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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

Social Sciences

Doctor of Philosophy

ADJUSTING FOR NONRESPONSE IN THE ANALYSIS AND ESTIMATION OF
SAMPLE SURVEY DATA FOR CLUSTER DESIGNS

by Nuanpan Nangsue

Nonresponse in sample surveys has been increasing over the years. This thesis covers
that issue in two main parts. The first part is concerned with how to use observed data
to make inference about regression coefficients in a linear regression model of cluster-
level variables when some of the response variable data is missing. A naive approach
estimates the regression coefficients without considering nonresponse. We propose new
methods for estimating coefficients which incorporate information on nonresponse at
the cluster level. We also extend Heckman estimators to our clustered model. The
Workplace Employment Relations Survey (WERS) 2004 data and data from a prepared
simulation study are used to compare the new methods with the naive approach. In
the second part the generalized regression estimator (GREG) for two-stage sampling
will be considered. We propose new optimum GREG estimators for stratified two-stage
sampling and a simulation study is used in order to assess the performance of the new

estimators.
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Chapter 1

Introduction

1.1 Cluster Sampling in Sample Surveys

A unifying theme of this thesis will be cluster sampling. This is one of the sampling
techniques that statisticians use to select sample survey data for the benefit of reduc-
ing costs. In this sampling scheme, the entire population is divided into clusters and
a random sample of clusters is selected. We can collect all observations in the selected
clusters or sample only some of the elements in the sample set of data (two-stage sam-
pling). This is a useful method that does not require a sampling frame, which is a list of
the members of a population, but does need a complete list of clusters of the population

instead.

There are usually two different types of uses for survey data: descriptive and analytic.
The descriptive use is aimed at making inferences about the whole populations, e.g. to
estimate finite population totals and population means. The analytic use is aimed at
studying the associations between variables of interest, e.g. regression analysis. Re-
garding the analytic purpose, the units of analysis may be the clusters or the elements
within the clusters or they may include both. For example, if we are interested in finding
the association between the level of job satisfaction of employees at workplace level and
workplace innovations we would use the workplaces (clusters) as the units of analysis.
We will cover both purposes, descriptive and analytic in this thesis. The analytic use
will be covered in chapters 3 to 5 and the descriptive use will be considered in chapter
6.

Multilevel modelling will also be considered as it seeks to combine different units of anal-
ysis at different levels. Usually multilevel models are applied to hierarchical or clustered

structure data that has more than one level. At each level multilevel modelling of data
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will allow for residual components. At a lower level, the individual level, are the units of
analysis that can be nested within aggregate units at a higher level. For example, where
the employee is the individual level he might be nested within workplaces which would
be considered a higher level. This kind of data usually involves analysis using multilevel

modelling.

1.2 Nonresponse in Surveys

Both estimation, for description and analysis, using survey data needs to take account
of nonresponse. There are three types of nonresponse in sample surveys: unit non-
response, item nonresponse and under-coverage. Unit nonresponse occurs when some
respondents choose not to, or are unable to, take part in the study. Item nonresponse
occurs when some respondents cannot answer or deny answering particular questions
i.e., participants do not know how to answer or accidentally skip or refuse to answer
some questions. Under-coverage occurs when some members of the population are not

represented in the sample (Groves et al. (2009)).

Complex survey designs are used in large scale surveys to collect data and these methods
include clustering and stratification designs, where stratification is the sampling scheme
where the entire population is divided into homogeneous subgroups called strata before
sampling units in each stratum. We normally analyse survey data under the complex
survey design in order to do further analysis, e.g. inference to the entire population
using the various statistical methodology. Unfortunately, nonresponse often occurs dur-
ing the process of collecting survey data, which obviously leads to the problem and the

problems arising from having missing data.

In surveys with cluster sampling it is possible for nonresponse to occur at either the clus-
ter level or the individual level. For example, in surveys of employees within workplaces
nonresponse can occur at a cluster level process or it could be raised at an individual
level process. In this thesis we will consider the situation where nonresponse occurs at

an individual level only.

Researchers use numerous statistical techniques that have been proposed for analysing
survey data from both basic and complex approaches. The basic methods used to anal-
yse survey data are frequency distributions and descriptive statistics. Further than
that, complex statistical approaches are applied in survey research such as regression
analysis and multilevel modelling. Chambers and Skinner (2003) noted the variation in

generalizations of the regression analysis of survey micro data, citing generalised linear
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modelling, event history analysis and multi-level modelling as three different forms of

analysis of the data.

Both sample survey and census always have problems of nonresponse which usually af-
fect results of statistical analysis. In this thesis we consider nonresponse in a sample
survey which impact on regression analysis and multilevel modelling for cluster data.

Consequently it is essential to look at the reasons for why the data is missing.

Groves et al. (2002) state that nonresponse is of increasing concern due to decreasing
response rates in surveys. Response rates are the percentage of people who respond to
the survey, with one minus response rate being called the nonresponse rate. The quality
of surveys is usually considered from the response rate (e.g. Bethlehem (2009), Groves
et al. (2009)). Higher response rates improve the confidence that the survey results are
representative of the target population. This is very important in any attempt to deal

with nonresponse in surveys with complex sample designs.

The easiest way to handle missing data is to exclude missing data from the data set
and continue using the standard statistical techniques to analyse as usual. In this case
it is free from missing values. This is known as complete case analysis or listwise or
pairwise deletion. However, there are some drawbacks for this method. For example,
the estimator may be biased if the missing values are not missing completely at random
(MCAR) which will be discussed later in Section 1.4.

For this reason we have to deal with missing data in more appropriate ways. There are
two standard methods of compensating for nonresponse: weighting methods are used
to deal with unit nonresponse and under-coverage and imputation methods are used to
deal with item nonresponse. For the weighting method we can use the inverse of the
probability of missingness as a weight to respondents. On the other hand, imputation
methods are methods that substitute these missing values with possible estimated val-
ues from the recorded responses. Both weighting and imputation methods are used to

correct the bias. More details will be shown in Chapter 2.

Missing data also impacts on statistical analysis depending on the missing data pattern
and the missing data mechanism. The missing data pattern explains whether values are
observed or missing. The missing data mechanism is concerned with the relationship

between the reasons why data is missing and the values of variables.
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It is helpful to understand the missing data pattern and missing data mechanism in or-
der to determine the suitable approach to use for statistical analysis and may also help
in finding a solution for the problems that arise from the missing data. Our analysis
involves unit nonresponse which requires an assumption of the missing data mechanism.
This Chapter provides general ideas about missing data in surveys in order to under-

stand the nature of nonresponse.

1.3 Survey Estimation

Sample survey data usually has problems of nonresponse that can lead to a biased esti-
mator. Survey weighting is one of the statistical techniques that we often use to correct
the bias brought by nonresponse and to improve the efficiency of the estimators for unit
nonresponse. There are numerous ways to construct the survey weights. An important
way to do this is to use an inverse probability weighting which is a weighting reciprocal
to a response probability that has been estimated under a model. (Skinner and Darrigo
(2011)).

The Horvitz-Thompson estimator is one of the weighted estimators used for estimating
a population total or a population mean. The Horvitz-Thompson estimator is usually
used for any probability sampling plan e.g. simple random sampling, stratified sampling
and it is also used for accounting for nonresponse. The inverse of the known sampling

probability which is drawn from the target population is used for observation weighting.

Auxiliary information can also be used to improve the precision of the estimator, e.g.
estimation of the population totals or population mean while the Horvitz-Thompson
estimator does not consider the auxiliary information into the estimation steps. The
generalized regression (GREG) estimator is one of the methods that uses auxiliary in-
formation to improve the precision of the estimations of population totals or population
means in survey sampling and it is a special type of calibration estimator which will be

discussed in Chapter 6.

Another survey estimation that corrects for sample selection bias is the Heckman model
(Heckman (1976), Heckman (1979)). The Heckman model, sometimes called the sample
selection model, is a method for estimating regression coefficients that allow for bias
selection. The dependent variable in the Heckman model is only observed for a portion

of the data and the remaining is unobserved.
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1.4 Missing Data Mechanisms

The easiest way for analysing missing data is to ignore unmeasured data and to analyse
using the complete set of data. However, this may lead to biased estimators. There
are some options to cope with the analysis of incomplete data. In statistical software,
listwise and pairwise deletions are the methods for handing missing data by deleting
any case with missing data before analysis. To understand these options, we need to
understand the reasons why data is missing through missing data mechanism, (refer Lit-
tle and Rubin (2002) and Groves et al. (2002)). Missing data mechanisms are classified
into three categories depending on randomness or non-randomness of missing data. The
first one is missing completely at random (MCAR). The data are MCAR if missingness
does not depend on observed values and missing values. For example, if we consider
the job satisfaction of employees and workplace innovations, the chance to have a miss-
ing value on job satisfaction does not depend on the actual value of innovation. The
probability of response is equal on all categories of innovations. This is a very strong as-

sumption, and usually does not hold true in practice when using the complete set of data.

The second mechanism which has a less restrictive assumption is called missing at ran-
dom (MAR). This occurs if the missingnesses is related to the observed data but not on
the missing values. Both listwise and pairwise deletion assumes that the missing data
mechanism is MCAR. Therefore, if the missing data are MAR, analyzing by these meth-
ods may lead to biased estimators. According to the previous example, the chance to
have a missing value on job satisfaction may depend on the observed value of innovation
but not on the missing value of job satisfaction. In other words within categories of
innovation, the probability to respond on job satisfaction is equal but maybe different
accross categories of innovation. Analyses of complete cases will bias estimates if MAR.
Missing data is called ignorable, if the data are MCAR or MAR

The last mechanism is not missing at random (NMAR). The mechanism is called NMAR,
if the missingnesses is related to the missing data itself. Therefore, following the previ-
ous example the chance to have a missing value on job satisfaction may depend on the
observed value of innovation and also depend on the missing value of job satisfaction.
The response probabilities vary both between and within the categories on innovation.
When missing data are NMAR, it is very difficult to handle and may lead to severe
biased estimates. Missing data are also called non-ignorable, if the data is NMAR.
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1.5 Outline of Thesis

The remainder of this thesis is divided into two main parts. As we mentioned earlier,
we will cover both descriptive and analytic uses of survey data. The analytic use of sur-
vey data will be presented across chapters 3 to 5 and the descriptive use of survey data

will be presented in chapter 6 where it is quite different from the other parts of the thesis.

In Chapter 2, we review the literature on approaches to compensate for nonresponse.
We also provide an overview of nonresponse in sample surveys. For example, imputation
and weighting methods to compensate for nonresponse and also types of nonresponse

are described. Finally, the clustered data in survey sampling is discussed.

In Chapter 3, the model of interest is introduced, where assumptions of MAR and NMAR
mechanisms are considered. We discuss the estimation of a regression coefficient (3) in
a regression model under a naive approach and introduce new estimators. The bias
and variance for both estimators are discussed. We also consider a Heckman estimator.
Furthermore, we show that the new methods we propose can be extended to two -stage

cluster sampling.

In Chapter 4, we look at the performance of the proposed estimators and Heckman es-
timators through a simulation study and discuss a model for the simulation study. The
simulation results are shown to support the theory. Moreover, we discuss further theory

to explain the simulation results.

In Chapter 5, we test our approach on real data. We choose the Workplace Employ-
ment Relations Survey (WERS) data where a two-stage cluster sampling design is used
where there is also the problem of employee nonresponse in the workplace level. We also
discuss the study of Bryson et al. (2009). The proposed analysis is discussed and finally
the results of analysis for both the regression model at individual level and at cluster

level are presented.

In Chapter 6, we propose the optimum GREG estimators for stratified two-stage cluster
sampling. First of all, we review literature that relate to the GREG estimators. Next
we discuss the GREG estimators at single stage and two stage respectively. Finally, we

look at the performance of the proposed estimators by simulation study.

In the final chapter, Chapter 7, we will consider the full value of our proposed alterna-

tive estimator, our developed Heckman estimators and our new GREG estimator leading
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onto a consideration of possible future works.






Chapter 2

Review of Literature on Analysis

of Missing Data

2.1 Introduction

In Chapter 1, we discussed cluster sampling in sample surveys, nonresponse in surveys,
survey estimation and described nonresponse mechanisms in sample surveys. In this
Chapter, we will review the literature surrounding the methods used for compensating
for nonresponse; weighting and imputation. We will describe the literature surrounding

survey analysis that deals with missing data in clustered data.

As noted in Chapter 1, missing data is a common problem in survey data. Numerous
methods have been developed in order to deal with incomplete survey data; weighting
methods are used to compensate for unit nonresponse and for under-coverage while im-

putation methods are used mainly to compensate for item nonresponse.

2.2 Imputation

Imputation consists of replacing missing data values with plausible estimated values. For
single imputation each missing value is replaced with a single estimated value. There are
several single imputation techniques used to account for missing data including mean

imputation, regression imputation and hot deck imputation.
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Mean imputation replaces the missing value by the mean of the existing values of the
same field in a data set typically within nonresponse classes. Using the regression im-
putation method we replace the missing values in a different way with predicted values
based on the regression model applied on observed elements (Kalton and Kasprzyk
(1982); Little and Rubin (2002); Durrant (2005); Heeringa et al. (2010)).

There are some papers concerning mean and regression imputation. Haziza and Rao
(2006) proposed a new approach to contest linear regression imputation for estimating
population totals. This new method is assumes an ignorable response mechanism that
does not require a model on the variable of interest. They showed that along with the
imputed values the estimator of the population totals is also approximately unbiased
and show that the variance estimators of the population totals are approximately unbi-
ased following Fay (1991). Their simulation results show that their proposed methods
perform better than the naive approach in terms of both bias and mean square error but
nevertheless, their simulation study to assess their variance estimators performance is
limited with a high regression coefficient of determination appearing in the study model

and also, worse still, their research is limited to a single imputation class only.

Hot-deck imputation which replaces missing data with donor information from a respon-
dent who carries similar characteristics as the recipient is another approach for single
imputation. A donor can be selected randomly from within an imputation class or from
a similarly observed value in a suitable record (Kalton and Kasprzyk (1982); Little and
Rubin (2002); Durrant (2005)). Hot-deck imputations are also useful techniques for ex-
trapolating multivariate missing data, as it is common to have incomplete sets of data
in many variables where multivariate imputations are needed. In this case, one donor
is used for all missing values. Andridge and Little (2010) show different formats of
hot deck imputation methods and also provide a detailed review of hot deck properties
showing methods to create the donor pool, considering the weights in sample survey for
the selection of the donor and also they describe hot deck imputations for multivari-
ate missing data. The variance estimators used to validate hot deck imputation with
a detailed description of each are considered and applied to real data. They also gave
their views about problems they found with using hot-deck imputation and it might be

advantageous for future investigation to address these issues.

Other papers on multivariate imputation are described in Van Buuren et al. (2006).
Van Buuren et al. (2006) studies the issue that occurs using the fully conditional speci-
fication in the Gibbs sample for imputation for nonresponse in multivariate data. The
trouble in theory for this method is that it might not converge under inconsistent con-

ditions. Van Buuren et al. (2006) investigated this problem of non convergence under
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various missing data mechanisms, e.g. MAR, MCAR for both compatible and incom-
patible models. The results show that multiple imputation still performs well with
incompatible models and it provides an unbiased estimator. A limitation of this re-
search on imputation models is that it only explored MAR models and consequently it

might be interesting to apply to other models.

Single imputation has some advantages over multivariate imputation in that it allows the
use of standard complete data methods in the analysis and also has the ability to incor-
porate the data collector’s knowledge. However, the major problem of single imputation
is that it does not take into account variance structures and multiple imputation (MI)
does. Multiple imputation includes more than one set of missing values in a calcula-
tion. Rubin (1987) proposed multiple imputations for missing data and since then there
has been much work on multiple imputation. Yuan (2000) reviews multiple imputation
methods and also develops SAS procedures, PROC MI and PROC MIANALYZE for
multivariate missing values. Nonetheless, Reiter et al. (2006) point out that standard
software packages do not take into account complex survey designs and therefore this
can lead to bias in multiple imputation data. They showed in simulation study that bias
can occur in multiple imputation when the researchers ignore complex survey design,
e.g. stratified and cluster samples. Two methods which account for the sampling de-
sign of the models for imputation are recommended: dummy variables and hierarchical
models have been used where both the clustering effects and the stratification effects
are accounted for by including random effects and fixed effects respectively. The real
data is used to study the difference between imputed data that takes into account de-
sign variables while ignoring the design variables. While this study provides valuable
results to show bias exists when ignoring complex survey designs in multiple imputation
regarding the simulation study and real data, it is also interesting to see how that bias

occurs and it should be examined in future research.

It is misleading to calculate the variance of imputed data using standard variance for-
mula as it may lead to underestimation of the variance and gives incorrect precision in
measurement. Sarndal and Lundstrém (2005) claim that some statisticians treat the
imputed data the same as observed data in order to benefit from the variance estima-
tion. However, this leads to two problems in the estimation of variance which are a
biased estimator for the sampling variance and no capacity to account for the additional
component of variance due to nonresponse. Previously, Rao (1996) reviewed papers on
jackknife variance estimation for a full set of data with no missing values and for a
set of data with imputed missing values by a single imputation for item nonresponse
under both stratified simple random sampling and stratified multistage sampling. The
linearized forms of the jackknife variance estimators are investigated. These can be used

by adjusting existing computer software without adding extra code. However, his study
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is limited to single imputation. Later Berger and Rao (2006) proposed an adjusted
jackknife estimator for variance estimation in the case of imputed data under unequal
probability sampling without replacement and with non negligible sampling fractions.
Three imputation methods are considered; mean, ratio and random imputation. A sim-
ulation study is used to compare the proposed method with the naive jackknife variance
estimator. It shows that the proposed estimator performs better than the naive one in
terms of relative bias, relative root mean square error and confidence interval empirical
coverage. Their study is limited to single imputation class with uniform response and
even though they extended to non-uniform response they still only tested with a single

imputation class.

Moreover, Shao and Steel (1999) proposed a new method of variance decomposition
for estimating the population totals of the Horvitz-Thomson estimators in two cases
using sample surveys where imputation techniques have been utilised upon areas of
nonresponse and where there are non-negligible sampling fractions. They showed that
their new method can be used to derive variance estimators for both a design-based
or a model-assisted approach even where some imputation methods, e.g. deterministic
and/or random imputation methods have been used. The variance estimators derived
from the new method also hold the properties of being asymptotically unbiased and
consistent. They discovered difficulty in using the model-assisted approach over the
design-based approach when certain factors are present in the construction of the sur-
vey. Later Shao and Wang (2002) examined both bias and variance for the regression
imputation method. They also proposed a joint regression imputation method that is an
unbiased estimator for marginal totals, second moments and correlation coefficients. A
jackknife variance estimation method which takes into account the imputation method
is proposed to produce asymptotically unbiased and consistent variance in estimation.
The simulation results show that the proposed method performs well in terms of unbi-

ased point estimators and at the estimation of variance.

Brick et al. (2005) compared three methods; the model-assisted, the adjusted jackknife
and the multiple imputation methods for variance estimations of the population total
under hot deck imputation using a simulation study. They considered both full popula-
tion and domain estimation under their study where missing variables data is imputed
by hot deck imputation under a single-stage stratified sampling design that assumes
that the missing at random assumption for hot deck cells of both unbiased estimator
and item response are violated. The simulation results show that all variance estima-
tors under hot deck imputation give unbiased estimators for full population but not for
domains. Their simulation study however is limited to a single-stage stratified sampling

design and also they did not compare the different variance estimations in theory with
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a mathematical proof.

2.3 Weighting

Weighting methods are used in sample survey data using design weights to scale sample
units. It is also used for addressing unit nonresponse in missing data. The weighting
adjustment for missing data is a method that allocates a nonresponse weight to re-
spondents based on the inverse of the probability of missingness. This method should
decrease nonresponse bias. Although the pros of using weights in survey estimates is
to reduce bias from nonresponse, there are also some cons in weighting. It may lead to
increased variance in the estimation and complications in analysis due to unrecognised
weights in statistical packages which might instead treat them as a frequency weight of
the same value (Brick and Kalton (1996)). There are a variety of methods for weight-
ing adjustment for missing data such as inverse probability weighting, adjustment cells
weighting and poststratification. Under poststratification and adjustment cell weighting,
the weighting classes should be homogenous with respect to the probability to respond
in order to reduce nonresponse bias but result in less of an increase in the variance

compared to inverse probability weighting .

Adjustment cells weighting is one of the weighting methods that estimates the non-
response probability from sample data, and also reduces nonresponse bias. There are
two methods to create the adjustment cells or subclasses. The first one depends on
respondents and non-respondents variables in the survey. The second one depends on
external information from a census or larger survey. We assume that respondents and
non-respondents are classified into C adjustment cells depending on covariate informa-
tion. Little and Vartivarian (2003) claim that “the respondents in cell C are weighted by
the inverse of the response rate in cell C”. Groves et al. (2002) state that this method is
called response propensity stratification which is a method that is effective in reducing

nonresponse bias with respect to the background variables.

The poststratification method is a weighting method that needs one or more qualitative
auxiliary variables and a population total. It is one of many methods that use the ben-
efit of auxiliary information. This method assigns the different adjustment weights to
all units in the same poststratum. It will give unbiased estimators at full response but
may be biased if nonresponse occurs (Groves et al. (2002)). Holt and Smith (1979) state
that poststratification or stratification after selection is a robust method for estimation,
and also unrestricted by assumptions. They point out that if the stratification prior to

selection depends on a large number of secondary variables, then post stratification is
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useful for multi-purpose surveys. However, their discussion is limited to a single stage

design.

The difference between inverse probability weights and post stratification weights is
stated by Groves et al. (2002). He points out that the difference between these two
methods is that post stratification weights come from collected data but that inverse
probability weights have already been informed upon survey design. However, inverse
probability may cause severe problems. For example, if nonresponse data is often ignored
the method will be inefficient. Moreover, the variance estimation problem for estimated
weights is covered in explicit formulas only for simple estimators which are not well
established for complex survey designs. There is also another approach to calculate
the weights e.g. calibration approach which uses the benefit of the auxiliary variables
(Sarndal and Lundstrém (2005)).

Some papers use both weighting and imputation to address missing data problems. Brick
and Kalton (1996) explore several weighting and imputation techniques and also the ad-
vantages and disadvantages of them. Durrant and Skinner (2006) study imputation and
weighting methods looking at ways to remove bias that results from measurement errors
made estimating of a distribution function, for example fractional imputation, nearest
neighbour imputation, predictive mean matching and propensity score weighting. The
results show that nearest neighbour performs better in term of bias when compared to

other imputation methods.

As we mentioned earlier, nonresponse weighting aims to decrease nonresponse bias.
However, it usually causes a problem of increasing the variance. Little and Vartivarian
(2005) argue that nonresponse weighting can decrease the variance the same as bias
reduction in the case that there is an association between a covariate of a weighting ad-
justment and the survey outcome. Nevertheless, their study is limited to simple random
sampling it is therefore more interesting to see how it will perform in complex survey

designs.

2.4 Survey Data Analysis with Missing Data

Little (1982) reviewed many papers related to a modelling approach for handling missing
data in survey sampling for both unit and item nonresponse e.g. the methods described
in the papers use superpopulation models for a full set of data and also missing data
in sample surveys, maximum likelihood methods that do not account for the response

mechanism where cases with missing data are removed and analysis continues as though
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the data was complete. These analyses are called complete-case analysis or listwise
deletion. Little and Rubin (2002) pointed out that there are both pros and cons of
complete-case analysis. On the positive side, standard statistical techniques can be used
with the complete set of data directly. In addition, it allows for the plausibility of com-
parable univariate statistics. However, complete-case analysis might lead to problems
of bias and also loss of efficiency of variance due to throwing away some of the data.
There are also some application papers covering problems of bias evident in missing data

occurring by complete-case analysis.

Available-case analysis contains every single case of variable of interests. The drawback
of this method exists within the pattern of incomplete data that leads to variation of

the sample base from one variable to another variable (Little and Rubin (2002)).

Imputed values, as we noted in Section 2.2, are the estimated data values that fill in miss-
ing values in order to get a complete set of data for standard statistical analysis, thereby
avoiding some of the problems that arise in complete-case and available-case analysis.
There are papers on using imputed values for analysis in statistical applications, e.g.
regression analysis and multivariate analysis. For example, Little (1992) reviewed re-
gression analysis when independent variables are missing. He compared six methods;
complete-case analysis(CC), available-case analysis(AC), least squares on imputed data,
maximum likelihood (ML), Bayesian methods and multiple imputation. He pointed out
that CC and AC analysis are easy but disadvantaged by the limitations within their
method. ML performs well for large samples, but Bayesian methods perform better in
small samples. He also discussed software for these methods. This research has limita-
tions in the response mechanism tested using MAR model data but was not tested with

other types.

Also, Skinner and Rao (2002) studied the bias found in both standard estimators for the
hot-deck method and bias-adjusted estimators. They evaluated the variance for both of
them and also jackknife variance estimators for each of them were produced to estimate
what missing data might be in a bivariate dataset with imputed data using hot deck
imputation. The limitation of their research is that simple random sampling is consid-
ered only and not even that for the more complex survey design and also their study

considered data with no more than two variables.

Previously, Gelman et al. (1998) proposed a new approach for analysis of a cross-sectional
survey with missing data and also a single survey with different questions or different
sampling methods applied for each stratum or cluster. Multiple imputations are applied

in this new method. However, a hierarchical regression model, allowing for covariate at
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both individual and survey level, is used for a single survey. Furthermore, the diagnostic
checking for the fit of the imputed model under the difference between imputed data

and non imputed data is improved.

Alternatively, another approach to deal with missing data is a likelihood method. This
method provides unbiased estimators under both MCAR and MAR where complete-case
and available case analysis both sometimes have problems, especially when the missing
data mechanism is not MCAR. The well known method for the likelihood based ap-
proach is called the Expectation Maximization (EM) algorithm and is a method to find
maximum likelihood estimates from partial data. (Little and Rubin (2002)).

There are a variety of methods of providing weighting for missing data. Skinner and
Coker (1996) extend the methods for dealing with missing covariate values in a linear re-
gression model by using a maximum likelihood estimator under a complex survey design.
Also a proposed jackknife variance estimator is applied to estimate the standard errors.
Their method and application to real data are restricted in that it only works with
a single missing covariate. Moreover, Pfeffermann et al. (1998) presented alternative
methods for weighting the estimation in a multilevel model with two-levels. The recip-
rocals of the selection probabilities at each stage of sampling are used to deal with the
bias that occurs during this situation. Also scaled weights and variance estimation have

been proposed. The simulation results show that their proposed estimators perform well.

2.5 Clustered Data

As we mention earlier in Chapter 1, this thesis focuses on clustered data where the
population is naturally divided into groups (clusters) by similarity of characteristics. If
a sample frame of the population is not available, we can draw a random sample of
clusters and collect observations from the units in the selected clusters. A single -stage
sample design is where observations are collected for all the units in the selected clus-
ter. A two-stage sample design is where observations are collected for only a random
sample of units within the selected clusters. In clustered sample designs and a design-
based approach for analysis, we can deal with correlations within clusters through the
intra-cluster correlation defined approximately as the proportion of the between variance
of cluster means to the overall variance. In clustered sample designs, the intra-cluster
correlation generally causes variance estimates to increase compared to simple random
sample designs. In a model-based approach for analysis, clustered sample designs are
usually analysed by treating the clusters as random effects through a multilevel model

and the ICC (Intra-class Correlation Coefficient) is the percentage of between-group



Chapter 2 Review of Literature on Analysis of Missing Data 17

variability out of the total variance.

In this section we discuss some literature on nonresponse at the cluster level. Haziza
and Rao (2001) proposed the use of nested error linear regression models as imputation
models in order to take account of the intra-cluster correlation in cluster sampling. The
inferential and variance estimation for population total under imputation for missing
data on the model-based approach have been proposed following Fay (1991) where Fay
(1991) proposed a new method to reverse the sampling and response order which was
developed by Shao and Steel (1999). Later Shao (2007) proposed a method to estimate
the population mean for nonresponse data under cluster sampling when the missing
data is imputed or reweighted. The new estimator is shown to be unbiased under these

two situations. Nevertheless, they only considered a single imputation cell in their study.

In the same year, Yuan and Little (2007) suggested new estimators to estimate the
population mean when unit nonresponse occurs under the model for two-stage clus-
ter sampling and defined the clusters as random effects. The term, cluster-specific
non-ignorable (CSNI) nonresponse has been proposed to represent the type of missing
mechanism where the response rate that is varying across cluster data is non-ignorable.
They showed that under CSNI, the standard random effect model estimator (RE) for
estimating the population mean is biased. Therefore, two adjusted methods have been
proposed for bias correction. Both a simulation study and real data are used to compare
the performance of the new methods and the naive estimator. Although their study is
limited to two-stage cluster sampling design it can be applied to more complex design
such as multistage cluster sampling using hierarchies in multilevel models. Nevertheless,
their simulation study is limited to an equal selection probability design. Later, Yuan
and Little (2008) proposed an extension of Yuan and Little (2007) but focused on item
nonresponse instead of unit nonresponse where missing data depends on covariates and
underlying cluster characteristics or depends on covariates and missing outcomes. To see
how the new methods perform they considered both a simulation study and applied it
to real data. The limitations of this research are that the assumptions of the model are
usually violated by multiple imputation and also their assumptions about fully observed

covariates are usually wrong in practice.

West (2009) studied various simulation results for the estimator of a population mean
for an alternative weighting class adjustment in complex survey designs, e.g. stratified
cluster sampling, by developing the previous work of Little and Vartivarian (2003) and
Little and Vartivarian (2005). A simulation study is used to investigate five different
parameters, e.g. the association between an auxiliary variable for respondents and non-
respondents with the variable of interest in sampling survey. The simulation results

showed that the weighted response rates in weighted classes are useful in the case of
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small response rates and in the case that there is an association between the auxiliary
variable and the stratum variable for both the variable of interest in the survey and the

response propensity in stratified cluster sampling.



Chapter 3

Estimation of Cluster-level
Regression Model under

Nonresponse within Clusters

3.1 Introduction

In chapter 2, we reviewed the literature which is related to nonresponse in sample sur-
veys especially focusing on nonresponse at the cluster level. In this chapter we discuss
nonresponse at the cluster level when some of the response variables data are missing in
order to select appropriate regression coefficients in a linear regression model of cluster-
level variables and also to extend the Heckman estimators to the clustered model. First,
we introduce notation and framework in section 3.2. Second, the model of interest is
explained in section 3.3, which focuses on how to use observed data to make inference
on coefficients of the model when y data is missing. Next, in section 3.4 we introduce
the model for nonresponse, where MAR and NMAR assumptions are also described.
Furthermore, we discuss estimation of 8 for the naive approach and its bias and vari-
ance are shown in section 3.5. The naive estimator has bias under the NMAR model,
we therefore introduce an alternative estimators in section 3.6. Bias and variance for
the alternative estimator are also discussed. A Heckman estimator is also developed in
section 3.7. Finally, the method we have presented in this chapter is also extended to

two-stage cluster sampling.

19
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3.2 Notation and Framework

Let N denote the number of clusters in the population, and m; the number of ele-

ments/units in cluster ¢ = 1,2,..., N.

Let y;; be the value of the study variable y for the 4% population element (j =
1,2,...,m;) for the i cluster (i =1,2,..., N).

Let g; be the population mean among all units in cluster i (i =1,2,...,N).
m;
gi=m" Y yy L (i=12,...,N). (3.1)
j=1

Let x; be the cluster-level vector of auxiliary variables in cluster ¢ (no nonresponse error)
/
T; = (1, Ljly ey xzk) .

Sampling

A simple random sample of n clusters is selected, and all m; elements(i = 1,2,..., N)

are sampled in each sampled cluster.

Nonresponse
Let
1 if y;; is observed
R;; = Y
0 if y;; is missing
>ty Rijyis
g = YT (=1,2,...,N 3.2
m;
> Ry=r ,(i=12,...,N) (3.3)
j=1

where r; is number of respondents in cluster 7.

We are now going to make the assumption for number of respondents in cluster ¢ in order
to look at new methods for analysis which incorporate information on nonresponse in
the model.



Chapter 3 Estimation of Cluster-level Regression Model under Nonresponse within

Clusters 21
Assumption:

> 1 ,(i=1,2,...,N) (3.4)
Data

The observed data count of mean among respondents in cluster i is denoted as g, (i =

1,2,...,N).
The response rate in cluster i is denoted as p;, (i = 1,2,...,N),
T
;= —. 3.5
Pi= (3.5)

3.3 Model of Interest

The model of interest is a cluster level linear regression model of g; on x;, given by the
equation
yi =B+ €. (3.6)

We shall generally assume E(y;|z;) = z;/ 3, so that E(e;|x;) = 0,var(e|z;) = o2.

We shall also consider an underlying multilevel model as follows.

Multilevel model
Yij given x;
vij = i’ B+ €1 + €245, (3.7)

assuming F(ey;|z;) = 0 and E(egij|zi) = 0,var(es|z;) = a%y, var(ezjla;) = O'%Vy.
If both (3.6) and (3.7) hold then ¢; = €1; + €2;, where éy; = Z;”:ZI €2ij /M.

Problem:
The problem is how to use observed data to make inference about 5 when some of the

y data is missing.

3.4 Model for Nonresponse

In this section, we introduce a model for the response outcome R;;. It is motivated by

Heckman (1976), who introduced a variable w;; to control the response mechanism so
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that R;; = 1 if u;; > 0 and R;; = 0, otherwise(Cameron and Trivedi (2005)).

We extend the multilevel model in (3.7) to a bivariate joint model for y;; and u;;, given by

g , 2
YOy [P Ty Tl G — 12 ), (3.8)
Ujj Mg OWuy 1
where the matrix
U%,Vy OWyu
OWuy 1

is constant across clusters.

The py; and pi,; are assumed to be random effects, where

. / 2
Hyil o N, leﬁ OBy TRl (i=1,2,...,my). (3.9)
Mo Ti 7y OBuy OBy

Hence, one can write analogously to (3.7)

vij = xi' B+ €ij, (3.10)

where €;; ~ N(0,02),02 = O'%Vy + U%;y,

€ij = €15 + €2i5, €15 ~ N(0, a%y), €2i5 ~ N(0, O’%Vy), and €y;, €245 are independent.

Similarly, one can write

U5 = x/’y + Nij (3.11)

where 7, ~ N(0,07),00 =1+ 0%,

Nij = N1i + M2ij» i ~ N(0,0%,),m2i5 ~ N(0,1), and 714,72 are independent.

We have

€ij 0 o2 o,
[ ] e ”0] L -2 ” where 0oy = owyu + 0By (312)
"713 €n n

MAR Assumption and NMAR Model

R;; are MAR if they are conditionally independent of y;; given ;. Since R;; is deter-
mined by u;;, nonresponse is MAR if u;; and y;; are conditionally independent given ;.

From the model (3.10) and (3.11), this occurs if ¢;; and 7;; are conditionally independent
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given z;. From (3.12) it follows that o, = 0 if nonresponse is MAR.

Let
6 = El(§ri — Jnrd)| R, (=1,2,....n), (3.13)
where R; = (Ri1, ...y Rim,), Uri is defined in (3.2) and yp,; is the mean of y among non-
respondents,
m;
Tnri = Z Yij/(mi — 73). (3.14)
Jj=r+1

We have, provided assumption (3.4) holds,

E(30 Rijyij | Rity Rim,)
A
>t Ry

E(Gri|Rit, - Rim;) =

S E(Rijyij | Ritye Rim,)
Z;nzll Ry

S0t Rij E(yij | Ritye Rim,)
>o2 Rij '

If nonresponse is MAR then E(y;j|Ri1, ....Rim,;) = xi' (treating x; as fixed here).

Hence, under MAR

Similarly,

E(Gnri| Rits o Rim;) = B0y yig/(mi — 13) | Rty oo Rim, )

(3.16)
_ E;n:iTHE(yij\Rﬂw--Rimi)
m;—r; :
If nonresponse is MAR then,
E(yij|Rit, - Rim;) = E(yij) 3.17
- (3.17)
= X; 5
Substitute (3.17) into equation (3.16),
_ B
E(Ynri|Rit, - Rim,) = Z%%f
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=z/B provided r; < m;. (3.18)

From (3.15) and (3.18), we have

E(gm - gnri|Ri17 Rzm) =0.

Hence, §; = 0 for all i under MAR.

If any of the §; are non-zero then the model is NMAR.

For simplicity, we consider a particular NMAR model when
5 =06, 5#0. (3.19)
3.5 Estimation of 3: Naive Approach

In this section we introduce a naive estimator of 5 in section 3.5.1, we discuss its bias
focusing on MAR and NMAR model. Then, the variance of the estimator is explained

in section 3.5.2.

From equation (3.6), this model can be written in matrix form for sampled clusters as

follows.
Y =XB+e, (3.20)
where
371 1 11 o Ik 1
) 1 291 ... x9p X1
Y = X = ' = (i=1,2,...,n)
gn 1 Tnl Tnk Tik
Bo €1
B1 €2
B=1_1,and e=| .
616 €n

Nalve approach replaces i; by ¥, and Y by
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Yr1
Y, — 177?2 7
Yrn
then the estimator of 8 from the naive approach is
By = (X'X) XY, (3.21)

B; is the best linear unbiased estimator(BLUE). Note assumption (3.4) is required to

construct G,.

3.5.1 Bias of Naive Estimator

We now discuss the bias of the naive estimator under both MAR assumption and NMAR
model in section 3.4. We begin with the bias under MAR model before focusing on the

bias under NMAR model.

The bias of B; is obtained as follows.
E(B,) = E[(X'X) 7' X'Y]

= (X'X)"'X'E[Y,].

From (3.15), under MAR
B(Y;) = XB.

Substitute (3.23) into equation (3.22),
E(B,) = (X'X) "' X'E[Y]
= (X'X)"'X'XB
= B

So naive estimator is unbiased under MAR.

Now consider bias under the NMAR model (3.19)

(3.22)

(3.23)

(3.24)



Chapter 3 Estimation of Cluster-level Regression Model under Nonresponse within
26 Clusters

Let us express g; in terms of response rate (p;),

Yi = mi—lzgnzilyij ,(i=1,2,...,N)
my (S vig + 1 Vi)

m; (i + (M = 73) Y

i + T i

Yi = Pilri + (1 - pi)gnria (325)
where ¥,; is defined in (3.2) and @y is defined in (3.14), and p; is defined in (3.5).

To find E(y|R;) in (3.25),

E@|R) = Elwigri + (1= pi)gnri) | Ri]

- o (3.26)
= piE(Gri|Ri) + (1 — pi) E(Unri| Ri).
From (3.13), under the NMAR model
b = E[(gm - gnm)u%;]
= Eri|Ri) — E(§nri| Rs)-
Hence,

Substitute (3.27) into equation (3.26),

E|R) = piE(GnlR) + (1 — pi)[E@ri|Ri) — ]
= piE(Yri|Ri) + E(Gri|Ri) — pi E(Gri| Ri) — (1 — ;)
= E(yrilRi) — (1 —pi)o.

Therefore,
E@u|R) = B@|R:)+ (1 - pi)o.
Now
E[E(Gi|R)] = E(5:) = =/'B.
Hence

E(§r) —x/8 = E[E(§|R;)] — i
= [1-E(p)]d.
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So we may view [1 — E(p;)]0 as the bias of g; as an estimator of ;3 under the NMAR

model and view (1 — p;)d as the approximate bias,

E (i Ri) =~ 2B + (1 — py)d. (3.28)

3.5.2 Variance of Naive Estimator

In order to look at the efficiency of the estimator, we now consider the variance of the

estimator under the model of interest.

From (3.10) we may write,

Uri = xi' B+ €15 + €.
Thus,
V(gri) = V(e + €)

2 2 :
OBy t Oy /M-

For simplicity, suppose m; = m. Then,

VY, = diag[cr%ijo%Vy/m]

3.29
(O’%y + m_lo‘%vy)f. (3.29)

Therefore, the variance of the naive estimator is as below.

V() = VIX'X)'X'Y,]
= (X'X)"' X'V(Y)XX'x)! (3.30)
= (U%y—#—m_la%,y)(X’X)_l

For simplicity, consider k=1, so that

Bn: [/?017

1n
Tiach o _Figea
(X'xX)™" = nzi:i(nm“;?) nZizll(ril—l‘l)
— =1

| n2ini(wa—z1)? i (@i —21)?

[ X 7 i ma
— nSz, nS3,
N X ra 1 ’

Cal
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Therefore,
V(Bin) = (0B, +m ™ oy, )(S7,) " (3.31)

3.6 Alternative Estimator

It was shown in section 3.5.1 that the naive approach is biased under NMAR assump-
tion. In this section we therefore look at an alternative estimator. Its bias is shown in

section 3.6.1 before moving on to variance of the estimator in section 3.6.2.

From (3.28), we can regress yr; on z; and (1 — p;) and obtain valid estimates of coeffi-
cients of x; under assumption (3.4). We can express the estimator of 8 using ordinary

least squares method following equation (3.23), Let

1
1 211 ...z (1—p1) -
il
1 =x ..o 1-—
W= . .21 . Qk ( P , Wi = (i:1727"'7n)
1 zp1 oo e (L—pp)
(1 —pi)|
and o
Bo
B
’y = . e IB
a . 5 .
Bk
- 5 -
The alternative estimator Ea of (3 is derived from
Yo = (W'W)"'W'Y, (3.32)
Yo = [?a] i (3.33)

3.6.1 Bias of Alternative Estimator

Following the discussion in section 3.5.1, we now consider the bias of the alternative

estimator.
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The bias of 4, is obtained as follows.

E(Ya) = E[(W'W)"'W'Y]

/ (3.34)
(W'W)~'W'E[Y,].
To find E[Y,], consider E(,s|R;) from equation (3.28),
E(ulR) = i/Ba+(1—pi)6
= W
Hence,
E(Y;) = Wra. (3.35)
Substitute (3.35) into equation (3.34),
E(fa) = (W'W) 'W'E[Y,]
(W'W)~ W' Wy,
= (3.36)

and so

E(Ba) = 5.

Therefore, the alternative estimator is unbiased under the NMAR model in (3.19).

3.6.2 Variance of Alternative Estimator

Now, consider the special case k = 1 and m; = m.

Suppose z; is corrected for its mean, so that a model of interest (section 3.3) is

Ur = Bo + B1Zi11 + 0zia, (3.37)

where ;1 = zj1 — Z1, 252 = 1 — p; and By = Bo + S1Z1.

The W-matrix for centred x;; values is denoted by W,

1 znn (1—p1) 3
— 1 Zo1 (1—p2) S ~ e TN —1T
w=| ' , and 7, in (3.32) become  §, = |B1a| = (WW)" W'Y,
: ga

1 5nl (1_pn)
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We now consider the variance of alternative estimator under the NMAR model.
V@) = VIWW) W'Y,

= (WW)" "WV, W W W) (3.38)
= (0Byy +m Lowy,)WW)™L  using (3.30).

Consider (W'W),
n 2ic1 Til D i1 Ti2

<W/W) = Z?:l Ti1 Z?:l %121 Z?:l T1Ti2

n . noo~o n 2
dlic1Tiz Do TaTi Y iq Ti
Therefore, if ;1 is centred, W/W is shown as below.
n
0 Zi:l X452

(WIW) = 0 S ThH i Tawe

dim1Tie D TaTi )i %22

(W’ W) has been partitioned into sub-matrices as follows.

(W/W) _ [/lel ?12] 7

War Waa

where

i n 0 — TL_ €T;
Wi = 0 o~ | Wiz = Zn:l_i >,
0 > Th Y oieq Ti1Tio

Wo = {Z?:l Tig Yoy 52’1931‘2] ; and Wy = {Z?ﬂ :BZQQ] .
We can find (W’W}‘l using partitioned matrices as shown below.
G177 -1 o177 -1 17 -1 | 11
_W22 W21W11.2 W22 W21W11.2W12W22 + W22

W)~! = [ Wit ~ Wi s Wi Ws,! ] 7

where Wll'z = Wll — Wmﬁilﬁ//gl.
To find WILQ,



Chapter 3 Estimation of Cluster-level Regression Model under Nonresponse within

Clusters 31
774 774 1 —1
Wite = Wi — WiaWaey Woy
n
_ n 0 o Zi:l Tq2 1 n ) noo~o
o Yo T 21T Yim1Tiz Doy Ti1%iz
=1 L =1 1 )
i (0D} xz‘22) (0D} xz‘Z)(Z%l Ti1%42)
r n n
n 0 D1 T D T
0 X7 (21 ) (2 v (5, Foe)?
2 n 2
L 1 T i=1 %32
r (Z" L i2)? iy %2)(2” L))
n — no2 no .2
=1 "2 =1 "2
i mi) (o Farwiz) S 72 _ i Tixin)?
L i x?Q 1%in = i 5’5122
Consider,
—~ ~ 2
_ (i wi2)? n o~ (Cr Fawmig)? n no o~
[Wiio| = {n— zn ) DT — 22?21.@122 — O o) (O Tinxan)
n 2 O xiz)z] [ iy giwny}
= T F R R I et = Sk
ZZ 1 Zl[ POV 3’122 i 3%22
Therefore,
n 2 (i 151'1901‘2)2 (i i) 307 Tarzio)
1 I > =T
-1 _ -
W11.2 = ?:1 5121 n — (Zalng)z _ 034 rlz Figw0)?
=1 %5 =172 Ot i) (i Taawiz) n (i mi2)?
n n
i=1 93122 i xzz2
Hence,
(=n )2
n— 71 122
- 7,71)212 = — <lz:n _ )2
17—1 n =2 (Zi:l Ti2 (ZZ 11119512) n  ~2 (2,1 %i1%42
— PR n — — . L5 —
(Winslee = 2 YT ek L= T S a)?
i=1%52 [T n 2
D i1 T
_ 1
o g2 (B, Ti1wi9)>
T ah— (D7 %i2)?
From (3.38), as a result,
2 2 1,2 L
V(fia) = (JBy—I—mf JWy) g2 _ (X0 Fiwio)?
1R ah (S 71)?
1
2 2 \— (P4 &1249)
= (0%, +m~ 152 )(SZ ) 1— i=
By Wy B n )2
Si T {Z:‘L:l $222 — 7(21*711 i2) ]
1 2 2 \— 1
= (o, +m 7o, )(52) 7 2] (3.39)
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where 712 is the sample correlation between z;; and z; = (1 — p;).

As a result, found by comparing the estimated regression coefficient variance of (Bl) from
the naive approach demonstrated in equation (3.31) and the variance of the alternative

approach from equation (3.39) we have that.

V(/Bla) _ 1
V(B\ln) 1- T%Q '

(3.40)

If r2,is equal to zero, then V(Bla) is equal to V(Eln). However, if 72, is positive, then
V(Bla) is larger than V(Eln). Both approaches give the same result if there is no
relationship between auxiliary variable Z;; and nonresponse variable z;3 = (1 — p;). On
the other hand, the naive approach performs better than the alternative approach if

there is some correlation between those two variables.

3.7 Heckman Estimator

The Heckman model sometimes called the sample selection model was studied by Heck-
man (1979) in the case of independent observations and allows for biased selection.
Heckman’s techniques are very popular in econometrics. In this section we extend
this approach to our clustered model, beginning with a Heckman two-step estimator
in section 3.7.1 which will introduce Heckman two-step estimator related to alternative
approach. Next, we will move on to an approximate Heckman two-step estimator using
p; in section 3.7.2. We end with section 3.7.3, the approximate Heckman maximum

likelihood estimator.

According to model for nonresponse in section 3.4, consider

E(yij|Rij = 1) = /'8 + E(eij|Rij = 1)
(Note that expectations are assumed to be conditional on x;).
E(yij|Rij = 1) = /B + E(eij|ui; > 0)

z' B+ E(eijlz'y + nij > 0) (3.41)
= B+ E(eijlnij > —xi'y).

From (3.12) we can write, €;; = Uena;%ij + &j, where &;; is independent of 7.
So
E(yij|Rij = 1) = /B + E(0eyo, *nij + &ijlnig > —xi'y). (3.42)



Chapter 3 Estimation of Cluster-level Regression Model under Nonresponse within
Clusters 33

We transform 7;; ~ N (0, ag) to Z;; = aglmj so that Z;; ~ N(0,1) and plug into (3.42),

¥
E(yyj|Rij = 1) = 2/ 8+ 0y07 ' E (Zij|zij > b 7) . (3.43)

In
Now use Proposition 16.1 of Cameron and Trivedi (2005) (see Appendix A)

E(yij|Rij =1) = a8+ 0o, ') (%)

= z;/B8+c) (%) 7 (3.44)

where ¢ = 05770;1, A (M) = ¢ (%) /P (%) , ¢ is the probability density function

In
of the standard normal distribution and ® is the cumulative distribution function of this

distribution.

3.7.1 Heckman Two-Step Estimator

This approach is based on result (3.44). Write

x;
Yij = xi' B+ cA ( - 7) + vy, (3.45)

On

where v;; is an error term.

The estimation steps follow Heckman (1979) as below.
Step 1 Find the estimate 6\; 15 of o, 1y by probit regression of R;; on ;.
where m; = Pr(R;; = 1) = Pr(uy; > 0) = Pr(n; > —x;'y) = Pr <Z,;j > —m;:) =

o (u>
In
Step 2 Calculate the estimated inverse Mills ratio,

s s A
() e (5 e ()
On On On

Step 3 Plug in the estimated inverse Mills ratio into (3.45) and regress y;; on x; and the

estimated inverse Mills ratio to find the estimation regression coefficients of S5y, 81 and

C.

Relation of Heckman Two-Step Estimator to Alternative Approach

Recall NMAR model in (3.19) E(Yri) — E(Ynri) = 9.
From equation (3.44)
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_ / -1 l"il’Y
E(yri) = E(yij|Rij = 1) = 2B + 0oy, A

On

= /B + cA (xi/7> . (3.46)

In
Similarly,
E(Ynri) = E(yij|Rij =0)
= /B + E(eij|pi; <0)
= /B + E(eijlzi'y +nij <0)

= ;'8 + Eleijlnig < —xi'). (3.47)
As before, write
_ —2
€ij = Tenoy Mij + &ij

where &;; is independent of 7;;.

So
E(§nri) = ' B+ E(O’er]0'77277ij + &ijlnij < —zi'y). (3.48)

We transform n;; ~ N (0, 0727) to Z;; = 077*1771']' so that Z;; ~ N(0,1) and plug into (3.48)

)

_ - z;’
E(ym) = E(yij\Rij = 0) = .CUZ'/,B + Oen0y, g <Zij|Zij < — 0_/7) (349)
n

Now use Proposition 16.1 of Cameron and Trivedi (2005) (see Appendix A)

E(g ')_CC'/IB—O' 0__1[ ¢(I01:77) ]
nri) = L3 enOy T w |
o)

/ (z)(zoi-/]’y)
=z/B—c|—20—|, 3.50
z; 8 —c [1—‘1’(27]7) ( )

where ¢ = Tenoy)

Therefore, from (3.46) and (3.50)

ey = Terga o [$aro)T] (g o | 2D
Bor) = Bliwr) = |28+ |SR3| [ﬂﬁ CL@ém
- ¢($i/7/0n)(1i@(mi’7/0n)) [p(zi'v/on) — d(xi'y/on)(zi'v/0n) + ¢(zi'y/0n) ®(2i'v/0m)]
c(p(xi’v/o
@ on) (1= 0(zi 7))
coi
i (1—p;)
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=—— =9 defined in (3.13), (3.51)

where ¢; = ¢ (%j) pi=® (%) .

3.7.2 Approximate Heckman Two-Step Estimator using p;

Recall from (3.5) that

m;
7j=1
Let
U, = z;'y
T 5‘27 (3.53)
) o
For large m;,
'y
pi=E(Rg) =0 (27 ) = a(w,). (3.54)
n
Now set
U; =0 (py). (3.55)

For the Heckman two-step approach replace A (%) by )\(\f/l) = \; where \sz obtained
from (3.55).

3.7.3 Approximate Heckman Maximum Likelihood Estimator

Under working assumption that observations are independent, the likelihood for model
in section 3.4 is (Note that when the method is not working well it might be because all

observations are not independent.)

n m;

H H PT‘(UZ‘]‘ < 0)1_Rijf(yij\uij > 0) X Pr(uij > O)Rij.
i=1j=1

The log-likelihood is

n my

Z Z (1 — R;j)log[l — Pr(ui; > 0)] + Ri;log[Pr(u;j) > 0] + R;jlog[f (yijlui; > 0)].
i=1 j=1
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Now f(yijlui; > 0) = Pr(uij > Olyij) f(yij)/Pr(uwi; > 0)
and yi; ~ N(zi'B,02), uijlyij ~ Nlzi'y + 0eyo 2 (yij — i’ 8), 00 — 02,077

So evaluation of log likelihood requires evaluating Pr(u;; > 0) for all cases (7,j) and

1 —(yij — =B
f(yw) = \/Re:zp( (yJQJEZIE )>

and Pr(u;; > 0[y;;) for all cases with R;; = 1.

evaluating

The maximum likelihood estimator is used to estimate regression coefficients 5y, 81 and
c in (3.45) instead of probit regression and inverse Mills ratio in Heckman two-step es-

timator.

3.8 Two-Stage Sampling

The method we have presented in this chapter can be extended to two-stage cluster

sampling.
Following, as far as possible, the earlier notation in this chapter, now let

N be the number of clusters in the population, and M; the number of elements in cluster
i=1,2,...,N.

yij is the value of the study variable y for the j** population element(j = 1,2,..., M;)
for the i** cluster (i =1,2,...,N).

For two-stage sampling, a simple random sample of n clusters is selected, and a sample

of m; elements (i = 1,2,...,n) in each sampled cluster is also selected.

Let Y; be the population mean among all units in cluster i (i = 1,2,..., N).

M;
YVi=M7"Y i .(i=12...,N). (3.56)
7j=1
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Let y; be the sample mean among all units in sampled cluster i (i = 1,2,...,N).
m;
Ui :m;lzyij ,(Z: 1,2,...,77,). (357)
j=1

Let x; be the cluster-level vector of variables in cluster ¢ (no nonresponse error) z; =

(L2, oo i)

Let

Ui = Y; + 05, (3.58)

where 9; be sampling error, and

Y, = 2iB + ¢ (3.59)

From (3.58) and (3.59), we have

Ui = i+ (€ + )

3.60
= x;ﬂ + €, ( )

where €; = €, + ;.

The model (3.60) is the same model that we applied in the one-stage cluster sampling
shown in (3.6) so we can still apply MAR assumption and the NMAR model and follow
all of the same estimation processes we did with the naive approach, the alternative
approach and Heckman estimators for our two-stage cluster sampling as we used in one-

stage cluster sampling .

3.9 Conclusion

In this chapter we discuss nonresponse at the cluster level where the problem is how to
use observed data to make inference about S when some of the y data is missing. We
firstly introduce notation and framework for this chapter including sampling techniques
that we use, define nonresponse, make the assumption for number of respondents in
cluster ¢ in order to look at new methods for analysis which incorporate information on

nonresponse in the model and also define data that we consider in our study.
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Next, the model of interest which are a cluster level linear regression model of 7; on
x; and also a multilevel model are explained but moreover, the model for nonresponse
is explained, for example a model for the response outcome R;; that is motivated by
Heckman (1976) is introduced, where MAR and NMAR assumptions are also described.

Furthermore, we discuss estimation of § for the naive approach and also its bias and
variance. The naive estimator produces bias under the NMAR model, we therefore in-
troduce an alternative estimator where we can regress g,; on x; and (1 — p;) and obtain
valid estimates of coefficients of z;. Bias and variance for the alternative estimator are

also discussed.

In addition, a Heckman estimator that was studied by Heckman (1979) is developed
upon. We extend this approach to our clustered model, beginning with a Heckman
two-step estimator we explore the relationship between it and our alternative approach.
Next, we move on to an approximate Heckman two-step estimator using p; where we
replace A (“”iw) in the Heckman two-step approach with /\(\Tll) = )\; and end with the

g5

approximate Heckman Maximum Likelihood Estimator where the maximum likelihood
estimator is used to estimate regression coefficients Sy, 51 and c instead of probit regres-
sion and inverse Mills ratio in the Heckman two-step estimator. Finally, we extend the

method we have presented in this chapter to two-stage cluster sampling.



Chapter 4

Simulation Study of Estimators of

Cluster-level Regression Model

In chapter 3, we considered some estimators of coefficients in a cluster-level regression
model under nonresponse. We now consider the performance of these estimators by
means of a simulation study. In this chapter we first discuss the models for the simula-
tion study in section 4.1. Secondly, we show the results of the simulation study in section
4.2. Next, in section 4.3 further theory to explain the simulation results is presented.

Finally, the conclusion for our findings is given in section 4.4.

4.1 Models for the Simulation Study

In this section we describe models used to generate y;; and R;; for the simulation stud-
ies. This section is divided into two parts; models underlying naive and alternative
approaches and models underlying Heckman estimators approach. For the simulation
study we are focusing on a one-stage cluster design where all the clusters have equal
sizes. For each method we generate a population with N = 1000 clusters and with
m = 25 elements in each cluster showing the number of workplaces found in the real
data that we will apply in Chapter 5 following the number of workplaces in the real data
that we will apply in Chapter 5 and repeat 10,000 times.

4.1.1 Models underlying Naive and Alternative Approaches

We consider two different models based on the assumptions of the naive approach and

alternative approach as follows.

39
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MAR Model

We first generate y;; from the multilevel model given in equation 3.7,

Yij = i’ B+ e1i + €aij (4.1)

assuming E(ey;|x;) = 0 and F(eg|x;) = 0.

We consider a MAR response mechanism with response rate ranging from 0.6 to 0.9.
The model starts from generating y and then generates R|y in order to get the joint
distribution of (R, y).

The simulation steps for MAR model are as follows.

Step 1 In order to generate y;; from equation (4.1), we generate e;; ~ N(0,1),z; ~
N(20,1) and €2;; ~ N (0,02 ), where

7 €245

2 _ [1-p] 2
UEQij - |: ) ]Uéli’

i=1,...,N,j=1,...,m,p=0.1,0.2,0.4, and By = 0, 3; = 1.
Step 2 Select sample of n = 20 clusters.

Step 3 Generate A;; ~ U(0,1). For cluster 1 to 5, if 0 < A;; < 0.9 then R;; = 1 else
R;; = 0. For cluster 6 to 10, if 0 < A;; < 0.8 then R;; = 1 else R;; = 0. For cluster 11 to
15,if 0 < A;; < 0.7 then R;; = 1 else R;; = 0 and for cluster 16 to 20, if 0 < A;; < 0.6
then R;; =1 else R;; = 0.

Step 4 Compute estimators from naive approach, alternative approach, Heckman two-

step estimator and approximate Heckman two-step estimator using p;.

Step 5 Compare each estimator using MSE.
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NMAR Model

Now consider a model which is designed to capture the NMAR model in (3.19).

The model is shown below.

P(Rij = 1) =
(aci’ﬂ + €1 + 621']‘) -+ (1 — pi)(s, if Rz‘j =1 . (4.2)
(zi'B + €15 + €2i5) — pid, if Rjj =0

This model is the opposite of the previous model as it starts from generating R and then
generates y|R in order to get (R,y). The details of how the data and nonresponse are

generated are shown as follows.

We also consider replacing p; in (4.2) by m; in order to see how the alternative approach

performs. We will give some discussions about the simulation results in section (4.2).
The simulation study for NMAR model is divided into three parts as below.
a) m; fixed

Suppose

T =T, constant for i. (4.3)

m; variable but independent of z; Set,

b)

Define,

logit(m;)) = logit(0.8) + Z;, Z; ~ N(0,0.5),

exp(log(§:5)+%:)
3
2

1+exp(log( 8%)+Zi) '
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c) m; depends on z;

Define,
logit(m;)) = logit(0.8) + Z;, Z;i = x; — 20,

exp(log(§:5)+7Zi)
1+ewp(log(8%)+Zi) :

T

Simulation steps:

Step 1 For case (b), generate Z; ~ N(0,0.5), and then calculate 7; from (4.5). For case
(c), generate z; ~ N(20,1), and then calculate Z; and m; from (4.6).

Step 2 Generate A;; ~ U(0,1). If 0 < A;; < m; then R;; = 1 else R;; = 0, and then
compute p; = R;.

Step 3 Generate y;; from equation (4.2) with e;; ~ N(0,1),2; ~ N(20,1) and €p;; ~
N(0,9),8=0,8 =1, and § = 1,2, 4.

Step 4 Select sample of n = 20 clusters.

Step 5 Compute estimators from naive approach, alternative approach, Heckman two-

step estimator and approximate Heckman two-step estimator using p;.

Step 6 Compare each estimator using MSE.

4.1.2 Models underlying Heckman Estimators

The simulation study based on the model underling the Heckman estimators is as follows.

We set

OWyy = OByy = 1 and opy,, = 0 (It implies that there is no random effect so it is only
Ti). OByu = POByyTBuu = 0 and owyu = powyy = P, ag =14+ 0By = 1.

Therefore, 0cs = owyu + TByu = p-
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Simulation steps:

Step 1 Generate €;; and d;; from bivariate normal distribution following equation (3.12)

2
€7 0 OF O
I~ Ny ‘ 62 ,where o5 = OWyu + OByu, 052 = OWyy + OByy; 0—% =1+ oBuu-
5ij 0 Ocs Oy

In order to specify o5 = owyu + oByu, We have to calculate oy, = pPoByyOTBuL and

OWyu = powyy (vary 0 < p <1).

Step 2 To find y;j;, generate z; ~ N(0,1),80 = 0,51 = 1 and plug in the value of ¢;;
from step 1 into equation (3.10).

Step 3 Similarly, to find w;;, generate ; ~ N(0,1),79 = 0,71 = 1 and plug in the value
of 0;; from step 1 into equation (3.11).

Step 4 If u;; > 0 then R;; = 1 and R;; = 0, otherwise. The overall response rate is 50
%.

Step 5 Select sample of n = 20 clusters.

Step 6 Compute estimators from naive approach, alternative approach, Heckman two-

step estimator and approximate Heckman two-step estimator using p;.

Step 7 Compare each estimators using MSE.

4.2 Simulation Results

The simulation results are divided into two parts; comparing the results for each ap-
proach using models underlying naive and alternative approaches and models underlying

Heckman estimators approach.
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4.2.1 Simulation Results from Models underlying Naive and Alterna-
tive Approaches

For the models underlying naive and alternative approaches, we consider the simulation
model at the cluster level. The results will be presented in Tables 4.1 to 4.5 following
two models in the simulation study; MAR and NMAR model where NMAR, model is
divided into 3 separate cases; m; constant, m; is variable but independent of x; and where

m; depends on x;. The results are as follows.

Table 4.1: Mean, variance and mean square error of the simulation results of
MAR model for N = 1000, m = 25 and n = 20, 5y = 0, 51 = 1. The simulation
standard error is shown in parenthesis.

Naive approach Alternative approach Heckman two-step Approximate Heckman
two-step using p;

p=0.1
Mean Beta 0 -0.092(0.06) -0.103(0.06) 0.116(0.22) -0.086(0.06)
Beta 1 1.005(0.003) 1.005(0.003) 0.992(0.01) 1.004(0.003)
Variance Beta 0 35.837 38.437 502.313 38.604
Beta 1 0.089 0.095 1.730 0.096
MSE Beta 0 35.845 38.447 502.327 38.612
Beta 1 0.089 0.095 1.730 0.096
p=02
Mean Beta 0 -0.067(0.05) -0.081(0.06) 0.135(0.20) -0.065(0.06)
Beta 1 1.004(0.003) 1.004(0.003) 0.991(0.003) 1.003(0.003)
Variance Beta 0 29.080 31.236 409.407 31.666
Beta 1 0.073 0.077 1.417 0.078
MSE Beta 0 29.085 31.242 409.425 31.671
Beta 1 0.073 0.077 1.417 0.078
p=04
Mean Beta 0 -0.049(0.05) -0.064(0.05) 0.150(0.19) -0.049(0.05)
Beta 1 1.003(0.002) 1.003(0.002) 0.991(0.01) 1.002(0.01)
Variance Beta 0 25.660 27.596 362.222 28.170
Beta 1 0.064 0.068 1.260 0.070
MSE Beta 0 25.663 27.600 362.245 28.173
Beta 1 0.064 0.068 1.260 0.070

Table 4.1 presents the results of the MAR model for naive approach, alternative ap-
proach, Heckman two-step estimator and approximate Heckman two-step estimator us-
ing p;. We see that the naive approach performs better than the alternative approach
for each p. The naive approach gives smaller variance and also a lower mean square
error when compared to all estimators. The alternative approach and the approximate
Heckman two-step estimator using p; behave similarly in this situation. The Heckman
two-step estimator performs even worse in that it produces both bigger variance and
mean square error comparing to other estimators. Therefore, the Heckman two-step

estimator is not suitable to use at all in this situation.

According to equation (3.40) in section 3.6.2, the sample correlation between 7;; and
xi2 = (1 — p;) for Table 4.1 is equal to 0.24. As a result, the difference between the
variance for estimated regression coefficient (B\l) from the naive approach from equa-
tion (3.31) and alternative approach from equation (3.39) is 1.061 (V(B14)/V (B1n) =
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1/(1 — r3)) = 1.06). If we consider, for example, when p = 0.1 the simulation variance
for estimated regression coefficient (31) from the naive approach is 0.089 and from the
alternative approach is 0.095. As a result, the difference between the variance of two
methods is 1.067 which is close to 1.061 and it is also similar for all p. Therefore, theory
implies that the difference between the variances across two methods, alternative and
naive, should be 1.061 and examination of that assumption found it to be true with our

simulation results being very close to the prescribed outcome.

As expected, the naive approach performs well in this scenario because there is some re-
lationship between the auxiliary variable Z;; and the nonresponse variable ;2 = (1—p;).
However, if there is no relationship between those two variables at all the alternative

approach will give the same results when compared to the naive approach.

Table 4.2: Mean, variance and mean square error of the simulation results of
NMAR model with 7; constant for N = 1000, m = 25,n = 20 and p = 0.1, 8y =
0,81 = 1. The simulation standard error is shown in parenthesis.

Naive approach Alternative approach Heckman two-step

Approximate Heckman
two-step using p;

6=1
Mean Beta 0 0.115(0.06) -0.094(0.06) 0.057(0.11) -0.124(0.06)
Beta 1 1.004(0.003) 1.005(0.003) 1.003(0.006) 1.005(0.003)
Delta 1.020(0.04)
Variance Beta 0 34.907 37.660 110.875 37.880
Beta 1 0.087 0.092 0.392 0.092
Delta 14.163
MSE Beta 0 34.921 37.669 110.879 37.896
Beta 1 0.087 0.092 0.392 0.092
Delta 14.163
=2
Mean Beta 0 0.318(0.06) -0.094(0.06) 0.155(0.11) -0.153(0.06)
Beta 1 1.004(0.003) 1.005(0.003) 1.005(0.006) 1.005(0.003)
Delta 2.020(0.04)
Variance Beta 0 35.469 37.660 111.900 37.880
Beta 1 0.088 0.092 0.397 0.092
Delta 14.163
MSE Beta 0 35.570 37.669 111.924 37.903
Beta 1 0.089 0.092 0.397 0.092
Delta 14.163
d=4
Mean Beta 0 0.723(0.06) -0.094(0.06) 0.351(0.11) -0.211(0.06)
Beta 1 1.004(0.003) 1.005(0.003) 1.010(0.006) 1.005(0.003)
Delta 4.020(0.04)
Variance Beta 0 37.515 37.660 116.388 37.880
Beta 1 0.094 0.092 0.414 0.092
Delta 14.163
MSE Beta 0 38.038 37.669 116.511 37.925
Beta 1 0.094 0.092 0.414 0.092
Delta 14.163

Table 4.2 presents the results of NMAR model with m; constant for naive approach,
alternative approach, Heckman two-step estimator and approximate Heckman two-step
estimator using p;. We can see that using the alternative approach seems to correct the

bias for the estimator of By better than using the naive approach does but for 51 they
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both perform properly. There is also some evidence of bias of By visible using the Heck-
man estimators when § increases. Using the approximate Heckman two-step estimator
with p; yields similar results to the alternative approach. The alternative approach gives
minimum variance and mean square error when § = 4. It seems that the alternative ap-
proach performs better in terms of bias and mean square error as ¢ increases. Variance

and mean square error using alternative approach are not affected by departure from

MAR.

Table 4.3: Mean, variance and mean square error of the simulation results of
NMAR model with variable m; but independent of z;for N = 1000, m = 25,n =
20 and p = 0.1,8p = 0,51 = 1. The simulation standard error is shown in

parenthesis.
Naive approach Alternative approach Heckman two-step Approximate Heckman
two-step using p;
6=1
Mean Beta 0 0.189(0.06) -0.008(0.06) 0.210(0.25) -0.027(0.06)
Beta 1 1.0017(0.003) 1.0004(0.003) 0.993(0.01) 1.0003(0.003)
Delta 1.0137(0.02)
Variance Beta 0 34.820 36.943 651.751 37.057
Beta 1 0.087 0.091 2.077 0.092
Delta 5.119
MSE Beta 0 34.856 36.943 651.796 37.057
Beta 1 0.087 0.091 2.077 0.092
Delta 5.119
6=2
Mean Beta 0 0.412(0.06) -0.0084(0.06) 0.321(0.26) -0.050(0.06)
Beta 1 1.0016(0.003) 1.0004(0.003) 0.992(0.01) 1.0003(0.003)
Delta 2.014(0.02)
Variance Beta 0 36.195 36.943 676.371 37.068
Beta 1 0.090 0.091 2.163 0.092
Delta 5.119
MSE Beta 0 36.365 36.943 676.474 37.070
Beta 1 0.090 0.091 2.163 0.092
Delta 5.119
0=4
Mean Beta 0 0.856(0.06) -0.0084(0.06) 0.542(0.28) -0.095(0.06)
Beta 1 1.0014(0.003) 1.0004(0.003) 0.988(0.02) 1.0003(0.003)
Delta 4.014(0.02)
Variance Beta 0 41.702 36.943 759.691 37.096
Beta 1 0.104 0.091 2.444 0.092
Delta 5.119
MSE Beta 0 42.435 36.943 759.985 37.105
Beta 1 0.104 0.091 2.444 0.092
Delta 5.119

Table 4.3 presents the results of NMAR model with variable m; independent of x; for
naive approach, alternative approach, Heckman two-step estimator and approximate
Heckman two-step estimator using p;. We see a similar result here to that found in Ta-
ble 4.2. Using the alternative approach seems to correct the bias for the estimator of 5y
quite well when compared to the naive approach but for 81 they both perform properly.
The By for the Heckman two-step estimator is also biased. Both the naive estimator and
Heckman two-step estimator have higher variance and higher mean square error than the

alternative approach for § = 4 and the approximate Heckman two-step estimator using
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p; has the similar result to alternative approach. Similar to Table 4.2 it seems that the al-

ternative approach performs better in terms of bias and mean square error as § increases.

Table 4.4: Mean, variance and mean square error of the simulation results of
NMAR model with variable 7; depending on z; for N = 1000, m = 25,n = 20
and p =0.1,80 = 0,61 = 1,60 = 0,81 = 1. The simulation standard error is
shown in parenthesis.

Naive approach Alternative approach Heckman two-step

Approximate Heckman
two-step using p;

6=1
Mean Beta 0 3.401(0.063) -0.108(0.13) -1.161(0.36) -0.088(0.13)
Beta 1 0.842(0.003) 1.0048(0.006) 1.052(0.017) 1.003(0.003)
Delta 1.046(0.035)
Variance Beta 0 39.951 168.870 1316.629 171.982
Beta 1 0.099 0.377 2.809 0.381
Delta 12.425
MSE Beta 0 51.519 168.882 1317.978 171.990
Beta 1 0.124 0.377 2.812 0.381
Delta 12.427
6=2
Mean Beta 0 6.769(0.064) -0.108(0.13) -1.795(0.37) -0.071(0.13)
Beta 1 0.685(0.003) 1.005(0.006) 1.080(0.017) 1.001(0.003)
Delta 2.046(0.035)
Variance Beta 0 40.967 168.870 1334.745 172.154
Beta 1 0.101 0.377 2.847 0.381
Delta 12.425
MSE Beta 0 86.793 168.882 1337.967 172.159
Beta 1 0.201 0.377 2.854 0.381
Delta 12.427
6=4
Mean Beta 0 13.505(0.064) -0.108(0.13) -3.062(0.37) -0.037(0.13)
Beta 1 0.372(0.003) 1.005(0.006) 1.136(0.017) 0.998(0.003)
Delta 4.046(0.035)
Variance Beta 0 44.724 168.870 1399.477 172.681
Beta 1 0.111 0.377 2.985 0.382
Delta 12.425
MSE Beta 0 227.136 168.882 1408.855 172.682
Beta 1 0.505 0.377 3.003 0.382
Delta 12.427

Table 4.4 presents the results of NMAR model with the variable m; depending on x;

for naive approach, alternative approach, Heckman two-step estimator and approximate

Heckman two-step estimator using p;. We see that the naive approach now has both bias

in By and By as ¢ increases. Using the alternative approach removes the bias but with

quite different variance than the naive approach yields. The approximate Heckman two-

step estimator using p; behaves similarly to the alternative approach in this scenario.

The Heckman two-step estimator is a poor estimator giving both large variance and

bias. Therefore, the alternative approach perform very well in this situation especially

when § increases as we can see that it gives minimum variance and also mean square

error when compare to other methods including naive approach.

We try to run the simulation for 6 > 4, we got similar results in the case of § = 4 in
Tables 4.2 to 4.4.
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We can see that under the NMAR mechanism our alternative approach performs bet-
ter than the naive approach with a lower bias shown in the results at all times, and a
lower variance and mean square error as ¢ increases. The outcome is not as positive
when using our alternative approach under the MAR mechanism where we see increased
variance. Overall, our alternative approach is better for dealing with NMAR data than
the naive approach. Moreover, the approximate Heckman two-step estimator using p;

behaves similarly to our alternative approach.

We also repeated the simulation study replacing p; in (4.2) by m;. The alternative ap-
proach shows that bias correction is worse even though the variance is about the same,
for example, the results of NMAR model with variable 7; depends on z; for N=1000,
m = 25, n = 20 and p = 0.1 when § = 4. We see bias in the alternative approach
(B\o = 10.353,51 = (0.518, and 5 = 0.943), and also higher variance and mean square
error when compared with the naive approach. The reason for the discrepancy is that

the assumed model no longer holds.

Moreover, if we repeated the simulation study replacing x; in (3.11) and (4.2) by z; for
example, the alternative approach and the Heckman approaches perform very poor. We
regenerate the simulation in Table 4.4 for N = 1000,m = 25,n = 20 and p = 0.1 as
shown in Table 4.5.
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Table 4.5: Mean, variance and mean square error of the simulation results of
NMAR model with variable m; depending on x; by replacing z; by z; in (3.11)
and (4.2) for N = 1000,m = 25,n = 20 and p = 0.1,5p = 0,81 = 1. The
simulation standard error is shown in parenthesis.

Naive approach Alternative approach Heckman two-step Approximate Heckman
two-step using p;

6=1
Mean Beta 0 11.730(0.071) 17.914(0.076) 20.824(0.075) 17.976(0.076)
Beta 1 0.425(0.004) 0.157(0.004) 0.037(0.004) 0.157(0.004)
Delta -3.489(0.022)
Variance Beta 0 49.995 57.340 56.887 57.605
Beta 1 0.125 0.135 0.130 0.135
Delta 4.669
MSE Beta 0 187.597 378.278 490.557 380.779
Beta 1 0.455 0.846 1.05 7 0.846
Delta 24.821
6=2
Mean Beta 0 13.532(0.068) 17.914(0.076) 20.782(0.76) 17.965(0.076)
Beta 1 0.347(0.003) 0.004(0.006) 0.038(0.004) 0.157(0.006)
Delta -2.489(0.022)
Variance Beta 0 46.392 57.340 57.673 57.587
Beta 1 0.116 0.135 0.132 0.135
Delta 4.669
MSE Beta 0 229.530 378.278 489.602 380.370
Beta 1 0.542 0.846 1.058 0.846
Delta 24.821
d=4
Mean Beta 0 17.137(0.066) 17.914(0.076) 20.698(0.078) 17.943(0.076)
Beta 1 0.190(0.003) 0.157(0.004) 0.040(0.004) 0.156(0.004)
Delta 4.046(0.022)
Variance Beta 0 43.042 57.340 60.571 57.580
Beta 1 0.107 0.135 0.139 0.135
Delta 4.669
MSE Beta 0 336.745 378.278 489.030 379.581
Beta 1 0.763 0.846 1.061 0.847
Delta 24.821

Table 4.5 presents the results of NMAR model with the variable m; depending on x;

replacing x; with z; in (3.11) and (4.2) we see bias in all estimators. The alternative

approach and Heckman estimators perform very poorly in terms of both bias in 8y and

(1 as § increases and also higher variance and mean square error when compared to the

naive approach. Therefore, the alternative approach and the Heckman approaches are

not working at all in this scenario even though it works well in the model underlying

Heckman estimators that we will show later on in this chapter. We can not find an exact

reason why this occurred, it might happened because there is a difference in correlation

and covariance between these two variables or it could actually be for other related rea-

sons due to measurement errors.
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4.2.2 Simulation Results from Models underlying Heckman Estima-
tors

For the models underlying Heckman estimators approach, we consider the simulation
model at the individual. We also consider to replace x; in (3.11) by z; in the simulation

study. The results are as follows.

Table 4.6 presents the results found using the Heckman estimator with a multi-level
model at the individual level for N=1000, n=20, m = 25. We see that the naive ap-
proach, as expected, displays bias when p is not equal to zero. The alternative approach
and all Heckman estimators in some ways reduce bias but higher variance for small p
when compare to the naive approach. However, the variance is not much difference
in some cases eg. the Heckman two-step estimator and the Heckman maximum likeli-
hood estimator when p increases. Moreover, the Heckman two-step estimator and the
Heckman maximum likelihood estimator have smaller mean square error for all cases
except p = 0 and also in some cases with higher p have minimum variance than the the
naive approach. For small p, p = 2 the approximate Heckman two-step using p; and
the Heckman maximum likelihood estimator perform well in terms of minimum mean

square error comparing to the naive approach.

Table 4.7 presents the results found using the Heckman estimator with a multi-level
model at the individual level for N=1000, n=50, m = 10 we see similar results to those
in Table 4.6. The estimators found using the Heckman maximum likelihood estima-
tor seem to have smaller variance and mean square error shown with an increasing p
(p > 0.5). The approximate Heckman maximum likelihood estimator seems to correct
bias better, has a lower minimum variance and mean square error than the naive when
p increases. The approximate Heckman two-step estimator using p; behaves similarly
to the alternative approach in this scenario and both of them perform well in term of
minimum mean square error when p = 0.2 and p = 0.5 in the comparison to the naive

approach.

Table 4.8 presents the results found using the Heckman estimator with a multi-level
model at the individual level for N=1000, n=100, m = 5. The results are similar to
those found in Table 4.7 except that all estimators, other than the Heckman maximum
likelihood estimator, for all approaches are biased. It seems that for small m these ap-
proaches do not perform well in terms of bias except the Heckman maximum likelihood

estimator.
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Table 4.9 presents the results found using the Heckman estimator with a multi-level
model at the individual level for N=1000, n=5, m = 100. We see the similar results
when compared to Table 4.6 except the naive approach which seems to perform well in
term of minimum variance and mean square error for p = 0.2 but it is poor in term
of bias. The alternative approach and all Heckman estimators in some ways reduces
bias but higher variance when compare to the naive approach. However, the Heckman
two-step estimator and the Heckman maximum likelihood estimator have smaller mean

square error when 1% increases.

Moreover, if we repeated the simulation study by not replacing x; in (3.11) by z; for
example, the alternative approach and the Heckman approaches perform very poor. We
regenerate the simulation in Table 4.6 for N = 1000,n = 20, m = 25 and intra-cluster

correlation = 0.1 as shown in Table 4.10.

Table 4.10 presents the results found using the Heckman estimator with a multi-level
model at the individual level using the same z; in the simulation model for N=1000,
n=20, m = 25. We see that the alternative approach and all Heckman estimators perform
poor both for bias and minimum variance and mean square error except for the Heckman

maximum likelihood that gives smaller mean square error when p is high (p = 0.8).



Table 4.6: Mean, variance and mean square error for the simulation results of Heckman estimator using multilevel model at the
individual level for N=1000, n=20, m = 25 and intra-cluster correlation = 0.1, 5y = 0,81 =1, ¢ = 0,0.6,1.5,2.4 for p = 0,0.2,0.5 and
0.8 respectively. The simulation standard error is shown in parenthesis.
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Estimators Mean (simulation s.e.) Variance MSE
Bo b1 c Bo 51 c Bo b1 c

p=0

1. Naive approach 0.009(0.002) 0.973(0.002) 0.047 0.048 0.047 0.049

2. Alternative approach 0.038(0.004) 0.965(0.002) 0.173 0.061 0.174  0.062

3. Heckman two-step 0.023(0.004) 0.968(0.003) -0.029(0.006)  0.185 0.062 0.337  0.186 0.063  0.338

4. Approximate Heckman 0.037(0.004) 0.965(0.002) -0.054(0.005)  0.163 0.060 0.299 0.164 0.061  0.302

two-step using p;

5. Heckman ML 0.024(0.004) 0.968(0.002) -0.030(0.006)  0.180 0.061 0.325 0.180 0.062 0.326
p=0.2

1. Naive approach 0.391(0.002) 0.897(0.002) 0.050 0.060 0.203  0.07061

2. Alternative approach 0.001(0.004) 1.007(0.003) 0.175 0.071 0.175  0.07066

3. Heckman two-step -0.039(0.004) 1.019(0.003) 0.686(0.006)  0.189 0.070 0.338 0.191 0.07061 0.345

4. Approximate Heckman 0.006(0.004) 1.008(0.003) 0.638(0.005)  0.165 0.070 0.301 0.165 0.0699 0.303

two-step using p;

5. Heckman ML -0.032(0.004) 1.017(0.003) 0.675(0.006)  0.183 0.069 0.325 0.184 0.0694 0.431
p=0.5

1. Naive approach 0.982(0.003) 0.693(0.003) 0.066 0.069 1.031 0.163

2. Alternative approach 0.053(0.004) 0.963(0.002) 0.172 0.062 0.175  0.063

3. Heckman two-step -0.065(0.004) 0.991(0.002) 1.657(0.006)  0.183 0.058 0.317 0.188 0.058 0.342

4. Approximately to Heckman 0.067(0.004) 0.965(0.002) 1.505(0.005)  0.163 0.061 0.286 0.167 0.062  0.286

two-step using p;

5. Heckman ML -0.035(0.004) 0.985(0.002) 1.609(0.005)  0.163 0.057 0.263 0.164 0.057 0.275
p =038

1. Naive approach 1.557(0.003) 0.582(0.003) 0.090 0.092 2.515 0.267

2. Alternative approach 0.163(0.004) 0.984(0.002) 0.150 0.052 0.177  0.052

3. Heckman two-step -0.014(0.004) 1.019(0.002) 2.506(0.005)  0.158 0.042 0.252  0.158 0.043  0.264

4. Approximate Heckman 0.178(0.004) 0.988(0.002) 2.280(0.005)  0.138 0.050 0.229 0.169 0.050  0.244

two-step using p;

5. Heckman ML 0.009(0.003) 1.023(0.002) 2.471(0.004) 0.100 0.039 0.131 0.101 0.040 0.136
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Table 4.8: Mean, variance and mean square error for the simulation results of Heckman estimator using multilevel model at the
individual levelfor N=1000, n=100, m = 5 and intra-cluster correlation = 0.1, 5o = 0,81 =1, ¢ = 0,0.6,1.5,2.4 for p = 0,0.2,0.5 and
0.8 respectively. The simulation standard error is shown in parenthesis.
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Estimators Mean (simulation s.e.) Variance MSE
Bo b1 c Bo B c Bo b ¢

p=0

1. Naive approach -0.063(0.002) 0.981(0.002) 0.035 0.032 0.039 0.032

2. Alternative approach -0.123(0.003) 0.998(0.002) 0.097 0.037 0.112 0.037

3. Heckman two-step -0.108(0.004) 0.993(0.002) 0.071(0.006)  0.166 0.040 0.303 0.178  0.040 0.308

4. Approximate Heckman -0.118(0.003) 0.997(0.002) 0.101(0.004)  0.095 0.037 0.190 0.109 0.037 0.201

two-step using p;

5. Heckman ML -0.111(0.004) 0.994(0.002) 0.075(0.006)  0.188 0.042 0.354 0.200 0.042 0.360
p=0.2

1. Naive approach 0.544(0.002) 0.883(0.004) 0.035 0.175 0.331  0.049

2. Alternative approach 0.330(0.003) 0.943(0.002) 0.095 0.039 0.204 0.042

3. Heckman two-step 0.144(0.004) 0.987(0.002) 0.640(0.006) 0.171 0.044 0.334 0.191 0.044 0.336

4. Approximate Heckman 0.332(0.003) 0.943(0.002) 0.395(0.004)  0.094 0.039 0.187 0.205 0.042 0.230

two-step using p;

5. Heckman ML 0.143(0.004) 0.987(0.002) 0.642(0.006) 0.171 0.044 0.336 0.191 0.044 0.338
p=0.5

1. Naive approach 1.058(0.002) 0.486(0.002) 0.034 0.032 1.153  0.296

2. Alternative approach 0.395(0.005) 0.685(0.002) 0.084 0.033 0.240  0.133

3. Heckman two-step -0.155(0.004) 0.809(0.002) 1.966(0.005)  0.143 0.035 0.273 0.167 0.071 0.490

4. Approximately to Heckman  0.390(0.003) 0.689(0.002) 1.247(0.004)  0.083 0.033 0.171 0.236 0.130 0.235

two-step using p;

5. Heckman ML -0.170(0.003) 0.818(0.002) 1.989(0.005) 0.117  0.034  0.207 0.146 0.067 0.446
p =038

1. Naive approach 1.706(0.002) 0.442(0.002) 0.035 0.034 2.947  0.345

2. Alternative approach 0.759(0.003) 0.711(0.002) 0.077 0.033 0.653 0.117

3. Heckman two-step -0.243(0.004) 0.969(0.002) 3.243(0.005) 0.141 0.032 0.264 0.201 0.033 0.975

4. Approximate Heckman 0.751(0.003) 0.715(0.002) 1.872(0.004) 0.077 0.033 0.153 0.201 0.033 0.975

two-step using p;

5. Heckman ML 0.050(0.003) 0.903(0.002) 2.789(0.003)  0.066 0.027 0.087 0.068 0.037 0.238




95

Chapter 4 Simulation Study of Estimators of Cluster-level Regression Model

2ee0 6ST'0 OTE'0 2280  6ST'0  01€0 (900°0)607°¢C (¥00°0)6.6°0 (900°0)910°0 TIN UeuneH g
'd Sursn dajs-omy
TLLO 7930 TILO  TLLO 2920 60.°0  (6000).9¢°C (00°0)046°0 (800°0)T€0°0 ueurspoy oyewrxoiddy “§
PPL0 PET'0 9SS0 E€FL0  PETO 9660 (600°0)627'C (600°0)¥86°0 (L00°0)100°0 doys-omy weunspey ‘g
€og'0  6LV'T z9g'0 PLV'T (900°0)1256°0 (210°0)£L0°0- yoeoxdde sAnpeuIn) |y g
L76°0  66T°E 069°0 1270 (800°0)€6%°0 (900°0)999°'1T yoeoadde aareN ‘T
g0 =10
680 6TT'0 9080 V.90 6TT0 9080 (800°0)61G'T (200°0)186°0 (600°0)500°0 TIN UewWooH G
'd 3ursn dojs-omy
6.8°0 T62°0 90L°0 8.80 1620 90L°0  (6000)€€5'T (00°0)886°0 (800°0)800°0- ueUPRY 03 APyewixoiddy ‘%
T80T ¥82'0 O0ST'T T80T 820 08T°'T  (010°0)95G'T (00°0)¥66°0 (110°0)020°0- dejs-om} ueundey g
€6e’0  6TT°C Tee0 0TT°C (900°0)£26°0 (610°0)660°0- ypeordde sanpeuI) Yy g
8L7°0 9081 L19¢°0  A12°0 (900°0)899°0 (200°0)¥¥0°'T yoeoadde aAreN ‘T
go=0d
€8L’0 6I€0 F9L0 G8L0  SIEO €9.°0  (600°0)909°0 (900°0)£86°0 (600°0)520°0 TIN UeunoH g
'd Sursn dajs-omy
0060 TI8€'0 SFL0 0060 18€°0 GFL0  (6000)L09°0 (900°0)286°0 (600°0)520°0 ueunoy orewrrxoxddy ‘p
L66°0  L9€°0 TT60 1660  L9€0 2e6'0  (010°0)S29°0 (900°0)266°0 (010°0)TT0°0 dogs-om) URUINIOH ‘g
1270 €2LT 1270 €TLT (900°0)286°0 (L10°0)¥10°0- yoeoadde sApeuIn) |y °Z
01Z°0 €62°0 T6T'0 6600 (#00°0)598°0 (€00°0)0¥¥°0 yoeoadde aareN T
z0=1d
8280 L8T0 FL90 8TS0O  L8T0 7290 (600°0)900°0 (200°0)700°T (800°0)$10°0- TIN UeWSPoH G
'd 3ursn dojs-omy
086'0 SS€'0 €2L0 0860 ¢ge0 2’0 (010°0)100°0 (900°0)000°T (800°0)900°0- uewyooy oyewrxoiddy ‘%
70T F9E0 6280 TFO'T 79€°0 6280  (010°0)L00°0 (900°0)€00°T (600°0)910°0~ dejs-om} ueundey g
2oe0  €LT'T 29g0 eLT'T (900°0)000°T (110°0)200°0- yoeoidde sAIJRUINY ‘T
¥ST'0  ¥80°0 $ST'0  ¥80°0 (700°0)000°T (£00°0)010°0- yoeoadde aAreN ‘T
0=1d
ol g 0g > g e o g Og/
mwz @Ugﬁm.ﬂﬁ.\f A.O.m QOmHN:'—Emmv QNOH_.\/H th#NEmawm

‘stsotjjuared UT UMOYS ST JOLId PIRPUR)S UOIJR[NUWIS 9], "A[oA1300dsol §°()

pue ¢'0‘¢’0°0 =17 10§ y'¢GT900="2 ‘T =1g°0=0g ‘T'0 = UOIIR[LI0D IAISN[-RIIUI PUR ()] = W ‘G=U ‘)OQ[=N IOJ[2A9] [ENPIAIDUI
OUJ 1R [OPOW [OAS[I)[NUL SUISIL IOJRWIIISO URWINOOH JO SI[NSOI UOIJR[NUIIS oY} I0J JIOLIO oIenbs UrOW pu®R dOURLIBA ‘URIIN :6'F O[QRL



Chapter 4 Simulation Study of Estimators of Cluster-level Regression Model

56

Table 4.10: Mean, variance and mean square error for the simulation results of Heckman estimator using multilevel model at the
individual levelfor N=1000, n=20, m = 25 and intra-cluster correlation = 0.1, 5o = 0,8, =1, ¢ = 0,0.6,1.5,2.4 for p = 0,0.2,0.5 and

0.8 respectively. The simulation standard error is shown in parenthesis.

Estimators Mean (simulation s.e.) Variance MSE
Bo B c Bo B c Bo B c

p=02

1. Naive approach 0.525(0.002) 0.672(0.003) 0.055 0.065 0.330 0.173

2. Alternative approach 0.066(0.011) 0.928(0.007) 1.251 0.462 1.255  0.467

3. Heckman two-step 0.085(0.022) 0.904(0.014) 0.534(0.027)  5.043 2.100 7.130 5.051 2110 7.135

4. Approximate Heckman 0.076(0.010) 0.926(0.007) 0.563(0.012) 1.085 0.431 1.538 1.091 0.437 1.539

two-step using p;

5. Heckman ML 0.259(0.013) 0.812(0.009) 0.326(0.006) 1.783 0.782 0.325 1.850 0.817 2.385
p=0.5

1. Naive approach 1.310(0.002) 0.228(0.003) 0.052 0.070 1.770 0.666

2. Alternative approach 1.077(0.011) 0.346(0.007) 1.234 0.506 2395  0.934

3. Heckman two-step 0.118(0.022) 0.900(0.014) 1.435(0.026) 4.854 2.022 6.789 4.868  2.032 6.793

4. Approximately to Heckman 0.955(0.011) 0.418(0.007) 0.448(0.013)  1.109 0.486 1.605 2.021 0.825 2.713

two-step using p;

5. Heckman ML 0.444(0.015) 0.711(0.010) 1.038(0.017) 2232 0975 2897 2429 1.058 3.110
p =038

1. Naive approach 2.018(0.002) -0.112(0.003) 0.039 0.083 4.112  1.320

2. Alternative approach 1.537(0.010) 0.139(0.007) 1.077 0.515 3.440  1.257

3. Heckman two-step 0.193(0.018) 0.930(0.012) 2.221(0.022)  3.296 1.376 4.682  3.333 1.381 4.714

4. Approximate Heckman 1.391(0.010) 0.230(0.007) 0.793(0.012) 0.923 0.465 1.343 2.859  1.057 3.926

two-step using p;

5. Heckman ML 0.326(0.013) 0.854(0.009) 2.049(0.015) 1.672 0.743 2.180 1.778 0.765 2.303




Chapter 4 Simulation Study of Estimators of Cluster-level Regression Model 57

4.3 Further Theory to Explain the Simulation Results

According to the simulation results from table 4.2 to 4.4, the naive estimator of i is
unbiased if m; is independent of x; but biased if m; depends on z;. We are now going to

explain this finding.

Assumption: 7; is independent of X;

As in (3.22),
E(B,) = E[(X'X)7'X'Y]
(4.8)
(X' X))~ X'E(Y,).
To find E(Y;), under model (4.2), we write
Yri = x/B+ €1 + €25 + (1 — pi)o,
E(gri) = E(x/B)+ E(ew) + E(&2) + E((1 — p;)0) (4.9)
= z/B+(1—mn)d,
assuming E(ey;|x;) = 0 and F(eg;j|x;) = 0.
Consequently,
E(gri) = =/ B", (4.10)
where
xizlll (i=1,2,...,n) and 8" = ﬁ0+(17r)5]'
Zi1 B
Hence,
E(Y,) = X'B". (4.11)
Substitute(4.11) into (4.8),
EB) = (X'X)TIX'E(Y,)
(X'X)~1X' X B* (4.12)

p*.
As a result, B\o” is a biased estimator if 7; is independent of X;. The bias can be shown

as follows.

Bias(Bo) = E(Bo) — Bo
= Bo+(1—md—Ppo
(1 —m)6,
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and Bl is unbiased estimator if 7; is independent of X, as E(Bl) = .

Assumption, 7; depends on z;

To show that E(Bln) # b1

We have,
E(pi|7ri7$i) = Ty-
Hence
E(pilzi) = FE(mlx;)

where h(x;) is an inverse logistic function.

According to (4.9),

E(gri) = E(x/B)+ E(e1) + E(&25) + E((1 — p;)d)
= xilﬁ + o — (5E(p1|:131)

Substitute (4.13) into (4.14),

E(§ri) = 2/ B+ 6(1 — h(zy)).

Let
1 1—h(.731)
fi=| an |, X=|x U], U=| : |, and
1 — h(z;), 1— h(zn)
Hence,
E(Y,) = Xp"
Therefore,
E() = (XX HX'E(Y,)
— (X,X_l)X,XB*
= (XX H(X'XX'U)p*
= (I(X'X"hHX'U)s*

Bo

1

+6(X' X HX'U.

As a result, By and 1 are generally biased estimators if m; depends on X;.

(4.13)

(4.14)

(4.15)

Bo

(4.16)

(4.17)
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4.4 Conclusion

Under the models underlying naive and alternative approaches, the naive approach per-
forms well in terms of minimum variance and mean square error under the MAR model.
However, it is biased for both 8y and 7 under NMAR model when p; depends on x; and
when p; independent of x;, and also 3 is biased under NMAR model with p; constant.

The alternative approach is successful in removing bias from both Gy and (1 under
NMAR model when 7; depends on x; and also corrects the bias that the estimator pro-
duces for By quite well when compared to results found using the naive approach under
NMAR model with 7; constant and m; variable but independent of x;. However, it does
have a higher variance than the naive approach yields except when ¢ is increasing under
MAR. It does not work at all for the Heckman model.

Under the model underlying Heckman estimator, the Heckman two-step estimator and
approximate Heckman maximum likelihood estimator both in some way reduced bias
but produced very high variance while the approximate Heckman maximum likelihood
estimator seems to have corrected biased well when compare to the one produced by the
naive approach, and also reduces minimum variance and lowers mean square error when

p increases but they do not work well with a multi-level model.






Chapter 5

Application using WERS Data

In Chapter 4, we undertook a simulation study to compare the performance of the esti-
mators from chapter 3. In this Chapter, we will apply the new methods we devised to
real data from the Workplace Employment Relations Survey (WERS) 2004 that will be
discussed in section 5.1. In this survey there were 2 levels, a single cluster and a single
element, employees within the workplace (there was a particular problem of nonresponse
by employees), the clusters are workplaces and the elements are employees. The liter-
ature related to the WERS 2004 data will be reviewed in section 5.2 and then we will
consider the Bryson et al. (2009) study in section 5.3 as the basis for the main empirical
work in this chapter. The proposed analysis and the results of the analyses are discussed
in section 5.4 and 5.5 respectively which will be assessed using the regression model at
the individual and workplace levels respectively. This section will also discuss both the
models that consider survey weight using the generalised regression (GREG) estimation
and those that ignore survey weight. Finally, the conclusion for our findings is given in

section 5.6.

5.1 The WERS 2004 Survey

The linked employer-employee Workplace Employment Relations Survey (WERS) 2004
data is used in our analysis. According to the information in the Workplace Employment
Relation Survey 2004, information and advice service (http://www.wers2004.info/),
which offers a recognised account of working life inside most British workplaces. Follow-
ing the information in WERS 2004 technical report for cross-section and panel surveys,
Chaplin et al. (2005) state that the WERS 2004 survey was conducted under a stratified
random sample of workplaces and a sample of employees at those workplaces . The strata
have been defined by the establishment size and a Standard Industrial Classification 2003
(SIC(2003)) as it was defined in WERS 1998 which leads to the sampling fraction being

61
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equal to 0.675 for each strata(Chaplin et al. (2005)). It was collected at workplace level
and targeted data from about 2,300 managers, 1,000 employee representatives and 22,500
employees which covers both the private and public sectors (http://www.wers2004.info).

This data does not cover these sectors of the British economy; mining and quarrying,
agriculture, hunting and forestry, fishing and private households without employed per-
sons occupying them and extra-territorial bodies (Bryson et al. (2009)). It contains both

the Cross-Section Management and Employee Representative data files.

From the Inter-Departmental Business Register, the Workplaces with at least 5 em-
ployees were sampled with aim to conduct a face-to-face interview with the most senior
person at each workplace looking at industrial relations, employee relations or person-
nel matters. The data has been conducted from management interview in total of
2,295 workplaces from a sample of 3,587 addresses which yielded a response rate of 64%
(http://www.wers2004.info).

The managers in 1,967 (86 %) of the 2,295 workplaces had permission to distribute an
eight page self-completion questionnaire for the Survey of Employees in the WERS 2004
Cross-Section to 25 randomly-selected employees in each workplace (or, to every em-
ployee in workplaces with from 5 to 24 employees). A further 10% of workplaces did not
return any questionnaires. There were 22,451 employees out of 37,000 questionnaires
who completed and returned the questionnaire, indicating a fieldwork response rate of
60% (http://www.wers2004.info).

5.2 Analyses of WERS 2004 Data

In this section we describe some published analyses of WERS 2004 data as background
to our application. Wood and Fairleigh (2007) used WERS 2004 data to find the change
in well-being within all contributing groups forming the British economy utilising Warr’s
contentment measure and job satisfaction levels to constitute their study. Regression
analysis and a psychological model known as the Karasek model are used to analyse
levels of well-being, e.g. studying the correlation between well-being and job demands.
The results show that highly demanding jobs which do not apply rules to staff produce
the most stress and least job satisfaction. Later, Wood (2008) considered the relation-
ship between job characteristics, the employee voice and well-being using the Karasek
model. The results show that there is a negative relationship between well-being and job

demands while there is a positive relationship between well-being and a sense of control



Chapter 5 Application using WERS Data 63

in the work place which is contradictory to his earlier results.

Additionally, some other works have been taken to examine the association between job
satisfaction and other variables. Rose (2007) examined the link between occupation and
employee job satisfaction using WERS 2004 data. Regression analysis is used to predict
job satisfaction taken from studies of the individual-level variables and workplace-level
variables in the data. The 81 minor occupation groupings specified in UK Standards
Occupational Classification 2000 were considered. The individual-level variables are ed-
ucation attainment, sex, age, pay level and skill type. The workplace-level variables are
workplace flexibility, sense of autonomy and a description of the workplace task struc-
ture, involvement of employees and workplace structure and practice are described by
the managers in a workplace. The results show a forty percent variance in outcomes that
cannot be explained using assumptions made before. Consequently, the further investi-
gation will be essentially before finalise the results. Later, Schyns et al. (2009) investi-
gated the effect of supportive leadership climate on job satisfaction. They focused their
analysis on three supportive leadership climate variables; supportive leadership climate
quality (the sample mean of the scores of supportive leadership climate from employees,
taken in survey, for each workplace), supportive leadership climate strength (the sample
standard deviation of the distribution of the scores of supportive leadership climate for
each workplace) and relative individual psychological supportive leadership climate (the
different between each employee’s climate score and the mean of the workplace) and
then they are tested whether or not related to job satisfaction. The univariate analysis
and multilevel model are used to analyse the result. The results show that supportive
leadership climate and individual leadership climate are related to job satisfaction but
not for supportive leadership climate strength. Nonetheless, the studying data is limited
to the employee questionnaire which employees are fully response to all their interest

variables which is lead to small data set due to nonresponse problem.

Bryson and Freeman (2008) investigated the effect of economic performance in employee
owned business on pay in the UK. Regression analysis is used to explore the relationship
between shared capitalist modes of pay (other factors held fixed) and individual pay for
results, managerial monitoring, and worker decision-making. They find that the growth
of shared capitalism is the same in the UK and the US.

Chatterji and Mumford (2008) studied wages in both the public and private sectors
for male employees on full-time contracts. WERS 2004 data is used to study individual
worker characteristics data for both public and private sector workplaces. The regression
analysis has been applied in the study. It focuses on earning outcomes for men employed

to work full time where the mid-point of the interval has been considered to measure
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weekly wages. The dependent variable is the hourly wage for each employee in each work-
place. The explanatory variables are potential experience (years), training (number of
training days taken in the previous year), education, vocational qualifications, children,
marital status, disabilities, ethnic origin, fixed term employment contract, length of em-
ployment, union membership if any and occupation. The results show that the earnings
points for public sector workers is 11.7 log wage more than their private sector and also

suggests no correlation between public sector pay and private sector pay exists.

Sessions and Theodoropoulos (2009) examined the association between the slope of the
wage-tenure profile and the level of monitoring using combined data from the Manage-
ment and Employee Questionnaires, WERS 1998 and WERS 2004. Interval regression
is used to analyze the result at individual level. The dependent variable is the weekly
wage earned for each employee at each workplace in term of logarithm. The explanatory
variables are the employee tenure, the level of monitoring, other individual regressors
(e.g. education, occupation, demographics, training, and first characteristics) along with
other variables at each establishment. By using dual cross sections of employee data the

analysts are confident that this prediction will be supported.

Antcliff and Saundry (2009) analysed the effect of the introduction of the statutory right
to accompaniment at both grievance and disciplinary hearings on three categories; rates
of disciplinary sanctions, dismissals and employment tribunal applications. It considers
the relationship between employee representation and rates of disciplinary sanctions,
dismissal and applications to employment tribunals. Tobit regression models and mul-
tivariate regression models are used to examine separate models for these rates using a
set of independent variables that measure characteristics of the workforce and workplace
including considerations of any employer’s legal compliance with the right to accompani-
ment; a measure of formality within grievance and disciplinary procedures; demographic
features( e.g. gender, ethnicity and age of the workforce), workplace size, type of es-
tablishment and union density. It shows that probably the grievance and disciplinary

processes have been affected by the introduction of the right to accompaniment.

Salis and Williams (2010) examined the association between the face-to-face communi-
cations (FTFC) of workplaces that have human resources management (HRM) practices
and looked for productivity gains. The response variable is the labour yield measured
in thousands of pounds for each employee. The explanatory variables are selected HRM
practices with their potential to enhance FTFC which are working in teams, forming
problem-solving (PS) groups, meetings between line managers and employees, meet-
ings between senior managers and employees and presentations from employees and
managers. Regression analysis is used to explore the data that they also control for the

workplace, organisation and market controls variables. Finally, the presence of the HRM
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practices variables are also controlled. The results show that there is a linear relation-
ship between productivity and FTFC in problem-solving groups, teams and meetings of

senior or line managers and employees.

5.3 The Study of Bryson et al. (2009)

We applied our methods to WERS 2004 data following Bryson et al. (2009) who focussed
their analysis on private sector workplaces only and examined the association between
innovations (management-initiated workplace change) and worker well-being using this
set of data which consisted of 13,500 employees in 1,238 workplaces. This research
studies well-being measurements in two data sets. The first one is found in analysing
employee responses to the following question: “Thinking of the past few weeks how
much of the time has your job made you feel each of the following: tense, calm, relaxed,
worried, uneasy, content?” A 5-point scale is used to categorise the responses. However,
the six anxiety-comment items are combined into single scale following Wood (2008),
and the five-point scores are rescaled to scale from -2 to 2. Therefore, the scale varies
between -12 and 12. The second one is job satisfaction variable where all eight aspects
of job satisfaction are used. Employees are asked to respond to the following questions:
“ How satisfied are you with the following aspects of your job?... achievement you get
from your work; the scope for using your own initiative; the amount of influence you
have over your job; the training you receive; the amount of pay you receive; your job
security; the work itself; the amount of involvement you have in decision-making at this
workplace?” Responses have been coded into a 5-point Likert scale varying from very
satisfied to very dissatisfied. Similar to the first variable, the second one is combined
and a 5-point Likert scale is recoded to scale from -2 to 2. Therefore, the scale varies
between -16 and 16.

Bryson et al. (2009) considered innovation variables as their independent variables where
innovation variables are depending on response from the manager at each workplace ac-

cording to the question below:

“Over the past two years has management here introduced any of the changes listed on
this card? PROBE: Which others? UNTIL ’None’:

1) Introduction of performance related pay

2) Introduction or upgrading of computers

3) Introduction or upgrading of other types of new technology
)

4) Changes in working time arrangements
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5) Changes in the organisation of work

6) Changes in work techniques or procedures

8) Introduction of technologically new or significantly improved product or service

9

)
)
7) Introduction of initiatives to involve employees
)
) NONE None of these”

They construct three count variables for innovations following the question above, the
first one is the summation of all eight innovations (innovations_all); the second one for
labour innovations depend on items 4, 5, 6, and 7 which 4 is the maximum value(innovations_work),
and the third one for capital innovations depend on items 2, 3, and 8 which 3 is the

maximum value (innovations_technology).

In addition, Bryson et al. (2009) considered the unionization variables and other impor-
tant control variables as independent variables. Unionization variables are controlled for
both individual union membership and workplace level union membership. The union
membership data at individual level is controlled where 1 represents individual union
membership and zero represents none union membership which is obtained directly from
employee answers in the employee self-completion questionnaire. In contrast, the work-
place level union membership data is obtained from the manager at each workplace
where its value is equal to 1 for union coverage and equal to zero for not covered. For
other control variables, we again follow Bryson et al. (2009), the individual level control
variables are age (9 dummies); academic qualifications (8 dummies); single-digit occupa-
tion (9 dummies); and dummies for disability and gender. The workplace level controls
are:single-digit industry (11 dummies); log workplace employment size and a quadratic

term; and a dummy for low travel-to-work-area unemployment (below 1.2%).

5.3.1 Models

Using the variables discussed in this section, the model of interest following Bryson et al.
(2009) is shown as below.

Wij = BiInnovations; + B2Union;j + BsInnovations; x Union;j + B4 Xi; + €, (5.1)

where W;; is well-being(or job satisfaction) for individual ¢ in workplace j, Innovations;
is the number of innovations recommenced in any workplace j, Union;; is a dummy for
union coverage, the X's represents the control vector and ¢;; is a standard normal dis-

tributed error term.
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Bryson et al. (2009) considered only unweighed regression models as shown above. They
applied these models to WERS2004 data and they found that there is a relationship be-

tween management innovations and lower employee sense of well-being.

5.4 Proposed Analysis

In our study, we focused on using the regression model of job satisfaction on the in-
novations and control variables only then used the alternative approach and the naive
approach with the WERS 2004 data. We analyse both the regression model at individual
level and at the workplace level. We also consider the models that take into account the
complex survey design and the models that ignore the complex survey design. Weighted

least square regression and raking are also used in the analysis shown as follows:

5.4.1 The Regression Model at Individual Level

In this section, the regression model of job-satisfaction at individual level is consid-
ered. We regress job-satisfaction on three innovation variables (innovations_all, innova-
tions_work and innovations_technology), nonresponse rate and other control variables.
We considered seven different estimation methods (Model 1: Naive approach, Model 2:
Alternative approach, Model 3: Heckman two-step estimator, Model 4: Approximate
to Heckman two-step estimator using p;, Model 5: Alternative approach with control
variables in the model, Model 6: Heckman two-step estimator with control variables in
the model and Model 7: Approximate to Heckman two-step estimator using p;). These

models are shown as follows.

Model 1: Naive approach
Yij = Bo + Prxi + €5, (5.2)
Model 2: Alternative approach
Yij = Bo + frxs + 0(1 — ps) + €5, (5.3)
Model 3: Heckman two-step estimator

zly
Yij = Bo + Prxi + cA <Z> + v, (5.4)

On
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In the probit model we regress R;; on number of employee at each workplace.

Model 4: Approximate to Heckman two-step estimator using p;

=)

!
Zi
In

For Heckman two-step approach replace A (
;=0 (p).

> by )\(‘/I}Z) = )\;. Here (I\’Z obtained from

Model 5: Alternative approach including control variables
Yij = Bo + Brzi + 0(1 — pi) + By Xij + €5, (5.5)

Model 6: Heckman two-step estimator including control variables

A
Yij = Bo + Przi + cA (?) + B, Xij + vy, (5.6)
n
Model 7: Approximate to Heckman two-step estimator using p; including

control variables

For this model we followed the same steps described for the Approximate Heckman two-

step estimator using the variable p; and including control variables into the model.

where y;; is job satisfaction for employee j in workplace ¢, ; is the number of innovations
in a workplace 4, the X's represent the control vector (for employee level control variables
these are: academic qualifications, single-digit occupation, and dummies for disability
and gender, the workplace-level control variables are single-digit industry, log workplace
employment size and a quadratic term, and a dummy for low travel-to-work-area unem-
ployment), p; is the employee response rate at each workplace i, €;; is a standard normal

distributed error term and v;; is an error term.

5.4.2 The Regression Model at Workplace Level

We again regress job-satisfaction on innovation variables and nonresponse rate but this
time at workplace level which is different from the approach Bryson et al. (2009) took.
We considered two different estimation methods (Model 1: Naive approach, and Model

2: Alternative approach. These models are shown here:
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Model 1: Naive approach
yi = Po + Prxi + €, (5.7)
Model 2: Alternative approach
Ui = Po + Prxi + 0(1 — p;) + €, (5.8)

where g; is the mean job satisfaction of employees in workplace i, x; is the innovations
employees in each workplace i, p; is the employees response rate ¢ and ¢; is a standard

normal distributed error term.

5.5 Results of Analysis

The results are divided into two sections; the regression model when not considering a
weighted survey and considering a survey weighted for three panels both at individual

level and at workplace level as follows:

5.5.1 The Results of the Regression Model at Individual Level
5.5.1.1 Unweighted Estimates of the Regression Model

In chapter 3, we look at how the alternative approach performs when we include a non-
response variable (1 — p;) into the regression model. In order to see how the alternative
estimator performs we undertook the simulation study we discussed in chapter 4. In
this section we also applied the alternative approach and Heckman estimators to real
data at individual level. We regress job-satisfaction on innovations and using the control

variables we discussed in the previous section.

Table 5.1 presents unweighted estimates of the regression model of job-satisfaction on
innovations_all and control variables. We see that the nonresponse rate variable is sig-
nificant at 0.05 level for both model 2 alternative approach and model 5 alternative
approach including control variables which use the regression model of job-satisfaction
on innovations_all although it was not accounted for at all in the Bryson et al. (2009) ap-
proach. However, the inverse mills ratio variable from the Heckman two-step estimator
is significant at 0.05 level only for models 3 but not for model 6 which includes control

variables in the model. Approximate to Heckman two-step estimator using p;, A variable
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is significant at 0.05 level for both model 4 and model 7 which includes control variables
in the model. Innovations_all variable is significant at 0.05 level only for models 1 to 4
which use the regression model of job-satisfaction on innovations_all but not including
control variables. Nevertheless, including control variables in models 5 and 7 we see
that 1 — p; and A variables are still significant at 0.05 level even though innovations_all
became insignificant and also benefit from using more available auxiliary variables to

increase the accuracy of the model.

Similar results have been shown in Table 5.2. Table 5.2 presents unweighted estimates of
the regression model of job-satisfaction on innovation_work and control variables. We see
that for both model 2 alternative approach and model 5 alternative approach including
control variables which use the regression model of job-satisfaction on innovations_work
the nonresponse rate variable is significant at 0.05 level although it was not accounted
for at all in the Bryson et al. (2009) approach. Similarly, approximate to Heckman
two-step estimator using p;, A variable is significant at 0.05 level for both model 4 and
model 7 which includes control variables in the model. Regardless, inverse mills ratio
variable from Heckman two-step estimator is significant at 0.05 level only for models 3
but not for model 6 which includes control variables in the model. The only difference
for Table 5.2 when compare to Table 5.1 is that innovation_work is significant at 0.05

level for models 1 to 7.

Table 5.3 also gives similar results to Table 5.1. Table 5.3 presents unweighted esti-
mates of the regression model of job-satisfaction on innovation_technology and control
variables. We see that the nonresponse rate variable is significant at 0.05 level for
both model 2 alternative approach and model 5 alternative approach including control
variables which use the regression model of job-satisfaction on innovations_technology
although it was not accounted for at all in the Bryson et al. (2009) approach. Neverthe-
less, the inverse mills ratio variable from the Heckman two-step estimator is significant
at 0.05 level only for models 3 but not for model 6 which includes control variables in
the model. Approximate to Heckman two-step estimator using p;, A variable is signif-
icant at 0.05 level for both model 4 and model 7 which including control variables in
the model. Innovations_technology variable is significant at 0.05 level only for mod-
els 1 to 4 which use the regression model of job-satisfaction on innovations_technology
but does not include control variables. However, including control variables in models
5 and 7 we see that 1 — p; and A variables are still significant at 0.05 level although
innovations_technology became insignificant and also benefit from using more available

auxiliary variables to increase the accuracy of the model.

If we compare the results in Tables 5.1 - 5.3 with the results of Bryson et al. (2009) we

can see that we obtain exactly the same result for model 1 leaving 1 — p;. If we include



Chapter 5 Application using WERS Data 71

the nonresponse rate variable (1—p;) into both model 2 and model 3 we still get the same
results as Bryson et al. (2009). Table 5.1, for example, innovation_all is not significant in
model 3 if we include control variables and 1—p;. It is also not significant if we leave 1—p;
in the regression model for both robust standard error following Bryson et al. (2009) or
non-robust standard error. The robcov function (robust covariance matrix estimates)
in R package is used for robust standard error which corrects heteroscedasticity and for

correlated responses from cluster samples and is normally bigger than non-robust ones.
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Panel A : INNOVATIONS_ALL

Table 5.1: The unweighted estimates of the regression model of job-satisfaction
on innovations_all and control variables. The T-statistics is shown in parenthe-

sis.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Tntercept 4547(46.735%)  4.779(30.534%)  -1.001(-1.537) 4.773(39.204%) 10.625(22.936%)  10.242(6.042%)  10.612(22.923%)
innovations_all  -0.160(-7.106%) -0.162(-7.183%) -0.124(-5.409*) -0.162(-7.183*) -0.027(-1.206) -0.025(-1.123) -0.027(-1.205)
1-pi/ imr/A -0.755(-3.234%)  35.015(3.614%) -0.440(-3.086%)  -0.730(-3.168%) 1.840(0.146)  -0.426(-3.029%)
unionrec 0.355(-2.926%)  -0.348(-2.872%)  -0.355(-2.932%)
member 0.699(-5.545%)  -0.690(-5.471%)  -0.697(-5.534%)
male 0.445(-4.147%)  -0.441(-4.100%)  -0.445(-4.153%)
disability 1.516(-6.636*)  -1.528(-6.687%)  -1.516(-6.638%)
agel 0.247(0.629) 0.216(0.549) 0.245(0.623)
age2 -0.112(-0.395) -0.140(-0.496) -0.112(-0.396)
age3 -0.45 ( 1.688)  -0472(-1.751)  -0.456(-1.693)
aged 0.595(-4.210%)  -0.601(-4.246%)  -0.595(-4.207%)
ageb -0.051(-0.402) -0.051(-0.400) -0.051(-0.401)
age? 0. 070(0 487)  0.068(0.473) 0.070(0.490)
age8 1.536(5.727%)  1.526(5.690%)  1.535(5.724%)
aged 3.176(5.975%)  3.148( 5.922%)  3.174(5.971%)
academic2 20.220(-1.039)  -0.222(-1.047)  -0.219(-1.035)
academic3 -0.125(-0.658) -0.117(-0.612) -0.123(-0.647)
academicd 20.795(-5.171%)  -0.785(-5.103%)  -0.793(-5.150%)
academich -0.989(-4.209%)  -0.982(-4.181%) -0.988(-4.206%)
academic6 -1.116(-5.526*)  -1.105(-5.469*)  -1.115(-5.519%)
academic? 1.201(-7.298%)  -1.274(-7.204%)  -1.280(-7.280%)
academic8 -1.474(-5.855%)  -1.472(-5.842%)  -1.474(-5.853%)
occupation2 1.555(-7.595%)  -1.534(-7.493*) 1.555(-7.592*)
occupation3 1727(-10.014%)  -1.713(:9.921%)  -1.726( -10.009%)
occupation4 -2.295(-13.578%)  -2.280(-13.482%)  -2.294(-13.573*)
occupation 2.744(-13.056%) -2.746(-13.062%)  -2.744(-13.058*)
occupation6 -2.067(-8.176%)  -2.087(-8.250*%)  -2.069( -8.185%)
occupation? -3.065(-14.511%)  -3.075(-14.554*)  -3.066(-14.515*)
occupation8 -3.157(-15.205%) -3.153(-15.177%)  -3.158(-15.200%)
occupation9 -2.936(-14.718%) -2.956(-14.823*)  -2.937(-14.726*)
manu -0.884(-3.940%)  -0.850(-3.833%)  -0.880(-3.932%)
utility -0.512(-1.466) -0.501(-1.433) -0.511(-1.463)
construction 0.784(2.947%) 0.804( 3.023%) 0.787(2.959%)
wholeret 0.105(-0.452)  -0.128(-0.554)  -0.103(-0.444)
hotrest 0.431(1.386) 0.395(1.272) 0.436(1.403)
transcom 0.673(-2.545%)  -0.700(-2.640%)  -0.673(-2.543%)
finserv SLA11(-5.738%)  -1.353(-5.514%)  -1.405(-5.716%)
othbus -0.380(-1.736)  -0.350(-1.599)  -0.376(-1.719)
education 0.784(2.545%)  0.788( 2.534%)  0.785(2.547%)
health 1.003(4.481%)  1.128(4.625%)  1.006(4.494%)
lemp 0.945(-5.736%)  -1.020(-3.637%)  -0.947(-5.746%)
lempsq 20.070(4.178%)  0.078(2.219%)  0.070(4.185%)
duratel 0.541(3.780%)  0.547( 3.824%)  0.541(3.787%)

* Significant at the 5 percent level
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Panel B : INNOVATION_WORK
Table 5.2: The unweighted estimates of the regression model of job-satisfaction
on innovations_work and control variables. The T-statistics is shown in paren-
thesis.
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Tntercept 4481(54.995%) 4.694(43.799%)  -0.955(-1.485) 4.688(43.360%) 10.647(23.032%)  10.349(6.105%)  10.642(23.019%)
innovations work -0.286(-8.115%) -0.286(-8.114*%) -0.234(-6.563*) -0.286(-8.118%)  -0.100(-2.842%)  -0.100(-2.821%)  -0. 101( 2.845%)
1-p;/ imr/\ -0.713(-3.057F)  34.546(8.525%) -0.415(-2.915%)  -0.726(-3.154%) 1.212(0.096)  -0.424(-3.018%)
unionrec 0.341(-2.819%)  -0.335(-2.766%)  -0.342(-2.824%)
member -0.692(-5.494%)  -0.682(-5.417%) -0.691(-5.483%)
male -0.449(-4.186%)  -0.446(-4.149%)  -0.449(-4.191%)
disability -1.520(-6.655%)  -1.532(-6.708%)  -1.520(-6.657%)
agel 0.247(0.630) 0.216(0.549) 0.245( 0.624)
age2 -0.109(-0.386)  -0.138(-0.486)  -0.110(-0.388)
age3 -0.458(-1.701)  -0.476(-1.764)  -0.460(-1.705)
aged -0.591(-4.181%)  -0.596(-4.216%)  -0.591(-4.1783%)
age6 -0.050(-0.392)  -0.050(-0.391) 0. 000( 0.392)
age7 0.072(0.500) 0.070(0.487) 0.072(0.503)
age8 1.532(5.715%)  1.523(5.679%)  1.532(5.713%)
age9 3.160(5.945%)  3.132(5.802%)  3.157(5.941%)
academic2 0.215(-1.016)  -0.217(-1.022)  -0.214(-1.012)
academic3 -0.119(-0.622)  -0.110(-0575)  -0.117(-0.612)
academicd 0.791(-5.143%)  -0.780(-5.074%)  -0.789(-5.131%)
academich -0.984(-4.190%)  -0.978(-4.162%)  -0.983(-4.187%)
academic6 1.106(-5.475%)  -1.094(-5.417%)  -1.104(-5.468*)
academic? -1.286(-7.270%)  -1.269(-7.176%) -1.284(-7.262%)
academic8 -1.476(-5.861%)  -1.473(-5.848%) -1.475(-5.859%)
occupation? SLBT0(-7.666%)  -1.549(-7.565%)  -1.569( -7.663*)
occupation3 -1.734(-10.055%)  -1.720(-9.965%)  -1.733(-10.050%)
occupationd -2.300(-13.616%) -2.286(-13.522*) —2.300( 13.612%)
occupation5 2.757(-13.119%)  -2.760(-13.127%) -2.757( -13.120%)
occupation6 2.076(-8.217%)  -2.097(-8.204%)  -2.078(-8.225%)
occupation? -3.067(-14.524%)  -3.077(-14.566*)  -3.068(-14.527%*)
occupation8 -3.168(-15.262%) -3.164(-15.236*)  -3.169(-15.266*)
occupation9 -2.946(-14.771%)  -2.966(-14.878%)  -2.947(-14.779%)
manu -0.901(-4. 002*) -0.875(-3.903%) -0 897( 4.006*)
utility -0.508(-1.455) -0.496(-1.420) -0.507(-1.452)
construction 0.736(2. 761*) 0.755(2.833%)  0.739(2.773%)
wholeret -0.108(-0.468)  -0.131(-0.567)  -0.107(-0.461)
hotrest 0.431(1.388) 0.396(1.275) 0.437(1.405)
transcom -0.689(-2.605%)  -0.715(-2.699%)  -0.689(-2.603*)
finserv LAI8(-5.770%)  -1.360(-5.546%)  -1.413(-5.748%)
othbus -0.397(-1.815)  -0.367(-1.678)  -0. 393( 1.798)
education 0.734(2.377%) 0.734(2.358*) 0.734(2.379%)
health 1.106(4.536%)  1.141(4.679%)  1.109(4.548%)
lemp -0.925(-5.6207)  -0.983(-3.520%)  -0.927(-5.629%)
lempsq -0.069(4.131%)  0.076(2.151¥)  0.069(4.137%)
duratel 0.539(3.776*)  0.546(3.814%)  0.539(3.774%)

* Significant at the 5 percent level
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Panel C : INNOVATION_TECHNOLOGY

Table 5.3: The unweighted estimates of the regression model of job-satisfaction

on innovation_technology and control variables.

The T-statistics is shown in

parenthesis.
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Intercept 4.261(45.377%)  4.509(37.534%) -1.658(-2.575%)  4.501(37.534*)  10.543(22.744* 10.234(6.037* 10.537(22.730%
innovation_technolog  -0.180(-3.926%) -0.189(-4.123*) -0.116(-2.506*) -0.188(-4.110*) -0.044(0.958 0.052(1.140 0.044(0.970
1-p;/ imr/A 0.775(-3.308%)  4.044(9.201%) -0.450(-3.151%)  -0.700(-3.074* 1.273(0.101)  -0.413(-2.935*

unionrec
member
male

disab

agel

age2

age3

aged

age6

age’

age8

age9
academic2
academic3
academic4
academich
academic6
academic?
academic8
occupation2
occupation3
occupationd
occupationd
occupation6
occupation?
occupation8
occupation9
manu
utility
construction
wholeret
hotrest
transcom
finserv
othbus
education
health

lemp
lempsq
duratel

)
)
)
-0.343(-2.824%)
-0.708(-5.622*)
-0.445(-4.149%)
-1.511(-6.614%)
0.249(0.632)
-0.122(-0.431)
-0.457(-1.696)
-0.601(-4.250%)
-0.054(-0.418)
0.066(0.462)
1.533(5.714%)
3.178(5.979%)
-0.223(-1.053)
-0.131(-0.687)
-0.801(-5.207%)
-0.989(-4.211%)
-1.125(-5.571)
-1.208(-7.336*)
-1.481(-5.880%)
-1.556(-7.600)
-1.729(-10.021%)
_2.290( 13.580%)
-2.734(-13.015%)
-2.046(-8.093%)
-3.058(-14.477%)
-3.146(-15.156%)
-2.927(-14.675%)
-0.895(-3.995)
-0.509(-1.459)
0.795(2.993)
-0.104(-0.448)
0.420(1.352)
-0.668(-2.524%)
-1.418(-5.767%)
-0.376(-1.721)
0.814(2.646%)
1.094(4.484*)
-0.972(-5.906%)
0.071(4.231%)
0.545(3.817%)

-0.335(-2.761*
—0.6992( 5.551%
-0.442(-4.115*%
-1.523(-6.664*
0.218(0.554
-0.151(-0.532
-0.474(-1.758
-0.606(-4.287*
0. 004( 0.419
0.064(0.446
1.523(5.676*

3. lol(o 926*
-0.225(-1.059
-0.122(-0.641
-0.791(-5.142*
-0.983(-4.184*
-1.114(-5.517*
-1.282(-7.247*
-1.479(-5.860*
-1.537(-7.504*
-1.715(-9.935*
-2.281(-13.489*
-2.737(-13.021*
-2.065(-8.162*
-3.067(-14.515%
-3.142(-15.128*
-2.946(-14.776*
-0.872(-3.887*
-0. 498( 1.423
0.813(3.059*
-0.126(-0.545
0.385(1.239
-0.693(-2.616*
-1.362(-5.553*
0. 348( 1.590
0.816(2.630*
1.128(4.627*
-1.036(-3.697*
0.077(2.201%
0.552(3.855*

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

-0.343(-2.828*
-0.707( 5.611%
-0.446(-4.154*
-1.511(-6.615*
0.246(0.627
-0.123(-0.434
-0.458(-1.700
-0.601(-4.247*
0. 004( 0.418
0.067(0.464
1.532(5.711%*
3.176(5.975
-0.222(-1.049
-0.129(-0.676
-0.799(- 5 196*
-0.989(-4.208*
-1.124(-5.565*
-1.296(-7.328*
-1.480(-5.877*
-1.556(-7.596*
“1.728(-10.016*
-2.204(-13.575
-2.735(-13.016*
-2.048(-8.101*
-3.059(- 14 480%*
-3.147(-15.159*
-2.928(-14.682*
-0.892(-3.979*
-0. 008( 1.455
0.798(3.005
-0.102(-0.441
0. 420(1 368
-0.667(-2.522*
-1.413(-5.745*
0. 373( 1.704
0.815(2.649*
1.097(4.497*
-0.974(-5.916*
0.071(4.238*
0.545(3.815*

)
)
)
)
)
)
)
)
)
)
)
)
)
)
*)
)
)
)
)
)
)
)
)
)
*)
)
)
)
)
)
)
)
*)
)
)
)
)
)
)
)
)
)
)

* Significant at the 5 percent level
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5.5.1.2 Survey Weighting of the Regression Model

We did a generalised regression (GREG) estimation in order to construct survey weight.
The GREG estimation requires the use of auxiliary information of population totals to
create survey weight and it is used for design-based estimations of population totals in
survey sampling which we discuss in more detail in Chapter 6. We consider two variables
from management files in WERS data in section 5.1; gender and occupation and use the
gender and occupation distributions for both responding and sample employees. Then
we calculate the unweighted results following the ‘WERS 2004 Cross-Section: Survey of
Employees Revisions to survey weighting(2007)’ method.

We finally obtain the new weight with coefficients of variation equal to 0.848 to use for
survey weight and apply this to the regression model that considers survey weight. We
use the R package with function svydesign to take into account survey design and the

results are shown in Tables 5.4 to 5.6.

Table 5.4 presents the weighted estimates of the regression model of job-satisfaction
which regresses on innovations_all. Model 1 naive approach is shown the regression
model of job-satisfaction which regresses on innovations_all. The alternative approach
which is the regression model of job-satisfaction which regresses on innovations_all and
the nonresponse rate variable (1 — p;) is shown in model 2 and the alternative approach
which includes nonresponse rate variable and control variables is shown in model 3 re-
spectively . We see that nonresponse rate variable is significant at 0.05 level in model 2
alternative approach but it is not significant in model 3 alternative approach including
control variables. Moreover, the innovation_all variable is significant in models 1 and 2

but not for model 3 which includes nonresponse rate and control variables.

In comparison with the results in Table 5.1 the unweighted estimates of the regression
model of job-satisfaction on innovation_all and control variables in model 1 naive ap-
proach, model 2 alternative approach and model 5 alternative approach including control
variables we can see some differences as follows. The response rate variable from the
weighted estimates of the regression model from alternative approach including control
variables is not significant which is different than the one in the unweighed estimates
in the same model and also some control variables became insignificant, e.g. union
coverage (unionrec), a quadratic term of log workplace employment size (lempsq) and
a dummy variable for low travel-to-work-area unemployment (duratel). Nevertheless,

similar results are shown in models 1 and 2.



76 Chapter 5 Application using WERS Data

Table 5.5 presents the weighted estimates of the regression model of job-satisfaction
which regresses on innovations_work. Similar to Table 5.4 model 1 represents the naive
approach that is the regression model of job-satisfaction which regresses on innova-
tions_work. The alternative approach which is the regression model of job-satisfaction
which regresses on innovations_all and the nonresponse rate variable (1 — p;) shown in
model 2 and the alternative approach which includes nonresponse rate variable and con-
trol variables which was shown in model 3. Our results in Table 5.5 give similar patterns
to Table 5.4 where we see that the nonresponse rate variable is significant at 0.05 level
in model 2 alternative approach but it is not significant in model 3 alternative approach
which includes control variables. Moreover, the innovation_all variable is significant in

models 1 and 2 but not for model 3 which includes nonresponse rate and control variables.

Compared to the results in Table 5.2 the unweighted estimates of the regression model
of job-satisfaction on innovation_work and control variables in model 1 naive approach,
model 2 alternative approach and model 5 alternative approach including control vari-
ables, we can see that the response rate variable from the weighted estimates of the
regression model from alternative approach including control variables is not significant
which is different than the one in the unweighed estimates in the same model and also
found that some control variables became insignificant, e.g. a quadratic term of log
workplace employment size (lempsq) and a dummy variable for low travel-to-work-area
unemployment (duratel). Furthermore, innovation_work variable from the unweighed

model became insignificant but nevertheless, similar results are shown in models 1 and 2.

Table 5.6 presents the weighted estimates of the regression model of job-satisfaction
which regresses on innovations_technology. Model 1 naive approach is shown the re-
gression model of job-satisfaction which regresses on innovations_technology. The al-
ternative approach which is the regression model of job-satisfaction which regresses on
innovations_technology and the nonresponse rate variable (1 — p;) shown in model 2 and
the alternative approach which includes nonresponse rate variable and control variables
shown in model 3 respectively. We see that nonresponse rate variable is significant at 0.05
level in model 2 alternative approach but again it is not significant in model 3 alterna-
tive approach including control variables. On the other hand, the innovation_technology

variable is not significant in all models.

In comparison with the results in Table 5.3 the unweighted estimates of the regression
model of job-satisfaction on innovation_technology and control variables in model 1 naive
approach, model 2 alternative approach and model 5 alternative approach including con-
trol variables we can see some differences as follows. The response rate variable from the
weighted estimates of the regression model from alternative approach including control

variables is not significant. Also, the innovation_technology variable from the weighted



Chapter 5 Application using WERS Data

estimates of the models 1 and 2 became insignificant.

Panel A :INNOVATIONS_ALL

Table 5.4: The weighted estimates of the regression model of job-satisfaction
regresses on innovations_all and control variables. The T-statistics is shown in

parenthesis.

Model 1 Model 2 Model 3
Intercept 4.524(23.132%)  4.828(18.410%) 10.393(13.180*)
innovations_all -0.190(-4.022%) -0.193(-4.050%)  -0.042(-1.003)
1-p; 0.992(-2.175%)  -0.719(-1.689)
unionrec -0.378(-1.832)
member -0.844(-4.355%)
male -0.391(-2.549%)
disability -1.551(-4.332%)
agel 0.203(0.483)
age2 0.140(0.379)
age3 £0.544(-1.640)
aged -0.500(-2.535)
ageb 0.028(0.165)
age7 0.075(0.376)
age$ 1.366(4.271%)
age9 3.479(5.307%)
academic2 -0.081(-0.299)
academic3 -0.081(-0.314)
academic4 -0.669(-3.236%)
academich -0.957(-3.252%)
academic6 -0.8726(-3.107)
academic? -1.167(-4.425%)
academic8 -1.328(-3.396%)
occupation2 -1.793(-6.447)
occupation3 -1.702(-7.120%)
occupationd -2.180(-9.706%)
occupationb -2.534(-9.497)
occupation6 -2.059(-6.226%)
occupation? -2.922(-10.249%)
occupation8 -3.112(-11.185)
occupation9 -2.917(-9.543%)
manu -1.369(-3.074)
utility -1.406(-1.890)
construction 0.373(0.8317)
wholeret £0.656(-1.659)
hotrest 0.208(0.338)
transcom -1.259(-2.584%)
finserv -2.209(-4.939%)
othbus -0.681(-1.678)
education 0.687(1.303)
health 0.621(1.436)
lemp -0.695(-2.483*)
lempsq -0.048(1.677)
duratel 0.315(1.306)

* Significant at the 5 percent level
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Panel B : INNOVATION_WORK

Table 5.5: The weighted estimates of the regression model of job-satisfaction
regresses on innovation_work and control variables. The T-statistics is shown in

parenthesis.

Model 1 Model 2 Model 3
Tntercept 1.500(27.586%)  4.783(21.009%)  10.375(13.377%)
innovation_work -0.385(-5.212%) -0.385(-5.187%)  -0.152(-2.442)
1-p; 0.928(-2.071%)  -0.725(-1.718)
unionrec -0.352(-1.725%)
member -0.836(-4.330%)
male -0.400(-2.621%)
disability -1.553(-4.341%)
agel 0.202(0.482)
age2 0.151(0.407)
age3 -0.542(-1.630)
aged -0.490(-2.492%)
age6 0.027(0.156)
age7 0.081(0.407)
age$ 1.366(4.270%)
age9 3.473(5.272%)
academic2 -0.074(-0.270)
academic3 -0.068(-0.266)
academic4 -0.659(-3.201%)
academich -0.952(-3.249%)
academic6 -0.856(-3.058%)
academic? -1.155(-4.392%)
academic8 -1.331(-3.406%)
occupation2 -1.822(-6.584)
occupation3 -1.717(-7.196*)
occupationd -2.189(-9.761%)
occupation’ -2.555(-9.559)
occupation6 -2.074(-6.277*)
occupation? -2.921(-10.259%)
occupation8 -3.128(-11.300)
occupation9 -2.939(-9.666*)
manu -1.389(-3.166)
utility -1.403(-1.919)
construction 0.322(0.726)
wholeret -0.654(-1.688)
hotrest 0.221(0.362)
transcom -1.273(-2.654*)
finserv -2.214(-5.036%)
othbus -0.694(-1.740)
education 0.615(1.176)
health 0.660(1.538)
lemp -0.652(-2.331%)
lempsq -0.045(1.611)
duratel 0.318(1.325)

* Significant at the 5 percent level
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Panel C : INNOVATION_TECHNOLOGY

Table 5.6: The weighted estimates of the regression model of job-satisfaction
regresses on innovation_technology and control variables. The T-statistics is
shown in parenthesis.

Model 1 Model 2 Model 3
Tntercept 1.195(22.055%)  4.447(17.379%)  10.280(12.956%)
innovation_technology  -0.172(-1.761)  -0.185(-1.903) 0.048(0.533)
1-p; -1.003(-2.191%)  -0.672(-1.585)
unionrec -0.372(-1.800)
member -0.854(-4.405%)
male -0.394(-2.572%)
disability -1.545(-4.322%)
agel 0.223(0.534)
age2 0.121(0.329)
age3 -0.555(-1.671)
aged -0.503(-2.558)
ageb 0.028(0.164)
age7 0.072(0.362)
age8 1.364(4.257%)
age9 3.479(5.256%)
academic2 -0.085(-0.312)
academic3 -0.089(-0.346)
academic4 -0.677(-3.276%)
academich -0.9589(-3.259%)
academic6 -0.890(-3.177)
academic? -1.177(-4.469%)
academic8 -1.334(-3.421%)
occupation2 -1.783(-6.418)
occupation3 -1.697(-7.077%)
occupationd -2.177(-9.680%)
occupationb -2.504(-9.362)
occupation6 -2.013(-6.101%*)
occupation? -2.915(-10.249%)
occupation8 -3.085(-11.033)
occupation9 -2.899(-9.481%)
manu -1.370(-3.062)
utility -1.409(-1.883)
construction 0.398(0.889)
wholeret -0.648(-1.625)
hotrest 0.207(0.339)
transcom -1.242(-2.514%)
finserv -2.203(-4.890%)
othbus 0.673(-1.652)
education 0.733(1.388%)
health 0.626(1.452)
lemp -0.738(-2.627%)
lempsq 0.049(1.730)
duratel 0.305(1.268)

* Significant at the 5 percent level

5.5.2 The Results of the Regression Model at Workplace Level

Similar to the previous section, the results are divided into two sections; the regression

model when not considering a weighted survey and considering a weighted survey for
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three panels (A:innovations_all, B:innovations_.work and C:innovations_technology) as

follows:

5.5.2.1 Unweighted Estimates of the Regression Model

Following the theory in chapter 3, we again look at the alternative approach including the
nonresponse variable (1—p;) into the regression model at workplace level. We applied the
alternative approach to real data at workplace level beside of simulation study in chapter
4. Table 5.7 and 5.8 present the results of the regression model of job-satisfaction re-
gressed on innovations (innovation_all, innovation_work and innovation_technology) and
nonresponse rate (n,) considering non-weighted and weighted surveys respectively. We
see a difference in results when we compare the individual level results with the work-
place level results because nonresponse rate is not significant at workplace level but at
individual level it is at 0.05 in both unweighted and weighted surveys. Bryson et al.

(2009) did not consider the regression model at workplace level.

Table 5.7: The unweighted estimates of the regression model of job-satisfaction
regresses on innovations. The T-statistics is shown in parenthesis.

Model 1 Model 2

Panel A : INNOVATIONS_ALL

Intercept 4.943(29.818%)  5.106(23.353*)

innovations_all -0.213(-5.307*%)  -0.216(-5.362*)

1-p; -0.393(-1.142)
Panel B : INNOVATION_WORK

Intercept 4.816(34.297%)  4.941(25.203%)

innovations_work -0.357(-5.631%)  -0.358(-5.640%)

1-p; -0.314(-0.915)
Panel C : INNOVATION_TECHNOLOGY

Intercept 4.602(28.865%)  4.7769(21.839%)

innovations_technology -0.249(-3.073*)  -0.258(-3.173*)

1-p; -0.402(-1.157)

* Significant at the 5 percent level
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5.5.2.2 Survey Weighting of the Regression Model
Table 5.8: The weighted estimates of the regression model of job-satisfaction
regresses on innovations. The T-statistics is shown in parenthesis.
Model 1 Model 2

Panel A : INNOVATIONS_ALL

Intercept
innovations_all
1-pi

4.990(20.743%)
-0.213(-3.898%)

5.374(17.316%)
-0.219(-3.986%)
-0.951(-1.788)

Panel B : INNOVATION_WORK

Intercept

innovations_work

1-p;

4.930(25.111%)
-0.414(-4.927%)

5.255(19.319%)
-0.414(-4.893%)
-0.849(-1.605)

Panel C : INNOVATION_TECHNOLOGY

Intercept

innovations_technology

1-p;i

4.635(19.647%)
-0.215(-1.858%)

5.043(16.658*)
-0.238(-2.075%)
-0.962(-1.823)

* Significant at the 5 percent level

5.5.3 Comparing the Differences in the Significance of the Coefficients
between the Models that Take into Account the Complex Survey
Design and the Models that Ignore the Complex Survey Design

Considering the models that ignore the complex survey design at individual level the
nonresponse rate variable is significant at 0.05 level for both the regression model of
job-satisfaction with regresses on innovation (innovations_all, innovations_work and

innovations_technology) and nonresponse rate included, and the regression model of
job-satisfaction regressed on innovation (innovations_all, innovations_work and innova-
tions_technology) and the nonresponse rate and control variables (Similarly, if we con-

sider robust standard error for this model, nonresponse rate is also significant).

However, the nonresponse rate is not significant at workplace level for the models that
ignore complex survey design. If we look at control variables we can see that the results
do not change very much between unweighted and weighted surveys e.g. academic quali-
fication and occupation variables do not change but some of the results from single-digit

industry variables became insignificant e.g. education.

For the models that take into account the complex survey design at individual level non-
response rate is still significant at 0.05 level but only when the model of job-satisfaction is
regressed on innovation (innovations_all, innovations_work and innovations_technology)

and on the nonresponse rate, but not for regression models that include control variables.
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Nevertheless, if we consider some models of job-satisfaction regressed on innovation
(e.g. innovations_all, innovations_work), and on nonresponse rate and control variables

the nonresponse rate is significant at 0.10 level.

We can see that the estimation of the intercept and innovation variables does not change
much between weighted and unweighted models but in some cases the results are affected

e.g. Panel C: innovation_technology.

On the other hand, for the models that take into account the complex survey design
at workplace level nonresponse rate is again not significant at 0.05 level although there
are some cases like that found in the regression model of job-satisfaction on innovation
(innovations_all, and innovations_technology) and nonresponse rate where nonresponse

rate is significant at 0.10 level.

We can see that the estimation of the intercept and innovation variables does not change
much between the weighted and unweighted models while the regression coefficient of
nonresponse term for survey weighted model looks better but still not significant at 0.05

level.

In conclusion, there is a problem with the model at workplace level as nonresponse rate
is not significant. Therefore we will do further analysis by applying lowess plot and
weighted least square regression(WLS) onto our model. The details are shown in sec-

tion 5.5.4 as follows:

5.5.4 Weighted Least Square Regression

According to the results for regression models at workplace level we can see that the
nonresponse rate variable is not significant and therefore we will do some more analysis
by looking at the lowess plot between the residuals from the regression models in section
5.5.1 (unweighted estimates) and response rate (p;). We can see evidence of unequal
variance. Hence, we use the number of employee returned questionnaires (nnumseq) as
the weight in the regression models. In this case the nnumseq is inverse to Var(e;),

because the nnumseq is inverse to Var(e;) we define the weights as below:

The weights = nnumseq(number of employees returned)
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We consider both normal standard error and robust standard error. The OLS function

in R package is used for WLS and also robcov function for robust standard error. The

results are shown as follows:

WLS with normal standard error

Table 5.9: The regression model of job-satisfaction regresses

The T-statistics is shown in parenthesis.

on innovations.

Model

Panel A :INNOVATIONS_ALL

Intercept
innovations_all

1-p;

4.776(25.861%)
-0.163(-4.735%)
-0.761(-2.139%)

Panel B : INNOVATION_WORK

Intercept
innovations_work

1-pi

4.697(28.718%)
-0.292(-5.426*)
-0.713(-2.010%)

Panel C : INNOVATION_TECHNOLOGY

Intercept

innovations_technology

1-pi

4.494(24.334%)
-0.184(-2.612*)
-0.784(-2.185%)

* Significant at the 5 percent level

Table 5.9 present the results for the regression of job-satisfaction regresses on innova-

tions (innovation_all, innovation_work and innovation_technology). We see nonresponse

rate variable is significant at 0.05 level for all cases.

WLS with robust standard error

Table 5.10: The regression model of job-satisfaction regresses

The T-statistics is shown in parenthesis.

on innovations.

Model

Panel A : INNOVATIONS_ALL

Intercept
innovations_all

L-p;i

4.776(28.994%)
-0.163(-5.358*)
-0.761(-1.417)

Panel B :INNOVATION_WORK

Intercept
innovations_work

1-p;

4.697(30.483%)
-0.292(-6.247%)
-0.713(-1.325)

Panel C : INNOVATION_TECHNOLOGY

Intercept

innovations_technology

L-pi

4.494(26.918%)
-0.184(-2.876%)
-0.784(-1.461)

* Significant at the 5 percent level
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Table 5.10 presents the results for the regression of job-satisfaction regressed on innova-
tions (innovation_all, innovation_work and innovation_technology) with robust standard
error. Unfortunately the nonresponse rate variable is not significant at 0.05 level for all

cases.

5.6 Conclusion

The alternative approach performs well at individual level for both unweighted and
weighted surveys on the job-satisfaction regressed on innovation variables and nonre-
sponse rate but if we include control variables into the model the nonresponse rate
variable becomes insignificant at 0.05 level for weighted surveys but is still significant

for unweighted model.

The alternative approach does not work well at workplace level for both unweighted and
weighted surveys. However, the alternative approach performs better after we apply

WLS into workplace level models but only for unweighted estimates.

The Heckman two-step estimator also works well because the inverse mills ratio variable
is significant at 0.05 level but only for the model of job-satisfaction regressed on inno-

vation variable not for model which includes control variables in the model.

The approximate to Heckman two-step estimator using p; perform well in both models
of the job-satisfaction regressed on innovation variables and also the model including

control variables.

If we compare the results of real data with the simulation results from Chapter 4, we
can see that the alternative approach only works well at individual level but not at
workplace level. There might be some specific reasons why this set of real data does
not suit the alternative approach. For example, we assumed the population has normal
distribution in the simulation study but real data distribution might not have normal
distribution and moreover the variance is not constant and that is why we applied WLS
for workplace level. The alternative approach seems to work well after we used WLS

with normal standard error.



Chapter 6

GREG estimators for Two-Stage
Sampling

6.1 Introduction

This chapter considers a new topic not covered in the previous chapters but with a sim-
ilar framework, population and sampling set up. The generalised regression estimator

(GREG) for two-stage sampling is considered.

In section 6.2, we review the literature related to the GREG estimators. In section
6.3, the customary GREG estimator is considered and in section 6.4, we will propose a
new GREG estimator for two stage sampling. Finally, in section 6.5 we will show the

simulation results.

6.2 Literature Review

The generalised regression (GREG) estimator is used for design-based estimation of pop-
ulation totals in survey sampling. The GREG estimator uses auxiliary information and
is a special type of calibration estimator. In this chapter we introduce some new ways
of using this GREG estimator under two-stage sampling. Some early works have been
done on GREG and the calibration estimators. Bethlehem and Keller (1987) proposed
a weighting method to calculate weights using linear regression models at the person
level producing better results than post- stratification other than where there is only
one qualitative auxiliary variable in the model. The new weighting method can address
the issues occurring in post-stratification specifically where some strata do not contain

any members and details about population are not known but still where their theory

85
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is limited to simple random sampling.

Alexander (1987) proposed methods to find household weights which are subject to the
constraints of consistency with known control counts in data. This data contains many
cells with data about persons where the value of the weightings are close to the initial
calculated vectors of household weightings. He considered three types of methods called
constrained minimum distant methods which include the principal person method used
under two-stage cluster sampling. The proposed method has been compared to the prin-
cipal person method. The conclusion is that any analysis using these methods would
best be served by first gathering more information about survey undercoverage in order

to decide which method would provide the best results.

Lemaitre and Dufour (1987) proposed an integrated procedure that calculates household
weights and can be used to estimate person weights as well. This method is based on
assumptions made by Bethlehem and Keller (1987). In order to apply this method, they
suggested using the household mean instead of the corresponding auxiliary variables at
the person level, where the same value will be applied to each person within a house-
hold. They also compare the efficacy of these methods by applying them to real data in
test scenarios. They chose the Canadian Labour Force Survey in order to see how their
estimators perform. The estimators both gave unbiased and similar results. However

there might be a chance of negative weightings using this method.

Later, Steel and Clark (2007) considered generalized regression estimations at house-
hold level where people within households have equal weightings. The weight are called
integrated weights. They also compared the design variance of GREG estimators at the
household level with GREG estimators at the person level in terms both theoretically
and empirically where they point out that this was not covered at all in Alexander
(1987) and Lemaitre and Dufour (1987) . The optimal estimator for simple cluster
sampling, the explanation of the difference in the asymptotic variances and the linear
contextual of GREG estimators are all discussed theoretically. The results show that
GREG estimators at the household level have smaller variance than GREG estimators
at the person level in large samples. We can see the benefit of this research in looking
at sampling variance of GREG estimators at the household level instead of the person

level only. However, their sampling plan is limited to single stage cluster sampling.

Montanari (1987) proposed a new GREG estimator with design optimality if the pop-
ulation regression coefficient is known. However, the population regression coefficient
is usually unknown and it has to be estimated from the sample. This optimal GREG

estimator is also very complex to implement for two stage sampling designs because it
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requires joint-inclusion probabilities. Berger et al. (2003) proposed an optimal GREG
estimator based on the Montanari (1987) estimator. Their optimal GREG estimator
is not dependent on joint-inclusion probability. Berger et al. (2003) showed that their
estimator may be more accurate than the Montanari (1987) estimator and the stan-
dard generalised regression estimator. Nevertheless, their simulation is limited to single
stage sampling design. Recently, Tan (2013) proposed an optimal regression estimator
which is a particular case of the estimator proposed by Berger et al. (2003). Tan (2013)
proposed to expand the calibration estimators that have design-efficiency for the case of
known population totals or measured auxiliary variables for all units in the population in
both sampling techniques; rejective or high-entropy samplings in the presence of missing
data in survey samplings. The proposed estimators have a similar property to an opti-
mal regression estimator that has been proposed by many authors including Montanari
(1987). Nevertheless, they showed that the new method can solve two problems, one
always existent in the efficiency of a linear superpopulation model applying generalized
regression and calibration estimation and also it offers an easy way to approximate the

optimal regression estimation.

Rao (1994) considered the use of auxiliary information at estimation stage for the estima-
tion of both the population totals and distribution functions by giving a general set-up
for making the estimations under probability sampling and model-assisted approaches.
Rao proposed alternative model-assisted estimators having conditional repeated sam-
pling inferences for dealing with model misspecification. He also proposed an optimal
calibration estimator that is more accurate than the GREG estimator or the basic es-
timator of population total and that also expresses in calibration form under stratified

simple random sampling and stratified multi-stage sampling.

Estevao and Sarndal (2006) studied many scenarios in complex survey designs using
calibrations such as the estimation of domains in one-phase sampling, estimation for
two-phase sampling, and estimation for two-stage sampling. They first reviewed auxil-
iary information used in one phase survey design. A vector of auxiliary variables with
known population totals is used to calculate weights and corresponding calibration es-
timators and this helps to decrease variance over estimators that do not account for
this auxiliary information. They reviewed each step used during their exploration of
instrument vector approach and automated linearisation. They also examined calibra-
tion estimation for use with two-phase sampling and two-stage cluster sampling where
auxiliary information is available at both the cluster and unit level. They also discussed
integrated weightings required for combining auxiliary information with two stage data
and moreover; they compare their method with the approach of Lemaitre and Dufour
(1987) and on the issue of equally weighting individuals within selected households they

also discuss the effects of residuals on two-stage estimation of both unit and cluster
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statistics.

A literature review can be found in Sérndal (2007). He compares the generalized re-
gression estimation with methods given in them pointing out that it is not the same
way of using auxiliary information in the estimation process although it is a special case
calibration estimator. He discussed how the methods can be used with both simple and
more complex survey design where sampling in two or more phases or stages is used. Dis-
cussion was given on how effective approaches might be in situations of complex survey
design where the auxiliary information might be available for more than one component
e.g. there might be primary sampling unit and/or secondary sampling unit information
available for two-stage design. Finally, calibration for nonresponse adjustment and non-
sampling error are investigated (see also Skinner (1998), Sdrndal and Lundstrom (2005),

and Kott (2006) for nonresponse adjustment).

6.3 GREG Estimation for Single Stage Sampling

6.3.1 The Customary GREG Estimator

Consider a finite population U = {1,2,...,4,..., N}. Let y; be the value of the study
variable y for the jth population unit. The aim is to estimate the unknown population

total ¢, given by

N
bty = Zyj- (6.1)
j=1

The Horvitz-Thompson estimator for t, is calculated from a sample s of size n drawn

from U and is given by
n n
tye = > _ysi/m =Y U = Y81, (6.2)
j=1 j=1

where Y5 = (y1, Y., Yn) s s = diag(d;), d; is the design weights defined d; = 1/7;, m;
is the inclusion probabilities for the j* element and 1, is a vector of dimension n with

all one units.

Suppose we have auxiliary information available. Let x; be the vector of %k auxiliary
variables for the jth unit, ; = (zj1,...,x;;). We assume vector total ¢, is known and

given by
N

te=> ;. (6.3)

Jj=1
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Suppose we want to use the auxiliary information ¢, to estimate t,. The GREG estimator

is given by

n
YorEG = ijy]w
j=1

where w; denote GREG weight given by

w; = d](l + )\/:Dj),
with

n
)\/ = (tw - %\xﬂ)/ Zdja:jw;- y
j=1

where fm is the Horvitz-Thompson estimator given by
n n
tow = Y _wj/mj =Y &5 = X T,
j=1 Jj=1

where X, = (x1, x2...,x,) .

(6.4)

(6.7)

Alternatively, the GREG estimator in (6.4) can be rewritten in matrix form as follows.

Yorec = i\yﬂ + (ta: _/t\xﬂ)/lgxy7

where

~ u o

/ 5 1~/
B,y = (X 2. X,) ' X 2,Y,,

X, = (&1, %..., &) with T =x;/7;,

v

Y, = (1,02 0n)  with g =y;/mj,j € s,

tyr, tz and ., are defined by (6.2), (6.3) and (6.7) respectively.

Note that the weights w; are calibrated because they are such that

n N
=1 =1

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)
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6.3.2 The Optimal GREG Estimator (Montanari 1987)

Montanari (1987) considered the following random variable

Vs = tyr + (tz — tex) B, (6.13)
where
By = var(Eer) " cov(tom, tyr) = (XpAuXy) ' XpAuYy, Bus (6.14)

is a population parameter of size N x N positive matrix, Xy = (&1, ®o..., &) with

T =x;/7j, Yy = (91, 2., 9n), j € U and Ay is the N x N matrix given by

Ay = [Ay), (6.15)

where A;; = m;; — m;7j, and 7;; is the joint inclusion probability of units ¢ and j.

Montanari (1987) showed that ?M is optimal because the expectation of Y/M equal ¢,
and the variance of Y is minimal. Montanari (1987) proposed to predict ?M by ?M
after the substitution of optimal choice ;s by B » in order to minimize Var(Yys), where

B A is the estimator of 3;, given by

v v v

_ e
By = (X,A,X,) ' X[A,Y, (6.16)

where A, = [Aiﬂri;l], and Ty, t, and Ty are defined by (6.2) (6.3) and (6.7) respectively.
The proposed GREG estimator, is given by

~ ~

Yar = tyr + (b2 — tor) Boss (6.17)

6.3.3 Optimal GREG Estimator proposed by Berger et al. (2003)
Berger et al. (2003) showed that under single stage design a consistent estimator of 3;,

can be obtained by including the stratification variable into the regression estimator.
Berger et al. (2003) adjusted the Montanari (1987)’s estimator by replacing Ay by

Ay = Cuy(Iy - Qu(QyCuQy) — @y Cy) (6.18)

which is the estimator of Ay under a conditional stratified Poisson sampling (CSPS)
design, where Cy = diag(c;;j € U), with ¢; = m;(1 — 7;), Iy is an identity matrix of
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size N x N, and QU is the matrix of size N x H of stratification variables that contain
dnj = qnj/mj, h=1,2,...,H and j = 1,2,..., N where g; = 7; if the jth unit belong
to stratum h and otherwise g,; = 0. Berger et al. (2003) showed that if we replace Ay
by EU we will get 3, which is the vector of the first elements of M auxiliary variables,
(BY") of the vector

?pt = (f‘,UCUf‘U)ff‘,UCUi}U, (619)

where 'y = [X 7, Qp] represents the partitioned N x (k + H) matrix.

The estimator of B¢ tis given by

~opt vl v v o/

BF = (FSCSFS)_F Cv'si}87 (620)

S

where T’y = [X,,Q,] is a n x (k 4+ H) matrix, X is the n x k matrix defined earlier in
section 6.3.1, C = diag(¢;),j € s with & = 1 — 7, with Q, is the matrix of size n x H
of stratification variables that contain ¢y; = qnj/7j, h=1,2,...,H and j =1,2,...,n
where gp; = 7; if the jth unit belong to stratum A and otherwise g; = 0.

The GREG estimator proposed by Berger et al. (2003) is given by

~ ~opt

i}opt = %\Zﬂr =+ (t:tq - ta&qﬂ)lﬁr s (6.21)

where /t\y7r is defined by (2), t,q = [Z;V:1 qijs - Zjvzl dm;, 2;21 x;]" and
txqrr = [Z;'lzl dijs- Zj:l dH;j, Zj:l mj}/‘

The simulation results of Berger et al. (2003) showed that their proposed estimator per-
formed better than the standard generalised regression estimator, particularly for strati-
fied sampling design, including the Montanari estimator which gave a poorer result than
others in terms of higher relative standard error. Nevertheless, in some situations the
generalised regression estimator performed better than other estimators, particularly for
stratified sampling with small sample size (two units in each stratum) and high correla-

tion between y and x.

6.4 GREG Estimator for two stage sampling

Let N be the number of primary sampling unit (PSU) in the population, and M; the
number of secondary sampling unit (SSU) in PSU ¢ where i = 1,2,...,N. Let y;; be
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the value of the study variable y for the jth SSU (j = 1,2,...,M;) of the ith PSU
(i =1,2,...,N). For two-stage sampling, a sample of n PSU is selected and a sample
of m; SSU (i = 1,2,...,n) is selected in each sampled PSU. Let m; be the inclusion
probabilities for the ith PSU for the first-stage sampling, and let w

j|i be the inclusion
probabilities of the jth SSU of PSU .

In two-stage sampling we may have auxiliary information available at both PSU and SSU
level. Let z; be the PSU vector of p auxiliary variables in PSU i, z; = (2,1, ..., zip)'. Let
x;; be the SSU vector of k auxiliary variables in PSU ¢ and SSU j, x;; = (41, ..., mijk)/.

We assume that the sample of PSU is stratified, the population of PSU is divided into
H strata and within stratum A SSU are grouped into N PSU. Let N be the number
of PSU in the population, N = Zle Np. Let n be the number of PSU in the sample,
n = Zthl ny. Let M}, be the number of SSU in stratum h, M, = Zf\;hl My; . Let my,
be the number of sampled SSU in stratum h,mj = Z?:hl myp;, and let m be the total

over all strata, m = Zthl mp,.

For stratified two-stage sampling, a sample of n; PSU is selected in each stratum h
from the total of Ny PSU in stratum h and a subsample of my; SSU is selected in each
sampled PSU (h;) from the total of M}, SSU in the PSU, where h = 1,2,..., H.

The aim is to estimate the unknown population total ¢, given by

N M;
ty=>_> i, (6.22)

i=1 j=1

where y;; is the value of the study variable y for the j'* SSU (j = 1,2,...,M;) of the
ith PSU (i = 1,2,...,N).

The Horvitz-Thompson estimator for t, is given by

n my n my
byr = Z Zyij/ﬂ'ij = Z Zﬂzj =Y 21, (6.23)
i=1 j=1 i=1 j=1

where m;; = m; X ;Y5 = (y11, Y12, Ynmy, ) » Bs = diag(d;j), d; and d;; are the design
weights defined d; = 1/m; and dj;; = 1/7;);, and 15 is a vector of dimension (m1+..., +my,)
with all one units. The overall design weight for the j-th SSU in the i-th PSU is given

by dij:didﬂi,’L':1,2,...,N,j:1,2,...,Mi.
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We assume both the SSU and PSU vector total ¢, = Zf\il Z;WZZI x;; and t, = Zi\il Z;

are known. The vector of population totals is given by

Zi]\il Zi ] [tZ]
s = 3V Bl PR 6.24
[sz\il Z;wzzl Tij t, ( )

6.4.1 The Estevao and Sarndal (2006) regression estimator

Suppose we have auxiliary information available at PSU and SSU level, let z; be cluster
level variable and let «;; be unit level variable, Estevao and Sérndal (2006) suggested
to use

Zij = Z,L/Ml (625)

to assign to every selected unit in PSU i.

The GREG estimator using just the Z information is

~(1 - o~
YC(H%EG = lyr + (t. — tZW)//Bzy? (6.26)
where
Bzy = (Z/SESZs)ilzlssts, Zs = (zll, FAD ann), (627)
and o
tor = Zzzij/ﬂ'zj =Z\%1,. (6.28)
i=1 j=1

Estevao and Sérndal (2006) also suggested using x;; and z;; in GREG estimator. A
GREG estimator is

?C(;QEG = tAyW + (taz _%\IZTFYB:BZ?J? (6.29)
where
Iszy = (W;ZDSWS)_IW;ESY& (6.30)
/51’277 = (ft\;wv/t\;w), = W,szsls (6.31)
and
n m;
tor = ZZajij/mj =X.31, X, = (mll,mlg...,mnmn)/ (6.32)

i=1 j=1
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and a stacked auxiliary vector is defined as

W, = [Z] . (6.33)

6.4.2 Proposed Alternative GREG Estimators at the two stage sam-
pling

Montanari (1987)’s estimator is expressed in term of variances and covariances in the
estimation of 3. The ultimate cluster approach is a common method for variance es-
timation in complex survey designs which treat the PSU total estimates as response
variables. The ultimate cluster approach was proposed by Hansen and Madow (1953).
The ultimate cluster approach calculates the variance at PSU level within each stratum.

This approach is valid for small sampling fraction.

We propose to adjust the GREG estimator from Estevao and Sarndal (2006) by follow-
ing Berger et al. (2003) approach and using the idea of the ultimate cluster approach to
estimate 3 at PSU level. Berger et al. (2003) proposed an alternative regression estima-
tor which is design - optimal. The idea of this alternative GREG estimator is to add the
matrix of stratification variable into the GREG estimators. For this new GREG esti-

mator we will incorporate the design variable into the GREG. The details show as follow.

Let QU be an N x H matrix that contain ¢n; = qni/mhi, where qp; is the stratification
variable for stratum h, (h = 1,2,...,H) and PSU 4, (i = 1,2,..., N;) which is defined
by

my; if PSU 4 is in stratum h,
qni = (6.34)
0 other;

where 7p; = npMp;/ Zivzhl Myp,; is the inclusion probability of PSU ¢ within stratum, for
example under probability proportional to size sampling, h = 1,2,..., H, i =1,2,...,ny,J =

1,2,...,mp;. Therefore,

. 1 if PSU ¢ is in stratum h,
qhi = (6.35)
0 other.

We propose to adjust the GREG estimators by adding the stratification variables into

the GREG estimators. We consider that we have a stratified two-stage cluster sampling.
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The estimator of B%" is given by a PSU level

/\opt o~ ~ o~ ! v [S Y]

BY = var(tyegr) " corEpagr tyr) = (F,CT,) T.C. Y, (6.36)

where I’y = [X, Z,, Q,] represent the partitioned n x (k+p+H) matrix of the estimates
of PSU totals, Cy = diag(¢p;),h =1,2,...,H,i =1,2,...,np with ¢,; = 1 — mp;, where

° X'S = (&ps) represent the n x k matrix of the estimates of PSU totals of the unit

level variable, with #j; = Z;n:hf Thij/Thilis

o 7, = (Zns) represent the n x p matrix of the estimates of PSU totals of the cluster

level variable, with Z;; = zp;,

e Q. = ({ni) represent the n x H matrix of the estimates of PSU totals of the cluster
level variable, with g;; = qy;,

o Y,= (Uni), represent the n x 1 vector of the estimates of PSU totals of the study

. . o M —
variable, with ,; = Zj:{ Ynij/Thjli> where mp 1 = mpi/Mp.

The overall design weight for the j-th SSU in the ¢-th PSU in stratum h is given by
dpij = dpidpj;, where h = 1,2,... H,o = 1,2,...,np,j = 1,2,...,mp;. The quan-
tities dp; and dp;; are the design weights defined dn; = 1/my and dy;; = 1/mp ),

Thij = Thi X Thj|i-

The proposed GREG estimator is

(3 -~ -~ ~opt
YG(’I%EG’ = tyr + (tazq — tazqr) Br (6.37)

where
H np mp,;

%\yﬁ = Z Z Z Ynij/Thij = Y (B, (6.38)

h=1i=1 j=1
Ys = (yllh Y1125 s Yhnpma s -+ yHnHmn)ly (639)
Y = diag(dnij), dnij = dnidpj)i, (6.40)

h=12,...,H4=12,...,np,5 = 1,2,...,mp;, where dp; and dp;; are the design

weights defined dp; = 1/mp; and djj); = 1/mpj);.- The vector 15 is dimension n x m with
~ ~

all one units, £,.qr = (tm,tm,f/qw)’ , tAM,tAZ7r and qu are Horvitz-Thompson estimator

given by
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Nh Mp;

H
tor = Thij/Thij (6.41)

h=11i=1 j=1

Np Mpj

H
Z Zzhw/ﬂhw (6.42)
h=1i=1 j=1
with

Zhij = Zhi/Mhi (6.43)

and tgr =[S0y Qui/T1is Sor2y @20/ Tis ooos Sor qrri/Tai) = (1, m9...,npr)’ respectively.

The vector of population totals t,., is given by

_ N _
Zz 11 qll
N:
Z 21 qd2;

(6.44)

tmzq = . )

N
Zz Hl qdm;
Zh 1 Z =1%hi
M,
_thl Zi:l h1 Lhij

t, =M a0 gy oo ZZ]\Q{ g = [N 70, SN2 i, Zf\g i) = (n1,na...,nmg)’.

Therefore, t, = i\qw.

6.5 Simulation Study

We consider stratified two-stage cluster sampling with unequal size.

Let H = 3 stratum, N; = 1000, Ny = 3000, N3 = 2000, N = Nj + Ny + N3 and m = 10
(We also consider bigger sizes of stratum, e.g. H =20 and H = 60 ).

6.5.1 Simulation steps

Step 1 We generate the number of elements in each cluster for each stratum which
is Mp;,h = 1,2,3,i = 1,2,..., N, for H = 3 strata N and Np; clusters by using the
following function (see Deville (1997), Berger (2005) ),

My = (Wy; — Min)/Maz) x 6+ 10,
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where Wy; = (i/Npi)® + (1/a),a = 4, Min = 10 and Max = 15.

The number of elements in each cluster (Mpy;) will vary between Min and Max and also
vary between 10 and 50, holding a smaller variation to begin with and increasing to a

larger variation as we continue the calculations by sample.

We consider two type of stratifications. The first one is stratification by cluster size
when the PSU of similar sizes are grouped in the same strata; that is, when the strata
are homogeneous according to the PSU sizes. The second one is called random stratifi-

cation when the PsuU of different sizes are grouped in the same strata randomly.

Step 2 The value of yy;; are generated from the multilevel model shown as below.
Ynij = ThijB + 2hiY + €1hi T €2hij- (6.45)

In order to generate yp;; we generate xp;; ~ N(20,1),zp; ~ N(0,1).

N(-10,1) if PSU ¢ is in stratum h=1,
€1hi ~ § N(0,1) if PSU 7 is in stratum h=2, (6.46)
N(10,1)  if PSU i is in stratum h=3

and eanij ~ N(0 o2 ), where

) 7 €2hij
2 _ [1-p]| 2
Uezhz‘j - [ P ]Uélhi’

p=0.1,0.4, and By = 79 = 0 and vary 3; and ;.

Step 3 We will calculate mp;, 24i; = 2ni/Mp; for each cluster 4 in each stratum h. For un-

. . N,
equal size sampling,mpij = ThiThjli, Thi = MaMni/ D il Mui, Thjli = Mni/Mpi, mpg = m.
Step 4 We selected a sample of 5% for each stratum using non-probability sampling.

Step 5 We compute the HT estimator, the naive GREG and the Estevao and Sarndal
GREG at individual level and the proposed optimal GREG. We compare their relative

root mean squared errors and relative biases.
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Table 6.1: Sample relative bias and relative root mean squared error in percentage for HT, classical GREG with x, GREG with z,
GREG with x and z at individual level with 3 at individual level and with g at PSU level, optimal GREG with x and g, optimal GREG
with z and ¢, and optimal GREG with x, z and q estimators at individual level with 5 at PSU level for PPS sampling. The population
size N1 = 3,000, No = 2,000, N3 = 1,000, H = 3. The intra-cluster correlation p is equal to 0.1 and 0.4. The number of SSU in each
stratum vary between 10 and 50. Sample 5% from each PSU, m = 10 and repeat 1,000 times.

Relative bias

Relative root mean squared error

HT Estevao and Sarndal Optimal GREG HT Estevao and Sarndal Optimal GREG
X Z XZ XQ ZQ XZQ X Z XZ XQ ZQ XzZqQ
p=0.1 Stratification by cluster size 7, 1.
0.2 0.2 036 0.35 0.35 0.25 0.35 0.25 0.24 0.46 044 047 0.32 0.45 0.32 0.30
0.2 0.7 1.06 1.05 0.66 0.58 1.06 0.52 0.51 1.33 1.32 0.85 0.74 1.33 0.66 0.65
0.7 0.2 0.12 0.08 0.27 0.06 0.08 0.10 0.05 0.15 0.11 0.41 0.07 0.11 0.12 0.06
0.7 0.7 031 0.30 0.33 0.16 0.30 0.17 0.14 0.39 0.37 047 0.21 0.37 0.21 0.18
Random stratification Tyr Tyz
0.2 0.2 036 0.34 0.46 0.24 0.34 030 0.29 0.45 043 0.66 0.30 0.43 0.38 0.36
0.2 0.7 099 098 0.62 0.46 0.99 0.76 0.75 1.23 1.22 0.83 0.57 1.23 0.95 0.95
0.7 0.2 0.12 0.09 0.37 0.05 0.09 0.10 0.07 0.15 0.11 0.60 0.06 0.11 0.13 0.09
0.7 0.7 028 0.26 0.40 0.12 0.26 0.21 0.20 0.34 0.32 0.61 0.15 0.32 0.26 0.25
p=0.4 Stratification by cluster size 7, 1.
0.2 0.2 034 0.33 0.33 0.22 0.33 0.22 0.20 0.43 042 0.45 0.28 0.42 0.28 0.26
0.2 0.7 1.06 1.05 0.66 0.58 1.06 0.52 0.51 1.33 1.32 0.85 0.74 1.33 0.66 0.65
0.7 0.2 0.12 0.08 0.27 0.05 0.08 0.09 0.05 0.15 0.10 0.41 0.06 0.10 0.12 0.06
0.7 0.7 031 0.30 0.33 0.16 0.30 0.17 0.14 0.39 0.37 047 0.21 0.37 0.21 0.18
Random stratification Tyr Tyz
0.2 0.2 033 032 0.45 0.21 0.32 0.28 0.26 0.42 040 0.64 0.26 0.40 0.34 0.32
0.2 0.7 0.99 098 0.62 0.45 0.98 0.75 0.75 1.23 1.22 0.82 0.56 1.22 0.94 0.94
0.7 0.2 0.12 0.08 0.37 0.05 0.08 0.10 0.07 0.15 0.10 0.60 0.06 0.10 0.13 0.08
0.7 0.7 028 0.26 0.40 0.12 0.26 0.21 0.20 0.34 0.32 0.61 0.15 0.32 0.26 0.25
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Table 6.1 presents the results of the relative bias and relative root mean squared error.
There are 3 strata and the number of SSU in each stratum vary between 10 and 50.
For p = 0.1, under stratification by cluster size, we see that the optimal GREG with
x, z and q has a minimum relative bias compared to the other GREG estimators and
the Horvitz-Thomson estimator. In this situations the optimal GREG estimator with
z variable alone also performs better than the Horvitz-Thomson estimator in all situa-
tions and performs better than the Estevao and Sarndal GREG estimators. However,
the Estevao and Sarndal GREG estimator with x and z performs slightly better when
there is a large correlation between y and x, ry, = 0.7 and a small correlation between
y and z, 7y, = 0.2 and also when there is a large correlation between both y and z and
y and z. The optimal GREG estimator with x only gives similar results to those found
using the Estevao and Sarndal GREG estimator with variable x only and with x and
z. There is a higher relative bias when the correlation at the individual level between y

and z is equal to 0.7 compare to other situations.

The Estevao and Sarndal GREG estimator with x and z performs better than all other
Estevao and Sérndal GREG estimators. The Estevao and Sdrndal GREG estimator
based upon z variable performs better than the Estevao and Sarndal GREG estimator
with the x variable only when the correlation between y and z is large (r,. = 0.7).
Nevertheless, the optimal GREG estimator with z variable only performs as well as or
better than all the optimal GREG estimators with x variable only with the same or
higher correlation between y and x respectively except when there is a large correlation
between y and x, 7y, = 0.7 and a small correlation between y and z, r,, = 0.2. Most of
the Estevao and Sirndal GREG estimators perform better than the Horvitz-Thomson
estimator except when there is a large correlation between y and z. However, all of
the optimal GREG estimators perform better or similarly than the Horvitz-Thomson

estimator.

Similar patterns are shown in the relative root mean squared error output. We see that
the optimal GREG with x, z and q variables has a smaller relative root mean squared
error than the Horvitz-Thomson estimator and the Estevao and Sarndal GREG estima-

tors. It seems that the optimal GREG is acurate in this scenario.

However, for random stratification we notice that the Estevao and Sérndal GREG es-
timator with x and z variables has both minimum relative bias and relative root mean
squared error. The optimal GREG estimator with z, z and ¢ has a similar (lower) mean
squared error with the same level of correlation in place between y and z. The optimal
GREG estimator with « and g variables give similar results to the Estevao and Sarndal
GREG estimator with x only. Random stratification is not suited to the optimal GREG
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variable because there is not much difference between the strata.

We have similar pattern with an intra-cluster correlation p = 0.4. Under stratifica-
tion by cluster size we see that, the optimal GREG with variables x, z and q has a
minimum relative bias and relative root mean squared error when compared to other
GREG estimators and the Horvitz-Thomson estimator. For a lower intra-cluster cor-
relation, the optimal GREG estimator with z variable alone performs better than the
Horvitz-Thomson estimator in all situations. It also performs better than the Estevao
and Sarndal GREG estimators unless ry, = 0.7 and r,, = 0.2 and when r,,; = 0.7 and
ryz = 0.7. The optimal GREG estimator with x only gives similar results to those found

using the Estevao and Sdrndal GREG estimator with variable x only and with x and z.

If we compare the GREG estimators, the Estevao and Sarndal GREG estimators with
x only and the optimal GREG estimators with x and q respectively, we see that they
both give similar results in terms of relative bias and relative root mean squared error.
The optimal GREG with z and q performs better than the Estevao and Sarndal GREG
estimator with z only for all the cases. Moreover, we notice that the optimal GREG
with x, z and q variables has a smaller relative bias and relative root mean squared error
than the Estevao and Sarndal GREG estimator with x and z.

Moreover, for random stratification, we observe similar pattern to the situation where
p = 0.1. We see that the Estevao and Sdrndal GREG estimator with x and z vari-
ables has a both minimum relative bias and relative root mean squared error. Under
stratification by cluster, the Estevao and Sarndal GREG estimators with x only and the
optimal GREG estimators with x and q respectively, both give similar results in term of
relative bias and relative root mean squared error. Moreover, the Estevao and Sarndal
GREG estimator with z only performs better than the optimal GREG with z and q only

when ry, = 0.2 and ry, = 0.7.

The Horvitz-Thomson estimator performs poorly when compared to other GREG esti-
mators in both situations as shown under cluster size random stratification. It seems

that there is no difference in the results when intra-cluster correlation increases.

Table 6.2 gives the results of the relative bias and relative root mean squared error.
There are 3 strata. We see similar patterns to those shown in Table 6.1 but slightly
different outcomes in some situations. For p = 0.1, under stratification by cluster size,
we see that the GREG with variables x, z and q has a minimum relative bias when
compared to the other GREG estimators including the Horvitz-Thomson estimator. In

this situation the optimal GREG estimator with variable x and z when ry, = 0.7 and
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ry. = 0.2 also performs as well as the optimal GREG estimator with variable x, z and

q.

The optimal GREG estimator with the z variable alone also performs better than the
Estevao and Sarndal GREG estimators and the Horvitz-Thomson estimator unless the
correlation between y and x is equal to 0.7 and the correlation between y and z is equal
to 0.2. The optimal GREG estimator with x only gives similar results to those found
using the Estevao and Sérndal GREG estimator but there is a small increase in relative

bias when the correlation at the individual level between y and x increases.

If we compare the same GREG estimators, the Estevao and Sarndal GREG estimators
and the optimal GREG estimators with x and z respectively, we notice that the Estevao
and Sarndal GREG estimator upon z variable only performs better than the Estevao
and Sarndal GREG estimator with the x variable only when ry, = 0.2 and r,, = 0.7.
Similarly, the optimal GREG estimator with z variable only performs better than the
optimal GREG estimator with the x variable only when r,, = 0.2 and r,, = 0.7.

Compared to the Horvitz-Thomson estimator, the Estevao and Séarndal GREG estima-
tor with the variable x only and with variable x and z performs better or at least the
same as the Horvitz-Thomson estimator and the Estevao and Sarndal GREG estimator
upon z variable only. Similar patterns are shown for the optimal GREG estimators, the
optimal GREG estimator with variable x only and with variable x and z performs better
or at least the same as the Horvitz-Thomson estimator. The optimal GREG estimator
upon z variable only performs better than the Horvitz-Thomson estimator when it has

a small correlation between y and x and when it has a large correlation between y and z.

When we consider the relative root mean squared error output, we see that the optimal
GREG with x, z and q variables has a smaller relative root mean squared error output
to the Horvitz-Thomson estimator and the Estevao and Sarndal GREG estimators pro-
duce except when ry, = 0.7 and ry, = 0.2. In this case, the Estevao and Sarndal GREG
with variable x and z also gives the same results. It seems that the optimal GREG is

accurate in these scenarios.

On the other hand, for random stratification, we notice that the Estevao and Sarndal
GREG estimator with x and z variables has a both minimum relative bias and relative
root mean squared error but a slightly different output to that of the optimal GREG
estimator with x, z and q variables with the same level of correlation. Interestingly, the
optimal GREG with variable x, z and q produces the same results as it has shown in the

Estevao and Sarndal one with small correlation. Including q variable into the optimal



Chapter 6 GREG estimators for Two-Stage Sampling 103

GREG estimator with z only seems to reduce high relative bias for the optimal GREG
with z and q. The optimal GREG estimators still give a better result or at least the

same results compared to the Horvitz-Thomson estimator.

Similar patterns are shown for intra-cluster correlation p = 0.4. Under stratification by
cluster size, we see that the GREG with x, z and q has a minimum relative bias compared
to the other GREG estimators including the Horvitz-Thomson estimator except where
the correlation at the individual level variables between y and z is equal to 0.7 where

the Estevao and Sarndal GREG estimator with variable x and z produces the same result.

The optimal GREG estimator with z variable alone also performs better than the Es-
tevao and Sarndal GREG estimators and the Horvitz-Thomson estimator unless the
correlation at the individual level variables between y and x is equal to 0.7 and the cor-
relation between y and z is equal to 0.2. In this case, the Estevao and Séarndal GREG
estimator only upon x variable performs slightly better. When the correlation is 0.7 the
Estevao and Sarndal GREG estimator with variable x and z performs slightly better.
The optimal GREG estimator with x only gives similar results to those found using the
Estevao and Sarndal GREG estimator.

Moreover, for random stratification, we also see the similar results to the one with
p = 0.1. We see that the Estevao and Sarndal GREG estimator with x and z variables
has a small relative bias and relative root mean squared error. Surprisingly, the optimal
GREG with variable x, z and q (with a large correlation between y and x) also produces
the same relative bias and relative root mean sqaured error as it has shown in the Es-
tevao and Sarndal with variable x and z. The relative bias decreases using the optimal
GREG with z and q. The optimal GREG estimators still give a better result or at least

the same results as the Horvitz-Thomson estimator.

Table 6.3 presents the results of the sample relative bias and relative root mean squared
error. There are 3 strata and the number of SSU in each stratum varies between 10 and
15. Interestingly we see different results to those found in Table 6.2, for p = 0.1 under
stratification by cluster size. We see that the GREG with x, z and q has a minimum
relative bias. In this situation the optimal GREG estimator with variable z and q when
ryz = 0.2 and r,, = 0 also performs as well as the optimal GREG estimator with vari-

able x, z and q.

The optimal GREG estimator with z variable alone also performs better than the Es-

tevao and Sarndal GREG estimator with variable x alone and with variable z alone in
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Table 6.3: Sample total, variance, relative root mean squared error and relative bias in percentage for HT, classical GREG with x,
GREG with z, GREG with x and z at individual level with £ at individual level and with § at PSU level, optimal GREG with x and q,
optimal GREG with z and ¢, and optimal GREG with x, z and q estimators at individual level with 8 at PSU level for PPS sampling.
The population size N; = 3,000, No = 2,000, N3 = 1,000, H = 3. The intra-cluster correlation p is equal to 0.1 and 0.4. The number
of SSU in each stratum vary between 10 and 15. Sample 5% from each stratum, m = 10 and repeat 1,000 times.

Relative bias Relative root mean squared error
HT Estevao and Sarndal Optimal GREG HT Estevao and Sarndal Optimal GREG
X Z XZ XQ ZQ XZQ X Z XZ XQ ZQ XZzZQ
p=0.1 Stratification by cluster size r,, 7.
0.2 0.2 034 0.33 0.35 0.24 0.33 0.25 0.23 0.43 041 047 0.30 041 0.31 0.29
0.2 0.7 1.00 0.99 0.66 0.58 1.00 0.52 0.52 1.24 1.24 0.83 0.73 1.24 0.66 0.65
0.7 0.2 0.12 0.08 0.25 0.06 0.08 0.10 0.05 0.15 0.10 0.40 0.07 0.10 0.12 0.07
0.7 0.7 0.28 0.27 0.31 0.16 0.27 0.16 0.14 0.35 0.34 0.46 0.20 0.34 020 0.18
Random stratification Tyz Tyz
0.2 0.2 033 032 0.43 0.21 0.33 026 0.25 0.42 041 0.63 0.27 0.41 0.32 0.31
0.2 0.7 082 0.82 0.39 0.14 0.82 0.16 0.14 1.03 1.02 0.60 0.18 1.03 0.20 0.17
0.7 0.2 0.11 0.09 0.35 0.04 0.09 0.08 0.03 0.14 0.11 0.57 0.05 0.11 0.10 0.04
0.7 0.7 026 0.24 0.35 0.03 0.24 0.08 0.03 0.32 0.30 0.57 0.04 0.31 0.10 0.04
p=0.4 Stratification by cluster size 7, 1.
0.2 0.2 033 0.32 0.37 0.15 0.32 0.16 0.14 0.41 040 0.54 0.19 0.40 0.21 0.18
0.2 0.7 0.80 0.80 0.36 0.13 0.80 0.14 0.13 1.01 1.00 0.54 0.16 1.00 0.18 0.16
0.7 0.2 0.11 0.08 0.33 0.03 0.08 0.08 0.03 0.14 0.10 0.52 0.04 0.10 0.10 0.04
0.7 0.7 0.25 0.24 0.33 0.03 0.24 0.08 0.03 0.32 0.31 0.53 0.04 0.30 0.10 0.04
Random stratification Tyz Tyz
0.2 0.2 033 032 0.40 0.16 0.32 0.17 0.15 0.41 0.60 0.20 0.24 0.40 0.21 0.18
0.2 0.7 082 0.81 0.38 0.13 0.82 0.14 0.12 1.02 1.02 0.59 0.16 1.02 0.18 0.16
0.7 0.2 0.11 0.08 0.35 0.03 0.08 0.08 0.03 0.14 0.10 0.57 0.04 0.10 0.10 0.03
0.7 0.7 026 0.24 0.35 0.03 0.24 0.08 0.03 0.32 0.30 0.57 0.04 0.31 0.10 0.04
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most situations. The Estevao and Sarndal GREG estimator with variable x and q per-
forms similarly to the optimal GREG estimator with variable with z and . Similarly
the other optimal GREG estimators with x only gives similar results to the Estevao and
Sarndal GREG estimator.

If we compare the Estevao and Sarndal GREG estimators and the optimal GREG es-
timators with x and z respectively, we notice that the Estevao and Sarndal GREG
estimator with x performs better than the Estevao and Sédrndal GREG estimator with
the z variable only in almost all situations, except when ry, = 0.7 and r,. = 0.2. Never-
theless, the optimal GREG estimator with z variable performs better than the optimal
GREG estimator with the x variable only in almost all situations except when 7,, = 0.7
and r,, = 0.2. Compared to the Horvitz-Thomson estimator, the optimal GREG esti-
mators perform better than the Horvitz-Thomson estimator in all situations. However,
the Estevao and Sarndal GREG estimator with z only performs slightly worse than the
Horvitz-Thomson estimator when it has a lower correlation between y and x and be-

tween y and z.

Under random stratification, we notice that the optimal GREG estimator with vari-
able x, z and q still performs better than other GREG variables including the Horvitz-
Thomson estimator. It is as accurate as the Estevao and Sarndal GREG estimator with
x and z with large correlation between y and z. In this situation, it produces different
results than those shown in Tables 6.1 and 6.2.

For intra-cluster correlation p = 0.4 with stratification by cluster size, the Estevao and
Sarndal GREG estimator with x and z works well as it produces at least the same results
as the optimal GREG with x, z and q, in terms of the relative bias and the relative root

mean squared error.

However, for random stratification, we see similar results to the one with p = 0.1. In this
situation, the optimal GREG with x, z and q performs well in all situations although the
Estevao and Sarndal GREG estimator with x and z variables produces the same results,
except with a small correlation between y and x for the relative bias and with a large
correlation between y and x and between y and z, for the relative root mean squared

€rror.

The Horvitz-Thomson estimator performs poorly or at best the same as the optimal
GREG estimators. However, it performs better than the Estevao and Sdrndal GREG
estimator with z alone in some situation, such as with a small correlation between y

and z and y and z. The small number of SSU in each stratum affects the results in this
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situation.

Table 6.4 presents the results of the relative bias and relative root mean squared error.
The population size is equal to 300 for 20 strata. Considering a large stratum sizes,
we still see similar patterns to those results for the smaller stratum, for p = 0.1, un-
der stratification by cluster size we see that, the GREG with variables x, z and q has
a minimum relative bias when compared to the other GREG estimators including the
Horvitz-Thomson estimator. Nevertheless, the Estevao and Sarndal GREG estimator
with x and z (with a large correlation between y and = and a small correlation between

y and z) gives the same result as the optimal GREG with x, z and q.

We observe similar patterns to Table 6.1 and Table 6.2 with random stratification. We
see that the optimal GREG estimator with x, z and q still performs better than the other
GREG estimators including the Horvitz-Thomson estimator in terms of both minimum
relative bias and relative root mean squared error. However, we observe slightly different
results than those of the optimal GREG estimator with x, z and q variables with the

same level of correlation.

When p = 0.4, with stratification by cluster size, we see that the optimal GREG with
x, z and q performs well in terms of both relative bias and relative root mean squared
error. The optimal GREG with z and q also produces the same results to those with x
variable (with a small correlation between y and x and a large correlation between y and
z). Moreover, the Estevao and Séarndal GREG estimator with x and z also works well in
some situations (ry, = 0.7 and r,, = 0.2). It produces at least the same results as those
of the optimal GREG with x, z and q in terms of the relative bias and the relative root

mean squared error.

However, under random stratification, we also see similar results to those with p = 0.1.
We see that the Estevao and Sarndal GREG estimator with x and z also performs well
in terms of relative bias and relative root mean squared error even though the optimal
GREG estimator with x, z and q produces the same results with a small correlation

between y and z and between y and .

The Horvitz-Thomson estimator performs poorly or at best the same as optimal GREG
estimators but performs better than the Estevao and Sdrndal GREG estimator with
variable z alone in some situations, such as with a large correlation between y and z and

a small correlation between y and z.
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Table 6.5: Sample relative bias and relative root mean squared error in percentage for HT, classical GREG with x, GREG with z,
GREG with x and z at individual level with 3 at individual level and with g at PSU level, optimal GREG with x and g, optimal GREG
with z and ¢, and optimal GREG with x, z and q estimators at individual level with 5 at PSU level for PPS sampling. The population
size is equal to 100 for 60 stratums. The intra-cluster correlation p is equal to 0.1. The number of SSU in each stratum vary between
10 and 50. Sample 5% from each stratum, m = 10 and repeat 1,000 times.

Relative bias Relative root mean squared error
HT Estevao and Sarndal Optimal GREG HT Estevao and Sarndal Optimal GREG
X Z XZ XQ ZQ XZQ X Z XZ XQ ZQ XzZ@
p=0.1 Stratification by cluster size 7y, 1.
0.2 0.2 028 0.27 0.28 0.18 0.28 0.26 0.19 0.35 0.34 0.38 0.23 0.36 0.32 0.24
0.2 0.7 094 094 0.61 0.55 0.97 052 0.50 1.19 1.18 0.78 0.69 1.22  0.65 0.63
0.7 0.2 0.11 0.07 0.25 0.04 0.07 0.17 0.04 0.14 0.09 0.37 0.06 0.09 0.20 0.05
0.7 0.7 0.29 0.28 0.31 0.16 0.29 0.21 0.15 0.37 0.35 0.44 0.20 0.36 0.26 0.18
Random stratification Tyr Tyz
0.2 0.2 0.27 0.26 041 0.18 0.28 0.32 0.22 0.34 0.33 0.62 0.22 0.35 0.38 0.28
0.2 0.7 0.88 0.88 0.58 0.41 093 0.64 0.62 1.10 1.10 0.78 0.51 1.16 0.80 0.77
0.7 0.2 0.09 0.06 0.35 0.03 0.07 0.19 0.05 0.12 0.08 0.58 0.04 0.08 0.22  0.06
0.7 0.7 025 0.24 0.38 0.11 0.26 0.23 0.17 0.32 0.30 0.60 0.14 032 0.29 0.21
p=0.4 Stratification by cluster size 7y, 1y
0.2 0.2 027 025 0.27 0.17 0.27 0.25 0.17 0.34 0.32 0.36 0.21 0.34 0.31 0.22
0.2 0.7 094 094 0.61 0.55 0.97 052 0.50 1.18 1.18 0.78 0.69 1.21 0.65 0.63
0.7 0.2 0.11 0.07 0.24 0.04 0.07 0.17 0.04 0.14 0.09 0.37 0.05 0.09 0.20 0.05
0.7 0.7 0.29 0.28 0.31 0.16 0.29 0.21 0.15 0.37 0.35 0.44 0.20 0.36 0.26 0.18
Random stratification Tyr Tyz
0.2 0.2 0.26 0.25 0.40 0.16 0.27 0.31 0.21 0.33 0.32 0.62 0.20 0.34 0.37 0.26
0.2 0.7 0.89 0.88 0.58 0.40 093 064 0.61 1.10 1.10 0.78 0.51 1.16 0.79  0.77
0.7 0.2 0.09 0.06 0.35 0.03 0.06 0.19 0.05 0.12 0.08 0.58 0.04 0.08 0.22  0.06
0.7 0.7 025 0.24 0.38 0.11 0.26 0.23 0.17 0.32 0.30 0.60 0.14 032 0.29 0.21
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Table 6.5 presents the results of the relative bias and relative root mean squared er-
ror. The population size is equal to 100 for 60 strata. Considering 60 strata, we see
similar patterns to those results for the smaller stratum, for p = 0.1. Under stratifi-
cation by cluster size, we see that the GREG with x, z and q has a minimum relative
bias when compared to the other GREG estimators including the Horvitz-Thomson es-
timator. Nevertheless, the Estevao and Sérndal GREG estimator with x and z, a large
correlation between y and x and a small correlation between y and z also gives the same

result to the optimal GREG with variable x, z and ¢ in terms of minimum relative bias.

Similar patterns are observed on Table 6.4 under random stratification. We see that
the optimal GREG estimator with x, z and q performs better than the other optimal
GREG estimators including the Horvitz-Thomson estimator in terms of relative bias and
relative root mean squared error. However, we observe a slightly different result to that
of the optimal GREG estimator with x, z and q and with the same level of correlation

between y and z.

When intra-cluster correlation p = 0.4, and under stratification by cluster size, we see
that the optimal GREG with x, z and q performs well in terms of relative bias and
relative root mean squared error. Moreover, the Estevao and Sédrndal GREG estimator
with x and z works well in some situations, ry, = 0.2, we observe the same results as
the optimal GREG with x, z and ¢ in terms of the relative bias and the relative root

mean squared error.

Under random stratification, we also see similar results to those with p = 0.1. We see
that in this situation the Estevao and Sarndal GREG estimator with x and z variables
performs well in terms of both relative bias and relative root mean squared error. The
Horvitz-Thomson estimator performs poorly or at best the same as the Estevao and
Sarndal GREG estimators. However, the Horvitz-Thomson estimator performs better
than the optimal GREG estimator with variable x alone when ry, = 0.2 and r,, = 0.7.

It seems that the sizes of the strata do not affect the results.

6.5.2 Conditional Bias

We propose to investigate the conditional bias of the estimators considered in the pre-
vious section. First of all, we calculate the relative error for the population total for
each estimators from the 1,000 samples in the simulation study. Then we ordered them
by their total mean and classified them into 20 groups with 50 sampled each follow-

ing Chambers and Dunstan (1986). Finally, we calculate the mean of their overall
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bias for each estimators and total mean of variable x and z. We chose to study some

cases of the Table 6.2: stratification by cluster size and random cluster stratification,

when 7., = 0.2 and r,, = 0.7 and ry; = 0.7 and r,, = 0.2. The population size are
N7 = 3,000, No = 2,000, N3 = 1,000 and there are 3 strata. The results are represented
in the graphs below.

O
8_ -=-8-=- Eateyap and Samdal GREG with x and z
O I 4 (ptimum GREG with x, 2 and g
5
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:
0 0
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S 0
[§
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900 0 500

Group meantofal of z

Figure 6.1: Relative bias for HT, Estevao and Sarndal with x and z and optimal
GREG estimators against the group mean total of z for stratification by cluster
size when 7y, = 0.2 and r,, = 0.7.

Figure 6.1 shows that the optimal GREG with x, z and ¢ performs well compared to the

Estevao and Siarndal GREG and the Horvitz-Thomson GREG estimators. The Horvitz-

Thomson GREG estimator performs the worse as it shows a linear trend of z.




Chapter 6 GREG estimators for Two-Stage Sampling 111

——
g_ --=8--- Estavao and Samdal GREG with x and z
o | G- (ptimum GREG with x, z and q
5
a]
0
@
[
28
7 @
3 ©°
14
o
a]
|
o
0
Q

500 0 300

Group meantofal of z

Figure 6.2: Relative bias for HT, Estevao and Sarndal with x and z and optimal
GREG estimators against the group mean total of z for random stratification
when ry, = 0.2 and ry, = 0.7.

In Figure 6.2 we consider the case of a random stratification. In this situation, we see that
the Estevao and Sdrndal GREG estimator performs better than the optimal GREG with
x, z and q and the Horvitz-Thomson GREG estimators. The Horvitz-Thomson GREG

estimator shows a linear trend.
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Figure 6.3: Relative bias for HT, Estevao and Sarndal with x and z and optimal
GREG estimators against the group mean total of x stratification by cluster
size when 7y, = 0.7 and r,, = 0.2.

Similar pattern is observed in Figure 6.3. The optimal GREG with x, z and q performs

the best. We do not observe much differences when compare to the Estevao and Sarndal
GREG estimator. There is a linear trend for the Horvitz-Thomson GREG estimator.

Figure 6.4 we consider a random stratification. We observe similar results to Figure
6.2. We see that the Estevao and Sarndal GREG estimator is the best. However, we do
not observe significant difference compared to the optimal GREG with x, z and q. The

Horvitz-Thomson estimator shows a linear trend.
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Figure 6.4: Relative bias for HT, Estevao and Sarndal with x and z and optimal
GREG estimators against the group mean total of x for random stratification
when ry, = 0.7 and ry, = 0.2.

This section’s results support the simulation results in Table 6.2. The optimal GREG
estimator with variable x, z and q performs well compared to the Estevao and Sarndal
estimator with x and z. It is also better than the Horvitz-Thomson estimator for strat-

ification by cluster size but not for random stratification.
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6.6 Conclusion

The simulation results show that the optimal GREG estimators with variable x, z and
q works well under stratification by cluster size in terms of relative bias and relative
root mean squared error. The optimal GREG estimator with z and ¢ is accurate com-
pared with the other GREG estimators including the Horvitz-Thomson estimator. The
optimal GREG estimator is less accurate for random stratification. The Estevao and
Sarndal estimator with x and z is more accurate in this situation. The optimal GREG
estimator with x, z and q may be as accurate as the Estevao and Sarndal estimator.
This is the case when there are a small number of SSU in each stratum. We did not

observe significant difference with large intra-cluster correlation and stratum size.

We observe different results in Table 6.3, where there are 3 strata and the number of SSU
in each stratum varies between 10 and 15. We see that the optimal GREG estimator
with x, z and q performs well under both stratifications. Although, the Estevao and
Sarndal GREG estimator with variable x and z also performs well under stratification

by cluster size in this situation as well and some situations with random stratification.



Chapter 7

Conclusions and Discussion

In chapters 1 to 6, we looked at the existence of nonresponse in surveys with cluster
designs and formulated new methods of analysis which treats missing data. We proposed
new estimators of regression coefficients in a linear regression model with cluster-level
variables when some of the data of the response variables are missing. We also proposed
an extension to the Heckman estimators under a model for clustered survey data. In
chapter 7, we proposed a new generalised regression estimator (GREG) for estimating
a population total for two-stage (cluster) sampling. To compare the performance of our
estimators with existing estimators, we performed simulation studies. In addition, we
applied the new methods to the Workplace Employment Relations Survey (WERS) 2004
data. In the final chapter, we aim to discuss the value of the proposed alternative esti-
mator and the Heckman estimator when analysing survey data under clustered designs
and the new GREG estimator for estimation. We also consider possible further avenues

of study.

Nonresponse in sample surveys is a common problem which can potentially result in
large biases in the analysis and estimation of sample survey data. In the first part of the
thesis, we considered how to use observed data in order to estimate appropriate regres-
sion coefficients in a linear regression model of cluster-level variables under missing data.
There is some literature related to how to deal with nonresponse at the cluster level as
described in Chapter 2 but the new method in this thesis explores the idea of adding
nonresponse information at cluster level variables into the linear regression model. This
was compared to the naive approach which simply estimates the regression coefficients
without considering the nonresponse. Furthermore, we extended the Heckman estima-
tor to take into account nonresponse under the cluster sample designs. This research
on the analysis of cluster level survey data which takes into account nonresponse in the

regression model is new.
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We investigated the efficacy of the new method for analysing clustered survey data for
both MAR and NMAR models under the following assumptions: firstly, that we need to
have at least one respondent in each cluster and secondly, that the difference between
the expectation of the response variable and nonresponse variable must be constant
across clusters. The first assumption is reasonable as no cluster can exist in any of
our functioning models that has full nonresponse. The second assumption simplifies the
model as it provides one constant across clusters but there is scope for future work to
consider a more complex model, e.g. by allowing differing values of nonresponse and the

expectation of it across clusters.

We developed the theory and showed under simulation that the proposed alternative
estimator is unbiased under the NMAR model and is preferable to the naive approach
which is biased. Unfortunately, there was some indication of bias under the MAR model
however in practice the nonresponse mechanism occurs more often with NMAR model
than with MAR model so we do not consider the small bias to be a significant limitation
with our estimator. Therefore, our proposed alternative estimator seems to be more

powerful than the existing naive one.

The models of interest in this thesis for analyzing cluster level survey data is the linear
regression model and the multilevel model. We considered these models because they
cover the models more commonly used when analysing complex survey designs. The

focus of our work on nonresponse is at the cluster level only.

We extended the Heckman estimators to cover the modelling for clustered survey data.
The Heckman estimator is well known to economists and deals with selectivity in the
modelling. For that reason, we included the Heckman estimator to incorporate the se-
lectivity of nonresponse into our model to see how it performs when analysing cluster
data. We also extended the study of the proposed methods to two-stage cluster sam-
pling and it worked in the same way as expected while assuming both MAR and NMAR
mechanisms. This points to our methods being useful in even more complicated sample

surveys if we follow the same iteration steps for estimation.

The main findings in the simulation results from models underlying the naive and al-
ternative approaches indicate that the new alternative approach estimator produced
unbiased results with the NMAR model but did show higher variance and mean square
error in all tests except when the § factor increased. This is not surprising and is expected
for unbiased estimators which tend to give higher variance and higher mean square error
than biased estimators. As expected the naive approach gave an unbiased, minimum
variance estimator under the MAR model but is biased under the NMAR model. In
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the simulation studies based on the Heckman estimators, the first Heckman two-step
estimator and the approximate Heckman maximum likelihood estimator performed well
showing reduced bias when compared to that produced under the naive approach. The
Heckman maximum likelihood estimator reduces variance and lowers mean square er-
ror when p increased. The new alternative approach behaves similarly to the Heckman
two-step estimator using p; in both models. We can see that in all simulations that we
ran, at least one of our proposed estimators worked well but it would be interesting to
investigate in further research using different models with larger variances in parameters

to see how our proposed estimators perform in other scenarios.

Surprisingly, we found that when replacing p; in (4.2) by m; that quite unexpectedly we
achieved a biased result. The theory that we presented stated that under the NMAR
model the alternative estimator should be unbiased. The reason for the discrepancy is
that the assumed model no longer holds. If m; is not large then p; and 7m; may be quite
different. This may explain the resulting bias which can be viewed as bias caused by

measurement error.

Unexplained results appeared in the models underlying the naive and our alternative
approach when we repeated the simulation study replacing x; in (3.11) and (4.2) by
z;. The alternative approach and the Heckman approaches performed completely differ-
ently than when we used x; in both models (3.11) and (4.2). Both estimators performed
poorly as we can see bias in all estimators. However replacing x; works well in the
model underlying Heckman estimators and although we can not find an exact reason
why this occurred it might happen because there is a difference in correlation and co-
variance between these two variables or it could actually be for other related reasons
due to measurement errors. Although, there is no clear indication in our theory that
there should be a difference in any results caused by using different variables in these
two Heckman estimator models it would be useful to investigate and find out why the

difference occurred under measurement errors.

We were interested to see how our proposed estimators would perform with real data
so we chose the data from the Workplace Employment Relations Survey (WERS) 2004
data where there are 2 levels, a single cluster and a single element which is the employees
within the workplace. There was a particularly large incidence of nonresponse by em-
ployees in this survey. Although there were difficulties in dealing with a large set of data
we applied the proposed methods to the WERS 2004 data following Bryson et al. (2009)
who focussed their analysis on private sector workplaces only and examined the effects
of innovations (management-initiated workplace changes) had on worker well-being. We

run simulations at both the individual and cluster level unlike Bryson et al. (2009) who
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only focussed his study at the individual level. Our results show that the proposed alter-
native approach only worked well at individual level so we carried out further analysis
to try and identify the problems with this dataset. We found an issue of unequal vari-
ance across clusters which is a common occurance in real applications. We successfully
used the weighted least square method to solve the problem and got a better result for
unweighted estimates. Surprisingly, the alternative approach did not work well at work-
place level for both unweighted and weighted surveys where we found results other than
those expected. This can be explained because the assumed model no longer holds. For
example, we assumed the population has normal distribution in the simulation study
but that might not be true in real data. The extended Heckman estimators work well at
individual level as well but we did not consider it at the cluster level variable where there

tends to be more problems in allowing for maximum likelihood estimation with real data.

In the second area of this thesis the generalized regression estimator (GREG) for two-
stage (cluster) sampling is considered. We proposed a new regression estimator based
upon the optimal estimator proposed by Berger et al. (2003) which can be used for
stratified two-stage sampling designs when the sampling fraction is negligible and the
primary sampling units are selected with unequal probabilities. We assume that there
are auxiliary variables available for the secondary sampling units and the primary sam-
pling units. We proposed to use an ultimate cluster approach to estimate the regression
coefficient of the regression estimator. Estevao and Sarndal (2006) proposed a regres-
sion estimator for two-stage sampling so we compared the proposed estimator with the
Estevao and Sarndal (2006) estimator under a self-weighted two-stage sampling design.
The simulation results show that the proposed estimator may be more accurate than the
Estevao and Sarndal (2006) estimator when PSU of similar sizes are grouped in the same
strata; that is, when the strata are homogeneous according to the PSU sizes. Note that
this is a situation which is not uncommon in practice. If the strata are not related to the
PSU sizes, the Estevao and Sérndal (2006) estimator is slightly more accurate than our
proposed estimator. In this situation, the loss of efficiency of the proposed estimator is

minor.

We have developed statistical theory for investigating nonresponse in the analysis and
estimation for regression models with clustered data by introducing the alternative es-
timator which incorporate information on nonresponse at the cluster level and also
developed the Heckman estimators for use at cluster level. Moreover, we proposed to
investigate different approaches for estimating a population total under two-stage (clus-
ter) sampling. We proposed to adjust the Estevao and Sédrndal (2006) GREG estimator
following studies by Berger et al. (2003). We compared the estimators for clustered data
using both simulation study and WERS 2004 data.
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Following the theory described in chapters 3 and 6, a number of tasks could be un-
dertaken in future work. First of all, we can apply the proposed estimators to the
logistic regression model. Secondly, we can adjust some of the assumptions allowing §;
to have variability across the cluster even though it could lead to more complications
in analysis. We can apply the proposed estimators to different sets of real data and
see how they perform. Furthermore, we can investigate how the proposed estimators
perform under more complicated survey sampling designs. We can also compare in the-
ory the proposed GREG estimators with other estimators. Finally, we can investigate

how the proposed estimators can be extended under imputation and weighting methods.






Appendix A

Proposition 16.1 Cameron and
Trivedi (2005)

Preposition 16.1 of Cameron and Trivedi (2005) Truncated Moments of the Standard

Normal.

Supposed z has a normal distribution with mean is equal to zero and variance is equal
to one. The left-truncated moment of z are

E(z|z > ¢) = ¢(c)/[1 — ®(c)] and E(z|z > —c) = ¢(c)/P(c), where ¢ is the probability
density function of the standard normal distribution and ® is the cumulative distribution

function of this distribution.
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