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Abstract 

i 

UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
FACULTY OF ENGINEERING AND THE ENVIRONMENT 

Aeronautics and Astronautics 

Thesis for the degree of Doctor of Philosophy 

AERONAUTICAL LIFE-CYCLE MISSION MODELLING FRAMEWORK FOR CON-

CEPTUAL DESIGN 

by Benjamin Schumann 

This thesis introduces a novel framework for life cycle mission modelling during conceptual 

aeronautical design. The framework supports object-oriented mission definition using Geo-

graphical Information System technology. Design concepts are defined generically, enabling 

simulation of most aeronautical vessels and many non-aeronautical vehicles. Moreover, the 

framework enables modelling of entire vessel fleets, business competitors and dynamic opera-

tional changes throughout a vessel life cycle. Vessels consist of components deteriorating over 

time. Vessels carry payload that operates within the vessel environment.  

An agent-based simulation model implements most framework features. It is the first use of 

an agent-based simulation utilising a Geographical Information System during conceptual aero-

nautical design. Two case studies for unmanned aircraft design apply the simulation. 

The first case study explores how the simulation supports conceptual design phase decisions. 

It simulates four different unmanned aircraft concepts in a search-and-rescue scenario including 

lifeboats. The goal is to learn which design best improves life cycle search performance. It is 

shown how operational and geographical impacts influence design decision making by generat-

ing novel performance information. The second case study studies the simulation optimisation 

capability: an existing aircraft design is modified manually based on simulation outputs. First, 

increasing the fuel tank capacity has a negative effect on life cycle performance due to mission 

constraints. Therefore, mission definition becomes an optimisation parameter. Changing mis-

sion flight speeds during specific segments leads to an overall improved design. 
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Conventions 

Several typesets are used throughout this thesis to indicate specific meaning as follows: 

 Code: specific computer code used verbatim in the OSCAR 

simulation code or in the SQLite database code. 

 CLASS: USED TO DENOTE PREVIOUSLY DEFINED JAVA CLASSES AND OBJECT TYPES. 

 Parameter: used to mark parameters, variables and database col-

umn names previously defined. 

 Definition: used to define terms and concepts. 
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Symbol Description 

3i Integrated Coastal Zone Management via Increased Situational Awareness 

through Innovations on Unmanned Aircraft Systems 

6DoF Six degrees of freedom 

ATM Air Traffic Management 

CAD Computer-Aided Design 

CFD Computational Fluid Dynamics 

CoG Centre of Gravity 

COTS Commercial Off The Shelf 

DECODE Decision Environment for COmplex Design Evaluation 

DOC Direct Operating Cost 

ESRI Environmental Systems Research Institute, Inc. (www.esri.com) 

FEA Finite Element Analysis 

FMEA Failure Modes and Effects Analysis 

GB Gigabyte 

GIS Geographical Information System 

GMT Greenwich Mean Time 

GSD Ground Sample Distance 

GUI Graphical User Interface 

ICAO International Civil Aviation Organisation 

IMO International Maritime Organisation 

IPT Integrated Product Team 

IQR Inter-Quartile Range 

MCA Maritime and Coastguard Agency 

OSCAR Operational Simulation for Conceptual Aeronautical designeRs 

PRA Port of Rotterdam Authority 

RNLI Royal National Lifeboat Institution 

rpm rounds per minute 

SESAR Single European Sky ATM Research 

TRL Technology Readiness Level 

UAS Unmanned Aerial System(s) 

USCG United States Coast Guard 

VOM Value Operations Methodology 

VTOL Vertical Take-Off and Landing 

http://www.esri.com/
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List of symbols 

Symbol meaning Units 

c coefficient  

C cost $ 

d data bytes 

D drag N 

d total number of cycles for a target  

g standard gravity    ⁄  

h height m 

l camera footprint length m 

m mass kg 

N number of cycles across a target  

n number of replications  

o distance m 

p pixel pixel 

P power W 

r range m 

R slant range m 

S wing area    

T Student’s T distribution sample  

t time s 

V velocity   ⁄  

W weight kg 

w width m 

  field of view radians 

  propeller efficiency  

μ Mean  

σ standard deviation  

  confidence interval  

  significance level  

  weibull distribution beta parameter  

  detection criteria  

  fuel consumption    ⁄  

  propeller rounds per minute       

  density     ⁄  

  target  

  number of bytes per pixel           ⁄  

  quantity  

  specific fuel consumption       ⁄  
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List of subscripts 

Subscript meaning 

a acquired 

avg average 

D drag 

d drag 

dry dry 

H height 

 h  horizontal 

inst installed 

L lift 

M Maintenance 

max maximum 

Mh maintenance hour 

Mo maintenance operation 

prop propeller 

req required 

v Vertical 
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1 .  I N T R O D U C T I O N  

1.1 Motivation 

1.1.1 Contemporary aeronautical design 

Design of large aeronautical systems consists of trade-offs based on iterative decision-making 

(Ashok 2013). Most decisions are not straightforward but a trade-off between two or more pa-

rameters. These trade-offs are often non-linear, overlap each other and span multiple dimensions 

as well as scales. Essentially, a small change at one end of the design space can have large con-

sequences for remote aspects of design: This makes aeronautical design a complex undertaking 

(Alonso et al. 2009; Kroo et al. 1994). Arguably, design complexity grows at a faster pace than 

the design methods and tools available (Gorissen, Quaranta, Ferraro, Schumann, Schaik, Keane, 

et al. 2014; Raj 1998). Moreover, ever-growing design complexity exacerbates cost overruns, 

delivery delays and quality defects (Collopy & Hollingsworth 2009). According to Collopy 

(2012), ―cost overruns are an emergent property of aerospace development programs‖ inherent-

ly rooted in contemporary design methods and tools. With current methods, it is a big challenge 

to predict the impact of design decisions upon any other part of the design or any aspect of the 

design operation during its life cycle (Curran et al. 2005; Price et al. 2012). Essentially, engi-

neers need to be able to compare two or more designs at multiple levels of abstraction and ob-

tain decision support as to which option is ―better‖. However, it is difficult to define formally 

what ―better‖ means. Value-driven design is a methodology aiming to overcome this difficulty. 
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1.1.2 Value-driven design 

Value-driven design is a framework that aims to improve existing Systems Engineering de-

sign processes for large systems. It shifts the design focus from sub-system design optimisation 

to system level performance (Collopy & Hollingsworth 2011). The latter is quantified by means 

of a ―value‖, often defined in monetary terms as the ratio of benefit over cost. This value can be 

used to compare designs quantitatively as it provides a measure of ―design goodness‖ (Cheung 

et al. 2010). Generating a value requires a holistic perspective of the entire product life cycle 

including design, production, operations and disposal. Thus, value calculation bases upon a 

number of models that contribute specific information such as development cost, manufacturing 

cost or product revenues. A critical component of value-driven design analysis is a model of the 

product life cycle missions and operations in order to quantify its performance capability 

(Collopy 2008).  

1.1.3 Conceptual design mission modelling 

Mission modelling within value-driven design should be used whenever trade-off decisions 

are being made. Many scientists and engineers agree that the most influential trade-off decisions 

occur during the very early conceptual design phase because total unit cost strongly depends on 

such early decisions (Castagne et al. 2009; Cheung et al. 2009; Pidd 1992). Moreover, up to 

80% of the total life cycle cost is fixed during the conceptual design phase (Curran et al. 2004; 

Raj 1998; Saravi et al. 2013; Thokala 2009; Will 1991). However, Jinks (2012) disputes the 

empirical evidence. Nonetheless, mission modelling within value-driven design should be ap-

plied from this earliest design stage onwards. This thesis will introduce a mission model for the 

earliest stage of design, namely the conceptual design phase. 

1.1.4 Explicit mission modelling 

A missions and operations model allows quantifying design performance with high fidelity, 

supporting detailed cost and benefit calculation. However, the fidelity of existing conceptual 

design phase mission models is low: Typically, it is limited to simulating the performance of 

one vessel conducting a ―typical‖ mission profile made up of parameterised flight segments 

(take-off, cruise, land, etc.). Quasi-analytical methods based on simple flight physics compute 

fuel burn for each segment (Torenbeek 2013). Next, designers extrapolate outcomes over the 

expected vessel life cycle. This approach neglects several important factors: 

 Life-cycle variations: A design often conducts different mission types throughout its 

life cycle. A civil aircraft might become a cargo plane later in life. 
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 Spatial mission details: It is critical to analyse where a design faces operational prob-

lems. Does an engine fail near an airport or over the ocean? Do fuel capacity prob-

lems occur near an emergency airport? 

 Fleet behaviour: A fleet of products behaves differently to a single product instance. 

Broken aircrafts can be replaced, several aircrafts can work together to accomplish a 

goal, etc. 

 Life-cycle impact: Current mission extrapolation trivialises the impact of design 

changes upon the life cycle. 

A mission model that overcomes these deficiencies is called an ―explicit‖ mission model 

hereafter: 

Explicit mission model: Defines any operation, life-cycle variation 

and spatial as well as fleet detail in a specific and unambiguous 

way.  

Explicit mission modelling takes into account additional information about the design and its 

operations. This enables estimating the effect of design changes upon the entire life cycle of the 

product. Moreover, quantifying product value becomes more precise compared to existing mis-

sion models. This helps design optimisation and requirements definition during the conceptual 

design phase. However, implementing an explicit mission-modelling framework causes an ini-

tial overhead that must be taken into account.  

 

1.2 Research question 

The previous motivation leads to the thesis hypothesis stating that: 

H
1

: Explicit mission modelling during aeronautical conceptual de-

sign supports decision-making, trade-off analysis and optimisation 

for value-driven design. 

More practically, the research question asks: 

Is it possible to create an explicit, generic life-cycle mission-

modelling framework for aeronautical vessels that supports deci-
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sion-making, trade-off analysis and optimisation for value-driven 

design? 

1.3 Objectives & methodology 

This thesis aims to answer the research question and confirm or reject the hypothesis. This 

includes showing that explicit mission modelling can benefit conceptual design phase decision-

making and optimisation by processing additional operational intelligence. For this, a mission-

modelling framework is presented. It is as generic as possible to cover a wide range of vessels 

and operational scenarios. Vessels include any moving object whose prevalent mission trajecto-

ries are parallel to the earth surface. Operations include any mission that can be modelled from a 

combination of points and paths. In order to be useful beyond theory, the thesis introduces a 

practical implementation to examine the research question and hypothesis quantitatively. This 

implementation is an agent-based simulation model. It incorporates a Geographical Information 

System to model the spatial components of the framework. Acknowledging time and resource 

constraints of the aeronautical conceptual design phase, both the framework and simulation will 

be as simple as possible while being able to answer the research question. Two case studies ap-

ply the simulation model in different settings to demonstrate the capability for decision support 

and optimisation, respectively. The following methodology applies: 

(1) Develop a generic conceptual design phase mission-modelling framework (Chapter 3) 

(2) Develop a practical implementation incorporating the framework features (Chapter 4) 

(3) Use the practical implementation in two case studies based on existing research projects 

a. Case study – Decision support (Chapter 5) 

i. Demonstrate simulation of four different aircraft designs 

ii. Demonstrate framework generic vessel capability beyond aeronautical 

vessels by implementing boats into the operational scenario 

iii. Demonstrate decision support capability by comparing aircraft designs 

and providing a value for each 

iv. Compare impact upon entire life cycle for different designs 

b. Case study – Optimisation (Chapter 6) 

i. Demonstrate conceptual design optimisation and requirement refine-

ment support 

ii. Initial aircraft design performs with specific value 

iii. Manual aircraft parameter variation leads to life-cycle impact and value 

decrease 
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iv. Manual mission parameter variation leads to overall value increase 

demonstrating optimisation capability 

(4) Discuss and conclude (Chapter 7) 

a. Framework and simulation issues 

b. Limitations 

c. Applicability for aeronautical design 

1.4 Contribution to knowledge 

This thesis contributes to scientific knowledge in three ways: 

1. It develops an explicit conceptual design phase mission-based life cycle framework 

that employs agent-based modelling to allow aircraft and component failure in the 

design loop. This departs from current fault-free single-flight mission modelling. 

2. It applies 3D spatial coordinates within a Geographical Information System, moving 

away from existing distance-based mission profiles. 

3. The framework is generic, thus enabling modelling of vessels and scenarios for non-

aeronautical and aeronautical applications alike.  

1.5 Thesis outline 

The acronym OSCAR (Operational Simulation for Conceptual Aeronautical designeRs) ap-

plies throughout this thesis to refer to the ―OSCAR framework‖ and the ―OSCAR simulation‖.  

The rest of this thesis consists of six chapters: 

The Literature review in Chapter 2 presents and discusses the current knowledge for the main 

themes mentioned above. It describes the common aeronautical design phases focussing on the 

conceptual design phase and its specific challenges. This is followed by a more detailed discus-

sion of value-driven design. Moreover, it discusses the concept of modelling in more detail, dis-

tinguishing between conceptual and mathematical modelling. Next, details on simulation mod-

elling include the state of the art in agent-based simulation and spatial Geographical Information 

System simulation. Last, current methods and tools in aeronautical conceptual design mission 

modelling are discussed. This includes industrial tools as well as recent scientific research ap-

plications. 

Chapter 3 (―Framework―) details the mission modelling OSCAR framework. First, it derives 

the four main framework requirements from the literature review, namely genericity, compre-

hensibility, realism and modularity. Next, the OSCAR framework is divided into scenario-

related content and vessel-related content. First, the chapter presents the scenario-related scope 
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of application and classifies aeronautical operations into three categories. Next, operations are 

partitioned into modular building blocks called ―Segments‖, ―Tracks‖ and ―Missions‖. These 

are embedded into the spatially explicit Geographical Information System setup unique to this 

framework. The vessel-related content is presented next: as before, the chapter defines the scope 

of application and classifies vessels generically. A set of parameters defines each vessel unique-

ly. Moreover, generic propulsion, fatigue and payload add-ins are described. 

Chapter 4 (―Simulation‖) describes the OSCAR simulation. After justifying the application of 

simulation for this model, a functional specification details the objectives and requirements for 

the OSCAR simulation. After discussing software selection, a brief model overview and model 

walkthrough introduce the simulation. Subsequently, the chapter describes specific aspects of 

the simulation model such as data architecture and Geographical Information System support. 

Moreover, it depicts the classes and modules developed for the simulation. Finally, details are 

provided on the OSCAR simulation experimentation, including information on how to embed 

the simulation into contemporary conceptual design phase processes. 

Chapter 5 (―Case study – Decision support‖) details the first case study conducted to present 

the conceptual design phase decision support capabilities of the OSCAR framework and simula-

tion. The goal is to quantify the impact of different designs upon an entire life cycle. It describes 

work conducted as part of a research project where the simulation was used to design, build and 

fly several UAS (Unmanned Aerial Systems). For this, a fictitious but realistic scenario employs 

UAS for search-and-rescue operations. The chapter provides an account of the scenario and 

simulation setup and describes a purpose-build value model. Results compare the UAS quantita-

tively and comment on UAS selection. Three types of decision support provided by the OSCAR 

simulation are discussed, namely value-based, cost-based and qualitative decision support.  

Chapter 6 (―Case study – Optimisation‖) describes the second case study detailing how the 

OSCAR simulation could be used for conceptual design phase optimisation and requirements 

refinement. It describes work conducted as part of another research project where several coun-

tries collaborate to design a UAS platform for English Channel applications. The structure is 

similar to the previous case study with a description of a fictitious but realistic scenario in the 

port of Rotterdam followed by the specific simulation setup. The initial design is simulated, 

analysing operational as well as performance shortcomings. A first design iteration aims to rem-

edy the shortcomings through manual aircraft parameter changes. This increases problems fur-

ther due to the mission-specific setup. A second design iteration takes advantage of the more 

explicit mission modelling and changes mission parameters to improve the situation. Last, all 

three designs are compared.  

Chapter 7 (―Conclusion‖) concludes the thesis and details problems faced during the OSCAR 

framework and simulation development. It lists the inherent limitations that users must be aware 
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of. Moreover, it provides recommendations for industrial adoption and future work. Last, it 

comments on the research question and hypothesis answers obtained. 
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2 .  L I T E R AT U R E  

R E V I E W  

This chapter discusses recent developments in related research areas and details how the 

work of this thesis advances existing knowledge. Section 2.1 describes current aeronautical de-

sign processes and methodologies. It details each design phase and focuses on conceptual de-

sign phase challenges. Section 2.2 presents value-driven design and how mission modelling is 

critical for this design paradigm. Section 2.3 explains the term modelling and presents concep-

tual and mathematical modelling in more detail. Next, Section 2.4 introduces simulation model-

ling discussing its advantages and disadvantages. Moreover, it focuses on agent-based simula-

tion and spatially explicit simulation in more detail. Last, Section 2.5 reviews the current prac-

tice of mission simulation in conceptual aeronautical design, presenting a number of relevant 

commercial tools and research initiatives. 

2.1 Aeronautical design 

Design of artefacts greatly contributes to the artefact final form, cost and reliability. Often, 

design is referred to as ―an art to be learned from experience as opposed to science that can be 

taught‖ (Will 1991). However, design of aeronautical systems differs because it includes ―sci-

ence that can be taught‖. Ideally, this science comprises information and data analysis leading to 

rational design decisions. In fact, Raj (1998) defines aeronautical design as an ―iterative deci-

sion-making activity‖. Price et al. (2006) note that decisions base upon different analysis meth-

ods: 
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“The current approach to aircraft (or any) design can be summa-

rised as being based on conventional configurations using empiri-

cal methods at the highest level, supplemented by sophisticated 

multi-disciplinary simulations at more detailed levels.” 

Consequently, in his book on aircraft design Corke (2003) states that the goal of aircraft de-

sign decision-making is to balance the majority of performance-related design aspects while 

optimising only a few. Curran et al. (2004) observe a gap between high level empirical design 

and detailed modelling: 

“Aircraft engineering is not yet integrated as inter-linkage be-

tween key variables and parameters has not yet been built into a 

structured modelling environment”. 

The proportion of empirical and analytical modelling varies during the different design phas-

es. Despite numerous schematic representations, the literature generally differentiates between 

four design phases, namely requirements collection, conceptual design, preliminary design and 

detailed design (Al-Salka 2001; Bond & Ricci 1992; Price et al. 2006; Tam 2004).  

Progressing through the design phases, the number of design options decreases while the 

number of fixed variables and the number of design parameters increases (Park & Seo 2004). 

Moreover, the level of design detail and confidence grows (Torenbeek 2013). Below, an account 

of each design phase follows, emphasising conceptual design phase challenges. 

2.1.1 Requirements & specification 

Once manufacturers see the need for a new product, they will initiate product requirements 

capture. Torenbeek (1982) provides a number of reasons for manufacturers to endeavour a new 

product design. During the initial requirements collection phase, potential customers and manu-

facturers discuss and define the new product requirements and specifications in detail. Require-

ments are usually exact numerics based on a specific mission profile (Quinn et al. 2012). Precise 

and unambiguous requirements are critical to product success (Will 1991). However, the pro-

cess of obtaining such requirements is difficult. After critically assessing the requirements, they 

are often decomposed and structured using a morphological matrix or similar methods (Twiss 

1992). QFD was proposed to introduce quantifiable metrics into (often subjective and fuzzy) 

requirement discussions (Chan & Wu 2002). By applying matrix ranking methods, specifica-

tions become more rigorous (Hauser & Clausing 1988). The result is a ranked list of design re-

quirements and their relative importance. QFD has several shortcomings: It cannot recognise 
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and display conflicting customer requirements (Scanlan 2007). Moreover, requirements remain 

uncertain aspirations due to imperfect understanding of the product missions, life cycle and op-

erating environment at the time of requirements capture (Thokala 2009).  

Customers usually provide the majority of requirements (Nilubol 2005). With regards to mis-

sion modelling, requirements include a typical mission (or a set of missions) specified by speed, 

distance and payload for different mission segments like take-off, cruise, etc. (Bond & Ricci 

1992). Moreover, specification includes required ranges, landing distances, manoeuvrability 

metrics, weights, reliability figures and target DOC (Direct Operating Cost).  

Collopy (2007) argues that requirements such as weight, costs, reliability and maintainability 

should be excluded from requirements collection. The reason is that these requirements are a 

function of sub-system requirements (―extensive attributes‖). This causes design teams to de-

sign towards the sub-system requirement instead of optimising their sub-system for the entire 

system. Cost overrun is the inevitable consequence. Instead, objective functions for extensive 

attributes should apply as is done within value-driven design. Mavris and Kirby (1999) provide 

another argument against direct extensive attribute specification: Many extensive attributes are 

difficult to quantify. During the conceptual design phase, explicit mission modelling helps refin-

ing requirements (as demonstrated in the case study in Chapter 6). 

2.1.2 Conceptual design phase 

2.1.2.1 Overview 

The purpose of the conceptual design phase is to obtain a product design that fulfils the func-

tional requirements and the expected missions (Anemaat et al. 2013; Romli 2013). According to 

Raymer (2006), the conceptual design phase objective is ―the development of layouts and as-

sessments of distinct design alternatives addressing a common set of requirements‖. The length 

of this phase varies. Mid-size commercial airliner design takes between nine and twelve months 

while business jet design can be as short as four months (Torenbeek 2013). In fact, Engler 

(2013) describes the example of the US Army design request for a joint light tactical vehicle: It 

assigned thirty-three business days to create concept designs. 

Engineers usually conduct conceptual design in stages. Saravi et al. (2013) define seven 

steps, namely (1) customer need clarification, (2) target specification, (3) product concept gen-

eration, (4) product concept selection, (5) product concept testing, (6) final specifications and 

(7) downstream specifications planning. The first step overlaps with the requirements phase and 

re-emphasizes the importance of good requirements capture. Mavris and Kirby (1999) specifi-

cally call step (5) the ―Modelling and Simulation‖ stage, highlighting the importance of compu-

tational tools for conceptual design. In order to simplify the process further, Jameson (1999) 
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lists only three conceptual design phase steps, emphasizing the importance of mission definition 

(Figure 2-1). 

 

FIGURE 2-1: CONCEPTUAL DESIGN PHASE STAGES. REPRODUCED BY JAMESON (1999). 

In practise, designers follow these stages iteratively. Often, several candidates are developed, 

taking into account that many combinations of sub-systems exist that can satisfy the require-

ments (Mavris & Kirby 1999; Thokala 2009). 

Until the 1980s, engineers conducted conceptual design using legacy data, handbooks, manu-

als and their experience. There was a lack of purpose-built evaluation tools for fast decision 

support (Delaurentis et al. 1996; Will 1991). The growth of computational power enabled using 

simple first order tools and custom spreadsheets. Today, the conceptual design phase is very 

software intensive as concept models and designs are generally not assembled physically (Glas 

2013). A large number of low fidelity computer models is used at the same time, mostly based 

on empirical legacy data (Nunez & Guenov 2013). Ideally, conceptual design phase tools are 

highly flexible and fast, accommodating a high degree of uncertainty (Engler 2013). However, 

in reality engineers often create custom, stationary spread sheets that are hard to validate, inte-

grate and manage (Steinkeller 2011). Alternatively, engineers employ COTS (Commercial of 

the Shelf) tools such as PACE or Piano for conceptual aircraft design, including mission model-

ling (see Section 2.5). 

The output of the conceptual design phase is the design candidate that best meets the re-

quirements. To find the best candidate, each design is compared against the initial requirements 

(Quinn et al. 2012). The candidate definition indicates the position of the major components 

such as wings, engines, undercarriage and doors. Moreover, information exists about expected 

weight, flight performance, reliability targets and DOC estimates for subsequent analysis 

(Fielding 1999). Some of this information bases upon conceptual mission modelling. 
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2.1.2.2 Information challenge 

Mavris et al. (1998) describe a ―design paradox‖: During conceptual design, there is little in-

formation (or ―knowledge‖) alongside much design freedom but progressing with design, both 

characteristics reverse as in Figure 2-2.  

 

FIGURE 2-2: DESIGN PHASES KNOWLEDGE, FREEDOM AND COST COMMITTED. REPRODUCED 

WITH PERMISSION FROM MAVRIS ET AL. (1998) 

It can be seen that the goal of design method research is to ease this design paradox by pro-

cessing more information (i.e. ―knowledge‖) earlier and increasing design freedom throughout 

all design stages. To achieve this, design decisions and trade-off requires the right information 

at the right time (Raj 1998). However, Park and Seo (2004) state that the lack of detailed infor-

mation during conceptual design is a barrier to rational decision-making. Due to the ―incom-

plete knowledge about the operational environment‖ (Bandte 2000) and large uncertainties 

about requirements and product performance, designers are forced to select concepts based on 

estimates. Therefore, overcoming the lack of detailed information (or ―knowledge‖ as in Figure 

2-2) during conceptual design is a key theme in conceptual design research (Abbas-Bayoumi & 

Becker 2011; Ashok 2013; Kirby 2001; Mavris & Kirby 1999). In fact, there are more reasons 

for this development. 

In the civil aircraft market, engine and aircraft manufacturers lease a growing portion of their 

production to reduce customer risk (Scanlan 2004; Collins 2012). Since many lease contracts 

are signed very early in the design process, manufacturers must understand life-cycle behaviour 

and risks as early as possible (Scanlan & Rao 2006). Military manufacturers face a different 
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challenge but with the same outcome: As budgets shrink while product requirements focus on 

increased versatility, understanding the product as early as possible is paramount (Nilubol 

2005). Thokala (2009) advocates information shift towards the early design phases in order to 

replace existing early parametric cost models with more detailed ―generative‖ models. Bandte 

(2000) suggests to limit communication during conceptual design to quantitative issues using 

models only. In general, there is a hope to achieve decisions that are more rational during con-

ceptual design by employing information and data that is more detailed (Kirby 2001). Not least, 

Cassidy (2008) argues that ever-growing computational power enables application of more de-

tailed methods earlier in the design process. 

In order to increase information about the design during the conceptual design phase, meth-

ods and tools must adapt. Taguchi (1986) stresses that design improves not through additional 

quality checks and rework but through improved processes. Instead of focussing on problem 

solving, design should be pro-active by applying better modelling and simulation tools. Current 

conceptual design phase models generally focus on performance analysis, neglecting operation-

al life-cycle aspects (Keane & Nair 2005). One of the proposed methods to increase use of mod-

elling and simulation is Integrated Product and Process Development (Ashok 2013). Here, inte-

grated product teams focus their multi-disciplinary effort using digital product models and inte-

grated design tools. By combining concurrent engineering and simulation, manufacturing and 

operational issues are considered much earlier in the design process (Peters 1995; Ranky 1994). 

More generally, Kirby (2001) reasons that new modelling and simulation platforms are impera-

tive due to the growing number of design criteria ruling out purely performance-based design. 

Steinkeller (2011) argues that increasing design knowledge early in the design process requires 

new conceptual design phase tools with higher fidelities. Price et al. (2006) note a lack of suita-

ble computer models that integrate well into existing Systems Engineering design environments: 

Existing models would not consider all sub-systems, their interactions and environmental influ-

ences, thereby neglecting possible emerging behaviour. 

 

This thesis presents a novel way of processing detailed design information for conceptual 

mission modelling by employing an agent-based model within a geographical environment. 

This increases knowledge on operational life cycle performance beyond current mission model 

outputs because sub-systems, interactions and environmental effects are considered concurrent-

ly. Thereby, more rational design decisions and trade-offs become possible. 
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2.1.3 Preliminary design phase 

Emphasizing the importance of the conceptual design phase, Raymer (2006) refers to the ear-

ly preliminary design phase as the point where ―all big questions are answered already‖. Taking 

the conceptual design, each sub-system is now re-considered in more detail using specialist ―In-

tegrated Product Teams‖ (IPT) that encompass several disciplines (Collopy & Poleacovschi 

2012). Work force increases along with the number of design parameters. Additional low-

fidelity models are used alongside more sophisticated analysis tools. They assess initial esti-

mates on aerodynamics and structures such as flutter, aeroelasticity or engine-wing interactions. 

Computational requirements on these analysis codes are very high, limiting the number of pos-

sible design variations that can be assessed (Keane & Nair 2005).  

During the preliminary design phase, engineers also start to consider manufacturing issues. 

Towards the end, the design is frozen with a complete geometric definition. Often, lack of in-

formation, time or analysis capability forces a design freeze despite known defects in order to 

proceed to the detailed design phase (Keane & Nair 2005). The output of the preliminary design 

phase includes the system configuration with detailed sub-system specifications such as 

weights, maintenance elements and software requirements. 

2.1.4 Detailed design phase 

During the detailed design phase new teams form along part definitions (Price et al. 2006). 

Each part is specified in detail at a fidelity high enough to enable manufacturing (Nilubol 2005). 

Computational models are used extensively at high fidelity to test performance, operation and 

maintainability. Despite the extensive use of computational tools, they have a limited influence 

upon the design as most features are fixed by now (Keane & Nair 2005). Physical mock-ups and 

part models are assembled support testing and certification. Mission simulation is conducted at 

much higher level of fidelity because there is less uncertainty with regards to performance and 

reliability (Fielding 1999). At the end of the detailed design phase, manufacturing documents 

and part definitions are released for production (Sadraey 2012). 

2.2 Value-driven design 

Large engineering systems comprise several layers of sub- systems and thousands of parts 

(Quinn et al. 2012). During design of such systems, the system-level design intent can become 

diluted through Systems Engineering requirements flow down, a process whereby system-level 

requirements are broken into sub-system and component requirements (Collopy 2007; Forsberg 

& Mooz 1999). Component design teams focus on local optima instead of system capability 
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(Bandte 2000; Bertoni et al. 2013). Moreover, the Systems Engineering community advocates 

fixed design requirements. However, Collopy (2007) shows that design for fixed weight, cost, 

fuel burn, reliability, etc. leads to cost overruns. Value-driven design was conceived in order to 

focus design intent on system-level requirements and specifications throughout the design pro-

cess. Moreover, it aims to relax fixed design requirements and employ economic principles for 

design optimisation instead. A common definition is: 

Value-driven design is an improved design process that uses re-

quirements flexibility, formal optimisation and a mathematical 

value model to balance performance, cost, schedule, and other 

measures important to the stakeholders to produce the best possi-

ble outcome
1

. 

Curran (2010) adds that value-driven design employs a ―value function that best describes the 

value added of a product […]‖. The goal is to re-focus design efforts on system performance, 

neglecting ―fast and cheap‖ sub-system optimisation which degrades overall system quality 

(Curran et al. 2012). By employing a single measure of overall system ―fulfilment‖, i.e. a value, 

system-wide optimisation can be applied (Bertoni et al. 2013). This system view takes into ac-

count traditional performance and cost considerations but is flexible enough to incorporate other 

stakeholder interests such as the operational environment and life-cycle performance (Cheung et 

al. 2009). Moreover, value-driven design improves the Systems Engineering requirements flow 

down process by deriving objective (value) functions for sub-systems and systems (Collopy 

2001; Keller & Collopy 2013).  

The term ―value‖ is not defined sharply as there is no consensus on its nature and how to de-

termine it generically (Quinn et al. 2012). However, it is used as ―the driver for decision-

making‖ because it is a measure of preference of a system compared to another (Bertoni et al. 

2013). As such, it lends itself for sub-system and system-wide optimisation (Cheung et al. 

2010). Murman et al. (2000) define value as  

 

       
            

        
 Eq. 2-1 

 

where   is a delay factor relative to the time elapsed in reaching the market. In order to com-

pare systems and to do optimisation, value calculation must be numeric, objective, repeatable 

                                                      

1
 See webpage of the Value-driven Design Institute at http://www.vddi.org/vdd-home.htm, accessed 

17/12/2013. 

http://www.vddi.org/vdd-home.htm
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and transparent (Cheung et al. 2010). Smulders et al. (2012) state that value should be relative 

instead of absolute because obtaining absolute numbers is difficult and not necessary. Relative 

values suffice for design comparison and optimisation (Keller & Collopy 2013). Most often, 

value is computed using monetary terms since it is ―intuitive, meaningful and comparable‖ 

(Collopy & Hollingsworth 2011). Consequently, profit is the most frequent system objective 

function although Cheung et al. (2009) argues that design attribute objective functions are ad-

vantageous. Moreover, Bertoni et al. (2013) state that monetary terms are ―largely meaningless‖ 

during the conceptual and preliminary design phase due to the high level of uncertainty on cost. 

Instead, Soban et al. (2011) advocate using scalars because they can include relational aspects 

on top of functional and physical aspects. 

The system value is derived by use of a value model based on economic laws. Keller and 

Collopy (2013) compare it to an electric field in space that defines a scalar voltage to any point 

in space. Similarly, a value model assigns a scalar value to the high dimensional attribute space 

of the product where each point equates to a design. Practically, value models are problem-

specific and there is no universal approach for developing a value model for a product.  

Models vary in quality and reliability, not least because design information is limited during 

conceptual design (Mullan et al. 2012). Mission modelling can increase the amount of infor-

mation during conceptual design, thereby increasing confidence in conceptual design value 

models. Another inherent value-driven design problem is understanding the relation between 

value drivers and value objectives during the conceptual design phase. What is the impact of the 

mean time between failures on product availability? How does profit change if one varies the 

wingspan? Operational mission modelling is the key tool to quantify component and sub-system 

impact upon life-cycle performance. 

Curran et al. (2012) explicitly include operational aspects by introducing the VOM (Value 

Operations Methodology): here the focus is on the operational value for customers, enabling a 

―more realistic operations based performance assessment‖ (ibid.). VOM helps to understand 

optimal operations during design concept evaluation because future aeronautical products must 

be tailored for their intended missions more specifically (ibid). The mission-modelling frame-

work presented in this thesis is a step into that direction. 

2.3 Modelling 

A concise definition of a model is given by (Leonard 2001): 

A model is a physical, mathematical or logical representation of a 

system entity, phenomenon or process. 
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Consequently, modelling is the act to create such a model. There are many model classifica-

tions: Engler (2013) categorises models by their level of fidelity as in Figure 2-3.  

 

FIGURE 2-3: MODEL CLASSIFICATION BY FIDELITY. REPRODUCED FROM ENGLER (2013). 

 

 

FIGURE 2-4: SYSTEM MODELLING OPTIONS. ADAPTED FROM LAW & KELTON (1997). 

There is an inverse relation between result uncertainty and required modelling time: High-

fidelity models (including physical experiments as models of very high fidelity) take much time 

but reward with low uncertainty while low fidelity models (including expert models with very 

low fidelity) reverse both characteristics. However, such ranking is subjective to some degree 

because there are no objective measures for computational model fidelity. Law and Kelton 
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(1997) provide a more objective classification based on rigorous model type boundaries as in 

Figure 2-4. If modelling a real system, this can be done physically, conceptually or mathemati-

cally. Aeronautical conceptual design rarely employs physical models because non-physical 

modelling provides substantial cost benefits (Backlund 2000; Steinkeller 2011). This section 

discusses conceptual modelling (Section 2.3.1) and analytical modelling (Section 2.3.2). Subse-

quently, Section 2.4 presents dynamic modelling (i.e. simulation). There is no consensus on the 

ideal model building process (Prilla et al. 2013). In general, processes aim to match the model 

with the prevalent paradigm and system problem to reduce cost (Yu 2008). Moreover, most 

processes recognise the importance of appropriate model fidelity: Ideally, a model is as simple 

as possible while recreating system characteristics. Fulton et al. (2003) display this idea as the 

―effectiveness frontier‖ when relating model articulation (i.e. fidelity) with effectiveness as in 

Figure 2-5.  

 

FIGURE 2-5: MODEL FIDELITY VERSUS EFFECTIVENESS. REPRODUCED WITH PERMISSION FROM 

FULTON ET AL. (2003). 

There is an optimum effectiveness for models if they are not too simple and not too detailed. 

Boehm (1988) developed a comprehensive model development process emphasizing its iterative 

nature as in Figure 2-6. Each development iteration consists of a requirements phase, evaluation 

phase, development phase and integration phase until final model implementation. Engler 

(2013) reviewed and merged Boehms spiral process and several other approaches into a simple 

five-step procedure shown in Figure 2-7. The development of the framework and simulation in 

this thesis applies Englers five-step approach due to its ease of implementation and simplicity.  

Table 2-1 details where each step is conducted in this thesis. Note that model testing for the 

OSCAR framework is done throughout framework development and by means of producing the 

practical implementation, namely the OSCAR simulation. 
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FIGURE 2-6: MODEL BUILDING PROCESS BY BOEHM. REPRODUCED FROM BOEHM (1988). 

 

 

 

FIGURE 2-7: MODEL BUILDING PROCESS BY ENGLER. REPRODUCED FROM ENGLER (2013). 

 

TABLE 2-1: MODELLING STEPS FOR OSCAR FRAMEWORK AND SIMULATION. 

Step OSCAR framework OSCAR simulation 

Define the problem Section 3.1 Section 4.1 and 4.2 

Gather information Sections 3.2.1, 3.2.2, 3.3.1 and 3.3.2 Section 4.5 

Create the model Sections 3.2.3 & 3.2.4 and 3.3.3- 3.3.6 Sections 4.6-4.12 

Test the model by means of OSCAR simulation 
Section 4.13 and Chap-

ters 5 & 6 

Use the model by means of OSCAR simulation Chapters 5 & 6 
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2.3.1 Conceptual modelling 

Conceptual modelling is arguably the most basic modelling technique used by anybody every 

day. Stevenson (2002) distinguishes three types of conceptual models: 

 Mental models: The brain creates and uses mental models all the time: While driving, 

it assesses if (and when) another car will hit. Mental models are usually difficult to 

verbalise. 

 Verbal models are used early in product design but suffer from ambiguity and onto-

logical barriers (Steinkeller 2011). 

 Schematic models are also used during early product design to show relationships be-

tween entities. An everyday example of a schematic model is a tube map. 

Despite their disadvantages, the simplicity and clarity of conceptual models are very useful. 

They force users to organise and possibly quantify information for later computational models. 

Moreover, they support problem understanding and offer a systematic approach to problem 

solving. However, conceptual models can only be a starting point as they lack quantification 

capabilities. Therefore, more specific models are required. 

2.3.2 Analytical modelling 

Analytical models apply formulae in order to produce numerical solutions to a well-defined 

problem (Jinks 2012). However, the main analytical model tool used in aeronautical conceptual 

design is spread sheet modelling (Keane & Nair 2005). Its apparent flexibility and ease-of-use 

made it pervasive during the last three decades (Panko 2000). However, most spread sheet mod-

elling is conducted ad-hoc with weak structures, frail scientific unit assignment and misleading 

graphical front-ends (Scanlan & Rao 2006). Moreover, the error rate in industrial spreadsheets 

is unacceptably high with some empirical evidence quantifying cell error rates between 1-2% 

(Panko 2008). Although aeronautical engineering lends itself well to hierarchical applications, 

hierarchical modelling is difficult with spread sheets (Paine 2000). Even if companies provide 

best practice guidelines, spreadsheets are inherently hard to comprehend and validate. 

Knowledge and rationale capture hides in sheets, cells and comments. Moreover, it is difficult to 

include uncertainty and stochastic simulation within spreadsheet modelling (Streit et al. 2008). 

Object-oriented hierarchical spreadsheet modelling requires additional effort: Developers must 

resort to the underlying programming language, creating objects akin to simulation modelling 

such as queues, event lists, entities and resources (Engler 2013). Therefore, the OSCAR simula-

tion is not based on spreadsheet modelling but employs a purpose-build simulation-modelling 

tool. 
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2.4 Simulation 

Simulation modelling is widely applied in aeronautical design (Abbas-Bayoumi & Becker 

2011). Leonard (2001) describes simulation as the ―implementation of a model over time‖. 

Conducting a simulation ―brings the model to life and shows how a particular phenomenon or 

object behaves‖. A more formal definition combining Law and Kelton (1997), Steinkeller 

(2011) and Robinson (2004) can be given as: 

Simulation modelling is an analysis method where computers are 

used to evaluate a model numerically in order to estimate the de-

sired true characteristics of the model. It is a computer experiment 

performed upon a model of an operational system as it progresses 

through time. 

Computational simulation models have been used for as long as computers exist. However, 

before the 1980s, models lacked even basic animation capabilities. Most models were devel-

oped for one specific purpose without any reusability(Andersson & Olsson 1998). During the 

1980s, simulation systems grew larger, relying on early simulation tools. However, results were 

prone to error due to a lack of analysis capabilities and useful animation (Steinkeller 2011). The 

1990s saw a boost in application because the rise of the PC enabled useful animation outputs, 

improved analysis and object-oriented work. 

According to Rubinstein (2011) there are three main classifications for simulation models: 

 Static or dynamic models: In static models, nothing changes over simulation virtual 

time and output is constant if input does not change. The OSCAR simulation, on the 

other hand, is a dynamic model where variables change over time and output depends 

on the advance of the simulation virtual time. 

 Deterministic or stochastic models: In deterministic models, no model component 

contains stochastic uncertainty and the output is always the same. In stochastic mod-

els, one or more components are defined with some uncertainty. Re-running the 

model with a different random number seed will (in general) produce different re-

sults. The OSCAR simulation is a stochastic simulation model because aeronautical 

design features many uncertainties. OSCAR simulation random number seeds are 

explained in Section 4.13.2. 

 Time-driven or event-driven models: In ―event-driven‖ simulations, time advances in 

discrete steps whenever an event occurs in the virtual simulation environment. The 

simulation software usually provides a background list of all events with rules on 

how to handle multiple events at the same time. In ―time-driven‖ simulations, time 
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advances smoothly, independent of events occurring in the simulation environment. 

However, the binary nature of computer processing forces such simulations to ―slice‖ 

time into very small units to give the impression of time passing smoothly. ―Time-

driven‖ simulations are inefficient if simulation periods without any events are com-

mon. The OSCAR simulation is ―event-driven‖ because it is supposed to span years 

or decades of vessel operations featuring long periods without events. 

Figure 2-8 shows the simulation methods applicable for time-driven and event-driven models.  

 

FIGURE 2-8: SIMULATION METHODS FOR TIME-DRIVEN AND EVENT-DRIVEN MODELS. ADAPTED 

FROM JINKS (2012) AND YU (Yu 2008). 

Most ―event-driven‖ simulations apply either agent-based methods or process-based methods. 

The latter primarily applies in manufacturing and scheduling applications were physical ―enti-

ties‖ (products, parts, humans) move through a system with limited processing resources, creat-

ing queues and bottlenecks that are of interest to the modeller. The OSCAR simulation, on the 

other hand, applies the agent-based method for reasons discussed in Section 2.4.4. 

Aeronautical conceptual design exhibits many different simulation models, often with over-

lapping scopes and legacy compliance (Bandte 2000; Glas 2013). According to Steinkeller 

(2011), good conceptual design phase models should be flexible enough to be used throughout 

the entire design process to avoid migration losses. However, most models are specific and part 

of extensive legacy vehicle sizing and synthesis codes. Their level of fidelity and quality varies 

strongly depending on model development history (Mavris & Kirby 1999).  

2.4.1 Advantages 

Using a simulation model during conceptual aeronautical design promises a number of ad-

vantages. Often, it is infeasible to construct physical prototypes for testing due to time con-

straints and lack of knowledge. Simulation modelling can reduce costs considerably compared 

to physical testing (Glas 2013). Moreover, designers can observe life-cycle variables that are 

impossible to measure in reality, not least because time scales can be extended or shortened. 

Simulations are designed to include uncertainty and stochastic analysis methods. Stochastic 

simulations provide outcome distributions, taking into account extreme values. According to 
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Mavris et al. (1999) this can be used to maximise the probability of achieving a certain merit 

(―robust design simulation‖). Simulation enables uncertainty at any level of detail for conceptu-

al aeronautical design, namely operational, system and component levels. 

Moreover, simulation modelling offers a number of advantages in a business environment. It 

can foster design creativity because experimentation poses little risk (Yilmaz & Hunt 2011). 

Designers are encouraged to think through details and interactions. Managers can use design 

review meetings to understand and question design decisions using simulation outputs and ani-

mation. 

Animation capabilities have been advocated since the 1970s by Hurrion (1976). During the 

1980s, ―Visual Interactive Simulation‖ enabled model users to interact with the simulation dur-

ing runtime based on visual feedback (Bell & O’Keefe 1987). Today, animation is a core feature 

among most simulation packages. Animation simplifies verification and fosters some degree of 

validation (see Section 4.4.2 for definitions of verification and validation). Moreover, it helps in 

communication between modeller, user and customer (Rohrer 2000). 

2.4.2 Disadvantages 

Simulation modelling features distinct disadvantages as well. In fact, Pidd (1998) sees simu-

lation as a ―last resort‖. Despite the cost advantage over physical modelling, simulation is ex-

pensive due to expert knowledge required (Rubinstein & Kroese 2011). Developing and running 

simulations is time consuming because stochastic outputs require many runs to produce valid 

results. This complicates effective optimisation during conceptual design (Robinson 2004). 

Moreover, results are only valid if the model is a valid representation of the real system. In addi-

tion, simulations tend to require much input data, a lot of which is unavailable or inaccessible 

during conceptual design. 

Another common problem with simulations is over-confidence: The output animation and da-

ta conceal that all outputs are statistical estimates subject to experiment error (Rubinstein & 

Kroese 2011). Professional expertise is required to manage user expectations. The opposite ef-

fect is also common in conceptual design: Engineers are reluctant to apply a simulation model 

recognising that all models are wrong but neglecting that some are useful (Box & Draper 1987; 

Hybertson 2010). Models are rejected because learning is too laborious, company guidelines are 

missing and validation difficulties foster distrust (SAE 1998).  

Many simulation models succeed to inform about what happens (i.e. produce outputs) but 

struggle to convey why (Karban et al. 2008; Wheeler & Brooks 2007). In addition, objectively 

assessing model quality is hard because there are very few generic neutral model metrics such 

as lines of code (Murphy & Collopy 2012; Yu 2008). 
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Moreover, it is inherently difficult to judge when model development is finished. In other 

words, it is difficult to specify the ―correct‖ level of fidelity for simulations (Cassidy et al. 

2008). However, model fidelity is especially important during the conceptual design phase due 

to time and design knowledge constraints. Therefore, fidelity definition for the OSCAR frame-

work and simulation is tuned carefully to conceptual design phase requirements (Sections 3.1 

and 4.2). Despite these disadvantages, the OSCAR framework advocates use of simulation 

modelling as discussed in Section 4.1. 

2.4.3 Requirements 

Applying a simulation model requires certain prerequisites. The simulation must be repeata-

ble. If the same simulation setup runs on two different computers, the same results must be ob-

tained despite stochastic inputs. Therefore, the simulation must feature fixed random number 

streams, preferably custom-defined as with the OSCAR simulation (Section 4.13.2).  

The simulation should allow automatic repetition of the same simulation model with different 

random numbers from a custom-defined random number stream. The number of repetitions 

should be user-defined (fixed number, stop upon confidence level reached, etc.). Such repeti-

tions are called replications in the rest of this thesis. 

The simulation should be able to run in batch mode without animation straining computation-

al efforts. Ideally, multiple replications run on different processor cores independently. This 

speeds up stochastic replication runs dramatically without suffering from the usual problems of 

parallel computing (multi-threading, synchronisation, etc.).  

The simulation model should allow clear and transparent simulation structure generation fol-

lowing physical realities. This promotes model validation and user trust. 

Furthermore, it is good practice to strictly separate a simulation model from input and output 

data. This ―data-driven generic modelling‖ (Jinks 2012) is user-friendly because users can 

amend input data and experiment on outputs without detailed model knowledge. Moreover, sep-

arate data allows improved model version control and data post processing independent from 

the model (ibid). Not least, the model can be used to simulate other structurally similar systems 

by applying different inputs (Pidd 1992). The OSCAR simulation demonstrates this capability 

by modelling aeronautical vessels as well as any other moving vessel such as trains, cars or 

boats. 

2.4.4 Agent-based Simulation 

This section introduces the agent-based modelling approach and its applicability for the OS-

CAR framework and simulation. Creating agent-based simulation models is a relatively recent 

development that has its roots in complex systems research (Weisbuch 1991). Scientists tried to 
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apply new object-oriented programming techniques to solve long-standing issues in artificial 

intelligent systems (Jennings et al. 1998).  

In agent-based modelling, the modeller specifies autonomous entities (i.e. agents) by their 

behaviour, thus allowing ―bottom-up‖ model development instead of the conventional ―top-

down‖ modelling approach (Macal & North 2010). Jennings (2000) defines an agent as 

Agent: An encapsulated computer system that is situated in some 

environment and that is capable of flexible, autonomous action in 

that environment in order to meet its design objectives. 

Parunak et al. (1998) add that agents ―correspond one-to-one with the individuals being mod-

elled, and their behaviours are analogs of the real behaviours‖. Wooldridge and Jennings (1995) 

categorise agents as either deliberative or reactive:  

 Deliberative agents reason rationally from environmental perceptions and predict the 

impact of their action. Such agents can mirror human reasoning based on symbolic 

artificial intelligence. However, they suffer from the computational effort to translate 

complex real world information into computational ―symbols‖ used for reasoning 

(Chapman 1987). Deliberative agents can be used to observe ―emerging‖ phenomena 

not specifically coded into the model. The social sciences exploit this capability since 

it lends itself to modelling human behaviour well (Batty et al. 2012; Davidsson 

2002). 

 Reactive agents, on the other hand, respond to simple environmental cues without ra-

tional reasoning. Instead, they retrieve pre-programmed behaviour quickly. Here, the 

modeller must anticipate and specify all problem situations fully during model de-

sign. Reactive agents allow intuitive model building for real systems with limited 

system knowledge. This approach is used for the OSCAR simulation. The reason is 

that the agents used within OSCAR (aircrafts, lifeboats, trains, components, etc.) do 

not conduct rational reasoning but follow operational rules only. 

According to Macal and North (2010), the typical structure of an agent-based model consists 

of three items:  

 There is a set of agent classes and agent instances with attributes and behaviour. 

 Agents relate to each other through connections and interaction methods. 

 Agents act within and interact with an environment. 

Macal and North (2010) identify five agent environment types, namely cellular automata, Eu-

clidian 2D/3D space, networked, non-spatial ―soup‖ and Geographical Information System en-

vironments. Applying a Geographical Information System environment allows influencing and 

controlling agent behaviour (see next Section 2.4.5). Since aeronautical products react and in-
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teract with their physical environment in many ways, the OSCAR framework and simulation 

incorporate a Geographical Information System environment for agents (Sections 3.2.4 and 4.6). 

Agent-based modelling has the highest possible TRL (Technology Readiness Level) of nine 

(Yu 2008) and it is applied more and more frequently in engineering (Chen et al. 2012). 

Bussmann et al. (2004) describe manufacturing optimisation for car engine cylinder heads using 

agents. In military applications, agent-based modelling is a tool for battlefield simulation in or-

der to support tactical and strategic decisions (Cioppa et al. 2004). During previous years, agent-

based modelling is used more frequently for ATM (Air Traffic Management) research because 

human decision-making dictates operations within a technical environment. As such, Niedring-

haus (2004) describes the ―Jet:Wise‖ model where agents are used to model the US airspace 

system at high fidelity. It predicts future airline decisions based on air space policy changes. 

Wieland and Satapathy (2010) continue the effort describing the substantial effort behind the 

agent-based architecture. Bosse et al. (2013) present an agent-based model for hazards model-

ling in commercial air traffic control as part of the SESAR (Single European Sky Air Traffic 

Management Research) development. In aeronautical engineering, the commercial tool ―aerogil-

ity‖
 2

 applies agent-based modelling to aftermarket and operational support services. Aerogility 

can model airline operations from warehouse level to business processes by applying custom-

build ―intelligent‖ agents. However, there is no research on applying agent-based modelling 

using a Geographical Information System environment in conceptual aeronautical design. 

Agent-based modelling offers several advantages for conceptual aeronautical design. The 

bottom-up modelling approach enables model building with limited system information and 

model amendment from gradual information increase (Macal & North 2010). Moreover, Yu 

(2008) demonstrated that for complex models with many entities, an agent-based model runs 

faster than a similar process-driven model in a conceptual design phase setting. 

However, agent-based modelling features disadvantages as well. Model validation can be-

come more difficult than for process simulations because ―emergent‖ behaviour can occur with-

out apparent explanation. This contrasts with engineering expectations of ―predictable‖ model 

results providing quantitative indications but no new qualitative insight. Some agent-based 

modelling tools define a separate computing thread to each agent (multi-threading). This can 

cause undesired behaviour if threads are not synchronised (Yu 2008). 

This thesis is the first work studying agent-based modelling for mission simulation in concep-

tual aeronautical design. 

                                                      

See 
2
 http://www.aerogility.com/, accessed 19/12/2013. 

http://www.aerogility.com/
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2.4.5 Spatially explicit simulation 

Spatially explicit simulation is a specific type of simulation. It emphasises spatial details as 

important features for simulation output. There are two types of spatially explicit models:  

Spatial models: order components and actions spatially relative to 

each other without geographical reference (see Figure 2-9 (A)). 

This allows analysing spatial relations for which geography is not 

important.  

Geographical models: order components and actions spatially with 

absolute geographical reference as in Figure 2-9 (B). 

 
(A): spatial model3 

 
(B): geographical model4 

FIGURE 2-9: SPATIAL AND GEOGRAPHICAL MODELS. 

Computer-based analysis of spatial patterns dates back to the 1960s. Until the 1990s, spatially 

explicit models focussed on aggregate information lacking specific detail (Batty et al. 2012). 

Agent-based modelling offers more detailed spatially explicit simulation results because agents 

can interact with spatial details directly. Moreover, the agent-based modelling community be-

came interested in spatially explicit models because traditional agent models are limited to grid-

based spatial patterns only (Birkin & Wu 2012; Crooks 2008). However, spatially explicit mod-

el users do not usually work with agent modelling tools while most agent modellers are unfamil-

iar with spatially explicit modelling tools (Rand et al. 2005). Therefore, there are few agent-

based models where agents interact with a spatially explicit model directly. In order to over-

come the disparity, Brown et al. (2005) suggest to develop a middleware because both para-

digms feature demanding software packages that are difficult to master simultaneously. Howev-

er, they admit that this may not be the best long-term solution. 

                                                      

3
 Source: http://www.tfl.gov.uk/assets/images/general/standard-tube-map.gif, accessed 23/10/2013 

4
 Source: (http://www.steveprentice.net/tube/TfLSillyMaps/tubegeo.jpg, accessed 23/10/2013 

http://www.tfl.gov.uk/assets/images/general/standard-tube-map.gif
http://www.steveprentice.net/tube/TfLSillyMaps/tubegeo.jpg
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Today, spatially explicit agent-based models often evade to drawing spatial patterns manually 

within the simulation package. Adelantado (2004) describes an agent-based airport simulation 

where the airport layout is drawn manually. For the OSCAR simulation, a manual approach 

would increase the setup and preparation time for users considerably while reducing genericity 

and flexibility (Section 3.1). Moreover, model re-use becomes more difficult because spatial 

objects are internal to the simulation model. The separation of model and data would not hold 

anymore. 

Zhu and Sala-Diakanda (2007) describe an alternative method using the AnyLogic software 

also applied in this thesis (Section 4.3.2). Here, an agent-based model is linked dynamically to a 

geographical modelling program. Agents send their spatial position to the program and receive 

information about their spatial status (in this case their depth under water). Based on the feed-

back, agents decide future actions. However, this approach is computationally very expensive 

and not useful for large-scale life-cycle simulations as conceived for this thesis. Therefore, this 

thesis develops a unique method of geographical model implementation into AnyLogic as de-

scribed in Sections 3.2.4 and 4.6. 

2.5 Mission Simulation 

This section discusses developments in aeronautical conceptual design mission simulations. 

Testing designs performing their intended missions in a virtual environment is a very important 

factor in contemporary aeronautical design. The number of complex interdependent factors and 

variables is very high even for low fidelity mission models, easily exceeding human analysis 

capability (Heilala & Maantila 2010; McLean & Leong 2001). Kirby (2001) sets an ―uncon-

strained mission analysis‖ capability as a very high priority for modern simulation environments 

because it would provide cost savings, faster design lead times and improved product quality. 

Price et al. (2006) states that the biggest challenge of design today is to account for the ―wider 

system‖ in which aircraft operate, i.e. ATM, regulations and missions. This ―wider system‖ is 

commonly viewed as a design constraint. However, it could be treated as a design parameter 

instead. In order to use mission definitions as design parameters, they need to be modelled real-

istically. Chapter 6 demonstrates the use of mission definitions as design parameters using the 

OSCAR simulation. 

The ―Probabilistic System of Systems Design Methodology‖ developed by Soban (2001) sees 

aircraft as a system that is part of a larger system that includes the operation, ―campaign‖ and 

the entire life cycle (Soban 2001; Soban & Mavris 2000a; Soban & Mavris 2000b). Applying an 

object-oriented approach, aircraft objects are used as part of mission-objects that make up a 

―theatre‖ of (life-cycle) operations. This allows measuring the ―goodness‖ (similar to ―value‖ in 
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value-driven design) of the aircraft earlier in the design process. However, the level of mission 

fidelity is low because the focus of the work is to include probabilistic variables into the design 

process. 

This thesis applies a similar ―system of systems‖ approach where vessel objects act on mis-

sion objects that make up a life cycle. However, the focus is on explicit mission modelling and 

generic vessel definitions. 

2.5.1 Current practice 

Operational scenarios and missions are defined broadly at the start of the conceptual design 

phase (Amirreze et al. 2013). The exact mission definition is critical in determining if the design 

is feasible and viable (Cassidy et al. 2008; Delaurentis et al. 1996). Typically, mission scenarios 

are defined deterministically without any uncertainties despite the variable real environment 

with weather, fuel price and, policy uncertainties (Frangopol & Maute 2003). Moreover, mis-

sion definitions are not detailed during conceptual design because it is deemed inappropriate 

and fast model responses are required (Duquette 2009). While mission parameters are fixed, 

vessel parameters vary for sizing optimisation runs (Bond & Ricci 1992). More specifically, a 

point-mass object follows a mission profile until given requirements such as fuel burn and thrust 

are met within given tolerances. This is repeated with different vessel parameters until a satis-

factory result occurs (Kirby 2001). The point-mass dynamics base on standard textbook equa-

tions such as Raymer (2006) and Torenbeek (2013). 

Current conceptual design phase mission-modelling techniques suffer from several disad-

vantages. Mission profiles are often the sum of simplistic parametric modules such as ―take-

off‖, ―cruise‖ or ―loiter‖. These modules recreate average missions without specific detail. Of-

ten, the chosen mission profile determines the output design trade-offs (Keane & Nair 2005). 

Conceptual design phase optimisation uses mission simulation to tweak aircraft design parame-

ters such as weight, aerodynamics and structural performance. However, it neglects optimising 

mission profiles themselves (Scanlan & Rao 2006). Moreover, the choice of modelling tools and 

methods is largely based on company tradition: This leads to suboptimal model allocation with 

high fidelity models and low fidelity models mixed and matched as seen fit (Krus & Jouannet 

2010). 

The rest of this section introduces a number of tools (commercial and non-commercial) as 

well as recent research on conceptual design phase mission simulation. 
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2.5.2 Tools 

2.5.2.1 Pacelab Mission Suite 

Pace
5
 is a software development company for the aircraft industry. It offers knowledge-based 

engineering COTS tools for all design phases as well as aircraft operations support (Glas 2013). 

One product on offer is the ―Pacelab Mission Suite‖. Customers can setup simple or more com-

plex mission scenarios including routes, fuel policies or ETOPS requirements. Aircraft manu-

facturers use the tool to demonstrate product capabilities to potential airline customers. Missions 

can be defined geographically or schematically while aircraft performance is computed using 

first order or second order principles. The suite provides sophisticated plug-ins to simulate real-

istic operations: it can apply real airport departure and arrival routes, average weather conditions 

and real flight routes. 

However, the tool is designed for use by sales teams at the end of the design process or dur-

ing production. It is not integrated into an aircraft design environment, although it could be used 

for such purposes (and current business plans work towards that goal). In addition, only one air-

craft instance can be analysed at a time, although linear fleet extrapolation is possible. Moreo-

ver, all Pacelab products are specific to commercial, subsonic, civil transport aircraft and do not 

offer a large degree of flexibility to include a wider variety of aeronautical vessels. Not least, the 

Pacelab mission suite does not support stochastic inputs because uncertainty is irrelevant to 

sales teams. 

Despite its target group, components of the Pacelab mission suite are used in conceptual air-

craft design: It is one of the most advanced mission simulation tools on the market. 

2.5.2.2 PIANO 

Piano
6
 (―Project Interactive Analysis and Optimisation‖) is a COTS aircraft synthesis tool for 

conceptual and preliminary design developed by an individual over the past 20 years. It has 

been used by large aerospace companies such Boeing and Airbus. Piano contains all relevant 

modules for conceptual aircraft design such as geometry definition, mass estimation, aerody-

namics, emissions and engine modelling. Moreover, it provides a ―range & mission perfor-

mance‖ module that computes performance from first order principles. User can specify generic 

parameterised mission blocks such as climb, cruise and descent. As with most conceptual design 

phase tools, spatial details are neglected and only one aircraft instance can be analysed at any 

one time (i.e. no fleets, no competitors, etc.). Moreover, Piano is designed for conventional, 

                                                      

5
 See www.pace.de, accessed 20/12/2013. 

6
 See http://www.lissys.demon.co.uk/, accessed 20/12/2013. 

http://www.pace.de/
http://www.lissys.demon.co.uk/
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commercial and subsonic transport aircraft, lacking genericity and flexibility to include other 

designs easily. 

2.5.2.3 ACS 

The ―AirCraft Synthesis tool‖
7
 (also abbreviated ACSYNT) has evolved over the past 40 

years from Fortran-based NASA research at the Ames Research Center (Cassidy et al. 2008). It 

is similar to Piano in that geometry, aerodynamics, propulsion and weight modules enable de-

sign analysis and synthesis. Users define parameterised mission building blocks such as take-

off, climb or cruise. The software computes performance at every point for a single aircraft in-

stance. Unlike Piano, ACS allows wider flexibility concerning aircraft designs, including sup-

port for non-conventional configurations such as flying wings, supersonic aircraft or UAS. 

2.5.2.4 RDS 

Developed by D. Raymer based on his well-known book ―Aircraft Design: A conceptual ap-

proach‖ (Raymer 2006), RDS
8
 is a conceptual aircraft design tool. It is very similar on scope 

and functionality to ACS, allowing flexible configurations but limiting mission simulation to 

parameterised building blocks. 

2.5.2.5 FLAMES 

The ―FLexible Analysis Modelling and Exercise System‖ is a COTS generic simulation 

framework developed by Ternion
9
. FLAMES is able to model a wide variety of moving systems 

such as aircraft, helicopters, humans, cars, etc. It aims to model complex military battlefield 

simulation applications. Unlike Piano, ACS or RDS, it applies object-oriented principles to cre-

ate truly flexible and geographical mission scenarios. However, FLAMES does not provide 

support for aeronautical design activity but for tactical and strategic operational decisions. Cas-

sidy et al. (2008) developed a work-around to use FLAMES (together with ACS) for design of a 

single military aircraft using a single mission. However, integration is not straightforward and 

complex 3D environments are beyond conceptual design phase requirements both computation-

ally and functionally. 

2.5.2.6 FLOPS 

The ―FLight OPtimisation System‖ is a public-domain multi-disciplinary sizing tool for the 

conceptual and early preliminary design phase (McCullers 1995). It was developed by the 

NASA Langley Research Center and includes nine modules: weight, aerodynamics, engine cy-

                                                      

7
 See http://spinoff.nasa.gov/spinoff1997/ct11.html, accessed 20/12/2013. 

8
 See http://www.aircraftdesign.com/rds.shtml, accessed 20/12/2013. 

9
 See http://ternion.com/, accessed 20/12/2013. 

http://spinoff.nasa.gov/spinoff1997/ct11.html
http://www.aircraftdesign.com/rds.shtml
http://ternion.com/
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cle analysis, propulsion scaling, take-off & landing, noise, cost and mission performance. Most 

modules are based on low fidelity empirical methods conforming to conceptual design phase 

practice. Mission definition is similar to Piano, ACS and RDS in that parameterised non-spatial 

mission blocks are combined. FLOPS supports vehicle design optimisation but does not allow 

mission definition changes, i.e. it cannot automatically vary mission parameters for optimisation 

(Delaurentis et al. 1996). The FLOPS code is easily extensible and applied in many research 

projects. 

2.5.2.7 Other tools 

There are a number of other tools available for conceptual aircraft design. CEASIOM
10

 em-

phasises aircraft stability and control issues during conceptual design, providing enough detail 

to use 6DoF (six degrees of freedom) flight simulations. The ―Advanced Aircraft Analysis‖ tool 

by DARcorporation
11

 also focuses on stability and control estimation. The ―j2‖ tool kit by j2 

Aircraft Dynamics Ltd.
12

 Allows to investigate several design candidates in parallel.  

These tools do not provide purpose-build mission modelling modules. Instead, they provide 

plugins to link designs to COTS 6DoF flight simulators. This approach enables very detailed 

simulation results for one specific flight. However, it is difficult to set up a number of missions 

for a fleet of aircraft to model an entire life cycle.  

2.5.3 Research 

This section reviews recent scientific advances in early design phase mission simulation. Na-

lepka and Duquette (2003) developed a human-in-the-loop-oriented programming mission 

simulator to explore operational issues for military UAS. Their simulation framework includes 

five core performance modules, namely move, sense, communication, shoot and interfere. How-

ever, the simulation is used for short-term tactical mission analysis rather than UAS design. 

Nilubol (2005) created a similar framework for combat aircraft but was first in including 

maintenance, vulnerability, performance and cost into a unified conceptual design phase tool. At 

the heart of the framework is the ―Operation Mission Simulation‖ (Figure 2-10). However, mis-

sion simulation is not generic: instead, users can choose from five mission types with fixed pa-

rameters. The simulation is process-based and does not allow modelling of several aircraft in-

stances. Moreover, missions have no waypoints or spatial distribution. 

                                                      

10
 See http://93.88.249.84/index.php, accessed 16/01/2014. 

11
 See http://www.darcorp.com/Software/AAA/, accessed 16/01/2014. 

12
 See http://www.j2aircraft.com/application-benefits/conceptual-and-preliminary-design-2/, accessed 

16/01/2014. 

http://93.88.249.84/index.php
http://www.darcorp.com/Software/AAA/
http://www.j2aircraft.com/application-benefits/conceptual-and-preliminary-design-2/
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FIGURE 2-10: COMBAT AIRCRAFT SIMULATION FRAMEWORK FOCUSSING ON OPERATIONAL MIS-

SION MODEL. REPRODUCED FROM NILUBOL (2005). 

In order to test UAS control algorithms, Duquette (2009) developed the ―AMASE‖ mission 

simulator. It can model a fleet of UAS but approximates flight performance with second order 

look-up tables. It includes simplified climb, descent and turn performance as well as detailed 

loiter options (orbit, figure-eight, racetrack, etc.). ―AMASE‖ focuses on spatially explicit mod-

elling but excludes geography because UAS control algorithm testing does not require geogra-

phy. 

Thokala (2009) developed a process-centric discrete event mission simulation to compute 

improved life-cycle cost estimates during the conceptual design phase. Here, missions are lim-

ited to a number of pre-defined mission types. Aircraft performance applies standard flight dy-

namics equations and atmospheric tables. In addition, it applies simplified CFD (Computational 

Fluid Dynamics) analysis for conventional designs and limits propulsion to turbojet engines. As 

the focus is on life-cycle analysis, the model allows defining an entire aircraft life cycle. How-

ever, only one aircraft instance is modelled and missions cannot change dynamically (e.g. can-

cel due to fuel shortage, etc.). 

Krus and Jouannet developed a more detailed mission simulation (Krus 2011; Krus & 

Jouannet 2010). It focuses primarily on preliminary design phase applications employing a par-

allelised mission simulator with 6DoF aerodynamics. The goal was to create more design 

knowledge during the early design phases by including concurrent sub-system design through 

detailed simulation. However, to keep runtimes acceptable, sub-system models are computed in 

parallel on different cores. Moreover, time-compression algorithms reduce runtime by using 

simplified performance models in steady flight. Missions occur spatially distributed but require 

manual drawing by the user. The idea of parallel mission simulation execution could be useful 

for detailed conceptual design phase simulators. However, module split will be more difficult 

because sub-systems are not clearly defined during conceptual design. 
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Cassidy et al. (2008) used simple operational simulations to determine (but not optimise) crit-

ical mission parameters such as range and speed. They recognised the importance of spatial fac-

tors on vessel design but the mission simulation was not flexible enough to test and compare 

different mission scenarios. However, it is one of the few approaches identifying the effect of 

design changes on mission effectiveness. 

Mission modelling has been applied for different purposes beyond aeronautical design as 

well. Royo et al. (2013) coupled the commercial flight simulator X-Plane with an ATM simula-

tion framework developed by EuroControl in order to test UAS operations within non-

segregated airspace. Here, the UAS model includes component deterioration and interactions to 

observe possible UAS performance influence upon the ATM environment and vice versa. How-

ever, this approach requires much computing power for 3D animation.  

 

In summary, there are many existing commercial and scientific approaches to mission simu-

lation. However, scope and fidelity vary widely. No tool allows to model life cycles using a Ge-

ographical Information System environment, several aircraft instances (fleets, backup aircraft, 

etc.) and a largely generic definition of aircraft vessels. The rest of this thesis will introduce the 

OSCAR framework and simulation aiming to fill this gap. 
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3 .  F R A M E W O R K  

This chapter presents the theoretical OSCAR framework developed to support conceptual de-

sign phase decision making and optimisation. It spans the intellectual process converting real 

vessels and scenarios into framework building blocks and constructs. Essentially, the framework 

is a set of simplifications, schemas, ontologies and recommendations. Users can apply and im-

plement it according to their needs. They can adopt parts of the framework that enhance existing 

processes or decide to implement the whole framework based on existing computer system re-

quirements. The OSCAR framework is the theoretical foundation for the sample implementa-

tion (―OSCAR simulation‖) presented in Chapter 4.  

A core part the OSCAR framework is the organisation of knowledge. There are several exist-

ing schemas for conceptual aircraft design. Boehnke et al. (2012) define the Common Paramet-

ric Aircraft Configuration Schema (CPACS), a hierarchical schema describing characteristics of 

aircraft, rotorcraft, engines, fleets and missions. However, definitions target conventional civil 

airliner design (Glas 2013). Moreover, CPACS follows a top-down approach where most detail 

is specified at high-level design constructs (Deshpande et al. 2013). However, OSCAR requires 

more flexibility concerning vessels as well as more detailed low-level specifications. Deshpande 

et al. (2013) present the ―Aircraft Design Markup Language‖ (ADML) that specifies low-level 

design constructs in more detail. However, its mission representation is based on typical seg-

ments such as take-off, cruise or landing, neglecting spatial information. Therefore, a unique 

schema is presented here that incorporates the requirements of geographical modelling and ge-

neric vessel representation but still overlaps to a large degree with existing schemas. 

Section 3.1 presents the requirements for a useful design framework posed by conceptual de-

sign phase procedures and processes. The actual OSCAR framework consists of two branches: 

Section 3.2 details the mission-related (or scenario-related) framework components while Sec-

tion 3.3 presents the vessel-related framework elements. 
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3.1 Requirements 

Current aeronautical design processes evolved over decades and are well established in the 

industry (Bond & Ricci 1992). Any procedural change disrupts the conduct of design: hence, he 

benefits of change must be larger than the cost of implementation. While most of this thesis dis-

cusses the benefits of change, this section covers the cost of implementation. To minimise the 

cost of implementation, Nurminen et al. (2003) identified several key characteristics for engi-

neering expert systems to be successful:  

 Systems should support experts instead of trying to do their work and replace them.  

 Usability is more important than automation.  

 Technical knowledge capture works best using object-oriented principles.  

 Pure spread sheet modelling becomes expensive in the long run because ―[…] it is 

tempting, if the only tool you have is a hammer, to treat everything as if it were a 

nail‖ (Maslow 2002). 

Engler (2013) argues that conceptual design phase tools must be flexible and fast to help re-

duce the vast design space efficiently. Based on these insights, this section identifies four re-

quirements that the conceptual design phase process demands from a mission-modelling frame-

work (Figure 3-1).  

 

FIGURE 3-1: OSCAR FRAMEWORK REQUIREMENTS RELATIONSHIPS.  

First, the framework should be as generic as possible to accommodate the largest variety of 

designs (Section 3.1.1). Second, the framework components and interactions must be simple and 

comprehensible to allow quick setup and easy application (Section 3.1.2). Third, applying the 

framework should return realistic results to merit its use and convince decision makers (Section 

3.1.3). Last, the framework should be modular to allow easy adaptation and extension (Section 
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3.1.4). A perfectly realistic model is hard to comprehend and highly specific (i.e. not generic). 

However, perfect realism can be achieved through a modular approach. A (completely) modular 

framework is hard to comprehend but it can be generic. Similarly, a fully generic framework 

can be comprehensible and simple. A discussion of each of the four requirements follows be-

low. 

 

3.1.1 Genericity 

The aeronautical conceptual design phase is characterised by synthesis and analysis of differ-

ent design concepts. By definition, this requires a certain degree of generic capabilities to ac-

commodate all design ideas. However, the OSCAR framework is not limited to one manufac-

turers set of conceptual design ideas. Instead, the framework intends to support the entire aero-

nautical industry. Moreover, its level of genericity should allow related transport industries to 

apply the framework (automotive, marine, railway). Therefore, it must be able to recreate the 

majority of transport vessels and missions through a generic ontology. This ontology should be 

able to map complex real products and missions into simplified framework components using a 

small set of concepts and relationships.  

A generic framework allows creating any aeronautical product variation and sharing it with 

other designers. Moreover, even seemingly unrelated or widely different aeronautical products 

permit easy comparison. Reuse of past products allows performance comparison with new de-

signs. Obviously, a generic product definition suffers from lack of detail that can void useful 

comparisons. Therefore, translating an existing design idea into the generic framework design 

requires care.  

Generic scenario definition provides similar advantages: easy comparison and exchange of 

scenarios becomes possible. Designers can create a library of existing scenarios and re-use parts 

or entire scenarios for future products, reducing development time. However, scenario definition 

details may get lost if careless translation occurs. 

In order to facilitate easy translation from products and scenarios to framework concepts, the 

ontology set of concepts must be comprehensible yet rich enough to enable capture of most 

products and scenarios.  

3.1.2 Comprehensibility 

Often, change in industry fails because users do not understand the structure and value of new 

methods (Jones et al. 2005). Therefore, in order to implement a new framework in aeronautical 

conceptual design, it must be comprehensible for its users. Simple inspection should allow any-

body working with the framework to understand and believe it. 
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Moreover, a comprehensible framework facilitates translation between real world products 

and scenarios into framework components. Ideally, it avoids ambiguities by using exclusive 

terms that do not overlap. A comprehensible framework is simple in the sense that it allows 

quick understanding. However, a simple framework should not be too simple; otherwise, it be-

comes trivial and inhibits a realistic and generic framework.  

The comprehensible framework needs to employ industry standard terms, concepts and vo-

cabulary. Moreover, concept boundaries should be defined such that the relationships between 

them are obvious. A ―mission‖ consisting of an ―origin‖ and a ―destination‖ allows intuitive 

understanding of those terms and their relationship. 

3.1.3 Realism 

In order to be of any use, the framework must be able to produce realistic results. However, 

lack of information and time during the conceptual design phase will force the level of realism 

below that attained with detailed design phase tools (Scanlan & Rao 2006). One of the reasons 

is the limited knowledge about the product and the scenarios during conceptual design. Initially, 

only the customer requirements and legacy knowledge are available. The required level of 

framework realism should reflect the level of knowledge available during conceptual design. 

Moreover, the selection of framework concepts should reflect the most prominent product 

and scenario characteristics. For example, if a framework is good at capturing lifting device per-

formance, this might not be useful for initial design considerations when it is not even clear if 

lifting devices are needed. However, some simple representation of lifting device performance 

might be desirable.  

Therefore, it is essential to find a trade-off between realism, computing capabilities, available 

knowledge and useful concept application. 

3.1.4 Modularity 

For a conceptual design phase framework to be useful, it should not be static, fixed and 

closed. Instead, it should be editable, extensible and adaptable. A modular framework approach 

allows users to edit and adapt the framework for their specific needs. It can become less generic 

in some areas to allow for more realism if required by the users. Alternatively, users can add 

functionality where the current framework offers no solution. The modular approach mimics 

object-oriented programming used in computer science. Module choice allows easy and intui-

tive understanding of the module content while module interactions become obvious from the 

module boundaries. Therefore, it is useful to choose module boundaries based upon physical 

boundaries. Krus (2010) suggests to reflect physical system structures in simulation modules to 
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enable possible parallel execution. Consider a payload module: it should contain all payload 

items (which can be sub-modules themselves) but it should not include fuel tank components. 

After establishing the framework requirements, the next section will describe the first part of 

the OSCAR framework on scenario modelling. 

3.2 Scenario framework 

This section describes the scenario-related framework components. This thesis defines the 

term ―SCENARIO‖ as follows: 

SCENARIO: The fully defined life cycle of a vessel system, including 

all operations, repairs, overhauls and idle times.  

Section 3.2.1 considers the extent and boundaries of the framework. Which scenarios are pos-

sible within OSCAR and what real applications can be covered? Section 3.2.2 assesses the OS-

CAR operations coverage to arrive at the first insight: each aeronautical operation can be classi-

fied into one of three operational goals. Next, Section 3.2.3 covers the topic of modularisation: 

How should scenario-related modules be organised according to the requirements described 

above? It includes a detailed description of all scenario-related objects such as MISSIONS, 

TRACKS and SEGMENTS. Section 3.2.4 introduces the unique OSCAR approach of spatially ex-

plicit geographical scenario definitions. 

3.2.1 Scope of application 

This section describes the operative range for the OSCAR scenarios. It starts out by exclud-

ing two major application areas: First, military applications are precluded because they feature 

distinct characteristics that are difficult to capture with OSCAR (Section 3.2.1.1). Second, OS-

CAR excludes space operations due to their fundamentally different flight profiles (Section 

3.2.1.2). Last, this section defines the remaining scope of application (Section 3.2.1.3). 

3.2.1.1 Military exclusion 

Aeronautical vessels can be classified by their use for either civil or military applications. 

Civil applications tend to be relatively homogeneous because operational goals are very similar: 

civil aeronautical vessels are used either to transport objects
1
 from A to B or to witness assets

2
 

                                                      

1
 ―Object‖ refers to people or goods here. 

2
 ―Asset‖ refers to buildings, areas, roads, field, etc. 
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(this neglects use of aeronautical vessels for pleasure). On the other hand, military operations 

are more heterogeneous as the number of unique goals is higher. Many military scenarios re-

quire a fleet of aeronautical (and other) vessels working together to achieve complex goals like 

defending a specific area while striking enemy targets. Most civil applications do not require 

several vessels to achieve a target (an exception would be scientific UAS swarms analysing the 

atmosphere). Battlefield interactions are more complex as soldiers and aircraft interact with 

commanders, AI-driven equipment and not least the enemy. 

While civil aeronautical operation outcomes are generally predictable, many military opera-

tion outcomes are not. They depend upon the capability of the aeronautical vessel, its allied 

forces and that of the enemy. 

Moreover, military aeronautical vessels usually conduct fewer operations over their life cycle 

compared to civil products. Operators use most military products on demand while civil prod-

ucts (usually) operate on a regular basis. Therefore, the predictive capability of an operations-

based conceptual design phase framework like OSCAR is limited for military vessels.  

For these reasons, the OSCAR framework design focuses upon civil aeronautical applica-

tions. Nonetheless, OSCAR can model many military applications. However, a complex battle-

field simulation with realistic agent interactions is beyond the scope of OSCAR in its current 

state. 

3.2.1.2 Space exclusion 

The aerospace industry combines aeronautical and space products because they share key 

challenges like propulsion, lift and 6DoF manoeuvrability. However, OSCAR is an operations-

based design framework and operational characteristics between aeronautical (i.e. atmospheric) 

and space (i.e. non-atmospheric) flight differ. 

Most aeronautical operations keep constant flight altitudes relative to the earth surface for 

most of the flight (except during climb/descent and inflight altitude changes). Therefore, a flat 

earth assumption is valid, thereby reducing the altitude dimension to a simple number 

(climb/descent can be modelled without an explicit third dimension). Essentially, a 2D flat-earth 

assumption suffices for aeronautical operations. Space operation profiles, on the other hand, 

cannot follow this assumption: their flight altitudes constantly vary with respect to earth surface, 

both in earth-bound missions (such as satellites following elliptical orbits) and in inter-planetary 

missions. 

Moreover, contemporary space operations are not repetitive and usually unique. An excep-

tion is presented by Keller and Collopy (2013) applying a simple mission simulation for calcu-

lating the value of a reusable space launch system. Still, the life cycle of most satellites or rock-

ets consists of one mission only (i.e. fly to Mars or orbit the earth for a couple of years). After-

wards, the product is discarded. Space vessel design hinges upon the characteristics of this one 
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mission to a very large degree. However, the strength of OSCAR is to analyse the impact of a 

wide variety of mission types repeated over a life cycle. Space products usually require only one 

mission profile that is followed once during their lifetime. Specialised space operations analysis 

software (e.g. GMAT
3
) will produce results that are more accurate. 

Due to these fundamental differences, the OSCAR framework excludes space operations 

from its target capabilities. OSCAR assumes a 2D flat earth surface, modelling altitude as a sep-

arate mission parameter. Note that the flat earth assumption does not prevent great circle routes 

using explicit mission modelling (see Sections 3.2.4 and 4.6). 

3.2.1.3 Remaining scope 

After excluding military and space operations from the OSCAR framework, this section de-

scribes the remaining scope of application, namely civil aeronautical operations. OSCAR allows 

modelling of most civil aeronautical operations such as passenger transport, cargo transport, 

public authority, private and unmanned aviation missions. 

In addition, OSCAR SCENARIOS can include non-aeronautical operations such as railway, au-

tomotive or maritime missions. Essentially, OSCAR can model any vessel moving at specific 

speed and height (even under ground or water) along specific paths. The only requirement is 

that vessel altitude change is not the most constitutive characteristic of its operations. Subse-

quent descriptions will demonstrate this by including non-aeronautical examples. However, the 

focus of OSCAR is aeronautical product design. 

OSCAR SCENARIOS can last between seconds and centuries, depending on user requirements. 

SCENARIOS can combine any number of different operation types or just repeat the same opera-

tion. Operations can accommodate any number of operation segments, allowing any level of 

operational complexity.  

3.2.2 Operations classification 

Having established the scope of application for OSCAR SCENARIOS, this section will classify 

the wide array of possible SCENARIO operations. This thesis defines an ―OPERATION‖ as fol-

lows: 

Operation: Comprises any action undertaken in order to complete 

a user-defined transportation goal for a moving system. Since goal 

definition depends on user requirements and industry context, op-

                                                      

3
 ―General Mission Analysis Tool‖, open source tool by NASA. See http://gmatcentral.org/, accessed 

27/11/2013. 

http://gmatcentral.org/
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erations can vary between different users, even for the same mov-

ing system. 

A typical passenger transport OPERATION is flying from airport A to airport B. The airline as 

the user defines the operational goal as transporting passengers from A to B. However, a differ-

ent airline using a similar aircraft might define an OPERATION as going from A to B, then from 

B to C and from C back to A (a ―round trip‖). Here, the operational goal is to move the aircraft 

back to A via B and C. The definition of OPERATIONS is context-dependent allowing users to 

setup OSCAR around existing procedures. 

Since OSCAR is a spatially explicit framework (see Section 3.2.4), OPERATIONS are catego-

rised by the spatial character of an OPERATION. There are three fundamental geographical OP-

ERATIONS, namely point, path or area OPERATIONS (or any combination).  

3.2.2.1 Point operations 

The goal of a point OPERATION is to reach one or more geographical points. Here, ―point‖ is 

defined as: 

POINT: 2D coordinate specified through longitude and latitude. 

Figure 3-2 depicts a generic POINT OPERATION with three spatially explicit POINTS.  

 

FIGURE 3-2: OSCAR FRAMEWORK POINT OPERATION EXAMPLE. 

The vessel moves from its initial position towards POINT 1. Upon arrival, it may or may not 

loiter for a specified time (note that rotary-wing, floating and ground-based vessels can loiter 

stationary while fixed-wing vessels would conduct loiter patterns similar to Figure 3-2). Subse-

quently, the vessel moves towards POINT 2, and so on. The sequence as well as the spatial dis-

tribution of POINTS is critical to define a POINT OPERATION. A typical POINT OPERATION is an 
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aircraft gathering scientific data at pre-defined positions. Another example is a police helicopter 

transporting workers between offshore oilrigs. Civil airliner designers could simplify airliner 

OPERATIONs into POINT OPERATIONS by omitting airway information: the airliner simply flies 

from airport to airport (POINT to POINT). 

3.2.2.2 Path operations 

A path OPERATION goal is to move along one or more geographical paths. Here, ―Path‖ is de-

fined as: 

PATH: a 2D line consisting of a start point, any number of corners 

in a specific sequence and an end point. Start point, corners and 

end point are 2D coordinates specified through longitude and lati-

tude.  

Figure 3-3 depicts a generic PATH OPERATION consisting of three PATHS. PATH 1 consists of 

five corners, PATH 2 has 13 corners while PATH 3 comprises zero corners (i.e. a straight line). 

The vessel starts to fly towards the start point of PATH 1. It moves along the PATH and may or 

may not loiter upon reaching the end of PATH 1. Subsequently, it moves towards the start point 

of PATH 2, and so on. Note that start and end points of PATHS may or may not have the same 

location. 

 

FIGURE 3-3: OSCAR FRAMEWORK PATH OPERATION EXAMPLE. 

PATH OPERATIONS include airliners flying along one or several airways, a traffic-monitoring 

aircraft following specific motorways or border patrol and pipeline monitoring. 

3.2.2.3 Aerial operations 

The goal of an area OPERATION is to cover a specific geographical area. Here, ―Area‖ is de-

fined as: 

AREA: a closed 2D polyline enclosing a specified area. The polyline 

consists of any number of corners (minimum: three). 
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Figure 3-4 depicts a typical Area OPERATION consisting of two areas (grey regions). The ves-

sel follows specific routes to cover both AREAS as required by the user. Initially, it moves to-

wards the start point of the first route and moves along. Upon arrival at the first route end point, 

it may or may not loiter. Subsequently, it moves towards the start point of the second area route 

to cover the second AREA region. 

 

FIGURE 3-4: OSCAR FRAMEWORK AREA OPERATION EXAMPLE. 

Note that the route to cover an AREA can vary in shape depending on user requirements. In 

fact, a vessel must follow a specific route to cover any AREA. Within OSCAR, such routes can 

be defined as PATHS. Therefore, OSCAR treats any AREA OPERATION as a PATH OPERATION. It 

is the user’s responsibility to define PATHS such that the required AREA is covered. The user 

needs to take into account vessel flight altitude (if any), sensor capabilities (or human eye 

skills), visibility and possible sensor footprint overlap (how often should a point within the AR-

EA be scanned?). However, these factors may be unknown during conceptual design phase or 

they may be part of the design investigation. 

A superior way to deal with AREA OPERATIONS would define an AREA geographically and 

employ an algorithm to calculate an automated PATH for the vessel movement. Ideally, the algo-

rithm would take into account parameters such as sensor capability, visibility and flight altitude. 

Goerzen et al. (2010) present a review of motion planning algorithms for UAS applications 

based on sensor capability. However, it is beyond the scope of this thesis to develop such an 

approach. The rest of this thesis treats ―AREAS‖ as specific PATHS, neglecting the AREA defini-

tion. 

Typical AREA missions include crop spraying, mapping and reconnaissance airborne mis-

sions as well as normal agricultural tractor operations or offshore fishing activities. 

3.2.2.4 Combinations 

Many real aeronautical OPERATIONS are more intricate and do not exactly match the defini-

tion of POINT, PATH or AREA OPERATIONS above. A border patrol aircraft may fly along the 

border PATH but upon spotting illegal activity starts covering the AREA in question. A highway-

monitoring helicopter may be required to stop at a car crash POINT, interrupting its road-



Chapter 3: Framework 

47 

following PATH duty for some time. Therefore, the OSCAR framework allows mixed OPERA-

TIONS. 

Through modularisation (see Section 3.2.3), it is possible to create combined OPERATIONS as 

in Figure 3-5. Upon arrival at POINT 1, the vessel proceeds towards PATH 1 (effectively cover-

ing an AREA as well). OSCAR can combine any number and combination of OPERATION types. 

 

FIGURE 3-5: OSCAR FRAMEWORK COMBINED POINT AND PATH OPERATION. 

3.2.3 Modularisation 

The previous section distinguished between three OPERATION types, acknowledging that 

many civil aeronautical OPERATIONS (and, in fact, most moving vessel OPERATIONS) are a 

combination of those. However, work was conceptual until now. This section will formalise the 

insights obtained so far. 

As discussed above, the life cycle of a moving vessel consists of OPERATIONS, repairs, 

maintenance operations and idle time, together forming a SCENARIO in OSCAR. Neglecting 

repair, maintenance and idle time, this thesis defines the ―OPERATIONAL SCENARIO‖ of a vessel 

as: 

OPERATIONAL SCENARIO: The sum of all moving OPERATIONS of an (aer-

onautical) vessel over its lifetime, omitting repairs, maintenance 

operations and down time. 

Note that adding repair, maintenance and idle time to an OPERATIONAL SCENARIO returns a 

SCENARIO (see definition on page 41). As shown in Figure 3-6, OSCAR defines an OPERA-

TIONAL SCENARIO to consist of ―MISSIONS‖, ―TRACKS‖ and ―SEGMENTS‖.  

A ―SEGMENT‖ is the equivalent to the OPERATION goals defined conceptually in Section 

3.2.2 above. It can be either a POINT or a PATH. Section 3.2.3.1 describes a ―SEGMENT‖ as the 

smallest building block to create an OPERATIONAL SCENARIO. Adding ―SEGMENTS‖ together, 

OSCAR creates a concept called ―TRACK‖, as described in Section 3.2.3.2. By combining 

―TRACKS‖, OSCAR forms a ―MISSION‖ as defined in Section 3.2.3.3. Combining all ―MIS-

SIONS‖ forms the OPERATIONAL SCENARIO defined above. 
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FIGURE 3-6: OSCAR OPERATIONAL SCENARIO PYRAMID. 

3.2.3.1 Segments 

A SEGMENT is the smallest building block to create an OPERATIONAL SCENARIO. It can be ei-

ther a POINT or a PATH (Section 3.2.2). Each SEGMENT has a specific spatial position (latitude 

and longitude). If the SEGMENT is of type PATH, each corner and the start and end point must be 

defined through spatial coordinates in the correct sequence. Section 3.2.4 describes the imple-

mentation of SEGMENTS into Geographical Information System shapefiles. Beside the coordi-

nates, eleven parameters uniquely define each SEGMENT namely Time, Origin, Destina-

tion, UponArrival, Type, TargetHeight, TargetWidth, DetectionCriteria, Loi-

ter, Height and Speed. Appendix 1 details each parameter in more detail. 

3.2.3.2 Tracks 

A TRACK is an aggregation of any number and types of SEGMENTS. Moreover, it encloses a 

set of SEGMENTS with a dash and return segment linking them to a ―Base‖ to a ―Destination‖ 

(see Figure 3-7). 

 

FIGURE 3-7: OSCAR TRACK SCHEMATIC. 

As described above, the definition of a TRACK can vary depending on user requirements and 

mission definitions. However, one fundamental characteristic of a TRACK is its enclosure into a 
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―Base‖ and ―Destination‖. Every vessel within the scope of OSCAR requires operational 

breaks, be it for rest (humans, animals), for repair or for operational reasons (aircraft schedules, 

ferries used only during the day, etc.). Therefore, TRACK allows the user to model these inter-

ruptions easily. Depending on the vessel type, ―Base‖ and ―Destination‖ vary in their meaning: 

for airborne vessels, they can represent airports or take-off and landing sites. For ground-based 

vehicles, it can be parking lots while for maritime vessels, harbours or anchorage sites are the 

major applications. 

A TRACK is defined by twelve parameters, namely Vessel_IDs, Base, Track, Track-

Fragmented, Destination, Time, Repetition, Priority, DashHeight, DashSpeed, 

ReturnHeight and ReturnSpeed. Appendix 2 describes each parameter in detail. 

3.2.3.3 Missions 

A MISSION pools any number of TRACKS together in a sequential manner to form an arbitrary 

sub-section or the total of the product life cycle. This is helpful to keep the life cycle organised. 

The user defines MISSIONS in a way that is most applicable for product operations. Aircraft de-

signers may pool all TRACKS concerning passenger services of their new aircraft in one MIS-

SION while keeping all late-life cargo missions in another. Alternatively, it might be useful to 

pool all tracks by week, month or year. Car designers may pool all TRACKS of European drivers 

into one MISSION and those of Asian drivers into another. 

Essentially, the concept of the MISSION is a categorisation tool to avoid thousands of TRACKS 

in a product life cycle SCENARIO. It helps designers categorising their product TRACKS in a use-

ful way, allowing simulation runs of selected MISSIONS only. Hence, it is easy to simulate only 

early-life TRACKS or only TRACKS of a specific region or time. Alternatively, MISSIONS can sort 

TRACKS by the product type if several different products are tested simultaneously. 

Finally, the life cycle of a product (i.e. the OPERATIONAL SCENARIO) is the sum of its MIS-

SIONS (one or many). 

3.2.4 Spatially explicit setup 

One of the unique features of OSCAR is its focus on spatially explicit geographical model-

ling where entities interact within a spatially explicit geographical environment. This Section 

describes the motivation to include spatially explicit geographical modelling (Section 3.2.4.1), 

how it is implemented into the OSCAR framework (Section 3.2.4.2) as well as the assumptions 

and simplifications applied (Section 3.2.4.3). 

3.2.4.1 Motivation 

As discussed in Section 2.4.5, conceptual aeronautical design models do not apply spatial ex-

plicit modelling. Arguably, adding this level of complexity to the conceptual design phase adds 



Chapter 3: Framework 

50 

cost and development time that is needed elsewhere without obvious benefit. However, this sec-

tion introduces benefits that can possibly outweigh the disadvantages. 

During conceptual aeronautical design, geographical operational knowledge exists implicitly 

or explicitly because customers and designers usually know the operational applications for 

their product already. Designing a typical civil airliner, market analysis reveals potential routes 

and airlines contribute ―significant input‖ (Raymer 2006), including intended routes and opera-

tions. Car manufacturers, on the other hand, usually use customer surveys with non-

geographical information such as average driving distance or time (Otto & Wood 2001). In such 

cases, spatial modelling without geographical information suffices (see Section 3.2.4.2). 

In order to model geography, the OSCAR framework uses the well-established shapefile 

format established by the Environmental System Research Institute, Inc. (ESRI 1998). Any ge-

ographical modelling software is able to interpret and create shapefiles. If customers or manu-

facturers own spatial or geographical information, it will most likely use the shapefile format, 

making it easy to adapt and import into OSCAR. The modular approach of OSCAR allows us-

ers to store SCENARIOS, MISSIONS and TRACKS in relational databases. Therefore, geographical 

knowledge needs to be created and stored only once and can be reused easily.  

Another benefit of using geographical knowledge during the conceptual design phase is its 

ability to convey a lot of information visually through mapping (see Figure 3-8). This supports 

conceptual design activities because critical operational bottlenecks can be spotted earlier. Con-

sider the case of search-and-rescue incidents as in Figure 3-8: most incidents occur near shores 

and around harbours, helping designers to estimate required vessel ranges easily. It would be 

more difficult to extract such information from pure data tables. 

 
Geographical Information System map 

Point Latitude Longitude 

1 52.37 -1.17 

2 51.83 -0.51 

3 52.17 -1.11 

4 52.51 -0.43 

5 52.68 -0.41 

6 52.15 -0.86 

… … … 

Same information in a table. 

FIGURE 3-8: GEOGRAPHICAL INFORMATION SYSTEM MAP VERSUS TABLE. 

Moreover, geographical data often encodes non-trivial information regarding design decisions. 

Consider the following though experiment displayed in Figure 3-9: an aircraft is supposed to 

patrol the shore waters during daytime. However, its fuel capacity requires refuelling during the 
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patrol. Operationally, it is critically important to determine where the aircraft most often runs 

out of fuel.  

 

FIGURE 3-9: GEOGRAPHICAL IMPORTANCE OF FUEL: RUNNING OUT OF FUEL AT POINT A OR B? 

If the aircraft runs out of fuel at Point A, returning to the airfield for refuel affects the patrol 

operation to a certain degree (due to the delay). However, if the aircraft runs out of fuel at Point 

B, the impact is disproportionally larger because the time to reach the airfield is much larger and 

the duration off patrol increases. A non-spatial analysis could not capture this discrepancy easily 

while it becomes obvious using spatial modelling.  

There are many similar situations arising from operational scenarios in geographical models: 

Does oil tanker storage fail in open waters or near environmentally critical shorelines? How 

does a jet engine compare operating in dusty Arabian countries compared to wet South-East 

Asian countries? Can one optimise parcel delivery truck routes by only choosing right-turn 

routes
4
 ? New insights into design decisions and optimisation strategies arise by considering the 

spatial and geographical component of these operations early in the design process. 

3.2.4.2 Implementation 

This section presents how geographical modelling fits into the OSCAR framework. Section 

4.6 discusses the practical realisation within the OSCAR simulation. 

As indicated above, OSCAR supports a geographical modelling approach by implementing 

geographical maps (compare Section 2.4.5). However, spatial modelling without geographical 

information is also possible within OSCAR by projecting the spatial information upon an empty 

background map. This approach ensures greatest flexibility for designers. 

                                                      

4
 Compare http://compass.ups.com/UPS-driver-avoid-left-turns/, accessed 23/10/2013. 

http://compass.ups.com/UPS-driver-avoid-left-turns/
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Geographical modelling within OSCAR rests upon a 2D map of the entire world, the ―base 

map‖. Users can employ different base maps to allow categorising POINTS and PATHS by their 

interaction with the base map: are they upon water or land, city or countryside, country A or B? 

Projected onto the base map are the two geographical SCENARIO components, namely POINTS 

(Section 3.2.2.1) and PATHS (Section 3.2.2.2). Each POINT and each point of a PATH feature a 

longitude and latitude coordinate defining the position on the base map. In addition, this thesis 

assigns the following additional geographical information: 

 Search-and-rescue incident position uncertainty data (Section 5.4.1.2) 

 POINT and PATH end-point object height and width (Section 3.2.3.1) 

 Loiter times, flight profiles and behaviour upon vessel arrival (Section 3.2.3.1) 

However, designers can extend the OSCAR framework to include custom geographical ef-

fects such as distributions of temperatures, dust levels, wind speeds or visibilities. By extending 

the OSCAR simulation logic, this enables rapid analysis of different operational influences upon 

the design. 

3.2.4.3 Assumptions & Simplifications 

Including geographical modelling into the conceptual design phase increases the level of de-

tail considerably. However, there are a number of assumptions and simplifications to keep 

workload and computation times reasonable following conceptual design phase requirements. 

Foremost, all mapping is two-dimensional only. This has two effects upon product design: 

First, the base map lacks elevation. There are no mountains, buildings or barriers of any kind. 

This does not prevent OPERATIONAL SCENARIOS to include altitude profiles (see Section 

3.2.3.1) but altitude profiles do not map with elevation data. If a car has altitudeMax=0 and 

is supposed to travel along a mountain road, it will keep an altitude value of zero. However, it is 

possible to model the mountain road elevation profile by adjusting the road PATH Height val-

ues and increasing the altitudeMax parameter for the car (see Section 3.3.3). As stated earli-

er, the OSCAR framework is most applicable for moving vessels where altitude change is not 

the most constitutive characteristic of its operations. 

The second effect of 2D base maps for designers is that the earth surface is flat. Therefore, 

users must model great circle routes (for ships or aircraft) manually by adjusting the PATH be-

tween two points following great circle rules. However, this is straightforward with any modern 

geographical modelling software. 

Another assumption for geographical modelling within OSCAR neglects curves between 

SEGMENTS and PATH edges. Any directional vessel turn is immediate as in Figure 3-10.  
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FIGURE 3-10: OSCAR VESSEL TURNING PERFORMANCE. 

Turning performance is difficult to predict generically because it varies strongly between ves-

sel types and operations. For aircraft, turn performance depends on speed, altitude, wind, bank 

angle, g-force limits and acceptable overshoot. For ground-based vessels, different parameters 

such as road surface, steering wheel limits and driving speed dictate curve performance. With 

maritime vessels, yet another set of parameters is required, namely rudder size, relative speed 

and ship mass. It is beyond the scope of this research to find a unifying curve performance algo-

rithm. However, the user must be aware that vessel performance accuracy decreases linearly 

with the number of directional changes in the OPERATIONAL SCENARIO. However, for concep-

tual design, the loss in accuracy is acceptable because straight lines usually dominate aeronauti-

cal vessel operations. Exceptions include search operations and crop spraying which base upon 

frequent directional changes. 

Similar to neglecting curves, geographical modelling within OSCAR also neglects climb and 

descent performance (Figure 3-11). Any change in altitude between SEGMENTS occurs instanta-

neously. This affects airborne vessels changing flight altitudes, submerged vessels changing 

diving depths as well as ground-based vessels following elevation profiles (i.e. crossing a moun-

tain). 

 

FIGURE 3-11: OSCAR VERTICAL PROFILE. 

If necessary, it is possible to model smooth altitude changes through discretisation by using a 

large number of SEGMENTS with slightly different altitudes each. The same argument as for di-

rectional changes applies: altitude change performance is difficult to model generically for 
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many different vessel types. Moreover, most vessel TRACKS occur at constant altitudes for most 

of the TRACK duration. Even long-distance airliners increase their altitude due to depleting fuel 

only in near-discrete steps every couple of hours. Therefore, this simplification is acceptable for 

operations where altitude changes are not the main characteristic. The more altitude changes are 

characteristic to vessel operations, the less accurate results will be. 

3.3 Vessel framework 

The previous section described the SCENARIO-related framework details. However, in order 

to model the life cycle of aeronautical, automotive, maritime or railway products, it is necessary 

to provide a generic framework for modelling the vessels themselves. Section 3.3.1 starts out by 

outlining the scope of application of the vessel framework. In Section 3.3.2, a vessel classifica-

tion system refines the scope of application. Section 3.3.3 presents the generic parameter set 

defining vessels within OSCAR. Subsequently, Section 3.3.4 outlines the generic vessel per-

formance calculation method that can be used to calculate energy consumption of any vessel. 

Section 3.3.5 introduces the capability of specifying vessel components, including component 

parameter definitions. This allows defining deterioration performance and maintenance. Lastly, 

Section 3.3.6 describes the optional payload module add-in for vessels. 

3.3.1 Scope of application 

OSCAR aims to enable modelling of any object that can change its position based on its own 

initiative. Therefore, define: 

VESSEL: Any physical object that is capable to some degree to 

change its position in a controlled way using its own means. Con-

trol is exercised through the VESSEL itself or through a VESSEL user. 

This definition includes any type of automotive, ships, submarines, aircraft, helicopters and 

UAS. It also includes non-obvious entities such as humans and most animals. However, some 

entities do not count as a VESSEL: Hot-air balloons, for instance, are not capable to control their 

flight path to a large extend, although they can control their altitude well. The OSCAR frame-

work requires user to input specific operation PATHS, but for balloons, these are unknown be-

forehand. However, users can define typical balloon PATHS, neglecting the specific influence of 

winds upon performance. 
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As discussed in Section 3.2.1, military and space OPERATIONAL SCENARIOS are not supported 

within OSCAR. Consequently, OSCAR does not support military and space vehicles within the 

VESSEL framework, although they may fall under the VESSEL-definition above. 

Based upon the object-oriented modelling approach, OSCAR can model any number and any 

type of VESSEL in parallel. 

3.3.2 Classification 

A large number of VESSELS exist that follow the VESSEL definition above. The OSCAR 

framework provides a VESSEL classification in order to group VESSEL types of similar applica-

tion together.  

The OSCAR VESSEL classification assigns two characteristics to each VESSEL: category and 

type. This helps users to distinguish VESSEL agents quickly but it also allows adding functional 

behaviour to specific categories or types only. The categories and types supported within the 

OSCAR framework are shown in Figure 3-12.  

 

FIGURE 3-12: OSCAR SIMULATION VESSEL CATEGORIES AND TYPES (NOT EXHAUSTIVE). 

Note that neither category nor type entries are exhaustive: users can add their own categories 

and types based on requirements.  

Within the OSCAR simulation, types are used to sanity check altitude data: submarines and 

ships cannot cruise above Height=0 while aircraft cannot fly below Height=0. Beyond 

this, neither categories nor types have any influence on VESSEL performance. Users can exploit 
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the classification further to include more complex operational group behaviours: for example, 

fixed-wing aircraft cannot fly at a speed of zero, even if asked to do. Automotive VESSELS must 

not cruise on water. Fixed wing VESSELS cannot loiter stationary, etc. However, more detailed 

classification behaviours are beyond the scope of this thesis. 

3.3.3 Parameters 

Although there are many different VESSEL types, the research goal of OSCAR is to find a ge-

neric set of unifying parameters that describes each VESSEL equally well. In addition to the 

category and type parameters described above, there are twelve parameters required to de-

fine a VESSEL, namely performanceModel, fuelType, occupants, speedMax, speedMin, 

speedTypical, altitudeMax, altitudeMin, altitudeTypical, useTypicalSetup, 

weightDry and weightFuel. Appendix 3 describes each parameter in more detail. 

3.3.4 Propulsion performance 

Having defined the core characteristics of VESSELS above, this section continues by introduc-

ing the generic performance model developed for the OSCAR framework. The various VESSEL 

types supported by the OSCAR framework feature very different propulsion systems: some 

burn petrol or diesel (cars, Lorries, etc.), other have electric drives (some UAS, e-bikes, e-cars), 

yet others need food (animals, humans) or nuclear fuel elements (some submarines). However, 

all propulsion systems are similar in that they consume energy at different rates.  

Therefore, the generic propulsion performance model within the OSCAR framework com-

putes energy consumption, independent of the propulsion system used by the VESSEL. For this, 

each VESSEL features a table linking energy consumption with velocity. Users can specify com-

plex energy consumption profiles in a simple way. For example, aircraft use flaps below certain 

speeds, changing fuel burn (and thereby energy consumption). Similarly, ships or cars have dis-

tinctive fuel consumptions if stationary (with their engines turned on). Figure 3-13 presents sev-

eral energy consumption profiles. This allows modelling and comparing very different VESSEL 

types and propulsion systems. The advantage of this modelling approach is that energy con-

sumption data is easily available for most VESSELS (e.g. Cullinane and Khanna (1998) devel-

oped a set of equations for large container ships based on power consumption). Moreover, con-

ceptual designers have access to energy consumption profiles for the product in question. In 

some cases, simple unit conversion is required (i.e. aircraft designers work with specific fuel 

consumption). 
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FIGURE 3-13: ENERGY CONSUMPTION FOR VARIOUS VESSEL TYPES (VERTICAL AXIS HAS LOGA-

RITHMIC SCALE WITH BASE 2)
5
. 

However, a number of assumptions and simplifications underlie this approach. In reality, en-

ergy consumption depends on more factors than VESSEL speed. Often, ambient conditions such 

as temperature, pressure and wind alter energy consumptions. Moreover, friction or drag varies 

with the product design shapes. Some of these factors can be factored in the OSCAR generic 

propulsion performance model (i.e. drag varies with VESSEL speed). Other factors cancel each 

other out over the VESSEL life cycle. Here, average expected values can be factored into the 

OSCAR model (i.e. temperature, pressure or wind cancel each other out to varying degrees). 

More importantly, any VESSEL energy consumption rate varies with VESSEL weight. Neglecting 

the influence of total VESSEL weight is reasonable for VESSELS that have a small (or zero) max-

imum weightFuel/weightDry ratios (see Section 3.3.3). Here, diminishing fuel weight has 

no big impact on total weight. However, some VESSELS such as aircraft, container ships or heli-

copters have a larger maximum weightFuel/weightDry. In this case, neglecting the impact 

of total VESSEL weight on energy consumption may not be justifiable anymore: Designers 

should embed custom energy consumption models taking into account weight variation such as 

the custom aircraft propulsion model described in Appendix 9. 

                                                      

5
 Sources: human runner  http://www.brianmac.co.uk/energyexp.htm, accessed 30/10/2013; Petrol 

car  (Sturm & Hausberger 2005); lifeboat  Police of Kent; container ship  

http://people.hofstra.edu/geotrans/eng/ch8en/conc8en/fuel_consumption_containerships.html, access 

30/10/2013; helicopter  (Mabus 2008); electric train  (Garcia 2010); 

http://www.brianmac.co.uk/energyexp.htm
http://people.hofstra.edu/geotrans/eng/ch8en/conc8en/fuel_consumption_containerships.html
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3.3.5 Fatigue 

3.3.5.1 Components 

During conceptual design, it is important to model not only the basic VESSEL behaviour and 

its energy consumption. Any VESSEL deteriorates in service and is subject to planned or un-

planned maintenance. Current conceptual design phase procedures apply empirical relations 

derived from historical data: based on design parameters such as wingspan, mass or thrust these 

relations return the expected defects and maintenance hour per flight hour (Fielding 1999). 

However, object-oriented methods enable more detailed component-based modelling. There-

fore, OSCAR enables each VESSEL to comprise any number of ―COMPONENTS‖ that deteriorate 

over time: 

COMPONENT: A physical object being part of a VESSEL that deterio-

rates in some way during VESSEL operations. 

 A VESSEL can contain no COMPONENTS at all, if required. In that case, it acts as a fault-free 

agent that never fails. This can be useful in order to create VESSELS that interact with a concep-

tual VESSEL design but are not themselves part of the investigation, especially if their rate of 

failure is much lower than that of the VESSEL under investigation (i.e. lifeboats in chapter 4.14).  

Seven parameters define each COMPONENT, namely weibullLifeMeasure, weibullEta, 

weibullBeta, LossProbabilityFromFailure, unplannedMaintenanceDuration, 

quantityOnboard and robustnessScalingFactor. Appendix 4 describes each parameter 

in detail. 

Upon VESSEL creation, each COMPONENT is assigned a time-to-failure (or cycles-to-failure if 

weibullLifeMeasure=cycles) randomly drawn from the specified weibull distribution 

and adjusted by the robustnessScalingFactor. Upon planned and unplanned maintenance, 

the value is re-calculated in the same way. This introduces an element of randomness imitating 

real variations in time-to-failure. 

3.3.5.2 Deterioration and failure 

During VESSEL operations, each COMPONENT deteriorates as defined above (i.e. it ages by 

the duration the VESSEL operated or by its cycles). The COMPONENT will fail when it operated 

for longer than the time-to-failure allows (or had more cycles than cycles-to-failure). Upon fail-

ure, the VESSEL checks for possible redundant COMPONENTS that can take over the workload. If 

quantityOnboard>1, the failed COMPONENT is shut off and unplanned maintenance is 

scheduled after the current TRACK. If quantityOnboard=1, the VESSEL will be lost with 

LossProbabilityFromFailure. If the COMPONENT does not cause the VESSEL to be lost, it 
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schedules unplanned maintenance after the current TRACK. If the COMPONENT does cause VES-

SEL loss, it does not finish its current SEGMENT, TRACK and MISSION but is lost immediately. 

The deterioration and maintenance model bases upon the following assumptions. COMPO-

NENTS deteriorate by one mechanism only. In reality, components usually deteriorate by several 

mechanisms: an aircraft wing structure fatigues during flight (weibullLifeMeas-

ure=duration) but also upon landings (weibullLifeMeasure=cycles). However, 

most COMPONENTS deteriorate from one primary mechanism and other mechanisms have se-

cond-order effects only. Therefore, it is reasonable to neglect multiple fatigue mechanisms for 

conceptual design. 

Another simplification assumes that COMPONENT fatigue and failures are independent of each 

other. In reality, failure of one COMPONENT can create secondary failures on other COMPO-

NENTS. Within OSCAR, ripple-on effects are only modelled for redundant COMPONENTS: if a 

COMPONENT fails and has quantityOnboard>1, the redundant COMPONENT’S time-to-

failure (or cycles-to-failure) is reduced by 
 

                     
                . The 

more redundant COMPONENTS are available, the less reduction in time-to-failure occurs for each 

COMPONENT as they are assumed to share the load of the failed COMPONENT. The factor ―0.1‖ 

is arbitrarily chosen to ensure that no COMPONENT suffers more than 10% reduction in time-to-

failure. However, this simplification neglects that failing COMPONENTS can influence different 

COMPONENTS: it is not possible to model complex COMPONENT interactions like that that lead-

ing to the space shuttle Columbia crash
6
.  

Another assumption in the OSCAR deterioration model is that COMPONENT time-to-failure 

(or cycle-to-failure) distributions are weibull-shaped. Due to flexibility of the weibull distribu-

tion, it is used widely in reliability engineering. Future work may comprise a number of distri-

butions to choose from by users. 

So far, all COMPONENT deterioration focussed on mechanical fatigue due to operations. How-

ever, modern VESSELS usually feature electronic components that also suffer from programming 

bugs and electric sensibilities. Although electrical failures can be factored into the weibull dis-

tribution for an electronic COMPONENT, it is difficult to account for programming bugs. Modern 

industry algorithms feature between 15-50 errors per 1000 lines of code (McConnell 2004). 

Modern car software components run up to 100 million lines of code
7
. Although not every de-

fect causes erroneous behaviour in a VESSEL, future work could provide facilities to simulate 

electronic component failures due to programming bugs. 

                                                      

6
 During launch, a foam insulation piece came off and struck the left wing. The wing damage caused 

the shuttle’s disintegration upon re-entering, see http://www.nasa.gov/columbia/home/CAIB_Vol1.html, 

access 30/10/2013. 
7
 See Charette (2009). 

http://www.nasa.gov/columbia/home/CAIB_Vol1.html
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3.3.5.3 Planned maintenance 

A recent review in aircraft maintenance operations lists 21 different types of maintenance op-

erations out of which only three are ―unscheduled or non-routine‖ (Bergh et al. 2013). So far, 

the OSCAR deterioration and maintenance model described unplanned maintenance only. How-

ever, most industrial VESSEL designs are not maintained reactively, i.e. once a problem occurs 

during operations. Instead, technicians maintain equipment actively, that is through planned 

maintenance checks at specific intervals (Gao et al. 2009). Currently, the OSCAR framework 

supports planned maintenance only indirectly: When a COMPONENT does not fail before 

weibullBeta, it schedules a planned maintenance for the next available slot between TRACKS.  

Future work may add an additional parameter plannedMaintenanceInterval indicating 

in seconds how often the COMPONENT should be checked for problems. This would not recreate 

complex maintenance schedules seen in contemporary aircraft components but would suffice for 

conceptual design purposes. 

3.3.6 Payload 

Austin (2010) defines payload in the context of aircraft as  

Payload: the part of the aircraft, which is specifically carried to 

achieve the mission.  

This research applies the definition not only to aircraft but also to all VESSELS. The opera-

tional purpose of many VESSELS is to transport payload for various applications. Civil airliners 

transport passengers or goods from A to B. Ships, trains and cars often fulfil the same purpose. 

Another application is dispensing payload during operation. Examples include crop-spraying or 

humanitarian air aid. A third application is transporting sensory payload (sensors, animals or 

humans) to specific locations for any kind of remote sensing (mapping, environmental monitor-

ing, spying…). In fact, beyond scientific and industrial prototypes, there are no VESSELS de-

signed for carrying no payload at all. A major aspect of conceptual design decision support is to 

assess the suitability of a VESSEL design concerning payload performance. How good is the 

VESSEL at transporting payload from A to B? Alternatively, how well does payload sensors per-

form during operations due to VESSEL design? To answer these questions, the OSCAR frame-

work supports a generic payload model allowing payload performance quantification. Moreo-

ver, users can add custom payload models to refine performance calculation. 

As discussed above, VESSELS either transport payload from A to B (―inactive payload‖) or 

use it to gather intelligence (―active payload‖). Note that dispensable payload can be categorized 

as ―inactive payload‖. Each payload type is described in more detail below. 
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3.3.6.1 Inactive payload 

VESSELS transport inactive payload with the goal of transporting. In order to measure 

transport performance, the following parameters are used upon defining each VESSEL: 

PayloadItems: Integer value indicating how many items the VESSEL 

can transport. This neglects varying capacities in different operat-

ing conditions (airliners accept fewer passengers for very long 

ranges, etc.). During operations, the VESSEL always transports at 

full capacity. 

PayloadWeight: Double value in kilograms indicating the weight of 

each payload item. This assumes constant weight of each payload 

item. Operations with varying payload item weights (parcel deliv-

ery, cargo ships…) must use average values. 

Note that this model does not distinguish between animate (humans, animals) and inanimate 

(parcels, etc.) payload. It also ignores replenishing items such as food. Each time a VESSEL 

completes a TRACK (or a repeated TRACK), it logs the number of payload items and their total 

weight as ―on time‖, ―delayed‖ or ―cancelled‖. Items delivered ―on time‖ arrive at the TRACK’s 

Destination with no disruptions during the TRACK. Items delivered ―delayed‖ faced a disrup-

tion during conducting the TRACK. Disruptions include refuelling due to fuel shortage or mov-

ing at speeds slower than scheduled (because the VESSEL’s speedMax is not large enough). 

Items not delivered are marked as ―cancelled‖: here, the VESSEL did not complete a TRACK be-

cause it crashed (airborne), sunk (maritime) or broke (land-based) due to COMPONENT failure. 

Upon post-processing, users can amend the data with monetary information such as price 

paid per payload item delivered on time. This allows computing VESSEL profits based on pay-

load transport and VESSEL performance. 

Note that inactive payload metrics are not implemented into the OSCAR simulation. 

3.3.6.2 Active payload 

VESSELS use active payload (i.e. sensors) to gather any form of intelligence about the area 

around the VESSEL TRACK. Active payload comprises mechanical devices that are capable to 

sense specific physical quantities. Examples include cameras of any light range (visible, infra-

red, etc.), microphones, magnetometers, particle sensors or chemical sensors. Active payload 

must be positioned in space to point towards a given target. This can include an area, volume or 

point of interest. Moreover, any active payload sensor has a field-of-view that depends on the 

sensor design.  
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Most commercial and scientific VESSEL missions carry electro-optical sensors (i.e. cameras) 

of any type and light range (Duquette 2009). The rest of this section presents a custom add-in 

that models electro-optical sensors in detail. Other active payload sensors can be modelled with 

the add-in as they are based upon positioning the sensor in space towards a target. However, the 

detection probability algorithm (described in Section 4.10.2) is restricted to electro-optical sen-

sors only.  

VESSELS employ electro-optical sensors for mapping and for spotting targets. For mapping 

missions, camera performance hinges on the image quality, the area covered and image size. For 

target missions, camera performance depends upon the same factors plus the capability to spot 

the target.  

3.3.6.2.1 Payload parameters 

Duquette (2009) specifies three important characteristics of electro-optical sensors, namely 

pixel array size, field-of-view and sensor orientation relative to the aircraft. Herpel et al. (2008) 

define similar characteristics for automotive pedestrian-avoidance sensors. The OSCAR simula-

tion applies these characteristics using six active payload parameters for each VESSEL, as de-

scribed in Table 3-1. 

 

TABLE 3-1: REQUIRED TO DEFINE AN ELECTRO-OPTICAL SENSOR ACTIVE PAYLOAD ITEM ON-

BOARD A VESSEL. 

Active payload parameters Description 

sensorFOVhor 
Double value between 0 and   in radians specifying the hori-

zontal field-of-view of the sensor. 

sensorFOVver 
Double value between 0 and   in radians specifying the verti-

cal field-of-view of the sensor. 

sensorPixelshor 
Integer value larger than zero specifying the number of hori-

zontal pixels of the sensor. 

sensorPixelsver 
Integer value larger than zero specifying the number of verti-

cal pixels of the sensor. 

sensorTiltAngle 

Double value between   ⁄   and  ⁄   specifying the sensor 

tilt angle relative to the VESSEL roll axis. If sensorTiltAn-
gle=0, the sensor is aligned with the VESSEL roll axis. For an 

aircraft flying in level flight, if sensorTiltAngle=π/2, the 

sensor looks vertically down to earth. 

sensorRecognitionFactor 

Double value larger than zero amending the likelihood of 

spotting a target. If sensorRecognitionFactor=0, the 

target is never spotted. If sensorRecognitionFac-

tor=1, the likelihood is unchanged. If sensorRecogni-

tionFactor=1.1, the likelihood increases by 10%. This 

parameter is used to validate payload performance against real 

data, if required. 
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Computing sensor detection probabilities is highly specific to the sensor application. Section 

4.10.2 details the algorithms used for detection probability calculation of electro-optical sensors.  

The target detection algorithm applies only if the target is actually within the camera foot-

print. Appendix 5 details the computation of the camera footprint based on VESSEL operational 

characteristics.  

3.3.6.2.2 Limitations 

The active payload electro-optical sensor add-in described above allows estimating VESSEL 

performance based on sensor performance. However, it is only applicable to missions that scan 

a 2D surface such as the earth (for airborne and ground-based VESSELS) or the ocean surface 

(for submerged VESSELS or ships). Some MISSIONS require sensors to scan 3D spaces or track 

targets within space. Examples include volcano ash cloud monitoring or tracking whales in the 

ocean from a boat. The OSCAR framework does not support scanning of 3D spaces as this is 

deemed too complex for conceptual design studies. 

Another limitation of the add-in is its focus on electro-optical sensors only. It can be used for 

the visible and infrared light range (although the user should be aware of the significant changes 

required with sensorFOVhor and sensorFOVver, see Appendix 5). However, it is not possi-

ble to implement different sensor types such as microphones, radar or Geiger counters.  

Moreover, the add-in cannot easily model human eye performance. It is simple to adapt the 

model for human eye use if the payload performance is measured by quantities like scanned ar-

ea. However, measuring performance based on spotting targets is much more difficult. There is 

very little literature on human eye scanning performance, especially for simple models as re-

quired here. The GEorgia Tech Vision (GTV) model developed by Doll et al. (1998) is too 

complex for conceptual design purposes as it simulates performance cell-wise. There is no sim-

ple model linking target size and distance to the probability of spotting from a human eye. 

However, humans operate many active payload-carrying VESSELS and their vision often plays 

an important role in achieving MISSION success. Examples include any kind of search-and-

rescue missions, human traffic monitoring or border patrols. Therefore, users must be aware that 

performance outputs will be skewed for such missions. 
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4 .  S I M U L AT I O N  

The previous chapter presented the OSCAR framework, i.e. the theoretical foundation used to 

answer the research questions posed in Section 1.2. This chapter details the OSCAR simulation, 

i.e. one possible practical implementation of the OSCAR framework.  

Section 4.1 starts out by justifying the use of computational simulation as the best means to 

achieve the OSCAR requirements. Section 4.2 provides the functional specification for the OS-

CAR simulation. Section 4.3 details the process of software selection to find the most suitable 

software package for creating the OSCAR simulation. The remaining sections cover the actual 

OSCAR simulation: Section 4.4 provides a short overview of the software structure, including a 

toy model walkthrough to promote understanding of the user workflow. Then, Section 4.5 goes 

into more detail describing the data structure employed for the OSCAR simulation as well as the 

practical aspects of data handling. Section 4.6 characterises the Geographical Information Sys-

tem implementation that is critical to the OSCAR framework and simulation. Subsequently, 

Section 4.7 depicts the Base module used within the OSCAR simulation. Section 4.8 specifies 

the VESSEL module, including details about the characteristic parameters and the state chart be-

haviour. VESSEL performance implementation is discussed in Section 4.9, split into the generic 

performance module and the custom aircraft performance module developed for the thesis case 

studies. The next Section 4.10 details the payload module derived for the OSCAR simulation. It 

is limited to ―active‖ payload equipment that is used to scan 2D surfaces with electro-optical 

sensors only. Section 4.11 focuses on a specific VESSEL application, namely Search-and-Rescue 

TRACK patterns. Section 4.12 describes the VESSEL COMPONENT module implementation and 

functionality. Last, Section 4.13 wraps up the chapter by detailing the OSCAR experimental 

setups: the ―Customer‖ experiment can be used for detailed one-time analysis while the 
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―Freeform‖ experiment allows a top-level view on system performance by running many ran-

dom replications. 

4.1 Justification 

Following the general justification for simulation in Section 2.4, this Section argues specifi-

cally why the OSCAR framework is best implemented using simulation. 

The life cycle of any VESSEL consists of MISSIONS, maintenance and idle time (see Section 

3.2.3). Thereby, a VESSEL life cycle complies with the four system characteristics that suggest 

simulation modelling, namely variability, dynamics, interconnectedness and complexity (Ster-

man 2000). Each of the following characteristics on its own can be handled with other tools be-

yond simulation. However, combining all four is best handled using simulation modelling. 

 VESSEL operations are variable because many aspects are inherently stochastic. Aircraft 

passenger boarding, oil tanker loading or car component maintenance all vary in dura-

tion in reality. Variability is often caused by (minor) disruptions or human actions that 

are beyond the model scope but must be captured nonetheless.  

 VESSEL operations are dynamic because the core aspect of modelling the life cycle of a 

VESSEL is to follow it through time. The VESSEL operates and performs over time. Any 

action or interaction of any agent occurs in time. Although computers can simulate dy-

namic processes in a quasi-dynamic fashion only, this is sufficient for conceptual design 

phase requirements. 

 VESSEL operations are interconnected because VESSELS interact with their environment. 

This includes the physical surrounding (road surface, water temperature, air density), 

the operational environment (MISSION profiles), their own COMPONENTS and other 

VESSELS. Change in one VESSEL agent can cause change in its physical environment, 

MISSION profile, any of its own COMPONENTS, or in another VESSEL. It is one of the 

major advantages of OSCAR to be able to simulate the life cycle of a fleet of products 

(not just one individual VESSEL). Hence, realistic interaction with competitor VESSELS 

in the same environment is possible only through interconnectedness. 

 Vessel operations are complex, both combinatorial and dynamically. Combinatorial 

complexity can arise due to the number of components in a VESSEL and the number of 

VESSELS employed throughout the life cycle (i.e. the VESSEL fleet). In fact, the level of 

interconnectedness correlates with the level of combinatorial complexity. Dynamic 

complexity arises from component interactions over time. Dynamic systems like VES-

SEL life cycles, physical environment, VESSEL performance, VESSEL COMPONENTS and 
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other VESSELS all interact with each other dynamically. As dynamic complexity is hard 

to predict analytically, it is prudent to use simulation for VESSEL life cycle modelling. 

Another reason to apply simulation modelling is that simulation allows managers to under-

stand the model easily due to visualisation and interaction. Moreover, virtual experimentation 

stimulates a less risk-averse design process because non-intuitive ―what-if‖ scenarios are possi-

ble at low cost. Hence, managers can probe design concepts in more detail and challenge exist-

ing paradigms with little business risks. A simulation usually fosters more communication as 

design decisions and interactions must be thought through in more detail (Robinson 2004). 

Without simulation, it is more difficult to create and follow thought experiments and arrive at 

useful conclusions about the VESSEL design. 

The alternatives to simulation are inferior regarding implementation of the OSCAR frame-

work. Spreadsheets offer rudimentary capabilities to integrate dynamics and variability while 

advanced spreadsheet functionality requires additional coding. Moreover, presentation and ani-

mation capabilities are inferior to simulation. Not least, spreadsheets cannot recreate intercon-

nectedness between entities easily as they do not support object-oriented interactions. 

Analytical and mathematical models can include variability. However, they require far more 

assumptions to create the model. Analytical models are not flexible in the sense that their solu-

tion is usually just focussed on a single problem. Not least, most VESSEL life cycles are too 

complex to be modelled analytically. 

Another alternative to simulation is using a real prototype. However, for conceptual design 

this approach is not acceptable. First, building prototypes is expensive and time consuming. Se-

cond, detailed design information is unknown, ruling prototype test results void. Last, it is not 

practical to test prototype performance throughout its life cycle. 

Although simulation is the superior modelling approach to implement the OSCAR frame-

work, it features inherent disadvantages as discussed in Section 2.4.2 such as inaccurate results, 

expensive and time-consuming development, lack of data and over-confidence. However, con-

cerning implementing the OSCAR framework, these disadvantages are acceptable: 

 Inaccurate results caused by stochastic simulation runs require a large number of 

simulation runs to increase accuracy. The actual number depends on the quantity of 

random numbers and their functionality. The OSCAR simulation allows for parallel 

computing, reducing runtime on HPC clusters and multi-core computers. As HPC 

clusters are commonplace in industry these days, enough simulation runs are possible 

even during conceptual design phase development to achieve accurate results with 

stochastic inputs. 

 Simulation development is usually expensive due to the time required by simulation 

experts to create the simulation model. However, the OSCAR simulation only re-
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quires model integration and adaption. This can be achieved at a fraction of the cost 

of full model development.  

 This also reduces the time required to integrate the OSCAR simulation. Once imple-

mented into conceptual design procedures, overhead time reduces to defining new 

VESSEL parameters and MISSIONS. Due to the object-oriented nature of all OSCAR 

components (geographical maps, VESSELS, COMPONENTS, etc.), object re-use is en-

couraged, minimising future time overheads. 

 Most simulation projects suffer from lack of data to create realistic outputs. The OS-

CAR framework aims to avoid that by including only data that is usually available 

during conceptual design. Designers know about VESSEL and COMPONENT parame-

ters, albeit with uncertainties and estimations. Customers usually know the operation-

al applications they intend to use the VESSEL for. Although this may not be in geo-

graphical shapefiles, conversion is required only once and can be re-used from then 

on. Moreover, OSCAR allows to add additional data if it exists (i.e. about environ-

ment, other VESSELS, etc.). 

 Due to the concrete nature and the persuasive animations, simulation results often 

suffer from over-confidence of their users. However, the OSCAR simulation is sup-

posed to be used by expert design engineers that are aware of this common miscon-

ception. Moreover, outputs allow including confidence intervals or distributed out-

puts, further underlying the uncertain nature of simulation results. 

4.2 Functional specification 

According to Cusumano et al. (2003), creating and following a functional specification great-

ly increases the chance of product success. This section details the functional specification for 

the OSCAR simulation project. 

4.2.1 Objectives 

The OSCAR simulation should be capable of showing that an operational simulation can be 

applied during conceptual aeronautical vessel design. The simulation should be able to accom-

modate the OSCAR framework, namely the SCENARIO and VESSEL framework. The simulation 

must allow detailed, geographical VESSEL life cycle modelling. The OSCAR framework re-

quirements also apply: the simulation should be generic, comprehensible, realistic and modular 

throughout. 
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4.2.2 Data requirements 

Following good simulation modelling guidelines, the OSCAR simulation should keep data 

and model entirely separate. The OSCAR simulation must be capable of reading geographical 

maps using the standard shapefile format. It is acceptable to pose specific constraints upon the 

shapefile structure. Each shapefile feature must be characterized specifically in a database, con-

forming to the OSCAR framework definition of MISSIONS, TRACKS and SEGMENTS. VESSELS 

must be able to interact with shapefile features. All VESSEL, COMPONENT and Base parameters 

can be specified in a separate database. For simplicity, the input and output data should reside in 

one database file in order to allow storing simulation setup and results together. This allows 

checking previous simulation runs and results easily without re-running the simulation.  

4.2.3 Level of Detail 

In general, the simulation should be as detailed as necessary and as simple as possible. How-

ever, OSCAR puts focus on some aspects of VESSEL life cycle performance while neglecting 

others. Therefore, the LoD varies throughout the simulation model. 

The exact nature of geographical shapefiles requires a high LoD for geographical implemen-

tation. Each shapefile feature has an exact location. MISSION, TRACK and SEGMENT definition 

include exact height and speed profiles. Shapefiles must be 2D, neglecting elevation.  

VESSELS must be generic enough to model most existing moving vessels. They must be able 

to follow geographical features at specific height and speed profiles. However, VESSELS are not 

capable to turn, accelerate and climb realistically. Instead, step changes replace realistic behav-

iour. VESSEL performance must capture energy consumption based on speed. Other influences 

are neglected. However, a plug-in enables adding more detailed performance modules. 

COMPONENTS fail based on a specific weibull distribution only. Each COMPONENT has a spe-

cific probability to cause VESSEL loss upon failure. COMPONENTS are maintained through un-

planned maintenance and can be replaced during operation by redundant COMPONENTS on-

board. There is no interaction between COMPONENTS beyond redundancy. Only physical COM-

PONENT deterioration can be modelled, software bugs are not included. 

4.2.4 Animation 

Model animation is as important to the model developer as to all other stakeholders (Banks & 

Gibson 2009). Simulations usually produce a large amount of data making it difficult for man-

agers to access relevant information (Heilala & Maantila 2010). OSCAR simulation animation 

must enable model validation and verification (see Section 4.4.2) as well as promote client un-

derstanding and comprehensibility. All geographical shapefile features must be visible on a 2D 
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map of the world as MISSIONS, TRACKS and SEGMENTS. VESSEL operations must show clearly 

on the map, including details about the VESSEL performance and MISSION. Each VESSEL and 

COMPONENT agent state chart must be accessible during runtime to observe specific behaviour. 

All simulation parameters and variables must be accessible during runtime. A user-friendly GUI 

(Graphical User Interface) enables easy navigation and interaction. It allows dynamic update of 

database parameters before simulation start. Last, users must be able to turn off all animations to 

run the model in fast mode. 

4.2.5 Outputs 

Each simulation run must output all data generated on MISSIONS, TRACKS, SEGMENTS, VES-

SELS and COMPONENTS. The simulation only stores raw data without post-processing. Users can 

post-process outputs as desired. Data is stored in the same database file as the simulation input 

data. Output data is divided into operational performance data and failure data. Output is object-

oriented: operational performance objects refer to each SEGMENT. Failure objects refer to each 

failure or VESSEL loss. 

4.3 Software selection 

There are many simulation software packages available to prospective modellers. They vary 

in price, capabilities, available support and learning curve. However, it is not possible to survey 

all simulation software and arrive at the ideal candidate based on modeller requirements. Many 

software features cannot be judged objectively and vary in importance based on application 

needs (Law & Kelton 1997).  

Still, this section attempts to follow the software selection process briefly. Section 4.3.1 pre-

sents the software requirements to implement the OSCAR framework. Section 4.3.2 introduces 

AnyLogic, the tool of choice. Last, Section 4.3.3 lists a number of alternative packages and their 

distinct disadvantages regarding the OSCAR simulation. 

4.3.1 Requirements 

Based on the OSCAR framework, there are a number of specific requirements for simulation 

software to be able to create the OSCAR simulation. Initially, the decision to employ purpose-

build simulation software avoids coding all model capabilities from scratch. Based on that deci-

sion, the single most important requirement is the capability to employ agents due to the object-

oriented character of VESSEL life cycles (Section 3.1.4). There are a number of additional re-

quirements that the simulation software must comply with: 
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 Animation: the simulation software should feature extensive and customisable 

animation capabilities including geographical map support to allow creation of a 

user-friendly model. 

 Extensibility and external plug-ins: The simulation software should allow pro-

gram extensions for every aspect of the model (agents, environments, experi-

ments, etc.). Moreover, it must not be self-contained, i.e. it should allow and sup-

port external plug-ins and communication to external data sources. 

 Integration: An open software structure allows importing the model into larger 

software constructs. Communication with other software should be possible and 

easy. Ideally, the software is capable to run as a stand-alone program without the 

need for a license. It should allow to be called externally. 

 Parallel computing: The software should allow running model instances on mul-

tiple cores in parallel. This reduces the computing time for a large number of 

simulation runs to achieve statistically sound outputs. 

 Random numbers: The software must allow full access on random number gener-

ations, including custom random number streams for each random variable. 

Moreover, independent replication runs must be supported. This ensures reliable 

and unbiased outputs. 

4.3.2 AnyLogic 

Based on the requirement set above, the software of choice is AnyLogic by ―The AnyLogic 

Company‖ (formerly ―xjTek‖; www.anylogic.com). It supports agent-based modelling and geo-

graphical shapefile integration explicitly. It has extensive and flexible animation capabilities and 

is Java-based. This ensures open communication with external software or data because the 

standard Java-libraries can be used. Moreover, any Java package can be imported and used 

within AnyLogic, reducing development time to write specific functions. Moreover, Java 

standalone applets and applications can be created from the simulation model. These can be 

used on any machine, independent of the operating system and without an AnyLogic license. 

Parallel simulation runs can be executed on multi-core processors or on HPC clusters. Last, 

AnyLogic allows full control on random numbers. 

4.3.3 Alternatives 

There are a number of alternative packages capable of implementing the OSCAR framework. 

However, each posed one or more distinctive disadvantages: 

http://www.anylogic.com/
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 Arena is a discrete-event simulation tool offering similar capabilities to AnyLogic 

(www.arenasimulation.com). However, it is not truly object-oriented, making it difficult 

to create agent models easily. Moreover, Arena cannot use geographical shapefiles. 

 Simio (www.simio.com) is a direct competitor to AnyLogic because it offers object-

oriented simulation capabilities to industrial users. It was created by Arena developers 

trying to improve on Arena’s inherent disadvantages. Simio focuses on production man-

agement and intelligent scheduling. However, it lacks direct agent support (although ru-

dimentary agents are available) and cannot integrate shapefiles. 

 FlexSim (www.flexsim.com) is very similar to Simio capabilities and lacks shapefile and 

agent support. 

 ExtendSim (www.extendsim.com) is similar to Arena in its focus on classical discrete-

event simulation and lack of object-oriented principles.  

 Repast Symphony (http://repast.sourceforge.net/) is an open-source simulation platform 

focussing on agent-based modelling. It is Java-based, supports parallel simulation runs 

and allows import of geographical shapefiles. However, agents cannot readily interact 

with shapefile features. Instead, features must be drawn manually within the Repast IDE. 

Repast is difficult to extend and integrate into other software as it employs its own pro-

gramming language. 

 Flames (www.ternion.com ) is an expensive COTS simulation framework that complies 

well with the plug-in approach postulated by the OSCAR framework. Users develop sub-

models simulating sub-systems and plug them into the Flames application. The software 

is highly extensible and provides only basic library items. However, it features its own 

programming language and requires specific runtime licenses to run models on client 

computers. Flames supports agents interacting with shapefile features. However, the fi-

delity of scenario definitions and physical models is very high: it is designed primarily 

for military tactic and strategic battlefield decision support. Despite multi-core support, 

single scenario runtimes can be very long.  

 Presagis (www.presagis.com/) is similar in capabilities to Flames. It has the same target 

application of military decision support, requiring high fidelity models of geographical 

3D environments and physical processes. The tool is too sophisticated for conceptual de-

sign phase processes and very expensive. 

http://www.arenasimulation.com/
http://www.simio.com/
http://www.flexsim.com/
http://www.extendsim.com/
http://repast.sourceforge.net/
http://www.ternion.com/
http://www.presagis.com/
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4.4 Overview 

Before describing each part of the OSCAR simulation in more detail, this section provides a 

brief overview on the model structure. Subsequently, it presents a walkthrough of a simple sam-

ple model to increase understanding of model handling. 

4.4.1 Model structure 

The OSCAR simulation model consists of three distinct components, namely the Geograph-

ical Information System, the database and the simulation model. Figure 4-1 displays the relation 

of the three components in a typical application workflow. 

 

FIGURE 4-1: OSCAR SIMULATION STRUCTURE AND WORKFLOW. 

First, the user constructs the geographical shapefiles (Section 4.6 and Appendix 10) for the 

TRACKS as required. Second, he generates the database inputs for the given SCENARIO (Section 

4.5). Upon starting the simulation model, it loads the Geographical Information System and da-

tabase inputs. The user can opt to refine inputs on the SCENARIO and simulation setup (Section 

4.13). Subsequently, the simulation conducts the SCENARIO replications (one or many) accord-

ing to the simulation setup. It saves the outputs of each replication into the database. Once all 

replications finish, the simulation model closes and the user can analyse output data in the data-

base. He can choose to refine database inputs or the geographical setup and rerun the cycle. 

The simulation model itself consists of a number of Java active objects as in Figure 4-2. The 

user can choose to load one of two experiments that load specific simulation setups (Section 

4.13). Once the simulation model starts, it creates a ―Main‖ active object. It loads the geograph-

ical map and defines it as the agent environment. All agents ―live‖ in this geographical map en-

vironment. The ―Main‖ active object accommodates two Java active object classes itself. The 
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―Base‖ class holds instances of agents representing bases (Section 4.7). The ―Vessel‖ class 

holds instances of agents representing VESSELS (Section 4.8). Within the VESSEL class, each 

VESSEL instance uses a specific performance module (Section 4.9), a specific payload module 

(Section 4.10) and a search-and-rescue module, if applicable to the VESSEL MISSION (Section 

4.11). Note that these modules are not Java classes. Instead, they are separate modules that em-

ploy existing code within OSCAR or load external module code. The ―Vessel‖ class comprises 

a sub-class ―Components‖ which holds instances of agents representing COMPONENTS (Section 

4.12). 

Appendix 6 details a model walkthrough in order to comprehend how a geographical map is 

created, inputs are specified and the simulation is set up and run. 

 

FIGURE 4-2: OSCAR SIMULATION MODEL STRUCTURE HIRARCHY. 

4.4.2 Verification & Validation 

The Project Management Institute (PMI 2013) defines verification and validation as: 

Verification: The evaluation of whether or not a product, service, 

or system complies with a regulation, requirement, specification, 

or imposed condition. It is often an internal process. 

Validation: The assurance that a product, service, or system meets 

the needs of the customer and other identified stakeholders. It of-

ten involves acceptance and suitability with external customers. 
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More informally, verification is often associated with the question ―Are you building the 

thing right?‖ whereas validation asks ―Are you building the right thing?‖. Verification is inde-

pendent of the modelling context, ensuring that a fault-free tool was used, programming was 

conducted correctly and that the programming tool features were applied correctly (Sargent 

2007). OSCAR simulation verification was conducted internally throughout model development 

applying standard software engineering techniques such as unit testing, black-box testing and 

walk-throughs (Banks & Gibson 2009). Sawyer and Brann (2009) describe the difficulty of im-

plementing the widely used JUnit
1
 unit testing tool into AnyLogic. Following their recommen-

dation, the AnyLogic IDE was used to create custom unit tests instead. 

With regards to model validation, Steinkeller (2011) and Glas (2013) note that model valida-

tion in aeronautical conceptual design phase cannot be conducted due to the lack of experi-

mental data and physical testing. Similarly, Sterman (2000) argues that the term is misleading as 

one can never formally prove that a model represents reality. Instead, validation should be used 

to ensure a model is convincing and useful. In order to make the OSCAR simulation model 

convincing and useful, rigorous model building processes were followed: 

 The OSCAR simulation model development reduced components and features to the mini-

mum complexity required to achieve the desired functionality. From the start, clients were in-

volved closely: Initially, the DECODE (―Decision Environment for COmplex Design Evalua-

tion‖) research team (Section 5.2) represented the clients. Later, the RNLI (Royal National 

Lifeboat Institution, see Section 5.3.1) and the PRA (Port of Rotterdam Authority, see Section 

6.3.1) adopted the client role. Another factor for successful model validation is useful documen-

tation: AnyLogic incorporates a ―Description‖ tab for any model feature: this was used exten-

sively. Moreover, code documentation follows best practices and the external database items are 

documented as well. 

For the case study in Chapter 5, traditional model validation was conducted by comparing the 

baseline scenario (Section 5.3.1) to available operational metrics. This was not possible with the 

second case study (Chapter 6) as the scenario did not exist in reality. 

4.5 Data 

This section describes the data management within the OSCAR simulation. One database file 

stores all input and output data. This allows complex database queries connecting input and out-

put data tables. The database engine of choice is SQLite, the ―most-widely deployed SQL data-

                                                      

1
 Available at www.junit.org, accessed 05/12/2013. 

http://www.junit.org/


Chapter 4: Simulation 

76 

base engine in the world‖
2
. Appendix 7 describes each table type within the database in more 

detail. The remainder of this section portraits the application of the database within the OSCAR 

simulation, including reading in data, runtime data handling and storing output data. 

The database inputs are loaded into the OSCAR simulation at different points, depending on 

the chosen experiment (Section 4.13). For the single run experiment, all required MISSION ta-

bles are loaded upon creating the ―Main‖ active object on start-up (Figure 4-2). Moreover, all 

BASES, VESSELS and SEGMENTS required for the chosen experiment are loaded from the data-

base. Users cannot influence the data during the start-up period. For the interactive single run 

experiment, all database input tables are loaded into the experiment setup page. Users can inter-

act and amend data as required. Upon starting the experiment, the amended user data is loaded 

into the simulation. For the ―RunFast‖ experiment, database information is loaded on creating 

the ―Main‖ object, similar to the ―Simulation‖ experiment. Users can only amend data before-

hand by editing the database directly. 

During simulation runtime, no input data is loaded into the simulation. Moreover, output data 

is stored within the simulation model until simulation termination. 

Data output upon simulation termination depends on the selected experiment type. For the 

single run experiment, no outputs are copied into the database. For the interactive single run 

experiment, SEGMENT and maintenance outputs are copied into the respective tables after the 

simulation run finished. For the ―RunFast‖ experiment, Segment and maintenance outputs are 

copied into the respective tables after the every simulation iteration finished. 

4.6 Geographical modelling  

As discussed in Section 3.2.4, one of the novel advances of OSCAR is its implementation of 

geographical modelling into conceptual aeronautical design. This section explains the practical 

application of geographical modelling within the OSCAR simulation. The simulation software 

AnyLogic (Section 4.3.2) offers some basic build-in capabilities to display geographical shape-

files. However, enabling agents to interact with shapefile features required considerable manual 

extensions because AnyLogic shapefile support is limited to displaying shapefiles as back-

ground maps without interactive capabilities. Appendix 8 details the essential structure required 

to import and use shapefile data within the OSCAR simulation. Moreover, it describes the actu-

al data import and how the data is turned into objects for AnyLogic processing. The rest of this 

section presents how the simulation applies shapefile data for realistic VESSEL operations. 

                                                      

2
 According to www.sqlite.org, accessed 08/11/2013. 

http://www.sqlite.org/
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Moreover, it discusses how future work should employ the object-oriented paradigm of Java to 

turn shapefile features into Java objects. 

4.6.1 Application 

After the OSCAR simulation loaded and consolidated shapefile and database SEGMENT data 

(Appendix 8), this section describes how the data is processed within the simulation. 

VESSELS move on the geographical map visually but they do not interact with map features 

directly. Instead, interaction occurs with GISPOSITIONFULL objects (GIS abbreviates Geograph-

ical Information System). Figure 4-3 displays when VESSELS read and follow GISPOSITION-

FULL objects during operations (See Section 4.8 for full description of VESSEL state chart). 

 

FIGURE 4-3: GISPOSITIONFULL APPLICATION DURING VESSEL OPERATIONS. SEE 4.8 FOR FULL 

DESCRIPTION OF VESSEL STATE CHART. 

The initial GISPOSITIONFULL object is read before the VESSEL starts to dash out to the initial 

TRACK SEGMENT (A). After finishing the dash phase, the VESSEL moves to each GISPOSITION-

FULL object in turn (B), reading in the next GISPOSITIONFULL object. If the VESSEL is patrol-

ling, it will re-load the initial GISPOSITIONFULL object when re-starting the patrol (C). Other-

wise, the TRACK is finished when the last SEGMENT and the last GISPOSITIONFULL is reached.  
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4.6.2 Future work 

AnyLogic can only display geographical maps without support for agent interaction. There-

fore, the OSCAR simulation employs a custom approach consolidating shapefile data with ex-

ternal database SEGMENT data to create the arbitrary GISPOSITIONFULL objects (Appendix 8). 

However, two improvements would simplify geographical-agent interactions without the need 

to revert to specialist software. 

First, Segment data (Height, Speed, etc., see Appendix 1) could be stored in the shapefiles 

directly using the dbf-tables associated with every shapefile. All TRACK tables in the current 

database would become void because the data is stored with the shapefile features directly. This 

would simplify data handling and data consolidation becomes redundant. However, custom al-

gorithms reading all data from shapefiles would be required. 

A second approach to simplify data consolidation employs the agent capabilities of 

AnyLogic. Here, every MISSION, TRACK and SEGMENT becomes an agent-object featuring the 

parameters that correspond to the database table columns. MISSION agents contain any number 

of TRACK agents, themselves containing any number of SEGMENT agents. This setup also sim-

plifies a number of algorithms aimed to manage current MISSIONS, TRACKS and SEGMENTS. 

TRACK agents, for example, can launch themselves when it is time, asking for the required VES-

SEL. SEGMENT agents consist of coordinate objects (one for Point SEGMENTS, several for Path 

SEGMENTS) and collect statistics on their specific performance individually. However, VESSEL 

life cycles spanning decades including thousands of MISSIONS may create computer memory 

problems due to the large number of SEGMENT agents involved. Intelligent agent creation and 

destruction algorithms would be required. 

4.7 Base class 

Any VESSEL operation starts at a specific location and ends at a specific location (unless the 

VESSEL was lost during the operation). Aircraft start and land at airports, ships dock at harbours, 

cars park, trains stop at stations, etc. The BASE class within the OSCAR simulation provides a 

generic platform to model start and end points of operations. 

Based on the equipment_Bases table in the database (Appendix 7), the OSCAR simulation 

creates BASE class instances for any BASE mentioned in the Base or Destination column of 

any MISSION table loaded for the current experiment. StationName, StationID and geo-

graphical coordinates specify each BASE instance. VESSELS use BASE instances to move to for 

refuel, breaks or upon the end of a TRACK. Figure 4-4 shows the visual representation of a BASE 

instance within the OSCAR simulation. 
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FIGURE 4-4: BASE INSTANCE REPRESENTATION: YELLOW SQUARE WITH STATIONNAME. 

4.8 Vessel class 

The VESSEL class is a major component of the OSCAR simulation, providing a framework to 

simulate a large variety of vessels using one Java class only. This section describes the mode of 

operation of this class in more detail.  

Each VESSEL instance is defined by a unique set of parameters loaded from the database. Ap-

pendix 3 summarises all standard VESSEL parameters. Moreover, optional parameters exist to 

feed the add-on performance model for fixed wing aircraft VESSELS (Appendix 9). These are 

only applicable to VESSELS of the correct category and type. During VESSEL operations, the 

agent refers to its parameters to calculate specific information. Parameters do not change during 

a simulation run. 

Figure 4-5 shows the generic VESSEL state chart used within the OSCAR simulation for eve-

ry VESSEL agent. 



Chapter 4: Simulation 

80 

 

FIGURE 4-5: VESSEL STATE CHART (SIMPLIFIED). 

Upon VESSEL creation, the agent rests in the ―idle‖ state. A TRACK operation commences ei-

ther if a TRACK’S Time parameter triggers its start or if the VESSEL has outstanding TRACKS it 

could not commence on time (due to delays). The VESSEL checks if it can conduct the entire 

TRACK as requested concerning its energy capacity. This check is not done for nuclear powered 

VESSELS (assuming infinite energy) and food powered VESSELS (a hungry human can still 

walk). All other VESSELS conduct the requested TRACK virtually (i.e. before the agent actually 

moves in the simulation), including dash, return, possible scheduled refuels and loitering. If it 

detects running out of energy at any point, the VESSEL cancels the entire TRACK. Outputs will 

be marked with ―cancelled due to fuel‖ (compare output Table A-6). 

If the TRACK is possible, the VESSEL dashes out to the initial POINT or the start point of the 

initial PATH at the DashHeight and DashSpeed specified in the TRACK table. However, if the 

TRACK is a search-and-rescue mission, the Vessel dashes to the ―initial search position‖ de-

scribed in Section 4.11. Upon completing the dash phase, the VESSEL changes speed and alti-
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tude to match the upcoming SEGMENT. Once more, a distinction between normal and search-

and-rescue TRACK is made. 

For normal TRACKS, the VESSEL checks if the current SEGMENT has more points (only appli-

cable for PATH SEGMENTS) or if this is the last point of the SEGMENT (always true for POINT 

SEGMENTS). In the latter case, the VESSEL simply moves towards the last point of the SEGMENT. 

In the former case, another check occurs to see if the current SEGMENT is of type PATH or 

POINT. If it is a PATH SEGMENT, all points of the PATH are conducted in sequence repeating the 

loop ―moveToNextPATHPoint‖. If the last point of a PATH is reached or if the SEGMENT is a 

POINT SEGMENT, the VESSEL moves to this point. Upon arrival, it loiters for the duration speci-

fied in the SEGMENT characteristic Loiter. 

For search-and-rescue TRACKS, SEGMENT treatment is fundamentally different, thus requir-

ing an additional state chart branch. The VESSEL follows a user-specified pattern (expanding 

square pattern in this example) described in more detail in Section 4.11. Upon discovering the 

search-and-rescue incident, the VESSEL also loiters as with normal TRACKS. 

Once the loiter duration is over, the VESSEL checks if the current TRACK has more SEG-

MENTS for operation. If so, the current SEGMENT’S uponArrival determines subsequent be-

haviour. If uponArrival=next, the VESSEL adjusts its speed and altitude and conducts the 

next SEGMENT as above. If uponArrival=stay, the VESSEL will keep loitering until the 

subsequent SEGMENT Time dictates to start the SEGMENT. If that Time already passed, the 

VESSEL will commence immediately. If uponArrival=home, the VESSEL will move to the 

current TRACK’S Destination (not Base). On arrival, it waits until the subsequent TRACK’S 

Time passes, upon which it will depart for the next TRACK’S initial point. If the Time already 

passed, it will commence from the Destination immediately. 

If the VESSEL found ―NoMoreSegments‖ after loiter, it will attempt to move home to the 

TRACK’S Destination. However, if the current TRACK is an active patrol as defined by the 

TRACK’S Repetition characteristic (Appendix 2), the VESSEL repeats the entire TRACK. Once 

the patrol duration is over, the VESSEL stops the current TRACK (independent of the current 

SEGMENT) and moves to the Destination.  

Upon arriving at the Destination, the VESSEL checks if any of its COMPONENTS broke 

during the operation or if any COMPONENT scheduled a planned maintenance (see Section 4.12). 

In such a case, maintenance is conducted on the COMPONENT for the duration specified in the 

COMPONENT’S MaintenanceReplacementTime characteristic. Subsequently, the VESSEL 

becomes ―idle‖ again. 

While the VESSEL conducts a TRACK, it continuously monitors its remaining energy (i.e. fuel) 

level (except for nuclear powered and food powered VESSELS). If there is not sufficient fuel to 

reach the closest BASE without breaking a 10% energy reserve, the VESSEL leaves the ―enough-
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Fuel‖ composite state to return to the closest BASE for refuelling. After 15 minutes of refuelling 

at the BASE, the VESSEL re-commences its TRACK operation where it left off. 

4.9 Propulsion performance module 

This section describes two approaches to propulsion performance modelling within the OS-

CAR simulation. The OSCAR simulation can load different propulsion models for each VESSEL 

agent. The VESSEL parameter performanceModel (Appendix 3) defines the propulsion mod-

ule required. If performanceModel=powerAgainstSpeed, the generic propulsion mod-

el in Section 4.9.1 will be used. To load different modules, the naming convention ―catego-

ry_type_fuelType‖ must be used. Hence, an aircraft VESSEL with fixed wings burning petrol 

will have performanceModel=fixedWing_aircraft_petrol. Section 4.9.2 intro-

duces a propulsion add-in for aircraft, discussing the structure and requirements for external 

plug-ins to be used within the OSCAR simulation. 

4.9.1 Generic propulsion model 

4.9.1.1 Inputs 

Based on the discussion in Section 3.3.4, the generic propulsion model uses a VESSEL-

specific relationship between speed and energy consumption to compute the operational energy 

consumption over the VESSEL life cycle. Hence, each VESSEL features two parameters 

speedValues and powerValues describing the relationship (see Table A-2). Figure 4-6 

shows two sample database entries for an Audi A3 and a lifeboat featuring different number of 

entries and range of speeds. 
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FIGURE 4-6: GENERIC PROPULSION MODEL INPUTS AS DATABASE INPUTS (UPPER SECTION) AND 

VISUAL REPRESENTATION (LOWER GRAPH). 

Upon VESSEL agent creation, the OSCAR simulation loads both parameters into a table func-

tion. 

4.9.1.2 Processing 

During simulation runtime, the VESSEL agent consumes energy based on the inputs described 

above. While the VESSEL operates (i.e. not at a BASE or on maintenance), it updates its energy 

consumption after every SEGMENT. Using linear interpolation, the agent queries the speed-

power table function providing the speed used during the previous SEGMENT. The returned 

power value is multiplied with the duration it took to complete the SEGMENT to obtain the total 

SEGMENT energy consumed. Simultaneously, the consumed energy is converted into fuel used 

by dividing by the VESSEL’S calorific value. This, in turn, depends on the VESSEL’S fuelType 

as follows: 

TABLE 4-1: VESSEL FUELTYPE AND CORRESPONDING FUEL CALORIFIC VALUE. 

fuelType calorific value (in MJ/kg) 

petrol 44.4 

diesel 41.1 

coal 20 

nuclear infinity
3
 

food 0.003 

electric infinity
4
 

 

                                                      

3
 Assuming that nuclear material holds vastly more energy per unit weight than conventional fuel 

types. 
4
 Assuming that electric batteries do not lose weight while depleting energy. An infinite calorific value 

ensures that the output            while             . 
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4.9.1.3 Outputs 

The energy used is stored in the database output table output_Segments (see Table A-6) 

with the appropriate SEGMENT entry in the column energyUsed. 

4.9.2 Custom aircraft performance model 

The OSCAR simulation enables users to provide individual performance modules for more 

realistic performance calculations. This chapter describes the steps required to implement a cus-

tom performance module for any VESSEL type. In order to implement a new performance mod-

ule, the following steps are required: 

1. Create and code the model according to user needs 

2. Convert it to Java code and compile it into a Java archive (.jar) file. 

3. Copy the.jar file into the model folder and name it following the naming convention 

―performance_category_type_fuelType‖ depending on the applicable VES-

SEL category, type and fuelType. If the module covers several categories, 

types or fuelTypes, copy the.jar file and rename it accordingly. 

4. Add the.jar file to the model dependencies 

5. Adjust the model: 

a. Add the additional required VESSEL parameters. 

b. Add a new variable named like the.jar file, i.e. ―perfor-

mance_category_type_fuelType‖ 

c. Load the module in the VESSEL function createPerformance() using 

existing if-function structure (Figure 4-7). 

d. Adjust energy calculation code in functions getSegmentEnergyUsed() 

and getSegmentFuelUsed() using existing if-function structure (Figure 

4-7). 

 

 

FIGURE 4-7: NEW PERFORMANCE MODULES IMPLEMENTATION 

 THROUGH IF-STATEMENTS. 

 

Appendix 9 describes a sample custom performance module used for aircraft fuel burn calcu-

lations. This sample module is applied in the case studies in Chapters 5 and 6. 
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4.10 Payload module 

This section describes the implementation of the payload module add-on for active payload 

as introduced conceptually in Section 3.3.6.2. This add-on creates a realistic representation of 

electro-optical sensors of the visual and infrared light spectrum.  

4.10.1 Inputs 

The OSCAR simulation loads each of the six parameters described in Chapter 3.3.6.2.1 as 

VESSEL parameter objects from the equipment_Vessels database table (Table A-2). 

4.10.2 Processing 

While a VESSEL operates on a SEGMENT (i.e. not on a dash or return, refuel or ―stay‖, com-

pare Figure 4-5), it monitors its environment using the on-board camera defined in the camera 

parameters above. It records one image every time its camera footprint (Appendix 5) covers an 

entire new area (for airborne VESSELS) or every 10 seconds (for ground-based and submerged 

VESSELS). Figure 4-8 schematically compares the two approaches. 

 

 

FIGURE 4-8: CAMERA FOOTPRINT OVERLAPPING SCHEMATIC. 

Appendix 5 explains calculation of the footprint area for all VESSELS. The overlap o for 

ground and submerged VESSELS varies depending on VESSEL speed as 

 

       Eq. 4-1 

 

where V is the VESSEL speed and t is the overlap time of 10 seconds. Every time the VESSEL 

records an image, the net new area scanned (equivalent to the light pink areas in Figure 4-8) is 

added to the output areaScanned. Moreover, the imagesTaken is updated and the 

dataAcquired changes as  

 

             Eq. 4-2 
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Where    is the acquired data in bytes,    are the horizontal camera pixels (OSCAR parame-

ter cameraPixelshor),    are the vertical camera pixels (OSCAR parameter cameraPix-

elsVer) and τ is the number of bytes per pixel. Assuming the common pixel format RGBA32, 

   . After converting to Megabytes, the value is added to the SEGMENT output 

dataAcquired. Eq. 4-2 assumes no file compression (i.e. raw picture file) and neglects 

RGBA32 header data. 

Every time the VESSEL records a camera image, it checks if the current SEGMENT target re-

quires detection (if not, targetWidth=targetHeight=0, see Appendix 1). If the target 

requires detection, the next check tests if the target position is within the camera footprint. If so, 

the detection probability algorithm determines the likelihood of the camera detecting the target 

using the following discussion based on work carried out by Amrith Surendra, drawing on 

Leachtenauer and Driggers (2001) and Gundlach (2012). 

Digital imaging cameras use a collection of individual detectors (i.e. pixels) to form an im-

age. The focal plane array arranges the individual pixels in a plane. The field-of-view at the fo-

cal plane array is the angular view of the focal plane. In general, sensor designers determine the 

field-of-view characteristics (Leachtenauer & Driggers 2001). One of the fundamental parame-

ters that govern image quality is GSD (Ground Sample Distance) as shown in Figure 4-9.  

 

FIGURE 4-9: GROUND SAMPLE DISTANCE (GSD) DEFINITION. REPRODUCED FROM 

LEACHTENAUER AND DRIGGERS (2001). 

GSD is a function of the focal plane array, optics, and collection geometry. The horizontal 

GSD definition is 
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           (
  

    
)    Eq. 4-3 

 

where    is the horizontal camera field of view (OSCAR parameter cameraFOVhor),    is 

the number of horizontal pixels (OSCAR parameter cameraPixelshor) and R is the slant 

range. The vertical GSD definition is  

 

      
                

          
   Eq. 4-4 

 

Where    is the vertical camera field of view (cameraFOVver),    is the number of vertical 

camera pixels (cameraPixelsVer) and       is the look angle as defined in Figure 4-10. 

 

FIGURE 4-10: CAMERA GEOMETRY CONVENTIONS. REPRODUCED FROM GUNDLACH (2012). 

The slant range R is defined as 

 

   √       Eq. 4-5 

 

where h is the VESSEL height and GR is the ground range between the Vessel and the tar-

get. 
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The GSD acts as metric to identify the performance of the camera. However, GSD is not a 

metric for image quality. To determine if image quality is sufficient for target detection, empiri-

cal approaches are required. In this research, the ―Johnson criterion‖ defines three levels of ob-

ject discrimination, namely detection, recognition, and identification (Leachtenauer 2003). De-

tection occurs if an imagery feature is recognized to be part of a general group (i.e. vehicle, 

ship, aircraft…). Recognition is the discrimination of the target class (i.e. car, SUV, truck…). 

Identification is the discrimination of the target type (i.e. BMW, Mercedes, Porsche…). The 

sensor resolution (i.e. pixels per inch) determines the probability of detection, recognition, and 

identification. Using the Johnson criteria, targets are replaced by black and white stripes each 

constituting a cycle. The total number of cycles for a target of given dimensions is 

 

   √      Eq. 4-6 

 

where    is the target height (targetHeight) and    is the target width (targetWidth). 

Both are parameters of each SEGMENT end point (Section 3.2.3.1). The number of cycles across 

the target is 

 

   
 

        
 Eq. 4-7 

 

Hence, the probability of detection is defined as  

 

      
(  ⁄ )

           ⁄  

  (  ⁄ )
           ⁄  

 Eq. 4-8 

 

where   is the detection criterion (detectionCriteria) which defines the 50% proba-

bility of successfully performing detection. For detection,       , for recognition       and 

for identification      . As discussed in Section 3.2.3.1, detectionCriteria is a param-

eter of any SEGMENT. 

Each time the payload camera records an image, OSCAR checks if the camera footprint (Ap-

pendix 5) contains the SEGMENT end point. If so, it calculates the probability of detecting the 

current SEGMENT end point based on the given inputs. This allows estimating the camera opera-

tional performance based on VESSEL performance. The case study in Chapter 6 demonstrates 

how camera performance figures influence overall VESSEL performance and value. 
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4.10.3 Outputs 

The SEGMENT outputs imagesTaken, areaScanned and dataAcquired are updated dur-

ing SEGMENT operation. Upon SEGMENT completion, these are saved into the database. 

If a target is detected during SEGMENT operation, the SEGMENT output timeOfSpotting is 

updated accordingly. Moreover, the target is internally marked as ―detected‖ to avoid subse-

quent camera searching (and re-detection). 

4.11 Search-and-rescue module 

Most real-life vessel operations can be modelled easily by applying the generic OSCAR 

framework using POINT and PATH elements. However, some vessel operations depend on dy-

namic environment variables, i.e. their mission path changes depending on factors unknown 

before departure. One example is search-and-rescue were vessels do not know the exact position 

of their target incident. Instead, they move along specific patterns until they find the incident or 

give up. Since the OSCAR simulation was used to assess maritime UAS (see Chapters 5 and 6), 

search-and-rescue operations featured prominently. Therefore, a custom search-and-rescue 

module improved usability for value-driven design because performance measurement became 

more precise. This section introduces the search-and-rescue add-in and demonstrates how addi-

tional modelling capabilities can be added to the OSCAR simulation.  

Sub-section 4.11.1 describes search-and-rescue procedures and execution in the real word. 

Sub-section 4.11.2 presents the OSCAR simulation search-and-rescue module and how it is ap-

plied during runtime. Sub-section 4.11.3 describes the VESSEL state chart amendment for 

search-and-rescue operations. Last, sub-section 4.11.4 introduces specific SEGMENT targets used 

during OSCAR search operations, namely ―Incidents‖. 

4.11.1 Search-and-rescue in reality 

The UK Maritime and Coastguard Agency (MCA 2008) defines search-and-rescue as 

Search-and-Rescue: The undertaking of locating and recovering 

persons either in distress or missing, recovering them and trans-

porting them to a save location. 

Search-and-rescue typically occurs in three distinct application areas, namely  

 Maritime search-and-rescue uses maritime VESSELS to search for inshore, near-shore 

and offshore incidents. 
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 Aeronautical search-and-rescue uses airborne VESSELS (aircraft, helicopters and most 

recently UAS) to look for incidents over water and land. 

 Inland search-and-rescue uses people, dogs and cars to find and recover persons in 

distress on land. 

The OSCAR search-and-rescue add-in limits operations to maritime and aeronautical search-

and-rescue operations because inland search-and-rescue patterns depend on local geography and 

infrastructure. Maritime and aeronautical search-and-rescue patterns are generic as they are used 

around the world. 

Each country is responsible for search-and-rescue organisation and most countries signed 

various treaties guaranteeing publicly funded conduct of search-and-rescue to any person in dis-

tress. However, most countries feature several civil agencies, NGOs and military units working 

together to conduct search-and-rescue operations. Still, search vessels follow similar policies 

defined by the IMO (International Maritime Organisation) and ICAO (International Civil Avia-

tion Organisation) in the International Aeronautical and Maritime Search-And-Rescue manual 

(IAMSAR 2007). Depending on the incident type, position, daylight, weather and the number as 

well as type of available search-and-rescue vessels, it recommends specific search patterns. 

Moreover, it provides search stop conditions if ―all reasonable hope of rescuing survivors has 

passed‖ (ibid). 

One specific pattern recommended for maritime search of persons or small boats is the ―Ex-

panding Square‖ pattern shown in Figure 4-11 (A). 

 

 

 
 (A) 

 
(B) 

 
(C) 

FIGURE 4-11: TYPICAL SEARCH-AND-RESCUE PATTERNS SHOWING EXPANDING SQUARE (A), 

PARALLEL TRACK SEARCH (B), AND SINGLE-UNIT SECTOR PATTERN (C). REPRODUCED FROM 

IAMSAR (2007). 

The UK search operators RNLI and MCA use the expanding square pattern most frequently 

for near-shore incidents
5
. Therefore, it is implemented into the OSCAR search add-in. The 

                                                      

5
 Pattern usage is not recorded by the RNLI or MCA but interviews with RNLI Calshot lifeboat station 

staff and MCA Lee-on-Solent helicopter pilots affirmed this claim. 
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IAMSAR manual (IAMSAR 2007) provides specific values for the track spacing value S de-

pending on search vessel and incident type. However, the OSCAR add-in assigns S such that the 

camera footprints overlap each other slightly (compare Figure 4-8). 

A typical search-and-rescue operation is conducted as follows: When a search-and-rescue in-

cident occurs (person falling off a ship, ship lost, etc.), it is reported to some search-and-rescue 

authority agency that delegates search-and-rescue vessels to the nearest known incident posi-

tion, the ―initial search position‖. Here, vessels initiate the most appropriate search pattern until 

the incident is found or abandoned. Upon detection, vessels move to the incident and rescue it. 

Here, rescuing refers to different actions such as dragging a person out of the ocean but also 

giving technical assistance to a drifting ship. Eventually, the search-and-rescue vessels return to 

their home base. 

4.11.2 Search 

The OSCAR simulation triggers a search-and-rescue operation as soon as a VESSEL starts a 

TRACK with the first SEGMENT featuring uponArrival=search. The VESSEL does not dash 

out to the initial SEGMENT coordinates but creates a specific ―initial search position‖ near the 

incident (Figure 4-12). 

 

FIGURE 4-12: SEARCH-AND-RESCUE INCIDENT INITIAL SEARCH POSITION. 

This ―initial search position‖ appears on an imaginary circle with its radius defined by the in-

cident SEGMENT type parameter (Appendix 1). The exact position on the circle is defined 

through a random function, i.e. it is different for every search. Upon arrival at the initial search 

position, the VESSEL initiates an expanding square pattern as in the schematic in Figure 4-13. 

This pattern neglects any incident drifting. 
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FIGURE 4-13: EXPANDING SQUARE SEARCH-AND-RESCUE PATTERN WITHIN OSCAR SIMULA-

TION. VIEW AREAS ARE RECTANGULAR BECAUSE THE CAMERA POINTS VERTICALLY DOWN-

WARDS. 

The VESSEL starts to fly a schematic expanding square pattern where the size of the track 

space S depends on the camera footprint size. Footprints overlay by about 5%. Additional over-

lay naturally occurs at the square corners. Note that some minor areas around the corners are not 

covered. This area can be reduced by increasing the footprint overlay. However, in reality the 

camera system would also miss minor areas during direction changes (if it has a fixed camera 

and footprint overlay is low). The missed area can also be minimized by changing the camer-

aTiltAngle parameter. Note that this pattern is an ideal case that might be amended in ad-

verse conditions in reality. 

4.11.3 State Chart 

Figure 4-5 presented the generic VESSEL state chart defining VESSEL operations. However, it 

omitted the search-and-rescue add-on states required to simulate realistic search-and-rescue op-

erations. The search-and-rescue operation states are shown in a more detailed state chart cutout 

in Figure 4-14. The first deviation from the generic state chart occurs upon dash out: the VESSEL 

moves to the initial search position, which is near the GISPOSITIONFULL coordinate defining 

the search-and-rescue incident. Upon arrival, it initiates an expanding square pattern as de-

scribed above. It alternates between moving west, north, east and south in ever-increasing 

squares as in Figure 4-13. 
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FIGURE 4-14: VESSEL STATE CHART SEARCH-AND-RESCUE DETAILS (CUTOUT FROM FIGURE 

4-5). 

Searching stops if any of the following four events happen: 

 The VESSEL runs out of energy. If the incident is not found by other VESSELS during re-

fuel, the VESSEL will re-commence search where it left off. Alternatively, it will move to 

the discovered incident. 

 The VESSEL discovers the incident. For this, the camera footprint must include the inci-

dent (Appendix 5) and the detection probability must return true (Section 4.10.2). The 

expanding_square composite state is left through the transition ―found‖. The VES-

SEL moves to the incident position for rescue and notifies other VESSELS also searching 

for the current incident. 

 Another VESSEL discovers the incident. In this case, the current VESSEL receives a detec-

tion message from the detecting VESSEL. The expanding_square composite state is 

left through the transition ―foundByOtherVessel‖ and the VESSEL moves to the in-

cident for rescue. 

 The expanding_square pattern grows so large that the VESSEL distance from the ini-

tial search position is larger than five times
6
 the incident position uncertainty specified in 

the SEGMENT’S type column. The expanding_square composite state is left 

through the transition ―tooFarFromGuess‖. The VESSEL randomly draws a new ini-

tial search position on the imaginary initial search position circle (Figure 4-12), moves 

towards it and initialises a new expanding square search. 

                                                      

6
 This is an estimate based on interviews with RNLI staff at Calshot lifeboat station. 
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Users can implement different search-and-rescue patterns by adding new states next to the 

expanding_square composite state.  

4.11.4 Incidents 

A SEGMENT becomes a search-and-rescue incident if it has uponArrival=search. In 

that case, a new agent of class INCIDENT is created. This agent class is only used for search-and-

rescue incidents and is not generic. An INCIDENT represents a human floating in water (helped 

by a life vest) and waiting for help. The INCIDENT is positioned at the SEGMENT coordinates. 

Once created, it follows the INCIDENT state chart in Figure 4-15. 

 

FIGURE 4-15: INCIDENT CLASS STATE CHART. 

Initially, the Incident awaits its detection by a Vessel. During that time, the probability of 

survival decreases. The initial survival probability is 0.85, assuming accidental immersion in 

cold water at a temperature of 14ºC (Wissler 2003). Subsequently, the probability of survival 

decreases with time as in Figure 4-16. 

 

FIGURE 4-16: INCIDENT SURVIVAL PROBABILITY IN COLD WATER OVER TIME. 

The survival probability is averaged over data from several experimental studies (Brooks 

2001; Glickman-Weiss et al. 1997; Golden & Tipton 1987; Keatinge 1961; Tipton et al. 1999). 

There is a time window of less than two hours for VESSELS to find INCIDENTS alive. This is in 
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line with the more complex Cold Exposure Survival Model developed by the Canadian Defence 

Research authority (Tikuisis & Keefe 2005). 

Once a VESSEL detects an INCIDENT at its position, the current INCIDENT survival probability 

is stored in the SEGMENT output segmentMeasure (value can be zero, i.e. the incident is 

dead). Note that the OSCAR simulation is only concerned with survival probabilities instead of 

Boolean ―alive/dead‖ values. Although this approach is less realistic from a simulation perspec-

tive, it reduces the number of required simulation replications because less noise is generated.  

If no VESSEL finds the Incident within 24 hours, the simulation assumes that all hope of res-

cuing the INCIDENT alive has passed. All searching VESSELS stop and return to their BASE. The 

INCIDENT agent is destroyed. The output timeOfSpotting is set to null. 

4.12 Component class 

If the database specifies components linked to a VESSEL agent of given category, type and 

fuelType, the VESSEL creates sub-agents of the OSCAR simulation class COMPONENTS. The 

number of COMPONENT sub-agents depends on the number of entries in the respective compo-

nent database table. Appendix 4 describes the seven parameters defining COMPONENTS. Each 

COMPONENT agent follows a generic state chart displayed in Figure 4-17. 

 

FIGURE 4-17: COMPONENT STATE CHART. 

Upon initialisation, any COMPONENT is functional. While the parent VESSEL operates, its 

COMPONENTS accumulate operating time (if WeibullLifeMeasure=duration) or oper-

ating cycles (if WeibullLifeMeasure=cycles).  

By default, each COMPONENT schedules maintenance every WeibullBeta of operating time 

(if WeibullLifeMeasure=duration) or of operating cycles (if WeibullLifeMeas-

ure=cycles). However, users could add a new database column ―scheduledMaintenance‖ 

and enter a simple maintenance interval manually. If the COMPONENT schedules maintenance, 

its parent VESSEL will conduct maintenance upon finishing its current TRACK. 

However, the COMPONENT may experience failure before scheduled maintenance. Upon 

COMPONENT initialisation, the ―time to failure‖ (or ―cycles to failure‖ if WeibullLifeMeas-

ure=cycles) is sampled from the COMPONENT weibull distribution (defined by weibul-
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lEta and weibullBeta) and multiplied with 1+robustnessScalingFactor. A higher 

robustnessScalingFactor increases the COMPONENT robustness because time to failure 

increases. When the COMPONENT operating time (or operating cycles) becomes larger than the 

time to failure (or cycles to failure), the COMPONENT fails. If the VESSEL contains redundant 

COMPONENTS (Section 3.3.5.1), they take over the workload. The VESSEL will conduct mainte-

nance upon finishing its current TRACK. The redundant Components reduce their ―time to fail-

ure‖ (or ―cycles to failure‖) by  

 

       (
 

 
      ) Eq. 4-9 

 

Where N is the number of redundant COMPONENTS,   is the OSCAR parameter weibull-

Beta and ti is the i
th
 redundant COMPONENT time to failure (or cycles to failure). If there are few 

redundant COMPONENTS they are stressed proportionally more, thereby increasing their own 

reduction in fault free operation time. If more redundant COMPONENTS exist, they are assumed 

to share the load of the failed COMPONENT. Arbitrarily, the maximum reduction in ti is limited 

to 10% of weibullBeta. 

If the failed COMPONENT has no redundant COMPONENTS (quantityOnboard=0), the 

aircraft is lost with probability LossProbabilityFromInflightFailure. If the random 

sample returns no VESSEL loss, the COMPONENT schedules maintenance and the VESSEL returns 

to its BASE immediately for repair. If the random sample returns VESSEL loss, the VESSEL is lost 

immediately. However, for model simplicity, a new VESSEL agent immediately replaces the lost 

VESSEL and continues the current TRACK. This assumption neglects operational performance 

drop due to cancelled TRACKS. 

4.13 Experimentation 

After describing the OSCAR simulation components in detail, this section presents the simu-

lation element that actually runs the simulation: the specific simulation experiments. Each OS-

CAR experiment is defined by two experiment parameters explained in Section 4.13.1. Section 

4.13.2 details the randomisation for the OSCAR simulation. Appendix 10 describes each of the 

three OSCAR simulation experiments in more detail, namely ―Single Run‖, ―Interactive single 

run‖ and ―Run fast‖.  

4.13.1 Parameters 

Each simulation experiment is defined by three parameters as below: 
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RandomSeed: An integer value indicating the random seed to be 

used for this experiment. 

missions: A Java array of strings. Each string specifies a MISSION 

table to be loaded. The parameter can include one or many MIS-

SION strings. Each string must equal the respective MISSION table 

name in the database. 

4.13.2 Randomisation 

One of the core characteristics of good simulation modelling is to use different random num-

ber seeds for each model part applying random sampling (Robinson 2004). The OSCAR simu-

lation features five random numbers: 

 COMPONENT units to failure: Upon creation of a new COMPONENT agent, its time-to-

failure (if WeibullLifeMeasure=duration) or cycles-to-failure (weibull-

LifeMeasure=cycles) is drawn randomly from a weibull distribution (Section 

4.12). 

 VESSEL loss during operation: Whenever a COMPONENT with no redundant COMPO-

NENTS fails during operation, it causes complete VESSEL loss with probability Loss-

ProbabilityFromFailure (Section 4.12). 

 Target detection: If a VESSEL uses its active payload (Section Payload module4.10) to 

look for a target, it can spot the target only if it is within the camera footprint (Appendix 

5). In that case, the VESSEL spots the target with a probability depending on target size, 

camera quality and distance to the target (Section 4.10.2). A random sample is generated 

from this probability. 

 Initial incident search position: For the search-and-rescue add-on (Section 4.11), VES-

SELS start a search at a random point on an imaginary circle around the actual INCIDENT 

position. To define the random point, a random uniform sample is drawn between 0 and 

   . The initial search position is placed on the imaginary circle using the random val-

ue as an angle starting from the 12 o’clock position.  

 VESSEL arrival: Upon arriving at the current TRACK destination, the VESSEL might 

be lost if it applies the landing loss plug-in (see Section 5.4.4). 
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4.14 Embedding 

In order to apply the OSCAR framework or simulation effectively, it needs to be embedded 

into a design workflow. This section describes how the OSCAR simulation can be implemented 

into a larger conceptual design phase tool. 

The easiest way to embed the OSCAR simulation is to create a Java applet from the 

AnyLogic IDE. This way, users do not need an AnyLogic license (subject to the AnyLogic ver-

sion licensing statement). Java applets run on any machine, independent of the operating sys-

tem. A vessel design software creates VESSEL parameters upstream of running the OSCAR sim-

ulation. It updates the database VESSEL (and COMPONENTS) tables accordingly. The conceptual 

design phase tool automatically starts the OSCAR simulation Java applet through a batch file. 

Upon simulation close, the OSCAR outputs are written to the database. The Java applet closes 

automatically (if using the ―RunFast‖ experiment). The conceptual design phase tool can now 

start a downstream tool to post-process the outputs. Section 5.2.2 describes a similar embedding 

approach practically applied for this thesis.  
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5 .  C A S E  S T U D Y  –  

D E C I S I O N  S U P -

P O R T  

This chapter applies the OSCAR simulation in a value-driven conceptual design phase set-

ting. It demonstrates its suitability for design decision support. The case study is based upon the 

DECODE (Decision Environment for COmplex Design Evaluation) research project (Section 

5.2) that designed, built and flew four UAS using a value-driven design approach. This case 

study investigates which UAS design is most suited for a particular operational scenario, name-

ly search-and-rescue support around southern UK waters (Section 5.3). For this, the OSCAR 

simulation is setup to model the scenario as closely as possible (Section 5.4). Results are ana-

lysed in Section 5.5, disclosing two of the four designs to be well suited for the given tasks. Sec-

tion 5.6 discusses the results in the light of surplus value, added costs, qualitative OSCAR out-

comes and the applicability of the work within a real conceptual design phase environment. 

Last, Section 5.7 summarises findings from this chapter. 

5.1 Background 

This section outlines the preconceived case study scenario presenting the OSCAR simulation 

in a value-driven conceptual design phase setting. The recent rise of military UAS applications 
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has led to considerations about civil applications of these devices (Cox et al. 2004; 

Dalamagkidis et al. 2011; Herrick 2000). One of the most promising applications with regards 

to medium-term feasibility, certification and practical value is that of search-and-rescue support 

(Austin 2010; Keeter 2008). In 2008, the USCG (United States Coastguard) started investigat-

ing the use of UAS for maritime search-and-rescue support, using a MQ-9 Guardian Predator 

UAS in Florida (Egan 2011). In 2013, USCG operated a ScanEagle UAS for 90 hours, aiding 

the interdiction of nearly 600kg of cocaine
1
. Also in 2013, Iran developed a UAS designed to 

help people drowning in near-shore areas
2
. In the UK, research into UAS for search-and-rescue 

operations does not exist.  

In this case study, a leading UK search-and-rescue operator, the RNLI, seeks to examine the 

usefulness of implementing UAS into their ground-based fleet of lifeboats. The case study as-

sumes that RNLI managers are not yet confident that UAS acquisition is useful to their service. 

Therefore, they instruct a UAS manufacturer to suggest various initial design ideas and report 

upon their value within the RNLI operational environment. The UAS manufacturer develops 

four design candidates. Candidates differ strongly in order to find the best design idea for 

search-and-rescue support.  

The OSCAR simulation is used by the manufacturer during this conceptual design phase to 

find out if: 

 UAS is adding any value to RNLI operations at all? 

 If so, should the RNLI purchase UAS? 

 If so, which of the design candidates is most promising for more detailed devel-

opment? 

5.2 DECODE project 

The preconceived scenario described above bases upon real work with the RNLI as part of 

the DECODE research project concluded in 2012 at the University of Southampton. DECODE 

stands for ―Decision Environment for COmplex Design Environments‖ and this section de-

scribes the DECODE research goals, the unique design software suite developed and the four 

UAS designs built using the DECODE software suite. 

                                                      

1
 See http://www.uscg.mil/acquisition/uas/default.asp, accessed 16/07/2013. 

2
 See http://www.wired.co.uk/news/archive/2013-03/27/iranian-rescue-robot, accessed 16/07/2013. 

http://www.uscg.mil/acquisition/uas/default.asp
http://www.wired.co.uk/news/archive/2013-03/27/iranian-rescue-robot
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5.2.1 Research goals 

The DECODE research was motivated by the insight that today’s aeronautical companies are 

not primarily engineering constructors anymore but have become information-processing struc-

tures. In order to deliver their products on time, in budget and according to specification, these 

companies must adapt their processes, tools and knowledge management. Many companies still 

use relatively simple, ad-hoc design tools, especially within the conceptual design phase (Nunez 

& Guenov 2013). 

DECODE aimed to alleviate these shortcomings by investigating integrated design tools al-

lowing holistic optimisation at the system level through value-driven design approaches. More-

over, tools should enable active design exploration of system level trade-offs between perfor-

mance, unit cost and life cycle costs. A demonstrator toolkit was developed, linking conceptual 

design aircraft spread sheets with CFD and CAD (Computer Aided Design) analysis of varying 

fidelities (for conceptual and more detailed analysis). Uniquely, design should incorporate the 

impact of operations of the products so the OSCAR simulation was incorporated into the toolkit. 

Moreover, a value model quantified cost and benefits of manufacturing and operations to allow 

a value-driven design approach. Section 5.2.2 describes the DECODE design suite in more de-

tail. 

During the three-year project (2009-2012), three different aircraft for different applications 

were designed. A fourth aircraft was designed after the projected ended. All aircraft were UAS 

because this allowed not only using the toolkit theoretically but also actually building and flying 

the designs to improve the toolkit over time. The four designs are described in Section 5.2.3. 

5.2.2 DECODE design suite 

DECODE aims to enable computational tools to have a direct influence on design decisions, 

reducing (but by no means eliminating) human intervention with the goal to reduce design time 

(Keane & Nair 2005). Avoiding the traditional design iterative spiral, DECODE follows a more 

agile design approach: Essentially, preliminary design is integrated into the conceptual design 

phase as all design variables are considered conceptually (Gorissen, Quaranta, Ferraro, 

Schumann, Schaik, Bolinches I Gisbert, et al. 2014). Similarly, manufacturing considerations 

are closely integrated into the DECODE design process as are maintenance and deterioration 

(through OSCAR).The DECODE suite ties together different functional modules of existing and 

new software through a data management layer, a logic layer and a presentation layer (ibid). 

The core module is a spreadsheet concept design tool developed from basic principles. It for-

wards basic geometry into a CAD model to develop detailed geometry. Moreover, it informs a 

CFD tool to perform aeroelastic and fluid flow analysis. FEA (Finite Element Analysis) is used 

for structural analysis. These steps can be skipped for low-fidelity runs using empirical formu-
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lae. The design spreadsheet also provides inputs to the OSCAR simulation using a simple text 

file (Figure 5-1). The DECODE suite starts the OSCAR simulation as a Java applet and sets an 

additional experiment parameter externalTextfile=true.  

 

FIGURE 5-1: EXTERNAL TEXT FILE SPECIFYING VESSEL PARAMETERS. 

This enables the Java applet to load and apply the text file parameters for UAS type VESSELS. 

After the experiment ends, OSCAR writes outputs to the database but also to a specific output 

text file. The output text file contains processed outputs (i.e. the OSCAR simulation processed 

the raw data already) such as averages and standard deviations of specific measures. The DE-

CODE suite uses these measures for the downstream value model that is similar but more de-

tailed than the one applied in this case study (Section 5.4.3). 

5.2.3 UAS design 

The DECODE research produced three UAS designs. A fourth design was created after the 

project ended using the same methodology and toolkit. Below is a brief description of each de-

sign, focussing on the characteristics important for OSCAR. The rest of this study refers to each 

design by the following acronyms: DECODE, BBC, SULSA and 3i. Appendix 12 compares all 

four designs by their performance, camera and COMPONENT inputs used for the OSCAR simula-

tion. 

5.2.3.1 Design 1 – DECODE 

The first aircraft designed using the DECODE suite was a twin-boom pusher configuration 

UAS with a non-retractable undercarriage. It was designed focussing on modularity and easy 

handling, allowing operators to carry a disassembled UAS in a car, assemble it in a few minutes 

and get it into the air (Figure 5-2). 



Chapter 5: Case study – Decision support 

103 

 

 

FIGURE 5-2: DECODE UAS SHOWING MODULAR APPROACH. REPRODUCED WITH PERMISSION 

FROM ANDY J. KEANE
3
. 

This aircraft was designed with search-and-rescue operational capability in mind to allow for 

long endurance. However, the early development stage of the DECODE software suite (includ-

ing OSCAR) at the time prevented targeted search-and-rescue development. Instead, this design 

was a proof-of-concept aircraft demonstrating aircraft development using agile and integrated 

design tools (Gorissen, Quaranta, Ferraro, Schumann, Schaik, Bolinches I Gisbert, et al. 2014). 

The UAS has an empty weight of 8.8 kg with a 1.8 kg fuel capacity. It is made of carbon spars 

and has a twin-cylinder four-stroke engine. 

5.2.3.2 Design 2 – BBC 

 

 

 

FIGURE 5-3: BBC UAS VIRTUAL DESIGN (A) AND ASSEMBLED AIRCRAFT INFLIGHT (B). REPRO-

DUCED WITH PERMISSION FROM JEROEN VAN SCHAIK
4
 AND ANDY J. KEANE

5
. 

This UAS was developed based on collaboration between the University of Southampton and 

the BBC. It investigated the use of UAS for communication and live video broadcasting of ma-

                                                      

3
 E-Mail: andy.keane@soton.ac.uk 

4
 E-Mail: jeroenrob@gmail.com  

5
 E-Mail: andy.keane@soton.ac.uk  

mailto:jeroenrob@gmail.com
mailto:andy.keane@soton.ac.uk
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jor events. The UAS is based upon the DECODE design but has larger dimensions at 4 m wing 

span, 2.5 m length and almost 23 kg take-off weight. A larger twin-cylinder four-stroke engine 

allows much higher flight speeds compared to DECODE. Moreover, the fuel tank is larger, in-

creasing flight endurance. The final design is a monoplane with a pusher 3-blade propeller and a 

twin-boom ―inverted V‖ tail as in Figure 5-3. The internal structure was designed for rapid pro-

totyping and aerodynamic surfaces use ultra-light foam. 

5.2.3.3 Design 3 – SULSA 

 

 
(A) 

 
(B) 

FIGURE 5-4: SULSA INTERNAL STRUCTURE (A) AND THE DISASSEMBLED AIRCRAFT SHOWING 

INSTRUMENTS TRAY (B). REPRODUCED WITH PERMISSION FROM JEROEN VAN SCHAIK
6
 AND 

ANDY J. KEANE
7
. 

SULSA (Southampton University Laser-Sintered Aircraft) is the smallest design and was cre-

ated to explore the DECODE rapid prototyping capabilities (Figure 5-4). It was designed, built 

and tested in less than two weeks. Moreover, it was the ―world’s first printed aircraft‖
8
 as its 

entire structure, including wings, control surfaces and hatches were printed layer by layer on a 

nylon laser sintering machine. SULSA’s dry weight is 0.208 kg only with a wing area of 0.24 

m
2
.As SULSA is the only design in this case study that is propelled by an electric engine, the 

custom performance model (Section 4.9.2) is not applicable. Instead, the generic performance 

model (Section 4.9.1) links flight speed to power consumption as in Figure 5-5. Appendix 11 

details the rationale.  

                                                      

6
 E-Mail: jeroenrob@gmail.com 

7
 E-Mail: andy.keane@soton.ac.uk  

8
 See http://www.newscientist.com/article/dn20737-3d-printing-the-worlds-first-printed-plane.html#.-

UfU-D43vh8E, accessed 29/07/2013. 

mailto:jeroenrob@gmail.com
mailto:andy.keane@soton.ac.uk
http://www.newscientist.com/article/dn20737-3d-printing-the-‌worlds-‌first-‌printed-plane.html#.UfU-D43vh8E
http://www.newscientist.com/article/dn20737-3d-printing-the-‌worlds-‌first-‌printed-plane.html#.UfU-D43vh8E
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FIGURE 5-5: SULSA POWER-TO-SPEED RELATIONSHIP. 

 

5.2.3.4 Design 4 - 3i 

 

 

FIGURE 5-6: 3I AIRPLANE OVERVIEW. REPRODUCED WITH PERMISSION FROM JEROEN VAN 

SCHAIK
9
. 

This design is the largest and heaviest of all four UAS. It was developed as part of the follow-

on research project after DECODE, namely the 3i project (―Integrated Coastal Zone Manage-

ment via Increased Situational Awareness through Innovations on Unmanned Aircraft Systems― 

described in Section 6.2). Design focussed upon flight safety and component redundancy as the 

product is intended to be used in real operations after the project end. A FMEA (Failure Modes 

and Effects Analysis) indicated that using two engines and a duplex redundant flight control 

system was required to achieve high levels of flight reliability. About 70% of the 3i UAS are 

laser-sintered, reducing production errors and performance loss. The design configuration is a 
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twin-engine, twin-boom monoplane, featuring a versatile payload pod near the CoG (Centre of 

Gravity) with an unobstructed forward view (Figure 5-6). The aircraft is the heaviest design at 

24.2 kg but also the fastest, capable of flying at 45 m/s. If one engine fails, it can safely return to 

base using the remaining engine. 

5.3 Scenario 

This section describes the situation of search-and-rescue operations as it is found today 

around the Solent region at the south coast of the UK. Moreover, it discusses how adding one or 

more UAS would change real search-and-rescue execution for stakeholders. The remainder of 

this chapter uses the keyword ―baseline‖ to refer to the former case (Section 5.3.1) while ―re-

vised‖ alludes to the latter (Section 5.3.2). 

5.3.1 Baseline scenario 

 

FIGURE 5-7: SOUTH COAST OF THE UK INDICATING RNLI LIFEBOAT STATIONS IN THAT REGION. 

UK search-and-rescue operations are conducted by several authorities that follow specific 

guidelines (Section 4.11.1). One of them is the RNLI employing maritime vessels exclusively. 

The area chosen for this case study covers part of the south coast of the UK, ranging from Lyme 

Regis in the West to Portsmouth in the East as seen in Figure 5-7. 
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The area includes the Solent, the water strait between the Isle of Wight and the City of South-

ampton. The Solent is one of the busiest shipping routes of the UK and features a very high lev-

el of leisure activities, ranging from sailing and diving to water-skiing and surfing. Ten RNLI 

lifeboat stations conduct search-and-rescue in the chosen area. Each harbours between one and 

two lifeboats of varying types. Lifeboat services include missions due to vessel machinery fail-

ures, troubled vessels, persons in distress/missing, capsizes, fires or collisions. About one third 

of all missions can be classified as searches because the incident position is unknown (RNLI 

2009). In this case study, only missions including unknown incident positions are included as 

these merit additional search tools. 

Generally, search missions consist of four stages: initially, the responsible lifeboat station 

will dispatch the appropriate lifeboat towards the suspected incident position. Next, a coordinat-

ed search begins, using fixed search patterns until the incident is found or searchers give up. 

One or more lifeboats can search for an incident, depending on weather, incident type, available 

equipment and location. Upon spotting the incident, rescuing is performed based on the inci-

dent’s requirements. Lastly, lifeboats return to their base. 

5.3.2 Revised scenario 

Current search-and-rescue operations combine very expensive equipment (lifeboats, helicop-

ters, aircraft) with limited human performance as pilots and lookouts can conduct searches for 

no more than several hours on end. Moreover, equipment and operators can be severely restrict-

ed by weather and night time operations. This leads to very high fixed costs with acceptable (yet 

improvable) search performance. The use of UAS lends itself ideally to support search-and-

rescue operations because UAS are not confined to the same limits. Using autonomous technol-

ogies, UAS can operate much longer than humans can. Given the right payload, they can auton-

omously scan and analyse large areas for incidents, even in bad weather or during night.  

Once the technology has matured, UAS could be easily implemented into current search-and-

rescue operations, weather permitting. They could be launched from lifeboat station managers 

after lifeboats dispatched. Most stations have a strip of grass long enough to house medium 

sized UAS as those presented in this case study. Alternatively, UAS could be launched by life-

boats themselves while searching, broadcasting a live view from the air into the lifeboat or to its 

base. Combining live search image analysis and human search potentially increases the chance 

to find incidents earlier at little additional cost. 
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5.4 Simulation setup 

The simulation runtime of all scenarios is one virtual year. This is less than the entire life cy-

cle of a search-and-rescue UAS but suffices to for the purpose of this case study, i.e. to compare 

and decide upon the best UAS design. The input data described in this section is applicable over 

the course of one year only. Therefore, longer runtimes would have extrapolated that data with-

out new model insights. 

This section presents how current search-and-rescue operations and the anticipated UAS in-

tegration were translated into the OSCAR simulation. Section 5.4.1 describes the baseline sce-

nario as found at the south coast of the UK today. Section 5.4.2 presents the setup for the re-

vised scenario that includes a UAS vessel. Section 5.4.3 details the value model developed to 

compare both scenarios quantitatively. Last, section 5.4.4 introduces an additional OSCAR sim-

ulation add-in used for modelling the landing of UAS in more detail. Appendix 16 details the 

rationale behind setting the number of simulation replications for this case study. 

5.4.1 Baseline scenario 

The baseline scenario is used to judge the performance of each UAS design against a datum. 

It represents the current status of search-and-rescue operations around the southern coast of UK 

waters as described in chapter 5.3.1 within the OSCAR simulation.  

5.4.1.1 Lifeboat stations 

 

FIGURE 5-8: BASELINE SCENARIO OVERVIEW SHOWING LIFEBOAT STATIONS (SQUARES) AND 

INCIDENT POSITIONS (DOTS). 

This case study models 10 RNLI lifeboat stations along the south coast of the UK as shown 

in Figure 5-8. Each station is an agent incident of the BASE class (Section 4.7) with the respec-

tive coordinates. 

file:///D:/Dropbox/Thesis/5%20Case%20study%20decision%20support/5-4%20baseline%20scenario%20map.PNG
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The geographical region was chosen such that model validation could be supported by local 

RNLI personnel. The geographical extent of this case study was chosen based on initial range 

and endurance estimates for the UAS such that they could support all incidents from an edge 

location. Each lifeboat station is assigned incidents and lifeboat vessels as described below. 

5.4.1.2 Incidents 

Figure 5-8 shows the geographic distribution of incidents. Each incident is an agent of the 

non-generic INCIDENT class (Section 4.11.4). The majority of INCIDENTS occur very close to the 

shore and in proximity to lifeboat stations, most acutely within the Solent region between the 

Isle of Wight and mainland UK. Here, leisure activities such as sailing, surfing and swimming 

are predominant. Further out at sea, incidents involve fishing vessel capsize or staff washed 

overboard (RNLI 2009; RNLI 2008). Each station features an average number of incidents oc-

curring at that station per year as in Figure 5-9. This neglects seasonal differences. 

 

 

FIGURE 5-9: AVERAGE NUMBER OF INCIDENTS FOR LIFEBOAT STATIONS
10

. 

Based on lack of detailed data, each incident has a uniformly distributed random position un-

certainty between 50 and 3,000 metres. Larger uncertainty alludes to persons immersed in water 

with a small target size of 0.2 by 0.2 metres (essentially a head in water), a loose Detection-

Criteria requiring identification only, a longer UAS loiter time upon detection and a high-

er UAS flight altitude. Conversely, smaller position uncertainty defined incidents to be small 

boats of target size 3 by 10 metres with a tighter DetectionCriteria requiring recognition 

                                                      

10
 Based on publicly available data from www.rnli.org.uk 
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or even detection, less UAS loiter time upon detection and lower UAS flight altitude. This 

setup recreates reality in the sense that the position of a person in water is known less well than 

that of a small boat (which might even have a transponder radioing its exact position). Small 

boat incidents represent people that have gone overboard but are still near the boat (hence more 

easily found by rescuers or UAS).  

However, all incidents are essentially persons immersed in ocean water. Submersion time is 

by far the most influential factor for survival in water (Suominen et al. 2002). A simple proba-

bility of incident survival links to water immersion time as in Figure 5-10. It assumes that ocean 

water temperature around the Solent remains constant at 14 °C throughout the year
11

, people 

wear clothes and a life-jacket and are of average shape and fitness (Wissler 2003). 

 

FIGURE 5-10: INCIDENT SURVIVAL PROBABILITY BASED ON WATER IMMERSION TIME. ADAPTED 

FROM (Wissler 2003). 

5.4.1.3 Vessels 

The baseline scenario features VESSEL agents representing lifeboats by setting catego-

ry=boat and type=boat (Figure 3-12). In reality, the Solent stations feature different types 

of lifeboats and varying number of boats per station. For this case study, however, one VESSEL 

type applies for each station because engine performance data was available for one lifeboat 

type only, namely the Mersey. The Mersey lifeboat is an all-weather boat with a maximum 

speed of 17      12
. It is powered by two Caterpillar 3208T marine diesel engines consuming 

                                                      

11
 This is a reasonable assumption based on the World Ocean Atlas 1994: http://iridl.ldeo.-

columbia.edu/SOURCES/.LEVITUS94/, accessed on 11/07/2013. 
12

 See http://rnli.org/aboutus/lifeboatsandstations/lifeboats/Pages/Mersey.aspx, accessed on 

10/07/2013. 
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between 10 and 90 kg/hr of maritime diesel, depending on cruise speed. Appendix 13 details the 

power consumption for varying cruise speeds. The Mersey has a fuel capacity of 821.4 kg and a 

search cruise speed of 7 m/s. Each lifeboat assumes one lookout searching for the incident. Due 

to lack of a human visual model, the camera model (Section 4.10) was adapted to emulate hu-

man vision. The horizontal and vertical field-of-view were set to 40° and 15° respectively, mir-

roring the human cone of visual attention. The horizontal and vertical pixels were set to 1,000 

each, reflecting the total number of signal fibres going from the eye to the brain (Defense 1999). 

The camera tilt angle was set to 0° as the lookout will scan the horizon. Moreover, setting cam-

era_recognition_factor=3 increases the chance of spotting an incident threefold. This 

factor was chosen to match the baseline output average_incident_waiting_time with the 

observed RNLI waiting times
13

. 

5.4.2 Revised UAS scenario 

This section describes the ―revised‖ scenario including UAS setup within OSCAR. The life-

boat stations, VESSELS and INCIDENTS setup is identical to the ―baseline‖ setup. The only differ-

ence in the ―revised‖ scenario is the addition of a UAS agent. This agent is a VESSEL where 

category=fixedWing and type=aircraft (Appendix 3). For DECODE, BBC and 3i, 

performanceModel=fixedWing_aircraft_petrol and fuelType=petrol 

while SULSA uses performanceModel=powerAgainstSpeed and fuel-

Type=electric. Further parameters base on the UAS in question as outlined in Section 

5.2.3 and Appendix 12. The UAS agent operates from the BASE at Lyme Regis, the westernmost 

BASE in this case study. Thereby, the UAS is forced to cover long distances to most of the inci-

dents, stretching its operational capabilities as much as possible. This helps design comparison 

as performance between two similar designs can be difficult if designs are not strained to their 

limits. 

5.4.3 Value model 

A simple value model demonstrates useful post-processing of OSCAR outputs for value-

driven design. Real applications would feature more elaborate value or cost models, including 

currency depreciation but this is beyond the scope of this work. In general, the value of a prod-

uct can be described as the revenue it generates minus the costs it accumulates. However, 

search-and-rescue operations do not create any incoming revenue so an alternative ―benefits‖ 

                                                      

13
 The RNLI aims to ―reach at least 90% of all casualties within 10 miles of lifeboat stations within 30 

minutes‖. (RNLI, 2009). 
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model was devised, monetising the perceived search-and-rescue benefit of saving lives and 

scanning large ocean areas. Vanguard Studio
14

 generated the models and statistical distributions. 

5.4.3.1 Cost model 

The cost model used for this case study employs a comprehensible bottom-up cost estimation 

approach. Usually, parametric or analogous (i.e. top-down) cost estimation methods are used 

during conceptual design due to the lack of available information (Curran et al. 2004; Fielding 

1999). However, OSCAR processes more detailed information during the conceptual design 

phase and merits the application of a bottom-up approach. The cost model structure can be seen 

in Figure 5-11. 

 

FIGURE 5-11: COST MODEL OVERVIEW 

The model consists of OSCAR inputs provided by the operational simulation, cost parameters 

and results. The total system cost is subdivided into UAS and lifeboat costs, reflecting the case 

study setup. The ―baseline‖ scenario has UAS costs = 0. UAS costs are further sub-divided 

into maintenance, operating, fixed and payload costs while lifeboat costs only consists of fixed 

                                                      

14
 Vanguard Studio Version 5.2.0, available at http://www.vanguardsw.com/. 

http://www.vanguardsw.com/
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and operating costs. This reflects the additional OSCAR outputs available for UAS while keep-

ing the lifeboat outputs as simple as possible. Actual cost calculation is conducted via simple 

factoring of OSCAR outputs and given parameters. By way of example, the UAS maintenance 

costs in Figure 5-11 are calculated as in Eq. 5-1.  

 

                       Eq. 5-1 

 

Where CM is the maintenance cost, tM is the maintenance time,     is the cost per mainte-

nance hour,     is the number of maintenance operations and     is the cost per maintenance 

operation. Appendix 14 derives the cost parameters (light grey arrowed boxes in Figure 5-11). 

Each OSCAR output (white boxes in Figure 5-11) was included into the value model as follows: 

First, output values for each iteration were summarized by fitting a statistical distribution using 

Vanguard Studio distribution fitting. Distributions were included into the cost model such that 

10,000 Monte Carlo simulation runs could be produced to obtain overall cost distributions. 

5.4.3.2 Benefit model 

As search-and-rescue operations do not produce economic revenue or income, the perceived 

benefit of saving lives and scanning large ocean areas were monetised in a benefits model. Fig-

ure 5-12 shows the benefits model used for this case study. 

 

FIGURE 5-12: BENEFITS MODEL OVERVIEW 

This model uses the same factoring approach as the cost model above. It quantifies the bene-

fits of search-and-rescue in monetary terms to compare it to the costs caused by search-and-

rescue operations. The major benefit of conducting search-and-rescue is saving lives. In order to 

save more lives, rescuers must find and rescue incidents as fast as possible as the prime driver 

for death at sea is time in water (Suominen et al. 2002). Therefore, the absolute number of saved 

lives is the main benefit. However, in this case study, we are interested in the improvement over 

the baseline case so the number of additional saved lives over the baseline case is used. Some-

what arbitrarily, this benefit model also includes the scanned area as a benefit. This founds upon 

the assumption that scanning more area can reveal other incidents that search-and-rescue opera-
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tors were not aware off, increasing total benefits further. However, it also demonstrates how 

different OSCAR outputs can be applied for value calculation. 

Several estimates for the statistical value of a live exist, varying by two orders of magnitude. 

The value of a statistical life of a prime-age worker in a developed country is estimated to be 

around $ 7M, based on a review of 100 studies on mortality and injury risk premiums (Viscusi 

& Aldy 2002). However, using such a high value for saving one additional live would strongly 

dominate the cost-benefit calculations, preventing analysis of more subtle influences. A differ-

ent valuation is used based on RNLI statistics: the daily operational cost of the RNLI is £ 

385,000 (RNLI 2009). On average, 22 lives are saved every day by the RNLI (ibid). As this ser-

vice is financed exclusively through charitable donations, the public appears to value saving a 

live at sea at about £ 17,500, the value used for this case study. 

The value of scanning one square kilometre is arbitrarily set to $ 1 as there are no relevant es-

timates for a similar application. 

5.4.4 UAS landing loss plug-in 

UAS landings are risky operations since a human operator or an autopilot must remotely land 

the UAS, often on grass or uneven ground. VESSEL loss due to landings is a relevant influence 

on UAS operational performance that is not captured in the generic OSCAR framework. There-

fore, this Section presents an OSCAR add-in modelling the risk of VESSEL loss upon landing at 

BASES for UAS only. 

Weibel et al. (2004) identified UAS weight as one of the most critical factors for UAS crash 

probability. However, a crash is more likely to occur upon landing with high speed as well. 

Therefore, the plug-in assumes that the probability of landing loss is related to the UAS landing 

kinetic energy. 

There is very little scientific data of UAS landing losses for two reasons: First, manufacturers 

and operators do not want to publish crash data for confidentiality. Second, little data on civil 

UAS operations exist because their application is very new. There is not much data on landing 

losses for this aircraft category.  

Therefore, users define a custom relation between landing loss probability and landing kinetic 

energy. For the case studies in this thesis, the relationship in Figure 5-13 defines the probability 

of landing loss based on landing kinetic energy. The setup is arbitrary and based on engineering 

judgement, consultation with UAS pilots and designers. 
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FIGURE 5-13: LANDING LOSS PROBABILITY BASED ON LANDING KINETIC ENERGY FOR UAS. 

Upon UAS arrival at its BASE, the current landing speed (calculated from the aircraft perfor-

mance add-in, see Appendix 9) and the current UAS weight define the landing kinetic energy. 

The UAS is lost with the given probability. If the UAS is lost, a replacement UAS immediately 

takes over and adds to the fixed UAS costs as the number of used UAS rises (Figure 5-11). 

5.5 Results and Analysis 

This section presents and analyses all results from the case study, starting with the raw OS-

CAR outputs (Section 5.5.1), followed by the costs (Section 5.5.2), benefits (Section 5.5.3) and 

value outputs derived from the value model (Section 5.5.4).  

5.5.1 OSCAR outputs 

For this case study, 14 outputs were recorded for 120 iterations for each of the simulation 

runs (one baseline case and four UAS designs), totalling 8400 outputs. The following boxplots 

summarise outputs aggregated over the simulation period of one year. Note that whiskers indi-

cate the maximum/minimum of data (unless otherwise stated). 
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(A) 

 
(B) 

FIGURE 5-14: AVERAGE INCIDENT WAITING TIME (A) AND THE NUMBER OF SAVED LIVES (B) 

 

 
(A) 

 
(B) 

FIGURE 5-15: LIFEBOAT UTILISATION (A) AND FUEL USED BY LIFEBOATS (B) 

Each UAS design reduces the average incident waiting time (Figure 5-14 (A)) by at least 30 

minutes compared to the baseline case. The BBC design and the 3i design are more successful 

at this than the DECODE and SULSA design. The waiting time reduces because the UAS 

searches in parallel with lifeboats, thereby spotting incidents earlier, on average. The better per-

formance of the BBC and 3i aircraft originates from their higher maximum and search speeds, 

reaching the search area faster and spotting incidents earlier, on average. 

The increase in the number of saved lives in Figure 5-14 (B) is similar in trend but less strong 

in absolute numbers. The BBC and 3i design increase the number by about 10 % while DE-
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CODE and SULSA add less than 3% to the number of saved lives. As incident survival is criti-

cally linked to time in water (Suominen et al. 2002), the faster BBC and 3i designs can rescue 

more people alive. 

By introducing UAS to the baseline case, lifeboats utilisation decreases (Figure 5-15 (A)). 

The BBC and 3i design reduce the required lifeboat hours by about 33% while DECODE and 

SULSA reduce it by 22.5% and 19%, respectively. In absolute terms, each lifeboat is used be-

tween 18 and 27 minutes per day, on average. Fuel usage reduces accordingly (Figure 5-15 (B)): 

Each lifeboat burns between 23 and 35 kg of diesel per day. Lifeboat utilisation is inversely 

proportional to the number of saved lives (Figure 5-14), because the faster BBC and 3i designs 

help spotting incidents earlier, allowing lifeboats to return home quicker, thereby reducing their 

overall utilisation. 

 
(A) 

 
(B)  

LOGARITHMIC SCALE. 

FIGURE 5-16: UAS FUEL BURNED (A) AND UAS ENERGY USED (B) 

Figure 5-16 (A) plots the fuel burned for petrol-driven UAS (DECODE, BBC and 3i). DE-

CODE burns about 1kg each day, BBC requires 4 kg and the twin-engine 3i burns 8 kg each 

day, on average. SULSA does not burn any fuel as it is propelled by an electric engine. To com-

pare SULSA energy consumption, the energy consumed by the petrol designs was converted 

using the calorific value of petrol, as in Figure 5-16 (B). Still, SULSA consumes 64 times less 

energy than DECODE at 0.2 kWh or 720 kJ per day. In general, fuel consumption is inversely 

proportional to UAS flight times (Figure 5-17) because a fast design burns more fuel but also 

returns home earlier, on average.  
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(A) 

 
(B) 

FIGURE 5-17: UAS FLIGHT TIME (A) AND NUMBER OF UAS LAUNCHES (B) 

UAS flight times (Figure 5-17 (A)) correlate with lifeboat utilisation (Figure 5-15 (A)). The 

reason is that the slower DECODE and SULSA designs (flight times at about 3.3 hours each 

day) generally need longer to spot incidents (Figure 5-14 A). The faster BBC and 3i designs 

(operating for about 2.5 hours per day) spot incidents earlier, accruing less flight time. This is 

not mirrored by the number of take-offs shown in Figure 5-17 (B): While DECODE, BBC and 

SULSA launch around 1.75 times per day, 3i launches 1.9 times each day. The reason is found 

in Figure 5-18 showing the number of refuelling operations conducted during searches.  

While BBC and SULSA virtually never need to refuel during a search, the high search speed 

and performance of 3i require it to interrupt a search in order to return home for refuel almost 

twice a month. Each refuel adds a take-off in Figure 5-17(B). However, despite more refuel op-

erations for DECODE compared to BBC, it has less take-offs accrued. This indicates the fol-

lowing specific case: the slow DECODE design searched for an INCIDENT while a second INCI-

DENT appeared somewhere else. Due to its slow speed, it could not respond to that second INCI-

DENT which was rescued by lifeboats instead. As the UAS still searched for the first INCIDENT, 

it accrued less take-offs in total, not needing to dispatch to the second INCIDENT anymore (see 

discussion in Schumann et al. (2011) for more details of this specific case). 
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FIGURE 5-18: UAS REFUELLING COUNT 

Figure 5-19 sums the UAS losses occurring inflight (A) and upon landing (B). DECODE and 

BBC losses are similar at about one inflight loss every 3 months and a landing loss once a year. 

SULSA is lost inflight almost every month and never upon landing (due to its low mass). Con-

trary, 3i is lost very rarely inflight but almost every 2 weeks upon landing. 

Inflight losses occur when any component without redundancy stops working and causes loss 

of control (Section 4.12). DECODE and BBC feature identical components (compare Appendix 

12) and the slightly higher DECODE inflight losses are caused by the larger flight time of DE-

CODE. SULSA has fewer parts than the other designs and a much more reliable fuselage. How-

ever, its large number of inflight losses is also rooted in its increased flight time, causing more 

COMPONENT deterioration. 3i has less inflight losses because it has redundant engines, throttle 

servos, ignitions and propellers. Moreover, inflight losses are reduced by 3i’s large number of 

landing losses because a new UAS is purchased after any loss, increasing the time to the next 

loss due to the new COMPONENTS aboard.  

Landing losses occur based on the vessel kinetic energy upon landing (see Section 5.4.4). 3i 

is by far the heaviest design with the highest landing speeds and, therefore, features the highest 

risk of crashing upon landing. SULSA as the other extreme is very light and has a lower landing 
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speed, its average landing kinetic energy being about 20 times lower than 3i. Both DECODE 

and BBC are in between these extremes. 

 

 
(A) 

 
(B) 

FIGURE 5-19: UAS INFLIGHT LOSSES (A) AND UAS LANDING LOSSES (B) 

 

 
(A) 

 
(B) 

FIGURE 5-20: UAS MAINTENANCE OPERATIONS OUTPUTS WITH COUNT (A) AND MAINTENANCE 

OPERATIONS DURATION (B) 

Figure 5-20 (A and B) indicate the maintenance operations details. As the maintenance dura-

tion for specific component repairs is deterministic (Appendix 4), both outputs correlate closely. 

They feature separately here because the cost model accounts for both separately.  
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The 3i aircraft has least repair requirements not because it has a sturdier structure or more re-

liable COMPONENTS but because it crashes more often upon landing (see Figure 5-19). A new 

UAS featuring new COMPONENTS is purchased after these frequent landing crashes, increasing 

the time to subsequent COMPONENT failures (See Schumann et al. (2012) for a more detailed 

analysis of this counter-intuitive result). The large spread of data for all designs roots in the rela-

tively short simulation period of one year. During this time, too few maintenance operations are 

conducted to reduce spread satisfactorily. However, the OSCAR maintenance outputs are of 

minor importance to the value model results below, not justifying the additional workload of 

defining longer life cycles. 

 (A) (B) (C) 

FIGURE 5-21: UAS CAMERA OUTPUTS: ACQUIRED DATA (A), IMAGE COUNT (B) AND AREA 

SCANNED (C) 

Figure 5-21 (A-C) depicts measures collected for the UAS payload camera system. Data dis-

tribution is highly correlated between the acquired data, image count and area scanned because 

each depends linearly on the number of pictures taken (Section 4.10). Camera outputs are in-

versely proportional to UAS flight times (Figure 5-17 A) so that much data is gathered when a 

design spends little time in the air. The cause for this counter-intuitive correlation is found in the 

search-speeds for each design (see Appendix 12): BBC and 3i search at much higher speeds 

than DECODE and SULSA, thereby covering a larger area, taking more pictures and arriving 

home earlier (i.e. less flight time accrued). 
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5.5.2 Costs 

 

FIGURE 5-22: TOTAL COST DISTRIBUTIONS BOXPLOTS 

 

FIGURE 5-23: ABSOLUTE COTS HISTOGRAM 

As shown in Figure 5-22, total system cost relative to the baseline case increases upon intro-

ducing any type of UAS. This result bases on 10,000 Monte Caro runs of the cost model (Sec-

tion 5.4.3.1).  
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DECODE and SULSA add costs of about $ 200,000, BBC has the lowest increase at about $ 

150,000 while introducing 3i is most expensive at an additional $ 460,000, on average. Figure 

5-23 shows the absolute system cost histograms to assess the spread of data. 

All design costs are normally distributed. The baseline and SULSA case have the smallest 

spread while 3i features the largest spread at            and              .  

5.5.3 Benefits 

Figure 5-24 depicts the benefits relative to the baseline case, based on 10,000 Monte Carlo 

runs of the benefits model (Section 5.4.3.2). 

 

FIGURE 5-24: BENEFITS RELATIVE TO BASELINE CASE. 

Introducing UAS has a beneficial effect in any case: on average, each UAS design accrues 

between $ 0.2M and $ 1.2M. BBC and 3i generate about $ 0.9M more than DECODE and 

SULSA. For each design, the major benefit contribution is the number of additional saved lives 

because the value of scanning one square kilometre is not large enough to compare. This is as 

expected because it is more desirable to save lives than to scan very large areas of the ocean. In 

some cases, both DECODE and SULSA can cause a benefit of nearly $ 0 because they do not 

save any additional lives compared to the baseline case. This is reflected in UAS flight times 

(Figure 5-17 A) where DECODE and SULSA feature very long flight hours while only saving 

marginally more lives (Figure 5-14 B). The reason is the slower dash and cruise speeds causing 

these designs to spot incidents later, sometimes even after the lifeboats. 
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5.5.4 Values 

By subtracting the additional costs over the baseline (Figure 5-22) from the additional bene-

fits over the baseline (Figure 5-24), the expected value over the baseline can be plotted as in 

Figure 5-25. 

 

FIGURE 5-25
15

: TOTAL VALUE OVER BASELINE CASE (WHISKERS SHOW 1.5*IQR
16

). 

On average, the most valuable design to use is BBC, closely followed by 3i, both creating 

about $ 0.8M of additional value compared to the baseline case. Both DECODE and SULSA 

score considerably worse with SULSA featuring an average negative value.  

In this comparative case study, it is not useful to plot the absolute value of all designs and the 

baseline case because the underlying parameter assumptions are too vague to justify discussion.  

5.6 Discussion 

This section discusses the results obtained concerning the initial case study objective, namely 

to assist in decision support for value-driven design. As with all but the simplest engineering 

problems, there cannot be a single right answer as to which design should be used. The follow-

ing sub-sections consider decision support from pure value or cost considerations as well as 

from a qualitative viewpoint. Additional benefits of the OSCAR approach are debated followed 

by a discourse into the applicability of OSCAR conceptual value-driven design. 

                                                      

15
 In this graph, boxplot whiskers indicate the third quartile plus 1.5 times the inter-quartile range and 

the first quartile minus 1.5 times the inter-quartile range. 
16

 Here, IQR abbreviates Inter-Quartile Range 
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5.6.1 Value-based decision support 

Computing a numerical value as part of the value-driven design approach allows comparing 

different designs based on a single, monetary number. Using the simple value model above, 

Figure 5-25 identifies the BBC design as the one with the highest average value, closely fol-

lowed by 3i. Numerically, the decision is clear. However, the proximity of value of both designs 

constitutes a closer look. Figure 5-26 compares the additional saved lives over the baseline case 

with the UAS cost distribution for BBC and 3i. 

 
(A) 

 
(B) 

FIGURE 5-26: SAVED LIVES OVER BASELINE HISTOGRAM (A) AND UAS COSTS (B) FOR BBC AND 

3I. 

The latter saves about 6.8 more lives, on average (worth $ 119,000 

ing                                     ). However, it requires additional average costs of 

$ 325,000 to achieve this. The largest part of this additional cost is rooted in the fixed costs as 

seen in Figure 5-27.  

While operating costs are almost identical for both UAS, the large number of 3i losses blow 

up its fixed costs (see Figure 5-19 A). In this study, fixed costs consist of the number of lost 

UAS only, so high fixed costs indicate a high number of UAS losses. 

With this information, value-based decision support allows a more informed decision as to 

which design to go for. Before, value-driven design would argue to choose the BBC design be-

cause it has a higher value over the baseline. Now, analysis shows that not only has the BBC 

design a higher value, it also crashes less often, a characteristic highly desirable in civil UAS 

applications. 

In fact, a 3i design is lost almost every two weeks during operations while the BBC design 

breaks every 8 weeks on average (see Figure 5-19 A). However, this level of reliability is far too 

low for practical purposes. As shown in Figure 5-28, both BBC and 3i have similar number of 

inflight losses but 3i has far more landing losses. 
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FIGURE 5-27: BBC AND 3I FIXED AND OPERATIONAL COSTS. 

 

FIGURE 5-28: BBC AND 3I LANDING AND INFLIGHT LOSSES 

The high number of landing losses is attributed to the high kinetic energy upon landing. As 

both BBC and 3i have similar landing speeds, it is the higher dry weight of the 3i design causing 

the additional landing losses. This higher weight originates from the prudent design approach 

for 3i, being tailored for maritime search-and-rescue. BBC, on the other hand, was designed for 

broadcasting (Section 5.2.3.2). In this case study, the additional weight of 3i, caused by twin 
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engines and other backup COMPONENTS as well as a sturdier structure, is only partly balanced 

by improved reliability: 3i has the lowest number of inflight losses but landing losses due to 

high weight undo these benefits. In order to reduce the inflight losses, the COMPONENT reliabil-

ity model allows calculating the average losses for each component in order to identify hot spots 

as in Figure 5-29.  

 

FIGURE 5-29: AVERAGE INFLIGHT LOSSES FOR BBC AND 3I, BASED ON COMPONENTS. 

Both designs fail frequently due to receiver, GPS & comms aerial and autopilot issues. These 

COMPONENTS are not subject to loads and physical fatigue so they can be improved by buying 

better components. Moreover, the 3i design has no losses caused by the engine, throttle servo, 

ignition or propeller while BBC suffers a sizable number of losses from these COMPONENTS. 

Here, the benefit of redundant COMPONENTS in 3i becomes visible and should be taken into ac-

count by decision makers. The 3i aircraft will be more reliable inflight and would become a fea-

sible alternative once landing issues are resolved. If the number of landing losses for 3i reduces, 

its overall cost would decrease, making it the most valuable design option. 

5.6.2 Cost-based decision support 

The value model in this case study is a very simple factoring of parameters. The parameters 

(valueOfAStatisticalLife and valueOfScanning1SquareKm) are very difficult to 

quantify, as search-and-rescue is an intrinsically non-commercial enterprise lacking an obvious 

monetary profit. Several estimates for the statistical value of a live exist, varying by two orders 
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of magnitude. Therefore, it is useful to neglect benefits and discuss OSCAR results based on 

costs only. 

As seen in Figure 5-22, introducing any UAS increases costs relative to the base case. In fact, 

the analysis of absolute system costs in Figure 5-30 shows that not only do costs increase but 

also their spread. 

 

FIGURE 5-30: ABSOLUTE COST DISTRIBUTION. 

 (A) (B) 

FIGURE 5-31: ABSOLUTE LIFEBOAT COSTS (A) AND ABSOLUTE UAS COSTS (B) 

Intuitively, one might expect total cost to reduce upon introducing UAS because they are 

cheap to operate and reduce utilisation of expensive lifeboat equipment. In fact, lifeboat costs do 

decrease using UAS (see Figure 5-31 A). Cost decrease ranges between $ 150,000 and $ 

270,000, attributed to less lifeboat utilisation and fuel burn as the UAS helps spotting incidents 
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earlier. However, the net rise in total cost originates from additional UAS costs depicted in Fig-

ure 5-31 B (ranging between £ 350,000 and $ 720,000).  

The large whiskers in Figure 5-31 B are caused by outliers and do not represent highly uncer-

tain cost estimates, as can be seen in the UAS cost histograms in Figure 5-32. 

 

FIGURE 5-32: ABSOLUTE UAS COSTS HISTOGRAMS. 

The main contributing factor to UAS costs is found through sensitivity analysis of the cost 

model. For BBC, cost per UAS flight hour (         ⁄   and UAS acquisition 

($20,000) are the most influential parameters (Figure 5-33 A). For 3i, it is the same but UAS 

acquisition is more influential than cost per UAS flight hour (Figure 5-33 B). De-

signers should focus upon reduction of UAS losses while the cost per UAS flight hour parame-

ter needs to be reviewed or, if deemed correct, labour cost must be reduced through further au-

tomation.  

However, sensitivity analysis of these parameters as in Figure 5-34 reveals that any cost pa-

rameter (except BBC cost per UAS flight hour) would need to reduce by 100% to reduce total 

costs to below the baseline case average. 

Therefore, a combined parameter reduction is desirable to achieve total cost reduction 

through UAS implementation. Moreover, cost per UAS launch and cost per UAS 

maintenance operation influence on total cost is not negligible and should be reduced as 

much as possible. Only the cost per image and cost per GB of data parameters are 

insignificant and require no further analysis (GB is Gigabytes). 
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(A)  

 
 (B) 

FIGURE 5-33: UAS COST SENSITIVITIES FOR BBC (A) AND 3I (B): DARKER SHADING INDICATES 

STRONGER INFLUENCE 

 

FIGURE 5-34: COST PARAMETER SENSITIVITY ANALYSIS AGAINST BASELINE TOTAL COST.  

Based on cost, designers should decide for the BBC design as it has a lower additional cost 

impact and it has the potential to reduce total cost by optimizing several cost parameters. How-

ever, if designers can reduce the number of UAS losses for 3i (see discussion in Section 5.6.1), 

UAS costs would reduce dramatically and 3i could become the design of choice. 
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5.6.3 Qualitative decision support 

Decision support discussed so far based on quantitative figures only. However, OSCAR out-

puts can be assessed directly, bypassing value model challenges. This section discusses some 

key points from OSCAR outputs as a basis for a more qualitative decision support. 

Take, for example, the case where UAS acquisition is examined by a search-and-rescue au-

thority that needs to increase its live-saving performance above all. Figure 5-14 B indicates that 

primarily, BBC and 3i deem a closer analysis. They allow a fourfold increase in saved lives 

over DECODE or SULSA. This trend is backed by the reduction in waiting time in water 

(Figure 5-14 A) as a twofold improvement over DECODE and SULSA. Following the analysis 

in Section 5.5.1, the most critical design features for saving more lives are the dash and search 

flight speeds. Therefore, even if none of the designs is chosen and a new design is developed for 

the search-and-rescue operator, this critical insight remains. Moreover, it was shown that land-

ing crashes and inflight crashes are not only a nuisance to operators and the public, but that they 

are a big cost driver that must be minimized with all effort. 

5.6.4 Unforeseen insights 

Conducting OSCAR analysis during conceptual design reveals quantitative results and quali-

tative recommendations as above. However, insight into the operational environment, the prod-

uct design and their interaction grows along the way. This can lead to answers that nobody 

knew required asking. This section reviews two sample insights for Solent search-and-rescue 

design that were first described in Schumann et al. (2012). 

 

5.6.4.1 Number of launches 

Figure 5-17 B depicts the number of UAS launches (i.e. take-offs) for all four designs. De-

spite a fixed number of missions, each design has a distribution of launches indicating that 

sometimes, they launch more often than other times. Moreover, the number varies strongly be-

tween designs so the design influences the number of launches. The reason for these variations 

can be explained only by considering the operations of the designs.  

Consider the case of a faster design (like 3i) and a slower design (like DECODE): Some-

times, two incidents can occur nearly at the same time. The UAS is dispatched to the first inci-

dent and starts searching. A fast UAS might spot the first incident quickly, return home for a 

refuel and be dispatched to the second incident that has not yet been found by other lifeboats. A 

slow UAS takes longer to spot the first incident. Upon returning home, it finds that the second 

incident has already been found by other lifeboats so there is no need to dispatch anymore. The 

fast UAS collects more take-offs while the number of incidents stays constant. 
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Similarly, the fuel tank size, fuel burn characteristics and flight speed and altitude can influ-

ence the number of take-offs (see Schumann et al. (2011)). If a small fuel tank (or high fuel 

burn) require a design to return home during searches for refuels, the number of take-offs in-

creases. Figure 5-18 shows that 3i requires far more refuel operations than the other designs, 

adding to its number of take-offs. 

As the number of take-offs varies, so does the number of landings, naturally. In turn, ex-

pected landing numbers are very important for undercarriage design, as more landings require a 

sturdier landing gear. This can be achieved through heavier material or higher cost by employ-

ing new high-tech materials such as carbon fibre. If heavier material is used, the total design 

weight increases which, in turn, reduces the overall flight speeds (all other parameters being 

constant). However, flight speed has been identified as the most critical design parameter for a 

search-and-rescue UAS and any reduction results in less lives saved. Therefore, the number of 

take-offs (and landings) should be minimized in order to maximise saved lives. 

 

5.6.4.2 Save more – cost more? 

In this case study, payload stays constant to allow comparison of UAS design. However, con-

sider the case where payload is varied such that a better camera system requires more weight, 

hence adding to the design weight. On the one hand, a better camera system would spot inci-

dents faster as UAS would overfly incidents less often, on average. More lives could be saved. 

On the other hand, a better camera system is heavier and a heavier UAS requires more power 

(i.e. fuel) to be propelled through the air at constant speed. Cost increases (more fuel) when ad-

ditional benefits (more lives save) are required. First order interactions like these are well 

known to engineers and often intuitively implemented in designs. 

However, OSCAR allows analysis of the operational effect of a heavier payload through se-

cond order operational interactions. In this case, there is a balancing effect to burning more fuel 

due to a heavier camera: the UAS spots incidents earlier and therefore reduces its overall flight 

time, thereby reducing its overall fuel burn again. It is possible that this effect is stronger than 

the additional fuel required for the higher payload weight. In this case, saving more lives could 

actually decrease cost. Only a mission-modelling tool like OSCAR is able to combine first order 

design relations with second order operational interactions arising from the environment and 

procedures. 
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5.7 Summary 

This section reviews the case study results with respect to its applicability in conceptual val-

ue-driven design. 

OSCAR was developed for real conceptual design applications, keeping inputs, setup and 

outputs generic and variable while allowing for quick and easy data generation. A trained engi-

neer can setup this case study within one hour, given the right data. Input data consists of geo-

graphical information, UAS parameters, incident data and implicit operational knowledge. Geo-

graphical maps can be generated within two days if the engineer works together with a search-

and-rescue operator. UAS parameters are well-known conceptual design parameters that any 

engineer can produce in minutes from existing design tools. Implicit operational knowledge is 

more difficult to quantify, as each scenario requires operational alterations. The search function-

ality presented here is flexible enough to allow for different search patterns. However, very spe-

cific operational details (such as fleet coordination, etc.) cannot be incorporated easily. The 

computing time per UAS design is about two hours on a 2010 desktop PC with eight cores, us-

ing parallel computing. Data outputs can be queried quickly by any engineer familiar with SQL 

database management. Using a plotting program of choice, output data can be visualized easily.  

The insights, quantifications and decision advices produced by about 30 labour-hours warrant 

the additional effort. A conceptual design can be chosen based quantitative and qualitative ar-

guments not available by existing conceptual design phase mission models.  
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6 .  C A S E  S T U D Y  –  

O P T I M I S A T I O N  

This case study examines the use of the OSCAR simulation for conceptual design phase op-

timisation based on a real application for maritime UAS design. In reality, OSCAR would either 

be part of a design optimisation loop similar to the DECODE software suite (Section 5.2.2) or it 

would be used for manual optimisation. It is beyond the scope of this thesis to describe a com-

plete, integrated optimisation process. Therefore, this case study will demonstrate a manual 

three-step optimisation indicating its potential for automated optimisation within a larger design 

framework (see Fu et al. (2005) for a survey of simulation optimisation techniques).  

 Section 6.1 explains the case study background and assumptions: they base upon the 3i re-

search project (Section 6.2) investigating cross-border UAS application for the English Channel. 

Section 6.3 describes the real scenario and how UAS are intended to be used while Section 6.4 

shows how this was translated into OSCAR concepts to create a viable simulation scenario. Sec-

tion 6.5 analyses and discusses the results of a baseline UAS design. It is refined into a first de-

sign iteration varying the UAS design in Section 6.6. Subsequently, Section 6.7 presents a se-

cond design iteration where operational parameters vary. Section 6.8 discusses the case study 

findings and presents two mission-related trade-offs. 

6.1 Background 

The ability of UAS to provide airborne intelligence in real-time or near real-time led to the 

instigation of the 3i research project (Section 6.2). One of the stakeholders is the PRA (Section 



Chapter 6: Case study – Optimisation 

136 

6.3.1), responsible for the save conduct of operations in the harbour of Rotterdam. In this case 

study, assume that the 3i project finished with a working UAS design, called the ―initial design‖ 

from now on. PRA is interested in using UAS to increase intelligence within their harbour area. 

However, they want a design optimised for their specific operational mission requirements. The 

3i UAS design goal was to carry sensors for long periods, focussing on robustness and redun-

dancy required in maritime applications. Therefore, PRA commissions a UAS manufacturer to 

assess the robust initial design
1
 for PRA requirements and modify it if required. Thereby, PRA 

hopes to exploit the advantages of the existing design while improving performance specific to 

PRA operations. 

This case study describes the manufacturer assessment and optimisation progress, assuming 

that it conducts a manual optimisation. Two design iterations occur, based upon the initial 3i 

design (named ―3i-a‖ and ―3i-b‖ from now on). 

6.2 3i project 

As part of the European Union Interreg 2Seas program
2
, the 3i-project (―Integrated Coastal 

Zone Management via Increased Situational Awareness through Innovations on Unmanned Air-

craft Systems‖) investigates improving maritime safety in the English Channel through cross-

border collaboration between UK, French and Dutch industrial partners and academic institu-

tions. This shall be achieved through implementing purpose-built UAS designed for the specific 

tasks of the stakeholders. These include Police authorities, harbour masters, environmental and 

border agencies. Therefore, tasks vary from search-and-rescue operations, ship tracking, emer-

gency support, environmental monitoring to policing and border patrols.  

The University of Southampton designed the 3i UAS airframe. The main challenge was to in-

corporate varying stakeholder requirements. Police forces need very fast UAS that can reach 

crime scenes and incidents quickly. Harbour masters require a long endurance to allow continu-

ous harbour monitoring as well as on-board detection systems. Search-and-rescue operators ide-

ally want a fast UAS with a long endurance. However, all stakeholders share two design re-

quirements: First, certification and public acceptance require high operational reliability. Se-

cond, the harsh maritime environment (salty air, storms, fog, rain) ask for robust components 

with redundant backup systems where possible. 

These considerations led to the 3i design as presented above in Section 5.2.3.4. Most promi-

nently, it features two engines to reduce UAS losses due to engine failure. Moreover, its entire 

                                                      

1
 The 3i design will be publicly available since it is publicly funded. 

2
 See http://www.interreg4c.eu/ for more details, accessed 03/08/2013. 

http://www.interreg4c.eu/
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structure and aerodynamic performance is designed prudently to provide a robust and reliable 

design. This design is used as the baseline design for PRA analysis. 

6.3 Scenario 

This section describes the reality of operations in the case study area covering the Port of 

Rotterdam (Section 6.3.1). Subsequently, possible integration of UAS is discussed based on 

PRA feedback and comments (Section 6.3.2). Some information in this chapter is based upon 

interviews with PRA employees and does not necessarily reflect the official view of the PRA. 

6.3.1 The Port of Rotterdam 

With about 34,000 sea-going vessels each year, the port of Rotterdam is the largest port in 

Europe
3
. The inshore harbour area stretches along parts of the Rhine river mouth for about 40 

kilometres, from the centre of Rotterdam out to the artificially reclaimed land of Maasvlakte 

area (Figure 6-1). The harbour processes all kinds of goods, ranging from consumer goods and 

minerals to dangerous freight such as oil, gas and petrol. The harbour houses five oil refineries, 

45 chemical plants, four gas power plants and one coal power plant. Therefore, any aeronautical 

operation above the harbour area is safety critical and must be assessed carefully. 

 

FIGURE 6-1: ROTTERDAM INSHORE HARBOUR AREA. 

In addition to the inshore area, the port boundary includes offshore areas stretching 60 kilo-

metres out at sea. These areas include several offshore anchor areas as shown in Appendix 15. 

Here, vessels wait for their terminal to become available if occupied. 

                                                      

3
 See http://www.2seas-uav.com/images/stories/downloads/Port%20of%20Rotterdam%20ppt.pptx, ac-

cessed 04/08/2013. You may need to register first on http://www.2seas-uav.com/. 

http://www.2seas-uasuav.com/‌‌images/‌‌stories/‌‌downloads/‌‌Port%20of%20Rotterdam%20ppt.pptx
http://www.2seas-uav.com/
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The port is operated by the PRA, which is responsible for the safe conduct of harbour opera-

tions. PRA operates five patrol vessels (only one of which can go out to open sea
3
). They are 

used to conduct ―inventories‖ and search-and-rescue missions. An ―inventory‖ includes patrol-

ling to every in-shore and offshore anchor position to investigate possible law violations such as 

waste dumping, smuggling or illegal anchoring. These operations are expensive, slow and inef-

fective (since they are conducted infrequently). Search-and-rescue missions occur irregularly. In 

2012, PRA recorded 16 ―significant‖ safety incidents leading to fatalities, severe injuries, major 

equipment damage or harbour closure (Smits et al. 2011).  

6.3.2 UAS integration 

PRA is part of the 3i research project in order to assess the usefulness of UAS for improving 

harbour safety through increased intelligence. The goal for PRA is ―to get a real time operation-

al picture in the remote sea areas and anchorages as well as in the port‖
3
. Current equipment is 

not capable of delivering that vision due to harbour area size, tall structures (from a small patrol 

vessel, you cannot monitor the deck of an ocean liner) and human limitations. Autonomous 

UAS can improve the current state by supplying 24-hour bird-eye views of all harbour and off-

shore areas.  

Beside regulatory issues (flying UAS above oil refineries and LNG tankers is not a trivial un-

dertaking), PRA envisages using UAS for continuous patrolling and intermittent missions as 

required by harbour incidents. Continuous patrolling would be conducted above the inshore 

harbour area to obtain real-time imagery of harbour activities, possibly also at night. Intermit-

tent missions include regular ―inventories‖ of inshore and offshore anchorages as well as re-

sponding to any incidents occurring. The latter includes search-and-rescue operations as well as 

adding situational awareness to crisis staff during fires, crashes or oil spills. Moreover, troubled 

ships asking to find a refuge port could be investigated before harbouring. 

6.4 Simulation setup 

This Section describes how the UAS operations anticipated by PRA were translated into OS-

CAR concepts to build a realistic scenario.  

During the 3i project flight tests, the UAS was assembled on a grass strip at the southern tip 

of the Maasvlakte reclaimed land area (see Figure 6-1). In this case study, assume that PRA will 

use this site as a permanent UAS base as it is far from any dangerous harbour area. Take-offs 

and landings can be conducted out to the sea, reducing the risk of external damage when the 

UAS crashes in these precarious flight phases.  
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The case study simulation runtime is set to one year because UAS missions would repeat eve-

ry year. This is much shorter than the anticipated UAS life cycle but sufficient for the purpose 

of this case study. In reality, the entire life cycle should be modelled with varying mission setup 

and UAS performance. 

The UAS must fulfil three main operational capabilities: Patrol the harbour continuously, 

conduct regular anchorage ―inventories‖ and respond to any search-and-rescue emergency. The 

rest of this section describes each of the three missions in more detail (Sections 6.4.1-6.4.3). 

Subsequently, Section 6.4.4 compares mission setup inputs. Appendix 16 details the rationale 

behind setting the number of simulation replications to 500 for this case study. 

6.4.1 Harbour patrol 

A continuous harbour patrol is conducted every day of the year between 8am and 6pm
4
. The 

UAS patrols along a zigzag path covering most parts of the inshore harbour area (Figure 6-2). 

This mission has the lowest priority (see Table 6-2) because it is conducted much more fre-

quently than the other missions and because it features no emergencies. 

 

FIGURE 6-2: ROTTERDAM HARBOUR PATROL MISSION MAP. LOITER OCCURS AT THE ARROW-

HEADS. 

The UAS launches from Maasvlakte at 8am, dashing at maximum speed to the start of the pa-

trol path nearby. It follows the path at a constant 25 m/s and 100 m height. At 19 designated 

positions, the UAS loiters (at the same speed and height) for a specified duration to monitor ac-

tivities in more detail. Upon completing one patrol round, it restarts the patrol. This is repeated 

until fuel dictates returning to base for a refuel (after which the patrol is continued) or until 6pm 

or until another mission with higher priority occurs. 

                                                      

4
 In order to cover daylight hours throughout the year at the given latitude. 
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6.4.2 Anchorage monitoring 

Based upon the PRA ―inventory‖ mission conducted by patrol vessels, two missions recreate 

―inventories‖, namely AnchorageCensus and AnchorageEmergency. Both share the 

same route, mission details and flight profiles as in Figure 6-3.  

 

FIGURE 6-3: ANCHORAGE MISSIONS OVERVIEW MAP. 

If an anchorage mission is scheduled, the UAS dashes to the initial cruise point near 

Maasvlakte at maximum speed and 100 m altitude. Subsequently, it visits 160 anchorage posi-

tion POINTS in nine offshore anchorage areas. Each POINT refers to a ship of varying dimensions 

for identification. Flying and loitering occurs at maximum speed and 100 m altitude. The UAS 

loiters for one minute at each anchorage position to obtain adequate intelligence. The difference 

between AnchorageEmergency and AnchorageCensus is as follows: during Anchor-

ageEmergency missions, an anchored ship has an emergency or PRA suspects a legal viola-

tion, requiring UAS investigation. Five specific ship positions with emergencies require 10 

minutes of loitering, while the remaining 155 positions are visited as with AnchorageCen-

sus, taking advantage of the fact the UAS is out at sea anyway. If the UAS detects fuel short-

age, it interrupts for a refuel. Afterwards, it returns to the previous anchorage POINT. 

Another difference between the two ―inventory‖ missions is that AnchorageCensus oc-

curs every two months while AnchorageEmergency is modelled every month, in line with 

real PRA security incidents (Smits et al. 2011). In reality, AnchorageEmergency would 

occur irregularly. 
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6.4.3 Search-and-Rescue 

 

 

FIGURE 6-4: SEARCH-AND-RESCUE MISSION OVERVIEW MAP. 

 

TABLE 6-1: SEARCH-AND-RESCUE MISSION DETAILS. ―IPG‖ = INITIAL POSITION GUESS. 

incident ID 0 1 2 3 4 5 

Time Jan 1st  Feb 13th March 25th  April 17th  May 22nd  July 19th  

Origin IPG IPG IPG IPG IPG IPG 

Destination 
ManOver-

board 
Suicide 

Swimmer-
mer-

Missing 

ManOver-
board 

SurferDro
wning 

ManOver-
board 

UponArrival search search search search search search 

Type 500 500 1000 500 2000 1000 

TargetHeight 0.2 0.2 0.2 0.2 0.2 0.2 

TargetWidth 0.2 1.8 0.2 0.2 2 0.2 

Detection-
Criteria 6 3 6 6 6 6 

Hover 1800 1800 1800 1800 2700 1800 

Height 200 200 100 200 100 100 

Speed 9999 9999 9999 9999 9999 9999 
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In a large harbour area, it is hard to avoid accidents and emergencies. PRA handles about 16 

emergencies leading to serious injuries and death per year (Smits et al. 2011). Because conven-

tional UAS support emergencies through searching only, a fraction of PRA emergencies feature 

here: PRA estimated that about six search emergencies occur each year. Figure 6-4 shows the 

geographical distribution of search incidents. Table 6-1 provides details on each incident. 

Destination details the search-and-rescue incident type. Most incidents are men washed 

overboard and lost at sea. Type specifies the initial position uncertainty, indirectly indicating 

the time it takes to find the incident. Most targets are only small heads in the water, as specified 

in TargetHeight and TargetWidth. Only suicides and drowning surfers are larger because 

their whole body length (or board length) floating on the water dictates the characteristic width. 

All search-and-rescue incidents feature the highest priority (Table 6-2). If the UAS is 

conducting any other mission while an incident requires search, the mission is cancelled and the 

UAS will return to BASE for refuel. Afterwards, it will dash out to the initial position guess and 

start searching. 

6.4.4 Mission comparison 

TABLE 6-2: ROTTERDAM HARBOUR MISSIONS COMPARISON. 

Parameter Harbour patrol 
Anchorage 

census 

anchorage 

emergency 

Search-and-

Rescue 

Vessel_IDs 12 12 12 12 

Base Maasvlakte Maasvlakte Maasvlakte Maasvlakte 

TrackFragmented FALSE FALSE FALSE TRUE 

Destination Maasvlakte Maasvlakte Maasvlakte Maasvlakte 

Time 2014-01-

01T08:00:00 

2014-01-

03T10:00:00 

2014-01-

07T22:00:00 

2014-01-

01T02:00:00 

Repetition 36000X86400X365 0X5184000X6 0X2592000X12 0X0X0 

Priority 0 1 2 3 

DashHeight 100 100 100 100 

DashSpeed 9999 9999 9999 9999 

ReturnHeight 100 100 100 100 

ReturnSpeed 9999 9999 9999 9999 

 

Table 6-2 displays the relevant mission setup for all Rotterdam harbour missions. Note that 

only the search-and-rescue mission has TrackFragmented=true, indicating that its POINTS 

are separate incidents that should not be visited in one go (Appendix 2).  
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6.5 Initial design – 3i 

This section presents and analyses the results obtained for the 3i UAS design (Section 6.5.1). 

Moreover, it provides an intermediate discussion of these initial results to justify the design 

changes for the first design iteration (Section 6.5.2). 

6.5.1 Results and analysis 

6.5.1.1 OSCAR outputs 

There are 14 outputs provided by the OSCAR simulation for this case study. All figures be-

low refer to the simulation timeframe of one year. Figure 6-5 depicts the flight performance 

outputs. 

 
(A) (B) 

 
(C) 

 
(D) 

FIGURE 6-5: OSCAR FLIGHT PERFORMANCE OUTPUTS, SHOWING FUEL USED (A), FLIGHT TIME 

(B), NUMBER OF TAKE-OFFS (C) AND REFUELS (D). 

The UAS burns about 13.5 kg of petrol per day by flying for an average of 10.6 hours. The 

harbour patrol requires about 10 hours of daily flight duration while the remaining 0.6 hours 

divide into the other three missions. An average fuel burn of 1.27 kg/hr gives the 3i design an 

endurance of 4.5 hours. Therefore, the harbour patrol cannot be flown in one session but at least 

two refuels are required each day. This is reflected in the number of take-offs: the UAS launch-

es (and lands) about 3.3 times each day out of which 2.2 times are due to refuelling. 
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(A) 

 
(B) 

 
(C) 

FIGURE 6-6: UAS LOSSES (A) CONSIST OF INFLIGHT (B) AND LANDING (C) LOSSES. 

Component fatigue and landing lead to UAS losses as shown in Figure 6-6. In total, one UAS 

is lost every eight days, on average. About one quarter of all losses is attributed to inflight losses 

caused by component fatigue. Three quarters are lost during landing, caused by the high kinetic 

energy due to weight and landing speed (see Section 5.4.4). 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

FIGURE 6-7: SEARCH-AND-RESCUE INCIDENT METRICS (A AND B) AND MAINTENANCE METRICS 

(C AND D). 

Search-and-rescue incident metrics (Figure 6-7 A & B) show that incidents have to wait for 

detection for more than six hours, on average. Less than one third of all incidents are detected 

alive due to the long search times involved. This rescue performance is much worse compared 
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to search-and-rescue operations including lifeboats, as examined in the previous case study 

(compare with Figure 5-14). In reality, the PRA would still need to use their fleet of patrol ves-

sels to find incidents quicker. However, this case study is only interested in the relative perfor-

mance gain by changing UAS design parameters so these baseline metrics are acceptable. 

The maintenance metrics in Figure 6-7 (C & D) show that the UAS needs repair every two 

weeks, on average. Each maintenance operation takes about 1.7 hours.  

 
(A) 

 
(B) 

 
(C) 

FIGURE 6-8: CAMERA PERFORMANCE OUTPUTS: SCANNED AREA (A), ACQUIRED DATA (B) AND 

IMAGES TAKEN (C).  

Due to the long operating hours, the camera system collects large amounts of data (Figure 

6-8). In total, it scans about 124,000 km
2
, equivalent to an area of 340 km

2
 each day (about half 

the size of greater London). Thereby, it collects about 3.5 GB of data each day, taking 1800 im-

ages, on average. 

6.5.1.2 Costs 

Using the ―UAS costs‖ branch of the cost model described in Section 5.4.3.1, the total costs 

and its break-up into maintenance, operational, fixed and payload costs can be seen in Figure 

6-9 (see Appendix 14 for cost parameter assumptions). 
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FIGURE 6-9: COST BREAKDOWN FOR 3I. 

The total cost of adding the UAS to the PRA operations is expected to be 1.8 $M per year. 

Both maintenance and payload costs only contribute a small fraction. The majority of cost is 

caused by operational (0.82 $M per year) and fixed costs (0.92 $M per year). Here, fixed costs 

have a much higher spread, caused by the large spread of UAS losses (see Figure 6-6 A). 

6.5.2 Intermediate discussion 

Generally, the initial design is capable of fulfilling PRA mission requirements. However, 

there are two key points that merit optimisation, namely the number of launches and the number 

of losses. 

6.5.2.1 Number of launches 

The UAS flies 389 missions during the simulation period (daily harbour patrol, six anchorage 

censuses, twelve anchorage emergencies and six search-and-rescue operations). However, it 

launches three times as often (Figure 6-5 C), amassing almost refuel 800 launches. The UAS 

endurance is not enough to fly harbour patrol missions in one go. Every patrol is interrupted by 

two refuels, the second just 10 minutes before the end of the patrol. Every anchorage census 

(and emergency) mission requires four refuels because the UAS flies at top speed for very long 

distances. Last, some incidents are very hard to spot for the UAS, requiring one refuel for every 
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second incident (search incidents are omitted in the following discussion due to the low absolute 

number of launches). 

Each refuel operation (stopping current SEGMENT  returning to base  refuel  take-off 

 dash out to current SEGMENT) takes between 25 and 60 minutes, depending on UAS geo-

graphical position while running out of fuel. Up to 1 kg of additional fuel is burnt during refuel-

ling. Moreover, landing and taking off are the most risky part of UAS operation so reducing the 

number of launches is desirable. Last, more landings require a sturdier landing gear design, add-

ing weight which, in turn, decreases the overall flight speed and increases fuel burn. Therefore, 

the first design iteration will feature an increased fuel tank capacity (over the 3i capacity of 5.8 

kg) in order to increase aircraft endurance and reduce the number of launches. The current 3i 

design would require 21 kg of fuel to fly the anchorage missions without refuel (completion 

within 6 hours) while 16 kg of fuel would be required to finish the harbour patrol without refuel. 

However, a major redesign of the UAS would be required since take-off weight would double. 

Essentially, a completely new UAS design would emerge increasing development costs for the 

PRA. Therefore, a compromise increases the fuel tank size to 9 kg. Now, the current design 

would require 21.5 kg of fuel to fly the anchorage missions, taking 7 hours caused by two refu-

els. The harbour patrol would require one refuel only, burning 12.5 kg in total. Hence, the total 

number of refuels should reduce. Note that these estimates use the initial design but increasing 

the fuel tank size will change design performance as well. The effect will be analysed in Section 

6.6. 

 

6.5.2.2 Number of losses 

 The UAS is lost far too often for commercial use in a port environment (Figure 6-6). About 

one fifth of all losses are caused by component failure happening inflight, possibly over the har-

bour area or above a ship. The rest is caused by inferior landing performance, based on the high 

speed and weight upon landing (Section 5.4.4). However, the UAS is designed to be relatively 

heavy (to carry heavy payload, increase endurance, carry two engines, use components that are 

more robust and to reduce vibrations due to weather). Moreover, it is supposed to operate fast, 

making it difficult to design towards slow landing speed. Moreover, the relationship between 

landing losses and landing kinetic energy in Section 5.4.4 is based upon engineering judgement 

due to lack of data for UAS. Landing losses could be reduced by reviewing the underlying as-

sumptions in Section 5.4.4 and by designing safer landing performance (through sturdier land-

ing gear, flight personnel training, softening the landing grass strip, etc.). Otherwise, landing 

losses can be reduced through landing less often, i.e. by reducing the number of refuels (see 

above). The following discussion will focus on reducing inflight losses. 
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Inflight losses are caused by failing COMPONENTS. Figure 6-10 depicts the average number of 

inflight losses for all COMPONENTS causing any inflight loss. 

 

FIGURE 6-10: AVERAGE NUMBER OF INFLIGHT LOSSES FOR COMPONENTS. 

Most prominently, communication equipment and the autopilot lead to over seven UAS loss-

es each year. Sensor equipment such as the static port, static hose and pitot tubing also cause 

about one inflight loss per year, on average. Moreover, structural COMPONENTS like the wing 

and fuselage main structures and the horizontal tail structure are responsible for another loss. 

Therefore, the first design iteration 3i-a will contain more robust COMPONENTS to reduce in-

flight failures. The communication COMPONENTS ―Receiver‖, ―gps aerial‖ and ―comms aerial‖ 

as well as the ―autopilot‖ and ―autopilot servo board‖ will be duplicated on-board, effectively 

creating a backup system that can take over whenever a single COMPONENT fails. Additional 

weight is negligible and additional complexity is manageable as the technology is mature. Addi-

tional acquisition costs are not calculated in the cost model due to lack of data. Moreover, a du-

plicate ―static port‖ will be installed on 3i-a, again assuming negligible weight addition and 

manageable complexity. The structural COMPONENTS cannot be duplicated for obvious reasons. 

Therefore, the robustnessScalingFactor of ―wing main structure‖, ―horizontal tail struc-

ture‖ and ―fuselage main structure‖ will be increased from zero to one, effectively doubling the 

reliability of these COMPONENTS. 
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6.6 First design iteration – 3i-a 

This section details the results from the first design iteration. As described above, the initial 

design 3i was altered in two ways: the fuel tank capacity was increased from 5.8 to 9 kg and a 

number of COMPONENTS were either duplicated or increased in reliability. In order to increase 

the fuel tank capacity, a UAS redesign was conducted using the conceptual design spread sheet 

developed for the DECODE research project (Section 4.9.2 and Ferraro et al. (2012)). Table 6-3 

compares the design parameter changes between 3i and 3i-a. 

 

TABLE 6-3: UAS DESIGN PARAMETERS COMPARISON. 

Parameter 3i 3i-a 

Wing area (m
2
) 1.4 2 

Maximum lift coefficient 1.574 1.894 

Propeller diameter (m) 0.457 0.610 

k1_a 0.043676 0.041786 

k3_a 0.04207 0.04207 

Installed power (W) 6800 6800 

Propeller RPM  7000 5500 

sfc_a (g/kWh) 1339 868 

sfc_b (g/kWh) -970 -649 

sfc_c (g/kWh) 298 225 

sfc_d (g/kWh) 0 0 

maximum speed (m/s) 45 40 

minimum speed (m/s) 14 14 

dry weight (kg) 24.17 36 

fuel weight 5.8 9 

zeta_a 577 550 

zeta_b -6813 -6927 

zeta_c 34459 37554 

zeta_d -87795 -102335 

zeta_e 120137 149342 

zeta_f -83881 110588 

zeta_g 23317 32236 

 

Increasing the fuel tank size has a strong effect on the UAS design. Obviously, size (i.e. wing 

area and propeller diameter) and dry weight increase. As the new design is heavier, its 
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maximum speed reduces from 45 to 40 m/s. Note that the minimum speed stays constant, in-

dicating that landing speeds generally stay constant as well. The fuel burn and drag coefficients 

confirm the increase in aircraft size: overall drag increases and, thereby, fuel consumption. Note 

that 3i-a has not been built in reality (unlike 3i, see Section 5.2.3.4). 

6.6.1 Results and analysis 

This section describes the operational performance achieved by 3i-a, presenting the OSCAR 

and cost outputs as before for 3i. However, the section starts with a mission performance com-

parison between 3i and 3i-a. 

6.6.1.1 Mission performance comparison 

To understand the OSCAR output changes better, it is useful to analyse the mission-specific 

performance first. Table 6-4 compares mission specific performance for 3i and 3i-a. It omits the 

search mission outputs, as their impact is negligible. 

 

TABLE 6-4: MISSION PERFORMANCE COMPARISON FOR 3I AND 3I-A. ALL VALUES ARE ARITHME-

TIC MEANS. 

 

 

The harbour patrol flight time increases slightly due to the slower dash and return 

speeds. This is not offset by the flight time reduction due to less number of refuels. The 

fuel used remains constant because slower dash and return speeds offset the higher specific 

fuel consumption of 3i-a. 

The anchorage census and emergency flight time reduce because the saving from less 

number of refuels does offset the increase due to slower flight speeds. This exemplifies the 

advantage of using geographical information during conceptual design: for harbour patrol, the 

combined effects of 3i-a increase the flight time, while for anchorage census and emergency the 

flight time reduces. Anchorage mission fuel used reduces significantly, owing to the fact that 

Mission Parameter 3i 3i-a

Harbour patrol flight time (hrs) 10.3 10.4

fuel used (kg) 12.0 12.0

number of refuels 2 1

Anchorage census flight time (hrs) 8.7 7.0

fuel used (kg) 24.7 17.5

number of refuels 4 1

Anchorage emergency flight time (hrs) 9.3 8.3

fuel used (kg) 27.2 20.0

number of refuels 4 2



Chapter 6: Case study – Optimisation 

151 

less refuel operations require less additional flying. Moreover, 3i-a burns less fuel despite its 

higher specific fuel consumption because it flies at a slower maximum speed. 

 

6.6.1.2 OSCAR outputs 

Since the spread of OSCAR outputs is similar to the 3i design above, only (arithmetic) mean 

values are presented. For better comparison, the 3i mean values also appear in Table 6-5. The 

following analysis will examine each output in turn. 

 

TABLE 6-5: OSCAR ARITHMETIC MEAN OUTPUTS COMPARISON BETWEEN 3I AND 3I-A. DATA 

BARS INDICATE RELATIVE MAGNITUDES. 

 

 

The total fuel burn has decreased by almost 300 kg. The explanation is a sum of several 

operational factors: First, 3i-a has higher specific fuel consumption due to its additional weight 

and drag. Second, dash and return SEGMENTS as well as anchorage and search-and-rescue mis-

sions use slower speeds as 3i-a’s maximum speed has reduced from 45 to 40 m/s. Third, consid-

erably fewer refuel operations are necessary during the anchorage missions, reducing the total 

fuel burn for these missions.  

The flight time increases slightly by 19 hours. Again, OSCAR combines several opera-

tional factors to arrive at this result: First, all dash and return SEGMENTS as well as Anchorage 

and search-and-rescue missions are flown at slower speeds. This is offset by the flight time re-

duction caused by less refuel operations. Last, the harbour patrol duration increases slightly be-

Parameter 3i 3i-a

Fuel used (kg) 4944 4662

Flight time (hrs) 3879 3898

Number of take-offs 1195 786

Number of refuels 798 392

Losses (total) 46.3 59.9

Losses (inflight) 10.4 0.6

Losses (landing) 35.9 59.2

Maintenance duration (hrs) 43 37

Maintenance operations 24 34

Scanned area (km
2
) 124,000 136,000

Acquired data (GB) 1278 1403

Images taken 647,000 710,000

SAR incident waiting time (hrs) 6.2 5.4

SAR incident lives saved 1.91 2.10
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cause slower dash and return speeds are not offset by the flight time reduction from fewer 

refuels. 

The number of take-offs reduces by one third. This is caused by the reduction in refuel 

operations required for all missions. The strongest effect originates from the harbour patrol re-

duction as it is conducted much more frequently than the other missions are. However, the num-

ber of refuels still has about one refuel each day, adding to the chance of losing UAS dur-

ing take-off or landing. 

The (total) number of losses increases by almost one third. The increased reliability and 

the duplication of critical COMPONENTS has reduced the number of inflight losses to 

0.6 losses per year. However, the additional weight of 3i-a combined with the same landing 

speed as 3i increased the kinetic energy upon landing, leading to many more landing losses, 

now more than one every week.  

The total maintenance duration has decreased by 14 % while the number of 

maintenance operations has increased by more than 40 %. Figure 6-11 depicts the num-

ber of COMPONENT failures by COMPONENT type.  

 

FIGURE 6-11: COMPONENT FAILURE COMPARISON BETWEEN 3I AND 3I-A. LISTS ONLY FAILURES 

THAT DO NOT LEAD TO AIRFRAME LOSS. 

The maintenance duration decreases because COMPONENTS with long repair times (en-

gine, throttle servo, ignition and power servo) cause fewer failures in the 3i-a design (check 

COMPONENT repair times in Appendix 17). The reason for fewer failures is operational: the 

higher number of landing crashes causes operators to repurchase new UAS more often. These 
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feature new COMPONENTS that are less likely to fail. The additional 3i-a number of mainte-

nance operations is caused by those COMPONENTS that were duplicated in the new design 

(Receiver, GPS aerial, comms aerial, autopilot & servo plug, static port). However, repair times 

are shorter for those COMPONENTS, leading to an overall reduction in maintenance dura-

tion. Despite less COMPONENT failures for most COMPONENTS (due to more landing losses), 

the duplicated 3i-a COMPONENTS require maintenance operations that were not necessary with 

3i. Previously, these COMPONENTS failed and led to airframe loss in any case because no redun-

dant COMPONENTS took over. With 3i-a, redundant COMPONENTS do take over and the airframe 

requires maintenance upon landing, increasing the number of maintenance operations. 

The payload performance indicators area scanned, data acquired and images taken 

all show a modest increase in the amount of collected data. First, this is caused by the additional 

flight time. Second, 3i-a can collect more data because it spends less time refuelling (as no im-

ages are taken during flight to and from the base). 

3i-a is also performing better concerning search-and-rescue incidents despite the lower 3i-a 

maximum speed. The incident waiting time reduces by 14 % while the number of saved 

lives increases accordingly. This is achieved because 3i-a can search the respective area for 

longer without returning home for refuels. This increases the chance of spotting the incident 

more than the penalty paid due to the slower speed of 3i-a. Again, consolidating operational ef-

fects like these is best achieved through simulation. 

6.6.1.3 Costs 

Figure 6-12 presents the overall cost of using 3i-a and a cost breakdown. Compared to the 3i 

costs (Figure 6-9), the overall cost increases by about $ 250,000. Maintenance costs increase by 

about $ 17,800, operational costs decrease by about $ 44,400, fixed costs rise by almost $ 

272,000 and payload costs increase by about $ 3,000.  

The rise of maintenance costs originates from the increased number of maintenance 

operations, adding costs for parts, building rent, etc. (Appendix 14). This is not offset by the 

decrease in maintenance costs due to lower maintenance duration, leading to fewer 

maintenance labour-hours to be paid. 

The decrease in operational costs originates from fewer number of take-offs, leading to 

less launch costs. Moreover, less fuel is used. The increase in flight time costs does not off-

set these benefits. 

The strongest increase in cost is the amount of fixed costs, originating from the higher total 

number of losses of 3i-a. This is also the cause for the total rise in costs for 3i-a compared 

to 3i. Moreover, fixed costs feature the highest spread of data caused by the high price per lost 

UAS. 
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FIGURE 6-12: COST BREAKDOWN FOR 3I-A. 

6.6.2 Intermediate discussion 

The 3i-a design offers some operational advantages over 3i bought at higher total costs. In-

creasing the fuel tank capacity reduced the number of refuel operations drastically, increasing 

not only search-and-rescue performance. The other missions also benefit from the longer endur-

ance as 3i-a can spend more time collecting data. The operational penalties for the redesign 

(slower maximum speed and higher specific fuel consumption) were offset by the added benefit 

of conducting missions with less refuels. Here, OSCAR demonstrated its unique benefit for 

conceptual design: it consolidates various (often conflicting) operational factors taking into ac-

count specific mission and airframe characteristics. For example, it is not possible with conven-

tional conceptual design phase tools to predict if 3i-a will burn more fuel during the harbour 

patrol mission and less during an anchorage mission (Table 6-4). The mixture of fewer refuels, 

geographic mission details (distance to base when running out of fuel, etc.) and the airframe 

performance led to varying results for each mission. 

Another example is the decrease in maintenance duration combined with an increase in 

maintenance operations. It is easy to predict that duplicating certain COMPONENTS will reduce 

the airframe losses. However, the operational effect of reducing losses is that COMPONENTS age 

more, requiring more maintenance or causing airframe losses again. Moreover, fewer missions 

are cancelled due to airframe loss, increasing overall performance. In this design iteration, the 

airframe performance was altered together with COMPONENT reliability and redundancy. This 

led to a heavier design featuring more losses upon landing. OSCAR consolidating this impact 



Chapter 6: Case study – Optimisation 

155 

against the fact that increased endurance led to fewer landings due to fewer refuels, finding that 

the number of landing losses still increases. 

The overall performance of 3i-a improved, yet too many airframes were lost during landing, 

leading to unnecessary cost increases. The next design iteration 3i-b must aim to reduce landing 

losses, in this case by reducing the number of take-offs as much as possible. Conventional 

design could opt to increase the fuel tank capacity further until no refuels were required. Esti-

mates require a fuel tank capacity increase of nearly 100 % to 18 kg. However, airframe size 

would increase further, making the UAS impractical for PRA application. The landing site 

would need rework to accommodate such a large design. Certification would become much 

harder as the possible damage of a heavier UAS increases non-linearly with weight. Moreover, 

cost (and thereby acquisition price) would rise manifold. 

The OSCAR framework allows a value-driven design approach that takes a holistic view at 

design and operations. The PRA specified missions such that they gather as much intelligence 

as possible, as fast as possible and in real-time. Therefore, anchorage missions as well as all 

dash and return SEGMENTS were flown at maximum speed by 3i and 3i-a. Only the harbour pa-

trol used an arbitrary speed of 30 m/s to reduce airframe losses over the harbour area.  

With OSCAR, it is possible to optimise airframe design but also operations. Therefore, the 

second design iteration 3i-b will explore how changing the mission definition can reduce overall 

cost while keeping mission performance acceptable. For this iteration, the airframe itself will 

remain as in 3i-a. The number of inflight losses was acceptable due to duplicated and more reli-

able critical COMPONENTS. The mission performance improved over 3i so there is no reason to 

change the design any further in this case study. However, in order to reduce the number of 

landing losses, operations will be altered to reduce the number of required refuels further. For 

this, all mission SEGMENTS will be flown at VRmax, the maximum range speed. Depending on 

airframe weight, this speed varies between 19 and 21 m/s for 3i-a, essentially halving the maxi-

mum speed used during dash, return and all anchorage missions. Moreover, the very long an-

chorage emergency mission will feature a 30-second loiter at each non-emergency anchorage, 

instead of the previous 60 seconds. Last, the harbour patrol will be conducted for 9 nine hours 

instead of 10 each day (i.e. from 8am to 5pm).  

These changes are expected to lead to the following results: search-and-rescue incidents will 

be spotted later but this might be offset by fewer refuels, possibly leading to spotting incidents 

earlier. Anchorage missions and the harbour patrol will take longer but manage without refuels. 

The total data collected will reduce as the airframe spends less time in the air. However, OS-

CAR quantifies the consolidated effects of less refuels, lower mission performance (less data) 

and lower total costs. The next Section will present and discuss the results of this second design 

iteration 3i-b. 
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6.7 Second design iteration – 3i-b 

6.7.1 Results and analysis 

This section presents and discusses the results from the second design iteration, called 3i-b. 

As before, flight performance is compared for each mission before discussing the OSCAR out-

puts. Subsequently, cost outputs are presented for 3i-b. 

6.7.1.1 Mission performance comparison 

Table 6-6 extends the mission performance indicators of Table 6-4 by adding the perfor-

mance of the second design iteration 3i-b. 

 

TABLE 6-6: MISSION PERFORMANCE INDICATORS FOR 3I, 3I-A AND 3I-B. 

 

 

For harbour patrol missions, flying at VRmax reduces the number of refuels to zero. This a 

combined effect of flying at the more economical speed but also by reducing the patrol duration 

from 10 to 9 hours. Overall, the flight time reduces by 12 % over 3i-a. Spending less time in the 

air at a more fuel-efficient speed cuts fuel burn by almost 30 %. 

Anchorage census and emergency missions require no more refuel operations. For the census 

missions, the slower flight speeds increase the flight time above the initial 3i design flight time. 

For the emergency missions, flight time reduces slightly because loiter times above non-

emergency anchorage positions was halved. This is not offset by the flight time increase due to 

lower speeds. For both census and emergency anchorage missions, the fuel used reduces dra-

matically by 50 % and 60 %, respectively. This is caused by flying at VRmax during all flight 

SEGMENTS. Moreover, the reduction in refuel operations reduces the number of SEGMENTS 

flown at maximum speed, further reducing the fuel used. 

Mission Parameter 3i 3i-a 3i-b

Harbour patrol flight time (hrs) 10.3 10.4 9.2

fuel used (kg) 12.0 12.0 8.5

number of refuels 2 1 0

Anchorage census flight time (hrs) 8.7 7.0 9.2

fuel used (kg) 24.7 17.5 8.5

number of refuels 4 1 0

Anchorage emergency flight time (hrs) 9.3 8.3 8.2

fuel used (kg) 27.2 20.0 7.9

number of refuels 4 2 0
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6.7.1.2 OSCAR outputs 

Table 6-7 shows all arithmetic mean OSCAR outputs for all three designs. Output distribu-

tion is similar for all designs. Therefore, refer to output distribution plots for 3i in Section 6.5 

for reference. Each output will be analysed below. 

 

TABLE 6-7: OSCAR ARITHMETIC MEAN OUTPUTS COMPARISON BETWEEN 3I, 3I-A AND 3I-B DE-

SIGNS. DATA BARS INDICATE RELATIVE MAGNITUDES. 

 
 

As expected, the fuel used reduced drastically by about 35 %, caused by more economic 

fuel burn at VRmax and because the aircraft flight time reduced by about 300 hours. This re-

duction is a combination of two operational effects: First, the aircraft flies slower during all 

missions, thereby increasing flight time; second, the number of refuels reduced to al-

most none, reducing the overall flight time. The latter effect is stronger, reducing overall 

flight time. The number of take-offs reduced by 391 over 3i-a, equal to the amount of 

the number of refuels saved (subject to rounding error). This reduction is a direct conse-

quence of flying at VRmax instead of Vmax. The aircraft endurance has increased beyond the dura-

tion of any individual mission. The two refuels were caused by search-and-rescue incidents. 

Previously, search-and-rescue incidents required more refuel operations, therefore performance 

improved overall for 3i-b.  

The number of total losses reduced by over 70 % to one loss every three weeks. In-

flight losses occur very rarely at a rate of 1.7 losses per year. However, this increased al-

most threefold compared to 3i-a owing to two counter-acting effects: First, the lower number of 

flight hours led to fewer inflight losses as COMPONENTS were stressed less. Second, 

Parameter 3i 3i-a 3i-b

Fuel used (kg) 4944 4662 3011

Flight time (hrs) 3879 3898 3512

Number of take-offs 1195 786 395

Number of refuels 798 392 2

Losses (total) 46.3 59.9 17.0

Losses (inflight) 10.4 0.6 1.7

Losses (landing) 35.9 59.2 15.3

Maintenance duration (hrs) 43 37 153

Maintenance operations 24 34 104

Scanned area (km
2
) 124,000 136,000 103000

Acquired data (GB) 1278 1403 1042

Images taken 647,000 710,000 527000

SAR incident waiting time (hrs) 6.2 5.4 7.2

SAR incident lives saved 1.91 2.10 1.66
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the lower number of landing losses caused fewer new aircraft purchases. Hence, aircraft aged 

more, increasing the likelihood of inflight crashes. 

The number of landing losses decreased by almost 75 %. This is a direct effect of fewer 

landings as the number of refuels decreased to almost zero. 3i-b is lost upon landing about 

once every 24 days. In reality, this number would still be far too high for reasonable operations, 

as is reflected in the high costs of the system (see below). Therefore, the relationship between 

landing KE and the likelihood of landing losses needs critical review. Real landing loss data of 

similar aircraft is not available but empirical data of civil aircraft could be scaled down. Alterna-

tively, expert interviews could lead to a refined relation. 

The number of maintenance operations and the maintenance duration in-

creased by 67 and 76 %, respectively, compared to 3i-a. The aircraft requires two maintenance 

operations per week, each lasting 88 minutes, on average. This increase is caused by the reduced 

number of total losses leading to aircraft aging more, on average. The older an aircraft 

gets, the more likely it is to feature a COMPONENT failure, either leading to an inflight loss 

or requiring a maintenance operation. Therefore, the success of 3i-b in reducing fuel use and 

producing fewer losses is offset through more maintenance operations as in Figure 6-13.  

 

FIGURE 6-13: RELATION BETWEEN THE NUMBER OF TOTAL LOSSES AND MAINTENANCE RE-

QUIREMENTS. TREND LINE:        -      WITH        . 

If a design causes fewer losses, it requires more and more maintenance. Alternatively, de-

signs with very low demand on maintenance feature more losses. 

As seen in Table 6-7, the payload performance (scanned area, acquired data and im-

ages taken) decreases by about 25 % compared to 3i-a. This is a result of flying at the re-

duced VRmax during the harbour patrol missions. As the aircraft flies slower compared to 3i-a, it 

covers less distance in the same time, thereby taking fewer images. Moreover, the harbour pa-

trol duration decreased from 10 to 9 hours, further reducing the possible payload output. Note 
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that the output for the anchorage and search-and-rescue missions stayed constant because the 

mission duration is not specified as with harbour patrol. Instead, the aircraft covers the same 

distance at a slower speed, taking the same amount of images, overall. 

The search-and-rescue incident outputs incident waiting time and lives saved 

show a performance decrease for 3i-b over 3i-a. Because incidents are found 33 % later, on av-

erage, the aircraft spots 21 % less incidents alive. This was expected because flight speed is crit-

ical in finding incidents quick and alive and 3i-b flies significantly slower than 3i-a. On the oth-

er hand, 3i-b required fewer refuel operations during search-and-rescue missions, thereby spot-

ting incidents earlier. In total, however, OSCAR found the former effect to be stronger, reduc-

ing overall search-and-rescue performance. In reality, operators should fly 3i-b at maximum 

speed for search operations. 

 

6.7.1.3 Costs 

Figure 6-14 depicts the total cost and its breakdown into cost components for 3i-b. 

 

FIGURE 6-14: COST DISTRIBUTION AND BREAK DOWN FOR 3I-B. 

The total cost is dominated by operational costs making up about half of the total costs. 

Maintenance costs total about $ 200,000 while fixed costs require about $ 340,000. Both feature 

relatively large whiskers but small IQR boxes. This indicates that the standard deviation is ac-

ceptable but the data has some outliers, caused by the high aircraft acquisition cost (for fixed 
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costs) and by the varying number of maintenance operations (for maintenance costs). 

Payload cost is trivial compared to the other cost drivers. 

 

FIGURE 6-15: ARITHMETIC MEAN COST BREAKDOWN FOR 3I, 3I-A AND 3I-B. 

Figure 6-15 compares the mean costs for all three designs (combining arithmetic means of 

Figure 6-9, Figure 6-12 and Figure 6-14). Design 3i-b is the cheapest design overall, mainly 

caused by a strong reduction in fixed costs. This is based upon the reduced number of total 

losses, requiring fewer aircraft purchases.  

Operational costs reduce for 3i-a and 3i-b mainly because the number of take-offs re-

duces. Moreover, the fuel used and flight time reduces (except for a small increase in 

flight time for 3i-a), keeping operational costs down. 

Maintenance costs increase for each design iteration because the number of maintenance 

operations increases. A slight reduction in maintenance duration for 3i-a over 3i does 

not offset the overall maintenance cost increase. 

Payload costs are directly proportional to payload performance and are negligible compared 

to the other cost drivers. The reason is the choice of payload cost parameters (see Appendix 14) 

showing that payload cost does not influence total cost strongly. 
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6.8 Discussion 

This section discusses the results of 3i-b and the overall optimisation process shown above. 

Moreover, it introduces two trade-off studies derived from the manual optimisation above. 

Design 3i-b achieved performance improvements through changing the mission specification 

(and not the design itself). The number of refuels reduced to almost zero, reducing the 

number of landing losses and, thereby, fixed costs. Moreover, the design operated more 

efficiently as it wasted less time returning home for refuel and flying back out again. Combined 

with flying at a more fuel-economic speed, this reduced the fuel used drastically. 

However, the performance improvements came at a price: First, more maintenance oper-

ations occurred, adding to costs. Second, the payload performance reduced due to reduced 

speed. Third, the search-and-rescue performance reduced as it took longer to find incidents.  

From a cost-driven perspective, design 3i-b is still the preferred choice as it has the lowest 

overall cost. However, real engineering cannot optimise for one factor (lowest cost) while not 

penalising other performance measures. Therefore, it is useful to analyse the loss in perfor-

mance versus the gain in cost using Pareto charts. In a real optimisation, many more designs 

would help create a smooth Pareto front. In this case study, however, the low number of itera-

tions provide indications only. The following charts aim to present what kind of discussion and 

insights are possible using OSCAR during conceptual design. 

6.8.1 Cost versus payload performance 

As most PRA mission goals are to gather intelligence, it is interesting to investigate the rela-

tion between cost and payload performance. Figure 6-16 depicts the additional cost per extra 

GB of data. Designers can expect to pay an extra $ 2,341 per additional GB of intelligence data 

per year (or save the same amount if they are willing to sacrifice one GB of data). In reality, the 

relationship is non-linear, as the cost for more data rises to infinity at some point. However, the 

low sample number of three design iterations only allows a limited view upon this relationship. 

Similar relationships can be produced for the cost per additional image taken and the cost per 

scanned additional square kilometre. 
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FIGURE 6-16: TOTAL COST VERSUS ACQUIRED DATA RELATIVE TO BASELINE DESIGN. TREND 

LINE:          -      WITH         

6.8.2 Cost versus lives saved 

Consider the case where PRA is primarily interested in search-and-rescue performance. Fig-

ure 6-17 depicts the relationship between total cost and the number of saved lives, both relative 

to the baseline design 3i. 

 

FIGURE 6-17: TOTAL COST VERSUS SAVED LIVES RELATIVE TO BASELINE DESIGN 3I. TREND 

LINE:       
 
 -      WITH         

This correlation allows designers and managers to assess how much more money they are 

willing to spend to save additional lives. In this case, saving one more live costs additional $M 

1.9 compared to the baseline design. Interestingly, this value corresponds to the order of magni-

tude for the value of a statistical life (Viscusi & Aldy 2002).  
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6.9 Summary 

This chapter presented the use of OSCAR for conceptual design optimisation. As an automat-

ed design optimisation was beyond the scope of this work, a three-step manual optimisation 

process was followed to indicate procedures and insights. 

The first design iteration changed obvious design flaws that inhibited effective operation of 

the baseline design. However, by increasing the fuel capacity, duplicating or strengthening vul-

nerable COMPONENTS, some improvements were achieved while other metrics changed unex-

pectedly. For example, inflight losses almost vanished, repairs occurred less often and search-

and-rescue and payload performance improved. However, the redesign increased the aircraft 

size and weight, increasing landing losses. Overall, more aircraft were lost and total costs in-

creased despite opposite expectations. 

The second design iteration alleviated these problems somewhat. The optimisation changed 

operational parameters instead of design parameters, making full use of OSCAR capabilities. 

Reducing the general flight speed from Vmax to VRmax and changing the harbour patrol duration 

decreased the number of refuel operations to almost zero. This reduced the landing losses with-

out the drawback of an even larger fuel tank. However, this time the improvements in landing 

losses and total costs were offset by increased repair demands as aircraft aged more. Moreover, 

payload and search-and-rescue performance suffered as they depend upon flight speeds directly.  

As engineering cannot achieve an optimal design, it was shown how designers and customers 

could use OSCAR for trade-off studies. By linking OSCAR with a cost model, performance 

gains linked directly to cost increases. This helps decision makers and designers to focus upon 

their requirements and helps choosing the right design candidate. 





Chapter 7: Conclusion 

165 

7 .  C O N C L U S I O N  

This chapter concludes the thesis and summarises the main findings. Section 7.1 re-focuses 

on the context for doing the study and how it justifies the research question. Section 7.2 returns 

to the study objective while Section 7.3 discusses problems encountered during the OSCAR 

framework development. Section 7.4 does the same for the OSCAR simulation. Subsequently, 

Section 7.5 details the boundaries and limitations of the research, commenting on applicability 

in industry. Section 7.6 recommends follow-on work while Section 7.7 summaries the main 

conclusions. 

7.1 Context 

Design of complex aeronautical systems consists of trade-offs based on informed decision-

making processes. In general, trade-offs are not straightforward but feature multi-dimensional 

multi-scale considerations. Moreover, they intersect and overlap each other. Therefore, aeronau-

tical design is inherently complex: A small design change can result in large consequences for 

life-cycle operations and overall product performance. Design complexity grows at a very fast 

pace, exacerbating cost overruns, delivery delays and defects. There is a need for a decision-

support design methodology that operates at multiple levels of abstraction throughout the entire 

design process. This helps to manage design complexity by providing clear design decision 

support. Value-driven design aims to provide this overarching signpost capability for the design 

of large complex systems. It supports objective design decisions and trade-offs by using a holis-

tic life-cycle perspective that includes analysis of product missions and operations. Therefore, 

value-driven design requires information from a mission-modelling tool that simulates the entire 

life cycle of a variety of designs in a comparable, comprehensive and rational way. Value-
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driven design and mission modelling should be applied whenever decisions and trade-offs oc-

cur. Some argue that the most critical decisions occur during the very early conceptual design 

phase. However, current conceptual design mission modelling does not apply the level of fideli-

ty required by value-driven design analysis. Typically, current models combine parameterised 

building blocks in order to simulate characteristic mission profiles for one product instance 

alone. The process is slow, manual and neglects a lot of information and data already available 

during conceptual design. Current models do not include dynamic life-cycle operational changes 

and lack support for operational uncertainties. Moreover, they neglect spatial details, losing po-

tentially relevant information for designers. Instead, the characteristic mission is extrapolated 

over a typical life cycle, yielding trivial analysis of design decision impact. Not least, mission 

definitions are seen as a design constraint rather than a design parameter. 

Therefore, the research question asked if it is possible to create an improved life-cycle mis-

sion-modelling framework for aeronautical vessels that supports decision-making and trade-offs 

for value-driven design. 

7.2 Objectives 

This thesis identified the need for an improved conceptual design phase mission-modelling 

application. Accounting for the large variety of aeronautical design products, the objective was 

to create a generic framework that is widely applicable. Moreover, the framework should be 

comprehensible to allow easy integration and successful user adoption. The level of realism 

aims to be applicable for conceptual design phase requirements. Essentially, the goal was to be 

as realistic as possible taking into account the limited data, labour and computing resources dur-

ing conceptual design. Last, the framework was supposed to be modular to ease adoption but 

also to help comprehensibility, flexibility and genericity. In the end, the framework would ena-

ble specifying entire product life-cycle operations with higher fidelity than currently possible 

during conceptual design. Applying the framework would provide unique design information 

for decision support and optimisation that can be exploited by value-driven design methods. 

In order to demonstrate the capabilities of the framework practically, another objective of this 

thesis was to present a working prototype, i.e. a simulation model. It should act as an inspiration 

as to how to develop or expand existing tools. The simulation should incorporate and implement 

most of the framework features. It would include vessel and scenario features as well as auto-

mated geographical modelling capabilities. Moreover, it would be modular to allow adding 

plug-ins of custom fidelity.  

In order to test the simulation, the thesis objective was to apply the simulation in practise. 

Two case studies presented real-life applications of aircraft design using the simulation. One 
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case study demonstrated its decision-support capabilities while the other highlighted its optimi-

sation abilities. The goal was to describe and discuss how the tool would be used during aircraft 

value-driven design as well as demonstrate how the tool can benefit designers by creating new 

knowledge and insights. 

7.3 Framework 

This section concludes the status quo for the OSCAR framework and the issues and challeng-

es faced during development. The OSCAR framework (Chapter 3) tries to achieve the objec-

tives set above in order to answer the research question. It divides mission simulation into sce-

nario-related and vessel-related information. Scenarios consist of generic building blocks (SEG-

MENTS, TRACKS and MISSIONS) that make up entire life cycles, if desired. All information re-

lates to geographical modelling to exploit spatial information. VESSELS are characterised by 

parameters such that they can represent a large variety of moving objects like aircraft, cars, 

trains, humans or submarines. VESSELS consume energy at specified rates. An open plug-in ap-

proach allows specifying custom propulsion algorithms. An object-oriented approach defines 

COMPONENTS for VESSELS. COMPONENTS deteriorate during VESSEL operations with stochastic 

uncertainty. Last, VESSELS can carry inactive or active payload to compute VESSEL operational 

performance. Through these steps, it has been possible to provide a largely generic framework 

for mission simulation that enables to simulate large fleets of products in any area and detail 

required over long life cycles. However, several issues and challenges occurred during frame-

work development. 

The modularisation of an aeronautical life cycle into MISSIONS, TRACKS and SEGMENTS fo-

cussed on realism and genericity rather than usability. SEGMENTS enable very fine and detailed 

mission scenarios. Nonetheless, initial setup of life cycles requires a large amount of work. Re-

using mission objects through a database alleviates these problems. However, the framework 

(and the simulation, for that matter) do not support pre-defined standard mission building blocks 

like aircraft holding patterns, airport arrival procedures or airways. In reality, these data exist in 

(commercial) databases. Depending on design context, such data could be implemented, reduc-

ing genericity but increasing usability. 

The proposed VESSEL dynamics arising from the VESSEL parameters are very simplistic. Es-

sentially, VESSELS are simple point masses moving through 2D space. They lack acceleration 

and deceleration behaviour. VESSELS can only climb or descend in discrete steps, neglecting 

smooth altitude changes. Moreover, directional changes occur instantaneously, lacking any turn 

performance. This is acceptable for VESSELS that do not perform such manoeuvres as core char-
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acteristics of their life cycle, i.e. VESSELS that operate at level altitudes and constant speeds 

most of the time. 

VESSEL payload definition focussed on active payload. However, many aeronautical missions 

carry inactive payload only. It was difficult to unify both payload types in a simple parameter 

set. Therefore, different parameters were suggested for both types. Moreover, the framework 

assumes constant payload for a VESSEL throughout its life cycle. This assumption does not hold 

in reality because often, each operation features different payload (e.g. airliner loading different 

passengers on each flight). 

VESSEL COMPONENTS deteriorate based on a user-defined weibull function. There is no sup-

port for other distributions or non-stochastic behaviour. COMPONENTS cannot interact with each 

other directly. Essentially, there is no knowledge of how COMPONENTS link to others and how 

failure at one COMPONENT affects all other COMPONENTS. However, there is a simple model for 

redundant COMPONENTS of the same type that can take over work of broken COMPONENTS. 

Moreover, the OSCAR framework does not take into account definition of scheduled mainte-

nance as commonly conducted with most aeronautical products. 

7.4 Simulation 

This section summarises the status quo for the OSCAR simulation (Chapter 4) and the issues 

and challenges faced during model development. The OSCAR simulation includes the OSCAR 

framework building blocks for SEGMENTS, TRACKS and MISSIONS. It applies an agent-based 

approach for simulating generic moving VESSELS. VESSELS interact with a geographical envi-

ronment and with each other. The simulation feeds from (and to) an extensive database speci-

fied in the OSCAR framework. VESSELS apply either a generic propulsion module or custom 

plug-ins, as demonstrated in the case studies. They can carry electro-optical sensor payload. 

Payload performance depends on payload parameters, VESSEL definition and life cycle perfor-

mance. Several challenges occurred during development of the OSCAR simulation. 

One problem was that SEGMENT-related geographical data should be stored within Geograph-

ical Information System shapefiles. However, it was not possible to read this data within the 

simulation. Therefore, only spatial SEGMENT data is stored in shapefiles while SEGMENT-related 

data (altitude, speed, etc.) is stored within the external database. Care is required to combine a 

shapefile SEGMENT with the correct SEGMENT data in the database. 

Another database problem was structural: Typically, users would store many TRACKS, MIS-

SIONS and VESSELS in the database. Although possible, the database easily fills with hundreds 

or even thousands of tables with similar names. Several database files could organise data better 
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but would complicate post-simulation data processing because SQL queries cannot access sev-

eral database files simultaneously. 

In general, it was very difficult to combine geographical shapefiles and agent-based model-

ling within the simulation tool AnyLogic. Complex custom algorithms read shapefiles and con-

vert them into AnyLogic ―polylines‖ automatically. This solution is generic and unique. How-

ever, it is not optimal because agents do not interact with geographical features directly. Moreo-

ver, runtime increases due the conversion algorithms. Not least, users must create geographical 

shapes in the correct sequence within a Geographical Information System program to ensure 

VESSELS move along shapefile paths or points correctly. These drawbacks offer numerous pos-

sibilities for human error. Object-oriented geographical modelling can simplify some of these 

problems (Section 7.6).  

The OSCAR simulation payload model focuses on electro-optical sensors while neglecting 

many other types of active payload (microphones, Geiger tubes, etc.). Moreover, inactive pay-

load is not supported at all because the database structure does not contain the relevant parame-

ters suggested by the OSCAR framework. 

During model development, validation was a recurring problem, as with any simulation mod-

el. One can never formally prove that a model or part of it are working correctly (Sterman 

2000). Therefore, traditional validation techniques were applied throughout. Unit tests and 

walkthroughs were conducted after each model change. Expert opinion was obtained for specif-

ic operational procedures. External modules (propulsion, geographical modelling, etc.) were 

tested using extreme case scenarios. 

Moreover, it was difficult to choose ideal model fidelity levels for the various parts of the 

model. Some required more detail (e.g. payload performance) while other parts were modelled 

more coarse (e.g. climb/descent). The decision for module fidelity was based on engineering 

judgement, conceptual design phase requirements and development iterations. To give an ex-

ample, consider the update frequency of the fuel burn calculation (Section 4.9): Initially, a very 

high frequency was chosen (every virtual second) because correct fuel burn measurement was 

considered important. However, runtimes exceeded acceptable limits and the frequency was 

reduced to every virtual minute. Comparison runs revealed acceptable precision loss and strong 

increase in computing performance. 

Issues occurred not only during model development but during model application as well. 

While applying the OSCAR simulation as part of the DECODE project (Section 5.2.2), it was 

difficult to distinguish two very similar designs by their outputs. Essentially, output noise and 

small design change impacts merged. One of the reasons was that the virtual life cycles were 

very short (1-3 years) and included relatively few missions (less than 200). There are three solu-

tions to such problems:  

 Inflate the design changes arbitrarily, i.e. compare designs that are less similar. 
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 Extend the life cycles arbitrarily. 

 Increase the number of replications to reduce noise. 

Each option has disadvantages that must be taken into account when facing such problems. 

However, the OSCAR simulation delivered one insight that could not be obtained otherwise: 

The impact of small design changes can be neglected for operational scenarios similar to DE-

CODE. This is not always the case, as was shown in the other case study in Chapter 6. 

Another problem faced during model application relates to output analysis: Once designers 

observe different output performance for different designs, it can be difficult to explain the 

change. Designers usually change one design parameter such as wingspan or landing speed. 

However, the resulting ―balanced‖ aircraft design varies in numerous operational parameters 

such as maximum speed, fuel capacity, etc. This can cause a complex operational ―reaction‖ 

leading to step changes in outputs that were not anticipated by a (supposedly) small design pa-

rameter change (see Section 3.2.4.1 for an example). Moreover, agent interaction can cause un-

expected outputs. In any case, result analysis often includes time-consuming model re-runs with 

human supervision in a ―step-by-step‖ manner.  

7.5 Limitations 

Both the OSCAR framework and simulation are suitable for a limited area of application. 

Although developed with genericity in mind, OSCAR is not applicable for space and military 

designs. For space applications, the 2D assumption of the Geographical Information System 

environment does not hold. For military design, agent interactions are not sophisticated enough 

to model battlefields.  

OSCAR can model a large variety of moving objects but only if they can control their own 

motion. Consider scientific balloons: They drift with prevalent winds and change altitude based 

on hanging weights. This could be modelled by dictating direction but there is no dynamic wind 

impact during model run. Moreover, vessel operations should predominantly consist of constant 

altitude and constant speed segments to reduce output error. 

Moreover, OSCAR does not support a weather module in its current state. Therefore, opera-

tions and vessels that strongly depend on weather should be included cautiously. To some de-

gree, any moving vessel operation depends on weather: Bicycles are predominantly used in 

good weather; rockets launch only below certain wind speeds; commercial airliners choose 

flight routes based on large weather structures; etc. However, most weather-dependent opera-

tions can be defined during conceptual design applying statistical averages and engineering 

judgement. Future work could include weather impact by adding SEGMENT characteristics such 

as temperature, wind or visibility. 
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Another OSCAR limitation for aeronautical conceptual design is the lack of take-off field 

length consideration. This parameter is crucial for conceptual aircraft design because it dictates 

landing speed and thereby many other design parameters. Currently, designers must ensure 

manually that their design can land at any expected airport during its life cycle.  

Another limitation of OSCAR is its implicit work overhead during conceptual design. Sourc-

ing data and creating the mission as well as vessel definitions can be time-consuming and ex-

pensive. It is beyond the scope of this thesis to quantify new cost and additional benefit that 

arise from using OSCAR. This thesis argues that improved decision rationales and more precise 

product values have the potential to outweigh the overhead and produce overall benefit.  

Not least, this thesis argues that an explicit mission simulation triggers thinking about alterna-

tive design ideas or modes of operations that are difficult to conceive with simplified mission 

models. The value of such insights is hard to quantify as it depends on the specific application. 

7.6 Future work 

This section provides guidance and ideas for future developments based on the OSCAR 

framework and simulation. 

The VESSEL model should include simple dynamics for altitude changes, directional changes 

and speed changes. Currently, VESSELS only change these characteristics incremental. However, 

a simple, computationally cheap and flexible model could improve conceptual design phase re-

sults without additional workload. Moreover, the existing incremental approach could remain 

for non-critical VESSELS of the operational scenario (like the lifeboats in Chapter 5). A very 

simple dynamics model could feature additional VESSEL parameters such as turnRate (in 

  ⁄ ), climbRate (in   ⁄ ) and accelerationRate (in    ⁄ ). 

Another improvement regarding VESSELS concerns replacement policies: What happens if a 

VESSEL breaks during operation? A VESSEL can break but remain fixable for future application 

or it can break beyond repair. Replacement policies should be definable for both cases separate-

ly. Policies could include: 

 No replacement: The VESSEL is not replaced ever. 

 Immediate replacement: The VESSEL is replaced at the instant of failure with an iden-

tical copy. This is the current (unrealistic) option for the OSCAR simulation. This 

policy is useful if unlimited resources are of interest. 

 Earliest replacement: The VESSEL is replaced as soon as practically possible. BASES 

could feature a stock of VESSELS from which replacements are drawn (using a new 

BASE parameter vesselsInStock). If the stock is empty, the new VESSEL parame-

ter timeToReplace defines how long it takes to refill the stock. 
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In order to provide better feedback for VESSELS carrying payload other than electro-optical 

sensors, the payload module requires a more generic modelling approach. Inactive payload can 

be included easily by adding the parameters payloadItems and payloadWeight as suggest-

ed in Section 3.3.6.1. Moreover, payload should become object-oriented: Each payload item 

should become a separate object such that a VESSEL can carry any number of any payload type 

(e.g. passengers and a camera). This would overcome the problem that current VESSELS are 

bound to one item of payload for their entire life cycle. Object-oriented payload could be 

changed for each MISSION, TRACK and even SEGMENT, if desired. If payload is assigned SEG-

MENT-wise, specialised operations with payload drop become possible (e.g. parachute flights, 

UAS dropping equipment or supplies, trains collecting and releasing passengers, etc.). 

VESSEL COMPONENTS modelling can be improved in several ways. First, fixed scheduled 

maintenance events should be defined for individual COMPONENTS and entire VESSELS based 

on different conditions such as operating hours, age, operating cycles, etc. Moreover, a simple 

model of COMPONENT relations and interactions could improve the current simplistic approach 

of stressing remaining redundant COMPONENTS more. In this relational model, each COMPO-

NENT could define the effect of its failure on any other COMPONENT specifically. If an engine 

fails, this puts additional stress on the remaining engines but also (to a lesser degree) on the 

rudder to keep lateral stability. Another COMPONENT modelling improvement concerns failure 

probability: The OSCAR simulation supports Weibull failure distributions only as it can model 

a wide range of data. However, the weibull distribution cannot model lognormal data often 

found in maintenance repair times. Users should be able to decide and apply standard statistical 

distributions independently. 

If a COMPONENT fails, it can cause immediate VESSEL loss in the OSCAR simulation. How-

ever, if the VESSEL remains operable, the COMPONENT should define if the current VESSEL op-

eration will be cancelled or not. Using a new COMPONENT parameter missionCritical, a 

VESSEL would return to its BASE as soon as possible for COMPONENT repair. This option would 

be useful for COMPONENTS that are critical to the mission: If the camera sensor fails on a map-

ping mission, there is no point in continuing; if a passenger becomes very sick, the mission must 

be cancelled; if known safety-critical COMPONENTS like the batteries on the Boeing 787 fail
1
, 

the VESSEL should land as soon as possible. 

Most conceptual design tools feature take-off and landing modules (compare Section 2.5) 

while this aspect is largely neglected in the OSCAR framework and simulation. One of the criti-

cal design parameters during conceptual aeronautical design is airfield runway length (except 

for vertical take-off and landing VESSELS). The shortest runway for the expected operations dic-

                                                      

1
 After a number of battery failures on the 787, it was monitored closely during operations. See 

http://www.boeing.com/787-media-resource/docs/787-battery-certification.pdf, accessed 30/12/2013. 

http://www.boeing.com/787-media-resource/docs/787-battery-certification.pdf
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tates landing performance, i.e. landing speed. Therefore, BASES could feature the additional pa-

rameter shortestFieldLength while a simple take-off and landing module based on existing 

empirical relations could ensure that BASE field lengths are within limits at any time during the 

life cycle. However, such modules would not be applicable to VTOL (Vertical Take-off and 

Landing) aircraft and other VESSELS such as trains, cars or ships. Moreover, the hazardous issue 

of crosswind landings could be modelled by extending the current simple landing module. 

Currently, OSCAR does not support weather and geographical influences such as dust. How-

ever, connecting the SEGMENT spatial data with weather databases could take into account 

weather effects such as average or stochastic wind speeds, temperatures, visibility or precipita-

tion. A simple weather module would amend flight performance accordingly, possibly including 

effects of wind on flight speed, effects of temperature on air density, effects of visibility on op-

erations, etc. Moreover, local effects such as gusts or winds could influence performance and 

deterioration of specific COMPONENTS (e.g. sand grinds engine blades). 

The current geographical modelling capability does not utilise the full potential of spatial 

analysis. Connecting to online databases, mission definition could be simplified for commercial 

airliners by applying existing airways and airport departure & arrival procedures. Other opera-

tions could automatically apply routes following roads (for cars or road-monitoring aircraft), 

shipping routes or train tracks. Another major improvement geographical modelling would be 

object-oriented geographical modelling: Here, the idea is to model each spatial SEGMENT 

(POINT or PATH) as a specific, addressable object within AnyLogic (or any other tool). This 

would simplify assigning spatial details such as weather conditions. Moreover, VESSEL agents 

would interact with an object instead of following a passive background drawing. This would 

enable new functionalities for future developments: A road SEGMENT could hold a maximum 

number of cars; an airway could report on the number of aircraft that used it; a train track could 

feature overhead contact wire or not, etc. 

7.7 Summary 

This thesis introduced the OSCAR framework and simulation, a set of ideas and tools for im-

proved conceptual design mission modelling for value-driven design. It is the first tool of its 

kind that takes into account mission geography specifically. Moreover, it enables designers to 

incorporate additional useful information into conceptual mission modelling compared to cur-

rent tools. This includes simulating a whole fleet of vessels, competitors and other vessels that 

might interact with the design vessel. Vessels consist of components that deteriorate by opera-

tions and affect operational performance. Missions are modelled ―explicitly‖ through defining 

any operation, life-cycle variation and spatial as well as fleet detail in a specific and unambigu-
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ous way. This omits parameterised mission building blocks that are prevalent in current concep-

tual mission models. By applying an object-oriented approach, additional workload for design-

ers is minimised. Most of the required information is available during the conceptual design 

phase already. The initial overhead in work (defining missions, vessels and components) is re-

quired only once. Subsequent analysis can draw from existing objects for alteration. 

Technically, the OSCAR simulation is the first application of agent-based modelling specifi-

cally considering geography for conceptual aeronautical design. Although complicated, the ad-

vantages of geographical modelling for conceptual design have the potential to outweigh its 

technical drawbacks. Through geography, operational scenarios can cause complex interactions 

between vessels and their environment that cannot be predicted analytically. These can steer 

design decisions and improve overall value. 

The OSCAR framework and simulation outputs enable detailed cost and benefit analysis pro-

ducing quantitative value comparisons between different designs and design optimisation. 

Therefore, the initial hypothesis and research question can be answered as follows: 

The OSCAR framework enables explicit and generic life-cycle mis-

sion modelling for aeronautical vessels supporting design deci-

sions, trade-offs and optimisation for value-driven design.  
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Appendix 1: Segment parameters 

This appendix details the parameters required to define a SEGMENT object. 

SEGMENT parameter Description 

Time 

An integer value (in seconds) indicating when this SEGMENT 

should be started relative to the start TIME of the current TRACK 

(Section 3.2.3.2). Hence, the initial SEGMENT of a TRACK always 

has Time=0. UponArrival and Hover can override the Time 

value. If a SEGMENT is finished earlier than the Time value of the 

subsequent SEGMENT, the vessel will loiter at the end point of the 

SEGMENT until the subsequent SEGMENT should be started. If a 

SEGMENT is finished after the Time value of the subsequent 

SEGMENT, the vessel will proceed after the Loiter duration of 

the current SEGMENT. Note that all SEGMENTS of a TRACK can 

have Time=0. 

Origin 

A string indicating a name of a POINT or the start point for a 

PATH. This string distinguishes POINTS and PATHS from each 

other beyond spatial difference. However, Origin is not re-

quired and has no direct operational function in OSCAR. 

Destination 

A string indicating a name of a POINT or the end point for a 

PATH. This string distinguishes POINTS and PATHS from each 

other. However, Destination is not required and has no direct 

operational function in OSCAR. Note that Destination and 

Origin may be identical. This is good practice for POINTS as 

their Origin and Destination are equal by definition. 

UponArrival 

A keyword string indicating what should be done upon arriving at 

this POINT or end point of this PATH. Permitted keywords are 

home, stay, next and search. The keyword home sug-

gests that the vessel should proceed to its Destination airport 

upon arriving until it is time to proceed to the next SEGMENT of 

this TRACK (only applicable if not the last SEGMENT of a 

TRACK). This can enforce refuelling during a TRACK. The key-

word stay requires the vessel to loiter at the current POINT or 

PATH end point until it is time to proceed to the next SEGMENT or 

the subsequent TRACK. The keyword next informs the vessel to 

proceed to the next SEGMENT disregarding the subsequent Time-

value. This enables ―sweeping‖ through a TRACK without inter-

ruption. The keyword search triggers the build-in search-and-

rescue capability (Section 4.11). UponArrival overrides the 

Time-characteristic: if the vessel should go home, it will not 

judge if it has enough time to fly to its BASE before starting the 

subsequent SEGMENT. Therefore, careless data entry may cause 

vessels to accumulate significant delays. 

Type 

A string or integer that can be used to cause specific vessel be-

haviour for the current SEGMENT. Developers can define specific 

keywords and link those to purpose-build features. Currently, one 

specific behaviour is included: If UponArrival=search and 

Type contains an integer number, the custom search-and-rescue 

module will use the value as an input to search-and-rescue inci-

dent position uncertainty (Section 4.11). In any other case, this 
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column is has no functionality. 

TargetHeight 

Based on the ―target‖ concept defined in Section 3.3.6 and 4.10, 

this double value defines the target height in metres. Note that 

this value represents the perceived target height as seen by the 

vessel, not the actual physical target height. Consider the physical 

height of a human at around 1.8 metres: if this human swims in in 

water, its TargetHeight reduces to about 0.3 metres (i.e. the 

height of the head). If targetHeight=0, the Segment does 

not contain a target that requires detection (see Section 4.10.2). 

TargetWidth 
Similar to TargetHeight, this double value defines the per-

ceived width of the target in metres. 

DetectionCriteria 

This double value can only be 0.75, 3.0 or 6.0. These key values 

represent the ―Johnson criteria‖ specified by the current camera 

model. A higher value ensures more precise image recognition. 

See Section 4.10 for a full description of this value. 

Loiter 

An integer value indicating how many seconds the vessel should 

loiter upon reaching this POINT or PATH end point. Loiter over-

rides UponArrival and Time entries. Hence, a vessel will loiter 

even if it should proceed to the next SEGMENT indicated by Up-
onArrival or if the Time of the subsequent SEGMENT has al-

ready passed. If Loiter=0, the vessel proceeds with actions 

defined in UponArrival. 

Height 

An integer value indicating in metres at what height the vessel 

should conduct the SEGMENT. If the SEGMENT is a POINT, the 

distance covered to reach the POINT and any loitering will be 

flown at this height (except for the first POINT of a TRACK whose 

Height is defined in DashHeight in the MISSION-table for the 

current TRACK). If the SEGMENT is a PATH, height will be used 

for possible manoeuvres to reach the current PATH, the total 

length of the PATH and any loitering. If the SEGMENT has Up-

onArrival=search, the search and loitering will be flown at 

this height. A value of ``99999'' indicates that the vessel should 

fly at the maximum possible altitude defined in the VESSEL pa-

rameter altitudeMax (see Section 3.3.2). Note that altitude 

changes can only occur step-wise between SEGMENTS. 

Speed 

An integer value indicating at what speed (in meters per second) 

the vessel should conduct the current SEGMENT. If the SEGMENT 

is a POINT, the distance covered towards the POINT and any loi-

tering will be conducted at this speed (except for the first POINT 

of a TRACK whose Speed is defined in DashSpeed in the MIS-

SION-table for the current TRACK). If the SEGMENT is a PATH, the 

PATH itself, any manoeuvres conducted to reach the PATH and 

any loitering will be conducted at this speed. If the SEGMENT has 

UponArrival=search, the Search and any loitering will be 

conducted at this speed. A value of 9999 indicates that the vessel 

should move at its maximum speed (defined in the VESSEL pa-

rameter speedMax, see Section 3.3.2). A value of 0 indicates that 

the VESSEL should move at its minimum possible speed (speed-
Min). If speedMin=0, the vessel will move at 0.01 m/s to avoid 

vessels never reaching their goal. 
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Appendix 2: Track parameters 

This appendix details the parameters required to define a TRACK object.  

TRACK parameter Description 

Vessel_IDs 

A comma-separated list of integers defining the VESSELS to 

conduct this TRACK. The integers refer to the VESSEL pa-

rameter id (see Section 3.3.3). A TRACK can be conducted by 

any number of VESSELS of any type. Integers must be unique 

for each TRACK. 

Base 
A string defining the BASE where this TRACK will start. It 

refers to the Base parameter StationName (see Section 4.7). 

Track 
A string defining the list of SEGMENTS to be conducted. This 

loads the corresponding SEGMENT-table of this name. 

TrackFragmented 

Boolean value indicating if the SEGMENTS of this TRACK are 

independent (i.e. fragmented) of each other. If true, the vessel 

will return to the DESTINATION of this TRACK after complet-

ing each individual SEGMENT. This is useful to define 

TRACKS with many ―sub-Tracks‖, for example all search-and-

rescue POINTS in an area over one year. If false, SEGMENTS 

are conducted sequentially without return to the DESTINATION 

(unless a SEGMENT has UponArrival=home). 

Destination 

A string defining the Destination where this TRACK will end. 

It refers to the BASE parameter StationName (see Section 

4.7). Care must be taken to ensure physical integrity of VES-

SEL operations: If a vessel ends its initial Track at Destina-

tion=X and is scheduled to start a subsequent TRACK from 

Base=Y, the vessel will be ―beamed‖ from X to Y. 

Time 

Entry defining the point in time when the TRACK will com-

mence, i.e. when the vessel will leave the BASE. The entry 

follows the ISO 8601 date format ―YYYY-MM-

DDThh:mm:ss‖ (for example: ―2014-01-12T14:36:22‖). All 

values refer to GMT (Greenwich Mean Time). If a VESSEL is 

not ready at that time, it will commence the TRACK as soon as 

possible afterwards. 

Repetition 

Three integer values separated by ―X‖ define the TRACK repe-

tition in the format ―dXfXr‖ (for example 

―36000X86400X365‖). The first integer ―d‖ defines the patrol 

duration in seconds, i.e. the duration for which the TRACK 

should be patrolled without landing in between (unless refuel 

required). On a patrol, the VESSEL returns to the initial SEG-

MENT after reaching the final SEGMENT of a TRACK. If d=0, the 

TRACK is flown once and repeated as defined by the second 

and third values ―f‖ and ―r‖. Otherwise, the TRACK is patrolled 

for the desired duration. The second entry ―f‖ is the repetition 

frequency in seconds. It defines how often the TRACK should 

be repeated. If ―d‖<‖f‖, the vessel patrols for duration ―d‖ and 

repeats the patrol every ―f‖ seconds. If ―d‖>‖f‖, the vessel 

will interrupt the patrol after ―f‖ seconds, go to its DESTINA-

TION and repeat the TRACK afterwards, starting a patrol for ―f‖ 

seconds only. If ―f‖ is smaller than the total duration it takes 
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to finish the TRACK, repetitions are queuing up for this VES-

SEL, building up delays. The third integer entry ―r‖ defines the 

number of repetitions of this TRACK. If ―f‖=0 and ―r‖>0, Rep-

etitions are scheduled to start at the same time. The VESSEL 

will conduct them one by one, building up delays. If ―r‖=0, no 

patrols and no repetitions are conducted and ―d‖ and ―f‖ are 

meaningless. If ―r‖=2, the TRACK will be flown three times in 

total. 

Priority 

An integer indicating the relative importance of TRACKS with-

in a MISSION. Higher values define TRACKS of higher priority. 

If a VESSEL conducts a low priority TRACK while being asked 

to start a high priority TRACK, it cancels the current TRACK 

and starts the higher priority TRACK. If a new TRACK with 

equal or lower priority is scheduled while a VESSEL con-

ducts a TRACK, the VESSEL stores the new TRACK and con-

ducts it as soon as possible afterwards. 

DashHeight 

A double value indicating the height in metres at which the 

dash of this TRACK will be conducted (i.e. the distance be-

tween the BASE and the first SEGMENT). VESSEL minimum and 

maximum altitudes are taken into account (i.e. ships do not 

fly, cars do not drive under water, etc.). If Dash-

Height=99999, the VESSEL’s altitudeMax parameter 

defines the DashHeight. If DashHeight=0, airborne VES-

SELS conduct the TRACK at altitudeMin. 

DashSpeed 

A double value indicating the speed in metres per second at 

which the dash SEGMENT should be conducted. DashSpeed 

must not be equal to zero. If DashSpeed=-9999, the VES-

SEL will conduct the dash at its speedMin (see Section 3.3.2). 

If DashSpeed=9999, it will dash at its speedMax. 

ReturnHeight Same as DashHeight but for the return stage. 

ReturnSpeed Same as DashSpeed but referring to the return stage. 
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Appendix 3: Vessel parameters 

This appendix details the parameters required to define a VESSEL. 

VESSEL parameter Description 

performanceModel 

Specify which performance model should be loaded for this 

VESSEL. The default model is ―powerAgainstSpeed‖ as de-

scribed in Section 4.9. Custom models can be loaded (see 

Section 4.8). 

fuelType 

A String specifying the fuel type used by this VESSEL. Key 

words include ―petrol‖, ―diesel‖, ―nuclear‖, ―coal‖ 

or ―food‖. If performanceMod-

el=powerAgainstSpeed, the calorific value of the fuel 

will be changed accordingly as follows: petrol  44.4 MJ/kg; 

diesel  41.1 MJ/kg; nuclear  ∞ MJ/kg; coal  20 MJ/kg; 

electric  ∞ MJ/kg. Note that both keywords nuclear and 

electric will set the calorific value to ∞ MJ/kg. This is because 

the calorific value is used to convert energy used into mass of 

fuel used (see Section 3.3.4). However, electricity does not 

use up any mass while nuclear consumption of fuel elements 

is negligible for VESSELS. 

occupants 

Integer value indicating the number of humans required to 

operate a VESSEL directly, i.e. how many humans must be on-

board the VESSEL to control it? For UAS, occupants=0 

while for civil airliners, occupants=2, usually. This value 

can be used to calculate operating costs but has no functional-

ity in the OSCAR simulation. 

speedMax 

Double value larger than zero that indicates in metres per se-

cond the maximum speed that the VESSEL can move at. If a 

Segment requests higher speeds, the VESSEL will move at 

speedMax only, building up delays. In reality, any VESSEL 

type has varying maximum speeds depending on a number of 

parameters. However, during conceptual design one value 

suffices. 

speedMin 

Double value larger or equal to zero that indicates in metres 

per second the minimum speed that the VESSEL can move at. 

If a SEGMENT requests a lower speed, the VESSEL will move 

at speedMin only. Except for fixed wing aircraft, all VES-

SELS have speedMin=0, i.e. they can stop motion during a 

TRACK. For fixed wing aircraft, speedMin equates to the stall 

speed in landing configuration (VS0), neglecting its variation 

across different flight regimes. A SEGMENT will never ask for 

speed=0 (see Section 3.2.3.1). 

speedTypical 
Double value larger to zero that indicates in metres per second 

the typical speed to be used if useTypicalSetup=true 

(see below). 

altitudeMax 

Double value larger or equal to zero indicating in metres the 

maximum operating altitude for VESSELS. For non-airborne 

VESSELS, altitudeMax=0. For airborne VESSELS, this 

value neglects the variation of maximum operating altitude 

depending on weight, temperature, etc. If a SEGMENT requests 
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a higher altitude, the VESSEL will move at altitudeMax. 

altitudeMin 

Double value indicating in metres the minimum operating 

altitude for VESSELS. For most VESSELS, altitudeMin=0, 

except for submarines that can move under water. Further 

exceptions would be mining lorries and subway trains. If a 

SEGMENT requests a lower altitude, the VESSEL will move at 

altitudeMin. 

altitudeTypical 
Double value indicating in metres the typical altitude to be 

used if useTypicalSetup=true (see below). 

useTypicalSetup 

A Boolean switch. If ―false‖, the SEGMENT parameters 

Height and Speed shall be applicable for this VESSEL. If 

―true‖, the VESSEL will not apply the SEGMENT Height and 

Speed values but use its own speedTypical and alti-
tudeTypical parameters instead for all SEGMENTS. This is 

useful if a SEGMENT shall be conducted by several VESSELS 

but one of them is controlled through user inputs on altitude 

and speed while the others are not. User control can be ap-

plied through specific SEGMENT Height and Speed entries 

while the other VESSELS have useTypicalSetup=true. 

weightDry 

Double value larger than zero indicating in kilograms the 

weight of the VESSEL without any fuel loaded (if applicable). 

Value includes structural and payload weight. For nuclear and 

electric VESSELS, this is the same as the total weight. 

weightFuel 

Double value larger or equal to zero indicating in kilograms 

the maximum fuel weight the VESSEL can carry. For electric 

and nuclear VESSELS, weightFuel=0. Within OSCAR, 

VESSELS are always fuelled up completely. 
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Appendix 4: Component parameters 

This appendix details the parameters required to define a COMPONENT. 

COMPONENT parameter Description 

weibullLifeMeasure 

A string indicating by what mechanism the COMPONENT 

deteriorates. Value can be either ―duration‖ or ―cycles‖. The 

former will trigger the COMPONENT to deteriorate continu-

ously while operating. This is applicable to any COMPO-

NENT that primarily suffers fatigue from VESSEL move-

ments, i.e. aircraft wings, car wheels, a ship’s hull or a hu-

man foot. If weibullLifeMeasure=cycles, the COM-

PONENT deteriorates only when a TRACK concludes, i.e. 

every time an aircraft lands, a ship arrives in a harbour or a 

car parks. This is applicable to COMPONENTS primarily suf-

fering fatigue once every VESSEL cycle, i.e. aircraft landing 

gear, car doors or a ship’s anchor. 

weibullEta 

Double value indicating the shape parameter of the weibull 

distribution characterizing the units to failure for this COM-

PONENT. 

weibullBeta 

Double value indicating the scale parameter of the weibull 

distribution characterizing the units to failure for this COM-

PONENT. If weibullLifeMeasure=duration, unit is 

the time unit used in the simulation. If weibullLife-

Measure=cycles, unit is cycles. 

LossProbabilityFromFailure 

Double value between 0 and 1 indicating the likelihood of 

losing the entire VESSEL if this COMPONENT fails during 

service and there are no functional redundant COMPONENTS 

that can take over. Aircraft engines have LossProbabil-

ityFromFailure=1 because the aircraft will crash if its 

only engine (or all available engines) fails inflight. A car’s 

CD-player will have LossProbabilityFromFail-

ure=0 because a broken CD-player cannot cause the de-

struction of the car itself. 

unplannedMaintenanceDuration 

Double value in seconds indicating how long unplanned 

maintenance takes on this COMPONENT. If the COMPONENT 

failed, it will schedule unplanned maintenance at the next 

suitable time.  

quantityOnboard 

Integer value indicating how many COMPONENTS of the 

same type are on-board this VESSEL. Ensure to include 

COMPONENTS that can take over the tasks and workload of 

this COMPONENT only. In aircraft wings, several aileron ser-

vos can replace a broken servo if needed. However, only 

servos on the left wing can replace a broken servo on the left 

wing. Similarly, a car usually features four identical wheels 

but none can take over the workload of a broken wheel, 

therefore each wheel should be a separate COMPONENT with 

quantityOnboard=1. 

robustnessScalingFactor 
Double value scaling the COMPONENT robustness such that 
scaledTimeToFailure = TimeToFailure * 

(1+robustnessScalingFactor). A value of zero 
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indicates no change to the COMPONENT time to failure. If 

robustnessScalingFactor=-0.1, the COMPONENT 

will fail 10 % earlier than assumed by the proposed weibull 

distribution. During the conceptual design, COMPONENT 

failure behaviour is often unknown. Therefore, this parame-

ter helps validating historical data or estimates against ex-

pected VESSEL performance (as conducted in Chapter 6). 

Moreover, this parameter enables sensitivity analysis of 

COMPONENT robustness. 
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Appendix 5: Camera footprint algorithm 

This appendix details calculation of airborne VESSEL active payload camera footprints based 

on flight conditions. This calculation occurs every time the payload records an image. For air-

borne VESSELS flying level, assuming their camera is pointed towards the earth surface and tar-

gets must be found on the surface, Chen et al. (2009) define a camera footprint as in Figure A-1. 

 

FIGURE A-1: AIRBORNE VESSEL CAMERA FOOTPRINT DEFINITION. REPRODUCED FROM CHEN ET 

AL. (2009). 

For the OSCAR framework, the characteristic dimensions are the footprint length “l”, the 

footprint width closer to the VESSEL “w2”, the footprint width farther from the VESSEL “w1” 

and the ground distance   ̅̅ ̅̅  from VESSEL to “w2”. The VESSEL parameter height corresponds 

to ”h”, the VESSEL parameter sensorFOVver corresponds to “fov1” and sensorFOVhor cor-

responds to “fov2”. Moreover, the VESSEL parameter sensorTiltAngle corresponds to “af”. 

For level flight with constant pitch angle   and altitude height, simple trigonometry defines 

the camera footprint length as 
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Similarly, the camera footprint widths w1 and w2 are 
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 Eq. A-2 
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Eq. A-3 

 

The airborne camera footprint must be updated whenever any of the following VESSEL pa-

rameters changes: height, sensorFOVver, sensorFOVhor or sensorTiltAngle.  

However, not all OSCAR VESSELS are airborne. There are ground-based and submerged 

VESSELS as well. Submerged VESSELS (i.e. submarines, etc.) can use the method described 

above if they scan the ocean surface or the water surface for targets. In this case, height is the 

difference between the VESSEL depth and the ocean or water surface. Maritime VESSELS float-

ing on the water surface (ships…) can use the method to scan the ocean surface. Both cases as-

sume perfectly luminous water.  

For ground-based VESSELS, a different approach is used. Here, cameras are very close to the 

surface and the assumptions of Chen et al. (2009) do not hold anymore. Instead, cameras look 

horizontally towards the horizon to scan for targets on the ground. The camera footprint is not a 

trapezoid anymore, but a circular arc, as in Figure A-2. 

 

FIGURE A-2: CAMERA FOOTPRINT DEFINITION FOR AIRBORNE/SUBMERGED VESSELS AND 

GROUND-BASED VESSELS. 

For ground-based VESSELS, assume     and     because the camera is near the ground 

looking towards the horizon. This assumes sensorTiltAngle =0 for ground-based VESSELS. 
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Define the footprint length “l” as the distance to the earth horizon from the camera, neglecting 

refraction and assuming infinite visibility.  

 

FIGURE A-3: DISTANCE TO HORIZON SCHEMATIC
1
. 

This distance to the horizon from an observer O is the same as   ̅̅ ̅̅  in Figure A-3. From trigo-

nometry,   ̅̅ ̅̅  √         where R is the earth radius and h is the camera height above 

ground. However, since R is much larger than h for ground-based VESSELS, simplify the foot-

print length to 

 

     ̅̅ ̅̅  √      Eq. A-4 

 

Note that this discussion assumes that   ̅̅ ̅̅    ̅̅̅̅  because h is small compared to these dis-

tances. Within the OSCAR simulation, all ground-based Vessels assume       , i.e. the 

camera sits 2.2 metres above the VESSEL height. Future work can make this another VESSEL 

parameter, named ―cameraHeight‖. 

The last parameter to define the circular arc footprint for ground-based VESSELS is alpha 

(compare Figure A-2). Within the OSCAR framework, alpha corresponds to the VESSEL pa-

rameter sensorFOVhor. 

                                                      

1
 Discussion from http://mintaka.sdsu.edu/GF/explain/atmos_refr/horizon.html, accessed 01/11/2013. 

http://mintaka.sdsu.edu/‌GF/‌explain/‌atmos_refr/‌horizon.html
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Appendix 6: Sample model walkthrough 

This appendix presents a systematic tutorial on how to create and operate a simple OSCAR 

simulation.  

1) Create geographical model:  

a) Obtain a Geographical Information System program of your choice (ArcGis from 

www.esri.com, QGIS from www.qgis.org, etc.). 

b) Create a new shapefile containing a number of ―Point‖ or ―Polyline‖ elements only. 

Create a new dbf-file associated with the shapefile. Add a new column ―Constant‖. As-

sign all elements required to run the simulation the value ―Constant=0‖ (Figure 

A-4).  

 

FIGURE A-4: SIMPLE GEOGRAPHICAL INFORMATION SYSTEM MAP WITH DBF COLUMN "CON-

STANT". 

c) Save shapefile, dbf-, ssx- and shx-file in subfolder ―GIS‖. 

2) Setup database 

a) Open the file ―data.sqlite3‖ in the model folder using any SQLite database manager 

(SQLiteStudio from www. http://sqlitestudio.pl). 

b) Edit the input tables. Figure A-5 shows a sample TRACK table for the five POINTS in 

Figure A-4. 

 

FIGURE A-5: SAMPLE TRACK TABLE INPUTS. 

3) Simulation setup 

a) Load the file ―OpSim.alp‖ into AnyLogic. 

http://www.esri.com/
http://www.qgis.org/
http://sqlitestudio.pl/


Appendices 

XIV 

b) If you want to use the experiments ―Simulation‖ or ―FastRun‖, open the respective ac-

tive object, navigate to the ―General‖ tab of its properties and set the parameter mis-

sionStrings = new String[]{db_table_yourMissionName}, follow-

ing the name of the MISSION table in the database. 

c) If using the ―Simulation_Customers‖ experiment, no action is required. 

d) Set remaining parameters as described in Section 4.13. 

4) Run simulation 

5) Analyse outputs 

a) Open the file ―data.sqlite3‖ in the model folder, navigate to the output tables. 

b) Analyse and post-process data. 
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Appendix 7: Database 

This appendix details the database developed for the OSCAR simulation. There are four dif-

ferent table types in the database, namely equipment, mission, track and outputs. Each has sev-

eral sub-types as described below. Each database table name starts with its type followed by an 

underscore as in equipment_table1. 

 

Equipment tables 

There are three equipment table types, namely bases, vessels and components.  

 

Base table 

There is exactly one base table named ―equipment_Bases‖ listing all available bases using the 

format below: 

TABLE A-1: EQUIPMENT BASE TABLE FORMAT. 

Column name Description 

BaseID Integer value used as the table primary key 

BaseName String naming the Base 

Longitude Double value specifying the base longitude position in deci-

mal degrees. 

Latitude Double value specifying the base latitude position in decimal 

degrees. 

 

Vessel table 

There is exactly one vessel table named ―equipment_Vessels‖ listing all available VESSEL 

agents that can be used. The table format is as follows: 
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TABLE A-2: EQUIPMENT VESSEL TABLE FORMAT. 

Column name Description 

id Integer value used as the table primary key 

category String describing the VESSEL category as defined in Figure 

3-12 

type String describing the VESSEL type as defined in Figure 3-12 

name Optional String for VESSEL name, i.e. ―BMW‖, ―Policeman‖, 

etc. 

performanceModel As described in Appendix 3. 

fuelType As described in Appendix 3. 

occupants As described in Appendix 3. 

cameraFOVhor As described in Section 3.3.6.2.1. 

cameraFOVver As described in Section 3.3.6.2.1. 

cameraPixelHor As described in Section 3.3.6.2.1. 

cameraPixelsVer As described in Section 3.3.6.2.1. 

cameraTiltAngle As described in Section 3.3.6.2.1. 

cameraRecognitionFactor As described in Section 3.3.6.2.1. 

speedMax As described in Appendix 3. 

speedMin As described in Appendix 3. 

speedTypical As described in Appendix 3. 

altitudeMax As described in Appendix 3. 

altitudeMin As described in Appendix 3. 

altitudeTypical As described in Appendix 3. 

useTypicalSetup As described in Appendix 3. 

weightDry As described in Appendix 3. 

weightFuel As described in Appendix 3. 

speedValues 

Comma-separated list of double values specifying a speed 

range for this VESSEL. Only required if performanceMod-

el=powerAgainstSpeed. Can have any number of en-

tries but total number must equal that of powerValues. 

powerValues 

Comma-separated list of double values specifying the energy 

consumption at the respective speed value in speedValues. 

Only required if performanceMod-

el=powerAgainstSpeed. Can have any number of en-

tries but total number must equal that of speedValues. 
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The OSCAR simulation features one additional performance model plug in (Section 4.9.2). 

Additional Vessel parameters run this module if performanceMod-

el=fixedWing_aircraft_petrol and are described in Appendix 9.  

 

Component table 

There is an arbitrary number of COMPONENT tables depending on user requirements. Each 

VESSEL listed in the table equipment_Vessels can have its own COMPONENT table if it is 

supposed to deteriorate and receive maintenance (Section 3.3.5). In this case, the COMPONENT 

table must be named using the VESSEL’S parameters following the scheme ―equip-

ment_category_type_name_Components‖. If the user wants to assign COMPONENTS to a 

VESSEL of category=fixedWing, type=aircraft and name=G-DHBX, the COMPO-

NENT table name were ―equipment_fixedWing_aircraft_G-DHBX_Components‖. Upon VESSEL 

creation, the agent checks if a corresponding COMPONENT table exists. If so, COMPONENTS are 

created for this VESSEL agent. Each COMPONENT table follows the structure below: 

 

TABLE A-3: EQUIPMENT COMPONENT TABLE FORMAT. 

Column name Description 

ComponentID Integer value used as the table primary key 

ComponentName String indicating the name of the COMPONENT. 

WeibullLifeMeasure As described in Appendix 4. 

WeibullEta As described in Appendix 4. 

WeibullBeta As described in Appendix 4. 

LossProbabilityFromInflightFailure As described in Appendix 4. 

MaintReplacementTime Described as ―unplannedMaintenanceDuration‖ in 

Appendix 4. 

QuantityOnboard As described in Appendix 4. 

RobustnessScalingFactor As described in Appendix 4. 

 

Mission tables 

There are an arbitrary number of mission tables in the database. Each table refers to one MIS-

SION as defined in Section 3.2.3.3. Each mission table lists an arbitrary number of TRACKS. 

Each mission table name starts with ―mission_‖ and is followed by a descriptive string (i.e. 

―RotterdamPolice‖, ―search_southernUK‖, etc.). The mission table structure follows the TRACK 

parameters defined in Section 3.2.3.2 and Appendix 2 as follows: 
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TABLE A-4: MISSION TABLE FORMAT. 

Column name Description 

ID Integer value used as the table primary key 

Vessel_IDs As described in Appendix 2. 

Base As described in Appendix 2. 

Track As described in Appendix 2. 

TrackFragmented As described in Appendix 2. 

Destination As described in Appendix 2. 

Time As described in Appendix 2. 

Repetition As described in Appendix 2. 

Priority As described in Appendix 2. 

DashHeight As described in Appendix 2. 

DashSpeed As described in Appendix 2. 

ReturnHeight As described in Appendix 2. 

ReturnSpeed As described in Appendix 2. 

 

Track tables  

There are an arbitrary number of track tables in the database. Each table refers to one TRACK 

as defined in Section 3.2.3.2. Each track table lists an arbitrary number of SEGMENTS. Each 

track table name starts with ―track_‖ and is followed by a descriptive string. For better abridge-

ment, use the same descriptive string used for the respective MISSION table followed by a more 

specific description of this TRACK. Consider a UAS designed to follow the Olympic torch relay 

every day. For this, the MISSION table name could be ―mission_OlympicTorchRelay‖ listing 

TRACKS for each day of the relay. The TRACK tables could be 

―track_OlympicTorchRelay_Day1‖, etc. The track table structure follows the SEGMENT parame-

ters defined in Section 3.2.3.1 and Appendix 1 as below: 
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TABLE A-5: TRACK TABLE FORMAT. 

Column name Description 

ID Integer value used as the table primary key 

Time As described in Appendix 1. 

Origin As described in Appendix 1. 

Destination As described in Appendix 1. 

UponArrival As described in Appendix 1. 

Type As described in Appendix 1. 

TargetHeight As described in Appendix 1. 

TargetWidth As described in Appendix 1. 

DetectionCriteria As described in Appendix 1. 

Hover Described as ―Loiter‖ in Appendix 1. 

Height As described in Appendix 1. 

Speed As described in Appendix 1. 

 

Output tables 

All output data is stored into one of two output tables named ―output_Segments‖ and 

―output_MaintenanceOperations‖. To allow flexible post-processing for users, data is 

stored in a raw format without processing from OSCAR. Output tables are stored within the 

same database as the input tables to enable matching simulation inputs and output performance. 

Moreover, one database file relates to one simulation run. Users can backup and store data easi-

ly by naming databases accordingly. In addition, keeping inputs and outputs within one database 

enables creating advanced database ―views‖ for post-processing (see below).  

 

Segment output table 

This table named ―output_Segments‖ stores data on every SEGMENT conducted in this 

simulation run. Each table entry is created through an instance of the OSCAR simulation Java 

class TARGETSTATISTIC corresponding to the table columns as below: 

 

TABLE A-6: OUTPUT SEGMENTS TABLE FORMAT. SPLIT OVER SEVERAL PAGES. 

Column name Description 

ID Integer value used as the table primary key 

iteration Integer value specifying the simulation iteration (i.e. replica-

tion) that this SEGMENT was computed in. 

missionName String indicating the name of the MISSION table that this 
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SEGMENT belongs to. 

missionID Integer indicating the ―ID‖ of the TRACK in the mission table 

that this SEGMENT belongs to. 

missionStartTimeDB 

Date and time when this SEGMENT’s TRACK was supposed to 

start as specified in the MISSION table Time column. Howev-

er, the value is updated for repetitions to distinguish between 

repeated MISSION entries. The entry follows the ISO 8601 

date format ―YYYY-MM-DDThh:mm:ss‖ (for example: 

―2014-01-12T14:36:22‖). 

missionStartTimeActual 

Date and time when this SEGMENT’S TRACK actually com-

menced in the simulation. Use this value to find delays of 

TRACK starts due to tight repetition setup or previous TRACK 

performance. Can have keyword ―cancelled due to 

fuel‖ if the VESSEL could not perform the Track due to in-

sufficient fuel capacity. 

trackName String indicating the TRACK table name that this SEGMENT 

belongs to. 

segmentID 

Integer value indicating the ―ID‖ of this SEGMENT as speci-

fied in its TRACK table. Can be ―8888‖ if SEGMENT was can-

celled due to insufficient fuel capacity. Can be ―-1‖ for dash 

SEGMENTS. Can be ―9999‖ for return SEGMENTS. 

startTimeDB 

Date and time when this Segment was supposed to start. It is 

the sum of missionStartTimeDB and the TRACK table en-

try Time for this SEGMENT. For return SEGMENTS, this is 

―null‖ since return SEGMENT start times are not defined. 

startTimeActual 

Date and time when this SEGMENT actually commenced with-

in the simulation run. Can have keyword ―cancelled due 

to fuel‖ if the VESSEL could not perform the TRACK due 

to insufficient fuel capacity.  

departures 

Integer value indicating how often a VESSEL departed from a 

BASE during this SEGMENT. For airborne VESSELS, this 

equates to take-offs. For dash SEGMENTS, value cannot be 

higher than 1. Otherwise, this value indicates how often the 

VESSEL had to return for refuels. 

origin Use this SEGMENT’S track table value origin. For dash 

SEGMENTS, use mission table Base entry. 

destination Use this SEGMENT’S track table value destination. For 

return SEGMENTS, use mission table destination entry. 

uponArrival Use this SEGMENT’S track table value uponArrival. Value 

is ―landing‖ for return SEGMENTS. 

type Use this SEGMENT’S track table value type. Use ―dash‖ for 

dash SEGMENTS and ―return‖ for return SEGMENTS. 

targetHeight 
Use this SEGMENT’S track table value targetHeight. Return 

SEGMENTS have targetHeight=0.0 by default. 

targetWidth 
Use this SEGMENT’S track table value targetWidth. Return 

SEGMENTS have targetWidth=0.0 by default. 

detectionCriteria Use this SEGMENT’S track table value detectionCriteria. 
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Return SEGMENTS have detectionCriteria=0.0 by 

default. 

hover 
Use this SEGMENT’S track table value hover. Dash and re-

turn SEGMENTS have hover=0 by default. 

height 

Integer value indicating the actual height in metres that this 

SEGMENT was conducted at. Value can differ from track table 

entry height for this SEGMENT if VESSEL could not work at 

specified height or if entry was keyword value like ―9999‖. 

speed 

Integer value indicating the actual speed in metres per second 

that this SEGMENT was conducted at. Value can differ from 

track table entry speed for this SEGMENT if VESSEL could 

not work at specified speed or if entry was keyword value like 

9999. 

vesselID 
Integer value indicating the id of the VESSEL that conducted 

this SEGMENT. Corresponds to the equipment_Vessels 
table entry id. 

timeOfSpotting 

Date and time when the VESSEL spotted this SEGMENT’S tar-

get using its active payload (if any) and the payload model 

(Section 3.3.6.2). Value can be spotting not re-

quired if this SEGMENT did not require spotting (tar-

getHeight=0 or targetWidth =0). If it required spot-

ting but the VESSEL could not spot it, value will be null. 

Value can be cancelled due to fuel if VESSEL had 

to cancel this SEGMENT due to insufficient fuel. Value can be 

spotted by other vessel if this VESSEL did not find 

target but a connected VESSEL looking for the same target did.  

timeOfArrival 

Date and time when the VESSEL arrived at the SEGMENT tar-

get. Value can be null if VESSEL aborted SEGMENT be-

cause a patrol ended in between and it never arrived. Value 

can be cancelled due to fuel. 

timeOfDeparture 

Date and time when the VESSEL departed this SEGMENT. Val-

ue can be cancelled due to fuel. The difference be-

tween timeOfArrival and timeOfDeparture is the VES-

SEL loiter duration and additional loiter due uponArri-

val=stay. Value is null for return Segments. 

energyUsed How much energy (in Joule) did the VESSEL use during this 

SEGMENT?  

imagesTaken How many images did the active payload collect during this 

SEGMENT, if any. 

areaScanned 

How much ground area in m
2
 was scanned by the VESSEL ac-

tive payload in this SEGMENT, if any? Currently, this equates 

to the net area scanned, neglecting overlap areas scanned mul-

tiple times. However, it is possible to record the total area in-

cluding overlaps. 

dataAcquired 

Double value indicating how much data (in MB) the active 

payload stored by taking digital images, if any? Assumes pix-

el format RGBA32 where each pixel has four colour channels 

and each channel requires 8 bits. 
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segmentMeasure 

String indicating a context-specific measure of choice by the 

client. Currently, search SEGMENTS record the incident alive-

ness upon spotting between 0 and 1. This can be used to find 

the number of total saved lives (Section 4.11). For other 

SEGMENTS, value is null. 

 

Maintenance Operations output table 

There is one table named ―output_MaintenanceOperations‖ in each database. It in-

cludes raw details on all component problems causing maintenance operations (planned and 

unplanned) as well as VESSEL losses. Each table entry is created through an instance of the OS-

CAR simulation Java class MAINTENANCE corresponding to the table columns as below: 

 

TABLE A-7: OUTPUT MAINTENANCE OPERATIONS TABLE FORMAT. 

Column name Description 

id Integer value used as the table primary key 

iteration Integer value specifying the simulation iteration (i.e. replica-

tion) where the current COMPONENT problem occurred. 

vesselID 
Integer value indicating the id of the VESSEL that experi-

enced a COMPONENT problem. Corresponds to the equip-
ment_Vessels table entry id. 

ComponentID 

Integer value indicating the ComponentID listed in the corre-

sponding COMPONENT table. Value can be 9999 if VESSEL 

was lost upon arriving at destination (i.e. landing for airborne 

VESSELS, parking for cars, etc.) because no component was 

causing this loss. 

segmentID 

Integer value indicating the SEGMENT’S ID in the correspond-

ing TRACK table where this COMPONENT problem occurred. 

Can be 9999 if problem occurred during return SEGMENT.

  Can be -1 if problem occurred during dash SEGMENT. 

Can be -9999 if problem occurred during landing. 

timeOfProblem Date and time when this problem occurred. 

redundancy 

String value indicating if the problematic COMPONENT was 

replaced by redundant COMPONENTS during operation (yes) 

or not (no). If no redundancy existed, the VESSEL may be 

lost. Value can be not applicable if VESSEL was lost 

during arrival at a BASE without specific COMPONENT prob-

lems. 

crash 

Boolean value indicating if the VESSEL was lost due to the 

current problem (yes) or not (no). If crash=yes, then by 

default timeOfMaintenance=not applicable and 

duration=0. 

timeOfMaintenance 
Date and time when the maintenance operation occurred that 

was caused by this COMPONENT’S problem. Value can be 

not applicable if VESSEL was lost. 
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duration 

Integer value indicating the duration in seconds that the 

maintenance operation took. Corresponds to column 

MaintenanceReplacementTime in component table for 

this COMPONENT. If duration=0, either the VESSEL was 

lost due to the current problem or no maintenance was carried 

out. 

 

Output views & analysis capabilities 

A typical VESSEL conducts a large number of SEGMENTS and maintenance operations during 

its life cycle. If OSCAR simulates a fleet of VESSELS using several replications, the output ta-

bles become very large. Therefore, intelligent data post-processing is required to analyse out-

puts.  

As with every database tool, SQLite creates ―Views‖ by extracting and displaying specific in-

formation from large tables through SQLite syntax. In order to analyse outputs for the two case 

studies (Chapter 5 and 6), the OSCAR simulation provides 18 ―Views‖. This section discusses 

one ―View‖ in more detail to present the database analysis capability that comes with the OS-

CAR simulation. 

For the case studies, one required output is the total fuel used by all UAS. However, the out-

put_Segments table stores the energy used for each SEGMENT for any VESSEL. Therefore, the 

data must be filtered using the code below: 

SELECT  

output_Segments. iteration, SUM ( output_Segments. en-

ergyUsed )  

AS  

energyUsedByUAS_in_Joule  

FROM  

output_Segments  

INNER JOIN  

equipment_Vessels ON output_Segments. vesselID = equip-

ment_Vessels. id  

WHERE  

equipment_Vessels. category = 'fixedWing' AND equip-

ment_Vessels. type = 'aircraft' AND equipment_Vessels. 

occupants = 0 

GROUP BY  

output_Segments. iteration 

 

The SQL syntax sums the energyUsed column of all SEGMENTS conducted by fixedWing 

aircraft with zero occupants (i.e. UAS) listed in the equipment_Vessels table. Results 

are grouped by iteration to allow analysing statistical variation as in Figure A-6. 
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FIGURE A-6: DATABASE OUTPUT VIEW FOR UAS ENERGY USED, SORTED BY ITERATION. 

This data can be copied into a spread sheets to convert it into fuel used (using the UAS fuel 

calorific value). See Figure 5-16 and Figure 6-5 for sample box plots of UAS fuel used. 
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Appendix 8: Geographical setup 

This appendix details the essential structure required to import and use shapefile data within 

the OSCAR simulation. Moreover, it describes the actual data import process and how the data 

is turned into objects for AnyLogic processing. 

 

Structure 

In order to use shapefile data within the OSCAR simulation, users must adhere to a specific 

data structure shown in Figure A-7.  

 

FIGURE A-7: GEOGRAPHICAL INFORMATION SYSTEM FOLDER STRUCTURE 

The folder containing the actual AnyLogic OSCAR model file must contain a sub-folder 

named ―GIS‖. The ―GIS‖ folder itself contains a number of sub-folders containing the actual 

shapefiles. As a minimum, the ―Basemap‖ folder contains the background world map data. Each 

file must be named ―Basemap‖ plus its file-extension (.shp, .dbf, .ssx and .shx). Here, users can 

insert a background map of their choice. This map is for display purposes, but also allows agent 

interactions if required. Users can add any number of additional folders into the ―GIS‖ folder. 

Folder names follow the respective MISSION table names. Similar to MISSION tables containing 

any number of TRACKS, folders can contain any number of shapefiles (and corresponding .dbf, 

.ssx and .shx files). Naming follows the same conventions as for TRACK-table names, i.e. the 

MISSION name followed by an underscore ―_‖ followed by the TRACK name. 
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For the current OSCAR simulation, the Basemap data provider is the free open source geo-

graphical data provider ―Natural Earth‖
1
. The Basemap includes the entire planet physical 

landmasses including islands as polygons at a 1:10m resolution (Figure A-8). 

 

FIGURE A-8: BASEMAP SHAPEFILE
1
 USED WITHIN OSCAR SIMULATION. RESOLUTION 1:10M. 

Mission folders contain one or more shapefiles (and associated .dbx, .ssx and .shx files). A 

shapefile can contain either Point features or Polyline features. In any case, each .dbf file must 

contain a specific column ―Constant‖ assigning the value ―0‖ to all shapes required for loading 

into the OSCAR simulation. Shapefiles can contain any number of features (of one type) in any 

geographical formation. 

 

Import and conversion 

Once users have created the shapefiles following the rules above, AnyLogic will be able to 

load the data and modify it to allow agent interaction with geographical features. 

Upon creating the ―Main‖ object (Figure 4-2) on start-up, the OSCAR simulation loads all 

shapefiles associated with the MISSION tables loaded for the current experiment (Section 4.13). 

The shapefiles are added to the AnyLogic map for visual display only. More importantly, the 

simulation associates all geographical features from the shapefiles with the SEGMENT details 

supplied by the database. This is the reason for the strict file formats and structural demands 

described earlier. The consolidated SEGMENT and shapefile data is combined using the custom 

OSCAR Java class ―GISPOSITIONFULL‖. Each GISPOSITIONFULL object is a 2D point with lati-

tude and longitude but also featuring respective SEGMENT characteristics such as Origin, Des-

tination, Height, Speed, etc. (Appendix 1). Point SEGMENTS map directly to GISPOSI-

                                                      

1
 Available at http://www.naturalearthdata.com/http//www.naturalearthdata.com/

download/10m/physical/ne_10m_land.zip, accessed 13/11/2013. 

http://www.naturalearthdata.com/‌http/www.naturalearthdata.com/‌download/10m/physical/ne_10m_land.zip
http://www.naturalearthdata.com/‌http/www.naturalearthdata.com/‌download/10m/physical/ne_10m_land.zip
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TIONFULL, i.e. each Point SEGMENT becomes a GISPOSITIONFULL object. Path SEGMENTS split 

into nodes and each node becomes a GISPOSITIONFULL object carrying its Path SEGMENT char-

acteristics. 

The consolidation algorithms access shapefile structures through the open source geograph-

ical tool OpenMap
2
. In fact, the AnyLogic geographical map feature imports the OpenMap 

toolkit to display geographical shapefiles.  

After consolidating database SEGMENT and shapefile data, the OSCAR simulation can task 

VESSELS to move towards GISPOSITIONFULL object coordinates and use the specific GISPOSI-

TIONFULL characteristics drawn from the database SEGMENT, i.e. Height, Speed, etc.  

 

 

                                                      

2
 https://code.google.com/p/openmap/, accessed 13/11/2013. 

https://code.google.com/p/openmap/
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Appendix 9: Custom aircraft performance module 

This appendix introduces a sample performance add-in developed using the steps in Section 

4.9.2. It was developed by Mario Ferraro
1
 to increase performance realism for fixed wing air-

craft using petrol-driven propeller engines (i.e. the UAS in Chapters 5 and 6). Among other in-

fluences, this model takes into account the weight reduction due to fuel burn. 

 

Inputs 

Using this add-in, several additional parameters define VESSEL agents that have catego-

ry=fixedWing, type=aircraft and fuelType=petrol as in Table A-8. These pa-

rameters feature as AnyLogic ―parameter‖ objects as well as new columns in the database 

equipment_Vessels table (see Table A-2). 

 

TABLE A-8: ADDITIONAL VESSEL PARAMETERS 

Additional VESSEL 

parameters 
Description 

a_wing The aircraft wing area in m
2
. 

cl_max 
The maximum lift coefficient. Used to compute optimal air-

craft landing speed based on aircraft weight upon landing. 

d_prop The propeller diameter in metres. 

k1_a 

Coefficient defining the drag polar. There are nine coeffi-

cients named k1_a, k1_b, k1_c, k2_a, k2_b, k2_c, k3_a, k3_b 

and k3_c. The polynomial is defined below. 

p_inst The installed maximum continuous engine power in Watts. 

rpm The maximum engine rpm (rounds per minute). 

sfc_a 

Coefficient defining the 4
th
 degree polynomial for specific 

fuel consumption as a function of engine power output in 

      ⁄ . There are four coefficients named sfc_a, sfc_b, 

sfc_c and sfc_d. The polynomial is defined below. 

zeta_a 

Coefficient defining the 7
th
 degree polynomial describing the 

propulsive efficiency polynomial as a function of flight speed 

and rpm. There are seven coefficients named zeta_a, zeta_b, 

zeta_c, zeta_d, zeta_e, zeta_f and zeta_g. The polynomial is 

defined below. 

 

Processing 

                                                      

1
 PhD candidate at the University of Southampton, see http://www.southampton.ac.uk/engineering/-

postgraduate/research_students/mf1o07.page, accessed 22/01/2014. 

http://www.southampton.ac.uk/engineering/postgraduate/research_students/mf1o07.page
http://www.southampton.ac.uk/engineering/postgraduate/research_students/mf1o07.page
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The module code resides in the file performance_fixedWing_aircraft_

petrol.jar in the main model folder. The OSCAR simulation loads it upon model start as a 

dependency. Based on the additional VESSEL parameters described above, the module calculates 

fuel burn from first principles. The aircraft drag polar is defined as  

 

                    
  Eq. A-5 

 

where cL and cD are the lift and drag coefficients. The terms k1, k2 and k3 refer to the aircraft 

flight conditions take-off, cruise and landing, respectively. Each is defined as 

 

                        Eq. A-6 

 

where V is the current aircraft flight speed. The coefficients k2 and k3 are defined similarly. 

The specific fuel consumption   is defined as a 4
th
 degree polynomial based on function of en-

gine power output as 

 

                                   Eq. A-7 

 

where r is the ratio between the required engine shaft power and the maximum available 

power, i.e. 

 

   
    
     

 Eq. A-8 

 

The available shaft power Pinst is defined as  

 

       
    

 
 

   

 
 Eq. A-9 

 

Where   is the propeller efficiency, V is the aircraft velocity and D is the current aircraft drag 

defined as 

 

   
 

 
           Eq. A-10 
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where ρ is the air density and S is the wing area. The current performance module is stream-

lined for low altitude UAS, therefore         
  

   independent of flight altitude. However, the 

model can be extended to include altitude-dependent air density using the standard atmosphere. 

The propeller efficiency   is defined as 

 

 
                                            

                        
Eq. A-11 

 

where the ―zeta_‖ factors refer to the zeta_ parameters described above. y is defined as 

 

   
 

       
 Eq. A-12 

 

Where   s the propeller rounds per minute and       is the propeller diameter.  

The OSCAR simulation calls any custom performance module following the process of the 

generic performance module (see Section 4.9.1.2), i.e. the fuel burn is calculated after each 

SEGMENT. Fuel burn is calculated by subtracting the weight at the end of a SEGMENT W2 from 

the weight at the start of a SEGMENT W1 assuming constant flight speed and altitude. Under the-

se assumptions 
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where R is the segment distance in metres and 

 

   [     ]    Eq. A-14 

 

   
  

  
   Eq. A-15 

 

   
  

  

      Eq. A-16 

 

   
 

 
    Eq. A-17 
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Outputs 

The OSCAR simulation outputs and stores data in the same way as for generic performance 

module VESSELS (Section 4.9.1.3). 
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Appendix 10: Experimental setup 

This appendix describes the three OSCAR simulation experiments ―Single run‖, ―Interactive 

single run‖ and ―Run fast‖ in turn.  

 

Single run 

This experiment requires users to input the experiment parameters manually within the 

AnyLogic IDE. The experiment loads the specified MISSION tables and executes all MISSIONS 

and TRACKS once. No outputs are saved in the database. This experiment is to be used for quick 

model validation by the user. Users can view the animation during runtime and use AnyLogic 

capabilities to check on every agent state at any time. Note that the Java applet and Java applica-

tion version of this experiment do not allow experiment parameter alteration. 

 

Interactive single run 

This experiment is identical to the previous ―Single Run‖ experiment except that users can 

amend input data dynamically during runtime and that outputs are written to the database after 

the simulation run. Upon starting the experiment, an intuitive GUI guides the user through se-

lecting and amending the correct data, as described below. 

1. Initially, the user must select one or more MISSIONS that the experiment should simu-

late, based on the available MISSION tables in the database (Figure A-9). Optional 

buttons cannot be clicked yet. 

 

FIGURE A-9: INTERACTIVE SINGLE RUN EXPERIMENT MISSION SELECTION. 

2. Upon selecting one or more MISSIONS, the GUI extends by displaying the MISSION 

table data in Figure A-10. Moreover, a descriptive pop-up explains the next step. Op-

tional buttons are still non-functional. 
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FIGURE A-10: INTERACTIVE SINGLE RUN EXPERIMENT TRACK SELECTION. 

3. The user can click on any table entry and amend it. The experiment will use the 

amended value instead of the database value. 

4. To be able to run the experiment (i.e. enable the buttons on top of the screen), the us-

er is asked to click at least one green frame. This will load and display the respective 

database TRACK table below the current table (Figure A-11). This additional step is 

deemed necessary to demonstrate the full capability of the experiment setup to new 

users.  
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FIGURE A-11: INTERACTIVE SINGLE RUN EXPERIMENT SEGMENT SELECTION. 

5. Additional pop-ups inform the user of possible actions. He can edit any visible data-

base entry by clicking on the desired entry (Figure A-12). Moreover, the buttons at 

the top of the screen are now functional. There are several options. 

 

FIGURE A-12: INTERACTIVE SINGLE RUN EXPERIMENT: ENTER AND SAVE NEW VALUES. 

6. The user can ―view and edit VESSELS‖. This displays the database Vessel table as in 

Figure A-13. As before, any entry can be amended by clicking on it. Note that VES-

SEL COMPONENTS cannot be viewed and edited in the current version. 
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FIGURE A-13: INTERACTIVE SINGLE RUN EXPERIMENT VESSEL SETUP. 

7. The user can ―view and edit Bases‖. This displays the Base table as in Figure A-14. 

As before, any entry can be amended by clicking on it. 

 

FIGURE A-14: INTERACTIVE SINGLE RUN EXPERIMENT BASE SETUP. 

8. Once all amendments are done, the experiment can be started by clicking ―Run the 

model‖. 

The model executes the simulation once, applying inputs from the database except those 

amended by the user above. As with the ―Single Run‖ experiment, the model animation is visi-

ble. After completion, all outputs are written to the output database. 

 

“Run fast” 

This experiment is structurally different from the previous experiments described. All exper-

iment parameters must be defined in the AnyLogic IDE. This experiment will not display any 

animation to speed up model execution. Moreover, it allows running a number of replications to 

factor in the variations from random sampling. The number of replications must be defined in 

the AnyLogic IDE as well. The randomSeed parameter takes the value of the current replica-

tion to ensure that each replication uses different random number streams, generating variable 

outputs. 

Once starting the experiment, it will use each available processor core to run one replication, 

thus speeding up total execution time. Replications are independent from each other. Every time 

a replication finishes, it writes all output data to the database, marking each entry with its cur-

rent replication number in the column ―iteration‖ (Figure A-15). 
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FIGURE A-15: RUNFAST EXPERIMENT MARKS ALL OUTPUT DATA WITH COLUMN "ITERATION". 

This allows post-processing to distinguish data from different replications, thus enabling cal-

culations of statistical measures such as averages, standard deviations, etc. 
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Appendix 11: SULSA power 

This appendix explains the rationale for the power-speed relation used for the electrically 

propelled SULSA UAS in Chapter 5. In level flight, Power P is defined as 

 

        Eq. A-18 

 

where D is drag and V is flight speed. In general, drag D can be defined as 

 

    
 

 
           Eq. A-19 

 

where the density of air is assumed constant at            ⁄  (as SULSA flight altitudes are 

low), the wing area          and the coefficient of drag cD is 

 

               
  Eq. A-20 

 

where            and            are drag coefficients as in the custom performance 

model (Appendix 9) and the coefficient of lift cL is  

 

     
   

 

 
       

. Eq. A-21 

 

Here, the aircraft mass         is assumed constant and g is the standard gravity. This yields 

the power-to-speed relation used, depicted in Figure 5-5. 
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Appendix 12: UAS inputs comparison 

This appendix compares the inputs used for the different UAS designs in Chapter 5. Table 

A-9 summarises the OSCAR performance and camera setup inputs for the UAS designs for easy 

comparison. Note that the camera setup is identical to avoid output bias. 

 

TABLE A-9: UAS DESIGNS PERFORMANCE AND CAMERA COMPARISON. 

  DECODE BBC SULSA 2Seas 

maximum speed (m/s) 24.0 37.0 19.9 45.0 

search & loiter speed (m/s) 18.0 25.0 17.0 26.0 

minimum speed (m/s) 10.0 13.7 10.0 14.0 

dry weight (kg) 8.8 17.8 2.1 24.2 

fuel weight (kg) 1.2 5.0 0.0 5.8 

horizontal field-of-view (degrees) 91.7 91.7 91.7 91.7 

vertical field-of-view (degrees) 91.7 91.7 91.7 91.7 

horizontal pixels 680.0 680.0 680.0 680.0 

vertical pixels 780.0 780.0 780.0 780.0 

camera tilt angle (degrees) 68.8 68.8 68.8 68.8 

 

Table A-10 compares the performance model inputs used to feed the petrol-engine perfor-

mance model described in Section 4.9.2. SULSA, being propelled by an electric engine, used 

the standard performance model (Section 4.9.1) and cannot be compared to the other designs. 

 

TABLE A-10: UAS PERFORMANCE MODEL PARAMETERS COMPARISON. NOTE: SULSA USES 

DIFFERENT PERFORMANCE MODEL. 

 DECODE BBC 2Seas 

wing area (m²) 1.12 1.496 1.4 

maximum lift coefficient 1.5 1.908 1.57356 

propeller diameter (m) 0.41564 0.508 0.4572 

k1_a 0.045 0.032 0.043676 
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k1_b 0 0 0 

k1_c 0 0 0 

k2_a 0 -0.002 0 

k2_b 0 0 0 

k2_c 0 0 0 

k3_a 0.0334 0.04 0.04207 

k3_b 0 0 0 

k3_c 0 0 0 

installed power (W) 1490 3310 3400 

propeller RPM 8000 6500 7000 

sfc_a 450 459.857 1339.784 

sfc_b 0 0 -970.149 

sfc_c 0 0 297.7281 

sfc_d 0 0 0 

zeta_a 60 -0.129 577.4458 

zeta_b 0 287.776 -6813.39 

zeta_c 0 -1788.785 34458.75 

zeta_d 0 11181.081 -87795.4 

zeta_e 0 -33616.437 120137.5 

zeta_f 0 46099.676 -83881 

zeta_g 0 -23892.233 23317.32 

 

Table A-11 compares all component parameters used for the UAS designs in Chapter 5. Most 

parameters are identical for all designs due to lack of trustworthy reliability data for UAS com-

ponents. The differences are based on the fact that SULSA, being a laser-sintered aircraft with 

an inverted v-tail, does not feature a number of COMPONENTS such as the vertical tail structure. 

Accordingly, it has a unique component ―aft fuselage‖ representing a much more endurable fu-

selage component. Moreover, the 3i aircraft has two engines, increasing the redundancies of the 

engines, throttle servos, ignitions and propellers. 
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TABLE A-11: UAS COMPONENT INPUTS COMPARISON. 

 
 

DEC BBC SUL 2Se DEC BBC SUL 2Se DEC BBC SUL 2Se DEC BBC SUL 2Se DEC BBC SUL 2Se DEC BBC SUL 2Se

wing main structure FH FH FH 2 2 2 600 600 600 1 1 1 1 1 1 1 1 1

wing aileron control mechanism FH FH FH FH 2 2 2 2 600 600 600 600 0.4 0.4 0.4 0.4 1 1 1 1 2 2 2 2

aileron servo FH FH FH 2 2 2 2 500 500 500 500 0.4 0.4 0.4 0.4 2 2 2 2 4 4 4 4

vertical tail structure FH FH FH 2 2 2 600 600 600 0.1 0.1 0.1 1 1 1 1 1 2

rudder control mechanism FH FH FH FH 2 2 2 2 600 600 600 600 0.1 0.1 0.1 0.1 1 1 1 1 2 2 2 2

rudder servo FH FH FH FH 2 2 2 2 500 500 500 500 0.2 0.2 0.2 0.2 2 2 2 2 2 2 2 2

horizontal tail structure FH FH FH 2 2 2 600 600 600 1 1 1 1 1 1 1 1 1

elevator control mechanism FH FH FH FH 2 2 2 2 600 600 600 600 1 1 1 1 1 1 1 1 4 4 4 4

elevator servo FH FH FH FH 2 2 2 2 500 500 500 500 1 1 1 1 2 2 2 2 4 4 4 4

aft fuselage FH 2 2400 1 1 1

Fuselage main structure FH FH FH 2 2 2 600 600 600 0.7 0.7 0.7 1 1 1 1 1 1

Fuselage secondary structure FH FH FH 2 2 2 500 500 500 0.05 0.05 0.05 0.5 0.5 0.5 1 1 1

main undercarriage FC FC FC 2 2 2 800 800 800 0.8 0.8 0.8 1 1 1 1 1 1

front undercarriage FC FC FC 2 2 2 500 500 500 0.3 0.3 0.3 1 1 1 1 1 1

engine FH FH FH FH 2 2 2 2 300 300 2400 300 1 1 1 1 3 3 3 3 1 1 1 2

throttle servo FH FH FH FH 2 2 2 2 500 500 500 500 1 1 1 1 2 2 2 2 1 1 1 2

ignition FH FH FH 2 2 2 600 600 600 1 1 1 1 1 1 1 1 2

propellor FH FH FH FH 2 2 2 2 300 300 300 300 1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 2

power generator FH FH FH 2 2 2 400 400 400 0.3 0.3 0.3 2 2 2 1 1 1

6v flight systems battery FC FC FC FC 10 10 10 10 1000 1000 1000 1000 1 1 1 1 0.5 0.5 0.5 0.5 2 2 2 2

Receiver FH FH FH FH 1 1 1 1 1000 1000 1000 1000 1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 1

gps aerial FH FH FH FH 1 1 1 1 1000 1000 1000 1000 1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 1

comms aerial FH FH FH FH 1 1 1 1 1000 1000 1000 1000 1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 1

autopilot FH FH FH FH 1 1 1 1 1000 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1 1

autopilot servo plug board FH FH FH FH 2 2 2 2 500 500 500 500 1 1 1 1 1 1 1 1 1 1 1 1

static port FH FH FH FH 1 1 1 1 1000 1000 1000 1000 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1

static hose FH FH FH FH 2 2 2 2 1000 1000 1000 1000 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1

pitot probe FH FH FH FH 2 2 2 2 5000 5000 5000 5000 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1

pitot tubing FH FH FH FH 2 2 2 2 1000 1000 1000 1000 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1

payload FH FH FH FH 1 1 1 1 1000 1000 1000 1000 0 0 0 0 1 1 1 1 1 1 1 1

quantity onboard

Legend: DEC=DECODE, SUL=SULSA, 2Se=2Seas, FH=flight hours, FC=flight cycles Changes

Weibull life Weibull eta Weibull beta (FH: loss probability from maintenance time 
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Appendix 13: Mersey lifeboat performance data 

Based on publicly available fuel consumption charts
1
, it is possible to derive the power con-

sumption for various speeds for the Mersey lifeboat as follows: 

 
 

OSCAR interpolates linearly between data points, leading to the following relationship be-

tween speed and energy consumption: 

 

 

 

                                                      

1
 See http://www.44mlb.com/fuel-consumption-charts.html, accessed on 10/07/2013. 

Speed (knots) Speed (m/s) δ (gal/hr) δ (litres/s) δ (kg/s) Power (J/s)

0 0 3 0.00315451 0.002775969 118533.8609

9.101 4.681958889 6.07 0.006382625 0.00561671 239833.5118

10 5.144444444 9.69 0.010189067 0.008966379 382864.3706

11 5.658888889 14.05 0.014773621 0.013000786 555133.5817

12 6.173333333 17.97 0.018895514 0.016628052 710017.8266

12.7 6.533444444 20.24 0.021282426 0.018728535 799708.448

13 6.687777778 21.09 0.022176204 0.01951506 833293.0419

14 7.202222222 23.5 0.024710327 0.021745088 928515.2435

14.894 7.662135556 25.29 0.026592518 0.023401416 999240.4471

17 8.745555556 27.5 0.02891634 0.025446379 1086560.391

Constants:

litres/gal 3.78541178

density Diesel (kg/m^3) 880

calorific value Diesel (J/kg) 42700000

NOTE: extreme values for Speed=0 m/s 

and Speed=8.74 m/s are estimated.

http://www.44mlb.com/fuel-consumption-charts.html
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Appendix 14 Cost model parameters rationale 

This table explains the parameters used in the cost model for the decision support case study 

(see Section 5.4.3). All currency conversion based on www.oanda.com exchange rate from 

19/07/2013 where            . 

 

Parameter Value Rationale 

Cost per UAS maintenance 

hour 
$ 34.63 

Average yearly income of UK 

airline maintenance personnel 

is £ 43,658
1
. Assume 40-hour 

workweek and 4 weeks holi-

day. 

Cost per UAS maintenance 

operation 
$ 1,830.76 

Rent for building at £ 500; 

Average part cost: £ 500; 

Other expenditure: £ 200; 

Cost per UAS flight hour $ 172.09 

Average yearly income of UK 

pilots is £ 72,184
1
. Assume 

40-hour week and 4 weeks 

holidays. Assume 3 people 

needed to control UAS: 1 pi-

lot, 1 ATC support, 1 image 

analyser) 

Price per kg petrol 

$ 2.88 

(used for DECODE, BCC and 

3i UAS) 

Average price per kg petrol in 

Southampton on 19/07/2013. 

Price per kg diesel 
$ 1.40 

(used for lifeboats) 

Price for maritime commercial 

diesel in Solent area on 

06/06/2013. 

Price per kWh 
$ 0.26 

(used for SULSA UAS) 

Average price based on South-

ampton rates for 1 kWh from 

British Gas on 19/07/2013. 

Cost per UAS launch $ 114.73 

Use 2 people paid at pilot rate
1
 

for one hour (including pack-

ing up after landing). 

UAS acquisition 

$ 15,256 (DECODE) 

$ 30,512 (BBC & 3i) 

$ 5,340 (SULSA) 

Based on simple cost model 

developed by DECODE re-

search
2
. 

Cost per image $ 0.0458 

High quality SLR camera 

costs about £ 3,000 and has 

mean life of 100,000 images. 

Cost per GB of data $ 0.01 
Extrapolated from average 

hard disk prices 1980-2009
3
. 

                                                      

1
 See http://www.caa.co.uk/docs/80/airline_data/2009Annual/Table_1_14_Airline_Personnel_

Cost_UK_and_Overseas_2009.pdf, accessed 19/07/2013. 
2
 See http://www.southampton.ac.uk/~decode/, accessed 22/07/2013. 

http://www.oanda.com/
http://www.caa.co.uk/docs/‌80/airline_data/2009Annual/‌Table_1_14_Airline_‌Personnel_‌Cost_UK_and_Overseas_2009.pdf
http://www.caa.co.uk/docs/‌80/airline_data/2009Annual/‌Table_1_14_Airline_‌Personnel_‌Cost_UK_and_Overseas_2009.pdf
http://www.southampton.ac.uk/~decode/
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Lifeboat acquisition cost per 

year 
$ 76,281 

Lifeboat similar to Mersey 

class costs £ 1.5M
4
. Assume 

lifeboat lifetime is 30 years 

and cost is amortised yearly. 

Cost per lifeboat operating 

hour 
$ 405.82 

Daily RNLI running costs are 

£ 385,000 for 330 lifeboats
4
. 

Assume lifeboat operates for 

4.4 hours daily. Includes 

launch costs! 

                                                                                                                                                            

3
 See http://www.mkomo.com/cost-per-gigabyte, accessed 22/07/2013. 

4
 See http://rnli.org/aboutus/aboutthernli/Pages/Running-costs.aspx, accessed 19/07/2013. 

http://www.mkomo.com/cost-per-gigabyte
http://rnli.org/aboutus/aboutthernli/Pages/Running-costs.aspx
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Appendix 15: Port of Rotterdam offshore map 

This map
1
 depicts the offshore anchor position areas used in Chapter 6.  

 
 

                                                      

1
 Published with kind permission from M. J. Tolhuisen at www.Maritiemfreelancer.nl  

http://www.maritiemfreelancer.nl/
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Appendix 16: Replications setup 

This appendix describes the rationale for defining the number of replications for the case 

study in Chapter 6. The same methodology was applied for the case study in Chapter 5. 

The confidence interval method combined with the graphical method (Robinson 2004) were 

used to assess the required number of replications for each of the optimisation iterations. For 

this, the initial design simulation was run for 850 replications, a number estimated high enough 

(based on previous experience with the simulation) to achieve very good estimates of mean per-

formance. All analysis in Section 6.5 bases upon 850 replications. To reduce runtime for the 

subsequent design iterations in Section 6.6 and 6.7, the minimum number of replications was 

investigated as follows. 

For each OSCAR output, a cumulative mean  ̅ was used to describe a confidence interval as  

 

    ̅         ⁄  
 

√ 
 Eq. A-22 

 

where   is the confidence interval, n is the number of replications,        ⁄  is the value from 

the Student’s t-distribution with n-1 degrees of freedom and a significance level of   ⁄ . The 

common significance level      is used. σ refers to the standard deviation of the OSCAR 

output and is defined as  

 

   
∑      ̅   

   

   
 Eq. A-23 

 

where Xi is the result of replication i. Plotting the deviation from the mean (as in Figure A-16) 

and the confidence interval (as in Figure A-17) for each OSCAR output allowed to identify the 

most critical output as the maintenance time. 
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FIGURE A-16: PERCENTAGE DEVIATION FROM CUMULATIVE MEAN FOR MAINTENANCE TIME. 

 

FIGURE A-17: CONFIDENCE INTERVAL FOR MAINTENANCE TIME. 

In order to achieve less than 5 % deviation, 200 replications are required, as seen in Figure 

A-16. However, the confidence interval should not only be narrow enough but the cumulative 

mean should be sufficiently flat. Therefore, the graphical method was used as a sanity check. It 

was found that most OSCAR outputs feature a rugged cumulative mean at 200 iterations. There-

fore, number of replications should be set to 400 to avoid cumulative mean errors (compare 

Figure A-18). 
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FIGURE A-18: CONFIDENCE INTERVAL FOR UAS FUEL USED. 

To add a margin of safety for the design iterations, 500 replications will be used for the first 

and second design iteration. 

In order to reduce the number of required replications, an LPτ pseudorandom sequence or 

Latin hypercube sampling can be employed in future work, as suggested by Keane (2012). 
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Appendix 17: 3i component details 

This appendix shows the COMPONENTS used for the 3i and 3i-a UAS designs in Chapter 6. 

Changes between the designs are highlighted in yellow. 

 
 

3i 3i-a 3i 3i-a 3i 3i-a 3i 3i-a 3i 3i-a 3i 3i-a 3i 3i-a

wing main structure FH FH 2 2 600 600 1 1 1 1 1 1 0 1

wing aileron control mechanism FH FH 2 2 600 600 0.4 0.4 1 1 2 2 0 0

aileron servo FH FH 2 2 500 500 0.4 0.4 2 2 4 4 0 0

vertical tail structure FH FH 2 2 600 600 0.1 0.1 1 1 2 2 0 0

rudder control mechanism FH FH 2 2 600 600 0.1 0.1 1 1 2 2 0 0

rudder servo FH FH 2 2 500 500 0.2 0.2 2 2 2 2 0 0

horizontal tail structure FH FH 2 2 600 600 1 1 1 1 1 1 0 1

elevator control mechanism FH FH 2 2 600 600 1 1 1 1 4 4 0 0

elevator servo FH FH 2 2 500 500 1 1 2 2 4 4 0 0

Fuselage main structure FH FH 2 2 600 600 0.7 0.7 1 1 1 1 0 1

Fuselage secondary structure FH FH 2 2 500 500 0.05 0.05 0.5 0.5 1 1 0 0

main undercarriage FC FC 2 2 800 800 0.8 0.8 1 1 1 1 0 0

front undercarriage FC FC 2 2 500 500 0.3 0.3 1 1 1 1 0 0

engine FH FH 2 2 300 300 1 1 3 3 2 2 0 0

throttle servo FH FH 2 2 500 500 1 1 2 2 2 2 0 0

ignition FH FH 2 2 600 600 1 1 1 1 2 2 0 0

propellor FH FH 2 2 300 300 1 1 0.5 0.5 2 2 0 0

power generator FH FH 2 2 400 400 0.3 0.3 2 2 1 1 0 0

6v flight systems battery FC FC 10 10 1000 1000 1 1 0.5 0.5 2 2 0 0

Receiver FH FH 1 1 1000 1000 1 1 0.5 0.5 1 2 0 0

gps aerial FH FH 1 1 1000 1000 1 1 0.5 0.5 1 2 0 0

comms aerial FH FH 1 1 1000 1000 1 1 0.5 0.5 1 2 0 0

autopilot FH FH 1 1 1000 1000 1 1 1 1 1 2 0 0

autopilot servo plug board FH FH 2 2 500 500 1 1 1 1 1 2 0 0

static port FH FH 1 1 1000 1000 0.5 0.5 1 1 1 2 0 0

static hose FH FH 2 2 1000 1000 0.5 0.5 0.5 0.5 1 1 0 0

pitot probe FH FH 2 2 5000 5000 0.5 0.5 0.5 0.5 1 1 0 0

pitot tubing FH FH 2 2 1000 1000 0.5 0.5 0.5 0.5 1 1 0 0

payload FH FH 1 1 1000 1000 0 0 1 1 1 1 0 0

Roustness 

scaling factor

Legend: FH=flight hours, FC=flight cycles Change

Weibull life 

measure
Weibull eta

Weibull beta 

(FH: hours, FC: 

cycles)

loss probability 

from inflight 

failure

maintenance 

time (hours)

quantity 

onboard
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