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Nonresponse in sample surveys has been increasing over the years. This thesis covers

that issue in two main parts. The first part is concerned with how to use observed data

to make inference about regression coefficients in a linear regression model of cluster-

level variables when some of the response variable data is missing. A näıve approach

estimates the regression coefficients without considering nonresponse. We propose new

methods for estimating coefficients which incorporate information on nonresponse at

the cluster level. We also extend Heckman estimators to our clustered model. The

Workplace Employment Relations Survey (WERS) 2004 data and data from a prepared

simulation study are used to compare the new methods with the näıve approach. In

the second part the generalized regression estimator (GREG) for two-stage sampling

will be considered. We propose new optimum GREG estimators for stratified two-stage

sampling and a simulation study is used in order to assess the performance of the new

estimators.
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Chapter 1

Introduction

1.1 Cluster Sampling in Sample Surveys

A unifying theme of this thesis will be cluster sampling. This is one of the sampling

techniques that statisticians use to select sample survey data for the benefit of reduc-

ing costs. In this sampling scheme, the entire population is divided into clusters and

a random sample of clusters is selected. We can collect all observations in the selected

clusters or sample only some of the elements in the sample set of data (two-stage sam-

pling). This is a useful method that does not require a sampling frame, which is a list of

the members of a population, but does need a complete list of clusters of the population

instead.

There are usually two different types of uses for survey data: descriptive and analytic.

The descriptive use is aimed at making inferences about the whole populations, e.g. to

estimate finite population totals and population means. The analytic use is aimed at

studying the associations between variables of interest, e.g. regression analysis. Re-

garding the analytic purpose, the units of analysis may be the clusters or the elements

within the clusters or they may include both. For example, if we are interested in finding

the association between the level of job satisfaction of employees at workplace level and

workplace innovations we would use the workplaces (clusters) as the units of analysis.

We will cover both purposes, descriptive and analytic in this thesis. The analytic use

will be covered in chapters 3 to 5 and the descriptive use will be considered in chapter

6.

Multilevel modelling will also be considered as it seeks to combine different units of anal-

ysis at different levels. Usually multilevel models are applied to hierarchical or clustered

structure data that has more than one level. At each level multilevel modelling of data

1



2 Chapter 1 Introduction

will allow for residual components. At a lower level, the individual level, are the units of

analysis that can be nested within aggregate units at a higher level. For example, where

the employee is the individual level he might be nested within workplaces which would

be considered a higher level. This kind of data usually involves analysis using multilevel

modelling.

1.2 Nonresponse in Surveys

Both estimation, for description and analysis, using survey data needs to take account

of nonresponse. There are three types of nonresponse in sample surveys: unit non-

response, item nonresponse and under-coverage. Unit nonresponse occurs when some

respondents choose not to, or are unable to, take part in the study. Item nonresponse

occurs when some respondents cannot answer or deny answering particular questions

i.e., participants do not know how to answer or accidentally skip or refuse to answer

some questions. Under-coverage occurs when some members of the population are not

represented in the sample (Groves et al. (2009)).

Complex survey designs are used in large scale surveys to collect data and these methods

include clustering and stratification designs, where stratification is the sampling scheme

where the entire population is divided into homogeneous subgroups called strata before

sampling units in each stratum. We normally analyse survey data under the complex

survey design in order to do further analysis, e.g. inference to the entire population

using the various statistical methodology. Unfortunately, nonresponse often occurs dur-

ing the process of collecting survey data, which obviously leads to the problem and the

problems arising from having missing data.

In surveys with cluster sampling it is possible for nonresponse to occur at either the clus-

ter level or the individual level. For example, in surveys of employees within workplaces

nonresponse can occur at a cluster level process or it could be raised at an individual

level process. In this thesis we will consider the situation where nonresponse occurs at

an individual level only.

Researchers use numerous statistical techniques that have been proposed for analysing

survey data from both basic and complex approaches. The basic methods used to anal-

yse survey data are frequency distributions and descriptive statistics. Further than

that, complex statistical approaches are applied in survey research such as regression

analysis and multilevel modelling. Chambers and Skinner (2003) noted the variation in

generalizations of the regression analysis of survey micro data, citing generalised linear
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modelling, event history analysis and multi-level modelling as three different forms of

analysis of the data.

Both sample survey and census always have problems of nonresponse which usually af-

fect results of statistical analysis. In this thesis we consider nonresponse in a sample

survey which impact on regression analysis and multilevel modelling for cluster data.

Consequently it is essential to look at the reasons for why the data is missing.

Groves et al. (2002) state that nonresponse is of increasing concern due to decreasing

response rates in surveys. Response rates are the percentage of people who respond to

the survey, with one minus response rate being called the nonresponse rate. The quality

of surveys is usually considered from the response rate (e.g. Bethlehem (2009), Groves

et al. (2009)). Higher response rates improve the confidence that the survey results are

representative of the target population. This is very important in any attempt to deal

with nonresponse in surveys with complex sample designs.

The easiest way to handle missing data is to exclude missing data from the data set

and continue using the standard statistical techniques to analyse as usual. In this case

it is free from missing values. This is known as complete case analysis or listwise or

pairwise deletion. However, there are some drawbacks for this method. For example,

the estimator may be biased if the missing values are not missing completely at random

(MCAR) which will be discussed later in Section 1.4.

For this reason we have to deal with missing data in more appropriate ways. There are

two standard methods of compensating for nonresponse: weighting methods are used

to deal with unit nonresponse and under-coverage and imputation methods are used to

deal with item nonresponse. For the weighting method we can use the inverse of the

probability of missingness as a weight to respondents. On the other hand, imputation

methods are methods that substitute these missing values with possible estimated val-

ues from the recorded responses. Both weighting and imputation methods are used to

correct the bias. More details will be shown in Chapter 2.

Missing data also impacts on statistical analysis depending on the missing data pattern

and the missing data mechanism. The missing data pattern explains whether values are

observed or missing. The missing data mechanism is concerned with the relationship

between the reasons why data is missing and the values of variables.
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It is helpful to understand the missing data pattern and missing data mechanism in or-

der to determine the suitable approach to use for statistical analysis and may also help

in finding a solution for the problems that arise from the missing data. Our analysis

involves unit nonresponse which requires an assumption of the missing data mechanism.

This Chapter provides general ideas about missing data in surveys in order to under-

stand the nature of nonresponse.

1.3 Survey Estimation

Sample survey data usually has problems of nonresponse that can lead to a biased esti-

mator. Survey weighting is one of the statistical techniques that we often use to correct

the bias brought by nonresponse and to improve the efficiency of the estimators for unit

nonresponse. There are numerous ways to construct the survey weights. An important

way to do this is to use an inverse probability weighting which is a weighting reciprocal

to a response probability that has been estimated under a model. (Skinner and Darrigo

(2011)).

The Horvitz-Thompson estimator is one of the weighted estimators used for estimating

a population total or a population mean. The Horvitz-Thompson estimator is usually

used for any probability sampling plan e.g. simple random sampling, stratified sampling

and it is also used for accounting for nonresponse. The inverse of the known sampling

probability which is drawn from the target population is used for observation weighting.

Auxiliary information can also be used to improve the precision of the estimator, e.g.

estimation of the population totals or population mean while the Horvitz-Thompson

estimator does not consider the auxiliary information into the estimation steps. The

generalized regression (GREG) estimator is one of the methods that uses auxiliary in-

formation to improve the precision of the estimations of population totals or population

means in survey sampling and it is a special type of calibration estimator which will be

discussed in Chapter 6.

Another survey estimation that corrects for sample selection bias is the Heckman model

(Heckman (1976), Heckman (1979)). The Heckman model, sometimes called the sample

selection model, is a method for estimating regression coefficients that allow for bias

selection. The dependent variable in the Heckman model is only observed for a portion

of the data and the remaining is unobserved.
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1.4 Missing Data Mechanisms

The easiest way for analysing missing data is to ignore unmeasured data and to analyse

using the complete set of data. However, this may lead to biased estimators. There

are some options to cope with the analysis of incomplete data. In statistical software,

listwise and pairwise deletions are the methods for handing missing data by deleting

any case with missing data before analysis. To understand these options, we need to

understand the reasons why data is missing through missing data mechanism, (refer Lit-

tle and Rubin (2002) and Groves et al. (2002)). Missing data mechanisms are classified

into three categories depending on randomness or non-randomness of missing data. The

first one is missing completely at random (MCAR). The data are MCAR if missingness

does not depend on observed values and missing values. For example, if we consider

the job satisfaction of employees and workplace innovations, the chance to have a miss-

ing value on job satisfaction does not depend on the actual value of innovation. The

probability of response is equal on all categories of innovations. This is a very strong as-

sumption, and usually does not hold true in practice when using the complete set of data.

The second mechanism which has a less restrictive assumption is called missing at ran-

dom (MAR). This occurs if the missingnesses is related to the observed data but not on

the missing values. Both listwise and pairwise deletion assumes that the missing data

mechanism is MCAR. Therefore, if the missing data are MAR, analyzing by these meth-

ods may lead to biased estimators. According to the previous example, the chance to

have a missing value on job satisfaction may depend on the observed value of innovation

but not on the missing value of job satisfaction. In other words within categories of

innovation, the probability to respond on job satisfaction is equal but maybe different

accross categories of innovation. Analyses of complete cases will bias estimates if MAR.

Missing data is called ignorable, if the data are MCAR or MAR

The last mechanism is not missing at random (NMAR). The mechanism is called NMAR,

if the missingnesses is related to the missing data itself. Therefore, following the previ-

ous example the chance to have a missing value on job satisfaction may depend on the

observed value of innovation and also depend on the missing value of job satisfaction.

The response probabilities vary both between and within the categories on innovation.

When missing data are NMAR, it is very difficult to handle and may lead to severe

biased estimates. Missing data are also called non-ignorable, if the data is NMAR.
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1.5 Outline of Thesis

The remainder of this thesis is divided into two main parts. As we mentioned earlier,

we will cover both descriptive and analytic uses of survey data. The analytic use of sur-

vey data will be presented across chapters 3 to 5 and the descriptive use of survey data

will be presented in chapter 6 where it is quite different from the other parts of the thesis.

In Chapter 2, we review the literature on approaches to compensate for nonresponse.

We also provide an overview of nonresponse in sample surveys. For example, imputation

and weighting methods to compensate for nonresponse and also types of nonresponse

are described. Finally, the clustered data in survey sampling is discussed.

In Chapter 3, the model of interest is introduced, where assumptions of MAR and NMAR

mechanisms are considered. We discuss the estimation of a regression coefficient (β) in

a regression model under a näıve approach and introduce new estimators. The bias

and variance for both estimators are discussed. We also consider a Heckman estimator.

Furthermore, we show that the new methods we propose can be extended to two -stage

cluster sampling.

In Chapter 4, we look at the performance of the proposed estimators and Heckman es-

timators through a simulation study and discuss a model for the simulation study. The

simulation results are shown to support the theory. Moreover, we discuss further theory

to explain the simulation results.

In Chapter 5, we test our approach on real data. We choose the Workplace Employ-

ment Relations Survey (WERS) data where a two-stage cluster sampling design is used

where there is also the problem of employee nonresponse in the workplace level. We also

discuss the study of Bryson et al. (2009). The proposed analysis is discussed and finally

the results of analysis for both the regression model at individual level and at cluster

level are presented.

In Chapter 6, we propose the optimum GREG estimators for stratified two-stage cluster

sampling. First of all, we review literature that relate to the GREG estimators. Next

we discuss the GREG estimators at single stage and two stage respectively. Finally, we

look at the performance of the proposed estimators by simulation study.

In the final chapter, Chapter 7, we will consider the full value of our proposed alterna-

tive estimator, our developed Heckman estimators and our new GREG estimator leading
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onto a consideration of possible future works.





Chapter 2

Review of Literature on Analysis

of Missing Data

2.1 Introduction

In Chapter 1, we discussed cluster sampling in sample surveys, nonresponse in surveys,

survey estimation and described nonresponse mechanisms in sample surveys. In this

Chapter, we will review the literature surrounding the methods used for compensating

for nonresponse; weighting and imputation. We will describe the literature surrounding

survey analysis that deals with missing data in clustered data.

As noted in Chapter 1, missing data is a common problem in survey data. Numerous

methods have been developed in order to deal with incomplete survey data; weighting

methods are used to compensate for unit nonresponse and for under-coverage while im-

putation methods are used mainly to compensate for item nonresponse.

2.2 Imputation

Imputation consists of replacing missing data values with plausible estimated values. For

single imputation each missing value is replaced with a single estimated value. There are

several single imputation techniques used to account for missing data including mean

imputation, regression imputation and hot deck imputation.

9
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Mean imputation replaces the missing value by the mean of the existing values of the

same field in a data set typically within nonresponse classes. Using the regression im-

putation method we replace the missing values in a different way with predicted values

based on the regression model applied on observed elements (Kalton and Kasprzyk

(1982); Little and Rubin (2002); Durrant (2005); Heeringa et al. (2010)).

There are some papers concerning mean and regression imputation. Haziza and Rao

(2006) proposed a new approach to contest linear regression imputation for estimating

population totals. This new method is assumes an ignorable response mechanism that

does not require a model on the variable of interest. They showed that along with the

imputed values the estimator of the population totals is also approximately unbiased

and show that the variance estimators of the population totals are approximately unbi-

ased following Fay (1991). Their simulation results show that their proposed methods

perform better than the naive approach in terms of both bias and mean square error but

nevertheless, their simulation study to assess their variance estimators performance is

limited with a high regression coefficient of determination appearing in the study model

and also, worse still, their research is limited to a single imputation class only.

Hot-deck imputation which replaces missing data with donor information from a respon-

dent who carries similar characteristics as the recipient is another approach for single

imputation. A donor can be selected randomly from within an imputation class or from

a similarly observed value in a suitable record (Kalton and Kasprzyk (1982); Little and

Rubin (2002); Durrant (2005)). Hot-deck imputations are also useful techniques for ex-

trapolating multivariate missing data, as it is common to have incomplete sets of data

in many variables where multivariate imputations are needed. In this case, one donor

is used for all missing values. Andridge and Little (2010) show different formats of

hot deck imputation methods and also provide a detailed review of hot deck properties

showing methods to create the donor pool, considering the weights in sample survey for

the selection of the donor and also they describe hot deck imputations for multivari-

ate missing data. The variance estimators used to validate hot deck imputation with

a detailed description of each are considered and applied to real data. They also gave

their views about problems they found with using hot-deck imputation and it might be

advantageous for future investigation to address these issues.

Other papers on multivariate imputation are described in Van Buuren et al. (2006).

Van Buuren et al. (2006) studies the issue that occurs using the fully conditional speci-

fication in the Gibbs sample for imputation for nonresponse in multivariate data. The

trouble in theory for this method is that it might not converge under inconsistent con-

ditions. Van Buuren et al. (2006) investigated this problem of non convergence under
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various missing data mechanisms, e.g. MAR, MCAR for both compatible and incom-

patible models. The results show that multiple imputation still performs well with

incompatible models and it provides an unbiased estimator. A limitation of this re-

search on imputation models is that it only explored MAR models and consequently it

might be interesting to apply to other models.

Single imputation has some advantages over multivariate imputation in that it allows the

use of standard complete data methods in the analysis and also has the ability to incor-

porate the data collector’s knowledge. However, the major problem of single imputation

is that it does not take into account variance structures and multiple imputation (MI)

does. Multiple imputation includes more than one set of missing values in a calcula-

tion. Rubin (1987) proposed multiple imputations for missing data and since then there

has been much work on multiple imputation. Yuan (2000) reviews multiple imputation

methods and also develops SAS procedures, PROC MI and PROC MIANALYZE for

multivariate missing values. Nonetheless, Reiter et al. (2006) point out that standard

software packages do not take into account complex survey designs and therefore this

can lead to bias in multiple imputation data. They showed in simulation study that bias

can occur in multiple imputation when the researchers ignore complex survey design,

e.g. stratified and cluster samples. Two methods which account for the sampling de-

sign of the models for imputation are recommended: dummy variables and hierarchical

models have been used where both the clustering effects and the stratification effects

are accounted for by including random effects and fixed effects respectively. The real

data is used to study the difference between imputed data that takes into account de-

sign variables while ignoring the design variables. While this study provides valuable

results to show bias exists when ignoring complex survey designs in multiple imputation

regarding the simulation study and real data, it is also interesting to see how that bias

occurs and it should be examined in future research.

It is misleading to calculate the variance of imputed data using standard variance for-

mula as it may lead to underestimation of the variance and gives incorrect precision in

measurement. Särndal and Lundström (2005) claim that some statisticians treat the

imputed data the same as observed data in order to benefit from the variance estima-

tion. However, this leads to two problems in the estimation of variance which are a

biased estimator for the sampling variance and no capacity to account for the additional

component of variance due to nonresponse. Previously, Rao (1996) reviewed papers on

jackknife variance estimation for a full set of data with no missing values and for a

set of data with imputed missing values by a single imputation for item nonresponse

under both stratified simple random sampling and stratified multistage sampling. The

linearized forms of the jackknife variance estimators are investigated. These can be used

by adjusting existing computer software without adding extra code. However, his study
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is limited to single imputation. Later Berger and Rao (2006) proposed an adjusted

jackknife estimator for variance estimation in the case of imputed data under unequal

probability sampling without replacement and with non negligible sampling fractions.

Three imputation methods are considered; mean, ratio and random imputation. A sim-

ulation study is used to compare the proposed method with the näıve jackknife variance

estimator. It shows that the proposed estimator performs better than the näıve one in

terms of relative bias, relative root mean square error and confidence interval empirical

coverage. Their study is limited to single imputation class with uniform response and

even though they extended to non-uniform response they still only tested with a single

imputation class.

Moreover, Shao and Steel (1999) proposed a new method of variance decomposition

for estimating the population totals of the Horvitz-Thomson estimators in two cases

using sample surveys where imputation techniques have been utilised upon areas of

nonresponse and where there are non-negligible sampling fractions. They showed that

their new method can be used to derive variance estimators for both a design-based

or a model-assisted approach even where some imputation methods, e.g. deterministic

and/or random imputation methods have been used. The variance estimators derived

from the new method also hold the properties of being asymptotically unbiased and

consistent. They discovered difficulty in using the model-assisted approach over the

design-based approach when certain factors are present in the construction of the sur-

vey. Later Shao and Wang (2002) examined both bias and variance for the regression

imputation method. They also proposed a joint regression imputation method that is an

unbiased estimator for marginal totals, second moments and correlation coefficients. A

jackknife variance estimation method which takes into account the imputation method

is proposed to produce asymptotically unbiased and consistent variance in estimation.

The simulation results show that the proposed method performs well in terms of unbi-

ased point estimators and at the estimation of variance.

Brick et al. (2005) compared three methods; the model-assisted, the adjusted jackknife

and the multiple imputation methods for variance estimations of the population total

under hot deck imputation using a simulation study. They considered both full popula-

tion and domain estimation under their study where missing variables data is imputed

by hot deck imputation under a single-stage stratified sampling design that assumes

that the missing at random assumption for hot deck cells of both unbiased estimator

and item response are violated. The simulation results show that all variance estima-

tors under hot deck imputation give unbiased estimators for full population but not for

domains. Their simulation study however is limited to a single-stage stratified sampling

design and also they did not compare the different variance estimations in theory with
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a mathematical proof.

2.3 Weighting

Weighting methods are used in sample survey data using design weights to scale sample

units. It is also used for addressing unit nonresponse in missing data. The weighting

adjustment for missing data is a method that allocates a nonresponse weight to re-

spondents based on the inverse of the probability of missingness. This method should

decrease nonresponse bias. Although the pros of using weights in survey estimates is

to reduce bias from nonresponse, there are also some cons in weighting. It may lead to

increased variance in the estimation and complications in analysis due to unrecognised

weights in statistical packages which might instead treat them as a frequency weight of

the same value (Brick and Kalton (1996)). There are a variety of methods for weight-

ing adjustment for missing data such as inverse probability weighting, adjustment cells

weighting and poststratification. Under poststratification and adjustment cell weighting,

the weighting classes should be homogenous with respect to the probability to respond

in order to reduce nonresponse bias but result in less of an increase in the variance

compared to inverse probability weighting .

Adjustment cells weighting is one of the weighting methods that estimates the non-

response probability from sample data, and also reduces nonresponse bias. There are

two methods to create the adjustment cells or subclasses. The first one depends on

respondents and non-respondents variables in the survey. The second one depends on

external information from a census or larger survey. We assume that respondents and

non-respondents are classified into C adjustment cells depending on covariate informa-

tion. Little and Vartivarian (2003) claim that “the respondents in cell C are weighted by

the inverse of the response rate in cell C”. Groves et al. (2002) state that this method is

called response propensity stratification which is a method that is effective in reducing

nonresponse bias with respect to the background variables.

The poststratification method is a weighting method that needs one or more qualitative

auxiliary variables and a population total. It is one of many methods that use the ben-

efit of auxiliary information. This method assigns the different adjustment weights to

all units in the same poststratum. It will give unbiased estimators at full response but

may be biased if nonresponse occurs (Groves et al. (2002)). Holt and Smith (1979) state

that poststratification or stratification after selection is a robust method for estimation,

and also unrestricted by assumptions. They point out that if the stratification prior to

selection depends on a large number of secondary variables, then post stratification is
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useful for multi-purpose surveys. However, their discussion is limited to a single stage

design.

The difference between inverse probability weights and post stratification weights is

stated by Groves et al. (2002). He points out that the difference between these two

methods is that post stratification weights come from collected data but that inverse

probability weights have already been informed upon survey design. However, inverse

probability may cause severe problems. For example, if nonresponse data is often ignored

the method will be inefficient. Moreover, the variance estimation problem for estimated

weights is covered in explicit formulas only for simple estimators which are not well

established for complex survey designs. There is also another approach to calculate

the weights e.g. calibration approach which uses the benefit of the auxiliary variables

(Särndal and Lundström (2005)).

Some papers use both weighting and imputation to address missing data problems. Brick

and Kalton (1996) explore several weighting and imputation techniques and also the ad-

vantages and disadvantages of them. Durrant and Skinner (2006) study imputation and

weighting methods looking at ways to remove bias that results from measurement errors

made estimating of a distribution function, for example fractional imputation, nearest

neighbour imputation, predictive mean matching and propensity score weighting. The

results show that nearest neighbour performs better in term of bias when compared to

other imputation methods.

As we mentioned earlier, nonresponse weighting aims to decrease nonresponse bias.

However, it usually causes a problem of increasing the variance. Little and Vartivarian

(2005) argue that nonresponse weighting can decrease the variance the same as bias

reduction in the case that there is an association between a covariate of a weighting ad-

justment and the survey outcome. Nevertheless, their study is limited to simple random

sampling it is therefore more interesting to see how it will perform in complex survey

designs.

2.4 Survey Data Analysis with Missing Data

Little (1982) reviewed many papers related to a modelling approach for handling missing

data in survey sampling for both unit and item nonresponse e.g. the methods described

in the papers use superpopulation models for a full set of data and also missing data

in sample surveys, maximum likelihood methods that do not account for the response

mechanism where cases with missing data are removed and analysis continues as though
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the data was complete. These analyses are called complete-case analysis or listwise

deletion. Little and Rubin (2002) pointed out that there are both pros and cons of

complete-case analysis. On the positive side, standard statistical techniques can be used

with the complete set of data directly. In addition, it allows for the plausibility of com-

parable univariate statistics. However, complete-case analysis might lead to problems

of bias and also loss of efficiency of variance due to throwing away some of the data.

There are also some application papers covering problems of bias evident in missing data

occurring by complete-case analysis.

Available-case analysis contains every single case of variable of interests. The drawback

of this method exists within the pattern of incomplete data that leads to variation of

the sample base from one variable to another variable (Little and Rubin (2002)).

Imputed values, as we noted in Section 2.2, are the estimated data values that fill in miss-

ing values in order to get a complete set of data for standard statistical analysis, thereby

avoiding some of the problems that arise in complete-case and available-case analysis.

There are papers on using imputed values for analysis in statistical applications, e.g.

regression analysis and multivariate analysis. For example, Little (1992) reviewed re-

gression analysis when independent variables are missing. He compared six methods;

complete-case analysis(CC), available-case analysis(AC), least squares on imputed data,

maximum likelihood(ML), Bayesian methods and multiple imputation. He pointed out

that CC and AC analysis are easy but disadvantaged by the limitations within their

method. ML performs well for large samples, but Bayesian methods perform better in

small samples. He also discussed software for these methods. This research has limita-

tions in the response mechanism tested using MAR model data but was not tested with

other types.

Also, Skinner and Rao (2002) studied the bias found in both standard estimators for the

hot-deck method and bias-adjusted estimators. They evaluated the variance for both of

them and also jackknife variance estimators for each of them were produced to estimate

what missing data might be in a bivariate dataset with imputed data using hot deck

imputation. The limitation of their research is that simple random sampling is consid-

ered only and not even that for the more complex survey design and also their study

considered data with no more than two variables.

Previously, Gelman et al. (1998) proposed a new approach for analysis of a cross-sectional

survey with missing data and also a single survey with different questions or different

sampling methods applied for each stratum or cluster. Multiple imputations are applied

in this new method. However, a hierarchical regression model, allowing for covariate at
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both individual and survey level, is used for a single survey. Furthermore, the diagnostic

checking for the fit of the imputed model under the difference between imputed data

and non imputed data is improved.

Alternatively, another approach to deal with missing data is a likelihood method. This

method provides unbiased estimators under both MCAR and MAR where complete-case

and available case analysis both sometimes have problems, especially when the missing

data mechanism is not MCAR. The well known method for the likelihood based ap-

proach is called the Expectation Maximization (EM) algorithm and is a method to find

maximum likelihood estimates from partial data. (Little and Rubin (2002)).

There are a variety of methods of providing weighting for missing data. Skinner and

Coker (1996) extend the methods for dealing with missing covariate values in a linear re-

gression model by using a maximum likelihood estimator under a complex survey design.

Also a proposed jackknife variance estimator is applied to estimate the standard errors.

Their method and application to real data are restricted in that it only works with

a single missing covariate. Moreover, Pfeffermann et al. (1998) presented alternative

methods for weighting the estimation in a multilevel model with two-levels. The recip-

rocals of the selection probabilities at each stage of sampling are used to deal with the

bias that occurs during this situation. Also scaled weights and variance estimation have

been proposed. The simulation results show that their proposed estimators perform well.

2.5 Clustered Data

As we mention earlier in Chapter 1, this thesis focuses on clustered data where the

population is naturally divided into groups (clusters) by similarity of characteristics. If

a sample frame of the population is not available, we can draw a random sample of

clusters and collect observations from the units in the selected clusters. A single -stage

sample design is where observations are collected for all the units in the selected clus-

ter. A two-stage sample design is where observations are collected for only a random

sample of units within the selected clusters. In clustered sample designs and a design-

based approach for analysis, we can deal with correlations within clusters through the

intra-cluster correlation defined approximately as the proportion of the between variance

of cluster means to the overall variance. In clustered sample designs, the intra-cluster

correlation generally causes variance estimates to increase compared to simple random

sample designs. In a model-based approach for analysis, clustered sample designs are

usually analysed by treating the clusters as random effects through a multilevel model

and the ICC (Intra-class Correlation Coefficient) is the percentage of between-group
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variability out of the total variance.

In this section we discuss some literature on nonresponse at the cluster level. Haziza

and Rao (2001) proposed the use of nested error linear regression models as imputation

models in order to take account of the intra-cluster correlation in cluster sampling. The

inferential and variance estimation for population total under imputation for missing

data on the model-based approach have been proposed following Fay (1991) where Fay

(1991) proposed a new method to reverse the sampling and response order which was

developed by Shao and Steel (1999). Later Shao (2007) proposed a method to estimate

the population mean for nonresponse data under cluster sampling when the missing

data is imputed or reweighted. The new estimator is shown to be unbiased under these

two situations. Nevertheless, they only considered a single imputation cell in their study.

In the same year, Yuan and Little (2007) suggested new estimators to estimate the

population mean when unit nonresponse occurs under the model for two-stage clus-

ter sampling and defined the clusters as random effects. The term, cluster-specific

non-ignorable (CSNI) nonresponse has been proposed to represent the type of missing

mechanism where the response rate that is varying across cluster data is non-ignorable.

They showed that under CSNI, the standard random effect model estimator (RE) for

estimating the population mean is biased. Therefore, two adjusted methods have been

proposed for bias correction. Both a simulation study and real data are used to compare

the performance of the new methods and the näıve estimator. Although their study is

limited to two-stage cluster sampling design it can be applied to more complex design

such as multistage cluster sampling using hierarchies in multilevel models. Nevertheless,

their simulation study is limited to an equal selection probability design. Later, Yuan

and Little (2008) proposed an extension of Yuan and Little (2007) but focused on item

nonresponse instead of unit nonresponse where missing data depends on covariates and

underlying cluster characteristics or depends on covariates and missing outcomes. To see

how the new methods perform they considered both a simulation study and applied it

to real data. The limitations of this research are that the assumptions of the model are

usually violated by multiple imputation and also their assumptions about fully observed

covariates are usually wrong in practice.

West (2009) studied various simulation results for the estimator of a population mean

for an alternative weighting class adjustment in complex survey designs, e.g. stratified

cluster sampling, by developing the previous work of Little and Vartivarian (2003) and

Little and Vartivarian (2005). A simulation study is used to investigate five different

parameters, e.g. the association between an auxiliary variable for respondents and non-

respondents with the variable of interest in sampling survey. The simulation results

showed that the weighted response rates in weighted classes are useful in the case of
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small response rates and in the case that there is an association between the auxiliary

variable and the stratum variable for both the variable of interest in the survey and the

response propensity in stratified cluster sampling.



Chapter 3

Estimation of Cluster-level

Regression Model under

Nonresponse within Clusters

3.1 Introduction

In chapter 2, we reviewed the literature which is related to nonresponse in sample sur-

veys especially focusing on nonresponse at the cluster level. In this chapter we discuss

nonresponse at the cluster level when some of the response variables data are missing in

order to select appropriate regression coefficients in a linear regression model of cluster-

level variables and also to extend the Heckman estimators to the clustered model. First,

we introduce notation and framework in section 3.2. Second, the model of interest is

explained in section 3.3, which focuses on how to use observed data to make inference

on coefficients of the model when y data is missing. Next, in section 3.4 we introduce

the model for nonresponse, where MAR and NMAR assumptions are also described.

Furthermore, we discuss estimation of β for the näıve approach and its bias and vari-

ance are shown in section 3.5. The näıve estimator has bias under the NMAR model,

we therefore introduce an alternative estimators in section 3.6. Bias and variance for

the alternative estimator are also discussed. A Heckman estimator is also developed in

section 3.7. Finally, the method we have presented in this chapter is also extended to

two-stage cluster sampling.
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Chapter 3 Estimation of Cluster-level Regression Model under Nonresponse within

Clusters

3.2 Notation and Framework

Let N denote the number of clusters in the population, and mi the number of ele-

ments/units in cluster i = 1, 2, . . . , N .

Let yij be the value of the study variable y for the jth population element (j =

1, 2, . . . ,mi) for the ith cluster (i = 1, 2, . . . , N).

Let ȳi be the population mean among all units in cluster i (i = 1, 2, . . . , N).

ȳi = m−1
i

mi∑
j=1

yij , (i = 1, 2, . . . , N). (3.1)

Let xi be the cluster-level vector of auxiliary variables in cluster i (no nonresponse error)

xi = (1, xi1, ..., xik)
′.

Sampling

A simple random sample of n clusters is selected, and all mi elements(i = 1, 2, . . . , N)

are sampled in each sampled cluster.

Nonresponse

Let

Rij =

1 if yij is observed

0 if yij is missing

ȳri =

∑mi
j=1Rijyij∑mi
j=1Rij

, (i = 1, 2, . . . , N) (3.2)

mi∑
j=1

Rij = ri , (i = 1, 2, . . . , N) (3.3)

where ri is number of respondents in cluster i.

We are now going to make the assumption for number of respondents in cluster i in order

to look at new methods for analysis which incorporate information on nonresponse in

the model.
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Assumption:

ri ≥ 1 , (i = 1, 2, . . . , N) (3.4)

Data

The observed data count of mean among respondents in cluster i is denoted as ȳri, (i =

1, 2, . . . , N).

The response rate in cluster i is denoted as pi, (i = 1, 2, . . . , N),

pi =
ri
mi
. (3.5)

3.3 Model of Interest

The model of interest is a cluster level linear regression model of ȳi on xi, given by the

equation

ȳi = xi
′β + εi. (3.6)

We shall generally assume E(ȳi|xi) = xi
′β, so that E(εi|xi) = 0, var(εi|xi) = σ2.

We shall also consider an underlying multilevel model as follows.

Multilevel model

yij given xi

yij = xi
′β + ε1i + ε2ij , (3.7)

assuming E(ε1i|xi) = 0 and E(ε2ij |xi) = 0, var(ε1i|xi) = σ2
By, var(ε2ij |xi) = σ2

Wy.

If both (3.6) and (3.7) hold then εi = ε1i + ε̄2i, where ε̄2i =
∑mi

j=1 ε2ij/mi.

Problem:

The problem is how to use observed data to make inference about β when some of the

y data is missing.

3.4 Model for Nonresponse

In this section, we introduce a model for the response outcome Rij . It is motivated by

Heckman (1976), who introduced a variable uij to control the response mechanism so
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that Rij = 1 if uij > 0 and Rij = 0, otherwise(Cameron and Trivedi (2005)).

We extend the multilevel model in (3.7) to a bivariate joint model for yij and uij , given by[
yij

uij

]
∼ N2

[[
µyi

µui

] [
σ2
Wy σWyu

σWuy 1

]]
, (j = 1, 2, . . . ,mi), (3.8)

where the matrix [
σ2
Wy σWyu

σWuy 1

]
is constant across clusters.

The µyi and µui are assumed to be random effects, where[
µyi

µui

]
∼ N2

[[
xi
′β

xi
′γ

] [
σ2
By σByu

σBuy σ2
Bu

]]
, (j = 1, 2, . . . ,mi). (3.9)

Hence, one can write analogously to (3.7)

yij = xi
′β + εij , (3.10)

where εij ∼ N(0, σ2
ε ), σ

2
ε = σ2

Wy + σ2
By,

εij = ε1i + ε2ij , ε1i ∼ N(0, σ2
By), ε2ij ∼ N(0, σ2

Wy), and ε1i, ε2ij are independent.

Similarly, one can write

uij = xi
′γ + ηij , (3.11)

where ηij ∼ N(0, σ2
η), σ

2
η = 1 + σ2

Bu

ηij = η1i + η2ij , η1i ∼ N(0, σ2
Bu), η2ij ∼ N(0, 1), and η1i, η2ij are independent.

We have [
εij

ηij

]
∼ N2

[[
0

0

] [
σ2
ε σεη

σεη σ2
η

]]
,where σεη = σWyu + σByu. (3.12)

MAR Assumption and NMAR Model

Rij are MAR if they are conditionally independent of yij given xi. Since Rij is deter-

mined by uij , nonresponse is MAR if uij and yij are conditionally independent given xi.

From the model (3.10) and (3.11), this occurs if εij and ηij are conditionally independent
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given xi. From (3.12) it follows that σεη = 0 if nonresponse is MAR.

Let

δi = E[(ȳri − ȳnri)| ~Ri], (i = 1, 2, . . . , n), (3.13)

where ~Ri = (Ri1, ..., Rimi), ȳri is defined in (3.2) and ȳnri is the mean of y among non-

respondents,

ȳnri =

mi∑
j=r+1

yij/(mi − ri). (3.14)

We have, provided assumption (3.4) holds,

E(ȳri|Ri1, ....Rimi) =
E(
∑mi
j=1Rijyij |Ri1,....Rimi )∑mi

j=1Rij

=
∑mi
j=1 E(Rijyij |Ri1,....Rimi )∑mi

j=1Rij

=
∑mi
j=1RijE(yij |Ri1,....Rimi )∑mi

j=1Rij
.

If nonresponse is MAR then E(yij |Ri1, ....Rimi) = xi
′β (treating xi as fixed here).

Hence, under MAR

E(ȳri|Ri1, ....Rimi) = xi
′β. (3.15)

Similarly,

E(ȳnri|Ri1, ....Rimi) = E(
∑mi

j=r+1 yij/(mi − ri)|Ri1, ....Rimi)

=
∑mi
j=r+1 E(yij |Ri1,....Rimi )

mi−ri .

(3.16)

If nonresponse is MAR then,

E(yij |Ri1, ....Rimi) = E(yij)

= xi
′β.

(3.17)

Substitute (3.17) into equation (3.16),

E(ȳnri|Ri1, ....Rimi) =
∑mi
j=r+1 xi

′β

mi−ri

= (mi−r)xi′β
mi−ri
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= xi
′β provided ri < mi. (3.18)

From (3.15) and (3.18), we have

E(ȳri − ȳnri|Ri1, ....Rim) = 0.

Hence, δi = 0 for all i under MAR.

If any of the δi are non-zero then the model is NMAR.

For simplicity, we consider a particular NMAR model when

δi = δ, δ 6= 0. (3.19)

3.5 Estimation of β: Näıve Approach

In this section we introduce a näıve estimator of β in section 3.5.1, we discuss its bias

focusing on MAR and NMAR model. Then, the variance of the estimator is explained

in section 3.5.2.

From equation (3.6), this model can be written in matrix form for sampled clusters as

follows.

Y = Xβ + ε, (3.20)

where

Y =


ȳ1

ȳ2

...

ȳn

 , X =


1 x11 . . . x1k

1 x21 . . . x2k

...
...

. . .
...

1 xn1 . . . xnk

 , xi =


1

xi1
...

xik

 (i = 1, 2, . . . , n)

β =


β0

β1

...

βk

 , and ε =


ε1

ε2
...

εn

 .

Näıve approach replaces ȳi by ȳri and Y by
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Yr =


ȳr1

ȳr2
...

ȳrn

 ,

then the estimator of β from the näıve approach is

β̂n = (X ′X)−1X ′Yr. (3.21)

β̂n is the best linear unbiased estimator(BLUE). Note assumption (3.4) is required to

construct β̂n.

3.5.1 Bias of Näıve Estimator

We now discuss the bias of the näıve estimator under both MAR assumption and NMAR

model in section 3.4. We begin with the bias under MAR model before focusing on the

bias under NMAR model.

The bias of β̂n is obtained as follows.

E(β̂n) = E[(X ′X)−1X ′Yr]

= (X ′X)−1X ′E[Yr]. (3.22)

From (3.15), under MAR

E(Yr) = Xβ. (3.23)

Substitute (3.23) into equation (3.22),

E(β̂n) = (X ′X)−1X ′E[Yr]

= (X ′X)−1X ′Xβ

= β. (3.24)

So näıve estimator is unbiased under MAR.

Now consider bias under the NMAR model (3.19)
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Let us express ȳi in terms of response rate (pi),

ȳi = m−1
i

∑mi
j=1 yij , (i = 1, 2, . . . , N)

= m−1
i (
∑ri

j=1 yij +
∑mi

j=ri+1 yij)

= m−1
i (riȳri + (mi − ri)ȳnri

= ri
mi
ȳri + mi−ri

mi
ȳnri

= ri
mi
ȳri + (1− ri

mi
)ȳnri

ȳi = piȳri + (1− pi)ȳnri, (3.25)

where ȳri is defined in (3.2) and ȳnri is defined in (3.14), and pi is defined in (3.5).

To find E(ȳi| ~Ri) in (3.25),

E(ȳi| ~Ri) = E[(piȳri + (1− pi)ȳnri)| ~Ri]
= piE(ȳri| ~Ri) + (1− pi)E(ȳnri| ~Ri).

(3.26)

From (3.13), under the NMAR model

δ = E[(ȳri − ȳnri)| ~Ri]
= E(ȳri| ~Ri)− E(ȳnri| ~Ri).

Hence,

E(ȳnri| ~Ri) = E(ȳri| ~Ri)− δ. (3.27)

Substitute (3.27) into equation (3.26),

E(ȳi| ~Ri) = piE(ȳri| ~Ri) + (1− pi)[E(ȳri| ~Ri)− δ]
= piE(ȳri| ~Ri) + E(ȳri| ~Ri)− piE(ȳri| ~Ri)− (1− pi)δ
= E(ȳri| ~Ri)− (1− pi)δ.

Therefore,

E(ȳri| ~Ri) = E(ȳi| ~Ri) + (1− pi)δ.

Now

E[E(ȳi| ~Ri)] = E(ȳi) = xi
′β.

Hence
E(ȳri)− xi′β = E[E(ȳri| ~Ri)]− xi′β

= [1− E(pi)]δ.
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So we may view [1−E(pi)]δ as the bias of ȳri as an estimator of x′iβ under the NMAR

model and view (1− pi)δ as the approximate bias,

E(ȳri| ~Ri) ≈ xi′β + (1− pi)δ. (3.28)

3.5.2 Variance of Näıve Estimator

In order to look at the efficiency of the estimator, we now consider the variance of the

estimator under the model of interest.

From (3.10) we may write,

ȳri = xi
′β + ε1i + ε̄2i.

Thus,

V (ȳri) = V (ε1i + ε̄2i)

= σ2
By + σ2

Wy/mi.

For simplicity, suppose mi = m. Then,

V (Yr) = diag[σ2
By + σ2

Wy/m]

= (σ2
By +m−1σ2

Wy)I.
(3.29)

Therefore, the variance of the näıve estimator is as below.

V (β̂n) = V [(X ′X)−1X ′Yr]

= ((X ′X)−1X ′V (Yr)X(X ′X)−1

= (σ2
By +m−1σ2

Wy)(X
′X)−1

(3.30)

For simplicity, consider k=1, so that

β̂n =

[
β̂0

β̂1n

]
,

(X ′X)−1 =

 ∑n
i=1 x

2
i1

n
∑n
i=1(xi1−x̄1)2

−
∑n
i=1 xi1

n
∑n
i=1(xi1−x̄1)2

−
∑n
i=1 xi1

n
∑n
i=1(xi1−x̄1)2

1∑n
i=1(xi1−x̄1)2



=

 ∑n
i=1 x

2
i1

nS2
x1

−
∑n
i=1 xi1
nS2

x1

−
∑n
i=1 xi1
nS2

x1

1
S2
x1

 ,



28
Chapter 3 Estimation of Cluster-level Regression Model under Nonresponse within

Clusters

Therefore,

V (β̂1n) = (σ2
By +m−1σ2

Wy)(S
2
x1)−1 (3.31)

3.6 Alternative Estimator

It was shown in section 3.5.1 that the näıve approach is biased under NMAR assump-

tion. In this section we therefore look at an alternative estimator. Its bias is shown in

section 3.6.1 before moving on to variance of the estimator in section 3.6.2.

From (3.28), we can regress ȳri on xi and (1 − pi) and obtain valid estimates of coeffi-

cients of xi under assumption (3.4). We can express the estimator of β using ordinary

least squares method following equation (3.23), Let

W =


1 x11 . . . x1k (1− p1)

1 x21 . . . x2k (1− p2

...
...

. . .
...

1 xn1 . . . xnk (1− pn)

 , wi =



1

xi1
...

xik

(1− pi)


(i = 1, 2, . . . , n)

and

γa =



β0

β1

...

βk

δ


=

[
β

δ

]
.

The alternative estimator β̂a of β is derived from

γ̂a = (W ′W )−1W ′Yr (3.32)

γ̂a =

[
β̂a

δ̂a

]
. (3.33)

3.6.1 Bias of Alternative Estimator

Following the discussion in section 3.5.1, we now consider the bias of the alternative

estimator.
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The bias of γ̂a is obtained as follows.

E(γ̂a) = E[(W ′W )−1W ′Yr]

= (W ′W )−1W ′E[Yr].
(3.34)

To find E[Yr], consider E(ȳri| ~Ri) from equation (3.28),

E(ȳri| ~Ri) = xi
′βa + (1− pi)δ

= w′iγa.

Hence,

E(Yr) = Wγa. (3.35)

Substitute (3.35) into equation (3.34),

E(γ̂a) = (W ′W )−1W ′E[Yr]

= (W ′W )−1W ′Wγa

= γ (3.36)

and so

E(β̂a) = β.

Therefore, the alternative estimator is unbiased under the NMAR model in (3.19).

3.6.2 Variance of Alternative Estimator

Now, consider the special case k = 1 and mi = m.

Suppose xi is corrected for its mean, so that a model of interest (section 3.3) is

ȳr = β̃0 + β1x̃i11 + δxi2, (3.37)

where x̃i1 = xi1 − x̄1, xi2 = 1− pi and β̃0 = β0 + β1x̄1.

The W-matrix for centred xi1 values is denoted by W̃ ,

W̃ =


1 x̃11 (1− p1)

1 x̃21 (1− p2)
...

...
...

1 x̃n1 (1− pn)

 , and γ̂a in (3.32) become γ̂a =

β̂0a

β̂1a

δ̂a

 = (W̃ ′W̃ )−1W̃ ′Yr.
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We now consider the variance of alternative estimator under the NMAR model.

V (γ̂a) = V [(W̃ ′W̃ )−1W̃ ′Yr]

= (W̃ ′W̃ )−1W̃ ′V (Yr)W̃ (W̃ ′W̃ )−1

= (σByy +m−1σWyy)(W̃
′W̃ )−1 using (3.30).

(3.38)

Consider (W̃ ′W̃ ),

(W̃ ′W̃ ) =

 n
∑n

i=1 x̃i1
∑n

i=1 xi2∑n
i=1 x̃i1

∑n
i=1 x̃

2
i1

∑n
i=1 x̃i1xi2∑n

i=1 xi2
∑n

i=1 x̃i1xi2
∑n

i=1 x
2
i2

 .
Therefore, if x̃i1 is centred, W̃ ′W̃ is shown as below.

(W̃ ′W̃ ) =

 n 0
∑n

i=1 xi2

0
∑n

i=1 x̃
2
i1

∑n
i=1 x̃i1xi2∑n

i=1 xi2
∑n

i=1 x̃i1xi2
∑n

i=1 x
2
i2

 .
(W̃ ′W̃ ) has been partitioned into sub-matrices as follows.

(W̃ ′W̃ ) =

[
W̃11 W̃12

W̃21 W̃22

]
,

where

W̃11 =

[
n 0

0
∑n

i=1 x̃
2
i1

]
, W̃12 =

[ ∑n
i=1 xi2∑n

i=1 x̃i1xi2

]
,

W̃21 =
[∑n

i=1 xi2
∑n

i=1 x̃i1xi2

]
, and W̃22 =

[∑n
i=1 x

2
i2

]
.

We can find (W̃ ′W̃ )−1 using partitioned matrices as shown below.

(W̃ ′W̃ )−1 =

[
W̃−1

11.2 −W̃−1
11.2W̃12W̃

−1
22

−W̃−1
22 W̃21W̃

−1
11.2 W̃−1

22 W̃21W̃
−1
11.2W̃12W̃

−1
22 + W̃−1

22

]
,

where W̃11.2 = W̃11 − W̃12W̃
−1
22 W̃21.

To find W̃11.2,
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W̃11.2 = W̃11 − W̃12W̃
−1
22 W̃21

=

[
n 0

0
∑n

i=1 x̃
2
i1

]
−

[ ∑n
i=1 xi2∑n

i=1 x̃i1xi2

] [
1∑n

i=1 x
2
i2

] [∑n
i=1 xi2

∑n
i=1 x̃i1xi2

]

=

[
n 0

0
∑n

i=1 x̃
2
i1

]
−


(
∑n
i=1 xi2)2∑n
i=1 x

2
i2

(
∑n
i=1 xi2)(

∑n
i=1 x̃i1xi2)∑n

i=1 x
2
i2

(
∑n
i=1 xi2)(

∑n
i=1 x̃i1xi2)∑n

i=1 x
2
i2

(
∑n
i=1 x̃i1xi2)2∑n
i=1 x

2
i2



=


n− (

∑n
i=1 xi2)2∑n
i=1 x

2
i2
− (

∑n
i=1 xi2)(

∑n
i=1 x̃i1xi2)∑n

i=1 x
2
i2

− (
∑n
i=1 xi2)(

∑n
i=1 x̃i1xi2)∑n

i=1 x
2
i2

∑n
i=1 x̃

2
i1 −

(
∑n
i=1 x̃i1xi2)2∑n
i=1 x

2
i2

 .

Consider,

|W̃11.2| =
[
n− (

∑n
i=1 xi2)2∑n
i=1 x

2
i2

] [∑n
i=1 x̃

2
i1 −

(
∑n
i=1 x̃i1xi2)2∑n
i=1 x

2
i2

]
−
[
(
∑n

i=1 xi2)(
∑n

i=1 x̃i1xi2)
]2

=
∑n

i=1 x̃
2
i1

[
n− (

∑n
i=1 xi2)2∑n
i=1 x

2
i2

] [
−n (

∑n
i=1 x̃i1xi2)2∑n
i=1 x

2
i2

]
.

Therefore,

W̃−1
11.2 =

[
1∑n

i=1 x̃
2
i1

[
n− (

∑n
i=1 xi2)2∑n
i=1 x

2
i2

]
−n

(
∑n
i=1

x̃i1xi2)
2∑n

i=1
x2
i2

]
∑n

i=1 x̃
2
i1 −

(
∑n
i=1 x̃i1xi2)2∑n
i=1 x

2
i2

(
∑n
i=1 xi2)(

∑n
i=1 x̃i1xi2)∑n

i=1 x
2
i2

− (
∑n
i=1 xi2)(

∑n
i=1 x̃i1xi2)∑n

i=1 x
2
i2

n− (
∑n
i=1 xi2)2∑n
i=1 x

2
i2

 .
Hence,

[W̃−1
11.2]22 =

n− (
∑n
i=1 xi2)

2∑n
i=1

x2
i2∑n

i=1 x̃
2
i1

[
n− (

∑n
i=1 xi2)2∑n
i=1 x

2
i2

]
−n

(
∑n
i=1

x̃i1xi2)
2∑n

i=1
x2
i2

= 1∑n
i=1 x̃

2
i1−

n(
∑n
i=1

x̃i1xi2)
2

∑n
i=1

x2
i2

[
n− (

∑n
i=1 xi2)2∑n
i=1 x

2
i2

]

= 1

S2
x1
−

n(
∑n
i=1

x̃i1xi2)
2

n
∑n
i=1

x2
i2
−(

∑n
i=1

xi2)
2

.

From (3.38), as a result,

V (β̂1a) = (σ2
By +m−1σ2

Wy)

[
1

S2
x1
−

n(
∑n
i=1

x̃i1xi2)
2

n
∑n
i=1

x2
i2
−(

∑n
i=1

x̃i1)
2

]
= (σ2

By +m−1σ2
Wy)(S

2
x1)−1

 1

1−
(
∑n
i=1

x̃i1xi2)
2

∑n
i=1

x̃2
i1

[∑n
i=1 x

2
i2 −

(
∑n
i=1 xi2)2

n

]


= (σ2
By +m−1σ2

Wy)(S
2
x1)−1

[
1

1−r212

]
, (3.39)
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where r12 is the sample correlation between x̃i1 and xi2 = (1− pi).

As a result, found by comparing the estimated regression coefficient variance of (β̂1) from

the näıve approach demonstrated in equation (3.31) and the variance of the alternative

approach from equation (3.39) we have that.

V (β̂1a)

V (β̂1n)
=

1

1− r2
12

. (3.40)

If r2
12is equal to zero, then V (β̂1a) is equal to V (β̂1n). However, if r2

12 is positive, then

V (β̂1a) is larger than V (β̂1n). Both approaches give the same result if there is no

relationship between auxiliary variable x̃i1 and nonresponse variable xi2 = (1− pi). On

the other hand, the näıve approach performs better than the alternative approach if

there is some correlation between those two variables.

3.7 Heckman Estimator

The Heckman model sometimes called the sample selection model was studied by Heck-

man (1979) in the case of independent observations and allows for biased selection.

Heckman’s techniques are very popular in econometrics. In this section we extend

this approach to our clustered model, beginning with a Heckman two-step estimator

in section 3.7.1 which will introduce Heckman two-step estimator related to alternative

approach. Next, we will move on to an approximate Heckman two-step estimator using

pi in section 3.7.2. We end with section 3.7.3, the approximate Heckman maximum

likelihood estimator.

According to model for nonresponse in section 3.4, consider

E(yij |Rij = 1) = xi
′β + E(εij |Rij = 1)

(Note that expectations are assumed to be conditional on xi).

E(yij |Rij = 1) = xi
′β + E(εij |uij > 0)

= xi
′β + E(εij |xi′γ + ηij > 0)

= xi
′β + E(εij |ηij > −xi′γ).

(3.41)

From (3.12) we can write, εij = σεησ
−2
η ηij + ξij , where ξij is independent of ηij .

So

E(yij |Rij = 1) = xi
′β + E(σεησ

−2
η ηij + ξij |ηij > −xi′γ). (3.42)
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We transform ηij ∼ N(0, σ2
η) to Zij = σ−1

η ηij so that Zij ∼ N(0, 1) and plug into (3.42),

E(yij |Rij = 1) = xi
′β + σεησ

−1
η E

(
Zij |Zij > −

xi
′γ

ση

)
. (3.43)

Now use Proposition 16.1 of Cameron and Trivedi (2005) (see Appendix A)

E(yij |Rij = 1) = xi
′β + σεησ

−1
η λ

(
xi
′γ
ση

)
= xi

′β + cλ
(
xi
′γ
ση

)
,

(3.44)

where c = σεησ
−1
η , λ

(
xi
′γ
ση

)
= φ

(
xi
′γ
ση

)
/Φ
(
xi
′γ
ση

)
, φ is the probability density function

of the standard normal distribution and Φ is the cumulative distribution function of this

distribution.

3.7.1 Heckman Two-Step Estimator

This approach is based on result (3.44). Write

yij = xi
′β + cλ

(
xi
′γ

ση

)
+ υij , (3.45)

where υij is an error term.

The estimation steps follow Heckman (1979) as below.

Step 1 Find the estimate σ̂−1
η γ̂ of σ−1

η γ by probit regression of Rij on xi.

where πi = Pr(Rij = 1) = Pr(uij > 0) = Pr(ηij > −xi′γ) = Pr
(
Zij > −xi

′γ
ση

)
=

Φ
(
xi
′γ
ση

)
.

Step 2 Calculate the estimated inverse Mills ratio,

λ

(
xi
′γ̂

σ̂η

)
= φ

(
xi
′γ̂

σ̂η

)
/Φ

(
xi
′γ̂

σ̂η

)
.

Step 3 Plug in the estimated inverse Mills ratio into (3.45) and regress yij on xi and the

estimated inverse Mills ratio to find the estimation regression coefficients of β0, β1 and

c.

Relation of Heckman Two-Step Estimator to Alternative Approach

Recall NMAR model in (3.19) E(ȳri)− E(ȳnri) = δ.

From equation (3.44)
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E(ȳri) = E(yij |Rij = 1) = xi
′β + σεησ

−1
η λ

(
xi
′γ

ση

)
= xi

′β + cλ

(
xi
′γ

ση

)
. (3.46)

Similarly,

E(ȳnri) = E(yij |Rij = 0)

= xi
′β + E(εij |µij < 0)

= xi
′β + E(εij |xi′γ + ηij < 0)

= xi
′β + E(εij |ηij < −xi′γ). (3.47)

As before, write

εij = σεησ
−2
η ηij + ξij ,

where ξij is independent of ηij .

So

E(ȳnri) = xi
′β + E(σεησ

−2
η ηij + ξij |ηij < −xi′γ). (3.48)

We transform ηij ∼ N(0, σ2
η) to Zij = σ−1

η ηij so that Zij ∼ N(0, 1) and plug into (3.48)

,

E(ȳnri) = E(yij |Rij = 0) = xi
′β + σεησ

−1
η E

(
Zij |Zij < −

xi
′γ

ση

)
(3.49)

Now use Proposition 16.1 of Cameron and Trivedi (2005) (see Appendix A)

E(ȳnri) = xi
′β − σεησ−1

η

[
φ(
xi
′γ
ση

)

1−Φ(
xi
′γ
ση

)

]
.

= xi
′β − c

[
φ(
xi
′γ
ση

)

1−Φ(
xi
′γ
ση

)

]
, (3.50)

where c = σεησ
−1
η .

Therefore, from (3.46) and (3.50)

E(ȳri)− E(ȳnri) =
[
xi
′β + c

[
φ(xi

′γ/ση)
Φ(xi′γ/ση)

]]
−

[
xi
′β − c

[
φ(
xi
′γ
ση

)

1−Φ(
xi
′γ
ση

)

]]
= c

φ(xi′γ/ση)(1−Φ(xi′γ/ση)) [φ(xi
′γ/ση)− φ(xi

′γ/ση)Φ(xi
′γ/ση) + φ(xi

′γ/ση)Φ(xi
′γ/ση)]

=
c(φ(xi

′γ/ση))
φ(xi′γ/ση)(1−Φ(xi′γ/ση))

= cφi
pi(1−pi)
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=
cφi

pi(1− pi)
= δi defined in (3.13), (3.51)

where φi = φ
(
xi
′γ̂
σ̂η

)
, pi = Φ

(
xi
′γ̂
σ̂η

)
.

3.7.2 Approximate Heckman Two-Step Estimator using pi

Recall from (3.5) that

pi = m−1
i

mi∑
j=1

Rij . (3.52)

Let
Ψi = xi

′γ
ση

Ψ̂i = xi
′γ̂
σ̂η
.

(3.53)

For large mi,

pi = E(Rij) = Φ

(
xi
′γ̂

σ̂η

)
= Φ(Ψi). (3.54)

Now set

Ψ̂i = Φ−1(pi). (3.55)

For the Heckman two-step approach replace λ
(
xi
′γ̂
σ̂η

)
by λ(Ψ̂i) = λi where Ψ̂i obtained

from (3.55).

3.7.3 Approximate Heckman Maximum Likelihood Estimator

Under working assumption that observations are independent, the likelihood for model

in section 3.4 is (Note that when the method is not working well it might be because all

observations are not independent.)

n∏
i=1

mi∏
j=1

Pr(uij ≤ 0)1−Rijf(yij |uij > 0)× Pr(uij > 0)Rij .

The log-likelihood is

n∑
i=1

mi∑
j=1

(1−Rij)log[1− Pr(uij > 0)] +Rijlog[Pr(uij) > 0] +Rijlog[f(yij |uij > 0)].
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Now f(yij |uij > 0) = Pr(uij > 0|yij)f(yij)/Pr(uij > 0)

and yij ∼ N(xi
′β, σ2

ε ), uij |yij ∼ N [xi
′γ + σεησ

−2
ε (yij − xi′β), σ2

η − σ2
εησ
−2
ε ].

So evaluation of log likelihood requires evaluating Pr(uij > 0) for all cases (i, j) and

evaluating

f(yij) =
1√

2πσ2
ε

exp

(
−(yij − xi′β)

2σ2
ε

)
and Pr(uij > 0|yij) for all cases with Rij = 1.

The maximum likelihood estimator is used to estimate regression coefficients β0, β1 and

c in (3.45) instead of probit regression and inverse Mills ratio in Heckman two-step es-

timator.

3.8 Two-Stage Sampling

The method we have presented in this chapter can be extended to two-stage cluster

sampling.

Following, as far as possible, the earlier notation in this chapter, now let

N be the number of clusters in the population, and Mi the number of elements in cluster

i = 1, 2, . . . , N .

yij is the value of the study variable y for the jth population element(j = 1, 2, . . . ,Mi)

for the ith cluster (i = 1, 2, . . . , N).

For two-stage sampling, a simple random sample of n clusters is selected, and a sample

of mi elements (i = 1, 2, . . . , n) in each sampled cluster is also selected.

Let Ȳi be the population mean among all units in cluster i (i = 1, 2, . . . , N).

Ȳi = M−1
i

Mi∑
j=1

yij , (i = 1, 2, . . . , N). (3.56)
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Let ȳi be the sample mean among all units in sampled cluster i (i = 1, 2, . . . , N).

ȳi = m−1
i

mi∑
j=1

yij , (i = 1, 2, . . . , n). (3.57)

Let xi be the cluster-level vector of variables in cluster i (no nonresponse error) xi =

(1, xi1, ..., xik)
′.

Let

ȳi = Ȳi + δi, (3.58)

where δi be sampling error, and

Ȳi = x′iβ + ε′i. (3.59)

From (3.58) and (3.59), we have

ȳi = x′iβ + (ε′i + δi)

= x′iβ + εi,
(3.60)

where εi = ε′i + δi.

The model (3.60) is the same model that we applied in the one-stage cluster sampling

shown in (3.6) so we can still apply MAR assumption and the NMAR model and follow

all of the same estimation processes we did with the näıve approach, the alternative

approach and Heckman estimators for our two-stage cluster sampling as we used in one-

stage cluster sampling .

3.9 Conclusion

In this chapter we discuss nonresponse at the cluster level where the problem is how to

use observed data to make inference about β when some of the y data is missing. We

firstly introduce notation and framework for this chapter including sampling techniques

that we use, define nonresponse, make the assumption for number of respondents in

cluster i in order to look at new methods for analysis which incorporate information on

nonresponse in the model and also define data that we consider in our study.



38
Chapter 3 Estimation of Cluster-level Regression Model under Nonresponse within

Clusters

Next, the model of interest which are a cluster level linear regression model of ȳi on

xi and also a multilevel model are explained but moreover, the model for nonresponse

is explained, for example a model for the response outcome Rij that is motivated by

Heckman (1976) is introduced, where MAR and NMAR assumptions are also described.

Furthermore, we discuss estimation of β for the näıve approach and also its bias and

variance. The näıve estimator produces bias under the NMAR model, we therefore in-

troduce an alternative estimator where we can regress ȳri on xi and (1− pi) and obtain

valid estimates of coefficients of xi. Bias and variance for the alternative estimator are

also discussed.

In addition, a Heckman estimator that was studied by Heckman (1979) is developed

upon. We extend this approach to our clustered model, beginning with a Heckman

two-step estimator we explore the relationship between it and our alternative approach.

Next, we move on to an approximate Heckman two-step estimator using pi where we

replace λ
(
xi
′γ̂
σ̂δ

)
in the Heckman two-step approach with λ(Ψ̂i) = λi and end with the

approximate Heckman Maximum Likelihood Estimator where the maximum likelihood

estimator is used to estimate regression coefficients β0, β1 and c instead of probit regres-

sion and inverse Mills ratio in the Heckman two-step estimator. Finally, we extend the

method we have presented in this chapter to two-stage cluster sampling.



Chapter 4

Simulation Study of Estimators of

Cluster-level Regression Model

In chapter 3, we considered some estimators of coefficients in a cluster-level regression

model under nonresponse. We now consider the performance of these estimators by

means of a simulation study. In this chapter we first discuss the models for the simula-

tion study in section 4.1. Secondly, we show the results of the simulation study in section

4.2. Next, in section 4.3 further theory to explain the simulation results is presented.

Finally, the conclusion for our findings is given in section 4.4.

4.1 Models for the Simulation Study

In this section we describe models used to generate yij and Rij for the simulation stud-

ies. This section is divided into two parts; models underlying näıve and alternative

approaches and models underlying Heckman estimators approach. For the simulation

study we are focusing on a one-stage cluster design where all the clusters have equal

sizes. For each method we generate a population with N = 1000 clusters and with

m = 25 elements in each cluster showing the number of workplaces found in the real

data that we will apply in Chapter 5 following the number of workplaces in the real data

that we will apply in Chapter 5 and repeat 10,000 times.

4.1.1 Models underlying Näıve and Alternative Approaches

We consider two different models based on the assumptions of the näıve approach and

alternative approach as follows.

39
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MAR Model

We first generate yij from the multilevel model given in equation 3.7,

yij = xi
′β + ε1i + ε2ij (4.1)

assuming E(ε1i|xi) = 0 and E(ε2ij |xi) = 0.

We consider a MAR response mechanism with response rate ranging from 0.6 to 0.9.

The model starts from generating y and then generates R|y in order to get the joint

distribution of (R, y).

The simulation steps for MAR model are as follows.

Step 1 In order to generate yij from equation (4.1), we generate ε1i ∼ N(0, 1), xi ∼
N(20, 1) and ε2ij ∼ N(0, σ2

ε2ij ), where

σ2
ε2ij =

[
1−ρ
ρ

]
σ2
ε1i ,

i = 1, . . . , N, j = 1, . . . ,m, ρ = 0.1, 0.2, 0.4, and β0 = 0, β1 = 1.

Step 2 Select sample of n = 20 clusters.

Step 3 Generate Aij ∼ U(0, 1). For cluster 1 to 5, if 0 ≤ Aij ≤ 0.9 then Rij = 1 else

Rij = 0. For cluster 6 to 10, if 0 ≤ Aij ≤ 0.8 then Rij = 1 else Rij = 0. For cluster 11 to

15, if 0 ≤ Aij ≤ 0.7 then Rij = 1 else Rij = 0 and for cluster 16 to 20, if 0 ≤ Aij ≤ 0.6

then Rij = 1 else Rij = 0.

Step 4 Compute estimators from näıve approach, alternative approach, Heckman two-

step estimator and approximate Heckman two-step estimator using pi.

Step 5 Compare each estimator using MSE.
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NMAR Model

Now consider a model which is designed to capture the NMAR model in (3.19).

The model is shown below.

P (Rij = 1) = πi

yij =

(xi
′β + ε1i + ε2ij) + (1− pi)δ, if Rij = 1

(xi
′β + ε1i + ε2ij)− piδ, if Rij = 0

. (4.2)

This model is the opposite of the previous model as it starts from generating R and then

generates y|R in order to get (R, y). The details of how the data and nonresponse are

generated are shown as follows.

We also consider replacing pi in (4.2) by πi in order to see how the alternative approach

performs. We will give some discussions about the simulation results in section (4.2).

The simulation study for NMAR model is divided into three parts as below.

a) πi fixed

Suppose

πi = π, constant for i. (4.3)

πi variable but independent of xi Set,

π = 0.8. (4.4)

b)

Define,

logit(πi) = logit(0.8) + Zi, Zi ∼ N(0, 0.5),

πi =
exp(log( 0.8

0.2
)+Zi)

1+exp(log( 0.8
0.2

)+Zi)
.

(4.5)
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c) πi depends on xi

Define,

logit(πi) = logit(0.8) + Zi, Zi = xi − 20,

πi =
exp(log( 0.8

0.2
)+Zi)

1+exp(log( 0.8
0.2

)+Zi)
.

(4.6)

Simulation steps:

Step 1 For case (b), generate Zi ∼ N(0, 0.5), and then calculate πi from (4.5). For case

(c), generate xi ∼ N(20, 1), and then calculate Zi and πi from (4.6).

Step 2 Generate Aij ∼ U(0, 1). If 0 ≤ Aij ≤ πi then Rij = 1 else Rij = 0, and then

compute pi = R̄i.

Step 3 Generate yij from equation (4.2) with ε1i ∼ N(0, 1), xi ∼ N(20, 1) and ε2ij ∼
N(0, 9), β0 = 0, β1 = 1, and δ = 1, 2, 4.

Step 4 Select sample of n = 20 clusters.

Step 5 Compute estimators from näıve approach, alternative approach, Heckman two-

step estimator and approximate Heckman two-step estimator using pi.

Step 6 Compare each estimator using MSE.

4.1.2 Models underlying Heckman Estimators

The simulation study based on the model underling the Heckman estimators is as follows.

We set

σWyy = σByy = 1 and σBuu = 0 (It implies that there is no random effect so it is only

xi). σByu = ρσByyσBuu = 0 and σWyu = ρσWyy = ρ, σ2
δ = 1 + σBuu = 1.

Therefore, σεδ = σWyu + σByu = ρ.
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Simulation steps:

Step 1 Generate εij and δij from bivariate normal distribution following equation (3.12)[
εij

δij

]
∼ N2

[[
0

0

] [
σ2
ε σεδ

σεδ σ2
δ

]]
,where σεδ = σWyu + σByu, σ

2
ε = σWyy + σByy, σ

2
δ = 1 + σBuu.

In order to specify σεδ = σWyu + σByu, we have to calculate σByu = ρσByyσBuu and

σWyu = ρσWyy (vary 0 ≤ ρ ≤ 1).

Step 2 To find yij , generate xi ∼ N(0, 1), β0 = 0, β1 = 1 and plug in the value of εij

from step 1 into equation (3.10).

Step 3 Similarly, to find uij , generate xi ∼ N(0, 1), γ0 = 0, γ1 = 1 and plug in the value

of δij from step 1 into equation (3.11).

Step 4 If uij > 0 then Rij = 1 and Rij = 0, otherwise. The overall response rate is 50

%.

Step 5 Select sample of n = 20 clusters.

Step 6 Compute estimators from näıve approach, alternative approach, Heckman two-

step estimator and approximate Heckman two-step estimator using pi.

Step 7 Compare each estimators using MSE.

4.2 Simulation Results

The simulation results are divided into two parts; comparing the results for each ap-

proach using models underlying näıve and alternative approaches and models underlying

Heckman estimators approach.
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4.2.1 Simulation Results from Models underlying Näıve and Alterna-

tive Approaches

For the models underlying näıve and alternative approaches, we consider the simulation

model at the cluster level. The results will be presented in Tables 4.1 to 4.5 following

two models in the simulation study; MAR and NMAR model where NMAR model is

divided into 3 separate cases; πi constant, πi is variable but independent of xi and where

πi depends on xi. The results are as follows.

Table 4.1: Mean, variance and mean square error of the simulation results of
MAR model for N = 1000,m = 25 and n = 20, β0 = 0, β1 = 1. The simulation
standard error is shown in parenthesis.

Näıve approach Alternative approach Heckman two-step Approximate Heckman
two-step using pi

ρ = 0.1
Mean Beta 0 -0.092(0.06) -0.103(0.06) 0.116(0.22) -0.086(0.06)

Beta 1 1.005(0.003) 1.005(0.003) 0.992(0.01) 1.004(0.003)

Variance Beta 0 35.837 38.437 502.313 38.604
Beta 1 0.089 0.095 1.730 0.096

MSE Beta 0 35.845 38.447 502.327 38.612
Beta 1 0.089 0.095 1.730 0.096

ρ = 0.2
Mean Beta 0 -0.067(0.05) -0.081(0.06) 0.135(0.20) -0.065(0.06)

Beta 1 1.004(0.003) 1.004(0.003) 0.991(0.003) 1.003(0.003)

Variance Beta 0 29.080 31.236 409.407 31.666
Beta 1 0.073 0.077 1.417 0.078

MSE Beta 0 29.085 31.242 409.425 31.671
Beta 1 0.073 0.077 1.417 0.078

ρ = 0.4
Mean Beta 0 -0.049(0.05) -0.064(0.05) 0.150(0.19) -0.049(0.05)

Beta 1 1.003(0.002) 1.003(0.002) 0.991(0.01) 1.002(0.01)

Variance Beta 0 25.660 27.596 362.222 28.170
Beta 1 0.064 0.068 1.260 0.070

MSE Beta 0 25.663 27.600 362.245 28.173
Beta 1 0.064 0.068 1.260 0.070

Table 4.1 presents the results of the MAR model for näıve approach, alternative ap-

proach, Heckman two-step estimator and approximate Heckman two-step estimator us-

ing pi. We see that the näıve approach performs better than the alternative approach

for each ρ. The näıve approach gives smaller variance and also a lower mean square

error when compared to all estimators. The alternative approach and the approximate

Heckman two-step estimator using pi behave similarly in this situation. The Heckman

two-step estimator performs even worse in that it produces both bigger variance and

mean square error comparing to other estimators. Therefore, the Heckman two-step

estimator is not suitable to use at all in this situation.

According to equation (3.40) in section 3.6.2, the sample correlation between x̃i1 and

xi2 = (1 − pi) for Table 4.1 is equal to 0.24. As a result, the difference between the

variance for estimated regression coefficient (β̂1) from the naive approach from equa-

tion (3.31) and alternative approach from equation (3.39) is 1.061 (V (β̂1a)/V (β̂1n) =
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1/(1 − r2
12) = 1.06). If we consider, for example, when ρ = 0.1 the simulation variance

for estimated regression coefficient (β̂1) from the naive approach is 0.089 and from the

alternative approach is 0.095. As a result, the difference between the variance of two

methods is 1.067 which is close to 1.061 and it is also similar for all ρ. Therefore, theory

implies that the difference between the variances across two methods, alternative and

näıve, should be 1.061 and examination of that assumption found it to be true with our

simulation results being very close to the prescribed outcome.

As expected, the näıve approach performs well in this scenario because there is some re-

lationship between the auxiliary variable x̃i1 and the nonresponse variable xi2 = (1−pi).
However, if there is no relationship between those two variables at all the alternative

approach will give the same results when compared to the näıve approach.

Table 4.2: Mean, variance and mean square error of the simulation results of
NMAR model with πi constant for N = 1000,m = 25, n = 20 and ρ = 0.1, β0 =
0, β1 = 1. The simulation standard error is shown in parenthesis.

Näıve approach Alternative approach Heckman two-step Approximate Heckman
two-step using pi

δ = 1
Mean Beta 0 0.115(0.06) -0.094(0.06) 0.057(0.11) -0.124(0.06)

Beta 1 1.004(0.003) 1.005(0.003) 1.003(0.006) 1.005(0.003)
Delta 1.020(0.04)

Variance Beta 0 34.907 37.660 110.875 37.880
Beta 1 0.087 0.092 0.392 0.092
Delta 14.163

MSE Beta 0 34.921 37.669 110.879 37.896
Beta 1 0.087 0.092 0.392 0.092
Delta 14.163

δ = 2
Mean Beta 0 0.318(0.06) -0.094(0.06) 0.155(0.11) -0.153(0.06)

Beta 1 1.004(0.003) 1.005(0.003) 1.005(0.006) 1.005(0.003)
Delta 2.020(0.04)

Variance Beta 0 35.469 37.660 111.900 37.880
Beta 1 0.088 0.092 0.397 0.092
Delta 14.163

MSE Beta 0 35.570 37.669 111.924 37.903
Beta 1 0.089 0.092 0.397 0.092
Delta 14.163

δ = 4
Mean Beta 0 0.723(0.06) -0.094(0.06) 0.351(0.11) -0.211(0.06)

Beta 1 1.004(0.003) 1.005(0.003) 1.010(0.006) 1.005(0.003)
Delta 4.020(0.04)

Variance Beta 0 37.515 37.660 116.388 37.880
Beta 1 0.094 0.092 0.414 0.092
Delta 14.163

MSE Beta 0 38.038 37.669 116.511 37.925
Beta 1 0.094 0.092 0.414 0.092
Delta 14.163

Table 4.2 presents the results of NMAR model with πi constant for näıve approach,

alternative approach, Heckman two-step estimator and approximate Heckman two-step

estimator using pi. We can see that using the alternative approach seems to correct the

bias for the estimator of β0 better than using the näıve approach does but for β1 they
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both perform properly. There is also some evidence of bias of β0 visible using the Heck-

man estimators when δ increases. Using the approximate Heckman two-step estimator

with pi yields similar results to the alternative approach. The alternative approach gives

minimum variance and mean square error when δ = 4. It seems that the alternative ap-

proach performs better in terms of bias and mean square error as δ increases. Variance

and mean square error using alternative approach are not affected by departure from

MAR.

Table 4.3: Mean, variance and mean square error of the simulation results of
NMAR model with variable πi but independent of xifor N = 1000,m = 25, n =
20 and ρ = 0.1, β0 = 0, β1 = 1. The simulation standard error is shown in
parenthesis.

Näıve approach Alternative approach Heckman two-step Approximate Heckman
two-step using pi

δ = 1
Mean Beta 0 0.189(0.06) -0.008(0.06) 0.210(0.25) -0.027(0.06)

Beta 1 1.0017(0.003) 1.0004(0.003) 0.993(0.01) 1.0003(0.003)
Delta 1.0137(0.02)

Variance Beta 0 34.820 36.943 651.751 37.057
Beta 1 0.087 0.091 2.077 0.092
Delta 5.119

MSE Beta 0 34.856 36.943 651.796 37.057
Beta 1 0.087 0.091 2.077 0.092
Delta 5.119

δ = 2
Mean Beta 0 0.412(0.06) -0.0084(0.06) 0.321(0.26) -0.050(0.06)

Beta 1 1.0016(0.003) 1.0004(0.003) 0.992(0.01) 1.0003(0.003)
Delta 2.014(0.02)

Variance Beta 0 36.195 36.943 676.371 37.068
Beta 1 0.090 0.091 2.163 0.092
Delta 5.119

MSE Beta 0 36.365 36.943 676.474 37.070
Beta 1 0.090 0.091 2.163 0.092
Delta 5.119

δ = 4
Mean Beta 0 0.856(0.06) -0.0084(0.06) 0.542(0.28) -0.095(0.06)

Beta 1 1.0014(0.003) 1.0004(0.003) 0.988(0.02) 1.0003(0.003)
Delta 4.014(0.02)

Variance Beta 0 41.702 36.943 759.691 37.096
Beta 1 0.104 0.091 2.444 0.092
Delta 5.119

MSE Beta 0 42.435 36.943 759.985 37.105
Beta 1 0.104 0.091 2.444 0.092
Delta 5.119

Table 4.3 presents the results of NMAR model with variable πi independent of xi for

näıve approach, alternative approach, Heckman two-step estimator and approximate

Heckman two-step estimator using pi. We see a similar result here to that found in Ta-

ble 4.2. Using the alternative approach seems to correct the bias for the estimator of β0

quite well when compared to the näıve approach but for β1 they both perform properly.

The β0 for the Heckman two-step estimator is also biased. Both the näıve estimator and

Heckman two-step estimator have higher variance and higher mean square error than the

alternative approach for δ = 4 and the approximate Heckman two-step estimator using
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pi has the similar result to alternative approach. Similar to Table 4.2 it seems that the al-

ternative approach performs better in terms of bias and mean square error as δ increases.

Table 4.4: Mean, variance and mean square error of the simulation results of
NMAR model with variable πi depending on xi for N = 1000,m = 25, n = 20
and ρ = 0.1, β0 = 0, β1 = 1, β0 = 0, β1 = 1. The simulation standard error is
shown in parenthesis.

Näıve approach Alternative approach Heckman two-step Approximate Heckman
two-step using pi

δ = 1
Mean Beta 0 3.401(0.063) -0.108(0.13) -1.161(0.36) -0.088(0.13)

Beta 1 0.842(0.003) 1.0048(0.006) 1.052(0.017) 1.003(0.003)
Delta 1.046(0.035)

Variance Beta 0 39.951 168.870 1316.629 171.982
Beta 1 0.099 0.377 2.809 0.381
Delta 12.425

MSE Beta 0 51.519 168.882 1317.978 171.990
Beta 1 0.124 0.377 2.812 0.381
Delta 12.427

δ = 2
Mean Beta 0 6.769(0.064) -0.108(0.13) -1.795(0.37) -0.071(0.13)

Beta 1 0.685(0.003) 1.005(0.006) 1.080(0.017) 1.001(0.003)
Delta 2.046(0.035)

Variance Beta 0 40.967 168.870 1334.745 172.154
Beta 1 0.101 0.377 2.847 0.381
Delta 12.425

MSE Beta 0 86.793 168.882 1337.967 172.159
Beta 1 0.201 0.377 2.854 0.381
Delta 12.427

δ = 4
Mean Beta 0 13.505(0.064) -0.108(0.13) -3.062(0.37) -0.037(0.13)

Beta 1 0.372(0.003) 1.005(0.006) 1.136(0.017) 0.998(0.003)
Delta 4.046(0.035)

Variance Beta 0 44.724 168.870 1399.477 172.681
Beta 1 0.111 0.377 2.985 0.382
Delta 12.425

MSE Beta 0 227.136 168.882 1408.855 172.682
Beta 1 0.505 0.377 3.003 0.382
Delta 12.427

Table 4.4 presents the results of NMAR model with the variable πi depending on xi

for näıve approach, alternative approach, Heckman two-step estimator and approximate

Heckman two-step estimator using pi. We see that the näıve approach now has both bias

in β0 and β1 as δ increases. Using the alternative approach removes the bias but with

quite different variance than the näıve approach yields. The approximate Heckman two-

step estimator using pi behaves similarly to the alternative approach in this scenario.

The Heckman two-step estimator is a poor estimator giving both large variance and

bias. Therefore, the alternative approach perform very well in this situation especially

when δ increases as we can see that it gives minimum variance and also mean square

error when compare to other methods including näıve approach.

We try to run the simulation for δ > 4, we got similar results in the case of δ = 4 in

Tables 4.2 to 4.4.
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We can see that under the NMAR mechanism our alternative approach performs bet-

ter than the näıve approach with a lower bias shown in the results at all times, and a

lower variance and mean square error as δ increases. The outcome is not as positive

when using our alternative approach under the MAR mechanism where we see increased

variance. Overall, our alternative approach is better for dealing with NMAR data than

the näıve approach. Moreover, the approximate Heckman two-step estimator using pi

behaves similarly to our alternative approach.

We also repeated the simulation study replacing pi in (4.2) by πi. The alternative ap-

proach shows that bias correction is worse even though the variance is about the same,

for example, the results of NMAR model with variable πi depends on xi for N=1000,

m = 25, n = 20 and ρ = 0.1 when δ = 4. We see bias in the alternative approach

(β̂0 = 10.353, β̂1 = 0.518, and δ̂ = 0.943), and also higher variance and mean square

error when compared with the näıve approach. The reason for the discrepancy is that

the assumed model no longer holds.

Moreover, if we repeated the simulation study replacing xi in (3.11) and (4.2) by zi for

example, the alternative approach and the Heckman approaches perform very poor. We

regenerate the simulation in Table 4.4 for N = 1000,m = 25, n = 20 and ρ = 0.1 as

shown in Table 4.5.
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Table 4.5: Mean, variance and mean square error of the simulation results of
NMAR model with variable πi depending on xi by replacing xi by zi in (3.11)
and (4.2) for N = 1000,m = 25, n = 20 and ρ = 0.1, β0 = 0, β1 = 1. The
simulation standard error is shown in parenthesis.

Näıve approach Alternative approach Heckman two-step Approximate Heckman
two-step using pi

δ = 1
Mean Beta 0 11.730(0.071) 17.914(0.076) 20.824(0.075) 17.976(0.076)

Beta 1 0.425(0.004) 0.157(0.004) 0.037(0.004) 0.157(0.004)
Delta -3.489(0.022)

Variance Beta 0 49.995 57.340 56.887 57.605
Beta 1 0.125 0.135 0.130 0.135
Delta 4.669

MSE Beta 0 187.597 378.278 490.557 380.779
Beta 1 0.455 0.846 1.05 7 0.846
Delta 24.821

δ = 2
Mean Beta 0 13.532(0.068) 17.914(0.076) 20.782(0.76) 17.965(0.076)

Beta 1 0.347(0.003) 0.004(0.006) 0.038(0.004) 0.157(0.006)
Delta -2.489(0.022)

Variance Beta 0 46.392 57.340 57.673 57.587
Beta 1 0.116 0.135 0.132 0.135
Delta 4.669

MSE Beta 0 229.530 378.278 489.602 380.370
Beta 1 0.542 0.846 1.058 0.846
Delta 24.821

δ = 4
Mean Beta 0 17.137(0.066) 17.914(0.076) 20.698(0.078) 17.943(0.076)

Beta 1 0.190(0.003) 0.157(0.004) 0.040(0.004) 0.156(0.004)
Delta 4.046(0.022)

Variance Beta 0 43.042 57.340 60.571 57.580
Beta 1 0.107 0.135 0.139 0.135
Delta 4.669

MSE Beta 0 336.745 378.278 489.030 379.581
Beta 1 0.763 0.846 1.061 0.847
Delta 24.821

Table 4.5 presents the results of NMAR model with the variable πi depending on xi

replacing xi with zi in (3.11) and (4.2) we see bias in all estimators. The alternative

approach and Heckman estimators perform very poorly in terms of both bias in β0 and

β1 as δ increases and also higher variance and mean square error when compared to the

näıve approach. Therefore, the alternative approach and the Heckman approaches are

not working at all in this scenario even though it works well in the model underlying

Heckman estimators that we will show later on in this chapter. We can not find an exact

reason why this occurred, it might happened because there is a difference in correlation

and covariance between these two variables or it could actually be for other related rea-

sons due to measurement errors.
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4.2.2 Simulation Results from Models underlying Heckman Estima-

tors

For the models underlying Heckman estimators approach, we consider the simulation

model at the individual. We also consider to replace xi in (3.11) by zi in the simulation

study. The results are as follows.

Table 4.6 presents the results found using the Heckman estimator with a multi-level

model at the individual level for N=1000, n=20, m = 25. We see that the näıve ap-

proach, as expected, displays bias when ρ is not equal to zero. The alternative approach

and all Heckman estimators in some ways reduce bias but higher variance for small ρ

when compare to the näıve approach. However, the variance is not much difference

in some cases eg. the Heckman two-step estimator and the Heckman maximum likeli-

hood estimator when ρ increases. Moreover, the Heckman two-step estimator and the

Heckman maximum likelihood estimator have smaller mean square error for all cases

except ρ = 0 and also in some cases with higher ρ have minimum variance than the the

näıve approach. For small ρ, ρ = 2 the approximate Heckman two-step using pi and

the Heckman maximum likelihood estimator perform well in terms of minimum mean

square error comparing to the näıve approach.

Table 4.7 presents the results found using the Heckman estimator with a multi-level

model at the individual level for N=1000, n=50, m = 10 we see similar results to those

in Table 4.6. The estimators found using the Heckman maximum likelihood estima-

tor seem to have smaller variance and mean square error shown with an increasing ρ

(ρ > 0.5). The approximate Heckman maximum likelihood estimator seems to correct

bias better, has a lower minimum variance and mean square error than the näıve when

ρ increases. The approximate Heckman two-step estimator using pi behaves similarly

to the alternative approach in this scenario and both of them perform well in term of

minimum mean square error when ρ = 0.2 and ρ = 0.5 in the comparison to the näıve

approach.

Table 4.8 presents the results found using the Heckman estimator with a multi-level

model at the individual level for N=1000, n=100, m = 5. The results are similar to

those found in Table 4.7 except that all estimators, other than the Heckman maximum

likelihood estimator, for all approaches are biased. It seems that for small m these ap-

proaches do not perform well in terms of bias except the Heckman maximum likelihood

estimator.
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Table 4.9 presents the results found using the Heckman estimator with a multi-level

model at the individual level for N=1000, n=5, m = 100. We see the similar results

when compared to Table 4.6 except the näıve approach which seems to perform well in

term of minimum variance and mean square error for ρ = 0.2 but it is poor in term

of bias. The alternative approach and all Heckman estimators in some ways reduces

bias but higher variance when compare to the näıve approach. However, the Heckman

two-step estimator and the Heckman maximum likelihood estimator have smaller mean

square error when ρ increases.

Moreover, if we repeated the simulation study by not replacing xi in (3.11) by zi for

example, the alternative approach and the Heckman approaches perform very poor. We

regenerate the simulation in Table 4.6 for N = 1000, n = 20,m = 25 and intra-cluster

correlation = 0.1 as shown in Table 4.10.

Table 4.10 presents the results found using the Heckman estimator with a multi-level

model at the individual level using the same xi in the simulation model for N=1000,

n=20, m = 25. We see that the alternative approach and all Heckman estimators perform

poor both for bias and minimum variance and mean square error except for the Heckman

maximum likelihood that gives smaller mean square error when ρ is high (ρ = 0.8).
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4.3 Further Theory to Explain the Simulation Results

According to the simulation results from table 4.2 to 4.4, the näıve estimator of β1 is

unbiased if πi is independent of xi but biased if πi depends on xi. We are now going to

explain this finding.

Assumption: πi is independent of Xi

E(pi) = E(E(pi|πi)) = E(πi) = π. (4.7)

As in (3.22),

E(β̂n) = E[(X ′X)−1X ′Yr]

= (X ′X)−1X ′E(Yr).
(4.8)

To find E(Yr), under model (4.2), we write

ȳri = xi
′β + ε1i + ε̄2ij + (1− pi)δ,

E(ȳri) = E(xi
′β) + E(ε1i) + E(ε̄2ij) + E((1− pi)δ)

= xi
′β + (1− π)δ,

(4.9)

assuming E(ε1i|xi) = 0 and E(ε2ij |xi) = 0.

Consequently,

E(ȳri) = xi
′β∗, (4.10)

where

xi =

[
1

xi1

]
(i = 1, 2, . . . , n) and β∗ =

[
β0 + (1− π)δ

β1

]
.

Hence,

E(Yr) = X ′β∗. (4.11)

Substitute(4.11) into (4.8),

E(β̂n) = (X ′X)−1X ′E(Yr)

= (X ′X)−1X ′Xβ∗

= β∗.

(4.12)

As a result, β̂0n is a biased estimator if πi is independent of Xi. The bias can be shown

as follows.

Bias(β̂0) = E(β̂0)− β0

= β0 + (1− π)δ − β0

= (1− π)δ,
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and β̂1 is unbiased estimator if πi is independent of Xi, as E(β̂1) = β1.

Assumption, πi depends on xi

To show that E(β̂1n) 6= β1:

We have,

E(pi|πi, xi) = πi.

Hence
E(pi|xi) = E(πi|xi)

= h(xi),
(4.13)

where h(xi) is an inverse logistic function.

According to (4.9),

E(ȳri) = E(xi
′β) + E(ε1i) + E(ε̄2ij) + E((1− pi)δ)

= xi
′β + δ − δE(pi|xi).

(4.14)

Substitute (4.13) into (4.14),

E(ȳri) = xi
′β + δ(1− h(xi)). (4.15)

Let

x̃i =

 1

xi1

1− h(xi),

 , X̃ =
[
X U

]
, U =


1− h(x1)

...

1− h(xn)

 , and β∗ =

β0

β1

δ

 .
Hence,

E(Yr) = X̃β∗. (4.16)

Therefore,

E(β̂n) = (X ′X−1)X ′E(Yr)

= (X ′X−1)X ′X̃β∗

= (X ′X−1)(X ′XX ′U)β∗

= (I(X ′X−1)X ′U)β∗

=

[
β0

β1

]
+ δ(X ′X−1)X ′U. (4.17)

As a result, β0 and β1 are generally biased estimators if πi depends on Xi.
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4.4 Conclusion

Under the models underlying näıve and alternative approaches, the näıve approach per-

forms well in terms of minimum variance and mean square error under the MAR model.

However, it is biased for both β0 and β1 under NMAR model when pi depends on xi and

when pi independent of xi, and also β0 is biased under NMAR model with pi constant.

The alternative approach is successful in removing bias from both β0 and β1 under

NMAR model when πi depends on xi and also corrects the bias that the estimator pro-

duces for β0 quite well when compared to results found using the näıve approach under

NMAR model with πi constant and πi variable but independent of xi. However, it does

have a higher variance than the näıve approach yields except when δ is increasing under

MAR. It does not work at all for the Heckman model.

Under the model underlying Heckman estimator, the Heckman two-step estimator and

approximate Heckman maximum likelihood estimator both in some way reduced bias

but produced very high variance while the approximate Heckman maximum likelihood

estimator seems to have corrected biased well when compare to the one produced by the

näıve approach, and also reduces minimum variance and lowers mean square error when

ρ increases but they do not work well with a multi-level model.





Chapter 5

Application using WERS Data

In Chapter 4, we undertook a simulation study to compare the performance of the esti-

mators from chapter 3. In this Chapter, we will apply the new methods we devised to

real data from the Workplace Employment Relations Survey (WERS) 2004 that will be

discussed in section 5.1. In this survey there were 2 levels, a single cluster and a single

element, employees within the workplace (there was a particular problem of nonresponse

by employees), the clusters are workplaces and the elements are employees. The liter-

ature related to the WERS 2004 data will be reviewed in section 5.2 and then we will

consider the Bryson et al. (2009) study in section 5.3 as the basis for the main empirical

work in this chapter. The proposed analysis and the results of the analyses are discussed

in section 5.4 and 5.5 respectively which will be assessed using the regression model at

the individual and workplace levels respectively. This section will also discuss both the

models that consider survey weight using the generalised regression (GREG) estimation

and those that ignore survey weight. Finally, the conclusion for our findings is given in

section 5.6.

5.1 The WERS 2004 Survey

The linked employer-employee Workplace Employment Relations Survey (WERS) 2004

data is used in our analysis. According to the information in the Workplace Employment

Relation Survey 2004, information and advice service (http://www.wers2004.info/),

which offers a recognised account of working life inside most British workplaces. Follow-

ing the information in WERS 2004 technical report for cross-section and panel surveys,

Chaplin et al. (2005) state that the WERS 2004 survey was conducted under a stratified

random sample of workplaces and a sample of employees at those workplaces . The strata

have been defined by the establishment size and a Standard Industrial Classification 2003

(SIC(2003)) as it was defined in WERS 1998 which leads to the sampling fraction being

61
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equal to 0.675 for each strata(Chaplin et al. (2005)). It was collected at workplace level

and targeted data from about 2,300 managers, 1,000 employee representatives and 22,500

employees which covers both the private and public sectors (http://www.wers2004.info).

This data does not cover these sectors of the British economy; mining and quarrying,

agriculture, hunting and forestry, fishing and private households without employed per-

sons occupying them and extra-territorial bodies (Bryson et al. (2009)). It contains both

the Cross-Section Management and Employee Representative data files.

From the Inter-Departmental Business Register, the Workplaces with at least 5 em-

ployees were sampled with aim to conduct a face-to-face interview with the most senior

person at each workplace looking at industrial relations, employee relations or person-

nel matters. The data has been conducted from management interview in total of

2,295 workplaces from a sample of 3,587 addresses which yielded a response rate of 64%

(http://www.wers2004.info).

The managers in 1,967 (86 %) of the 2,295 workplaces had permission to distribute an

eight page self-completion questionnaire for the Survey of Employees in the WERS 2004

Cross-Section to 25 randomly-selected employees in each workplace (or, to every em-

ployee in workplaces with from 5 to 24 employees). A further 10% of workplaces did not

return any questionnaires. There were 22,451 employees out of 37,000 questionnaires

who completed and returned the questionnaire, indicating a fieldwork response rate of

60% (http://www.wers2004.info).

5.2 Analyses of WERS 2004 Data

In this section we describe some published analyses of WERS 2004 data as background

to our application. Wood and Fairleigh (2007) used WERS 2004 data to find the change

in well-being within all contributing groups forming the British economy utilising Warr’s

contentment measure and job satisfaction levels to constitute their study. Regression

analysis and a psychological model known as the Karasek model are used to analyse

levels of well-being, e.g. studying the correlation between well-being and job demands.

The results show that highly demanding jobs which do not apply rules to staff produce

the most stress and least job satisfaction. Later, Wood (2008) considered the relation-

ship between job characteristics, the employee voice and well-being using the Karasek

model. The results show that there is a negative relationship between well-being and job

demands while there is a positive relationship between well-being and a sense of control
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in the work place which is contradictory to his earlier results.

Additionally, some other works have been taken to examine the association between job

satisfaction and other variables. Rose (2007) examined the link between occupation and

employee job satisfaction using WERS 2004 data. Regression analysis is used to predict

job satisfaction taken from studies of the individual-level variables and workplace-level

variables in the data. The 81 minor occupation groupings specified in UK Standards

Occupational Classification 2000 were considered. The individual-level variables are ed-

ucation attainment, sex, age, pay level and skill type. The workplace-level variables are

workplace flexibility, sense of autonomy and a description of the workplace task struc-

ture, involvement of employees and workplace structure and practice are described by

the managers in a workplace. The results show a forty percent variance in outcomes that

cannot be explained using assumptions made before. Consequently, the further investi-

gation will be essentially before finalise the results. Later, Schyns et al. (2009) investi-

gated the effect of supportive leadership climate on job satisfaction. They focused their

analysis on three supportive leadership climate variables; supportive leadership climate

quality (the sample mean of the scores of supportive leadership climate from employees,

taken in survey, for each workplace), supportive leadership climate strength (the sample

standard deviation of the distribution of the scores of supportive leadership climate for

each workplace) and relative individual psychological supportive leadership climate (the

different between each employee’s climate score and the mean of the workplace) and

then they are tested whether or not related to job satisfaction. The univariate analysis

and multilevel model are used to analyse the result. The results show that supportive

leadership climate and individual leadership climate are related to job satisfaction but

not for supportive leadership climate strength. Nonetheless, the studying data is limited

to the employee questionnaire which employees are fully response to all their interest

variables which is lead to small data set due to nonresponse problem.

Bryson and Freeman (2008) investigated the effect of economic performance in employee

owned business on pay in the UK. Regression analysis is used to explore the relationship

between shared capitalist modes of pay (other factors held fixed) and individual pay for

results, managerial monitoring, and worker decision-making. They find that the growth

of shared capitalism is the same in the UK and the US.

Chatterji and Mumford (2008) studied wages in both the public and private sectors

for male employees on full-time contracts. WERS 2004 data is used to study individual

worker characteristics data for both public and private sector workplaces. The regression

analysis has been applied in the study. It focuses on earning outcomes for men employed

to work full time where the mid-point of the interval has been considered to measure
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weekly wages. The dependent variable is the hourly wage for each employee in each work-

place. The explanatory variables are potential experience (years), training (number of

training days taken in the previous year), education, vocational qualifications, children,

marital status, disabilities, ethnic origin, fixed term employment contract, length of em-

ployment, union membership if any and occupation. The results show that the earnings

points for public sector workers is 11.7 log wage more than their private sector and also

suggests no correlation between public sector pay and private sector pay exists.

Sessions and Theodoropoulos (2009) examined the association between the slope of the

wage-tenure profile and the level of monitoring using combined data from the Manage-

ment and Employee Questionnaires, WERS 1998 and WERS 2004. Interval regression

is used to analyze the result at individual level. The dependent variable is the weekly

wage earned for each employee at each workplace in term of logarithm. The explanatory

variables are the employee tenure, the level of monitoring, other individual regressors

(e.g. education, occupation, demographics, training, and first characteristics) along with

other variables at each establishment. By using dual cross sections of employee data the

analysts are confident that this prediction will be supported.

Antcliff and Saundry (2009) analysed the effect of the introduction of the statutory right

to accompaniment at both grievance and disciplinary hearings on three categories; rates

of disciplinary sanctions, dismissals and employment tribunal applications. It considers

the relationship between employee representation and rates of disciplinary sanctions,

dismissal and applications to employment tribunals. Tobit regression models and mul-

tivariate regression models are used to examine separate models for these rates using a

set of independent variables that measure characteristics of the workforce and workplace

including considerations of any employer’s legal compliance with the right to accompani-

ment; a measure of formality within grievance and disciplinary procedures; demographic

features( e.g. gender, ethnicity and age of the workforce), workplace size, type of es-

tablishment and union density. It shows that probably the grievance and disciplinary

processes have been affected by the introduction of the right to accompaniment.

Salis and Williams (2010) examined the association between the face-to-face communi-

cations (FTFC) of workplaces that have human resources management (HRM) practices

and looked for productivity gains. The response variable is the labour yield measured

in thousands of pounds for each employee. The explanatory variables are selected HRM

practices with their potential to enhance FTFC which are working in teams, forming

problem-solving (PS) groups, meetings between line managers and employees, meet-

ings between senior managers and employees and presentations from employees and

managers. Regression analysis is used to explore the data that they also control for the

workplace, organisation and market controls variables. Finally, the presence of the HRM
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practices variables are also controlled. The results show that there is a linear relation-

ship between productivity and FTFC in problem-solving groups, teams and meetings of

senior or line managers and employees.

5.3 The Study of Bryson et al. (2009)

We applied our methods to WERS 2004 data following Bryson et al. (2009) who focussed

their analysis on private sector workplaces only and examined the association between

innovations (management-initiated workplace change) and worker well-being using this

set of data which consisted of 13,500 employees in 1,238 workplaces. This research

studies well-being measurements in two data sets. The first one is found in analysing

employee responses to the following question: “Thinking of the past few weeks how

much of the time has your job made you feel each of the following: tense, calm, relaxed,

worried, uneasy, content?” A 5-point scale is used to categorise the responses. However,

the six anxiety-comment items are combined into single scale following Wood (2008),

and the five-point scores are rescaled to scale from -2 to 2. Therefore, the scale varies

between -12 and 12. The second one is job satisfaction variable where all eight aspects

of job satisfaction are used. Employees are asked to respond to the following questions:

“ How satisfied are you with the following aspects of your job?... achievement you get

from your work; the scope for using your own initiative; the amount of influence you

have over your job; the training you receive; the amount of pay you receive; your job

security; the work itself; the amount of involvement you have in decision-making at this

workplace?” Responses have been coded into a 5-point Likert scale varying from very

satisfied to very dissatisfied. Similar to the first variable, the second one is combined

and a 5-point Likert scale is recoded to scale from -2 to 2. Therefore, the scale varies

between -16 and 16.

Bryson et al. (2009) considered innovation variables as their independent variables where

innovation variables are depending on response from the manager at each workplace ac-

cording to the question below:

“Over the past two years has management here introduced any of the changes listed on

this card? PROBE: Which others? UNTIL ’None’:

1) Introduction of performance related pay

2) Introduction or upgrading of computers

3) Introduction or upgrading of other types of new technology

4) Changes in working time arrangements
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5) Changes in the organisation of work

6) Changes in work techniques or procedures

7) Introduction of initiatives to involve employees

8) Introduction of technologically new or significantly improved product or service

9) NONE None of these”

They construct three count variables for innovations following the question above, the

first one is the summation of all eight innovations (innovations all); the second one for

labour innovations depend on items 4, 5, 6, and 7 which 4 is the maximum value(innovations work),

and the third one for capital innovations depend on items 2, 3, and 8 which 3 is the

maximum value (innovations technology).

In addition, Bryson et al. (2009) considered the unionization variables and other impor-

tant control variables as independent variables. Unionization variables are controlled for

both individual union membership and workplace level union membership. The union

membership data at individual level is controlled where 1 represents individual union

membership and zero represents none union membership which is obtained directly from

employee answers in the employee self-completion questionnaire. In contrast, the work-

place level union membership data is obtained from the manager at each workplace

where its value is equal to 1 for union coverage and equal to zero for not covered. For

other control variables, we again follow Bryson et al. (2009), the individual level control

variables are age (9 dummies); academic qualifications (8 dummies); single-digit occupa-

tion (9 dummies); and dummies for disability and gender. The workplace level controls

are:single-digit industry (11 dummies); log workplace employment size and a quadratic

term; and a dummy for low travel-to-work-area unemployment (below 1.2%).

5.3.1 Models

Using the variables discussed in this section, the model of interest following Bryson et al.

(2009) is shown as below.

Wij = β1Innovationsj + β2Unionij + β3Innovationsj × Unionij + β′xXij + εij , (5.1)

where Wij is well-being(or job satisfaction) for individual i in workplace j, Innovationsj

is the number of innovations recommenced in any workplace j, Unionij is a dummy for

union coverage, the X ′s represents the control vector and εij is a standard normal dis-

tributed error term.
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Bryson et al. (2009) considered only unweighed regression models as shown above. They

applied these models to WERS2004 data and they found that there is a relationship be-

tween management innovations and lower employee sense of well-being.

5.4 Proposed Analysis

In our study, we focused on using the regression model of job satisfaction on the in-

novations and control variables only then used the alternative approach and the näıve

approach with the WERS 2004 data. We analyse both the regression model at individual

level and at the workplace level. We also consider the models that take into account the

complex survey design and the models that ignore the complex survey design. Weighted

least square regression and raking are also used in the analysis shown as follows:

5.4.1 The Regression Model at Individual Level

In this section, the regression model of job-satisfaction at individual level is consid-

ered. We regress job-satisfaction on three innovation variables (innovations all, innova-

tions work and innovations technology), nonresponse rate and other control variables.

We considered seven different estimation methods (Model 1: Näıve approach, Model 2:

Alternative approach, Model 3: Heckman two-step estimator, Model 4: Approximate

to Heckman two-step estimator using pi, Model 5: Alternative approach with control

variables in the model, Model 6: Heckman two-step estimator with control variables in

the model and Model 7: Approximate to Heckman two-step estimator using pi). These

models are shown as follows.

Model 1: Näıve approach

yij = β0 + β1xi + εij , (5.2)

Model 2: Alternative approach

yij = β0 + β1xi + δ(1− pi) + εij , (5.3)

Model 3: Heckman two-step estimator

yij = β0 + β1xi + cλ

(
z′iγ

ση

)
+ υij , (5.4)
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In the probit model we regress Rij on number of employee at each workplace.

Model 4: Approximate to Heckman two-step estimator using pi

For Heckman two-step approach replace λ
(
z′iγ̂
σ̂η

)
by λ(Ψ̂i) = λi. Here Ψ̂i obtained from

Ψ̂i = Φ−1(pi).

Model 5: Alternative approach including control variables

yij = β0 + β1xi + δ(1− pi) + β′xXij + εij , (5.5)

Model 6: Heckman two-step estimator including control variables

yij = β0 + β1xi + cλ

(
z′iγ

ση

)
+ β′xXij + υij , (5.6)

Model 7: Approximate to Heckman two-step estimator using pi including

control variables

For this model we followed the same steps described for the Approximate Heckman two-

step estimator using the variable pi and including control variables into the model.

where yij is job satisfaction for employee j in workplace i, xi is the number of innovations

in a workplace i, the X ′s represent the control vector (for employee level control variables

these are: academic qualifications, single-digit occupation, and dummies for disability

and gender, the workplace-level control variables are single-digit industry, log workplace

employment size and a quadratic term, and a dummy for low travel-to-work-area unem-

ployment), pi is the employee response rate at each workplace i, εij is a standard normal

distributed error term and υij is an error term.

5.4.2 The Regression Model at Workplace Level

We again regress job-satisfaction on innovation variables and nonresponse rate but this

time at workplace level which is different from the approach Bryson et al. (2009) took.

We considered two different estimation methods (Model 1: Näıve approach, and Model

2: Alternative approach. These models are shown here:
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Model 1: Näıve approach

ȳi = β0 + β1xi + εi, (5.7)

Model 2: Alternative approach

ȳi = β0 + β1xi + δ(1− pi) + εi, (5.8)

where ȳi is the mean job satisfaction of employees in workplace i, xi is the innovations

employees in each workplace i, pi is the employees response rate i and εi is a standard

normal distributed error term.

5.5 Results of Analysis

The results are divided into two sections; the regression model when not considering a

weighted survey and considering a survey weighted for three panels both at individual

level and at workplace level as follows:

5.5.1 The Results of the Regression Model at Individual Level

5.5.1.1 Unweighted Estimates of the Regression Model

In chapter 3, we look at how the alternative approach performs when we include a non-

response variable (1− pi) into the regression model. In order to see how the alternative

estimator performs we undertook the simulation study we discussed in chapter 4. In

this section we also applied the alternative approach and Heckman estimators to real

data at individual level. We regress job-satisfaction on innovations and using the control

variables we discussed in the previous section.

Table 5.1 presents unweighted estimates of the regression model of job-satisfaction on

innovations all and control variables. We see that the nonresponse rate variable is sig-

nificant at 0.05 level for both model 2 alternative approach and model 5 alternative

approach including control variables which use the regression model of job-satisfaction

on innovations all although it was not accounted for at all in the Bryson et al. (2009) ap-

proach. However, the inverse mills ratio variable from the Heckman two-step estimator

is significant at 0.05 level only for models 3 but not for model 6 which includes control

variables in the model. Approximate to Heckman two-step estimator using pi, λ variable
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is significant at 0.05 level for both model 4 and model 7 which includes control variables

in the model. Innovations all variable is significant at 0.05 level only for models 1 to 4

which use the regression model of job-satisfaction on innovations all but not including

control variables. Nevertheless, including control variables in models 5 and 7 we see

that 1− pi and λ variables are still significant at 0.05 level even though innovations all

became insignificant and also benefit from using more available auxiliary variables to

increase the accuracy of the model.

Similar results have been shown in Table 5.2. Table 5.2 presents unweighted estimates of

the regression model of job-satisfaction on innovation work and control variables. We see

that for both model 2 alternative approach and model 5 alternative approach including

control variables which use the regression model of job-satisfaction on innovations work

the nonresponse rate variable is significant at 0.05 level although it was not accounted

for at all in the Bryson et al. (2009) approach. Similarly, approximate to Heckman

two-step estimator using pi, λ variable is significant at 0.05 level for both model 4 and

model 7 which includes control variables in the model. Regardless, inverse mills ratio

variable from Heckman two-step estimator is significant at 0.05 level only for models 3

but not for model 6 which includes control variables in the model. The only difference

for Table 5.2 when compare to Table 5.1 is that innovation work is significant at 0.05

level for models 1 to 7.

Table 5.3 also gives similar results to Table 5.1. Table 5.3 presents unweighted esti-

mates of the regression model of job-satisfaction on innovation technology and control

variables. We see that the nonresponse rate variable is significant at 0.05 level for

both model 2 alternative approach and model 5 alternative approach including control

variables which use the regression model of job-satisfaction on innovations technology

although it was not accounted for at all in the Bryson et al. (2009) approach. Neverthe-

less, the inverse mills ratio variable from the Heckman two-step estimator is significant

at 0.05 level only for models 3 but not for model 6 which includes control variables in

the model. Approximate to Heckman two-step estimator using pi, λ variable is signif-

icant at 0.05 level for both model 4 and model 7 which including control variables in

the model. Innovations technology variable is significant at 0.05 level only for mod-

els 1 to 4 which use the regression model of job-satisfaction on innovations technology

but does not include control variables. However, including control variables in models

5 and 7 we see that 1 − pi and λ variables are still significant at 0.05 level although

innovations technology became insignificant and also benefit from using more available

auxiliary variables to increase the accuracy of the model.

If we compare the results in Tables 5.1 - 5.3 with the results of Bryson et al. (2009) we

can see that we obtain exactly the same result for model 1 leaving 1− pi. If we include
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the nonresponse rate variable (1−pi) into both model 2 and model 3 we still get the same

results as Bryson et al. (2009). Table 5.1, for example, innovation all is not significant in

model 3 if we include control variables and 1−pi. It is also not significant if we leave 1−pi
in the regression model for both robust standard error following Bryson et al. (2009) or

non-robust standard error. The robcov function (robust covariance matrix estimates)

in R package is used for robust standard error which corrects heteroscedasticity and for

correlated responses from cluster samples and is normally bigger than non-robust ones.
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Panel A : INNOVATIONS ALL

Table 5.1: The unweighted estimates of the regression model of job-satisfaction
on innovations all and control variables. The T-statistics is shown in parenthe-
sis.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Intercept 4.547(46.735*) 4.779(39.534*) -1.001(-1.537) 4.773(39.204*) 10.625(22.936*) 10.242(6.042*) 10.612(22.923*)
innovations all -0.160(-7.106*) -0.162(-7.183*) -0.124(-5.409*) -0.162(-7.183*) -0.027(-1.206) -0.025(-1.123) -0.027(-1.205)
1-pi/ imr/λ -0.755(-3.234*) 35.015(8.614*) -0.440(-3.086*) -0.730(-3.168*) 1.840(0.146) -0.426(-3.029*)
unionrec -0.355(-2.926*) -0.348(-2.872*) -0.355(-2.932*)
member -0.699(-5.545*) -0.690(-5.471*) -0.697(-5.534*)
male -0.445(-4.147*) -0.441(-4.109*) -0.445(-4.153*)
disability -1.516(-6.636*) -1.528(-6.687*) -1.516(-6.638*)
age1 0.247(0.629) 0.216(0.549) 0.245(0.623)
age2 -0.112(-0.395) -0.140(-0.496) -0.112(-0.396)
age3 -0.455(-1.688) -0.472(-1.751) -0.456(-1.693)
age4 -0.595(-4.210*) -0.601(-4.246*) -0.595(-4.207*)
age6 -0.051(-0.402) -0.051(-0.400) -0.051(-0.401)
age7 0.070(0.487) 0.068(0.473) 0.070(0.490)
age8 1.536(5.727*) 1.526(5.690*) 1.535(5.724*)
age9 3.176(5.975*) 3.148( 5.922*) 3.174(5.971*)
academic2 -0.220(-1.039) -0.222(-1.047) -0.219(-1.035)
academic3 -0.125(-0.658) -0.117(-0.612) -0.123(-0.647)
academic4 -0.795(-5.171*) -0.785(-5.103*) -0.793(-5.159*)
academic5 -0.989(-4.209*) -0.982(-4.181*) -0.988(-4.206*)
academic6 -1.116(-5.526*) -1.105(-5.469*) -1.115(-5.519*)
academic7 -1.291(-7.298*) -1.274(-7.204*) -1.289(-7.289*)
academic8 -1.474(-5.855*) -1.472(-5.842*) -1.474(-5.853*)
occupation2 -1.555(-7.595*) -1.534(-7.493*) -1.555(-7.592*)
occupation3 -1.727(-10.014*) -1.713(-9.921*) -1.726( -10.009*)
occupation4 -2.295(-13.578*) -2.280(-13.482*) -2.294(-13.573*)
occupation5 -2.744(-13.056*) -2.746(-13.062*) -2.744(-13.058*)
occupation6 -2.067(-8.176*) -2.087(-8.250*) -2.069( -8.185*)
occupation7 -3.065(-14.511*) -3.075(-14.554*) -3.066(-14.515*)
occupation8 -3.157(-15.205*) -3.153(-15.177*) -3.158(-15.209*)
occupation9 -2.936(-14.718*) -2.956(-14.823*) -2.937(-14.726*)
manu -0.884(-3.949*) -0.859(-3.833*) -0.880(-3.932*)
utility -0.512(-1.466) -0.501(-1.433) -0.511(-1.463)
construction 0.784(2.947*) 0.804( 3.023*) 0.787(2.959*)
wholeret -0.105(-0.452) -0.128(-0.554) -0.103(-0.444)
hotrest 0.431(1.386) 0.395(1.272) 0.436(1.403)
transcom -0.673(-2.545*) -0.700(-2.640*) -0.673(-2.543*)
finserv -1.411(-5.738*) -1.353(-5.514*) -1.405(-5.716*)
othbus -0.380(-1.736) -0.350(-1.599) -0.376(-1.719)
education 0.784(2.545*) 0.788( 2.534*) 0.785(2.547*)
health 1.093(4.481*) 1.128(4.625*) 1.096(4.494*)
lemp -0.945(-5.736*) -1.020(-3.637*) -0.947(-5.746*)
lempsq -0.070(4.178*) 0.078(2.219*) 0.070(4.185*)
durate1 0.541(3.789*) 0.547( 3.824*) 0.541(3.787*)

* Significant at the 5 percent level
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Panel B : INNOVATION WORK

Table 5.2: The unweighted estimates of the regression model of job-satisfaction
on innovations work and control variables. The T-statistics is shown in paren-
thesis.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Intercept 4.481(54.995*) 4.694(43.799*) -0.955(-1.485) 4.688(43.360*) 10.647(23.032*) 10.349(6.105*) 10.642(23.019*)
innovations work -0.286(-8.115*) -0.286(-8.114*) -0.234(-6.563*) -0.286(-8.118*) -0.100(-2.842*) -0.100(-2.821*) -0.101(-2.845*)
1-pi/ imr/λ -0.713(-3.057*) 34.546(8.525*) -0.415(-2.915*) -0.726(-3.154*) 1.212(0.096) -0.424(-3.018*)
unionrec -0.341(-2.819*) -0.335(-2.766*) -0.342(-2.824*)
member -0.692(-5.494*) -0.682(-5.417*) -0.691(-5.483*)
male -0.449(-4.186*) -0.446(-4.149*) -0.449(-4.191*)
disability -1.520(-6.655*) -1.532(-6.708*) -1.520(-6.657*)
age1 0.247(0.630) 0.216(0.549) 0.245( 0.624)
age2 -0.109(-0.386) -0.138(-0.486) -0.110(-0.388)
age3 -0.458(-1.701) -0.476(-1.764) -0.460(-1.705)
age4 -0.591(-4.181*) -0.596(-4.216*) -0.591(-4.1783*)
age6 -0.050(-0.392) -0.050(-0.391) -0.050(-0.392)
age7 0.072(0.500) 0.070(0.487) 0.072(0.503)
age8 1.532(5.715*) 1.523(5.679*) 1.532(5.713*)
age9 3.160(5.945*) 3.132(5.892*) 3.157(5.941*)
academic2 -0.215(-1.016) -0.217(-1.022) -0.214(-1.012)
academic3 -0.119(-0.622) -0.110(-0.575) -0.117(-0.612)
academic4 -0.791(-5.143*) -0.780(-5.074*) -0.789(-5.131*)
academic5 -0.984(-4.190*) -0.978(-4.162*) -0.983(-4.187*)
academic6 -1.106(-5.475*) -1.094(-5.417*) -1.104(-5.468*)
academic7 -1.286(-7.270*) -1.269(-7.176*) -1.284(-7.262*)
academic8 -1.476(-5.861*) -1.473(-5.848*) -1.475(-5.859*)
occupation2 -1.570(-7.666*) -1.549(-7.565*) -1.569( -7.663*)
occupation3 -1.734(-10.055*) -1.720(-9.965*) -1.733(-10.050*)
occupation4 -2.300(-13.616*) -2.286(-13.522*) -2.300(-13.612*)
occupation5 -2.757(-13.119*) -2.760(-13.127*) -2.757( -13.120*)
occupation6 -2.076(-8.217*) -2.097(-8.294*) -2.078(-8.225*)
occupation7 -3.067(-14.524*) -3.077(-14.566*) -3.068(-14.527*)
occupation8 -3.168(-15.262*) -3.164(-15.236*) -3.169(-15.266*)
occupation9 -2.946(-14.771*) -2.966(-14.878*) -2.947(-14.779*)
manu -0.901(-4.002*) -0.875(-3.903*) -0.897(-4.006*)
utility -0.508(-1.455) -0.496(-1.420) -0.507(-1.452)
construction 0.736(2.761*) 0.755(2.833*) 0.739(2.773*)
wholeret -0.108(-0.468) -0.131(-0.567) -0.107(-0.461)
hotrest 0.431(1.388) 0.396(1.275) 0.437(1.405)
transcom -0.689(-2.605*) -0.715(-2.699*) -0.689(-2.603*)
finserv -1.418(-5.770*) -1.360(-5.546*) -1.413(-5.748*)
othbus -0.397(-1.815) -0.367(-1.678) -0.393(-1.798)
education 0.734(2.377*) 0.734(2.358*) 0.734(2.379*)
health 1.106(4.536*) 1.141(4.679*) 1.109(4.548*)
lemp -0.925(-5.620*) -0.988(-3.520*) -0.927(-5.629*)
lempsq -0.069(4.131*) 0.076(2.151*) 0.069(4.137*)
durate1 0.539(3.776*) 0.546(3.814*) 0.539(3.774*)

* Significant at the 5 percent level
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Panel C : INNOVATION TECHNOLOGY

Table 5.3: The unweighted estimates of the regression model of job-satisfaction
on innovation technology and control variables. The T-statistics is shown in
parenthesis.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Intercept 4.261(45.377*) 4.509(37.534*) -1.658(-2.575*) 4.501(37.534*) 10.543(22.744*) 10.234(6.037*) 10.537(22.730*)
innovation technolog -0.180(-3.926*) -0.189(-4.123*) -0.116(-2.506*) -0.188(-4.110*) -0.044(0.958) 0.052(1.140) 0.044(0.970)
1-pi/ imr/λ -0.775(-3.308*) 4.044(9.291*) -0.450(-3.151*) -0.709(-3.074*) 1.273(0.101) -0.413(-2.935*)
unionrec -0.343(-2.824*) -0.335(-2.761*) -0.343(-2.828*)
member -0.708(-5.622*) -0.6992(-5.551*) -0.707(-5.611*)
male -0.445(-4.149*) -0.442(-4.115*) -0.446(-4.154*)
disab -1.511(-6.614*) -1.523(-6.664*) -1.511(-6.615*)
age1 0.249(0.632) 0.218(0.554) 0.246(0.627)
age2 -0.122(-0.431) -0.151(-0.532) -0.123(-0.434)
age3 -0.457(-1.696) -0.474(-1.758) -0.458(-1.700)
age4 -0.601(-4.250*) -0.606(-4.287*) -0.601(-4.247*)
age6 -0.054(-0.418) -0.054(-0.419) -0.054(-0.418)
age7 0.066(0.462) 0.064(0.446) 0.067(0.464)
age8 1.533(5.714*) 1.523(5.676*) 1.532(5.711*)
age9 3.178(5.979*) 3.151(5.926*) 3.176(5.975*)
academic2 -0.223(-1.053) -0.225(-1.059) -0.222(-1.049)
academic3 -0.131(-0.687) -0.122(-0.641) -0.129(-0.676)
academic4 -0.801(-5.207*) -0.791(-5.142*) -0.799(-5.196*)
academic5 -0.989(-4.211*) -0.983(-4.184*) -0.989(-4.208*)
academic6 -1.125(-5.571) -1.114(-5.517*) -1.124(-5.565*)
academic7 -1.298(-7.336*) -1.282(-7.247*) -1.296(-7.328*)
academic8 -1.481(-5.880*) -1.479(-5.869*) -1.480(-5.877*)
occupation2 -1.556(-7.600) -1.537(-7.504*) -1.556(-7.596*)
occupation3 -1.729(-10.021*) -1.715(-9.935*) -1.728(-10.016*)
occupation4 -2.295(-13.580*) -2.281(-13.489*) -2.294(-13.575*)
occupation5 -2.734(-13.015*) -2.737(-13.021*) -2.735(-13.016*)
occupation6 -2.046(-8.093*) -2.065(-8.162*) -2.048(-8.101*)
occupation7 -3.058(-14.477*) -3.067(-14.515*) -3.059(-14.480*)
occupation8 -3.146(-15.156*) -3.142(-15.128*) -3.147(-15.159*)
occupation9 -2.927(-14.675*) -2.946(-14.776*) -2.928(-14.682*)
manu -0.895(-3.995) -0.872(-3.887*) -0.892(-3.979*)
utility -0.509(-1.459) -0.498(-1.423) -0.508(-1.455)
construction 0.795(2.993) 0.813(3.059*) 0.798(3.005*)
wholeret -0.104(-0.448) -0.126(-0.545) -0.102(-0.441)
hotrest 0.420(1.352) 0.385(1.239) 0.425(1.368)
transcom -0.668(-2.524*) -0.693(-2.616*) -0.667(-2.522*)
finserv -1.418(-5.767*) -1.362(-5.553*) -1.413(-5.745*)
othbus -0.376(-1.721) -0.348(-1.590) -0.373(-1.704)
education 0.814(2.646*) 0.816(2.630*) 0.815(2.649*)
health 1.094(4.484*) 1.128(4.627*) 1.097(4.497*)
lemp -0.972(-5.906*) -1.036(-3.697*) -0.974(-5.916*)
lempsq 0.071(4.231*) 0.077(2.201*) 0.071(4.238*)
durate1 0.545(3.817*) 0.552(3.855*) 0.545(3.815*)

* Significant at the 5 percent level
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5.5.1.2 Survey Weighting of the Regression Model

We did a generalised regression (GREG) estimation in order to construct survey weight.

The GREG estimation requires the use of auxiliary information of population totals to

create survey weight and it is used for design-based estimations of population totals in

survey sampling which we discuss in more detail in Chapter 6. We consider two variables

from management files in WERS data in section 5.1; gender and occupation and use the

gender and occupation distributions for both responding and sample employees. Then

we calculate the unweighted results following the ‘WERS 2004 Cross-Section: Survey of

Employees Revisions to survey weighting(2007)’ method.

We finally obtain the new weight with coefficients of variation equal to 0.848 to use for

survey weight and apply this to the regression model that considers survey weight. We

use the R package with function svydesign to take into account survey design and the

results are shown in Tables 5.4 to 5.6.

Table 5.4 presents the weighted estimates of the regression model of job-satisfaction

which regresses on innovations all. Model 1 näıve approach is shown the regression

model of job-satisfaction which regresses on innovations all. The alternative approach

which is the regression model of job-satisfaction which regresses on innovations all and

the nonresponse rate variable (1− pi) is shown in model 2 and the alternative approach

which includes nonresponse rate variable and control variables is shown in model 3 re-

spectively . We see that nonresponse rate variable is significant at 0.05 level in model 2

alternative approach but it is not significant in model 3 alternative approach including

control variables. Moreover, the innovation all variable is significant in models 1 and 2

but not for model 3 which includes nonresponse rate and control variables.

In comparison with the results in Table 5.1 the unweighted estimates of the regression

model of job-satisfaction on innovation all and control variables in model 1 näıve ap-

proach, model 2 alternative approach and model 5 alternative approach including control

variables we can see some differences as follows. The response rate variable from the

weighted estimates of the regression model from alternative approach including control

variables is not significant which is different than the one in the unweighed estimates

in the same model and also some control variables became insignificant, e.g. union

coverage (unionrec), a quadratic term of log workplace employment size (lempsq) and

a dummy variable for low travel-to-work-area unemployment (durate1). Nevertheless,

similar results are shown in models 1 and 2.
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Table 5.5 presents the weighted estimates of the regression model of job-satisfaction

which regresses on innovations work. Similar to Table 5.4 model 1 represents the näıve

approach that is the regression model of job-satisfaction which regresses on innova-

tions work. The alternative approach which is the regression model of job-satisfaction

which regresses on innovations all and the nonresponse rate variable (1 − pi) shown in

model 2 and the alternative approach which includes nonresponse rate variable and con-

trol variables which was shown in model 3. Our results in Table 5.5 give similar patterns

to Table 5.4 where we see that the nonresponse rate variable is significant at 0.05 level

in model 2 alternative approach but it is not significant in model 3 alternative approach

which includes control variables. Moreover, the innovation all variable is significant in

models 1 and 2 but not for model 3 which includes nonresponse rate and control variables.

Compared to the results in Table 5.2 the unweighted estimates of the regression model

of job-satisfaction on innovation work and control variables in model 1 näıve approach,

model 2 alternative approach and model 5 alternative approach including control vari-

ables, we can see that the response rate variable from the weighted estimates of the

regression model from alternative approach including control variables is not significant

which is different than the one in the unweighed estimates in the same model and also

found that some control variables became insignificant, e.g. a quadratic term of log

workplace employment size (lempsq) and a dummy variable for low travel-to-work-area

unemployment (durate1). Furthermore, innovation work variable from the unweighed

model became insignificant but nevertheless, similar results are shown in models 1 and 2.

Table 5.6 presents the weighted estimates of the regression model of job-satisfaction

which regresses on innovations technology. Model 1 näıve approach is shown the re-

gression model of job-satisfaction which regresses on innovations technology. The al-

ternative approach which is the regression model of job-satisfaction which regresses on

innovations technology and the nonresponse rate variable (1−pi) shown in model 2 and

the alternative approach which includes nonresponse rate variable and control variables

shown in model 3 respectively. We see that nonresponse rate variable is significant at 0.05

level in model 2 alternative approach but again it is not significant in model 3 alterna-

tive approach including control variables. On the other hand, the innovation technology

variable is not significant in all models.

In comparison with the results in Table 5.3 the unweighted estimates of the regression

model of job-satisfaction on innovation technology and control variables in model 1 näıve

approach, model 2 alternative approach and model 5 alternative approach including con-

trol variables we can see some differences as follows. The response rate variable from the

weighted estimates of the regression model from alternative approach including control

variables is not significant. Also, the innovation technology variable from the weighted
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estimates of the models 1 and 2 became insignificant.

Panel A :INNOVATIONS ALL

Table 5.4: The weighted estimates of the regression model of job-satisfaction
regresses on innovations all and control variables. The T-statistics is shown in
parenthesis.

Model 1 Model 2 Model 3

Intercept 4.524(23.132*) 4.828(18.410*) 10.393(13.180*)
innovations all -0.190(-4.022*) -0.193(-4.050*) -0.042(-1.003)
1-pi -0.992(-2.175*) -0.719(-1.689)
unionrec -0.378(-1.832)
member -0.844(-4.355*)
male -0.391(-2.549*)
disability -1.551(-4.332*)
age1 0.203(0.483)
age2 0.140(0.379)
age3 -0.544(-1.640)
age4 -0.500(-2.535)
age6 0.028(0.165)
age7 0.075(0.376)
age8 1.366(4.271*)
age9 3.479(5.307*)
academic2 -0.081(-0.299)
academic3 -0.081(-0.314)
academic4 -0.669(-3.236*)
academic5 -0.957(-3.252*)
academic6 -0.8726(-3.107)
academic7 -1.167(-4.425*)
academic8 -1.328(-3.396*)
occupation2 -1.793(-6.447)
occupation3 -1.702(-7.120*)
occupation4 -2.180(-9.706*)
occupation5 -2.534(-9.497)
occupation6 -2.059(-6.226*)
occupation7 -2.922(-10.249*)
occupation8 -3.112(-11.185)
occupation9 -2.917(-9.543*)
manu -1.369(-3.074)
utility -1.406(-1.890)
construction 0.373(0.8317)
wholeret -0.656(-1.659)
hotrest 0.208(0.338)
transcom -1.259(-2.584*)
finserv -2.209(-4.939*)
othbus -0.681(-1.678)
education 0.687(1.303)
health 0.621(1.436)
lemp -0.695(-2.483*)
lempsq -0.048(1.677)
durate1 0.315(1.306)

* Significant at the 5 percent level
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Panel B : INNOVATION WORK

Table 5.5: The weighted estimates of the regression model of job-satisfaction
regresses on innovation work and control variables. The T-statistics is shown in
parenthesis.

Model 1 Model 2 Model 3

Intercept 4.509(27.586*) 4.783(21.009*) 10.375(13.377*)
innovation work -0.385(-5.212*) -0.385(-5.187*) -0.152(-2.442)
1-pi -0.928(-2.071*) -0.725(-1.718)
unionrec -0.352(-1.725*)
member -0.836(-4.330*)
male -0.400(-2.621*)
disability -1.553(-4.341*)
age1 0.202(0.482)
age2 0.151(0.407)
age3 -0.542(-1.630)
age4 -0.490(-2.492*)
age6 0.027(0.156)
age7 0.081(0.407)
age8 1.366(4.270*)
age9 3.473(5.272*)
academic2 -0.074(-0.270)
academic3 -0.068(-0.266)
academic4 -0.659(-3.201*)
academic5 -0.952(-3.249*)
academic6 -0.856(-3.058*)
academic7 -1.155(-4.392*)
academic8 -1.331(-3.406*)
occupation2 -1.822(-6.584)
occupation3 -1.717(-7.196*)
occupation4 -2.189(-9.761*)
occupation5 -2.555(-9.559)
occupation6 -2.074(-6.277*)
occupation7 -2.921(-10.259*)
occupation8 -3.128(-11.300)
occupation9 -2.939(-9.666*)
manu -1.389(-3.166)
utility -1.403(-1.919)
construction 0.322(0.726)
wholeret -0.654(-1.688)
hotrest 0.221(0.362)
transcom -1.273(-2.654*)
finserv -2.214(-5.036*)
othbus -0.694(-1.740)
education 0.615(1.176)
health 0.660(1.538)
lemp -0.652(-2.331*)
lempsq -0.045(1.611)
durate1 0.318(1.325)

* Significant at the 5 percent level
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Panel C : INNOVATION TECHNOLOGY

Table 5.6: The weighted estimates of the regression model of job-satisfaction
regresses on innovation technology and control variables. The T-statistics is
shown in parenthesis.

Model 1 Model 2 Model 3

Intercept 4.125(22.055*) 4.447(17.379*) 10.280(12.956*)
innovation technology -0.172(-1.761) -0.185(-1.903) 0.048(0.533)
1-pi -1.003(-2.191*) -0.672(-1.585)
unionrec -0.372(-1.800)
member -0.854(-4.405*)
male -0.394(-2.572*)
disability -1.545(-4.322*)
age1 0.223(0.534)
age2 0.121(0.329)
age3 -0.555(-1.671)
age4 -0.503(-2.558)
age6 0.028(0.164)
age7 0.072(0.362)
age8 1.364(4.257*)
age9 3.479(5.256*)
academic2 -0.085(-0.312)
academic3 -0.089(-0.346)
academic4 -0.677(-3.276*)
academic5 -0.9589(-3.259*)
academic6 -0.890(-3.177)
academic7 -1.177(-4.469*)
academic8 -1.334(-3.421*)
occupation2 -1.783(-6.418)
occupation3 -1.697(-7.077*)
occupation4 -2.177(-9.680*)
occupation5 -2.504(-9.362)
occupation6 -2.013(-6.101*)
occupation7 -2.915(-10.249*)
occupation8 -3.085(-11.033)
occupation9 -2.899(-9.481*)
manu -1.370(-3.062)
utility -1.409(-1.883)
construction 0.398(0.889)
wholeret -0.648(-1.625)
hotrest 0.207(0.339)
transcom -1.242(-2.514*)
finserv -2.203(-4.890*)
othbus -0.673(-1.652)
education 0.733(1.388*)
health 0.626(1.452)
lemp -0.738(-2.627*)
lempsq 0.049(1.730)
durate1 0.305(1.268)

* Significant at the 5 percent level

5.5.2 The Results of the Regression Model at Workplace Level

Similar to the previous section, the results are divided into two sections; the regression

model when not considering a weighted survey and considering a weighted survey for



80 Chapter 5 Application using WERS Data

three panels (A:innovations all, B:innovations work and C:innovations technology) as

follows:

5.5.2.1 Unweighted Estimates of the Regression Model

Following the theory in chapter 3, we again look at the alternative approach including the

nonresponse variable (1−pi) into the regression model at workplace level. We applied the

alternative approach to real data at workplace level beside of simulation study in chapter

4. Table 5.7 and 5.8 present the results of the regression model of job-satisfaction re-

gressed on innovations (innovation all, innovation work and innovation technology) and

nonresponse rate (nr) considering non-weighted and weighted surveys respectively. We

see a difference in results when we compare the individual level results with the work-

place level results because nonresponse rate is not significant at workplace level but at

individual level it is at 0.05 in both unweighted and weighted surveys. Bryson et al.

(2009) did not consider the regression model at workplace level.

Table 5.7: The unweighted estimates of the regression model of job-satisfaction
regresses on innovations. The T-statistics is shown in parenthesis.

Model 1 Model 2

Panel A : INNOVATIONS ALL
Intercept 4.943(29.818*) 5.106(23.353*)
innovations all -0.213(-5.307*) -0.216(-5.362*)
1-pi -0.393(-1.142)

Panel B : INNOVATION WORK
Intercept 4.816(34.297*) 4.941(25.293*)
innovations work -0.357(-5.631*) -0.358(-5.640*)
1-pi -0.314(-0.915)

Panel C : INNOVATION TECHNOLOGY
Intercept 4.602(28.865*) 4.7769(21.839*)
innovations technology -0.249(-3.073*) -0.258(-3.173*)
1-pi -0.402(-1.157)

* Significant at the 5 percent level
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5.5.2.2 Survey Weighting of the Regression Model

Table 5.8: The weighted estimates of the regression model of job-satisfaction
regresses on innovations. The T-statistics is shown in parenthesis.

Model 1 Model 2

Panel A : INNOVATIONS ALL
Intercept 4.990(20.743*) 5.374(17.316*)
innovations all -0.213(-3.898*) -0.219(-3.986*)
1-pi -0.951(-1.788)

Panel B : INNOVATION WORK
Intercept 4.930(25.111*) 5.255(19.319*)
innovations work -0.414(-4.927*) -0.414(-4.893*)
1-pi -0.849(-1.605)

Panel C : INNOVATION TECHNOLOGY
Intercept 4.635(19.647*) 5.043(16.658*)
innovations technology -0.215(-1.858*) -0.238(-2.075*)
1-pi -0.962(-1.823)

* Significant at the 5 percent level

5.5.3 Comparing the Differences in the Significance of the Coefficients

between the Models that Take into Account the Complex Survey

Design and the Models that Ignore the Complex Survey Design

Considering the models that ignore the complex survey design at individual level the

nonresponse rate variable is significant at 0.05 level for both the regression model of

job-satisfaction with regresses on innovation (innovations all, innovations work and

innovations technology) and nonresponse rate included, and the regression model of

job-satisfaction regressed on innovation (innovations all, innovations work and innova-

tions technology) and the nonresponse rate and control variables (Similarly, if we con-

sider robust standard error for this model, nonresponse rate is also significant).

However, the nonresponse rate is not significant at workplace level for the models that

ignore complex survey design. If we look at control variables we can see that the results

do not change very much between unweighted and weighted surveys e.g. academic quali-

fication and occupation variables do not change but some of the results from single-digit

industry variables became insignificant e.g. education.

For the models that take into account the complex survey design at individual level non-

response rate is still significant at 0.05 level but only when the model of job-satisfaction is

regressed on innovation (innovations all, innovations work and innovations technology)

and on the nonresponse rate, but not for regression models that include control variables.
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Nevertheless, if we consider some models of job-satisfaction regressed on innovation

(e.g. innovations all, innovations work), and on nonresponse rate and control variables

the nonresponse rate is significant at 0.10 level.

We can see that the estimation of the intercept and innovation variables does not change

much between weighted and unweighted models but in some cases the results are affected

e.g. Panel C: innovation technology.

On the other hand, for the models that take into account the complex survey design

at workplace level nonresponse rate is again not significant at 0.05 level although there

are some cases like that found in the regression model of job-satisfaction on innovation

(innovations all, and innovations technology) and nonresponse rate where nonresponse

rate is significant at 0.10 level.

We can see that the estimation of the intercept and innovation variables does not change

much between the weighted and unweighted models while the regression coefficient of

nonresponse term for survey weighted model looks better but still not significant at 0.05

level.

In conclusion, there is a problem with the model at workplace level as nonresponse rate

is not significant. Therefore we will do further analysis by applying lowess plot and

weighted least square regression(WLS) onto our model. The details are shown in sec-

tion 5.5.4 as follows:

5.5.4 Weighted Least Square Regression

According to the results for regression models at workplace level we can see that the

nonresponse rate variable is not significant and therefore we will do some more analysis

by looking at the lowess plot between the residuals from the regression models in section

5.5.1 (unweighted estimates) and response rate (pi). We can see evidence of unequal

variance. Hence, we use the number of employee returned questionnaires (nnumseq) as

the weight in the regression models. In this case the nnumseq is inverse to V ar(εi),

because the nnumseq is inverse to V ar(εi) we define the weights as below:

The weights = nnumseq(number of employees returned)
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We consider both normal standard error and robust standard error. The OLS function

in R package is used for WLS and also robcov function for robust standard error. The

results are shown as follows:

WLS with normal standard error

Table 5.9: The regression model of job-satisfaction regresses on innovations.
The T-statistics is shown in parenthesis.

Model

Panel A :INNOVATIONS ALL
Intercept 4.776(25.861*)
innovations all -0.163(-4.735*)
1-pi -0.761(-2.139*)

Panel B : INNOVATION WORK
Intercept 4.697(28.718*)
innovations work -0.292(-5.426*)
1-pi -0.713(-2.010*)

Panel C : INNOVATION TECHNOLOGY
Intercept 4.494(24.334*)
innovations technology -0.184(-2.612*)
1-pi -0.784(-2.185*)

* Significant at the 5 percent level

Table 5.9 present the results for the regression of job-satisfaction regresses on innova-

tions (innovation all, innovation work and innovation technology). We see nonresponse

rate variable is significant at 0.05 level for all cases.

WLS with robust standard error

Table 5.10: The regression model of job-satisfaction regresses on innovations.
The T-statistics is shown in parenthesis.

Model

Panel A : INNOVATIONS ALL
Intercept 4.776(28.994*)
innovations all -0.163(-5.358*)
1-pi -0.761(-1.417)

Panel B :INNOVATION WORK
Intercept 4.697(30.483*)
innovations work -0.292(-6.247*)
1-pi -0.713(-1.325)

Panel C : INNOVATION TECHNOLOGY
Intercept 4.494(26.918*)
innovations technology -0.184(-2.876*)
1-pi -0.784(-1.461)

* Significant at the 5 percent level
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Table 5.10 presents the results for the regression of job-satisfaction regressed on innova-

tions (innovation all, innovation work and innovation technology) with robust standard

error. Unfortunately the nonresponse rate variable is not significant at 0.05 level for all

cases.

5.6 Conclusion

The alternative approach performs well at individual level for both unweighted and

weighted surveys on the job-satisfaction regressed on innovation variables and nonre-

sponse rate but if we include control variables into the model the nonresponse rate

variable becomes insignificant at 0.05 level for weighted surveys but is still significant

for unweighted model.

The alternative approach does not work well at workplace level for both unweighted and

weighted surveys. However, the alternative approach performs better after we apply

WLS into workplace level models but only for unweighted estimates.

The Heckman two-step estimator also works well because the inverse mills ratio variable

is significant at 0.05 level but only for the model of job-satisfaction regressed on inno-

vation variable not for model which includes control variables in the model.

The approximate to Heckman two-step estimator using pi perform well in both models

of the job-satisfaction regressed on innovation variables and also the model including

control variables.

If we compare the results of real data with the simulation results from Chapter 4, we

can see that the alternative approach only works well at individual level but not at

workplace level. There might be some specific reasons why this set of real data does

not suit the alternative approach. For example, we assumed the population has normal

distribution in the simulation study but real data distribution might not have normal

distribution and moreover the variance is not constant and that is why we applied WLS

for workplace level. The alternative approach seems to work well after we used WLS

with normal standard error.



Chapter 6

GREG estimators for Two-Stage

Sampling

6.1 Introduction

This chapter considers a new topic not covered in the previous chapters but with a sim-

ilar framework, population and sampling set up. The generalised regression estimator

(GREG) for two-stage sampling is considered.

In section 6.2, we review the literature related to the GREG estimators. In section

6.3, the customary GREG estimator is considered and in section 6.4, we will propose a

new GREG estimator for two stage sampling. Finally, in section 6.5 we will show the

simulation results.

6.2 Literature Review

The generalised regression (GREG) estimator is used for design-based estimation of pop-

ulation totals in survey sampling. The GREG estimator uses auxiliary information and

is a special type of calibration estimator. In this chapter we introduce some new ways

of using this GREG estimator under two-stage sampling. Some early works have been

done on GREG and the calibration estimators. Bethlehem and Keller (1987) proposed

a weighting method to calculate weights using linear regression models at the person

level producing better results than post- stratification other than where there is only

one qualitative auxiliary variable in the model. The new weighting method can address

the issues occurring in post-stratification specifically where some strata do not contain

any members and details about population are not known but still where their theory

85
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is limited to simple random sampling.

Alexander (1987) proposed methods to find household weights which are subject to the

constraints of consistency with known control counts in data. This data contains many

cells with data about persons where the value of the weightings are close to the initial

calculated vectors of household weightings. He considered three types of methods called

constrained minimum distant methods which include the principal person method used

under two-stage cluster sampling. The proposed method has been compared to the prin-

cipal person method. The conclusion is that any analysis using these methods would

best be served by first gathering more information about survey undercoverage in order

to decide which method would provide the best results.

Lemâıtre and Dufour (1987) proposed an integrated procedure that calculates household

weights and can be used to estimate person weights as well. This method is based on

assumptions made by Bethlehem and Keller (1987). In order to apply this method, they

suggested using the household mean instead of the corresponding auxiliary variables at

the person level, where the same value will be applied to each person within a house-

hold. They also compare the efficacy of these methods by applying them to real data in

test scenarios. They chose the Canadian Labour Force Survey in order to see how their

estimators perform. The estimators both gave unbiased and similar results. However

there might be a chance of negative weightings using this method.

Later, Steel and Clark (2007) considered generalized regression estimations at house-

hold level where people within households have equal weightings. The weight are called

integrated weights. They also compared the design variance of GREG estimators at the

household level with GREG estimators at the person level in terms both theoretically

and empirically where they point out that this was not covered at all in Alexander

(1987) and Lemâıtre and Dufour (1987) . The optimal estimator for simple cluster

sampling, the explanation of the difference in the asymptotic variances and the linear

contextual of GREG estimators are all discussed theoretically. The results show that

GREG estimators at the household level have smaller variance than GREG estimators

at the person level in large samples. We can see the benefit of this research in looking

at sampling variance of GREG estimators at the household level instead of the person

level only. However, their sampling plan is limited to single stage cluster sampling.

Montanari (1987) proposed a new GREG estimator with design optimality if the pop-

ulation regression coefficient is known. However, the population regression coefficient

is usually unknown and it has to be estimated from the sample. This optimal GREG

estimator is also very complex to implement for two stage sampling designs because it
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requires joint-inclusion probabilities. Berger et al. (2003) proposed an optimal GREG

estimator based on the Montanari (1987) estimator. Their optimal GREG estimator

is not dependent on joint-inclusion probability. Berger et al. (2003) showed that their

estimator may be more accurate than the Montanari (1987) estimator and the stan-

dard generalised regression estimator. Nevertheless, their simulation is limited to single

stage sampling design. Recently, Tan (2013) proposed an optimal regression estimator

which is a particular case of the estimator proposed by Berger et al. (2003). Tan (2013)

proposed to expand the calibration estimators that have design-efficiency for the case of

known population totals or measured auxiliary variables for all units in the population in

both sampling techniques; rejective or high-entropy samplings in the presence of missing

data in survey samplings. The proposed estimators have a similar property to an opti-

mal regression estimator that has been proposed by many authors including Montanari

(1987). Nevertheless, they showed that the new method can solve two problems, one

always existent in the efficiency of a linear superpopulation model applying generalized

regression and calibration estimation and also it offers an easy way to approximate the

optimal regression estimation.

Rao (1994) considered the use of auxiliary information at estimation stage for the estima-

tion of both the population totals and distribution functions by giving a general set-up

for making the estimations under probability sampling and model-assisted approaches.

Rao proposed alternative model-assisted estimators having conditional repeated sam-

pling inferences for dealing with model misspecification. He also proposed an optimal

calibration estimator that is more accurate than the GREG estimator or the basic es-

timator of population total and that also expresses in calibration form under stratified

simple random sampling and stratified multi-stage sampling.

Estevao and Särndal (2006) studied many scenarios in complex survey designs using

calibrations such as the estimation of domains in one-phase sampling, estimation for

two-phase sampling, and estimation for two-stage sampling. They first reviewed auxil-

iary information used in one phase survey design. A vector of auxiliary variables with

known population totals is used to calculate weights and corresponding calibration es-

timators and this helps to decrease variance over estimators that do not account for

this auxiliary information. They reviewed each step used during their exploration of

instrument vector approach and automated linearisation. They also examined calibra-

tion estimation for use with two-phase sampling and two-stage cluster sampling where

auxiliary information is available at both the cluster and unit level. They also discussed

integrated weightings required for combining auxiliary information with two stage data

and moreover; they compare their method with the approach of Lemâıtre and Dufour

(1987) and on the issue of equally weighting individuals within selected households they

also discuss the effects of residuals on two-stage estimation of both unit and cluster
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statistics.

A literature review can be found in Särndal (2007). He compares the generalized re-

gression estimation with methods given in them pointing out that it is not the same

way of using auxiliary information in the estimation process although it is a special case

calibration estimator. He discussed how the methods can be used with both simple and

more complex survey design where sampling in two or more phases or stages is used. Dis-

cussion was given on how effective approaches might be in situations of complex survey

design where the auxiliary information might be available for more than one component

e.g. there might be primary sampling unit and/or secondary sampling unit information

available for two-stage design. Finally, calibration for nonresponse adjustment and non-

sampling error are investigated (see also Skinner (1998), Särndal and Lundström (2005),

and Kott (2006) for nonresponse adjustment).

6.3 GREG Estimation for Single Stage Sampling

6.3.1 The Customary GREG Estimator

Consider a finite population U = {1, 2, ..., j, ..., N}. Let yj be the value of the study

variable y for the jth population unit. The aim is to estimate the unknown population

total ty given by

ty =

N∑
j=1

yj . (6.1)

The Horvitz-Thompson estimator for ty is calculated from a sample s of size n drawn

from U and is given by

t̂yπ =
n∑
j=1

yj/πj =
n∑
j=1

y̆j = Y ′sΣs1s, (6.2)

where Y s = (y1, y2..., yn)′,Σs = diag(dj), dj is the design weights defined dj = 1/πj , πj

is the inclusion probabilities for the jth element and 1s is a vector of dimension n with

all one units.

Suppose we have auxiliary information available. Let xj be the vector of k auxiliary

variables for the jth unit, xj = (xj1, ...,xjk)
′. We assume vector total tx is known and

given by

tx =

N∑
j=1

xj . (6.3)
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Suppose we want to use the auxiliary information tx to estimate ty. The GREG estimator

is given by

ŶGREG =

n∑
j=1

wjyj , (6.4)

where wj denote GREG weight given by

wj = dj(1 + λ′xj), (6.5)

with

λ′ = (tx − t̂xπ)′

 n∑
j=1

djxjx
′
j

−1

, (6.6)

where t̂xπ is the Horvitz-Thompson estimator given by

t̂xπ =

n∑
j=1

xj/πj =

n∑
j=1

x̆j = X ′sΣs1s, (6.7)

where Xs = (x1,x2...,xn)′.

Alternatively, the GREG estimator in (6.4) can be rewritten in matrix form as follows.

ŶGREG = t̂yπ + (tx − t̂xπ)′β̂xy, (6.8)

where

β̂xy = (X̆
′
sΣsX̆s)

−1X̆
′
sΣsY̆ s, (6.9)

X̆s = (x̆1, x̆2..., x̆n)′ with x̆j = xj/πj , (6.10)

Y̆ s = (y̆1, y̆2..., y̆n)′ with y̆j = yj/πj , j ∈ s, (6.11)

t̂yπ, tx and t̂xπ are defined by (6.2), (6.3) and (6.7) respectively.

Note that the weights wj are calibrated because they are such that

n∑
j=1

wjxj =

N∑
j=1

xj . (6.12)
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6.3.2 The Optimal GREG Estimator (Montanari 1987)

Montanari (1987) considered the following random variable

Y̆M = t̂yπ + (tx − t̂xπ)′βM , (6.13)

where

βM = var(̂txπ)−1cov(̂txπ, t̂yπ) = (X̆
′
U∆UX̆U )−1X̆

′
U∆U Y̆ U ,βM (6.14)

is a population parameter of size N × N positive matrix, X̆U = (x̆1, x̆2..., x̆N )′ with

x̆j = xj/πj , Y̆ U = (y̆1, y̆2..., y̆N )′, j ∈ U and ∆U is the N ×N matrix given by

∆U = [∆ij ], (6.15)

where ∆ij = πij − πiπj , and πij is the joint inclusion probability of units i and j.

Montanari (1987) showed that Y̆M is optimal because the expectation of Y̆M equal ty

and the variance of Y̆M is minimal. Montanari (1987) proposed to predict ŶM by ŶM

after the substitution of optimal choice βM by β̂M in order to minimize V ar(YM ), where

β̂M is the estimator of βM given by

β̂M = (X̆
′
s∆̆sX̆s)

−1X̆
′
s∆̆sY̆s, (6.16)

where ∆̆s = [∆ijπ
−1
ij ], and t̂yπ, tx and t̂xπ are defined by (6.2) (6.3) and (6.7) respectively.

The proposed GREG estimator, is given by

ŶM = t̂yπ + (tx − t̂xπ)′β̂M , (6.17)

6.3.3 Optimal GREG Estimator proposed by Berger et al. (2003)

Berger et al. (2003) showed that under single stage design a consistent estimator of βM

can be obtained by including the stratification variable into the regression estimator.

Berger et al. (2003) adjusted the Montanari (1987)’s estimator by replacing ∆U by

∆̃U = CU (IU − Q̆U (Q̆
′
UCUQ̆U )− Q̆′UCU ) (6.18)

which is the estimator of ∆U under a conditional stratified Poisson sampling (CSPS)

design, where CU = diag(cj ; j ∈ U), with cj = πj(1 − πj), IU is an identity matrix of
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size N ×N , and Q̆U is the matrix of size N ×H of stratification variables that contain

q̆hj = qhj/πj , h = 1, 2, . . . ,H and j = 1, 2, . . . , N where qhj = πj if the jth unit belong

to stratum h and otherwise qhj = 0. Berger et al. (2003) showed that if we replace ∆U

by ∆̃U we will get βM which is the vector of the first elements of M auxiliary variables,

(βoptΓ ) of the vector

βoptΓ = (Γ̆
′
UCU Γ̆U )−Γ̆

′
UCU Y̆ U , (6.19)

where Γ̆U = [X̆U , Q̆U ] represents the partitioned N × (k +H) matrix.

The estimator of βoptΓ is given by

β̂
opt

Γ = (Γ̆
′
sC̆sΓ̆s)

−Γ̆
′
sC̆sY̆ s, (6.20)

where Γ̆s = [X̆s, Q̆s] is a n× (k +H) matrix, X̆s is the n× k matrix defined earlier in

section 6.3.1, C̆s = diag(c̆j), j ∈ s with c̆j = 1− πj , with Q̆s is the matrix of size n×H
of stratification variables that contain q̆hj = qhj/πj , h = 1, 2, . . . ,H and j = 1, 2, . . . , n

where qhj = πj if the jth unit belong to stratum h and otherwise qhj = 0.

The GREG estimator proposed by Berger et al. (2003) is given by

Ŷopt = t̂yπ + (txq − t̂xqπ)′β̂
opt

Γ , (6.21)

where t̂yπ is defined by (2), txq = [
∑N

j=1 q1j , ...,
∑N

j=1 qHj ,
∑N

j=1 xj ]
′ and

t̂xqπ = [
∑n

j=1 q̆1j , ...,
∑N

j=1 q̆Hj ,
∑N

j=1 x̆j ]
′.

The simulation results of Berger et al. (2003) showed that their proposed estimator per-

formed better than the standard generalised regression estimator, particularly for strati-

fied sampling design, including the Montanari estimator which gave a poorer result than

others in terms of higher relative standard error. Nevertheless, in some situations the

generalised regression estimator performed better than other estimators, particularly for

stratified sampling with small sample size (two units in each stratum) and high correla-

tion between y and x.

6.4 GREG Estimator for two stage sampling

Let N be the number of primary sampling unit (PSU) in the population, and Mi the

number of secondary sampling unit (SSU) in PSU i where i = 1, 2, . . . , N . Let yij be
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the value of the study variable y for the jth SSU (j = 1, 2, . . . ,Mi) of the ith PSU

(i = 1, 2, . . . , N). For two-stage sampling, a sample of n PSU is selected and a sample

of mi SSU (i = 1, 2, . . . , n) is selected in each sampled PSU. Let πi be the inclusion

probabilities for the ith PSU for the first-stage sampling, and let πj|i be the inclusion

probabilities of the jth SSU of PSU i.

In two-stage sampling we may have auxiliary information available at both PSU and SSU

level. Let zi be the PSU vector of p auxiliary variables in PSU i, zi = (zi1, ...,zip)
′. Let

xij be the SSU vector of k auxiliary variables in PSU i and SSU j, xij = (xij1, ...,xijk)
′.

We assume that the sample of PSU is stratified, the population of PSU is divided into

H strata and within stratum h SSU are grouped into Nh PSU. Let N be the number

of PSU in the population, N =
∑H

h=1Nh. Let n be the number of PSU in the sample,

n =
∑H

h=1 nh. Let Mh be the number of SSU in stratum h,Mh =
∑Nh

i=1Mhi . Let mh

be the number of sampled SSU in stratum h,mh =
∑nh

i=1mhi, and let m be the total

over all strata, m =
∑H

h=1mh.

For stratified two-stage sampling, a sample of nh PSU is selected in each stratum h

from the total of Nh PSU in stratum h and a subsample of mhi SSU is selected in each

sampled PSU (hi) from the total of Mhi SSU in the PSU, where h = 1, 2, . . . ,H.

The aim is to estimate the unknown population total ty given by

ty =
N∑
i=1

Mi∑
j=1

yij , (6.22)

where yij is the value of the study variable y for the jth SSU (j = 1, 2, . . . ,Mi) of the

ith PSU (i = 1, 2, . . . , N).

The Horvitz-Thompson estimator for ty is given by

t̂yπ =
n∑
i=1

mi∑
j=1

yij/πij =
n∑
i=1

mi∑
j=1

y̆ij = Y ′sΣs1s, (6.23)

where πij = πi × πj|i,Y s = (y11, y12..., ynmn)′,Σs = diag(dij), di and dij are the design

weights defined di = 1/πi and dj|i = 1/πj|i, and 1s is a vector of dimension (m1+...,+mn)

with all one units. The overall design weight for the j-th SSU in the i-th PSU is given

by dij = didj|i, i = 1, 2, . . . , N, j = 1, 2, . . . ,Mi.
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We assume both the SSU and PSU vector total tx =
∑N

i=1

∑Mi
j=1 xij and tz =

∑N
i=1 zi

are known. The vector of population totals is given by

txz =

[ ∑N
i=1 zi∑N

i=1

∑Mi
j=1 xij

]
=

[
tz

tx

]
. (6.24)

6.4.1 The Estevao and Särndal (2006) regression estimator

Suppose we have auxiliary information available at PSU and SSU level, let zi be cluster

level variable and let xij be unit level variable, Estevao and Särndal (2006) suggested

to use

zij = zi/Mi (6.25)

to assign to every selected unit in PSU i.

The GREG estimator using just the Z information is

Ŷ
(1)
GREG = t̂yπ + (tz − t̂zπ)′β̂zy, (6.26)

where

β̂zy = (Z ′sΣsZs)
−1Z ′sΣsY s,Zs = (z11, z12..., znmn)′ (6.27)

and

t̂zπ =

n∑
i=1

mi∑
j=1

zij/πij = Z ′sΣs1s. (6.28)

Estevao and Särndal (2006) also suggested using xij and zij in GREG estimator. A

GREG estimator is

Ŷ
(2)
GREG = t̂yπ + (txz − t̂xzπ)′β̂xzy, (6.29)

where

β̂xzy = (W ′
sΣsW s)

−1W ′
sΣsY s, (6.30)

t̂xzπ = (̂t
′
xπ, t̂

′
zπ)′ = W ′

sΣs1s (6.31)

and

t̂xπ =
n∑
i=1

mi∑
j=1

xij/πij = X ′sΣs1,Xs = (x11,x12...,xnmn)′ (6.32)
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and a stacked auxiliary vector is defined as

W s =

[
Zs

Xs

]
. (6.33)

6.4.2 Proposed Alternative GREG Estimators at the two stage sam-

pling

Montanari (1987)’s estimator is expressed in term of variances and covariances in the

estimation of β. The ultimate cluster approach is a common method for variance es-

timation in complex survey designs which treat the PSU total estimates as response

variables. The ultimate cluster approach was proposed by Hansen and Madow (1953).

The ultimate cluster approach calculates the variance at PSU level within each stratum.

This approach is valid for small sampling fraction.

We propose to adjust the GREG estimator from Estevao and Särndal (2006) by follow-

ing Berger et al. (2003) approach and using the idea of the ultimate cluster approach to

estimate β at PSU level. Berger et al. (2003) proposed an alternative regression estima-

tor which is design - optimal. The idea of this alternative GREG estimator is to add the

matrix of stratification variable into the GREG estimators. For this new GREG esti-

mator we will incorporate the design variable into the GREG. The details show as follow.

Let Q̆U be an N ×H matrix that contain q̆hi = qhi/πhi, where qhi is the stratification

variable for stratum h, (h = 1, 2, . . . ,H) and PSU i, (i = 1, 2, . . . , Nh) which is defined

by

qhi =

πhi if PSU i is in stratum h,

0 other;
(6.34)

where πhi = nhMhi/
∑Nh

i=1Mhi is the inclusion probability of PSU i within stratum, for

example under probability proportional to size sampling, h = 1, 2, . . . ,H, i = 1, 2, . . . , nh, j =

1, 2, . . . ,mhi. Therefore,

q̆hi =

1 if PSU i is in stratum h,

0 other.
(6.35)

We propose to adjust the GREG estimators by adding the stratification variables into

the GREG estimators. We consider that we have a stratified two-stage cluster sampling.
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The estimator of βoptΓ is given by a PSU level

β̂
opt

Γ = var(̂txzqπ)−1cor(̂txzqπ, t̂yπ) = (Γ̆
′
sC̆sΓ̆s)

−Γ̆
′
sC̆sY̆ s, (6.36)

where Γ̆s = [X̆s, Z̆s, Q̆s] represent the partitioned n×(k+p+H) matrix of the estimates

of PSU totals, C̆s = diag(c̆hi), h = 1, 2, . . . ,H, i = 1, 2, . . . , nh with c̆hi = 1− πhi, where

• X̆s = (x̆hi) represent the n× k matrix of the estimates of PSU totals of the unit

level variable, with x̆hi =
∑mhi

j=1 xhij/πhj|i,

• Z̆s = (z̆hi) represent the n×p matrix of the estimates of PSU totals of the cluster

level variable, with z̆hi = zhi,

• Q̆s = (q̆hi) represent the n×H matrix of the estimates of PSU totals of the cluster

level variable, with q̆hi = qhi,

• Y̆ s = (y̆hi), represent the n× 1 vector of the estimates of PSU totals of the study

variable, with y̆hi =
∑mhi

j=1 yhij/πhj|i, where πhj|i = mhi/Mhi.

The overall design weight for the j-th SSU in the i-th PSU in stratum h is given by

dhij = dhidhj|i, where h = 1, 2, . . . ,H, i = 1, 2, . . . , nh, j = 1, 2, . . . ,mhi. The quan-

tities dhi and dhij are the design weights defined dhi = 1/πhi and dhj|i = 1/πhj|i,

πhij = πhi × πhj|i.

The proposed GREG estimator is

Ŷ
(3)
GREG = t̂yπ + (txzq − t̂xzqπ)′β̂

opt

Γ , (6.37)

where

t̂yπ =
H∑
h=1

nh∑
i=1

mhi∑
j=1

yhij/πhij = Y ′sΣs1s, (6.38)

Y s = (y111, y112, ..., yhnhmn , .., yHnHmn)′, (6.39)

Σs = diag(dhij), dhij = dhidhj|i, (6.40)

h = 1, 2, . . . ,H, i = 1, 2, . . . , nh, j = 1, 2, . . . ,mhi, where dhi and dhij are the design

weights defined dhi = 1/πhi and dhj|i = 1/πhj|i. The vector 1s is dimension n×m with

all one units, t̂xzqπ = (̂t
′
xπ, t̂

′
zπ, t̂

′
qπ)′, t̂xπ, t̂zπ and t̂qπ are Horvitz-Thompson estimator

given by
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t̂xπ =
H∑
h=1

nh∑
i=1

mhi∑
j=1

xhij/πhij , (6.41)

t̂zπ =
H∑
h=1

nh∑
i=1

mhi∑
j=1

zhij/πhij (6.42)

with

zhij = zhi/Mhi (6.43)

and t̂qπ = [
∑n1

i=1 q1i/π1i,
∑n2

i=1 q2i/π2i, ...,
∑nH

i=1 qHi/πHi]
′ = (n1, n2..., nH)′ respectively.

The vector of population totals txzq is given by

txzq =



∑N1
i=1 q1i∑N2
i=1 q2i

.

.∑NH
i=1 qHi∑H

h=1

∑Nh
i=1 zhi∑H

h=1

∑Nh
i=1

∑Mhi
j=1 xhij


, (6.44)

tq = [
∑N1

i=1 q1i,
∑N2

i=1 q2i, ...,
∑NH

i=1 qHi]
′ = [

∑N1
i=1 π1i,

∑N2
i=1 π2i, ...,

∑NH
i=1 πHi]

′ = (n1, n2..., nH)′.

Therefore, tq = t̂qπ.

6.5 Simulation Study

We consider stratified two-stage cluster sampling with unequal size.

Let H = 3 stratum, N1 = 1000, N2 = 3000, N3 = 2000, N = N1 +N2 +N3 and m = 10

(We also consider bigger sizes of stratum, e.g. H = 20 and H = 60 ).

6.5.1 Simulation steps

Step 1 We generate the number of elements in each cluster for each stratum which

is Mhi, h = 1, 2, 3, i = 1, 2, ..., Nh for H = 3 strata N and Nhi clusters by using the

following function (see Deville (1997), Berger (2005) ),

Mhi = ((Whi −Min)/Max)× 6 + 10,
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where Whi = (i/Nhi)
α + (1/α), α = 4, Min = 10 and Max = 15.

The number of elements in each cluster (Mhi) will vary between Min and Max and also

vary between 10 and 50, holding a smaller variation to begin with and increasing to a

larger variation as we continue the calculations by sample.

We consider two type of stratifications. The first one is stratification by cluster size

when the psu of similar sizes are grouped in the same strata; that is, when the strata

are homogeneous according to the psu sizes. The second one is called random stratifi-

cation when the psu of different sizes are grouped in the same strata randomly.

Step 2 The value of yhij are generated from the multilevel model shown as below.

yhij = x′hijβ + z′hiγ + ε1hi + ε2hij . (6.45)

In order to generate yhij we generate xhij ∼ N(20, 1), zhi ∼ N(0, 1).

ε1hi ∼


N(−10, 1) if PSU i is in stratum h=1,

N(0, 1) if PSU i is in stratum h=2,

N(10, 1) if PSU i is in stratum h=3

(6.46)

and ε2hij ∼ N(0, σ2
ε2hij

), where

σ2
ε2hij

=
[

1−ρ
ρ

]
σ2
ε1hi

,

ρ = 0.1, 0.4, and β0 = γ0 = 0 and vary β1 and γ1.

Step 3 We will calculate πhi, zhij = zhi/Mhi for each cluster i in each stratum h. For un-

equal size sampling,πhij = πhiπhj|i, πhi = nhMhi/
∑Nh

i=1Mhi, πhj|i = mhi/Mhi,mhi = m.

Step 4 We selected a sample of 5% for each stratum using non-probability sampling.

Step 5 We compute the HT estimator, the naive GREG and the Estevao and Särndal

GREG at individual level and the proposed optimal GREG. We compare their relative

root mean squared errors and relative biases.



98 Chapter 6 GREG estimators for Two-Stage Sampling

T
ab

le
6.1:

S
a
m

p
le

rela
tive

b
ias

an
d

rela
tive

ro
ot

m
ean

sq
u

ared
error

in
p

ercen
tage

for
H

T
,

classical
G

R
E

G
w

ith
x
,

G
R

E
G

w
ith

z,
G

R
E

G
w

ith
x

a
n

d
z

a
t

in
d

iv
id

u
a
l

lev
el

w
ith

β
at

in
d

iv
id

u
al

level
an

d
w

ith
β

at
P

S
U

level,
op

tim
al

G
R

E
G

w
ith

x
an

d
q
,

op
tim

al
G

R
E

G
w

ith
z

a
n

d
q
,

an
d

o
p

tim
al

G
R

E
G

w
ith

x
,

z
an

d
q

estim
ators

at
in

d
iv

id
u

al
level

w
ith

β
at

P
S

U
level

for
P

P
S

sam
p

lin
g.

T
h

e
p

op
u

lation
size

N
1

=
3
,00

0
,N

2
=

2
,0

00
,N

3
=

1
,00

0
,H

=
3.

T
h

e
in

tra-clu
ster

correlation
ρ

is
eq

u
al

to
0.1

an
d

0.4.
T

h
e

n
u

m
b

er
of

S
S

U
in

each
stra

tu
m

va
ry

b
etw

een
1
0

an
d

50.
S

am
p

le
5%

from
each

P
S

U
,
m

=
10

an
d

rep
eat

1,000
tim

es.

R
e
la

tiv
e

b
ia

s
R

e
la

tiv
e

ro
o
t

m
e
a
n

sq
u

a
re

d
e
rro

r
H

T
E

ste
v
a
o

a
n

d
S

ä
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Table 6.1 presents the results of the relative bias and relative root mean squared error.

There are 3 strata and the number of SSU in each stratum vary between 10 and 50.

For ρ = 0.1, under stratification by cluster size, we see that the optimal GREG with

x, z and q has a minimum relative bias compared to the other GREG estimators and

the Horvitz-Thomson estimator. In this situations the optimal GREG estimator with

z variable alone also performs better than the Horvitz-Thomson estimator in all situa-

tions and performs better than the Estevao and Särndal GREG estimators. However,

the Estevao and Särndal GREG estimator with x and z performs slightly better when

there is a large correlation between y and x, ryx = 0.7 and a small correlation between

y and z, ryz = 0.2 and also when there is a large correlation between both y and x and

y and z. The optimal GREG estimator with x only gives similar results to those found

using the Estevao and Särndal GREG estimator with variable x only and with x and

z. There is a higher relative bias when the correlation at the individual level between y

and z is equal to 0.7 compare to other situations.

The Estevao and Särndal GREG estimator with x and z performs better than all other

Estevao and Särndal GREG estimators. The Estevao and Särndal GREG estimator

based upon z variable performs better than the Estevao and Särndal GREG estimator

with the x variable only when the correlation between y and z is large (ryz = 0.7).

Nevertheless, the optimal GREG estimator with z variable only performs as well as or

better than all the optimal GREG estimators with x variable only with the same or

higher correlation between y and x respectively except when there is a large correlation

between y and x, ryx = 0.7 and a small correlation between y and z, ryz = 0.2. Most of

the Estevao and Särndal GREG estimators perform better than the Horvitz-Thomson

estimator except when there is a large correlation between y and z. However, all of

the optimal GREG estimators perform better or similarly than the Horvitz-Thomson

estimator.

Similar patterns are shown in the relative root mean squared error output. We see that

the optimal GREG with x, z and q variables has a smaller relative root mean squared

error than the Horvitz-Thomson estimator and the Estevao and Särndal GREG estima-

tors. It seems that the optimal GREG is acurate in this scenario.

However, for random stratification we notice that the Estevao and Särndal GREG es-

timator with x and z variables has both minimum relative bias and relative root mean

squared error. The optimal GREG estimator with x, z and q has a similar (lower) mean

squared error with the same level of correlation in place between y and z. The optimal

GREG estimator with x and q variables give similar results to the Estevao and Särndal

GREG estimator with x only. Random stratification is not suited to the optimal GREG
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variable because there is not much difference between the strata.

We have similar pattern with an intra-cluster correlation ρ = 0.4. Under stratifica-

tion by cluster size we see that, the optimal GREG with variables x, z and q has a

minimum relative bias and relative root mean squared error when compared to other

GREG estimators and the Horvitz-Thomson estimator. For a lower intra-cluster cor-

relation, the optimal GREG estimator with z variable alone performs better than the

Horvitz-Thomson estimator in all situations. It also performs better than the Estevao

and Särndal GREG estimators unless ryx = 0.7 and ryz = 0.2 and when ryx = 0.7 and

ryz = 0.7. The optimal GREG estimator with x only gives similar results to those found

using the Estevao and Särndal GREG estimator with variable x only and with x and z.

If we compare the GREG estimators, the Estevao and Särndal GREG estimators with

x only and the optimal GREG estimators with x and q respectively, we see that they

both give similar results in terms of relative bias and relative root mean squared error.

The optimal GREG with z and q performs better than the Estevao and Särndal GREG

estimator with z only for all the cases. Moreover, we notice that the optimal GREG

with x, z and q variables has a smaller relative bias and relative root mean squared error

than the Estevao and Särndal GREG estimator with x and z.

Moreover, for random stratification, we observe similar pattern to the situation where

ρ = 0.1. We see that the Estevao and Särndal GREG estimator with x and z vari-

ables has a both minimum relative bias and relative root mean squared error. Under

stratification by cluster, the Estevao and Särndal GREG estimators with x only and the

optimal GREG estimators with x and q respectively, both give similar results in term of

relative bias and relative root mean squared error. Moreover, the Estevao and Särndal

GREG estimator with z only performs better than the optimal GREG with z and q only

when ryx = 0.2 and ryz = 0.7.

The Horvitz-Thomson estimator performs poorly when compared to other GREG esti-

mators in both situations as shown under cluster size random stratification. It seems

that there is no difference in the results when intra-cluster correlation increases.

Table 6.2 gives the results of the relative bias and relative root mean squared error.

There are 3 strata. We see similar patterns to those shown in Table 6.1 but slightly

different outcomes in some situations. For ρ = 0.1, under stratification by cluster size,

we see that the GREG with variables x, z and q has a minimum relative bias when

compared to the other GREG estimators including the Horvitz-Thomson estimator. In

this situation the optimal GREG estimator with variable x and z when ryx = 0.7 and
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ryz = 0.2 also performs as well as the optimal GREG estimator with variable x, z and

q.

The optimal GREG estimator with the z variable alone also performs better than the

Estevao and Särndal GREG estimators and the Horvitz-Thomson estimator unless the

correlation between y and x is equal to 0.7 and the correlation between y and z is equal

to 0.2. The optimal GREG estimator with x only gives similar results to those found

using the Estevao and Särndal GREG estimator but there is a small increase in relative

bias when the correlation at the individual level between y and x increases.

If we compare the same GREG estimators, the Estevao and Särndal GREG estimators

and the optimal GREG estimators with x and z respectively, we notice that the Estevao

and Särndal GREG estimator upon z variable only performs better than the Estevao

and Särndal GREG estimator with the x variable only when ryx = 0.2 and ryz = 0.7.

Similarly, the optimal GREG estimator with z variable only performs better than the

optimal GREG estimator with the x variable only when ryx = 0.2 and ryz = 0.7.

Compared to the Horvitz-Thomson estimator, the Estevao and Särndal GREG estima-

tor with the variable x only and with variable x and z performs better or at least the

same as the Horvitz-Thomson estimator and the Estevao and Särndal GREG estimator

upon z variable only. Similar patterns are shown for the optimal GREG estimators, the

optimal GREG estimator with variable x only and with variable x and z performs better

or at least the same as the Horvitz-Thomson estimator. The optimal GREG estimator

upon z variable only performs better than the Horvitz-Thomson estimator when it has

a small correlation between y and x and when it has a large correlation between y and z.

When we consider the relative root mean squared error output, we see that the optimal

GREG with x, z and q variables has a smaller relative root mean squared error output

to the Horvitz-Thomson estimator and the Estevao and Särndal GREG estimators pro-

duce except when ryx = 0.7 and ryz = 0.2. In this case, the Estevao and Särndal GREG

with variable x and z also gives the same results. It seems that the optimal GREG is

accurate in these scenarios.

On the other hand, for random stratification, we notice that the Estevao and Särndal

GREG estimator with x and z variables has a both minimum relative bias and relative

root mean squared error but a slightly different output to that of the optimal GREG

estimator with x, z and q variables with the same level of correlation. Interestingly, the

optimal GREG with variable x, z and q produces the same results as it has shown in the

Estevao and Särndal one with small correlation. Including q variable into the optimal
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GREG estimator with z only seems to reduce high relative bias for the optimal GREG

with z and q. The optimal GREG estimators still give a better result or at least the

same results compared to the Horvitz-Thomson estimator.

Similar patterns are shown for intra-cluster correlation ρ = 0.4. Under stratification by

cluster size, we see that the GREG with x, z and q has a minimum relative bias compared

to the other GREG estimators including the Horvitz-Thomson estimator except where

the correlation at the individual level variables between y and x is equal to 0.7 where

the Estevao and Särndal GREG estimator with variable x and z produces the same result.

The optimal GREG estimator with z variable alone also performs better than the Es-

tevao and Särndal GREG estimators and the Horvitz-Thomson estimator unless the

correlation at the individual level variables between y and x is equal to 0.7 and the cor-

relation between y and z is equal to 0.2. In this case, the Estevao and Särndal GREG

estimator only upon x variable performs slightly better. When the correlation is 0.7 the

Estevao and Särndal GREG estimator with variable x and z performs slightly better.

The optimal GREG estimator with x only gives similar results to those found using the

Estevao and Särndal GREG estimator.

Moreover, for random stratification, we also see the similar results to the one with

ρ = 0.1. We see that the Estevao and Särndal GREG estimator with x and z variables

has a small relative bias and relative root mean squared error. Surprisingly, the optimal

GREG with variable x, z and q (with a large correlation between y and x) also produces

the same relative bias and relative root mean sqaured error as it has shown in the Es-

tevao and Särndal with variable x and z. The relative bias decreases using the optimal

GREG with z and q. The optimal GREG estimators still give a better result or at least

the same results as the Horvitz-Thomson estimator.

Table 6.3 presents the results of the sample relative bias and relative root mean squared

error. There are 3 strata and the number of SSU in each stratum varies between 10 and

15. Interestingly we see different results to those found in Table 6.2, for ρ = 0.1 under

stratification by cluster size. We see that the GREG with x, z and q has a minimum

relative bias. In this situation the optimal GREG estimator with variable z and q when

ryx = 0.2 and ryz = 0 also performs as well as the optimal GREG estimator with vari-

able x, z and q.

The optimal GREG estimator with z variable alone also performs better than the Es-

tevao and Särndal GREG estimator with variable x alone and with variable z alone in
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most situations. The Estevao and Särndal GREG estimator with variable x and q per-

forms similarly to the optimal GREG estimator with variable with z and q. Similarly

the other optimal GREG estimators with x only gives similar results to the Estevao and

Särndal GREG estimator.

If we compare the Estevao and Särndal GREG estimators and the optimal GREG es-

timators with x and z respectively, we notice that the Estevao and Särndal GREG

estimator with x performs better than the Estevao and Särndal GREG estimator with

the z variable only in almost all situations, except when ryx = 0.7 and ryz = 0.2. Never-

theless, the optimal GREG estimator with z variable performs better than the optimal

GREG estimator with the x variable only in almost all situations except when ryx = 0.7

and ryz = 0.2. Compared to the Horvitz-Thomson estimator, the optimal GREG esti-

mators perform better than the Horvitz-Thomson estimator in all situations. However,

the Estevao and Särndal GREG estimator with z only performs slightly worse than the

Horvitz-Thomson estimator when it has a lower correlation between y and x and be-

tween y and z.

Under random stratification, we notice that the optimal GREG estimator with vari-

able x, z and q still performs better than other GREG variables including the Horvitz-

Thomson estimator. It is as accurate as the Estevao and Särndal GREG estimator with

x and z with large correlation between y and z. In this situation, it produces different

results than those shown in Tables 6.1 and 6.2.

For intra-cluster correlation ρ = 0.4 with stratification by cluster size, the Estevao and

Särndal GREG estimator with x and z works well as it produces at least the same results

as the optimal GREG with x, z and q, in terms of the relative bias and the relative root

mean squared error.

However, for random stratification, we see similar results to the one with ρ = 0.1. In this

situation, the optimal GREG with x, z and q performs well in all situations although the

Estevao and Särndal GREG estimator with x and z variables produces the same results,

except with a small correlation between y and x for the relative bias and with a large

correlation between y and x and between y and z, for the relative root mean squared

error.

The Horvitz-Thomson estimator performs poorly or at best the same as the optimal

GREG estimators. However, it performs better than the Estevao and Särndal GREG

estimator with z alone in some situation, such as with a small correlation between y

and x and y and z. The small number of SSU in each stratum affects the results in this
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situation.

Table 6.4 presents the results of the relative bias and relative root mean squared error.

The population size is equal to 300 for 20 strata. Considering a large stratum sizes,

we still see similar patterns to those results for the smaller stratum, for ρ = 0.1, un-

der stratification by cluster size we see that, the GREG with variables x, z and q has

a minimum relative bias when compared to the other GREG estimators including the

Horvitz-Thomson estimator. Nevertheless, the Estevao and Särndal GREG estimator

with x and z (with a large correlation between y and x and a small correlation between

y and z) gives the same result as the optimal GREG with x, z and q.

We observe similar patterns to Table 6.1 and Table 6.2 with random stratification. We

see that the optimal GREG estimator with x, z and q still performs better than the other

GREG estimators including the Horvitz-Thomson estimator in terms of both minimum

relative bias and relative root mean squared error. However, we observe slightly different

results than those of the optimal GREG estimator with x, z and q variables with the

same level of correlation.

When ρ = 0.4, with stratification by cluster size, we see that the optimal GREG with

x, z and q performs well in terms of both relative bias and relative root mean squared

error. The optimal GREG with z and q also produces the same results to those with x

variable (with a small correlation between y and x and a large correlation between y and

z). Moreover, the Estevao and Särndal GREG estimator with x and z also works well in

some situations (ryx = 0.7 and ryz = 0.2). It produces at least the same results as those

of the optimal GREG with x, z and q in terms of the relative bias and the relative root

mean squared error.

However, under random stratification, we also see similar results to those with ρ = 0.1.

We see that the Estevao and Särndal GREG estimator with x and z also performs well

in terms of relative bias and relative root mean squared error even though the optimal

GREG estimator with x, z and q produces the same results with a small correlation

between y and x and between y and x.

The Horvitz-Thomson estimator performs poorly or at best the same as optimal GREG

estimators but performs better than the Estevao and Särndal GREG estimator with

variable z alone in some situations, such as with a large correlation between y and x and

a small correlation between y and z.
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Table 6.5 presents the results of the relative bias and relative root mean squared er-

ror. The population size is equal to 100 for 60 strata. Considering 60 strata, we see

similar patterns to those results for the smaller stratum, for ρ = 0.1. Under stratifi-

cation by cluster size, we see that the GREG with x, z and q has a minimum relative

bias when compared to the other GREG estimators including the Horvitz-Thomson es-

timator. Nevertheless, the Estevao and Särndal GREG estimator with x and z, a large

correlation between y and x and a small correlation between y and z also gives the same

result to the optimal GREG with variable x, z and q in terms of minimum relative bias.

Similar patterns are observed on Table 6.4 under random stratification. We see that

the optimal GREG estimator with x, z and q performs better than the other optimal

GREG estimators including the Horvitz-Thomson estimator in terms of relative bias and

relative root mean squared error. However, we observe a slightly different result to that

of the optimal GREG estimator with x, z and q and with the same level of correlation

between y and z.

When intra-cluster correlation ρ = 0.4, and under stratification by cluster size, we see

that the optimal GREG with x, z and q performs well in terms of relative bias and

relative root mean squared error. Moreover, the Estevao and Särndal GREG estimator

with x and z works well in some situations, ryz = 0.2, we observe the same results as

the optimal GREG with x, z and q in terms of the relative bias and the relative root

mean squared error.

Under random stratification, we also see similar results to those with ρ = 0.1. We see

that in this situation the Estevao and Särndal GREG estimator with x and z variables

performs well in terms of both relative bias and relative root mean squared error. The

Horvitz-Thomson estimator performs poorly or at best the same as the Estevao and

Särndal GREG estimators. However, the Horvitz-Thomson estimator performs better

than the optimal GREG estimator with variable x alone when ryx = 0.2 and ryz = 0.7.

It seems that the sizes of the strata do not affect the results.

6.5.2 Conditional Bias

We propose to investigate the conditional bias of the estimators considered in the pre-

vious section. First of all, we calculate the relative error for the population total for

each estimators from the 1,000 samples in the simulation study. Then we ordered them

by their total mean and classified them into 20 groups with 50 sampled each follow-

ing Chambers and Dunstan (1986). Finally, we calculate the mean of their overall



110 Chapter 6 GREG estimators for Two-Stage Sampling

bias for each estimators and total mean of variable x and z. We chose to study some

cases of the Table 6.2: stratification by cluster size and random cluster stratification,

when ryx = 0.2 and ryz = 0.7 and ryx = 0.7 and ryz = 0.2. The population size are

N1 = 3, 000, N2 = 2, 000, N3 = 1, 000 and there are 3 strata. The results are represented

in the graphs below.

Figure 6.1: Relative bias for HT, Estevao and Särndal with x and z and optimal
GREG estimators against the group mean total of z for stratification by cluster
size when ryx = 0.2 and ryz = 0.7.

Figure 6.1 shows that the optimal GREG with x, z and q performs well compared to the

Estevao and Särndal GREG and the Horvitz-Thomson GREG estimators. The Horvitz-

Thomson GREG estimator performs the worse as it shows a linear trend of z.
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Figure 6.2: Relative bias for HT, Estevao and Särndal with x and z and optimal
GREG estimators against the group mean total of z for random stratification
when ryx = 0.2 and ryz = 0.7.

In Figure 6.2 we consider the case of a random stratification. In this situation, we see that

the Estevao and Särndal GREG estimator performs better than the optimal GREG with

x, z and q and the Horvitz-Thomson GREG estimators. The Horvitz-Thomson GREG

estimator shows a linear trend.
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Figure 6.3: Relative bias for HT, Estevao and Särndal with x and z and optimal
GREG estimators against the group mean total of x stratification by cluster
size when ryx = 0.7 and ryz = 0.2.

Similar pattern is observed in Figure 6.3. The optimal GREG with x, z and q performs

the best. We do not observe much differences when compare to the Estevao and Särndal

GREG estimator. There is a linear trend for the Horvitz-Thomson GREG estimator.

Figure 6.4 we consider a random stratification. We observe similar results to Figure

6.2. We see that the Estevao and Särndal GREG estimator is the best. However, we do

not observe significant difference compared to the optimal GREG with x, z and q. The

Horvitz-Thomson estimator shows a linear trend.
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Figure 6.4: Relative bias for HT, Estevao and Särndal with x and z and optimal
GREG estimators against the group mean total of x for random stratification
when ryx = 0.7 and ryz = 0.2.

This section’s results support the simulation results in Table 6.2. The optimal GREG

estimator with variable x, z and q performs well compared to the Estevao and Särndal

estimator with x and z. It is also better than the Horvitz-Thomson estimator for strat-

ification by cluster size but not for random stratification.
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6.6 Conclusion

The simulation results show that the optimal GREG estimators with variable x, z and

q works well under stratification by cluster size in terms of relative bias and relative

root mean squared error. The optimal GREG estimator with z and q is accurate com-

pared with the other GREG estimators including the Horvitz-Thomson estimator. The

optimal GREG estimator is less accurate for random stratification. The Estevao and

Särndal estimator with x and z is more accurate in this situation. The optimal GREG

estimator with x, z and q may be as accurate as the Estevao and Särndal estimator.

This is the case when there are a small number of SSU in each stratum. We did not

observe significant difference with large intra-cluster correlation and stratum size.

We observe different results in Table 6.3, where there are 3 strata and the number of SSU

in each stratum varies between 10 and 15. We see that the optimal GREG estimator

with x, z and q performs well under both stratifications. Although, the Estevao and

Särndal GREG estimator with variable x and z also performs well under stratification

by cluster size in this situation as well and some situations with random stratification.



Chapter 7

Conclusions and Discussion

In chapters 1 to 6, we looked at the existence of nonresponse in surveys with cluster

designs and formulated new methods of analysis which treats missing data. We proposed

new estimators of regression coefficients in a linear regression model with cluster-level

variables when some of the data of the response variables are missing. We also proposed

an extension to the Heckman estimators under a model for clustered survey data. In

chapter 7, we proposed a new generalised regression estimator (GREG) for estimating

a population total for two-stage (cluster) sampling. To compare the performance of our

estimators with existing estimators, we performed simulation studies. In addition, we

applied the new methods to the Workplace Employment Relations Survey (WERS) 2004

data. In the final chapter, we aim to discuss the value of the proposed alternative esti-

mator and the Heckman estimator when analysing survey data under clustered designs

and the new GREG estimator for estimation. We also consider possible further avenues

of study.

Nonresponse in sample surveys is a common problem which can potentially result in

large biases in the analysis and estimation of sample survey data. In the first part of the

thesis, we considered how to use observed data in order to estimate appropriate regres-

sion coefficients in a linear regression model of cluster-level variables under missing data.

There is some literature related to how to deal with nonresponse at the cluster level as

described in Chapter 2 but the new method in this thesis explores the idea of adding

nonresponse information at cluster level variables into the linear regression model. This

was compared to the näıve approach which simply estimates the regression coefficients

without considering the nonresponse. Furthermore, we extended the Heckman estima-

tor to take into account nonresponse under the cluster sample designs. This research

on the analysis of cluster level survey data which takes into account nonresponse in the

regression model is new.

115



116 Chapter 7 Conclusions and Discussion

We investigated the efficacy of the new method for analysing clustered survey data for

both MAR and NMAR models under the following assumptions: firstly, that we need to

have at least one respondent in each cluster and secondly, that the difference between

the expectation of the response variable and nonresponse variable must be constant

across clusters. The first assumption is reasonable as no cluster can exist in any of

our functioning models that has full nonresponse. The second assumption simplifies the

model as it provides one constant across clusters but there is scope for future work to

consider a more complex model, e.g. by allowing differing values of nonresponse and the

expectation of it across clusters.

We developed the theory and showed under simulation that the proposed alternative

estimator is unbiased under the NMAR model and is preferable to the näıve approach

which is biased. Unfortunately, there was some indication of bias under the MAR model

however in practice the nonresponse mechanism occurs more often with NMAR model

than with MAR model so we do not consider the small bias to be a significant limitation

with our estimator. Therefore, our proposed alternative estimator seems to be more

powerful than the existing näıve one.

The models of interest in this thesis for analyzing cluster level survey data is the linear

regression model and the multilevel model. We considered these models because they

cover the models more commonly used when analysing complex survey designs. The

focus of our work on nonresponse is at the cluster level only.

We extended the Heckman estimators to cover the modelling for clustered survey data.

The Heckman estimator is well known to economists and deals with selectivity in the

modelling. For that reason, we included the Heckman estimator to incorporate the se-

lectivity of nonresponse into our model to see how it performs when analysing cluster

data. We also extended the study of the proposed methods to two-stage cluster sam-

pling and it worked in the same way as expected while assuming both MAR and NMAR

mechanisms. This points to our methods being useful in even more complicated sample

surveys if we follow the same iteration steps for estimation.

The main findings in the simulation results from models underlying the näıve and al-

ternative approaches indicate that the new alternative approach estimator produced

unbiased results with the NMAR model but did show higher variance and mean square

error in all tests except when the δ factor increased. This is not surprising and is expected

for unbiased estimators which tend to give higher variance and higher mean square error

than biased estimators. As expected the näıve approach gave an unbiased, minimum

variance estimator under the MAR model but is biased under the NMAR model. In
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the simulation studies based on the Heckman estimators, the first Heckman two-step

estimator and the approximate Heckman maximum likelihood estimator performed well

showing reduced bias when compared to that produced under the näıve approach. The

Heckman maximum likelihood estimator reduces variance and lowers mean square er-

ror when ρ increased. The new alternative approach behaves similarly to the Heckman

two-step estimator using pi in both models. We can see that in all simulations that we

ran, at least one of our proposed estimators worked well but it would be interesting to

investigate in further research using different models with larger variances in parameters

to see how our proposed estimators perform in other scenarios.

Surprisingly, we found that when replacing pi in (4.2) by πi that quite unexpectedly we

achieved a biased result. The theory that we presented stated that under the NMAR

model the alternative estimator should be unbiased. The reason for the discrepancy is

that the assumed model no longer holds. If mi is not large then pi and πi may be quite

different. This may explain the resulting bias which can be viewed as bias caused by

measurement error.

Unexplained results appeared in the models underlying the näıve and our alternative

approach when we repeated the simulation study replacing xi in (3.11) and (4.2) by

zi. The alternative approach and the Heckman approaches performed completely differ-

ently than when we used xi in both models (3.11) and (4.2). Both estimators performed

poorly as we can see bias in all estimators. However replacing xi works well in the

model underlying Heckman estimators and although we can not find an exact reason

why this occurred it might happen because there is a difference in correlation and co-

variance between these two variables or it could actually be for other related reasons

due to measurement errors. Although, there is no clear indication in our theory that

there should be a difference in any results caused by using different variables in these

two Heckman estimator models it would be useful to investigate and find out why the

difference occurred under measurement errors.

We were interested to see how our proposed estimators would perform with real data

so we chose the data from the Workplace Employment Relations Survey (WERS) 2004

data where there are 2 levels, a single cluster and a single element which is the employees

within the workplace. There was a particularly large incidence of nonresponse by em-

ployees in this survey. Although there were difficulties in dealing with a large set of data

we applied the proposed methods to the WERS 2004 data following Bryson et al. (2009)

who focussed their analysis on private sector workplaces only and examined the effects

of innovations (management-initiated workplace changes) had on worker well-being. We

run simulations at both the individual and cluster level unlike Bryson et al. (2009) who
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only focussed his study at the individual level. Our results show that the proposed alter-

native approach only worked well at individual level so we carried out further analysis

to try and identify the problems with this dataset. We found an issue of unequal vari-

ance across clusters which is a common occurance in real applications. We successfully

used the weighted least square method to solve the problem and got a better result for

unweighted estimates. Surprisingly, the alternative approach did not work well at work-

place level for both unweighted and weighted surveys where we found results other than

those expected. This can be explained because the assumed model no longer holds. For

example, we assumed the population has normal distribution in the simulation study

but that might not be true in real data. The extended Heckman estimators work well at

individual level as well but we did not consider it at the cluster level variable where there

tends to be more problems in allowing for maximum likelihood estimation with real data.

In the second area of this thesis the generalized regression estimator (GREG) for two-

stage (cluster) sampling is considered. We proposed a new regression estimator based

upon the optimal estimator proposed by Berger et al. (2003) which can be used for

stratified two-stage sampling designs when the sampling fraction is negligible and the

primary sampling units are selected with unequal probabilities. We assume that there

are auxiliary variables available for the secondary sampling units and the primary sam-

pling units. We proposed to use an ultimate cluster approach to estimate the regression

coefficient of the regression estimator. Estevao and Särndal (2006) proposed a regres-

sion estimator for two-stage sampling so we compared the proposed estimator with the

Estevao and Särndal (2006) estimator under a self-weighted two-stage sampling design.

The simulation results show that the proposed estimator may be more accurate than the

Estevao and Särndal (2006) estimator when psu of similar sizes are grouped in the same

strata; that is, when the strata are homogeneous according to the psu sizes. Note that

this is a situation which is not uncommon in practice. If the strata are not related to the

psu sizes, the Estevao and Särndal (2006) estimator is slightly more accurate than our

proposed estimator. In this situation, the loss of efficiency of the proposed estimator is

minor.

We have developed statistical theory for investigating nonresponse in the analysis and

estimation for regression models with clustered data by introducing the alternative es-

timator which incorporate information on nonresponse at the cluster level and also

developed the Heckman estimators for use at cluster level. Moreover, we proposed to

investigate different approaches for estimating a population total under two-stage (clus-

ter) sampling. We proposed to adjust the Estevao and Särndal (2006) GREG estimator

following studies by Berger et al. (2003). We compared the estimators for clustered data

using both simulation study and WERS 2004 data.
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Following the theory described in chapters 3 and 6, a number of tasks could be un-

dertaken in future work. First of all, we can apply the proposed estimators to the

logistic regression model. Secondly, we can adjust some of the assumptions allowing δi

to have variability across the cluster even though it could lead to more complications

in analysis. We can apply the proposed estimators to different sets of real data and

see how they perform. Furthermore, we can investigate how the proposed estimators

perform under more complicated survey sampling designs. We can also compare in the-

ory the proposed GREG estimators with other estimators. Finally, we can investigate

how the proposed estimators can be extended under imputation and weighting methods.





Appendix A

Proposition 16.1 Cameron and

Trivedi (2005)

Preposition 16.1 of Cameron and Trivedi (2005) Truncated Moments of the Standard

Normal.

Supposed z has a normal distribution with mean is equal to zero and variance is equal

to one. The left-truncated moment of z are

E(z|z > c) = φ(c)/[1 − Φ(c)] and E(z|z > −c) = φ(c)/Φ(c), where φ is the probability

density function of the standard normal distribution and Φ is the cumulative distribution

function of this distribution.
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Lemâıtre, G. and Dufour, J. (1987). An integrated method for weighting persons and

families. Survey Methodology, 13:199–207.

Little, R. J. and Vartivarian, S. (2005). Does weighting for nonresponse increase the

variance of survey means? Survey Methodology, 31(2):161–168.

Little, R. J. A. (1982). Models for nonresponse in sample surveys. Journal of the

American Statistical Association, 77(378):pp. 237–250.

Little, R. J. A. (1992). Regression with missing x’s: A review. Journal of the American

Statistical Association, 87(420):pp. 1227–1237.

Little, R. J. A. and Rubin, D. B. (2002). Statistical analysis with missing data. John

Wiley & Sons, Ltd., second edition.

Little, R. J. A. and Vartivarian, S. (2003). On weighting the rates in non-response

weights. Journal of the Royal Statistical Society. Series B (Statistical Methodology),

60(1):pp. 23–40.

Montanari, G. (1987). Post sampling efficient qr-prediction in large sample survey.

International Statistics, 55(2):191–202.

Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., and Rasbash, J. (1998).

Weighting for unequal selection probabilities in multilevel models. Journal of the

Royal Statistical Society. Series B (Statistical Methodology), 60(1):pp. 23–40.



126 REFERENCES

Rao, J. (1994). Estimating totals and distribution functions using auxiliary information

at the estimation stage. Journal of Official Statistical Review, 10(2):153–165.

Rao, J. N. K. (1996). On variance estimation with imputed survey data. Journal of the

American Statistical Association, 91(434):pp. 499–506.

Reiter, J. P., Raghunathan, T. E., and Kinney, S. K. (2006). The importance of modeling

the sampling design in multiple imputation for missing data. Survey Methodology,

32(2):pp. 143–149.

Rose, M. (2007). Why so fed up and footloose in it? spelling out the associations between

occupation and overall job satisfaction shown by wers 2004. Industrial Relations

Journal, 38(4):356–384.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, Chich-

ester.

Salis, S. and Williams, A. M. (2010). Knowledge sharing through face-to-face commu-

nication and labour productivity: Evidence from british workplaces. British Journal

of Industrial Relations, 48(2):436–459.

Särndal, C.-E. (2007). The calibration approach in survey theory and practice. Survey

Methodology, 33(2):99–119.

Särndal, C.-E. and Lundström, S. (2005). Estimation in surveys with nonresponse. John

Wiley & Sons, Ltd., second edition.

Schyns, B., van Veldhoven, M., and Wood, S. (2009). Organizational climate, rela-

tive psychological climate and job satisfaction : the example of supportive leadership

climate. Leadership & organization development journal., 30(7):649–663.

Sessions, J. and Theodoropoulos, N. (2009). Tenure, wage profiles and monitoring.

Working Paper, (27/09).

Shao, J. (2007). Handling survey nonresponse in cluster sampling. Survey Methodology,

33:pp. 81–85.

Shao, J. and Steel, P. (1999). Variance estimation for survey data with composite

imputation and nonnegligible sampling fractions. Journal of the American Statistical

Association, 94(445):pp. 254–265.

Shao, J. and Wang, H. (2002). Sample correlation coefficients based on survey data under

regression imputation. Journal of the American Statistical Association, 97(458):pp.

544–552.

Skinner, C. (1998). Calibration weighting and non-sampling errors. Research in Official

Statistics, 2:33–43.



REFERENCES 127

Skinner, C. J. and Coker, O. (1996). Regression analysis for complex survey data with

missing values of a covariate. Journal of the Royal Statistical Society. Series A (Statis-

tics in Society), 159(2):pp. 265–274.

Skinner, C. J. and Darrigo (2011). Inverse probability weighting for clustered nonre-

sponse. Biometrika, 98(4):953–966.

Skinner, C. J. and Rao, J. N. K. (2002). Jackknife variance estimation for multivariate

statistics under hot-deck imputation from common donors. Journal of Statistical

Planning and Inference, 102:pp. 149–167.

Steel, D. G. and Clark, R. G. (2007). Person-level and household-level regression esti-

mation in household surveys. Survey Methodology, 33(1).

Tan, Z. (2013). Simple design-efficient calibration estimators for rejective and high-

entropy sampling. Biometrika, 100(2):399415.

Van Buuren, S., Brand, J. P., Groothuis-Oudshoorn, C. G., and Rubin, D. B. (2006).

Fully conditional specification in multivariate imputation. Journal of Statistical Com-

putation and Simulation, 76(12):1049–1064.

West, B. T. (2009). A simulation study of alternative weighting class adjustments for

nonresponse when estimating a population mean from complex sample survey data.

Section on Survey Research Methods JSM, pages 4920–4933.

Wood, S. (2008). Job characteristics, employee voice and well-being in britain. Industrial

Relations Journal, 39(2):153–168.

Wood, S. and Fairleigh, E. (2007). Well-being amongst british employees: The evidence

from the workplace employee relations survey of 2004. Background paper for Policy

Studies Institute, Employment and Social Policy seminar, 8th March 2007.

Yuan, Y. and Little, R. J. A. (2007). Model-based estimates of the finite population

mean for two-stage cluster samples with unit non-response. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 56(1):79–97.

Yuan, Y. and Little, R. J. A. (2008). Model-based inference for two-stage cluster samples

subject to nonignorable item nonresponse. Journal of Official Statistics, 24(2):193–

211.

Yuan, Y. C. (2000). Multiple imputation for missing data : Concepts and new develop-

ment. Proceedings of the twentyfifth annual SAS Users group international conference,

pages 1–11.


