery  

Inter Arrival Time 
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Frequencies 

Cataract VR 

0.1 0% 2.273% 

0.11111 2.273% 0% 

0.14286 0% 0% 

0.16667 9.091% 6.818% 

0.2 11.364% 9.091% 

0.25 9.091% 11.364% 

0.33333 18.182% 15.909% 

0.5 29.545% 29.545% 

1 20.455% 25.000% 
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This data can be used to provide empirical distributions for the inter arrival times of 

cataract and VR patients to input into the simulation model.   

 

The following contains similar data for the number of emergencies; this is based on the 

number treated each Tuesday and Thursday.  It is based on the number of emergencies 

treated, which is not exactly the same as the inter arrival times, because sometimes 

emergency patients can safely wait until the next day to be treated if there is spare 

capacity in the bookings for the next day, but as data was not available to determine the 

frequency with which this occurs, it is assumed that emergency patients will be treated 

on the day of arrival in our model. 

 

Table 4: The frequencies with which different numbers of emergency patients 

arrived during the sessions considered 

Inter arrival time 

for Emergencies 

(weeks) 

Frequencies 

Tuesday Thursday 

0.2 3.448% 3.448% 

0.25 13.793% 0% 

0.33333 10.345% 13.793% 

0.5 44.828% 31.034% 

1 27.586% 51.724% 

 

The frequency and duration of the theatre slots considered was obtained from 

discussions with staff and is also apparent in the data, every Tuesday morning from 8.30 

am to 12.30 pm and alternate Thursday afternoons from 1.30 pm until 5 pm. 

 

The level of overtime considered acceptable for the theatre slots was obtained from staff 

– half an hour for morning slots and 1 hour for afternoon slots. 

 

The frequency, with which theatre slots are closed (the timetabled surgeon does not 

operate in the slot), was obtained from the inpatient data by looking at the days when 

operations did not occur.  On both Tuesdays and Thursdays, slots are not used 

approximately 10% of the time. 
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Thus, all of the data required listed in Section 6.2.1 have been obtained or estimated as 

well as possible from the data available.  Given that the delay from planned start times 

were not dissimilar from the turnaround times, the process is simplified in the model by 

treating the start times as turnaround times. 

 

6.3 Fitting Distributions to the Data 

Thus far we have worked with empirical distributions to ensure that the actual data is 

represented as closely as possible.  Working with fitted distributions will greatly 

facilitate the exploration of variations from the original data, and depending on how 

closely the distributions fit the data is expected to give the first variation from the 

original data. 

 

This section will work through the various data required for the simulation, showing 

which distributions were tested and explaining the choices made for the best fit.  For 

each distribution (unless otherwise stated), a visual assessment of the distribution(s) 

most likely to fit the shape of the distributions is conducted and Minitab
®
 Statistical 

Software used to fit the parameters of that distribution to the data.  The fitted distribution 

is then compared to the actual distribution graphically, and if two distribution have been 

tested an assessment is made as to which is the better fit for the data. 

 

As discussed in Section 6.2.3 turnaround times are used to represent start times for the 

first operation of the day, so we do not need to model the starting times. This means that 

the data (as for Section 6.2) to which distributions are to be fitted includes: 

 The inter arrival time distributions for cataract and VR patients arriving into the 

system in need of treatment. 

 The distribution of due dates for both cataract and VR patients. 

 The distribution of theatre times for cataract and VR patient groups. 

 The variation from expected operation duration for all patients. 

 The distribution of turnaround times. 

 The expected inter arrival time distributions for emergency patients during the 

theatre slots considered. 

 The distribution of operation durations for emergency patients. 

 

We will now take each of these in order fitting appropriate distributions. 
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6.3.1 Arrival distributions 

The inter arrival distribution for cataract patients has a strong left skew and long tail, 

which suggests that the log normal distribution would be a reasonable fit for the data. 

 

Figure 24: Graph showing the fitted log normal distribution compared to the 

arrival rate for cataract patients. 

 

The mean of the distribution is 0.4421 and the standard deviation is 0.2718. 

The first data point of the fitted distribution is higher than the actual distribution, 

indicating that the cumulative distribution up to that point has included more patients 

than for the actual distribution. 

 

The skew on the fitted distribution is close to that of the original distribution, but the tail 

of the fitted distribution drops more rapidly than that of the original.   

 

Thus, the fitted distribution is similar to the original but not a very close fit.  As we are 

looking to explore variations from the original distribution this is acceptable. 

 

The VR inter arrival distribution has a less of a skew, which suggests that the normal 

distribution would be a reasonable fit for the data; we test both normal and log normal 

below.   
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Figure 25: Graph showing the fitted distributions fitted to the distribution of VR 

arrivals. 

 

Neither the normal or log normal is a close fit for this data set, but the normal has its 

peak closest to the values taken by the actual data, whereas the log normal is further 

from the actual data across two thirds of the graph.  As neither of the graphs is a good 

match and it is the distribution, the empirical distribution will continue to be used for the 

VR entry data.  

 

6.3.2 Due date distributions 

The cataract due date distribution has two distinct sections suggesting that a mixture of 

two distributions will be required to model it.  The shape of the distribution, particularly 

the second peak, suggests that two normal distributions would work.  In order to fit 

normal distributions we have used solver in excel to fit the means and standard 

deviations of both distributions as well as the proportion of each to use. The resulting 

distribution is shown in the graph below. 
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Figure 26: Graph showing the fitted combination of normal distributions compared 

with the actual distribution. 

 

The mean of the first normal distribution is 6.492 and its standard deviation is 4.814, the 

mean of the second normal distribution is 16.788 and its standard deviation is 0.7756.  

The combined distribution is formed by taking 56.02% of samples from the first 

distribution and 43.08% of samples from the second distribution. 

 

As can be seen in Figure 26 this gives a good match for the distribution of due dates for 

cataract patients, particularly the second peak. 

 

The distribution for the due dates of VR patients is much closer to the shape of a single 

normal distribution. 
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Figure 27: Graph showing the fitted normal distribution for the due date 

distribution of VR patients. 

 

Figure 27 shows that a normal distribution with mean 7.376 and standard deviation 

4.032 is a reasonable fit for the distribution of due dates for the VR patients. 

 

6.3.3 Operation durations 

The graphs below show that normal distributions are not exact fits for the distributions 

of operation durations for either cataract or VR patients. However, the normal 

distributions shown the graphs follow the general trends of the empirical distributions 

and the shape of the distributions does not suggest any other distributions that might be 

better. 

 

Figure 28: Graph showing the fitted normal distribution for cataract operation 

durations. 

 

Figure 28 shows that a normal distribution with mean 26.21 and standard deviation 

10.44 is an acceptable fit for the distribution of cataract theatre times. 
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Figure 29: Graph showing the fitted normal distribution for VR operation 

durations. 

 

Figure 29 demonstrates that the normal distribution with mean 49.21 and standard 

deviation 20.27 is an acceptable fit for the distribution of cataract theatre times.  Since it 

is possible that the dip in the actual data between 45 and 60 minutes may be due to 

actual times being rounded to these figures in the original data, the fit to the actual 

theatre times may be better than the data suggests. 

 

6.3.4 Variation from expected durations 

The distribution of the percentage of difference from the predicted theatre times is not a 

particularly smooth graph, but appears to be approximately normally distributed. 

 

Figure 30: Graph showing the normal distribution fitted to the percentage 

difference between actual and predicted operation durations. 
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Figure 30 shows that the normal distribution with mean -5.625 and standard deviation 

23.07 is a reasonable fit for the distribution of the percentage difference form the 

predicted operation durations. 

 

6.3.5 Duration of turnaround times  

The theatre turnaround times show a strong negative skew so again a log normal 

distribution is fitted. 

 

Figure 31: Graph showing the fitted log normal to the theatre turnaround times. 

 

Figure 31 shows that the log normal distribution with mean 8.32 and standard deviation 

8.176 is a reasonable fit for the distribution of turnaround times. 
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Figure 32: Graph showing fit of log normal distribution to emergency turnaround 

durations.. 

 

Figure 32 shows that the log normal distribution with mean 1.091 and standard deviation 

0.3652 is an acceptable fit for the distribution of turnaround times.  Due to the small 

number of data items graphing the fitted distribution against the actual distribution does 

not provide a clear graph, so the fit is illustrated with the cumulative distributions. 

 

6.3.6 Emergency arrivals distribution 

The inter arrival distribution for emergency patients is a steep curve so the exponential 

distribution is fitted to it below. 

 

Figure 33: Graph showing the fitted exponential distribution for emergency inter 

arrival times. 

 

As can be seen from Figure 33 the exponential distribution is not a very good fit for the 

emergency inter arrival times as it fails to capture the steepness of the curve.  As it does 

not seem possible to fit a suitable distribution, we continue to use the empirical 

distribution for emergency inter arrival times. 

 

6.3.7 Emergency operation time distribution 

The distribution of emergency operation durations is also negatively skewed so again a 

log normal distribution is fitted. 
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Due to the small (discrete) number of data items for each duration graphing the fitted 

distribution against the actual distribution does not provide a clear graph, so the fit is 

illustrated with the cumulative distributions. 

 

 

Figure 34: Graph showing log normal distribution fitted to emergency operation 

durations. 

 

This shows that the log normal with mean 46.02 and standard deviation 25.39 is a 

reasonable fit for the distribution of emergency operation durations. 

 

A more rigorous approach to the fitting of distributions would test goodness of fit using 

statistical tests.  In this case the modelling has already been conducted with the empirical 

data, so the intention is to create data which is similar but not the same as the original 

data, in order to test the sensitivity of the results.   As such, checking the fit of the 

distributions by eye is sufficient. 

 

Thus, distributions are fitted to replace all of the empirical distributions except for the 

VR and emergency inter arrival times.  Next these will be used in the simulation model 

to explore any changes to the effectiveness of the algorithms. 

 

6.4 Implementing the algorithms 

This section will discuss how the algorithms for testing have been selected from those 

discussed in Section 5.3.2 along with how they are implemented. The references in 

brackets refer to the bullets in Section 5.3.2.  The subheadings relate to groups of 
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algorithms and the algorithms are discussed in the same groups in the results in Section 

6.5. 

 

6.4.1 Booking as soon as possible 

The first algorithm considered is booking each patient as soon as it is known that they 

require treatment (1a), in the order of arrival (2a) and into the first available slot (3a).  

This is a straightforward algorithm to implement and is intended to be used as a baseline 

against which to judge the more sophisticated algorithms.  It is as close as possible to 

treating patients in a first in first out (FIFO) manner, given the need to fit their expected 

operation durations into the theatre slots, and is referred to as 'FIFO no P' in the results 

section. 

 

The second algorithm is the same as the first but with patients booked in priority order of 

due date using expected operation duration as a tie breaker with longer operations given 

higher priority (2f), and is referred to as 'FIFOp' in the results section.  As two patients 

arriving at the same time will not occur often, it is expected that this will not have much 

if any effect. 

 

The third algorithm is as the second but with patients batched and booked at the end of 

the week rather than as the decisions to operate are made (1b, 2f, 3a), and is referred to 

as 'FIFO batching' in the results section.  This method is intended to explore the effects 

of such batching. 

 

The fourth and fifth algorithms are as the second, but only allowing patients to be 

booked in to the next 2 or 6 weeks ahead of the current date (1c, 2f, 3a), these are 

referred to as 'FIFO xw' where x is 2 or 6 in the results section.  They are to explore the 

effects of delayed booking algorithms. 

 

6.4.2 Booking to due date 

The sixth algorithm is based on the surgeon’s suggestion of booking patients as late as 

possible to allow for the arrival of more urgent patients.  It involves starting from the 

patients due date and considering slots in reverse order until one is found with sufficient 

space to book the patient into that slot.  If no suitable slot is found between the due date 
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and the current time then the first suitable slot after the due date is used (1a, 2f, 3b).  

This is referred to as 'ToDD' in the results section. 

 

A potential drawback with ‘DD’ is that space in some slots could be left unused, 

resulting in more cases to treat later on and greater delays.  To address this, the next 

algorithm considered is booking to the due date unless there is sufficient space the 

following week in which case the patient is booked into that space (1a, 2f, adapted 

version of 3b), it is referred to as 'ToDDornext' in the results section. 

 

We also consider delayed booking versions of ‘ToDDornext’ where patients are booked 

only into the next 2, 6 or 10 weeks (1c, 2f, adapted version of 3b), referred to as 

'DDornextxw' with x replaced with 2, 6 and 10 respectively in the results section. 

 

Next a variation on the 6 week version is tested with patients booked in due date order, 

with tie breaks split on a first come first served bases.  This is intended to test if using 

operation duration for the tie breaks is making a difference (1c, 2d, adapted version of 

3b) referred to as 'Ddorn6WDDpriority only' in the results section. 

 

6.4.3 Booking to a percentage of due date 

The next set of algorithms considered is as ToDDornext, but booking to 80% of the time 

from the current time to the patients due date, followed by the same with 70%, 50% and 

40%, referred to as '80%DDornext' etc. in the results Section (1a, 2f, variations on 3b).  

Batching is also tested on the 80% version (1c, 2f, variations on 3b) and variations on 

the amount of time available for booking on Tuesdays are considered to explore the 

effects on overtime requirements. 

 

6.4.4 Discussion of booking priorities 

Up to now only 2a, 2d and 2f have been considered as options for the booking priority.  

Last come first served (2b) is not considered because it would be particularly unfair with 

similar patients being treated in reverse order of arrival.   Most urgent first (2c) is also 

not tested because by using due dates routine patients effectively become more urgent 

over time and are thus treated fairly.  Arranging patients in order of operation duration 

(2d and g) is not considered separately as due dates are given higher priority than 

operation durations.  As the initial results show, using due date order with operation 
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duration as a tie breaker does better than the other priority orders, so only this booking 

priority (2f) is used in subsequent algorithms. 

 

The initial results from the algorithms show that delayed algorithms (1c) do well, with 

batching (1b) not doing better than booking as patients arrive into the system (1a), so 

only (1a) and (1c) are considered henceforth.  While (1c) clearly does better than (1a), it 

is better for patients to be given good notice of their operation dates, so 1a is still 

considered to see if a variation on the booking order can improve it significantly. 

 

6.4.5 Booking to most empty slots or exact fits 

The remaining algorithms consider variations and combinations of booking to the most 

empty slot and/or to a slot that the patient fills exactly (3c) and (3d), with patients 

booked either as soon as they arrive to the system (1a) or only into the next X weeks 

(1c), and in order of due date priority with tie breaks going to the patient with the longest 

expected booking duration (2f).  For algorithms based on slots that the patients operation 

duration fills exactly, a small degree of tolerance is allowed, so that if the total expected 

operation durations of the patients will slightly over or under run, the allowed booking 

time for that slot they will be considered an exact fit for that slot. 

 

These algorithms include exploration of booking patients to due date unless there is a 

slot that the patient fills exactly with variations on the number of weeks ahead that can 

be booked (1c, 2f, 3c ii).  Whether the search for an exact fit should start from the due 

date and move backwards or treat those which are exact fits in FIFO order is explored. 

 

Rather than searching for the first slot in which the patient fits moving back from their 

due date if there is no exact fit, searching for the emptiest slot available is considered.  

Variations on this are explored with the search for the exact fit conducted so that tie 

breaks will be for the slot closest to the due date (DD) or closest to the current time 

(FIFO order) and the same for tie breaks on the most empty slot. 

 

In all of these algorithms if there is a slot the next day available for booking in which the 

patients expected duration will fit the patient is booked into that slot, so that time will 

not be wasted as discussed in Section 6.4.2. 
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In the names of the algorithms ‘n’ refers to this consideration of the next available day, 

‘exact’ to looking for exact fits, ‘most empty’ to searching for the emptiest slot, ‘DD’ to 

searching back from the due date for that aspect of the algorithm, ‘FIFO’ to searching 

forwards from the current time and ‘xw’ as before to only booking into the next x weeks.  

These abbreviations are necessary to keep the length of the algorithm’s names 

reasonable for fitting onto graphs and tables in the results section. 

 

For all algorithms, if it is not possible to book a patient into a slot before their due date 

then they are booked into the first available slot after it. 

 

6.5 Validation and Verification 

 

In order to ensure that the model both represents the system correctly and performs the 

computations correctly, it is necessary to validate the model and verify its accuracy.  The 

importance of validation and verification and their definitions are discussed in Section 

4.5. 

 

6.5.1 Verifying the model 

Verification of this model involves testing that all elements of the simulation model are 

behaving as expected, as follows: 

 Observing the visual output of the simulation model when it is running slowly to 

check that the patients are flowing through it correctly; 

 Running the model with fixed distributions to test that it performs the bookings 

as expected; 

 When the visual logic is set up for each algorithm, running that algorithm in 

debugging mode to check that it is working as expected; 

 For each algorithm, additional data are output to the spreadsheets to enable 

detailed checking of the order in which bookings are made during debugging; 

 The booking spreadsheets for each day are checked to ensure correct adherence 

to the booking limits. 

 

6.5.2 Validating the model 

Validating the model involves ensuring that it provides a sufficiently accurate 

representation of the real system for its intended use.  In this case, this is achieved by; 
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 Prior to building the model, hospital staff, including bookings clerks were 

interviewed to give us a clear understanding of the problem; 

 Once the model was set up, it was discussed with a surgeon and other staff to 

check that it represents the system correctly; 

 The results of the model are checked against data from the real system to ensure 

that they follow similar patterns. 

 Results such as the percentage utilisation where checked with the surgeon to 

ensure that they were as expected. 

 

These checks ensure that the model operates as expected and represents the real system, 

subject to the limitations listed in the next section.  Some of the adaptions to the system 

ensure that the model will allow clear comparison of the intrinsic performance of the 

algorithms, for example, not allowing cancellations under any circumstances. 

 

6.6 Assumptions and Limitations 

 

During the construction of a model assumptions are made and there are areas of the real 

system that it is either not possible to model accurately (for example due to data 

limitations) or not desirable to model accurately due to the time required in comparison 

to their importance to the way in which the model is to be used. 

 

The following assumptions and limitations must be born in mind when considering the 

results of this model: 

 In the real system, depending on clinical necessity, emergency patients, for 

whom there is insufficient space in the theatre slot on the day they arrive, may be 

treated in overtime or wait until the next day.  As only two days of the week are 

considered in the model and no data on the urgency of emergency patients is 

available, this cannot be accurately represented.  Therefore, it is assumed that all 

emergency patients are treated on the day they arrive.  In some cases, this will 

have resulted in longer sessions than would exist in the real system. 

 The model does not allow cancellations or rebooking to occur.  The surgeon, on 

whose data it is based, does not like cancelling and rearranging patients as this is 

disruptive to the patients, so he avoids doing this almost entirely.  Thus, the 

model represents the real system.  It is also preferable to test the algorithms 
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without allowing for cancellation and rebooking as this could mask poorly 

performing algorithms. 

 The model does not included clinical cancellations or patients not attending for 

other reasons. This happens to a very limited extent and would reduce the theatre 

utilisation because some operations would not take place. 

 As mentioned at the end of Section 6.2.3, it was not possible to obtain correct 

target dates for patients from the data, so the distribution of waiting times has 

been used instead.  Since some patients will have been seen before their due 

dates this means that the times to due dates in the model are shorter than in 

reality for some patients.  This will mean that the percentage of patients treated 

within targets from the model will be less than in reality and results should be 

interpreted with this in mind. 

 It is assumed that it is desirable to give patients plenty of notice of their 

appointment dates, so that they can make necessary arrangements for having 

their operations.  Nevertheless, algorithms that would only give 2 weeks’ notice 

are considered.  Shorter notice periods are not considered as 2 weeks is the 

shortest time to due date possible in the data input, so the only more urgent 

patients who will arrive less than 2 weeks before a slot are emergencies.  Waiting 

for emergencies to be present in the system would require scheduling on the 

morning of the current day, which is gives to short notice period for elective 

patients. 

 In the model, the difference between expected and actual start times is sampled 

from the distribution for turnaround times, which is reasonable because the 

distributions both average around 10 minutes and the anaesthetic times that 

significantly affect turnaround times will have a similar effect on the start of 

sessions. 

 It is assumed that the scheduling rules are applied rigorously, which is desirable 

in order to test their performance.  In reality it is likely that the person doing the 

bookings would make adjustments to allow for the variability in arrivals, any 

attempt to allow for this would be complicated and potentially mask poorly 

performing algorithms. 

 No consideration is made of the effects on the number of patients in beds on the 

schedule.  This is because it is very rare for ophthalmology patients to stay 

overnight, so this is not an important consideration when they are booked. 
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 It is also assumed that the patient case mix, inter arrival times, distribution of 

turnaround times and operation durations remain the same as for the period at 

which data was collected.  

 

These assumptions and limitations should be considered when interpreting the results of 

the model.  They have been discussed with the surgeon involved and are considered 

reasonable for the manner in which the model is intended to be used. 

 

6.7 Results 

This section contains the results of running the algorithms.  All of the results are for 

running trials which compile data for 250 runs of the model with different random data.  

The average values for all performance measures over all of those trials are then 

computed.  This avoids the possibility of the results being skewed by one algorithm 

working particularly well on one data set but not on others. The reasons for selecting 250 

runs are discussed in Section 6.3.1. 

 

The results are given for groups of algorithms, so that these can be compared.  Then the 

best algorithms are compared directly at the end of the section.  For each group of 

algorithms, there is a short description of the group followed by a graph showing the 

percentage of Emergency, Routine and Urgent patients treated on or before their due 

dates under each algorithm.  On this graph, the higher the bars the better, as we want all 

patients to be treated on or before their due dates. 

 

Furthermore, a graph for each group of algorithms is presented with a view to analysing 

how effectively urgent patients are prioritised, that is how fairly the algorithm respects 

due dates.  This graph gives the average waiting times for cataract patients who have 4, 

10 or 16 weeks to go until their due dates when they join the system, and the same 

applies for VR patients.  If the patients have been treated fairly then the 4 weeks to due 

date patients will wait less time than the 10 weeks patients, who in turn will wait less 

than the 16 weeks patients.  Also, if the majority of patients have been treated on time, 

then the averages will be less than the respective numbers of weeks. 

 

After the graphs are tables giving other results, starting with the mean slot lengths (the 

average of the actual theatre time used each day) for both Tuesdays and Thursdays as 
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percentages of the actual slot length (theatre time available that day).  The percentage of 

sessions on each day that overrun the allowable overtime is also given.  Note that, the 

allowable overtime for Tuesdays is shorter than that for Thursdays, as the Tuesday slot 

is a morning session, so the values for the two days are not expected to be equal. In 

addition, is the utilization of the theatres as defined by the hospital, which is the 

percentage of the time spent performing operations.  Lastly the tables contain the 

number of overtakes, which is the number of times that after a booking a patient that 

another patient with the same or later due date is booked earlier than the first patient. 

 

6.7.1 Booking as Soon as Possible 

The results that follow are for algorithms where patients are booked into the next slot 

which has sufficient space remaining for their expected operation durations; that is the 

algorithms described in Section 6.4.1.  The results for these algorithms are shown in 

Figure 35, Figure 36 and Table 5. 

 

 

Figure 35: The percentage of each type of patient seen within their due dates for 

algorithms that book into the first available slot. 

 

Figure 35 shows that prioritising the order in which patients are booked makes no 

difference if they are all booked straight away and that batching makes little difference.  

It also shows that when booking is delayed, more urgent patients are treated within their 

due dates, with the shorter booking period allowing more patients to be treated by their 

due dates.  With a first in first out booking algorithm, booking only into the next 6 
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weeks makes a very small difference compared with booking at any point in the future, 

in terms of average waiting times for each type of patient.  

 

Figure 36: The waiting times for patients grouped by their initial time to due date 

for algorithms that book into the first available slot. 

 

Figure 36 shows that the delayed algorithms do better at allowing urgent patients to be 

booked within their due dates and create a better spread of waiting times according to 

time remaining to due date. 

 

Table 5: Other results for algorithms that book into the first available slot 

  Algorithms 

  FIFOnoP FIFOp 
FIFO 

batching FIFO2w FIFO6w 

Mean slot length Tuesday % 101.4 101.4 101.5 101.4 101.4 

Mean slot length Thursday % 111.8 111.8 111.6 111.6 111.7 

% Tuesdays overrunning  29.5 29.5 29.5 29.6 29.7 

% Thursdays overrunning  17.1 17.1 17.5 17.3 17.1 

Mean Utilization on Tue % 71.4 71.4 71.4 71.5 71.4 

Mean Utilization on Thur % 79.1 79.1 79.0 78.8 78.9 

Number of Overtakes  800.1 800.1 767.2 524.0 664.6 

 

Table 5 shows that there is little difference between the algorithms considered in terms 

of the use of the theatre slots and the number of overruns.  It also shows little difference 

in the number of overtakes, except when booking is only allowed 2 weeks ahead in 

which case there are fewer overtakes.  There are also fewer overtakes when only those 
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arriving in one day are batched and booked in due date order at the end of the week.  

This suggests that delay in booking allows greater fairness in terms of patients being 

booked in due date order. 

 

6.7.2 Booking to Due Dates 

The results that follow are for algorithms where the majority of patients are booked into 

the slot closest to their due date which has sufficient space remaining for their expected 

operation durations; that is the algorithms described in Section 6.4.2.   The results for 

these algorithms are below in Figure 37, Figure 38 and Table 6. 

 

Figure 37: The percentage of each type of patient seen within their due dates for 

algorithms that book most patients as close as possible to their due dates. 

 

Figure 37 shows that booking all patients as late as possible close to their due dates 

performs badly in terms of patients being seen by their due dates.  Looking into the data 

in more detail reveals that this is due to some spaces in theatre being unused and thus 

pushing all of the operation dates further back than for FIFO. Booking to due date unless 

there is space left in the next slot, does slightly better than FIFO and as for the previous 

group of algorithms the delayed algorithms are significant improvements.  Booking in 

order of due date priority followed with arrival order as a tie break does marginally 

worse than due date priority with expected operation duration as a tie break.  Therefore, 

it is better to use the latter order for considering patients for booking. 
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Figure 38: The waiting times for patients grouped by their initial time to due date 

for algorithms that book most patients as close as possible to their due dates. 

 

Figure 38 shows that booking all patients as late as possible close to their due dates has 

patients waiting longer than the other algorithms in this section.  It also shows that all of 

the algorithms involving booking most patients as close as possible to their due dates do 

well at giving shorter waiting times to higher priority patients. 

 
 

 

Table 6: Other results for algorithms that book into most patients as close as 

possible to their due dates 

 Algorithms 

  ToDD 
ToDDor 

next 
DDor 

next2w 
DDor 

next6w 
DDor 

next10w 

Ddorn 
6wDD 

priority 

Mean slot length 
Tuesday % 99.3 100.3 101.5 101.2 100.8 101.1 
Mean slot length 
Thursday% 115.6 113.5 111.6 111.9 112.5 112.1 
% Tuesdays 
overrunning 28.2 28.3 29.6 29.4 29.0 29.3 
% Thursdays 
overrunning 18.8 17.6 17.3 17.3 17.5 17.5 
Mean Utilization on 
Tuesdays % 70.4 70.9 71.5 71.3 71.0 71.2 
Mean Utilization on 
Thursdays % 80.6 79.7 78.8 79.1 79.5 79.2 
No. of Overtakes 1637.3 2405.8 464.2 1539.5 2817.9 1599.3 
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Similarly to Table 5, Table 6 shows that there is little difference between the algorithms 

considered in terms of the use of the theatre slots and the number of overruns.  It is also 

similar to Table 5 in that the most significant difference in the number of overtakes 

occurs when booking is only allowed 2 weeks ahead in which case there are significantly 

fewer overtakes.  The rise in the number of overtakes compared to Table 5 is a result of 

some patients being booked before those with the same due date because they arrive 

later and all of the slots close to their due dates have been booked. 

 

6.7.3 Booking to a Percentage of Due Dates 

The results that follow are for algorithms where the majority of patients are booked into 

the slot closest to a percentage of the time from their arrival to their due date; that is the 

algorithms described in Section 6.4.3.   The results for these algorithms are presented 

below in Figure 39, Figure 40 and Table 7.  

 

Figure 39: The percentage of each type of patient seen within their due dates when 

booking the majority of patients as close as possible to a percentage of their due 

dates. 

 

Figure 39 shows a slight decrease in the number treated by their due dates as the 

percentage of target in which they are booked decreases for urgent patients, with a slight 

increase in the number of routine patients treated within their due dates.  This suggests 

that booking to the full due date is better in terms of treating urgent patients within their 

targets. 

Percentage Treated in Target

0

10

20

30

40

50

60

70

80

90

100

90
%

D
D
or

ne
xt

80
%

D
D
or

ne
xt

80
%

ba
tc

hi
ng

70
%

D
D
or

ne
xt

50
%

D
D
or

ne
xt

40
%

D
D
or

ne
xt

Emergency
Patients

Routine Patients

Urgent Patients



 

169 

 

 

Figure 40: The waiting times for patients grouped by their initial time to due date 

when booking most patients as close as possible to a percentage of their due dates. 

 

Figure 40 shows that as the percentage of due date decreases so does the average waiting 

time, but the prioritisation of urgent patients is less apparent.  This agrees with the 

results shown in Figure 39 that urgent patients do less well as the percentage of due date 

to which patients are booked decreases. 

 

Table 7: Other results for algorithms that book into most patients as close as 

possible to a percentage of their due dates 

  Algorithms 

  
90%DD 
or next 

80%DD 
ornext 

80% 
batching 

70%DD 
ornext 

50%DD 
ornext 

40%DD 
ornext 

Mean slot length Tues %  100.4 100.4 100.5 100.5 100.7 100.9 

Mean slot length Thur % 113.4 113.3 113.2 113.0 112.7 112.3 

% Tuesdays overrunning 28.4 28.5 28.5 28.5 29.0 29.1 

% Thursdays overrunning 17.4 17.7 17.6 17.7 17.2 17.2 

Mean Utilization on Tue % 70.9 70.9 71.1 71.0 71.1 71.2 

Mean Utilization on Thur % 79.7 79.7 79.3 79.5 79.3 79.2 

Number of Overtakes 2025.2 1724.5 1338.4 1507.9 1149.1 957.9 

 

Table 7, like the previous tables of results, shows that there is little difference between 

the algorithms considered in terms of the use of the theatre slots and the number of 

overruns.  It is also shows a reduction in the number of overtakes as the percentage of 

due date to which patients are booked decreases. 
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6.7.4 Changing the Booking Limits for Theatre Slots 

The results that follow are for algorithms where the majority of patients are booked into 

the slot closest to 40% percentage of the time from their arrival to their due date, with 

variations on the amount of the theatre slots that are available for booking.  Specifically, 

we consider the algorithms described at the end of Section 6.4.3.   In the algorithm 

reducing the time available for bookings on Tuesdays, the time available is reduced by 5 

minutes.  Keeping this reduction in the time available on Tuesdays and additional 5 

minutes is made available on each slot on a Thursday for the Tuesday reduced Thursday 

increased algorithm,  The results for these algorithms are below in Figure 41, Figure 42 

and Table 8. 

 

Figure 41: The effects on the percentage of patients treated by their due dates of 

changing the amount of each theatre slot available for booking into. 

 

Figure 41 shows that, as might be expected, reducing the amount of time available for 

bookings reduces the number of patients treated by their due dates and increasing the 

time available has the opposite effect.  It should be noted that as there are only slots 

every other Thursday the effects of changes to Thursdays are not as significant as the 

effects of changes to Tuesdays. 
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Figure 42: The effects on fairness of changing the amount of each theatre slot 

available for booking into. 

 

Figure 42 shows that changes to the amount of time available for booking affects waiting 

times, but not the fairness towards more urgent patients. 

 

Table 8: The effects on the other results of changing the amount of each theatre slot 

available for booking into.  

  Algorithms 

  40%DDornext 
Tuesday 
reduced 

Tuesday reduced 
Thursday increased 

Mean slot length Tuesday % 100.9 99.1 98.7 

Mean slot length Thursday % 112.3 114.4 116.5 

% Tuesdays overrunning 29.1 26.3 26.1 

% Thursdays overrunning 17.2 18.4 20.9 

Mean Utilization on Tue % 71.2 69.9 69.7 

Mean Utilization on Thur % 79.2 80.6 82.1 

Number of Overtakes 957.9 941.4 944.6 

 

Table 9 shows the effects that changing the amount of theatre slots that are available for 

booking has on the use of those theatre slots and the percentages of overruns.  One might 

expect that reducing the amount of each slot available for booking would create 

significant reductions in the slot lengths and number of sessions overrunning; however, 

our results show that the effect is quite small.  This is due to the increase in waiting list 

resulting in more patients to choose from and therefore in a closer fit to the slot size 
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available. The table also shows that such changes have little effect on the numbers of 

overtakes occurring. 

 

6.7.5 Booking to Exact Fits or Due Dates 

The results that follow are for algorithms where the majority of patients are booked into 

the available slot closest to their due date, except that booking into a slot where that the 

patient fills the remaining available theatre time as an exact fit is included where 

possible.  As before, variations on the number of weeks into which booking is allowed 

are explored, as is the tie break if there is more than one exact fit; these are some of the 

algorithms described in Section 6.4.4.   The results for these algorithms are below in 

Figure 43, Figure 44 and Table 9.  

 

Figure 43: The percentage of each type of patient seen within their due dates for 

algorithms that book into slot exactly filled by the patients expected operation 

duration. 

 

Figure 43 shows that algorithms that  book into a slot such that the patients expected 

operation time fills the time available for booking into that slot if such a slot exists 

actually do better in terms of the number of urgent patients seen by their due date if 

bookings are considered over a shorter horizon.  It also shows that breaking ties for exact 

fits by considering the exact fit that is closest to the due date or closest to the current 

time makes only a slight if any difference.  
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Figure 44: The waiting times for patients grouped by their initial time to due date 

for algorithms that book to exact fits where such exist. 

 

Figure 44 shows that breaking ties for exact fits by selecting the slot closest to due date 

creates a slightly better spread of waiting times based on initial time to due date.  It also 

shows that considering booking into the full 18 weeks of the longest due dates increases 

such fairness. 

 

Table 9 shows little difference between these algorithms in terms of other results, except 

that, as before, the delayed algorithms reduce the number of overtakes. 
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Table 9: Other results for the algorithms that book into exact fits if they exist 

 

6.7.6 Booking to Exact Fits or Most Empty, Varying the Search Order 

The results that follow are for algorithms where patients are booked into a slot they fit 

exactly or the emptiest slot before their due date; specifically, we consider more of the 

algorithms described in Section 6.4.5.  The differences between these algorithms are in 

the order in which the slots are considered.  In the tests above, if there were two slots 

equally empty or both exact fits, then the one closest to due date was chosen.  In the first 

of these algorithms, the exact fits are closest to due date but the most empty are the 

closest to simulation time if there are such ties.  For the second, the most empty tie break 

is closer to due date and for the third both tie breaks are closest to the current time.   The 

results for these algorithms are below in Figure 45, Figure 46, Table 10 and Table 14. 
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Mean slot length 
Tuesday % 

100.8 100.1 99.7 99.5 100.8 100.1 99.8 99.5 

Mean slot length 
Thursday % 

113.0 114.2 115.0 115.7 113.0 114.2 115.0 115.5 

% Tuesdays 
overrunning 

29.2 28.5 28.4 27.9 28.9 28.6 28.3 28.2 

% Thursdays 
overrunning 

18.2 18.8 19.1 19.3 18.3 18.7 19.2 19.2 

Mean Utilization Tue % 71.0 70.5 70.4 70.7 71.0 70.5 70.5 70.7 

Mean Utilization Thu % 79.8 80.8 80.9 80.4 79.8 80.8 80.8 80.2 

Number of Overtakes 1813 2958 3188 2911 1819 2968 3226 2970 
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Figure 45: The percentage of each type of patient seen within their due dates for 

algorithms that book into the emptiest slot within due date or an exact fit, with 

potential slots considered in different orders. 

 

Figure 45 shows that the algorithms considering booking into the emptiest slot in due 

date order do better than those considering the first available slot for this aspect, but that 

the gap reduces as a longer booking horizon is considered.  Comparing these values with 

those in Figure 43, reveals that considering the emptiest slot rather than the slot closest 

to the due date after looking for exact fits only slightly changes the numbers or urgent 

patients who are seen before or on their due dates.  
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Figure 46: The waiting times for patients grouped by their initial time to due date 

for algorithms that book into the most empty slot within due date or an exact fit, 

with potential slots considered in different orders. 

 

Figure 46 shows that the greater the extent to which booking is done close to the due 

date the wider the spread of waiting times compared for those with different initial times 

to due date.  It also shows that the spread is greater, but with longer waiting times, if the 

booking horizon is longer. 
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Table 10: Other results for algorithms that book into the emptiest slot within due 

date or an exact fit, with potential slots considered in different orders. 
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Mean slot length 
Tuesday % 

100.8 100.1 99.5 100.9 100.6 100.6 

Mean slot length 
Thursday % 

113.0 114.2 115.7 112.4 112.9 113.1 

% Tuesdays 
overrunning 

28.9 28.6 28.1 29.2 28.9 28.8 

% Thursdays 
overrunning 

18.3 18.7 19.4 17.9 18.0 18.0 

Mean Utilization on 
Tuesdays % 

71.0 70.5 70.7 71.3 71.0 71.0 

Mean Utilization on 
Thursdays % 

79.8 80.8 80.3 78.9 79.4 79.5 

No. of Overtakes 1819 2968 2929 1813 2003 2054 

 

Table 11: Other results for algorithms that book into the emptiest slot within due 

date or an exact fit, with potential slots considered in different orders, continued. 
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Mean slot length 
Tuesday % 

100.8 100.6 100.6 100.8 100.1 99.5 

Mean slot length 
Thursday % 

112.5 113.0 113.1 113.0 114.2 115.6 

% Tuesdays 
overrunning 

29.4 28.8 28.8 29.2 28.5 28.1 

% Thursdays 
overrunning 

17.7 18.2 18.0 18.2 18.8 19.4 

Mean Utilization on 
Tuesdays % 

71.2 71.0 70.9 71.0 70.5 70.7 

Mean Utilization on 
Thursdays % 

79.1 79.6 79.7 79.8 80.8 80.3 

No. of Overtakes 1808 1970 2005 1813 2958 2854 

 

Table 10 and 11 shows only minor differences between the algorithms.  This suggests 

that, while the tie breaks have an effect, it is relatively minor. 

 

  



 

178 

 

6.7.7 Comparing the Best Algorithms 

This section compares the algorithms that performed best over the previous sections, 

with the results displayed in Figure 47, Figure 48, Figure 49 and Tables 12 and 13. 

 

Figure 47: Comparison of the percentage of each type of patient seen within their 

due dates for the best performing algorithms. 

 

Figure 47 shows that in terms of the percentage of patients (particularly urgent patients) 

treated within their due dates delayed booking algorithms do best.   To test the 

significance of the variations Figure 48 gives the 95% confidence intervals for the 

number of patients treated within target for the same set of algorithms as above.  This 

shows clearly that the difference made by booking only a limited number of weeks into 

the future is significant, but that the difference reduces as the number of weeks 

increases.  It also shows that the differences between the algorithms are more significant 

when the booking horizon is more limited. 

 

0

10

20

30

40

50

60

70

80

90

100

Emergency
Patients

Routine
Patients

Urgent
Patients



 

179 

 

 

Figure 48: Confidence intervals for the percentage of urgent patients treated within 

target dates for the best performing algorithms 

 

Figure 49: The waiting times for patients grouped by their initial time to due date 

for the best performing algorithms. 
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Figure 49 shows that all of the algorithms selected for consideration in this section do 

well in terms of prioritising urgent patients, particularly when compared to just booking 

into the next available slot as soon as the patient enters the waiting list. 

 

Table 12: Other results for the best algorithms. 

 Algorithms 

  
FIFO2w DDorNext2w 

DDornext

6weeks DDornext10w ToDDornext 

Mean slot length 
Tuesday % 

101.4 101.5 100.9 100.3 100.3 

Mean slot length 
Thursday % 

111.6 111.6 112.3 113.6 113.5 

% Tuesdays 
overrunning 

29.6 29.6 29.2 28.4 28.3 

% Thursdays 
overrunning 

17.3 17.3 17.4 17.9 17.6 

Mean Utilization on 
Tuesdays % 

71.5 71.5 71.1 70.7 70.9 

Mean Utilization on 
Thursdays % 

78.8 78.8 79.1 79.5 79.7 

No. of Overtakes 524 464 1581 2924 2406 

 

Table 13: Other results for the best algorithms, continued. 

 Algorithms 
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Mean slot length 
Tuesday % 

100.8 100.1 99.5 100.9 100.6 100.6 

Mean slot length 
Thursday % 

113.0 114.2 115.5 112.4 112.9 113.1 

% Tuesdays 
overrunning 

28.9 28.6 28.2 29.2 28.9 28.8 

% Thursdays 
overrunning 

18.3 18.7 19.2 17.9 18.0 18.0 

Mean Utilization on 
Tuesdays % 

71.0 70.5 70.7 71.3 71.0 71.0 

Mean Utilization on 
Thursdays % 

79.8 80.8 80.2 78.9 79.4 79.5 

No. of Overtakes 1819 2968 2970 1813 2003 2054 

 

Table 15 and 13 show that as discussed previously there is little to choose between the 

algorithms in terms of theatre utilisation, use and overruns.   There are significant 

differences when the number of overtakes are considered, so if this is an important 

criterion, then the algorithms with the most delayed bookings clearly do best.  
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Overall these results show that there is not a great deal of difference between the best 

algorithms.  The relative importance of the performance measures as well as the 

constraints on the booking system should be considered in choosing between them.  

Delaying the decision to book patients as close as possible to the surgery taking place, 

improves the performance of the booking algorithms, but the extent to which this is 

possible is limited by the need to give patients time to prepare for their operations.  

Booking patients as late as their due dates allow, leaves spaces into which more urgent 

patients can be booked and this increase the proportion of urgent patients treated on 

time.  As the period of time between booking and surgery taking place increases then 

looking for slots which will be filled exactly by a patients expected operation duration 

becomes effective in terms of treating patients on time, but it does reduce some fairness 

measures. 

 

6.8 Exploring Data Variations  

The previous section determined which algorithms should be considered for one 

particular surgeons’ case mix.  This section explores if the same results hold for 

variations from this case mix.  In order to do this, we use the fitted distributions from 

Section 6.3 to explore any changes to the results, before going on to vary these 

distributions and observe the effects on the comparative results of the algorithms 

considered previously. 

 

6.8.1 Testing algorithms with fitted distributions 

The distributions described in the previous section are used in the simulation model in 

this section testing the best algorithms from Section 6.7.7 to see if the fitted distributions 

have affected the comparative effects of the algorithms.  The results are set out in the 

same format as those in Section 6.7. 
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Figure 50: Comparison of the percentage of each type of patient seen within their 

due dates for the best performing algorithms, when applied to the fitted data. 

 

This shows a similar pattern to Figure 47, with the delayed booking algorithms 

performing better in terms of the percentage of urgent patients seen within their due 

dates.  However, the proportion of urgent patients treated in target is higher and the 

effects of delaying booking are less significant.   

 

Comparing the combined durations of all operations for sample data sets for the original 

and fitted distributions reveals that for the data sampled from the fitted distributions a 

smaller volume of patients were generated.  This is also reflected in a change of traffic 

intensity as shown by the mean slot lengths falling below 100% in Table 14.  This means 

that there were fewer hours of operations to fit in the theatres and explains why more 

patients could be treated within their due dates for the new data.  The reduced 

differences between the algorithms is also to be expected because there is less scope for 

improvement when there is more flexibility to fit patients into theatre slots. 
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Figure 51: The waiting times for patients grouped by their initial time to due date 

for algorithms for the best performing algorithms, when applied to the initial 

variation of the fitted data. 

 

Figure 51 shows that, as before, the algorithms where patients are booked close to their 

due dates are fairer in terms of more urgent patients having shorter waiting times. 

 

Table 14: Other results for the best algorithms, when applied to the fitted data. 
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Mean slot length 
Tuesday % 

83.5 83.5 83.5 83.4 83.5 87.4 87.3 86.5 85.6 85.1 

Mean slot length 
Thursday % 

92.8 92.8 92.7 92.8 92.8 91.2 91.2 92.4 94.0 94.9 

% of Tuesdays 
overrunning 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

% of Thursdays 
overrunning 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mean Utilization on 
Tues % 

67.5 67.6 67.6 67.6 67.5 71.3 71.2 70.5 69.8 69.9 

Mean Utilization on 
Thurs % 

75.5 75.4 75.4 75.5 75.5 74.2 74.1 75.4 76.6 76.2 

Number of Overtakes 951 674 897 942 951 561 526 1905 3447 3071 

 

0

2

4

6

8

10

12

W
a

it
 i
n

 w
e

e
k

s
 

Catduein4
avgwait

Catduein10
avgwait

Catduein16
avgwait

VRduein4
avgwait

VRduein10
avgwait

VRduein16
avgwait



 

184 

 

Table 15: Other results for the best algorithms, when applied to the fitted 

distributions, continued. 

 Algorithms 
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Mean slot length 
Tuesday % 

85.2 83.7 82.4 81.5 84.1 83.8 83.8 83.8 

Mean slot length 
Thursday % 

89.9 91.9 94.1 95.7 91.6 91.6 91.6 91.6 

% of Tuesdays 
overrunning 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

% of Thursdays 
overrunning 

0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 

Mean Utilization on 
Tues % 

68.9 67.5 66.3 65.9 68.0 67.8 67.8 67.8 

Mean Utilization on 
Thurs % 

73.2 75.3 77.4 77.9 74.6 74.6 74.6 74.6 

Number of Overtakes 582 2062 3446 3406 623 812 830 832 

 

The results given Figure 50 Figure 51, Table 14 and Table 15 are better than those for 

the original data, for the reasons explained above.  As for the previous data the only 

result that varies significantly is the number of overtakes with the delayed booking 

algorithms again being fairer on this aspect of the problem. 

 

Overall these results demonstrate that even when there is greater flexibility in the fit of 

operating times to theatre time available, the algorithms identified when sampling from 

the empirical data do best.  The difference made by selecting one algorithm over another 

is reduced, but using the algorithms suggested when using the first data set would still be 

good choices. 

 

6.8.2 Testing algorithms with a variation on fitted distributions 

As discussed in the assumptions and limitations (Section 6.6) using the time from 

decision to treat to surgery to gain the distribution of time to due date, is likely to have 

resulted in some due dates being tighter than they should be.  This is because some 

patients will have been treated before their due dates.  In order to see if this may have an 

effect on the results the this variation on the fitted data, included increasing the due dates 

by one week whilst maintaining a maximum of 18 weeks, it also adds 2 minutes and 30 
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seconds to the operation durations to increase bring the volume of surgery closer to the 

original data. The results are given in Figure 52 and Figure 53. 

 

 

Figure 52: Comparison of the percentage of each type of patient seen within their 

due dates for the best performing algorithms, when applied to the second variation 

of the fitted data. 

 

Figure 52 is very similar to Figure 50, except that the number treated in target has 

increased, indicating that the change in the data does not change the comparisons drawn 

previously between the algorithms.
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Figure 53: The waiting times for patients grouped by their initial time to due date 

for algorithms for the best performing algorithms, when applied to the second 

variation on the fitted data. 

 

Figure 53 demonstrates that again the variation of the data has not affected the 

comparisons between the algorithms.  This is also true for the other results shown in the 

tables in Appendix C. 

6.8.3 Final variations on algorithms 

Thus far, the algorithms that have consistently performed best have been those where 

booking is delayed until just a few weeks before each theatre slot.  However, delaying 

booking as much as possible contradicts the desirable target of booking patients at the 

time when the decision that they need surgery is taken.  This suggests that it is necessary 

to choose between giving patients as much warning as possible of the date of their 

surgery and meeting due date targets for all patients.   

 

This raises another possibility: could some patients be booked at the time of decision to 

treat while others are booked at shorter notice.  The advantage to patients of the latter is 

that they could experience shorter waiting times.  Thus, some (rather than all) of the 

routine patients could have delayed booking so that they are only booked a fixed number 

of weeks in advance to create additional flexibility in the system.  However, if some 

patients are being booked on shorter notice than others, should some of the available 

time in the operating theatre be held back to become available for booking only when 

those patients become available for booking? 

 

In order to fully explore these questions, we ran further simulation trials, using the same 

algorithm nexactFemptyF as it did marginally better than the other algorithms when 

booking 18 weeks ahead for most of the data variations.  To this algorithm, additional 

code was added to assign a proportion of those whose due dates are over 10 weeks from 

their arrival dates to be held back for booking on shorter notice. The proportions held 

back in this way are 0.1 (10%), 0.2 (20%), 0.3 (30%), 0.4 (40%) and 0.5 (50%), and 

these patients are only allowed to be booked for treatment up to 2, 4 or 6 weeks from the 

time of booking.  Also, consideration is given to keeping back some of theatre time 

available in each slot to be available for booking only 2, 4 of 6 weeks before the slot 

occurs.  The amounts of time tested for holding back in this way were 15, 30 and 45 
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minutes.  All combinations of these 3 variables were tested and the abbreviated names of 

the algorithms are written as follows 0.4on6weekshold30, where 0.4 is the proportion of 

patients who will be booked on shorter notice, the maximum time ahead that they will be 

booked is 6 weeks and 30 minutes of theatre time will be held back to be booked at most 

6 weeks before the theatre slot occurs.  The results of these tests are given in the series 

of graphs below. 

 

Figure 54 shows that the highest percentages of all types of patient treated within due 

dates is achieved when a larger section of each theatre slot is only made available for 

booking a few weeks before slot will take place.  Keeping a proportion of patients to be 

booked only a limited number of weeks in advance only improves the percentage in 

target if only a small amount of time is restricted for booking close to when it takes 

place.   

 

Keeping a section of each theatre slot back to be booked only a few weeks before it 

takes place is increasing the numbers of routine patients treated within their targets as 

well as the urgent patients.  For the urgent patients, it is apparent that the increase in 

numbers treated by their due dates is due to slots still being available within the next few 

weeks when the most urgent patients arrive.  Routine patients who arrive after a period 

of above average routine arrivals when all of the slots near their due date have been 

booked, would under other algorithms have to be booked after their due dates.  When 

some theatre time has been kept back for booking, these routine patients can be booked 

into that time and treated with limited notice of their operation dates (or if this is 

inconvenient could choose later dates). 
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Figure 54: Comparison of the percentage of each type of patient seen within their due dates for the algorithms with some patients 

only booked on short notice and some theatre time held until close to its dates. 
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Figure 55: The waiting times for patients grouped by their initial time to due date 

for algorithms for the algorithms with some patients only booked on short notice 

and some theatre time held until close to its dates. 

 

The fairness testing data has been split into two graphs in order to allow the large 

amount of data to fit into the space available.  Figure 55 and Figure 56 show that most 

urgent patients are waiting the shortest times under all of these algorithms, but the 

average waiting time for those who had 10 or 16 weeks left to due date are closer 

together than for other sets of algorithms.   
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Figure 56: The waiting times for patients grouped by their initial time to due date 

for algorithms for the algorithms with some patients only booked on short notice 

and some theatre time held until close to its dates. 

 

Given that most of the data shown in the table for all of the other sets of algorithms does 

not vary much between the algorithms, such a table is not included for these algorithms.  

However, as there is variation in the number of overtakes, a graph for these is included 

below. 
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Figure 57: Graph showing the number of overtakes occurring for the algorithms 

with some patients only booked on short notice and some theatre time held until 

close to its dates. 

 

Figure 57 shows that there is some variation in the number of overtakes but not a great 

deal for these variations in the algorithms. 

 

6.9 Conclusions  

This chapter illustrates how the problem of booking individual patients can be explored 

using simulation, with a case study used to explore the effects of different algorithms. 

 

Our method of searching through potential algorithms has been designed to be as 

comprehensive as possible.  The initial searches through the literature on appointment 

scheduling and scheduling in general in Section 5.2, as well as discussions with hospital 

staff, generated a variety of variations for various aspects of potential algorithms.  Our 

process of testing algorithms has worked through the different aspects of the algorithms, 

taking forward the options that produced improvements in the results.  When testing 

aspects that could take values on a continuous range, for example, the percentage of a 

theatre slot to hold back for late booking, we sampled at regular intervals across the 

range of possible values.  This has provided a comprehensive exploration of all of the 
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variations considered.  It does not preclude the possibility of their being other algorithms 

that would produce better results, but it limits this as much as reasonably possible. 

 

The results given illustrate that the booking algorithm used can make a considerable 

difference to the waiting times of patients and the ability of the hospital to treat them 

within target dates.  They also show that the best algorithm to use depends on the 

objectives of the team and the importance placed on giving patients plenty of notice of 

their operation dates.  

 

When comparing the algorithms hospital managers should consider whether or not 

fairness each type of fairness is important compared to treating patients within the times 

required by their clinical need or waiting time targets.   

 

If patients can be given only a week or two’s notice, then delayed algorithms where 

patients are only booked a couple of weeks ahead of surgery provide the best results in 

terms of the percentage of patients treated before their due dates.  Such delays are also 

fairest to the most urgent patients allowing them to be treated quickly and in terms of 

avoiding ‘overtakes’.  This agrees with the results from general scheduling literature 

when dealing with online problems, of which this problem is a variation. 

 

If it is considered acceptable to book some patients (predominantly those who are most 

urgent and so have to be booked on short notice anyway), then restricting a portion of 

the available theatre time so that it only becomes available for booking a few weeks 

before it each slot takes place, also achieves high numbers of patients treated within due 

dates.  This approach allows patients to be booked at the time of decision that they 

require treatment and have a larger proportion treated within their due dates.  The 

disadvantage of this method of booking is that it is less fair in terms of the number of 

patients who are treated before those with earlier due dates and in terms of the waiting 

times of less urgent patients correlating with their urgency.  Thus, if the ‘fit’ of operation 

durations to theatre times is tight, then restricting the theatre time available for booking 

will make a substantial difference in terms of treating patients by their due dates.  

However, if the amount of theatre time available is such that there is enough flexibility 

to treat patients by their due dates anyway, then this policy may create unnecessary 

unfairness in the system. 
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If either form of short notice is not considered permissible, then the amount of notice 

required influences the choice of algorithm.  To avoid unused theatre time, if there is a 

space available the following week, then patients should be booked into it.  Otherwise, 

they should be booked as late as possible to allow space for more urgent arrivals to 

arrive later.  If the period of notice required is close to 10 weeks, then where there are 

slots that patients will fill exactly they should be used, although this will increase the 

number of overtakes. 

 

In summary, the best algorithm depends on the priorities of the decision maker, 

particularly on how much the booking decision can be delayed or the ability to book into 

theatre time released only close to the time of the surgery slots.  This research provides 

guidance on which algorithms will suit different sets of priorities. 

 

Throughout this modelling close links have been maintained with the surgeon whose 

data it is based on and he has been making changes to his scheduling patterns based on 

the results. 
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7. Concluding Remarks 

This section summarises the entire project demonstrating its impact on and contribution 

to hospital operating theatre scheduling; discusses how the field could develop in future; 

and includes concluding remarks based on the thesis as a whole. 

 

7.1 Summary of contributions  

The literature review reveals that a range of operational research techniques can be 

applied to different aspects of operating theatre scheduling and that the problems 

involved are sufficiently complex that is necessary to consider them separately.  Based 

on this, we also separated the problem into separate stages.  The literature review also 

identifies a lack of evidence of implementation of studies in this area of research. 

 

In order to explore possible reasons for the lack of implementation and to ensure we 

started with a clear understanding of the challenges involved in theatre scheduling from 

the point of view of hospital staff, we started with a qualitative study.  This uses 

cognitive mapping to illustrate the issues and their interconnectedness, as well as 

allowing us to test our understanding with theatre staff.  Combined with the information 

from the literature, it allowed us to identify that challenges to implementation include 

flexibility to take account of the characteristics of a particular hospital and that staff are 

very busy with immediate concerns, so lack the time to investigate models that may help 

them in the longer term. 

 

The literature review identifies three main levels of theatre scheduling problems, 

strategic, tactical and day-to-day bookings.  We considered the strategic problem to be 

more political and hospital specific, and hence felt more impact could be achieved by 

focussing on the tactical and day-to-day challenges. 

 

At the tactical level, we explore the generation of master theatre timetables and our 

results demonstrate the reduction in the maximum number of beds required that can be 

achieved by considering the impact of the theatre timetable on this aspect of the hospital.  

Unlike previous studies, our model allows surgeons preferences for theatre slots to be 

taken into account where possible.  The model also allows for consideration of days 

when surgeons are unavailable, variations in types of theatre and the types of surgery 
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that can be conducted in them, limited equipment availability and varying the length of 

the cycle over which the timetable is repeated.  Previous studies have not incorporated 

this full range of factors. 

 

The tactical model is set up with an Excel user interface, as hospital staff members are 

generally familiar to with Excel this makes it more accessible to them; it also makes it 

possible to adapt the model to a different hospital or to changing needs in a 

straightforward manner.  The user interface allows users to adjust the weights given to 

the various objectives without needing to reload all of the data.  This allows them to 

explore a variety of solutions so that they can take account of tacit information that 

could not be included in the model when selecting a new timetable.  This model provides 

a significant improvement on previous technique used in local hospitals to develop new 

timetables.  In particular, due to the relative speed at which the model suggests 

timetables, it can quickly and without bias demonstrate the extent of the differences 

attributed to a specific timetable. 

 

The value of the qualitative modelling became apparent when we transferred to working 

with a surgeon in a different hospital to consider day-to-day scheduling, and our 

understanding of theatre scheduling transferred to the new scenario. 

 

In the day-to-day scheduling part of this project, we focus on the advanced booking of 

individual patients for surgery.  At this stage, we use simulation to explore a range of 

algorithms for booking patients, with the algorithms derived from a mixture of 

scheduling literature and ideas from hospital staff.  This reveals that, as in online 

scheduling, more efficient schedules can be achieved by delaying scheduling at least part 

of the scheduling as close to the time of surgery as possible.  In surgery, the extent to 

which the decision can be delayed is limited by the need to give patient adequate 

warning to make arrangements to attend hospital for their surgery.   

 

The data collection for this part of the project revealed the importance of considering all 

aspects of the time taken for operations when booking patients, for example allowing for 

the time required to ‘turnaround’ the operating theatre between patients.  The testing of 

algorithms also demonstrated the intuitively obvious point that it is important to use 

theatre slots as fully as possible.   
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The testing of algorithms also reveals that the most efficient schedules are obtained 

when patients are considered for scheduling in order of increasing due date, prioritising 

in non-decreasing order of expected operation duration when due dates are equal. 

 

All of the work in this thesis has been undertaken working closely with partner hospitals 

to ensure that the problems addressed are real challenges faced in hospitals and that 

sufficient factors are considered to make the results useful.  At the tactical level, we have 

incorporated a wider range of factors and greater flexibility than other studies on this 

aspect of theatre scheduling.  At the day-to-day scheduling level we have conducted a 

wider exploration of potential scheduling rules than other studies, drawing on the wealth 

of experience in the broader field of machine scheduling and suggestions from surgeons 

for inspiration. 

 

The different stages of this project presented different challenges and constraints, 

therefore requiring different methodologies.  As a whole, this thesis demonstrates that a 

range of methodologies can be applied to different stages of a problem to develop 

effective solutions. 

 

7.2 Future research on hospital operating theatre scheduling  

This section makes suggestions for further research applying operational research 

methods to the challenges surrounding hospital operating theatre scheduling. 

 

As in previous studies, we have treated the tactical and day-to-day scheduling problems 

in isolation.  In reality, the schedules produced will interact with each other, for example 

the day-to-day scheduling rules used could change the bed usage for a theatre slot of a 

particular surgeon, which would change the results of the tactical level schedule.  It 

would be particularly interesting to conduct a long term study with a hospital 

implementing both sets of results.  Then, using data since the change in day-to-day 

scheduling rerun the tactical model and adjust the theatre timetable, and so on.  This 

approach has the potential to iteratively improving the entire timetabling system. 

 

Given that there are seasonal variations in the demand for certain types of surgery and 

other pressures on hospitals, such as the winter flu season, it would be interesting to 
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explore the benefits of varying the theatre timetable to better fit seasonal variation in 

demand.  To some extent this could be achieved by running different timetables at 

different times of year, but could a truly dynamic model taking account of factors like 

seasonal variation and changes in the numbers of referrals to hospitals do better?  This 

would be a significant change to the system to which hospital staff members are 

accustomed, so the challenges involved may be too substantial a barrier to 

implementation. 

 

At the day-to-day scheduling level, it would be interesting to see what improvements 

could be gained by using more complex algorithms that take account of the current 

‘busyness’ of the system.  With this approach, less urgent patients are booked earlier 

when the variation in arrivals has resulted in fewer cases in the system, this increases the 

fairness.  However, the complexity of the system should be balanced against the need for 

transparency in the system and the easy with which current hospital systems can 

implement it. 

 

Exploration of other specialities with different case mixes and including consideration of 

the impact of the number of beds available on day-to-day theatre scheduling would also 

be worthwhile. 

 

It would also be valuable to explore the effects on the scheduling of urgent patients of 

the routine patients becoming more urgent as they reach come close to the 18 week 

waiting limit as discussed in Section 5.1. 

 

The most significant challenge for the application of operational research to theatre 

scheduling remains getting the results implemented as widely as possible.  It is our hope 

that the inclusion of qualitative modelling demonstrated in this theses, provides an 

example that will assist with addressing this challenge.  Following the production of this 

thesis we will continue to work with local hospitals to implement its recommendations. 
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Appendix A 

The table below expands on the meaning of the concepts given in Figure 1, where they 

are not apparent from the text given on the diagram. 

 

Concept as on Figure 1 Explanation 

1. Meet Targets Meeting the combined targets including 

waiting times and cancellation targets. 

2. Reduce waiting lists/times Reducing the time patients wait between 

the decision that they requires surgery and 

their operations taking place. 

3. Increase Productivity Increasing the number of operations taking 

place in a each theatre slot. 

4. Reduce Cancellations Reducing the number of patients whose 

operations are cancelled. 

5. Advertise via practice managers Sending information to GP’s via practice 

managers. 

6. Introduce regular GP newsletter/ 

booklet of surgeon info/website 

 

7. Raise GP awareness of when to 

refer (consider availability) and fitness 

for surgery 

 

8. More well being activities in the 

community 

Increase the activities like falls clinics 

aimed at reducing the requirement for 

surgery. 

9. More filtered by physio Patients receiving physiotherapy which 

reduces the number requiring surgery. 

10. Increase face to face contacts with 

GPs e.g. quarterly meetings cycling 

through specs 

Increasing contact between surgeons and 

GPs to improve communication. 

11. Provide information on procedures 

for GPs to inform patients 

 

12. Reduce Outpatient numbers  

13. Increasing proportion of out 

patients need surgery 

 

14. Raise GP awareness of capacity 

and surgeons specialisations so refer 
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appropriately 

15. Reduce demand for surgery  

16. Allow patients to opt in to receive 

info. by email 

 

17. Introduce contacting patients 48 

hours before op 

Contacting patients before their operations 

to check that they are fit and able to attend. 

18. Cancel op. if DNA pre-assessment If patients do-not-attend their pre-

assessment then cancel their operations. 

19. Include more in pre-assessments  

20. Reduce number of appt 

inconvenient 

Reduce the number of cancellations of 

surgery because the appointment was 

inconvenient to the patient. 

21. Reduce no of DNA Reduce the number of do-not-attends 

22. Reduce no. of Pre-op guidance not 

followed 

 

23. More opportunity for patients to 

understand what is involved / consent 

at pre-assessment 

 

24. Reduce number of self heal/die on 

list 

 

25. Reduce patient cancellations  

26. Reduce no. of operation not 

required 

Reduce the number of cancellations due to 

a clinical/patient decision that the 

operation is no longer required 

27. Reduce no. of unfit for surgery  

28. Reduce clinical cancellations  

29. Whole hospital work later on 

specific days  

Either by having extended theatre slots or 

additional evening theatre slots with the 

backup of other hospital systems. 

30. Increased staff flexibility   

31. Book in front of target i.e. shorter 

waits 

Booking patients to be seen well within 

their waiting time targets 

32. Improve specialty/quality mix of 

theatre staff / re-design roles 

 

33. Run 3 session days  

34. More all day lists  
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35. Plan case mix around TSSU turn 

around so equipment not such limiting 

factor 

Improvements to the service for sterilising 

theatre equipment. 

36. Reduce turnaround times for 

equipment 

Reduce the times between one operation 

ending and the next beginning. 

37. Book at decision to operate Booking patients theatre day at the time 

when the decision to operation on them is 

made. 

38. Where appropriate have two 

Reg/staff grade running surgeries with 

consultants moving between them. 

 

39. Increase capacity  

40. Equipment availability less of a 

limiting factor 

 

41. Proper utilisation of additional kit  

42. Same Anaes + Surg operating list 

to reduce delays 

Having the same team working together. 

43. Increase proportion of sessions 

that start on time 

 

44. Reduce over booking/overruns  

45. Increase time available for infection 

control  

 

46. Reduce occurrence of missing 

notes/ admin error 

 

47. Computerise notes  

48. Use capacity when surgeons on 

leave etc. 

Ensuring other surgeons use the theatre 

time if the surgeon its allocated is on leave 

or on a training course etc. 

49. Have notes ready Having information on patients ready at 

the start of the surgical slot. 

50. Get ordered list to wards sooner Ensuring wards know in advance the order 

in which to send patients for surgery. 

51. Ability to book patients further in 

advance 

 

52. Have coordinator to oversee 

bookings/theatres 

 

53. Constraints on system e.g. theatre 

type required 
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54. More beds available  

55. Bring more patients in early to 

make sure they get beds 

Bringing in patients the night before their 

surgery is booked, purely to ensure that 

they have a bed after surgery (to avoid 

cancellation due to lack of beds). 

56. Increase efficiency of bed usage – 

needs further consideration to 

determine how to do this effectively 

 

57. Increase matching of bookings to 

available time 

 

58. Have necessary facilities open, 

before surgery due to start 

 

59. Increase awareness of list 

availability 

 

60. Lists are available on central drive  

61. Use a diary system, booking only if 

bed, theatre time, equipment all 

available 

 

62. Ability to plan to smooth demand 

for beds 

 

63. Reduce use of beds by medical 

patients 

Use of surgical beds by patients from not 

requiring surgery due to lack of beds 

elsewhere in the hospital. 

64. Improve predictability of medical 

case load 

 

65. Development of bed model for 

medicine 

 

66. Dedicate lists LA or GA to make 

best use of anaesthetists 

Having surgical lists where all patients are 

either requiring local anaesthetic or general 

anaesthetic. 

67. Procedures should be coordinated 

in advance  

 

68. ?Designate sessions of all 

major/minor cases? 

 

69. Ability to include bed usage in 

planning 

 

70. Optimise Theatre Timetable  

71. Improved ability predict to LOS Improve ability to predict length of stay in 
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hospital. 

72. Ability to predict bed usage  

73. Increase understanding of 

variability of demand 

 

74. Understand seasonal variations – 

is this significant? 
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Appendix B 

The information store of the simulation model holds the following information, all of the 

references relate to the list given in 5.4.2.1.  The list is given in alphabetical order (with 

those starting with capitals followed by those starting with lowercase letters). 

 Avg Emergency wait – used for returning the average emergency wait as 

calculated in End Run Logic (see 17a ii) 

 Avg VR Wait – used for returning the average wait for VR patients as calculated 

in End Run Logic (see 17a ii above) 

 AvgUtilizationThur – used for returning the average utilization on Thursdays as 

calculated in End Run Logic (see 17b vi) 

 AvgUtilizationTue – used for returning the average utilization on Tuesdays as 

calculated in End Run Logic (see 17b vi) 

 Catduein10avgwait – used for returning the average waiting time for cataract 

patients whose initial time to target is 10 weeks as calculated in End Run Logic 

(see 17b vii)  

 Catduein10maxwait – used for returning the maximum waiting time for cataract 

patients whose initial time to target is 10 weeks as calculated in End Run Logic 

(see 17b vii)  

 Catduein10minwait – used for returning the minimum waiting time for cataract 

patients whose initial time to target is 10 weeks as calculated in End Run Logic 

(see 17b vii) 

 Catduein10sumsqu – used for returning the sum of squared waiting times for 

cataract patients whose initial time to target is 10 weeks as calculated in End Run 

Logic (see 17b vii), this is used to calculate the standard deviation 

 Catduein16avgwait – used for returning the average waiting time for cataract 

patients whose initial time to target is 16 weeks as calculated in End Run Logic 

(see 17b vii) 

 Catduein16maxwait – used for returning the maximum waiting time for cataract 

patients whose initial time to target is 16 weeks as calculated in End Run Logic 

(see 17b vii)  

 Catduein16minwait – used for returning the minimum waiting time for cataract 

patients whose initial time to target is 16 weeks as calculated in End Run Logic 

(see 17b vii) 
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 Catduein16sumsqu – used for returning the sum of squared waiting times for 

cataract patients whose initial time to target is 16 weeks as calculated in End Run 

Logic (see 17b vii), this is used to calculate the standard deviation 

 Catduein4avgwait – used for returning the average waiting time for cataract 

patients whose initial time to target is 4 weeks as calculated in End Run Logic 

(see 17b vii) 

 Catduein4maxwait – used for returning the maximum waiting time for cataract 

patients whose initial time to target is 4 weeks as calculated in End Run Logic 

(see 17b vii)  

 Catduein4minwait – used for returning the minimum waiting time for cataract 

patients whose initial time to target is 4 weeks as calculated in End Run Logic 

(see 17b vii) 

 Catduein4sumsqu – used for returning the sum of squared waiting times for 

cataract patients whose initial time to target is 4 weeks as calculated in End Run 

Logic (see 17b vii), this is used to calculate the standard deviation 

 Count Cat in Target – used to count the number of cataract patients treated within 

their due date (see 8b and 17a i) 

 Count CatTreated – used to keep track of the number of cataract patients treated 

to enable calculations (for example in 17a ii). 

 Count Emergency Treated – used to keep track of the number of emergency 

patients treated to enable calculations (for example in 17a ii). 

 Count Emergency in Target – used to count the number of emergency patients 

treated within their due date (see 8d and 17a i) 

 Count VR Treated – used to keep track of the number of VR patients treated to 

enable calculations (for example in 17a ii). 

 Count VR in Target – used to count the number of VR patients treated within 

their due date (see 8c and 17a i) 

 Count bookings – used to keep track of the number of patients booked. 

 Count routine treated – used to keep track of the number of routine patients 

treated to enable calculations (for example in 17a ii). 

 Count urgent treated – used to keep track of the number of urgent patients treated 

to enable calculations (for example in 17a ii). 
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 CountDays – used in the booking algorithms to look through the slots available 

on Tuesdays 

 CountDays2 – used in the booking algorithms to look through the slots available 

on Thursdays 

 CountThurExactFits – used in the booking algorithms to keep track of the 

number of patients who have been assigned to slots which they fill exactly on 

Thursdays 

 CountThurtoolong – used to keep track of the number of the number of slots that 

over run by more than acceptable overtime on Thursdays (see 17b v) 

 CountTueExactFits – used in the booking algorithms to keep track of the number 

of patients who have been assigned to slots which they fill exactly on Tuesdays 

 CountTuetoolong – used to keep track of the number of the number of slots that 

over run by more than acceptable overtime on Tuesdays (see 17b v) 

 Daysfullybooked – used in some booking algorithms to keep track of the number 

of the last consecutive day from the current simulation time this is fully booked 

(to allow such days to be ignored when making future bookings). 

 ExpTurn – the expected turnaround time between patients (used in the booking 

algorithms to allow time for turnarounds between patients). 

 MaxUtilizationThur – used to return the value of the maximum utilization for a 

Thursday (see 17b iii) 

 MaxUtilzationTue – used to return the value of the maximum utilization for a 

Tuesday (see 17b iii) 

 MaxVRwait – used to return the value of the maximum waiting time for a VR 

patient (see 8c) 

 Maxcatwait– used to return the value of the maximum waiting time for a cataract 

patient (see 8b) 

 Maxemergwait – used to return the value of the maximum waiting time for an 

emergency patient (see 8a) 

 Maxroutinewait – used to return the value of the maximum waiting time for a 

routine patient (see 8d) 

 Maxurgentwait– used to return the value of the maximum waiting time for an 

urgent patient (see 8d) 
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 MinUtilizationThur – used to return the value of the minimum utilization for a 

Thursday (see 17b iv) 

 MinUtilizationTue – used to return the value of the minimum utilization for a 

Tuesday (see 17b iv) 

 Most Empty2 – used in some booking algorithms to keep track of which day has 

the least bookings in it, out of a set checked. 

 Overtakes – used to keep track of the number of overtakes (as described in 17b ix 

above). 

 Per cent Cat in Target – used to return the percentage of cataract patients treated 

before their due dates (see 17a i) 

 Per cent Emergency in Target – used to return the percentage of emergency 

patients treated before their due dates (see 17a i) 

 Per cent VR in Target – used to return the percentage of VR patients treated 

before their due dates (see 17a i) 

 Per cent routine in target – used to return the percentage of routine patients 

treated before their due dates (see 17a i) 

 Per cent urgent in target – used to return the percentage of urgent patients treated 

before their due dates (see 17a i) 

 Results Collection Period – the number of weeks for which the simulation runs, 

set at 300 (see Section 6.1.3). 

 Simulation Time – the clock in Simul8, gives the current day 

 Sum Cat Wait Time – used to calculate the average waiting time for cataract 

patients (see 16d and 17a ii) 

 Sum Emergency wait time – used to calculate the average waiting time for 

emergency patients (see 16d and 17a ii) 

 Sum VR Wait Time – used to calculate the average waiting time for VR patients 

(see 16d and 17a ii) 

 Sum routine wait time – used to calculate the average waiting time for routine 

patients (see 16d and 17a ii) 

 Sum urgent wait time – used to calculate the average waiting time for urgent 

patients (see 16d and 17a ii) 

 Test – used in some algorithms 

 Testorig – used in some algorithms 
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 Thur slot length – the maximum booking limit for Thursdays usually set at 0.21, 

where 0.01 is 10 minutes.  This can be adjusted to allow more or less time for 

emergencies 

 Thurexactfit – used in some of the booking algorithms which look for slots 

which the patients expected theatre time will exactly fill to the booking limit 

 TotalUtilzationThur – used to calculate the average utilization on Thursdays (see 

17b vi) 

 TotalUtilzationThurSumsqu – used to generate the values required to calculate 

the standard deviation of utilization on Thursdays (see 17b vii) 

 TotalUtilzationThuravSumsqu – used to generate the values required to calculate 

the standard deviation of utilization on Thursdays (see 17b vii) 

 TotalUtilzationTue – used to calculate the average utilization on Tuesdays (see 

17b vi) 

 TotalUtilzationTueSumsqu – used to generate the values required to calculate the 

standard deviation of utilization on Tuesdays (see 17b vii) 

 TotalUtilzationTueavSumsqu – used to generate the values required to calculate 

the standard deviation of utilization on Tuesdays (see 17b vii) 

 Tue slot length – the maximum booking limit for Tuesdays usually set at 0.215, 

where 0.01 is 10 minutes.  This can be adjusted to allow more or less time for 

emergencies 

 Tueexactfit – used in some of the booking algorithms which look for slots which 

the patients expected theatre time will exactly fill to the booking limit 

 Unique No Counter – used to count the unique numbers that have been assigned 

so that none is assigned twice (see 1a, 2) 

 VRduein10avgwait - used to return the average waiting time for VR patients due 

to be treated 10 weeks from their arrival, for considering the fairness of the 

algorithms (see 17b viii) 

 VRduein10maxwait - used to return the maximum waiting time for VR patients 

due to be treated 10 weeks from their arrival, for considering the fairness of the 

algorithms (see 17b viii) 

 VRduein10minwait- used to return the minimum waiting time for patients VR 

due to be treated 10 weeks from their arrival, for considering the fairness of the 

algorithms (see 17b viii) 
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 VRduein10sumsqu - used to return the values needed to calculate the standard 

deviation of the waiting time for VR patients due to be treated 10 weeks from 

their arrival, for considering the fairness of the algorithms (see 17b viii) 

 VRduein16avgwait - used to return the average waiting time for VR patients due 

to be treated 16 weeks from their arrival, for considering the fairness of the 

algorithms (see 17b viii) 

 VRduein16maxwait - used to return the maximum waiting time for VR patients 

due to be treated 16 weeks from their arrival, for considering the fairness of the 

algorithms (see 17b viii) 

 VRduein16minwait - used to return the minimum waiting time for VR patients 

due to be treated 16 weeks from their arrival, for considering the fairness of the 

algorithms (see 17b viii) 

 VRduein16sumsqu - used to return the values needed to calculate the standard 

deviation of the waiting time for patients due to be treated 16 weeks from their 

arrival, for considering the fairness of the algorithms (see 17b viii) 

 VRduein4avgwait - used to return the average waiting time for VR patients due 

to be treated 4 weeks from their arrival, for considering the fairness of the 

algorithms (see 17b viii) 

 VRduein4maxwait - used to return the maximum waiting time for VR patients 

due to be treated 4 weeks from their arrival, for considering the fairness of the 

algorithms (see 17b viii) 

 VRduein4minwait - used to return the minimum waiting time for VR patients 

due to be treated 4 weeks from their arrival, for considering the fairness of the 

algorithms (see 17b viii) 

 VRduein4sumsqu - used to return the values needed to calculate the standard 

deviation of the waiting time for VR patients due to be treated 4 weeks from their 

arrival, for considering the fairness of the algorithms (see 17b viii) 

 Valuemostempty – used in some algorithms to record the most empty slot 

considered so far when searching through slots on Tuesdays, initially set to 

contain a high value which will be replaced 

 Valuemostempty2 – used in some algorithms to record the most empty slot 

considered so far when searching through slots on Thursdays, initially set to 

contain a high value which will be replaced 
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 Warm Up Period – contains the length of time during which results will not be 

collected, to ensure the results reflect the effects of the algorithm when running 

with patients already booked rather than when starting with an empty system (see 

Section 6.1.3). 

 avgusedThur – used to calculate the average length of a Thursday session (see 

17b vi) 

 avgusedTue – used to calculate the average length of a Tuesday session (see 17b 

vi) 

 booking limit Thur – stores the limit on the amount of time that can be booked on 

Thursdays, set to 3 and a half hours unless specified otherwise in the algorithms 

used 

 booking limit Tue – stores the limit on the amount of time that can be booked on 

Thursdays, set to just over 3 and a half hours unless specified otherwise in the 

algorithms used 

 booking limitThuremerg – allows a limit on the amount of time that can be 

booked including emergency patients on Thursdays 

 booking limitTueemerg– allows a limit on the amount of time that can be booked 

including emergency patients on Tuesdays 

 count routine in target – used to count the number of routine patients treated 

within their due date (see 8d and 17a i) 

 count urgent in target – used to count the number of urgent patients treated 

within their due date (see 8d and 17a i) 

 countThur – used to keep track of the number of Thursdays on which operations 

have occurred, used in calculations like the average utilization and slot length on 

Thursdays (see 17b vi) 

 countTue – used to keep track of the number of Thursdays on which operations 

have occurred, used in calculations like the average utilization and slot length on 

Thursdays (see 17b vi) 

 countdayscalc – used in some of the algorithms to store data relating to the 

number of days considered 

 i – used as a dummy to keep track of slots considered in some algorithms 

 maxusedThur – used to keep track of and return the maximum length of a slot on 

a Thursday (see 17b i) 
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 maxusedTue – used to keep track of and return the maximum length of a slot on 

a Tuesday (see 17b i) 

 minusedThur – used to keep track of and return the minimum length of a slot on 

a Thursday (see 17b ii) 

 minusedTue – used to keep track of and return the minimum length of a slot on a 

Tuesday (see 17b ii) 

 totalusedThur – used to calculate the average length of a theatre slot used on a 

Thursday (see 17b vii) 

 totalusedThurSumsqu– used to calculate the standard deviation of the length of a 

theatre slot used on a Thursday (see 17b vii) 

 totalusedThuravSumsqu– used to calculate the standard deviation of the length of 

a theatre slot used on a Thursday (see 17b vii) 

 totalusedTue– used to calculate the average length of a theatre slot used on a 

Tuesday (see 17b vii) 

 totalusedTueSumsqu– used to calculate the standard deviation of the length of a 

theatre slot used on a Tuesday (see 17b vii) 

 totalusedTueavSumsqu– used to calculate the standard deviation of the length of 

a theatre slot used on a Tuesday (see 17b vii)
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Appendix C 

This appendix contains additional results from the tests discussed in Section 6.8. 

 

Table 16: Other results for the best algorithms, when applied to the variation of the 

fitted data. 
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Mean slot length 
Tuesday % 

90.2 90.7 90.2 90.2 90.2 90.2 90.7 90.7 90.3 89.8 

Mean slot length 
Thursday % 

97.9 97.2 98.0 98.0 98.0 97.9 97.2 97.2 97.7 98.5 

% of Tuesdays 
overrunning 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

% of Thursdays 
overrunning 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Mean Utilization on 
Tues % 

74.5 74.9 74.5 74.5 74.5 74.5 74.9 75.0 74.6 74.2 

Mean Utilization on 
Thurs % 

80.4 79.8 80.5 80.5 80.5 80.4 79.8 79.6 80.2 80.9 

Number of Overtakes 1565 704 816 1213 1422 1553 702 680 1865 3589 

 

Table 17: Other results for the best algorithms, when applied to the variation of the 

fitted data, continued. 
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Mean slot length 
Tuesday % 

89.8 90.6 90.6 90.2 89.5 89.3 90.6 90.6 

Mean slot length 
Thursday % 

98.6 97.5 97.6 98.3 99.5 99.8 97.5 97.4 

% of Tuesdays 
overrunning 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

% of Thursdays 
overrunning 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Mean Utilization on 
Tues % 

74.7 74.9 74.9 74.5 73.9 74.1 74.9 74.9 

Mean Utilization on 
Thurs % 

79.7 80.0 79.9 80.7 81.7 81.2 80.0 79.8 

Number of Overtakes 3176 697 731 2119 3698 3654 697 887 
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