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ABSTRACT
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SOUND TRANSMISSION THROUGH PANELS AND SHELLS FILLED WITH

POROUS MATERIAL IN THE PRESENCE OF EXTERNAL FLOW

by Jie Zhou

With increasingly tighter regulations on noise exposure during flight, aircraft designers

have been compelled to innovate structures that minimise noise transmission into the

cabin space. Porous material is widely used as a passive noise control medium because

of their light weight, low cost, and broad band sound abatement effectiveness. The

present work, inspired by the need to be able to predict noise transmission character-

istics for commonly used constructions, incorporates the effect of flow into the calcula-

tions. Three types of sandwich configurations–bonded-bonded, bonded-unbonded and

unbonded-unbonded–are considered. Biot’s theory is used to simulate the poroelastic

material.

The sound transmission though a double-walled panel lined with porous material in the

presence of external mean flow is considered, first. The transmission loss is found to

increase with increasing Mach number of the external mean flow. This is then explained

on the basis that external mean flow increases the impedance of the panel. Mismatch

in the characteristic acoustic impedances of the exterior and the interior results in the

change of transmission loss. Transmission loss increases gradually when the pressure

difference between air gap and that in the exterior decreases. A bi-objective optimiza-

tion study is carried out to simultaneously minimize the sound transmission and the
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ii

structural weight. The effect of laminated composite face plate in the structure is also

brought out.

Sound transmission through a system of double shells, lined with poroelastic material in

the presence of external mean flow, is studied next. The transmission characteristics of

the sandwich construction are presented for different incidence angles and Mach numbers

over a wide frequency range. It is noted that the transmission loss exhibits three dips on

the frequency axis as opposed to flat panels where there are only two such frequencies.

Results are discussed in the light of these observations. Flow is shown to decrease the

transmission loss below the ring frequency, but to increase this above the ring frequency

due to the reduction of stiffness and the damping effect added by the flow.

Finally, sound transmission through double-walled cylindrical shell lined with poroelas-

tic material in the core excited by the exterior pressure fluctuation due to the turbulent

boundary layer is investigated. The peaks of power spectral density of the inner shell ki-

netic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence

are discussed. The results show that if the high frequency is interested, an air gap, even

if very thin, between the two face shells provide superior sound insulation.
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Introduction

Following the increase of link between regions and countries around the world, long-haul

flights are becoming more frequent than those in the past. Since the cruise stage of

aircraft operation constitutes a significant part of its flight envelope, maximizing travel

comfort is a key goal of civil aircraft design. Aircraft interior noise induces fatigue

to the passengers and the crew. In addition to the discomfort to passengers, a more

serious impact of noise is on the pilot’s ability to communicate and control the aircraft

with maximum efficiency and attentiveness. Various measures of noise control must,

therefore, be implemented. However, this usually results in penalties such as added

structural weight, reduced cabin volume, or increased maintenance cost. The balance

between the performance of noise control and the associated penalties is an area of

continuing research [1].

1.1 Source of aircraft interior noise

Internal as well as external sources can contribute to aircraft interior noise. The main

internal sources of noise are the Environmental Control System (ECS) or air distribu-

tion system (ADS) and avionics cooling system [2]. The external sources are generally

classified into two types according to their transmission path [3]:

1. Airborne sources of noise:

1
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(a) Aerodynamic noise arises from the airflow around the aircraft fuselage, gen-

erally the turbulent boundary layer (TBL). It is a significant contributor to

the mid and high frequency cabin sound pressure levels [4, 5].

(b) Propeller noise can be characterized by discrete tones at the blade passage

frequency (BPF) of the propeller or fan and its harmonics [6, 7].

(c) Jet noise, primarily a broadband excitation, mainly originates from aircraft

that have wing-mounted engines, and it affects the rear of the passenger cabin,

particularly when the engines are mounted close to the fuselage [8, 9].

2. Structure-borne sources of noise:

Structure-borne noise has its source in the vibration of the wings or other structural

members of the aircraft. It is mainly caused by the imbalanced forces within the

engine. This vibration energy propagates along structural paths into the aircraft

where it causes vibration of various surfaces in the cabin and ultimately radiates

noise [10].

1.2 Types of noise control

Reducing the aircraft interior noise level requires a system-level treatment technique

that is designed to manage both the airborne noise and the structure-borne noise. In

order to obtain the highest performance with minimal cost, the treatment requires not

only a suitable choice of materials, but also an understanding of sound propagation and

dissipation. Based on the existing literature, noise control systems can be divided in

two large categories: passive control systems or active control systems.

1.2.1 Passive noise control

Passive noise control systems involve the reduction of noise levels without injecting

energy into the system. The following material and method can be used for passive

noise control: barriers (e.g. interior trim), absorption materials (e.g. foams, fibrous bats

or blankets, acoustical tiles), damping materials (e.g. elastomeric composites, adhesive

films) and vibration isolators (e.g. trim panel isolators, engine mounts). The first

two categories deal with airborne noise, the noise already present in the environment.
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The last two items deal with structure-borne noise, or vibration, which will appear as

airborne noise after being radiated by a structure, unless it is either isolated or damped.

In general, effective noise control measures make use of absorption as well as barriers

for airborne noise and isolation as well as damping for structure-borne noise. Passive

control systems are widely used because they are inexpensive, easy to implement and

effective for broadband noise control, especially in the mid- and high-frequency range,

as shown in Figure 1.1 [11].
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Figure 1.1: A sketch showing range of working frequencies for active and passive methods
of vibration control [11].

Trim panel

Since, the interior trim panels were previously composed of either limp or light weight

fabrics on thin-gauge aluminium panels, the critical frequency (at which the speed of

bending wave propagation in the panel is equal to the speed of acoustic wave propagation

in the surrounding medium at normal incidence of the trim panel) use to be very high

[3]. With the development of composite material, the traditional aluminium fuselage is

increasingly replaced by composite materials due to their light weight and high stiffness.

Roussos et al. [12] experimentally and theoretically studied noise transmission charac-

teristics of composite materials in aircraft fuselages to achieve a lower weight and more

cost effective structure. Their results showed that composite general aviation panels had

less transmission loss than an aluminium panel over most of the frequency range due to

their lighter weight and lower critical frequencies. However, the composite panels could

provide a better sound transmission loss than the conventional aluminium panels did

with finite size.
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Absorption materials

The absorbing materials, also known as poroelastics, are passive media that convert

the acoustic energy into heat through a number of mechanisms. In porous materials

at high frequencies, an adiabatic process takes place that produces heat due to friction

when the sound wave transmits through the irregular pores. On the other hand, at low

frequencies, poroelastic materials absorb sound by energy loss caused by heat exchange.

This is an isothermal process. In general, poroelastic acoustic absorption efficiency is

limited to high frequencies [13].

Typical absorption materials for an aircraft used to be fiberglass. Glass fibre blankets

for aircraft insulation are usually encased in a polymeric film bagging material, because

the glass fibre cannot hold the shape itself (see Figure 1.2). The density of the glass

fibre bag is usually in the range from 5.4 to 24 kg/m3. The glass fibre can provide

optimum thermal and acoustical insulating performance for applications up to 230 ◦C

[14]. However, the glass fibre possesses certain toxicity [15].

Figure 1.2: Fuselage panel added with bagged fiberglass blanket [16].

Polyimide foam was created in the early 1970s. It has superior properties, e.g. fire

resistance, lightweight. It, initially, was only used in space vehicles due to the high

cost of manufacture. Following the increase of manufacture technique and the economic

control, it was put into application as insulation in commercial aircraft, aboard naval

ships and submarines. Today, commercial appliance designers and manufacturers use the

polyimide foam to replace the fiberglass or silica insulation products [17]. It has several
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advantages compared to normal insulation products like fiberglass which is widely used

in the aircraft industry. Polyimide foams can withstand temperatures up to 300 to 400

◦C and down to -250 ◦C, and even at -217 ◦C the material still stays flexible. Polyimide

foams are also produced at low densities ranging from 3.2 to 16 kg/m3. In industry, less

weight means less fuel consumption and more payload, especially in the aerospace and

aviation field. They can be modelled as any shape which results in lowered installation

and maintenance costs (see Figure 1.3). The foam is non-flammable and non-toxic.

Silcox et al. [18] pointed out that polyimide foam may offer an attractive alternative to

other acoustic materials in certain situations.

Figure 1.3: AC-530 polyimide foam [19].

Damping materials

As shown in Figure 1.4, damping materials often consist of constrained layer damping

tape with a viscoelastic adhesive and an aluminum backing layer. In order to reduce

the skin vibration caused by boundary layer excitation, engine exhaust impingement

and engine vibration, damping materials are typically attached directly to the aircraft

skin. It is effective only at frequencies above the panel fundamental frequency, which

can be relatively high for a pressurized, cylindrical fuselage [3]. If they are applied

to the surfaces of the interior trim panel, the effect of airborne-induced vibration and

engine vibration can be reduced. Generally, 50 to 75 percent coverage of the surface is

considered to be effective [20]. The temperature is the key factor affecting the dynamic

properties of damping materials during cruise of aircraft, because the loss factor of

damping materials depends strongly on the temperature [3, 21].
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Figure 1.4: Fuselage panel added with damping material [16].

A constrained-layer damping treatment, which consists of a sandwich of two outer elastic

layers with a viscoelastic material as the core, works by creating shear deformation in the

adhesive when the structure bends. However, there is very little shear deformation at

lower order modes of the fuselage panel, and hence associated with very little damping

can be provided by the damping material. To overcome this, one technique is the

introduction of a spacer layer between the viscoelastic layer and the base structure as

shown in Figure 1.5 [21]. Such a spacer layer could increase the strain in the damping

material and, therefore, the damping. This spacer layer is called ‘stand-off’ layer and

acts as a strain magnifier. The spacer material is supposed to ideally have infinite

shear stiffness and zero bending stiffness. Figure 1.5 shows one method of avoiding this

increase in flexural strength of the treated beam is to use ‘slotted stand-off layer’ of very

high shear strength compared to the viscoelastic material.

Figure 1.5: Stand-off layer damping system [21].

Vibration isolators
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Vibration isolators are flexible components used to provide a means of connecting two

structures so as to control relative motion between them under dynamic loads. Trans-

missibility is commonly used measure to quantify the performance of such isolators. It

is defined as the ratio of the transmitted force to the input force under steady static

harmonic loading as a function of frequency. Therefore, the lower transmissibility shows

the better isolation performance. The main design criterion is that the isolator must be

effective over the range of interest of frequencies. If the noise above 250 Hz is required to

control, the mount should be a relatively stiff to have low-deflection response. Isolation

of very low frequency vibration, such as the fundamental rotation speed of a jet engine

at 125 Hz, requires the mount to be significantly soft in order to act as an isolator [20].

1.2.2 Active control

As shown in Figure 1.1, active noise control is mainly employed to reduce transmitted

noise at low frequencies [2]. An active noise control includes sensors and actuators,

which are mounted on the structure. However, the use of active control systems in

aircraft should consider the following aspects: sufficient control authority (to achieve

control objective), high bandwidth (frequency range) of operation, robust, inexpensive,

low-power, efficient, accurate model for design, scaling, and control, broadband input,

flat frequency response and linearity. Active control systems rely on acoustic and vi-

bration actuators and sensors transducers, which often involve magnetic or piezoelectric

components with inherent high masses. Normally these transducers have complex de-

signs which involve the fabrication and assembly of many components which make them

expensive and prone to durability issues. Also, these systems often rely on multi-channel

controllers, which require expensive fast acting digital controllers and complex wiring

systems to connect the sensors and actuators to the control unit [22]. This introduces

additional weight issues and more importantly installation and maintenance costs. At

the same time, it should be kept in mind that active systems can often be efficient in

one area, but probably inefficient in another one.
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1.3 Motivation and literature review

1.3.1 Motivation

Ozcan and Nemlioglu [23] measured the in-cabin noise in two Airbus A321 commercial

passenger planes for a distance of 1,000 km for a 1 hour and 45 minutes flight duration.

Continuous noise levels were seen to be 60-65 dB(A) prior to takeoff, and 70-85 dB(A)

and 75-80 dB(A) during flight and landing, respectively, as shown in Figure 1.6. The

noise generated by full-power engine operation during takeoff and by reverse thrust

during landing can exceed levels during cruise, but the takeoff and landing phases are of

sufficiently short duration that the passengers can accept the additional noise without

undue discomfort. As the cruise portions of the flight are of relatively long duration, the

associated noise levels must be controlled for a steady state level for passenger comfort.

The most stringent requirements are usually associated with long flights that may last

12 to 16 hours [1]. Therefore, the flight condition should be considered for the design

and analysis in the aircraft industry.

Figure 1.6: Fitted presentation of noise levels for both flights, referenced to takeoff stage
[23].

However, the data on fuselage interior noise are generally collected through the ground

tests, and then converted to in-flight conditions through simulation. In the ground tests,

the excitation source cannot fully simulate the in-flight conditions. For flight tests, it is

difficult to separate the transmitted exterior noise and interior noise source, because the
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number of sensors are limited. Analytical approaches provide a way to consider the flight

condition. Although analytical methods only allow the study of simple constructions

such as panels and cylindrical shells, they are still an important tool to use due to their

inherent advantages [2] : (i) easy manipulation, (ii) a wide frequency range, and (iii)

fast speed of calculation. This is the reason that analytical methods have been used for

pre-design or parametric studies and the understanding of phenomena.

Almost all aircraft make exclusive use of passive methods to control interior noise. The

basic noise control treatment frequently consists of one or more layers of porous material

[3]. The goal of this research is to predict the aircraft interior noise caused by the

airborne noise in order to make subsequent corrective action. Therefore, this work

focus on predicting sound transmission through a sandwich structure in the presence of

external flow.

1.3.2 Literature review

As shown in Figure 1.7, an aircraft fuselage is typically a double-walled cylindrical shell.

It consists in an assembly of curved stiffened panels, made classically of aluminium, or

more recently of Composite Fibre Reinforced Plastic. The panels are further stiffened

in both directions by frames and stringers. The trim panel is indirectly connected with

fuselage skin by stiffener and vibration isolator. The air gap between the fuselage skin

and the trim panel is always filled by thermal and acoustical insulation materials.

Figure 1.7: Aircraft sidewall panel components [24].

Sound transmission through such a double-walled panel system has been studied by

many researchers in the past and the problem is of great current interest. London

[25] addressed the problem of sound transmitted through two identical parallel plates

and compared the theoretical results with experimental measurements in a reverberant
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sound field. Only the mass of the panels and their separation were considered in the

model. Another model developed by Mulholland et al. [26] took into account the effect

of sound-absorbing material in the cavity between two face plates, by introducing the

reflection coefficient of the sound absorbing material, into account. Legault et al. [27]

presented a model to consider the influence of trim mounts on the sound transmission of

double panel structures. They found that the elastic mounts could reduce the structure-

borne noise transmission when they are designed appropriately. Bolton et al. [28] built

an analytical model to predict the sound transmission through flat double panels lined

with poroelastic media in the absence of any mean flow while using Biot’s model [29]

for the porous material. Biot’s model is a frequently used constitutive model for wave

propagation in fluid-saturated porous material. Wang et al. [30] presented a theoretical

model of sound transmission loss through double-leaf lightweight partitions stiffened with

periodically placed studs by using a ‘smeared method’ and periodic structure theory. In

this approach, the stiffness and the inertia effects are uniformly distributed and the

structure is treated as an equivalent homogeneous continuum.

As mentioned above, the flight parameters should be considered in the analysis of the

sound transmission through the fuselage. In an ideal case, an external mean flow with

constant velocity can simulate the cruise condition. Ingard [31] investigated the effect

of fluid motion past a plane boundary on the reflection and absorption of sound. Koval

[32] studied the sound transmission loss through a single-walled panel in the diffuse

sound field including the effect of external air flow, panel curvature and internal fuselage

pressurization. Xin et al. [33] extended Koval’s work [32] for the case of double-leaf

plates for a prescribed angle of incidence with the external mean flow. Xin et al. [34]

also built a model to account for the effects of mean flow on sound transmission through

a simply supported rectangular aeroelastic panel. However, these studies do not consider

the effect of porous material when external mean flow is present.

The flat plate model when used to simulate an aircraft cabin is not adequate, especially

under flight conditions. Since the in-plane vibration is coupled with the transverse

vibration for cylindrical shells structures. This will change the acoustic characteristics

of the system. Koval [35–38] carried out a series of analytical studies which investigated

sound transmitted into single walled cylindrical shells including the effect of external

mean flow. Liu et al. [39] analyzed the sound transmission through curved, aircraft

panels under the influence of overpressure at the concave side by using shallow shell
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theory. Lee et al. [40, 41] analyzed the sound transmission through single and double-

walled cylindrical shells by using the acoustic wave equations and Love’s theory of the

thin shell vibration. The effect of some design parameters were also studied by them

computationally. Tang et al. [42] used the thin and thick shell theories to compute sound

transmission through a cylindrical sandwich shell with honeycomb core. They further

extended the analysis to two concentric cylindrical sandwich shells in the presence of

external mean flow but excluding the effect of any porous lining [43]. However, none

of the studies cited above [35–43] consider any effect of such poroelastic lining in the

presence of external mean flow. Liu et al. [44] used Donnel-Mushtari shell equations to

study the effect of the thickness of the annular space and damping material on sound

transmission through a double-walled cylindrical shell in the absence of the external

flow.

The mean flow is an idealised condition to include the flow physics in the simplest

possible way. In reality, the sound created from a turbulent boundary layer increases

more rapidly with respect to the vehicle velocity, than other noise sources [45]. So in

practice, in the cruise condition, the pressure fluctuation due to the turbulent boundary

layer is the major contributor to the interior noise of an aircraft (see Figure 1.8). The

TBL leads to the vibration response of the fuselage skin. Then the fuselage skin radiates

noise into the aircraft.
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Figure 1.8: Typical variation of noise levels in airplane cabin during takeoff and climb
to cruising altitude [46].

In the open literature, the analytical work of sound transmission through panels under

turbulent boundary layer excitation can be classified into two main methods. The first
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method works in the space-frequency domain [47–51]. Alternative formulations are in

the wavenumber-frequency domain [52–56]. These two methods are equivalent. Com-

paring with the wavenumber-frequency domain formulations, the former method is more

intuitive to derive. In the wavenumber-frequency domain analysis, the spectral densities

of the system response are expressed in terms of the spectral density of the turbulent

excitation ‘filtered’ by the sensitivity function of the plate [52, 53, 57].

Most researchers have paid attention to the noise radiated by a single plate [47, 48, 52–

56]. However, it is still quite far away from the real industrial problems. The analytical

study based on the plate model neglects the curvature of the fuselage or the effect of the

neighbouring panel and even both. The plate model is only suitable for describing the

subsystem instead of the whole fuselage. For more accurate prediction, these effects need

to be included. Therefore, the cylindrical geometry structure, which the real fuselage

is, should be considered. Only a few studies focused on such geometry of the structure.

Tang et al. [49] used the modal expansion analysis and Galerkin approach to develop an

analytical model of sound transmission through cylindrical shell structures excited by a

TBL. Gardonio [57] gave an introduction the general process for analyzing the interior

noise in a cylindrical enclosure with a flexible thin wall caused by a TBL using Green’s

function.

However, in practice, the aircraft fuselage is not a single wall structure. It is a double wall

system which consists of a skin panel and a trim panel with an annular space between

them. Therefore, Tang et al. [50] extended their previous work [49] to predict the

sound transmission into two concentric cylindrical sandwich shells subject to turbulent

flow on the exterior surface of the outer shell. Unfortunately, Tang et al. [50] did not

consider the effect of the porous lining in their study, which is widely used to control

interior noise. Maury et al. [51] studied the case of sound transmission through a

double-panel wall representative of an aircraft sidewall excited by a TBL. The effect of

porous material filled in the air gap between the skin and trim panels was included by

them. An empirical model [58] is used to model the porous material as equivalent fluid.

Several active control approaches for reducing the interior noise were also developed and

compared. Although the effect of the porous lining was considered, the plate model was

used here in [51]. However, due to neglecting the frame waves in the fiberglass material,

their result was not reasonable for the case when the fiberglass is directly bonded to both

of the two face plates. This drawback is overcome in the current study. More details
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about the modelling of sound propagation in the porous material will be discussed in

the next chapter.

The literature review reveals that, only one article [51] considered the effect of porous

material and external flow in a model. Unfortunately, their model is not accurate in

some cases due to the reason mentioned above. In order to build an accurate model

to predict interior noise in aircraft, this work will investigate the sound transmission

through a double-walled panel lined with porous material in the presence of external

flow.

1.4 Organization of Thesis

The thesis is organized as follow. Chapter 2 describes and compares the existing models

of sound propagation in porous materials. In Chapter 3, an analytical model of sound

transmission characteristics through flat double-walled panel lined with poroelastic ma-

terial in the presence of external mean flow is developed. The effects of Mach number,

the pressure in the air gap and the laminated composite face plate are brought out. A

bi-optimization is also carried out in this chapter. As the flat panel model can only sim-

ulate the subsystem–fuselage sidewall, for whole cabin simulation, the cylindrical shell

system should be considered. Therefore, in Chapter 4, the effect of external mean flow

on sound transmission through cylindrical shells line with porous material is studied.

The turbulent boundary layer, in fact, will be the dominant noise source of interior noise

in the cabin due to the increase of external flow velocity. Chapter 5 will give the effect of

such a factor. The sound transmission through cylindrical shell lined with porous mate-

rial under turbulent boundary layer excitation is analysed here. Finally, the conclusions

and the plan for the future work are presented in Chapter 6.
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Models of the acoustics of porous

materials

2.1 Description of porous material

Porous material is a material containing pores (voids). The skeletal portion of the

material is often called the walls or frames. The pores are typically filled with a fluid

(liquid or gas). The skeletal material is usually a solid, but structures like foams are

frequently treated as porous media to be analyzed. Generally, the porous material can

be divided into two groups: open-celled foam and closed-celled foam (see Figure 2.1a

and 2.1b respectively). Open-celled foams contain the struts, while the closed-celled

foams are made of faces and each cell is sealed off from its neighbours [59].

(a) Open-celled foam [60] (b) Closed-celled foam [61]

Figure 2.1: The scanning electron microscope image of the foams.

15
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As a complex structural material, porous materials need various parameters to describe

their properties. Some important parameters specific to the acoustics of porous media in

addition to well known elasticity parameters such as Young’s modulus, Poisson’s ratio,

loss factor etc. will be discussed next.

2.1.1 Porosity

The porosity φ is the ratio of the air volume Va to the total volume of the porous material

VT defined as [62]

φ = Va/VT . (2.1)

If Vb represents the volume of the frame, the relation between the three volumes is

Va + Vb = VT . (2.2)

In the air volume Va, only the volume not restrained in the frame is considered, and

therefore the closed pores in the frame are associated with the volume of the frame Vb.

The value of porosity ranges between 0 and 1. For absorbing materials, e.g. fibrous

materials and polymer foams, it lies in the range 0.95 to 0.99.

The porosity can be measured by using the methods proposed by Champoux et al. [63].

The idea is based on the Boyle’s law. As shown in Figure 2.2, the porous material is

placed into a sealed chamber. The residual volume in the chamber is denoted by V0.

Initially, the pressure in the chamber is P0. The piston produces the changes in the

pressure and the volume in the chamber ∆P and ∆V , respectively. According to the

Boyle’s law, the product of the pressure and volume is constant so that

P0(Va + V0) = (P0 + ∆P )(Va + V0 + ∆V ). (2.3)

The air volume Va of the porous material is deduced from Eq. (2.3) as

Va = −
(
P0 + ∆P

∆P
∆V + V0

)
. (2.4)
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Figure 2.2: The principle of operation of an idealized system for measuring porosit [63].

The porosity can now be obtained by substituting Eq. (2.4) into Eq. (2.1).

2.1.2 Flow resistivity

Flow resistivity indicating the absorptive ability of a material can be obtained by eval-

uating the ratio of the static pressure drop ∆P to the normal flow velocity through the

material. Flow resistivity σ is given by [62]

σ = ∆P/V h, (2.5)

where the quantities V and h denote the mean flow of air per unit area of material and

the thickness of the material, respectively. The unit of flow resistance is N · s/m4 or

Rayls/m. The flow resistivity of fibreglass and open-celled foams generally lies between

1000 and 100000 N · s/m4 [62]. The technique of the measurement is presented in the

book written by Bies and Hansen [58].

2.1.3 Tortuosity

Tortuosity, α∞, sometimes called geometrical structure factor, is the indicator of the

non-straightness of the pores inside the porous material. If the pores are straight and

uniform, the tortuosity will equal unity; it increases as the pores become more tortuous.
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As shown schematically in Figure 2.3 shown, a porous material has cylindrical pores

with radius R at an angle of ϕ with respect to the normal to the surface. The porosity

in a porous material with n pores per unit area of surface is given by [62]

φ =
nπR2

cosϕ
. (2.6)

Figure 2.3: A porous material with cylindrical pores at an angle of ϕ with respect to
the normal of the surface [62].

In the x direction, the flow resistivity σ is given by

σ =
8η

nπR2 cosϕ
, (2.7)

where η is the shear viscosity. Considering the expression of porosity in Eq. (2.6), the

flow resistivity σ can be rewritten as

σ =
8η

φR2 cos2 ϕ
. (2.8)

The parameter s, describes the changes in the viscosity, is given by [13, 62]

s =

(
8ωρ0

σφ cos2 ϕ

)2

, (2.9)

where ω is circular frequency and ρ0 is the fluid density in the porous material. Here,

the quantity 1/ cos2 ϕ is defined as the tortuosity of the material. If the porous material

is not conductive, we can measure the tortuosity by saturating the material with an

electrically conducting fluid and measuring the electrical resistivity of the saturated

sample, Rs, and comparing with the resistivity of the fluid itself, Rf . The tortuosity

can then be obtained as [13, 62]
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α∞ = φ
Rs
Rf

. (2.10)

2.1.4 Characteristic lengths

Characteristic lengths include the characteristic viscous length Λ and the characteristic

thermal length Λ′. The former, the viscous characteristic length, describes the effects of

viscosity at high frequencies. Johnson et al. [62, 64] defined the viscous length Λ as

Λ = 2

∫
V v

2
i (r)dV∫

A v
2
i (rw)dA

, (2.11)

where vi(rw) is the velocity of the fluid on the pore surface, and the vi(r) is the velocity

inside the pores. A represents the surface area of the pores; V denotes the volume of

the pores. The parameter Λ given by Eq. (2.11) only depends on the geometry of the

frame [62].

The thermal characteristic length describes the effects of thermal dissipation at high

frequencies. The value of the characteristic thermal length is twice the ratio of volume

to surface area, 2V/A, in the pores. If the cylindrical pores are identical in the material,

the two characteristic lengths will be equal to each other [62].

2.2 Empirical model

Delany and Bazley [65] developed a simple empirical model of the acoustic impedance

of porous material based on its flow resistivity. They gave the expressions of the charac-

teristic impedance Zc and the complex wavenumber kc for a large range of frequencies

in many fibrous materials with porosity from 0.95 to 0.99. The empirical expressions

which fit to experimental measurements are given by [62]

Zc = ρ0c0(1 + 0.0571χ−0.754 − j0.087χ−0.732) (2.12)

kc =
ω

c0
(1 + 0.0978χ−0.7 − j0.189χ−0.595), (2.13)
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where the non-dimensional parameter χ is defined as

χ =
ρ0f

σ
, (2.14)

where ρ0 and c0 are the density and sound speed of fluid in the absence of the porous

material. Delany and Bazley suggested that the two expressions are valid over the range

0.01 < χ < 0.1. Bies and Hansen [58] provided a formulation to extend both the low

and high frequency ranges for any value of χ. The impedance Zc and the complex

wavenumber kc were given as

Zc = ρ0c0(1 + C1χ
−C2 − jC3χ

−C4) (2.15)

kc =
ω

c0
(1 + C5χ

−C6 − jC7χ
−C8). (2.16)

The values of the constants C1-C8 were listed by Bies and Hansen [58] for various

materials.

Porous material come in many forms, so it is not expected that a single expressions will

provide an accurate prediction of acoustic behaviour of all the porous material. Bies and

Hansen [66] showed that for fibrous materials, the flow resistivity adequate to describe

impedance, but the flow resistivity was in turn a linear function of bulk density. However,

empirical models do not fully describe the dynamics of the materials, so the accuracy

of any detailed design or optimization of the absorption and transmission properties of

the materials is limited.

2.3 Wave propagation models within porous material with

rigid frame

In 1868, Kirchhoff proposed a theory of sound propagation in cylindrical tubes including

the effects of the viscosity and thermal conductivity of the air. However, if the cross

section is non-circular, the fundamental equations used by Kirchhoff are very difficult to

solve [62]. Zwikker and Kosten [67] used this theory only in a narrow frequency range and
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a narrow radius range. Therefore, viscous and thermal effects can be treated separately

using a complex mass density and a complex bulk modulus (in some references known

as ‘compressibility modulus’) properties denoted as ρeq and Keq respectively. The wave

propagation equation for the compressive waves in the porous material is given by [62]

∇2p+ ω2 ρeq
Keq

p = 0, (2.17)

where p is the pressure in the porous material. The complex mass density ρeq = ρ/φ

and the complex bulk modulus Keq = K/φ are functions of frequency and of the pore

shape. The goal of the rigid frame model is to define the two parameters, ρeq and Keq,

in Eq. (2.17). These models are known as equivalent fluid models.

2.3.1 Analytical models

For porous materials that have the simple structures, e.g. parallel cylindrical pores with

a regular cross-section (circle, square, equilateral triangle, rectangular slit), analytical

expression of ρ and K can be obtained. Two analytical models are presented next.

If the pore in the material is cylindrical with a circular cross-section of radius R and

normal to the surface of the material, then the expressions of the ρ and K respectively

is given by [62, 67]

ρ = ρ0

{
1− (2/s

√
−i)Tc[s

√
−i]
}−1

(2.18)

K = γP0

{
1 + (γ − 1)(2/N

1/2
Pr s
√
−i)Tc[N1/2

Pr s
√
−i]
}−1

, (2.19)

where P0 is the ambient mean pressure, γ is the ratio of specific heats, i =
√
−1,

NPr is the Prandtl number of fluid medium and s = (8ωρ0/φσ)1/2. Tc[s
√
−i] =

J1[s
√
−i]/J0[s

√
−i], where J0 and J1 are Bessel functions of first kind of zero and first

order, respectively.

If the cross-section of the cylindrical pores is of a slit shape with width 2a, then ρ and

K take the following form
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ρ = ρ0

{
1− (1/s′

√
i) tanh(s′

√
i)
}−1

(2.20)

K = γP0

{
1 + (γ − 1)

tanh(N
1/2
Pr s

′√i)
N

1/2
Pr s

′
√
i

}−1
. (2.21)

Here s′ in Eqs. (2.20) and (2.21) equals (3ωρ0/φσ)1/2.

2.3.2 Semi-phenomenological models

As shown in Figure 2.1, the microstructure of the porous material is very complex. The

models based on idealised geometry, e.g. cylindrical pores with regular cross-section

mentioned above, is often inadequate to give accurate prediction of the sound propaga-

tion in the porous material. It is impossible to consider all the geometrical information

of the microstructure in an analytical study of sound propagation in porous material.

Therefore, the models that study sound propagation through porous material are mostly

phenomenological and provide a continuum description of the material representing ef-

fective properties [62].

Johnson-Champoux-Allard model

Johnson et al. [64] derived the dynamic tortuosity α(ω) of a rigid isotropic porous

medium saturated with a Newtonian fluid by using the viscous characteristic length Λ.

The effective density based on this dynamic tortuosity is given by [62, 64]

ρ = ρ0α(ω) = ρ0α∞

[
1 +

σφ

jωρ0α∞

√
1 + j

4α2
∞ηρ0ω

σ2Λ2φ2

]
. (2.22)

Champoux and Allard [68] involved the thermal characteristic length and obtained the

effective bulk modulus by using the dynamic tortuosity α′(ω). The expression of K is

[62]

K = P0/

(
1− γ − 1

γα′(ω)

)

= γP0

γ − (γ − 1)

[
1 +

σφ

jNPrωρ0α∞

√
1 +

4α2
∞ηρ0ωNPr

σ2Λ′2φ2

]−1
−1

. (2.23)
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Champoux and Allard [68] pointed out that this model did not describe the exact be-

haviour of the dynamic tortuosity as ω tends to zero. The real part of the dynamic

tortuosity is not correct at low frequencies.

Pride and Lafarge model

Considering the limitations of the model of Johnson et al. [64], Pride et al. [69] modified

the dynamic tortuosity with a parameter b as [62]

α(ω) =
νφ

jωq0

1− b+ b

[
1 +

(
2α∞q0
bφΛ

)2 jω

ν

]1/2+ α∞ (2.24)

where ν = η/ρ0 = NPrν
′. q0 = η/σ is the static viscous permeability. The parameter b

is expressed in terms of α0, which is the limit of αω when ω is reduced towards 0, as

b =
2q0α

2
∞

φΛ2(α0 − α∞)
. (2.25)

Similarly, Lafarge et al. [70] derived the dynamic tortuosity to express the dynamic

thermal permeability. The resulting expression is given by [62]

α′(ω) =
ν ′φ

jωq′0

1− b′ + b′

[
1 +

(
2q′0
b′φΛ′

)2 jω

ν ′

]1/2+ 1. (2.26)

If a porous medium with circular cylindrical pores having a radius R = Λ′, the thermal

static permeability q′0 = φΛ′2/8, then the effective density and the bulk modulus are

obtained as

ρ = ρ0α(ω) (2.27)

K = P0/

(
1− γ − 1

γα′(ω)

)
. (2.28)

2.4 Biot’s model

If the porous material is used as a lining between two elastic walls, the frames in the

porous material will vibrate upon external excitation. The rigid frame models mentioned
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above are not valid for such a case. In his seminal paper, Biot [29] took a fresh approach

to build constitutive model for wave propagation in fluid-saturated poroelastic material.

This model is derived based on the following assumptions [71]:

(a). The medium is statistically isotropic, quasi-homogeneous and that the porosity is

uniform throughout;

(b). The wavelength of interest is very much larger than the pore size;

(c). Scattering, in the sense of diffraction around individual grains or particles can be

ignored;

(d). Pore walls are impervious and the pore size is concentrated around an average

value.

The wave propagation equations for the porous material with dissipation effect as pro-

posed by Biot [29] are given by the following pair of coupled partial differential equations

N∇2u + grad[(A+N)e+Qε] =
∂2

∂t2
(ρ11u + ρ12U) + b

∂

∂t
(u−U) (2.29)

grad[Qe+Rε] =
∂2

∂t2
(ρ12u + ρ22U)− b ∂

∂t
(u−U). (2.30)

In Eqs.(2.29) and (2.30), e = ∇ ·u = ex + ey + ez which is the volumetric strain of solid

phase and u = (ux, uy, uz) is the displacement vector of solid phase; ε = ∇ ·U is the

fluid volumetric strain and U = (Ux, Uy, Uz) is the displacement vector of fluid phase;

N = Es/[2(1+ν)] is the shear modulus of the solid, and A = νEs/[(1+ν)(1−2ν)] is the

Lame’s constant (Es is the Young’s modulus of the solid and ν is the Poisson’s ratio);

the coefficient Q equals (1 − φ)Ef which represents the coupling between the volume

change of the solid and that of the fluid; the coefficient R equals φEf measuring the

pressure on the fluid to keep the total volume constant. φ is the porosity of the porous

media. Ef is the bulk modulus of elasticity of the fluid in the pores. ρ11 = ρ1 +ρa is the

total effective mass of the solid and ρ22 = ρ2 + ρa is the total effective mass of the fluid

where ρ12 = −ρa is a coupling coefficient (ρ1 = (1−φ)ρs is the solid mass of unit volume

of porous material, and ρ2 = φρf is the fluid mass of unit volume of porous material

where ρs and ρf are the densities for the solid and fluid, respectively); the coefficient b

equals µφ2/k where µ is the fluid viscosity and k is Darcy’s coefficient of permeability.
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It should be noted that the parameter b here is not the same as that in Eq. (2.24) of

the rigid frame model mentioned previously. The relevant solid stress components σij

and fluid pressure s are

σij = 2Neij + (Ae+Qε)δij (i, j = 1, 2, 3)

s = Qe+Rε, (2.31)

where δij is the Kronecker delta.

Applying the divergence operation to Eqs.(2.29) and (2.30), we obtain

∇2(Pe+Qε) =
∂2

∂t2
(ρ11e+ ρ12ε) + b

∂

∂t
(e− ε) (2.32)

∇2(Qe+Rε) =
∂2

∂t2
(ρ12e+ ρ22ε)− b

∂

∂t
(e− ε) (2.33)

with the definition P = A + 2N . These two equations govern the propagation of two

dilatational waves: a fast wave and a slow wave. Generally, the two compression waves

are classified as a frame-borne wave and an airborne wave. The airborne wave mainly

propagates in the air of the pore space, while the frame borne wave propagates in both

of the frame and air of the pores [62].

Similarly, applying the curl operation to Eqs.(2.29) and (2.30), we obtain

∂2

∂t2
(ρ11ω + ρ12Ω) + b

∂

∂t
(ω −Ω) = N∇2ω (2.34)

∂2

∂t2
(ρ12ω + ρ22Ω)− b ∂

∂t
(ω −Ω) = 0 (2.35)

where ω = ∇ × u and Ω = ∇ × U. These equations govern the propagation of pure

rotational waves. It is obvious that the rotation of the solid and the rotation of fluid are

coupled. The shear wave, another kind of frame borne wave, is very similar to the shear

wave propagating in the frame when in vacuum [62].

Atalla et al. [72] rewrote the Biot’s equations Eqs.(2.29) and (2.30) as the mixed dis-

placement pressure formulations. The fluid phase equation is given by
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∇2p+
ρ∗22
R
ω2p+

ρ∗22
φ2
γ∗ω2e = 0 (2.36)

where the equivalent density is given by ρ∗22 = ρ22 + b/iω. The coefficient γ∗ =

φ(ρ∗12/ρ
∗
22 − Q/R). If the frame is rigid, the displacements of the solid phase u and

the related volume strain e will equal zero. Therefore, the Eq. (2.36) can be deducted

as

∇2p+ ω2 ρ
∗
22

R
p = 0. (2.37)

Comparing the above with the Eq. (2.17), the equivalent density ρeq = ρ∗22/φ, and

equivalent bulk modulus Keq = R/φ, it can be calculated that the rigid frame model

is the special case of the Biot’s model without considering the wave propagation in the

solid phase.

2.5 Summary

The empirical model, the rigid frame model and the Biot’s model of sound wave propa-

gation in porous material were presented in this chapter. The empirical model estimates

the impedance and the complex wave number of the porous material in view of the

experimental measurements. It is still widely used due to its simplicity. Only the flow

resistance σ is needed to describe the acoustic behaviour of the porous material. The

empirical model gives a good prediction in the broad band trend, but it still cannot

predict the resonant behaviour of foam layers [73]. The rigid frame model gives reason-

able description of sound wave propagation in the material when its frame is motionless.

This model only can be used at the frequencies which are higher than the decoupling

frequency, Fd = σ × φ2/(2πρ1), because the interaction between the solid and the fluid

phase is very weak in this frequency range. There also exists another restriction that, if

the porous material is directly bonded to a vibrating structure, the rigid frame model

cannot be used [62]. It is now generally accepted that Biot’s description of the dynamics

of poroelastic material is perhaps the most accurate model available. Since fewer as-

sumptions are required, it yields accurate solutions to predict the acoustic and structural

response of poroelastic material. As a result of this, Biot’s model has been applied in
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many diverse fields including acoustics [74, 75], geo-mechanics [76, 77] and bio-dynamics

[78, 79]. However, Biot’s model (poroelastic model) not only makes use of the parame-

ters used in the rigid frame models (porosity, tortuosity, air flow resistivity, thermal and

viscous characteristic lengths), but also includes the parameters of the skeleton in the

porous material (Young’s modulus, Poisson’s ration, shear modulus and damping) [13].

Therefore, the implementation of Biot’s model is far more complicated than the other

models (empirical model and rigid frame model).
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Sound transmission through flat

double-walled panel

A fuselage consists in an assembly of stiffened panels, often made of aluminium alloys,

and the interior trim panels. An air gap is formed between the two panels. The shape

of the fuselage is one of a shell. A simple abstraction to study the transmission of sound

through double-walled panels is one of flat infinite geometry. This chapter focuses on a

simplified geometry of flat double-walled panel lined with porous material, to understand

the effect of external flow on the sandwich structure. The curvature effects of the fuselage

will be considered in Chapter 4. A bi-objective optimization of a double-walled panel

is also carried out for simultaneously minimizing weight while maximizing the acoustic

transmission loss.

3.1 Description of the system

The model considered consists of two infinite parallel plates that are homogeneous and

lined with poroelastic material as shown in Figure 3.1. A plane pressure wave transmits

through the system from the external mean flow side into the interior (having a stationary

fluid medium). The flow is assumed to align with the x-axis and has a constant velocity

V . This, of course, is a simplification because the velocity profile will have a significant

gradient in the boundary layer. However, we ignore this higher order effect to sound

propagation in the present work. Disregarding the boundary layer effect is common in

29
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many simple theories of sound transmission [32, 33, 42, 43]. The angle between the

incident pressure wave and the x − y plane is ϕ1 and the projection of the normal to

the incident and reflected wavefront, in the x − y plane, makes an angle θ with x-axis.

Similarly, the angles in the transmitted region are ϕt and θ, respectively. The fluid

medium on the incident side and the transmitted side have the density and the speed of

sound given by (ρi, ci) and (ρt, ct), respectively.

Figure 3.1: A sketch of the sound wave transmission through the double-panel system.
The porous material lining is not shown here.

In the region of the external flow, the pressure can be written as harmonic function of

space and time using the complex exponential notation as

p1 = pi + pr = Pie
iωt−i(k1xx+k1yy+k1zz) + Pre

iωt−i(k1xx+k1yy−k1zz), (3.1)

where pi is the incident pressure, pr is the reflected pressure (Pi and Pr are the ampli-

tudes), ω is the circular frequency and i =
√
−1. The wave number components are

k1x = k1 cosϕ1 cos θ, k1y = k1 cosϕ1 sin θ and k21z = k21 − (k21x + k21y), where k1 is the

wave number in the exterior which accounts for the mean flow in the region—this can

be related to the mean flow Mach number and the parameters of the problem. Pressure

p1 satisfies the wave equation which includes the convection term V · ∇ and is given by

D2p1
Dt2

=

(
∂

∂t
+ V · ∇

)2

p1 = c2i∇2p1 (3.2)
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where V = V~i is the external flow velocity vector in the x-direction. Therefore Eq. (3.2)

can be simplified further as

(
∂

∂t
+ V

∂

∂x

)2

p1 = c2i∇2p1. (3.3)

Substituting Eq. (3.1) into Eq. (3.3), we obtain

k1 = ω(ci + V cos θ cosϕ1)
−1 = k∗1(1 +M cos θ cosϕ1)

−1 (3.4)

where k∗1 = ω/ci is the wave number in the stationary medium and M = V/ci is the

Mach number of the external flow.

The speed of the trace wave, which is the structural wave propagating parallel to the

plane of the plate, in the plate is represented by cp, so that the trace wave number

is given by kp = ω/cp = 2π/λp, where λp is the wavelength of the panel trace wave.

The transverse displacements of the two plates induced by the incident sound can be

expressed as a travelling wave in the form

w1 = W1e
iωt−i(k1pcosθ)x−i(k1psinθ)y (3.5)

w2 = W2e
iωt−i(k2pcosθ)x−i(k2psinθ)y (3.6)

where W1 and W2 are the corresponding amplitudes.

Similarly, the transmitted pressure can be expressed as

pt = Pte
iωt−i(ktxx+ktyy+ktzz), (3.7)

where Pt is the amplitude of transmitted wave pressure. The wave number components

are ktx = ktcosϕtcosθ, kty = ktcosϕtsinθ and k2tz = k2t − (k2tx + k2ty), respectively. Here,

the transmitted wave number kt equals ω/ct.
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3.2 Wave propagation in porous material

In Chapter 2, three kinds of models for sound propagation in the porous materials were

discussed. Due to the greater accuracy of Biot’s model than that of the other two, Biot’s

model will be used here. The governing equations for the two dilatational waves and the

rotational wave in the porous material are given by

∇2(Pe+Qε) = −ω2(ρ∗11e+ ρ∗12ε), ∇2(Qe+Rε) = −ω2(ρ∗12e+ ρ∗22ε), and (3.8)

− ω2(ρ∗11e+ ρ∗12ε) = N∇2ω, −ω2(ρ∗12ω + ρ∗22Ω) = 0 (3.9)

respectively, where e = ∇ · u = ex + ey + ez is the volumetric strain of the solid phase

and u = (ux, uy, uz) is the displacement vector of the solid phase; ω = ∇ × u is the

rotational strain within the solid phase. ε = ∇ · U is the fluid volumetric strain and

U = (Ux, Uy, Uz) is the displacement vector of the fluid phase; Ω = ∇ × U is the

rotational strain of the fluid phase. By eliminating ε from the two equations within

(3.8), we obtain

∇4e+AI∇2e+AIIe = 0 (3.10)

where AI = ω2(ρ∗11R−2ρ∗12eQ+ρ∗22P )/(PR−Q2) and AII = ω4(ρ∗11ρ
∗
22− (ρ∗12)

2)/(PR−

Q2). P equals A + 2N with N = Es/[2(1 + ν)] is the shear modulus of the solid, and

A = νEs/[(1 + ν)(1 − 2ν)] is the Lame’s constant (Es is the Young’s modulus of the

solid and ν is the Poisson’s ratio). In order to consider the internal frictional losses, the

in vacuo Young’s modulus of solid Es is represented by Em(1 + iη), where Em is the

static Young’s modulus and η is the loss factor [80]. The coefficient Q equals (1− φ)Ef

representing the coupling between the volume change of the solid and that of the fluid,

and the coefficient R equals φEf measuring the pressure on the fluid to keep the total

volume constant. φ is the porosity of the porous medium. Ef is the bulk modulus of

elasticity of the fluid in the pores. If the pores are cylindrical, Ef can be expressed as

[28, 71]

Ef = E0

{
1 + [2(γ − 1)/N

1/2
Pr λc

√
−i]Tc[N1/2

Pr λc
√
−i]
}−1

(3.11)
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where E0 = ρfc
2, Tc[N

1/2
Pr λc

√
−i] = J1[N

1/2
Pr λc

√
−i]/J0Tc[N1/2

Pr λc
√
−i], γ is the ratio of

specific heats, NPr is the Prandtl number of fluid medium, λ2c = 8ωρfα∞/φσ (α∞ is the

tortuosity and σ is the steady-state, macroscopic flow resistivity), J0 and J1 are Bessel

functions of first kind of zero and first order, respectively.

The equivalent density ρ∗11 = ρ11 + b/iω, ρ∗12 = ρ12 − b/iω and ρ∗22 = ρ22 + b/iω;

ρ11 = ρ1 + ρa is the total effective density of the solid and ρ22 = ρ2 + ρa is the total

effective density of the fluid where ρ12 = −ρa = ρ2(1 − α∞) is a coupling coefficient.

Further, ρ1 = (1 − φ)ρs is the apparent solid mass of unit volume of porous material,

and ρ2 = φρf is the fluid mass of unit volume of porous material where ρs and ρf is

the densities for the solid and fluid phases, respectively; the coefficient b is a viscous

coupling factor defined as

b = iωα∞ρ2

(
ρ∗c
ρf
− 1

)
(3.12)

where ρ∗c = ρf
{

1− (2/λc
√
−i)Tc[λc

√
−i]
}−1

.

A solution of Eq. (3.10) can be expressed as

e = eiωt−i(kxx+kyy)(C1e
−ikIzz + C2e

ikIzz + C3e
−ikIIzz + C4e

ikIIzz) (3.13)

where C1 through to C4 are complex amplitudes. Substituting Eq. (3.13) for e into Eq.

(3.8) results in the solution for ε as

ε = eiωt−i(kxx+kyy)(b1C1e
−ikIzz + b1C2e

ikIzz + b2C3e
−ikIIzz + b2C4e

ikIIzz) (3.14)

where k2I,IIz = k2I,II−(k2x+k2y), k
2
I,II = (AI±

√
A2

I − 4AII)/2, b1 = a1−a2k2I , b2 = a1−a2k2II,

a1 = (ρ∗11R−ρ∗12Q)/(ρ∗22Q−ρ∗12R), a2 = (PR−Q2)/[ω2(ρ∗22Q−ρ∗12R)]. The wave related

to the complex wave number kI is referred to as the airborne wave, while the wave related

to kII is referred to as the frame wave.

Similarly, by eliminating Ω from the two equations in Eq. (3.9), we obtain

∇2ω + k2rω = 0 (3.15)
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where k2r = (ω2/N)[ρ∗11 − (ρ∗12)
2/ρ∗22]. Note that Eq. (3.15) is a vector equation having

three components. ω̄ is the scalar amplitude of the rotational wave. This rotational wave

in the porous medium cannot have any component in the z-direction, and, therefore, it

can be expressed as

ω = ωx~i+ ωy~j + ωz~k = ω̄ sin θ~i− ω̄ cos θ~j + 0~k. (3.16)

A solution of Eq. (3.15) is

ω̄ = eiωt−i(kxx+kyy)(C5e
−ikrzz + C6e

ikrzz), (3.17)

where k2rz = k2r − (k2x + k2y). One can obtain the rotational strain of fluid phase similarly

from Eq. (3.9) as

Ω = geiωt−i(kxx+kyy)(C5e
−ikrzz + C6e

ikrzz), (3.18)

where g = −ρ∗11/ρ∗22. The components of the vector wave Ω can be expressed similar to

those in Eq. (3.16) as

Ω = Ωx
~i+ Ωy

~j + Ωz
~k = Ω sin θ~i− Ω cos θ~j + 0~k. (3.19)

The displacement vector u in the solid phase and U in the fluid must contain all the

components of displacements in the expressions for the two dilatational waves and the

rotational wave. Hence the vector u can be rewritten as

u = ux~i+ uy~j + uz~k = (udx + urx)~i+ (udy + ury)~j + (udz + urz)~k

= (udx~i+ udy~j + udz~k) + (urx~i+ ury~j + urz~k) = ud + ur (3.20)

where udx, udy and udz represent the displacements caused by dilatational waves, and

urx, ury and urz represent the displacements caused by rotational waves. The three

directional components of u can be assumed as the following spatial harmonics
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ux = eiωt−i(kxx+kyy)
(
D1e

−ikIzz +D2e
ikIzz +D3e

−ikIIzz +D4e
ikIIzz

+D5e
−ikrzz +D6e

ikrzz
)

(3.21)

uy = eiωt−i(kxx+kyy)
(
D7e

−ikIzz +D8e
ikIzz +D9e

−ikIIzz +D10e
ikIIzz)

+D11e
−ikrzz +D12e

ikrzz
)

(3.22)

uz = eiωt−i(kxx+kyy)
(
D13e

−ikIzz +D14e
ikIzz +D15e

−ikIIzz +D16e
ikIIzz)

+D17e
−ikrzz +D18e

ikrzz
)

(3.23)

where D1 through to D18 are complex amplitudes.

The rotational component of the displacement field does not contribute to the diver-

gence. The divergence of a displacement field then equals the volumetric strain. Sim-

ilarly, the curl of the displacement gives the rotational strain, because the irrotational

component does not contribute to the curl. Therefore, the following relations hold for

the displacements in the solid

∇·u = ∇·ud = e, ∇·ur = 0, ∇× u = ∇× ur = ω, ∇× ud = 0. (3.24)

Finally, the displacement components of the solid are given by

ux = ikxe
iωt−i(kxx+kyy)

[(
C1

k2I
e−ikIzz +

C2

k2I
eikIzz +

C3

k2II
e−ikIIzz

+
C4

k2II
eikIIzz

)
− ikrz

k2r
cos θ(C5e

−ikrzz − C6e
ikrzz)

]
(3.25)

uy = ikye
iωt−i(kxx+kyy)

[(
C1

k2I
e−ikIzz +

C2

k2I
eikIzz +

C3

k2II
e−ikIIzz

+
C4

k2II
eikIIzz

)
− ikykrz

kxk2r
cos θ(C5e

−ikrzz − C6e
ikrzz)

]
(3.26)

uz = ieiωt−i(kxx+kyy)
[(

kIz
k2I
C1e

−ikIzz − kIz
k2I
C2e

ikIzz +
kIIz
k2II

C3e
−ikIIzz

−kIIz
k2II

C4e
ikIIzz

)
+ i

k2x + k2y
kxk2r

cos θ(C5e
−ikrzz + C6e

ikrzz)

]
(3.27)
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where all the complex amplitudes D1 through to D18 are expressed by the wave number,

incident angle θ and coefficients C1 through to C6.

Similarly, for the fluid phase,

∇·U = ∇·Ud = ε, ∇·Ur = 0, ∇×U = ∇×Ur = Ω, ∇×Ud = 0 (3.28)

and, therefore, the fluid displacement components can be expressed as

Ux = ikxe
iωt−i(kxx+kyy)

[(
b1
C1

k2I
e−ikIzz + b1

C2

k2I
eikIzz + b2

C3

k2II
e−ikIIzz

+b2
C4

k2II
eikIIzz

)
− ig krz

k2r
cos θ(C5e

−ikrzz − C6e
ikrzz)

]
(3.29)

Uy = ikye
iωt−i(kxx+kyy)

[(
b1
C1

k2I
e−ikIzz + b1

C2

k2I
eikIzz + b2

C3

k2II
e−ikIIzz

+b2
C4

k2II
eikIIzz

)
− ig kykrz

kxk2r
cos θ(C5e

−ikrzz − C6e
ikrzz)

]
(3.30)

Uz = ieiωt−i(kxx+kyy)
[(
b1
kIz
k2I
C1e

−ikIzz − b1
kIz
k2I
C2e

ikIzz + b2
kIIz
k2II

C3e
−ikIIzz

−b2
kIIz
k2II

C4e
ikIIzz

)
+ ig

k2x + k2y
kxk2r

cos θ(C5e
−ikrzz + C6e

ikrzz)

]
. (3.31)

The relevant stresses σij in the solid and the fluid pressure σf are given by [29]

σij = 2Neij + (Ae+Qε)δij (i, j = 1, 2, 3)

σf = Qe+Rε (3.32)

where δij is the Kronecker delta. The stress components σz, τxy, τxz and τyz in solid

phase and the fluid pressure σf can be obtained by using Eqs. (3.25)-(3.27) and Eqs.

(3.29)-(3.31) and the relationship of the displacements and the strains as
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σz = eiωt−i(kxx+kyy)
[(

2N
k2Iz
k2I

+A+ b1Q

)
C1e

−ikIzz

+

(
2N

k2Iz
k2I

+A+ b1Q

)
C2e

ikIzz +

(
2N

k2IIz
k2II

+A+ b2Q

)
C3e

−ikIIzz

+

(
2N

k2IIz
k2II

+A+ b2Q

)
C4e

ikIIzz

+2N
(k2x + k2y)krz

kxk2r
cos θ(C5e

−ikrzz − C6e
ikrzz)

]
(3.33)

τxy = Neiωt−i(kxx+kyy)
[
2kxky

(
C1

k2I
e−ikIzz +

C2

k2I
eikIzz +

C3

k2II
e−ikIIzz

+
C4

k2II
eikIIzz

)
− kykrz

k2r
cos θ(C5e

−ikrzz − C6e
ikrzz)

]
(3.34)

τxz = Neiωt−i(kxx+kyy)
[

2kxkIz
k2I

(C1e
−ikIzz − C2e

ikIzz)

+
2kxkIIz
k2II

(C3e
−ikIIzz − C4e

ikIIzz)

+
k2x + k2y − k2rz

k2r
cos θ(C5e

−ikrzz + C6e
ikrzz)

]
(3.35)

τyz = Neiωt−i(kxx+kyy)
[

2kykIz
k2I

(C1e
−ikIzz − C2e

ikIzz)

+
2kykIIz
k2II

(C3e
−ikIIzz − C4e

ikIIzz)

+
ky(k

2
x + k2y − k2rz)
kxk2r

cos θ(C5e
−ikrzz + C6e

ikrzz)

]
(3.36)

σf = eiωt−i(kxx+kyy)[(Q+ b1R)C1e
−ikIzz + (Q+ b1R)C2e

ikIzz

+(Q+ b2R)C3e
−ikIIzz + (Q+ b2R)C4e

ikIIzz]. (3.37)
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(a) BB (b) BU (c) UU

Figure 3.2: Through the thickness view of the sound wave transmission for different
skin-plate configurations.

Here σz is the normal stress of the porous material’s solid phase along the z-axis, τxy,

τxz and τyz are the shear stresses acting on the solid phase. σf is the pressure acting on

the fluid element.

3.3 Three configurations and the associated boundary con-

ditions

Three configurations of the skin-plates, the porous material and the air gap (when

applicable) are to be considered as shown schematically in Figure 3.2. We consider them

because they have been frequently studied by other researchers in the past [28, 51, 81–

83]. They are described, in turn, next. A bonded-bonded (BB) configuration, as shown

in Figure 3.2a, is the one having both sides of porous material bonded directly to the two

elastic panels. A bonded-unbonded (BU) configuration has one side of porous material

bonded directly to an elastic panel and the second side is separated from the second

elastic plate by an air gap (see Figure 3.2b). An unbonded-unbonded (UU) configuration

has both sides of porous material unbonded to the two elastic plates (Figure 3.2c).

We will present a comparative study of the vibro-acoustic performance of the three

configurations in the present work.

At the free surface of a porous layer (that is exposed to a stationary medium and not

bonded directly to a plate as in BU and UU configurations), the five boundary conditions

that should be satisfied are

(i). −φp = σf
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(ii). −(1− φ)p = σz

(iii). (1− φ)D
2uz
Dt2

+ φD
2Uz
Dt2

= −1
ρ
∂p
∂z

(iv). τxz = 0

(v). τyz = 0

where p is the pressure in the exterior acoustic field at the interface and ρ is the density

of the exterior fluid. The first two conditions represent the relationship of the acoustical

pressure acting on the fluid phase and the solid phase, respectively. The third condi-

tion represents the relation of the normal displacement in the porous material and the

acoustical pressure. The last two conditions assert that there is no shear force acting on

the interface due to the assumption of an inviscid exterior fluid.

When the porous material is bonded directly to an elastic panel, the following seven

boundary conditions must be satisfied

(i). D2w
Dt2

= −1
ρ
∂p
∂z

(ii). uz = w

(iii). Uz = w

(iv). ux = us(−/+)h2
∂w
∂x

(v). uy = vs(−/+)h2
∂w
∂y

(vi). (+/−)τxz =
[
Ds

(
k2x + 1−ν

2 k2y
)
− ω2ms

]
us +Ds

1+ν
2 kxkyvs

(vii). (+/−)p+ (−/+)qp − i
(
kx

h
2 τxz + ky

h
2 τyz

)
= [D(k2x + k2y)

2 − ω2ms]w

where the panel transverse displacement w equals Weiωt−i(kxx+kyy) and the mid-plane

and the in-plane panel displacements are us and vs along the x-axis and the y-axis,

respectively. D is the bending stiffness per unit width, Ds is the membrane stiffness

per unit width. ms is the panel mass per unit area of the panels and qp = −σ − σf is

the normal force per unit area of the panel due to the interaction of the panel with the

elastic porous material. The first condition represents the relationship of the transverse

displacement of the plate and the acoustic pressure. The second and third conditions

give the requirement of continuity of displacements normal to the plate. Conditions (iv)
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and (v) state that the tangential displacements of solid phase of porous material are

equal to the in-plane surface displacements of the plate. The sixth condition represents

the in-plane vibration of plate under the excitation of a shear force. The last condition

is the Euler-Bernoulli transverse panel equation including the moment provided by the

shear forces acting in the plane of the panel. In boundary conditions (iv) to (vii), the

first signs are applicable when the porous material is attached to the positive z-facing

surface of the panel, and the second signs when the porous material is attached to the

negative z-facing surface.

When the porous material is not attached to the panel, the following boundary conditions

should be satisfied at the mid-surface of the plates:

(i). D2w
Dt2

= − 1
ρ1
∂p1
∂z

(ii). D2w
Dt2

= − 1
ρ2
∂p2
∂z

(iii). [D(k2x + k2y)
2 − ω2ms]w = p1 − p2

where p1 and p2 are the acoustic pressure in the air spaces on the two sides of the

panel, and ρ1 and ρ2 are the respective density of the fluids in one side and the other

side. Taking account of the three different configurations in Figure 3.2, the transmission

problem is formulated for each one of them, in turn, next.

(I) BB configuration: The panel in this configuration can be divided into three regions:

the incident region, the porous material region and the transmitted region (see Figure

3.2a). The incident region and the porous material region are separated by an isotropic

thin elastic plate. The same is true at the interface between the porous material region

and the transmitted region. The thickness of porous material is H. The boundary

conditions relevant to this configuration can be expressed in a matrix form and are

presented in Appendix A.

(II) BU Configuration: Figure 3.2b shows a double panel lined with porous material in

the BU configuration. It consists of an incident region, a porous material region, an

air gap and a transmitted region. The fluid medium in the air gap region has physical

properties (ρ2, c2). The thickness of this gap is l as shown. The wave in air gap region

makes angles ϕ2 and θ relative to the x-y plane and the x-axis, respectively.
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The wave pressure in air gap region is expressed as

p2 = p2i + p2r = P2ie
iωt−i(k2xx+k2yy+k2zz) + P2re

iωt−i(k2xx+k2yy−k2zz) (3.38)

where

k2x = k2 cosϕ2 cos θ, k2y = k2 cosϕ2 sin θ, k2z =
√
k22 − (k22x + k22y). (3.39)

Since, there is no flow in the air gap region, p2 propagates according to the classical

wave equation and

k2 = ω/c2. (3.40)

The boundary conditions for this configuration can again be expressed in a matrix form

and are presented in Appendix B.

(III) UU Configuration: UU configuration has two air gaps with the thickness l1 and l2,

respectively (see Figure 3.2c). The angles are ϕ2 and θ in air gap 1 and ϕ3 and θ in air

gap 2 respectively. The fluid in the two air regions have physical properties (ρ2, c2) and

(ρ3, c3), respectively.

The wave pressures in two air gaps can be written as a harmonic function in space and

time

p2 = p2i + p2r = P2ie
iωt−i(k2xx+k2yy+k2zz) + P2re

iωt−i(k2xx+k2yy−k2zz) (3.41)

p3 = p3i + p3r = P3ie
iωt−i(k3xx+k3yy+k3zz) + P3re

iωt−i(k3xx+k3yy−k3zz) (3.42)

where

k2x = k2 cosϕ2 cos θ, k2y = k2 cosϕ2 sin θ, k2z =
√
k22 − (k22x + k22y) (3.43)

k3x = k3 cosϕ3 cos θ, k3y = k3 cosϕ3 sin θ, k3z =
√
k23 − (k23x + k23y). (3.44)

Since, there is no flow in two air gaps, p2 and p3 propagate according to the classical

wave equation and

k2 = ω/c2, k3 = ω/c3. (3.45)
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The boundary conditions as expressed in the matrix form are presented in Appendix C.

3.4 Random incidence transmission loss (TL)

The trace wavelengths must match at the boundary (see the three Appendices) and,

therefore,

cosϕt =
ct
ci

cosϕ1

(1 +M cos θ cosϕ1)
. (3.46)

In the following, we consider two possible cases for the sign of M cos θ.

Case (1) In the equation above when M cos θ > 0, there exists a critical incident angle

ϕ1c for ϕtmax = 180◦. The ϕ1c can be obtained from Eq. (3.46),

cosϕ1c = − 1

(ct/ci) +M cos θ
(3.47)

It is obvious that ϕ1c > 90◦ because of the negative sign. For ϕ1 > ϕ1c, total reflection

occurs at the boundary. In that case, the wave number component ktz in the transmitted

side becomes purely imaginary leading to evanescent waves. Therefore, no sound energy

is transmitted into the interior for ϕ1 > ϕ1c.

Case(2) Similarly, when M cos θ < 0, the value of ϕ1c can be obtained from Eq. (3.46)

for ϕt = 0◦,

cosϕ1c =
1

(ct/ci)−M cos θ
(3.48)

For ϕ1 < ϕ1c, the wave number component ktz becomes purely imaginary and no sound

energy is transmitted. We need to consider these two cases in our calculations for the

average power transmission.

The power transmission coefficient τ is defined as

τ =
Itransmitted

Iincident
=
ρici
ρtct

∣∣∣∣PtPi
∣∣∣∣2 (3.49)
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The average of the power transmission coefficient < τ > can be expressed as [32]

< τ >=

∫ 2π
θ=0

∫ π
2
ϕ1=ϕm

τ sinϕ1 cosϕ1dϕ1dθ∫ 2π
θ=0

∫ π
2
ϕ1=ϕm

sinϕ1 cosϕ1dϕ1dθ
(3.50)

where ϕm is the limiting angle below which it is assumed that no sound is received.

In practice, the length of the panel is not infinite. Therefore, correct calculation of

the average power transmission coefficient requires careful consideration to this limiting

angle of incidence beyond which total reflection takes place. This choice is guided by

our motivation to compare results with those of Bolton’s [28] who studied a special case

theoretically and experimentally when M = 0. They were forced to adopt this limiting

value for calculations because of the limitations posed by experimental set up. Hence,

when M cos θ > 0, ϕm is taken as 18◦ (the same limiting value as in Bolton et al. [28]

for comparison); when M cos θ < 0, ϕm = ϕ1c.

To calculate the power transmission coefficient, the integration of Eq. (3.50) is carried

out numerically by the Simpson’s rule in the range of ϕ1 admissible by the restriction

imposed by total reflection. The random incidence transmission loss is defined as

TL = −10 log10< τ >. (3.51)

Before discussing the numerical results, some basic idea of the sound transmission loss

should be introduced first. Unlike fluids, solid materials can resist compressive stresses

as well as shear stresses. Therefore, both longitudinal waves (also known as compression

wave) and shear waves can propagate in solids. For longitudinal waves, the oscillations

of the particles occur in the direction of the wave propagation as shown in Figure 3.3a.

The contraction and expansion in the transverse directions of the plate is a result of the

Poisson effect. The sound speed of longitudinal wave in such a medium is given by

cL =

√
Ep

ρp(1− ν2p)
. (3.52)

By contrast, for the shear waves, the particle displacement is perpendicular (or trans-

verse) to the direction of wave propagation (see Figure 3.3b). Therefore, the shear wave
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Figure 3.3: Deformation patterns of various types of wave in straight bars and flat plates
[84]: (a) Longitudinal wave; (b) shear wave; (c) bending wave.

is also referred to a transverse wave in the literature. The speed of shear waves in the

plate is given by

cS =

√
Gp
ρp

(3.53)

where Gp is the shear modulus given by Gp = Ep/2(1 + νp), where Ep is the Young’s

modulus and νp is the Poisson’s ratio. Generally, since Gp is smaller than Ep, the speed

of the shear wave is lower than that of the longitudinal wave.

As shown in Figure 3.3c, the bending wave, or the flexural wave, propagates along the

plate axis. This type of wave motion is accompanied by the rotation of the cross-section

about the neutral axis for beams and the rotation of the line normal to the mid-plane

about an axis perpendicular to the propagation direction for plates. Sound radiation in

vibrating plates is caused principally by bending waves. This is because the transverse

deformation caused by bending waves can effectively disturb an adjacent fluid [84]. The

speed of bending wave in a thin plate is

cB =
4

√
Dω2

m
(3.54)

where D is the bending stiffness and m is the mass per unit area of the plate. Unlike the

speed of longitude wave or shear wave, the speed of bending wave is not only a function

of the properties of the plate, but also of the frequency of oscillation. Eq. (3.54)

indicates that the speed will increase with increasing the wave frequency. Therefore,
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a bending wave is dispersive. A critical frequency exists when the speed of bending

wave propagation is equal to the speed of acoustic wave propagation in the surrounding

medium. The value of the critical frequency can be obtained from Eq. (3.54) as

fc =
c2

2π

√
m

D
(3.55)

where c presents the speed of sound in air. If a plane wave is incident on a plate at

an angle of φ measured from the normal of the plate, then the coincidence frequency,

at which the bending wave length equals the trace wave length of the incident wave, is

given by [84]

fco =
fc

sin2 φ
. (3.56)

It is obvious that the critical frequency is lowest coincidence frequency with the angle

of incidence at 90◦.

As shown in Figure 3.4, the transmission loss of a bounded homogeneous, single panel

can be schematically divided into four general regions of interest: stiffness controlled,

resonance controlled, mass controlled, and coincidence controlled [85].

Figure 3.4: Characteristic transmission loss of a bounded, homogeneous, single panel
[85].

The transmission loss characteristics are controlled by the stiffness of the panel at fre-

quencies below the first fundamental natural frequency. In this region, the slope of the

transmission loss is -6 dB/Octave with the increase in frequency. Due to the finite size of

the panel, the structure has several natural frequencies. Therefore, the second region is
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controlled by the resonant structural modes. At frequencies between the first few natural

frequencies and the critical frequency, the transmission loss is mass controlled. In this re-

gion, the transmission loss, increases with a slope of 6 dB/Octave, and is approximately

linear dependent on the mass of the panel. Ultimately, due to the coincidence, there is

a dip in the transmission loss when the frequency approaches the critical frequency. At

frequencies above the critical frequency, the transmission loss again increases. The rise

in this region is of the order of 10 dB/Octave. All the resonant responses are damping

controlled.

3.5 Multiobjective optimization problem

In an industrial design, besides the acoustic performance, other design considerations,

such as weight, structural stiffness and strength, operation constrains, etc., of the sand-

wich structure are still important. In general, a multiobjective optimization problem

(MOP) has two or more objectives involving many decision variables and constraints.

It can be mathematically expressed as

min{f1(x), f2(x), ..., fk(x)} (3.57)

subject to :g(x) ≤ 0 (3.58)

xL ≤ x ≤ xU (3.59)

where {f1, f2, ..., fk} is a set of k objective functions. The inequality constraints, g(x)

are due to the considerations for the problem. Here, x is the decision variables vector.

xL and xU are the lower and upper bounds of x, respectively. The solutions of an MOP

are presented in terms of the Pareto optimal fronts. Pareto optimal solutions are not

unique. There exists a set of solutions known as the Pareto optimal set if there is no

other solution that can improve at least one of the objectives without degrading any other

objective. The vectors x∗ corresponding to the solutions included in the Pareto optimal

set are called nondominated. The plot of the objective functions whose nondominated

vectors are in the Pareto optimal set is called the Pareto front.
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In practice, considering the severe weight and space constraints imposed on airplane

soundproofing treatments, emphasis in many cases has been on minimizing the weight

and depth of the treatment while maintaining adequate sound attenuation characteris-

tics [3]. We now present results when the overall separation between the skins is fixed.

In other word, it becomes a bi-optimization problem: one of maximising acoustic trans-

mission loss while minimising weight. TL is a strong function of frequency. Since we

have optimized the same function as Makris et al. [86] which is also in an acoustic

context, the weighted average transmission coefficient τ̄avg over a range of frequency is

defined as

τ̄avg =
7∑

n=1

wnτ̄n (3.60)

where wn represents a normalized weighting assigned to seven different points of fre-

quency. These weights have been tabulated later in Table 3.4 while discussing a numer-

ical simulation. Further, the transmission loss can be redefined on the basis of such a

band-averaged transmission coefficient as

TL = −10 log10 |τ̄avg| . (3.61)

3.6 Results and discussion

In order to be able to compare and validate results for special cases (e.g. one without

external flow), the parameters used in the numerical calculations are taken from that

given by Bolton et al. [28] who considered a problem without exterior flow. Here

we include the effect of exterior flow on sound transmission. The parameters used in

the numerical calculations are listed in Table 3.1. h1 and h2 represent the thickness

of aluminum sheet on the incident side and the transmitted side, respectively. The

depth of air gap of the BU configuration is denoted by l (see Figure 3.2b). For the UU

configuration, the depths of the two air gaps are l1 and l2, respectively (see Figure 3.2c).

When setting M = 0 and θ = 0, the results are consistent with Bolton’s results [28] as

shown in Figure 3.5 for the three different configurations of the sandwich. Note that

Bolton et al.’s study is considerably simple as the equations become two-dimensional
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Table 3.1: Parameters of the physical system.

Description Value

Plate properties
Ep Young’s modulus 70 GPa

ρp Density 2700 kg/m3

νp Poisson’s ratio 0.33
h1 Thickness 1.27 mm
h2 Thickness 0.762 mm

Porous material properties
Em Bulk Young’s modulus 8× 105 Pa

ρ1 Bulk density of solid phase 30 kg/m3

ν Bulk Poisson’s ratio 0.4
η Loss factor 0.265
σ Flow resistivity 25000 MKS Rayls/m
α∞ Tortuosity 7.8
φ Porosity 0.9
H Thickness 27 mm

Air gap geometry
l Thickness 14 mm
l1 Thickness 2 mm
l2 Thickness 6 mm

in the absence of mean flow. The agreement of our 3-D results for the special case of

M = 0 provides a validation for the correctness of our results. The reason for the slight

difference is that Bolton’s results shown here has been captured from images of their

figures and the accuracy of the data is therefore based on the finite resolution of the

figures used.
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Figure 3.5: Transmission loss of current results (M = 0 and θ = 0) vs. Bolton’s results
[28].
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3.6.1 The effect of the external mean flow

The dependence of transmission loss with frequency for the BB configuration under a

diffuse sound field excitation in the presence of external mean flow is shown in Figure 3.6.

While the flow is considered on one side of the panel, the air properties on both sides are

taken as those corresponding to the ground conditions. This deliberate simplification is

to bring out the convective effect that the flow has on sound transmission. The variation

of transmission loss with frequency is not seen to be monotonic. All these curves have two

main dips at the fundamental resonance frequency ff (lower) and the critical frequency

(upper) fc, respectively. The fundamental resonance frequency ff , also known as mass-

spring-mass resonance frequency, is a low frequency resonance which is due to the panels

behaving like two masses coupled by an air-spring. It is a function of the panel masses

and the air gap [85]. The critical frequency fc, as mentioned previously in section 3.4,

is the frequency at which the speed of bending wave in the plate equals the speed of

acoustic wave in the surrounding medium.
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Figure 3.6: The variation of the transmission loss with frequency for different Mach
numbers (BB configuration). The ff and fc are labelled here.

Trends similar to those presented above for the BB configuration are also found to be

present in the case of the other two configurations. Transmission loss characteristics for

the BU configuration and the UU configuration are presented in Figure 3.7 and Figure

3.8, respectively. Again, the values of the transmission loss are greater at all frequencies

for both configurations with increasing flow velocity on one side of the panel. This

highlights superior acoustic performance of these panels in the presence of convective
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Figure 3.7: The variation of the transmission loss with frequency for different Mach
numbers (BU configuration).
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Figure 3.8: The variation of the transmission loss with frequency for different Mach
numbers (UU configuration).

flow. In other words, a calculation based on static air on the incidence side provides a

conservative estimate of sound insulation of such sandwich panels.

It is seen here that the transmission loss increases with the increase in Mach number

for all the three configurations studied. This is pronounced for frequencies above 2

kHz in all configurations. This effect is significant in higher frequency range in the UU

configuration. The increase of TL due to the increase of Mach number can be explained

on the basis that the impedance of the panel will increase because of a Mach number

dependent refraction [31, 32, 87]. Similar to the results of Bolton et al. [28], the BU
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configuration yields a transmission loss 2-6 dB higher than that of the UU configuration

for frequencies below 1 kHz, but its high frequency performance is not quite as good

as that of the UU configuration under the flight conditions. However, we note that

this result is based on the fact that the distances between the two plates in the three

configurations are different. This is due to the fact that the parameters used in this

calculation are the same as that of Bolton’s [28] (see Table 3.1) therefore allowing a

direct comparison of the data.

If no porous material is present, the construction becomes one of the classic double

wall problem. The fundamental resonance frequency and the critical frequency for this

special case can be expressed as [25, 84, 88]

ff =
1

2π sinϕ

√
ρc2

dm′
(3.62)

fc =
c2

2π cos2 ϕ

√
ms

D
(3.63)

where ρ, c and ϕ are air density, air sound speed and pressure incident angle in the gap;

d is the depth of the air gap; m′ = m1m2/(m1 +m2) (m1 and m2 are the mass per unit

area of the two plates, respectively). The random incidence is taken into account, so ff

and fc will vary with the incident angles. Their minimum values are

ff =
1

2π

√
ρc2

dm′
(3.64)

fc =
c2

2π

√
ms

D
. (3.65)

Table 3.2 shows the minimum values (with respect to the direction of incidence) of the

fundamental resonance frequency and the critical frequency of different configurations

without porous material. As shown in Figure 3.6 to Figure 3.8, the critical frequency

of each configuration is the same and even similar to the case when no porous material

is present. Therefore, porous material has no significant effect on the critical frequency.

The critical frequency only depends on the properties of the plates. However, the funda-

mental resonance frequency is directly related to other geometric and material parame-

ters according to Eq. (3.62). Due to the stiffening effect of the directly attached foam

lining in the BB configuration, the fundamental resonance frequency is higher than that
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without the porous material. For the other two configurations, this remains unchanged.

Cavity resonances occur that may reduce the transmission loss, when the dimension of

the air gap matches the wavelength of sound waves in air. This effect can be reduced by

filling the air gap between the plates with porous material. In a diffuse sound field, the

dips caused by the cavity resonances will vanish due to the averaging effect that takes

place over a hemisphere. Below the cavity resonance frequency, the curves are seen to

follow an approximate mass law behaviour.

Table 3.2: The minimum value of ff and fc of different configurations.

Configurations ff (Hz) fc(Hz)

BB 322 9469
BU 262 9469
UU 283 9469

3.6.2 The effect of the pressure within the air gap

The effect of the pressure in the air gap (the region between the two face plates) is

studied next. In the cruising condition, the properties of air at various altitudes have

been taken from Tang et al. [42] for simulations and are shown in Table 3.3. The

condition on the incidence side and the transmission side are kept corresponding to an

altitude of 35000 ft and 10000 ft, respectively. The frequency dependence of transmission

loss corresponding to the three configurations, i.e. BB, BU and UU conditions, with

the air gap pressure at M = 0.5 is shown in Figure 3.9 to Figure 3.11, respectively.

This effect is significant for the BU and the UU configurations (Figures 3.10 and 3.11

respectively), but almost absent for the BB configuration (Figure 3.9). The increase in

the TL is seen to be about 15-20 dB when the pressure in the air gap is reduced to a

level corresponding to an altitude of 35000 ft in the BU configuration and about 8-16

dB in the UU configuration. The impedance mismatch between the incidence region

and the air gap due to different air properties for the BU and UU configurations alters

the transmission loss very significantly. This agrees with the observation of Tang et

al. [43] who studied the vibroacoustics of a similar system in the absence of porous

lining. Liu et al. [39] demonstrated that the mismatch of acoustics properties between

the panels increases the transmission loss. According to Eq. (3.54), bending waves of

different frequencies travel at different speeds. This means that for every frequency

above the critical frequency, there will be an angle of incidence at which the speed of
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the bending wave is equal to the speed of the incidence sound wave. If we research

transmission loss for the frequencies higher than 10000 Hz, the resonant responses will

appear in all three configurations BB, BU and UU. At the frequencies above the critical

frequency, all the resonant responses are damping controlled. Since the porous material

provides less damping in the UU configuration than that in other two configurations, the

resonant responses can only be seen near the critical frequency in the UU configuration

as shown in Figure 3.11. In addition, the fundamental resonance frequency for the BU

and the UU configurations becomes lower, but the critical frequency is still the same.

The fundamental resonance is caused by the mass-air-mass resonance (see Eq. (3.64)).

Thus the property of air has a key role. However, the critical frequency is only affected

by the properties of the panel (see Eq. (3.65)). Therefore, the BU and UU configuration

offers a better performance of sound insulation than the BB configuration does above

300 Hz by comparing the Figures 3.9 to 3.11. Due to practical considerations, the BU

configuration may be easier to implement in practice than the UU configuration.

Table 3.3: The properties of fluid at different altitudes.

Altitude Density of air Speed of sound

ft kg/m3 m/s

10,000 0.9041 328.558
25,000 0.5489 309.966
35,000 0.3795 296.556
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Figure 3.9: The variation of the transmission loss with frequency for different air gap
pressures at M = 0.5 (BB).
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Figure 3.10: The variation of the transmission loss with frequency for different air gap
pressures at M = 0.5 (BU).
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Figure 3.11: The variation of the transmission loss with frequency for different air gap
pressures at M = 0.5 (UU).

3.6.3 The bi-objective optimisation problem and the Pareto front

Consider the problem of maximising the transmission loss through panels while simulta-

neously minimising the weight of the structure. Since the two objectives may, in general,

require a trade-off the problem is one of determining the Pareto front of the bi-objective

problem. As discussed previously, the BU configuration provides satisfactory transmis-

sion loss in both the low and the high frequency ranges. Therefore, we only consider

this configuration here. The separation between the two plates here is fixed at 27 mm.
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The density and the thickness of the porous material will be used as the variables for the

optimization. The thickness H of the porous material takes values in the range 2-25 mm

for the BU configuration. The bulk density of solid phase of porous ρ1 takes values in

the range of 10-30 kg/m3. Correspondingly, the mass of the porous material equals ρ1H.

Other parameters used in the calculations are the same as those used in the previous

analysis. People have different hearing sensitivity to different frequencies of sound. The

ear is most sensitive in the frequency range 500-5000 Hz [89]. A-weighting function is

used here for the seven frequencies (1000, 1250, 1600, 2000, 2500, 3150 and 4000 Hz) in

the range of 1000-4000 Hz. The normalized weights wn are listed in Table 3.4 [86].

Table 3.4: Normalized weights using the A-weighting [86].

Frequency A-weighting Multiplier Normalized

Hz dB(A) 10dB(A)/10 weights

1000 0 1.000 0.1156
1250 +0.6 1.148 0.1327
1600 +1.0 1.259 0.1455
2000 +1.2 1.318 0.1524
2500 +1.3 1.349 0.1559
3150 +1.2 1.318 0.1156
4000 +1.0 1.259 0.1455

1.0000

In order to satisfy the coincidence, minimizing the inverse of TL (1/TL) is minimised

instead of maximizing TL. An open source code (Cao [90]) was used here for searching

the Pareto front. Cao implemented the algorithm as a mex function, which is called

a gateway function in programming language C. The algorithm considers the logical

relationship between dominated and nondominated points to avoid unnecessary com-

parisons as much as possible so that the overall operations reduced from n× n×m for

an n×m problem to r×n×m, where r is the size of the final Pareto Front. In order to

compare results with the work of Bolton et al. [28] for special cases, we initially discuss

the case without flow at ground condition. The Pareto front is shown in Figure 3.12.

It can be seen that increasing the mass of the porous material, until about 0.2 kg/m2,

increases the transmission loss. If we continue increasing the weight of the structure, the

transmission loss will decrease, because the space of air gap is decreased which makes the

whole construction tend to the BB configuration. The BB configuration only provides

good performance at lower frequency. The design considered by Bolton et al. [28] for the

BU configuration is also presented in Figure 3.12 using a ‘square’. It can be seen that

there exist several designs that are superior to the one studied by Bolton [28] on both
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counts of weight and acoustic performance. These points are in the rectangle below and

left of the point representing the design studied by Bolton. When we choose the weight

of Pareto optimal solution equal to 0.2 kg/m2, the relevant density and thickness (non-

dominated point) are ρ1 = 10 kg/m3 and H = 20. Figure 3.13 shows the optimum result

compared with Bolton’s result for the BU configuration. Except for the mass control

region [58] (here 260 Hz-1000Hz), the optimum result yields a better transmission loss,

but it costs less mass and space. It should be noted here that the optimization is carried

out in the frequency range 1 to 4 KHz. Therefore, if we focus on the frequency band

of the mass control region, another optimized panel can be found to provide a better

sound insulation than that of Bolton et al. [28] in the mass control region. Of course,

this optimized panel possesses greater mass.
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Figure 3.12: Obtained Pareto front in the objective space 1/TL and weight.

When taking the cruising condition (by means of the air gap pressure and the external

mean flow) into account, the Pareto front shifts outwards with the air gap pressure. For

M = 0.5, this is shown in Figure 3.14. It is also assumed that the condition on the

incidence side and the transmission side are kept corresponding to an altitude of 35000

ft and 10000 ft, respectively. At a given value of weight, the lower pressure between the

two face plates provides a better sound insulation, which is consistent with the result

obtained in section 3.6.2. TL is more sensitive to the weight at the higher pressure

condition between the two face plates. When the weight increases from 0.02 kg/m2 to

0.14 kg/m2, the TL of the pressure according to 10000 ft and 35000 ft increases by

52.09% and 12.75%, respectively.
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Figure 3.13: Comparison of transmission loss for the BU configurations.
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Figure 3.14: Pareto front in different pressures between two face plates at M = 0.5.

3.6.4 Laminated composite face plate and the effect of stacking se-

quence

Composite materials are widely used in various engineering applications including me-

chanical, marine, automotive, as well as aerospace engineering due to their light weight

and high stiffness. Besides the accessories, the fuselage and the wings increasingly being

made of composite material, e.g. these in A350 XWB of Airbus or B787 of Boeing.

Therefore, a good understanding of the sound transmission through the sandwich struc-

tures with laminated composite face plates is of great current interest.
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In this sub-section, we employ a simplification in the analysis by the use of the so-

called ‘equivalent fluid model’ for the porous material as proposed by Lee et al. [81].

Lee et al. [81] noticed that, for different configurations, the relative importance of

the strain energy associated with the three types of waves is considerably different.

We adapt this simplification in the present work and model the porous material as an

equivalent fluid by using the wave number of the strongest wave and its corresponding

equivalent density in our calculations. The strength of the waves through porous medium

depends on the material properties and the configuration of the sandwich lay-up. The

relative importance of the wave types can be inferred from analysis on a full Biot’s model

described in section 3.2–this is summarized in Table 3.5. The expressions of kI, kII, ρ
∗
11

and ρ∗22 have been presented in section 3.2. The strongest wave in the BB configuration

is the frame wave. In the low frequency range, the airborne wave is the dominant wave,

while the frame wave is the strongest wave in high frequency range. The airborne wave

is the dominant wave in the UU configuration [81]. It has been pointed out by Lee et al.

[81] that the difference between the equivalent method and the full method including

all the waves is less than 5 dB. Since the equivalent fluid method reduces the porous

material to a fluid, most of the widely available analysis methods can be used without

any modifications. This is the reason why the reduced method (equivalent fluid model)

is applied in this work.

Table 3.5: The equivalent parameters of porous material for different configurations

Configurations Strongest wave Bulk density

BB kII ρ∗11
BU kI (low frequency range) ρ∗22 (low frequency range)
BU kII (high frequency range) ρ∗11 (high frequency range)
UU kI ρ∗22

Consider the BB configuration (see Figure 3.2a) of the panel. Since the equivalent fluid

model of porous material is used, the problem is similar to that of sound transmission

through double-leaf. The only difference is that the fluid between the two face plates is

the equivalent fluid of the porous material, but not the air. The equations of motion of

the two ply composite thin plates can be written as follows, respectively:


L11 L12 L13

L21 L22 L23

L31 L32 L33



u1

v1

w1

+


−I1 0 0

0 −I1 0

0 0 I1

 ∂2

∂t2


u1

v1

w1

 =


0

0

p1 − p2

 (3.66)
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
L11 L12 L13

L21 L22 L23

L31 L32 L33



u2

v2

w2

+


−I2 0 0

0 −I2 0

0 0 I2

 ∂2

∂t2


u2

v2

w2

 =


0

0

p2 − pt

 (3.67)

in which {u1, v1, w1} and {u2, v2, w2} are the displacement components corresponding to

the x, y and z axes for the incident side plate and the transmitted side plate, respectively.

Lij are the differential operators and Ii are the inertia terms of the plate, which can

be found in the reference [91]. The expressions for the pressures p1, p2 and pt in each

region are same as those in section 3.3.

At the interfaces, the following boundary conditions must be satisfied

∂p1
∂z

= −ρi
(
∂

∂t
+ V · ∂

∂x

)2

w1

∣∣∣∣∣
z=0

(3.68)

∂p2
∂z

= −ρ2
∂2w1

∂t2

∣∣∣∣
z=0

(3.69)

∂p2
∂z

= −ρ2
∂2w2

∂t2

∣∣∣∣
z=H

(3.70)

∂pt
∂z

= −ρt
∂2w2

∂t2

∣∣∣∣
z=H

. (3.71)

Since the frame wave is the dominant wave in this configuration, the bulk density

ρ2 = ρ∗11 is chosen as the density of the equivalent fluid. Substitution of the harmonic

expressions of the displacements and the pressure into the equations of motion of the

plates and boundary conditions yields to ten algebraic equations. The transmission loss

of the laminated composite sandwich structure can then be obtained by using the same

analysis procedure as that described in section 3.4.

For the numerical calculations, the material constants of the laminated graphite/epoxy

panels are ρ = 1600 kg/m3, Eα = 221 GPa, Eβ = 6.9 GPa, µαβ = 0.25, and Gαβ =

4.8 GPa, where α and β denote the local coordinates of fibers [91]. The plies of the

panels in the incident side and transmitted side are arranged in the stacking sequence

[90◦/0◦/90◦/0◦] and [0◦/90◦/0◦/90◦], respectively. The thicknesses of the two face plates

are the same equal to 1.59 mm. The parameters of the porous material are taken from

Table 3.1.
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Figure 3.15 shows that the transmission loss increases with the increase of Mach num-

ber for ground conditions. The external mean flow yields 3-6 dB increase in TL when

compared with the no flow condition. This phenomenon is same as that of the isotropic

plates (see section 3.6.1), because the Mach number increases the impedance of the

panel. When the thickness of the plate is fixed at 1.59 mm, the effect of the stacking

sequence is shown in Figure 3.16. For both of the symmetric cross-ply (Figure 3.16a)

and the antisymmetric cross-ply (Figure 3.16b), as the number of ply groups increases,

the dip at the critical frequency goes down. This phenomenon is more obvious in the

case of symmetric cross-ply. This is because the stacking of many ply groups reduces the

orthotropy and the laminate becomes quasi-homogeneous [92]. The stacking sequence

cannot change the transmission loss in the mass-controlled region, but alter the trans-

mission loss in the coincidence-controlled region. This effect is more pronounced for the

case of symmetric cross-ply. It is obvious that the case of symmetric cross-ply provides

a better performance than the case of antisymmetric cross-ply does when the frequency

is higher than the critical frequency.
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Figure 3.15: The variation of the transmission loss with frequency for different Mach
numbers (BB with laminated composite face plates).

3.7 Conclusions

In this chapter, a mathematical model is developed incorporating the effects of external

mean flow on the sound transmission through double-panel sandwich lined with poroe-

lastic material. Flow on one side of the double-panel constructions is considered in order
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Figure 3.16: The variation of the transmission loss with frequency for different stacking
sequence at M = 0.5.

to make the modelling realistic for simulating flight condition. Of course, fuselage is not

flat. However, it is common to consider a simplified geometry for sound transmission

study in order to gain physical insight. Biot’s model is used to describe the porous

material as a continuum. The transmission loss for three types of configurations (BB,

BU and UU) is calculated as a function of frequency in a diffuse sound field. The effect

of the mean flow is brought out. The following general conclusions can be drawn:

i. The transmission loss increases with increasing the Mach number of the external

mean flow. The reason is that the external mean flow increases the impedance of

the panel.

ii. The BB configuration provides more stiffness in the air gap, due to the mechanical

bonding of the layers. This increases the stiffness of the system and, therefore, the

resonance frequency. The critical frequency is only affected by the panels’ geometry

and properties. The dips in the TL curves move according to this stiffening effect.

iii. TL increases gradually when the pressure difference between air gap and that on

the exterior decreases. This effect is significant for the BU and the UU configura-

tions, but not so much for the BB configuration. This is mainly attributed to the

mismatch in the characteristic impedances of the exterior and the interior. The

BU and UU configurations offer a better performance of sound insulation than the

BB configuration does, in most of the frequency range. The reason is that the BB

configuration provides more stiffness in the air gap between two face plates due to
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the mechanical bonding of the layers. The air gap plays a very important role in

sound insulation.

iv. There is a clear trade-off between the acoustic performance and the weight of the

panel. There exists a critical point on the weight vs. acoustic performance (quan-

tified by 1/TL) plane indicating that the acoustic performance cannot be improved

further. Below the critical point identified on the Pareto-front, the transmission

loss increases at the expense of increasing the weight. In this way, we are able

to find structures that are superior acoustically as well as with regards to the to-

tal weight when compared with some previously studied configurations (e.g. that

studied by Bolton et al. [28]) When the effect of the pressure between the two

face plates is taken into account, the Pareto-fronts move outwards with increasing

pressure inside the panels.

v. The number of ply groups of symmetric cross-ply laminated composite sandwich

panel has a significant effect on the transmission loss. The stacking sequence

can alter the transmission loss, especially for the symmetric cross-ply. This work

shows that the symmetric cross-ply panel provides a better performance than the

antisymmetric cross-ply panel. It should be noted that this may be only a valid

conclusion for sound insulation performance. For other aircraft preliminary design

factors, e.g. structural loading, this may be not true. Therefore, the balance needs

to be found which maximizes the performance in one field without degrading it in

another.
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Sound transmission through

double-walled cylindrical shells

In Chapter 3, the sound transmission through a double-walled flat panel was studied.

However, the flat plate model is not adequate to simulate aircraft cabin, especially

under flight conditions. The in-plane vibration is coupled with the transverse vibration

for cylindrical shells structures. This changes the acoustic characteristics of the system.

Therefore, the effect of the curvature and the porous material on sound transmission

should be considered simultaneously under flight condition. With these motivations,

sound transmission through a system of double shells, lined with poroelastic material in

the presence of external mean flow, is investigated in this Chapter.

4.1 Description of the system

A typical fuselage is a double-shell system. To simulate the cruising condition, an exter-

nal mean flow V is assumed to align with the axis of two infinite concentric cylindrical

shells; see Figure 4.1. The radii of the shells are R1 and R2 and the wall thicknesses

are h1 and h2 for the outer and the inner shells, respectively. A plane pressure wave

transmits through the system from the external mean flow side into the cavity with

static air. Without loss of generality, the incident angle α is in the plane for which

θ = π, see Figure 4.2. The fluid media on the incident side and the transmitted side

have physical properties (ρi, ci) and (ρt, ct), respectively. Recently, the porous material

63
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was investigated for replacing the glass fiber in the aircraft sidewall [18]. The poroe-

lastic material is placed in the annular space as shown. Three types of configurations

are again considered here as shown on the right side of Figure 4.1. The equivalent fluid

of porous material proposed by Lee et al. [81] is used to describe the porous material.

They noticed that the relative importance of the strain energy associated with the three

types of waves in the porous material, two compression waves and one shear wave (see

section 2.4 of Chapter 2), is considerably different. This method is also adapted in the

study of section 3.6.4 in Chapter 3.

Figure 4.1: A sketch showing the sound wave transmission problem through the double
shells system. Different configurations: (a) bonded-bonded (BB); (b) bonded-unbonded
(BU); (c) unbonded-unbonded (UU).

Figure 4.2: Two views of the double shells system.
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4.2 Governing equations

For the shells, let {u0j , v0j , w0
j} be the displacement components at the neutral surface in

the axial, circumferential and the radial directions, where the subscript j denotes the

shell numbering which for the outer shell is j = 1 and for the inner shell is j = 2. Love’s

thin shell theory [93] is used to describe the motion of the two shells. The equations of

motion can be expressed as

L1{u0j , v0j , w0
j} = ρsjhj ü

0
j (4.1)

L2{u0j , v0j , w0
j} = ρsjhj v̈

0
j (j = 1, 2) (4.2)

L3{u0j , v0j , w0
j}+ ∆pj = ρsjhjẅ

0
j (4.3)

where ρsj are hj are the density and the thickness of the shell, respectively. ∆pj is the

pressure difference between the two sides of the shell. L1, L2 and L3 are linear differential

operators for the circular cylindrical shell which are presented in the Appendix D.

Figure 4.1a shows the details of two concentric shells lined with porous in the BB con-

figuration. The exterior and the interior can be divided into three regions: the incident

region, the porous material region and the transmitted region. In the exterior space, the

pressure wave equation is given by

c2i∇2(pI1 + pR1 ) +

(
∂

∂t
+ V · ∇

)2

(pI1 + pR1 ) = 0 (4.4)

where ∇2 is the Laplacian operator and ∇ is the gradient operator. V = V ~k is the

external flow velocity vector in the z-direction. Note the influence of the flow velocity

on the acoustic wave propagation via the convective term in the operator that appears

in the second term. pI1 is the incident wave and pR1 is the scattered wave. As stated

previously, the porous material is treated as an equivalent fluid. Thus, we can assume

that there exist both a scattered acoustic wave pR2 and a transmitted wave pT2 in the

porous layer. The wave equation in the porous material layer therefore becomes

c22∇2(pT2 + pR2 ) +
∂2

∂t2
(pT2 + pR2 ) = 0. (4.5)
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In the interior cavity, the wave equation can be expressed as

c2t∇2pT3 +
∂2pT3
∂t2

= 0. (4.6)

The pressure term in Eq. (4.3) on the incidence side is given by

∆p1 = (pI1 + pR1 )− (pT2 + pR2 ), (4.7)

and that on the transmitted side is given by

∆p2 = (pT2 + pR2 )− pT3 , (4.8)

which differ from the equations of motion of the outer shell in terms of the pressure term

in the last equation and the shell displacement variable being related to the inner shell.

At the interfaces between the elastic shells and the fluids, the following boundary con-

ditions must be satisfied

∂(pI1 + pR1 )

∂r
= −ρi

(
∂

∂t
+ V · ∇

)2

w0
1

∣∣∣∣∣
r=R1

(4.9)

∂(pT2 + pR2 )

∂r
= −ρ2

∂2w0
1

∂t2

∣∣∣∣
r=R1

(4.10)

∂(pT2 + pR2 )

∂r
= −ρ2

∂2w0
2

∂t2

∣∣∣∣
r=R2

(4.11)

∂pT3
∂r

= −ρt
∂2w0

2

∂t2

∣∣∣∣
r=R2

. (4.12)

Since the frame wave is the dominant wave in the BB configuration, the bulk density

ρ2 = ρ∗11 is chosen as the density of the equivalent fluid.

In the cylindrical coordinates, a harmonic incident wave pI1 can be expressed as

P I1 (r, θ, z, t) = p0

∞∑
n=0

εn(−i)nJn(k1rr) cosnθei(ωt−k1zz) (4.13)
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where p0 is the amplitude of the incident wave; n is the circumferential mode number;

εn = 1 for n = 0 and εn = 2 otherwise; i =
√
−1; Jn is the Bessel function of the first

kind of order n; ω is the angular frequency. The wave numbers k1z and k1r in Eq. (4.13)

are

k1r = k1 cosα, k1z = k1 sinα, with k1 = (ω/ci)(1 +M sinα)−1 (4.14)

where the Mach number of the external mean flow is given by M = V/ci.

In the porous layer, the wave number kII is treated as an equivalent wave number.

Therefore, the equivalent sound speed c2 = ω/kII, and the wave numbers can be defined

respectively as

k2z = k1z, k2r =
√
k2II − k22z. (4.15)

Similarly on the transmitted side, the wave numbers are given by

k3 = ω/ct, k3z = k1z, k3r =
√
k23 − k23z. (4.16)

In order to satisfy Eq. (4.4) to (4.6), pR1 , pT2 , pR2 and pT3 , can be expressed as

pR1 (r, θ, z, t) =
∞∑
n=0

pR1nH
2
n(k1rr) cosnθei(ωt−k1zz) (4.17)

pT2 (r, θ, z, t) =
∞∑
n=0

pT2nH
1
n(k2r) cosnθei(ωt−k1zz) (4.18)

pR2 (r, θ, z, t) =
∞∑
n=0

pR2nH
2
n(k2r) cosnθei(ωt−k1zz) (4.19)

pT3 (r, θ, z, t) =

∞∑
n=0

pT3nH
1
n(k3r) cosnθei(ωt−k1zz) (4.20)

where pR1n, pT2n, pR2n and pT3n are the complex amplitudes. H1
n and H2

n are Hankel functions

of the first and second kinds of order n, respectively. Hankel functions arise due to the

cylindrical geometry.
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Since the trace wavelengths must match on the boundary, the displacement components

of the shells u01, v
0
1, w0

1, u02, v
0
2 and w0

2 can be expressed as

u01(θ, z, t) =
∞∑
n=0

u01n cosnθei(ωt−k1zz) (4.21)

v01(θ, z, t) =
∞∑
n=0

v01n sinnθei(ωt−k1zz) (4.22)

w0
1(θ, z, t) =

∞∑
n=0

w0
1n cosnθei(ωt−k1zz) (4.23)

u02(θ, z, t) =
∞∑
n=0

u02n cosnθei(ωt−k1zz) (4.24)

v02(θ, z, t) =

∞∑
n=0

v02n sinnθei(ωt−k1zz) (4.25)

w0
2(θ, z, t) =

∞∑
n=0

w0
2n cosnθei(ωt−k1zz) (4.26)

where u01n, v01n, w0
1n, u02n, v02n and w0

2n are the unknown complex amplitudes.

Substitution of Eqs. (4.13)-(4.21) into Eqs. (4.1)-(4.12) yields a set of algebraic equa-

tions that can be arranged in the following matrix form



0 0 0 0 A B C 0 0 0

0 0 0 0 D E F 0 0 0

G H I 0 J K L 0 0 0

M 0 0 0 0 0 N 0 0 0

0 O P 0 0 0 Q 0 0 0

0 0 0 0 0 0 0 R S T

0 0 0 0 0 0 0 U V W

0 X Y Z 0 0 0 A1 B1 C1

0 D1 E1 0 0 0 0 0 0 F1

0 0 0 G1 0 0 0 0 0 H1





pR1n

pT2n

pR2n

pT3n

u01n

v01n

w0
1n

u02n

v02n

w0
2n



=



0

0

I1

J1

0

0

0

0

0

0



(4.27)

where the terms within the matrix equation are given in Appendix E.
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The ten unknowns in the column vector on the left side of Eq. (4.27) can be solved

simultaneously. The relevant unknowns for BU and UU configurations can be obtained

in a similar manner. Details of the expressions relevant for these two configurations are

given in the Appendix F and Appendix G, respectively.

4.3 Transmission loss

The transmission coefficient is defined by

τ =
W T

W I
(4.28)

In Eq.(4.28), the transmitted sound power per unit length of the shell W T is

W T =
1

2
Re

{∫
S2

(
pT3
∂(w0

2)∗

∂t

)
dS

}
(4.29)

where S2 = 2πR2, Re{·} and the superscript * represent real part and the complex

conjugate of the argument, respectively. Substituting the expressions of pT3 and w0
2 into

Eq. (4.29), the expression for W T can be rewritten as

W T =
∞∑
n=0

πR2

2εn
Re
{
pT3nH

1
n(k3rr)(iωw

0
2)∗
}
. (4.30)

Similarly, W I , the incident power per unit length along the axis of the shell is given by

W I =
R1 cos(α)

ρici
p20. (4.31)

Therefore, the transmission coefficient can be obtained by substituting Eq. (4.30) and

(4.31) into Eq. (4.28)

τ(α) =

∞∑
n=0

R2Re
{
pT3nH

1
n(k3rr)(iωw

0
2)∗
}
ρici

2εnR1 cosαp20
(4.32)

Finally, the transmission loss is obtained as
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TL = 10 log10 τ
−1. (4.33)

4.4 Results and discussions

In this section, the transmission losses for infinite cylindrical shells for the three config-

urations described previously are presented. The effect of Mach number of the exterior

mean flow on the transmission characteristics is investigated. The parameters of the

porous material used for computations are: density of the solid phase ρ1 = 30 kg/m3;

Young’s modulus of the solid phase Em = 8 × 105; loss factor η = 0.265; bulk Pois-

son’s ratio ν = 0.4; flow resistivity σ = 25000 MKS Rayls/m; tortuosity α∞ = 7.8;

porosity φ = 0.9. The aluminium shells have the following properties: Young’s modu-

lus Es = 7 × 1010 Pa; loss factor ηs = 0.01; Poisson’s ratio µ = 0.33; material density

ρs = 2700 kg/m3. The dimensions of the double-walled shells for different configurations

are listed in Table 4.1.

Table 4.1: Geometrical parameters used in sandwich constructions of the three configu-
rations studied.

Configurations BB BU UU

Dimensions h1 = 2 mm h1 = 2 mm h1 = 2 mm
h2 = 2 mm h2 = 2 mm h2 = 2 mm
R1 = 1.84 m R1 = 1.84 m R1 = 1.84 m
R2 = 1.80 m R2 = 1.80 m R2 = 1.80 m

Rp = 1.81 m Rp1 = 1.835 m
hp = 30 mm Rp2 = 1.805 m
ha = 10 mm hp = 30 mm

ha1 = 5 mm
ha2 = 5 mm

The procedure of computing transmission loss is outlined as follows. For a prescribed

value of frequency, the column of complex amplitudes of pressures and displacements

were obtained by solving the set of linear algebraic equations (4.27). Then, the trans-

mission coefficient can be calculated by using the summation that appears in Eq. (4.32)

at this frequency. The truncation of the infinite series was carried out by a convergence

criterion on the transmission loss TL as calculated from Eq. (4.33): the number of terms

was restricted the contribution from the next term in the series was less than 0.001 dB.

The frequency band of calculations is from 10 Hz to 50 kHz. In the BU configuration, as
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mentioned previously, the airborne wave is the strongest component within the porous

material in the low-frequency range (below 2 kHz) and the frame wave is the strongest

component in the high-frequency range (above 4 kHz). Therefore, the calculations can

be divided into three frequency ranges for the BU configuration: (a) 10-2000 Hz, the TL

is obtain by only considering the airborne wave for the porous material; (b) 2000-4000

Hz, the average value of TLs corresponding to the airborne wave and the frame wave

is adopted; (c) over 4000 Hz, the TL based on the frame wave is calculated. For the

other two configurations considered here, there is no need to divide the frequency band

of interest because only one type of wave is dominant in the entire frequency band of

interest.
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Figure 4.3: Transmission loss characteristics for a single shell structure (α = 45◦).
Validation with Koval’s results [35] that differ slightly in the equations of motion of the
shell.

In order to validate our calculations, the numerical results are compared with those of

Koval [35] who studied the special case of a single shell structure. The comparison is

carried out for different Mach numbers when the incidence angle is fixed at α = 45◦ (see

Figure 4.3). They match very well, especially in the frequency range between the two

main dips. The locations of the dips, however, are a little different in this comparison.

These can be attributed to two factors: Firstly, Love’s theory is used here to describe

the motion of the shell, while Koval [35] used the simplified Flügge-Lure-Byrne model.

Secondly, Koval did not quote the values of the material properties of the aluminium

shell and may have used slightly different values than ours. Further, we have attempted

to compare the results with those of Lee et al. [41] who studied the sound transmission

through a double-walled cylindrical shell without any porous lining (see Figure 4.4).
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Figure 4.4: Comparison of our calculations with those of Lee et al. [41] for a double-
walled cylindrical shell without porous material in the absence of flow at α = 45◦.
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Figure 4.5: Validation for the oblique incidence at α = 60◦ without porous lining in the
absence of flow.

Since we noted an error in their formulation of the shell differential operator L2 and L3

(see Eqs. (D.5) and (D.6) here), which results in some of the terms in the coefficient

matrix of Eq. (4.27) becoming slightly different from those of Lee et al. [41], the result

in our model is quite different from that of Lee’s. The other special case available for

comparison is a conference paper of Liu and Feng [44] who did not consider the external

mean flow. The comparison is again very close for the oblique incidence (Figure 4.5a vs.

dashed line in 4.5b). The difference can primarily be attributed to the differences in the

shell mechanics adopted by Liu et al. (Donell-Mushtari) compared to this work (Love).
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4.4.1 Generic transmission loss characteristics and the frequency dips

In order to understand the behaviour of the dependence of the transmission loss with fre-

quency, we first consider the locations of the dips of the TL curve on the frequency axis.

In particular there are differences with respect to the transmission characteristics for flat

plates discussed in Chapter 3 that are characterized by two dips that correspond to the

fundamental resonance of the plate and the coincidence frequency when a plane wave

is incident on a plate at an arbitrary angle of incidence. This fundamental resonance

is missing for infinite plates. When the sound wave field is diffuse, the dip corresponds

to the critical frequency which is the value of the coincidence frequency at its lowest

value–this value corresponds to the grazing incidence (see section 3.4 of Chapter 3).

The story, however, is significantly different for transmission through thin cylindrical

shells. It has been documented before [94] that the TL characteristics exhibit three

dips on the frequency axis. They are associated with (i) the ring frequency, (ii) critical

frequency, and (iii) coincidence frequency. It is unfortunate that in the literature the

latter two have been often used synonymously. We now take each of these three in turn.

(i) Ring frequency

The ring frequency is the frequency associated with the breathing mode resonance of

the infinitely long shell [95]. At this frequency, the circumference of the shell equals the

longitudinal wavelength.

fr =
cL

2πR
, (4.34)

where the cL is the longitudinal wave speed for a rod given by cL =
√
E/ρ. Koval [35]

used this value to validate the dips in the TL characteristics obtained by them. When

the shell is not made of a single wall of elastic material but consists of several layers,

Ghinet et al. [96] gave the expression of the ring frequency for an infinite sandwich

composite and laminated composite cylinder as

fr =
1

2πR

√(
A22 −

B22

R

)
1

ms
, (4.35)
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where A22 and B22 are the terms from the A and B matrices familiar in the laminate

theory. For the BB configuration, all the three–the exterior shell, the porous material

and the inner shell would contribute to A22 and B22.

(ii) Critical frequency

Blaise et al. [94] studied the location of the critical frequency for orthotropic cylindrical

shells which corresponds to the trace wave number in the radial direction being equal

to the shell circumferential wave number. The circumferential wave number equals the

circumferential mode order divided by the radius of the shell. The expression of the

critical frequency in the presence of mean flow can be obtained by specializing Eq. (20)

of Blaise et al. [94] for ψ = 0, the angle between the projection of the incidence wave in

the tangential plane and the z-axis.

fcr =
c2i (1 +M sinα)2

2πh

√
12ρs(1− µ2)

E
. (4.36)

Note that the critical frequency depends on the angle of incidence in the presence of

an external mean flow but it becomes independent of the incidence direction in the

absence of the external flow. The latter was also observed experimentally by White

[97] who used the term ‘coincidence frequency’ to describe this. In this paper, we use

the word coincidence frequency for a third dip in the TL characteristics of a cylindrical

shell which is consistent with the terminology used by Blaise et al. [94]. This dip is

missing from the TL characteristics of flat plates, although the term critical frequency

for transmission through plates is used to mean something else, i.e. the least value of

coincidence corresponding to grazing incidence. Blaise et al. [94] termed this singular-

ity as the critical pseudo-coincidence frequency. Most contemporary authors [2-5,7-10]

designate this dip as one associated with the ‘critical frequency’; hence we will continue

to use this term. Note that the dependence of the location of this dip on the angle of

incidence disappears in the absence of flow (this can be concluded by setting M = 0).

This will be discussed further while presenting the computed TL characteristics.

(iii) Coincidence frequency

The third dip in the TL characteristics features at a further higher frequency corre-

sponding to the trace wave number in the tangential direction becoming equal to the
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circumferential wave number [94]. The expression in Eq. (18) of [94] when specialized

to isotropic cylindrical shells becomes

fcoin =
c2i (1 +M sinα)2

2πh sin2 α

√
12ρs(1− µ2)

E
. (4.37)

Clearly, the coincidence frequency always depends on the incidence angle irrespective of

the presence of the external flow.

The effect of Mach number on the critical and the coincidence frequencies can be seen

in Table 4.2 where the angle of incidence is fixed to 45◦. These theoretically calculated

values will be compared with the dips observed in the transmission characteristics later.

Likewise, the dependence of these two characteristic frequencies on the angle of incidence

is presented in Table 4.3 and will be discussed in the light of calculated TL vs. frequency

characteristics.

4.4.2 The effect of incidence angle in the absence of external flow

The variation of the transmission loss with frequency for different incidence angles in the

BB configuration is presented in Figure 4.6. In the first instance, the Mach number here

is set to zero and no pressure difference between the inside and the outside is assumed.

The value of the ring frequency fr for an isotropic shell can be estimated by using the

following formula

fr =
1

2πR

√
E

ρs
. (4.38)

This value is calculated to be fr = 440.42 Hz. For the BU and UU configurations,

there is no direct material link between the outer shell and the inner shell due to the air

gap. The ring frequency then is determined by the outer shell geometry and properties

only. Therefore, Eq. (4.38) can be used to approximately estimate the ring frequency

for these two configurations, after ignoring the effect of the porous material which is

justified because of its low Young’s modulus of the porous material. Using the laminate

Eq. (4.35), the ring frequency is calculated as 509.32 Hz. The observed dip around 500

Hz in the TL characteristics calculated for BB configuration is very close to the estimated
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location marked by an arrow (see Figure 4.6). The region below fr is a stiffness controlled

region. The dips in the TL will appear due to the cylinder resonances when the trace

wavelength and frequency match with that of a mode having the appropriate value of

n, the circumferential mode number.
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Figure 4.6: The variation of TL with frequency for different incident angles α (BB
configuration), M = 0. The three dips are predicted as fr = 509.32 Hz, fcr = 6013
Hz and fcoin = 24051 Hz as calculated using Eqs. (4.35), (4.40) and (4.41) for 30◦,
respectively. Note the dependence of fcoin on the angle of incidence as seen here and
consistent with Eq. (4.41) but not shown using arrows at all the frequencies for clarity
of the figure.
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Figure 4.7: The variation of TL with frequency for different incident angles α (BU
configuration), M = 0. The three characteristic dips are obtained as fr = 440.42 Hz,
fcr = 6013 Hz and fcoin = 24051 Hz and they have been calculated using Eqs. (4.38),
(4.40) and (4.41) for 30◦, respectively. Note the independence of fcr with respect to the
angle of incidence for M = 0.
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Figure 4.8: The variation of TL with frequency for different incident angles α (UU
configuration), M = 0. The three characteristic frequencies are calculated as fr = 440.42
Hz, fcr = 6013 Hz and fcoin = 24051 Hz using Eqs. (4.38), (4.40) and (4.41) for 30◦,
respectively. Note the dependence of fcoin on the angle of incidence.

The TL characteristics are frequently partitioned into four regions of the frequency axis

[58]: (i) the falling TL curve at the very low frequency end known as the stiffness-

controlled region, (ii) a frequency band with several dips, each corresponding to a struc-

tural resonance–known as the resonance controlled region, (iii) a 5-6 dB/Octave rising

curve known as the mass-controlled region, and finally (iv) the coincidence region char-

acterized by the matching of the acoustic wavelengths with the structural wavelength.

Figure 4.6 shows all these features. Although, the interest in the low frequency end of

calculations is relatively less from the acoustic transmission perspective, in addition to

the ring frequency described above, the resonances associated with the through thickness

dilatation given by

fdilatation =
1

2π

√
2Em

hp(ρshs + ρ1hp/6)
(4.39)

for flat panels are worth mentioning. This frequency is calculated as 425.5 Hz for BB

configuration and is physically associated with the mass-spring-mass motion with the

face plates providing inertia and the core providing stiffness. There are other possible

resonances, e.g. horizontal shear of the sandwich. They correspond to the cut-off fre-

quencies of the structural dispersion relationships. Some of these resonances are visible

in Figure 4.6 and are clustered around the ring frequency. Note, however, that the
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resonances in a shell are expected to be significantly different because of the curvature

effect and will be associated with anti-phase breathing motion of the two walls. Since

our primary interest is in noise transmission, here we will not consider these further.

The next dip in the TL curve features at the critical frequency of the cylinder-air system.

The expression of the critical frequency in the absence of external mean flow is now

obtained by specializing Eq. (4.36) for M = 0 and is given by

fcr =
c2i

2πh

√
12ρs(1− µ2)

E
. (4.40)

The value of the critical frequency fcr is calculated as 6013 Hz and is accordingly shown

by an arrow marker in Figure 4.6. The transmission loss decreases as the incident angle

increases below the ring frequency but increases between the ring frequency and the

critical frequency. Between fr and fcr, the transmission loss follows a mass law which

is of the order of 5-6 dB/Octave. Similar trends of TL variation can be found in the

other two configurations. Transmission loss characteristics for the BU configuration

and the UU configuration are presented in Figures 4.7 and 4.8. It is clear that the

BU and UU configuration offers a better performance of sound insulation than the BB

configuration does when we compare Figures 4.6, 4.7 and 4.8. The porous material

connects the two shells in the BB configuration. The sound waves can propagate into

the cavity more easily. Therefore, in practice, the two shells should to be separated by

an air gap for superior acoustic performance. From the Figures 4.6 to 4.8, an interesting

observation can be made that the critical frequency is independent of the incidence angle

when the incident wave vector has no azimuthal component. White [97] also observed

this phenomenon in the experimental study without any flow. However fcr is indeed

dependent on the angle of incidence in the presence of the external mean flow. This will

be discussed later.

Unlike the critical frequency, the coincidence frequency fcoin always depends on the

incidence angle. The α-dependence of the coincidence frequency can be noted from the

Eq. (4.37), when specialized for M = 0,

fcoin =
c2i

2πh sin2 α

√
12ρs(1− µ2)

E
. (4.41)
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The coincidence frequency fcoin is approaches the critical frequency fcr as the incidence

angle approaches 90◦ which corresponding to the grazing incidence.

Going back to Figure 4.6, there are three clearly identifiable dips in the TL curve.

However, the second and the third increasingly start to coalesce to the value of the

critical frequency when α is increased. Therefore, only one recognizable dip can be

seen visually when the incidence angle α = 75◦ since the two dips are too close to each

other. This feature continues to be observed for the other two configurations in Figures

4.7 and 4.8 for BU and UU configurations respectively. TLs can be averaged for the

incident angle in a diffuse field, but this makes the effect of other factors less transparent.

Therefore, in the following analysis, while studying the influence of the external mean

flow on transmission characteristics, an incident angle α = 45◦ is chosen to be fixed.

4.4.3 The effect of the external mean flow

In order to bring out the effect of the external mean flow, fixed properties corresponding

to the ground condition are considered here and the Mach number is taken as the control

parameter. The variation of the transmission loss corresponding to the three configu-

rations with frequency at different Mach numbers is shown in Figures 4.9 to 4.11. The

Mach number of the external flow is varied from M = 0 to M = 1.5. The TL decreases

with some fluctuations below the ring frequency, but increases above the ring frequency

following the increase of Mach number. This is consistent with the observations of Sgard

et al. [98] that the mean flow can add the negative stiffness and the radiation damping

into the system. Therefore, in the stiffness controlled region (i.e. below the ring fre-

quency), the external flow decreases the sound transmission loss. However, the external

flow provides a modest increase in transmission loss (about 1-5 dB) in the mass law

region between fr and fcr. The external flow also shifts the critical frequency and the

coincidence frequency up, but has no effect on the ring frequency because it depends on

the structural parameters alone. The values of the critical frequency and the coincidence

frequency calculated by the Eqs. (4.36) and (4.37) are listed in Table 4.2. The location

of the dips in the TL characteristics matches closely with these tabulated values and has

not been labeled in Figures 4.9 to 4.11 for visual clarity. Figures 4.9 to 4.11 also bring

out that airflow gives a huge increase for transmission loss near the critical frequency fcr

(near the second dip in each curve) and above. These figures also indicate that the BU
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and UU configurations again show a better sound insulation than the BB configuration

does in the presence of external mean flow.

Table 4.2: The variation of critical frequency and the coincidence frequency vary with
the Mach number. The angle of incidence is fixed at 45◦

Mach number fcr (Hz) fcoin (Hz)

0 6013 12025
0.5 11016 22032
1 17522 35044

1.5 25532 51063
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Figure 4.9: The variation of TL with frequency for different Mach numbers (BB). The
locations of the dips for fcr and fcoin are consistent with the predicted values presented
in Table 4.2.

Eq. (4.36) indicates that the flow tends to increase the critical frequency. Consider the

BB configuration, for example. Figure 4.12 shows that the variation of the transmission

loss with frequency computed for different incidence angles in the BB configuration at

M = 0.5. The external mean flow shifts the critical frequency up. It should be noted

that, in the presence of flow, the critical frequency is dependent on the incidence angle,

which is not the case in the absence of flow because the term M sinα combines the flow

parameter with the direction of incidence (see Table 4.3).

4.4.4 The effect of porous material

In order to understand the effect of porous material on the sound transmission in the

presence of the external mean flow, only one shell and two shells without the porous

material are considered first. The effect of the external flow is also taken out initially.



Chapter 4 81

10
1

10
2

10
3

10
4

10
5

0

50

100

150

200

250

Frequency(Hz)

T
ra

n
s
m

is
s
io

n
 L

o
s
s
(d

B
)

 

 

M=0

M=0.5

M=1

M=1.5

Figure 4.10: The variation of TL with frequency for different Mach numbers (BU). The
locations of the dips for fcr and fcoin are consistent with the predicted values presented
in Table 4.2.
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Figure 4.11: The variation of TL with frequency for different Mach numbers (UU). The
locations of the dips for fcr and fcoin are consistent with the predicted values presented
in Table 4.2.

Figure 4.13 shows the TLs of various configurations under no-flow condition with the

incidence angle fixed at α = 45◦. Although the configurations are different, the two main

dips appear around the ring frequency fr and the critical frequency fcr. It is obvious

that the BU and the UU configurations provide a better performance of transmission

loss than any other configuration does. The transmission loss for the BU and the UU

constructions is 20-40 dB higher than other configurations in the low frequency end of

the plot. Between the ring frequency fr and the critical frequency fcr, this is again

generally true but the difference in the acoustic performance can be seen to strongly



82 Chapter 4

10
1

10
2

10
3

10
4

10
5

0

50

100

150

200

250

Frequency(Hz)

T
ra

n
s
m

is
s
io

n
 L

o
s
s
(d

B
)

 

 

α=30°

α=45°

α=60°

α=75°

f
r

f
cr

f
coin

Figure 4.12: The variation of TL with frequency for different incident angles α (BB
configuration), M = 0.5. fr = 509.32 Hz, fcr = 9395 Hz and fcoin = 37579 Hz have
been calculated using Eqs. (4.38), (4.40) and (4.41) for 30◦, respectively.

Table 4.3: The variation of the critical frequency and the coincidence frequency vary
the Mach number.

Incidence angle fcr fcr fcoin fcoin
with M = 0 with M = 0.5 with M = 0 with M = 0.5

30◦ 6013 Hz 9395 Hz 24051 Hz 37579 Hz
45◦ 6013 Hz 11016 Hz 12025 Hz 22032 Hz
60◦ 6013 Hz 12347 Hz 8017 Hz 16463 Hz
75◦ 6013 Hz 13223 Hz 6444 Hz 14172 Hz

depend upon the frequency. For the configuration of the double shells without the

porous material, the resonances are significant in the mass controlled region (between fr

and fcr). This phenomenon is absent in any other configuration. Similar behaviour has

been previously observed for double shells in the absence of porous lining and external

flow (Lee et al. [41]). The dips can be reduced by the absorption effect of the porous

material, such as the BB, BU and UU configurations. The BB configuration only gives

an overall modest performance of transmission loss without multiple dips unlike that of

the two shells configuration between fr and fcr. This is due to the stiffening effect of

the directly attached foam lining in the BB configuration.

When the effect of external flow is included in the calculations, the results are presented

in Figure 4.14. Below the ring frequency, the BU and the UU configuration still provide

an overall superior performance of sound insulation. However, their contribution is not

so significant as compared to that of no-flow condition. Above the ring frequency, the



Chapter 4 83

10
1

10
2

10
3

10
4

0

20

40

60

80

100

120

Frequency(Hz)

T
ra

n
s
m

is
s
io

n
 L

o
s
s
(d

B
)

 

 

One shell

Double shells without porous material

BB

BU

UU

Figure 4.13: The variation of TL with frequency for different configurations at M = 0
and α = 45◦.
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Figure 4.14: The variation of TL with frequency for different configurations at M = 0.5
and α = 45◦.

TL of the two shells configuration without the porous material is similar to that of the

BU and the UU configurations. It is noted that there are not many dips occurring above

fr for the case of M = 0.5. This can be attributed to the effect of radiation damping

provided by the external mean flow [98]. The damping provided by the external mean

flow is more dominant than that by the porous material in the mass controlled region.
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4.5 Conclusions

In this chapter, an analytical model is developed to calculate the sound transmission

through a double shell lined with poroelastic material including the effect of external

mean flow. The equivalent fluid method based on Biot’s model is used to describe the

porous material. The transmission loss for three types of configurations (BB, BU and

UU) is calculated as a function of frequency. The effect of the mean flow is brought

out. Unlike the flat panel, there exist three main dips in the transmission loss of the

cylindrical shell. The transmission loss decreases as the incident angle increases below

the ring frequency, but increases between the ring frequency and the critical frequency

in all three types of configurations. The critical frequency is independent of the angle

of incidence when the incident wave vector has no azimuthal component. The external

mean flow causes the TL to decrease with some fluctuations below the ring frequency,

but increases above the ring frequency due to the negative stiffness and the damping

effect added by the external flow. The flow also shifts the critical frequency and the

coincidence frequency to higher values, but has no effect on the ring frequency because

the latter is a structural property. The effect of the porous material is significant in

absence of external flow, especially for the BU and the UU configurations. However,

this effect is not remarkable when there is an external flow. The shells without any

porous material can approximately provide the same transmission loss as that of the

BU and the UU configuration above the ring frequency. These results suggest that for

superior noise insulation, the two shells should be separated by an air gap.
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Double-walled cylindrical shells

with turbulent boundary layer

excitation

In Chapter 3 and Chapter 4 , sound transmission through a double-walled flat panel and

a double-walled cylindrical shell respectively, in the presence of external mean flow, was

studied. Mean flow is an idealised case. In real cruise flight conditions, the boundary

layer noise is the dominant source of the aircraft cabin noise [46]. Most researchers

have focused so far on sound transmission through flat panels [47, 48, 51–56]. These

analytical studies based on the plate model neglect the curvature of fuselage or the effect

of neighbouring panel or sometimes both. In practice, the aircraft fuselage is not a single

wall structure. It is a double wall system which consists of a skin panel and a trim panel

with an annular space between them. This is the motivation to study sound transmission

through the cylindrical shell structure lined with porous material under the turbulent

boundary layer excitation. In addition to the more realistic model for flow involving

a turbulent boundary layer, in this chapter, we consider more a realistic structure for

many practical application by allowing the length of the double-walled cylindrical shell

to be finite.

85



86 Chapter 5

5.1 Description of the system

A schematic diagram of the configuration of the system under study is shown in Figure

5.1. Consider two concentric finite cylindrical shells with hard end caps of length L and

radii R1 and R2 for outer and inner shell, respectively. The outer shell is assumed to

be excited by a fully developed turbulent boundary layer flow. The fluid medium in the

exterior and the interior cavity has the density and the speed of sound as (ρe, ce) and

(ρi, ci), respectively. The porous material is lined within the annular space to reduce

the interior noise. As in the previous chapters, three configurations of the sandwich

construction are considered here. A bonded-bonded (BB) configuration, as shown in

Figure 5.1a, is one having both sides of porous material bonded directly to the two

shells. A bonded-unbonded (BU) configuration has one side of porous material bonded

directly to the outer shell and the second side is separated from the inner shell by an

air gap (see Figure 5.1b). An unbonded-unbonded (UU) configuration has both sides of

porous material exposed to the air gap and it is not attached to the two shells (Figure

5.1c).

y
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(a) bonded-bonded (BB)

(b) bonded-unbonded (BU)

(c) unbonded-unboned (UU)

L

Figure 5.1: A sketch showing the sound wave transmission problem through the double
shells system. Different configurations: (a) bonded-bonded (BB); (b) bonded-unbonded
(BU); (c) unbonded-unbonded (UU).

The porous material can be modelled as an equivalent fluid by using the wave number of

the strongest wave and its corresponding equivalent density based on Biot’s model [29]
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proposed by Lee et al. [81]. This method was introduced in Chapter 3 and Chapter 4.

We still continue to use this simplification in the present chapter. The strongest wave in

each configuration has been presented in Table 3.5 of Chapter 3. For brevity, the details

of this method will not be repeated here.

5.2 Governing equations

Let {u0j , v0j , w0
j} be the displacement components at the neutral surface of a shell in

the axial, circumferential and the radial directions, where the subscript j denotes the

variables associated with the outer shell (j = 1) and the inner shell (j = 2). Love’s thin

shell theory [93] is used here to describe the motion of the two shells. Taking temporal

Fourier transform, the equations of shells motion can be expressed as

L1{u0j , v0j , w0
j}+ ω2ρsjhjuj = 0 (5.1)

L2{u0j , v0j , w0
j}+ ω2ρsjhjvj = 0 (j = 1, 2) (5.2)

L3{u0j , v0j , w0
j}+ ω2ρsjhjwj = ∆pj (5.3)

where ρsj are hj are the density and the thickness of the shell, respectively, ω is angular

frequency, ∆pj is the pressure difference between the two sides of the shell. L1, L2 and

L3 are linear differential operators for the circular cylindrical shell which are presented

in the Appendix D.

Figure 5.1a (on the right side of the figure) shows a double shell arrangement lined with

porous material in the BB configuration. The space can be divided into three regions:

the exterior region where the turbulent boundary layer is present, the annular space

fully filled by the porous material and the interior cavity with static air. If we neglect

the radiation pressure, the total fluctuating pressure in the external fluid p1 is only the

random fluctuating pressure induced by the TBL. The Fourier transform of the wave

equations of the annular space and the cavity leads to the Helmholz equation for both

pressure variables

∇2p2 + k22p2 = 0, ∇2p3 + k23p3 = 0 (5.4)
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where p2 and p3 are the pressure in the annular space and the interior cavity, respec-

tively. The complex wavenumber k2 = kII presents the wavenumber of the frame wave

propagating in the porous material (see Table 3.5). The wavenumber k3 in the cavity

equals ω/ci.

The pressure term in Eq. (5.3) for outer shell is given by

∆p1 = p2 − p1, (5.5)

and that for the inner shell is given by

∆p2 = p3 − p2. (5.6)

At the interfaces between the elastic shells and the fluids, the following boundary con-

ditions must be satisfied

∂p2
∂r

∣∣∣∣
r=R1

= ρ2ω
2w1 (5.7)

∂p2
∂r

∣∣∣∣
r=R2

= ρ2ω
2w2 (5.8)

∂p2
∂r

∣∣∣∣
r=R2

= ρiω
2w2 (5.9)

where ρ2 = ρ∗11 is the density of equivalent fluid for the porous material in the BB

configuration (see Table 3.5).

The boundary conditions at both ends were assumed to be simply supported which is

in line with other researchers [49–51, 56]. Therefore, the boundary conditions for the

simply supported shells, at both ends, must be satisfied

wj =
∂2wj
∂z2

= 0

∣∣∣∣
z=0,L

(j = 1, 2) (5.10)

The gradients of the pressure p2 and p3 are zero at both ends (rigid walls)
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∂pj
∂z

= 0

∣∣∣∣
z=0,L

(j = 2, 3). (5.11)

Considering the equations of motion (5.1)-(5.3) and boundary conditions Eq. (5.10), the

solutions for the displacement field can be expressed as

uj(z, θ, ω) =
∞∑

m=1,n=0

ujmn(ω) cos
mπz

L
cos(nθ) (5.12)

vj(z, θ, ω) =
∞∑

m=1,n=0

vjmn(ω) sin
mπz

L
sin(nθ) (j = 1, 2) (5.13)

wj(z, θ, ω) =
∞∑

m=1,n=0

wjmn(ω) sin
mπz

L
cos(nθ) (5.14)

where the modal coefficients ujmn, vjmn and wjmn are unknown.

Similarly, the p1 can be expanded as

p1 =
∞∑

m=1,n=0

p1mnΨ(z, θ), p1mn =
εn
πL

[∫ L

0

∫ 2π

0
p(z, θ, ω)Ψmn(z, θ)dzdθ

]
(5.15)

where εn are Neumann factors, εn = 1 for n = 0 and εn = 2 otherwise. The orthogonal

basis functions Ψmn(z, θ) = sin mπz
L cos(nθ).

The pressures p2 and p3 are also expanded in terms of the orthogonal basis as

p2 =
∞∑

m=1,n=0

[p21mnJn(k2rmr) + p22mnYn(k2rmr)] Ψmn(z, θ) (5.16)

p3 =
∞∑

m=1,n=0

p3mnJn(k3rmr)Ψmn(z, θ) (5.17)

where Jn and Yn are the first and second kinds of Bessel functions of order n, respectively.

k22rm = k22 − (mπ/L)2 and k23rm = k23 − (mπ/L)2, p21mn, p22mn and p3mn are unknown

model coefficients.
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Substituting the Eqs. (5.12)-(5.17) into the field equations (5.1)-(5.3) and the bound-

ary conditions (5.7)-(5.9), we can obtain the unknown modal coefficients vector x =

{p21mn, p22mn, p3mn, u1mn, v1mn, w1mn, u2mn, v2mn, w2mn} as

x = Hp1mn (5.18)

where H = {Hp21mn, Hp22mn, Hp3mn, Hu1mn, Hv1mn, Hw1mn, Hu2mn, Hv2mn, Hw2mn} is a

vector of frequency response functions due to the modal excitation p1mn of the turbulent

boundary layer.

Note the modal basis functions for the pressure p2 and p3, Eqs. (5.16) and (5.17), do

not satisfy the boundary conditions Eq. (5.11). Therefore, the orthogonal functions

Ψmn(z, θ) in Eqs. (5.16) and (5.17) should be expanded as [49, 50]

Ψmn(z, θ) =

∞∑
j=0,j 6=m

εj
π

m[1− (−1)m−j ]

m2 − j2
ϕmn(z, θ) (5.19)

where the orthogonal functions ϕmn(z, θ) = cos(jπz/L) cos(nθ) of p2 and p3 now satisfy

the boundary conditions Eq. (5.11). The relevant unknown model coefficients of the BU

and UU configurations can be obtained in a similar manner. Details of the expressions

relevant for these two configurations are given in the Appendix H and Appendix I,

respectively.

The analysis of the sound radiation to the interior often directly depends on the flexural

response of the inner shell. The total flexural kinetic energy gives an indicator of the

spatially averaged vibration and also of the near field sound radiation [57]. The power

spectral density of the total kinetic energy can be written as

SEK =
1

2

∫ L

0

∫ 2π

0
ρs2h2R2 lim

T→∞
E

[
1

T
ẇ∗2(z, θ, ω)ẇ2(z, θ, ω)

]
dzdθ (5.20)

where ẇ2 = iωw2 is the velocity of the inner shell. The superscript * indicates the

complex conjugate; T is a suitable period of time; E denotes the expectation operator.

Substituting the modal expression for the flexural displacement of Eq. (5.14) and Eq.

(5.18) into Eq. (5.20) and considering the orthogonality conditions, Eq. (5.20) can be

rewritten as
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SEK =
M

2

∞∑
m=1,n=0

|Hw2mn|2Spmn (5.21)

where M =
∫ L
0

∫ 2
0 ρs2h2Ψ

2
mn(z, θ)dzdθ is the modal mass of the inner shell. The modal

power spectral density Spmn of TBL is defined as

Spmn = Φp(ω)
( εn
πL

)2 ∫ L

0
dz1

∫ L

0
dz2

∫ 2π

0
dθ1

∫ 2π

0
dθ2Sp(ξ, η, ω)

sin
mπz1
L

sin
mπz2
L

cos(nθ1) cos(nθ2) (5.22)

where Sp represents the cross spectral density of the pressure fluctuations due to the

TBL, which will be presented later.

5.3 The model of pressure fluctuation due to TBL

If the boundary layer is fully turbulent and the pressure field over the outer surface is

characterized as temporally stationary with spatially homogeneous statistics, the pres-

sure field can be expressed by a cross correlation function that decays with spatial and

time separation [99, 100]. The cross spectral density induced by a TBL can be expressed

as

Sp(ξ, η, ω) = Φp(ω) exp(−α|ξ|) exp(−β|η|) exp(iωξ/Uc), (5.23)

where the separation ξ = z1 − z2 and η = R(θ1 − θ2). Uc denotes the convection

velocity. The quantities α and β will be defined based on Corcos [99] and Efimtsov [100]

model which are frequently used in the literature. Φp(ω) is the autospectrum of the wall

pressure, which is given by [56]

Φp(ω)U∞
q2δ∗

=


2.14× 10−5, ωδ∗/U∞ ≤ 0.25

7.56× 10−6 × (ωδ∗/U∞)−3/4, 0.25 < ωδ∗/U∞ ≤ 0.35

1.27× 10−4 × (ωδ∗/U∞)−3, 3.5 < ωδ∗/U∞

(5.24)
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where the boundary layer displacement thickness δ∗ = δ/8 (δ is the boundary layer

thickness). The dynamic pressure is given by q = ρ0U
2
∞/2 with ρ0 the density of the

fluid and U∞ the free stream velocity.

In the Corcos model [99], the coefficients α and β are

α = αcω/Uc, β = βcω/Uc (5.25)

where αc and βc are constant parameters determined by the experimental results. In

general, the range of the values is αc = 0.11 to 0.12 and βc = 0.7 to 1.2 for a smooth rigid

wall. However, the Corcos model neglects the boundary layer thickness. This drawback

in the Corcos model was addressed by the Efimtsov model [100], in which the coefficients

α and β are

α = 1/αe, β = 1/βe. (5.26)

In Eq. (5.26), αe and βe are given by

αe = δ

[(
0.1Sh

Uc/Uτ

)2

+
5300

Sh2 + 2235

]−(1/2)
(5.27a)

βe = δ

[(
0.77Sh

Uc/Uτ

)2

+
300304

Sh2 + 1648

]−(1/2)
(5.27b)

where the Strouhal number Sh = ωδUτ . Uτ = 0.03U∞ is the friction velocity. The effect

of the boundary layer thickness is considered in the Efimtsov model. It is suitable for a

wide range of Mach number in the range 0.41 to 2.1 [56].

Besides the two models mentioned above, several other models have been proposed (as

reviewed by Miller [101], Graham [102] and Hwang [103]). The purpose of this study is

not to select the best model of the turbulent boundary layer, but to establish a better

understanding of the sound transmission through the sandwich shells in the presence of

the turbulent boundary layer excitation. As the choice of the turbulent boundary layer

model cannot affect the analysis process of the sound transmission problem, the two



Chapter 5 93

popular models, (Corcos model and Efimtsov model which have been used by many other

researchers for predicting the sound transmission through panel under TBL excitation

[47–56]) will be used in our analysis.

5.4 Results and discussions

The two shells are made of aluminum. All the geometry and material properties used in

our calculation are listed in Table 5.1. The dimension of shell chosen here is the same as

that used by Tang et al. [50], which is close to the fuselage dimension of the AIRBUS

A320 family [104]. The properties of the polyimide foams are obtained from the work of

Silcox et al. [18], which is listed in Table 5.2. The parameters of the structure and the

porous material are chosen from Table 5.1 and the Foam 1 in Table 5.2 unless stated

otherwise, respectively. The structural loss factor is modeled as a small imaginary part

of both Young’s modulus Es(1+iηs) in the calculation. The aircraft is assumed to cruise

at an altitude of 35,000 ft (ρe = 0.3795 kg/m3, ce = 296.556 m/s) and is pressured at

10,000 ft (ρi = 0.9041 kg/m3, ci = 328.558 m/s). In the numerical calculations, the

convection velocity Uc equals 0.7U∞ with the freestream velocity U∞ = 225 m/s. The

Uτ is assumed as 0.03U∞. The boundary layer thickness δ is taken as 0.06 m. In Corcos

model, we choose the parameters αc and βc as 0.1 and 0.77, respectively.

Table 5.1: Parameters of the physical system.

Shell properties Description Value

Es Young’s modulus 70 GPa

ρs Density 2700 kg/m3

νs Poisson’s ratio 0.33
ηs Loss factor 0.01
h1 Thickness 2 mm
h2 Thickness 2 mm
R1 Radius 1.88 m
R2 Radius 1.84 m
L Length 30 m

Configuration BU UU

Dimension in the hp = 30 mm hp = 30 mm
annular space ha = 10 mm ha1 = 5 mm

ha2 = 5 mm

The solutions of the displacement of the shells and the pressures are presented in the form

of a double series. Therefore, a sufficiently large number of terms must be considered
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Table 5.2: Biot parameters for polyimide foams [18].

Foam 1 Foam 2 Foam 3

9.6 kg/m3 5.4 kg/m3 5.4 kg/m3

compressed to compressed to compressed to
10% of original 50% of original 20% of original
thickness thickness thickness

Density (kg/m3) 9.6 5.4 5.4
Flow resistivity 29000 40000 10000
(MKS Rayls/m)
Porosity 0.99 0.99 0.99
Tortuosity 3.11 2.11 1.02
Viscous characteristic 66.9 44.0 38.2
length (10−6 m)
Thermal characteristic 268 51.1 59.1
length (10−6 m)
Young’s modulus (kPa) 135 76 27
Loss factor 0.42 0.21 0.0034
Poisson’s ratio 0.21 0.012 0.46

to ensure the convergence of the solutions. If the solution is convergent at the highest

frequency of interest, it is also convergent for all frequencies lower than that. The highest

frequency for our interest is selected as 10000 Hz. Figure 5.2 shows the convergence trend

of inner shell kinetic energy for different configurations of the sandwich with the increase

of mode number m. Note that the truncation of modes in the summations in section 5.2

requires both m and n to be finite. To simplify the convergence study, we have taken

m = n so that a trend such as that in Figure 5.2 is with respect to a single parameter

describing the number of terms included. The trend indicates that more than 300 modes

should be adequate for convergence at 10000 Hz. Therefore, 300 modes are used in the

rest of this chapter.

5.4.1 Comparison between Corcos model and Efimtsov model

By using the Corcos model, Figure 5.3 shows the power spectral density (PSD) for the

inner shell kinetic energy of different configurations. The curves have a plateau before

they decay with 16 dB/Octave. All the curves have a turning point at the same frequency

about 440 Hz. This frequency is attributed to the inner shell resonance. The natural

frequencies of the shell can be predicted by [57] and given by
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Figure 5.2: Mode convergence diagram for different configurations at 10000 Hz.

fsh =
1

2π

√
Es
ρsR2

2

√√√√ (mπR2/L)4

[(mπR2/L)2 + n2]2
+

(h2/R2)
2

12(1− ν2s )

[(
mπR2

L

)2

+ n2

]
. (5.28)
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Figure 5.3: PSD prediction of inner shell kinetic energy of different configurations by
Corcos model.

As h2 << R2 or L, and we select the range of m or n, Eq. (5.28) can be simplified by

ignoring the second term above as

fsh =
1

2π

√
Es
ρsR2

2

√
(mπR2/L)4

[(mπR2/L)2 + n2]2
. (5.29)
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Figure 5.4: PSD prediction of inner shell kinetic energy of different configurations by
Efimtsov model.

The maximum value of fsh is (1/2πR2)
√
Es/ρs = 440.42 Hz, when n = 0. This value is

same as the ring frequency (1/2πR2)
√
Es/ρs. Therefore, the frequency of the turning

point is the ring frequency. Since the ring frequency is the maximum value of the shell

natural frequency based on the chosen mode number m, the peaks due to the inner shell

resonance only occur below the ring frequency. Some of the other peaks are due to the

hydrodynamic coincidence at the frequencies given by [50]

fhy =
1

2π

Ucmπ

L
. (5.30)

At the hydrodynamic coincidence frequencies, the bending wave speed of the inner shell

equals the convection velocity of the flow. The maximum value of the hydrodynamic

coincidence frequencies is calculated as 787.5 Hz for the parameters used here. There-

fore, hydrodynamic coincidence only controls the frequency range which is below 787.5

Hz. The acoustic coincidence resonances at which the bending wave speed of the inner

shell associated with an infinite plate with the same material and thickness equals the

acoustic wave speed of the fluid results in the remaining peaks [50]. Since the maximum

value of the resonance frequencies of the inner shell and the hydrodynamic coincidence

frequencies is below 800 Hz, the peaks in high frequency range are only because of the

acoustic coincidence.

By comparing the three curves in Figure 5.3, we note that the BU and UU configurations
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provide less inner shell kinetic energy than the BB configuration does above the ring

frequency. People have different hearing sensitivity to different frequencies of sound.

The ear is most sensitive for the frequency range from 500-5000 Hz [89]. Therefore, the

BU configuration appears to be most suitable for this frequency range control when the

main concern is noise annoyance. For controlling the vibration of the inner shell over

5000 Hz, the UU configuration seems to be the right choice. However, below the ring

frequency, the PSD of the kinetic energy in the BB configuration is smaller, about 10

dB less than that of the BU and UU configurations. This is because below the ring

frequency, the dynamics of the shell are dominated by the membrane stiffness of the

shell. It is obvious that the BB configuration is stiffer than the other two configurations.

Figure 5.4 shows the kinetic energy of the inner shell while using the Efimtsov model.

In comparison with the results based on the Corcos model (see Figure 5.3), Efimtsov

model predicts the kinetic energy 10-20 dB lower in the frequency range below the ring

frequency. A similar phenomenon is also observed in the references [50, 56]. When the

frequency is over 2000 Hz, the values predicted by the Efimtsov model are same as those

predicted by the Corcos model. The reason is that the exponential coefficients α and β

of the Efimtsov model is consistent with those of the Corcos model at higher frequencies.

It can be shown by substituting the parameters in Eq. (5.26) that over 2000 Hz, the

exponential coefficients α and β of the Efimtsov model correspond to those of the Corcos

model. Since the key features presented by these two models are the same, the following

analysis will only be based on the Corcos model.

5.4.2 The effect of the airgap

Due to the air gap in the BU and UU configurations, only these two configurations are

considered in this subsection. Figure 5.5 shows the variation of the inner shell kinetic

energy of BU configuration with different air gap thickness ha. Following the decrease

of the air gap thickness ha, the inner shell kinetic energy will decrease in most of the

frequency range, especially for higher frequencies. Over 2000 Hz, there are two main

peaks in the curves for ha = 80%(R1 − R2), 60%(R1 − R2) and 40%(R1 − R2). As

explained earlier, these peaks are caused by the acoustic coincidence. However, the first

peak disappears in the curves of ha = 20%(R1 −R2) and 10%(R1 −R2). Therefore, the

first peak is produced by the acoustic coincidence between the inner shell and the annular
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space, while the second peak is generated by the acoustic coincidence between the inner

shell and the inner cavity. The large volume of the porous material can diminish the

first peak. When the thickness of the air gap approaches zero, the curve will be same

as that of the BB configuration (see Figure 5.3). Comparing between Figure 5.3 and

Figure 5.5, we note that the air gap is very important for reducing the noise in the

higher frequency range. This phenomenon is also observed when a plane wave transmits

through the sandwich structures, as shown in Chapter 3 and Chapter 4.

Maury et al. [51] neglected the frame wave transmission within the fiberglass material.

The result of the BU configuration in their study with a thin air gap (15% of the cavity

depth which was the region between two face plates) was the same as that of the BB

configuration. Their result is not reasonable for the BB configuration. Allard and Atalla

[62] have pointed out that the limp model of the porous material is valid when the thin

light foam is decoupled with an air gap from a vibrating system. The current model has

overcome the drawback of the work of Maury et al. [51].
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Figure 5.5: PSD of inner shell kinetic energy of BU configuration with different air gap
depths.

When the thickness of the porous material hp, labeled in Figure 5.1, in the UU configu-

ration is fixed at 20 cm, the variation of the inner shell kinetic energy with the two air

gaps is shown in Figure 5.6. In Figure 5.7, the change of the inner shell kinetic energy

for the different thickness of the two air gaps with hp = 30 cm is shown. From Figure

5.6 and Figure 5.7, it is clear that the unsymmetric structure (ha1 = 5 mm, ha2 = 15

mm and ha1 = 15 mm, ha2 = 5 mm in Figure 5.6; ha1 = 2.5 mm, ha2 = 7.5 mm and
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ha1 = 7.5 mm, ha2 = 2.5 mm in Figure 5.7) provides a better insulation than the sym-

metric structure (ha1 = 10 mm and ha2 = 10 mm in Figure 5.6; ha1 = 5 mm and ha2 = 5

mm in Figure 5.7) does below the ring frequency in both cases, hp = 20 cm and 30 cm.

The peaks around 5000 Hz are also suppressed severely by the unsymmetric structure.

However, this phenomenon is more obvious in the case of hp = 20 cm than that of the

case of hp = 30 cm. Thicker porous material hp = 30 cm could provide better insulation

than the thinner one hp = 20 cm does in the UU configuration as shown in Figure 5.6 and

Figure 5.7. For the thicker porous material case (Figure 5.7), the symmetric structure

shows performance similar to that of the unsymmetric structure in the frequency range

above the ring frequency. The reason is that in the higher frequency range, the cavity

resonance results the peaks as mentioned above. When hp = 30 cm, the dimension of

the air gap is too small compared with the thickness of the porous material. Therefore,

the peaks vary little with the change of the two air gaps depths.
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Figure 5.6: PSD of inner shell kinetic energy of UU configuration with different air gap
depths, when hp = 20 cm.

5.4.3 The effect of the parameters of the porous material

In this subsection, the effect of the parameters of the porous material is discussed. Silcox

et al. [18] compressed a number of polyimide foams in the rise direction to a specified %

of their original thickness, and then allowed them to recover. The relation between the

parameters of the foams and the compression were obtained by experiment. However,

the Biot’s parameters for only three polyimide foams (compressed to 10%, 50% and 20%

of their original thickness for Foam 1, Foam 2 and Foam 3, respectively) were given by
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Figure 5.7: PSD of inner shell kinetic energy of UU configuration with different air gap
depths, when hp = 30 cm.

Silcox et al. [18], which are shown in Table 5.2. Therefore, the parameters of these three

foams are used in the following analysis. Figures 5.8 to 5.10 show the PSD of inner shell

kinetic energy for these three foams in different configurations, respectively.

Foam 3 outperforms the other two foams by 6 to 8 dB on PSD of the inner shell kinetic

energy at frequencies less than the ring frequency in the BB configuration. However, it

only shows such higher values above the ring frequency in the BU and UU configurations.

Below the ring frequency, the stiffness effects of the cylindrical shell are large. Foam 1

and Foam 2 are stiffer than Foam 3 due to their relatively higher Young’s modulus (see

Table 5.2) which is related to the solid phase of the foam. Since in the BB configuration,

the frame wave is the dominant wave in the porous material [81], it is obvious, seeing

the Figure 5.8, that Foam 1 and Foam 2 provide a better insulation than Foam 3 does

below the ring frequency. However, in the frequency range below the ring frequency,

the most important wave in the porous material is the airborne wave in the BU and

UU configurations. Therefore, this phenomenon is not remarkable in the BU and UU

configurations at the frequencies less than the ring frequency, shown as Figure 5.9 and

Figure 5.10.

As discussing in previous, above the ring frequency, the peaks are mainly contributed by

the acoustic coincidence. The PSD of the inner shell kinetic energy is more sensitive to

changes of parameters related to the fluid in the annular space. However, the dominant

wave in the porous material for the BB configuration is the frame wave. The variation
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of flow resistance, the parameter related to the fluid phase in the porous material, will

not obviously change the value of the PSD of the inner shell kinetic energy above the

ring frequency, as Figure 5.8 shown. In the BU configuration, the airborne wave in the

porous material controls the frequency range below 2000 Hz. Therefore, it can be clearly

seen in Figure 5.9 that Foam 2 with the highest flow resistance among these three foams

provides a superior sound insulation in the frequency range from the ring frequency to

2000 Hz. Above 4000 Hz, this phenomenon is not obvious for the BU configuration,

since the frame wave is the dominant wave. The airborne wave is the dominant wave

in the UU configuration. This results that Foam 3 outperforms the other two foams on

PSD of the inner shell kinetic energy at frequencies higher than the the ring frequency

in the UU configuration (see Figure 5.10). By comparing Figures 5.8 to 5.10, Foam 2

with small density provides a superior sound insulation due to its high flow resistance.

The study of Silcox et al. [18] showed that the more the material was compressed, the

lower the modulus and the flow resistance. Therefore, one may not want to compress

the foam for obtaining a better sound insulation. However, Silcox et al. [18] pointed out

that the original polyimide foam was found to have a flow resistivity that was too high

for conventional acoustic applications. Since the Biot’s parameters of only three foams

were given by Silcox et al. [18], the more cases need to be verified.
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Figure 5.8: PSD of inner shell kinetic energy of BB configuration with different porous
material. The Biot’s parameters of these three foams are obtain from the work of Silcox
et al. [18] and listed in Table 5.2
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Figure 5.9: PSD of inner shell kinetic energy of BU configuration with different porous
material. The Biot’s parameters of these three foams are obtain from the work of Silcox
et al. [18] and listed in Table 5.2
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Figure 5.10: PSD of inner shell kinetic energy of UU configuration with different porous
material. The Biot’s parameters of these three foams are obtain from the work of Silcox
et al. [18] and listed in Table 5.2

5.5 Conclusions

In this study, an analytical model is developed to calculate the sound transmission

through a double shell lined with poroelastic material under the exterior turbulent

boundary layer excitation. The axial length of the shell is kept finite. The equiva-

lent fluid method based on Biot’s model is used to describe the porous material. The

power spectrum of the inner shell kinetic energy, an indicator of the spatially averaged

vibration and also of the near field sound radiation, is calculated for the three types
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of configurations (BB, BU and UU) as a function of frequency. The modal expansion

method is used to express the displacements of the shells and the sound pressures in

each region. The effects of the air gap and the parameters of the porous material are

brought out. The following general conclusions can be drawn:

i. All the PSD curves have a turning point at the ring frequency, because the thick-

ness of the shell is far smaller than the radius of the shell. The peaks due to the

contributions of the modes of the shell only occur below the ring frequency. Other

peaks in the curves are caused by the hydrodynamic coincidence and the acoustic

coincidence.

ii. The values of PSD predicted by the Efimtsov are the same as that predicted by

the Corcos model at high frequency (here over 2000 Hz). This is because the

exponential coefficients α and β of the Efimtsov model is consistent with those of

the Corcos model at higher frequencies.

iii. Reducing the thickness of the air gap can decrease the PSD of inner shell kinetic

energy in most of the frequency range for the BU and UU configurations. The air

gap is very important for reduce the noise in higher frequency range, even if it is

very thin. In the UU configuration, the unsymmetric structure can improve the

sound insulation in comparison with the symmetric structure.

iv. The small density foam with high flow resistance, compared to the large density

foam with relatively small flow resistance, can still provide a satisfactory and

even superior sound insulation. Since only three foams given by Silcox et al.

[18] are considered here, the more porous material needs to be considered. This

phenomenon should be further validated by experiment.
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Conclusions and future work

Conclusions

A theoretical model for predicting sound transmission through plates or shells lined with

porous material in the presence of external flow is studied. This study incorporates the

effect of flow on one side of the panels when sound is transmitted through them. In the

simplest case the convected effects of the flow are incorporated using a mean flow model.

Varous idealised geometries of the panel and the internal structure of the sandwich are

considered. Finally, a relatively more realistic model of a finite cylinder excited by a

turbulent boundary layer is studied.

Biot’s model is used to describe the sound propagation in the porous material. Three

types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are

considered. The acoustic performance of the sandwich panel for different configurations

is presented. The effect of external flow on sound transmission is brought out.

In the flat panel model, the transmission loss of three types of configurations is calculated

as a function of frequency in a diffuse sound field. The external mean flow increases the

sound transmission loss with increase in flow velocity, because the external mean flow

results the increase of the impedance of the panel. The critical frequency in the curve of

transmission loss only depends on the properties of the plates. However, the fundamental

resonance frequency is directly related to other geometric and material parameters. Due

to the stiffening effect of the directly attached foam lining in the BB configuration, the

fundamental resonance frequency is higher than that without the porous material. When

considering the pressure effect, transmission loss increases gradually when the pressure

difference between air gap and that in the exterior decreases. This effect is mainly

105
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attributed to the mismatch in the characteristic impedances of the exterior and the

interior. Since the BB configuration provides more stiffness in the air gap between two

face plates due to the mechanical bonding of the layers, the BU and UU configuration

offers a relatively superior performance of sound insulation in most of the frequency

range. The air gap plays a very important role in sound insulation.

In practice, considering the severe weight and space constraints imposed on airplane

soundproofing treatments, the emphasis in many cases has been on minimizing the

weight and depth of the treatment while maintaining adequate sound attenuation char-

acteristics. A bi-optimization is carried out with the objectives of simultaneously mini-

mizing the sound transmission and the structural weight of the flat double-walled panel.

Below the critical point identified on the Pareto-front, the acoustic performance cannot

be improved further and the transmission loss increases at the expense of increasing the

weight. If over the limiting value, the transmission loss will decrease.

The effect of laminated composite face plates is also studied. Like the trend in the

isotropic plates, the external mean flow yields 3-6 dB comparing with no flow condition

in composite sandwich structure. This phenomenon is more obvious in the case of

symmetric cross-ply. The stacking of many ply groups reduces the orthotropy and the

laminate becomes quasi-homogeneous, which results in the value of the dip at the critical

frequency going down. If the thickness of the laminated composite face plate is fixed,

the stacking sequence cannot change the transmission loss in the mass-controlled region,

the transmission loss in the coincidence controlled region can be altered. This effect is

more sensitive for the case of symmetric cross-ply laminates.

Sound transmission through double cylindrical shells lined with porous material in the

presence of external mean flow is studied next. The transmission characteristics of the

sandwich construction are presented for different incidence angles and Mach numbers

over a wide frequency range. The in-plane vibration is coupled with the transverse vi-

bration for cylindrical shells structures. This results in the transmission loss exhibiting

three dips on the frequency axis, at the ring frequency, the critical frequency and the

coincidence frequency. In contrast, there are only two such frequencies for flat panels. In

the stiffness controlled region (i.e. below the ring frequency), the external flow decreases

the sound transmission loss. However, the external flow provides a modest increase in

transmission loss in the mass law region between the ring frequency and the critical
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frequency. The external flow also shifts the critical frequency and the coincidence fre-

quency up, but has no effect on the ring frequency because it depends on the structural

parameters alone. The effect of the porous material is significant in the absence of ex-

ternal flow, especially for the BU and the UU configurations. However, this effect is not

remarkable when there is an external flow. Like plat panels, the results suggest that the

two shells should be separated by an air gap for superior noise insulation.

The turbulent boundary layer becomes the most important noise source for the interior

cabin noise at high Mach numbers. Therefore, the model of sound transmission through

double-walled cylindrical shell lined with poroelastic material in the core excited by the

exterior pressure fluctuation due to the turbulent boundary layer is finally developed.

The power spectral density of the inner shell kinetic energy, an indicator of the spatially

averaged vibration and also of the near field sound radiation is calculated as a function

of frequency for three types of configurations (BB, BU and UU). The peaks of the power

spectral density curve are due to the resonance frequencies of the coupled system, the

hydrodynamic coincidence and the acoustic coincidence. Peaks due to the modes of

the shell occur below the ring frequency. The air gap is found to be very important

for reducing the noise in higher frequency range, even if it is very thin. Reducing the

thickness of the air gap can cause the decrease of the power spectrum density of inner

shell kinetic energy in the most frequency range in the BU and UU configurations.

In the preliminary design of aircraft, there are numerous factors that need to be consid-

ered. Interior noise is one such factor. This current research gives several clues into how

interior noise can be reduced. The external mean flow can increase the sound transmis-

sion loss of the fuselage, even in the condition where there is no porous material lining

between the fuselage skin and trim panel (see Figure 4.14). However, in the flight con-

dition, this possible choice to neglect the porous material is only based on the acoustic

characteristic of the sound transmission through the fuselage. From another aircraft

design point of view, for example thermal insulation, the porous material should be in-

cluded. If the ground test state is considered, the results obtained from static air on the

incidence side of the panel has been shown to provide a conservative estimate of sound

insulation of sandwich panels. If the flight condition is considered, some characteristic

frequencies are dependent on the flow. This should be kept in mind for preliminary de-

signs. Since the human ear is most sensitive in the frequency range 500-5000 Hz. There

should be an air gap between the two face walls for superior sound insulation, e.g. BU
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or UU configuration. However, the BU configuration is easier than the UU configuration

to implement in practice. This is the reason why this configuration is widely used in the

aircraft industry. The choice of the model of sound propagation in the porous material is

crucial for analysing the sound transmission through a sandwich structure. For example,

the equivalent fluid model based on Biot’s model used here overcomes the limitation of

the study of Maury et al. [51] who used the empirical model for investigating the sound

transmission through sandwich panels. It should be noted that the conclusions here

are obtained from a detailed study into the acoustic characteristics. However, aircraft

fuselage design is a very complex process. The acoustic characteristic of the fuselage is

only one of many design factors. In order to satisfy the design criteria of an aircraft,

all the design factors should be considered. The conclusions from the analysis of one

performance parameter, e.g. acoustic characteristics, may not be still valid in other

performance analyses. Therefore, a multi-disciplinary design approach is required.

Future work

The fuselage, in practice, is a stiffened structure. In order to improve the double-wall

structure sound transmission predictions, the modelling of stiffened panels is essential.

Koval [105, 106] developed a theoretical model to analyse the influence of ring frames

and stringers on sound transmission through cylindrical shells. By treating the stiffeners

as discrete elements, Koval improved the smeared-stiffener theory formulated by Rosen

and Singer, because smeared-stiffener the one was only valid at low frequencies. Lee

et al. [107] studied sound transmission through circular cylindrical shell stiffened by

periodically deployed stiffeners by using the space harmonic expansion method developed

by Mead et al. [108]. In this respect, the application of periodic structures theory

could provide novel insight. Later, Efimtsov et al. [109] also used the space harmonic

expansion method to investigate the sound pressure in cylindrical shells with stiffeners

excited by the random field of wall pressure fluctuations of the turbulent boundary layer.

Liu et al. [110] used the receptance method and modal expansion technique to evaluate

the airborne sound insulation of curved panels with a stringer and frame attachments.

However, the problem of sound transmission through the stiffened structures lined with

porous material under different excitation fields seems to have not been addressed. This

certainty is an area that needs attention in the future.

The inner shell, trim panel of the fuselage, is not of a simple regular cylindrical shape,
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but includes an internal floor partition. The internal floor will change the response

of the inner shell and the interior sound pressure. Fuller [111] suggested a simplified

model to study the effect of the floor on the sound transmission inside an infinite thin

cylindrical shell coupled to a cylindrical shaped cavity. The floor was modelled by a series

of periodic forces evaluated by a zero radial shell displacement condition. Missaoui et

al. [112] studied the vibroacoustic character of a shell-floor-cavity system by using the

artificial springer technique and the integro-modal approach which are the two methods

they previously established. One of these two methods respectively proposed by Fuller

and Missaoui can be involved in current models to give a more accurate interior noise

prediction for a real aircraft.

The model of porous material as an equivalent continuum also presents new opportu-

nities for research. Invariably, these apparent properties need to be measured in the

laboratory. Recent advances in the area of modelling of foams and porous material for

elastic response could be extended for the vibroacoustics of such medium.
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Matrix formulation of the flat
panel system in the BB
configuration

In order to satisfy the boundary conditions on the panel, the trace wavelengths must

match on the panel, giving

k1x = k1p cos θ = kx = k2p cos θ = ktx (A.1)

k1y = k1p sin θ = ky = k2p cos θ = ktx (A.2)

(A.3)

So the following expressions can be obtained

w1 = W1e
iωt−i(k1xx+k1yy) (A.4)

w2 = W2e
iωt−i(k1xx+k1yy) (A.5)

u1s = U1se
iωt−i(k1xx+k1yy) (A.6)

v1s = V1se
iωt−i(k1xx+k1yy) (A.7)

u2s = U2se
iωt−i(k1xx+k1yy) (A.8)

v2s = V2se
iωt−i(k1xx+k1yy) (A.9)

pt = Pte
iωt−i(k1xx+k1yy+ktzz) (A.10)
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The following boundary conditions must be satisfied in the BB configuration.

At z = 0:

(1). D2w1
Dt2

=
(
∂
∂t + V · ∂∂x

)2
= − 1

ρi
∂p1
∂z

(2). uz = w1

(3). Uz = w1

(4). ux = u1s − h1
2
∂w1
∂x

(5). uy = v1s − h1
2
∂w1
∂y

(6).
[
D1s

(
k21x + 1−ν1

2 k21y
)
− ω2m1s

]
u1s +D1s

1+ν1
2 k1xk1yv1s = τxz

(7). [D1(k
2
1x + k21y)

2 − ω2m1s]w1 = p1 + σz + σf − i
(
kx

h
2 τxz + ky

h
2 τyz

)

At z = H:

(8). D2w2
Dt2

= ∂2w2
∂t2

= − 1
ρ2
∂pt
∂z

(9). uz = w2

(10). Uz = w2

(11). ux = u2s − h2
2
∂w2
∂x

(12). uy = v2s − h2
2
∂w2
∂y

(13).
[
D2s

(
k21x + 1−ν2

2 k21y
)
− ω2m2s

]
u2s +D2s

1+ν2
2 k1xk1yv2s = τxz

(14). [D2(k
2
1x + k21y)

2 − ω2m2s]w2 = −pt − σz − σf − i
(
k1x

h2
2 τxz + k1y

h2
2 τyz

)
Then substituting the appropriate expressions into these boundary conditions and rear-

ranging the resulting equations into matrix form, the following linear equations can be

obtained

[A]{C} = {B} (A.11)

where [A] is a 14× 14 coefficient matrix, {C} is a 14× 1 vector of unknown amplitudes,

{C}T = {C1 C2 C3 C4 C5 C6 W1 W2 U1s V1s U2s V2s Pr Pt}. {B} is the 14× 1 forcing

vector.
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Matrix formulation of the flat
panel system in the BU
configuration

Similar as the BB configuration, the trace wavelengths should match on the panel, giving

k1x = k1p cos θ = kx = k2x = k2p cos θ = ktx (B.1)

k1y = k1p sin θ = ky = k2y = k2p cos θ = ktx (B.2)

(B.3)

So the following expressions can be written as

w1 = W1e
iωt−i(k1xx+k1yy) (B.4)

w2 = W2e
iωt−i(k1xx+k1yy) (B.5)

u1s = U1se
iωt−i(k1xx+k1yy) (B.6)

v1s = V1se
iωt−i(k1xx+k1yy) (B.7)

p2i = P2ie
iωt−i(k1xx+k1yy+k2zz) (B.8)

p2r = P2re
iωt−i(k1xx+k1yy−k2zz) (B.9)

pt = Pte
iωt−i(k1xx+k1yy+ktzz) (B.10)

The following boundary conditions must be satisfied in the BU configuration.
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At z = 0:

(1). D2w1
Dt2

=
(
∂
∂t + V · ∂∂x

)2
= − 1

ρi
∂p1
∂z

(2). uz = w1

(3). Uz = w1

(4). ux = u1s − h1
2
∂w1
∂x

(5). uy = v1s − h1
2
∂w1
∂y

(6).
[
D1s

(
k21x + 1−ν1

2 k21y
)
− ω2m1s

]
u1s +D1s

1+ν1
2 k1xk1yv1s = τxz

(7). [D1(k
2
1x + k21y)

2 − ω2m1s]w1 = p1 + σz + σf − i
(
kx

h
2 τxz + ky

h
2 τyz

)

At z = H:

(8). −βp2 = σf

(9). −(1− β)p2 = σz

(10). (1− β)D
2uZ
Dt2

+ βD
2Uz
Dt2

= − 1
ρ2
∂p2
∂z

(11). τxz = 0

At z = H + l:

(12). D2w2
Dt2

= ∂2w2
∂t2

= − 1
ρ2
∂p2
∂z

(13). D2w2
Dt2

= ∂2w2
∂t2

= − 1
ρ3
∂pt
∂z

(14). [D2(k
2
1x + k21y)

2 − ω2m2s]w2 = p2 − pt

Then substituting the appropriate expressions into these boundary conditions and rear-

ranging the resulting equations into matrix form, the following linear equations can be

obtained

[A]{C} = {B} (B.11)
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where [A] is a 14× 14 coefficient matrix, {C} is a 14× 1 vector of unknown amplitudes,

{C}T = {C1 C2 C3 C4 C5 C6 W1 W2 U1s V1s Pr P2i P2rPt}. {B} is the 14 × 1 forcing

vector.
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Matrix formulation of the flat
panel system in the UU
configuration

Similar as the previous configurations, the trace wavelengths should match on the panel,

giving

k1x = k1p cos θ = kx = k2x = k3x = k2p cos θ = ktx (C.1)

k1y = k1p sin θ = ky = k2y = k3y = k2p cos θ = ktx (C.2)

(C.3)

So the following expressions can be written as

w1 = W1e
iωt−i(k1xx+k1yy) (C.4)

w2 = W2e
iωt−i(k1xx+k1yy) (C.5)

p2i = P2ie
iωt−i(k1xx+k1yy+k2zz) (C.6)

p2r = P2re
iωt−i(k1xx+k1yy−k2zz) (C.7)

p3i = P3ie
iωt−i(k1xx+k1yy+k3zz) (C.8)

p3r = P3re
iωt−i(k1xx+k1yy−k3zz) (C.9)

pt = Pte
iωt−i(k1xx+k1yy+ktzz) (C.10)
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The following boundary conditions must be satisfied in the UU configuration.

At z = 0:

(1). D2w1
Dt2

=
(
∂
∂t + V · ∂∂x

)2
= − 1

ρi
∂p1
∂z

(2). D2w1
Dt2

= ∂2w1
∂t2

= − 1
ρ2
∂p2
∂z

(3). [D1(k
2
1x + k21y)

2 − ω2m1s]w1 = p1 − p2

At z = l1:

(4). −βp2 = σf

(5). −(1− β)p2 = σz

(6). (1− β)D
2uZ
Dt2

+ βD
2Uz
Dt2

= − 1
ρ2
∂p2
∂z

(7). τxz = 0

At z = l1 +H:

(8). −βp3 = σf

(9). −(1− β)p3 = σz

(10). (1− β)D
2uZ
Dt2

+ βD
2Uz
Dt2

= − 1
ρ3
∂p3
∂z

(11). τxz = 0

At z = l1 +H + l2:

(12). D2w2
Dt2

= ∂2w2
∂t2

= − 1
ρ3
∂p2
∂z

(13). D2w2
Dt2

= ∂2w2
∂t2

= − 1
ρ4
∂pt
∂z

(14). [D2(k
2
1x + k21y)

2 − ω2m2s]w2 = p3 − pt

Then substituting the appropriate expressions into these boundary conditions and rear-

ranging the resulting equations into matrix form, the following linear equations can be

obtained
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[A]{C} = {B} (C.11)

where [A] is a 14× 14 coefficient matrix, {C} is a 14× 1 vector of unknown amplitudes,

{C}T = {C1 C2 C3 C4 C5 C6 W1 W2 Pr P2i P2r P3i P3r Pt}. {B} is the 14× 1 forcing

vector.
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Love’s equations

Love’s equation for the circular cylindrical shell:

L1{u0j , v0j , w0
j} = ρsjhj ü

0
j (D.1)

L2{u0j , v0j , w0
j} = ρsjhj v̈

0
j (D.2)

L3{u0j , v0j , w0
j}+ ∆pj = ρsjhjẅ

0
j (D.3)

Differential Operators in above equations are expressed as

L1{u0j , v0j , w0
j} = Kj

∂2u0j
∂z2

+
Kj(1 + µj)

2Rj

∂2v0j
∂z∂θ

(D.4)

+
Kj(1− µj)

2R2
j

∂2u0j
∂θ2

+
Kjµj
Rj

∂w0
j

∂z

L2{u0j , v0j , w0
j} =

Kj(1− µj)
2

(
1

Rj

∂2u0j
∂z∂θ

+
∂2v0j
∂z2

)
(D.5)

+
Kj

Rj

(
µj
∂2u0j
∂z∂θ

+
1

Rj

∂2v0j
∂θ2

+
1

Rj

∂w0
j

∂θ

)

+
Dj(1− µj)

2R2
j

(
∂2v0j
∂z2

− 2
∂3w0

j

∂z2∂θ

)

+
Dj

R2
j

(
1

R2
j

∂2v0j
∂θ2

− 1

R2
j

∂3w0
j

∂θ3
− µj

∂3w0
j

∂z2∂θ

)
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L3{u0j , v0j , w0
j} = Dj

[
−
∂4w0

j

∂z4
+
µj
R2
j

(
∂3v0j
∂z2∂θ

−
∂4w0

j

∂z2∂θ2

)]
(D.6)

+
Dj(1− µj)

R2
j

(
∂3v0j
∂z2∂θ

− 2
∂4w0

j

∂z2∂θ2

)

+
Dj

R2
j

(
1

R2
j

∂3v0j
∂θ3

− 1

R2
j

∂4w0
j

∂θ4
− µj

∂4w0
j

∂z2∂θ2

)

−Kj

Rj

(
µj
∂u0j
∂z

+
1

Rj

∂v0j
∂θ

+
w0
j

Rj

)

where Rj is the radius of the shell. Ej , µj , Kj =
Ejhj
1−µ2j

and Dj =
Ejh

3
j

12(1−µ2j )
are the Young’s

modulus and Poisson’s ratio, membrane and bending stiffness of the shell, respectively.
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BB configuration in the
cylindrical shell system

The terms within Eq. (4.27) are expressed as

A = ρs1h1ω
2 −K1k

2
1z −

K1(1−µ1)n2

2R2
1

, B = − iK1k1zn(1+µ1)
2R1

, C = − iK1µ1k1z
R1

D = iK1k1zn(1+µ1)
2R1

, E = ρs1h1ω
2 − K1k21z(1−µ1)

2 − K1n2

R2
1
− D1k21z(1−µ1)

2R2
1

− D1n2

R4
1

F = −K1n
R2

1
− D1k21zn

R2
1
− D1n3

R4
1

, G = H2
n(k1rR1), H = −H1

n(k2rR1)

I = −H2
n(k2rR1), J = iK1µ1k1z

R1
, K = −D1k21zn

R2
1
− D1n3

R4
1
− K1n

R2
1

L = ρs1h1ω
2 −D1k

4
1z −

2D1k21zn
2

R2
1
− D1n4

R4
1
− K1

R2
1

M = k1rH
2′
n (k1rR1), N = −ρi(ω − V k1z)2

O = k2rH
1′
n (k2rR1), P = k2rH

2′
n (k2rR1), Q = −ρ2ω2

R = ρs2h2ω
2 −K2k

2
1z −

K2(1−µ2)n2

2R2
2

, S = − iK2k1zn(1+µ2)
2R2

, T = − iK2µ2k1z
R2

U = iK2k1zn(1+µ2)
2R2

, V = ρs2h2ω
2 − K2k21z(1−µ2)

2 − K2n2

R2
2
− D2k21z(1−µ2)

2R2
2

− D2n2

R4
2

W = −K2n
R2

2
− D2k21zn

R2
2
− D2n3

R4
2

X = H1
n(k2rR2), Y = H2

n(k2rR2), Z = −H1
n(k3rR2)

A1 = iK2µ1k1z
R2

, B1 = −K2n
R2

2
− D2k21zn

R2
2
− D2n3

R4
2

C1 = ρs2h2ω
2 −D2k

4
1z −

2D2k21zn
2

R2
2
− D2n4

R4
2
− K2

R2
2

D1 = k2rH
1′
n (k2rR2), E1 = k2rH

2′
n (k2rR2), F1 = −ρ2ω2

G1 = k3rH
1′
n (k3rR2), H1 = −ρtω2

I1 = −p0εn(−i)nJn(k1rR1), J1 = −p0εn(−i)nk1rJ ′n(k1rR1)
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Matrix formulation of the
cylindrical shell system in the BU
configuration

Figure 4.1b shows that the double shells lined with porous in the BU configuration. It

consists of incident region, porous material region, air gap and transmitted region. The

fluid medium in the air gap region has physical property (ρ3, c3). ρ2 = ρ∗22 is treated as

the equivalent density of porous material layer in low frequency range, while ρ2 = ρ∗11

in high frequency range. The pressure in each region can be expressed as

pR1 (r, θ, z, t) =
∞∑
n=0

pR1nH
2
n(k1rr) cosnθei(ωt−k1zz) (F.1)

pT2 (r, θ, z, t) =
∞∑
n=0

pT2nH
1
n(k1rr) cosnθei(ωt−k1zz) (F.2)

pR2 (r, θ, z, t) =

∞∑
n=0

pR2nH
2
n(k1rr) cosnθei(ωt−k1zz) (F.3)

pT3 (r, θ, z, t) =
∞∑
n=0

pT3nH
1
n(k1rr) cosnθei(ωt−k1zz) (F.4)

pR3 (r, θ, z, t) =
∞∑
n=0

pR3nH
2
n(k1rr) cosnθei(ωt−k1zz) (F.5)

pT4 (r, θ, z, t) =

∞∑
n=0

pT4nH
1
n(k1rr) cosnθei(ωt−k1zz) (F.6)

The wave numbers in Eqs.(F.1)-(F.6) are defined as
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k1 =
ω

ci

1

1 +M sin(α)
, k1r = k1 cosα, k1z = k1 sinα. (F.7)

k2z = k1z,

in low frequency range:k2r =
√
k2I − k22z, (F.8)

in high frequency range:k2r =
√
k2II − k22z

k3 =
ω

c3
, k3z = k1z, k3r =

√
k23 − k23z. (F.9)

k4 =
ω

ct
, k4z = k1z, k4r =

√
k24 − k24z. (F.10)

The governing equations for the two shells are

L1{u01, v01, w0
1} = ρs1h1ü

0
1 (F.11)

L2{u01, v01, w0
1} = ρs1h1v̈

0
1 (F.12)

L3{u01, v01, w0
1}+ [(pI1 + pR1 )− (pT2 + pR2 )] = ρs1h1ẅ

0
1 (F.13)

L1{u02, v02, w0
2} = ρs2h2ü

0
2 (F.14)

L2{u02, v02, w0
2} = ρs2h2v̈

0
2 (F.15)

L3{u02, v02, w0
2}+ [(pT3 + pR3 )− pT4 ] = ρs2h2ẅ

0
2 (F.16)

Boundary conditions:

∂(pI1 + pR1 )

∂r
= −ρi

(
∂

∂t
+ V · ∇

)2

w0
1

∣∣∣∣∣
r=R1

(F.17)

∂(pT2 + pR2 )

∂r
= −ρ2

∂2w0
1

∂t2

∣∣∣∣
r=R1

(F.18)

pT2 + pR2 = pT3 + pR3
∣∣
r=Rp

(F.19)

vT2 + vR2 = vT3 + vR3
∣∣
r=Rp

(F.20)

∂(pT3 + pR3 )

∂r
= −ρ3

∂2w0
2

∂t2

∣∣∣∣
r=R2

(F.21)

∂pT4
∂r

= −ρt
∂2w0

2

∂t2

∣∣∣∣
r=R2

(F.22)
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where Rp is the radius of the interface between porous material layer and air gap. vT2 ,

vR2 , vT3 and vR3 are the particle velocities in the acoustic space.

These twelve equations can be put into a matrix form as



0 0 0 0 0 0 A B C 0 0 0

0 0 0 0 0 0 D E F 0 0 0

G H I 0 0 0 J K L 0 0 0

M 0 0 0 0 0 0 0 N 0 0 0

0 O P 0 0 0 0 0 Q 0 0 0

0 R S T U 0 0 0 0 0 0 0

0 V W X Y 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Z A1 B1

0 0 0 0 0 0 0 0 0 C1 D1 E1

0 0 0 F1 G1 H1 0 0 0 I1 J1 K1

0 0 0 L1 M1 0 0 0 0 0 0 N1

0 0 0 0 0 O1 0 0 0 0 0 P1





pR1n

pT2n

pR2n

pT3n

pR3n

pT4n

u01n

v01n

w0
1n

u02n

v02n

w0
2n



=



0

0

Q1

R1

0

0

0

0

0

0

0

0


(F.23)

where

A = ρs1h1ω
2 −K1k

2
1z −

K1(1−µ1)n2

2R2
1

, B = − iK1k1zn(1+µ1)
2R1

, C = − iK1µ1k1z
R1

D = iK1k1zn(1+µ1)
2R1

, E = ρs1h1ω
2 − K1k21z(1−µ1)

2 − K1n2

R2
1
− D1k21z(1−µ1)

2R2
1

− D1n2

R4
1

F = −K1n
R2

1
− D1k21zn

R2
1
− D1n3

R4
1

, G = H2
n(k1rR1), H = −H1

n(k2rR1)

I = −H2
n(k2rR1), J = iK1µ1k1z

R1
, K = −D1k21zn

R2
1
− D1n3

R4
1
− K1n

R2
1

L = ρs1h1ω
2 −D1k

4
1z −

2D1k21zn
2

R2
1
− D1n4

R4
1
− K1

R2
1

M = k1rH
2′
n (k1rR1), N = −ρi(ω − V k1z)2

O = k2rH
1′
n (k2rR1), P = k2rH

2′
n (k2rR1), Q = −ρ2ω2

R = H1
n(k2rRp), S = H2

n(k2rRp), T = −H1
n(k3rRp), U = −H2

n(k3rRp)

V =
H1
n(k2rRp) cosα

ρ2c2
, W = −H2

n(k2rRp) cosα
ρ2c2

X = −H1
n(k3rRp) cosα

ρ3c3
, Y =

H2
n(k3rRp) cosα

ρ3c3

Z = ρs2h2ω
2 −K2k

2
1z −

K2(1−µ2)n2

2R2
2

, A1 = − iK2k1zn(1+µ2)
2R2

, B1 = − iK2µ2k1z
R2

C1 = iK2k1zn(1+µ2)
2R2

, D1 = ρs2h2ω
2 − K2k21z(1−µ2)

2 − K2n2

R2
2
− D2k21z(1−µ2)

2R2
2

− D2n2

R4
2

E1 = −K2n
R2

2
− D2k21zn

R2
2
− D2n3

R4
2

F1 = H1
n(k3rR2), G1 = H2

n(k3rR2), H1 = −H1
n(k4rR2)
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I1 = iK2µ1k1z
R2

, J1 = −K2n
R2

2
− D2k21zn

R2
2
− D2n3

R4
2

K1 = ρs2h2ω
2 −D2k

4
1z −

2D2k21zn
2

R2
2
− D2n4

R4
2
− K2

R2
2

L1 = k3rH
1′
n (k3rR2), M1 = k3rH

2′
n (k3rR2), N1 = −ρ3ω2

O1 = k4rH
1′
n (k4rR2), P1 = −ρtω2

Q1 = −p0εn(−i)nJn(k1rR1), R1 = −p0εn(−i)nk1rJ ′n(k1rR1)
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Matrix formulation of the
cylindrical shell system in the UU
configuration

Figure 4.1c shows that the double shells lined with porous in the UU configuration. It

consists of incident region, porous material region, two air gaps and transmitted region.

The fluid medium in the two air gap regions have physical property (ρ2, c2) and (ρ4, c4),

respectively. Because the airborne wave is the dominant wave in this configuration,

ρ3 = ρ∗22 is treated as the equivalent density of porous material layer over the entire

frequency range. The pressure in each region can be expressed as

pR1 (r, θ, z, t) =

∞∑
n=0

pR1nH
2
n(k1rr) cosnθei(ωt−k1zz) (G.1)

pT2 (r, θ, z, t) =
∞∑
n=0

pT2nH
1
n(k1rr) cosnθei(ωt−k1zz) (G.2)

pR2 (r, θ, z, t) =

∞∑
n=0

pR2nH
2
n(k1rr) cosnθei(ωt−k1zz) (G.3)

pT3 (r, θ, z, t) =
∞∑
n=0

pT3nH
1
n(k1rr) cosnθei(ωt−k1zz) (G.4)

pR3 (r, θ, z, t) =
∞∑
n=0

pR3nH
2
n(k1rr) cosnθei(ωt−k1zz) (G.5)

pT4 (r, θ, z, t) =

∞∑
n=0

pT4nH
1
n(k1rr) cosnθei(ωt−k1zz) (G.6)

pR4 (r, θ, z, t) =
∞∑
n=0

pR4nH
2
n(k1rr) cosnθei(ωt−k1zz) (G.7)
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pT5 (r, θ, z, t) =
∞∑
n=0

pT5nH
1
n(k1rr) cosnθei(ωt−k1zz) (G.8)

The wave numbers in Eqs.(G.1)-(G.8) are defined as

k1 =
ω

ci

1

1 +M sin(α)
, k1r = k1 cosα, k1z = k1 sinα. (G.9)

k2 =
ω

c2
, k2z = k1z, k2r =

√
k22 − k22z. (G.10)

k3z = k1z, k3r =
√
k2I − k23z (G.11)

k4 =
ω

c4
, k4z = k1z, k4r =

√
k24 − k24z. (G.12)

k5 =
ω

ct
, k5z = k1z, k5r =

√
k25 − k25z. (G.13)

The governing equations for the two shells are

L1{u01, v01, w0
1} = ρs1h1ü

0
1 (G.14)

L2{u01, v01, w0
1} = ρs1h1v̈

0
1 (G.15)

L3{u01, v01, w0
1}+ [(pI1 + pR1 )− (pT2 + pR2 )] = ρs1h1ẅ

0
1 (G.16)

L1{u02, v02, w0
2} = ρs2h2ü

0
2 (G.17)

L2{u02, v02, w0
2} = ρs2h2v̈

0
2 (G.18)

L3{u02, v02, w0
2}+ [(pT4 + pR4 )− pT5 ] = ρs2h2ẅ

0
2 (G.19)

Boundary conditions:
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∂(pI1 + pR1 )

∂r
= −ρi

(
∂

∂t
+ V · ∇

)2

w0
1

∣∣∣∣∣
r=R1

(G.20)

∂(pT2 + pR2 )

∂r
= −ρ2

∂2w0
1

∂t2

∣∣∣∣
r=R1

(G.21)

pT2 + pR2 = pT3 + pR3
∣∣
r=Rp1

(G.22)

vT2 + vR2 = vT3 + vR3
∣∣
r=Rp1

(G.23)

pT3 + pR3 = pT4 + pR4
∣∣
r=Rp2

(G.24)

vT3 + vR3 = vT4 + vR4
∣∣
r=Rp2

(G.25)

∂(pT4 + pR4 )

∂r
= −ρ4

∂2w0
2

∂t2

∣∣∣∣
r=R2

(G.26)

∂pT5
∂r

= −ρt
∂2w0

2

∂t2

∣∣∣∣
r=R2

(G.27)

where Rp1 and Rp2 are the radius of the interface between porous material layer and the

two air gaps, respectively. vT2 , vR2 , vT3 , vR3 , vT4 and vR4 are the particle velocities in the

acoustic space.

These fourteen equations can be put into a matrix form as



0 0 0 0 0 0 0 0 A B C 0 0 0

0 0 0 0 0 0 0 0 D E F 0 0 0

G H I 0 0 0 0 0 J K L 0 0 0

M 0 0 0 0 0 0 0 0 0 N 0 0 0

0 O P 0 0 0 0 0 0 0 Q 0 0 0

0 R S T U 0 0 0 0 0 0 0 0 0

0 V W X Y 0 0 0 0 0 0 0 0 0

0 0 0 Z A1 B1 C1 0 0 0 0 0 0 0

0 0 0 D1 E1 F1 G1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 H1 I1 J1

0 0 0 0 0 0 0 0 0 0 0 K1 L1 M1

0 0 0 0 0 N1 O1 P1 0 0 0 Q1 R1 S1

0 0 0 0 0 T1 U1 0 0 0 0 0 0 V 1

0 0 0 0 0 0 0 W1 0 0 0 0 0 X1





pR1n

pT2n

pR2n

pT3n

pR3n

pT4n

pR4n

pT5n

u01n

v01n

w0
1n

u02n

v02n

w0
2n



=



0

0

Y 1

Z1

0

0

0

0

0

0

0

0

0

0


(G.28)
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where

A = ρs1h1ω
2 −K1k

2
1z −

K1(1−µ1)n2

2R2
1

, B = − iK1k1zn(1+µ1)
2R1

, C = − iK1µ1k1z
R1

D = iK1k1zn(1+µ1)
2R1

, E = ρs1h1ω
2 − K1k21z(1−µ1)

2 − K1n2

R2
1
− D1k21z(1−µ1)

2R2
1

− D1n2

R4
1

F = −K1n
R2

1
− D1k21zn

R2
1
− D1n3

R4
1

, G = H2
n(k1rR1), H = −H1

n(k2rR1)

I = −H2
n(k2rR1), J = iK1µ1k1z

R1
, K = −D1k21zn

R2
1
− D1n3

R4
1
− K1n

R2
1

L = ρs1h1ω
2 −D1k

4
1z −

2D1k21zn
2

R2
1
− D1n4

R4
1
− K1

R2
1

M = k1rH
2′
n (k1rR1), N = −ρi(ω − V k1z)2

O = k2rH
1′
n (k2rR1), P = k2rH

2′
n (k2rR1), Q = −ρ2ω2

R = H1
n(k2rRp1), S = H2

n(k2rRp1), T = −H1
n(k3rRp1), U = −H2

n(k3rRp1)

V =
H1
n(k2rRp1) cosα

ρ2c2
, W = −H2

n(k2rRp1) cosα
ρ2c2

X = −H1
n(k3rRp1) cosα

ρ3c3
, Y =

H2
n(k3rRp1) cosα

ρ3c3

Z = H1
n(k3rRp2), A1 = H2

n(k3rRp2), B1 = −H1
n(k4rRp2), C1 = −H2

n(k4rRp2)

D1 =
H1
n(k3rRp2) cosα

ρ3c3
, E1 = −H2

n(k3rRp2) cosα
ρ3c3

F1 = −H1
n(k4rRp2) cosα

ρ4c4
, G1 =

H2
n(k4rRp2) cosα

ρ4c4

H1 = ρs2h2ω
2 −K2k

2
1z −

K2(1−µ2)n2

2R2
2

, I1 = − iK2k1zn(1+µ2)
2R2

, J1 = − iK2µ2k1z
R2

K1 = iK2k1zn(1+µ2)
2R2

, L1 = ρs2h2ω
2 − K2k21z(1−µ2)

2 − K2n2

R2
2
− D2k21z(1−µ2)

2R2
2

− D2n2

R4
2

M1 = −K2n
R2

2
− D2k21zn

R2
2
− D2n3

R4
2

N1 = H1
n(k4rR2), O1 = H2

n(k4rR2), P1 = −H1
n(k5rR2)

Q1 = iK2µ1k1z
R2

, R1 = −K2n
R2

2
− D2k21zn

R2
2
− D2n3

R4
2

S1 = ρs2h2ω
2 −D2k

4
1z −

2D2k21zn
2

R2
2
− D2n4

R4
2
− K2

R2
2

T1 = k4rH
1′
n (k4rR2), U1 = k4rH

2′
n (k4rR2), V 1 = −ρ4ω2

W1 = k5rH
1′
n (k5rR2), X1 = −ρtω2

Y 1 = −p0εn(−i)nJn(k1rR1), Z1 = −p0εn(−i)nk1rJ ′n(k1rR1)
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BU configuration under TBL
excitation

Figure 5.1b shows that double shells lined with porous in the BU configuration. The

fluid medium in the air gap region has physical property (ρ3, c3). ρ2 = ρ∗22 is treated as

the equivalent density of porous material layer in the low frequency range, while ρ2 = ρ∗11

in high frequency range [81]. The pressure in porous material, air gap and interior cavity

can be respectively expressed as

p2 =
∞∑

m=1,n=0

[p21mnJn(k2rmr) + p2mnYn(k2rmr)] Ψmn(x, θ) (H.1)

p3 =
∞∑

m=1,n=0

[p31mnJn(k3rmr) + p32mnYn(k3rmr)] Ψmn(x, θ) (H.2)

p4 =
∞∑

m=1,n=0

p4mnJn(k4rmr)Ψmn(x, θ) (H.3)

where k22rm = k22 − (mπ/L)2, k23rm = k23 − (mπ/L)2 and k24rm = k24 − (mπ/L)2. k2 = kI

is referred to as the airborne wave in low frequency range, k2 = kII is referred to as

the frame wave in high frequency range [81]. p21mn, p22mn, p31mn, p32mn and p4mn are

unknown model coefficients.

At the interfaces between the elastic shells and the fluids, the following boundary con-

ditions must be satisfied
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∂p2
∂r

= ρ2ω
2w1

∣∣∣∣
r=R1

(H.4)

p2 = p3|r=Rp (H.5)

v2 = v3|r=Rp (H.6)

∂p3
∂r

= ρ3ω
2w2

∣∣∣∣
r=R2

(H.7)

∂p4
∂r

= ρiω
2w2

∣∣∣∣
r=R2

(H.8)

where the radius of the porous material bottom surface Rp equals R1 − hp.

Substituting the displacements Eqs.(5.12)-(5.14) and pressures Eqs.(H.1)-(H.3) into the

shell motion equations Eqs.(5.1)-(5.3) and the boundary conditions Eqs.(H.4)-(H.8), the

unknown model coefficients vector x = {p21mn, p22mn, p31mn, p32mn, p4mn, u1mn, v1mn,

w1mn, u2mn, v2mn, w2mn} can be obtained as

x = Hp1mn (H.9)

where H = {Hp21mn, Hp22mn, Hp31mn, Hp32mn, Hp4mn, Hu1mn, Hv1mn, Hw1mn, Hu2mn,

Hv2mn, Hw2mn} is a vector of frequency response functions due to the modal excitation

p1mn of the turbulent boundary layer.
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UU configuration under TBL
excitation

Figure 5.1c shows that double shells lined with porous in the UU configuration. The

fluid medium in the two air gap regions have physical property (ρ2, c2) and (ρ4, c4),

respectively. Since the airborne wave is the dominant wave in this configuration, ρ3 = ρ∗22

is treated as the equivalent density of porous material layer over the entire frequency

range [81]. The pressure in air gap 1, porous material, air gap 2 and interior cavity can

be respectively expressed as

p2 =

∞∑
m=1,n=0

[p21mnJn(k2rmr) + p2mnYn(k2rmr)] Ψmn(x, θ) (I.1)

p3 =
∞∑

m=1,n=0

[p31mnJn(k3rmr) + p32mnYn(k3rmr)] Ψmn(x, θ) (I.2)

p4 =
∞∑

m=1,n=0

[p41mnJn(k4rmr) + p42mnYn(k4rmr)] Ψmn(x, θ) (I.3)

p5 =
∞∑

m=1,n=0

p5mnJn(k4rmr)Ψmn(x, θ) (I.4)

where k22rm = k22 − (mπ/L)2, k23rm = k23 − (mπ/L)2, k24rm = k24 − (mπ/L)2 and k25rm =

k25 − (mπ/L)2. k3 = kI is referred to as the airborne wave entire frequency range [81].

p21mn, p22mn, p31mn, p32mn, p41mn, p42mn and p5mn are unknown model coefficients.

At the interfaces between the elastic shells and the fluids, the following boundary con-

ditions must be satisfied
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∂p2
∂r

= ρ2ω
2w1

∣∣∣∣
r=R1

(I.5)

p2 = p3|r=Rp1 (I.6)

v2 = v3|r=Rp1 (I.7)

p3 = p4|r=Rp2 (I.8)

v3 = v4|r=Rp2 (I.9)

∂p4
∂r

= ρ4ω
2w2

∣∣∣∣
r=R2

(I.10)

∂p5
∂r

= ρiω
2w2

∣∣∣∣
r=R2

(I.11)

where Rp1 and Rp2 are the radius of the interface between porous material layer and the

two air gaps, respectively.

Substituting the displacements Eqs.(5.12)-(5.14) and pressures Eqs.(I.1)-(I.4) into the

shell motion equations Eqs.(5.1)-(5.3) and the boundary conditions Eqs.(I.5)-(I.11), the

unknown model coefficients vector x = {p21mn, p22mn, p31mn, p32mn, p41mn, p42mn, p5mn,

u1mn, v1mn, w1mn, u2mn, v2mn, w2mn} can be obtained as

x = Hp1mn (I.12)

where H = {Hp21mn, Hp22mn, Hp31mn, Hp32mn, ,Hp41mn, Hp42mnHp5mn, Hu1mn, Hv1mn,

Hw1mn, Hu2mn, Hv2mn, Hw2mn} is a vector of frequency response functions due to the

modal excitation p1mn of the turbulent boundary layer.
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