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Multiple imputation is a commonly used approach to deal with missing data and to protect
confidentiality of public use data sets. The basic idea is to replace the missing values or
sensitive values with multiple imputation, and we then release the multiply imputed data
sets to the public. Users can analyze the multiply imputed data sets and obtain valid
inferences by using simple combining rules, which take the uncertainty due to the presence
of missing values and synthetic values into account. It is crucial that imputations are drawn
from the posterior predictive distribution to preserve relationships present in the data and
allow valid conclusions to be made from any analysis. In data sets with different types of
variables, e.g. some categorical and some continuous variables, multivariate imputation by
chained equations (MICE) (Van Buuren (2011)) is a commonly used multiple imputation
method. However, imputations from such an approach are not necessarily drawn from a
proper posterior predictive distribution. We propose a method, called factored regression
model (FRM) to multiply impute missing values in such data sets by modelling the joint
distribution of the variables in the data through a sequence of generalised linear models.
We use data augmentation methods to connect the categorical and continuous variables
and this allows us to draw imputations from a proper posterior distribution. We compare
the performance of our method with MICE using simulation studies and on a breast-
feeding data. We also extend our modelling strategies to incorporate different informative
priors for the FRM to explore robust regression modelling and the sparse relationships
between the predictors. We then apply our model to protect confidentiality of the current
population survey (CPS) data by generating multiply imputed, partially synthetic data
sets. These data sets comprise a mix of original data and the synthetic data where values
chosen for synthesis are based on an approach that considers unique and sensitive units
in the survey. Valid inference can then be made using the combining rules described by
Reiter (2003). An extension to the modelling strategy is also introduced to deal with the
presence of spikes at zero in some of the continuous variables in the CPS data.
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Chapter 1

Introduction

This thesis develops imputation modelling strategies that can be used to handle the prob-
lems of missing data and to protect confidentiality of public use data sets. We propose
a method, called factored regression model (FRM) to multiply impute missing values in
data sets that contain categorical and continuous variables. We model the joint distri-
bution of the variables in the data through a sequence of generalised linear models, we
then connect the categorical and continuous variables through data augmentation meth-
ods. This allows us to draw imputations from a proper posterior predictive distribution
in order to preserve the statistical properties in the imputed data sets. This model can
also be applied to generate partially synthetic data to protect confidentiality of data sets.
The key idea is to treat the values being selected for synthesis as missing data, and then
use the proposed model to replace the selected values with synthetic values, hence releas-
ing multiply imputed, partially synthetic data sets. In this chapter, we first describe the
general problems of missing data and some common strategies to handle them, and we
then describe our modelling strategy to impute the missing values in general terms. In
the second part of this chapter we will review the area of statistical disclosure control and
the use of partially synthetic data to protect confidentiality of public use data sets, and
describe the benefits of our modelling approach.

1.1 Missing data problems

Survey data sets often consist of large numbers of variables which have different measure-
ment scales. Typically, such data sets have some continuous, binary, ordinal, nominal,
and semi-continuous variables. The presence of missing values in such data sets can cause
problems for the data users who don’t have the required skills and knowledge to deal with
the missing data. Common statistical procedures used by the data users normally remove
units with missing values, and the users can then perform analysis on the remaining data.
This method is called the complete case analysis and it might lead to biased estimates
of parameters if the missing mechanism is not missing completely at random. Ad-hoc
methods such as mean imputation, or single imputation from regression models have been
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considered. However, studies have shown that while these ad-hoc methods are simple to
use, they can lead to biased estimates of parameters (Schafer and Graham (2002)). Both
the complete case analysis and ad-hoc methods fail to reflect any uncertainty due to pres-
ence of missing data, as an alternative, we use multiple imputation, which was proposed
by Rubin (1987) to tackle this problem.

Imputation is the process where data imputers replace the missing values with some
simulated values. An important reason why imputation is used is because data imputers
and analysts can be distinct entities. The analysts might not have the required knowledge
to tackle the problems arising from the presence of missing values in the data sets. Hence, it
is the imputers’ responsibility to deal with the missing data problems. Multiple imputation
is a statistical technique for handling incomplete data and allow valid inferences to be
made. It simply extends single imputation by replacing each missing value by m sets
of imputed values, which are drawn from a plausible distribution. More specifically, the
m sets of the imputations will fill in the missing values m times to create m completed
data sets with no missing values. The data analysts can apply the complete-data analysis
to each of the completed data set and combine the results using simple combining rules
proposed by Rubin (1987). The data analysts can then obtain valid statistical inferences
using the combined results which reflect the uncertainty due to presence of missing values.

There are two common strategies used to impute missing values: the joint modelling
(JM) and the fully conditional specification (FCS). The joint modelling approach assumes
that all variables that are included in the imputation model jointly follow a multivariate
distribution. The commonly used multivariate distributions are the multivariate normal
distribution and the general location model (Schafer (1997)). The main advantage of this
approach is that it leads to imputation procedures whose statistical properties are known,
as the joint modelling is based on parametric statistical theory. However, any important
relations between the variables in the data set that are outside that theoretical structure
of the imputation model might not be adequately captured. Hence the imputations for
missing data depend heavily on the imputation model that we define, and as a result,
might lead to biased inference if the imputation model is mis-specified. Also, large data
sets usually consist of a mixture of categorical, continuous and semi-continuous variables,
and the assumption of multivariate normality is often not plausible, as it lacks flexibility
needed to represent data with such features.

An alternative approach to impute missing data is called fully conditional specifica-
tion (FCS) proposed by Van Buuren (2007). FCS is a flexible alternative that specifies
the multivariate model by a series of conditional regression models, one for each incom-
plete variable. The regression models are specified for each variable with missing values,
conditional on all of the other variables in the imputation model. Imputations are per-
formed on a variable by variable iterative basis. The main advantage of FCS is that it is
flexible to use as it does not restrict the conditional distributions to being normal, so that
univariate regression models can be tailored appropriately for data sets with categorical,
continuous and semi-continuous variables. Common options for the univariate conditional
distributions are normal regression models for continuous variables, logistic regressions
for binary variables and ordered logistic regressions for ordinal variables. Other choices
of conditional regression models can be found in Van Buuren (2007). FCS is flexible
and easy to apply, but its statistical properties are difficult to establish. This method is
available as a package, called multivariate imputation by chained equations (MICE) in
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the software package R (http://cran.r-project.org/web/packages/mice/index.html). This
method is easy to apply but has no guarantee of generating imputations from a proper
posterior predictive distribution. A similar idea has also been proposed by Raghunathan
et al. (2001). For more details on comparison between both strategies, please see Lee and
Carlin (2010) and Li et al. (2012).

One of the main challenges in using the joint modelling approach is defining a joint
model for complex data sets that contain categorical and continuous variables with a non-
monotone missing pattern. This motivates us to propose a joint modelling approach to
multiply impute missing values in data sets containing mixed categorical (binary, ordinal
and nominal) and continuous variables with a non-monotone missing pattern. In order to
preserve statistical properties in the imputed data sets, imputed values should be drawn
from a plausible distribution. The missing values are drawn from a posterior predictive
distribution that is the distribution of the missing values conditional on the observed val-
ues. However, this distribution is often not determined analytically in data sets with mixed
binary, ordinal, nominal and continuous variables with a non-monotone missing pattern.
Hence, we use Markov chain Monte Carlo (MCMC) techniques to sample the missing val-
ues from their posterior predictive distributions. For a given a data set, we model the
joint distribution of the variables by decomposing the joint distribution into a sequence
of univariate conditional distributions. Each of these univariate conditional distributions
is a generalised linear model. This approach of modelling the joint distribution has been
considered by others such as Lipsitz and Ibrahim (1996) and Ibrahim et al. (2005).

By modelling the joint distribution of all the variables in the data through a sequence
of generalised linear models, we can draw imputations from a proper posterior distribution.
Specifically, we introduce latent variables underlying the binary and ordinal variables in
our data set (Albert and Chib (1993)), allowing us to use a data augmentation technique
proposed by Tanner and Wong (1987) to impute the missing values by connecting the
latent variables to the continuous variables through a multivariate normal distribution.
In data sets containing only binary, ordinal and continuous variables, the full conditional
distributions of all the unknowns (missing data and parameters) are available in closed
form and hence a Gibbs sampler can be used to sample the unknowns from their joint
posterior distributions. In the case where we also have nominal variables, certain full
conditional distributions are not available in closed form, hence a Metropolis-Hastings
step is needed to sample certain parameters from their posterior distributions. We propose
an innovative independent Metropolis-Hastings proposal that performs well in updating
the necessary parameters from their full conditional distributions. We will discuss this
modelling approach further in Chapter 3.

We also extend our modelling strategies to include robust regression modelling as well
as exploring the potential sparse relationships between the variables in the data sets. When
we decompose the joint distribution into a sequence of univariate linear regression models,
the error terms of the univariate linear regression models are assumed to be normally and
independently distributed, each with zero mean and common variance. A known limitation
with this normality assumption is its non-robustness, which does not allow for heavy tailed
error distributions. To deal with the heavy tailed features, we assume that the errors of
the linear regression models follow a marginal t-distribution, which are more robust to the
outliers in the data. We also assign a marginal t-prior to the regression parameters in our
Gibbs sampler, and this will still give us a set of tractable full conditional distributions

3



which allow us to sample the unknowns (missing data and parameters) from their joint
posterior distributions.

Another approach that has been considered in extending our modelling strategies
is incorporating the Bayesian Lasso (Park and Casella (2008)) into our model. This
is the approach where we are exploring the potential sparse relationships between the
variables in the data set. The Bayesian Lasso has features such as shrinking the regression
coefficients toward zero, resulting in some regression coefficients identically equal to zero.
Such shrinkage features can reduce the variance of the estimates by sacrificing a little
bias, and hence may increase the prediction accuracy which could potentially lead to more
plausible imputations for our model.

Finally, we have considered a modelling strategy where we can explore the robustness
of the linear regression model and the sparse relationship between variables at the same
time. We assign a marginal t-prior for the errors of the linear regression models, which
are more robust to the outliers in the data, and we also assign Bayesian Lasso prior for
the regression parameters. This strategy allows us to include robust modelling as well
as exploring potential sparse relationship between variables in the data set under one
modelling strategy. Details on these 3 approaches can be found in Chapter 5.

1.2 Statistical disclosure control

For the last two decades, open access to data has become more and more popular among
statistical agencies and government organizations around the world. (Streeter et al. (1996)
and Reichman et al. (2011)). Open data is the concept where data users can access certain
data for free, re-use as well as redistribute the data for any scientific research, or commer-
cial purposes without restrictions from copyright and infringement. The US and UK gov-
ernments are among the leaders in promoting the open data concept globally, by launching
the open-data government initiatives such as www.data.gov and www.data.gov.uk. More
recently, the UKs Open Data Institute (ODI) and Taiwans Open Data Alliance (ODA)
have signed a letter of intent for future cooperation. This collaboration will promote
the open data access holds in both countries for the academic, public, and private sectors.
With better access to data, both sides can strengthen cooperation in the area of economies,
government policies, climate change, health care issues as well as developing open data
technologies.

So why is open data so important in the modern era? One of the main reasons is
transparency. We are living in a democratic world, where every citizen has the right to
know what their government is doing. In order to do that, we need to have free access to
government data because these data contain information on areas such as the economy,
innovation, defense, and other services that are provided by the government. Using these
data, we can then do some research and decide whether the government is acting out of the
best interests of its citizens. Also, business communities can use the opportunity of open
data access for the development of new and innovative ideas that can deliver commercial
values.
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However, when statistical agencies or the public can access the data freely, it does
raise the question of confidentiality of the released data. Most of the data sets that have
private information on individuals (name or national insurance number) as well as sensitive
information (income, race or personal wealth) are normally collected under confidentiality
pledges, which restricts the release of such information to the public. One of the solutions
to address this problem is to forbid remote access to the original data. Any data users
that wish to perform analysis on the data can send request to the statistical agencies for
analyses, and will only receive the results of the statistical analyses submitted. Since the
data users can’t access the original data, the data agencies can protect confidentiality of
the data set. However, different data users have different desirable statistical analyses, by
responding to each of them might become a burden to the statistical agencies.

Alternatively, data users are only allowed to access the data in designated data cen-
ters. This method can limit the chances of disclosure of confidential information from the
released data as data users are not allowed to bring the data outside the data centers, but
occasionally this is inconvenient for the data users as they might have to travel for a long
distance to arrive at the data center. So if restricted access to data is not viable, then the
data agencies can consider statistical disclosure control for protecting the confidentiality
of public use data sets.

Statistical disclosure control refers to the methodology used to protect the confiden-
tiality of public use data sets. Statistical agencies that release public data have legal
obligations to protect the confidentiality of the respondents’ identities and sensitive at-
tributes they collect. At the same time, they have to preserve the utility of the data for
the benefit of analysis of the data. Agencies have therefore developed different methods
to protect confidentiality of public use data sets. One method is to remove uniquely iden-
tifying information such as name and social security numbers of the respondents. Such a
method can minimize the damage done to the utility of the data; however, this is normally
considered insufficient for confidentiality protection. This is due to fact that intruders may
still be able to link remaining identifying information in the data to another external pub-
licly available data source. A common approach is then to modify the released public data
by applying statistical disclosure limitation (SDL) methods to those variables that will
potentially be used to make identifications. However, these SDL methods can complicate
analyses for users and can severely reduce the utility of the released data. We will discuss
these further in Chapter 2.

An alternative approach to SDL methods is to use multiple imputation for statistical
disclosure control. The early idea, which was proposed by Rubin (1993) is to release
multiply imputed, fully synthetic data sets which comprise entirely of synthetic data rather
than the original data. In this approach, the statistical agencies first propose a model that
describes the original data, the agencies then generate synthetic data using this model and
hence release multiple versions of these synthetic data sets to the public. Since the released
data are comprised entirely of synthetic values, the identification of individuals and their
sensitive information is very unlikely and hence this can protect the confidentiality of the
released data sets. This idea has been developed further to the concept of the partially
synthetic data, which propose that only sensitive units or variables need to be synthesized
and replaced by synthetic values. The partially synthetic data approach was proposed
by Little (1993b), where statistical agencies release multiply imputed, partially synthetic
data sets.
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In this approach, the statistical agencies release multiply imputed, partially synthetic
data sets which comprise some original data values with sensitive data replaced by syn-
thetic values. The approach first defines a model that describes the complete data, and
then selects the values that have high disclosure risk to be replaced by synthetic data.
There are similar challenges here to those with multiple imputation for missing data,
complex large data sets containing mixed categorical (binary, ordinal and nominal) and
continuous variables, as well as patterns of synthesis that can have a non-monotone pat-
tern. Hence, in this thesis, we will apply our modelling strategy used to impute missing
data to generate synthetic data. The key idea is to treat the sensitive units or values
in a given data set, as missing values, and thus impute them. The synthetic values are
drawn from a posterior predictive distribution that is the distribution of the synthetic
values conditional on the observed values, so that the statistical properties in the imputed
data sets can be preserved. Hence, the users can then obtain valid inference from these
synthetic data sets using the combining rules described in Reiter (2003). We adapt the
modelling strategy proposed to impute missing values to generate partially synthetic data
for the current population survey (CPS) data set and assess the risk and utility of the
synthetic data. We also extend our modelling strategy to address the presence of spikes
at zero in some of the continuous variables in the CPS data. Details on this approach can
be found in Chapter 6.

The structure of the thesis will be as follows: first, Chapter 2 reviews the literature
about missing data and statistical disclosure control. Chapter 3 then looks at the overview
of Markov chain Monte Carlo (MCMC), a necessary computational technique that we
need to draw from the posterior distribution. We also propose our modelling strategy
to multiply impute missing data in Chapter 3 and briefly describe a commonly used
alternative known as MICE. Chapter 4 will illustrate the performance of the modelling
strategy through simulations and on a real data set taken from a breast-feeding study
and compares the results to the performance using MICE. We then extend our modelling
strategies to use informative priors in Chapter 5. We then apply our model to generate
multiply imputed, partially synthetic data to protect confidentiality of the CPS data in
Chapter 6. We finish the thesis with conclusions and future work in Chapter 7.
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Chapter 2

Literature review

2.1 Introduction to missing data

In this section we review the literature on missing data including some of the ad-hoc
strategies for handling them.

2.1.1 Missing patterns

We can consider two important missing data patterns in our data sets, namely monotone
and non-monotone missing patterns. Suppose we have a fully observed n × p data set
X = (x1, . . . ,xp), where xj = (x1,j, . . . , xn,j)

′, j = 1, . . . , p is the j-th variable in X. With
missing data, we denote an n × p missing data indicator matrix M = (m1,j, . . . ,mn,j)

′,
where mi,j = 1 indicates xi,j is missing and mi,j = 0 indicates xi,j is observed, for i =
1, . . . , n and j = 1, . . . , p. We can then denote the observed and missing portions of X by
Xobs = {xi,j : mi,j = 0} and Xmis = {xi,j : mi,j = 1} respectively. The matrix M then
defines the pattern of missing data. A monotone missing pattern is where we can reorder
the data set in such a way that if mi,j = 1 for j = 2, . . . , p, then mi,k = 1 for k = j+1, . . . , p.
If this is not possible then the missing pattern is said to be non-monotone. Figure 2.1
shows a monotone pattern (left) and non-monotone pattern (right) where ticked boxes
represent observed data while missing data are denoted by boxes with question marks.
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Figure 2.1: Illustration of missing patterns

2.1.2 Missing mechanisms

2.1.2.1 Missing at random (MAR)

We now formalise the idea of missing mechanisms. Despite the name, missing at random
(MAR) does not imply that the missing values are comprised of a simple random sample
from the data set. Given a data set X, we partition X as X = (Xobs, Xmis) where the
observed part of X is Xobs, i.e. Xobs = {xi,j : mi,j = 0} and the missing part is Xmis, i.e.
Xmis = {xi,j : mi,j = 1}. MAR is then defined as a mechanism where the probability that
an observation is missing may depend on Xobs, but not on Xmis. That is,

f(M|X, ξ) = f(M|Xobs, ξ) for all X and ξ,

where f(M|X, ξ) is a probability model for the indicator function M with unknown pa-
rameter ξ. A practical example of missing at random in a survey is where the variable
“income” has some missing values. The variable “income” is assumed to be missing at ran-
dom if the probability that an observation is missing depends only on other fully observed
variables such as race, education and age in the survey.

2.1.2.2 Missing completely at random (MCAR)

Missing completely at random (MCAR) is a special case of MAR. This mechanism is such
that the missing values are a simple random sample from the data set. More formally, it
means that the missingness does not depend on the observations of the data set, rather
than that the missingness itself is random. That is,

f(M|X, ξ) = f(M|ξ) for all X and ξ.

In the example above, the missing values in the variable “income” would be assumed to
be missing completely at random if the missing values are just a simple random sample
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from the survey.

2.1.2.3 Not missing at random (NMAR)

The mechanism is called not missing at random (NMAR) if the distribution of M depends,
in part, on the missing values in the data set X. Then the distribution of M is given by

f(M|X, ξ) = f(M|Xmis,Xobs, ξ).

For example, suppose that survey respondents with higher income (more than $100,000)
are less likely to respond to the income question. Then, the variable “income” is assumed
to be not missing at random. If the missing mechanism is not missing at random, it must
be explicitly modelled, or else it will lead to biased inferences. See Little and Rubin (2002)
Chapter 2 and Rubin (1976) for more details on missing mechanisms.

2.1.3 Ad-hoc methods for dealing with missing data

There are different methods to deal with missing data, which include ad-hoc methods such
as complete case analysis and single imputation methods. These approaches, together with
multiple imputation will be discussed in the following sections.

2.1.3.1 Complete case analysis

This is the most common method where we simply discard the rows of a data set that
contain missing values and analyze only the completely observed values. The advantages
of this method are simplicity and that standard statistical analyses can be applied without
modification. When the missing values comprise only a small fraction of all cases, then
the complete case analysis may be a reasonable solution to deal with the missing data
problem. In a data set where more than one variable has missing values, the number of
incomplete cases are often a substantial portion of the entire dataset. Deleting them will
cause a large amount of information being discarded, and complete case analysis can also
lead to biased estimates of parameters if the missing mechanism is not MCAR.

2.1.3.2 Mean imputation

Mean imputation is another method for handling missing data. We impute the missing
values for each variable with the mean of the observed values of the variable in the data set.
It therefore assumes that the mean of the variable is the best estimate for any observation
that has missing information on that variable. In contrast to the complete case analysis,
the mean imputation method does not alter the sample mean of the variable and does not
discard observed information in the data set. The main disadvantage of this method is
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that we would underestimate the variability in the data as the same value is being imputed
for each of the missing values.

2.1.3.3 Conditional mean imputation

This method imputes the missing values with imputed values generated from the fitted
regression model where the regression model is formed based on the observed values in
the data set. One of the advantages of this method over mean imputation is that the
imputed values are in some way conditional on other variables in the data set. Similar to
mean imputation, conditional mean imputation has the advantage of not discarding cases
with missing data and maintaining the sample size of the data. The main disadvantage
of conditional mean imputation is that it can be difficult to apply fitted regression model
to data sets where more than one variable has missing values. Also, the problem in
underestimating variability remains.

2.1.3.4 Single imputation from the posterior predictive distributions

Based on a Bayesian approach, we draw the missing values Xmis from their posterior pre-
dictive distributions p(Xmis|Xobs). Such distributions are based on a model for the com-
plete data X and we will discuss this approach further in Chapter 3. However, this method
tends to underestimate the uncertainty due to the presence of missing values (Schafer and
Graham (2002), Little and Rubin (2002)), leading to biased confidence intervals.

In general, mean imputation, conditional mean imputation, and single imputation
from the posterior predictive distributions address the missing data problem by imputing
missing values once; thus they are referred to as single imputation methods. The single
imputation approach unfortunately does not reflect the uncertainty due to presence of
missing values. As an alternative we use multiple imputation, which will be discussed in
the next section, to tackle this problem.

2.2 Multiple imputation for missing data

Suppose an analyst wishes to use the data to infer about some population quantity Q,
this might be for example the mean of j-th variable or it could be the coefficient from a
regression model for one of the variables on some other subset of variables. To do this they
obtain a point estimate, q, for Q, and an estimate of its variance u. With the presence
of missing data, analysts may no longer be able to obtain these estimates. Alternative
approaches that are more statistically principled have been proposed to tackle this problem
and multiple imputation is one of them. In multiple imputation, we generate imputed
values from their posterior predictive distributions based on a model for the complete data.
We do this m times, to generate m multiply imputed data sets. Figure 2.2 illustrates this
procedure in a case where we have an observed data set with variables x1 and x2 where x1
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is fully observed (all the boxes are ticked) and x2 has some missing data (denoted by empty
boxes). To apply multiple imputation, we generate 3 sets of independent missing values
from their posterior predictive distribution, i.e. p(x2|x1). These independent missing
values are denoted by 3 different colours: orange, pink and green. Here we have imputed
the missing values 3 times, to generate 3 imputed data sets.

Figure 2.2: Illustration of multiple imputation

In multiple imputation, the missing values are imputed from their posterior predic-
tive distribution p(Xmis|Xobs), this is done m times to generate m completed data sets

X
(1)
com, . . . ,X

(m)
com. Analysts can then treat each completed data set as a fully observed data

set to obtain m sets of point and variances estimates (qk, uk) from each X
(k)
com, k = 1, . . . ,m.

Appropriate inference for Q can then be made following simple combining rules (Rubin
(1987)). Specifically the analyst computes the following quantities,

q̄m =
1

m

m∑
k=1

qk, um =
1

m

m∑
k=1

uk,

Bm =
1

m− 1

m∑
k=1

(qk − q̄m)2, Tm = um +

(
1 +

1

m

)
Bm, (2.1)

where q̄m is the mean of the m imputed data point estimates and um represents the average
within imputation variance. The estimate Bm is known as the between imputation variance
and is the variance between the m imputed data point estimates. This variance arises as
we are now analysing m imputed data sets instead of one and Bm reflects the additional
uncertainty due to the presence of the imputed values. The estimate Tm represents the
total variance, which combines the within and between imputation variance. This thus
takes account of the extra variability in our estimate for Q. Analysts can then use q̄m as
a point estimate for Q, and a 100(1− α)% interval estimate for Q is given by[

q̄m ± tνm(1− α/2)
√
Tm

]
.

where the degrees of freedom of the t-distribution in the above expression are given by

νm = (m− 1)

(
1 +

m

m+ 1

um
Bm

)2

. (2.2)
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Modified degrees of freedom have been proposed by Rubin and Barnard (1999) when
n is small, while Steele et al. (2010) explore alternative strategies to making inferences
when m is small. How do we choose the number of imputations m? The common advice
is to use a low number of imputations, such as m = 3, 5 for moderate amounts of missing
information. Several authors such as Bodner (2008), Graham et al. (2007) and Carpenter
and Kenward (2007) have discussed the issues on selecting the number of imputations that
are needed in multiple imputation.

2.3 Statistical disclosure control

Statistical disclosure control refers to the methodology used to protect the confidentiality
of public use data sets. When releasing data to the public, statistical agencies, survey orga-
nizations, and researchers are required to protect the confidentiality of survey respondents’
identities and attribute values. One method is simply to remove uniquely identifying in-
formation such as name and social security number of the respondents. By applying such
a method, damage done to the utility of the data can be minimized; however, this is
normally considered insufficient for protecting the confidentiality of the data set. This is
because intruders may still be able to link the remaining identifying information to another
external publicly available data source. A common approach is then to modify the released
public data by applying statistical disclosure limitation (SDL) methods to those variables
that will potentially be used to make identifications. Common strategies include recoding
variables, such as releasing ages in five year intervals (Willenborg and de Waal (2001));
reporting exact values only above certain thresholds, for example top coding all incomes
above $100 000 as “$100 000 or more”(Willenborg and de Waal (2001)); swapping data
values for selected records (Fienberg and McIntyre (2004)) and adding noise to numerical
data values (Fuller (1993)). We now review the various common SDL methods used for
statistical disclosure control.

2.3.1 Statistical disclosure limitation (SDL) methods

In this section we will discuss the various common SDL methods used to protect the
confidentiality of the respondents in public use data sets.

2.3.1.1 Topcoding/Bottomcoding

Statistical agencies can apply the method of topcoding in order to prevent disclosure of
extreme values in a variable. The method of topcoding (Willenborg and de Waal (2001))
is to replace the value of the variable x by the value C if x ≥ C, where C is some chosen
threshold value. For example, top coding all incomes above $100 000 as “$100 000 or
more”. The same can be done for variables whose values are below a certain threshold C,
i.e. x ≤ C. Hence, instead of the real individual income, the intruder will know only that
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the value is greater or smaller than the threshold value C. However, such a method will
skew the data distribution and analysts might obtain biased estimates of parameters.

2.3.1.2 Recoding

Statistical agencies might release variables as categories, such as recoding age into 5-year
intervals. This method can help reduce the intruders’ probability of making identifications.
However, the data will provide less detailed information when continuous data are replaced
with intervals. Please see Willenborg and de Waal (2001) for more details on this method.

2.3.1.3 Data swapping

Statistical agencies can swap data values of sensitive variables with other records’ values
in order to reduce the risk of disclosure. This method can preserve univariate distribu-
tions. However, one drawback of this method is that it may not maintain multivariate
relationships between the variables in the data set. See Fienberg and McIntyre (2004) for
more details on the data swapping method.

2.3.1.4 Adding random noise

Statistical agencies can protect confidentiality by modifying the values of the variables in
a stochastic way. This involves adding random noise, ε, with zero mean and predefined
variance to all values of the potentially identifying variables when the variables are con-
tinuous. However, this method does not maintain the covariance structure of the original
data. Fuller (1993) provides more details on this method.

A drawback in general with all these SDL methods are that they can complicate
analyses for users and can severely reduce the utility of the released data by distorting
the relationships between variables in the data set. An alternative approach, multiple
imputation for fully synthetic data and partially synthetic data, will be discussed in the
next section.

2.4 Multiple imputation for fully synthetic data

The fully synthetic data approach was first proposed by Rubin (1993), by releasing mul-
tiply imputed fully synthetic data sets which comprise entirely of synthetic data rather
than the observed data. This approach protects confidentiality of the data sets, since the
identification of unique individuals and their sensitive information is arguably not possible
when the released data are synthetic values. This concept is based on the idea of multiple

13



imputation (Rubin (1987)), where the synthetic data are repeatedly drawn from a pos-
terior predictive distribution and this allows data users to obtain valid inferences using
simple combining rules developed by Reiter et al. (2003).

Suppose we have a fully observed n× p data set X = (x1, . . . ,xp), where
xj = (x1,j, . . . , xn,j)

′, for j = 1, . . . , p is the j-th variable in X. Let Xsyn be the synthetic
values generated from the posterior predictive distribution p(Xsyn|X). We then make
d independent imputations to create d different synthetic data sets, where each of the
synthetic data sets, D

(k)
syn, k = 1, . . . , d, is comprised only of synthetic data, (X

(k)
syn). These

synthetic data sets are then released to the public. Figure 2.3 illustrates this procedure
in a case where we have an observed data set with variables x1 and x2. We first generate
2 sets of synthetic values, each for x1 and x2 from their posterior predictive distributions
respectively, i.e. p(x1|x2) and p(x2|x1). These independent synthetic values are denoted
by 4 different colours: yellow, dark blue, red and light blue. Here we have imputed the
data set 2 times, to generate 2 multiply imputed, fully synthetic data sets.
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Observed data  

  

  

  
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x1  x1  x2  x2  

Fully synthetic data  

Figure 2.3: Illustration of releasing multiply imputed, fully synthetic data

We now assume that an analyst wishes to use the data to infer about some population
quantityQ, this might be for example the mean of j-th variable or it could be the coefficient
from a regression model for one of the variables on some other subset of variables. To
do this they obtain a point estimate, q, for Q, and an estimate of its variance u. For
k = 1, . . . , d, let qk and uk be the values of q and u respectively in the synthetic data set
D

(k)
syn. Specifically, the analyst computes the following quantities,

q̄d =
1

d

d∑
k=1

qk, ud =
1

d

d∑
k=1

uk

Bd =
1

d− 1

d∑
k=1

(qk − q̄d)2,

where q̄d is the mean of the m imputed data point estimates and ud represents the average
within imputation variance. The estimate Bd is known as the between imputation variance
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and is the variance between the d imputed data point estimates. The total variance is
given by

Td = (1 +
1

d
)Bd − ud.

The term (1/d)Bd represents the adjustments for using only a finite number of synthetic
data sets. We notice that the total variance Td can be negative but by choosing the number
of imputations d to be large enough, Td can remain positive. See Reiter et al. (2003) for
further details on the justification of the combining rules.

Confidence intervals can be constructed using a t-distribution with νd degrees of free-
dom (Reiter (2005b)) given by

νd = (d− 1)

(
1 +

dud
Bd

)2

,

where this is different from the degrees of freedom expression for the multiple imputa-
tion of missing data (see Equation 2.2). The fully synthetic data approach has positive
features such as protecting confidentiality of the data sets and allowing valid inferences
to be made using the combining rules. However, this approach is not commonly used
by statistical agencies, instead a variant version has been considered: releasing multiply
imputed partially synthetic data sets which comprise original values and synthetic values.
This approach, called partially synthetic data was first proposed by Little (1993b) and we
will review this approach in the next section. We will focus on this approach to generate
synthetic data in this thesis.

2.5 Multiple imputation for partially synthetic data

Suppose we have a fully observed n× p data set X = (x1, . . . ,xp), where
xj = (x1,j, . . . , xn,j)

′, for j = 1, . . . , p is the j-th variable in X. We denote an n × p data
indicator matrix Z = (z1,j, . . . , zn,j)

′, where zi,j = 1 indicates xi,j is selected to be replaced
by synthetic value and zi,j = 0 indicates xi,j is unchanged, for i = 1, . . . , n and j = 1, . . . , p.
We can then denote the original and synthetic values of X by Xori = {xi,j : zi,j = 0} and
Xsyn = {xi,j : zi,j = 1} respectively. Let Xsyn be the synthetic values generated from the
posterior predictive distribution p(Xsyn|X). We then make d independent imputations to

create d different synthetic data sets, where each of the synthetic data sets, D
(k)
syn, k =

1, . . . , d, is comprised of (Xori,X
(k)
syn). These synthetic data sets are then released to the

public.

Figure 2.4 illustrates the procedure of releasing multiply imputed, partially synthetic
data. Suppose we have a fully observed data set with variables x1 and x2. The sensitive
values that need to be replaced by synthetic values in x2 are denoted by S∗. To apply mul-
tiple imputation, we generate 2 sets of independent synthetic values from their posterior
predictive distribution, i.e. p(x2|x1). These independent synthetic values are denoted by
2 different colours: red and blue. Here we have imputed the data set 2 times, to generate
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2 multiply imputed, partially synthetic data sets.

x1  x2  

Observed data  

  

  

 S* 

 S* 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

x1  x1  x2  x2  

Partially synthetic data  

Figure 2.4: Illustration of releasing multiply imputed, partially synthetic data

We now assume that an analyst wishes to use the data to infer about some population
quantityQ, this might be for example the mean of j-th variable or it could be the coefficient
from a regression model for one of the variables on some other subset of variables. To
do this they obtain a point estimate, q, for Q, and an estimate of its variance u. For
k = 1, . . . , d, let qk and uk be the values of q and u respectively in the synthetic data set
D

(k)
syn. Specifically, the analyst computes the following quantities,

q̄d =
1

d

d∑
k=1

qk, ud =
1

d

d∑
k=1

uk,

Bd =
1

d− 1

d∑
k=1

(qk − q̄d)2, Td = ud +
Bd

d
. (2.3)

Analysts can use q̄d as a point estimate for Q, and Td as an estimate of the variance
for Q. Bd is known as the between imputation variance and is the variance between the d
imputed data sets. The total variance Td differs from the variance estimator for multiple
imputation of missing data, Tm = ūm+(1+1/m)Bm (Equation 2.1). There is an additional
Bm in Equation 2.1 due to the presence of the missing data. See Reiter (2003) for further
details on the justification of the combining rules.

Confidence intervals can be constructed using a t-distribution with νd degrees of free-
dom (Reiter (2003)) given by

νd = (d− 1)

(
1 +

dud
Bd

)2

,

where this is different from the degrees of freedom expression for the multiple imputation
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of missing data (see Equation 2.2).

2.6 Simultaneous use of multiple imputation for miss-

ing data and statistical disclosure control

The multiple imputation framework can be extended to handle missing data and disclosure
control simultaneously via a two stage imputation procedure. First, we use multiple
imputation to impute the missing values in the data set, generating m multiply-imputed
data sets, we then replace the selected sensitive values in each imputed data set with d
synthetic values using multiple imputation; thus creating m × d multiply imputed data
sets.

Figure 2.5 illustrates a simple example of handling missing data and disclosure control
simultaneously via a two stage imputation. Suppose we have an observed data set with
variables x1 and x2 where x1 is fully observed (all the boxes are ticked) and x2 has some
missing data (denoted by question marks). We first impute the missing values with 3
sets of independent missing values drawn from their posterior predictive distribution, i.e.
p(x2|x1). These independent missing values are denoted by 3 different colours: red, blue
and green. Now we have imputed the missing values 3 times, to generate 3 imputed
data sets. Next, for each of the imputed data sets, we generate 2 sets of independent
synthetic values for x2 from the same posterior predictive distribution, i.e. p(x2|x1). These
independent synthetic values are denoted by 6 different colours. Here we have generated
2 multiply imputed, partially synthetic data sets for each of the completed data sets, and
we have 6 synthetic data sets in total.

Observed data  

x1  

x2  

  

 ? 

 ? 

Completed data sets  

x1  

  

  

  

  

  

  

x2  

x1  x2  

  

  

  

x1  x2  

Synthetic data sets  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

x1  x1  

x1  

x1  

x1  

x1  x2  

x2  x2  

x2  x2  

  

  

  

x2  

Figure 2.5: Illustration of simultaneous use of multiple imputation for missing data and
disclosure control

We now assume that an analyst wishes to use the data to infer about some population
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quantityQ, this might be for example the mean of j-th variable or it could be the coefficient
from a regression model for one of the variables on some other subset of variables. To
do this they obtain a point estimate, q, for Q, and an estimate of its variance u. For
l = 1, . . . ,m, k = 1, . . . , d, let q

(l)
k and u

(l)
k be the values of q and u respectively in the

synthetic data set d
(l)
k . Specifically, the analyst computes the following quantities,

q̄M =
1

md

m∑
l=1

d∑
k=1

q
(l)
k =

1

m

m∑
l=1

q̄(l),

uM =
1

md

m∑
l=1

d∑
k=1

u
(l)
k

b̄M =
1

m(d− 1)

m∑
l=1

d∑
k=1

(q
(l)
k − q̄

(l))2 =
1

m

m∑
l=1

b̄(l),

BM =
1

m− 1

m∑
l=1

(q̄(l) − q̄M)2,

where M is the total number of synthetic data sets (m × d). The average of the point
estimates in each group of the synthetic data sets is denoted by q̄(l) and q̄M is the average
of these point estimates average across l. The average of the estimated variances of u
across all the synthetic data sets is denoted by uM . The b̄M is the average of the m
between variances estimates, b̄(l), l = 1, . . . ,m where b̄(l) represents the sample variance
of the point estimates for each group of the synthetic data sets. The BM is the sample
variance of the q̄(l) point estimates. The total variance is given by

TM = (1 +
1

m
)BM −

b̄M
d

+ uM .

Confidence intervals can be constructed using a t-distribution with νd degrees of free-
dom (Reiter (2003)) given by

νM =

(
((1 + 1/m)BM)2

(m− 1)T 2
M

+
(b̄M/d)2

m(d− 1)T 2
M

)−1

,

where this is different from the degrees of freedom expression for the multiple imputation
of missing data (see Equation 2.2). For more details on this approach, please see Reiter
(2004). We will now review our modelling strategy in the next chapter.
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Chapter 3

Modelling methods for multiple

imputation

A key challenge in the multiple imputation approach is to be able to draw imputations from
a plausible distribution. To apply multiple imputation, we need to draw the missing values
from their posterior predictive distributions. Suppose we have a data set X which can be
decomposed as Xobs and Xmis (see Chapter 2 for definitions). Xobs represents the observed
values of the data set X while Xmis represents the missing values in X. Determining an
analytical expression for p(Xmis|Xobs) is not typically possible in most practical situations.
It may however, be possible to model p(X|Θ) where Θ represents a set of (unknown)
parameters in the model. Using this model and a suitable prior distribution, p(Θ), draws
from p(Xmis|Xobs) can be accomplished through Markov chain Monte Carlo techniques
that takes samples iteratively from p(Xmis|Θ(t),Xobs) (to generate a completed data set

X
(t)
com) and p(Θ(t)|X(t)

mis,Xobs) at each iteration t. Once samples (X
(t)
mis,Θ

(t)) have converged
to their stationary distribution, these can be assumed to come from the joint distribution
p(Xmis,Θ|Xobs), and the imputed data sets, X

(t)
com, can be assumed to have been created

using draws from p(Xmis|Xobs). Imputing missing values in this way is often called data
augmentation (Tanner and Wong (1987)). Before we describe our modelling strategy to
impute missing values through data augmentation in data sets containing variables with
different measurement scales, we first review the general theories behind Markov chain
and MCMC techniques.
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3.1 Overview of Markov chain Monte Carlo

As mentioned before, we want to find the posterior predictive distribution of the missing
data, which is denoted by p(Xmis|Xobs). This equation can be rewritten as:

p(Xmis|Xobs) =

∫
p(Xmis,θ|Xobs)dθ

=

∫
p(Xmis|θ,Xobs)p(θ|Xobs)dθ. (3.1)

However, this integral might be multi-dimensional and difficult to compute. In the
case where the missing pattern is monotone, we can sample Xmis from integral (3.1).
First, we draw θ from p(θ|Xobs), then conditional on this θ, we can draw Xmis from
p(Xmis|θ,Xobs). By focusing solely on the imputed data sets generated, we are implicitly
integrating out the other unknowns from their posterior distributions and are thus obtain-
ing imputations from their posterior predictive distributions. See Gelman et al. (2004) and
Khan (2005) for more details. When the missing pattern is non-monotone, Markov chain
Monte Carlo (MCMC) technique can be used to sample Xmis from the integral. MCMC
is a sampling based algorithm that can be used to sample draws from the distribution of
interest (or target distribution). In our case, our target distribution is p(Xmis,θ|Xobs).
MCMC will work by specifying an irreducible and aperiodic Markov chain with a unique
stationary distribution π equal to our target distribution, the joint posterior distribution
of the missing data and unknown parameters p(Xmis,θ|Xobs). We now review the general
theories behind Markov chain and MCMC techniques.

3.1.1 Markov chain

3.1.1.1 Definition

A Markov chain can be regarded as particle X moving randomly in a state space.

Let Xt = i represent the particle X being in state i at time t. A sequence of discrete
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random variables {Xt, t ≥ 0} is called a Markov chain if it satisfies

P {Xs+t = k|X0 = l, . . . , Xs = j} = P {Xs+t = k|Xs = j} ,

∀k, l, . . . , j and ∀t ≥ 0. This is known as the Markov property where the next state of the
particle X depends only on the current state but not any past states.

3.1.2 Basic properties of Markov chain

3.1.2.1 Reducibility

Let pij be the transition probability from state i to state j and let p
(n)
ij denote the n-step

transition probability. We define p
(0)
ij = 1 if i = j, and p

(0)
ij = 0 if i 6= j. We say that state

i communicates with state j if there exists some n ≥ 0 such that p
(n)
ij > 0. States i and

j are said to intercommunicate if both states communicate with each other. Further, a
Markov chain is defined as irreducible if all its states intercommunicate.

3.1.2.2 Periodicity

The probability that a Markov chain ever returns to state j is defined as

fjj =
∞∑
n=1

f
(n)
jj .

Let f
(n)
ij be the probability that the first transition from state i to state j occurs at

the n step. State j is recurrent if fjj = 1 and is transient if fjj < 1. The largest common
divisor d for all n is called the period of state j. State j is aperiodic if d = 1 and state j
is periodic if d > 1.

3.1.2.3 Recurrence and ergodicity

The mean recurrence time of a recurrent state j is given by

µj =
∞∑
n=1

nf
(n)
jj .

State j is null recurrent if µj =∞ and is positive recurrent if µj <∞. A Markov chain
is called ergodic if it is irreducible and all its states are positive recurrent and aperiodic.
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3.1.2.4 Stationary distribution

A distribution π is defined as a stationary distribution if πPij = π, where Pij is the
transition probability matrix whose (i, j)-th element is pij. For any finite Markov chain,
at least one stationary distribution exists and this distribution is unique if the Markov
chain is irreducible.

3.1.2.5 Reversibility

A Markov chain is reversible if

πiPij = πjPji (3.2)

for all i, j, where Pij is the transition probability matrix. This equation is also known as
detailed balance. If the stationary distribution π satisfies the detailed balance equation,
this stationary distribution π is the unique stationary distribution. With a Markov chain
that converges to its stationary distribution that is unique, we will have a valid MCMC
sampling method. A general way to construct a Markov chain with a given stationary
distribution π can be found in Metropolis et al. (1953).

In practice, we may need to run MCMC for quite a while to achieve convergence to
our target distribution. The length of our MCMC is greatly affected by the initial values
chosen to initiate the chain. Typically, the values in early iterations from our MCMC are
not valid because the Markov chain has not yet stabilized to its stationary distribution.
Therefore, the early iterations are discarded in order to diminish the effect of the initial
values. These discarded iterations are referred to as the burn-in period.

3.1.3 Metropolis-Hastings algorithm

Now suppose we want to draw samples from our target distribution p(θ̃) where p(θ̃) ≡
p(Xmis,θ|Xobs) ≡ f(ω)

K
, where the normalizing constant K is hard to determine, and

direct sampling from this distribution is also difficult. We can use a Metropolis-Hastings
algorithm to sample a sequence of random samples from this distribution p(θ̃). We choose
a proposal density q, whose form is explicitly available and relatively easy to sample from.
The Metropolis-Hastings algorithm then works as follows. We start with any given initial
values ω(0), then at iteration t:

• Generate ω∗ from q(ω∗|ω(t)).

• Compute the acceptance rate α(ω∗|ω(t)) given by

min

(
f(ω∗)q(ω(t)|ω∗)
f(ω(t))q(ω∗|ω(t))

, 1

)
.
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• Simulate u from a uniform distribution on [0, 1]. If u ≤ α, then accept ω∗ and set
ω(t+1) = ω∗, else reject ω∗ and set ω(t+1) = ω(t).

We notice that the algorithm depends on

f(ω∗)

f(ω(t))
and

q(ω(t)|ω∗)
q(ω∗|ω(t))

.

Thus, the normalizing constant K is no longer an issue here. A special case where
the algorithm depends only on f(ω∗)

f(ω(t))
is when the proposal density is symmetric, so that

q(ω∗|ω(t)) = q(ω(t)|ω∗). This is the original Metropolis algorithm (Metropolis et al.
(1953)). Other special cases include the algorithm suggested by Hastings (1970) which
suggests an independent sampler in which q(ω∗|ω(t)) = q(ω∗), so that the proposed move
is independent of the current state. For other options for implementing a Metropolis-
Hastings algorithm, see Chib and Greenberg (1995).

We need to show that the Metropolis-Hastings algorithm will generate a Markov chain
whose stationary distribution is equivalent to our target denstity p(θ̃). To demonstrate
this, it is sufficient to show that the Metropolis-Hastings transition kernel satisfies the
detailed balance equation (Equation 3.2) with p(θ̃). First, we sample from q(ω|ω∗) and
we accept the move with probability α(ω|ω∗), so that the transition probability kernel is
given by,

Pω,ω∗ = q(ω|ω∗)α(ω|ω∗) = q(ω|ω∗) ·min

(
p(ω)q(ω∗|ω)

p(ω∗)q(ω|ω∗)
, 1

)

The detailed balance equation holds if the Metropolis-Hastings kernel satisfies

Pω,ω∗p(ω) = Pω∗,ωp(ω
∗) or

q(ω|ω∗)α(ω|ω∗)p(ω) = q(ω∗|ω)α(ω∗|ω)p(ω∗).

for all ω,ω∗. Hence we have three cases to prove here:

1. For q(ω∗|ω)p(ω∗) > q(ω|ω∗)p(ω), we have

α(ω|ω∗) = 1 and α(ω∗|ω) =
p(ω)q(ω|ω∗)
p(ω∗)q(ω∗|ω)

.
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Hence

Pω∗,ωp(ω
∗) = q(ω∗|ω)α(ω∗|ω)p(ω∗)

= q(ω∗|ω)
q(ω|ω∗)p(ω)

q(ω∗|ω)p(ω∗)
p(ω∗)

= q(ω|ω∗)p(ω)

= q(ω|ω∗)α(ω|ω∗)p(ω)

= Pω,ω∗p(ω).

Therefore, the detailed balance equation holds.

2. For q(ω|ω∗)p(ω) > q(ω∗|ω)p(ω∗), we have

α(ω∗|ω) = 1 and α(ω|ω∗) =
p(ω∗)q(ω∗|ω)

p(ω)q(ω|ω∗)
.

Hence

Pω,ω∗p(ω) = q(ω|ω∗)α(ω|ω∗)p(ω)

= q(ω|ω∗)q(ω
∗|ω)p(ω∗)

q(ω|ω∗)p(ω)
p(ω)

= q(ω∗|ω)p(ω∗)

= q(ω∗|ω)α(ω∗|ω)p(ω∗)

= Pω∗,ωp(ω
∗).

The detailed balance equation also holds in this case.

3. For q(ω|ω∗)p(ω) = q(ω∗|ω)p(ω∗) we have α(ω|ω∗) = α(ω∗|ω) = 1 implying that

Pω,ω∗p(ω) = q(ω|ω∗)p(ω) and Pω∗,ωp(ω
∗) = q(ω∗|ω)p(ω∗).

This shows that the detailed balance equation holds. Therefore the stationary distribution
from this kernel corresponds to draws from our target distribution.

3.1.4 Gibbs sampler

If the full conditional distributions from all the unknowns are available in closed form, we
can use these full conditionals as our proposal distributions in the Metropolis-Hastings
algorithm. The proposed values are always accepted. This is known as a Gibbs sampler
(Gelfand and Smith (1990)). For example, suppose we want to draw values from a joint

distribution p(θ̃) = p(θ1, . . . ,θk) that is hard to compute. Then a Gibbs sampler can
be used whereby we draw values from a series of conditional distributions. The Gibbs
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sampler in this example works as follows:
At iteration t, we draw

θ
(t+1)
1 ∼ p(θ1|θ(t)

2 ,θ
(t)
3 , . . . ,θ

(t)
k )

θ
(t+1)
2 ∼ p(θ2|θ(t+1)

1 ,θ
(t)
3 , . . . ,θ

(t)
k )

θ
(t+1)
3 ∼ p(θ3|θ(t+1)

1 ,θ
(t+1)
2 ,θ

(t)
4 , . . .θ

(t)
k )

...

θ
(t+1)
k ∼ p(θk|θ(t+1)

1 ,θ
(t+1)
2 , . . . ,θ

(t+1)
k−1 ).

Such conditional distribution, p(θj|θ1, . . . ,θj−1,θj+1, . . . ,θk) for j = 1, . . . , k are of-
ten easier to sample from than the joint distribution. The sequence of iterates θ(t) =
(θ

(t)
1 , . . . ,θ

(t)
k ) will converge to a draw from the joint distribution p(θ1, . . . ,θk). The Gibbs

sampler is a valid MCMC method to construct the stationary distribution as the target
distribution (Tierney (1994)). The ideas of the Gibbs sampler and Metropolis-Hastings
will be revisited in the next section where we describe our modelling strategies.

3.2 Model for continuous, binary and ordinal vari-

ables

Before we use multiple imputation to impute the missing values, we need to derive the
posterior predictive distribution of the missing data. In this section we will describe the
modelling approach used to determine the posterior predictive distributions in data sets
with continuous, binary and ordinal variables.

We now present the full conditional distributions in the Metropolis within Gibbs
sampler required to generate imputed datasets. We model the joint distribution p(X|Θ)
using a sequence of conditional regression models:

p(X|Θ) = p(x1|θ(1))

p∏
k=2

p(xk|x1, . . . ,xk−1,θ
(k))

=
n∏
i=1

{
p(xi,1|θ(1))

p∏
k=2

p(xi,k|xi,1, . . . , xi,k−1,θ
(k))

}
, (3.3)

where θ(j) represents the vector of parameters in the regression model for xj and Θ =
{θ(j), j = 1, . . . , p}. Such a decomposition has been used by Ibrahim et al. (2005) and
Ibrahim et al. (1999) in imputing missing values; however, these approaches do not draw
imputations from their exact posterior predictive distributions in the case where there
are non-monotone patterns of missing data. We propose a modelling strategy that allows
imputations to be drawn from their posterior predictive distributions through Markov
chain Monte Carlo. As we are using a proper factorisation of the joint distribution to
impute missing values, we hereby refer to this modelling strategy for imputation as the
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factored regression model (FRM). We assume here that all variables have some missing
values, if there were some variables that were fully observed the modelling framework
would remain the same, and we would condition on these fully observed variables in every
regression model.

We first consider the case when xk is either continuous, binary, or ordinal. If xk is
continuous, we use a normal linear regression model with x1, . . . ,xk−1 as covariates in the
model (for now assuming x1, . . . ,xk−1 are continuous), so that

p(xi,k|xi,1, . . . , xi,k−1,θ
(k)) = N(β

(k)
0 + β

(k)
1 xi,1 + · · ·+ β

(k)
k−1xi,k−1, φ

−1
k ),

where β(k) = (β
(k)
0 , β

(k)
1 , . . . , β

(k)
k−1) are the regression coefficients of the model, φk is the

residual precision, and θ(k) = (β(k), φk).

Secondly, if xk is binary, i.e. xi,k ∈ {0, 1} , i = 1, . . . , n, we introduce a latent variable,
denoted by x∗k where x∗k = (x∗1,k, . . . , x

∗
n,k)

′ and model the conditional distribution of xk
through the data augmentation approach suggested by Albert and Chib (1993). We thus
model p(xi,k|xi,1, . . . , xi,k−1,θ

(k)) (again for now assuming x1, . . . ,xk−1 are continuous) by

xi,k = I(x∗i,k > 0), where

p(x∗i,k|xi,1, . . . , xi,k−1,θ
(k)) = N(β

(k)
0 + β

(k)
1 xi,1 + · · ·+ β

(k)
k−1xi,k−1, 1),

where I(·) is the indicator function, and θ(k) = β(k) = (β
(k)
0 , β

(k)
1 , . . . , β

(k)
k−1).

Thirdly if xk is an ordinal variable, i.e. xi,k ∈ {1, . . . , Jk} , i = 1, . . . , n with Jk be the
number of levels that the observations in xk can take, we can extend the data augmen-
tation representation above to model the conditional distribution of xk. The distribution
p(xi,k|xi,1, . . . , xi,k−1,θ

(k)) (again for now assuming x1, . . . ,xk−1 are continuous) is then
given by

xi,k = jk I(γ
(k)

jk−1
< x∗i,k < γ

(k)

jk
), where

p(x∗i,k|xi,1, . . . , xi,k−1,θ
(k)) = N(β

(k)
0 + β

(k)
1 xi,1 + · · ·+ β

(k)
k−1xi,k−1, 1),

with jk ∈ {1, . . . , Jk}, θ(k) = (β(k),γ(k)), where β(k) = (β
(k)
0 , . . . , β

(k)
k−1) as before, and

γ(k) =
{
γ

(k)

jk
: jk ∈ {1, . . . , Jk}

}
are threshold parameters, with γ

(k)
0 = −∞, γ

(k)
1 = 0 and

γ
(k)
Jk

= ∞.

Now, if xi,q, q ∈ {1, . . . , k − 1} is not continuous we replace xi,q with x∗i,q in the model

for p(xi,k|xi,1, . . . , xi,k−1,θ
(k)). Thus, in our modelling strategy, we place a multivariate

normal model on the joint distribution of the continuous variables and latent variables,
which were introduced through the data augmentation representation proposed by Albert
and Chib (1993). Benefits of latent variable in modelling data sets with these types of
variables have been noted by De LEON and Carriègre (2007).

To complete a Bayesian specification we place prior distributions on all parameters.
We first place independent Jeffreys priors on all regression coefficients and residual preci-
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sions for the regression models of the continuous variables, i.e.

p(β(k)
q ) ∝ 1 for q = 0, . . . , k − 1, k = 1, . . . , p,

and

p(φk) ∝
1

φk
, k = 1, . . . , p.

We then place independent Jeffreys priors on regression coefficients for the regression
models of the binary and ordinal variables, i.e.

p(β(k)
q ) ∝ 1 for q = 0, . . . , k − 1, k = 1, . . . , p,

and we also place an improper uniform prior on γ(k) i.e.

p(γ(k)) ∝ I(γ(k) ∈ Ω(k)),

where Ω(k) =
{
γ

(k)

jk
: γ

(k)
0 = −∞ < γ

(k)
1 = 0 < γ

(k)
2 < . . . < γ

(k)
Jk−1

< γ
(k)
Jk

=∞
}

.

With this modelling approach and choice of prior distributions, the full conditional
distributions of all unknowns: missing/latent values and model parameters, are available
in closed form. Draws from the joint distribution of all unknowns can then be taken using
a Gibbs sampler; in particular, the missing values in the data set are imputed from their
full conditional distributions on a variable by variable basis. Given the models and prior
specifications we can present the full conditional distribution required to impute missing
values in a Metropolis within Gibbs sampler. Following Schafer (1997) we present this a
data augmentation scheme and so first present the “I-steps” followed by the “P-steps”.
In the “I-steps”, conditional on parameter values, first impute missing continuous values
x∗i,q or latent values x∗i,q with missing xi,q, from a normal distribution with mean µ̃i,k and

variance φ̃−1
k where

µ̃i,k = φ̃−1
k

{
µi,k

φ−1
k

+

p∑
s=k+1

β
(s)
k

φ−1
s

[
x∗i,s − (µi,s − β(s)

k x∗i,k)
]}

,

and

φ̃−1
k =

(
1

φ−1
k

+

p∑
s=k+1

(β
(s)
k )2

φ−1
s

)−1

,

where µi,k = β
(k)
0 +

∑k−1
j=1 β

(k)
j x∗i,j and µi,s = β

(s)
0 +

∑s−1
j=1 β

(s)
j x∗i,j.

Once we have imputed a value for x∗i,k, we define a function g(x∗i,k) to map each x∗i,k
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back to its original measurement scale, where

g(x∗i,k) =


I(x∗i,k > 0) if x∗i,k is binary,

jk I(γ
(k)

jk−1
< x∗i,k < γ

(k)

jk
) if x∗i,k is ordinal, jk ∈ {1, . . . , Jk}

x∗i,k if x∗i,k is continuous.

Denote an imputed value for xi,q by x
(t)
i,q at iteration t, and an imputed data set at iteration

t by X
(t)
com. In the “P-steps”, conditional on an imputed data set, first sample values for

θ(q) = (β(q), φq), q ∈ {1, . . . , p} when x∗q is continuous from the joint posterior distribution
of
β(q) = (β

(q)
0 , β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1) and φq given by

p(β(q), φq|X(t)
com) = p(β(q)|φq,X(t)

com)p(φq|X(t)
com),

where

p(φq|X(t)
com) = Gamma

(
n− q

2
,
RSS

2

)
,

and

p(β(q)|φq, X̃q,x
∗
q) = N(β̂(q), (X̃′qX̃qφq)

−1),

with

β̂(q) = (X̃′qX̃q)
−1X̃′qx

∗
q,

and

RSS = (x∗q − X̃qβ̂
(q))′(x∗q − X̃qβ̂

(q)),

and X̃q = (x̃1,q, . . . , x̃n,q)
′, where

x̃i,q = (1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x
∗
i,k+1, . . . , x

∗
i,q−1)

for i = 1, . . . , n.

Next sample values for θ(q) = (β(q)), q ∈ {k + 1, . . . , p} when xq is binary from

p(β(q)|X̃q,x
∗
q) = N(β̂(q), (X̃′qX̃q)

−1),

where β̂(q) and X̃q are as above.

Next sample values for θ(q) = (β(q),γ(q)), q ∈ {k + 1, . . . , p} when xq is ordinal. We
sample β(q) from

p(β(q)|X̃q,x
∗
q) = N(β̂(q), (X̃′qX̃q)

−1),
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where β̂(q) and X̃q are as above. We then update the threshold values. The full conditional

distribution of the threshold values γ
(q)
jq for jq ∈ {1, . . . , Jq} is uniformly distributed on

the interval[
max

{
max

{
x∗i,q : xi,q = jq

}
, γ

(q)
jq−1

}
,min

{
min

{
x∗i,q : xi,q = jq + 1

}
, γ

(q)
jq+1

}]
,

where γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq ∈ {1, . . . , Jq}.

In this way we create imputed data sets within the Gibbs sampler that samples from
the joint posterior distribution of all unknowns. By only focusing on the imputed data
sets, we are implicitly integrating over the other unknowns in the joint distribution and
thus creating imputed data sets from draws of the posterior predictive distribution.

3.2.1 Incorporating nominal variables

Of course in practice, data sets may also contain nominal variables, i.e. variables that have
no implicit ordering to their levels. If the variable only has two levels, then the variable
can be treated as a binary variable and dealt with using the framework described before;
we assume here that a nominal variable implies it has more than two levels.

Suppose in our data set, xk, k ∈ {1, . . . , p} is a nominal variable. Then we can use the
same decomposition as proposed in Equation 3.3, with a a multinomial logistic regression
model for xk including covariates x∗1, . . . ,x

∗
k−1 in the model. Specifically, for any nominal

observation xi,k ∈ {1, . . . , Lk}, where Lk is the number of levels that the observations in
xk can take, we model the distribution of xi,k as

p(xi,k = jk|x∗i,1, . . . , x∗i,k−1,θ
(k)

jk
) = π

(k)

i,jk

=
exp(β

(k)

0,jk
+ β

(k)

1,jk
x∗i,1 + · · ·+ β

(k)

k−1,jk
x∗i,k−1)∑Lk

s=1 exp(β
(k)
0,s + β

(k)
1,sx

∗
i,1 + · · ·+ β

(k)
k−1,sx

∗
i,k−1)

,

(3.4)

where θ
(k)

jk
= (β

(k)

0,jk
, . . . , β

(k)

k−1,jk
) is the vector of parameters in the regression model for

xi,k = jk, jk = 1, . . . , Lk. We set θ
(k)
1 equal to 0 for identifiability and the probability that

xi,k = 1 is thus given by

p(xi,k = 1|x∗i,1, . . . , x∗i,k−1,θ
(k)
1 ) = π

(k)
i,1

=
1

1 +
∑Lk

s=2 exp(β
(k)
0,s + β

(k)
1,sx

∗
i,1 + · · ·+ β

(k)
k−1,sx

∗
i,k−1)

.

We assumed in Equation 3.4 that x∗i,1, . . . , x
∗
i,k−1 were not nominal; if we conditioned

on a nominal variable x∗i,q = jq (for notational convenience we assume if xi,q is nominal,
taking values jq ∈ {1, . . . , Lq} then xi,q = x∗i,q) for 1 ≤ q ≤ k − 1, then we would replace
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β
(k)

q,jk
x∗i,q with

∑Lq
jq=2 β

(k),jq

q,jk
I(x∗i,q = jq) in Equation 3.4. Note that when k = 1 there are no

covariates apart from the intercept in the regression model, and so we can write

p(x∗i,1 = j1|θ(1)

j1 ) = π
(1)

j1 ,

where π
(1)

j1 =
exp(β

(1)

0,j1
)

1+
∑L1
s=2 exp(β

(1)
0,s)
, j1 = 1, . . . , L1, and so the distribution of x∗i,1 can be written

using the regular multinomial model.

To complete the Bayesian specification we place a diffuse multivariate normal prior
distribution on θ(k)(k > 1), i.e.

p(θ(k)) = MVN(0,Σ), (3.5)

where Σ is a diagonal matrix with large entries. For k = 1 we place a Dirichlet prior on
π(1) = (π

(1)
1 , . . . , π

(1)
L1

), i.e.

p(π(1)) ∝ Dirichlet(α1, . . . , αL1),

we set all αj1 = 0.5, j1 = 1, . . . , L1 (corresponding to the Jeffreys prior), another common
choice could be to set all αj1 = 0.

With this extension to our modelling framework, parameters in other conditional
regression models (where the response variable is not nominal) still retain their original full
conditional distributions and can be sampled accordingly. However, a missing continuous
covariate value or latent value x∗i,q, q ∈ {1, . . . , k − 1}, will not have a full conditional
distribution available in closed form. This is due to their presence in Equation 3.4. In
order to sample values of x∗i,q from their full conditional distribution, a Metropolis sampler
would need to be specified. To avoid this we decompose the joint distribution so that if
xq is nominal then x1, . . . ,xq−1 are also nominal. This means that in any multinomial
regression model, all the covariates will also be nominal. We assume there are k nominal
variables in our dataset, and in this way a missing x∗i,q, q ∈ {1, . . . , k} can be imputed
from its full conditional distribution in closed form, which is given using Bayes rule by

p(x∗i,q = jq|x∗i,1 = j1, . . . , x∗i,q−1 = jq−1, x∗i,q+1 = jq+1, . . . , x∗i,k = jk, x∗i,k+1, . . . , x
∗
i,p,Θ),

= π̃
(q)
i,jq

where jq ∈ {1, . . . , Lq}, and

π̃
(q)
i,jq =

k∏
b=q

π
(b)

i,jb

p∏
b=k+1

exp

−φb
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = jq)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2


Lq∑
u=1

π(q)
i,u

k∏
b=q+1

π
(b)

i,jb

p∏
b=k+1

exp

−φb
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = u)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2


,
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where

x̃∗i,b = x∗i,b − β
(b)
0 −

q−1∑
s=1

Ls∑
js=2

β(b),js

s I(x∗i,s = js)−
k∑

s=q+1

Ls∑
js=2

β(b),js

s I(x∗i,s = js)

Missing continuous covariate values or latent variable values can now be imputed from
their full conditional distributions in closed form as before. This is because they do not
appear as covariates in Equation 3.4 anymore.

We now sample the parameters, θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

) with

θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ), for jq = 1, . . . , Lq, where we set

θ
(q)
1 = 0 for identifiability. Rather than sample θ(1) we instead sample π(1) from its full

conditional distribution; this is because we have used the conjugate Dirichlet prior for π(1)

and so the posterior distribution for π(1) is available in closed form, i.e.

α =

(
α1 +

n∑
i=1

I(xi,1 = 1), α2 +
n∑
i=1

I(xi,1 = 2), . . . , αL1 +
n∑
i=1

I(xi,1 = L1)

)′
.

where (α1, . . . , αL1) are the parameters from the Dirichlet prior distribution π(1). However,
for q = 2, . . . , k, the full conditional distributions for θ(q) are not available in closed form,
and so we use a Metropolis-Hastings proposal to sample from these distributions. The full
conditional distribution for θ(q) is proportional to

n∏
i=1

Lq∏
w=1


exp

β(q)
0,w +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,w I(x∗i,b = jb)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u I(x∗i,b = jb)





I(xi,q=w)

π(θ(q)),

where I(·) is the indicator function and π(θ(q)) is the diffuse prior given by Equation 3.5.

There is no closed form expression for this full conditional distribution, and so to
sample from this distribution we use a Metropolis-Hastings sampler; thus we develop a
Metropolis within Gibbs sampler to impute missing values. One approach would be to
specify an independent multivariate normal proposal distribution for θ(q), N(µ(cc),Σ(cc)),
where the µ(cc) and Σ(cc) are determined using the complete case likelihood and large
sample normal approximations to the posterior (Gelman et al. (2004)). This would allow
the proposal distribution to be fixed over iterations of the Gibbs sampler. Specifically, the
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complete case log-likelihood for θ(q), lcc(θ(q); X(cc)) is given by

lcc(θ(q); X(cc)) =

Lq∑
w=1

n∑
i=1

ln


exp

β(q)
0,w +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,w I(x∗i,b = jb)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u I(x∗i,b = jb)





I(xi,q=w)

I(mi,q = 0),

where I(·) is the indicator function. From this we can use the value of θ(q), that maximises
lcc(θ(q); X(cc)) for µ(cc), and −E[ δ2

δβ
(q)
j,wδβ

(q)

j̃,w̃

l(cc)(θ(q); X(cc))]−1
θ(q)=µ(cc) for Σ(cc), i.e. the inverse

of the Fisher information matrix for the complete case log-likelihood evaluated at its max-
imum likelihood estimate. In practice however, we found that this proposal distribution
performed poorly in proposing plausible values. We thus consider an alternative proposal
distribution based on the imputed data log-likelihood at each iteration t, l(θ(q); X

(t)
com).

We consider a proposal distribution for θ(q) from N(µ(t),Σ(t)) which based on the imputed

data log-likelihood at each iteration t, l(θ(q); X
(t)
com), and can be expressed as

l(θ(q); X(t)
com) =

Lq∑
w=1

n∑
i=1

ln


exp

β(q)
0,w +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,w f(x
(t)
i,b , xi,b,mi,b)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u f(x
(t)
i,b , xi,b,mi,b)





I(xi,q=w)

,

where f(x
(t)
i,b , xi,b,mi,b) = (I(x

(t)
i,b = jb)mi,b + I(xi,b = jb)(1 −mi,b)), with mi,b is a missing

data indicator with mi,b = 1 indicating xi,b is missing and mi,b = 0 indicating xi,b is
observed. We generate proposals for θ(q) from a normal distribution N(µ(t),Σ(t)) , and

µ(t) is the value that maximises l(θ(q); X
(t)
com) and Σ(t) is given by

−E[ δ2

δβ
(q)
j,wδβ

(q)

j̃,w̃

l(θ(q); X
(t)
com)]−1

θ(q)=µ(t) .

In the simulation studies and applications to the breast-feeding study in Chapter 4,
values proposed from a N(µ(t),Σ(t)) distribution were accepted approximately 90% of the
time, while proposal values drawn from a N(µ(cc),Σ(cc)) distribution were accepted only
approximately 5% of the time. Thus the proposal distribution based on the imputed data
likelihood greatly improves the efficiency of the Metropolis within Gibbs sampler, even
with the additional computational burden of having to recalculate the proposal density
at each iteration. It may seem surprising at first that even when the sample sizes are
relatively large, a normal proposal based on the complete case likelihood is inefficient.
This is because when data are MAR, parameter estimates based on the complete case
likelihood are not closely matched to estimates that would have been obtained from the
complete data likelihood.

Thus, in complete data sets that contain categorical and continuous variables we have
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proposed a modelling strategy that allows a Metropolis within Gibbs sampler to sample
all unknowns from their joint posterior distribution, and hence creates imputed data sets
by sampling from the posterior predictive distribution p(Xmis|Xobs). We note that a
related imputation modelling strategy has been developed by Goldstein et al. (2009) in
the context of multilevel models, that uses latent normal random variables. Our approach
differs fundamentally with Goldstein et al. (2009) in the modelling of nominal variables,
and thus also in the proposed method for posterior computations here. We now briefly
describe an alternative strategy that imputes missing values in these data sets based on
chained equations.

3.2.2 Multivariate imputation via chained equations (MICE)

Multivariate imputation via chained equations (MICE) (Van Buuren (2011), Van Buuren
et al. (1999)) is a commonly used approach to impute missing values. The method is also
known as sequential regression multiple imputation (SRMI) (Raghunathan et al. (2001)),
regression switching (Van Buuren et al. (1999)) and partially incompatible MCMC (Rubin
(2003)).

Like the approach described above imputations are performed on a variable by variable
iterative basis. Suppose D represents our set of fully observed covariates then in the first
iteration (t = 1), missing values in x1 are imputed using the distribution p1(x1|D), denote

the imputed variable x
(t)
1 . Then missing values in x2 are imputed using p2(x2|x(t)

1 ,D) to

create an imputed variable x
(t)
2 , this continues sequentially until an imputed variable x

(t)
k

is created from pk(xk|x(t)
1 , . . . ,x

(t)
k−1,D). Flat prior distributions are used on all model

parameters. The form of the model pk(·) depends on the measurement scale of xk as
with FRM, so for example if xk is continuous pk(·) will take the form of a normal linear
regression, while if xk is binary then pk(·) might take the form of a logistic regression.
In subsequent iterations (t > 1) the method cycles through a sequence of conditional

regressions gk(xk|D,x(t)
1 , . . . ,x

(t)
k−1,x

(t−1)
k+1 , . . . ,x

(t−1)
p ) to impute missing values in xk; again,

flat prior distributions are used for all model parameters and the form of gk(·) depends on
the measurement scale of xk. Once the method has cycled through a sufficient number of
iterations the imputed values are used to create an imputed data set; typically the number
of iterations used is fairly modest, often t = 5 or 10. The method is applied at m random
starting points to create m imputed data sets.

Imputations generated from this method are not guaranteed to be draws from the
posterior predictive distribution p(Xmis|Xobs), this is is because draws from each of

gk(xk|D,x(t)
1 , . . . ,x

(t)
k−1,x

(t−1)
k+1 , . . . ,x

(t−1)
p ) are not derived from any joint posterior distribu-

tion as was the case with FRM. Problems with this modelling approach have been noted
by Gelman and Speed (1993), and limitations have also been noted by White et al. (2011).
See Azur et al. (2011) for more details about the MICE method and a discussion of its
benefits and drawbacks. It would be interesting to see how FRM compares with MICE
in imputing missing values in data sets containing variables with different measurement
scales. In the next chapter we illustrate the performance of both modelling approaches in
a simulation study.
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Chapter 4

Simulation study and real data

application

In this chapter we will be illustrating the performances of our imputation strategy FRM
through a simulation study and a real data set. We also compare the results obtained
using FRM to those obtained using MICE in both the simulation study and the real data
application. We first describe the simulation study in Section 4.1 and Section 4.2 will
present the results on the real data.

4.1 Simulation study

In this simulation study, we simulate data sets that contain variables measured on binary,
ordinal, continuous and nominal (greater than two levels) scales. Specifically each data
set contains one binary variable, two ordinal variables, four continuous variables, and
two nominal variables. Variables are simulated in a sequential manner with each variable
conditional on a subset of variables already generated. We then introduce missing values
into all but one of the variables using the MAR mechanism, so that each incomplete
variable has approximately 30% missing values. Specific details of how we simulated the
incomplete dataset are given in Appendix A. We replicate this data generating process
1000 times to generate 1000 incomplete data sets.

Using the FRM imputation strategy proposed in the previous section we multiply
impute the missing values in each incomplete data set m = 10 times. To generate m
independent imputed data sets, we run m Metropolis within Gibbs samplers, each with a
different starting value, with each sampler resulting in an imputed data set after conver-
gence. We assume analysts may be interested in making inferences about various types of
estimands arising from both univariate analyses, e.g. population means of variables or the
proportions in the population taking a particular level of a categorical variable, as well
as multivariate analyses, e.g. the coefficients from a regression model. See Appendix A
for a full list of the estimands considered. Using the m imputed data sets, we apply the
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combining rules described in Equation 2.1 to construct point and interval estimates for
these estimands. We also construct estimates for the same estimands when using MICE
to multiply impute the missing values. To impute missing values using MICE we use the
MICE package in R (Van Buuren (2011)).

When implementing FRM or MICE for imputation, we consider two scenarios repre-
senting the state of the imputer’s knowledge about the data generation mechanism. In
scenario 1, we assume the imputer knows the data generating process and so decomposes
the joint distribution of the imputation model as described in Equation 3.3. The analysis
of the imputed data sets will also respect the ordering of the variables used to impute
the missing values, the analysis model is thus congenial to the imputation model (Meng
(1994)).

In scenario 2, we assume the imputer has no prior knowledge about how the data was
generated; this will be the case in most practical situations. We thus explore a different
ordering of the predictors (to that used to generate the data) to decompose the joint
distribution and impute missing values. The analyses performed are the same as those in
scenario 1 and the analysis models are not congenial to the imputation model in scenario 2.
Details of the decomposition used and analysis models considered are given in Appendix
A.
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Figure 4.1: The coverages of estimands in scenario 1.

Figure 4.1 presents box plots of coverages for the estimands using the 95% confidence
intervals constructed from the imputations generated by FRM and MICE over the 1000
datasets. These estimands include those arising from both univariate analyses and regres-
sion analyses. The first box plot presents coverages when there are no missing data in
the datasets. These coverage are as expected the closest to 0.95. The second box plot
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shows the coverages from FRM while the third box plot shows the coverages obtained
from MICE. We see that the proposed method obtains coverages much closer to 0.95 than
the coverages obtained from using MICE.
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Figure 4.2: Absolute biases of estimands in scenario 1.

To determine whether these low coverages seen from using MICE are due to a result
in biases in the estimates, in Figure 4.2 we plot the biases in the estimates obtained
from using FRM against the biases obtained from using MICE. We distinguish between
estimates arising from univariate analyses and estimates arising from multivariate analyses,
i.e. regression coefficient estimates. We see that the majority of the large biases are those
arising from multivariate analyses, and are below the y = x line, which indicates that
MICE tends to obtain regression coefficient estimates further from the true values than
FRM.

Figures 4.3 and 4.4 present similar plots from scenario 2 where we investigate a dif-
ferent decomposition to the joint distribution (from that used to generate the data) to
impute missing values. We see that FRM again obtains similar gains over MICE in ob-
taining coverages much closer to the nominal values, and smaller biases in general.
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Figure 4.3: The coverages of estimands in scenario 2.
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4.2 Application to breast-feeding study

We now apply the modelling strategy to impute missing values in a subsample of the 1979
National Longitudinal Survey of Youth (NLSY79). We first describe the data and the
analysis of interest, we then apply our modelling strategy to multiply impute the missing
data in a simulation based on the complete cases, finally we apply the imputation model
on the full data sample.

4.2.1 NLSY dataset

This survey interviewed a sample of 12,686 youths, aged 14-22, on an annual basis from
1979. A separate survey began in 1986 to the children born to female respondents in
NLSY79 known as the NLSY79 Children and Young Adults. The data set we consider
here is a subsample of the NLSY79 Children and Young Adults which looked at the effect
of breast-feeding on children’s cognitive development.

The study recorded the Peabody individual assessment math score (PI-ATM) ad-
ministered at five or six years of age, which we use as the measure of child’s cognitive
development. Following Mitra and Reiter (2011) we dichomotize the variable that mea-
sures duration of breast-feeding so as to split units into two groups; the first group, denoted
the control group, comprises those units who were breast-fed for less than 24 weeks, while
the second group, denoted the treatment group, comprises those units who were breast-fed
for 24 weeks or more. The threshold value, 24 weeks, has been given by the American
Academy of Pediatrics (Chantry et al. (2006)) and the World Health Organization as a
minimum standard for breast-feeding duration. However, the analysis could be repeated
with different threshold values of the breast-feeding duration variable. We assume that
an analyst is interested in determining the relationship between PI-ATM and the effect
of treatment after adjusting for relevant pre-treatment variables. We adjust on thirteen
background pre-treatment variables that are a subset of those used in the analysis by
Mitra and Reiter (2011); these were the child’s race, whether the spouse or partner was
present at birth, child’s sex, whether grandparents were present at birth, family income,
the number of years between 1979 and when the mother gave birth, mother’s intelligence
as measured by an armed forces qualification test, mother’s highest educational attain-
ment, child’s birth weight, number of days that the child spent in hospital, number of days
that the mother spent in hospital, number of weeks that the mother worked in the year
prior to giving birth, and the number of weeks the child was born premature. The first
four variables in this list are categorical. Following Mitra and Reiter (2011) we also cate-
gorised the last two variables due to their highly non-normal distributions (see Appendix
B for histograms of these variables), we categorised the number of weeks that the mother
worked in the year prior to giving birth into four categories, zero weeks, 1-47 weeks, 47-51
weeks and 52 weeks, we categorised the number of weeks the child was born premature
into three categories, zero weeks, 1-4 weeks, greater than 5 weeks. This resulted in six cat-
egorical variables (comprising binary, ordinal and nominal variables) and seven continuous
variables in the data set. Please see Appendix B for more details on the data set.

Analysts can fit a regression model using PI-ATM as the response, and including
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treatment plus the other relevant pre-treatment variables as covariates in the model. The
effect of treatment could then be estimated by the regression coefficient for treatment. Of
course, there is the possibility of unmeasured confounders that we have not adjusted for,
which can bias the treatment effect. Hence, we do not seek to make definitive conclusions
about the effect of breast-feeding on cognitive development; we are simply using this
analysis to illustrate the FRM approach to impute missing values and making subsequent
inferences.

We only include the first born children in the analysis to avoid complications arising
from family nesting which resulted in 4886 units. Several variables in the study were
not fully observed, the response variable contains 48.2% missing values, number of weeks
that the mother worked in the year prior to giving birth contains 33.05% missing values,
family’s income contains 25.69% missing values, both number of days that the child spent
in hospital and number of days that the mother spent in hospital contain approximately
10.0% missing values, two variables had no missing values (the number of years between
1979 and when the mother gave birth, and the child’s race) and the rest of the variables
had missing data rates of less than 10% (see Appendix B for more details). There were
1313 fully observed units in this sample.

To impute the missing values we decompose the joint distribution of the variables
in the study using a sequence of regression models as described in Chapter 3. Variables
without any missing values are conditioned on in every regression model. The ordering
of variables used in the decomposition is given in Appendix B. When a regression model
had a continuous response, we considered Box-Cox transformations where necessary to
improve the normality assumptions required in the imputation modelling strategy; full
details are given in Appendix B. We included the response variable as the last variable
in our decomposition. Inclusion of the response variable in imputation models has been
recommended by Little (1992), although we note that others have suggested the response
should not be included (D’Agostino and Rubin (2000)). We could have repeated the
analysis without including the response in the imputations.

4.2.2 Simulation involving the complete cases

Before applying FRM to impute missing values in the full sample, we apply the imputation
model to a simulation involving the complete case subsample. We reintroduce missing data
patterns in the complete case subsample using the same fractions that appeared in the full
sample. We can then run FRM to multiply impute the missing values in this incomplete
subsample, perform the analysis using the imputed data, and compare the results to the
analysis performed on the subsample prior to introducing missing values. We also compare
results to those from using MICE to multiply impute the missing values. As MICE uses a
full conditional regression model to impute missing values in each variable, we considered
potentially different Box-Cox transformations for variables to improve the model fit here,
more details are given in Appendix B.

Table 4.1 presents estimates of the regression coefficients and variances obtained from
fitting the regression model for PI-ATM on treatment and other covariates. The first
column presents estimates prior to introducing missing values, the second column presents
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Table 4.1: Estimates of regression coefficients and standard errors (standard errors are in
parentheses)

No missing data FRM MICE
Intercept. 86.344 (3.386) 85.430 (6.061) 85.955(4.915)

Treatment effect. 1.609 (0.948) 1.275 (1.586) 2.019 (1.232)
The number of years between

1979 and when the mother gave birth. -0.025 (0.099) 0.001 (0.182) -0.054 (0.133)
The child’s race-Black -1.244 (1.117) -0.933 (2.078) -0.662(1.437)
The child’s race-Other 2.346 (0.971) 4.159 (1.736) 4.114 (1.350)

Spouse present at birth. -1.595 (1.438) -1.860 (2.879) -1.412 (1.782)
Partner present at birth. -0.159 (1.104) 0.177 (1.818) 0.085(1.554)

Family income. 0.000 (0.000) 0.000 (0.000) 0.000(0.000)
Child’s sex. 0.811 (0.676) 0.130 (1.176) 0.125(0.933)

Grandparents were present at birth. -1.078 (1.151) -1.175 (1.867) -0.471 (1.577)
Mother’s intelligence. 0.081 (0.018) 0.057 (0.032) 0.052(0.027)

Mother’s highest educational. 0.606 (0.212) 0.628 (0.355) 0.579(0.316)
Child’s birth weight. 0.023 (0.021) 0.026 (0.032) 0.026(0.027)

Days that the child spent in hospital. -0.045 (0.052) -0.047 (0.089) -0.046(0.066)
Days that the mother spent in hospital. -0.283 (0.119) -0.387 (0.214) -0.417 (0.160)
Weeks that the mother worked-level 2 1.190 (0.984) 2.194 (1.556) 2.349 (1.615)
Weeks that the mother worked-level 3 0.038 (1.261) 1.653 (2.083) 1.575 (2.196)
Weeks that the mother worked-level 4 2.156 (1.102) 3.392 (2.003) 4.873 (1.773)

Child was born premature-level 2 1.265 (0.919) -0.233 (1.531) -0.183 (1.147)
Child was born premature-level 3 2.009 (2.248) -0.226 (3.718) -0.073(2.969)
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results based on the FRM, the final column presents results from MICE. From an analysts
point of view, the key estimate is the coefficient on treatment, which gives an estimate
of the treatment effect; ideally the estimate from the imputed data should be close to
that obtained from the fully observed data. We see that the bias in the treatment effect
estimate from using MICE is about 25.5% when compared to the fully observed estimate,
while the bias from using FRM is 20.7%. So, in terms of estimating the treatment effect,
there is a potential benefit from using FRM over MICE.
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Figure 4.5: Absolute biases of estimands.

In Figure 4.5 we also plot the absolute biases in the regression coefficient estimates
from using FRM, again when compared to the fully observed estimates, against similar
biases from using MICE. We see that the majority of points (11 out of the 20) lie below
the y = x line, indicating that in general using FRM for imputation has the potential to
obtain estimates closer to those obtained from the fully observed data than using MICE.
We investigated how sensitive results were to three different ordering of variables in the
decomposition of the joint distribution, and we found similar results to those obtained
above.

4.2.3 Application to the full data sample

We now apply FRM and MICE to the full data sample. We used the same decomposition
for the joint distribution as was used in the previous section. For FRM we run m = 50
Gibbs samplers at different starting points each for 20000 iterations to generate 50 imputed
data sets, we also use MICE to generate 50 imputed data sets. Table 4.2 presents coefficient
estimates from the regression model described above using both sets of imputed data. We
see that there is no real significant difference in the treatment effect estimates here; they
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differ by approximately 0.233 (standard errors from using FRM and MICE are 0.727 and
0.736 respectively).

Table 4.2: Estimates of regression coefficients and standard errors (standard errors are in
parentheses)

FRM MICE
Intercept. 85.222 (2.578) 84.562(2.605)

Treatment effect. 0.903 (0.727) 1.136 (0.736)
The number of years between

1979 and when the mother gave birth. 0.041 (0.071) 0.038(0.072)
The child’s race-Black -0.549 (0.776) -0.567 (0.811)
The child’s race-Other 3.093 (0.726) 3.176(0.765)

Spouse present at birth. -0.101 (1.227) 0.187(1.092)
Partner present at birth. 0.294 (0.824) 0.061 (0.931)

Family income. 0.000 (0.000) 0.000(0.000)
Child’s sex. 0.740 (0.468) 0.787(0.458)

Grandparents were present at birth. -0.537 (0.806) 0.040 (0.816)
Mother’s intelligence. 0.108 (0.014) 0.108 (0.014)

Mother’s highest educational. 0.580 (0.162) 0.583(0.161)
Child’s birth weight. 0.013 (0.016) 0.016 (0.016)

Days that the child spent in hospital. -0.055 (0.046) -0.057 (0.045)
Days that the mother spent in hospital. -0.104 (0.079) -0.106 (0.090)
Weeks that the mother worked-level 2 0.960 (0.704) 1.004 (0.793)
Weeks that the mother worked-level 3 1.040 (0.925) 0.828 (1.023)
Weeks that the mother worked-level 4 1.898 (0.871) 1.948 (0.890)

Child was born premature-level 2 0.811 (0.659) 0.749 (0.748)
Child was born premature-level 3 0.958 (1.372) 0.596(1.902)

While we cannot be certain which approach most closely reflects the estimates that
would be obtained from the fully observed data, we saw that FRM tended to obtain closer
estimates than MICE in the complete case simulation. Of course we cannot also be certain
if the treatment effect estimate that would have been obtained from the fully observed data
is a reliable estimate of the true treatment effect, the standard problems of unmeasured
confounding and model mis-specification still apply. We use this breast-feeding study
simply to illustrate the potential gains when using FRM to achieve results closer to the
complete data results over MICE.
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Chapter 5

Alternative prior specifications for

FRM

Until now, we have proposed a modelling strategy to multiply impute missing values in
data sets that contain both categorical (ordinal and nominal) and continuous variables. In
the FRM strategy, we have used non-informative priors for our univariate linear regression
models. We will now extend our modelling strategy to incorporate different informative
priors for the FRM.

We noticed that in the real data application, the convenient normality assumption is
not quite tenable and heavy tails are called for in order to adequately capture the main
features of the data. In FRM, the error terms of the univariate linear regression models
are assumed to be normally and independently distributed, each with zero mean and com-
mon variance. A known limitation with this normality assumption is its non-robustness,
which does not allow for heavy tailed error distributions. Hence we considered the Box-
Cox transformations (Box and Cox (1964)) for continuous responses where necessary to
improve the normality assumptions required in the imputation models (see Appendix B
for details). To extend our modelling approach to deal with the heavy tailed features,
we assume that the errors of the linear regression models follow a marginal t-distribution
with degrees of freedom ν. This allows for heavier-tailed error distributions which are more
robust to the outliers in our data. The assumptions of normally distribution errors can
be viewed as a special case within this framework by letting ν → ∞. This is important
as the outlying observations may severely impact any inferences we seek to make from
the resulting imputed data sets (Barnett and Lewis (1994)). In the Bayesian approach,
we also assign a marginal t-prior to the regression parameters in our Gibbs sampler, and
this will still give us a set of tractable full conditional distributions. We then refer to this
modelling strategy for imputation as the robust factored regression model (RFRM). We
will be comparing the performances of the RFRM and FRM through a simulation study
and on the breast-feeding data taken from Chapter 3.

We will also be considering another different approach in extending our model. We
noticed that when we perform a regression model on a data set with large numbers of
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variables, this will lead to large numbers of predictors present in the regression model, but
not all predictors are statistically significant in the model. In the usual regression model,
the parameter estimates are obtained by using the ordinary least squares (OLS) method.
However, the OLS estimates often have low bias but large variance, and hence could affect
the prediction accuracy; also it is difficult to interpret the model with large numbers of
predictors. A technique called the Lasso (Tibshirani (1996)) has become a widely used
alternative method to ordinary least squares (OLS) in estimating regression parameters
(Yuan and Lin (2006), Zou (2006), Zhao and Yu (2006)). The Lasso has features such as
shrinking the regression coefficients toward zero, resulting in some regression coefficients
identically equal to zero, which leads to a variable selection procedure. Moreover, such
shrinkage features can sacrifice a little bias to reduce the variance of the estimates, and
hence may increase the prediction accuracy and could potentially lead to more plausible
imputations for our model. We will be incorporating the Bayesian Lasso (Park and Casella
(2008)) into our model and we refer to this modelling strategy as the Lasso factored
regression model (LFRM). Similarly to before, we compare the performances of the LFRM
and FRM through a simulation study and on the breast-feeding data set taken from
Chapter 3.

Finally, we will be considering combining elements of RFRM and LFRM into one
modelling strategy. The aim is to explore the robustness of the linear regression model
and the potential sparse relationship between variables. Similar strategy has also been
mentioned in Yi and Xu (2008). We refer to this modelling strategy as the modified
factored regression model (MFRM). We compare the performances of the MFRM and
FRM through a simulation study and on the breast-feeding data taken from Chapter 3.
For each of the joint modelling approaches RFRM, LFRM and MFRM, we also compare
the results between these 3 approaches with their equivalent fully conditional specifications
(MICE) through simulation studies and on the breast-feeding data set.

5.1 Robust factored regression model (RFRM)

In this section, we will be presenting the full conditional distributions in the Metropolis
within Gibbs sampler required to generate imputed datasets using RFRM. We first express
the joint posterior distribution of all unknowns; these comprise model parameters Θ, and
the missing and latent values introduced through data augmentation, denote the set of all
unobserved data as Xunobs. The joint posterior can then be expressed as,

p(Θ,Xunobs|Xobs) ∝
n∏
i=1

{
p(xi,1|θ(1))p(θ(1))

p∏
j=2

p(xi,j|xi,1, . . . , xi,j−1,θ
(j))p(θ(j))

}
.

We assume that there are k nominal variables, we then order the variables so that
x1, . . . ,xk are nominal, each xq, q = 1, . . . , k, taking a set of possible values 1, . . . , Lq.
Variables xk+1, . . . ,xp could then be measured on a binary, ordinal or continuous scale.
We provide expressions for each conditional regression model p(xi,q|xi,1, . . . , xi,q−1,θ

(q)).
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First if q = 1 then,

p(xi,1|θ(1)) = Multinomial(π
(1)
1 , . . . , π

(1)
L1

),

where π
(1)

j1 = p(xi,1 = j1|θ(1)) =
exp(β

(1)

0,j1
)∑L1

s=1 exp(β
(1)
0,s)
, j1 = 1, . . . , L1. We place a Dirichlet prior

on π(1), i.e.

p(π(1)) ∝ Dirichlet(α1, . . . , αL1),

we set all αj1 = 0.5 for j1 = 1, . . . , L1 (corresponding to the Jeffreys prior), another
common choice could be to set all αj1 = 0. For q = 2, . . . , k,

p(xi,q|xi,1, . . . , xi,q−1,θ
(q)) = Multinomial(π

(q)
i,1 , . . . , π

(q)
i,Lq

),

where

π
(q)
i,jq =

exp

β(q)
0,jq +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,jq I(xi,b = jb)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u I(xi,b = jb)

 ,

where jq = 1, . . . , Lq. Let θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

)

with θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ) for jq = 1, . . . , Lq and we set

θ
(q)
1 = 0 for identifiability. We specify the prior for each θ

(q)
jq , j

q = 2, . . . , Lq by

p(θ(q)) = MVN(0,Σ).

where Σ is a diagonal matrix with large entries.

For xq, q ∈ {k+ 1, . . . , p} is continuous (for now assuming xk+1, . . . ,xq−1 are continuous),

p(xi,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) =

N(β
(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, (τqφi,q)

−1).

We specify the prior distribution for θ(q) by,

p(θ(q)) = p(β(q), τq,Ψq,Φq) = p(β(q)|τq,Ψq,Φq)p(τq|Ψq,Φq)p(Ψq|Φq)p(Φq),

where Ψq = (ψ0,q, . . . , ψj,q)
′ for j = 1, . . . , q − 1 and Φq = (φi,q, . . . , φn,q)

′. The prior
distribution for β(q) follows a multivariate normal distribution with mean 0 and covariance
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matrix Σq,

p(β(q)|τq,Ψq) ∼ MVN(0,Σq), (5.1)

where Σq is a diagonal matrix with entries given by 1
τqψj,q

for j = 0, . . . , q − 1 and we

assign a non-informative prior for τq, i.e.

p(τq) ∝
1

τq
. (5.2)

The prior distribution for Ψq where Ψq = (ψ0,q, . . . , ψq−1,q)
′ is a gamma distribution with

shape and rate parameters equal to ν
2

where

p(ψj,q) ∼ Gamma(
ν

2
,
ν

2
), j = 0, . . . , q − 1, (5.3)

This results in a marginal t-prior for β(q) with degrees of freedom ν. The prior distribution
for Φq, where Φq = (φi,q, . . . , φn,q)

′ follows a gamma distribution with shape and rate
parameters equal to ν

2
where

p(φi,q) ∼ Gamma(
ν

2
,
ν

2
), i = 1, . . . , n.

and this results in the errors of the linear regression model follow a marginal t-distribution
with degrees of freedom ν.

For xq, q ∈ {k + 1, . . . , p} is binary (for now assuming xk+1, . . . ,xq−1 are continuous),

xi,q = I(x∗i,q > 0), where

p(x∗i,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, 1).

We also specify a prior distribution for θ(q) by,

p(θ(q)) = p(β(q), τq,Ψq) = p(β(q)|τq,Ψq)p(τq|Ψq)p(Ψq),

where the prior distributions for β(q), τq,Ψq are given by Equation 5.1, Equation 5.2 and
Equation 5.3 respectively. This results in a marginal t-prior for β(q) with degrees of freedom
ν.

For xq, q ∈ {k + 1, . . . , p} is ordinal taking values in {1, . . . , Jq} (for now assuming

48



xk+1, . . . ,xq−1 are continuous),

xi,q = jq I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq ), where

p(x∗i,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, 1),

where the γ
(q)
jq are threshold values, with γ

(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq

∈ {1, ..., Jq}.

We also specify a prior distribution for θ(q) by,

p(θ(q)) = p(β(q), τq,Ψq,γ
(q)) = p(β(q)|τq,Ψq,γ

(q))p(τq|Ψq,γ
(q))p(Ψq|γ(q))p(γ(q)),

where γ(q) =
{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
. The prior distributions for β(q), τq,Ψq are given by

Equation 5.1, Equation 5.2 and Equation 5.3 respectively. This is a marginal t-prior for
β(q) with degrees of freedom ν. We then place an improper uniform prior on γ(q) i.e.

p(γ(q)) ∝ I(γ(q) ∈ Ω(q)),

where Ω(q) =
{
γ

(q)
jq : γ

(q)
0 = −∞ < γ

(q)
1 = 0 < γ

(q)
2 < . . . < γ

(q)
Jq−1

< γ
(q)
Jq

=∞
}

.

If xi,q, q ∈ {k + 1, . . . , q − 1} is not continuous then we replace xi,q with x∗i,q in the model

for p(xi,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)). For notational convenience when xi,q is nominal or

continuous we assume xi,q = x∗i,q, q ∈ {1, . . . , p}.

With this model and prior specification we can present the full conditional distribution
required to impute missing values in the Metropolis within Gibbs sampler. Following
Schafer (1997) we present this as a data augmentation scheme and so first present the
“I-steps” followed by the “P-steps”.

In the “I-steps”, conditional on parameter values, first impute missing nominal values x∗i,q
from the following discrete distribution

p(x∗i,q = jq|x∗i,1 = j1, . . . , x∗i,q−1 = jq−1, x∗i,q+1 = jq+1, . . . , x∗i,k = jk, x∗i,k+1, . . . , x
∗
i,p,Θ)

= π̃
(q)
i,jq ,

where jq ∈ {1, . . . , Lq}, and

π̃
(q)
i,jq =

k∏
b=q

π
(b)

i,jb

p∏
b=k+1

exp

−τbφi,b
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = jq)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2


Lq∑
u=1

{
π

(q)
i,u

k∏
b=q+1

π
(b)

i,jb

}
p∏

b=k+1

exp

−τbφi,b
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = u)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2

 ,
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where

x̃∗i,b = x∗i,b − β
(b)
0 −

q−1∑
s=1

Ls∑
js=2

β(b),js

s I(x∗i,s = js)−
k∑

s=q+1

Ls∑
js=2

β(b),js

s I(x∗i,s = js).

Next impute missing continuous values x∗i,q or latent values x∗i,q with missing xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,k, x

∗
i,k+1, . . . , x

∗
i,p,Θ) = N(µ̃i,q, φ̃

−1
i,q ),

where

µ̃i,q = φ̃−1
i,q

{
µi,q

(τqφi,q)−1
+

p∑
s=q+1

β
(s)
q

(τsφi,s)−1

[
x∗i,s − (µi,s − β(s)

q x∗i,q)
]}

,

and

φ̃−1
i,q =

(
1

(τqφi,q)−1
+

p∑
s=q+1

(β
(s)
q )2

(τsφi,s)−1

)−1

,

where µi,q = β
(q)
0 +

∑k
b=1

∑Lb
jb=2 β

(q),jb

b I(x∗i,b = jb) +
∑q−1

b=k+1 β
(q)
b x∗i,b and

µi,s = β
(s)
0 +

∑k
b=1

∑Lb
jb=2 β

(s),jb

b I(x∗i,b = jb) +
∑s−1

b=k+1 β
(s)
b x∗i,b.

Next impute latent values x∗i,q with observed ordinal variable xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,p,Θ) =

I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )N(µ̃i,q, φ̃

−1
i,q )

Φ(
γ
(q)
jq
−µ̃i,q
φ̃−1
i,q

)− Φ(
γ
(q)
jq−1

−µ̃i,q
φ̃−1
i,q

)

,

which is a normal distribution N(µ̃i,q, φ̃
−1
i,q ) truncated to (γ

(q)
jq−1, γ

(q)
jq ).

Next impute latent values x∗i,q with observed binary variable xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,p,Θ) =

I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )N(µ̃i,q, φ̃

−1
i,q )

Φ(
γ
(q)
jq
−µ̃i,q
φ̃−1
i,q

)− Φ(
γ
(q)
jq−1

−µ̃i,q
φ̃−1
i,q

)

,

which is a normal distribution N(µ̃i,q, φ̃
−1
i,q ) truncated to (γ

(q)
jq−1, γ

(q)
jq ) where the γ

(q)
jq are

fixed threshold values, with γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
2 = ∞.

Once we have imputed values for x∗i,q (with missing xi,q), we define a function g(x∗i,q) to
map each x∗i,q back to its original measurement scale, and thus create an imputed data

50



set. The mapping function is defined as follows,

g(x∗i,q) =


I(x∗i,q > 0) if x∗i,q is binary,

jq I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq ) if x∗i,q is ordinal, jq ∈ {1, . . . , Jq} ,

x∗i,q if x∗i,q is continuous,

x∗i,q if x∗i,q is nominal, jq ∈ {1, . . . , Lq} ,

Denote an imputed value for xi,q by x
(t)
i,q at iteration t, and an imputed data set at iteration

t by X
(t)
com.

In the “P-steps”, conditional on an imputed data set, first sample values for θ(1) from a
Dirichlet(α) distribution with parameters

α =

(
α1 +

n∑
i=1

I(xi,1 = 1), α2 +
n∑
i=1

I(xi,1 = 2), . . . , αL1 +
n∑
i=1

I(xi,1 = L1)

)′
.

Next propose values for θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

) with

θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ), for jq = 1, . . . , Lq using a

Metropolis-Hastings step, where we set θ
(q)
1 = 0 for identifiability. We consider a proposal

distribution based on the imputed data log-likelihood at each iteration t, l(θ(q); X
(t)
com),

which can be expressed as

l(θ(q); X(t)
com) =

Lq∑
w=1

n∑
i=1

ln


exp

β(q)
0,w +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,w f(x
(t)
i,b , xi,b,mi,b)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u f(x
(t)
i,b , xi,b,mi,b)





I(xi,q=w)

,

where f(x
(t)
i,b , xi,b,mi,b) = (I(x

(t)
i,b = jb)mi,b + I(xi,b = jb)(1 −mi,b)), with mi,b is a missing

data indicator with mi,b = 1 indicating xi,b is missing and mi,b = 0 indicating xi,b is
observed. We generate proposals for θ(q) from a N(µ(t),Σ(t)) distribution, and µ(t) is the

value that maximises l(θ(q); X
(t)
com) and Σ(t) is given by −E[ δ2

δβ
(q)
j,wδβ

(q)

j̃,w̃

l(θ(q); X
(t)
com)]−1

θ(q)=µ(t) .

Next sample values for θ(q) = (β(q), τq,Ψq,Φq), q ∈ {k + 1, . . . , p} when x∗q is continuous
from the joint posterior distribution of
β(q) = (β

(q)
0 , β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′, Φq = (φi,q, . . . , φn,q)

′,
Ψq = (ψ0,q, . . . , ψq−1,q)

′ and τq, which is given by

p(β(q), τq,Φq,Ψq|X(t)
com) = p(β(q)|τq,Ψq,Φq,X

(t)
com)p(τq|Ψq,Φq,X

(t)
com)p(Ψq|Φq,X

(t)
com)

p(Φq|X(t)
com).
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We sample β(q), τq,Ψq,Φq from their full conditional distributions in the following way:

1. We first sample β(q) from

p(β(q)|τq,Ψq,Φq, X̃q,x
∗
q) = MVN(β̂(q),V(q)),

with

β̂(q) = τqV
(q)X̃′qD

(q)
φ x∗q,

and

V(q) =
1

τq
(X̃′qD

(q)
φ X̃q + D

(q)
ψ )−1,

where x∗q = (x∗1,q, . . . , x
∗
n,q)
′, and X̃q = (x̃1,q, . . . , x̃n,q)

′, with
x̃i,q = (1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1)

for i = 1, . . . , n. The matrix D
(q)
φ is a n×n diagonal matrix with entries φi,q for i = 1, . . . , n

and D
(q)
ψ is a q × q diagonal matrix with entries ψj,q for j = 0, . . . , q − 1.

2. Next sample a value for τq from

p(τq|β(q),Ψq,Φq, X̃
′
q,x
∗
q) ∼

Gamma

(
n+ q

2
,
(x∗q − X̃qβ

(q))′D
(q)
φ (x∗q − X̃qβ

(q)) + (β(q))′D
(q)
ψ β

(q)

2

)
,

where x∗q = (x∗1,q, . . . , x
∗
n,q)
′, and X̃q = (x̃1,q, . . . , x̃n,q)

′, with
x̃i,q = (1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1)

for i = 1, . . . , n. The matrix D
(q)
φ is a n×n diagonal matrix with entries φi,q for i = 1, . . . , n

and D
(q)
ψ is a q × q diagonal matrix with entries ψj,q for j = 0, . . . , q − 1.

3. We then sample values for ψj,q from

p(ψj,q|β(q)
j , τq) = Gamma

(
ν + 1

2
,
τq(β

(q)
j )2 + ν

2

)
, j = 0, . . . , q − 1.

4. We sample values for φi,q from

p(φi,q|τq,β(q), x∗i,q, x̃i,q) ∼ Gamma

(
ν + 1

2
,
ν + τq(x

∗
i,q − x̃i,qβ

(q))2

2

)
, i = 1, . . . , n,

where x̃i,q =
(1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n.
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We now sample values for θ(q) = (β(q), τq,Ψq), q ∈ {k + 1, . . . , p} when xq is binary from
the joint posterior distribution of
β(q) = (β

(q)
0 , β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′, τq,

Ψq = (ψ0,q, . . . , ψq−1,q)
′, which is given by

p(β(q), τq,Ψq|X(t)
com) = p(β(q)|τq,Ψq,X

(t)
com)p(τq|Ψq,X

(t)
com)p(Ψq|X(t)

com)

We sample β(q), τq,Ψq from their full conditional distributions in the following way:

1. We first sample β(q) from

p(β(q)|τq,Ψq, X̃
′
q,x
∗
q) = MVN(β̂(q),V(q)), (5.4)

with

β̂(q) = V(q)X̃′qx
∗
q,

and

V(q) = (X̃′qX̃q + τqD
(q)
ψ )−1,

where x∗q = (x∗1,q, . . . , x
∗
n,q)
′, and X̃q = (x̃1,q, . . . , x̃n,q)

′, with
x̃i,q = (1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1)

for i = 1, . . . , n. The matrix D
(q)
ψ is a q × q diagonal matrix with entries ψj,q for j =

0, . . . , q − 1.

2. Next sample a value for τq from

p(τq|β(q),Ψq) ∼ Gamma

(
q

2
,
(β(q))′D

(q)
ψ β

(q)

2

)
, (5.5)

where matrix D
(q)
ψ is a q × q diagonal matrix with entries ψj,q for j = 0, . . . , q − 1.

3. We then sample values for ψj,q from

p(ψj,q|τq, β(q)
j ) = Gamma

(
ν + 1

2
,
τq(β

(q)
j )2 + ν

2

)
, j = 0, . . . , q − 1. (5.6)

We now sample values for θ(q) = (β(q), τq,Ψq,γ
(q)), q ∈ {k + 1, . . . , p} when xq is ordinal

from the joint posterior distribution of
β(q) = (β

(q)
0 , β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′, τq,
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Ψq = (ψ0,q, . . . , ψq−1,q)
′ and γ(q) =

{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
, which is given by

p(β(q), τq,Ψq,γ
(q)|X(t)

com) = p(β(q)|τq,Ψq,γ
(q),X(t)

com)p(τq|Ψq,γ
(q),X(t)

com)p(Ψq|γ(q),X(t)
com)

p(γ(q)|X(t)
com)

Now we sample β(q), τq,Ψq,γ
(q) from their full conditional distributions in the following

way:

1. We sample β(q) from its full conditional distribution which is given by Equation 5.4.

2. Next sample a value for τq from its full conditional distribution which is given by
Equation 5.5.

3. We then sample values for ψj,q, j = 0, . . . , q − 1 from its full conditional distribution
which is given by Equation 5.6.

4. We then update the threshold values γ(q) =
{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
. The full condi-

tional distribution of the threshold values γ
(q)
jq for jq ∈ {1, . . . , Jq} is uniformly distributed

on the interval[
max

{
max

{
x∗i,q : xi,q = jq

}
, γ

(q)
jq−1

}
,min

{
min

{
x∗i,q : xi,q = jq + 1

}
, γ

(q)
jq+1

}]
,

where γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq ∈ {1, . . . , Jq}.

In this way we have sampled all unknowns (missing values and parameters) from their
full conditional distributions. The details on deriving the full conditional distributions of
the missing values in the “I-steps”, the full conditional distribution of θ(1) where x1 follows
a multinomial distribution, as well as the Metropolis-Hastings update for the multinomial
logistic regression model in the “P-steps” have been presented in the RFRM strategy. For
details on deriving the full conditional distributions of the remaining parameters in the
“P-steps”, such as θ(q) = (β(q), τq,Ψq,Φq) for x∗q when x∗q is continuous, θ(q) = (β(q), τq,Ψq)

for x∗q when x∗q is a latent variable (xq is binary) and θ(q) = (β(q), τq,Ψq,γ
(q)) for x∗q when

x∗q is a latent variable (xq is ordinal), please see Appendix C.

5.1.1 Simulation study

We now illustrate the performances of FRM, RFRM and MICE through a simulation study.
In the MICE approach, we use the model and prior specifications described in the RFRM
strategy to generate missing values. We are interested to compare the results between a
non-robust modelling strategy (FRM) and a robust modelling strategy (RFRM), as well
as the results between the joint modelling specification with t-errors (RFRM) with the
equivalent fully conditional specification (MICE).

We simulate data sets that contain variables measured on binary, ordinal, continuous
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and nominal (greater than two levels) scales. Specifically each data set contains one bi-
nary variable, two ordinal variables, four continuous variables, and two nominal variables.
Variables are simulated in a sequential manner with each variable conditional on a sub-
set of variables already generated. We then introduce missing values into all but one of
the variables using the MAR mechanism, so that each incomplete variable has approxi-
mately 30% missing values. Specific details of how we simulated the incomplete dataset
are given in Appendix D. We replicate this data generation process 500 times to generate
500 incomplete data sets.

Using the RFRM and MICE imputation strategies, we multiply impute the missing
values in each incomplete data set m = 10 times. To generate m independent imputed
data sets, we run m Metropolis within Gibbs samplers, each with a different starting
value, with each sampler resulting in an imputed data set after convergence. We assume
analysts may be interested in making inferences about various types of estimands arising
from both univariate analyses, e.g. population means of variables or the proportions in
the population taking a particular level of a categorical variable, as well as multivariate
analyses, e.g. the coefficients from a regression model. See Appendix D for a full list of
the estimands considered. Using the m imputed data sets, we apply the combining rules
described in Equation 2.1 to construct point and interval estimates for these estimands.
We also construct estimates for the same estimands when using FRM to multiply impute
the missing values.

When implementing RFRM, MICE or FRM for imputations, we assume the imputer
knows the data generating process and so decomposes the joint distribution of the impu-
tation model as described in Equation 3.3. The analysis of the imputed data sets will also
respect the ordering of the variables used to impute the missing values, the analysis model
is thus congenial to the imputation model (Meng (1994)).

Figure 5.1 presents box plots of coverages for the estimands using the 95% confidence
intervals constructed from the imputations generated by RFRM and FRM over the 500
data sets. These estimands include those arising from both univariate analyses and re-
gression analyses. The first boxplot presents coverages when there are no missing data in
the data sets. These coverages are as expected the closest to 0.95. The second boxplot
shows the coverages obtained from using FRM while the third boxplot shows the coverages
obtained from using RFRM. We see that the RFRM obtains coverages much closer to 0.95
than the coverages obtained from using FRM. The estimands that showed low coverages
in the second boxplot are the regression coefficients estimates from the regression model
p(x7|x6,x3) .

To determine whether these low coverages seen from using FRM are due to a result in
biases in the estimates, we plot the absolute biases of estimands obtained from using FRM
against the biases obtained from using RFRM. We distinguish between estimates arising
from univariate analyses and estimates arising from multivariate analyses, i.e. regression
coefficient estimates. In Figure 5.2, we see that the majority of the large biases are those
arising from multivariate analyses, and are above the y = x line, which indicates that
FRM tends to obtain regression coefficient estimates further from the true values than
RFRM. We noticed that RFRM shows a larger absolute bias of a regression coefficient,
denoted by “R” (on the right hand side of Figure 5.2) than FRM. This coefficient is a
coefficient estimate from the regression model p(x9|x2,x7).
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Figure 5.1: The coverages of estimands.
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Figure 5.2: Absolute biases of estimands.
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We now compare the results between RFRM and MICE. Figure 5.3 presents box plots
of coverages for the estimands using the 95% confidence intervals constructed from the
imputations generated by RFRM and MICE over the 500 data sets. These estimands
include those arising from both univariate analyses and regression analyses. The first box-
plot presents coverages when there are no missing data in the data sets. These coverages
are as expected the closest to 0.95. The second boxplot shows the coverages obtained from
using MICE while the third boxplot shows the coverages obtained from using RFRM. We
see that the RFRM obtains coverages much closer to 0.95 than the coverages obtained
from using MICE.
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Figure 5.3: The coverages of estimands.

To determine whether these low coverages seen from using MICE are due to a result in
biases in the estimates, we plot the absolute biases of estimands obtained from using MICE
against the biases obtained from using RFRM. We distinguish between estimates arising
from univariate analyses and estimates arising from multivariate analyses, i.e. regression
coefficient estimates. In Figure 5.4, we see that the majority of the large biases are those
arising from multivariate analyses, and are above the y = x line, which indicates that
MICE tends to obtain regression coefficient estimates further from the true values than
RFRM.
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Figure 5.4: Absolute biases of estimands.

5.1.2 Simulation involving the complete cases using FRM, RFRM

and MICE

We now apply FRM, RFRM and MICE to impute missing values in the breast-feeding
data set taken from Chapter 3. Before applying FRM, RFRM and MICE to impute
missing values in the full sample, we apply the imputation models to a simulation involving
the complete case subsample. We reintroduce missing data patterns in the complete
case subsample using the same fractions that appeared in the full sample. We can then
run FRM, RFRM and MICE to multiply impute the missing values in this incomplete
subsample, perform the analysis using the imputed data, and compare the results to the
analysis performed on the subsample prior to introducing missing values.

Table 5.1 presents estimates of the regression coefficients and variances obtained from
fitting the regression model of Peabody individual assessment math score (PI-ATM) on
treatment and other covariates. The first column presents estimates prior to introducing
missing values, the second column presents results based on the FRM, the third column
presents results from using RFRM, while the final column presents results from using
MICE. From an analysts point of view, the key estimate is the coefficient on treatment,
which gives an estimate of the treatment effect; ideally the estimate from the imputed
data should be close to that obtained from the fully observed data. We see that the bias
in the treatment effect estimate from using RFRM is about 9.63% when compared to the
fully observed estimate, while the bias from using FRM is 20.7% and from using MICE is
59.9%. Hence, in terms of estimating the treatment effect here, there is a potential benefit
from using RFRM over FRM and MICE.
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Table 5.1: Estimates of regression coefficients and standard errors (standard errors are in
parentheses)

No missing data FRM RFRM MICE

Intercept. 86.344 (3.386) 85.430 (6.061) 85.489(5.160) 86.754 (5.167)

Treatment effect. 1.609 (0.948) 1.275 (1.586) 1.454(1.698) 2.573 (1.248)

The number of years between

1979 and when the mother gave birth. -0.025 (0.099) 0.001 (0.182) -0.012 (0.143) -0.062 (0.127)

The child’s race-Black -1.244 (1.117) -0.933 (2.078) -0.688 (1.481) -0.595 (1.357)

The child’s race-Other 2.346 (0.971) 4.159 (1.736) 4.261 (1.447) 4.252 (1.269)

Spouse present at birth. -1.595 (1.438) -1.860 (2.879) -1.645 (1.970) -1.384 (1.825)

Partner present at birth. -0.159 (1.104) 0.177 (1.818) 0.114 (1.492) -0.006 (1.752)

Family income. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Child’s sex. 0.811 (0.676) 0.130 (1.176) -0.134(0.983) 0.049 (0.934)

Grandparents were present at birth. -1.078 (1.151) -1.175 (1.712) -1.865(1.712) -0.188 (1.465)

Mother’s intelligence. 0.081 (0.018) 0.057 (0.032) 0.051(0.026) 0.048 (0.026)

Mother’s highest educational. 0.606 (0.212) 0.628 (0.355) 0.636 (0.304) 0.610 (0.353)

Child’s birth weight. 0.023 (0.021) 0.026 (0.032) 0.026(0.032) 0.018 (0.025)

Days that the child spent in hospital. -0.045 (0.052) -0.047 (0.089) -0.058(0.065) -0.055(0.063)

Days that the mother spent in hospital. -0.283 (0.119) -0.387 (0.214) -0.301(0.167) -0.431(0.156)

Weeks that the mother worked-level 2. 1.190 (0.984) 2.194 (1.556) 1.681(1.321) 2.250 (1.483)

Weeks that the mother worked-level 3. 0.038 (1.261) 1.653 (2.083) 1.679(1.803) 1.437(2.275)

Weeks that the mother worked-level 4. 2.156 (1.102) 3.392 (2.003) 3.779(1.855) 4.708(1.685)

Child was born premature-level 2. 1.265 (0.919) -0.233 (1.531) -0.032(1.282) -0.155(1.180)

Child was born premature-level 3. 2.009 (2.248) -0.226 (3.718) 0.361(3.000) -0.446(2.605)
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Figure 5.5 shows the plot of the absolute biases of the estimands (regression coef-
ficients obtained from fitting the regression model of PI-ATM on treatment and other
covariates) obtained using FRM, again when compared to the fully observed estimates,
against similar biases obtained using RFRM. We see that the treatment effect, labelled
as “T” lies above the y = x line, indicating that FRM showed larger absolute bias in
estimating the treatment effect than the one obtained using RFRM.
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Figure 5.5: Absolute biases of estimands.

Figure 5.6 shows the plot of the absolute biases of the estimands (regression coef-
ficients obtained from fitting the regression model of PI-ATM on treatment and other
covariates) obtained using MICE, again when compared to the fully observed estimates,
against similar biases obtained using RFRM. We see that the treatment effect, labelled
as “T” lies above the y = x line, indicating that MICE showed larger absolute bias in
estimating the treatment effect than the one obtained using RFRM.
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Figure 5.6: Absolute biases of estimands.

5.1.3 Application to the full data sample using FRM, RFRM

and MICE

We now apply FRM, RFRM and MICE to the full data sample. For FRM we run m =
50 Gibbs samplers at different starting points, each for 20000 iterations to generate 50
imputed data sets, we also use RFRM and MICE to generate 50 imputed data sets.
Table 5.2 presents coefficient estimates from the regression model described previously
using both sets of imputed data. We see that there is no real significant difference in the
treatment effect estimates between FRM and RFRM as they differ by approximately 0.069
(standard errors from using FRM and RFRM are 0.727 and 0.697 respectively). While
there is difference in the treatment effect estimates between MICE and RFRM as they
differ by approximately 0.333 (standard errors from using MICE and RFRM are 0.850 and
0.697 respectively).
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Table 5.2: Estimates of regression coefficients and standard errors (standard errors are in
parentheses)

FRM RFRM MICE

Intercept. 85.222 (2.578) 85.544 (2.576) 85.395 (2.609)

Treatment effect. 0.903 (0.727) 0.834 (0.697) 1.167 (0.850)

The number of years between

1979 and when the mother gave birth. 0.041 (0.071) 0.056 (0.075) 0.029 (0.094)

The child’s race-Black -0.549 (0.776) -0.683(0.855) -0.527 (0.710)

The child’s race-Other 3.093 (0.726) 2.925 (0.749) 2.885 (0.691)

Spouse present at birth. -0.101 (1.227) -0.193 (1.139) -0.078 (1.075)

Partner present at birth. 0.294 (0.824) 0.769 (0.785) 0.172 (0.747)

Family income. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Child’s sex. 0.740 (0.468) 0.868 (0.502) 0.867 (0.531)

Grandparents were present at birth. -0.537 (0.806) -1.142 (0.757) -0.276 (0.581)

Mother’s intelligence. 0.108 (0.014) 0.111 (0.014) 0.105 (0.012)

Mother’s highest educational. 0.580 (0.162) 0.570 (0.154) 0.562 (0.144)

Child’s birth weight. 0.013 (0.016) 0.014(0.016) 0.016 (0.014)

Days that the child spent in hospital. -0.055 (0.046) -0.058(0.044) -0.062 (0.049)

Days that the mother spent in hospital. -0.104 (0.079) -0.101(0.085) -0.155 (0.084)

Weeks that the mother worked-level 2. 0.960 (0.704) 0.403(0.670) 1.055 (0.806)

Weeks that the mother worked-level 3. 1.040 (0.925) 0.435 (0.867) 1.138 (1.080)

Weeks that the mother worked-level 4. 1.898 (0.871) 1.167(0.799) 2.182 (1.015)

Child was born premature-level 2. 0.811 (0.659) 0.782(0.636) 0.913 (0.674)

Child was born premature-level 3. 0.958 (1.372) 0.834(1.514) 1.176 (1.804)
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5.1.4 Summary

The robust model RFRM seems to perform better than FRM and MICE in the simulation
study and the complete cases analysis. In both the simulation study and real data appli-
cation, we set the shape and rate values for the gamma prior equal to 10, which results
in a marginal t distribution with degrees of freedom ν = 20 for the priors and the errors
of the linear regression models. We have increased the degrees of freedom ν to 100 in the
RFRM approach and the results obtained were similar to the FRM approach. The reason
is that assumptions of normally distributed errors can be viewed as a special case within
this framework by letting ν large enough. In the latent variable representation, instead of
modelling the variance using a t-prior, we set the variance equal to 1 for identifiability. We
are not sure whether this will affect the result of our analysis, as by setting the variance
equal to 1, the latent variable model is not capturing the heavy tailed features of the
variable.

5.2 Lasso factored regression model (LFRM)

We now present the full conditional distributions in the Metropolis within Gibbs sampler
required to generate imputed datasets using LFRM. We first express the joint posterior
distribution of all unknowns; these comprise model parameters Θ, and the missing and
latent values introduced through the data augmentation, denote the set of all unobserved
data as Xunobs. The joint posterior can then be expressed as,

p(Θ,Xunobs|Xobs) ∝
n∏
i=1

{
p(xi,1|θ(1))p(θ(1))

p∏
j=2

p(xi,j|xi,1, . . . , xi,j−1,θ
(j))p(θ(j))

}
.

We assume that there are k nominal variables and we then order the variables so that
x1, . . . ,xk are nominal, each xq, q = 1, . . . , k taking a set of possible values 1, . . . , Lq.
Variables xk+1, . . . ,xp could then be measured on a binary, ordinal or continuous scale.
We provide expressions for each conditional regression model p(xi,q|xi,1, . . . , xi,q−1,θ

(q)).
First if q = 1 then,

p(xi,1|θ(1)) = Multinomial(π
(1)
1 , . . . , π

(1)
L1

),

where π
(1)

j1 = p(xi,1 = j1|θ(1)) =
exp(β

(1)

0,j1
)∑L1

s=1 exp(β
(1)
0,s)
, j1 = 1, . . . , L1. We place a Dirichlet prior

on π(1), i.e.

p(π(1)) ∝ Dirichlet(α1, . . . , αL1),

where we set all αj1 = 0.5, j1 = 1, . . . , L1 (corresponding to the Jeffreys prior), another

63



common choice could be to set all αj1 = 0. For q = 2, . . . , k,

p(xi,q|xi,1, . . . , xi,q−1,θ
(q)) = Multinomial(π

(q)
i,1 , . . . , π

(q)
i,Lq

),

where

π
(q)
i,jq =

exp

β(q)
0,jq +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,jq I(xi,b = jb)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u I(xi,b = jb)

 ,

where jq = 1, . . . , Lq. Let θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

)

with θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ) for jq = 1, . . . , Lq and we set

θ
(q)
1 = 0 for identifiability . We specify the prior for each θ

(q)
jq , j

q = 2, . . . , Lq by

p(θ(q)) = MVN(0,Σ).

where Σ is a diagonal matrix with large entries.

For xq, q ∈ {k+ 1, . . . , p} is continuous (for now assuming xk+1, . . . ,xq−1 are continuous),

p(xi,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, φ

−1
q ).

We specify a prior for θ(q),

p(θ(q)) = p(β(q),ηq, λ
2
q, φq, β

(q)
0 )

= p(β(q)|ηq, λ2
q, φq, β

(q)
0 )p(ηq|λ2

q, φq, β
(q)
0 )p(λ2

q|φq, β
(q)
0 )p(φq|β(q)

0 )p(β
(q)
0 ),

where β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′ and

ηq = (η2
1,q, . . . , η

2
q−1,q)

′. The prior distribution for β(q) follows a multivariate normal disti-
bution with mean 0 and covariance matrix Σq,

p(β(q)|ηq, φq) ∼ MVN(0,
1

φq
D(q)
η ), with D(q)

η = diag(η2
1,q, . . . , η

2
q−1,q), (5.7)

with the distribution of η2
j,q, j = 1, . . . , q − 1 is given by

p(η2
j,q|λq) =

λ2
q

2
exp

(−λ2
qη

2
j,q

2

)
, j = 1, . . . , q − 1, (5.8)

and this is the conditional Laplace prior for β(q) suggested by Park and Casella (2008).
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We consider a diffuse hyperprior on λ2
q of the form

p(λ2
q) =

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
, λ2

q > 0, r > 0, δ > 0, (5.9)

which is a gamma distribution with shape and rate r and δ respectively. We also specify
the prior distributions for φq and β

(q)
0 as follows:

p(φq) ∝
1

φq
,

p(β
(q)
0 ) ∝ 1.

For xq, q ∈ {k + 1, . . . , p} is binary (for now assuming xk+1, . . . ,xq−1 are continuous),

xi,q = I(x∗i,q > 0), where

p(x∗i,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, 1).

We specify a prior for θ(q) by,

p(θ(q)) = p(β(q),ηq, λ
2
q, β

(q)
0 ) = p(β(q)|ηq, λ2

q, β
(q)
0 )p(ηq|λ2

q, β
(q)
0 )p(λ2

q|β
(q)
0 )p(β

(q)
0 ),

where the prior distributions for β(q),ηq, λ
2
q are given by Equation 5.7, Equation 5.8 and

Equation 5.9 respectively. This is the Laplace prior for β(q) suggested by Park and Casella
(2008). We also specify a prior distribution for β

(q)
0 ,

p(β
(q)
0 ) ∝ 1.

For xq, q ∈ {k + 1, . . . , p} is ordinal taking values in {1, . . . , Jq} (for now assuming
xk+1, . . . ,xq−1 are continuous),

xi,q = jq I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq ), where

p(x∗i,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, 1),

where the γ
(q)
jq are threshold values, with γ

(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq

∈ {1, ..., Jq}.

We also specify a prior for θ(q) by,

p(θ(q)) = p(β(q),ηq, λ
2
q, β

(q)
0 ,γ(q))

= p(β(q)|ηq, λ2
q, β

(q)
0 ,γ(q))p(ηq|λ2

q, β
(q)
0 ,γ(q))p(λ2

q|β
(q)
0 ,γ(q))p(β

(q)
0 |γ(q))p(γ(q)),
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where γ(q) =
{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
. The prior distributions for β(q),ηq, λ

2
q are given by

Equation 5.7, Equation 5.8 and Equation 5.9 respectively. This is the Laplace prior for
β(q) (Park and Casella (2008)). We also specify a prior for β

(q)
0 as follows:

p(β
(q)
0 ) ∝ 1,

and we place an improper uniform prior on γ(q) i.e.

p(γ(q)) ∝ I(γ(q) ∈ Ω(q)),

where Ω(q) =
{
γ

(q)
jq : γ

(q)
0 = −∞ < γ

(q)
1 = 0 < γ

(q)
2 < . . . < γ

(q)
Jq−1

< γ
(q)
Jq

=∞
}

.

If xi,q, q ∈ {k + 1, . . . , q − 1} is not continuous then we replace xi,q with x∗i,q in the model

for p(xi,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)). For notational convenience when xi,q is nominal or

continuous we assume xi,q = x∗i,q, q ∈ {1, . . . , p}.

With this model and prior specification we can present the full conditional distribution
required to impute missing values in the Metropolis within Gibbs sampler. Following
Schafer (1997) we present this as a data augmentation scheme and so first present the
“I-steps” followed by the “P-steps”.

In the “I-steps”, conditional on parameter values, first impute missing nominal values x∗i,q
from the following discrete distribution

p(x∗i,q = jq|x∗i,1 = j1, . . . , x∗i,q−1 = jq−1, x∗i,q+1 = jq+1, . . . , x∗i,k = jk, x∗i,k+1, . . . , x
∗
i,p,Θ)

= π̃
(q)
i,jq ,

where jq ∈ {1, . . . , Lq}, and

π̃
(q)
i,jq =

k∏
b=q

π
(b)

i,jb

p∏
b=k+1

exp

−φb
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = jq)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2


Lq∑
u=1

{
π

(q)
i,u

k∏
b=q+1

π
(b)

i,jb

}
p∏

b=k+1

exp

−φb
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = u)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2

 ,

where

x̃∗i,b = x∗i,b − β
(b)
0 −

q−1∑
s=1

Ls∑
js=2

β(b),js

s I(x∗i,s = js)−
k∑

s=q+1

Ls∑
js=2

β(b),js

s I(x∗i,s = js).

Next impute missing continuous values x∗i,q or latent values x∗i,q with missing xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,k, x

∗
i,k+1, . . . , x

∗
i,p,Θ) = N(µ̃i,q, φ̃

−1
q ),
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where

µ̃i,q = φ̃−1
q

{
µi,q
φ−1
q

+

p∑
s=q+1

β
(s)
q

φ−1
s

[
x∗i,s − (µi,s − β(s)

q x∗i,q)
]}

,

and

φ̃−1
q =

(
1

φ−1
q

+

p∑
s=q+1

(β
(s)
q )2

φ−1
s

)−1

where µi,q = β
(q)
0 +

∑k
b=1

∑Lb
jb=2 β

(q),jb

b I(x∗i,b = jb) +
∑q−1

b=k+1 β
(q)
b x∗i,b and

µi,s = β
(s)
0 +

∑k
b=1

∑Lb
jb=2 β

(s),jb

b I(x∗i,b = jb) +
∑s−1

b=k+1 β
(s)
b x∗i,b.

Next impute latent values x∗i,q with observed ordinal variable xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,p,Θ) =

I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )N(µ̃i,q, φ̃

−1
q )

Φ(
γ
(q)
jq
−µ̃i,q
φ̃−1
q

)− Φ(
γ
(q)
jq−1

−µ̃i,q
φ̃−1
q

)

,

which is a normal distribution N(µ̃i,q, φ
−1
q ) truncated to (γ

(q)
jq−1, γ

(q)
jq ).

Next impute latent values x∗i,q with observed binary variable xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,p,Θ) =

I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )N(µ̃i,q, φ̃

−1
q )

Φ(
γ
(q)
jq
−µ̃i,q
φ̃−1
q

)− Φ(
γ
(q)
jq−1

−µ̃i,q
φ̃−1
q

)

,

which is a normal distribution N(µ̃i,q, φ
−1
q ) truncated to (γ

(q)
jq−1, γ

(q)
jq ) where the γ

(q)
jq are

threshold values, with γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
2 = ∞.

Once we have imputed values for x∗i,q (with missing xi,q), we define a function g(x∗i,q) to
map each x∗i,q back to its original measurement scale, and thus create an imputed data
set. The mapping function is defined as follows,

g(x∗i,q) =


I(x∗i,q > 0) if x∗i,q is binary,

jq I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq ) if x∗i,q is ordinal, jq ∈ {1, . . . , Jq} ,

x∗i,q if x∗i,q is continuous,

x∗i,q if x∗i,q is nominal, jq ∈ {1, . . . , Lq} ,

Denote an imputed value for xi,q by x
(t)
i,q at iteration t, and an imputed data set at iteration

t by X
(t)
com. In the “P-steps”, conditional on an imputed data set, first sample values for
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θ(1) from a Dirichlet (α) distribution with parameters

α =

(
α1 +

n∑
i=1

I(xi,1 = 1), α2 +
n∑
i=1

I(xi,1 = 2), . . . , αL1 +
n∑
i=1

I(xi,1 = L1)

)′
.

Next propose values for θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

)

with θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ), for jq = 1, . . . , Lq using a

Metropolis-Hastings step, where we set θ
(q)
1 = 0 for identifiability. We consider a proposal

distribution based on the imputed data log-likelihood at each iteration t, l(θ(q); X
(t)
com),

which can be expressed as

l(θ(q); X(t)
com) =

Lq∑
w=1

n∑
i=1

ln


exp

β(q)
0,w +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,w f(x
(t)
i,b , xi,b,mi,b)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u f(x
(t)
i,b , xi,b,mi,b)





I(xi,q=w)

,

where f(x
(t)
i,b , xi,b,mi,b) = (I(x

(t)
i,b = jb)mi,b + I(xi,b = jb)(1 −mi,b)), with mi,b is a missing

data indicator with mi,b = 1 indicating xi,b is missing and mi,b = 0 indicating xi,b is
observed. We generate proposals for θ(q) from a N(µ(t),Σ(t)) distribution, and µ(t) is the

value that maximises l(θ(q); X
(t)
com) and Σ(t) is given by −E[ δ2

δβ
(q)
j,wδβ

(q)

j̃,w̃

l(θ(q); X
(t)
com)]−1

θ(q)=µ(t) .

Next sample values for θ(q) = (β(q),ηq, λ
2
q, φq, β

(q)
0 ), q ∈ {k + 1, . . . , p} when x∗q is contin-

uous from the joint posterior distribution of β(q) =
(β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′, ηq = (η2

1,q, . . . , η
2
q−1,q)

′, λ2
q, φq and

β
(q)
0 , which is given by

p(β(q),ηq, λ
2
q, φq, β

(q)
0 |X(t)

com) = p(β(q)|ηq, λ2
q, φq, β

(q)
0 ,X(t)

com)p(ηq|λ2
q, φq, β

(q)
0 ,X(t)

com)

p(λ2
q|φq, β

(q)
0 ,X(t)

com)p(φq|β(q)
0 ,X(t)

com)p(β
(q)
0 |X(t)

com).

Now we sample β(q),ηq, λ
2
q, φq, β

(q)
0 from their full conditional distributions in the following

way:

1. We first sample β(q) from

p(β(q)|φq,ηq, X̃′q, x̃∗q) = MVN(β̂(q),V(q)),

with

β̂(q) = φqV
(q)X̃′qx̃

∗
q,
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and

V(q) =
1

φq

(
X̃′qX̃q + D(q)

η

)−1

,

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′, with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n. The matrix D
(q)
η is a (q − 1) × (q − 1) diagonal matrix with entries 1

η2j,q
for

j = 1, . . . , q − 1.

2. We then sample values for η2
j,q, j = 1, . . . , q − 1 from

p(η2
j,q|β(q), λ2

q, φq), j = 1, . . . , q − 1

which is an inverse-Gaussian distribution with parameters

µ′q =

√
λ2
q

(β
(q)
j )2φq

and λ′q = λ2
q, j = 1, . . . , q − 1

in the parameterization of the inverse-Gaussian density given by

f(g) =

√
λ′q
2π
g−

3
2 exp

{
−
λ′q(g − µ′q)2

2(µ′q)
2g

}
, g =

1

η2
j,q

, g > 0.

3. Next sample a value for λ2
q from

p(λ2
q|ηq) ∼ Gamma

(
(q − 1) + r,

q−1∑
j=1

η2
j,q

2
+ δ

)
.

4. We then sample a value for φq from

p(φq|β(q),ηq, x̃
∗
q, X̃q) = Gamma

(
n+ (q − 1)

2
,
(x̃∗q − X̃qβ

(q))′(x̃∗q − X̃qβ
(q)) + (β(q))′D

(q)
η β(q)

2

)
,

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′, with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n. The matrix D
(q)
η is a (q − 1) × (q − 1) diagonal matrix with entries 1

η2j,q
for

j = 1, . . . , q − 1.

5. We sample a value for β
(q)
0 from

p(β
(q)
0 |φq,β(q), x∗i,q, x̃i,q) ∼ N(

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n
,
φ−1
q

n
).
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where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n.

Next sample values for θ(q) = (β(q),ηq, λ
2
q, β

(q)
0 ), q ∈ {k+ 1, . . . , p} when xq is binary from

the joint posterior distribution of β(q) =
(β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′, ηq = (η2

1,q, . . . , η
2
q−1,q)

′, λ2
q, and

β
(q)
0 , which is given by

p(β(q),ηq, λ
2
q, β

(q)
0 |X(t)

com) = p(β(q)|ηq, λ2
q, β

(q)
0 ,X(t)

com)p(ηq|λ2
q, β

(q)
0 ,X(t)

com)p(λ2
q|β

(q)
0 ,X(t)

com)

p(β
(q)
0 |X(t)

com),

Now we sample β(q),ηq, λ
2
q, β

(q)
0 from their full conditional distributions in the following

way:

1. We first sample β(q) from

p(β(q)|ηq, X̃′q, x̃∗q) = MVN(β̂(q),V(q)), (5.10)

with

β̂(q) = V(q)X̃′qx̃
∗
q,

and

V(q) =
(
X̃′qX̃q + D(q)

η

)−1

,

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′, with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n. The matrix D
(q)
η is a (q − 1) × (q − 1) diagonal matrix with entries 1

η2j,q
for

j = 1, . . . , q − 1.

2. We then sample values for η2
j,q, j = 1, . . . , q − 1 from

p(η2
j,q|β(q), λ2

q), j = 1, . . . , q − 1

which is an inverse-Gaussian distribution with parameters

µ′q =

√
λ2
q

(β
(q)
j )2

and λ′q = λ2
q, j = 1, . . . , q − 1

in the parameterization of the inverse-Gaussian density given by

f(g) =

√
λ′q
2π
g−

3
2 exp

{
−
λ′q(g − µ′q)2

2(µ′q)
2g

}
, g =

1

η2
j,q

, g > 0. (5.11)
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3. Next sample a value for λ2
q from

p(λ2
q|ηq) ∼ Gamma

(
(q − 1) + r,

q−1∑
j=1

η2
j,q

2
+ δ

)
. (5.12)

4. We sample a value for β
(q)
0 from

p(β
(q)
0 |β(q), x∗i,q, x̃i,q) ∼ N(

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n
,

1

n
), (5.13)

where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for i =

1, . . . , n.

Next sample values for θ(q) = (β(q),ηq, λ
2
q, β

(q)
0 ,γ(q)), q ∈ {k+ 1, . . . , p} when xq is ordinal

from the joint posterior distribution of β(q) =
(β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′, ηq = (η2

1,q, . . . , η
2
q−1,q)

′, λ2
q, β

(q)
0

and γ(q) =
{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
, which is given by

p(β(q),ηq, λ
2
q, β

(q)
0 ,γ(q)|X(t)

com) = p(β(q)|ηq, λ2
q, β

(q)
0 ,γ(q),X(t)

com)p(ηq|λ2
q, β

(q)
0 ,γ(q),X(t)

com)

p(λ2
q|β

(q)
0 ,γ(q),X(t)

com)p(β
(q)
0 |γ(q),X(t)

com)p(γ(q)|X(t)
com),

Now we sample β(q),ηq, λ
2
q, β

(q)
0 ,γ(q) from their full conditional distributions in the follow-

ing way:

1. We first sample β(q) from its full conditional distribution which is given by Equation
5.10

2. We then sample values for η2
j,q, j = 1, . . . , q − 1. from its full conditional distribution

which is given by Equation 5.11.

3. Next sample a value for λ2
q from its full conditional distribution which is given by

Equation 5.12.

4. We sample a value for β
(q)
0 from its full conditional distribution which is given by

Equation 5.13.

5. We then update the threshold values γ(q) =
{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
. The full condi-

tional distribution of the threshold values γ
(q)
jq for jq ∈ {1, . . . , Jq} is uniformly distributed

on the interval[
max

{
max

{
x∗i,q : xi,q = jq

}
, γ

(q)
jq−1

}
,min

{
min

{
x∗i,q : xi,q = jq + 1

}
, γ

(q)
jq+1

}]
,
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where γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq ∈ {1, . . . , Jq}.

In this way we have sampled all unknowns (missing values and parameters) from
their full conditional distributions. The details on deriving the full conditional distribu-
tions of the missing values in the “I-steps”, the full conditional distribution of θ(1) where
x1 follows a multinomial distribution, as well as the Metropolis-Hastings update for the
multinomial logistic regression model in the “P-steps” have been presented in the LFRM
modelling strategy. For details on deriving the full conditional distributions of the re-
maining parameters in the “P-steps”, such as θ(q) = (β(q),ηq, λq, φq, β

(q)
0 ) for x∗q when x∗q

is continuous, θ(q) = (β(q),ηq, λq, β
(q)
0 ) for x∗q when x∗q is a latent variable (xq is binary)

and θ(q) = (β(q),ηq, λq, β
(q)
0 ,γ(q)) for x∗q when x∗q is a latent variable (xq is ordinal), please

see Appendix E.

5.2.1 Simulation study

We now illustrate the performances of FRM, LFRM and MICE through a simulation study.
In the MICE approach, we use the model and prior specifications described in the LFRM
strategy to generate missing values. We are interested to compare the results between
FRM and the Bayesian Lasso modelling strategy (LFRM), as well as the results between
the joint modelling specification with Bayesian Lasso (LFRM) with the equivalent fully
conditional specification (MICE).

We simulate data sets that contain variables measured on binary, ordinal, continuous
and nominal (greater than two levels) scales. Specifically each data set contains 5 binary
variables, 5 ordinal variables, 10 continuous variables, and 5 nominal variables. Variables
are simulated in a sequential manner with each variable conditional on a subset of variables
already generated. We then introduce missing values into nine of the variables using the
MAR mechanism, so that each incomplete variable has approximately 30% missing values.
Specific details of how we simulated the incomplete dataset are given in Appendix F. We
replicate this data generation process 500 times to generate 500 incomplete data sets.

Using the LFRM and MICE imputation strategies, we multiply impute the missing
values in each incomplete data set m = 10 times. To generate m independent imputed
data sets, we run m Metropolis within Gibbs samplers, each with a different starting
value, with each sampler resulting in an imputed data set after convergence. We assume
analysts may be interested in making inferences about various types of estimands arising
from both univariate analyses, e.g. population means of variables or the proportions in
the population taking a particular level of a categorical variable, as well as multivariate
analyses, e.g. the coefficients from a regression model. Using the m imputed data sets,
we apply the combining rules described in Equation 2.1 to construct point and interval
estimates for these estimands. We also construct estimates for the same estimands when
using FRM to multiply impute the missing values.

When implementing MICE, LFRM or FRM for imputations, we assume the imputer
knows the data generating process and so decomposes the joint distribution of the impu-
tation model as described in Equation 3.3. We then performed analysis on the imputed
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data sets and obtained estimands arising from both univariate analyses and multivariate
analyses. See Appendix F for a full list of the estimands considered.

Figure 5.7 presents box plots of coverages for the estimands using the 95% confidence
intervals constructed from the imputations generated by FRM and LFRM over the 500
data sets. These estimands include those arising from both univariate analyses and re-
gression analyses. The first box plot presents coverages when there are no missing data
in the datasets. These coverage are as expected the closest to 0.95. The second box plot
shows the coverages from FRM while the third box plot shows the coverages obtained from
LFRM. We noticed that LFRM showed some low coverages in the plot. These low cover-
ages are the regression coefficients estimates from the regression model p(x25|x1, . . . ,x24)
and the lowest coverage is the intercept estimate of this regression model.
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Figure 5.7: The coverages of estimands.

To determine whether these low coverages seen from using LFRM are due to a result
in biases in the estimates, we plot the biases in the estimates obtained from using FRM
against the biases obtained from using LFRM. We distinguish between estimates arising
from univariate analyses and estimates arising from multivariate analyses, i.e. regression
coefficient estimates. We see that the majority of the large biases are those arising from
multivariate analyses, and are below the y = x line, which indicates that LFRM tends to
obtain regression coefficient estimates further from the true values than FRM. We noticed
that LFRM shows a large absolute bias of a regression coefficient, denoted by “R” (on the
right hand side of Figure 5.8). This estimand is the intercept estimate of the regression
model p(x25|x1, . . . ,x24), which also shows the lowest coverage in Figure 5.7.

We now compare the results between LFRM and MICE. Figure 5.9 presents box plots
of coverages for the estimands using the 95% confidence intervals constructed from the
imputations generated by MICE and LFRM over the 500 data sets. These estimands
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Figure 5.8: Absolute biases of estimands.

include those arising from both univariate analyses and regression analyses. The first box
plot presents coverages when there are no missing data in the datasets. These coverage
are as expected the closest to 0.95. The second box plot shows the coverages from MICE
while the third box plot shows the coverages obtained from LFRM. We noticed that both
MICE and LFRM dont’t show any significant differences in the coverages, as they both
have some low coverages in the plot. The lowest coverage from both plot is the intercept
estimate of the regression model p(x25|x1, . . . ,x24).

We now plot the biases in the estimates obtained from using MICE against the bi-
ases obtained from using LFRM. We distinguish between estimates arising from univariate
analyses and estimates arising from multivariate analyses, i.e. regression coefficient esti-
mates. We see that the majority of the large biases are those arising from multivariate
analyses, and are below the y = x line, which indicates that LFRM tends to obtain re-
gression coefficient estimates further from the true values than MICE. We noticed that
both MICE and LFRM show a large absolute bias of a regression coefficient, denoted by
“R” (on the right hand side of Figure 5.10). This estimand is the intercept estimate of the
regression model p(x25|x1, . . . ,x24), which also shows the lowest coverage in Figure 5.9.
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Figure 5.9: The coverages of estimands.
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Figure 5.10: Absolute biases of estimands.
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5.2.2 Simulation involving the complete cases using FRM, LFRM

and MICE

We now apply FRM, LFRM and MICE to impute missing values in the breast-feeding
data set taken from Chapter 3. Before applying FRM, LFRM and MICE to impute
missing values in the full sample, we apply the imputation models to a simulation involving
the complete case subsample. We reintroduce missing data patterns in the complete
case subsample using the same fractions that appeared in the full sample. We can then
run FRM, LFRM and MICE to multiply impute the missing values in this incomplete
subsample, perform the analysis using the imputed data, and compare the results to the
analysis performed on the subsample prior to introducing missing values.

Table 5.3 presents estimates of the regression coefficients and variances obtained from
fitting the regression model of Peabody individual assessment math score (PI-ATM) on
treatment and other covariates. The first column presents estimates prior to introduc-
ing missing values, the second column presents results based on FRM, the third column
presents results from LFRM while the final column presents results from MICE. From an
analysts point of view, the key estimate is the coefficient on treatment, which gives an
estimate of the treatment effect; ideally the estimate from the incomplete data should be
close to that obtained from the fully observed data. We see that the bias in the treatment
effect estimate from using LFRM is about 13.4% when compared to the fully observed esti-
mate, while the bias from using FRM is 20.7% and from using MICE is 3.418%. Hence, in
terms of estimating the treatment effect here, there is potential benefit from using MICE
over LFRM and FRM.

In Figure 5.11 we also plot the absolute biases in the regression coefficient estimates
from using FRM, again when compared to the fully observed estimates, against similar
biases from using LFRM. We see that in general using FRM for imputation has no signif-
icant potential to obtain estimates closer to those obtained from the fully observed data
than using LFRM. We noticed that LFRM shows a large absolute bias of a regression
coefficient (on the right hand side of Figure 5.11), this estimand is the intercept estimate
of the regression model of PI-ATM.

In Figure 5.12 we also plot the absolute biases in the regression coefficient estimates
from using MICE, again when compared to the fully observed estimates, against similar
biases from using LFRM. We see that in general using LFRM for imputation has no
significant potential to obtain estimates closer to those obtained from the fully observed
data than using MICE. We noticed that LFRM shows a large absolute bias of a regression
coefficient (on the right hand side of Figure 5.11), this estimand is the intercept estimate
of the regression model of PI-ATM.
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Table 5.3: Estimates of regression coefficients and standard errors (standard errors are in
parentheses)

No missing data FRM LFRM MICE

Intercept. 86.344 (3.386) 85.430 (6.061) 90.535 (5.182) 89.836 (4.769)

Treatment effect. 1.609 (0.948) 1.275 (1.586) 1.393 (1.254) 1.664 (0.982)

The number of years between

1979 and when the mother gave birth. -0.025 (0.099) 0.001 (0.182) 0.006 (0.130) -0.068 (0.113)

The child’s race-Black -1.244 (1.117) -0.933 (2.078) -0.876 (1.433) -0.819 (1.188)

The child’s race-Other 2.346 (0.971) 4.159 (1.736) 3.169 (1.443) 3.843 (1.072)

Spouse present at birth. -1.595 (1.438) -1.860 (2.879) -1.069 (2.118) -1.270 (1.552)

Partner present at birth. -0.159 (1.104) 0.177 (1.818) -0.589 (1.458 ) 0.009(1.220)

Family income. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Child’s sex. 0.811 (0.676) 0.130 (1.176) 0.085 (0.900) 0.171 (0.732)

Grandparents were present at birth. -1.078 (1.151) -1.175 (1.712) 0.081 (1.443) -0.523(1.272)

Mother’s intelligence. 0.081 (0.018) 0.057 (0.032) 0.041 (0.025) -0.057 (0.020)

Mother’s highest educational. 0.606 (0.212) 0.628 (0.355) 0.459 (0.266) 0.572 (0.236)

Child’s birth weight. 0.023 (0.021) 0.026 (0.032) 0.012 (0.028) 0.026 (0.022)

Days that the child spent in hospital. -0.045 (0.052) -0.047 (0.089) -0.061 (0.066) -0.054 (0.055)

Days that the mother spent in hospital. -0.283 (0.119) -0.387 (0.214) -0.309 (0.181) -0.366 (0.128)

Weeks that the mother worked-level 2 1.190 (0.984) 2.194 (1.556) 1.692 (1.475) 2.526 (1.287)

Weeks that the mother worked-level 3 0.038 (1.261) 1.653 (2.083) 1.400 (1.933) 2.256 (1.635)

Weeks that the mother worked-level 4 2.156 (1.102) 3.392 (2.003) 3.553 (2.003) 5.419 (1.287)

Child was born premature-level 2 1.265 (0.919) -0.233 (1.531) -0.063 (1.212) -0.503 (0.986)

Child was born premature-level 3 2.009 (2.248) -0.226 (3.718) -0.353 (2.820) -0.222 (2.442)
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Figure 5.11: Absolute biases of estimands.
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5.2.3 Application to the full data sample using FRM, LFRM

and MICE

Simirlay to before, we now apply FRM, LFRM and MICE to the full data sample. For
FRM we run m = 50 Gibbs samplers at different starting points each for 20000 iterations
to generate 50 imputed data sets, we also use LFRM and MICE to generate 50 imputed
data sets. Table 5.4 presents coefficient estimates from the regression model described
above using both sets of imputed data. We see that there is some significant difference
in the treatment effect estimates using FRM and LFRM; they differ by approximately
0.813 (standard errors from using FRM and LFRM are 0.727 and 0.709 respectively).
Also, there is some significant difference in the treatment effect estimates using MICE and
LFRM; they differ by approximately 0.69 (standard errors from using MICE and LFRM
are 0.610 and 0.709 respectively).
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Table 5.4: Estimates of regression coefficients and standard errors (standard errors are in
parentheses)

FRM LFRM MICE

Intercept. 85.222 (2.578) 86.897 (2.375) 86.475(2.038)

Treatment effect. 0.903 (0.727) 1.716 (0.709) 1.026(0.610)

The number of years between

1979 and when the mother gave birth. 0.041 (0.071) 0.079 (0.075) 0.035(0.048)

The child’s race-Black -0.549 (0.776) -0.607 (0.848) -0.556(0.678)

The child’s race-Other 3.093 (0.726) 2.908 (0.718) 2.879(0.594 )

Spouse present at birth. -0.101 (1.227) 0.095 (1.153) -0.001 (1.000)

Partner present at birth. 0.294 (0.824) -0.129 (0.746) 0.141 (0.606)

Family income. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Child’s sex. 0.740 (0.468) 0.709 (0.485) 0.820 (0.379)

Grandparents were present at birth. -0.537 (0.806) 0.221(0.832) -0.401(0.637)

Mother’s intelligence. 0.108 (0.014) 0.109 (0.014) 0.104 (0.011)

Mother’s highest educational. 0.580 (0.162) 0.461 (0.153) 0.517(0.122)

Child’s birth weight. 0.013 (0.016) 0.009(0.016) 0.013 (0.013)

Days that the child spent in hospital. -0.055 (0.046) -0.068(0.042) -0.081 (0.035)

Days that the mother spent in hospital. -0.104 (0.079) -0.131 (0.092) -0.151 (0.072)

Weeks that the mother worked-level 2. 0.960 (0.704) 1.186 (0.752) 1.200 (0.592)

Weeks that the mother worked-level 3. 1.040 (0.925) 1.397 (1.014) 1.039 (0.765)

Weeks that the mother worked-level 4. 1.898 (0.871) 2.198(0.935) 2.157 (0.667)

Child was born premature-level 2. 0.811 (0.659) 0.702 (0.693) 0.695 (0.539)

Child was born premature-level 3. 0.958 (1.372) 0.794 (1.569) 0.837(1.183)
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5.2.4 Summary

The model FRM seems to perform better than LFRM in terms of coverages in the sim-
ulation and the complete case analysis. However, there is no significant difference in the
results obtained using LFRM and using MICE in the simulation study. For both simula-
tion and real data application, we set the values of shape (denoted by r) and rate (denoted
by δ) for the diffuse hyperprior on the shrinkage parameter, λ2 equal to 2. Other values
such as 1,5 and 10 have been used and the results do not show any significant differences.
An alternative to a diffuse hyperprior on the shrinkage parameter λ2 is to consider the
empirical Bayes by marginal maximum likelihood method suggested by Park and Casella
(2008) to determine the value of λ2. We are interested to see how this empirical method
will affect our imputations.

5.3 Modified factored regression model (MFRM)

In this section, we will be considering combining elements of RFRM and LFRM into one
modelling strategy. We refer to this this modelling strategy as the modified factored regres-
sion model (MFRM). We now present the full conditional distributions in the Metropolis
within Gibbs sampler required to generate imputed datasets using MFRM. We first ex-
press the joint posterior distribution of all unknowns; these comprise model parameters
Θ, and the missing and latent values introduced through the data augmentation, denote
the set of all unobserved data as Xunobs. The joint posterior can then be expressed as,

p(Θ,Xunobs|Xobs) ∝
n∏
i=1

{
p(xi,1|θ(1))p(θ(1))

p∏
j=2

p(xi,j|xi,1, . . . , xi,j−1,θ
(j))p(θ(j))

}
.

We assume that there are k nominal variables and we then order the variables so that
x1, . . . ,xk are nominal, each xq, q = 1, . . . , k taking a set of possible values 1, . . . , Lq.
Variables xk+1, . . . ,xp could then be measured on a binary, ordinal or continuous scale.
We provide expressions for each conditional regression model p(xi,q|xi,1, . . . , xi,q−1,θ

(q)).
First if q = 1 then,

p(xi,1|θ(1)) = Multinomial(π
(1)
1 , . . . , π

(1)
L1

),

where π
(1)

j1 = p(xi,1 = j1|θ(1)) =
exp(β

(1)

0,j1
)∑L1

s=1 exp(β
(1)
0,s)
, j1 = 1, . . . , L1. We place a Dirichlet prior

on π(1), i.e.

p(π(1)) ∝ Dirichlet(α1, . . . , αL1),

we set all αj1 = 0.5, j1 = 1, . . . , L1 (corresponding to the Jeffreys prior), another common
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choice could be to set all αj1 = 0. For q = 2, . . . , k,

p(xi,q|xi,1, . . . , xi,q−1,θ
(q)) = Multinomial(π

(q)
i,1 , . . . , π

(q)
i,Lq

),

where

π
(q)
i,jq =

exp

β(q)
0,jq +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,jq I(xi,b = jb)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u I(xi,b = jb)

 ,

where jq = 1, . . . , Lq. Let θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

)

with θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ) for jq = 1, . . . , Lq and we set

θ
(q)
1 = 0 for identifiability . We specify the prior for each θ

(q)
jq , j

q = 2, . . . , Lq by

p(θ(q)) = MVN(0,Σ).

where Σ is diagonal matrix with large entries.

For xq, q ∈ {k+ 1, . . . , p} is continuous (for now assuming xk+1, . . . ,xq−1 are continuous),

p(xi,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) =

N(β
(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, (τqφi,q)

−1),

We specify a prior for θ(q),

p(θ(q)) = p(β(q),ηq, λ
2
q, ψq, β

(q)
0 , τq,Φq)

= p(β(q)|ηq, λ2
q, ψq, β

(q)
0 , τq,Φq)p(ηq|λ2

q, ψq, β
(q)
0 , τq,Φq)p(λ

2
q|ψq, β

(q)
0 , τq,Φq)

p(ψq|β(q)
0 , τq,Φq)p(β

(q)
0 |τq,Φq)p(τq|Φq)p(Φq),

where β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′,

ηq = (η2
1,q, . . . , η

2
q−1,q)

′ and Φq = (φi,q, . . . , φn,q)
′. The prior distribution for β(q) follows a

multivariate normal distribution with mean 0 and covariance matrix Σq,

p(β(q)|ηq, ψq) ∼ MVN(0,
1

ψq
D(q)
η ), with D(q)

η = diag(η2
1,q, . . . , η

2
q−1,q), (5.14)

with the distribution of η2
j,q, j = 1, . . . , q − 1 is given by

p(η2
j,q|λ2

q) =
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)
, j = 1, . . . , q − 1, (5.15)

81



and this is the conditional Laplace prior for β(q) suggested by Park and Casella (2008).
We consider a diffuse hyperprior on λ2

q of the form

p(λ2
q) =

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
, λ2

q > 0, r > 0, δ > 0, (5.16)

which is a gamma distribution with shape and rate r and δ respectively. The prior distri-
bution for p(Φq) follows a gamma distribution with shape and rate parameters equal to
ν
2
,

p(φi,q) ∼ Gamma(
ν

2
,
ν

2
), i = 1, . . . , n,

and the prior distribution for τq is given by

p(τq) ∝
1

τq
.

and this results in the errors of the linear regression model follow a marginal t distribution
with degrees of freedom ν. We also specify the prior distributions for ψq and β

(q)
0 as follows:

p(ψq) ∝
1

ψq
, (5.17)

and

p(β
(q)
0 ) ∝ 1. (5.18)

For xq, q ∈ {k + 1, . . . , p} is binary (for now assuming xk+1, . . . ,xq−1 are continuous),

xi,q = I(x∗i,q > 0), where

p(x∗i,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, 1).

We specify a prior for θ(q),

p(θ(q)) = p(β(q),ηq, λ
2
q, ψq, β

(q)
0 )

= p(β(q)|ηq, λ2
q, ψq, β

(q)
0 )p(ηq|λ2

q, ψq, β
(q)
0 )p(λ2

q|ψq, β
(q)
0 )p(ψq|β(q)

0 )p(β
(q)
0 ),

where β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′ and

ηq = (η2
1,q, . . . , η

2
q−1,q)

′. The prior distributions for β(q) and ηq are given by Equation 5.14

and Equation 5.15 respectively and this is the conditional Laplace prior for β(q) suggested
by Park and Casella (2008). We specify prior distributions for λ2

q, ψq and β
(q)
0 which are

given by Equation 5.16, Equation 5.17 and Equation 5.18 respectively.
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For xq, q ∈ {k + 1, . . . , p} is ordinal taking values in {1, . . . , Jq} (for now assuming
xk+1, . . . ,xq−1 are continuous),

xi,q = jq I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq ), where

p(x∗i,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, 1),

where the γ
(q)
jq are threshold values, with γ

(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq

∈ {1, ..., Jq}.

We also specify a prior for θ(q),

p(θ(q)) = p(β(q),ηq, λ
2
q, ψq, β

(q)
0 ,γ(q))

= p(β(q)|ηq, λ2
q, ψq, β

(q)
0 ,γ(q))p(ηq|λ2

q, ψq, β
(q)
0 ,γ(q))p(λ2

q|ψq, β
(q)
0 ,γ(q))

p(ψq|β(q)
0 ,γ(q))p(β

(q)
0 |γ(q))p(γ(q)),

where β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′,

ηq = (η2
1,q, . . . , η

2
q−1,q)

′ and γ(q) =
{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
. The prior distributions for

β(q) and ηq are given by Equation 5.14 and Equation 5.15 respectively and this is the

conditional Laplace prior for β(q). We specify prior distributions for λ2
q, ψq and β

(q)
0 which

are given by Equation 5.16, Equation 5.17 and Equation 5.18 respectively. We place an
improper uniform prior on γ(q) i.e.

p(γ(q)) ∝ I(γ(q) ∈ Ω(q)),

where Ω(q) =
{
γ

(q)
jq : γ

(q)
0 = −∞ < γ

(q)
1 = 0 < γ

(q)
2 < . . . < γ

(q)
Jq−1

< γ
(q)
Jq

=∞
}

.

If xi,q, q ∈ {k + 1, . . . , q − 1} is not continuous then we replace xi,q with x∗i,q in the model

for p(xi,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)). For notational convenience when xi,q is nominal or

continuous we assume xi,q = x∗i,q, q ∈ {1, . . . , p}.

With this model and prior specification we can present the full conditional distribution
required to impute missing values in the Metropolis within Gibbs sampler. Following
Schafer (1997) we present this a data augmentation scheme and so first present the “I-
steps” followed by the “P-steps”.

In the “I-steps”, conditional on parameter values, first impute missing nominal values x∗i,q
from the following discrete distribution

p(x∗i,q = jq|x∗i,1 = j1, . . . , x∗i,q−1 = jq−1, x∗i,q+1 = jq+1, . . . , x∗i,k = jk, x∗i,k+1, . . . , x
∗
i,p,Θ)

= π̃
(q)
i,jq ,
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where jq ∈ {1, . . . , Lq}, and

π̃
(q)
i,jq =

k∏
b=q

π
(b)

i,jb

p∏
b=k+1

exp

−τbφi,b
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = jq)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2


Lq∑
u=1

{
π

(q)
i,u

k∏
b=q+1

π
(b)

i,jb

}
p∏

b=k+1

exp

−τbφi,b
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = u)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2

 ,

where

x̃∗i,b = x∗i,b − β
(b)
0 −

q−1∑
s=1

Ls∑
js=2

β(b),js

s I(x∗i,s = js)−
k∑

s=q+1

Ls∑
js=2

β(b),js

s I(x∗i,s = js).

Next impute missing continuous values x∗i,q or latent values x∗i,q with missing xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,k, x

∗
i,k+1, . . . , x

∗
i,p,Θ) = N(µ̃i,q, φ̃

−1
i,q ),

where

µ̃i,q = φ̃−1
i,q

{
µi,q

(τqφi,q)−1
+

p∑
s=q+1

β
(s)
q

(τsφi,s)−1

[
x∗i,s − (µi,s − β(s)

q x∗i,q)
]}

,

and

φ̃−1
i,q =

(
1

(τqφi,q)−1
+

p∑
s=q+1

(β
(s)
q )2

(τsφi,s)−1

)−1

,

where µi,q = β
(q)
0 +

∑k
b=1

∑Lb
jb=2 β

(q),jb

b I(x∗i,b = jb) +
∑q−1

b=k+1 β
(q)
b x∗i,b and

µi,s = β
(s)
0 +

∑k
b=1

∑Lb
jb=2 β

(s),jb

b I(x∗i,b = jb) +
∑s−1

b=k+1 β
(s)
b x∗i,b.

Next impute latent values x∗i,q with observed ordinal variable xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,p,Θ) =

I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )N(µ̃i,q, φ̃

−1
i,q )

Φ(
γ
(q)
jq
−µ̃i,q
φ̃−1
i,q

)− Φ(
γ
(q)
jq−1

−µ̃i,q
φ̃−1
i,q

)

,

which is a normal distribution N(µ̃i,q, φ̃
−1
i,q ) truncated to (γ

(q)
jq−1, γ

(q)
jq ).

Next impute latent values x∗i,q with observed binary variable xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,p,Θ) =

I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )N(µ̃i,q, φ̃

−1
i,q )

Φ(
γ
(q)
jq
−µ̃i,q
φ̃−1
i,q

)− Φ(
γ
(q)
jq−1

−µ̃i,q
φ̃−1
i,q

)

,
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which is a normal distribution N(µ̃i,q, φ̃
−1
i,q ) truncated to (γ

(q)
jq−1, γ

(q)
jq ) where the γ

(q)
jq are

threshold values, with γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
2 = ∞.

Once we have imputed values for x∗i,q (with missing xi,q), we define a function g(x∗i,q) to
map each x∗i,q back to its original measurement scale, and thus create an imputed data
set. The mapping function is defined as follows,

g(x∗i,q) =


I(x∗i,q > 0) if x∗i,q is binary,

jq I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq ) if x∗i,q is ordinal, jq ∈ {1, . . . , Jq} ,

x∗i,q if x∗i,q is continuous,

x∗i,q if x∗i,q is nominal, jq ∈ {1, . . . , Lq} ,

Denote an imputed value for xi,q by x
(t)
i,q at iteration t, and an imputed data set at iteration

t by X
(t)
com. In the “P-steps”, conditional on an imputed data set, first sample values for

θ(1) from a Dirichlet (α) distribution with parameters

α =

(
α1 +

n∑
i=1

I(xi,1 = 1), α2 +
n∑
i=1

I(xi,1 = 2), . . . , αL1 +
n∑
i=1

I(xi,1 = L1)

)′
.

Next propose values for θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

)

with θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ), for jq = 1, . . . , Lq using a

Metropolis-Hastings step, where we set θ
(q)
1 = 0 for identifiability. We consider a proposal

distribution based on the imputed data log-likelihood at each iteration t, l(θ(q); X
(t)
com),

which can be expressed as

l(θ(q); X(t)
com) =

Lq∑
w=1

n∑
i=1

ln


exp

β(q)
0,w +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,w f(x
(t)
i,b , xi,b,mi,b)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u f(x
(t)
i,b , xi,b,mi,b)





I(xi,q=w)

,

where f(x
(t)
i,b , xi,b,mi,b) = (I(x

(t)
i,b = jb)mi,b + I(xi,b = jb)(1 −mi,b)), with mi,b is a missing

data indicator with mi,b = 1 indicating xi,b is missing and mi,b = 0 indicating xi,b is
observed. We generate proposals for θ(q) from a N(µ(t),Σ(t)) distribution, and µ(t) is the

value that maximises l(θ(q); X
(t)
com) and Σ(t) is given by −E[ δ2

δβ
(q)
j,wδβ

(q)

j̃,w̃

l(θ(q); X
(t)
com)]−1

θ(q)=µ(t) .

Next sample values for θ(q) = (β(q),ηq, λ
2
q, ψq, β

(q)
0 , τq,Φq) for q ∈ {k + 1, . . . , p}, when x∗q

is continuous from the joint posterior distribution of
β(q) = (β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′, ηq = (η2

1,q, . . . , η
2
q−1,q)

′, λ2
q,
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ψq, β
(q)
0 , τq, and Φq = (φ1,q, . . . , φn,q)

′, which is given by

p(β(q),ηq, λ
2
q, ψq, β

(q)
0 , τq,Φq|X(t)

com) =

p(β(q)|ηq, λ2
q, ψq, β

(q)
0 , τq,Φq,X

(t)
com)p(ηq|λ2

q, ψq, β
(q)
0 , τq,Φq,X

(t)
com)

p(λ2
q|ψq, β

(q)
0 , τq,Φq,X

(t)
com)p(ψq|β(q)

0 , τq,Φq,X
(t)
com)p(β

(q)
0 |τq,Φq,X

(t)
com)

p(τq|Φq,X
(t)
com)p(Φq|X(t)

com)

Now we sample values for β(q),ηq, λ
2
q, ψq, β

(q)
0 , τq,Φq from their full conditional distributions

in the following way:

1. We first sample β(q) from

p(β(q)|φq, ψq,ηq, τq, X̃q, x̃
∗
q) = MVN(β̂(q),V(q)),

with

β̂(q) = V(q)X̃′qτqD
(q)
φ x̃∗q,

and

V(q) = (X̃′qτqD
(q)
φ X̃q + D

(q)
ψ,η)

−1,

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′, with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n. The matrix D
(q)
φ is a n× n diagonal matrix with entries φi,q for i = 1, . . . , n

and D
(q)
ψ,η is a (q − 1)× (q − 1) diagonal matrix with entries ψq

η2j,q
for j = 1, . . . , q − 1.

2. We then sample values for η2
j,q, j = 1, . . . , q − 1 from

p(η2
j,q|β(q), λ2

q, ψq), j = 1, . . . , q − 1

which is an inverse-Gaussian distribution with parameters

µ′q =

√
λ2
q

(β
(q)
j )2ψq

and λ′q = λ2
q, j = 1, . . . , q − 1

in the parameterization of the inverse-Gaussian density given by

f(g) =

√
λ′q
2π
g−

3
2 exp

{
−
λ′q(g − µ′q)2

2(µ′q)
2g

}
, g =

1

η2
j,q

, g > 0.
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3. Next sample a value for λ2
q from

p(λ2
q|ηq) ∼ Gamma

(
(q − 1) + r,

q−1∑
j=1

η2
j,q

2
+ δ

)
.

4. Next sample a value for ψq from

p(ψq|ηq,β(q)) = Gamma

(
q − 1

2
,
(β(q))′D

(q)
η β(q)

2

)
,

where D
(q)
η is a (q − 1)× (q − 1) diagonal matrix with entries 1

η2j,q
for j = 1, . . . , q − 1.

5. Next sample a value for β
(q)
0 from

p(β
(q)
0 |τq, φq, x∗i,q, x̃i,q) ∼ N(

∑n
i=1 φi,q(x

∗
i,q − x̃i,qβ

(q))∑n
i=1 φi,q

, (τq

n∑
i=1

φi,q)
−1),

where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n.

6. We then sample a value for τq from

p(τq|φq,β(q), x̃∗q, X̃q) ∼ Gamma

(
n

2
,
(x̃∗q − X̃qβ

(q))′D
(q)
φ (x̃∗q − X̃qβ

(q))

2

)
,

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′, with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n. The matrix D
(q)
φ is a n× n diagonal matrix with entries φi,q for i = 1, . . . , n.

7. We then sample values for φi,q from

p(φi,q|ηq, τq, x̃∗i,q, x̃i,q) ∼ Gamma

(
ν + 1

2
,
ν + τq(x̃

∗
i,q − x̃i,qβ

(q))2

2

)
, i = 1, . . . , n.

where x̃∗i,q = x∗i,q − β
(q)
0 and x̃i,q =

(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x
∗
i,k+1, . . . , x

∗
i,q−1) for i =

1, . . . , n.

Next sample values for θ(q) = (β(q),ηq, λ
2
q, ψq, β

(q)
0 ) for q ∈ {k+1, . . . , p}, when xq is binary

from the joint posterior distribution of
β(q) = (β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′, ηq = (η2

1,q, . . . , η
2
q−1,q)

′, λ2
q,
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ψq and β
(q)
0 , which is given by

p(β(q),ηq, λ
2
q, ψq, β

(q)
0 |X(t)

com) = p(β(q)|ηq, λ2
q, ψq, β

(q)
0 ,X(t)

com)p(ηq|λ2
q, ψq, β

(q)
0 ,X(t)

com)

p(λ2
q|ψq, β

(q)
0 ,X(t)

com)p(ψq|β(q)
0 ,X(t)

com)p(β
(q)
0 |X(t)

com)

We sample values for β(q),ηq, λ
2
q, ψq, β

(q)
0 from their full conditional distributions in the

following way:

1. We first β(q) from

p(β(q)|ψq,ηq, X̃′q, x̃∗q) = MVN(β̂(q),V(q)), (5.19)

with

β̂(q) = V(q)X̃′qx̃
∗
q,

and

V(q) = (X̃′qX̃q + D
(q)
ψ,η)

−1,

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′, with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n. The matrix D
(q)
ψ,η is a (q − 1) × (q − 1) diagonal matrix with entries ψq

η2j,q
for

j = 1, . . . , q − 1.

2. We then sample values for η2
j,q, j = 1, . . . , q − 1 from

p(η2
j,q|β(q), λ2

q, ψq), j = 1, . . . , q − 1

which is an inverse-Gaussian distribution with parameters

µ′q =

√
λ2
q

(β
(q)
j )2ψq

and λ′q = λ2
q, j = 1, . . . , q − 1

in the parameterization of the inverse-Gaussian density given by

f(g) =

√
λ′q
2π
g−

3
2 exp

{
−
λ′q(g − µ′q)2

2(µ′q)
2g

}
, g =

1

η2
j,q

g > 0. (5.20)

3. Next sample a value for λ2
q from

p(λ2
q|ηq) ∼ Gamma

(
(q − 1) + r,

q−1∑
j=1

η2
j,q

2
+ δ

)
. (5.21)
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4. We then sample a value for ψq from

p(ψq|ηq,β(q)) = Gamma

(
q − 1

2
,
(β(q))′D

(q)
η β(q)

2

)
, (5.22)

where D
(q)
η is a (q − 1)× (q − 1) diagonal matrix with entries 1

η2j,q
for j = 1, . . . , q − 1.

5. We then sample a value for β
(q)
0 from

p(β
(q)
0 |β(q), x∗i,q, x̃i,q) ∼ N(

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n
,

1

n
), (5.23)

where x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x
∗
i,k+1, . . . , x

∗
i,q−1)

for i = 1, . . . , n.

Next sample values for θ(q) = (β(q),ηq, λ
2
q, ψq, β

(q)
0 ,γ(q)) for q ∈ {k + 1, . . . , p}, when xq is

ordinal from the joint posterior distribution of
β(q) = (β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′, ηq = (η2

1,q, . . . , η
2
q−1,q)

′, λ2
q,

ψq, β
(q)
0 and γ(q) =

{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
, which is given by

p(β(q),ηq, λ
2
q, ψq, β

(q)
0 ,γ(q)|X(t)

com) =

p(β(q)|ηq, λ2
q, ψq, β

(q)
0 ,γ(q),X(t)

com)p(ηq|λ2
q, ψq, β

(q)
0 ,γ(q),X(t)

com)

p(λ2
q|ψq, β

(q)
0 ,γ(q),X(t)

com)p(ψq|β(q)
0 ,γ(q),X(t)

com)p(β
(q)
0 |γ(q),X(t)

com)p(γ(q)|X(t)
com)

We sample values for β(q),ηq, λ
2
q, ψq, β

(q)
0 ,γ(q) from their full conditional distributions in

the following way:

1. We first β(q) from its full conditional distribution which is given by Equation 5.19.

2. We then sample values for η2
j,q, for j = 1, . . . , q− 1 from its full conditional distribution

which is given by Equation 5.20.

3. Next sample a value for λ2
q from its full conditional distribution which is given by

Equation 5.21.

4. We then sample a value for ψq from its full conditional distribution which is given by
Equation 5.22.

5. We then sample a value for β
(q)
0 from its full conditional distribution which is given by

Equation 5.23.

6. We then update the threshold values γ(q) =
{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
. The full condi-

tional distribution of the threshold values γ
(q)
jq for jq ∈ {1, . . . , Jq} is uniformly distributed
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on the interval[
max

{
max

{
x∗i,q : xi,q = jq

}
, γ

(q)
jq−1

}
,min

{
min

{
x∗i,q : xi,q = jq + 1

}
, γ

(q)
jq+1

}]
,

where γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq ∈ {1, . . . , Jq}.

In this way we have sampled all unknowns (missing values and parameters) from their
full conditional distributions. The details on deriving the full conditional distributions of
the missing values in the “I-steps”, the full conditional distribution of θ(1) where x1 follows
a multinomial distribution, as well as the Metropolis-Hastings update for the multinomial
logistic regression model in the “P-steps” have been presented in the MFRM modelling
strategy. For details on deriving the full conditional distributions of the remaining pa-
rameters in the “P-steps”, such as θ(q) = (β(q),ηq, λ

2
q, ψq, β

(q)
0 , τq,Φq) for x∗q when x∗q is

continuous, θ(q) = (β(q),ηq, λ
2
q, ψq, β

(q)
0 ) for x∗q when x∗q is a latent variable (xq is binary)

and θ(q) = (β(q),ηq, λ
2
q, ψq, β

(q)
0 ,γ(q)) for x∗q when x∗q is a latent variable (xq is ordinal),

please see Appendix G.

5.3.1 Simulation study

We now illustrate the performances of FRM, MICE and MFRM through a simulation
study. In the MICE approach, we use the model and prior specifications described in
the MFRM strategy to generate missing values. We are interested to compare the results
between a FRM and MFRM, as well as the results between the joint modelling specification
with t-error for the regression model and Bayesian lasso for the regression parameters
(MFRM) with the equivalent fully conditional specification (MICE).

We simulate data sets that contain variables measured on binary, ordinal, continuous
and nominal (greater than two levels) scales. Specifically each data set contains 5 binary
variables, 5 ordinal variables, 10 continuous variables, and 5 nominal variables. Variables
are simulated in a sequential manner with each variable conditional on a subset of variables
already generated. We then introduce missing values into nine of the variables using the
MAR mechanism, so that each incomplete variable has approximately 30% missing values.
Specific details of how we simulated the incomplete dataset are given in Appendix H. We
replicate this data generation process 500 times to generate 500 incomplete data sets.

Using the MFRM and MICE imputation strategies, we multiply impute the missing
values in each incomplete data set m = 10 times. To generate m independent imputed
data sets, we run m Metropolis within Gibbs samplers, each with a different starting
value, with each sampler resulting in an imputed data set after convergence. We assume
analysts may be interested in making inferences about various types of estimands arising
from both univariate analyses, e.g. population means of variables or the proportions in
the population taking a particular level of a categorical variable, as well as multivariate
analyses, e.g. the coefficients from a regression model. Using the m imputed data sets,
we apply the combining rules described in Equation 2.1 to construct point and interval
estimates for these estimands. We also construct estimates for the same estimands when
using FRM to multiply impute the missing values.
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When implementing MICE, MFRM or FRM for imputations, we assume the imputer
knows the data generating process and so decomposes the joint distribution of the impu-
tation model as described in Equation 3.3. We then performed analysis on the imputed
data sets and obtained estimands arising from both univariate analyses and multivariate
analyses. See Appendix H for a full list of the estimands considered.

Figure 5.13 presents box plots of coverages for the estimands using the 95% confi-
dence intervals constructed from the imputations generated by FRM and MFRM over the
500 datasets. These estimands include those arising from both univariate analyses and
regression analyses. The first box plot presents coverages when there are no missing data
in the datasets. These coverage are as expected the closest to 0.95. The second box plot
shows the coverages from FRM while the third box plot shows the coverages obtained from
MFRM. We noticed that MFRM obtains coverages much closer to 0.95 than the coverages
obtained from using FRM. The parameter that show low coverage in the second boxplot
is the univariate analysis of proportion of x15 = 1.
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Figure 5.13: The coverages of estimands.

We now plot the biases in the estimates obtained from using FRM against the biases
obtained from using MFRM. We distinguish between estimates arising from univariate
analyses and estimates arising from multivariate analyses, i.e. regression coefficient esti-
mates. We see that the majority of the large biases are those arising from multivariate
analyses, and are above the y = x line, which indicates that FRM tends to obtain regres-
sion coefficient estimates further from the true values than MFRM.

We now compare the results between MFRM and MICE. Figure 5.15 presents box
plots of coverages for the estimands using the 95% confidence intervals constructed from
the imputations generated by MICE and MFRM over the 500 datasets. These estimands
include those arising from both univariate analyses and regression analyses. The first box
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Figure 5.14: Absolute biases of estimands.

plot presents coverages when there are no missing data in the datasets. These coverage are
as expected the closest to 0.95. The second box plot shows the coverages from MICE while
the third box plot shows the coverages obtained from MFRM. We noticed that MFRM
obtains coverages much closer to 0.95 than the coverages obtained from using MICE.

We now plot the biases in the estimates obtained from using MICE against the biases
obtained from using MFRM. We distinguish between estimates arising from univariate
analyses and estimates arising from multivariate analyses, i.e. regression coefficient esti-
mates. We see that the majority of the large biases are those arising from multivariate
analyses, and are above the y = x line, which indicates that MICE tends to obtain regres-
sion coefficient estimates further from the true values than MFRM.
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Figure 5.15: The coverages of estimands.
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Figure 5.16: Absolute biases of estimands.
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5.3.2 Simulation involving the complete cases using FRM, MFRM

and MICE

We now apply the FRM, MFRM and MICE to impute missing values in the breast-
feeding data set taken from Chapter 3. Before applying FRM, MFRM and MICE to
impute missing values in the full sample, we apply the imputation model to a simulation
involving the complete case subsample. We reintroduce missing data patterns in the
complete case subsample using the same fractions that appeared in the full sample. We
can then run FRM, MFRM and MICE to multiply impute the missing values in this
incomplete subsample, perform the analysis using the imputed data, and compare the
results to the analysis performed on the subsample prior to introducing missing values.

Table 5.5 presents estimates of the regression coefficients and variances obtained from
fitting the regression model of PI-ATM on treatment and other covariates. The first col-
umn presents estimates prior to introducing missing values, the second column presents
results based on the FRM, third column presents results from MFRM while the final col-
umn presents results from MICE . From an analysts point of view, the key estimate is
the coefficient on treatment, which gives an estimate of the treatment effect; ideally the
estimate from the incomplete data should be close to that obtained from the fully observed
data. We see that the bias in the treatment effect estimate from using MFRM is about
25.5% when compared to the fully observed estimate, while the bias from using FRM is
20.7% and from using MICE is 19.2%. Hence, in terms of estimating the treatment effect
here, there is no potential benefit from using MFRM over FRM and MICE.

In Figure 5.17 we also plot the absolute biases in the regression coefficient estimates
from using FRM, again when compared to the fully observed estimates, against similar
biases from using MFRM. We see that in this case using FRM for imputation has no
potential to obtain estimates closer to those obtained from the fully observed data than
using MFRM.

In Figure 5.18 we also plot the absolute biases in the regression coefficient estimates
from using MICE, again when compared to the fully observed estimates, against similar
biases from using MFRM. We see that in this case using MFRM for imputation has no
potential to obtain estimates closer to those obtained from the fully observed data than
using MICE.
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Table 5.5: Estimates of regression coefficients and standard errors (standard errors are in
parentheses)

No missing data FRM MFRM MICE

Intercept. 86.344 (3.386) 85.430 (6.061) 87.095 (7.655) 86.341 (5.923)

Treatment effect. 1.609 (0.948) 1.275 (1.586) 2.020(1.897) 1.918 (1.835)

The number of years between

1979 and when the mother gave birth. -0.025 (0.099) 0.001 (0.182) -0.036 (0.174) -0.046 (0.110)

The child’s race-Black -1.244 (1.117) -0.933 (2.078) -1.005 (1.924) -0.670 (1.943)

The child’s race-Other 2.346 (0.971) 4.159 (1.736) 3.887 (1.819) 4.245 (1.605)

Spouse present at birth. -1.595 (1.438) -1.860 (2.879) -1.769 (2.802) -1.526 (2.552)

Partner present at birth. -0.159 (1.104) 0.177 (1.818) -0.061 (2.238) 0.195 (1.952)

Family income. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000 )

Child’s sex. 0.811 (0.676) 0.130 (1.176) 0.142 (1.391) 0.109 (1.201)

Grandparents were present at birth. -1.078 (1.151) -1.175 (1.712) -0.901 (2.243) -0.739 (1.903)

Mother’s intelligence. 0.081 (0.018) 0.057 (0.032) 0.056 (0.035) 0.049 (0.022 )

Mother’s highest educational. 0.606 (0.212) 0.628 (0.355) 0.483 (0.444) 0.583 (0.249)

Child’s birth weight. 0.023 (0.021) 0.026 (0.032) 0.018 (0.055) 0.032 (0.023)

Days that the child spent in hospital. -0.045 (0.052) -0.047 (0.089) -0.028 (0.095) -0.032 (0.054)

Days that the mother spent in hospital. -0.283 (0.119) -0.387 (0.214) -0.348 (0.207) -0.456 (0.126)

Weeks that the mother worked-level 2 1.190 (0.984) 2.194 (1.556) 2.304 (1.751) 2.209 (1.414)

Weeks that the mother worked-level 3 0.038 (1.261) 1.653 (2.083) 2.701 (2.467) 0.793 (1.910)

Weeks that the mother worked-level 4 2.156 (1.102) 3.392 (2.003) 4.876 (2.468) 4.514 (2.410)

Child was born premature-level 2 1.265 (0.919) -0.233 (1.531) -0.017 (1.874) 0.034 (1.370)

Child was born premature-level 3 2.009 (2.248) -0.226 (3.718) -0.670 (5.879) 0.263 (4.527)
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Figure 5.17: Absolute biases of estimands.
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Figure 5.18: Absolute biases of estimands.

5.3.3 Application to the full data sample using FRM, MFRM

and MICE

We now apply FRM, MFRM and MICE to the full data sample. For FRM we run m = 50
Gibbs samplers at different starting points each for 20000 iterations to generate 50 imputed
data sets, we also use MFRM and MICE to generate 50 imputed data sets. Table 5.6
presents coefficient estimates from the regression model described above using both sets
of imputed data. We see that there is no real significant difference in the treatment effect
estimates using FRM and MFRM; they differ by approximately 0.003 (standard errors
from using FRM and MFRM are 0.727 and 1.153 respectively). Also, we notice that there
is no real significant difference in the treatment effect estimates using MFRM and MICE;
they differ by approximately 0.032 (standard errors from using MFRM and MICE are
1.153 and 0.639 respectively).
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Table 5.6: Estimates of regression coefficients and standard errors (standard errors are in
parentheses)

FRM MFRM MICE

Intercept. 85.222 (2.578) 88.139(4.101) 86.188 (2.175)

Treatment effect. 0.903 (0.727) 0.906(1.153) 0.938 (0.639)

The number of years between

1979 and when the mother gave birth. 0.041 (0.071) 0.162(0.083) 0.028 (0.055)

The child’s race-Black -0.549 (0.776) -0.264(1.174) -0.649 (0.716)

The child’s race-Other 3.093 (0.726) 3.144(1.043) 2.749 (0.577)

Spouse present at birth. -0.101 (1.227) -0.317(1.406) -0.258 (0.935)

Partner present at birth. 0.294 (0.824) 0.122(1.510) 0.130 (0.662)

Family income. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Child’s sex. 0.740 (0.468) 0.567(0.659) 0.851 (0.393)

Grandparents were present at birth. -0.537 (0.806) -0.403(0.991) -0.205 (0.682)

Mother’s intelligence. 0.108 (0.014) 0.118(0.017) 0.107 (0.011)

Mother’s highest educational. 0.580 (0.162) 0.361(0.285) 0.527 (0.130)

Child’s birth weight. 0.013 (0.016) -0.003(0.028) 0.015 (0.013)

Days that the child spent in hospital. -0.055 (0.046) -0.015 (0.037) -0.064 (0.039)

Days that the mother spent in hospital. -0.104 (0.079) 0.000(0.000) -0.182(0.068)

Weeks that the mother worked-level 2 0.960 (0.704) 0.958(0.908) 1.121 (0.562)

Weeks that the mother worked-level 3 1.040 (0.925) 0.745(1.237) 1.009 (0.883)

Weeks that the mother worked-level 4 1.898 (0.871) 1.700(1.054) 1.933 (0.691)

Child was born premature-level 2 0.811 (0.659) 0.361(0.899) 0.783 (0.564)

Child was born premature-level 3 0.958 (1.372) -0.768(1.996) 0.488 (1.433)
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5.3.4 Summary

The MFRM seems to perform better than FRM and MICE in terms of coverages in the
simulation study. For both the simulation study and real data application, we set the
values of shape (denoted by r) and rate (denoted by δ) for the hyperprior on the shrinkage
parameter, λ2 equal to 2, and we set the degrees of freedom ν = 20 for the t-priors. This
results in a ratio value of 10 (ν

δ
). Other ratios have been considered such as 2,5 and 20

where we fix the degrees of freedom ν = 20 and vary the values of r = δ = 10, r = δ = 4
and r = δ = 1. The results obtained do not show any significant differences. Future
work includes investigating the ratio of ν

δ
, where we try to find the optimal ratio that may

potentially lead to more plausible imputations for our model MFRM.

5.4 Comparison of results from the real data com-

plete cases

We now compare the results of our modelling strategies: FRM, RFRM, LFRM and MFRM
through the real data complete cases. The coefficients estimates from each method are
tabulated in Table 5.7. We then calculate the absolute biases of coefficients estimates of
each method, compare to the estimates obtained from the fully observed complete case
data. The results are then tabulated in Table 5.8. We want to find which model will give
us the most numbers of estimates that show the smallest absolute biases. Model FRM has
5 estimates that show the smallest absolute biases, model RFRM has 5 estimates, model
LFRM has only 3 estimate and model MFRM has 6 estimates that show the smallest
absolute bias. There is no significant difference in estimating the coefficient for family
income. However, we cannot be certain if the coefficients estimates obtained from the
MFRM are reliable estimates of the true estimates. We only use this complete case
scenario simply to illustrate the different modelling strategies.
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Table 5.7: Estimates of regression coefficients

No missing data FRM RFRM LFRM MFRM

Intercept. 86.344 85.430 85.489 90.535 87.095

Treatment effect. 1.609 1.275 1.454 1.393 2.020

The number of years between

1979 and when the mother gave birth. -0.025 0.001 -0.012 0.006 -0.036

The child’s race-Black -1.244 -0.933 -0.688 -0.876 -1.005

The child’s race-Other 2.346 4.159 4.261 3.169 3.887

Spouse present at birth. -1.595 -1.860 -1.645 -1.069 -1.769

Partner present at birth. -0.159 0.177 0.114 -0.589 -0.061

Family income. 0.000 0.000 0.000 0.000 0.000

Child’s sex. 0.811 0.130 -0.134 0.085 0.142

Grandparents were present at birth. -1.078 -1.175 -1.865 0.081 -0.901

Mother’s intelligence. 0.081 0.057 0.051 0.041 0.056

Mother’s highest educational. 0.606 0.628 0.636 0.459 0.483

Child’s birth weight. 0.023 0.026 0.026 0.012 0.018

Days that the child spent in hospital. -0.045 -0.047 -0.058 -0.061 -0.028

Days that the mother spent in hospital. -0.283 -0.387 -0.301 -0.309 -0.348

Weeks that the mother worked-level 2 1.190 2.194 1.681 1.692 2.304

Weeks that the mother worked-level 3 0.038 1.653 1.679 1.400 2.701

Weeks that the mother worked-level 4 2.156 3.392 3.779 3.553 4.876

Child was born premature-level 2 1.265 -0.233 -0.032 -0.063 -0.017

Child was born premature-level 3 2.009 -0.226 0.361 -0.353 -0.670

Table 5.8: Absolute biases of regression coefficients estimates

FRM RFRM LFRM MFRM

Intercept. 0.91470 0.85585 4.19035 0.75030

Treatment effect. 0.3361 0.15478 0.21639 0.41108

The number of years between

1979 and when the mother gave birth. 0.02546 0.01291 0.03090 0.01118

The child’s race-Black 0.31086 0.55615 0.36725 0.23846

The child’s race-Other 1.81284 1.91479 0.82323 1.54060

Spouse present at birth. 0.26494 0.04990 0.52563 0.17356

Partner present at birth. 0.33607 0.27320 0.42966 0.09825

Family income. 0.00000 0.00000 0.00000 0.00000

Child’s sex. 0.68117 0.94542 0.72568 0.66939

Grandparents were present at birth. 0.09706 0.78743 1.15896 0.17665

Mother’s intelligence. 0.02371 0.02965 0.04035 0.02493

Mother’s highest educational. 0.00251 0.03301 0.14442 0.12031

Child’s birth weight. 0.00340 0.00349 0.01087 0.00459

Days that the child spent in hospital. 0.00181 0.01334 0.01659 0.01659

Days that the mother spent in hospital. 0.10447 0.01826 0.02645 0.06547

Weeks that the mother worked-level 2. 0.73436 0.49079 0.50201 1.11401

Weeks that the mother worked-level 3. 1.61583 1.64119 1.36248 2.66374

Weeks that the mother worked-level 4. 1.23567 1.62340 1.39734 2.66374

Child was born premature-level 2. 1.49833 1.29667 1.32767 1.28171

Child was born premature-level 3. 2.23535 1.64814 2.36216 2.67962
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Chapter 6

Statistical disclosure control

When releasing data for public use, statistical agencies seek to reduce the risk of disclosure,
at the same time trying to preserve the utility of the release data. A common approach
is to alter the original data for public release by applying statistical disclosure limitation
(SDL) methods, such as adding random noise to data values (Fuller (1993)), top coding
variables (Willenborg and de Waal (2001)), swapping data values (Fienberg and McIntyre
(2004)) and among others to those variables that will potentially be identified. However,
these methods can distort relationships between variables in the data set. An alternative
approach, called partially synthetic data was proposed by Little (1993b). This approach
is to release partially synthetic data sets, which comprise some original data values with
values at high risk of disclosure being replaced by multiply imputed synthetic values.
Valid inference can be made using the combining rules described by Reiter (2003). These
combining rules are not the same as those for multiple imputation of missing data (see
Chapter 2 for more details).

In this chapter, we will be applying a version of FRM to protect confidentiality of a
genuine data set taken from the current population survey (CPS) by generating multiply
imputed partially synthetic data sets. Before applying FRM, we will decide on the proce-
dure for selecting the data points that need to be replaced with synthetic data. We then
compute and analyze risk and utility measures of the synthetic data sets.

6.1 Selecting the values

In this section, we will discuss the process of selecting the data points that need to be
replaced with synthetic values. We will be focusing on the categorical variables because in
most scenarios, the key variables which can lead to identification are assumed to be cate-
gorical (Drechsler and Reiter (2008)). Suppose we have categorical variables x1,x2, . . . ,xp,
where xj = (x1,j, x2,j, . . . , xn,j)

′ for variables j = 1, . . . , p and units i = 1, . . . , n. Each xi,j
for can take values 1, 2, . . . , wj where wj is the number of levels in variable xj. We then
order the variables in an anti-lexicographical way, meaning that the first subscript x1 will
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vary the fastest, the second subscript x2 will vary the second fastest, and so on (see Schafer
(1997) for more details). An illustration of anti-lexicographical order is shown below:

Table 6.1: Example of anti-lexicographical ordering

x1 x2 · · · xp

1 1 · · · 1
2 1 · · · 1
...

...
...

d1 1 · · · 1
1 2 · · · 1
2 2 · · · 1
...

...
...

d1 d2 · · · dp

We cross-classify all the variables and we then denote the maximum number of possible
combinations of all the variables by D, where D =

∏p
j=1 wj. We can denote a variable

h = (h1, . . . , hn)′ for each unit i where hi ∈ {1, . . . , D} and corresponds to the particular
combination xi,1, xi,2, . . . , xi,p. Now let the frequencies for the different values of hi be
denoted by

fg =
n∑
i=1

I(hi = g), g = 1, . . . , D,

where I(·) is the indicator function: I(A) = 1 if A is true and I(A) = 0 otherwise. The
combination value g is unique if fg = 1. Similarly, fg = 2 means combination value g
appears twice in the data set and so on. Let the frequencies of frequencies be denoted

nr =
D∑
g=1

I(fg = r), r = 1, 2, . . .

where n1 represents the number of unique combinations in the data set.

Now suppose that subject i is unique, i.e. hi = g, fg = 1, g ∈ {1, . . . , D}. Instead of
synthesizing the whole row of data points (xi,1, xi,2, . . . , xi,p) corresponding to this subject
i, we only synthesize the data points that make this subject i unique. Table 6.2 shows a
simple illustration of this idea.

Table 6.2: Illustration of choosing one data point that need to be synthesized

subject x1 x2 x3 x4 Combination value (h) Frequency (fg)

1 2 2 1 2 12 2
2 2 2 1 2 12 2

i 2 2 1 1 4 1

Table 6.2 shows a data set consists of 3 units and 4 variables, x1,x2,x3,x4, where
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x1,x2,x3 are binary variables and x4 is a categorical variable with 3 levels. The column
h represents the combination values for each unit and the frequencies for the combination
values are denoted by column fg. All the values in columns h and fg are derived using the
method discussed previously. Unit 1 and 2 have the same set of data points (2,2,1,2), which
is corresponding to the combination value 12 (h1 = h2 = 12) and this combination appears
twice, hence the frequency f12 = 2. We noticed that unit i is unique, i.e. f4 = 1, with
g = 4 being the combination value corresponds to unit i. We now need to find the data
points that make this subject i unique. It is obvious that the only data point that we need
to replace with synthetic data in this example is xi,4 (the circled number). Lets formalise
this idea of selecting the data points that need to be replaced with synthetic data. We
first denote the function h = h(x1,x2, . . . ,xp) where hi\{xj} means the element xj is being
excluded from the set {x1,x2, . . . ,xp}, i.e. hi\{xj} = h(x1,x2, . . . ,xj−1,xj+1, . . . ,xp). The
main idea behind this selection procedure is that we try to find a data point xi,j such
that when we recompute hi\{xj}, for unit i = 1, . . . , n with a new set of cross-classified
values for x1,x2, . . . ,xj−1,xj+1, . . . ,xp, i.e. aggregated over variable xj that takes values
g′ ∈ {1, . . . , D′}, then for g′ = hi\{xj}, we would like fg′ > Cs, where Cs is some threshold
value. If such a variable xj can be found, we then replace xi,j with a synthetic value. So
if we now aggregate over variable x4 in the data set from Table 6.2, we have:

Table 6.3: Data set from Table 6.2 when aggregating over variable x4

subject x1 x2 x3 Combination value (h) Frequency (fg′)

1 2 2 1 4 3
2 2 2 1 4 3
i 2 2 1 4 3

From Table 6.3 we noticed that after aggregating over variable x4, each unit has a new
combination value as well as a new frequency value fg′ . Unit i is no longer unique since
f4 = 3 where g′ = 4. Hence, instead of replacing xi,1, xi,2, xi,3, xi,4 with synthetic values,
we only need to synthesize xi,4. In this simple case, we set the threshold value Cs = 1
such that fg′ > 1 in order to select the data points that need to be replaced with synthetic
data for units which are unique, i.e. fg = 1. By setting Cs = 2 such that fg′ > 2, we are
selecting the data points that need to be replaced with synthetic data for units which are
unique, i.e. fg = 1 as well as for units which have combination value that repeat twice in
the data sets as fg = 2. In general, by setting Cs = r, r = 1, 2, . . ., we are selecting the
data points for units i = 1, . . . , n such that fg ≤ r.

If it is not possible to find a xi,j such that fg′ > Cs for g′ = hi\{xj}, we can consider
a set of variables {xj,xj′} where j′ 6= j and we try to find data points xi,j, xi,j′ such that
for g′ = hi\{xj ,xj′}, where we aggregate over pairs of variables in the data set, we would
like fg′ > Cs, where Cs is the threshold value. If such variables xj and xj′ can be found,
we then replace xi,j, xi,j′ with synthetic values. Table 6.4 shows an example where there
are 2 data points that we need to replace with synthetic data, which are xi,2 and xi,4.

Table 6.4 shows a data set consists of 3 units and 4 variables, x1,x2,x3,x4, where
x1,x2,x3 are binary variables and x4 is a categorical variable with 3 levels. The column
h represents the combination values for each unit and the frequencies for the combination
values are denoted by column fg. We noticed that unit i is unique, i.e. f18 = 1, with
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Table 6.4: Illustration of choosing two data points that need to be synthesized

subject x1 x2 x3 x4 Combination value (h) Frequency (fg)

1 2 2 1 2 12 2
2 2 2 1 2 12 2

i 2 1 1 3 18 1

g = 18 being the combination value corresponds to unit i. We now need to find the data
points that make this subject i unique and we first aggregate over variable x4 and we have:

Table 6.5: Data set from Table 6.4 when aggregating over variable x4

subject x1 x2 x3 Combination value (h) Frequency (fg′)

1 2 2 1 4 2
2 2 2 1 4 2

i 2 1 1 2 1

So similar to before, we notice that after aggregating over variable x4, each unit has
a new combination value as well as a new frequency value fg′ . Unit i is still unique after
aggregating over variable x4 since f2 = 1 where g′ = 2. Hence, we need to consider
aggregating over pairs of variables so that unit i will be unique afterwards, in this case,
we see that aggregating over variable x2 results in:

Table 6.6: Data set from Table 6.4 by aggregating over variables x2 and x4

subject x1 x3 Combination value (h) Frequency (fg′)

1 2 1 2 3
2 2 1 2 3
i 2 1 2 3

Hence unit i is no longer unique after we aggregate over variable x2 and x4 since f2 = 3
where g′ = 2. Hence, we found the data points that need to be replaced with synthetic
values, which are xi,2 and xi,4. In general, if we can’t satisfy the criteria hi\{xj ,xj′} > Cs
by aggregating over variables {xj,xj′}, we will keep increasing the number of variables
{xj,xj′ ,xj′′ , . . .}, where j 6= j′ 6= j

′′
until the criteria hi\{xj ,xj′ ,xj′′ ,...} > Cs is satisfied.

If it is possible to find a xi,j such that fg′ > Cs for g′ = hi\{xj} and a xi,j̃ where j̃ 6= j
such that fg̃ > Cs for g̃ = hi\{xj̃}, we will select both the data points xi,j and xi,j̃. Table
6.7 shows an illustration of this case where we select both xi,2 and xi,4 given we can make
unit i no longer unique by aggregating over either x2 or x4.

From Table 6.7, we noticed that unit i is unique, i.e. f6 = 1, with g = 6 being the
combination value corresponds to unit i. We now need to find the data points that make
this subject i unique. We first aggregate over variable x4 and the data set is tabulated in
Table 6.8. We noticed that unit i is no longer unique after we aggregate over variable x4
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Table 6.7: Illustration of choosing both data points that need to be synthesized

subject x1 x2 x3 x4 Combination value (h) Frequency (fg)

1 2 2 1 2 12 2
2 2 2 1 2 12 2

i 2 1 2 1 6 1
4 2 1 2 3 22 2
5 2 1 2 3 22 2
6 2 2 2 1 8 3
7 2 2 2 1 8 3
8 2 2 2 1 8 3

since f6 = 3 where g′ = 6. Now suppose instead of aggregating over x4, we aggregate over
variable x2 and the data set is shown in Table 6.9.

Hence unit i is no longer unique after we aggregate over variable x2 since f4 = 4 where
g′ = 4. This shows that it is possible to find a xi,j such that fg′ > Cs for g′ = hi\{xj}
and a xi,j̃ where j̃ 6= j such that fg̃ > Cs for g̃ = hi\{xj̃}, in this case, we will select
both the data points xi,2 and xi,4. In the general case of we have two subsets of variables
Ai,Bi ⊆ {xi,1, xi,2, . . . , xi,p} and fg′ > Cs for g′ = hi\{Ai} and fj̃ > Cs for j̃ = hi\{Bi}, then
we select the union Ai ∪Bi to synthesize.

Table 6.8: Data set from Table 6.7 by aggregating over variables x4

subject x1 x2 x3 Combination value (h) Frequency (fg′)

1 2 2 1 4 2
2 2 2 1 4 2
i 2 1 2 6 3
4 2 1 2 6 3
5 2 1 2 6 3
6 2 2 2 8 3
7 2 2 2 8 3
8 2 2 2 8 3

Table 6.9: Data set from Table 6.7 by aggregating over variables x2

subject x1 x3 x4 Combination value (h) Frequency (fg′)

1 2 1 2 6 2
2 2 1 2 6 2
i 2 2 1 4 4
4 2 2 3 12 2
5 2 2 3 12 2
6 2 2 1 4 4
7 2 2 1 4 4
8 2 2 1 4 4
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6.2 Risk of identification

We now briefly describe how to evaluate the risk of identification in the partially synthetic
data sets. We assume the variable that the intruder possesses are categorical variables.
Now suppose we have a data set with only key categorical variables x1,x2, . . . ,xp, where
xj = (x1,j, x2,j, . . . , xn,j)

′ for j = 1, . . . , p. Each xi,j for can take values 1, 2, . . . , wj where wj
is the number of levels in variable xj. From Section 6.1, each subject i is assigned a value
hi ∈ {1, . . . , D} depending on its value xi,1, xi,2, . . . , xi,p with D as defined previously.

We denote the d multiply imputed data sets by D
(l)
syn, for l = 1, . . . , d. For each of

the partially synthetic data D
(l)
syn, we can repeat the process in Section 6.1 where each

subject i is assigned a value h
(l)
i ∈ {1, . . . , D} depending on its partially synthetic values

xi,1, xi,2, . . . , xi,p. The risk analysis proceeds as follows:

Suppose the intruder possesses categorical variables x1,x2, . . . ,xp, where
xj = (x1,j, x2,j, . . . , xn,j)

′ for j = 1, . . . , p. From Section 6.1, we can express this set of vari-
ables as n records of target information t1, t2, . . . , tn depending on its value xi,1, xi,2, . . . , xi,p.

We start by matching the first target record t1 to h
(1)
i from the first partially synthetic

data D
(1)
syn. We then create a vector m

(1)
1 = (m

(1)
1,1,m

(1)
2,1, . . . ,m

(1)
n,1)′ where m

(1)
i,1 = 1 for

unit i = 1, . . . , n if the target record t1 matches record h
(1)
i , and zero otherwise. We can

then assign a probability vector p
(1)
1 = (p

(1)
1,1, p

(1)
2,1, . . . , p

(1)
n,1)′, where p

(1)
i,1 =

m
(1)
i,1∑n

i=1m
(1)
i,1

for units

i = 1, . . . , n. If
∑n

i=1 m
(1)
i,1 = 0, then p

(1)
1 = 0. For the first partially synthetic data

D
(1)
syn, this process is repeated for all target records tk, for k = 1, . . . , n, resulting in n

sets of probability vectors p
(1)
k , for k = 1, . . . , n. We then repeat the matching process

again for the d imputed synthetic data sets, where we have p
(l)
k = (p

(l)
1,k, p

(l)
2,k, . . . , p

(l)
n,k)

′, for
k = 1, . . . , n and l = 1, . . . , d. We then average the probability vectors across d imputed
data sets and we have p̄1, p̄2, . . . , p̄n where p̄k = (p̄1,k, p̄2,k, . . . , p̄n,k)

′ for k = 1, . . . , n, with

each p̄i,k =
∑d

l=1

p
(l)
i,k

d
for target records k = 1, . . . , n and units i = 1, . . . , n.

We then denote a n× n matrix P in the following way:

P =



p̄1,1 p̄1,2 · · · · · · p̄1,n

p̄2,1 p̄2,2 · · · · · · p̄2,n

...
. . .

...
...

. . .
...

p̄n,1 p̄n,2 · · · · · · p̄n,n


with p̄i,j represent the i-th row and j-th column entries in the matrix P,, which is the
probability that the j-th target record is being matched to the i-th unit in the data set.

We now describe our risk measures. The first risk measure, which we call perceived
match risk, is the number of units with maximum probability of being identified that
exceed some threshold value c that we consider risky, i.e. we compute

∑n
j=1 I( max

1≤i≤n
(p̄i,j) >

c). In our case, we set this threshold value to be 0.20. This represents the number of
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records that have a high chance of being identified, either correctly or incorrectly. The
second risk measure, which we call expected match risk, represents the number of records
that the intruder would guess correctly from the synthetic data. This can be calculated
from the trace of P, i.e.

∑n
i=1 p̄i,i. The third risk measure, which we call true match

risk, equals
∑n

i=1 I(p̄i,i = 1), i.e. the number of units the intruder will match correctly
with probability 1. For more details on this framework, see Reiter and Mitra (2009) and
Drechsler and Reiter (2008).

6.3 Current population survey (CPS)

We now proceed to generate partially synthetic data sets for a real data set. This real
data set is drawn from the March 2000 US current population survey (CPS). This data
set consists of 49436 units and 9 variables. Similar data set has also been used by Reiter
(2005b) and Drechsler and Reiter (2008). With the generated synthetic data sets, we
wish to compare the different risk measures calculated from the synthetic data sets with
different amount of synthetic data.

6.3.1 Description of variables

The are 9 variables in the data set. These variables are:

• x1 - Race. (Nominal: 1-White, 2-Black, 3-Others)

• x2 - Marital Status. (Nominal: 7 levels)

• x3 - Age. (Continuous: 15-90)

• x4 - Income. (Continuous: 1-768700)

• x5 - Social security payment. (Continuous: 0,1-50000)

• x6 - Tax. (Continuous: 0,1-100000)

• x7 - Child support payment. (Continuous: 0,1-23920)

• x8 - Sex. (Binary: 1-Male, 2-Female)

• x9 - Highest education level attained. (Ordinal: 16 levels)

where race has three levels: 1-White, 2-Black, 3-Others. Marital status has seven levels:
1 for married civilians with both spouses present at the home; 2 for married people in the
armed forces with both spouses present at the home; 3 for married people with one spouse
not present at the home; 4 for widowers; 5 for divorced people; 6 for separated people and
7 for people who never have been married. The variable x9 (highest attained education
level) has 16 levels in correspondence with years of schooling. For examples, 31 represents
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highest educational attainments of less than first grade, 32 represents 1st to 4th grade,
33 represents 5th or 6th grade, 34 represents 7th and 8th grade, 35 represents highest
educational attainments of 9th grade, 36 represents 10th grade, 37 represents 11th grade,
38 represents 12th grade, 39 represents high school graduate, 40 represents some college
but no degree, 41 represents associate degree in college - occupation/vocation program, 42
represents associate degree in college - academic program, 43 represents Bachelor’s degree,
44 represents Master’s degree, 45 represents professional school degree and 46 represents
doctoral degree. There are 5 continuous variables in the data sets, e.g. age, income, social
security payment, tax and child support payment. We noticed that out of the 5 continuous
variables, 3 continuous variables such as social security, tax and child support payment
show spikes at zero (see Appendix I for density plots of these variables). In order to deal
with the huge spikes at zero, we will be introducing a new modelling strategies in the next
section.

6.3.2 Skip factored regression model (SFRM)

Suppose we have a fully observed n× p data set X = (x1, . . . ,xp), where
xj = (x1,j, . . . , xn,j)

′, j = 1, . . . , p is the j-th variable in X. We assume that there are
k nominal variables and following Chapter 3, we order the variables so that x1, . . . ,xk
are nominal, each xq, q = 1, . . . , k taking a set of possible values 1, . . . , Lq. Variables
xk+1, . . . ,xp could then be measured on a binary, ordinal, continuous scale or continuous
variables with spikes at zero. Let xq, q ∈ {k + 1, . . . , p} be the continuous variable
with a huge spike of zero. We now extend the FRM strategy to accommodate the huge
spike at zero in the variable xq. First, we generate a latent variable z∗q where z∗q =
(z∗1,q, z

∗
2,q, . . . , z

∗
n,q)
′ from the linear regression model represented by,

p(z∗i,q|xi,1, xi,2, . . . , xi,q−1,ϕ
(q)) = N(ϕ

(q)
0 +

k∑
b=1

Lb∑
jb=2

ϕ
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

ϕ
(q)
b xi,b, 1).

We then denote an indicator variable, zq, such that zq = (z1,q, . . . , zn,q)
′ where zi,q =

I(z∗i,q > 0). We can generate the synthetic values x∗i,q from the following way (for notational
convenience we assume that if xi,k, k = 1, . . . , p is continuous, latent or nominal then xi,k
= x∗i,k):

x∗i,q = 0 for zi,q = 0,

x∗i,q ∼ p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,k, x

∗
i,k+1, . . . , x

∗
i,p,Θ) for zi,q = 1, (6.1)

where x∗i,q for zi,q = 1 is generated from its full conditional distribution (Equation 6.1)
which follows a normal distribution with mean

µ̃i,q = φ̃−1
q

{
µi,q
φ−1
q

+

p∑
s=q+1

β
(s)
q

φ−1
s

[
x∗i,s − (µi,s − β(s)

q x∗i,q)
]}

, for zi,q = 1,
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and variance

φ̃−1
q =

(
1

φ−1
q

+

p∑
s=q+1

(β
(s)
q )2

φ−1
s

)−1

,

where µi,q = β
(q)
0 +

∑k
b=1

∑Lb
jb=2 β

(q),jb

b I(x∗i,b = jb) +
∑q−1

b=k+1 β
(q)
b x∗i,b and

µi,s = β
(s)
0 +

∑k
b=1

∑Lb
jb=2 β

(s),jb

b I(x∗i,b = jb) +
∑s−1

b=k+1 β
(s)
b x∗i,b. The full conditional distribu-

tions of the rest of the parameters can be derived using the same strategies from Chapter
3. We name this modelling strategy as skip factored regression model (SFRM).

6.3.3 Simulation study

We now compare the performances of FRM and SFRM using a simulation study. We
simulate xi,1, xi,2, . . . , xi,5, i = 1, . . . , 1000 in the following way:

xi,1 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.3, 0.4 and 0.3 respectively.

xi,2 ∼ p(xi,2|xi,1,θ(2)),

xi,3 ∼ N(11, 4)

x∗i,4 ∼ N(5 + 2xi,3, 9),

xi,4 = I(x∗i,4 > 27)

z∗i,5 ∼ N(6 + 3 ∗ I(xi,1 = 2) + 4 ∗ I(xi,1 = 3)− xi,3, 9),

zi,5 = I(z∗i,5 > 0)

We then simulate xi,5 as below:

xi,5 = 0 for zi,5 = 0

xi,5 ∼ N(1 + 3 ∗ I(xi,1 = 2) ∗ I(zi,5 = 1) + I(xi,1 = 3) ∗ I(zi,5 = 1)−
xi,3 ∗ I(zi,5 = 1), 4) for zi,5 = 1

where

p(xi,2 = j2|xi,1,θ(2)) =
exp(θ

(2)

0,j2 + θ
(2)

1,j2I(xi,1 = 2) + θ
(2)

2,j2I(xi,1 = 3))∑5
s=1 exp(θ

(2)
0,s + θ

(2)
1,sI(xi,1 = 2) + θ

(2)
2,sI(xi,1 = 3))

where j2 ∈ {1, . . . , 5} and θ
(2)
0,1 = θ

(2)
1,1 = θ

(2)
2,1 = 0 for identifiability, θ

(2)
0,2 = 1, θ

(2)
1,2 = −3, θ

(2)
2,2 =

−1, θ
(2)
0,3 = −1, θ

(2)
1,3 = 2, θ

(2)
2,3 = 2, θ

(2)
0,4 = −1, θ

(2)
1,4 = 2, θ

(2)
2,4 = −2, θ

(2)
0,5 = −3, θ

(2)
1,5 = 1, θ

(2)
2,5 =

5, and I(·) is the indicator function. Variables x1 and x2 are nominal variables, x3 is
continuous, x4 is binary while x5 is the continuous variable with spike at zero.

We replicate this data generation process 1000 times to generate 1000 data sets. We
want to generate synthetic values for x2, x3, x4 and x5. Using the SFRM imputation
strategy, we generate multiply imputed partially, synthetic data sets for each data set
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d = 10 times. To generate d independent partially synthetic data, we run d Metropolis
within Gibbs samplers, each with a different starting value, with each sampler resulting in
a synthetic data set after convergence. We assume analysts may be interested in making
inferences about various types of estimands arising from both univariate analyses, e.g.
population means of variables or the proportion in the population taking a particular
level of a categorical variable, as well as multivariate analyses, e.g. the coefficient from a
regression model. Using the d imputed data sets, we apply the combining rules described in
Chapter 2 (see Equation 2.3) to construct point and interval estimates for these estimands.
We also construct estimates for the same estimands when using FRM to generate multiply
imputed partially synthetic data sets.

When implementing SFRM or FRM for imputations, we assume the imputer knows
the data generating process and so decomposes the joint distribution of the imputation
model as described in Equation 3.3. The analysis of the imputed data sets will also respect
the ordering of the variables used to generate the synthetic data, the analysis model is
thus congenial to the imputation model. See Appendix J for a full list of the estimands
considered.

Figure 6.1 presents box plots of coverages for the estimands using the 95% confidence
intervals constructed from the imputations generated by FRM and SFRM over the 1000
datasets. These estimands include those arising from both univariate analyses and regres-
sion analyses. The first box plot shows the coverages from FRM while the second box
plot shows the coverages obtained from SFRM. We see that the SFRM obtains coverages
much closer to 0.95 than the coverages obtained from using FRM.
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Figure 6.1: The coverages of estimands.

6.3.4 Generating partially synthetic data sets

We have proposed a method to model the data set with continuous variables with spikes
at zero. We now proceed to generate partially synthetic data sets for the CPS data set.
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We generate synthetic values for race, marital status, sex and highest education attained
using the methods described in the previous section. Such key variables have been used by
Drechsler and Reiter (2008). We select the threshold values Cs = 0, 1, 2, 5, 10 and 50 where
0 means we synthesize all the variables, and we also calculated the number of data points
being synthesized with respect to each Cs. We repeat the process 50 times to generate
50 imputed data sets for each of the chosen threshold value Cs. We then determine the
respective risk measures described in the previous section and the results are tabulated as
below:

Table 6.10: Risk measures

Number of data points
being synthesized Perceived (0.2) Expected match True match

(value of Cs)
95 (1) 271 472.32 0
545 (2) 167 419.30 0
1697 (5) 8 346.25 0
3993 (10) 0 271.88 0
19084 (50) 1 110.39 0
197744 (0) 0 2.12 0

The result shows that there is no true match risk in the multiply imputed data sets.
We also noticed that the perceived risk and expected match risk reduce when we increase
the number of data points being replaced. We are interested to know how the partially
synthetic data sets are affecting the utility of the data sets. We will discuss the utility
measure in the next section.

6.3.5 Propensity score measure

In this section, we present a quantitative measure of data utility for the partially synthetic
data using the propensity score approach (Woo et al. (2009)) . We first merge the original

data set (size n), with partially synthetic data set (size n) D
(l)
syn, creating a data set

X
(l)
merge, l = 1, . . . , d, with size of 2n. We denote a vector T(l) = (T

(l)
1 , T

(l)
2 , . . . , T

(l)
2n ) where

T
(l)
i = 1 if subject i belongs to the partially synthetic data set, in our case T

(l)
1 , . . . , T

(l)
n

is equal to 0 and T
(l)
n+1, . . . , T

(l)
2n is equal to 1. We then regress T(l) on X

(l)
merge and use the

estimated probabilities from the regression model as the propensity scores. Each of the
propensity score for subject i is denoted by u

(l)
i for i = 1, . . . , 2n. We then average the

propensity score u
(l)
i across 50 imputed data sets and denoted the average propensity score

by ūi for i = 1, . . . , 2n. We then calculate the data utility measure as below:

Up =
1

2n

2n∑
i=1

(ūi − 0.5)2, (6.2)

where 2n is the total number of units in the merged data set. When the original and
partially synthetic data have the same distribution, the propensity scores for all units
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should be approximately equal to 0.5, so that Up is close to zero. On the other hand, if
Up = 0.25, then the two data sets are completely distinguishable.

We now calculate the global propensity scores for our partially synthetic data sets
that we synthesize in Section 6.3.4, and calculate the utility measure using Equation 6.2.
The results are tabulated below:

Table 6.11: Global propensity scores

Number of data points being synthesized Global propensity score Utility

(value of Cs)
95 (1) 4.742 ×10−7 0.9999995
545 (2) 1.187×10−5 0.9999881
1697 (5) 8.462×10−5

3993 (10) 0.0003104 0.9999154
19084 (50) 0.003523 0.996477
197744 (0) 0.007936 0.992064

The utility is represented by the values of one minus the global propensity scores,
where the smaller the values, the less the utility of the data set. We notice that the utility
has been reduced as we increase the number of data points being synthesized as expected.
The relationship between the risk measures and utility is illustrated in Figure 6.2 and
Figure 6.3.
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Figure 6.2: Expected risk versus utility plot.

Figure 6.2 and Figure 6.3 show the plots of expected risk and perceived risk with
threshold value 0.2 against the utility respectively. Each of the points in both plots are
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Figure 6.3: Perceived risk (0.2) versus utility plot.

labelled with the percentages of the key variables values being synthesized. Similarly to
before, we noticed that the utility has been reduced (values of global propensity scores are
increasing) as we increase the percentage of data points being synthesized, but this also
results in reduction of the disclosure risk.
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Chapter 7

Conclusions

In this thesis, we have reviewed two major applications of multiple imputation: imputing
missing values and generating partially synthetic data for protecting confidentiality of
public use data sets. We have proposed multiple imputation modelling strategies that can
impute the missing values, as well as generating partially synthetic data sets to protect
confidentiality of data sets with complex settings. In this chapter, we conclude our thesis in
two parts: the first part presents concluding remarks for the missing data problems, which
summarizes the modelling methods (Chapter 3), simulation study and real data application
(Chapter 4) and informative priors for our model (Chapter 5). In the second part of this
chapter we present some conclusions concerning contributions to the data confidentiality
in Chapter 6, where we discuss our modelling strategy on generating partially synthetic
data for protecting confidentiality and some wider context on the applications of synthetic
data.

7.1 Missing data problems

Missing data are a common problem for many researchers and statisticians in the world.
Failing to handle the missing data adequately will lead to biased estimates of parameters
such as means or regression coefficients in statistical analysis. We proposed a model
that can be used to impute the missing values, where the imputed values are drawn
from the posterior predictive distribution in order to preserve the statistical properties
in the imputed data sets. The proposed model, FRM, is a joint modelling approach
which can impute missing values and generate synthetic data in data sets that contain
both categorical and continuous variables with a non-monotone pattern. When the data
comprise only binary or ordinal variables, then the modelling strategy allows imputations
to be drawn from their posterior predictive distributions using a Gibbs sampler. When
the data also comprise nominal variables then we proposed a Metropolis within Gibbs
sampler with a novel Metropolis-Hastings proposal that can efficiently impute the missing
values. For the fully conditional specifications, we used the modelling approach developed
by Raghunathan et al. (2001), also known as MICE, to implement multiple imputation.
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We used MICE as an alternative multiple imputation approach to compare to our proposed
model FRM, in both the simulation study and real data application.

In the simulation study involving imputing the missing values, the results showed that
FRM obtained coverages of estimands much closer to 0.95 compared to those obtained
using MICE. These estimands included those arising from both univariate analyses e.g.
population means of variables or the proportions in the population taking a particular
level of a categorical variable, as well as multivariate analyses, e.g. the coefficients from
a regression model. When implementing FRM and MICE for imputation, we explored
different orderings of the predictors (to that used to generate the data) to decompose the
joint distribution and impute missing values. Results showed that FRM still performed
better than MICE and there aren’t any significant differences in the coverages obtained
using both methods. In the real data application, there is a potential benefit from using
FRM over MICE in terms of estimating the treatment effect in the complete case scenario.
We investigated how sensitive results were to three different ordering of variables in the
decomposition of the joint distribution, and we found no significant differences in the
results obtained.

We also extended our modelling strategies to incorporate different informative priors
for FRM to explore robust regression modelling and the possibility of sparse relationships
between the variables. In the RFRM strategy, we have assigned a marginal t-prior to the
regression parameters in our model, and assumed that the errors of the linear regression
models follow a marginal t distribution. The results showed that the robust model RFRM
performed better than FRM in the simulation study and in the real data complete case
analysis. We also compared the results between RFRM and MICE, where in the MICE
approach, we used the model and prior specifications described in the RFRM strategy to
generate missing values. We noticed that the RFRM obtained better coverages than the
coverages obtained using MICE in both the simulation study and real data complete case
analysis. Here then, we have seen that there is significant advantage using the RFRM
approach, over FRM and the equivalent fully conditional specifications MICE.

For the LFRM approach, we incorporated the Bayesian Lasso (Park and Casella
(2008)) into our modelling strategy but FRM seemed to perform better than LFRM in
terms of coverages in the simulation study. We also compared the results between LFRM
and MICE, where in the MICE approach, we use the model and prior specifications de-
scribed in the LFRM strategy to generate missing values. Results showed that both MICE
and LFRM did not show any significant differences in the coverages in the simulation study
and real data complete case analysis. More research on methods of choosing the shrinkage
parameter λ2 can be done, and we could also consider incorporating other shrinkage meth-
ods such as the ridge regression proposed by Hoerl and Kennard (1970) into our modelling
strategy.

For the MFRM approach, we assigned a marginal t-prior for the errors of the linear
regression models, which are more robust to the outliers in our data, and we also assigned
the Bayesian Lasso prior for the regression parameters. This strategy allows us to include
robust modelling as well as exploring potential sparse relationship between variables in the
data set under one modelling strategy. We also compared the results between MFRM and
MICE, where in the MICE approach, we use the model and prior specifications described
in the MFRM strategy to generate missing values. Results showed that MFRM performed
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better than FRM and MICE in terms of coverages in the simulation study. Results showed
that both MICE and RFRM did not show any significant differences in results in the real
data complete case analysis. More analysis on finding the optimal ratio for ν

δ
, where ν

represents the degrees of freedom ν for the t-priors and δ represents the hyperprior on the
shrinkage parameter, λ2 can be considered in the future. We also compared the results
of FRM, RFRM, LFRM and MFRM through the simulation study involving the breast-
feeding data complete cases. Results showed that MFRM performed better than the rest
of the modelling approaches in terms of absolute biases, however, we cannot be certain if
the coefficients estimates are reliable estimates of the true estimates. Here, we only used
this real data complete case scenario simply to illustrate the different modelling strategies.

In general, the FCS approach is a more flexible way to impute missing data, by im-
puting the data on a variable-by-variable basis by specifying an imputation model per
variable. These sets of conditional distributions do not necessarily correspond to a joint
model, and hence doesn’t guarantee of generating imputations from a proper posterior
predictive distribution. However, the proposed joint model (FRM) models the joint dis-
tribution of all the variables in the data through a sequence of generalised linear models,
and allows us to draw imputations from a proper posterior distribution. It is difficult
to determine whether imputations drawn from a proper posterior distribution are better
than those obtained using MICE through a simulation study and a real data set. How-
ever, multiple imputation using either joint modelling or fully conditional specification
normally provide a more reliable approach to handle the missing data than the complete
case analysis or using the common ad-hoc methods. This is because these methods might
lead to biased estimates of parameters and they don’t handle the uncertainty due to the
presence of missing values.

Both our joint modelling approach, FRM and the fully conditional specifications
MICE assume that the missing data mechanism in the data sets is ignorable (missing
at random). So what happens if the missing data mechanism is non-ignorable? The most
common way to deal with this problem is to include more variables in the imputation
model, thus bringing the missing data mechanism closer to missing at random. Other
methods such as pattern-mixture models (Little (1993a)) or models selection approach
where data imputers implicitly model the missing data mechanism can be considered.
Further investigations on this area can be done in the future.

Also, multiple imputation is not the only way to handle missing data. Other ap-
proaches such as likelihood-based methods (Carpenter and Kenward (2008)) and prob-
ability weighting (Hogan and Lancaster (2004)) can be considered as alternatives in the
future. We can use these methods to impute missing values and compare the results to our
model FRM. It would also be interesting to explore extending this approach to deal with
more complicated data structures. For example, we could consider incorporating variables
that are inherently nested through the development of multi-level models. We can also
consider broadening the class of models used, for example using logistic regression models
for binary responses, potentially using computational techniques proposed in Kinney and
Dunson (2007).
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7.2 Statistical disclosure control

For statistical disclosure control, we have applied our model FRM to protect confidentiality
of the current population survey (CPS) data by generating multiply imputed, partially
synthetic data sets. These data sets comprised a mix of original data and the synthetic
data where values chosen for synthesis are based on an approach that considers unique and
sensitive units in the survey. We also extended our method to accommodate the presence
of spikes at zero in some of the continuous variable of the CPS data. Our results showed
that when we increased the percentage of data points being synthesized, the risks of being
identified have been reduced, as well as the utility of the partially synthetic data sets.

The main advantage of using partially synthetic data approach is that the synthetic
data are drawn from a plausible distribution that describes the given observed data. In
our modelling strategy FRM, the synthetic values are drawn from the posterior predictive
distribution that can reflect the multivariate relationship between the variables in the data
set. Hence, valid inferences can be made by data users using the simple combining rules
described in Chapter 2. Also, in partially synthetic data approach, only a fraction of data
will be replaced by synthetic data compare to the fully synthetic approach. Hence the
inferences made by the users are less sensitive to model specification.

One of the key challenges in using partially synthetic data approach for protecting
confidentiality is selecting the values that will be replaced by the synthetic data. The
statistical agencies need to select the units that are at high risk of disclosure such as
sample unique in a data set, then replace the units’ attributes with synthetic data. In
Chapter 6, we have discussed a selection procedure where instead of synthesizing the whole
unit, we only replaced the data points that make the unit unique. By doing so, we can
minimize the number of data points needed to be synthesized for protecting confidentiality,
at the same time preserving the utility of the imputed data sets. From Section 6.1, we
noticed that if two or more variable sets can be found that can satisfy the criteria fg′ > Cs,
we will take the union of the sets. An alternative to that is instead of taking the union of
the variable sets, we take the minimum required variable set that can satisfy the criteria
fg′ > Cs.

Another challenge in using the partially synthetic approach is that this is a model
based imputation method. Hence the validity of the model specification has great impact
on the validity of the synthetic data. The main reason is that the synthetic data only
represents the relationships among the variables that have been included in the imputation
model. Any relationships among the variables that are not accurately included in the
imputation model will result in the data users’ analysis missing those relationships.

When the data set consists of large numbers of categorical and continuous variables,
it is quite difficult to specify the imputation model that can accurately capture the re-
lationship between the variables in the data set. Hence, we can instead consider a non-
parametric model such as the classification and regression tree (CART). CART is an easy
to use non-parametric model that can generate partial synthetic data sets. Details on how
to use CART to generate partially synthetic data can be found in Reiter (2005a). It would
be interesting to compare the risks and utilities obtained using our parametric modelling
method to the classification and regression tree (CART) synthesis method.
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We can also explore the risk-utility trade off for our method, in order to address the
decision of choosing the optimum amount of data that need to be synthesized. In order
to chose an optimum amount of data for synthesis, we can use the risk-utility framework
proposed by Duncan et al. (2002) which is based on quantified measures of disclosure risk
and data utility. When releasing data sets, statistical agencies have to preserve the utility
of the data sets as much as possible so that the data sets provided are useful to the data
users, while keeping the risk of disclosure low. The partially synthetic data approach can
have low disclosure risks, because the sensitive values in the data sets have been replaced
by synthetic data. However, this also decreases the utility of the imputed data. Statistical
agencies must decide how much synthetic data they are willing to release, at the same
time striking an acceptable balance between disclosure risk and data utility. Perhaps,
diagnostic plots such as Figure 6.2 and Figure 6.3 can help to make this decision, and
it would be interesting to explore different criteria for how much data that we choose to
synthesize.

Large survey data normally contain missing data and this will complicate the data
analysis. Statistical agencies who wish to release the data for public use need to handle
the missing data first before applying any statistical disclosure limitation methods on the
data set or releasing synthetic data. Our modelling strategy can handle missing data and
disclosure control simultaneously via a two stage imputation procedure as described in
Chapter 2. First, we use multiple imputation to impute the missing values in the data
set, generating m multiply imputed data sets, we then replace each value at high risk of
disclosure in each imputed data set with d synthetic values using multiple imputation;
thus creating m × d multiply imputed data sets. For details on how to implement this
strategy and obtain valid inference, please see Reiter (2004).

One of the ethical arguments being raised when applying statistical disclosure limita-
tions (SDL) methods or using synthetic data approach is the false disclosure risk. Suppose
that intruders have a target information and wish to disclose sensitive information about
certain individual in some population. If the survey data was released without any taking
any confidentiality measures, the intruders can easily disclose the sensitive information
about that individual. When the statistical agencies replace the sensitive values with syn-
thetic data, the intruders might not be able to disclose the information using the target
information they possess. However, after using SDL methods or synthetic data approach,
there is a chance that other individuals in that survey data will have the same attributes
as the target information. When the intruders attack the data sets, they might have tar-
geted the wrong group of individuals, hence resulting in a false disclosure. Such situations
will bring harm to the individuals that are falsely identified and the reputation of the
statistical agencies will also be affected. These false disclosure risks can have huge impact
on the health care system. In recent years, health care organizations have started to use
new information technologies to reduce costs as well as improve the quality and efficiency
of the health care system. With new technologies available, health care organizations can
collect detailed data about the individual patient health records, which can be used to help
doctors to threat their patients accordingly. Hence, health care data has became more
and more valuable for scientists and big pharmaceutical companies for data mining. This
prompts questions about the confidentiality measures taken by the health organizations
to protect the collected health care data. If the health organizations failed to protect
the confidentiality of the patients’ health care information, the doctor-patient relationship
will be greatly affected, and the patients will likely to withhold some sensitive information
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or less likely to participate in any health care survey in the future. This might put the
health organizations at risk of having less information for the health care data, which can
lead to reduced quality of health care and deprive researchers of valuable data for future
research. A comprehensive guideline on confidentiality in the UK health and social care
can be found on http://www.hscic.gov.uk.

It is important to consider how the contributions of this thesis fit the wider contexts
of statistical disclosure control. Here are some thoughts on how the work can be taken
forward for relevant future contributions. One of the potential contributions is to use
partially synthetic data for confidentiality protection in emerging technologies. With the
development of new popular social networking sites, such as Facebook and Twitter, social
network data that describe different entities and connect them can be easily acquired.
Data users can then perform any social network analysis to study the data patterns that
describe the connections between entities in the network. For example, internet companies
such as Google, Netflix and Amazon.com have been making their business more efficient
by analyzing such social network data, in order to study the consumers’ behavior. Every
time a Facebook user updated their info on Facebook, such as favourite books or movies,
the user will normally see related suggestions pop up on their screens afterwards. From the
business perspective, this feature is proven to be useful as this can encourage the user to
spend more on buying the companies’ products, as well as helping online advertisers such
as Google to sell their adverts accurately to the targeted groups. However, confidentiality
protection has become a big issue for the data users. With the accumulation of such
network data as well as population survey and medical data, data intruders can use record-
linkage methodologies to identify the individuals sensitive information from these data
sets. Here, we can potentially use our modelling strategies to generate partially synthetic
data, where our goal is to protect the confidentiality of individuals, and at the same time
enable the useful analysis of social network data. Since the synthetic data are generated
from a model that describes the observed data, any data patterns that are present in
social network data can also be preserved. We can use the synthetic data approach to
provide a reasonable approximation to the data patterns so that data users can perform
any analysis, and the confidentiality of individuals’ records can also be protected. The
concerns on confidentiality issues with social networking data and methods to handle them
have also been mentioned by Liu et al. (2009), Zhou and Pei (2008) and Hay et al. (2007).

Multiple imputation framework can be used to handle missing data and disclosure
control simultaneously via a two stage imputation procedure as mentioned before. A
further development in this framework is that imputations from missing data alone can
potentially protect confidentiality of data sets as well. For example, survey data sets
often contain missing values and it will complicate statistical analysis. Statistical agencies
can then multiply impute the missing values and release the imputed data sets for public
use. These imputed data sets consist of original data and imputed data, which somewhat
similar to the partially synthetic data. In the partially synthetic data approach, we first
select the values at high disclosure risk and replace those values with synthetic data; here,
we only impute the missing values and then release the imputed data sets. The idea is that
multiple imputation for missing data itself might introduce uncertainty into the imputed
data, thus making it harder for intruders to make identifications or disclose any sensitive
information; hence potentially protecting confidentiality of the released data. However,
sample unique in the original data that do not contain any missing values will remain
unique in the released data, as we only replace the missing values. Similar approach
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has been mentioned by Jagannathan and Wright (2008) and it would be interesting to
investigate this area further in the future.
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Appendices

In the appendices we provide details that complement the material presented in the main
text. Appendix A presents details of how the simulation studies in Chapter 4 were im-
plemented. Appendix B presents some more details of the breast-feeding data analysis
in Chapter 4. Appendix C presents the details of “P-steps” for RFRM in Chapter 5.
Appendix D presents details of how the simulation study from Section 5.1.1 in Chapter 5
were implemented. Appendix E presents the details of “P-steps” for LFRM in Chapter 5.
Appendix F presents details of how the simulation study from Section 5.2.1 in Chapter 5
were implemented. Appendix G presents the details of “P-steps” for MFRM in Chapter
5. Appendix H presents details of how the simulation study from Section 5.3.1 in Chapter
5 were implemented. Appendix I shows the density plots of social security, tax and child
support payment from the CPS data in Chapter 6. Appendix J presents the estimands
considered for the simulation study analysis in Chapter 6.

Appendix A - Simulation study in Chapter 4

In this section we present details of the simulation study in Chapter 4. We first describe
how we simulated an incomplete data set. We then describe how we impute the missing
data under the two scenarios representing the state of the imputer’s knowledge, and the
analyses we considered.
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Data generation

We simulate xi,1, xi,2, . . . , xi,9, i = 1, . . . , 1000 in the following way:

xi,1 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.3, 0.4 and 0.3 respectively.

xi,2 ∼ p(xi,2|xi,1,θ(2)),

xi,3 ∼ N(5, 1),

x∗i,4 ∼ N(1 + 2xi,3, 1),

xi,4 = I(x∗i,4 > 11)

x∗i,5 ∼ N(2 + 5 ∗ I(xi,1 = 2) + I(xi,1 = 3) + xi,3, 2),

xi,5 = j5 I(c
(5)
j−1 < x∗i,5 < c

(5)
j ), j5 = 1, . . . , 4

xi,6 ∼ N(8, 3),

xi,7 ∼ N(2 + 2xi,6 − xi,3, 5),

x∗i,8 ∼ N(3 + 2xi,7, 5),

xi,8 = j8 I(c
(8)
j−1 < x∗i,8 < c

(8)
j ), j8 = 1, . . . , 8

xi,9 ∼ N(1 + 4 ∗ I(xi,2 = 2)− 3 ∗ I(xi,2 = 3) + 5 ∗ I(xi,2 = 4) + 2 ∗ I(xi,2 = 5) + 5xi,7, 3),

where

p(xi,2 = j2|xi,1,θ(2)) =
exp(θ

(2)

0,j2 + θ
(2)

1,j2I(xi,1 = 2) + θ
(2)

2,j2I(xi,1 = 3))∑5
s=1 exp(θ

(2)
0,s + θ

(2)
1,sI(xi,1 = 2) + θ

(2)
2,sI(xi,1 = 3))

where j2 ∈ {1, . . . , 5} and θ
(2)
0,1 = θ

(2)
1,1 = θ

(2)
2,1 = 0 for identifiability, θ

(2)
0,2 = 1, θ

(2)
1,2 = −1, θ

(2)
2,2 =

−2, θ
(2)
0,3 = −1, θ

(2)
1,3 = 3, θ

(2)
2,3 = 1, θ

(2)
0,4 = −1, θ

(2)
1,4 = 2, θ

(2)
2,4 = 2, θ

(2)
0,5 = −1, θ

(2)
1,5 = 2, θ

(2)
2,5 = 1,

and I(·) is the indicator function. The threshold parameters c
(5)
0 = −∞, c(5)

1 = 6.962, c
(5)
2 =

9.292, c
(5)
3 = 11.59, c

(5)
4 = ∞ and c

(8)
0 = −∞, c(8)

1 = −2, c
(8)
2 = 4, c

(8)
3 = 9, c

(8)
4 = 13, c

(8)
5 =

17, c
(8)
6 = 22, c

(8)
7 = 28, c

(8)
8 =∞.
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We introduce missing values into variables x2, . . . ,x9 in the following way:

p(mi,2 = 1) = 0.3 (MCAR),

p(mi,3 = 1) =

{
exp(1− 5 ∗ I(xi,2 = 2)− 4 ∗ I(xi,2 = 3))

1 + exp(1− 5 ∗ I(xi,2 = 2)− 4 ∗ I(xi,2 = 3))

}
(1−mi,2) (MAR),

p(mi,4 = 1) =

{
exp(−5.5 + 5xi,3)

1 + exp(−5.5 + 5xi,3)

}
(1−mi,3) (MAR),

p(mi,5 = 1) =

{
exp(−5.5 + 5xi,3)

1 + exp(−5.5 + 5xi,3)

}
(1−mi,3) (MAR),

p(mi,6 = 1) = 0.3 (MCAR)

p(mi,7 = 1) =

{
exp(60− 8xi,6)

1 + exp(60− 8xi,6)

}
(1−mi,6) (MAR),

p(mi,8 = 1) = 0.3 (MCAR),

p(mi,9 = 1) =

{
exp(6− xi,7)

1 + exp(6− xi,7)

}
(1−mi,7) (MAR),

where mi,j be the missing data indicator for xi,j, where mi,j = 1 indicates xi,j is missing
and mi,j = 0 indicates xi,j is observed.

Imputation and analysis

In scenario 1 we impute the missing values using the same order as the data generation
process, we then obtain the following estimates from an analysis of the imputed datasets:

• Estimates of the means of x6,x7,x9.

• Estimates of the proportions of units with x2 = 1, . . . , 5, x4 = 1, x5 = 1, . . . , 4, x8 =
1, 2, . . . , 8

• Estimates of the regression coefficients of a linear regression from the following re-
gression models: p(x2|x1), p(x7|x6,x3), p(x9|x2,x7).

In scenario 2 we impute the missing values using a different ordering to the predictors:
x2,x1,x4,x5,x8,x6,x3,x9,x7. We obtain estimates from the same analyses as above.

Appendix B - Breast-feeding data analysis

In this section we present the details of the breast-feeding data analysis mentioned in
Chapter 4. We first describe the ordering of the variables we used in the imputation. As
noted in Chapter 3, any variable that is fully observed will be conditioned on in every
regression model and so can be placed at the beginning in the order. We then describe
what transformations were applied to the variables in the study.
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Description of variables

The ordering of the variables were as follows:

• x1 - The number of years between 1979 and when the mother gave birth. (Continu-
ous, fully observed.)

• x2 - The child’s race. (Nominal: 1-Hispanic, 2-Black, 3-Others, fully observed.)

• x3 - Whether the spouse or partner was present at birth. (Nominal: 1-Partner
present, 2-Spouse present, 3-Absent, 3.54% missing values.)

• x4 - Family income. (Continuous, 25.69% missing values.)

• x5 - Breast-feeding duration. (Treatment variable, binary: 0-Control, 1-Treated,
6.24% missing values.)

• x6 - Child’s sex. (Binary: 0-Male, 1-Female, 0.1% missing values.)

• x7 - Whether grandparents were present at birth. (Binary: 0-Absent, 1-Present,
3.44% missing values.)

• x8 - Mother’s intelligence as measured by an armed forces qualification test. (Con-
tinuous, 5.16% missing values.)

• x9 - Mother’s highest educational attainment. (Continuous, 3.70% missing values.)

• x10 - Child’s birth weight. (Continuous, 3.64% missing values.)

• x11 - Number of days that the child spent in hospital. (Continuous, 10.36% missing
values.)

• x12 - Number of days that the mother spent in hospital. (Continuous, 10.66% missing
values.)

• x13 - Number of weeks that the mother worked in the year prior to giving birth.
(Ordinal: 1-Not worked, 2-Worked for 1 to 47 weeks, 3-Worked for 48 to 51 weeks,
4-Worked for 52 weeks, 33.05% missing values.)

• x14 - Number of weeks the child was born premature. (Ordinal: 1-not preterm (zero
weeks), 2- moderately preterm (one to four weeks), and very preterm (five or more
weeks), 7.78% missing values.)

• x15 - Peabody individual assessment test math score (PI-ATM) administered to
children at 5 or 6 years of age. (Continuous, 48.2% missing values.)
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Transformations applied to the variables

We categorize the number of weeks the child was born premature into three levels: 1-not
preterm (zero weeks), 2-moderately preterm (one to four weeks), and 3-very preterm (five
or more weeks), with threshold values determined from guidelines of the March of Dimes
(www.marchofdimes.com). The reason we categorize the variable is because it has a very
large spike at zero weeks, as shown in Figure 7.1.
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Figure 7.1: Histogram of weeks mother worked in the year before giving birth for subjects in
the breast-feeding data.

From Figure 7.2 we notice that the the number of weeks that the mother worked in the
year prior to giving birth has a distinct U shaped histogram, which would be difficult to
capture with a normal model. Hence, we categorize the variable into four levels: 1-not
worked at all, 2-worked between 1 and 47 weeks, 3-worked 48-51 weeks, and 4-worked all
52 weeks.

When implementing FRM, to ensure that the residuals of the normal linear regression
models (where the response in the regression model is continuous) satisfy the normal
assumption, we transform the response variable in these regression models, where the
transformation is given by the Box & Cox procedure (Box and Cox (1964)). We perform
the following transformations: we take the natural log of family’s income (x4), number of
days that the child spent in hospital (x11) and number of days that the mother spent in
hospital (x12), we square child’s birth weight (x10) and Peabody individual assessment test
math score (PI-ATM) (x15), we take the square root of mother’s intelligence as measured
by an armed forces qualification test (x8).

The following diagnostic plots present normal probability plots, before and after the trans-
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Figure 7.2: Histogram of weeks preterm for subjects in the breast feeding study.

formation, of the residuals in regression models where a transformation of the response
was deemed necessary.

When implementing MICE, as each regression model to impute missing values conditions
on all other variables in the data we considered potentially different Box-Cox transforma-
tions to improve normality assumptions, and hence improve the model fit. All but one
variable was transformed in the same way described above. Child’s birth weight (x10),
which was squared when applying FRM, no longer required a transformation when apply-
ing MICE.

127



●

●

● ●
●

●
●

●
●

●

●●
●

●

● ● ●

●●

●
●

●
●

●

●

● ●
●

●

●

●

●●

●

●
● ●

●
●●

●
●

● ●
●

● ●
●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●
●●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●●

●
●

●
●

●●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●●●●

●

●

●

●

●●●
●

●

●
●

●
●●●

●

●

●

●●

●

●

● ●

●

●

●●
●

●

●
● ●●●

●●●

●

●●

●

●

●

●

●
●

● ●
●● ●●

●
●

●
●

●●
●

●

●●

●

●

●●

●

● ●
●●●

●

●●
●

● ●●●● ●
●

●

● ●

●

●

●
●

●●
●

●
●

●

●●●
●

●

●●

●

●●●
●●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●
● ●

●

●

●

●
●

●●

●
●

●

●

●

●

●●
●●

●

●

●

● ●
●

●
●●

●
●

●

●

●

●

●
●

●● ●

●

●
●●

●

●●

●
●

●
●

●

●●
●

●

● ●

●

●●
●

●

●
●●●

● ●

●●

●

●

●

●●
●

●

●
●

●

●
● ●

●
●

●

●

●

●● ●
●●●

●

●
●

●

● ●
●

●

●●●
●

●

●

●

●

●

●
●

●●

●
●

●● ●

●●

●
●

●

●

●
●● ● ●●● ●

● ●
●

● ●

●
●

●
●

●

●

●
●

●●
●

●
●

●

●
●

●

●●●

●

●
●●

●

●●

●
● ●

●

●

●●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
● ●

●
●

●●

●●●●●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●
● ●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●●
●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●
●

●

●

●

● ●●

● ●

●

●

●

●
●

●
●●

●

●

●

●●
●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

● ●

●

●●

●
●

●

●
●

●
● ●

●
● ●

●●
●

●

●
●

●

●

●
●

●
● ●

●
●

●●
●

●

●

●

●

●

●● ●
●

●
●

●●

●
●

●

● ●

●●

●

●●

● ●

●
●

●

●

●

●● ●

●●●

●
●

●
●

●

●

●

●

●

●
●●

●
●

● ●
●

●●

●
●

● ●●
●

●●
●

●
● ●

●●●
●

●

●

●

●
●

●
●●● ● ●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●●●●● ●
●

●

●

●

●
●

●

●

●

● ●
●

●
●●

●●

●

●●
●

●●

●

●●
●

●●
●●

●
●●●

●

●
●●

● ●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●●

●

●
●

● ●

●

●

●

●

● ● ●●

●●

●
●

●
●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●
● ●

●

●●

● ●

●●

●

●

●
●

●●

● ●●
●

●

●

●

●

●

●

●●●

●

●● ● ●
●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●●●

●

●

●

● ●
●

●● ●●

● ●
●

● ●● ●

●
●●

●

●

●

●
●

● ●●
●

● ●
●

●

●

●
●●

●

●●
●

●
●●

●●
●

●●

●
● ●

●

●
●

●
● ●●

●●

●

●

●

● ●
●

●● ●●●●
● ●

●

●

●
●

●
●

●
●

●
●

●

●
●

●●

●

●
●

● ●● ●

●

● ●

●

●●
●●

●

●

●

●

●

●

●●●●●●●●

●

●

● ●
●

●

●

● ●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●●

●●●

●

●
●

● ● ●

●

●
●

●●

●

●

●
● ●● ●

●

● ●●

●
●

●

●
●

●●
●

●
● ● ● ●

●

●

●

●

●
●

●
●●

●

●●
●

●
●● ●

●

●

●
●●

●● ●
●

●

●

●
●

●

●
●

●
●● ●

●

●
●

●

●
● ●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●● ●

●

●

●

●●

●

●

●
●

●●
●

●

●● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●
●

●
●

●
●

●●

●●

● ●

●
●

●
●

●

●

●

●

●●● ● ●

●
●

● ●

●
●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●●
●

●
●

●

● ●

● ●
●

●
●

● ●

●

●

●
●●

●
● ●

●

●

●
●

●●
● ●

●

●

●●
●

●

●

●
●

●

●

●
●●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

−3 −2 −1 0 1 2 3

0
5

1
0

Normal Q−Q of regression model of x4

Theoritical Quantiles

S
ta

n
d

a
rd

iz
e

d
 R

e
si

d
u

a
ls

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●
●●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●●

●●

●●

●

●

●

●

●
●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●
●

●

●

●

−3 −2 −1 0 1 2 3

−
8

−
6

−
4

−
2

0
2

Normal Q−Q of regression model of transformed x4

Theoritical Quantiles

S
ta

n
d

a
rd

iz
e

d
 R

e
si

d
u

a
ls

Figure 7.3: Q-Q plot of the residuals in the linear regression model of family income, x4 be-
fore(left) and after(right) transformation (natural log).
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Figure 7.4: Q-Q plot of the residuals in the linear regression model of mother’s intelligence as
measured by an armed forces qualification test, x8 before(left) and after(right) transformation
(square root).
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Figure 7.5: Q-Q plot of the residuals in the linear regression model of child’s birth weight, x10

before(left) and after(right) transformation (square).
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Figure 7.6: Q-Q plot of the residuals in the linear regression model of number of days that the
child spent in hospital, x11 before(left) and after(right) transformation (natural log).
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Figure 7.7: Q-Q plot of the residuals in the linear regression model of number of days that the
mother spent in hospital, x12 before(left) and after(right) transformation (natural log).
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Figure 7.8: Q-Q plot of the residuals in the linear regression model of Peabody individual
assessment test math score (PI-ATM), x15 before(left) and after(right) transformation (square).
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Appendix C - “P-steps” for RFRM

In this section, we present the details on deriving the full conditional distributions of
the parameters in the “P-steps” mentioned in the RFRM strategy in Chapter 5. The full
conditional distribution of θ(1) where x1 follows a multinomial distribution and Metropolis-
Hastings update for the multinomial logistic regression model have been presented in
the RFRM section in Chapter 5. Here, we will present the details on deriving the full
conditional distributions of the remaining parameters in the “P-steps”, such as θ(q) =
(β(q), τq,Ψq,Φq) for x∗q when x∗q is continuous, θ(q) = (β(q), τq,Ψq) for x∗q when x∗q is a

latent variable (xq is binary) and θ(q) = (β(q), τq,Ψq,γ
(q)) for x∗q when x∗q is a latent

variable (xq is ordinal).

For x∗i,q is continuous, we use the following representation for each of the sequential re-

gression model p(x∗i,q|x∗i,1, . . . , x∗i,q−1,θ
(q)):

x∗i,q = x̃i,qβ
(q) + εi,q,

εi,q ∼ N(0,
1

τqφi,q
),

where x̃i,q =
(1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n and β(q) = (β
(q)
0 , β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′. We

then propose the following priors:

p(β
(q)
j |τq, ψj,q) ∼ N(0,

1

τqψj,q
), j = 0, . . . , q − 1,

p(τq) ∝
1

τq
,

p(ψj,q) ∼ Gamma(
ν

2
,
ν

2
), j = 0, . . . , q − 1,

p(φi,q) ∼ Gamma(
ν

2
,
ν

2
), i = 1, . . . , n.

The joint posterior distribution of the parameters in this model is given up to a normalising
constant by:

n∏
i=1

{
p(x∗i,q|β(q), τq, φi,q)p(φi,q)

} q−1∏
j=0

{
p(β

(q)
j |τq, ψj,q)p(ψj,q)

}
p(τq)

=
n∏
i=1

{√
τqφi,q

2π
exp

[
−τqφi,q

2
(x∗i,q − x̃i,qβ

(q))2

]
1

Γ(ν
2
)
(
ν

2
)( ν

2
)φ

ν
2
−1

i,q exp

[
−νφi,q

2

]}
q−1∏
j=0

{√
τqψj,q

2π
exp

[
−τqψj,q

2
(β

(q)
j )2

]
1

Γ(ν
2
)
(
ν

2
)( ν

2
)ψ

ν
2
−1

j,q exp

[
−νψj,q

2

]}
1

τq
.
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Hence, full conditional distributions of β(q), τq,Ψq,Φq can be derived in the following way:

1. The full conditional distribution of β(q) is proportional to

n∏
i=1

√
τqφi,q

2π
exp

[
−τqφi,q

2
(x∗i,q − x̃i,qβ

(q))2

] q−1∏
j=0

√
τqψj,q

2π
exp

[
−τqψj,q

2
(β

(q)
j )2

]
∝ exp

{
−τq

2

[
(x∗q − X̃qβ

(q))′D
(q)
φ (x∗q − X̃qβ

(q)) + (β(q))′D
(q)
ψ β

(q)
]}

∝ exp
{
−τq

2

[
(X̃qβ̂

(q) − X̃qβ
(q))′D

(q)
φ (X̃qβ̂

(q) − X̃qβ
(q)) + (β(q))′D

(q)
ψ β

(q)
]}

= exp
{
−τq

2

[
(β(q) − β̂(q))′X̃′qD

(q)
φ X̃q(β

(q) − β̂(q)) + (β(q))′D
(q)
ψ β

(q)
]}

∝ exp
{
−τq

2

[
(β(q))′(X̃′qD

(q)
φ X̃q + D

(q)
ψ )β(q) − 2(β(q))′X̃′qD

(q)
φ X̃qβ̂

(q)
]}

,

Let Aq = (X̃′qD
(q)
φ X̃q + D

(q)
ψ ) and β̂(q) = (X̃′qX̃q)

−1X̃′qx
∗
q, then

exp
{
−τq

2

[
(β(q))′(X̃′qD

(q)
φ X̃q + D

(q)
ψ )β(q) − 2(β(q))′X̃′qD

(q)
φ X̃qβ̂

(q)
]}

= exp
{
−τq

2

[
(β(q))′Aqβ

(q) − 2(β(q))′X̃′qD
(q)
φ X̃q(X̃

′
qX̃q)

−1X̃′qx
∗
q

]}
= exp

{
−τq

2

[
(β(q))′Aqβ

(q) − 2(β(q))′AqA
−1
q X̃′qD

(q)
φ x∗q

]}
∝ exp

{
−1

2

[
(β(q) − A−1

q X̃′qD
(q)
φ x∗q)

′τqAq(β
(q) − A−1

q X̃′qD
(q)
φ x∗q)

]}
⇒ β(q) ∼ MVN(β̂(q),V(q)) with

β̂(q) = τqV
(q)X̃′qD

(q)
φ x∗q and V(q) =

1

τq
(X̃′qD

(q)
φ X̃q + D

(q)
ψ )−1,

where x∗q = (x∗1,q, . . . , x
∗
n,q)
′, and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1)

for i = 1, . . . , n. The matrix D
(q)
φ is a n×n diagonal matrix with entries φi,q for i = 1, . . . , n

and D
(q)
ψ is a q × q diagonal matrix with entries ψj,q for j = 0, . . . , q − 1.
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2. The full conditional distribution of τq is proportional to

n∏
i=1

{√
τqφi,q

2π
exp

[
−τqφi,q

2
(x∗i,q − x̃i,qβ

(q))2

]}
q−1∏
j=0

{√
τqψj,q

2π
exp

[
−τqψj,q

2
(β

(q)
j )2

]}
1

τq

∝ τ
n
2
q τ

q
2
q τ
−1
q

n∏
i=1

exp

[
−τqφi,q

2
(x∗i,q − x̃i,qβ

(q))2

] q−1∏
j=0

exp

[
−τqψj,q

2
(β

(q)
j )2

]

= τ
n+q
2
−1

q exp

[
−τq

2

n∑
i=1

φi,q(x
∗
i,q − x̃i,qβ

(q))2

]
exp

[
−τq

2

q−1∑
j=0

ψj,q(β
(q)
j )2

]
= τ

n+q
2
−1

q exp
{
−τq

2

[
(x∗q − X̃qβ

(q))′D
(q)
φ (x∗q − X̃qβ

(q)) + (β(q))′D
(q)
ψ β

(q)
]}

⇒ τq ∼ Gamma

(
n+ q

2
,
(x∗q − X̃qβ

(q))′D
(q)
φ (x∗q − X̃qβ

(q)) + (β(q))′D
(q)
ψ β

(q)

2

)
,

where x∗q = (x∗1,q, . . . , x
∗
n,q)
′, and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1)

for i = 1, . . . , n. The matrix D
(q)
φ is a n×n diagonal matrix with entries φi,q for i = 1, . . . , n

and D
(q)
ψ is a q × q diagonal matrix with entries ψj,q for j = 0, . . . , q − 1.

3. The full conditional distribution of ψj,q is proportional to

q−1∏
j=0

{√
τqψj,q

2π
exp

[
−τqψj,q

2
(β

(q)
j )2

]
1

Γ(ν
2
)
(
ν

2
)( ν

2
)ψ

ν
2
−1

j,q exp

[
−νψj,q

2

]}

∝
q−1∏
j=0

ψ
1
2
j,qψ

ν
2
−1

j,q exp
[
−ψj,q

(τq
2

(β
(q)
j )2 +

ν

2

)]
⇒ ψj,q ∼ Gamma

(
ν + 1

2
,
τq
2

(β
(q)
j )2 +

ν

2

)
, j = 0, . . . , q − 1.

4. The full conditional distribution of φi,q is proportional to

n∏
i=1

{√
τqφi,q

2π
exp

[
−τqφi,q

2
(x∗i,q − x̃i,qβ

(q))2

]
1

Γ(ν
2
)
(
ν

2
)( ν

2
)φ

ν
2
−1

i,q exp

[
−νφi,q

2

]}

∝
n∏
i=1

φ
1
2
i,qφ

ν
2
−1

i,q exp
[
−φi,q

(τq
2

(x∗i,q − x̃i,qβ
(q))2 +

ν

2

)]
⇒ φi,q ∼ Gamma

(
ν + 1

2
,
τq
2

(x∗i,q − x̃i,qβ
(q))2 +

ν

2

)
, i = 1, . . . , n,

where
x̃i,q = (1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1)
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for i = 1, . . . , n.

For x∗i,q is a latent variable (xi,q is binary), we use the following representation for each of

the sequential regression model p(x∗i,q|x∗i,1, . . . , x∗i,q−1,θ
(q)):

x∗i,q = x̃i,qβ
(q) + εi,q, where xi,q = I(x∗i,q > 0)

εi,q ∼ N(0, 1),

where x̃i,q =
(1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n and β(q) = (β
(q)
0 , β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′. We

then propose the following priors:

p(β
(q)
j |τq, ψj,q) ∼ N(0,

1

τqψj,q
), j = 0, . . . , q − 1,

p(τq) ∝
1

τq
,

p(ψj,q) ∼ Gamma(
ν

2
,
ν

2
), j = 0, . . . , q − 1.

The joint posterior distribution of the parameters in this model is given up to a normalising
constant by:

n∏
i=1

{
p(x∗i,q|β(q))

} q−1∏
j=0

{
p(β

(q)
j |τq, ψj,q)p(ψj,q)

}
p(τq)

=
n∏
i=1

{√
1

2π
exp

[
−1

2
(x∗i,q − x̃i,qβ

(q))2

]}
q−1∏
j=0

{√
τqψj,q

2π
exp

[
−τqψj,q

2
(β

(q)
j )2

]
1

Γ(ν
2
)
(
ν

2
)( ν

2
)ψ

ν
2
−1

j,q exp

[
−νψj,q

2

]}
1

τq
.

Hence, full conditional distributions of β(q), τq,Ψq can be derived in the following way:
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1. The full conditional distribution of β(q) is proportional to

n∏
i=1

√
1

2π
exp

[
−1

2
(x∗i,q − x̃i,qβ

(q))2

] q−1∏
j=0

√
τqψj,q

2π
exp

[
−τqψj,q

2
(β

(q)
j )2

]
∝ exp

{
−1

2

[
(x∗q − X̃qβ

(q))′(x∗q − X̃qβ
(q)) + (β(q))′τqD

(q)
ψ β

(q)
]}

∝ exp

{
−1

2

[
(X̃qβ̂

(q) − X̃qβ
(q))′(X̃qβ̂

(q) − X̃qβ
(q)) + (β(q))′τqD

(q)
ψ β

(q)
]}

= exp

{
−1

2

[
(β(q) − β̂(q))′X̃′qX̃q(β

(q) − β̂(q)) + (β(q))′τqD
(q)
ψ β

(q)
]}

∝ exp

{
−1

2

[
(β(q))′(X̃′qX̃q + τqD

(q)
ψ )β(q) − 2(β(q))′X̃′qX̃qβ̂

(q)
]}

,

Let Aq = (X̃′qX̃q + τqD
(q)
ψ ) and β̂(q) = (X̃′qX̃q)

−1X̃′qx
∗
q, then

exp

{
−1

2

[
(β(q))′(X̃′qX̃q + τqD

(q)
ψ )β(q) − 2(β(q))′X̃′qX̃qβ̂

(q)
]}

= exp

{
−1

2

[
(β(q))′Aqβ

(q) − 2(β(q))′X̃′qX̃q(X̃
′
qX̃q)

−1X̃′qx
∗
q

]}
= exp

{
−1

2

[
(β(q))′Aqβ

(q) − 2(β(q))′AqA
−1
q X̃′qx

∗
q

]}
∝ exp

{
−1

2

[
(β(q) − A−1

q X̃′qx
∗
q)
′Aq(β

(q) − A−1
q X̃′qx

∗
q)
]}

⇒ β(q) ∼ MVN(β̂(q),V(q)) with β̂(q) = V(q)X̃′qx
∗
q and V(q) = (X̃′qX̃q + τqD

(q)
ψ )−1,

(7.1)

where x∗q = (x∗1,q, . . . , x
∗
n,q)
′, and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1)

for i = 1, . . . , n. The matrix D
(q)
ψ is a q × q diagonal matrix with entries ψj,q for j =

0, . . . , q − 1.
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2. The full conditional distribution of τq is proportional to

q−1∏
j=0

{√
τqψj,q

2π
exp

[
−τqψj,q

2
(β

(q)
j )2

]}
1

τq

∝ τ
q
2
q τ
−1
q

q−1∏
j=0

exp

[
−τqψj,q

2
(β

(q)
j )2

]

= τ
q
2
−1

q exp

[
−τq

2

q−1∑
j=0

ψj,q(β
(q)
j )2

]
= τ

q
2
−1

q exp
{
−τq

2

[
(β(q))′D

(q)
ψ β

(q)
]}

⇒ τq ∼ Gamma

(
q

2
,
(β(q))′D

(q)
ψ β

(q)

2

)
, (7.2)

where D
(q)
ψ is a q × q diagonal matrix with entries ψj,q for j = 0, . . . , q − 1.

3. The full conditional distribution of ψj,q is proportional to

q−1∏
j=0

{√
τqψj,q

2π
exp

[
−τqψj,q

2
(β

(q)
j )2

]
1

Γ(ν
2
)
(
ν

2
)( ν

2
)ψ

ν
2
−1

j,q exp

[
−νψj,q

2

]}

∝
q−1∏
j=0

ψ
1
2
j,qψ

ν
2
−1

j,q exp
[
−ψj,q

(τq
2

(β
(q)
j )2 +

ν

2

)]
⇒ ψj,q ∼ Gamma

(
ν + 1

2
,
τq
2

(β
(q)
j )2 +

ν

2

)
, j = 0, . . . , q − 1. (7.3)

For x∗i,q is a latent variable (xi,q is ordinal), we use the following representation for each of

the sequential regression model p(x∗i,q|x∗i,1, . . . , x∗i,q−1,θ
(q)):

x∗i,q = x̃i,qβ
(q) + εi,q, where xi,q = jq if γ

(q)
jq−1 < x∗i,q < γ

(q)
jq ,

εi,q ∼ N(0, 1),

where x̃i,q =
(1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n and β(q) = (β
(q)
0 , β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′. We

then propose the following priors:

p(β
(q)
j |τq, ψj,q) ∼ N(0,

1

τqψj,q
), j = 0, . . . , q − 1,

p(τq) ∝
1

τq
,

p(ψj,q) ∼ Gamma(
ν

2
,
ν

2
), j = 0, . . . , q − 1,
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and we place an improper uniform prior on γ(q) i.e.

p(γ(q)) ∝ I(γ(q) ∈ Ω(q)),

where Ω(q) =
{
γ

(q)
jq : γ

(q)
0 = −∞ < γ

(q)
1 = 0 < γ

(q)
2 < . . . < γ

(q)
Jq−1

< γ
(q)
Jq

=∞
}

.

The joint posterior distribution of the parameters in this model is given up to a normalising
constant by:

n∏
i=1

{
p(x∗i,q|β(q),γ(q))p(γ(q))

} q−1∏
j=0

{
p(β

(q)
j |τq, ψj,q)p(ψj,q)

}
p(τq)

=
n∏
i=1

{√
1

2π
exp

[
−1

2
(x∗i,q − x̃i,qβ

(q))2

][ Jq∑
jq=1

I(xi,q = jq)I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )

]}
q−1∏
j=0

{√
τqψj,q

2π
exp

[
−τqψj,q

2
(β

(q)
j )2

]
1

Γ(ν
2
)
(
ν

2
)( ν

2
)ψ

ν
2
−1

j,q exp

[
−νψj,q

2

]}
1

τq
.

Hence, full conditional distributions of β(q), τq, ψj,q,γ
(q) can be derived in the following

way:

1. The full conditional distribution of β(q) is given by Equation 7.1.

2. The full conditional distribution of τq is given by Equation 7.2.

3. The full conditional distribution of ψj,q is given by Equation 7.3.

4. The full conditional distribution of γ
(q)
jq for jq ∈ {1, . . . , Jq} is proportional to

n∏
i=1

[
I(xi,q = jq)I(γ

(q)
jq−1 < x∗i,q < γ

(q)
jq ) + I(xi,q = jq + 1)I(γ

(q)
jq < x∗i,q < γ

(q)
jq+1)

]
,

which is uniformly distributed on the interval[
max

{
max

{
x∗i,q : xi,q = jq

}
, γ

(q)
jq−1

}
,min

{
min

{
x∗i,q : xi,q = jq + 1

}
, γ

(q)
jq+1

}]
,

where γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq ∈ {1, . . . , Jq}.
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Appendix D - Simulation study in Section 5.1.1 of

Chapter 5

In this section we present details of the simulation study in Section 5.1.1 of Chapter 5. We
first describe how we simulated an incomplete data set, and we then describe the analysis
we considered.

Data generation

We simulate xi,1, xi,2, . . . , xi,9, i = 1, . . . , 1000 in the following way:

xi,1 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.3, 0.4 and 0.3 respectively.

xi,2 ∼ p(xi,2|xi,1,θ(2))

xi,3 ∼ N(5,
1

εi,3
), εi,3 ∼ Gamma(2, 2)

x∗i,4 ∼ N(1 + 2xi,3
2

εi,4
), εi,4 ∼ Gamma(1, 1)

xi,4 = I(x∗i,4 > 11)

x∗i,5 ∼ N(2 + 5 ∗ I(xi,1 = 2) + I(xi,1 = 3) + xi,3,
3

εi,5
), εi,5 ∼ Gamma(4, 4)

xi,5 = j5 I(c
(5)

j5−1 < x∗i,5 < c
(5)

j5 ), j5 = 1, . . . , 4

xi,6 ∼ N(8,
5

εi,6
), εi,6 ∼ Gamma(2.5, 2.5)

xi,7 ∼ N(2 + 2xi,6 − xi,3,
5

εi,7
), εi,7 ∼ Gamma(3, 3)

x∗i,8 ∼ N(3 + 2xi,7,
1

εi,8
), εi,8 ∼ Gamma(1.5, 1.5)

xi,8 = j8 I(c
(8)

j8−1 < x∗i,8 < c
(8)

j8 ), j8 = 1, . . . , 8

xi,9 ∼ N(1 + 4 ∗ I(xi,2 = 2)− 3 ∗ I(xi,2 = 3) + 5 ∗ I(xi,2 = 4) + 2 ∗ I(xi,2 = 5) +

5xi,7,
3

εi,9
), εi,9 ∼ Gamma(6, 6)

where

p(xi,2 = j2|xi,1,θ(2)) =
exp(θ

(2)

0,j2 + θ
(2)

1,j2I(xi,1 = 2) + θ
(2)

2,j2I(xi,1 = 3))∑5
s=1 exp(θ

(2)
0,s + θ

(2)
1,sI(xi,1 = 2) + θ

(2)
2,sI(xi,1 = 3))

where j2 ∈ {1, . . . , 5} and θ
(2)
0,1 = θ

(2)
1,1 = θ

(2)
2,1 = 0 for identifiability, θ

(2)
0,2 = 1, θ

(2)
1,2 = −1, θ

(2)
2,2 =

−2, θ
(2)
0,3 = −1, θ

(2)
1,3 = 3, θ

(2)
2,3 = 1, θ

(2)
0,4 = −1, θ

(2)
1,4 = 2, θ

(2)
2,4 = 2, θ

(2)
0,5 = −1, θ

(2)
1,5 = 2, θ

(2)
2,5 = 1,

and I(·) is the indicator function. The threshold parameters c
(5)
0 = −∞, c(5)

1 = 6.962, c
(5)
2 =
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9.292, c
(5)
3 = 11.59, c

(5)
4 = ∞ and c

(8)
0 = −∞, c(8)

1 = −2, c
(8)
2 = 4, c

(8)
3 = 9, c

(8)
4 = 13, c

(8)
5 =

17, c
(8)
6 = 22, c

(8)
7 = 28, c

(8)
8 =∞.

We introduce missing values into variables x2, . . . ,x9 in the following way:

p(mi,2 = 1) = 0.3 (MCAR),

p(mi,3 = 1) =

{
exp(1− 5 ∗ I(xi,2 = 2)− 4 ∗ I(xi,2 = 3))

1 + exp(1− 5 ∗ I(xi,2 = 2)− 4 ∗ I(xi,2 = 3))

}
(1−mi,2) (MAR),

p(mi,4 = 1) =

{
exp(−5.5 + 5xi,3)

1 + exp(−5.5 + 5xi,3)

}
(1−mi,3) (MAR),

p(mi,5 = 1) =

{
exp(−5.5 + 5xi,3)

1 + exp(−5.5 + 5xi,3)

}
(1−mi,3) (MAR),

p(mi,6 = 1) = 0.3 (MCAR)

p(mi,7 = 1) =

{
exp(60− 8xi,6)

1 + exp(60− 8xi,6)

}
(1−mi,6) (MAR),

p(mi,8 = 1) = 0.3 (MCAR),

p(mi,9 = 1) =

{
exp(6− xi,7)

1 + exp(6− xi,7)

}
(1−mi,7) (MAR),

where mi,j be the missing data indicator for xi,j, where mi,j = 1 indicates xi,j is missing
and mi,j = 0 indicates xi,j is observed.

Analysis

We obtain the following estimates from an analysis of the imputed datasets:

• Estimates of the means of x6,x7,x9.

• Estimates of the proportion of units with x2 = 1, . . . , 5.

• Estimates of the regression coefficients of a linear regression from the following re-
gression models: p(x2|x1), p(x7|x6,x3), p(x9|x2,x7).

Appendix E - “P-steps” for LFRM

In this section, we present the details on deriving the full conditional distributions of
the parameters in the “P-steps” mentioned in the LFRM strategy in Chapter 5. The full
conditional distribution of θ(1) where x1 follows a multinomial distribution and Metropolis-
Hastings update for the multinomial logistic regression model have been presented in
the LFRM section in Chapter 5. Here, we will present the details on deriving the full
conditional distributions of the remaining parameters in the “P-steps”, such as θ(q) =
(β(q),ηq, λ

2
q, φq, β

(q)
0 ) for x∗q when x∗q is continuous, θ(q) = (β(q),ηq, λ

2
q, β

(q)
0 ) for x∗q when
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x∗q is a latent variable (xq is binary) and θ(q) = (β(q),ηq, λ
2
q, β

(q)
0 ,γ(q)) for x∗q when x∗q is a

latent variable (xq is ordinal).

For x∗i,q is continuous, we use the following representation for each of the sequential re-

gression model p(x∗i,q|x∗i,1, . . . , x∗i,q−1,θ
(q)):

x∗i,q = β
(q)
0 + x̃i,qβ

(q) + εi,

εi,q ∼ N(0,
1

φq
),

where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n and β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′. We then

propose the the following prior for β(q) (Park and Casella (2008)):

p(β(q)|ηq, φq) ∼ MVN(0,
1

φq
D(q)
η ), with D(q)

η = diag(η2
1,q, . . . , η

2
q−1,q),

p(η2
j,q|λ2

q) =
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)
, j = 1, . . . , q − 1,

and we consider a diffuse hyperprior on λ2
q of the form

p(λ2
q) =

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
, λ2

q > 0, r > 0, δ > 0,

which is a gamma distribution with shape and rate r and δ respectively. We also specify
the prior distributions for φq and β

(q)
0 as follows:

p(φq) ∝
1

φq
,

p(β
(q)
0 ) ∝ 1.

The joint posterior distribution of the parameters in this model is given up to a normalising
constant by:

n∏
i=1

{
p(x∗i,q|β

(q)
0 ,β(q), φq)

} q−1∏
j=1

{
p(β

(q)
j |φq, η2

j,q)p(η
2
j,q|λ2

q)
}
p(φq)p(λ

2
q)p(β

(q)
0 )

=
n∏
i=1

{√
φq
2π

exp

[
−φq

2
(x̃∗i,q − x̃i,qβ

(q))2

]}
q−1∏
j=1

{√
φq

2πη2
j,q

exp

[
− φq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
1

φq

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
,

where x̃∗i,q = x∗i,q − β
(q)
0 .
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Hence, full conditional distributions of β(q),ηq, λ
2
q, φq, β

(q)
0 can be derived in the following

way:

1. The full conditional distribution of β(q) is proportional to

n∏
i=1

{√
φq
2π

exp

[
−φq

2
(x̃∗i,q − x̃i,qβ

(q))2

]} q−1∏
j=1

{√
φq

2πη2
j,q

exp

[
− φq

2η2
j,q

(β
(q)
j )2

]}

∝ exp

{
−φq

2

[
(x̃∗q − X̃qβ

(q))′(x̃∗q − X̃qβ
(q)) + (β(q))′D(q)

η β
(q)
]}

∝ exp

{
−φq

2

[
(X̃qβ̂

(q) − X̃qβ
(q))′(X̃qβ̂

(q) − X̃qβ
(q)) + (β(q))′D(q)

η β
(q)
]}

= exp

{
−φq

2

[
(β(q) − β̂(q))′X̃′qX̃q(β

(q) − β̂(q)) + (β(q))′D(q)
η β

(q)
]}

∝ exp

{
−φq

2

[
(β(q))′(X̃′qX̃q + D(q)

η )β(q) − 2(β(q))′X̃′qX̃qβ̂
(q)
]}

,

Let Aq = (X̃′qX̃q + D
(q)
η ) and β̂(q) = (X̃′qX̃q)

−1X̃′qx̃
∗
q, then

exp

{
−φq

2

[
(β(q))′(X̃′qX̃q + D(q)

η )β(q) − 2(β(q))′X̃′qX̃qβ̂
(q)
]}

= exp

{
−φq

2

[
(β(q))′Aqβ

(q) − 2(β(q))′X̃′qX̃q(X̃
′
qX̃q)

−1X̃′qx̃
∗
q

]}
= exp

{
−φq

2

[
(β(q))′Aqβ

(q) − 2(β(q))′AqA
−1
q X̃′qx̃

∗
q

]}
∝ exp

{
−1

2

[
(β(q) − A−1

q X̃′qx̃
∗
q)
′φqAq(β

(q) − A−1
q X̃′qx̃

∗
q)
]}

⇒ β(q) ∼ MVN(β̂(q),V(q)) with

β̂(q) = A−1
q X̃′qx̃

∗
q and V(q) =

1

φq
(X̃′qX̃q + D(q)

η )−1.

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′ with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for i =

1, . . . , n. The matrix D
(q)
η is a (q − 1) × (q − 1) diagonal matrix with entries 1

η2j,q
for

j = 1, . . . , q − 1.

2. The full conditional distribution of η2
j,q, j = 1, . . . , q − 1 is proportional to

q−1∏
j=1

{√
φq

2πη2
j,q

exp

[
− φq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
.
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Let g = 1
η2j,q
⇒
∣∣∣dη2j,qdg

∣∣∣ = 1
g2

. Hence

q−1∏
j=1

{√
φq

2πη2
j,q

exp

[
− φq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}

∝
q−1∏
j=1

g
1
2 g−2 exp

{
−gφq

2
(β

(q)
j )2 −

λ2
q

2g

}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

[
gφq(β

(q)
j )2 −

λ2
q

g

]}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q(β

(q)
j )2φq

gλ2
q

(
g2 −

λ2
q

(β
(q)
j )2φq

)}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

[
g2 − (µ′q)

2
]}

, µ′q =

√
λ2
q

(β
(q)
j )2φq

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

[
(g − µ′q)2 + 2gµ′q

]}

∝
q−1∏
j=1

g−
3
2 exp

[
−1

2

λ2
q

(µ′q)
2g

(g − µ′q)2

]

⇒ g ∼
√
λ′q
2π
g−

3
2 exp

(
−
λ′q(g − µ′q)2

2(µ′q)
2g

)
, g > 0,

which is a inverse-Gaussian distribution with parameters

µ′q =

√
λ2
q

(β
(q)
j )2φq

and λ′q = λ2
q, j = 1, . . . , q − 1.

3. The full conditional distribution of λ2
q is proportional to

q−1∏
j=1

[
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)]
δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
∝

q−1∏
j=1

[
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)]
(λ2

q)
r−1 exp

(
−δλ2

q

)
=

(
λ2
q

2

)q−1

(λ2
q)
r−1 exp

[
−λ2

q

(∑q−1
j=1 η

2
j,q

2

)]
exp

(
−δλ2

q

)
∝

(
λ2
q

)(q−1)+r−1
exp

[
−λ2

q

(
q−1∑
j=1

η2
j,q

2
+ δ

)]

⇒ λ2
q ∼ Gamma

(
(q − 1) + r,

q−1∑
j=1

η2
j,q

2
+ δ

)
.
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4. The full conditional distribution of φq is proportional to

n∏
i=1

{√
φq
2π

exp

[
−φq

2
(x̃∗i,q − x̃i,qβ

(q))2

]} q−1∏
j=1

{√
φq

2η2
j,q

exp

[
− φq

2η2
j,q

(β
(q)
j )2

]}
1

φq

∝ φ−1
q φ

(n
2

)
q φ

( q−1
2

)
q exp

[
−φq

(
(x̃∗q − X̃qβ

(q))′(x̃∗q − X̃qβ
(q)) + (β(q))′D

(q)
η β(q)

2

)]

⇒ φq ∼ Gamma

(
n+ (q − 1)

2
,
(x̃∗q − X̃qβ

(q))′(x̃∗q − X̃qβ
(q)) + (β(q))′D

(q)
η β(q)

2

)
,

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′ with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for i =

1, . . . , n. The matrix D
(q)
η is a (q − 1) × (q − 1) diagonal matrix with entries 1

η2j,q
for

j = 1, . . . , q − 1.

5. The full conditional distribution of β
(q)
0 is proportional to

n∏
i=1

{√
φq
2π

exp

[
−φq

2
(x∗i,q − β

(q)
0 − x̃i,qβ

(q))2

]}

=
n∏
i=1

{√
φq
2π

exp

[
−φq

2
(x∗i,q − x̃i,qβ

(q) − β(q)
0 )2

]}

=
n∏
i=1

{√
φq
2π

exp

[
−φq

2

(
(x∗i,q − x̃i,qβ

(q))2 − 2(x∗i,q − x̃i,qβ
(q))β

(q)
0 + (β

(q)
0 )2

)]}

∝
n∏
i=1

{√
φq
2π

exp

[
−φq

2

(
(β

(q)
0 )2 − 2(x∗i,q − x̃i,qβ

(q))β
(q)
0

)]}

∝ exp

[
−φq

2

n∑
i=1

(
(β

(q)
0 )2 − 2(x∗i,q − x̃i,qβ

(q))β
(q)
0

)]

= exp

[
−φq

2

(
n∑
i=1

(β
(q)
0 )2 − 2

n∑
i=1

(x∗i,q − x̃i,qβ
(q))β

(q)
0

)]

= exp

[
−nφq

2

(
(β

(q)
0 )2 − 2β

(q)
0

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n

)]

∝ exp

−nφq
2

(
β

(q)
0 −

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n

)2


⇒ β
(q)
0 ∼ N(

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n
,
φ−1
q

n
),

where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n.
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For x∗i,q is a latent variable (xi,q is binary), we use the following representation for each of

the sequential regression model p(x∗i,q|x∗i,1, . . . , x∗i,q−1,θ
(q)):

x∗i,q = β
(q)
0 + x̃i,qβ

(q) + εi, where xi,q = I(x∗i,q > 0)

εi,q ∼ N(0, 1),

where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n and β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′. We then

propose the following prior for β(q) (Park and Casella (2008)):

p(β(q)|ηq) ∼ MVN(0,D(q)
η ), with D(q)

η = diag(η2
1,q, . . . , η

2
q−1,q),

p(η2
j,q|λ2

q) =
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)
, j = 1, . . . , q − 1,

and we consider a diffuse hyperprior on λ2
q of the form

p(λ2
q) =

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
, λ2

q > 0, r > 0, δ > 0,

which is a gamma distibution with shape and rate r and δ respectively. We also specify
the prior distributions for β

(q)
0 as follows:

p(β
(q)
0 ) ∝ 1.

The joint posterior distribution of the parameters in this model is given up to a normalising
constant by:

n∏
i=1

{
p(x∗i,q|β

(q)
0 ,β(q))

} q−1∏
j=1

{
p(β

(q)
j |η2

j,q)p(η
2
j,q|λ2

q)
}
p(λ2

q)p(β
(q)
0 )

=
n∏
i=1

{√
1

2π
exp

[
−1

2
(x̃∗i,q − x̃i,qβ

(q))2

]}
q−1∏
j=1

{√
1

2πη2
j,q

exp

[
− 1

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
1

φq

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
,

where x̃∗i,q = x∗i,q − β
(q)
0 .

Hence, full conditional distributions of β(q),ηq, λ
2
q, β

(q)
0 can be derived in the following way:

144



1. The full conditional distribution of β(q) is proportional to

n∏
i=1

{√
1

2π
exp

[
−1

2
(x̃∗i,q − x̃i,qβ

(q))2

]} q−1∏
j=1

{√
1

2πη2
j,q

exp

[
− 1

2η2
j,q

(β
(q)
j )2

]}

∝ exp

{
−1

2

[
(x̃∗q − X̃qβ

(q))′(x̃q − X̃qβ
(q)) + (β(q))′D(q)

η β
(q)
]}

∝ exp

{
−1

2

[
(X̃qβ̂

(q) − X̃qβ
(q))′(X̃qβ̂

(q) − X̃qβ
(q)) + (β(q))′D(q)

η β
(q)
]}

= exp

{
−1

2

[
(β(q) − β̂(q))′X̃′qX̃q(β

(q) − β̂(q)) + (β(q))′D(q)
η β

(q)
]}

∝ exp

{
−1

2

[
(β(q))′(X̃′qX̃q + D(q)

η )β(q) − 2(β(q))′X̃′qX̃qβ̂
(q)
]}

,

Let Aq = (X̃′qX̃q + D
(q)
η ) and β̂(q) = (X̃′qX̃q)

−1X̃′qx̃
∗
q, then

exp

{
−1

2

[
(β(q))′(X̃′qX̃q + D(q)

η )β(q) − 2(β(q))′X̃′qX̃qβ̂
(q)
]}

= exp

{
−1

2

[
(β(q))′Aqβ

(q) − 2(β(q))′X̃′qX̃q(X̃
′
qX̃q)

−1X̃′qx̃
∗
q

]}
= exp

{
−1

2

[
(β(q))′Aqβ

(q) − 2(β(q))′AqA
−1
q X̃′qx̃

∗
q

]}
∝ exp

{
−1

2

[
(β(q) − A−1

q X̃′qx̃
∗
q)
′Aq(β

(q) − A−1
q X̃′qx̃

∗
q)
]}

⇒ β(q) ∼ MVN(β̂(q),V(q)) with β̂(q) = A−1
q X̃′qx̃

∗
q and V(q) = (X̃′qX̃q + D(q)

η )−1,

(7.4)

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′, where x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n. The matrix D
(q)
η is a (q − 1) × (q − 1) diagonal matrix with entries 1

η2j,q
for

j = 1, . . . , q − 1.

2. The full conditional distribution of η2
j,q, j = 1, . . . , q − 1 is proportional to

q−1∏
j=1

{√
1

2πη2
j,q

exp

[
− 1

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
.
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Let g = 1
η2j,q
⇒
∣∣∣dη2j,qdg

∣∣∣ = 1
g2

. Hence

q−1∏
j=1

{√
1

2πη2
j,q

exp

[
− 1

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}

∝
q−1∏
j=1

g
1
2 g−2 exp

{
−g

2
(β

(q)
j )2 −

λ2
q

2g

}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

[
g(β

(q)
j )2 −

λ2
q

g

]}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q(β

(q)
j )2

gλ2
q

(
g2 −

λ2
q

(β
(q)
j )2

)}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

[
g2 − (µ′q)

2
]}

, µ′q =

√
λ2
q

(β
(q)
j )2

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

[
(g − µ′q)2 + 2gµ′q

]}

∝
q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

(g − µ′q)2

}

⇒ g ∼
√
λ′q
2π
g−

3
2 exp

{
−
λ′q(g − µ′q)2

2(µ′q)
2g

}
, g > 0, (7.5)

which is a inverse-Gaussian distribution with parameters

µ′q =

√
λ2
q

(β
(q)
j )2

and λ′q = λ2
q, j = 1, . . . , q − 1.

3. The full conditional distribution of λ2
q is proportional to

q−1∏
j=1

[
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)]
δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
∝

q−1∏
j=1

[
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)]
(λ2

q)
r−1 exp

(
−δλ2

q

)
=

(
λ2
q

2

)q−1

(λ2
q)
r−1 exp

[
−λ2

q

(∑q−1
j=1 η

2
j,q

2

)]
exp

(
−δλ2

q

)
∝

(
λ2
q

)(q−1)+r−1
exp

[
−λ2

q

(
q−1∑
j=1

η2
j,q

2
+ δ

)]

⇒ λ2
q ∼ Gamma

(
(q − 1) + r,

q−1∑
j=1

η2
j,q

2
+ δ

)
. (7.6)
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4. The full conditional distribution of β
(q)
0 is proportional to

n∏
i=1

{√
1

2π
exp

[
−1

2
(x∗i,q − β

(q)
0 − x̃i,qβ

(q))2

]}

=
n∏
i=1

{√
1

2π
exp

[
−1

2
(x∗i,q − x̃i,qβ

(q) − β(q)
0 )2

]}

=
n∏
i=1

{√
1

2π
exp

[
−1

2

(
(x∗i,q − x̃i,qβ

(q))2 − 2(x∗i,q − x̃i,qβ
(q))β

(q)
0 + (β

(q)
0 )2

)]}

∝
n∏
i=1

{√
1

2π
exp

[
−1

2

(
(β

(q)
0 )2 − 2(x∗i,q − x̃i,qβ

(q))β
(q)
0

)]}

∝ exp

[
−1

2

n∑
i=1

(
(β

(q)
0 )2 − 2(x∗i,q − x̃i,qβ

(q))β
(q)
0

)]

= exp

[
−1

2

(
n∑
i=1

(β
(q)
0 )2 − 2

n∑
i=1

(x∗i,q − x̃i,qβ
(q))β

(q)
0

)]

= exp

[
−n

2

(
(β

(q)
0 )2 − 2β

(q)
0

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n

)]

∝ exp

−n
2

(
β

(q)
0 −

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n

)2


⇒ β
(q)
0 ∼ N(

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n
,

1

n
), (7.7)

where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n.

For x∗i,q is a latent variable (xi,q is ordinal), we use the following representation for each of

the sequential regression model p(x∗i,q|x∗i,1, . . . , x∗i,q−1,θ
(q)):

x∗i,q = β
(q)
0 + x̃i,qβ

(q) + εi, where xi,q = jq if γ
(q)
jq−1 < x∗i,q < γ

(q)
jq

εi,q ∼ N(0, 1),

where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n and β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′. We then

propose the the following prior for β(q) (Park and Casella (2008)):

p(β(q)|ηq) ∼ MVN(0,D(q)
η ), with D(q)

η = diag(η2
1,q, . . . , η

2
q−1,q),

p(η2
j,q|λ2

q) =
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)
, j = 1, . . . , q − 1,
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and we consider a diffuse hyperprior on λ2
q of the form

p(λ2
q) =

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
, λ2

q > 0, r > 0, δ > 0,

which is a gamma distibution with shape and rate r and δ respectively. We also specify
the prior distributions for β

(q)
0 as follows:

p(β
(q)
0 ) ∝ 1.

and we place an improper uniform prior on γ(q) i.e.

p(γ(q)) ∝ I(γ(q) ∈ Ω(q)),

where Ω(q) =
{
γ

(q)
jq : γ

(q)
0 = −∞ < γ

(q)
1 = 0 < γ

(q)
2 < . . . < γ

(q)
Jq−1

< γ
(q)
Jq

=∞
}

.

The joint posterior distribution of the parameters in this model is given up to a normalising
constant by:

n∏
i=1

{
p(x∗i,q|β

(q)
0 ,β(q),γ(q))p(γ(q))

} q−1∏
j=1

{
p(β

(q)
j |η2

j,q)p(η
2
j,q|λ2

q)
}
p(λ2

q)p(β
(q)
0 )

=
n∏
i=1

{√
1

2π
exp

[
−1

2
(x̃∗i,q − x̃i,qβ

(q))2

][ Jq∑
jq=1

I(xi,q = jq)I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )

]}
q−1∏
j=1

{√
1

2πη2
j,q

exp

[
− 1

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
1

φq

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
,

where x̃∗i,q = x∗i,q − β
(q)
0 .

Hence, full conditional distributions of β(q),ηq, λ
2
q, β

(q)
0 ,γ(q) can be derived in the following

way:

1. The full conditional distribution of β(q) is given by Equation 7.4.

2. The full conditional distribution of η2
j,q, j = 1, . . . , q − 1 is given by Equation 7.5.

3. The full conditional distribution of λ2
q is given by Equation 7.6.

4. The full conditional distribution of β
(q)
0 is given by Equation 7.7.

5. The full conditional distribution of γ
(q)
jq for jq ∈ {1, . . . , Jq} is proportional to

n∏
i=1

[
I(xi,q = jq)I(γ

(q)
jq−1 < x∗i,q < γ

(q)
jq ) + I(xi,q = jq + 1)I(γ

(q)
jq < x∗i,q < γ

(q)
jq+1)

]
,
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which is uniformly distributed on the interval[
max

{
max

{
x∗i,q : xi,q = jq

}
, γ

(q)
jq−1

}
,min

{
min

{
x∗i,q : xi,q = jq + 1

}
, γ

(q)
jq+1

}]
,

where γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq ∈ {1, . . . , Jq}.

Appendix F - Simulation study in Section 5.2.1 of

Chapter 5

In this section we present details of the simulation study in Section 5.2.1 of Chapter 5.
We first describe how we simulated an incomplete data set, we then describe the analysis
we considered.

Data generation

We simulate xi,1, xi,2, . . . , xi,25, i = 1, . . . , 1000 in the following way:

xi,1 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.3, 0.4 and 0.3 respectively.

xi,2 simulated from a discrete distribution taking values ∈ {1, 2, 3, 4, 5}
with each probability of 0.2.

xi,3 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.2, 0.2 and 0.6 respectively.

xi,4 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.25, 0.35 and 0.4 respectively.

xi,5 ∼ p(xi,5|xi,1,θ(5))

xi,6 ∼ N(0, 1)

xi,7 ∼ N(1 + 2 ∗ I(xi,5 = 2)− I(xi,5 = 3) + I(xi,5 = 4), 4)

xi,8 ∼ N(3, 1)

xi,9 simulated from a discrete distribution taking values ∈ {1, 2}
with probabilities 0.5, and 0.5 respectively.

xi,10 simulated from a discrete distribution taking values ∈ {1, 2}
with probabilities 0.3, and 0.7 respectively.

x∗i,11 ∼ N(3− xi,7, 4),

xi,11 = j11 I(c
(11)

j11−1 < x∗i,11 < c
(11)

j11 ), j11 = 1, . . . , 3

xi,12 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.25, 0.5 and 0.25 respectively.
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xi,13 ∼ N(5, 1)

xi,14 ∼ N(1 + 2xi,13, 1)

x∗i,15 ∼ N(xi,8 + xi,13, 4),

xi,15 = I(x∗i,15 > 8)

x∗i,16 ∼ N(5 + xi,14, 9),

xi,16 = I(x∗i,16 > 16)

xi,17 simulated from a discrete distribution taking values ∈ {1, 2}
with probabilities 0.45, and 0.55 respectively.

x∗i,18 ∼ N(2 + xi,13 − xi,15, 9),

xi,18 = j18 I(c
(18)

j18−1 < x∗i,18 < c
(18)

j18 ), j18 = 1, . . . , 3

x∗i,19 ∼ N(3 + 2xi,14 − xi,16, 1),

xi,19 = j19 I(c
(19)

j19−1 < x∗i,19 < c
(19)

j19 ), j19 = 1, . . . , 5

xi,20 simulated from a discrete distribution taking values ∈ {1, 2, 3, 4}
with probabilities 0.25 each.

xi,21 ∼ N(0, 1)

xi,22 ∼ N(7, 2)

xi,23 ∼ N(4, 1)

xi,24 ∼ N(13, 3)

xi,25 ∼ N(5 + I(xi,1 = 2)− 2 ∗ I(xi,1 = 3) + xi,7 + 2xi,13, 4)

where

p(xi,5 = j5|xi,1,θ(5)) =
exp(θ

(5)

0,j5 + θ
(5)

1,j5I(xi,1 = 2) + θ
(5)

2,j5I(xi,1 = 3))∑5
s=1 exp(θ

(5)
0,s + θ

(5)
1,sI(xi,1 = 2) + θ

(5)
2,sI(xi,1 = 3))

where j5 ∈ {1, . . . , 4} and θ
(5)
0,1 = θ

(5)
1,1 = θ

(5)
2,1 = 0 for identifiability, θ

(5)
0,2 = 1, θ

(5)
1,2 = −3, θ

(5)
2,2 =

−1.5, θ
(5)
0,3 = −1, θ

(5)
1,3 = 2, θ

(5)
2,3 = 1, θ

(5)
0,4 = −0.5, θ

(5)
1,4 = 2, θ

(5)
2,4 = −2, and I(·) is the indicator

function. The threshold parameters c
(11)
0 = −∞, c(11)

1 = 0.2017, c
(11)
2 = 2.225, c

(11)
3 = ∞,

c
(18)
0 = −∞, c(18)

1 = 4.366, c
(18)
2 = 6.511, c

(18)
3 = ∞ and c

(19)
0 = −∞, c(19)

1 = 19.14, c
(19)
2 =

22.52, c
(19)
3 = 24.53, c

(19)
4 = 27.60, c

(19)
5 =∞.

We then introduce missing values into variables x5,x9,x11,x13,x15,x16,x17,x18,x25 in the
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following way:

p(mi,5 = 1) =

{
exp(f(xi,2))

1 + exp(f(xi,2))

}
(1−mi,2) (MAR), where

f(xi,2) = −1 + I(xi,2 = 2)− 4 ∗ I(xi,2 = 3)− 5 ∗ I(xi,2 = 4) + 3 ∗ I(xi,2 = 5),

p(mi,9 = 1) =

{
exp(−1− 5xi,7)

1 + exp(−1− 5xi,7)

}
(1−mi,7) (MAR),

p(mi,11 = 1) = 0.3 (MCAR),

p(mi,13 = 1) = 0.3 (MCAR),

p(mi,15 = 1) = 0.3 (MCAR),

p(mi,16 = 1) = 0.3 (MCAR),

p(mi,17 = 1) =

{
exp(−1 + 2xi,6)

1 + exp(−1 + 2xi,6)

}
(1−mi,6) (MAR),

p(mi,18 = 1) =

{
exp(2− 8xi,8)

1 + exp(2− 8xi,8)

}
(1−mi,8) (MAR),

p(mi,25 = 1) =

{
exp(1− 5 ∗ I(xi,1 = 2)− 4 ∗ I(xi,1 = 3))

1 + exp(1− 5 ∗ I(xi,1 = 2)− 4 ∗ I(xi,1 = 3))

}
(1−mi,1) (MAR),

where mi,j be the missing data indicator for xi,j, where mi,j = 1 indicates xi,j is missing
and mi,j = 0 indicates xi,j is observed.

Analysis

We obtain the following estimates from an analysis of the imputed datasets:

• Estimates of the means of x6,x13.

• Estimates of the proportion of units with x11 = 1, 2, 3 and x15 = 1

• Estimates of the regression coefficients of the linear regression model of x25 on all
other variables.

Appendix G - “P-steps” for MFRM

In this section, we present the details on deriving the full conditional distributions of
the parameters in the “P-steps” mentioned in the MFRM strategy in Chapter 5. The full
conditional distribution of θ(1) where x1 follows a multinomial distribution and Metropolis-
Hastings update for the multinomial logistic regression model have been presented in
the MFRM section in Chapter 5. Here, we will present the details on deriving the full
conditional distributions of the remaining parameters in the “P-steps”, such as θ(q) =
(β(q),ηq, λ

2
q, ψq, β

(q)
0 , τq,Φq) for x∗q when x∗q is continuous, θ(q) = (β(q),ηq, λ

2
q, ψq, β

(q)
0 ) for
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x∗q when x∗q is a latent variable (xq is binary) and θ(q) = (β(q),ηq, λ
2
q, ψq, β

(q)
0 ,γ(q)) for x∗q

when x∗q is a latent variable (xq is ordinal).

For x∗i,q is continuous, we use the following representation for each of the sequential re-

gression model p(x∗i,q|x∗i,1, . . . , x∗i,q−1,θ
(q)):

x∗i,q = β
(q)
0 + x̃i,qβ

(q) + εi,q,

εi,q ∼ N(0,
1

τqφi,q
),

where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n and β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′. We then

propose the following prior for β(q) (Park and Casella (2008)):

p(β(q)|ηq, ψq) ∼ MVN(0,
1

ψq
D(q)
η ), with D(q)

η = diag(η2
1,q, . . . , η

2
q−1,q),

p(η2
j,q|λq) =

λ2
q

2
exp

(−λ2
qη

2
j,q

2

)
, j = 1, . . . , q − 1,

and we consider a diffuse hyperprior on λ2
q of the form

p(λ2
q) =

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
, λ2

q > 0, r > 0, δ > 0,

which is a gamma distribution with shape and rate r and δ respectively. We also specify
the prior distributions for ψq, β

(q)
0 , τq,Φq as follows:

p(ψq) ∝
1

ψq
,

p(β
(q)
0 ) ∝ 1,

p(τq) ∝
1

τq
,

p(φi,q) ∼ Gamma(
ν

2
,
ν

2
), i = 1, . . . , n.

The joint posterior distribution of the parameters in this model is given up to a normalising
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constant by:

n∏
i=1

{
p(x∗i,q|β

(q)
0 ,β(q), τq, φi,q)p(φi,q)

}
q−1∏
j=1

{
p(β

(q)
j |ψq, η2

j,q)p(η
2
j,q|λ2

q)
}
p(τq)p(ψq)p(λ

2
q)p(β

(q)
0 )

=
n∏
i=1

{√
τqφi,q

2π
exp

[
−τqφi,q

2
(x̃∗i,q − x̃i,qβ

(q))2

]
1

Γ(ν
2
)
(
ν

2
)( ν

2
)φ

ν
2
−1

i,q exp

[
−νφi,q

2

]}
q−1∏
j=1

{√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
1

ψq

1

τq

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
,

where x̃∗i,q = x∗i,q − β
(q)
0 .

Hence, full conditional distributions of β(q),ηq, λ
2
q, ψq, β

(q)
0 , τq,Φq can be derived in the

following way:

1. The full conditional distribution of β(q) is proportional to

n∏
i=1

√
τqφi,q

2π
exp

[
−τqφi,q

2
(x̃∗i,q − x̃i,qβ

(q))2

] q−1∏
j=1

√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]
∝ exp

{
−1

2

[
(x̃∗q − X̃qβ

(q))′τqD
(q)
φ (x̃∗q − X̃qβ

(q)) + (β(q))′D
(q)
ψ,ηβ

(q)
]}

∝ exp

{
−1

2

[
(X̃qβ̂

(q) − X̃qβ
(q))′τqD

(q)
φ (X̃qβ̂

(q) − X̃qβ
(q)) + (β(q))′D

(q)
ψ,ηβ

(q)
]}

= exp

{
−1

2

[
(β(q) − β̂(q))′X̃′qτqD

(q)
φ X̃q(β

(q) − β̂(q)) + (β(q))′D
(q)
ψ,ηβ

(q)
]}

∝ exp

{
−1

2

[
(β(q))′(X̃′qτqD

(q)
φ X̃q + D

(q)
ψ,η)β

(q) − 2(β(q))′X̃′qτqD
(q)
φ X̃qβ̂

(q)
]}

Let Aq = (X̃′qτqD
(q)
φ X̃q + D

(q)
ψ,η) and β̂(q) = (X̃′qX̃q)

−1X̃′qx̃
∗
q, then

exp

{
−1

2

[
(β(q))′(X̃′qτqD

(q)
φ X̃q + D

(q)
ψ,η)β

(q) − 2(β(q))′X̃′qτqD
(q)
φ X̃qβ̂

(q)
]}

= exp

{
−1

2

[
(β(q))′Aqβ

(q) − 2(β(q))′X̃′qτqD
(q)
φ X̃q(X̃

′
qX̃q)

−1X̃′qx̃
∗
q

]}
= exp

{
−1

2

[
(β(q))′Aqβ

(q) − 2(β(q))′AqA
−1
q X̃′qτqD

(q)
φ x̃∗q

]}
∝ exp

{
−1

2

[
(β(q) − A−1

q X̃′qτqD
(q)
φ x̃∗q)

′Aq(β
(q) − A−1

q X̃′qτqD
(q)
φ x̃∗q)

]}
⇒ β(q) ∼ MVN(β̂(q),V(q)) with

β̂(q) = V(q)X̃′qτqD
(q)
φ x̃∗q and V(q) = (X̃′qτqD

(q)
φ X̃q + D

(q)
ψ,η)

−1.
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where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′ where x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n. The matrix D
(q)
φ is a n× n diagonal matrix with entries φi,q for i = 1, . . . , n

and D
(q)
ψ,η is a (q − 1)× (q − 1) diagonal matrix with entries ψq

η2j,q
for j = 1, . . . , q − 1.

2. The full conditional distribution of η2
j,q, j = 1, . . . , q − 1 is proportional to

q−1∏
j=1

{√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
.

Let g = 1
η2j,q
⇒
∣∣∣dη2j,qdg

∣∣∣ = 1
g2

. Hence

q−1∏
j=1

{√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}

∝
q−1∏
j=1

g
1
2 g−2 exp

{
−gψq

2
(β

(q)
j )2 −

λ2
q

2g

}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

[
gψq(β

(q)
j )2 −

λ2
q

g

]}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q(β

(q)
j )2ψq

gλ2
q

(
g2 −

λ2
q

(β
(q)
j )2ψq

)}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

[
g2 − (µ′q)

2
]}

, µ′q =

√
λ2
q

(β
(q)
j )2ψq

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

[
(g − µ′q)2 + 2gµ′q

]}

∝
q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

(g − µ′q)2

}

⇒ g ∼
√
λ′q
2π
g−

3
2 exp

{
−
λ′q(g − µ′q)2

2(µ′q)
2g

}
, g > 0,

which is a inverse-Gaussian distribution with parameters

µ′q =

√
λ2
q

(β
(q)
j )2ψq

and λ′q = λ2
q, j = 1, . . . , q − 1.
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3. The full conditional distribution of λ2
q is proportional to

q−1∏
j=1

[
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)]
δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
∝

q−1∏
j=1

[
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)]
(λ2

q)
r−1 exp

(
−δλ2

q

)
=

(
λ2
q

2

)q−1

(λ2
q)
r−1 exp

[
−λ2

q

(∑q−1
j=1 η

2
j,q

2

)]
exp

(
−δλ2

q

)
∝

(
λ2
q

)(q−1)+r−1
exp

[
−λ2

q

(
q−1∑
j=1

η2
j,q

2
+ δ

)]

⇒ λ2
q ∼ Gamma

(
(q − 1) + r,

q−1∑
j=1

η2
j,q

2
+ δ

)
.

4. The full conditional distribution of ψq is proportional to

q−1∏
j=1

{√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]}
1

ψq

∝ ψ
q−1
2

q ψ−1
q exp

[
−ψq

(
(β(q))′D

(q)
η β(q)

2

)]

⇒ ψq ∼ Gamma

(
q − 1

2
,
(β(q))′D

(q)
η β(q)

2

)
.

where D
(q)
η is a (q − 1)× (q − 1) diagonal matrix with entries 1

η2j,q
for j = 1, . . . , q − 1.
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5. The full conditional distribution of β
(q)
0 is proportional to

n∏
i=1

{√
τqφi,q

2π
exp

[
−τqφi,q

2
(x∗i,q − β

(q)
0 − x̃i,qβ

(q))2

]}

∝
n∏
i=1

{
exp

[
−τqφi,q

2
(x∗i,q − x̃i,qβ

(q) − β(q)
0 )2

]}
=

n∏
i=1

{
exp

[
−τqφi,q

2

(
(x∗i,q − x̃i,qβ

(q))2 − 2(x∗i,q − x̃i,qβ
(q))β

(q)
0 + (β

(q)
0 )2

)]}
∝

n∏
i=1

{
exp

[
−τqφi,q

2

(
(β

(q)
0 )2 − 2(x∗i,q − x̃i,qβ

(q))β
(q)
0

)]}

= exp

[
−τq

2

n∑
i=1

(
φi,q(β

(q)
0 )2 − 2φi,q(x

∗
i,q − x̃i,qβ

(q))β
(q)
0

)]

= exp

[
−τq

2

(
n∑
i=1

φi,q(β
(q)
0 )2 − 2

n∑
i=1

φi,q(x
∗
i,q − x̃i,qβ

(q))β
(q)
0

)]

= exp

[
−τq

2

(
(β

(q)
0 )2

n∑
i=1

φi,q − 2β
(q)
0

n∑
i=1

φi,q(x
∗
i,q − x̃i,qβ

(q))

)]

= exp

[
−τq

∑n
i=1 φi,q
2

(
(β

(q)
0 )2 − 2β

(q)
0

∑n
i=1 φi,q(x

∗
i,q − x̃i,qβ

(q))∑n
i=1 φi,q

)]

∝ exp

−τq∑n
i=1 φi,q
2

(
β

(q)
0 −

∑n
i=1 φi,q(x

∗
i,q − x̃i,qβ

(q))∑n
i=1 φi,q

)2


⇒ β
(q)
0 ∼ N(

∑n
i=1 φi,q(x

∗
i,q − x̃i,qβ

(q))∑n
i=1 φi,q

, (τq

n∑
i=1

φi,q)
−1),

where
x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n.

6. The full conditional distribution of τq is proportional to

n∏
i=1

{√
τqφi,q

2π
exp

[
−τqφi,q

2
(x̃∗i,q − x̃i,qβ

(q))2

]}
1

τq

∝ τ
n
2
q τ
−1
q

n∏
i=1

exp

[
−τqφi,q

2
(x̃∗i,q − x̃i,qβ

(q))2

]

= τ
n
2
−1

q exp

[
−τq

2

n∑
i=1

φi,q(x̃
∗
i,q − x̃i,qβ

(q))2

]
= τ

n
2
−1

q exp
{
−τq

2

[
(x̃∗q − X̃qβ

(q))′D
(q)
φ (x̃∗q − X̃qβ

(q))
]}

⇒ τq ∼ Gamma

(
n

2
,
(x̃∗q − X̃qβ

(q))′D
(q)
φ (x̃∗q − X̃qβ

(q))

2

)
,
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where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′ with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for i =

1, . . . , n. The matrix D
(q)
φ is a n× n diagonal matrix with entries φi,q for i = 1, . . . , n.

7. The full conditional distribution of φi,q is proportional to

n∏
i=1

{√
τqφi,q

2π
exp

[
−τqφi,q

2
(x̃∗i,q − x̃i,qβ

(q))2

]
1

Γ(ν
2
)
(
ν

2
)( ν

2
)φ

ν
2
−1

i,q exp

[
−νφi,q

2

]}

∝
n∏
i=1

φ
1
2
i,qφ

ν
2
−1

i,q exp
[
−φi,q

(τq
2

(x̃∗i,q − x̃i,qβ
(q))2 +

ν

2

)]
⇒ φi,q ∼ Gamma

(
ν + 1

2
,
τq
2

(x̃∗i,q − x̃i,qβ
(q))2 +

ν

2

)
,

where x̃∗i,q = x∗i,q − β
(q)
0 and

x̃i,q = (I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x
∗
i,k+1, . . . , x

∗
i,q−1) for

i = 1, . . . , n.

For x∗i,q is a latent variable (xi,q is binary), we use the following representation for each of

the sequential regression model p(x∗i,q|x∗i,1, . . . , x∗i,q−1,θ
(q)):

x∗i,q = β
(q)
0 + x̃i,qβ

(q) + εi,q, where xi,q = I(x∗i,q > 0)

εi,q ∼ N(0, 1),

where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n and β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′. We then

propose the following priors for β(q) (Park and Casella (2008)):

p(β(q)|ηq, ψq) ∼ MVN(0,
1

ψq
D(q)
η ), with D(q)

η = diag(η2
1,q, . . . , η

2
q−1,q),

p(η2
j,q|λq) =

λ2
q

2
exp

(−λ2
qη

2
j,q

2

)
, j = 1, . . . , q − 1,

and we consider a diffuse hyperprior on λ2
q of the form

p(λ2
q) =

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
, λ2

q > 0, r > 0, δ > 0,

which is a gamma distribution with shape and rate r and δ respectively. We also specify
the prior distributions for ψq and β

(q)
0 as follows:

p(ψq) ∝
1

ψq
,

p(β
(q)
0 ) ∝ 1.
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The joint posterior distribution of the parameters in this model is given up to a normalising
constant by:

n∏
i=1

{
p(x∗i,q|β

(q)
0 ,β(q))

} q−1∏
j=1

{
p(β

(q)
j |ψq, η2

j,q)p(η
2
j,q|λ2

q)
}
p(ψq)p(λ

2
q)p(β

(q)
0 )

=
n∏
i=1

{√
1

2π
exp

[
−1

2
(x̃∗i,q − x̃i,qβ

(q))2

]}
q−1∏
j=1

{√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
1

ψq

1

τq

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
,

where x̃∗i,q = x∗i,q − β
(q)
0 .

Hence, full conditional distributions of β(q),ηq, λ
2
q, ψq, β

(q)
0 can be derived in the following

way:

1. The full conditional distribution of β(q) is proportional to

n∏
i=1

√
1

2π
exp

[
−1

2
(x̃∗i,q − x̃i,qβ

(q))2

] q−1∏
j=1

√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]
∝ exp

{
−1

2

[
(x̃∗q − X̃qβ

(q))′(x̃∗q − X̃qβ
(q)) + (β(q))′D

(q)
ψ,ηβ

(q)
]}

∝ exp

{
−1

2

[
(X̃qβ̂

(q) − X̃qβ
(q))′(X̃qβ̂

(q) − X̃qβ
(q)) + (β(q))′D

(q)
ψ,ηβ

(q)
]}

= exp

{
−1

2

[
(β(q) − β̂(q))′X̃′qX̃q(β

(q) − β̂(q)) + (β(q))′D
(q)
ψ,ηβ

(q)
]}

∝ exp

{
−1

2

[
(β(q))′(X̃′qX̃q + D

(q)
ψ,η)β

(q) − 2(β(q))′X̃′qX̃qβ̂
(q)
]}

,
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Let Aq = (X̃′qX̃q + D
(q)
ψ,η) and β̂(q) = (X̃′qX̃q)

−1X̃′qx̃
∗
q, then

exp

{
−1

2

[
(β(q))′(X̃′qX̃q + D

(q)
ψ,η)β

(q) − 2(β(q))′X̃′qX̃qβ̂
(q)
]}

= exp

{
−1

2

[
(β(q))′Aqβ

(q) − 2(β(q))′X̃′qX̃q(X̃
′
qX̃q)

−1X̃′qx̃
∗
q

]}
= exp

{
−1

2

[
(β(q))′Aqβ

(q) − 2(β(q))′AqA
−1
q X̃′qx̃

∗
q

]}
∝ exp

{
−1

2

[
(β(q) − A−1

q X̃′qx̃
∗
q)
′Aq(β

(q) − A−1
q X̃′qx̃

∗
q)
]}

⇒ β(q) ∼ N(β̂(q),V(q)) with

β̂(q) = V(q)X̃′qx̃
∗
q and V(q) = (X̃′qX̃q + D

(q)
ψ,η)

−1, (7.8)

where x̃∗q = (x̃∗1,q, . . . , x̃
∗
n,q)
′ with x̃∗i,q = x∗i,q − β

(q)
0 and X̃q = (x̃1,q, . . . , x̃n,q)

′, where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1) for i =

1, . . . , n. The matrix D
(q)
φ is a n× n diagonal matrix with entries φi,q for i = 1, . . . , n and

D
(q)
ψ,η is a (q − 1)× (q − 1) diagonal matrix with entries ψq

η2j,q
for j = 1, . . . , q − 1.

2. The full conditional distribution of η2
j,q, j = 1, . . . , q − 1 is proportional to

q−1∏
j=1

{√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
.
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Let g = 1
η2j,q
⇒
∣∣∣dη2j,qdg

∣∣∣ = 1
g2

. Hence

q−1∏
j=1

{√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}

∝
q−1∏
j=1

g
1
2 g−2 exp

{
−gψq

2
(β

(q)
j )2 −

λ2
q

2g

}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

[
gψq(β

(q)
j )2 −

λ2
q

g

]}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q(β

(q)
j )2ψq

gλ2
q

(
g2 −

λ2
q

(β
(q)
j )2ψq

)}

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

[
g2 − (µ′q)

2
]}

, µ′q =

√
λ2
q

(β
(q)
j )2ψq

=

q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

[
(g − µ′q)2 + 2gµ′q

]}

∝
q−1∏
j=1

g−
3
2 exp

{
−1

2

λ2
q

(µ′q)
2g

(g − µ′q)2

}

⇒ g ∼
√
λ′q
2π
g−

3
2 exp

{
−
λ′q(g − µ′q)2

2(µ′q)
2g

}
, g > 0, (7.9)

which is a inverse-Gaussian distribution with parameters

µ′q =

√
λ2
q

(β
(q)
j )2ψq

and λ′q = λ2
q, j = 1, . . . , q − 1.

3. The full conditional distribution of λ2
q is proportional to

q−1∏
j=1

[
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)]
δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
∝

q−1∏
j=1

[
λ2
q

2
exp

(−λ2
qη

2
j,q

2

)]
(λ2

q)
r−1 exp

(
−δλ2

q

)
=

(
λ2
q

2

)q−1

(λ2
q)
r−1 exp

[
−λ2

q

(∑q−1
j=1 η

2
j,q

2

)]
exp

(
−δλ2

q

)
∝

(
λ2
q

)(q−1)+r−1
exp

[
−λ2

q

(
q−1∑
j=1

η2
j,q

2
+ δ

)]

⇒ λ2
q ∼ Gamma

(
(q − 1) + r,

q−1∑
j=1

η2
j,q

2
+ δ

)
. (7.10)
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4. The full conditional distribution of ψq is proportional to

q−1∏
j=1

{√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]}
1

ψq

∝ ψ
q−1
2

q ψ−1
q exp

[
−ψq

(
(β(q))′D

(q)
η β(q)

2

)]

⇒ ψq ∼ Gamma

(
q − 1

2
,
(β(q))′D

(q)
η β(q)

2

)
. (7.11)

where D
(q)
η is a (q − 1)× (q − 1) diagonal matrix with entries 1

η2j,q
for j = 1, . . . , q − 1.

5. The full conditional distribution of β
(q)
0 is proportional to

n∏
i=1

{√
1

2π
exp

[
−1

2
(x∗i,q − β

(q)
0 − x̃i,qβ

(q))2

]}

=
n∏
i=1

{√
1

2π
exp

[
−1

2
(x∗i,q − x̃i,qβ

(q) − β(q)
0 )2

]}

=
n∏
i=1

{√
1

2π
exp

[
−1

2

(
(x∗i,q − x̃i,qβ

(q))2 − 2(x∗i,q − x̃i,qβ
(q))β

(q)
0 + (β

(q)
0 )2

)]}

∝
n∏
i=1

{√
1

2π
exp

[
−1

2

(
(β

(q)
0 )2 − 2(x∗i,q − x̃i,qβ

(q))β
(q)
0

)]}

∝ exp

[
−1

2

n∑
i=1

(
(β

(q)
0 )2 − 2(x∗i,q − x̃i,qβ

(q))β
(q)
0

)]

= exp

[
−1

2

(
n∑
i=1

(β
(q)
0 )2 − 2

n∑
i=1

(x∗i,q − x̃i,qβ
(q))β

(q)
0

)]

= exp

[
−n

2

(
(β

(q)
0 )2 − 2β

(q)
0

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n

)]

∝ exp

−n
2

(
β

(q)
0 −

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n

)2


⇒ β
(q)
0 ∼ N(

∑n
i=1(x∗i,q − x̃i,qβ

(q))

n
,

1

n
). (7.12)

For x∗i,q is a latent variable (xi,q is ordinal), we use the following representation for each of

the sequential regression model p(x∗i,q|x∗i,1, . . . , x∗i,q−1,θ
(q)):

x∗i,q = β
(q)
0 + x̃i,qβ

(q) + εi,q, where xi,q = jq if γ
(q)
jq−1 < x∗i,q < γ

(q)
jq ,

εi,q ∼ N(0, 1),
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where x̃i,q =
(I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x

∗
i,k+1, . . . , x

∗
i,q−1), for

i = 1, . . . , n and β(q) = (β
(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk
k , β

(q)
k+1, . . . , β

(q)
q−1)′. We then

propose the following prior for β(q) (Park and Casella (2008)):

p(β(q)|ηq, ψq) ∼ MVN(0,
1

ψq
D(q)
η ), with D(q)

η = diag(η2
1,q, . . . , η

2
q−1,q),

p(η2
j,q|λq) =

λ2
q

2
exp

(−λ2
qη

2
j,q

2

)
, j = 1, . . . , q − 1,

and we consider a diffuse hyperprior on λ2
q of the form

p(λ2
q) =

δr

Γ(r)
(λ2

q)
r−1 exp

(
−δλ2

q

)
, λ2

q > 0, r > 0, δ > 0,

which is a gamma distribution with shape and rate r and δ respectively. We also specify
the prior distributions for ψq, β

(q)
0 as follows:

p(ψq) ∝
1

ψq
,

p(β
(q)
0 ) ∝ 1,

and we place an improper uniform prior on γ(q) =
{
γ

(q)
jq : jq ∈ {1, . . . , Jq}

}
i.e.

p(γ(q)) ∝ I(γ(q) ∈ Ω(q)),

where Ω(q) =
{
γ

(q)
jq : γ

(q)
0 = −∞ < γ

(q)
1 = 0 < γ

(q)
2 < . . . < γ

(q)
Jq−1

< γ
(q)
Jq

=∞
}

.

The joint posterior distribution of the parameters in this model is given up to a normalising
constant by:

n∏
i=1

{
p(x∗i,q|β

(q)
0 ,β(q),γ(q))p(γ(q))

} q−1∏
j=1

{
p(β

(q)
j |ψq, η2

j,q)p(η
2
j,q|λ2

q)
}
p(ψq)p(λ

2
q)p(β

(q)
0 )

=
n∏
i=1

{√
1

2π
exp

[
−1

2
(x̃∗i,q − x̃i,qβ

(q))2

][ Jq∑
jq=1

I(xi,q = jq)I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )

]}
q−1∏
j=1

{√
ψq

2πη2
j,q

exp

[
− ψq

2η2
j,q

(β
(q)
j )2

]
λ2
q

2
exp

[−λ2
qη

2
j,q

2

]}
1

ψq

1

τq

δr

Γ(r)
(λ2

q)
r−1 exp

[
−δλ2

q

]
,

where x̃∗i,q = x∗i,q − β
(q)
0 .

Hence, full conditional distributions of β(q),ηq, λ
2
q, ψq, β

(q)
0 ,γ(q) can be derived in the fol-

lowing way:

1. The full conditional distribution of β(q) is given by Equation 7.8.
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2. The full conditional distribution of η2
j,q, j = 1, . . . , q − 1 is given by Equation 7.9.

3. The full conditional distribution of λ2
q is given by Equation 7.10.

4. The full conditional distribution of ψq is given by Equation 7.11.

5. The full conditional distribution of β
(q)
0 is given by Equation 7.12.

6. The full conditional distribution of γ
(q)
jq for jq ∈ {1, . . . , Jq} is proportional to

n∏
i=1

[
I(xi,q = jq)I(γ

(q)
jq−1 < x∗i,q < γ

(q)
jq ) + I(xi,q = jq + 1)I(γ

(q)
jq < x∗i,q < γ

(q)
jq+1)

]
,

which is uniformly distributed on the interval[
max

{
max

{
x∗i,q : xi,q = jq

}
, γ

(q)
jq−1

}
,min

{
min

{
x∗i,q : xi,q = jq + 1

}
, γ

(q)
jq+1

}]
,

where γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq ∈ {1, . . . , Jq}.

Appendix H - Simulation study in Section 5.3.1 of

Chapter 5

In this section we present details of the simulation study in Section 5.3.1 of Chapter 5.
We first describe how we simulate an incomplete data set, we then describe the analyses
we considered.
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Data generation

We simulate xi,1, xi,2, . . . , xi,25, i = 1, . . . , 1000 in the following way:

xi,1 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.3, 0.4 and 0.3 respectively.

xi,2 simulated from a discrete distribution taking values ∈ {1, 2, 3, 4, 5}
with each probability of 0.2.

xi,3 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.2, 0.2 and 0.6 respectively.

xi,4 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.25, 0.35 and 0.4 respectively.

xi,5 ∼ p(xi,5|xi,1,θ(5)),

xi,6 ∼ N(0,
1

εi,6
), εi,6 ∼ Gamma(2, 2)

xi,7 ∼ N(1 + 2 ∗ I(xi,5 = 2)− I(xi,5 = 3) + I(xi,5 = 4),
2

εi,7
), εi,7 ∼ Gamma(4, 4)

xi,8 ∼ N(3, 1)

xi,9 simulated from a discrete distribution taking values ∈ {1, 2}
with probabilities 0.5, and 0.5 respectively.

xi,10 simulated from a discrete distribution taking values ∈ {1, 2}
with probabilities 0.3, and 0.7 respectively.

x∗i,11 ∼ N(3− xi,7,
2

εi,11

), εi,11 ∼ Gamma(1, 1)

xi,11 = j11 I(c
(11)

j11−1 < x∗i,11 < c
(11)

j11 ), j11 = 1, . . . , 3

xi,12 simulated from a discrete distribution taking values ∈ {1, 2, 3}
with probabilities 0.25, 0.5 and 0.25 respectively.
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xi,13 ∼ N(5,
1

εi,13

), εi,13 ∼ Gamma(3, 3)

xi,14 ∼ N(1 + 2xi,13, 1)

x∗i,15 ∼ N(xi,8 + xi,13,
2

εi,15

), εi,15 ∼ Gamma(1.5, 1.5)

xi,15 = I(x∗i,15 > 8)

x∗i,16 ∼ N(5 + xi,14, 9),

xi,16 = I(x∗i,16 > 16)

xi,17 simulated from a discrete distribution taking values ∈ {1, 2}
with probabilities 0.45, and 0.55 respectively.

x∗i,18 ∼ N(2 + xi,13 − xi,15,
3

εi,18

), εi,18 ∼ Gamma(5, 5)

xi,18 = j18 I(c
(18)

j18−1 < x∗i,18 < c
(18)

j18 ), j18 = 1, . . . , 3

x∗i,19 ∼ N(3 + 2xi,14 − xi,16, 1),

xi,19 = j19 I(c
(19)

j19−1 < x∗i,19 < c
(19)

j19 ), j19 = 1, . . . , 5

xi,20 simulated from a discrete distribution taking values ∈ {1, 2, 3, 4}
with probabilities 0.25 each.

xi,21 ∼ N(0, 1)

xi,22 ∼ N(7, 2)

xi,23 ∼ N(4, 1)

xi,24 ∼ N(13, 3)

xi,25 ∼ N(5 + I(xi,1 = 2)− 2 ∗ I(xi,1 = 3) + xi,7 + 2xi,13,
2

εi,25

)

εi,25 ∼ Gamma(3.5, 3.5)

where

p(xi,5 = j5|xi,1,θ(5)) =
exp(θ

(5)

0,j5 + θ
(5)

1,j5I(xi,1 = 2) + θ
(5)

2,j5I(xi,1 = 3))∑5
s=1 exp(θ

(5)
0,s + θ

(5)
1,sI(xi,1 = 2) + θ

(5)
2,sI(xi,1 = 3))

where j2 ∈ {1, . . . , 4} and θ
(5)
0,1 = θ

(5)
1,1 = θ

(5)
2,1 = 0 for identifiability, θ

(5)
0,2 = 1, θ

(5)
1,2 = −3, θ

(5)
2,2 =

−1.5, θ
(5)
0,3 = −1, θ

(5)
1,3 = 2, θ

(5)
2,3 = 1, θ

(5)
0,4 = −0.5, θ

(5)
1,4 = 2, θ

(5)
2,4 = −2, and I(·) is the indicator

function. The threshold parameters c
(11)
0 = −∞, c(11)

1 = 0.2017, c
(11)
2 = 2.225, c

(11)
3 = ∞,

c
(18)
0 = −∞, c(18)

1 = 4.366, c
(18)
2 = 6.511, c

(18)
3 = ∞ and c

(19)
0 = −∞, c(19)

1 = 19.14, c
(19)
2 =

22.52, c
(19)
3 = 24.53, c

(19)
4 = 27.60, c

(19)
5 =∞.

We then introduce missing values into variables x5,x9,x11,x13,x15,x16,x17,x18,x25 in the

165



following way:

p(mi,5 = 1) =

{
exp(f(xi,2))

1 + exp(f(xi,2))

}
(1−mi,2) (MAR), where

f(xi,2) = −1 + I(xi,2 = 2)− 4 ∗ I(xi,2 = 3)− 5 ∗ I(xi,2 = 4) + 3 ∗ I(xi,2 = 5),

p(mi,9 = 1) =

{
exp(−1− 5xi,7)

1 + exp(−1− 5xi,7)

}
(1−mi,7) (MAR),

p(mi,11 = 1) = 0.3 (MCAR),

p(mi,13 = 1) = 0.3 (MCAR),

p(mi,15 = 1) = 0.3 (MCAR),

p(mi,16 = 1) = 0.3 (MCAR),

p(mi,17 = 1) =

{
exp(−1 + 2xi,6)

1 + exp(−1 + 2xi,6)

}
(1−mi,6) (MAR),

p(mi,18 = 1) =

{
exp(2− 8xi,8)

1 + exp(2− 8xi,8)

}
(1−mi,8) (MAR),

p(mi,25 = 1) =

{
exp(1− 5 ∗ I(xi,1 = 2)− 4 ∗ I(xi,1 = 3))

1 + exp(1− 5 ∗ I(xi,1 = 2)− 4 ∗ I(xi,1 = 3))

}
(1−mi,1) (MAR),

where mi,j be the missing data indicator for xi,j, where mi,j = 1 indicates xi,j is missing
and mi,j = 0 indicates xi,j is observed.

Analysis

We obtain the following estimates from an analysis of the imputed datasets:

• Estimates of the means of x6,x13.

• Estimates of the proportion of units with x11 = 1, . . . , 3, x15 = 1

• Estimates of the regression coefficients of the linear regression model of x25 on all
other variables.

Appendix I - Density plots of social security, tax and

child support payment from the CPS data

In this section, we present the density plots of the continuous variables (social security,
tax and child support payment) from the CPS data in Chapter 6 which show spikes at
zero. Figure 7.9, Figure 7.10 and Figure 7.11 show the density plots of social security, tax
and child support payment from the CPS data respectively.
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Figure 7.9: Density plot of social security payment for households in the CPS data.
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Figure 7.10: Density plot of tax payment for households in the CPS data.
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Figure 7.11: Density plot of child support payment in the CPS data.

Appendix J - Estimands considered for simulation study

analysis in Chapter 6

In the section we provide details on the estimands considered in the simulation study in
Chapter 6. We have selected the following estimands:

• Estimates of the means of x5,x5 ∗ I(x5 > 0).

• Estimates of the proportion of units with x2 = 1, . . . , 5

• Estimates of the regression coefficients of a linear regression from the following re-
gression models: p(x2|x1), p(x5 ∗ I(x5 > 0)|x1 ∗ I(x5 > 0),x3 ∗ I(x5 > 0)).
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