
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aeronautics and Astronautics

Aeronautical Life-Cycle Mission Modelling Framework for Conceptual Design

by

Benjamin Schumann

Thesis for the degree of Doctor of Philosophy

January 2014

Abstract

i

UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aeronautics and Astronautics

Thesis for the degree of Doctor of Philosophy

AERONAUTICAL LIFE-CYCLE MISSION MODELLING FRAMEWORK FOR CON-

CEPTUAL DESIGN

by Benjamin Schumann

This thesis introduces a novel framework for life cycle mission modelling during conceptual

aeronautical design. The framework supports object-oriented mission definition using Geo-

graphical Information System technology. Design concepts are defined generically, enabling

simulation of most aeronautical vessels and many non-aeronautical vehicles. Moreover, the

framework enables modelling of entire vessel fleets, business competitors and dynamic opera-

tional changes throughout a vessel life cycle. Vessels consist of components deteriorating over

time. Vessels carry payload that operates within the vessel environment.

An agent-based simulation model implements most framework features. It is the first use of

an agent-based simulation utilising a Geographical Information System during conceptual aero-

nautical design. Two case studies for unmanned aircraft design apply the simulation.

The first case study explores how the simulation supports conceptual design phase decisions.

It simulates four different unmanned aircraft concepts in a search-and-rescue scenario including

lifeboats. The goal is to learn which design best improves life cycle search performance. It is

shown how operational and geographical impacts influence design decision making by generat-

ing novel performance information. The second case study studies the simulation optimisation

capability: an existing aircraft design is modified manually based on simulation outputs. First,

increasing the fuel tank capacity has a negative effect on life cycle performance due to mission

constraints. Therefore, mission definition becomes an optimisation parameter. Changing mis-

sion flight speeds during specific segments leads to an overall improved design.

Contents

iii

Contents

ABSTRACT ... i

Contents .. iii

List of tables ... ix

List of figures.. x

Author publications ... xiv

Declaration of authorship ... xv

Acknowledgements .. xvi

Conventions ... xvii

Abbreviations ... xviii

List of symbols ... xix

List of subscripts .. xx

1. Introduction ... 1

1.1 Motivation ... 1

1.1.1 Contemporary aeronautical design .. 1
1.1.2 Value-driven design .. 2
1.1.3 Conceptual design mission modelling ... 2
1.1.4 Explicit mission modelling .. 2

1.2 Research question .. 3
1.3 Objectives & methodology .. 4
1.4 Contribution to knowledge .. 5
1.5 Thesis outline .. 5

2. Literature review .. 9

2.1 Aeronautical design ... 9

2.1.1 Requirements & specification ... 10
2.1.2 Conceptual design phase ... 11

2.1.2.1 Overview ... 11
2.1.2.2 Information challenge .. 13

2.1.3 Preliminary design phase... 15
2.1.4 Detailed design phase .. 15

2.2 Value-driven design .. 15
2.3 Modelling .. 17

2.3.1 Conceptual modelling.. 21
2.3.2 Analytical modelling ... 21

2.4 Simulation ... 22

2.4.1 Advantages .. 23
2.4.2 Disadvantages .. 24

Contents

iv

2.4.3 Requirements .. 25
2.4.4 Agent-based Simulation .. 25
2.4.5 Spatially explicit simulation .. 28

2.5 Mission Simulation ... 29

2.5.1 Current practice ... 30
2.5.2 Tools ... 31

2.5.2.1 Pacelab Mission Suite ... 31
2.5.2.2 PIANO .. 31
2.5.2.3 ACS ... 32
2.5.2.4 RDS ... 32
2.5.2.5 FLAMES ... 32
2.5.2.6 FLOPS ... 32
2.5.2.7 Other tools ... 33

2.5.3 Research .. 33

3. Framework .. 37

3.1 Requirements .. 38

3.1.1 Genericity .. 39
3.1.2 Comprehensibility ... 39
3.1.3 Realism ... 40
3.1.4 Modularity ... 40

3.2 Scenario framework .. 41

3.2.1 Scope of application .. 41

3.2.1.1 Military exclusion ... 41
3.2.1.2 Space exclusion ... 42
3.2.1.3 Remaining scope ... 43

3.2.2 Operations classification ... 43

3.2.2.1 Point operations ... 44
3.2.2.2 Path operations .. 45
3.2.2.3 Aerial operations ... 45
3.2.2.4 Combinations .. 46

3.2.3 Modularisation .. 47

3.2.3.1 Segments ... 48
3.2.3.2 Tracks .. 48
3.2.3.3 Missions .. 49

3.2.4 Spatially explicit setup .. 49

3.2.4.1 Motivation ... 49
3.2.4.2 Implementation ... 51
3.2.4.3 Assumptions & Simplifications .. 52

3.3 Vessel framework ... 54

3.3.1 Scope of application .. 54
3.3.2 Classification ... 55
3.3.3 Parameters ... 56
3.3.4 Propulsion performance .. 56
3.3.5 Fatigue ... 58

3.3.5.1 Components .. 58
3.3.5.2 Deterioration and failure ... 58
3.3.5.3 Planned maintenance ... 60

Contents

v

3.3.6 Payload .. 60

3.3.6.1 Inactive payload .. 61
3.3.6.2 Active payload ... 61

3.3.6.2.1 Payload parameters ... 62

3.3.6.2.2 Limitations .. 63

4. Simulation .. 65

4.1 Justification ... 66
4.2 Functional specification .. 68

4.2.1 Objectives .. 68
4.2.2 Data requirements ... 69
4.2.3 Level of Detail ... 69
4.2.4 Animation .. 69
4.2.5 Outputs .. 70

4.3 Software selection ... 70

4.3.1 Requirements ... 70
4.3.2 AnyLogic ... 71
4.3.3 Alternatives ... 71

4.4 Overview ... 73

4.4.1 Model structure ... 73
4.4.2 Verification & Validation .. 74

4.5 Data ... 75
4.6 Geographical modelling .. 76

4.6.1 Application .. 77
4.6.2 Future work ... 78

4.7 Base class .. 78
4.8 Vessel class ... 79
4.9 Propulsion performance module ... 82

4.9.1 Generic propulsion model ... 82

4.9.1.1 Inputs ... 82
4.9.1.2 Processing .. 83
4.9.1.3 Outputs .. 84

4.9.2 Custom aircraft performance model .. 84

4.10 Payload module ... 85

4.10.1 Inputs ... 85
4.10.2 Processing .. 85
4.10.3 Outputs .. 89

4.11 Search-and-rescue module .. 89

4.11.1 Search-and-rescue in reality .. 89
4.11.2 Search .. 91
4.11.3 State Chart ... 92
4.11.4 Incidents .. 94

4.12 Component class ... 95
4.13 Experimentation .. 96

4.13.1 Parameters ... 96
4.13.2 Randomisation ... 97

Contents

vi

4.14 Embedding .. 98

5. Case study – Decision support ... 99

5.1 Background ... 99
5.2 DECODE project .. 100

5.2.1 Research goals... 101
5.2.2 DECODE design suite .. 101
5.2.3 UAS design ... 102

5.2.3.1 Design 1 – DECODE .. 102
5.2.3.2 Design 2 – BBC .. 103
5.2.3.3 Design 3 – SULSA .. 104
5.2.3.4 Design 4 - 3i .. 105

5.3 Scenario ... 106

5.3.1 Baseline scenario... 106
5.3.2 Revised scenario ... 107

5.4 Simulation setup .. 108

5.4.1 Baseline scenario... 108

5.4.1.1 Lifeboat stations .. 108
5.4.1.2 Incidents .. 109
5.4.1.3 Vessels .. 110

5.4.2 Revised UAS scenario .. 111
5.4.3 Value model .. 111

5.4.3.1 Cost model .. 112
5.4.3.2 Benefit model .. 113

5.4.4 UAS landing loss plug-in .. 114

5.5 Results and Analysis ... 115

5.5.1 OSCAR outputs .. 115
5.5.2 Costs .. 122
5.5.3 Benefits ... 123
5.5.4 Values ... 124

5.6 Discussion ... 124

5.6.1 Value-based decision support ... 125
5.6.2 Cost-based decision support .. 127
5.6.3 Qualitative decision support .. 131
5.6.4 Unforeseen insights ... 131

5.6.4.1 Number of launches .. 131
5.6.4.2 Save more – cost more? .. 132

5.7 Summary ... 133

6. Case study – Optimisation ... 135

6.1 Background ... 135
6.2 3i project ... 136
6.3 Scenario ... 137

6.3.1 The Port of Rotterdam ... 137
6.3.2 UAS integration .. 138

6.4 Simulation setup .. 138

Contents

vii

6.4.1 Harbour patrol ... 139
6.4.2 Anchorage monitoring ... 140
6.4.3 Search-and-Rescue .. 141
6.4.4 Mission comparison .. 142

6.5 Initial design – 3i ... 143

6.5.1 Results and analysis .. 143

6.5.1.1 OSCAR outputs ... 143
6.5.1.2 Costs .. 145

6.5.2 Intermediate discussion ... 146

6.5.2.1 Number of launches ... 146
6.5.2.2 Number of losses ... 147

6.6 First design iteration – 3i-a .. 149

6.6.1 Results and analysis .. 150

6.6.1.1 Mission performance comparison ... 150
6.6.1.2 OSCAR outputs ... 151
6.6.1.3 Costs .. 153

6.6.2 Intermediate discussion ... 154

6.7 Second design iteration – 3i-b ... 156

6.7.1 Results and analysis .. 156

6.7.1.1 Mission performance comparison ... 156
6.7.1.2 OSCAR outputs ... 157
6.7.1.3 Costs .. 159

6.8 Discussion ... 161

6.8.1 Cost versus payload performance .. 161
6.8.2 Cost versus lives saved .. 162

6.9 Summary ... 163

7. Conclusion ... 165

7.1 Context .. 165
7.2 Objectives .. 166
7.3 Framework .. 167
7.4 Simulation ... 168
7.5 Limitations .. 170
7.6 Future work ... 171
7.7 Summary ... 173

Appendices ... I

Appendix 1: Segment parameters ..II
Appendix 2: Track parameters .. IV
Appendix 3: Vessel parameters ... VI
Appendix 4: Component parameters .. VIII
Appendix 5: Camera footprint algorithm ... X
Appendix 6: Sample model walkthrough ... XIII
Appendix 7: Database .. XV
Appendix 8: Geographical setup ...XXV
Appendix 9: Custom aircraft performance module ... XXVIII
Appendix 10: Experimental setup .. XXXII
Appendix 11: SULSA power ... XXXVII

Contents

viii

Appendix 12: UAS inputs comparison ... XXXVIII
Appendix 13: Mersey lifeboat performance data .. XLI
Appendix 14 Cost model parameters rationale ..XLII
Appendix 15: Port of Rotterdam offshore map .. XLIV
Appendix 16: Replications setup ... XLV
Appendix 17: 3i component details ... XLVIII

References ... L

List of tables

ix

List of tables

Table 2-1: Modelling steps for OSCAR framework and simulation. .. 20

Table 3-1: required to define an electro-optical sensor active payload item on-board a Vessel.62

Table 4-1: Vessel fuelType and corresponding fuel calorific value. ... 83

Table 6-1: Search-and-rescue mission details ... 141

Table 6-2: Rotterdam harbour missions comparison. ... 142

Table 6-3: UAS design parameters comparison. ... 149

Table 6-4: Mission performance comparison for 3i and 3i-a .. 150

Table 6-5: OSCAR arithmetic mean outputs comparison between 3i and 3i-a......................... 151

Table 6-6: Mission performance indicators for 3i, 3i-a and 3i-b. ... 156

Table 6-7: OSCAR arithmetic mean outputs comparison between 3i, 3i-a and 3i-b 157

Table A-1: Equipment base table format. .. XV

Table A-2: Equipment vessel table format. .. XVI

Table A-3: Equipment component table format. ... XVII

Table A-4: Mission table format. ... XVIII

Table A-5: Track table format. ... XIX

Table A-6: Output Segments table format. .. XIX

Table A-7: Output maintenance operations table format. ... XXII

Table A-8: Additional Vessel parameters ... XXVIII

Table A-9: UAS designs performance and camera comparison. XXXVIII

Table A-10: UAS performance model parameters comparison XXXVIII

Table A-11: UAS component inputs comparison. ... XL

List of figures

x

List of figures

Figure 2-1: conceptual design phase stages ... 12

Figure 2-2: Design phases knowledge, freedom and cost committed .. 13

Figure 2-3: Model classification by fidelity ... 18

Figure 2-4: System modelling options ... 18

Figure 2-5: Model fidelity versus effectiveness ... 19

Figure 2-6: Model building process by Boehm ... 20

Figure 2-7: Model building process by Engler .. 20

Figure 2-8: Simulation methods for time-driven and event-driven models 23

Figure 2-9: Spatial and Geographical models. ... 28

Figure 2-10: Combat aircraft simulation framework ... 34

Figure 3-1: OSCAR framework requirements relationships. ... 38

Figure 3-2: OSCAR framework Point Operation example. ... 44

Figure 3-3: OSCAR framework Path Operation example. .. 45

Figure 3-4: OSCAR framework Area operation example. ... 46

Figure 3-5: OSCAR framework combined Point and Path Operation. .. 47

Figure 3-6: OSCAR Operational Scenario pyramid. ... 48

Figure 3-7: OSCAR Track schematic. ... 48

Figure 3-8: Geographical Information System map versus table. .. 50

Figure 3-9: Geographical importance of fuel ... 51

Figure 3-10: OSCAR vessel turning performance. .. 53

Figure 3-11: OSCAR vertical profile. .. 53

Figure 3-12: OSCAR simulation Vessel categories and types .. 55

Figure 3-13: Energy consumption for various Vessel types .. 57

Figure 4-1: OSCAR simulation structure and workflow. .. 73

Figure 4-2: OSCAR simulation model structure hirarchy. .. 74

Figure 4-3: GISPositionFull application during Vessel operations ... 77

Figure 4-4: Base instance representation ... 79

Figure 4-5: Vessel state chart ... 80

Figure 4-6: Generic propulsion model inputs .. 83

Figure 4-7: New performance modules implementation ... 84

Figure 4-8: Camera footprint overlapping schematic. ... 85

Figure 4-9: Ground Sample Distance (GSD) definition .. 86

Figure 4-10: Camera geometry conventions .. 87

Figure 4-11: Typical search-and-rescue patterns ... 90

List of figures

xi

Figure 4-12: Search-and-rescue incident initial search position. .. 91

Figure 4-13: Expanding square search-and-rescue pattern ... 92

Figure 4-14: Vessel state chart search-and-rescue details ... 93

Figure 4-15: Incident class state chart. .. 94

Figure 4-16: Incident survival probability in cold water over time. .. 94

Figure 4-17: Component state chart. ... 95

Figure 5-1: External text file specifying Vessel parameters. .. 102

Figure 5-2: DECODE UAS showing modular approach .. 103

Figure 5-3: BBC UAS virtual design (A) and assembled aircraft inflight (B) 103

Figure 5-4: SULSA internal structure (A) and the disassembled aircraft 104

Figure 5-5: SULSA power-to-speed relationship. ... 105

Figure 5-6: 3i airplane overview ... 105

Figure 5-7: South coast of the UK indicating RNLI lifeboat stations 106

Figure 5-8: Baseline scenario overview .. 108

Figure 5-9: Average number of incidents for lifeboat stations. ... 109

Figure 5-10: Incident survival probability based on water immersion time. 110

Figure 5-11: Cost model overview .. 112

Figure 5-12: Benefits model overview .. 113

Figure 5-13: Landing loss probability based on landing kinetic energy for UAS. 115

Figure 5-14: Average incident waiting time (a) and the number of saved lives (b) 116

Figure 5-15: Lifeboat utilisation (a) and fuel used by lifeboats (b) .. 116

Figure 5-16: UAS fuel burned (a) and UAS energy used (b) .. 117

Figure 5-17: UAS flight time (a) and number of UAS launches (b) ... 118

Figure 5-18: UAS refuelling count .. 119

Figure 5-19: UAS inflight losses (a) and UAS landing losses (b) .. 120

Figure 5-20: UAS maintenance operations outputs .. 120

Figure 5-21: UAS camera outputs ... 121

Figure 5-22: Total cost distributions boxplots .. 122

Figure 5-23: Absolute cots histogram ... 122

Figure 5-24: Benefits relative to baseline case. ... 123

Figure 5-25: Total value over baseline case .. 124

Figure 5-26: Saved lives over baseline histogram (A) and UAS costs (B) 125

Figure 5-27: BBC and 3i fixed and operational costs. .. 126

Figure 5-28: BBC and 3i landing and inflight losses .. 126

Figure 5-29: Average inflight losses for BBC and 3i, ... 127

Figure 5-30: Absolute cost distribution. .. 128

Figure 5-31: Absolute lifeboat costs (A) and Absolute UAS costs (B) 128

List of figures

xii

Figure 5-32: Absolute UAS costs histograms. ... 129

Figure 5-33: UAS cost sensitivities for BBC (A) and 3i (B) ... 130

Figure 5-34: Cost parameter sensitivity analysis against baseline total cost. 130

Figure 6-1: Rotterdam inshore harbour area. ... 137

Figure 6-2: Rotterdam harbour patrol mission map ... 139

Figure 6-3: Anchorage missions overview map... 140

Figure 6-4: Search-and-rescue mission overview map. ... 141

Figure 6-5: OSCAR flight performance outputs .. 143

Figure 6-6: UAS losses .. 144

Figure 6-7: Search-and-rescue incident metrics ... 144

Figure 6-8: Camera performance outputs .. 145

Figure 6-9: Cost breakdown for 3i. .. 146

Figure 6-10: Average number of inflight losses for components. ... 148

Figure 6-11: Component failure comparison between 3i and 3i-a ... 152

Figure 6-12: Cost breakdown for 3i-a. ... 154

Figure 6-13: Relation between the number of total losses ... 158

Figure 6-14: Cost distribution and break down for 3i-b. ... 159

Figure 6-15: Arithmetic mean cost breakdown for 3i, 3i-a and 3i-b.. 160

Figure 6-16: Total cost versus acquired data relative to baseline design 162

Figure 6-17: Total cost versus saved lives relative to baseline design 3i 162

Figure A-1: Airborne Vessel camera footprint definition ... X

Figure A-2: Camera footprint definition ... XI

Figure A-3: Distance to horizon schematic. ... XII

Figure A-4: Simple Geographical Information System map .. XIII

Figure A-5: Sample track table inputs. ... XIII

Figure A-6: Database output view for UAS energy used .. XXIV

Figure A-7: Geographical Information System folder structure ... XXV

Figure A-8: Basemap shapefile
1
 used within OSCAR simulation ... XXVI

Figure A-9: Interactive single run experiment Mission selection. XXXII

Figure A-10: Interactive single run experiment Track Selection. XXXIII

Figure A-11: Interactive single run experiment Segment selection. XXXIV

Figure A-12: Interactive single run experiment: enter and save new values. XXXIV

Figure A-13: Interactive single run experiment Vessel setup. ... XXXV

Figure A-14: Interactive single run experiment Base setup. .. XXXV

Figure A-15: RunFast experiment marks all output data with column "iteration". XXXVI

Figure A-16: Percentage deviation from cumulative mean for maintenance time. XLVI

Figure A-17: Confidence interval for maintenance time. .. XLVI

List of figures

xiii

Figure A-18: Confidence interval for UAS fuel used. .. XLVII

Author publications

xiv

Author publications

In the course of developing this thesis, several publications were authored or co-authored. All

material in this thesis is believed to be novel unless cited otherwise.

Journal papers:

 Schumann, B., Scanlan, J., Fangohr, H. & Ferraro, M., 2014. Better Design Decisions

through Operational Modeling during the Early Design Phases. Journal of Aerospace

Information Systems, AIAA (accepted for publication).

 Gorissen, D., Quaranta, E., Ferraro, M., Schumann, B., van Schaik, J., Keane, A.J. &

Scanlan, J., 2014. A Value Based Decision Environment: Vision and Application.

Journal of Aircraft, AIAA (accepted for publication).

 Surendra, A., Ferraro, M., Schumann, B., van Schaik, J., Daniels, J.J., Gorissen, D.,

Scanlan, J. & Keane, A.J., 2012. The Challenges of Using Value-Driven Design for

Practical Design of UAS. Journal of Aerospace Operations, 1(1), pp.377-386.

Conference Papers:

 Schumann, B., Scanlan, J. & Fangohr, H., 2012. Complex Agent Interactions in

Operational Simulations for Aerospace Design. In C. Laroque et al., eds. Proceedings

of the 2012 Winter Simulation Conference. Berlin, Germany: IEEE, pp. 2986–2997.

 Schumann, B., Scanlan, J., Fangohr, H. & Ferraro, M., 2012. A Generic Unifying

Ontology for Civil Unmanned Aerial Vehicle Missions. In Aviation Technology,

Integration, and Operations (ATIO) Conferences. Indianapolis, USA: AIAA.

 Ferraro, M., Gorissen, D., Scanlan, J., Keane, A.J., Quaranta, E., Schumann, B., van

Schaik, J., & Bolinches, M., 2012. Toward Value-Driven Design of a Small, Low-

Cost UAS. In 53rd AIAA/ASME/ASCE/AHS/AS Structures, Structural Dynamics and

Materials Conference. Honolulu, Hawaii: AIAA.

 Schumann, B., Scanlan, J. & Takeda, K., 2011. A Generic Operational Simulation for

Early Design Civil Unmanned Aerial Vehicles. In SIMUL2011: The Third

International Conference on Advances in System Simulation. Barcelona, Spain:

IARIA.

 Schumann, B., Scanlan, J. & Takeda, K., 2011. Evaluating Design Decisions in Real-

Time Using Operations Modelling. In R. Curran & S. C. Santema, eds. Air Transport

and Operations Symposium 2011 (ATOS). Delft, the Netherlands: Delft University of

Technology.

Declaration of authorship

xv

Declaration of authorship

I, Benjamin Schumann

declare that the thesis entitled

AERONAUTICAL LIFE-CYCLE MISSION MODELLING FRAMEWORK FOR CON-

CEPTUAL DESIGN

and the work presented in the thesis are both my own, and have been generated by me as the

result of my own original research. I confirm that:

 this work was done wholly while in candidature for a research degree at this University;

 where any part of this thesis has previously been submitted for a degree or any other quali-

fication at this University or any other institution, this has been clearly stated;

 where I have consulted the published work of others, this is always clearly attributed;

 where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work;

 I have acknowledged all main sources of help;

 where the thesis is based on work done by myself jointly with others, I have made clear ex-

actly what was done by others and what I have contributed myself;

 none of this work has been published before submission.

Signed: ………………………………………………………………………..

Date:…………………………………………………………………………….

Acknowledgements

xvi

Acknowledgements

Many people have shaped and steered the work that culminated in this thesis. Foremost, I

want to thank my supervisors for their continuous support: Prof. Jim Scanlan for fostering free-

dom while keeping me focussed; Prof. Hans Fangohr for giving very constructive feedback and

a different perspective; and Dr. Kenji Takeda for his hands-on positive approach at the start of

this journey. Not least, all three fully supported my time off-campus.

Next, I am indebted to my examiners Prof. Mark Price and Prof. Joerg Fliege for spending

much time studying and reflecting on this work.

Moreover, I want to thank the team of my doctoral training centre, the ―Institute for Complex

Systems Simulation‖ at the University of Southampton: Prof. Seth Bullock and Dr. Jason Noble

for outstanding lectures as well as friendly and approachable feedback; and Nicki Lewin for

keeping the group together and supporting administrative worries splendidly. Thank you for a

very special and social PhD experience.

The case studies of this thesis build on meetings and expert knowledge from several institu-

tions. I want to thank: Richard Norris and the team of the Lee-on-Solent Maritime Coastguard

Agency helicopter base for an insightful tour; Simon Hiscock and the team of Folkestone police

for sharing their knowledge on Channel police missions; Reinout Gunst from the Port of Rotter-

dam authority on discussing UAS missions in the harbour area; and the team of the RNLI

Calshot lifeboat station for providing operational insights.

My loving and supportive family blessed my time as a research student as well. Foremost my

wife Anne, who showed constant interest in my work, provided a healthy portion of criticism

and kept me focussed. My daughter Teresa, whose laughter made long simulation runs joyful.

My parents with their love and interest for my work. And my brother providing final feedback

from the other half of the globe.

I want to thank the students I met in my doctoral training centre cohort for interesting discus-

sions and insights into other research areas. Not least, I am grateful for the conference experi-

ences with inspiring talks and friendly chats.

Finally yet importantly, I thank the EPSRC for generously funding my work through the

Doctoral Training Center grant EP/G03690X/1.

Conventions

xvii

Conventions

Several typesets are used throughout this thesis to indicate specific meaning as follows:

 Code: specific computer code used verbatim in the OSCAR

simulation code or in the SQLite database code.

 CLASS: USED TO DENOTE PREVIOUSLY DEFINED JAVA CLASSES AND OBJECT TYPES.

 Parameter: used to mark parameters, variables and database col-

umn names previously defined.

 Definition: used to define terms and concepts.

Abbreviations & Symbols

xviii

Abbreviations

Symbol Description

3i Integrated Coastal Zone Management via Increased Situational Awareness

through Innovations on Unmanned Aircraft Systems

6DoF Six degrees of freedom

ATM Air Traffic Management

CAD Computer-Aided Design

CFD Computational Fluid Dynamics

CoG Centre of Gravity

COTS Commercial Off The Shelf

DECODE Decision Environment for COmplex Design Evaluation

DOC Direct Operating Cost

ESRI Environmental Systems Research Institute, Inc. (www.esri.com)

FEA Finite Element Analysis

FMEA Failure Modes and Effects Analysis

GB Gigabyte

GIS Geographical Information System

GMT Greenwich Mean Time

GSD Ground Sample Distance

GUI Graphical User Interface

ICAO International Civil Aviation Organisation

IMO International Maritime Organisation

IPT Integrated Product Team

IQR Inter-Quartile Range

MCA Maritime and Coastguard Agency

OSCAR Operational Simulation for Conceptual Aeronautical designeRs

PRA Port of Rotterdam Authority

RNLI Royal National Lifeboat Institution

rpm rounds per minute

SESAR Single European Sky ATM Research

TRL Technology Readiness Level

UAS Unmanned Aerial System(s)

USCG United States Coast Guard

VOM Value Operations Methodology

VTOL Vertical Take-Off and Landing

http://www.esri.com/

Abbreviations & Symbols

xix

List of symbols

Symbol meaning Units

c coefficient

C cost $

d data bytes

D drag N

d total number of cycles for a target

g standard gravity ⁄

h height m

l camera footprint length m

m mass kg

N number of cycles across a target

n number of replications

o distance m

p pixel pixel

P power W

r range m

R slant range m

S wing area

T Student’s T distribution sample

t time s

V velocity ⁄

W weight kg

w width m

 field of view radians

 propeller efficiency

μ Mean

σ standard deviation

 confidence interval

 significance level

 weibull distribution beta parameter

 detection criteria

 fuel consumption ⁄

 propeller rounds per minute

 density ⁄

 target

 number of bytes per pixel ⁄

 quantity

 specific fuel consumption ⁄

Abbreviations & Symbols

xx

List of subscripts

Subscript meaning

a acquired

avg average

D drag

d drag

dry dry

H height

 h horizontal

inst installed

L lift

M Maintenance

max maximum

Mh maintenance hour

Mo maintenance operation

prop propeller

req required

v Vertical

W width

Chapter 1: Introduction

1

1 . I N T R O D U C T I O N

1.1 Motivation

1.1.1 Contemporary aeronautical design

Design of large aeronautical systems consists of trade-offs based on iterative decision-making

(Ashok 2013). Most decisions are not straightforward but a trade-off between two or more pa-

rameters. These trade-offs are often non-linear, overlap each other and span multiple dimensions

as well as scales. Essentially, a small change at one end of the design space can have large con-

sequences for remote aspects of design: This makes aeronautical design a complex undertaking

(Alonso et al. 2009; Kroo et al. 1994). Arguably, design complexity grows at a faster pace than

the design methods and tools available (Gorissen, Quaranta, Ferraro, Schumann, Schaik, Keane,

et al. 2014; Raj 1998). Moreover, ever-growing design complexity exacerbates cost overruns,

delivery delays and quality defects (Collopy & Hollingsworth 2009). According to Collopy

(2012), ―cost overruns are an emergent property of aerospace development programs‖ inherent-

ly rooted in contemporary design methods and tools. With current methods, it is a big challenge

to predict the impact of design decisions upon any other part of the design or any aspect of the

design operation during its life cycle (Curran et al. 2005; Price et al. 2012). Essentially, engi-

neers need to be able to compare two or more designs at multiple levels of abstraction and ob-

tain decision support as to which option is ―better‖. However, it is difficult to define formally

what ―better‖ means. Value-driven design is a methodology aiming to overcome this difficulty.

Chapter 1: Introduction

2

1.1.2 Value-driven design

Value-driven design is a framework that aims to improve existing Systems Engineering de-

sign processes for large systems. It shifts the design focus from sub-system design optimisation

to system level performance (Collopy & Hollingsworth 2011). The latter is quantified by means

of a ―value‖, often defined in monetary terms as the ratio of benefit over cost. This value can be

used to compare designs quantitatively as it provides a measure of ―design goodness‖ (Cheung

et al. 2010). Generating a value requires a holistic perspective of the entire product life cycle

including design, production, operations and disposal. Thus, value calculation bases upon a

number of models that contribute specific information such as development cost, manufacturing

cost or product revenues. A critical component of value-driven design analysis is a model of the

product life cycle missions and operations in order to quantify its performance capability

(Collopy 2008).

1.1.3 Conceptual design mission modelling

Mission modelling within value-driven design should be used whenever trade-off decisions

are being made. Many scientists and engineers agree that the most influential trade-off decisions

occur during the very early conceptual design phase because total unit cost strongly depends on

such early decisions (Castagne et al. 2009; Cheung et al. 2009; Pidd 1992). Moreover, up to

80% of the total life cycle cost is fixed during the conceptual design phase (Curran et al. 2004;

Raj 1998; Saravi et al. 2013; Thokala 2009; Will 1991). However, Jinks (2012) disputes the

empirical evidence. Nonetheless, mission modelling within value-driven design should be ap-

plied from this earliest design stage onwards. This thesis will introduce a mission model for the

earliest stage of design, namely the conceptual design phase.

1.1.4 Explicit mission modelling

A missions and operations model allows quantifying design performance with high fidelity,

supporting detailed cost and benefit calculation. However, the fidelity of existing conceptual

design phase mission models is low: Typically, it is limited to simulating the performance of

one vessel conducting a ―typical‖ mission profile made up of parameterised flight segments

(take-off, cruise, land, etc.). Quasi-analytical methods based on simple flight physics compute

fuel burn for each segment (Torenbeek 2013). Next, designers extrapolate outcomes over the

expected vessel life cycle. This approach neglects several important factors:

 Life-cycle variations: A design often conducts different mission types throughout its

life cycle. A civil aircraft might become a cargo plane later in life.

Chapter 1: Introduction

3

 Spatial mission details: It is critical to analyse where a design faces operational prob-

lems. Does an engine fail near an airport or over the ocean? Do fuel capacity prob-

lems occur near an emergency airport?

 Fleet behaviour: A fleet of products behaves differently to a single product instance.

Broken aircrafts can be replaced, several aircrafts can work together to accomplish a

goal, etc.

 Life-cycle impact: Current mission extrapolation trivialises the impact of design

changes upon the life cycle.

A mission model that overcomes these deficiencies is called an ―explicit‖ mission model

hereafter:

Explicit mission model: Defines any operation, life-cycle variation

and spatial as well as fleet detail in a specific and unambiguous

way.

Explicit mission modelling takes into account additional information about the design and its

operations. This enables estimating the effect of design changes upon the entire life cycle of the

product. Moreover, quantifying product value becomes more precise compared to existing mis-

sion models. This helps design optimisation and requirements definition during the conceptual

design phase. However, implementing an explicit mission-modelling framework causes an ini-

tial overhead that must be taken into account.

1.2 Research question

The previous motivation leads to the thesis hypothesis stating that:

H
1

: Explicit mission modelling during aeronautical conceptual de-

sign supports decision-making, trade-off analysis and optimisation

for value-driven design.

More practically, the research question asks:

Is it possible to create an explicit, generic life-cycle mission-

modelling framework for aeronautical vessels that supports deci-

Chapter 1: Introduction

4

sion-making, trade-off analysis and optimisation for value-driven

design?

1.3 Objectives & methodology

This thesis aims to answer the research question and confirm or reject the hypothesis. This

includes showing that explicit mission modelling can benefit conceptual design phase decision-

making and optimisation by processing additional operational intelligence. For this, a mission-

modelling framework is presented. It is as generic as possible to cover a wide range of vessels

and operational scenarios. Vessels include any moving object whose prevalent mission trajecto-

ries are parallel to the earth surface. Operations include any mission that can be modelled from a

combination of points and paths. In order to be useful beyond theory, the thesis introduces a

practical implementation to examine the research question and hypothesis quantitatively. This

implementation is an agent-based simulation model. It incorporates a Geographical Information

System to model the spatial components of the framework. Acknowledging time and resource

constraints of the aeronautical conceptual design phase, both the framework and simulation will

be as simple as possible while being able to answer the research question. Two case studies ap-

ply the simulation model in different settings to demonstrate the capability for decision support

and optimisation, respectively. The following methodology applies:

(1) Develop a generic conceptual design phase mission-modelling framework (Chapter 3)

(2) Develop a practical implementation incorporating the framework features (Chapter 4)

(3) Use the practical implementation in two case studies based on existing research projects

a. Case study – Decision support (Chapter 5)

i. Demonstrate simulation of four different aircraft designs

ii. Demonstrate framework generic vessel capability beyond aeronautical

vessels by implementing boats into the operational scenario

iii. Demonstrate decision support capability by comparing aircraft designs

and providing a value for each

iv. Compare impact upon entire life cycle for different designs

b. Case study – Optimisation (Chapter 6)

i. Demonstrate conceptual design optimisation and requirement refine-

ment support

ii. Initial aircraft design performs with specific value

iii. Manual aircraft parameter variation leads to life-cycle impact and value

decrease

Chapter 1: Introduction

5

iv. Manual mission parameter variation leads to overall value increase

demonstrating optimisation capability

(4) Discuss and conclude (Chapter 7)

a. Framework and simulation issues

b. Limitations

c. Applicability for aeronautical design

1.4 Contribution to knowledge

This thesis contributes to scientific knowledge in three ways:

1. It develops an explicit conceptual design phase mission-based life cycle framework

that employs agent-based modelling to allow aircraft and component failure in the

design loop. This departs from current fault-free single-flight mission modelling.

2. It applies 3D spatial coordinates within a Geographical Information System, moving

away from existing distance-based mission profiles.

3. The framework is generic, thus enabling modelling of vessels and scenarios for non-

aeronautical and aeronautical applications alike.

1.5 Thesis outline

The acronym OSCAR (Operational Simulation for Conceptual Aeronautical designeRs) ap-

plies throughout this thesis to refer to the ―OSCAR framework‖ and the ―OSCAR simulation‖.

The rest of this thesis consists of six chapters:

The Literature review in Chapter 2 presents and discusses the current knowledge for the main

themes mentioned above. It describes the common aeronautical design phases focussing on the

conceptual design phase and its specific challenges. This is followed by a more detailed discus-

sion of value-driven design. Moreover, it discusses the concept of modelling in more detail, dis-

tinguishing between conceptual and mathematical modelling. Next, details on simulation mod-

elling include the state of the art in agent-based simulation and spatial Geographical Information

System simulation. Last, current methods and tools in aeronautical conceptual design mission

modelling are discussed. This includes industrial tools as well as recent scientific research ap-

plications.

Chapter 3 (―Framework―) details the mission modelling OSCAR framework. First, it derives

the four main framework requirements from the literature review, namely genericity, compre-

hensibility, realism and modularity. Next, the OSCAR framework is divided into scenario-

related content and vessel-related content. First, the chapter presents the scenario-related scope

Chapter 1: Introduction

6

of application and classifies aeronautical operations into three categories. Next, operations are

partitioned into modular building blocks called ―Segments‖, ―Tracks‖ and ―Missions‖. These

are embedded into the spatially explicit Geographical Information System setup unique to this

framework. The vessel-related content is presented next: as before, the chapter defines the scope

of application and classifies vessels generically. A set of parameters defines each vessel unique-

ly. Moreover, generic propulsion, fatigue and payload add-ins are described.

Chapter 4 (―Simulation‖) describes the OSCAR simulation. After justifying the application of

simulation for this model, a functional specification details the objectives and requirements for

the OSCAR simulation. After discussing software selection, a brief model overview and model

walkthrough introduce the simulation. Subsequently, the chapter describes specific aspects of

the simulation model such as data architecture and Geographical Information System support.

Moreover, it depicts the classes and modules developed for the simulation. Finally, details are

provided on the OSCAR simulation experimentation, including information on how to embed

the simulation into contemporary conceptual design phase processes.

Chapter 5 (―Case study – Decision support‖) details the first case study conducted to present

the conceptual design phase decision support capabilities of the OSCAR framework and simula-

tion. The goal is to quantify the impact of different designs upon an entire life cycle. It describes

work conducted as part of a research project where the simulation was used to design, build and

fly several UAS (Unmanned Aerial Systems). For this, a fictitious but realistic scenario employs

UAS for search-and-rescue operations. The chapter provides an account of the scenario and

simulation setup and describes a purpose-build value model. Results compare the UAS quantita-

tively and comment on UAS selection. Three types of decision support provided by the OSCAR

simulation are discussed, namely value-based, cost-based and qualitative decision support.

Chapter 6 (―Case study – Optimisation‖) describes the second case study detailing how the

OSCAR simulation could be used for conceptual design phase optimisation and requirements

refinement. It describes work conducted as part of another research project where several coun-

tries collaborate to design a UAS platform for English Channel applications. The structure is

similar to the previous case study with a description of a fictitious but realistic scenario in the

port of Rotterdam followed by the specific simulation setup. The initial design is simulated,

analysing operational as well as performance shortcomings. A first design iteration aims to rem-

edy the shortcomings through manual aircraft parameter changes. This increases problems fur-

ther due to the mission-specific setup. A second design iteration takes advantage of the more

explicit mission modelling and changes mission parameters to improve the situation. Last, all

three designs are compared.

Chapter 7 (―Conclusion‖) concludes the thesis and details problems faced during the OSCAR

framework and simulation development. It lists the inherent limitations that users must be aware

Chapter 1: Introduction

7

of. Moreover, it provides recommendations for industrial adoption and future work. Last, it

comments on the research question and hypothesis answers obtained.

Chapter 2: Literature review

9

2 . L I T E R AT U R E

R E V I E W

This chapter discusses recent developments in related research areas and details how the

work of this thesis advances existing knowledge. Section 2.1 describes current aeronautical de-

sign processes and methodologies. It details each design phase and focuses on conceptual de-

sign phase challenges. Section 2.2 presents value-driven design and how mission modelling is

critical for this design paradigm. Section 2.3 explains the term modelling and presents concep-

tual and mathematical modelling in more detail. Next, Section 2.4 introduces simulation model-

ling discussing its advantages and disadvantages. Moreover, it focuses on agent-based simula-

tion and spatially explicit simulation in more detail. Last, Section 2.5 reviews the current prac-

tice of mission simulation in conceptual aeronautical design, presenting a number of relevant

commercial tools and research initiatives.

2.1 Aeronautical design

Design of artefacts greatly contributes to the artefact final form, cost and reliability. Often,

design is referred to as ―an art to be learned from experience as opposed to science that can be

taught‖ (Will 1991). However, design of aeronautical systems differs because it includes ―sci-

ence that can be taught‖. Ideally, this science comprises information and data analysis leading to

rational design decisions. In fact, Raj (1998) defines aeronautical design as an ―iterative deci-

sion-making activity‖. Price et al. (2006) note that decisions base upon different analysis meth-

ods:

Chapter 2: Literature review

10

“The current approach to aircraft (or any) design can be summa-

rised as being based on conventional configurations using empiri-

cal methods at the highest level, supplemented by sophisticated

multi-disciplinary simulations at more detailed levels.”

Consequently, in his book on aircraft design Corke (2003) states that the goal of aircraft de-

sign decision-making is to balance the majority of performance-related design aspects while

optimising only a few. Curran et al. (2004) observe a gap between high level empirical design

and detailed modelling:

“Aircraft engineering is not yet integrated as inter-linkage be-

tween key variables and parameters has not yet been built into a

structured modelling environment”.

The proportion of empirical and analytical modelling varies during the different design phas-

es. Despite numerous schematic representations, the literature generally differentiates between

four design phases, namely requirements collection, conceptual design, preliminary design and

detailed design (Al-Salka 2001; Bond & Ricci 1992; Price et al. 2006; Tam 2004).

Progressing through the design phases, the number of design options decreases while the

number of fixed variables and the number of design parameters increases (Park & Seo 2004).

Moreover, the level of design detail and confidence grows (Torenbeek 2013). Below, an account

of each design phase follows, emphasising conceptual design phase challenges.

2.1.1 Requirements & specification

Once manufacturers see the need for a new product, they will initiate product requirements

capture. Torenbeek (1982) provides a number of reasons for manufacturers to endeavour a new

product design. During the initial requirements collection phase, potential customers and manu-

facturers discuss and define the new product requirements and specifications in detail. Require-

ments are usually exact numerics based on a specific mission profile (Quinn et al. 2012). Precise

and unambiguous requirements are critical to product success (Will 1991). However, the pro-

cess of obtaining such requirements is difficult. After critically assessing the requirements, they

are often decomposed and structured using a morphological matrix or similar methods (Twiss

1992). QFD was proposed to introduce quantifiable metrics into (often subjective and fuzzy)

requirement discussions (Chan & Wu 2002). By applying matrix ranking methods, specifica-

tions become more rigorous (Hauser & Clausing 1988). The result is a ranked list of design re-

quirements and their relative importance. QFD has several shortcomings: It cannot recognise

Chapter 2: Literature review

11

and display conflicting customer requirements (Scanlan 2007). Moreover, requirements remain

uncertain aspirations due to imperfect understanding of the product missions, life cycle and op-

erating environment at the time of requirements capture (Thokala 2009).

Customers usually provide the majority of requirements (Nilubol 2005). With regards to mis-

sion modelling, requirements include a typical mission (or a set of missions) specified by speed,

distance and payload for different mission segments like take-off, cruise, etc. (Bond & Ricci

1992). Moreover, specification includes required ranges, landing distances, manoeuvrability

metrics, weights, reliability figures and target DOC (Direct Operating Cost).

Collopy (2007) argues that requirements such as weight, costs, reliability and maintainability

should be excluded from requirements collection. The reason is that these requirements are a

function of sub-system requirements (―extensive attributes‖). This causes design teams to de-

sign towards the sub-system requirement instead of optimising their sub-system for the entire

system. Cost overrun is the inevitable consequence. Instead, objective functions for extensive

attributes should apply as is done within value-driven design. Mavris and Kirby (1999) provide

another argument against direct extensive attribute specification: Many extensive attributes are

difficult to quantify. During the conceptual design phase, explicit mission modelling helps refin-

ing requirements (as demonstrated in the case study in Chapter 6).

2.1.2 Conceptual design phase

2.1.2.1 Overview

The purpose of the conceptual design phase is to obtain a product design that fulfils the func-

tional requirements and the expected missions (Anemaat et al. 2013; Romli 2013). According to

Raymer (2006), the conceptual design phase objective is ―the development of layouts and as-

sessments of distinct design alternatives addressing a common set of requirements‖. The length

of this phase varies. Mid-size commercial airliner design takes between nine and twelve months

while business jet design can be as short as four months (Torenbeek 2013). In fact, Engler

(2013) describes the example of the US Army design request for a joint light tactical vehicle: It

assigned thirty-three business days to create concept designs.

Engineers usually conduct conceptual design in stages. Saravi et al. (2013) define seven

steps, namely (1) customer need clarification, (2) target specification, (3) product concept gen-

eration, (4) product concept selection, (5) product concept testing, (6) final specifications and

(7) downstream specifications planning. The first step overlaps with the requirements phase and

re-emphasizes the importance of good requirements capture. Mavris and Kirby (1999) specifi-

cally call step (5) the ―Modelling and Simulation‖ stage, highlighting the importance of compu-

tational tools for conceptual design. In order to simplify the process further, Jameson (1999)

Chapter 2: Literature review

12

lists only three conceptual design phase steps, emphasizing the importance of mission definition

(Figure 2-1).

FIGURE 2-1: CONCEPTUAL DESIGN PHASE STAGES. REPRODUCED BY JAMESON (1999).

In practise, designers follow these stages iteratively. Often, several candidates are developed,

taking into account that many combinations of sub-systems exist that can satisfy the require-

ments (Mavris & Kirby 1999; Thokala 2009).

Until the 1980s, engineers conducted conceptual design using legacy data, handbooks, manu-

als and their experience. There was a lack of purpose-built evaluation tools for fast decision

support (Delaurentis et al. 1996; Will 1991). The growth of computational power enabled using

simple first order tools and custom spreadsheets. Today, the conceptual design phase is very

software intensive as concept models and designs are generally not assembled physically (Glas

2013). A large number of low fidelity computer models is used at the same time, mostly based

on empirical legacy data (Nunez & Guenov 2013). Ideally, conceptual design phase tools are

highly flexible and fast, accommodating a high degree of uncertainty (Engler 2013). However,

in reality engineers often create custom, stationary spread sheets that are hard to validate, inte-

grate and manage (Steinkeller 2011). Alternatively, engineers employ COTS (Commercial of

the Shelf) tools such as PACE or Piano for conceptual aircraft design, including mission model-

ling (see Section 2.5).

The output of the conceptual design phase is the design candidate that best meets the re-

quirements. To find the best candidate, each design is compared against the initial requirements

(Quinn et al. 2012). The candidate definition indicates the position of the major components

such as wings, engines, undercarriage and doors. Moreover, information exists about expected

weight, flight performance, reliability targets and DOC estimates for subsequent analysis

(Fielding 1999). Some of this information bases upon conceptual mission modelling.

Chapter 2: Literature review

13

2.1.2.2 Information challenge

Mavris et al. (1998) describe a ―design paradox‖: During conceptual design, there is little in-

formation (or ―knowledge‖) alongside much design freedom but progressing with design, both

characteristics reverse as in Figure 2-2.

FIGURE 2-2: DESIGN PHASES KNOWLEDGE, FREEDOM AND COST COMMITTED. REPRODUCED

WITH PERMISSION FROM MAVRIS ET AL. (1998)

It can be seen that the goal of design method research is to ease this design paradox by pro-

cessing more information (i.e. ―knowledge‖) earlier and increasing design freedom throughout

all design stages. To achieve this, design decisions and trade-off requires the right information

at the right time (Raj 1998). However, Park and Seo (2004) state that the lack of detailed infor-

mation during conceptual design is a barrier to rational decision-making. Due to the ―incom-

plete knowledge about the operational environment‖ (Bandte 2000) and large uncertainties

about requirements and product performance, designers are forced to select concepts based on

estimates. Therefore, overcoming the lack of detailed information (or ―knowledge‖ as in Figure

2-2) during conceptual design is a key theme in conceptual design research (Abbas-Bayoumi &

Becker 2011; Ashok 2013; Kirby 2001; Mavris & Kirby 1999). In fact, there are more reasons

for this development.

In the civil aircraft market, engine and aircraft manufacturers lease a growing portion of their

production to reduce customer risk (Scanlan 2004; Collins 2012). Since many lease contracts

are signed very early in the design process, manufacturers must understand life-cycle behaviour

and risks as early as possible (Scanlan & Rao 2006). Military manufacturers face a different

Chapter 2: Literature review

14

challenge but with the same outcome: As budgets shrink while product requirements focus on

increased versatility, understanding the product as early as possible is paramount (Nilubol

2005). Thokala (2009) advocates information shift towards the early design phases in order to

replace existing early parametric cost models with more detailed ―generative‖ models. Bandte

(2000) suggests to limit communication during conceptual design to quantitative issues using

models only. In general, there is a hope to achieve decisions that are more rational during con-

ceptual design by employing information and data that is more detailed (Kirby 2001). Not least,

Cassidy (2008) argues that ever-growing computational power enables application of more de-

tailed methods earlier in the design process.

In order to increase information about the design during the conceptual design phase, meth-

ods and tools must adapt. Taguchi (1986) stresses that design improves not through additional

quality checks and rework but through improved processes. Instead of focussing on problem

solving, design should be pro-active by applying better modelling and simulation tools. Current

conceptual design phase models generally focus on performance analysis, neglecting operation-

al life-cycle aspects (Keane & Nair 2005). One of the proposed methods to increase use of mod-

elling and simulation is Integrated Product and Process Development (Ashok 2013). Here, inte-

grated product teams focus their multi-disciplinary effort using digital product models and inte-

grated design tools. By combining concurrent engineering and simulation, manufacturing and

operational issues are considered much earlier in the design process (Peters 1995; Ranky 1994).

More generally, Kirby (2001) reasons that new modelling and simulation platforms are impera-

tive due to the growing number of design criteria ruling out purely performance-based design.

Steinkeller (2011) argues that increasing design knowledge early in the design process requires

new conceptual design phase tools with higher fidelities. Price et al. (2006) note a lack of suita-

ble computer models that integrate well into existing Systems Engineering design environments:

Existing models would not consider all sub-systems, their interactions and environmental influ-

ences, thereby neglecting possible emerging behaviour.

This thesis presents a novel way of processing detailed design information for conceptual

mission modelling by employing an agent-based model within a geographical environment.

This increases knowledge on operational life cycle performance beyond current mission model

outputs because sub-systems, interactions and environmental effects are considered concurrent-

ly. Thereby, more rational design decisions and trade-offs become possible.

Chapter 2: Literature review

15

2.1.3 Preliminary design phase

Emphasizing the importance of the conceptual design phase, Raymer (2006) refers to the ear-

ly preliminary design phase as the point where ―all big questions are answered already‖. Taking

the conceptual design, each sub-system is now re-considered in more detail using specialist ―In-

tegrated Product Teams‖ (IPT) that encompass several disciplines (Collopy & Poleacovschi

2012). Work force increases along with the number of design parameters. Additional low-

fidelity models are used alongside more sophisticated analysis tools. They assess initial esti-

mates on aerodynamics and structures such as flutter, aeroelasticity or engine-wing interactions.

Computational requirements on these analysis codes are very high, limiting the number of pos-

sible design variations that can be assessed (Keane & Nair 2005).

During the preliminary design phase, engineers also start to consider manufacturing issues.

Towards the end, the design is frozen with a complete geometric definition. Often, lack of in-

formation, time or analysis capability forces a design freeze despite known defects in order to

proceed to the detailed design phase (Keane & Nair 2005). The output of the preliminary design

phase includes the system configuration with detailed sub-system specifications such as

weights, maintenance elements and software requirements.

2.1.4 Detailed design phase

During the detailed design phase new teams form along part definitions (Price et al. 2006).

Each part is specified in detail at a fidelity high enough to enable manufacturing (Nilubol 2005).

Computational models are used extensively at high fidelity to test performance, operation and

maintainability. Despite the extensive use of computational tools, they have a limited influence

upon the design as most features are fixed by now (Keane & Nair 2005). Physical mock-ups and

part models are assembled support testing and certification. Mission simulation is conducted at

much higher level of fidelity because there is less uncertainty with regards to performance and

reliability (Fielding 1999). At the end of the detailed design phase, manufacturing documents

and part definitions are released for production (Sadraey 2012).

2.2 Value-driven design

Large engineering systems comprise several layers of sub- systems and thousands of parts

(Quinn et al. 2012). During design of such systems, the system-level design intent can become

diluted through Systems Engineering requirements flow down, a process whereby system-level

requirements are broken into sub-system and component requirements (Collopy 2007; Forsberg

& Mooz 1999). Component design teams focus on local optima instead of system capability

Chapter 2: Literature review

16

(Bandte 2000; Bertoni et al. 2013). Moreover, the Systems Engineering community advocates

fixed design requirements. However, Collopy (2007) shows that design for fixed weight, cost,

fuel burn, reliability, etc. leads to cost overruns. Value-driven design was conceived in order to

focus design intent on system-level requirements and specifications throughout the design pro-

cess. Moreover, it aims to relax fixed design requirements and employ economic principles for

design optimisation instead. A common definition is:

Value-driven design is an improved design process that uses re-

quirements flexibility, formal optimisation and a mathematical

value model to balance performance, cost, schedule, and other

measures important to the stakeholders to produce the best possi-

ble outcome
1

.

Curran (2010) adds that value-driven design employs a ―value function that best describes the

value added of a product […]‖. The goal is to re-focus design efforts on system performance,

neglecting ―fast and cheap‖ sub-system optimisation which degrades overall system quality

(Curran et al. 2012). By employing a single measure of overall system ―fulfilment‖, i.e. a value,

system-wide optimisation can be applied (Bertoni et al. 2013). This system view takes into ac-

count traditional performance and cost considerations but is flexible enough to incorporate other

stakeholder interests such as the operational environment and life-cycle performance (Cheung et

al. 2009). Moreover, value-driven design improves the Systems Engineering requirements flow

down process by deriving objective (value) functions for sub-systems and systems (Collopy

2001; Keller & Collopy 2013).

The term ―value‖ is not defined sharply as there is no consensus on its nature and how to de-

termine it generically (Quinn et al. 2012). However, it is used as ―the driver for decision-

making‖ because it is a measure of preference of a system compared to another (Bertoni et al.

2013). As such, it lends itself for sub-system and system-wide optimisation (Cheung et al.

2010). Murman et al. (2000) define value as

 Eq. 2-1

where is a delay factor relative to the time elapsed in reaching the market. In order to com-

pare systems and to do optimisation, value calculation must be numeric, objective, repeatable

1
 See webpage of the Value-driven Design Institute at http://www.vddi.org/vdd-home.htm, accessed

17/12/2013.

http://www.vddi.org/vdd-home.htm

Chapter 2: Literature review

17

and transparent (Cheung et al. 2010). Smulders et al. (2012) state that value should be relative

instead of absolute because obtaining absolute numbers is difficult and not necessary. Relative

values suffice for design comparison and optimisation (Keller & Collopy 2013). Most often,

value is computed using monetary terms since it is ―intuitive, meaningful and comparable‖

(Collopy & Hollingsworth 2011). Consequently, profit is the most frequent system objective

function although Cheung et al. (2009) argues that design attribute objective functions are ad-

vantageous. Moreover, Bertoni et al. (2013) state that monetary terms are ―largely meaningless‖

during the conceptual and preliminary design phase due to the high level of uncertainty on cost.

Instead, Soban et al. (2011) advocate using scalars because they can include relational aspects

on top of functional and physical aspects.

The system value is derived by use of a value model based on economic laws. Keller and

Collopy (2013) compare it to an electric field in space that defines a scalar voltage to any point

in space. Similarly, a value model assigns a scalar value to the high dimensional attribute space

of the product where each point equates to a design. Practically, value models are problem-

specific and there is no universal approach for developing a value model for a product.

Models vary in quality and reliability, not least because design information is limited during

conceptual design (Mullan et al. 2012). Mission modelling can increase the amount of infor-

mation during conceptual design, thereby increasing confidence in conceptual design value

models. Another inherent value-driven design problem is understanding the relation between

value drivers and value objectives during the conceptual design phase. What is the impact of the

mean time between failures on product availability? How does profit change if one varies the

wingspan? Operational mission modelling is the key tool to quantify component and sub-system

impact upon life-cycle performance.

Curran et al. (2012) explicitly include operational aspects by introducing the VOM (Value

Operations Methodology): here the focus is on the operational value for customers, enabling a

―more realistic operations based performance assessment‖ (ibid.). VOM helps to understand

optimal operations during design concept evaluation because future aeronautical products must

be tailored for their intended missions more specifically (ibid). The mission-modelling frame-

work presented in this thesis is a step into that direction.

2.3 Modelling

A concise definition of a model is given by (Leonard 2001):

A model is a physical, mathematical or logical representation of a

system entity, phenomenon or process.

Chapter 2: Literature review

18

Consequently, modelling is the act to create such a model. There are many model classifica-

tions: Engler (2013) categorises models by their level of fidelity as in Figure 2-3.

FIGURE 2-3: MODEL CLASSIFICATION BY FIDELITY. REPRODUCED FROM ENGLER (2013).

FIGURE 2-4: SYSTEM MODELLING OPTIONS. ADAPTED FROM LAW & KELTON (1997).

There is an inverse relation between result uncertainty and required modelling time: High-

fidelity models (including physical experiments as models of very high fidelity) take much time

but reward with low uncertainty while low fidelity models (including expert models with very

low fidelity) reverse both characteristics. However, such ranking is subjective to some degree

because there are no objective measures for computational model fidelity. Law and Kelton

System

Experiment with
real system

Experiment with
system model

Physical model
Mathematical

model

Analytical
(Section 2.3.2)

Dynamic
(=Simulation),

Section 2.4

Conceptual
model (Section

2.3.1)

Chapter 2: Literature review

19

(1997) provide a more objective classification based on rigorous model type boundaries as in

Figure 2-4. If modelling a real system, this can be done physically, conceptually or mathemati-

cally. Aeronautical conceptual design rarely employs physical models because non-physical

modelling provides substantial cost benefits (Backlund 2000; Steinkeller 2011). This section

discusses conceptual modelling (Section 2.3.1) and analytical modelling (Section 2.3.2). Subse-

quently, Section 2.4 presents dynamic modelling (i.e. simulation). There is no consensus on the

ideal model building process (Prilla et al. 2013). In general, processes aim to match the model

with the prevalent paradigm and system problem to reduce cost (Yu 2008). Moreover, most

processes recognise the importance of appropriate model fidelity: Ideally, a model is as simple

as possible while recreating system characteristics. Fulton et al. (2003) display this idea as the

―effectiveness frontier‖ when relating model articulation (i.e. fidelity) with effectiveness as in

Figure 2-5.

FIGURE 2-5: MODEL FIDELITY VERSUS EFFECTIVENESS. REPRODUCED WITH PERMISSION FROM

FULTON ET AL. (2003).

There is an optimum effectiveness for models if they are not too simple and not too detailed.

Boehm (1988) developed a comprehensive model development process emphasizing its iterative

nature as in Figure 2-6. Each development iteration consists of a requirements phase, evaluation

phase, development phase and integration phase until final model implementation. Engler

(2013) reviewed and merged Boehms spiral process and several other approaches into a simple

five-step procedure shown in Figure 2-7. The development of the framework and simulation in

this thesis applies Englers five-step approach due to its ease of implementation and simplicity.

Table 2-1 details where each step is conducted in this thesis. Note that model testing for the

OSCAR framework is done throughout framework development and by means of producing the

practical implementation, namely the OSCAR simulation.

Chapter 2: Literature review

20

FIGURE 2-6: MODEL BUILDING PROCESS BY BOEHM. REPRODUCED FROM BOEHM (1988).

FIGURE 2-7: MODEL BUILDING PROCESS BY ENGLER. REPRODUCED FROM ENGLER (2013).

TABLE 2-1: MODELLING STEPS FOR OSCAR FRAMEWORK AND SIMULATION.

Step OSCAR framework OSCAR simulation

Define the problem Section 3.1 Section 4.1 and 4.2

Gather information Sections 3.2.1, 3.2.2, 3.3.1 and 3.3.2 Section 4.5

Create the model Sections 3.2.3 & 3.2.4 and 3.3.3- 3.3.6 Sections 4.6-4.12

Test the model by means of OSCAR simulation
Section 4.13 and Chap-

ters 5 & 6

Use the model by means of OSCAR simulation Chapters 5 & 6

Chapter 2: Literature review

21

2.3.1 Conceptual modelling

Conceptual modelling is arguably the most basic modelling technique used by anybody every

day. Stevenson (2002) distinguishes three types of conceptual models:

 Mental models: The brain creates and uses mental models all the time: While driving,

it assesses if (and when) another car will hit. Mental models are usually difficult to

verbalise.

 Verbal models are used early in product design but suffer from ambiguity and onto-

logical barriers (Steinkeller 2011).

 Schematic models are also used during early product design to show relationships be-

tween entities. An everyday example of a schematic model is a tube map.

Despite their disadvantages, the simplicity and clarity of conceptual models are very useful.

They force users to organise and possibly quantify information for later computational models.

Moreover, they support problem understanding and offer a systematic approach to problem

solving. However, conceptual models can only be a starting point as they lack quantification

capabilities. Therefore, more specific models are required.

2.3.2 Analytical modelling

Analytical models apply formulae in order to produce numerical solutions to a well-defined

problem (Jinks 2012). However, the main analytical model tool used in aeronautical conceptual

design is spread sheet modelling (Keane & Nair 2005). Its apparent flexibility and ease-of-use

made it pervasive during the last three decades (Panko 2000). However, most spread sheet mod-

elling is conducted ad-hoc with weak structures, frail scientific unit assignment and misleading

graphical front-ends (Scanlan & Rao 2006). Moreover, the error rate in industrial spreadsheets

is unacceptably high with some empirical evidence quantifying cell error rates between 1-2%

(Panko 2008). Although aeronautical engineering lends itself well to hierarchical applications,

hierarchical modelling is difficult with spread sheets (Paine 2000). Even if companies provide

best practice guidelines, spreadsheets are inherently hard to comprehend and validate.

Knowledge and rationale capture hides in sheets, cells and comments. Moreover, it is difficult to

include uncertainty and stochastic simulation within spreadsheet modelling (Streit et al. 2008).

Object-oriented hierarchical spreadsheet modelling requires additional effort: Developers must

resort to the underlying programming language, creating objects akin to simulation modelling

such as queues, event lists, entities and resources (Engler 2013). Therefore, the OSCAR simula-

tion is not based on spreadsheet modelling but employs a purpose-build simulation-modelling

tool.

Chapter 2: Literature review

22

2.4 Simulation

Simulation modelling is widely applied in aeronautical design (Abbas-Bayoumi & Becker

2011). Leonard (2001) describes simulation as the ―implementation of a model over time‖.

Conducting a simulation ―brings the model to life and shows how a particular phenomenon or

object behaves‖. A more formal definition combining Law and Kelton (1997), Steinkeller

(2011) and Robinson (2004) can be given as:

Simulation modelling is an analysis method where computers are

used to evaluate a model numerically in order to estimate the de-

sired true characteristics of the model. It is a computer experiment

performed upon a model of an operational system as it progresses

through time.

Computational simulation models have been used for as long as computers exist. However,

before the 1980s, models lacked even basic animation capabilities. Most models were devel-

oped for one specific purpose without any reusability(Andersson & Olsson 1998). During the

1980s, simulation systems grew larger, relying on early simulation tools. However, results were

prone to error due to a lack of analysis capabilities and useful animation (Steinkeller 2011). The

1990s saw a boost in application because the rise of the PC enabled useful animation outputs,

improved analysis and object-oriented work.

According to Rubinstein (2011) there are three main classifications for simulation models:

 Static or dynamic models: In static models, nothing changes over simulation virtual

time and output is constant if input does not change. The OSCAR simulation, on the

other hand, is a dynamic model where variables change over time and output depends

on the advance of the simulation virtual time.

 Deterministic or stochastic models: In deterministic models, no model component

contains stochastic uncertainty and the output is always the same. In stochastic mod-

els, one or more components are defined with some uncertainty. Re-running the

model with a different random number seed will (in general) produce different re-

sults. The OSCAR simulation is a stochastic simulation model because aeronautical

design features many uncertainties. OSCAR simulation random number seeds are

explained in Section 4.13.2.

 Time-driven or event-driven models: In ―event-driven‖ simulations, time advances in

discrete steps whenever an event occurs in the virtual simulation environment. The

simulation software usually provides a background list of all events with rules on

how to handle multiple events at the same time. In ―time-driven‖ simulations, time

Chapter 2: Literature review

23

advances smoothly, independent of events occurring in the simulation environment.

However, the binary nature of computer processing forces such simulations to ―slice‖

time into very small units to give the impression of time passing smoothly. ―Time-

driven‖ simulations are inefficient if simulation periods without any events are com-

mon. The OSCAR simulation is ―event-driven‖ because it is supposed to span years

or decades of vessel operations featuring long periods without events.

Figure 2-8 shows the simulation methods applicable for time-driven and event-driven models.

FIGURE 2-8: SIMULATION METHODS FOR TIME-DRIVEN AND EVENT-DRIVEN MODELS. ADAPTED

FROM JINKS (2012) AND YU (Yu 2008).

Most ―event-driven‖ simulations apply either agent-based methods or process-based methods.

The latter primarily applies in manufacturing and scheduling applications were physical ―enti-

ties‖ (products, parts, humans) move through a system with limited processing resources, creat-

ing queues and bottlenecks that are of interest to the modeller. The OSCAR simulation, on the

other hand, applies the agent-based method for reasons discussed in Section 2.4.4.

Aeronautical conceptual design exhibits many different simulation models, often with over-

lapping scopes and legacy compliance (Bandte 2000; Glas 2013). According to Steinkeller

(2011), good conceptual design phase models should be flexible enough to be used throughout

the entire design process to avoid migration losses. However, most models are specific and part

of extensive legacy vehicle sizing and synthesis codes. Their level of fidelity and quality varies

strongly depending on model development history (Mavris & Kirby 1999).

2.4.1 Advantages

Using a simulation model during conceptual aeronautical design promises a number of ad-

vantages. Often, it is infeasible to construct physical prototypes for testing due to time con-

straints and lack of knowledge. Simulation modelling can reduce costs considerably compared

to physical testing (Glas 2013). Moreover, designers can observe life-cycle variables that are

impossible to measure in reality, not least because time scales can be extended or shortened.

Simulations are designed to include uncertainty and stochastic analysis methods. Stochastic

simulations provide outcome distributions, taking into account extreme values. According to

Method

Classification

 Simulation

Time driven

System
Dynamics

Continuous

Event driven

Agent based
(Section 2.4.4)

Process
based

Chapter 2: Literature review

24

Mavris et al. (1999) this can be used to maximise the probability of achieving a certain merit

(―robust design simulation‖). Simulation enables uncertainty at any level of detail for conceptu-

al aeronautical design, namely operational, system and component levels.

Moreover, simulation modelling offers a number of advantages in a business environment. It

can foster design creativity because experimentation poses little risk (Yilmaz & Hunt 2011).

Designers are encouraged to think through details and interactions. Managers can use design

review meetings to understand and question design decisions using simulation outputs and ani-

mation.

Animation capabilities have been advocated since the 1970s by Hurrion (1976). During the

1980s, ―Visual Interactive Simulation‖ enabled model users to interact with the simulation dur-

ing runtime based on visual feedback (Bell & O’Keefe 1987). Today, animation is a core feature

among most simulation packages. Animation simplifies verification and fosters some degree of

validation (see Section 4.4.2 for definitions of verification and validation). Moreover, it helps in

communication between modeller, user and customer (Rohrer 2000).

2.4.2 Disadvantages

Simulation modelling features distinct disadvantages as well. In fact, Pidd (1998) sees simu-

lation as a ―last resort‖. Despite the cost advantage over physical modelling, simulation is ex-

pensive due to expert knowledge required (Rubinstein & Kroese 2011). Developing and running

simulations is time consuming because stochastic outputs require many runs to produce valid

results. This complicates effective optimisation during conceptual design (Robinson 2004).

Moreover, results are only valid if the model is a valid representation of the real system. In addi-

tion, simulations tend to require much input data, a lot of which is unavailable or inaccessible

during conceptual design.

Another common problem with simulations is over-confidence: The output animation and da-

ta conceal that all outputs are statistical estimates subject to experiment error (Rubinstein &

Kroese 2011). Professional expertise is required to manage user expectations. The opposite ef-

fect is also common in conceptual design: Engineers are reluctant to apply a simulation model

recognising that all models are wrong but neglecting that some are useful (Box & Draper 1987;

Hybertson 2010). Models are rejected because learning is too laborious, company guidelines are

missing and validation difficulties foster distrust (SAE 1998).

Many simulation models succeed to inform about what happens (i.e. produce outputs) but

struggle to convey why (Karban et al. 2008; Wheeler & Brooks 2007). In addition, objectively

assessing model quality is hard because there are very few generic neutral model metrics such

as lines of code (Murphy & Collopy 2012; Yu 2008).

Chapter 2: Literature review

25

Moreover, it is inherently difficult to judge when model development is finished. In other

words, it is difficult to specify the ―correct‖ level of fidelity for simulations (Cassidy et al.

2008). However, model fidelity is especially important during the conceptual design phase due

to time and design knowledge constraints. Therefore, fidelity definition for the OSCAR frame-

work and simulation is tuned carefully to conceptual design phase requirements (Sections 3.1

and 4.2). Despite these disadvantages, the OSCAR framework advocates use of simulation

modelling as discussed in Section 4.1.

2.4.3 Requirements

Applying a simulation model requires certain prerequisites. The simulation must be repeata-

ble. If the same simulation setup runs on two different computers, the same results must be ob-

tained despite stochastic inputs. Therefore, the simulation must feature fixed random number

streams, preferably custom-defined as with the OSCAR simulation (Section 4.13.2).

The simulation should allow automatic repetition of the same simulation model with different

random numbers from a custom-defined random number stream. The number of repetitions

should be user-defined (fixed number, stop upon confidence level reached, etc.). Such repeti-

tions are called replications in the rest of this thesis.

The simulation should be able to run in batch mode without animation straining computation-

al efforts. Ideally, multiple replications run on different processor cores independently. This

speeds up stochastic replication runs dramatically without suffering from the usual problems of

parallel computing (multi-threading, synchronisation, etc.).

The simulation model should allow clear and transparent simulation structure generation fol-

lowing physical realities. This promotes model validation and user trust.

Furthermore, it is good practice to strictly separate a simulation model from input and output

data. This ―data-driven generic modelling‖ (Jinks 2012) is user-friendly because users can

amend input data and experiment on outputs without detailed model knowledge. Moreover, sep-

arate data allows improved model version control and data post processing independent from

the model (ibid). Not least, the model can be used to simulate other structurally similar systems

by applying different inputs (Pidd 1992). The OSCAR simulation demonstrates this capability

by modelling aeronautical vessels as well as any other moving vessel such as trains, cars or

boats.

2.4.4 Agent-based Simulation

This section introduces the agent-based modelling approach and its applicability for the OS-

CAR framework and simulation. Creating agent-based simulation models is a relatively recent

development that has its roots in complex systems research (Weisbuch 1991). Scientists tried to

Chapter 2: Literature review

26

apply new object-oriented programming techniques to solve long-standing issues in artificial

intelligent systems (Jennings et al. 1998).

In agent-based modelling, the modeller specifies autonomous entities (i.e. agents) by their

behaviour, thus allowing ―bottom-up‖ model development instead of the conventional ―top-

down‖ modelling approach (Macal & North 2010). Jennings (2000) defines an agent as

Agent: An encapsulated computer system that is situated in some

environment and that is capable of flexible, autonomous action in

that environment in order to meet its design objectives.

Parunak et al. (1998) add that agents ―correspond one-to-one with the individuals being mod-

elled, and their behaviours are analogs of the real behaviours‖. Wooldridge and Jennings (1995)

categorise agents as either deliberative or reactive:

 Deliberative agents reason rationally from environmental perceptions and predict the

impact of their action. Such agents can mirror human reasoning based on symbolic

artificial intelligence. However, they suffer from the computational effort to translate

complex real world information into computational ―symbols‖ used for reasoning

(Chapman 1987). Deliberative agents can be used to observe ―emerging‖ phenomena

not specifically coded into the model. The social sciences exploit this capability since

it lends itself to modelling human behaviour well (Batty et al. 2012; Davidsson

2002).

 Reactive agents, on the other hand, respond to simple environmental cues without ra-

tional reasoning. Instead, they retrieve pre-programmed behaviour quickly. Here, the

modeller must anticipate and specify all problem situations fully during model de-

sign. Reactive agents allow intuitive model building for real systems with limited

system knowledge. This approach is used for the OSCAR simulation. The reason is

that the agents used within OSCAR (aircrafts, lifeboats, trains, components, etc.) do

not conduct rational reasoning but follow operational rules only.

According to Macal and North (2010), the typical structure of an agent-based model consists

of three items:

 There is a set of agent classes and agent instances with attributes and behaviour.

 Agents relate to each other through connections and interaction methods.

 Agents act within and interact with an environment.

Macal and North (2010) identify five agent environment types, namely cellular automata, Eu-

clidian 2D/3D space, networked, non-spatial ―soup‖ and Geographical Information System en-

vironments. Applying a Geographical Information System environment allows influencing and

controlling agent behaviour (see next Section 2.4.5). Since aeronautical products react and in-

Chapter 2: Literature review

27

teract with their physical environment in many ways, the OSCAR framework and simulation

incorporate a Geographical Information System environment for agents (Sections 3.2.4 and 4.6).

Agent-based modelling has the highest possible TRL (Technology Readiness Level) of nine

(Yu 2008) and it is applied more and more frequently in engineering (Chen et al. 2012).

Bussmann et al. (2004) describe manufacturing optimisation for car engine cylinder heads using

agents. In military applications, agent-based modelling is a tool for battlefield simulation in or-

der to support tactical and strategic decisions (Cioppa et al. 2004). During previous years, agent-

based modelling is used more frequently for ATM (Air Traffic Management) research because

human decision-making dictates operations within a technical environment. As such, Niedring-

haus (2004) describes the ―Jet:Wise‖ model where agents are used to model the US airspace

system at high fidelity. It predicts future airline decisions based on air space policy changes.

Wieland and Satapathy (2010) continue the effort describing the substantial effort behind the

agent-based architecture. Bosse et al. (2013) present an agent-based model for hazards model-

ling in commercial air traffic control as part of the SESAR (Single European Sky Air Traffic

Management Research) development. In aeronautical engineering, the commercial tool ―aerogil-

ity‖
 2

 applies agent-based modelling to aftermarket and operational support services. Aerogility

can model airline operations from warehouse level to business processes by applying custom-

build ―intelligent‖ agents. However, there is no research on applying agent-based modelling

using a Geographical Information System environment in conceptual aeronautical design.

Agent-based modelling offers several advantages for conceptual aeronautical design. The

bottom-up modelling approach enables model building with limited system information and

model amendment from gradual information increase (Macal & North 2010). Moreover, Yu

(2008) demonstrated that for complex models with many entities, an agent-based model runs

faster than a similar process-driven model in a conceptual design phase setting.

However, agent-based modelling features disadvantages as well. Model validation can be-

come more difficult than for process simulations because ―emergent‖ behaviour can occur with-

out apparent explanation. This contrasts with engineering expectations of ―predictable‖ model

results providing quantitative indications but no new qualitative insight. Some agent-based

modelling tools define a separate computing thread to each agent (multi-threading). This can

cause undesired behaviour if threads are not synchronised (Yu 2008).

This thesis is the first work studying agent-based modelling for mission simulation in concep-

tual aeronautical design.

See
2
 http://www.aerogility.com/, accessed 19/12/2013.

http://www.aerogility.com/

Chapter 2: Literature review

28

2.4.5 Spatially explicit simulation

Spatially explicit simulation is a specific type of simulation. It emphasises spatial details as

important features for simulation output. There are two types of spatially explicit models:

Spatial models: order components and actions spatially relative to

each other without geographical reference (see Figure 2-9 (A)).

This allows analysing spatial relations for which geography is not

important.

Geographical models: order components and actions spatially with

absolute geographical reference as in Figure 2-9 (B).

(A): spatial model3

(B): geographical model4

FIGURE 2-9: SPATIAL AND GEOGRAPHICAL MODELS.

Computer-based analysis of spatial patterns dates back to the 1960s. Until the 1990s, spatially

explicit models focussed on aggregate information lacking specific detail (Batty et al. 2012).

Agent-based modelling offers more detailed spatially explicit simulation results because agents

can interact with spatial details directly. Moreover, the agent-based modelling community be-

came interested in spatially explicit models because traditional agent models are limited to grid-

based spatial patterns only (Birkin & Wu 2012; Crooks 2008). However, spatially explicit mod-

el users do not usually work with agent modelling tools while most agent modellers are unfamil-

iar with spatially explicit modelling tools (Rand et al. 2005). Therefore, there are few agent-

based models where agents interact with a spatially explicit model directly. In order to over-

come the disparity, Brown et al. (2005) suggest to develop a middleware because both para-

digms feature demanding software packages that are difficult to master simultaneously. Howev-

er, they admit that this may not be the best long-term solution.

3
 Source: http://www.tfl.gov.uk/assets/images/general/standard-tube-map.gif, accessed 23/10/2013

4
 Source: (http://www.steveprentice.net/tube/TfLSillyMaps/tubegeo.jpg, accessed 23/10/2013

http://www.tfl.gov.uk/assets/images/general/standard-tube-map.gif
http://www.steveprentice.net/tube/TfLSillyMaps/tubegeo.jpg

Chapter 2: Literature review

29

Today, spatially explicit agent-based models often evade to drawing spatial patterns manually

within the simulation package. Adelantado (2004) describes an agent-based airport simulation

where the airport layout is drawn manually. For the OSCAR simulation, a manual approach

would increase the setup and preparation time for users considerably while reducing genericity

and flexibility (Section 3.1). Moreover, model re-use becomes more difficult because spatial

objects are internal to the simulation model. The separation of model and data would not hold

anymore.

Zhu and Sala-Diakanda (2007) describe an alternative method using the AnyLogic software

also applied in this thesis (Section 4.3.2). Here, an agent-based model is linked dynamically to a

geographical modelling program. Agents send their spatial position to the program and receive

information about their spatial status (in this case their depth under water). Based on the feed-

back, agents decide future actions. However, this approach is computationally very expensive

and not useful for large-scale life-cycle simulations as conceived for this thesis. Therefore, this

thesis develops a unique method of geographical model implementation into AnyLogic as de-

scribed in Sections 3.2.4 and 4.6.

2.5 Mission Simulation

This section discusses developments in aeronautical conceptual design mission simulations.

Testing designs performing their intended missions in a virtual environment is a very important

factor in contemporary aeronautical design. The number of complex interdependent factors and

variables is very high even for low fidelity mission models, easily exceeding human analysis

capability (Heilala & Maantila 2010; McLean & Leong 2001). Kirby (2001) sets an ―uncon-

strained mission analysis‖ capability as a very high priority for modern simulation environments

because it would provide cost savings, faster design lead times and improved product quality.

Price et al. (2006) states that the biggest challenge of design today is to account for the ―wider

system‖ in which aircraft operate, i.e. ATM, regulations and missions. This ―wider system‖ is

commonly viewed as a design constraint. However, it could be treated as a design parameter

instead. In order to use mission definitions as design parameters, they need to be modelled real-

istically. Chapter 6 demonstrates the use of mission definitions as design parameters using the

OSCAR simulation.

The ―Probabilistic System of Systems Design Methodology‖ developed by Soban (2001) sees

aircraft as a system that is part of a larger system that includes the operation, ―campaign‖ and

the entire life cycle (Soban 2001; Soban & Mavris 2000a; Soban & Mavris 2000b). Applying an

object-oriented approach, aircraft objects are used as part of mission-objects that make up a

―theatre‖ of (life-cycle) operations. This allows measuring the ―goodness‖ (similar to ―value‖ in

Chapter 2: Literature review

30

value-driven design) of the aircraft earlier in the design process. However, the level of mission

fidelity is low because the focus of the work is to include probabilistic variables into the design

process.

This thesis applies a similar ―system of systems‖ approach where vessel objects act on mis-

sion objects that make up a life cycle. However, the focus is on explicit mission modelling and

generic vessel definitions.

2.5.1 Current practice

Operational scenarios and missions are defined broadly at the start of the conceptual design

phase (Amirreze et al. 2013). The exact mission definition is critical in determining if the design

is feasible and viable (Cassidy et al. 2008; Delaurentis et al. 1996). Typically, mission scenarios

are defined deterministically without any uncertainties despite the variable real environment

with weather, fuel price and, policy uncertainties (Frangopol & Maute 2003). Moreover, mis-

sion definitions are not detailed during conceptual design because it is deemed inappropriate

and fast model responses are required (Duquette 2009). While mission parameters are fixed,

vessel parameters vary for sizing optimisation runs (Bond & Ricci 1992). More specifically, a

point-mass object follows a mission profile until given requirements such as fuel burn and thrust

are met within given tolerances. This is repeated with different vessel parameters until a satis-

factory result occurs (Kirby 2001). The point-mass dynamics base on standard textbook equa-

tions such as Raymer (2006) and Torenbeek (2013).

Current conceptual design phase mission-modelling techniques suffer from several disad-

vantages. Mission profiles are often the sum of simplistic parametric modules such as ―take-

off‖, ―cruise‖ or ―loiter‖. These modules recreate average missions without specific detail. Of-

ten, the chosen mission profile determines the output design trade-offs (Keane & Nair 2005).

Conceptual design phase optimisation uses mission simulation to tweak aircraft design parame-

ters such as weight, aerodynamics and structural performance. However, it neglects optimising

mission profiles themselves (Scanlan & Rao 2006). Moreover, the choice of modelling tools and

methods is largely based on company tradition: This leads to suboptimal model allocation with

high fidelity models and low fidelity models mixed and matched as seen fit (Krus & Jouannet

2010).

The rest of this section introduces a number of tools (commercial and non-commercial) as

well as recent research on conceptual design phase mission simulation.

Chapter 2: Literature review

31

2.5.2 Tools

2.5.2.1 Pacelab Mission Suite

Pace
5
 is a software development company for the aircraft industry. It offers knowledge-based

engineering COTS tools for all design phases as well as aircraft operations support (Glas 2013).

One product on offer is the ―Pacelab Mission Suite‖. Customers can setup simple or more com-

plex mission scenarios including routes, fuel policies or ETOPS requirements. Aircraft manu-

facturers use the tool to demonstrate product capabilities to potential airline customers. Missions

can be defined geographically or schematically while aircraft performance is computed using

first order or second order principles. The suite provides sophisticated plug-ins to simulate real-

istic operations: it can apply real airport departure and arrival routes, average weather conditions

and real flight routes.

However, the tool is designed for use by sales teams at the end of the design process or dur-

ing production. It is not integrated into an aircraft design environment, although it could be used

for such purposes (and current business plans work towards that goal). In addition, only one air-

craft instance can be analysed at a time, although linear fleet extrapolation is possible. Moreo-

ver, all Pacelab products are specific to commercial, subsonic, civil transport aircraft and do not

offer a large degree of flexibility to include a wider variety of aeronautical vessels. Not least, the

Pacelab mission suite does not support stochastic inputs because uncertainty is irrelevant to

sales teams.

Despite its target group, components of the Pacelab mission suite are used in conceptual air-

craft design: It is one of the most advanced mission simulation tools on the market.

2.5.2.2 PIANO

Piano
6
 (―Project Interactive Analysis and Optimisation‖) is a COTS aircraft synthesis tool for

conceptual and preliminary design developed by an individual over the past 20 years. It has

been used by large aerospace companies such Boeing and Airbus. Piano contains all relevant

modules for conceptual aircraft design such as geometry definition, mass estimation, aerody-

namics, emissions and engine modelling. Moreover, it provides a ―range & mission perfor-

mance‖ module that computes performance from first order principles. User can specify generic

parameterised mission blocks such as climb, cruise and descent. As with most conceptual design

phase tools, spatial details are neglected and only one aircraft instance can be analysed at any

one time (i.e. no fleets, no competitors, etc.). Moreover, Piano is designed for conventional,

5
 See www.pace.de, accessed 20/12/2013.

6
 See http://www.lissys.demon.co.uk/, accessed 20/12/2013.

http://www.pace.de/
http://www.lissys.demon.co.uk/

Chapter 2: Literature review

32

commercial and subsonic transport aircraft, lacking genericity and flexibility to include other

designs easily.

2.5.2.3 ACS

The ―AirCraft Synthesis tool‖
7
 (also abbreviated ACSYNT) has evolved over the past 40

years from Fortran-based NASA research at the Ames Research Center (Cassidy et al. 2008). It

is similar to Piano in that geometry, aerodynamics, propulsion and weight modules enable de-

sign analysis and synthesis. Users define parameterised mission building blocks such as take-

off, climb or cruise. The software computes performance at every point for a single aircraft in-

stance. Unlike Piano, ACS allows wider flexibility concerning aircraft designs, including sup-

port for non-conventional configurations such as flying wings, supersonic aircraft or UAS.

2.5.2.4 RDS

Developed by D. Raymer based on his well-known book ―Aircraft Design: A conceptual ap-

proach‖ (Raymer 2006), RDS
8
 is a conceptual aircraft design tool. It is very similar on scope

and functionality to ACS, allowing flexible configurations but limiting mission simulation to

parameterised building blocks.

2.5.2.5 FLAMES

The ―FLexible Analysis Modelling and Exercise System‖ is a COTS generic simulation

framework developed by Ternion
9
. FLAMES is able to model a wide variety of moving systems

such as aircraft, helicopters, humans, cars, etc. It aims to model complex military battlefield

simulation applications. Unlike Piano, ACS or RDS, it applies object-oriented principles to cre-

ate truly flexible and geographical mission scenarios. However, FLAMES does not provide

support for aeronautical design activity but for tactical and strategic operational decisions. Cas-

sidy et al. (2008) developed a work-around to use FLAMES (together with ACS) for design of a

single military aircraft using a single mission. However, integration is not straightforward and

complex 3D environments are beyond conceptual design phase requirements both computation-

ally and functionally.

2.5.2.6 FLOPS

The ―FLight OPtimisation System‖ is a public-domain multi-disciplinary sizing tool for the

conceptual and early preliminary design phase (McCullers 1995). It was developed by the

NASA Langley Research Center and includes nine modules: weight, aerodynamics, engine cy-

7
 See http://spinoff.nasa.gov/spinoff1997/ct11.html, accessed 20/12/2013.

8
 See http://www.aircraftdesign.com/rds.shtml, accessed 20/12/2013.

9
 See http://ternion.com/, accessed 20/12/2013.

http://spinoff.nasa.gov/spinoff1997/ct11.html
http://www.aircraftdesign.com/rds.shtml
http://ternion.com/

Chapter 2: Literature review

33

cle analysis, propulsion scaling, take-off & landing, noise, cost and mission performance. Most

modules are based on low fidelity empirical methods conforming to conceptual design phase

practice. Mission definition is similar to Piano, ACS and RDS in that parameterised non-spatial

mission blocks are combined. FLOPS supports vehicle design optimisation but does not allow

mission definition changes, i.e. it cannot automatically vary mission parameters for optimisation

(Delaurentis et al. 1996). The FLOPS code is easily extensible and applied in many research

projects.

2.5.2.7 Other tools

There are a number of other tools available for conceptual aircraft design. CEASIOM
10

 em-

phasises aircraft stability and control issues during conceptual design, providing enough detail

to use 6DoF (six degrees of freedom) flight simulations. The ―Advanced Aircraft Analysis‖ tool

by DARcorporation
11

 also focuses on stability and control estimation. The ―j2‖ tool kit by j2

Aircraft Dynamics Ltd.
12

 Allows to investigate several design candidates in parallel.

These tools do not provide purpose-build mission modelling modules. Instead, they provide

plugins to link designs to COTS 6DoF flight simulators. This approach enables very detailed

simulation results for one specific flight. However, it is difficult to set up a number of missions

for a fleet of aircraft to model an entire life cycle.

2.5.3 Research

This section reviews recent scientific advances in early design phase mission simulation. Na-

lepka and Duquette (2003) developed a human-in-the-loop-oriented programming mission

simulator to explore operational issues for military UAS. Their simulation framework includes

five core performance modules, namely move, sense, communication, shoot and interfere. How-

ever, the simulation is used for short-term tactical mission analysis rather than UAS design.

Nilubol (2005) created a similar framework for combat aircraft but was first in including

maintenance, vulnerability, performance and cost into a unified conceptual design phase tool. At

the heart of the framework is the ―Operation Mission Simulation‖ (Figure 2-10). However, mis-

sion simulation is not generic: instead, users can choose from five mission types with fixed pa-

rameters. The simulation is process-based and does not allow modelling of several aircraft in-

stances. Moreover, missions have no waypoints or spatial distribution.

10
 See http://93.88.249.84/index.php, accessed 16/01/2014.

11
 See http://www.darcorp.com/Software/AAA/, accessed 16/01/2014.

12
 See http://www.j2aircraft.com/application-benefits/conceptual-and-preliminary-design-2/, accessed

16/01/2014.

http://93.88.249.84/index.php
http://www.darcorp.com/Software/AAA/
http://www.j2aircraft.com/application-benefits/conceptual-and-preliminary-design-2/

Chapter 2: Literature review

34

FIGURE 2-10: COMBAT AIRCRAFT SIMULATION FRAMEWORK FOCUSSING ON OPERATIONAL MIS-

SION MODEL. REPRODUCED FROM NILUBOL (2005).

In order to test UAS control algorithms, Duquette (2009) developed the ―AMASE‖ mission

simulator. It can model a fleet of UAS but approximates flight performance with second order

look-up tables. It includes simplified climb, descent and turn performance as well as detailed

loiter options (orbit, figure-eight, racetrack, etc.). ―AMASE‖ focuses on spatially explicit mod-

elling but excludes geography because UAS control algorithm testing does not require geogra-

phy.

Thokala (2009) developed a process-centric discrete event mission simulation to compute

improved life-cycle cost estimates during the conceptual design phase. Here, missions are lim-

ited to a number of pre-defined mission types. Aircraft performance applies standard flight dy-

namics equations and atmospheric tables. In addition, it applies simplified CFD (Computational

Fluid Dynamics) analysis for conventional designs and limits propulsion to turbojet engines. As

the focus is on life-cycle analysis, the model allows defining an entire aircraft life cycle. How-

ever, only one aircraft instance is modelled and missions cannot change dynamically (e.g. can-

cel due to fuel shortage, etc.).

Krus and Jouannet developed a more detailed mission simulation (Krus 2011; Krus &

Jouannet 2010). It focuses primarily on preliminary design phase applications employing a par-

allelised mission simulator with 6DoF aerodynamics. The goal was to create more design

knowledge during the early design phases by including concurrent sub-system design through

detailed simulation. However, to keep runtimes acceptable, sub-system models are computed in

parallel on different cores. Moreover, time-compression algorithms reduce runtime by using

simplified performance models in steady flight. Missions occur spatially distributed but require

manual drawing by the user. The idea of parallel mission simulation execution could be useful

for detailed conceptual design phase simulators. However, module split will be more difficult

because sub-systems are not clearly defined during conceptual design.

Chapter 2: Literature review

35

Cassidy et al. (2008) used simple operational simulations to determine (but not optimise) crit-

ical mission parameters such as range and speed. They recognised the importance of spatial fac-

tors on vessel design but the mission simulation was not flexible enough to test and compare

different mission scenarios. However, it is one of the few approaches identifying the effect of

design changes on mission effectiveness.

Mission modelling has been applied for different purposes beyond aeronautical design as

well. Royo et al. (2013) coupled the commercial flight simulator X-Plane with an ATM simula-

tion framework developed by EuroControl in order to test UAS operations within non-

segregated airspace. Here, the UAS model includes component deterioration and interactions to

observe possible UAS performance influence upon the ATM environment and vice versa. How-

ever, this approach requires much computing power for 3D animation.

In summary, there are many existing commercial and scientific approaches to mission simu-

lation. However, scope and fidelity vary widely. No tool allows to model life cycles using a Ge-

ographical Information System environment, several aircraft instances (fleets, backup aircraft,

etc.) and a largely generic definition of aircraft vessels. The rest of this thesis will introduce the

OSCAR framework and simulation aiming to fill this gap.

Chapter 3: Framework

37

3 . F R A M E W O R K

This chapter presents the theoretical OSCAR framework developed to support conceptual de-

sign phase decision making and optimisation. It spans the intellectual process converting real

vessels and scenarios into framework building blocks and constructs. Essentially, the framework

is a set of simplifications, schemas, ontologies and recommendations. Users can apply and im-

plement it according to their needs. They can adopt parts of the framework that enhance existing

processes or decide to implement the whole framework based on existing computer system re-

quirements. The OSCAR framework is the theoretical foundation for the sample implementa-

tion (―OSCAR simulation‖) presented in Chapter 4.

A core part the OSCAR framework is the organisation of knowledge. There are several exist-

ing schemas for conceptual aircraft design. Boehnke et al. (2012) define the Common Paramet-

ric Aircraft Configuration Schema (CPACS), a hierarchical schema describing characteristics of

aircraft, rotorcraft, engines, fleets and missions. However, definitions target conventional civil

airliner design (Glas 2013). Moreover, CPACS follows a top-down approach where most detail

is specified at high-level design constructs (Deshpande et al. 2013). However, OSCAR requires

more flexibility concerning vessels as well as more detailed low-level specifications. Deshpande

et al. (2013) present the ―Aircraft Design Markup Language‖ (ADML) that specifies low-level

design constructs in more detail. However, its mission representation is based on typical seg-

ments such as take-off, cruise or landing, neglecting spatial information. Therefore, a unique

schema is presented here that incorporates the requirements of geographical modelling and ge-

neric vessel representation but still overlaps to a large degree with existing schemas.

Section 3.1 presents the requirements for a useful design framework posed by conceptual de-

sign phase procedures and processes. The actual OSCAR framework consists of two branches:

Section 3.2 details the mission-related (or scenario-related) framework components while Sec-

tion 3.3 presents the vessel-related framework elements.

Chapter 3: Framework

38

3.1 Requirements

Current aeronautical design processes evolved over decades and are well established in the

industry (Bond & Ricci 1992). Any procedural change disrupts the conduct of design: hence, he

benefits of change must be larger than the cost of implementation. While most of this thesis dis-

cusses the benefits of change, this section covers the cost of implementation. To minimise the

cost of implementation, Nurminen et al. (2003) identified several key characteristics for engi-

neering expert systems to be successful:

 Systems should support experts instead of trying to do their work and replace them.

 Usability is more important than automation.

 Technical knowledge capture works best using object-oriented principles.

 Pure spread sheet modelling becomes expensive in the long run because ―[…] it is

tempting, if the only tool you have is a hammer, to treat everything as if it were a

nail‖ (Maslow 2002).

Engler (2013) argues that conceptual design phase tools must be flexible and fast to help re-

duce the vast design space efficiently. Based on these insights, this section identifies four re-

quirements that the conceptual design phase process demands from a mission-modelling frame-

work (Figure 3-1).

FIGURE 3-1: OSCAR FRAMEWORK REQUIREMENTS RELATIONSHIPS.

First, the framework should be as generic as possible to accommodate the largest variety of

designs (Section 3.1.1). Second, the framework components and interactions must be simple and

comprehensible to allow quick setup and easy application (Section 3.1.2). Third, applying the

framework should return realistic results to merit its use and convince decision makers (Section

3.1.3). Last, the framework should be modular to allow easy adaptation and extension (Section

Chapter 3: Framework

39

3.1.4). A perfectly realistic model is hard to comprehend and highly specific (i.e. not generic).

However, perfect realism can be achieved through a modular approach. A (completely) modular

framework is hard to comprehend but it can be generic. Similarly, a fully generic framework

can be comprehensible and simple. A discussion of each of the four requirements follows be-

low.

3.1.1 Genericity

The aeronautical conceptual design phase is characterised by synthesis and analysis of differ-

ent design concepts. By definition, this requires a certain degree of generic capabilities to ac-

commodate all design ideas. However, the OSCAR framework is not limited to one manufac-

turers set of conceptual design ideas. Instead, the framework intends to support the entire aero-

nautical industry. Moreover, its level of genericity should allow related transport industries to

apply the framework (automotive, marine, railway). Therefore, it must be able to recreate the

majority of transport vessels and missions through a generic ontology. This ontology should be

able to map complex real products and missions into simplified framework components using a

small set of concepts and relationships.

A generic framework allows creating any aeronautical product variation and sharing it with

other designers. Moreover, even seemingly unrelated or widely different aeronautical products

permit easy comparison. Reuse of past products allows performance comparison with new de-

signs. Obviously, a generic product definition suffers from lack of detail that can void useful

comparisons. Therefore, translating an existing design idea into the generic framework design

requires care.

Generic scenario definition provides similar advantages: easy comparison and exchange of

scenarios becomes possible. Designers can create a library of existing scenarios and re-use parts

or entire scenarios for future products, reducing development time. However, scenario definition

details may get lost if careless translation occurs.

In order to facilitate easy translation from products and scenarios to framework concepts, the

ontology set of concepts must be comprehensible yet rich enough to enable capture of most

products and scenarios.

3.1.2 Comprehensibility

Often, change in industry fails because users do not understand the structure and value of new

methods (Jones et al. 2005). Therefore, in order to implement a new framework in aeronautical

conceptual design, it must be comprehensible for its users. Simple inspection should allow any-

body working with the framework to understand and believe it.

Chapter 3: Framework

40

Moreover, a comprehensible framework facilitates translation between real world products

and scenarios into framework components. Ideally, it avoids ambiguities by using exclusive

terms that do not overlap. A comprehensible framework is simple in the sense that it allows

quick understanding. However, a simple framework should not be too simple; otherwise, it be-

comes trivial and inhibits a realistic and generic framework.

The comprehensible framework needs to employ industry standard terms, concepts and vo-

cabulary. Moreover, concept boundaries should be defined such that the relationships between

them are obvious. A ―mission‖ consisting of an ―origin‖ and a ―destination‖ allows intuitive

understanding of those terms and their relationship.

3.1.3 Realism

In order to be of any use, the framework must be able to produce realistic results. However,

lack of information and time during the conceptual design phase will force the level of realism

below that attained with detailed design phase tools (Scanlan & Rao 2006). One of the reasons

is the limited knowledge about the product and the scenarios during conceptual design. Initially,

only the customer requirements and legacy knowledge are available. The required level of

framework realism should reflect the level of knowledge available during conceptual design.

Moreover, the selection of framework concepts should reflect the most prominent product

and scenario characteristics. For example, if a framework is good at capturing lifting device per-

formance, this might not be useful for initial design considerations when it is not even clear if

lifting devices are needed. However, some simple representation of lifting device performance

might be desirable.

Therefore, it is essential to find a trade-off between realism, computing capabilities, available

knowledge and useful concept application.

3.1.4 Modularity

For a conceptual design phase framework to be useful, it should not be static, fixed and

closed. Instead, it should be editable, extensible and adaptable. A modular framework approach

allows users to edit and adapt the framework for their specific needs. It can become less generic

in some areas to allow for more realism if required by the users. Alternatively, users can add

functionality where the current framework offers no solution. The modular approach mimics

object-oriented programming used in computer science. Module choice allows easy and intui-

tive understanding of the module content while module interactions become obvious from the

module boundaries. Therefore, it is useful to choose module boundaries based upon physical

boundaries. Krus (2010) suggests to reflect physical system structures in simulation modules to

Chapter 3: Framework

41

enable possible parallel execution. Consider a payload module: it should contain all payload

items (which can be sub-modules themselves) but it should not include fuel tank components.

After establishing the framework requirements, the next section will describe the first part of

the OSCAR framework on scenario modelling.

3.2 Scenario framework

This section describes the scenario-related framework components. This thesis defines the

term ―SCENARIO‖ as follows:

SCENARIO: The fully defined life cycle of a vessel system, including

all operations, repairs, overhauls and idle times.

Section 3.2.1 considers the extent and boundaries of the framework. Which scenarios are pos-

sible within OSCAR and what real applications can be covered? Section 3.2.2 assesses the OS-

CAR operations coverage to arrive at the first insight: each aeronautical operation can be classi-

fied into one of three operational goals. Next, Section 3.2.3 covers the topic of modularisation:

How should scenario-related modules be organised according to the requirements described

above? It includes a detailed description of all scenario-related objects such as MISSIONS,

TRACKS and SEGMENTS. Section 3.2.4 introduces the unique OSCAR approach of spatially ex-

plicit geographical scenario definitions.

3.2.1 Scope of application

This section describes the operative range for the OSCAR scenarios. It starts out by exclud-

ing two major application areas: First, military applications are precluded because they feature

distinct characteristics that are difficult to capture with OSCAR (Section 3.2.1.1). Second, OS-

CAR excludes space operations due to their fundamentally different flight profiles (Section

3.2.1.2). Last, this section defines the remaining scope of application (Section 3.2.1.3).

3.2.1.1 Military exclusion

Aeronautical vessels can be classified by their use for either civil or military applications.

Civil applications tend to be relatively homogeneous because operational goals are very similar:

civil aeronautical vessels are used either to transport objects
1
 from A to B or to witness assets

2

1
 ―Object‖ refers to people or goods here.

2
 ―Asset‖ refers to buildings, areas, roads, field, etc.

Chapter 3: Framework

42

(this neglects use of aeronautical vessels for pleasure). On the other hand, military operations

are more heterogeneous as the number of unique goals is higher. Many military scenarios re-

quire a fleet of aeronautical (and other) vessels working together to achieve complex goals like

defending a specific area while striking enemy targets. Most civil applications do not require

several vessels to achieve a target (an exception would be scientific UAS swarms analysing the

atmosphere). Battlefield interactions are more complex as soldiers and aircraft interact with

commanders, AI-driven equipment and not least the enemy.

While civil aeronautical operation outcomes are generally predictable, many military opera-

tion outcomes are not. They depend upon the capability of the aeronautical vessel, its allied

forces and that of the enemy.

Moreover, military aeronautical vessels usually conduct fewer operations over their life cycle

compared to civil products. Operators use most military products on demand while civil prod-

ucts (usually) operate on a regular basis. Therefore, the predictive capability of an operations-

based conceptual design phase framework like OSCAR is limited for military vessels.

For these reasons, the OSCAR framework design focuses upon civil aeronautical applica-

tions. Nonetheless, OSCAR can model many military applications. However, a complex battle-

field simulation with realistic agent interactions is beyond the scope of OSCAR in its current

state.

3.2.1.2 Space exclusion

The aerospace industry combines aeronautical and space products because they share key

challenges like propulsion, lift and 6DoF manoeuvrability. However, OSCAR is an operations-

based design framework and operational characteristics between aeronautical (i.e. atmospheric)

and space (i.e. non-atmospheric) flight differ.

Most aeronautical operations keep constant flight altitudes relative to the earth surface for

most of the flight (except during climb/descent and inflight altitude changes). Therefore, a flat

earth assumption is valid, thereby reducing the altitude dimension to a simple number

(climb/descent can be modelled without an explicit third dimension). Essentially, a 2D flat-earth

assumption suffices for aeronautical operations. Space operation profiles, on the other hand,

cannot follow this assumption: their flight altitudes constantly vary with respect to earth surface,

both in earth-bound missions (such as satellites following elliptical orbits) and in inter-planetary

missions.

Moreover, contemporary space operations are not repetitive and usually unique. An excep-

tion is presented by Keller and Collopy (2013) applying a simple mission simulation for calcu-

lating the value of a reusable space launch system. Still, the life cycle of most satellites or rock-

ets consists of one mission only (i.e. fly to Mars or orbit the earth for a couple of years). After-

wards, the product is discarded. Space vessel design hinges upon the characteristics of this one

Chapter 3: Framework

43

mission to a very large degree. However, the strength of OSCAR is to analyse the impact of a

wide variety of mission types repeated over a life cycle. Space products usually require only one

mission profile that is followed once during their lifetime. Specialised space operations analysis

software (e.g. GMAT
3
) will produce results that are more accurate.

Due to these fundamental differences, the OSCAR framework excludes space operations

from its target capabilities. OSCAR assumes a 2D flat earth surface, modelling altitude as a sep-

arate mission parameter. Note that the flat earth assumption does not prevent great circle routes

using explicit mission modelling (see Sections 3.2.4 and 4.6).

3.2.1.3 Remaining scope

After excluding military and space operations from the OSCAR framework, this section de-

scribes the remaining scope of application, namely civil aeronautical operations. OSCAR allows

modelling of most civil aeronautical operations such as passenger transport, cargo transport,

public authority, private and unmanned aviation missions.

In addition, OSCAR SCENARIOS can include non-aeronautical operations such as railway, au-

tomotive or maritime missions. Essentially, OSCAR can model any vessel moving at specific

speed and height (even under ground or water) along specific paths. The only requirement is

that vessel altitude change is not the most constitutive characteristic of its operations. Subse-

quent descriptions will demonstrate this by including non-aeronautical examples. However, the

focus of OSCAR is aeronautical product design.

OSCAR SCENARIOS can last between seconds and centuries, depending on user requirements.

SCENARIOS can combine any number of different operation types or just repeat the same opera-

tion. Operations can accommodate any number of operation segments, allowing any level of

operational complexity.

3.2.2 Operations classification

Having established the scope of application for OSCAR SCENARIOS, this section will classify

the wide array of possible SCENARIO operations. This thesis defines an ―OPERATION‖ as fol-

lows:

Operation: Comprises any action undertaken in order to complete

a user-defined transportation goal for a moving system. Since goal

definition depends on user requirements and industry context, op-

3
 ―General Mission Analysis Tool‖, open source tool by NASA. See http://gmatcentral.org/, accessed

27/11/2013.

http://gmatcentral.org/

Chapter 3: Framework

44

erations can vary between different users, even for the same mov-

ing system.

A typical passenger transport OPERATION is flying from airport A to airport B. The airline as

the user defines the operational goal as transporting passengers from A to B. However, a differ-

ent airline using a similar aircraft might define an OPERATION as going from A to B, then from

B to C and from C back to A (a ―round trip‖). Here, the operational goal is to move the aircraft

back to A via B and C. The definition of OPERATIONS is context-dependent allowing users to

setup OSCAR around existing procedures.

Since OSCAR is a spatially explicit framework (see Section 3.2.4), OPERATIONS are catego-

rised by the spatial character of an OPERATION. There are three fundamental geographical OP-

ERATIONS, namely point, path or area OPERATIONS (or any combination).

3.2.2.1 Point operations

The goal of a point OPERATION is to reach one or more geographical points. Here, ―point‖ is

defined as:

POINT: 2D coordinate specified through longitude and latitude.

Figure 3-2 depicts a generic POINT OPERATION with three spatially explicit POINTS.

FIGURE 3-2: OSCAR FRAMEWORK POINT OPERATION EXAMPLE.

The vessel moves from its initial position towards POINT 1. Upon arrival, it may or may not

loiter for a specified time (note that rotary-wing, floating and ground-based vessels can loiter

stationary while fixed-wing vessels would conduct loiter patterns similar to Figure 3-2). Subse-

quently, the vessel moves towards POINT 2, and so on. The sequence as well as the spatial dis-

tribution of POINTS is critical to define a POINT OPERATION. A typical POINT OPERATION is an

Chapter 3: Framework

45

aircraft gathering scientific data at pre-defined positions. Another example is a police helicopter

transporting workers between offshore oilrigs. Civil airliner designers could simplify airliner

OPERATIONs into POINT OPERATIONS by omitting airway information: the airliner simply flies

from airport to airport (POINT to POINT).

3.2.2.2 Path operations

A path OPERATION goal is to move along one or more geographical paths. Here, ―Path‖ is de-

fined as:

PATH: a 2D line consisting of a start point, any number of corners

in a specific sequence and an end point. Start point, corners and

end point are 2D coordinates specified through longitude and lati-

tude.

Figure 3-3 depicts a generic PATH OPERATION consisting of three PATHS. PATH 1 consists of

five corners, PATH 2 has 13 corners while PATH 3 comprises zero corners (i.e. a straight line).

The vessel starts to fly towards the start point of PATH 1. It moves along the PATH and may or

may not loiter upon reaching the end of PATH 1. Subsequently, it moves towards the start point

of PATH 2, and so on. Note that start and end points of PATHS may or may not have the same

location.

FIGURE 3-3: OSCAR FRAMEWORK PATH OPERATION EXAMPLE.

PATH OPERATIONS include airliners flying along one or several airways, a traffic-monitoring

aircraft following specific motorways or border patrol and pipeline monitoring.

3.2.2.3 Aerial operations

The goal of an area OPERATION is to cover a specific geographical area. Here, ―Area‖ is de-

fined as:

AREA: a closed 2D polyline enclosing a specified area. The polyline

consists of any number of corners (minimum: three).

Chapter 3: Framework

46

Figure 3-4 depicts a typical Area OPERATION consisting of two areas (grey regions). The ves-

sel follows specific routes to cover both AREAS as required by the user. Initially, it moves to-

wards the start point of the first route and moves along. Upon arrival at the first route end point,

it may or may not loiter. Subsequently, it moves towards the start point of the second area route

to cover the second AREA region.

FIGURE 3-4: OSCAR FRAMEWORK AREA OPERATION EXAMPLE.

Note that the route to cover an AREA can vary in shape depending on user requirements. In

fact, a vessel must follow a specific route to cover any AREA. Within OSCAR, such routes can

be defined as PATHS. Therefore, OSCAR treats any AREA OPERATION as a PATH OPERATION. It

is the user’s responsibility to define PATHS such that the required AREA is covered. The user

needs to take into account vessel flight altitude (if any), sensor capabilities (or human eye

skills), visibility and possible sensor footprint overlap (how often should a point within the AR-

EA be scanned?). However, these factors may be unknown during conceptual design phase or

they may be part of the design investigation.

A superior way to deal with AREA OPERATIONS would define an AREA geographically and

employ an algorithm to calculate an automated PATH for the vessel movement. Ideally, the algo-

rithm would take into account parameters such as sensor capability, visibility and flight altitude.

Goerzen et al. (2010) present a review of motion planning algorithms for UAS applications

based on sensor capability. However, it is beyond the scope of this thesis to develop such an

approach. The rest of this thesis treats ―AREAS‖ as specific PATHS, neglecting the AREA defini-

tion.

Typical AREA missions include crop spraying, mapping and reconnaissance airborne mis-

sions as well as normal agricultural tractor operations or offshore fishing activities.

3.2.2.4 Combinations

Many real aeronautical OPERATIONS are more intricate and do not exactly match the defini-

tion of POINT, PATH or AREA OPERATIONS above. A border patrol aircraft may fly along the

border PATH but upon spotting illegal activity starts covering the AREA in question. A highway-

monitoring helicopter may be required to stop at a car crash POINT, interrupting its road-

Chapter 3: Framework

47

following PATH duty for some time. Therefore, the OSCAR framework allows mixed OPERA-

TIONS.

Through modularisation (see Section 3.2.3), it is possible to create combined OPERATIONS as

in Figure 3-5. Upon arrival at POINT 1, the vessel proceeds towards PATH 1 (effectively cover-

ing an AREA as well). OSCAR can combine any number and combination of OPERATION types.

FIGURE 3-5: OSCAR FRAMEWORK COMBINED POINT AND PATH OPERATION.

3.2.3 Modularisation

The previous section distinguished between three OPERATION types, acknowledging that

many civil aeronautical OPERATIONS (and, in fact, most moving vessel OPERATIONS) are a

combination of those. However, work was conceptual until now. This section will formalise the

insights obtained so far.

As discussed above, the life cycle of a moving vessel consists of OPERATIONS, repairs,

maintenance operations and idle time, together forming a SCENARIO in OSCAR. Neglecting

repair, maintenance and idle time, this thesis defines the ―OPERATIONAL SCENARIO‖ of a vessel

as:

OPERATIONAL SCENARIO: The sum of all moving OPERATIONS of an (aer-

onautical) vessel over its lifetime, omitting repairs, maintenance

operations and down time.

Note that adding repair, maintenance and idle time to an OPERATIONAL SCENARIO returns a

SCENARIO (see definition on page 41). As shown in Figure 3-6, OSCAR defines an OPERA-

TIONAL SCENARIO to consist of ―MISSIONS‖, ―TRACKS‖ and ―SEGMENTS‖.

A ―SEGMENT‖ is the equivalent to the OPERATION goals defined conceptually in Section

3.2.2 above. It can be either a POINT or a PATH. Section 3.2.3.1 describes a ―SEGMENT‖ as the

smallest building block to create an OPERATIONAL SCENARIO. Adding ―SEGMENTS‖ together,

OSCAR creates a concept called ―TRACK‖, as described in Section 3.2.3.2. By combining

―TRACKS‖, OSCAR forms a ―MISSION‖ as defined in Section 3.2.3.3. Combining all ―MIS-

SIONS‖ forms the OPERATIONAL SCENARIO defined above.

Chapter 3: Framework

48

FIGURE 3-6: OSCAR OPERATIONAL SCENARIO PYRAMID.

3.2.3.1 Segments

A SEGMENT is the smallest building block to create an OPERATIONAL SCENARIO. It can be ei-

ther a POINT or a PATH (Section 3.2.2). Each SEGMENT has a specific spatial position (latitude

and longitude). If the SEGMENT is of type PATH, each corner and the start and end point must be

defined through spatial coordinates in the correct sequence. Section 3.2.4 describes the imple-

mentation of SEGMENTS into Geographical Information System shapefiles. Beside the coordi-

nates, eleven parameters uniquely define each SEGMENT namely Time, Origin, Destina-

tion, UponArrival, Type, TargetHeight, TargetWidth, DetectionCriteria, Loi-

ter, Height and Speed. Appendix 1 details each parameter in more detail.

3.2.3.2 Tracks

A TRACK is an aggregation of any number and types of SEGMENTS. Moreover, it encloses a

set of SEGMENTS with a dash and return segment linking them to a ―Base‖ to a ―Destination‖

(see Figure 3-7).

FIGURE 3-7: OSCAR TRACK SCHEMATIC.

As described above, the definition of a TRACK can vary depending on user requirements and

mission definitions. However, one fundamental characteristic of a TRACK is its enclosure into a

Chapter 3: Framework

49

―Base‖ and ―Destination‖. Every vessel within the scope of OSCAR requires operational

breaks, be it for rest (humans, animals), for repair or for operational reasons (aircraft schedules,

ferries used only during the day, etc.). Therefore, TRACK allows the user to model these inter-

ruptions easily. Depending on the vessel type, ―Base‖ and ―Destination‖ vary in their meaning:

for airborne vessels, they can represent airports or take-off and landing sites. For ground-based

vehicles, it can be parking lots while for maritime vessels, harbours or anchorage sites are the

major applications.

A TRACK is defined by twelve parameters, namely Vessel_IDs, Base, Track, Track-

Fragmented, Destination, Time, Repetition, Priority, DashHeight, DashSpeed,

ReturnHeight and ReturnSpeed. Appendix 2 describes each parameter in detail.

3.2.3.3 Missions

A MISSION pools any number of TRACKS together in a sequential manner to form an arbitrary

sub-section or the total of the product life cycle. This is helpful to keep the life cycle organised.

The user defines MISSIONS in a way that is most applicable for product operations. Aircraft de-

signers may pool all TRACKS concerning passenger services of their new aircraft in one MIS-

SION while keeping all late-life cargo missions in another. Alternatively, it might be useful to

pool all tracks by week, month or year. Car designers may pool all TRACKS of European drivers

into one MISSION and those of Asian drivers into another.

Essentially, the concept of the MISSION is a categorisation tool to avoid thousands of TRACKS

in a product life cycle SCENARIO. It helps designers categorising their product TRACKS in a use-

ful way, allowing simulation runs of selected MISSIONS only. Hence, it is easy to simulate only

early-life TRACKS or only TRACKS of a specific region or time. Alternatively, MISSIONS can sort

TRACKS by the product type if several different products are tested simultaneously.

Finally, the life cycle of a product (i.e. the OPERATIONAL SCENARIO) is the sum of its MIS-

SIONS (one or many).

3.2.4 Spatially explicit setup

One of the unique features of OSCAR is its focus on spatially explicit geographical model-

ling where entities interact within a spatially explicit geographical environment. This Section

describes the motivation to include spatially explicit geographical modelling (Section 3.2.4.1),

how it is implemented into the OSCAR framework (Section 3.2.4.2) as well as the assumptions

and simplifications applied (Section 3.2.4.3).

3.2.4.1 Motivation

As discussed in Section 2.4.5, conceptual aeronautical design models do not apply spatial ex-

plicit modelling. Arguably, adding this level of complexity to the conceptual design phase adds

Chapter 3: Framework

50

cost and development time that is needed elsewhere without obvious benefit. However, this sec-

tion introduces benefits that can possibly outweigh the disadvantages.

During conceptual aeronautical design, geographical operational knowledge exists implicitly

or explicitly because customers and designers usually know the operational applications for

their product already. Designing a typical civil airliner, market analysis reveals potential routes

and airlines contribute ―significant input‖ (Raymer 2006), including intended routes and opera-

tions. Car manufacturers, on the other hand, usually use customer surveys with non-

geographical information such as average driving distance or time (Otto & Wood 2001). In such

cases, spatial modelling without geographical information suffices (see Section 3.2.4.2).

In order to model geography, the OSCAR framework uses the well-established shapefile

format established by the Environmental System Research Institute, Inc. (ESRI 1998). Any ge-

ographical modelling software is able to interpret and create shapefiles. If customers or manu-

facturers own spatial or geographical information, it will most likely use the shapefile format,

making it easy to adapt and import into OSCAR. The modular approach of OSCAR allows us-

ers to store SCENARIOS, MISSIONS and TRACKS in relational databases. Therefore, geographical

knowledge needs to be created and stored only once and can be reused easily.

Another benefit of using geographical knowledge during the conceptual design phase is its

ability to convey a lot of information visually through mapping (see Figure 3-8). This supports

conceptual design activities because critical operational bottlenecks can be spotted earlier. Con-

sider the case of search-and-rescue incidents as in Figure 3-8: most incidents occur near shores

and around harbours, helping designers to estimate required vessel ranges easily. It would be

more difficult to extract such information from pure data tables.

Geographical Information System map

Point Latitude Longitude

1 52.37 -1.17

2 51.83 -0.51

3 52.17 -1.11

4 52.51 -0.43

5 52.68 -0.41

6 52.15 -0.86

… … …

Same information in a table.

FIGURE 3-8: GEOGRAPHICAL INFORMATION SYSTEM MAP VERSUS TABLE.

Moreover, geographical data often encodes non-trivial information regarding design decisions.

Consider the following though experiment displayed in Figure 3-9: an aircraft is supposed to

patrol the shore waters during daytime. However, its fuel capacity requires refuelling during the

Chapter 3: Framework

51

patrol. Operationally, it is critically important to determine where the aircraft most often runs

out of fuel.

FIGURE 3-9: GEOGRAPHICAL IMPORTANCE OF FUEL: RUNNING OUT OF FUEL AT POINT A OR B?

If the aircraft runs out of fuel at Point A, returning to the airfield for refuel affects the patrol

operation to a certain degree (due to the delay). However, if the aircraft runs out of fuel at Point

B, the impact is disproportionally larger because the time to reach the airfield is much larger and

the duration off patrol increases. A non-spatial analysis could not capture this discrepancy easily

while it becomes obvious using spatial modelling.

There are many similar situations arising from operational scenarios in geographical models:

Does oil tanker storage fail in open waters or near environmentally critical shorelines? How

does a jet engine compare operating in dusty Arabian countries compared to wet South-East

Asian countries? Can one optimise parcel delivery truck routes by only choosing right-turn

routes
4
 ? New insights into design decisions and optimisation strategies arise by considering the

spatial and geographical component of these operations early in the design process.

3.2.4.2 Implementation

This section presents how geographical modelling fits into the OSCAR framework. Section

4.6 discusses the practical realisation within the OSCAR simulation.

As indicated above, OSCAR supports a geographical modelling approach by implementing

geographical maps (compare Section 2.4.5). However, spatial modelling without geographical

information is also possible within OSCAR by projecting the spatial information upon an empty

background map. This approach ensures greatest flexibility for designers.

4
 Compare http://compass.ups.com/UPS-driver-avoid-left-turns/, accessed 23/10/2013.

http://compass.ups.com/UPS-driver-avoid-left-turns/

Chapter 3: Framework

52

Geographical modelling within OSCAR rests upon a 2D map of the entire world, the ―base

map‖. Users can employ different base maps to allow categorising POINTS and PATHS by their

interaction with the base map: are they upon water or land, city or countryside, country A or B?

Projected onto the base map are the two geographical SCENARIO components, namely POINTS

(Section 3.2.2.1) and PATHS (Section 3.2.2.2). Each POINT and each point of a PATH feature a

longitude and latitude coordinate defining the position on the base map. In addition, this thesis

assigns the following additional geographical information:

 Search-and-rescue incident position uncertainty data (Section 5.4.1.2)

 POINT and PATH end-point object height and width (Section 3.2.3.1)

 Loiter times, flight profiles and behaviour upon vessel arrival (Section 3.2.3.1)

However, designers can extend the OSCAR framework to include custom geographical ef-

fects such as distributions of temperatures, dust levels, wind speeds or visibilities. By extending

the OSCAR simulation logic, this enables rapid analysis of different operational influences upon

the design.

3.2.4.3 Assumptions & Simplifications

Including geographical modelling into the conceptual design phase increases the level of de-

tail considerably. However, there are a number of assumptions and simplifications to keep

workload and computation times reasonable following conceptual design phase requirements.

Foremost, all mapping is two-dimensional only. This has two effects upon product design:

First, the base map lacks elevation. There are no mountains, buildings or barriers of any kind.

This does not prevent OPERATIONAL SCENARIOS to include altitude profiles (see Section

3.2.3.1) but altitude profiles do not map with elevation data. If a car has altitudeMax=0 and

is supposed to travel along a mountain road, it will keep an altitude value of zero. However, it is

possible to model the mountain road elevation profile by adjusting the road PATH Height val-

ues and increasing the altitudeMax parameter for the car (see Section 3.3.3). As stated earli-

er, the OSCAR framework is most applicable for moving vessels where altitude change is not

the most constitutive characteristic of its operations.

The second effect of 2D base maps for designers is that the earth surface is flat. Therefore,

users must model great circle routes (for ships or aircraft) manually by adjusting the PATH be-

tween two points following great circle rules. However, this is straightforward with any modern

geographical modelling software.

Another assumption for geographical modelling within OSCAR neglects curves between

SEGMENTS and PATH edges. Any directional vessel turn is immediate as in Figure 3-10.

Chapter 3: Framework

53

FIGURE 3-10: OSCAR VESSEL TURNING PERFORMANCE.

Turning performance is difficult to predict generically because it varies strongly between ves-

sel types and operations. For aircraft, turn performance depends on speed, altitude, wind, bank

angle, g-force limits and acceptable overshoot. For ground-based vessels, different parameters

such as road surface, steering wheel limits and driving speed dictate curve performance. With

maritime vessels, yet another set of parameters is required, namely rudder size, relative speed

and ship mass. It is beyond the scope of this research to find a unifying curve performance algo-

rithm. However, the user must be aware that vessel performance accuracy decreases linearly

with the number of directional changes in the OPERATIONAL SCENARIO. However, for concep-

tual design, the loss in accuracy is acceptable because straight lines usually dominate aeronauti-

cal vessel operations. Exceptions include search operations and crop spraying which base upon

frequent directional changes.

Similar to neglecting curves, geographical modelling within OSCAR also neglects climb and

descent performance (Figure 3-11). Any change in altitude between SEGMENTS occurs instanta-

neously. This affects airborne vessels changing flight altitudes, submerged vessels changing

diving depths as well as ground-based vessels following elevation profiles (i.e. crossing a moun-

tain).

FIGURE 3-11: OSCAR VERTICAL PROFILE.

If necessary, it is possible to model smooth altitude changes through discretisation by using a

large number of SEGMENTS with slightly different altitudes each. The same argument as for di-

rectional changes applies: altitude change performance is difficult to model generically for

Chapter 3: Framework

54

many different vessel types. Moreover, most vessel TRACKS occur at constant altitudes for most

of the TRACK duration. Even long-distance airliners increase their altitude due to depleting fuel

only in near-discrete steps every couple of hours. Therefore, this simplification is acceptable for

operations where altitude changes are not the main characteristic. The more altitude changes are

characteristic to vessel operations, the less accurate results will be.

3.3 Vessel framework

The previous section described the SCENARIO-related framework details. However, in order

to model the life cycle of aeronautical, automotive, maritime or railway products, it is necessary

to provide a generic framework for modelling the vessels themselves. Section 3.3.1 starts out by

outlining the scope of application of the vessel framework. In Section 3.3.2, a vessel classifica-

tion system refines the scope of application. Section 3.3.3 presents the generic parameter set

defining vessels within OSCAR. Subsequently, Section 3.3.4 outlines the generic vessel per-

formance calculation method that can be used to calculate energy consumption of any vessel.

Section 3.3.5 introduces the capability of specifying vessel components, including component

parameter definitions. This allows defining deterioration performance and maintenance. Lastly,

Section 3.3.6 describes the optional payload module add-in for vessels.

3.3.1 Scope of application

OSCAR aims to enable modelling of any object that can change its position based on its own

initiative. Therefore, define:

VESSEL: Any physical object that is capable to some degree to

change its position in a controlled way using its own means. Con-

trol is exercised through the VESSEL itself or through a VESSEL user.

This definition includes any type of automotive, ships, submarines, aircraft, helicopters and

UAS. It also includes non-obvious entities such as humans and most animals. However, some

entities do not count as a VESSEL: Hot-air balloons, for instance, are not capable to control their

flight path to a large extend, although they can control their altitude well. The OSCAR frame-

work requires user to input specific operation PATHS, but for balloons, these are unknown be-

forehand. However, users can define typical balloon PATHS, neglecting the specific influence of

winds upon performance.

Chapter 3: Framework

55

As discussed in Section 3.2.1, military and space OPERATIONAL SCENARIOS are not supported

within OSCAR. Consequently, OSCAR does not support military and space vehicles within the

VESSEL framework, although they may fall under the VESSEL-definition above.

Based upon the object-oriented modelling approach, OSCAR can model any number and any

type of VESSEL in parallel.

3.3.2 Classification

A large number of VESSELS exist that follow the VESSEL definition above. The OSCAR

framework provides a VESSEL classification in order to group VESSEL types of similar applica-

tion together.

The OSCAR VESSEL classification assigns two characteristics to each VESSEL: category and

type. This helps users to distinguish VESSEL agents quickly but it also allows adding functional

behaviour to specific categories or types only. The categories and types supported within the

OSCAR framework are shown in Figure 3-12.

FIGURE 3-12: OSCAR SIMULATION VESSEL CATEGORIES AND TYPES (NOT EXHAUSTIVE).

Note that neither category nor type entries are exhaustive: users can add their own categories

and types based on requirements.

Within the OSCAR simulation, types are used to sanity check altitude data: submarines and

ships cannot cruise above Height=0 while aircraft cannot fly below Height=0. Beyond

this, neither categories nor types have any influence on VESSEL performance. Users can exploit

Chapter 3: Framework

56

the classification further to include more complex operational group behaviours: for example,

fixed-wing aircraft cannot fly at a speed of zero, even if asked to do. Automotive VESSELS must

not cruise on water. Fixed wing VESSELS cannot loiter stationary, etc. However, more detailed

classification behaviours are beyond the scope of this thesis.

3.3.3 Parameters

Although there are many different VESSEL types, the research goal of OSCAR is to find a ge-

neric set of unifying parameters that describes each VESSEL equally well. In addition to the

category and type parameters described above, there are twelve parameters required to de-

fine a VESSEL, namely performanceModel, fuelType, occupants, speedMax, speedMin,

speedTypical, altitudeMax, altitudeMin, altitudeTypical, useTypicalSetup,

weightDry and weightFuel. Appendix 3 describes each parameter in more detail.

3.3.4 Propulsion performance

Having defined the core characteristics of VESSELS above, this section continues by introduc-

ing the generic performance model developed for the OSCAR framework. The various VESSEL

types supported by the OSCAR framework feature very different propulsion systems: some

burn petrol or diesel (cars, Lorries, etc.), other have electric drives (some UAS, e-bikes, e-cars),

yet others need food (animals, humans) or nuclear fuel elements (some submarines). However,

all propulsion systems are similar in that they consume energy at different rates.

Therefore, the generic propulsion performance model within the OSCAR framework com-

putes energy consumption, independent of the propulsion system used by the VESSEL. For this,

each VESSEL features a table linking energy consumption with velocity. Users can specify com-

plex energy consumption profiles in a simple way. For example, aircraft use flaps below certain

speeds, changing fuel burn (and thereby energy consumption). Similarly, ships or cars have dis-

tinctive fuel consumptions if stationary (with their engines turned on). Figure 3-13 presents sev-

eral energy consumption profiles. This allows modelling and comparing very different VESSEL

types and propulsion systems. The advantage of this modelling approach is that energy con-

sumption data is easily available for most VESSELS (e.g. Cullinane and Khanna (1998) devel-

oped a set of equations for large container ships based on power consumption). Moreover, con-

ceptual designers have access to energy consumption profiles for the product in question. In

some cases, simple unit conversion is required (i.e. aircraft designers work with specific fuel

consumption).

Chapter 3: Framework

57

petrol car

electric train

container ship

lifeboat (diesel)

helicopter

human runner

5.E-07

5.E-05

5.E-03

5.E-01

5.E+01

0 20 40 60 80

E
n

e
rg

y
 c

o
n

s
u

m
p
ti

o
n
 (
M

J/
s
)

Speed (m/s)

FIGURE 3-13: ENERGY CONSUMPTION FOR VARIOUS VESSEL TYPES (VERTICAL AXIS HAS LOGA-

RITHMIC SCALE WITH BASE 2)
5
.

However, a number of assumptions and simplifications underlie this approach. In reality, en-

ergy consumption depends on more factors than VESSEL speed. Often, ambient conditions such

as temperature, pressure and wind alter energy consumptions. Moreover, friction or drag varies

with the product design shapes. Some of these factors can be factored in the OSCAR generic

propulsion performance model (i.e. drag varies with VESSEL speed). Other factors cancel each

other out over the VESSEL life cycle. Here, average expected values can be factored into the

OSCAR model (i.e. temperature, pressure or wind cancel each other out to varying degrees).

More importantly, any VESSEL energy consumption rate varies with VESSEL weight. Neglecting

the influence of total VESSEL weight is reasonable for VESSELS that have a small (or zero) max-

imum weightFuel/weightDry ratios (see Section 3.3.3). Here, diminishing fuel weight has

no big impact on total weight. However, some VESSELS such as aircraft, container ships or heli-

copters have a larger maximum weightFuel/weightDry. In this case, neglecting the impact

of total VESSEL weight on energy consumption may not be justifiable anymore: Designers

should embed custom energy consumption models taking into account weight variation such as

the custom aircraft propulsion model described in Appendix 9.

5
 Sources: human runner  http://www.brianmac.co.uk/energyexp.htm, accessed 30/10/2013; Petrol

car  (Sturm & Hausberger 2005); lifeboat  Police of Kent; container ship 

http://people.hofstra.edu/geotrans/eng/ch8en/conc8en/fuel_consumption_containerships.html, access

30/10/2013; helicopter  (Mabus 2008); electric train  (Garcia 2010);

http://www.brianmac.co.uk/energyexp.htm
http://people.hofstra.edu/geotrans/eng/ch8en/conc8en/fuel_consumption_containerships.html

Chapter 3: Framework

58

3.3.5 Fatigue

3.3.5.1 Components

During conceptual design, it is important to model not only the basic VESSEL behaviour and

its energy consumption. Any VESSEL deteriorates in service and is subject to planned or un-

planned maintenance. Current conceptual design phase procedures apply empirical relations

derived from historical data: based on design parameters such as wingspan, mass or thrust these

relations return the expected defects and maintenance hour per flight hour (Fielding 1999).

However, object-oriented methods enable more detailed component-based modelling. There-

fore, OSCAR enables each VESSEL to comprise any number of ―COMPONENTS‖ that deteriorate

over time:

COMPONENT: A physical object being part of a VESSEL that deterio-

rates in some way during VESSEL operations.

 A VESSEL can contain no COMPONENTS at all, if required. In that case, it acts as a fault-free

agent that never fails. This can be useful in order to create VESSELS that interact with a concep-

tual VESSEL design but are not themselves part of the investigation, especially if their rate of

failure is much lower than that of the VESSEL under investigation (i.e. lifeboats in chapter 4.14).

Seven parameters define each COMPONENT, namely weibullLifeMeasure, weibullEta,

weibullBeta, LossProbabilityFromFailure, unplannedMaintenanceDuration,

quantityOnboard and robustnessScalingFactor. Appendix 4 describes each parameter

in detail.

Upon VESSEL creation, each COMPONENT is assigned a time-to-failure (or cycles-to-failure if

weibullLifeMeasure=cycles) randomly drawn from the specified weibull distribution

and adjusted by the robustnessScalingFactor. Upon planned and unplanned maintenance,

the value is re-calculated in the same way. This introduces an element of randomness imitating

real variations in time-to-failure.

3.3.5.2 Deterioration and failure

During VESSEL operations, each COMPONENT deteriorates as defined above (i.e. it ages by

the duration the VESSEL operated or by its cycles). The COMPONENT will fail when it operated

for longer than the time-to-failure allows (or had more cycles than cycles-to-failure). Upon fail-

ure, the VESSEL checks for possible redundant COMPONENTS that can take over the workload. If

quantityOnboard>1, the failed COMPONENT is shut off and unplanned maintenance is

scheduled after the current TRACK. If quantityOnboard=1, the VESSEL will be lost with

LossProbabilityFromFailure. If the COMPONENT does not cause the VESSEL to be lost, it

Chapter 3: Framework

59

schedules unplanned maintenance after the current TRACK. If the COMPONENT does cause VES-

SEL loss, it does not finish its current SEGMENT, TRACK and MISSION but is lost immediately.

The deterioration and maintenance model bases upon the following assumptions. COMPO-

NENTS deteriorate by one mechanism only. In reality, components usually deteriorate by several

mechanisms: an aircraft wing structure fatigues during flight (weibullLifeMeas-

ure=duration) but also upon landings (weibullLifeMeasure=cycles). However,

most COMPONENTS deteriorate from one primary mechanism and other mechanisms have se-

cond-order effects only. Therefore, it is reasonable to neglect multiple fatigue mechanisms for

conceptual design.

Another simplification assumes that COMPONENT fatigue and failures are independent of each

other. In reality, failure of one COMPONENT can create secondary failures on other COMPO-

NENTS. Within OSCAR, ripple-on effects are only modelled for redundant COMPONENTS: if a

COMPONENT fails and has quantityOnboard>1, the redundant COMPONENT’S time-to-

failure (or cycles-to-failure) is reduced by

 . The

more redundant COMPONENTS are available, the less reduction in time-to-failure occurs for each

COMPONENT as they are assumed to share the load of the failed COMPONENT. The factor ―0.1‖

is arbitrarily chosen to ensure that no COMPONENT suffers more than 10% reduction in time-to-

failure. However, this simplification neglects that failing COMPONENTS can influence different

COMPONENTS: it is not possible to model complex COMPONENT interactions like that that lead-

ing to the space shuttle Columbia crash
6
.

Another assumption in the OSCAR deterioration model is that COMPONENT time-to-failure

(or cycle-to-failure) distributions are weibull-shaped. Due to flexibility of the weibull distribu-

tion, it is used widely in reliability engineering. Future work may comprise a number of distri-

butions to choose from by users.

So far, all COMPONENT deterioration focussed on mechanical fatigue due to operations. How-

ever, modern VESSELS usually feature electronic components that also suffer from programming

bugs and electric sensibilities. Although electrical failures can be factored into the weibull dis-

tribution for an electronic COMPONENT, it is difficult to account for programming bugs. Modern

industry algorithms feature between 15-50 errors per 1000 lines of code (McConnell 2004).

Modern car software components run up to 100 million lines of code
7
. Although not every de-

fect causes erroneous behaviour in a VESSEL, future work could provide facilities to simulate

electronic component failures due to programming bugs.

6
 During launch, a foam insulation piece came off and struck the left wing. The wing damage caused

the shuttle’s disintegration upon re-entering, see http://www.nasa.gov/columbia/home/CAIB_Vol1.html,

access 30/10/2013.
7
 See Charette (2009).

http://www.nasa.gov/columbia/home/CAIB_Vol1.html

Chapter 3: Framework

60

3.3.5.3 Planned maintenance

A recent review in aircraft maintenance operations lists 21 different types of maintenance op-

erations out of which only three are ―unscheduled or non-routine‖ (Bergh et al. 2013). So far,

the OSCAR deterioration and maintenance model described unplanned maintenance only. How-

ever, most industrial VESSEL designs are not maintained reactively, i.e. once a problem occurs

during operations. Instead, technicians maintain equipment actively, that is through planned

maintenance checks at specific intervals (Gao et al. 2009). Currently, the OSCAR framework

supports planned maintenance only indirectly: When a COMPONENT does not fail before

weibullBeta, it schedules a planned maintenance for the next available slot between TRACKS.

Future work may add an additional parameter plannedMaintenanceInterval indicating

in seconds how often the COMPONENT should be checked for problems. This would not recreate

complex maintenance schedules seen in contemporary aircraft components but would suffice for

conceptual design purposes.

3.3.6 Payload

Austin (2010) defines payload in the context of aircraft as

Payload: the part of the aircraft, which is specifically carried to

achieve the mission.

This research applies the definition not only to aircraft but also to all VESSELS. The opera-

tional purpose of many VESSELS is to transport payload for various applications. Civil airliners

transport passengers or goods from A to B. Ships, trains and cars often fulfil the same purpose.

Another application is dispensing payload during operation. Examples include crop-spraying or

humanitarian air aid. A third application is transporting sensory payload (sensors, animals or

humans) to specific locations for any kind of remote sensing (mapping, environmental monitor-

ing, spying…). In fact, beyond scientific and industrial prototypes, there are no VESSELS de-

signed for carrying no payload at all. A major aspect of conceptual design decision support is to

assess the suitability of a VESSEL design concerning payload performance. How good is the

VESSEL at transporting payload from A to B? Alternatively, how well does payload sensors per-

form during operations due to VESSEL design? To answer these questions, the OSCAR frame-

work supports a generic payload model allowing payload performance quantification. Moreo-

ver, users can add custom payload models to refine performance calculation.

As discussed above, VESSELS either transport payload from A to B (―inactive payload‖) or

use it to gather intelligence (―active payload‖). Note that dispensable payload can be categorized

as ―inactive payload‖. Each payload type is described in more detail below.

Chapter 3: Framework

61

3.3.6.1 Inactive payload

VESSELS transport inactive payload with the goal of transporting. In order to measure

transport performance, the following parameters are used upon defining each VESSEL:

PayloadItems: Integer value indicating how many items the VESSEL

can transport. This neglects varying capacities in different operat-

ing conditions (airliners accept fewer passengers for very long

ranges, etc.). During operations, the VESSEL always transports at

full capacity.

PayloadWeight: Double value in kilograms indicating the weight of

each payload item. This assumes constant weight of each payload

item. Operations with varying payload item weights (parcel deliv-

ery, cargo ships…) must use average values.

Note that this model does not distinguish between animate (humans, animals) and inanimate

(parcels, etc.) payload. It also ignores replenishing items such as food. Each time a VESSEL

completes a TRACK (or a repeated TRACK), it logs the number of payload items and their total

weight as ―on time‖, ―delayed‖ or ―cancelled‖. Items delivered ―on time‖ arrive at the TRACK’s

Destination with no disruptions during the TRACK. Items delivered ―delayed‖ faced a disrup-

tion during conducting the TRACK. Disruptions include refuelling due to fuel shortage or mov-

ing at speeds slower than scheduled (because the VESSEL’s speedMax is not large enough).

Items not delivered are marked as ―cancelled‖: here, the VESSEL did not complete a TRACK be-

cause it crashed (airborne), sunk (maritime) or broke (land-based) due to COMPONENT failure.

Upon post-processing, users can amend the data with monetary information such as price

paid per payload item delivered on time. This allows computing VESSEL profits based on pay-

load transport and VESSEL performance.

Note that inactive payload metrics are not implemented into the OSCAR simulation.

3.3.6.2 Active payload

VESSELS use active payload (i.e. sensors) to gather any form of intelligence about the area

around the VESSEL TRACK. Active payload comprises mechanical devices that are capable to

sense specific physical quantities. Examples include cameras of any light range (visible, infra-

red, etc.), microphones, magnetometers, particle sensors or chemical sensors. Active payload

must be positioned in space to point towards a given target. This can include an area, volume or

point of interest. Moreover, any active payload sensor has a field-of-view that depends on the

sensor design.

Chapter 3: Framework

62

Most commercial and scientific VESSEL missions carry electro-optical sensors (i.e. cameras)

of any type and light range (Duquette 2009). The rest of this section presents a custom add-in

that models electro-optical sensors in detail. Other active payload sensors can be modelled with

the add-in as they are based upon positioning the sensor in space towards a target. However, the

detection probability algorithm (described in Section 4.10.2) is restricted to electro-optical sen-

sors only.

VESSELS employ electro-optical sensors for mapping and for spotting targets. For mapping

missions, camera performance hinges on the image quality, the area covered and image size. For

target missions, camera performance depends upon the same factors plus the capability to spot

the target.

3.3.6.2.1 Payload parameters

Duquette (2009) specifies three important characteristics of electro-optical sensors, namely

pixel array size, field-of-view and sensor orientation relative to the aircraft. Herpel et al. (2008)

define similar characteristics for automotive pedestrian-avoidance sensors. The OSCAR simula-

tion applies these characteristics using six active payload parameters for each VESSEL, as de-

scribed in Table 3-1.

TABLE 3-1: REQUIRED TO DEFINE AN ELECTRO-OPTICAL SENSOR ACTIVE PAYLOAD ITEM ON-

BOARD A VESSEL.

Active payload parameters Description

sensorFOVhor
Double value between 0 and in radians specifying the hori-

zontal field-of-view of the sensor.

sensorFOVver
Double value between 0 and in radians specifying the verti-

cal field-of-view of the sensor.

sensorPixelshor
Integer value larger than zero specifying the number of hori-

zontal pixels of the sensor.

sensorPixelsver
Integer value larger than zero specifying the number of verti-

cal pixels of the sensor.

sensorTiltAngle

Double value between ⁄ and ⁄ specifying the sensor

tilt angle relative to the VESSEL roll axis. If sensorTiltAn-
gle=0, the sensor is aligned with the VESSEL roll axis. For an

aircraft flying in level flight, if sensorTiltAngle=π/2, the

sensor looks vertically down to earth.

sensorRecognitionFactor

Double value larger than zero amending the likelihood of

spotting a target. If sensorRecognitionFactor=0, the

target is never spotted. If sensorRecognitionFac-

tor=1, the likelihood is unchanged. If sensorRecogni-

tionFactor=1.1, the likelihood increases by 10%. This

parameter is used to validate payload performance against real

data, if required.

Chapter 3: Framework

63

Computing sensor detection probabilities is highly specific to the sensor application. Section

4.10.2 details the algorithms used for detection probability calculation of electro-optical sensors.

The target detection algorithm applies only if the target is actually within the camera foot-

print. Appendix 5 details the computation of the camera footprint based on VESSEL operational

characteristics.

3.3.6.2.2 Limitations

The active payload electro-optical sensor add-in described above allows estimating VESSEL

performance based on sensor performance. However, it is only applicable to missions that scan

a 2D surface such as the earth (for airborne and ground-based VESSELS) or the ocean surface

(for submerged VESSELS or ships). Some MISSIONS require sensors to scan 3D spaces or track

targets within space. Examples include volcano ash cloud monitoring or tracking whales in the

ocean from a boat. The OSCAR framework does not support scanning of 3D spaces as this is

deemed too complex for conceptual design studies.

Another limitation of the add-in is its focus on electro-optical sensors only. It can be used for

the visible and infrared light range (although the user should be aware of the significant changes

required with sensorFOVhor and sensorFOVver, see Appendix 5). However, it is not possi-

ble to implement different sensor types such as microphones, radar or Geiger counters.

Moreover, the add-in cannot easily model human eye performance. It is simple to adapt the

model for human eye use if the payload performance is measured by quantities like scanned ar-

ea. However, measuring performance based on spotting targets is much more difficult. There is

very little literature on human eye scanning performance, especially for simple models as re-

quired here. The GEorgia Tech Vision (GTV) model developed by Doll et al. (1998) is too

complex for conceptual design purposes as it simulates performance cell-wise. There is no sim-

ple model linking target size and distance to the probability of spotting from a human eye.

However, humans operate many active payload-carrying VESSELS and their vision often plays

an important role in achieving MISSION success. Examples include any kind of search-and-

rescue missions, human traffic monitoring or border patrols. Therefore, users must be aware that

performance outputs will be skewed for such missions.

Chapter 4: Simulation

65

4 . S I M U L AT I O N

The previous chapter presented the OSCAR framework, i.e. the theoretical foundation used to

answer the research questions posed in Section 1.2. This chapter details the OSCAR simulation,

i.e. one possible practical implementation of the OSCAR framework.

Section 4.1 starts out by justifying the use of computational simulation as the best means to

achieve the OSCAR requirements. Section 4.2 provides the functional specification for the OS-

CAR simulation. Section 4.3 details the process of software selection to find the most suitable

software package for creating the OSCAR simulation. The remaining sections cover the actual

OSCAR simulation: Section 4.4 provides a short overview of the software structure, including a

toy model walkthrough to promote understanding of the user workflow. Then, Section 4.5 goes

into more detail describing the data structure employed for the OSCAR simulation as well as the

practical aspects of data handling. Section 4.6 characterises the Geographical Information Sys-

tem implementation that is critical to the OSCAR framework and simulation. Subsequently,

Section 4.7 depicts the Base module used within the OSCAR simulation. Section 4.8 specifies

the VESSEL module, including details about the characteristic parameters and the state chart be-

haviour. VESSEL performance implementation is discussed in Section 4.9, split into the generic

performance module and the custom aircraft performance module developed for the thesis case

studies. The next Section 4.10 details the payload module derived for the OSCAR simulation. It

is limited to ―active‖ payload equipment that is used to scan 2D surfaces with electro-optical

sensors only. Section 4.11 focuses on a specific VESSEL application, namely Search-and-Rescue

TRACK patterns. Section 4.12 describes the VESSEL COMPONENT module implementation and

functionality. Last, Section 4.13 wraps up the chapter by detailing the OSCAR experimental

setups: the ―Customer‖ experiment can be used for detailed one-time analysis while the

Chapter 4: Simulation

66

―Freeform‖ experiment allows a top-level view on system performance by running many ran-

dom replications.

4.1 Justification

Following the general justification for simulation in Section 2.4, this Section argues specifi-

cally why the OSCAR framework is best implemented using simulation.

The life cycle of any VESSEL consists of MISSIONS, maintenance and idle time (see Section

3.2.3). Thereby, a VESSEL life cycle complies with the four system characteristics that suggest

simulation modelling, namely variability, dynamics, interconnectedness and complexity (Ster-

man 2000). Each of the following characteristics on its own can be handled with other tools be-

yond simulation. However, combining all four is best handled using simulation modelling.

 VESSEL operations are variable because many aspects are inherently stochastic. Aircraft

passenger boarding, oil tanker loading or car component maintenance all vary in dura-

tion in reality. Variability is often caused by (minor) disruptions or human actions that

are beyond the model scope but must be captured nonetheless.

 VESSEL operations are dynamic because the core aspect of modelling the life cycle of a

VESSEL is to follow it through time. The VESSEL operates and performs over time. Any

action or interaction of any agent occurs in time. Although computers can simulate dy-

namic processes in a quasi-dynamic fashion only, this is sufficient for conceptual design

phase requirements.

 VESSEL operations are interconnected because VESSELS interact with their environment.

This includes the physical surrounding (road surface, water temperature, air density),

the operational environment (MISSION profiles), their own COMPONENTS and other

VESSELS. Change in one VESSEL agent can cause change in its physical environment,

MISSION profile, any of its own COMPONENTS, or in another VESSEL. It is one of the

major advantages of OSCAR to be able to simulate the life cycle of a fleet of products

(not just one individual VESSEL). Hence, realistic interaction with competitor VESSELS

in the same environment is possible only through interconnectedness.

 Vessel operations are complex, both combinatorial and dynamically. Combinatorial

complexity can arise due to the number of components in a VESSEL and the number of

VESSELS employed throughout the life cycle (i.e. the VESSEL fleet). In fact, the level of

interconnectedness correlates with the level of combinatorial complexity. Dynamic

complexity arises from component interactions over time. Dynamic systems like VES-

SEL life cycles, physical environment, VESSEL performance, VESSEL COMPONENTS and

Chapter 4: Simulation

67

other VESSELS all interact with each other dynamically. As dynamic complexity is hard

to predict analytically, it is prudent to use simulation for VESSEL life cycle modelling.

Another reason to apply simulation modelling is that simulation allows managers to under-

stand the model easily due to visualisation and interaction. Moreover, virtual experimentation

stimulates a less risk-averse design process because non-intuitive ―what-if‖ scenarios are possi-

ble at low cost. Hence, managers can probe design concepts in more detail and challenge exist-

ing paradigms with little business risks. A simulation usually fosters more communication as

design decisions and interactions must be thought through in more detail (Robinson 2004).

Without simulation, it is more difficult to create and follow thought experiments and arrive at

useful conclusions about the VESSEL design.

The alternatives to simulation are inferior regarding implementation of the OSCAR frame-

work. Spreadsheets offer rudimentary capabilities to integrate dynamics and variability while

advanced spreadsheet functionality requires additional coding. Moreover, presentation and ani-

mation capabilities are inferior to simulation. Not least, spreadsheets cannot recreate intercon-

nectedness between entities easily as they do not support object-oriented interactions.

Analytical and mathematical models can include variability. However, they require far more

assumptions to create the model. Analytical models are not flexible in the sense that their solu-

tion is usually just focussed on a single problem. Not least, most VESSEL life cycles are too

complex to be modelled analytically.

Another alternative to simulation is using a real prototype. However, for conceptual design

this approach is not acceptable. First, building prototypes is expensive and time consuming. Se-

cond, detailed design information is unknown, ruling prototype test results void. Last, it is not

practical to test prototype performance throughout its life cycle.

Although simulation is the superior modelling approach to implement the OSCAR frame-

work, it features inherent disadvantages as discussed in Section 2.4.2 such as inaccurate results,

expensive and time-consuming development, lack of data and over-confidence. However, con-

cerning implementing the OSCAR framework, these disadvantages are acceptable:

 Inaccurate results caused by stochastic simulation runs require a large number of

simulation runs to increase accuracy. The actual number depends on the quantity of

random numbers and their functionality. The OSCAR simulation allows for parallel

computing, reducing runtime on HPC clusters and multi-core computers. As HPC

clusters are commonplace in industry these days, enough simulation runs are possible

even during conceptual design phase development to achieve accurate results with

stochastic inputs.

 Simulation development is usually expensive due to the time required by simulation

experts to create the simulation model. However, the OSCAR simulation only re-

Chapter 4: Simulation

68

quires model integration and adaption. This can be achieved at a fraction of the cost

of full model development.

 This also reduces the time required to integrate the OSCAR simulation. Once imple-

mented into conceptual design procedures, overhead time reduces to defining new

VESSEL parameters and MISSIONS. Due to the object-oriented nature of all OSCAR

components (geographical maps, VESSELS, COMPONENTS, etc.), object re-use is en-

couraged, minimising future time overheads.

 Most simulation projects suffer from lack of data to create realistic outputs. The OS-

CAR framework aims to avoid that by including only data that is usually available

during conceptual design. Designers know about VESSEL and COMPONENT parame-

ters, albeit with uncertainties and estimations. Customers usually know the operation-

al applications they intend to use the VESSEL for. Although this may not be in geo-

graphical shapefiles, conversion is required only once and can be re-used from then

on. Moreover, OSCAR allows to add additional data if it exists (i.e. about environ-

ment, other VESSELS, etc.).

 Due to the concrete nature and the persuasive animations, simulation results often

suffer from over-confidence of their users. However, the OSCAR simulation is sup-

posed to be used by expert design engineers that are aware of this common miscon-

ception. Moreover, outputs allow including confidence intervals or distributed out-

puts, further underlying the uncertain nature of simulation results.

4.2 Functional specification

According to Cusumano et al. (2003), creating and following a functional specification great-

ly increases the chance of product success. This section details the functional specification for

the OSCAR simulation project.

4.2.1 Objectives

The OSCAR simulation should be capable of showing that an operational simulation can be

applied during conceptual aeronautical vessel design. The simulation should be able to accom-

modate the OSCAR framework, namely the SCENARIO and VESSEL framework. The simulation

must allow detailed, geographical VESSEL life cycle modelling. The OSCAR framework re-

quirements also apply: the simulation should be generic, comprehensible, realistic and modular

throughout.

Chapter 4: Simulation

69

4.2.2 Data requirements

Following good simulation modelling guidelines, the OSCAR simulation should keep data

and model entirely separate. The OSCAR simulation must be capable of reading geographical

maps using the standard shapefile format. It is acceptable to pose specific constraints upon the

shapefile structure. Each shapefile feature must be characterized specifically in a database, con-

forming to the OSCAR framework definition of MISSIONS, TRACKS and SEGMENTS. VESSELS

must be able to interact with shapefile features. All VESSEL, COMPONENT and Base parameters

can be specified in a separate database. For simplicity, the input and output data should reside in

one database file in order to allow storing simulation setup and results together. This allows

checking previous simulation runs and results easily without re-running the simulation.

4.2.3 Level of Detail

In general, the simulation should be as detailed as necessary and as simple as possible. How-

ever, OSCAR puts focus on some aspects of VESSEL life cycle performance while neglecting

others. Therefore, the LoD varies throughout the simulation model.

The exact nature of geographical shapefiles requires a high LoD for geographical implemen-

tation. Each shapefile feature has an exact location. MISSION, TRACK and SEGMENT definition

include exact height and speed profiles. Shapefiles must be 2D, neglecting elevation.

VESSELS must be generic enough to model most existing moving vessels. They must be able

to follow geographical features at specific height and speed profiles. However, VESSELS are not

capable to turn, accelerate and climb realistically. Instead, step changes replace realistic behav-

iour. VESSEL performance must capture energy consumption based on speed. Other influences

are neglected. However, a plug-in enables adding more detailed performance modules.

COMPONENTS fail based on a specific weibull distribution only. Each COMPONENT has a spe-

cific probability to cause VESSEL loss upon failure. COMPONENTS are maintained through un-

planned maintenance and can be replaced during operation by redundant COMPONENTS on-

board. There is no interaction between COMPONENTS beyond redundancy. Only physical COM-

PONENT deterioration can be modelled, software bugs are not included.

4.2.4 Animation

Model animation is as important to the model developer as to all other stakeholders (Banks &

Gibson 2009). Simulations usually produce a large amount of data making it difficult for man-

agers to access relevant information (Heilala & Maantila 2010). OSCAR simulation animation

must enable model validation and verification (see Section 4.4.2) as well as promote client un-

derstanding and comprehensibility. All geographical shapefile features must be visible on a 2D

Chapter 4: Simulation

70

map of the world as MISSIONS, TRACKS and SEGMENTS. VESSEL operations must show clearly

on the map, including details about the VESSEL performance and MISSION. Each VESSEL and

COMPONENT agent state chart must be accessible during runtime to observe specific behaviour.

All simulation parameters and variables must be accessible during runtime. A user-friendly GUI

(Graphical User Interface) enables easy navigation and interaction. It allows dynamic update of

database parameters before simulation start. Last, users must be able to turn off all animations to

run the model in fast mode.

4.2.5 Outputs

Each simulation run must output all data generated on MISSIONS, TRACKS, SEGMENTS, VES-

SELS and COMPONENTS. The simulation only stores raw data without post-processing. Users can

post-process outputs as desired. Data is stored in the same database file as the simulation input

data. Output data is divided into operational performance data and failure data. Output is object-

oriented: operational performance objects refer to each SEGMENT. Failure objects refer to each

failure or VESSEL loss.

4.3 Software selection

There are many simulation software packages available to prospective modellers. They vary

in price, capabilities, available support and learning curve. However, it is not possible to survey

all simulation software and arrive at the ideal candidate based on modeller requirements. Many

software features cannot be judged objectively and vary in importance based on application

needs (Law & Kelton 1997).

Still, this section attempts to follow the software selection process briefly. Section 4.3.1 pre-

sents the software requirements to implement the OSCAR framework. Section 4.3.2 introduces

AnyLogic, the tool of choice. Last, Section 4.3.3 lists a number of alternative packages and their

distinct disadvantages regarding the OSCAR simulation.

4.3.1 Requirements

Based on the OSCAR framework, there are a number of specific requirements for simulation

software to be able to create the OSCAR simulation. Initially, the decision to employ purpose-

build simulation software avoids coding all model capabilities from scratch. Based on that deci-

sion, the single most important requirement is the capability to employ agents due to the object-

oriented character of VESSEL life cycles (Section 3.1.4). There are a number of additional re-

quirements that the simulation software must comply with:

Chapter 4: Simulation

71

 Animation: the simulation software should feature extensive and customisable

animation capabilities including geographical map support to allow creation of a

user-friendly model.

 Extensibility and external plug-ins: The simulation software should allow pro-

gram extensions for every aspect of the model (agents, environments, experi-

ments, etc.). Moreover, it must not be self-contained, i.e. it should allow and sup-

port external plug-ins and communication to external data sources.

 Integration: An open software structure allows importing the model into larger

software constructs. Communication with other software should be possible and

easy. Ideally, the software is capable to run as a stand-alone program without the

need for a license. It should allow to be called externally.

 Parallel computing: The software should allow running model instances on mul-

tiple cores in parallel. This reduces the computing time for a large number of

simulation runs to achieve statistically sound outputs.

 Random numbers: The software must allow full access on random number gener-

ations, including custom random number streams for each random variable.

Moreover, independent replication runs must be supported. This ensures reliable

and unbiased outputs.

4.3.2 AnyLogic

Based on the requirement set above, the software of choice is AnyLogic by ―The AnyLogic

Company‖ (formerly ―xjTek‖; www.anylogic.com). It supports agent-based modelling and geo-

graphical shapefile integration explicitly. It has extensive and flexible animation capabilities and

is Java-based. This ensures open communication with external software or data because the

standard Java-libraries can be used. Moreover, any Java package can be imported and used

within AnyLogic, reducing development time to write specific functions. Moreover, Java

standalone applets and applications can be created from the simulation model. These can be

used on any machine, independent of the operating system and without an AnyLogic license.

Parallel simulation runs can be executed on multi-core processors or on HPC clusters. Last,

AnyLogic allows full control on random numbers.

4.3.3 Alternatives

There are a number of alternative packages capable of implementing the OSCAR framework.

However, each posed one or more distinctive disadvantages:

http://www.anylogic.com/

Chapter 4: Simulation

72

 Arena is a discrete-event simulation tool offering similar capabilities to AnyLogic

(www.arenasimulation.com). However, it is not truly object-oriented, making it difficult

to create agent models easily. Moreover, Arena cannot use geographical shapefiles.

 Simio (www.simio.com) is a direct competitor to AnyLogic because it offers object-

oriented simulation capabilities to industrial users. It was created by Arena developers

trying to improve on Arena’s inherent disadvantages. Simio focuses on production man-

agement and intelligent scheduling. However, it lacks direct agent support (although ru-

dimentary agents are available) and cannot integrate shapefiles.

 FlexSim (www.flexsim.com) is very similar to Simio capabilities and lacks shapefile and

agent support.

 ExtendSim (www.extendsim.com) is similar to Arena in its focus on classical discrete-

event simulation and lack of object-oriented principles.

 Repast Symphony (http://repast.sourceforge.net/) is an open-source simulation platform

focussing on agent-based modelling. It is Java-based, supports parallel simulation runs

and allows import of geographical shapefiles. However, agents cannot readily interact

with shapefile features. Instead, features must be drawn manually within the Repast IDE.

Repast is difficult to extend and integrate into other software as it employs its own pro-

gramming language.

 Flames (www.ternion.com) is an expensive COTS simulation framework that complies

well with the plug-in approach postulated by the OSCAR framework. Users develop sub-

models simulating sub-systems and plug them into the Flames application. The software

is highly extensible and provides only basic library items. However, it features its own

programming language and requires specific runtime licenses to run models on client

computers. Flames supports agents interacting with shapefile features. However, the fi-

delity of scenario definitions and physical models is very high: it is designed primarily

for military tactic and strategic battlefield decision support. Despite multi-core support,

single scenario runtimes can be very long.

 Presagis (www.presagis.com/) is similar in capabilities to Flames. It has the same target

application of military decision support, requiring high fidelity models of geographical

3D environments and physical processes. The tool is too sophisticated for conceptual de-

sign phase processes and very expensive.

http://www.arenasimulation.com/
http://www.simio.com/
http://www.flexsim.com/
http://www.extendsim.com/
http://repast.sourceforge.net/
http://www.ternion.com/
http://www.presagis.com/

Chapter 4: Simulation

73

4.4 Overview

Before describing each part of the OSCAR simulation in more detail, this section provides a

brief overview on the model structure. Subsequently, it presents a walkthrough of a simple sam-

ple model to increase understanding of model handling.

4.4.1 Model structure

The OSCAR simulation model consists of three distinct components, namely the Geograph-

ical Information System, the database and the simulation model. Figure 4-1 displays the relation

of the three components in a typical application workflow.

FIGURE 4-1: OSCAR SIMULATION STRUCTURE AND WORKFLOW.

First, the user constructs the geographical shapefiles (Section 4.6 and Appendix 10) for the

TRACKS as required. Second, he generates the database inputs for the given SCENARIO (Section

4.5). Upon starting the simulation model, it loads the Geographical Information System and da-

tabase inputs. The user can opt to refine inputs on the SCENARIO and simulation setup (Section

4.13). Subsequently, the simulation conducts the SCENARIO replications (one or many) accord-

ing to the simulation setup. It saves the outputs of each replication into the database. Once all

replications finish, the simulation model closes and the user can analyse output data in the data-

base. He can choose to refine database inputs or the geographical setup and rerun the cycle.

The simulation model itself consists of a number of Java active objects as in Figure 4-2. The

user can choose to load one of two experiments that load specific simulation setups (Section

4.13). Once the simulation model starts, it creates a ―Main‖ active object. It loads the geograph-

ical map and defines it as the agent environment. All agents ―live‖ in this geographical map en-

vironment. The ―Main‖ active object accommodates two Java active object classes itself. The

Chapter 4: Simulation

74

―Base‖ class holds instances of agents representing bases (Section 4.7). The ―Vessel‖ class

holds instances of agents representing VESSELS (Section 4.8). Within the VESSEL class, each

VESSEL instance uses a specific performance module (Section 4.9), a specific payload module

(Section 4.10) and a search-and-rescue module, if applicable to the VESSEL MISSION (Section

4.11). Note that these modules are not Java classes. Instead, they are separate modules that em-

ploy existing code within OSCAR or load external module code. The ―Vessel‖ class comprises

a sub-class ―Components‖ which holds instances of agents representing COMPONENTS (Section

4.12).

Appendix 6 details a model walkthrough in order to comprehend how a geographical map is

created, inputs are specified and the simulation is set up and run.

FIGURE 4-2: OSCAR SIMULATION MODEL STRUCTURE HIRARCHY.

4.4.2 Verification & Validation

The Project Management Institute (PMI 2013) defines verification and validation as:

Verification: The evaluation of whether or not a product, service,

or system complies with a regulation, requirement, specification,

or imposed condition. It is often an internal process.

Validation: The assurance that a product, service, or system meets

the needs of the customer and other identified stakeholders. It of-

ten involves acceptance and suitability with external customers.

Chapter 4: Simulation

75

More informally, verification is often associated with the question ―Are you building the

thing right?‖ whereas validation asks ―Are you building the right thing?‖. Verification is inde-

pendent of the modelling context, ensuring that a fault-free tool was used, programming was

conducted correctly and that the programming tool features were applied correctly (Sargent

2007). OSCAR simulation verification was conducted internally throughout model development

applying standard software engineering techniques such as unit testing, black-box testing and

walk-throughs (Banks & Gibson 2009). Sawyer and Brann (2009) describe the difficulty of im-

plementing the widely used JUnit
1
 unit testing tool into AnyLogic. Following their recommen-

dation, the AnyLogic IDE was used to create custom unit tests instead.

With regards to model validation, Steinkeller (2011) and Glas (2013) note that model valida-

tion in aeronautical conceptual design phase cannot be conducted due to the lack of experi-

mental data and physical testing. Similarly, Sterman (2000) argues that the term is misleading as

one can never formally prove that a model represents reality. Instead, validation should be used

to ensure a model is convincing and useful. In order to make the OSCAR simulation model

convincing and useful, rigorous model building processes were followed:

 The OSCAR simulation model development reduced components and features to the mini-

mum complexity required to achieve the desired functionality. From the start, clients were in-

volved closely: Initially, the DECODE (―Decision Environment for COmplex Design Evalua-

tion‖) research team (Section 5.2) represented the clients. Later, the RNLI (Royal National

Lifeboat Institution, see Section 5.3.1) and the PRA (Port of Rotterdam Authority, see Section

6.3.1) adopted the client role. Another factor for successful model validation is useful documen-

tation: AnyLogic incorporates a ―Description‖ tab for any model feature: this was used exten-

sively. Moreover, code documentation follows best practices and the external database items are

documented as well.

For the case study in Chapter 5, traditional model validation was conducted by comparing the

baseline scenario (Section 5.3.1) to available operational metrics. This was not possible with the

second case study (Chapter 6) as the scenario did not exist in reality.

4.5 Data

This section describes the data management within the OSCAR simulation. One database file

stores all input and output data. This allows complex database queries connecting input and out-

put data tables. The database engine of choice is SQLite, the ―most-widely deployed SQL data-

1
 Available at www.junit.org, accessed 05/12/2013.

http://www.junit.org/

Chapter 4: Simulation

76

base engine in the world‖
2
. Appendix 7 describes each table type within the database in more

detail. The remainder of this section portraits the application of the database within the OSCAR

simulation, including reading in data, runtime data handling and storing output data.

The database inputs are loaded into the OSCAR simulation at different points, depending on

the chosen experiment (Section 4.13). For the single run experiment, all required MISSION ta-

bles are loaded upon creating the ―Main‖ active object on start-up (Figure 4-2). Moreover, all

BASES, VESSELS and SEGMENTS required for the chosen experiment are loaded from the data-

base. Users cannot influence the data during the start-up period. For the interactive single run

experiment, all database input tables are loaded into the experiment setup page. Users can inter-

act and amend data as required. Upon starting the experiment, the amended user data is loaded

into the simulation. For the ―RunFast‖ experiment, database information is loaded on creating

the ―Main‖ object, similar to the ―Simulation‖ experiment. Users can only amend data before-

hand by editing the database directly.

During simulation runtime, no input data is loaded into the simulation. Moreover, output data

is stored within the simulation model until simulation termination.

Data output upon simulation termination depends on the selected experiment type. For the

single run experiment, no outputs are copied into the database. For the interactive single run

experiment, SEGMENT and maintenance outputs are copied into the respective tables after the

simulation run finished. For the ―RunFast‖ experiment, Segment and maintenance outputs are

copied into the respective tables after the every simulation iteration finished.

4.6 Geographical modelling

As discussed in Section 3.2.4, one of the novel advances of OSCAR is its implementation of

geographical modelling into conceptual aeronautical design. This section explains the practical

application of geographical modelling within the OSCAR simulation. The simulation software

AnyLogic (Section 4.3.2) offers some basic build-in capabilities to display geographical shape-

files. However, enabling agents to interact with shapefile features required considerable manual

extensions because AnyLogic shapefile support is limited to displaying shapefiles as back-

ground maps without interactive capabilities. Appendix 8 details the essential structure required

to import and use shapefile data within the OSCAR simulation. Moreover, it describes the actu-

al data import and how the data is turned into objects for AnyLogic processing. The rest of this

section presents how the simulation applies shapefile data for realistic VESSEL operations.

2
 According to www.sqlite.org, accessed 08/11/2013.

http://www.sqlite.org/

Chapter 4: Simulation

77

Moreover, it discusses how future work should employ the object-oriented paradigm of Java to

turn shapefile features into Java objects.

4.6.1 Application

After the OSCAR simulation loaded and consolidated shapefile and database SEGMENT data

(Appendix 8), this section describes how the data is processed within the simulation.

VESSELS move on the geographical map visually but they do not interact with map features

directly. Instead, interaction occurs with GISPOSITIONFULL objects (GIS abbreviates Geograph-

ical Information System). Figure 4-3 displays when VESSELS read and follow GISPOSITION-

FULL objects during operations (See Section 4.8 for full description of VESSEL state chart).

FIGURE 4-3: GISPOSITIONFULL APPLICATION DURING VESSEL OPERATIONS. SEE 4.8 FOR FULL

DESCRIPTION OF VESSEL STATE CHART.

The initial GISPOSITIONFULL object is read before the VESSEL starts to dash out to the initial

TRACK SEGMENT (A). After finishing the dash phase, the VESSEL moves to each GISPOSITION-

FULL object in turn (B), reading in the next GISPOSITIONFULL object. If the VESSEL is patrol-

ling, it will re-load the initial GISPOSITIONFULL object when re-starting the patrol (C). Other-

wise, the TRACK is finished when the last SEGMENT and the last GISPOSITIONFULL is reached.

Chapter 4: Simulation

78

4.6.2 Future work

AnyLogic can only display geographical maps without support for agent interaction. There-

fore, the OSCAR simulation employs a custom approach consolidating shapefile data with ex-

ternal database SEGMENT data to create the arbitrary GISPOSITIONFULL objects (Appendix 8).

However, two improvements would simplify geographical-agent interactions without the need

to revert to specialist software.

First, Segment data (Height, Speed, etc., see Appendix 1) could be stored in the shapefiles

directly using the dbf-tables associated with every shapefile. All TRACK tables in the current

database would become void because the data is stored with the shapefile features directly. This

would simplify data handling and data consolidation becomes redundant. However, custom al-

gorithms reading all data from shapefiles would be required.

A second approach to simplify data consolidation employs the agent capabilities of

AnyLogic. Here, every MISSION, TRACK and SEGMENT becomes an agent-object featuring the

parameters that correspond to the database table columns. MISSION agents contain any number

of TRACK agents, themselves containing any number of SEGMENT agents. This setup also sim-

plifies a number of algorithms aimed to manage current MISSIONS, TRACKS and SEGMENTS.

TRACK agents, for example, can launch themselves when it is time, asking for the required VES-

SEL. SEGMENT agents consist of coordinate objects (one for Point SEGMENTS, several for Path

SEGMENTS) and collect statistics on their specific performance individually. However, VESSEL

life cycles spanning decades including thousands of MISSIONS may create computer memory

problems due to the large number of SEGMENT agents involved. Intelligent agent creation and

destruction algorithms would be required.

4.7 Base class

Any VESSEL operation starts at a specific location and ends at a specific location (unless the

VESSEL was lost during the operation). Aircraft start and land at airports, ships dock at harbours,

cars park, trains stop at stations, etc. The BASE class within the OSCAR simulation provides a

generic platform to model start and end points of operations.

Based on the equipment_Bases table in the database (Appendix 7), the OSCAR simulation

creates BASE class instances for any BASE mentioned in the Base or Destination column of

any MISSION table loaded for the current experiment. StationName, StationID and geo-

graphical coordinates specify each BASE instance. VESSELS use BASE instances to move to for

refuel, breaks or upon the end of a TRACK. Figure 4-4 shows the visual representation of a BASE

instance within the OSCAR simulation.

Chapter 4: Simulation

79

FIGURE 4-4: BASE INSTANCE REPRESENTATION: YELLOW SQUARE WITH STATIONNAME.

4.8 Vessel class

The VESSEL class is a major component of the OSCAR simulation, providing a framework to

simulate a large variety of vessels using one Java class only. This section describes the mode of

operation of this class in more detail.

Each VESSEL instance is defined by a unique set of parameters loaded from the database. Ap-

pendix 3 summarises all standard VESSEL parameters. Moreover, optional parameters exist to

feed the add-on performance model for fixed wing aircraft VESSELS (Appendix 9). These are

only applicable to VESSELS of the correct category and type. During VESSEL operations, the

agent refers to its parameters to calculate specific information. Parameters do not change during

a simulation run.

Figure 4-5 shows the generic VESSEL state chart used within the OSCAR simulation for eve-

ry VESSEL agent.

Chapter 4: Simulation

80

FIGURE 4-5: VESSEL STATE CHART (SIMPLIFIED).

Upon VESSEL creation, the agent rests in the ―idle‖ state. A TRACK operation commences ei-

ther if a TRACK’S Time parameter triggers its start or if the VESSEL has outstanding TRACKS it

could not commence on time (due to delays). The VESSEL checks if it can conduct the entire

TRACK as requested concerning its energy capacity. This check is not done for nuclear powered

VESSELS (assuming infinite energy) and food powered VESSELS (a hungry human can still

walk). All other VESSELS conduct the requested TRACK virtually (i.e. before the agent actually

moves in the simulation), including dash, return, possible scheduled refuels and loitering. If it

detects running out of energy at any point, the VESSEL cancels the entire TRACK. Outputs will

be marked with ―cancelled due to fuel‖ (compare output Table A-6).

If the TRACK is possible, the VESSEL dashes out to the initial POINT or the start point of the

initial PATH at the DashHeight and DashSpeed specified in the TRACK table. However, if the

TRACK is a search-and-rescue mission, the Vessel dashes to the ―initial search position‖ de-

scribed in Section 4.11. Upon completing the dash phase, the VESSEL changes speed and alti-

Chapter 4: Simulation

81

tude to match the upcoming SEGMENT. Once more, a distinction between normal and search-

and-rescue TRACK is made.

For normal TRACKS, the VESSEL checks if the current SEGMENT has more points (only appli-

cable for PATH SEGMENTS) or if this is the last point of the SEGMENT (always true for POINT

SEGMENTS). In the latter case, the VESSEL simply moves towards the last point of the SEGMENT.

In the former case, another check occurs to see if the current SEGMENT is of type PATH or

POINT. If it is a PATH SEGMENT, all points of the PATH are conducted in sequence repeating the

loop ―moveToNextPATHPoint‖. If the last point of a PATH is reached or if the SEGMENT is a

POINT SEGMENT, the VESSEL moves to this point. Upon arrival, it loiters for the duration speci-

fied in the SEGMENT characteristic Loiter.

For search-and-rescue TRACKS, SEGMENT treatment is fundamentally different, thus requir-

ing an additional state chart branch. The VESSEL follows a user-specified pattern (expanding

square pattern in this example) described in more detail in Section 4.11. Upon discovering the

search-and-rescue incident, the VESSEL also loiters as with normal TRACKS.

Once the loiter duration is over, the VESSEL checks if the current TRACK has more SEG-

MENTS for operation. If so, the current SEGMENT’S uponArrival determines subsequent be-

haviour. If uponArrival=next, the VESSEL adjusts its speed and altitude and conducts the

next SEGMENT as above. If uponArrival=stay, the VESSEL will keep loitering until the

subsequent SEGMENT Time dictates to start the SEGMENT. If that Time already passed, the

VESSEL will commence immediately. If uponArrival=home, the VESSEL will move to the

current TRACK’S Destination (not Base). On arrival, it waits until the subsequent TRACK’S

Time passes, upon which it will depart for the next TRACK’S initial point. If the Time already

passed, it will commence from the Destination immediately.

If the VESSEL found ―NoMoreSegments‖ after loiter, it will attempt to move home to the

TRACK’S Destination. However, if the current TRACK is an active patrol as defined by the

TRACK’S Repetition characteristic (Appendix 2), the VESSEL repeats the entire TRACK. Once

the patrol duration is over, the VESSEL stops the current TRACK (independent of the current

SEGMENT) and moves to the Destination.

Upon arriving at the Destination, the VESSEL checks if any of its COMPONENTS broke

during the operation or if any COMPONENT scheduled a planned maintenance (see Section 4.12).

In such a case, maintenance is conducted on the COMPONENT for the duration specified in the

COMPONENT’S MaintenanceReplacementTime characteristic. Subsequently, the VESSEL

becomes ―idle‖ again.

While the VESSEL conducts a TRACK, it continuously monitors its remaining energy (i.e. fuel)

level (except for nuclear powered and food powered VESSELS). If there is not sufficient fuel to

reach the closest BASE without breaking a 10% energy reserve, the VESSEL leaves the ―enough-

Chapter 4: Simulation

82

Fuel‖ composite state to return to the closest BASE for refuelling. After 15 minutes of refuelling

at the BASE, the VESSEL re-commences its TRACK operation where it left off.

4.9 Propulsion performance module

This section describes two approaches to propulsion performance modelling within the OS-

CAR simulation. The OSCAR simulation can load different propulsion models for each VESSEL

agent. The VESSEL parameter performanceModel (Appendix 3) defines the propulsion mod-

ule required. If performanceModel=powerAgainstSpeed, the generic propulsion mod-

el in Section 4.9.1 will be used. To load different modules, the naming convention ―catego-

ry_type_fuelType‖ must be used. Hence, an aircraft VESSEL with fixed wings burning petrol

will have performanceModel=fixedWing_aircraft_petrol. Section 4.9.2 intro-

duces a propulsion add-in for aircraft, discussing the structure and requirements for external

plug-ins to be used within the OSCAR simulation.

4.9.1 Generic propulsion model

4.9.1.1 Inputs

Based on the discussion in Section 3.3.4, the generic propulsion model uses a VESSEL-

specific relationship between speed and energy consumption to compute the operational energy

consumption over the VESSEL life cycle. Hence, each VESSEL features two parameters

speedValues and powerValues describing the relationship (see Table A-2). Figure 4-6

shows two sample database entries for an Audi A3 and a lifeboat featuring different number of

entries and range of speeds.

Chapter 4: Simulation

83

FIGURE 4-6: GENERIC PROPULSION MODEL INPUTS AS DATABASE INPUTS (UPPER SECTION) AND

VISUAL REPRESENTATION (LOWER GRAPH).

Upon VESSEL agent creation, the OSCAR simulation loads both parameters into a table func-

tion.

4.9.1.2 Processing

During simulation runtime, the VESSEL agent consumes energy based on the inputs described

above. While the VESSEL operates (i.e. not at a BASE or on maintenance), it updates its energy

consumption after every SEGMENT. Using linear interpolation, the agent queries the speed-

power table function providing the speed used during the previous SEGMENT. The returned

power value is multiplied with the duration it took to complete the SEGMENT to obtain the total

SEGMENT energy consumed. Simultaneously, the consumed energy is converted into fuel used

by dividing by the VESSEL’S calorific value. This, in turn, depends on the VESSEL’S fuelType

as follows:

TABLE 4-1: VESSEL FUELTYPE AND CORRESPONDING FUEL CALORIFIC VALUE.

fuelType calorific value (in MJ/kg)

petrol 44.4

diesel 41.1

coal 20

nuclear infinity
3

food 0.003

electric infinity
4

3
 Assuming that nuclear material holds vastly more energy per unit weight than conventional fuel

types.
4
 Assuming that electric batteries do not lose weight while depleting energy. An infinite calorific value

ensures that the output while .

Chapter 4: Simulation

84

4.9.1.3 Outputs

The energy used is stored in the database output table output_Segments (see Table A-6)

with the appropriate SEGMENT entry in the column energyUsed.

4.9.2 Custom aircraft performance model

The OSCAR simulation enables users to provide individual performance modules for more

realistic performance calculations. This chapter describes the steps required to implement a cus-

tom performance module for any VESSEL type. In order to implement a new performance mod-

ule, the following steps are required:

1. Create and code the model according to user needs

2. Convert it to Java code and compile it into a Java archive (.jar) file.

3. Copy the.jar file into the model folder and name it following the naming convention

―performance_category_type_fuelType‖ depending on the applicable VES-

SEL category, type and fuelType. If the module covers several categories,

types or fuelTypes, copy the.jar file and rename it accordingly.

4. Add the.jar file to the model dependencies

5. Adjust the model:

a. Add the additional required VESSEL parameters.

b. Add a new variable named like the.jar file, i.e. ―perfor-

mance_category_type_fuelType‖

c. Load the module in the VESSEL function createPerformance() using

existing if-function structure (Figure 4-7).

d. Adjust energy calculation code in functions getSegmentEnergyUsed()

and getSegmentFuelUsed() using existing if-function structure (Figure

4-7).

FIGURE 4-7: NEW PERFORMANCE MODULES IMPLEMENTATION

 THROUGH IF-STATEMENTS.

Appendix 9 describes a sample custom performance module used for aircraft fuel burn calcu-

lations. This sample module is applied in the case studies in Chapters 5 and 6.

Chapter 4: Simulation

85

4.10 Payload module

This section describes the implementation of the payload module add-on for active payload

as introduced conceptually in Section 3.3.6.2. This add-on creates a realistic representation of

electro-optical sensors of the visual and infrared light spectrum.

4.10.1 Inputs

The OSCAR simulation loads each of the six parameters described in Chapter 3.3.6.2.1 as

VESSEL parameter objects from the equipment_Vessels database table (Table A-2).

4.10.2 Processing

While a VESSEL operates on a SEGMENT (i.e. not on a dash or return, refuel or ―stay‖, com-

pare Figure 4-5), it monitors its environment using the on-board camera defined in the camera

parameters above. It records one image every time its camera footprint (Appendix 5) covers an

entire new area (for airborne VESSELS) or every 10 seconds (for ground-based and submerged

VESSELS). Figure 4-8 schematically compares the two approaches.

FIGURE 4-8: CAMERA FOOTPRINT OVERLAPPING SCHEMATIC.

Appendix 5 explains calculation of the footprint area for all VESSELS. The overlap o for

ground and submerged VESSELS varies depending on VESSEL speed as

 Eq. 4-1

where V is the VESSEL speed and t is the overlap time of 10 seconds. Every time the VESSEL

records an image, the net new area scanned (equivalent to the light pink areas in Figure 4-8) is

added to the output areaScanned. Moreover, the imagesTaken is updated and the

dataAcquired changes as

 Eq. 4-2

Chapter 4: Simulation

86

Where is the acquired data in bytes, are the horizontal camera pixels (OSCAR parame-

ter cameraPixelshor), are the vertical camera pixels (OSCAR parameter cameraPix-

elsVer) and τ is the number of bytes per pixel. Assuming the common pixel format RGBA32,

 . After converting to Megabytes, the value is added to the SEGMENT output

dataAcquired. Eq. 4-2 assumes no file compression (i.e. raw picture file) and neglects

RGBA32 header data.

Every time the VESSEL records a camera image, it checks if the current SEGMENT target re-

quires detection (if not, targetWidth=targetHeight=0, see Appendix 1). If the target

requires detection, the next check tests if the target position is within the camera footprint. If so,

the detection probability algorithm determines the likelihood of the camera detecting the target

using the following discussion based on work carried out by Amrith Surendra, drawing on

Leachtenauer and Driggers (2001) and Gundlach (2012).

Digital imaging cameras use a collection of individual detectors (i.e. pixels) to form an im-

age. The focal plane array arranges the individual pixels in a plane. The field-of-view at the fo-

cal plane array is the angular view of the focal plane. In general, sensor designers determine the

field-of-view characteristics (Leachtenauer & Driggers 2001). One of the fundamental parame-

ters that govern image quality is GSD (Ground Sample Distance) as shown in Figure 4-9.

FIGURE 4-9: GROUND SAMPLE DISTANCE (GSD) DEFINITION. REPRODUCED FROM

LEACHTENAUER AND DRIGGERS (2001).

GSD is a function of the focal plane array, optics, and collection geometry. The horizontal

GSD definition is

Chapter 4: Simulation

87

 (

) Eq. 4-3

where is the horizontal camera field of view (OSCAR parameter cameraFOVhor), is

the number of horizontal pixels (OSCAR parameter cameraPixelshor) and R is the slant

range. The vertical GSD definition is

 Eq. 4-4

Where is the vertical camera field of view (cameraFOVver), is the number of vertical

camera pixels (cameraPixelsVer) and is the look angle as defined in Figure 4-10.

FIGURE 4-10: CAMERA GEOMETRY CONVENTIONS. REPRODUCED FROM GUNDLACH (2012).

The slant range R is defined as

 √ Eq. 4-5

where h is the VESSEL height and GR is the ground range between the Vessel and the tar-

get.

Chapter 4: Simulation

88

The GSD acts as metric to identify the performance of the camera. However, GSD is not a

metric for image quality. To determine if image quality is sufficient for target detection, empiri-

cal approaches are required. In this research, the ―Johnson criterion‖ defines three levels of ob-

ject discrimination, namely detection, recognition, and identification (Leachtenauer 2003). De-

tection occurs if an imagery feature is recognized to be part of a general group (i.e. vehicle,

ship, aircraft…). Recognition is the discrimination of the target class (i.e. car, SUV, truck…).

Identification is the discrimination of the target type (i.e. BMW, Mercedes, Porsche…). The

sensor resolution (i.e. pixels per inch) determines the probability of detection, recognition, and

identification. Using the Johnson criteria, targets are replaced by black and white stripes each

constituting a cycle. The total number of cycles for a target of given dimensions is

 √ Eq. 4-6

where is the target height (targetHeight) and is the target width (targetWidth).

Both are parameters of each SEGMENT end point (Section 3.2.3.1). The number of cycles across

the target is

 Eq. 4-7

Hence, the probability of detection is defined as

(⁄)

 ⁄

 (⁄)
 ⁄

 Eq. 4-8

where is the detection criterion (detectionCriteria) which defines the 50% proba-

bility of successfully performing detection. For detection, , for recognition and

for identification . As discussed in Section 3.2.3.1, detectionCriteria is a param-

eter of any SEGMENT.

Each time the payload camera records an image, OSCAR checks if the camera footprint (Ap-

pendix 5) contains the SEGMENT end point. If so, it calculates the probability of detecting the

current SEGMENT end point based on the given inputs. This allows estimating the camera opera-

tional performance based on VESSEL performance. The case study in Chapter 6 demonstrates

how camera performance figures influence overall VESSEL performance and value.

Chapter 4: Simulation

89

4.10.3 Outputs

The SEGMENT outputs imagesTaken, areaScanned and dataAcquired are updated dur-

ing SEGMENT operation. Upon SEGMENT completion, these are saved into the database.

If a target is detected during SEGMENT operation, the SEGMENT output timeOfSpotting is

updated accordingly. Moreover, the target is internally marked as ―detected‖ to avoid subse-

quent camera searching (and re-detection).

4.11 Search-and-rescue module

Most real-life vessel operations can be modelled easily by applying the generic OSCAR

framework using POINT and PATH elements. However, some vessel operations depend on dy-

namic environment variables, i.e. their mission path changes depending on factors unknown

before departure. One example is search-and-rescue were vessels do not know the exact position

of their target incident. Instead, they move along specific patterns until they find the incident or

give up. Since the OSCAR simulation was used to assess maritime UAS (see Chapters 5 and 6),

search-and-rescue operations featured prominently. Therefore, a custom search-and-rescue

module improved usability for value-driven design because performance measurement became

more precise. This section introduces the search-and-rescue add-in and demonstrates how addi-

tional modelling capabilities can be added to the OSCAR simulation.

Sub-section 4.11.1 describes search-and-rescue procedures and execution in the real word.

Sub-section 4.11.2 presents the OSCAR simulation search-and-rescue module and how it is ap-

plied during runtime. Sub-section 4.11.3 describes the VESSEL state chart amendment for

search-and-rescue operations. Last, sub-section 4.11.4 introduces specific SEGMENT targets used

during OSCAR search operations, namely ―Incidents‖.

4.11.1 Search-and-rescue in reality

The UK Maritime and Coastguard Agency (MCA 2008) defines search-and-rescue as

Search-and-Rescue: The undertaking of locating and recovering

persons either in distress or missing, recovering them and trans-

porting them to a save location.

Search-and-rescue typically occurs in three distinct application areas, namely

 Maritime search-and-rescue uses maritime VESSELS to search for inshore, near-shore

and offshore incidents.

Chapter 4: Simulation

90

 Aeronautical search-and-rescue uses airborne VESSELS (aircraft, helicopters and most

recently UAS) to look for incidents over water and land.

 Inland search-and-rescue uses people, dogs and cars to find and recover persons in

distress on land.

The OSCAR search-and-rescue add-in limits operations to maritime and aeronautical search-

and-rescue operations because inland search-and-rescue patterns depend on local geography and

infrastructure. Maritime and aeronautical search-and-rescue patterns are generic as they are used

around the world.

Each country is responsible for search-and-rescue organisation and most countries signed

various treaties guaranteeing publicly funded conduct of search-and-rescue to any person in dis-

tress. However, most countries feature several civil agencies, NGOs and military units working

together to conduct search-and-rescue operations. Still, search vessels follow similar policies

defined by the IMO (International Maritime Organisation) and ICAO (International Civil Avia-

tion Organisation) in the International Aeronautical and Maritime Search-And-Rescue manual

(IAMSAR 2007). Depending on the incident type, position, daylight, weather and the number as

well as type of available search-and-rescue vessels, it recommends specific search patterns.

Moreover, it provides search stop conditions if ―all reasonable hope of rescuing survivors has

passed‖ (ibid).

One specific pattern recommended for maritime search of persons or small boats is the ―Ex-

panding Square‖ pattern shown in Figure 4-11 (A).

 (A)

(B)

(C)

FIGURE 4-11: TYPICAL SEARCH-AND-RESCUE PATTERNS SHOWING EXPANDING SQUARE (A),

PARALLEL TRACK SEARCH (B), AND SINGLE-UNIT SECTOR PATTERN (C). REPRODUCED FROM

IAMSAR (2007).

The UK search operators RNLI and MCA use the expanding square pattern most frequently

for near-shore incidents
5
. Therefore, it is implemented into the OSCAR search add-in. The

5
 Pattern usage is not recorded by the RNLI or MCA but interviews with RNLI Calshot lifeboat station

staff and MCA Lee-on-Solent helicopter pilots affirmed this claim.

Chapter 4: Simulation

91

IAMSAR manual (IAMSAR 2007) provides specific values for the track spacing value S de-

pending on search vessel and incident type. However, the OSCAR add-in assigns S such that the

camera footprints overlap each other slightly (compare Figure 4-8).

A typical search-and-rescue operation is conducted as follows: When a search-and-rescue in-

cident occurs (person falling off a ship, ship lost, etc.), it is reported to some search-and-rescue

authority agency that delegates search-and-rescue vessels to the nearest known incident posi-

tion, the ―initial search position‖. Here, vessels initiate the most appropriate search pattern until

the incident is found or abandoned. Upon detection, vessels move to the incident and rescue it.

Here, rescuing refers to different actions such as dragging a person out of the ocean but also

giving technical assistance to a drifting ship. Eventually, the search-and-rescue vessels return to

their home base.

4.11.2 Search

The OSCAR simulation triggers a search-and-rescue operation as soon as a VESSEL starts a

TRACK with the first SEGMENT featuring uponArrival=search. The VESSEL does not dash

out to the initial SEGMENT coordinates but creates a specific ―initial search position‖ near the

incident (Figure 4-12).

FIGURE 4-12: SEARCH-AND-RESCUE INCIDENT INITIAL SEARCH POSITION.

This ―initial search position‖ appears on an imaginary circle with its radius defined by the in-

cident SEGMENT type parameter (Appendix 1). The exact position on the circle is defined

through a random function, i.e. it is different for every search. Upon arrival at the initial search

position, the VESSEL initiates an expanding square pattern as in the schematic in Figure 4-13.

This pattern neglects any incident drifting.

Chapter 4: Simulation

92

FIGURE 4-13: EXPANDING SQUARE SEARCH-AND-RESCUE PATTERN WITHIN OSCAR SIMULA-

TION. VIEW AREAS ARE RECTANGULAR BECAUSE THE CAMERA POINTS VERTICALLY DOWN-

WARDS.

The VESSEL starts to fly a schematic expanding square pattern where the size of the track

space S depends on the camera footprint size. Footprints overlay by about 5%. Additional over-

lay naturally occurs at the square corners. Note that some minor areas around the corners are not

covered. This area can be reduced by increasing the footprint overlay. However, in reality the

camera system would also miss minor areas during direction changes (if it has a fixed camera

and footprint overlay is low). The missed area can also be minimized by changing the camer-

aTiltAngle parameter. Note that this pattern is an ideal case that might be amended in ad-

verse conditions in reality.

4.11.3 State Chart

Figure 4-5 presented the generic VESSEL state chart defining VESSEL operations. However, it

omitted the search-and-rescue add-on states required to simulate realistic search-and-rescue op-

erations. The search-and-rescue operation states are shown in a more detailed state chart cutout

in Figure 4-14. The first deviation from the generic state chart occurs upon dash out: the VESSEL

moves to the initial search position, which is near the GISPOSITIONFULL coordinate defining

the search-and-rescue incident. Upon arrival, it initiates an expanding square pattern as de-

scribed above. It alternates between moving west, north, east and south in ever-increasing

squares as in Figure 4-13.

Chapter 4: Simulation

93

FIGURE 4-14: VESSEL STATE CHART SEARCH-AND-RESCUE DETAILS (CUTOUT FROM FIGURE

4-5).

Searching stops if any of the following four events happen:

 The VESSEL runs out of energy. If the incident is not found by other VESSELS during re-

fuel, the VESSEL will re-commence search where it left off. Alternatively, it will move to

the discovered incident.

 The VESSEL discovers the incident. For this, the camera footprint must include the inci-

dent (Appendix 5) and the detection probability must return true (Section 4.10.2). The

expanding_square composite state is left through the transition ―found‖. The VES-

SEL moves to the incident position for rescue and notifies other VESSELS also searching

for the current incident.

 Another VESSEL discovers the incident. In this case, the current VESSEL receives a detec-

tion message from the detecting VESSEL. The expanding_square composite state is

left through the transition ―foundByOtherVessel‖ and the VESSEL moves to the in-

cident for rescue.

 The expanding_square pattern grows so large that the VESSEL distance from the ini-

tial search position is larger than five times
6
 the incident position uncertainty specified in

the SEGMENT’S type column. The expanding_square composite state is left

through the transition ―tooFarFromGuess‖. The VESSEL randomly draws a new ini-

tial search position on the imaginary initial search position circle (Figure 4-12), moves

towards it and initialises a new expanding square search.

6
 This is an estimate based on interviews with RNLI staff at Calshot lifeboat station.

Chapter 4: Simulation

94

Users can implement different search-and-rescue patterns by adding new states next to the

expanding_square composite state.

4.11.4 Incidents

A SEGMENT becomes a search-and-rescue incident if it has uponArrival=search. In

that case, a new agent of class INCIDENT is created. This agent class is only used for search-and-

rescue incidents and is not generic. An INCIDENT represents a human floating in water (helped

by a life vest) and waiting for help. The INCIDENT is positioned at the SEGMENT coordinates.

Once created, it follows the INCIDENT state chart in Figure 4-15.

FIGURE 4-15: INCIDENT CLASS STATE CHART.

Initially, the Incident awaits its detection by a Vessel. During that time, the probability of

survival decreases. The initial survival probability is 0.85, assuming accidental immersion in

cold water at a temperature of 14ºC (Wissler 2003). Subsequently, the probability of survival

decreases with time as in Figure 4-16.

FIGURE 4-16: INCIDENT SURVIVAL PROBABILITY IN COLD WATER OVER TIME.

The survival probability is averaged over data from several experimental studies (Brooks

2001; Glickman-Weiss et al. 1997; Golden & Tipton 1987; Keatinge 1961; Tipton et al. 1999).

There is a time window of less than two hours for VESSELS to find INCIDENTS alive. This is in

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000

p
ro

b
a
b
il
it

y
 o

f
s
u
rv

iv
a
l

Time passed since search start (s)

Chapter 4: Simulation

95

line with the more complex Cold Exposure Survival Model developed by the Canadian Defence

Research authority (Tikuisis & Keefe 2005).

Once a VESSEL detects an INCIDENT at its position, the current INCIDENT survival probability

is stored in the SEGMENT output segmentMeasure (value can be zero, i.e. the incident is

dead). Note that the OSCAR simulation is only concerned with survival probabilities instead of

Boolean ―alive/dead‖ values. Although this approach is less realistic from a simulation perspec-

tive, it reduces the number of required simulation replications because less noise is generated.

If no VESSEL finds the Incident within 24 hours, the simulation assumes that all hope of res-

cuing the INCIDENT alive has passed. All searching VESSELS stop and return to their BASE. The

INCIDENT agent is destroyed. The output timeOfSpotting is set to null.

4.12 Component class

If the database specifies components linked to a VESSEL agent of given category, type and

fuelType, the VESSEL creates sub-agents of the OSCAR simulation class COMPONENTS. The

number of COMPONENT sub-agents depends on the number of entries in the respective compo-

nent database table. Appendix 4 describes the seven parameters defining COMPONENTS. Each

COMPONENT agent follows a generic state chart displayed in Figure 4-17.

FIGURE 4-17: COMPONENT STATE CHART.

Upon initialisation, any COMPONENT is functional. While the parent VESSEL operates, its

COMPONENTS accumulate operating time (if WeibullLifeMeasure=duration) or oper-

ating cycles (if WeibullLifeMeasure=cycles).

By default, each COMPONENT schedules maintenance every WeibullBeta of operating time

(if WeibullLifeMeasure=duration) or of operating cycles (if WeibullLifeMeas-

ure=cycles). However, users could add a new database column ―scheduledMaintenance‖

and enter a simple maintenance interval manually. If the COMPONENT schedules maintenance,

its parent VESSEL will conduct maintenance upon finishing its current TRACK.

However, the COMPONENT may experience failure before scheduled maintenance. Upon

COMPONENT initialisation, the ―time to failure‖ (or ―cycles to failure‖ if WeibullLifeMeas-

ure=cycles) is sampled from the COMPONENT weibull distribution (defined by weibul-

Chapter 4: Simulation

96

lEta and weibullBeta) and multiplied with 1+robustnessScalingFactor. A higher

robustnessScalingFactor increases the COMPONENT robustness because time to failure

increases. When the COMPONENT operating time (or operating cycles) becomes larger than the

time to failure (or cycles to failure), the COMPONENT fails. If the VESSEL contains redundant

COMPONENTS (Section 3.3.5.1), they take over the workload. The VESSEL will conduct mainte-

nance upon finishing its current TRACK. The redundant Components reduce their ―time to fail-

ure‖ (or ―cycles to failure‖) by

 (

) Eq. 4-9

Where N is the number of redundant COMPONENTS, is the OSCAR parameter weibull-

Beta and ti is the i
th
 redundant COMPONENT time to failure (or cycles to failure). If there are few

redundant COMPONENTS they are stressed proportionally more, thereby increasing their own

reduction in fault free operation time. If more redundant COMPONENTS exist, they are assumed

to share the load of the failed COMPONENT. Arbitrarily, the maximum reduction in ti is limited

to 10% of weibullBeta.

If the failed COMPONENT has no redundant COMPONENTS (quantityOnboard=0), the

aircraft is lost with probability LossProbabilityFromInflightFailure. If the random

sample returns no VESSEL loss, the COMPONENT schedules maintenance and the VESSEL returns

to its BASE immediately for repair. If the random sample returns VESSEL loss, the VESSEL is lost

immediately. However, for model simplicity, a new VESSEL agent immediately replaces the lost

VESSEL and continues the current TRACK. This assumption neglects operational performance

drop due to cancelled TRACKS.

4.13 Experimentation

After describing the OSCAR simulation components in detail, this section presents the simu-

lation element that actually runs the simulation: the specific simulation experiments. Each OS-

CAR experiment is defined by two experiment parameters explained in Section 4.13.1. Section

4.13.2 details the randomisation for the OSCAR simulation. Appendix 10 describes each of the

three OSCAR simulation experiments in more detail, namely ―Single Run‖, ―Interactive single

run‖ and ―Run fast‖.

4.13.1 Parameters

Each simulation experiment is defined by three parameters as below:

Chapter 4: Simulation

97

RandomSeed: An integer value indicating the random seed to be

used for this experiment.

missions: A Java array of strings. Each string specifies a MISSION

table to be loaded. The parameter can include one or many MIS-

SION strings. Each string must equal the respective MISSION table

name in the database.

4.13.2 Randomisation

One of the core characteristics of good simulation modelling is to use different random num-

ber seeds for each model part applying random sampling (Robinson 2004). The OSCAR simu-

lation features five random numbers:

 COMPONENT units to failure: Upon creation of a new COMPONENT agent, its time-to-

failure (if WeibullLifeMeasure=duration) or cycles-to-failure (weibull-

LifeMeasure=cycles) is drawn randomly from a weibull distribution (Section

4.12).

 VESSEL loss during operation: Whenever a COMPONENT with no redundant COMPO-

NENTS fails during operation, it causes complete VESSEL loss with probability Loss-

ProbabilityFromFailure (Section 4.12).

 Target detection: If a VESSEL uses its active payload (Section Payload module4.10) to

look for a target, it can spot the target only if it is within the camera footprint (Appendix

5). In that case, the VESSEL spots the target with a probability depending on target size,

camera quality and distance to the target (Section 4.10.2). A random sample is generated

from this probability.

 Initial incident search position: For the search-and-rescue add-on (Section 4.11), VES-

SELS start a search at a random point on an imaginary circle around the actual INCIDENT

position. To define the random point, a random uniform sample is drawn between 0 and

 . The initial search position is placed on the imaginary circle using the random val-

ue as an angle starting from the 12 o’clock position.

 VESSEL arrival: Upon arriving at the current TRACK destination, the VESSEL might

be lost if it applies the landing loss plug-in (see Section 5.4.4).

Chapter 4: Simulation

98

4.14 Embedding

In order to apply the OSCAR framework or simulation effectively, it needs to be embedded

into a design workflow. This section describes how the OSCAR simulation can be implemented

into a larger conceptual design phase tool.

The easiest way to embed the OSCAR simulation is to create a Java applet from the

AnyLogic IDE. This way, users do not need an AnyLogic license (subject to the AnyLogic ver-

sion licensing statement). Java applets run on any machine, independent of the operating sys-

tem. A vessel design software creates VESSEL parameters upstream of running the OSCAR sim-

ulation. It updates the database VESSEL (and COMPONENTS) tables accordingly. The conceptual

design phase tool automatically starts the OSCAR simulation Java applet through a batch file.

Upon simulation close, the OSCAR outputs are written to the database. The Java applet closes

automatically (if using the ―RunFast‖ experiment). The conceptual design phase tool can now

start a downstream tool to post-process the outputs. Section 5.2.2 describes a similar embedding

approach practically applied for this thesis.

Chapter 5: Case study – Decision support

99

5 . C A S E S T U D Y –

D E C I S I O N S U P -

P O R T

This chapter applies the OSCAR simulation in a value-driven conceptual design phase set-

ting. It demonstrates its suitability for design decision support. The case study is based upon the

DECODE (Decision Environment for COmplex Design Evaluation) research project (Section

5.2) that designed, built and flew four UAS using a value-driven design approach. This case

study investigates which UAS design is most suited for a particular operational scenario, name-

ly search-and-rescue support around southern UK waters (Section 5.3). For this, the OSCAR

simulation is setup to model the scenario as closely as possible (Section 5.4). Results are ana-

lysed in Section 5.5, disclosing two of the four designs to be well suited for the given tasks. Sec-

tion 5.6 discusses the results in the light of surplus value, added costs, qualitative OSCAR out-

comes and the applicability of the work within a real conceptual design phase environment.

Last, Section 5.7 summarises findings from this chapter.

5.1 Background

This section outlines the preconceived case study scenario presenting the OSCAR simulation

in a value-driven conceptual design phase setting. The recent rise of military UAS applications

Chapter 5: Case study – Decision support

100

has led to considerations about civil applications of these devices (Cox et al. 2004;

Dalamagkidis et al. 2011; Herrick 2000). One of the most promising applications with regards

to medium-term feasibility, certification and practical value is that of search-and-rescue support

(Austin 2010; Keeter 2008). In 2008, the USCG (United States Coastguard) started investigat-

ing the use of UAS for maritime search-and-rescue support, using a MQ-9 Guardian Predator

UAS in Florida (Egan 2011). In 2013, USCG operated a ScanEagle UAS for 90 hours, aiding

the interdiction of nearly 600kg of cocaine
1
. Also in 2013, Iran developed a UAS designed to

help people drowning in near-shore areas
2
. In the UK, research into UAS for search-and-rescue

operations does not exist.

In this case study, a leading UK search-and-rescue operator, the RNLI, seeks to examine the

usefulness of implementing UAS into their ground-based fleet of lifeboats. The case study as-

sumes that RNLI managers are not yet confident that UAS acquisition is useful to their service.

Therefore, they instruct a UAS manufacturer to suggest various initial design ideas and report

upon their value within the RNLI operational environment. The UAS manufacturer develops

four design candidates. Candidates differ strongly in order to find the best design idea for

search-and-rescue support.

The OSCAR simulation is used by the manufacturer during this conceptual design phase to

find out if:

 UAS is adding any value to RNLI operations at all?

 If so, should the RNLI purchase UAS?

 If so, which of the design candidates is most promising for more detailed devel-

opment?

5.2 DECODE project

The preconceived scenario described above bases upon real work with the RNLI as part of

the DECODE research project concluded in 2012 at the University of Southampton. DECODE

stands for ―Decision Environment for COmplex Design Environments‖ and this section de-

scribes the DECODE research goals, the unique design software suite developed and the four

UAS designs built using the DECODE software suite.

1
 See http://www.uscg.mil/acquisition/uas/default.asp, accessed 16/07/2013.

2
 See http://www.wired.co.uk/news/archive/2013-03/27/iranian-rescue-robot, accessed 16/07/2013.

http://www.uscg.mil/acquisition/uas/default.asp
http://www.wired.co.uk/news/archive/2013-03/27/iranian-rescue-robot

Chapter 5: Case study – Decision support

101

5.2.1 Research goals

The DECODE research was motivated by the insight that today’s aeronautical companies are

not primarily engineering constructors anymore but have become information-processing struc-

tures. In order to deliver their products on time, in budget and according to specification, these

companies must adapt their processes, tools and knowledge management. Many companies still

use relatively simple, ad-hoc design tools, especially within the conceptual design phase (Nunez

& Guenov 2013).

DECODE aimed to alleviate these shortcomings by investigating integrated design tools al-

lowing holistic optimisation at the system level through value-driven design approaches. More-

over, tools should enable active design exploration of system level trade-offs between perfor-

mance, unit cost and life cycle costs. A demonstrator toolkit was developed, linking conceptual

design aircraft spread sheets with CFD and CAD (Computer Aided Design) analysis of varying

fidelities (for conceptual and more detailed analysis). Uniquely, design should incorporate the

impact of operations of the products so the OSCAR simulation was incorporated into the toolkit.

Moreover, a value model quantified cost and benefits of manufacturing and operations to allow

a value-driven design approach. Section 5.2.2 describes the DECODE design suite in more de-

tail.

During the three-year project (2009-2012), three different aircraft for different applications

were designed. A fourth aircraft was designed after the projected ended. All aircraft were UAS

because this allowed not only using the toolkit theoretically but also actually building and flying

the designs to improve the toolkit over time. The four designs are described in Section 5.2.3.

5.2.2 DECODE design suite

DECODE aims to enable computational tools to have a direct influence on design decisions,

reducing (but by no means eliminating) human intervention with the goal to reduce design time

(Keane & Nair 2005). Avoiding the traditional design iterative spiral, DECODE follows a more

agile design approach: Essentially, preliminary design is integrated into the conceptual design

phase as all design variables are considered conceptually (Gorissen, Quaranta, Ferraro,

Schumann, Schaik, Bolinches I Gisbert, et al. 2014). Similarly, manufacturing considerations

are closely integrated into the DECODE design process as are maintenance and deterioration

(through OSCAR).The DECODE suite ties together different functional modules of existing and

new software through a data management layer, a logic layer and a presentation layer (ibid).

The core module is a spreadsheet concept design tool developed from basic principles. It for-

wards basic geometry into a CAD model to develop detailed geometry. Moreover, it informs a

CFD tool to perform aeroelastic and fluid flow analysis. FEA (Finite Element Analysis) is used

for structural analysis. These steps can be skipped for low-fidelity runs using empirical formu-

Chapter 5: Case study – Decision support

102

lae. The design spreadsheet also provides inputs to the OSCAR simulation using a simple text

file (Figure 5-1). The DECODE suite starts the OSCAR simulation as a Java applet and sets an

additional experiment parameter externalTextfile=true.

FIGURE 5-1: EXTERNAL TEXT FILE SPECIFYING VESSEL PARAMETERS.

This enables the Java applet to load and apply the text file parameters for UAS type VESSELS.

After the experiment ends, OSCAR writes outputs to the database but also to a specific output

text file. The output text file contains processed outputs (i.e. the OSCAR simulation processed

the raw data already) such as averages and standard deviations of specific measures. The DE-

CODE suite uses these measures for the downstream value model that is similar but more de-

tailed than the one applied in this case study (Section 5.4.3).

5.2.3 UAS design

The DECODE research produced three UAS designs. A fourth design was created after the

project ended using the same methodology and toolkit. Below is a brief description of each de-

sign, focussing on the characteristics important for OSCAR. The rest of this study refers to each

design by the following acronyms: DECODE, BBC, SULSA and 3i. Appendix 12 compares all

four designs by their performance, camera and COMPONENT inputs used for the OSCAR simula-

tion.

5.2.3.1 Design 1 – DECODE

The first aircraft designed using the DECODE suite was a twin-boom pusher configuration

UAS with a non-retractable undercarriage. It was designed focussing on modularity and easy

handling, allowing operators to carry a disassembled UAS in a car, assemble it in a few minutes

and get it into the air (Figure 5-2).

Chapter 5: Case study – Decision support

103

FIGURE 5-2: DECODE UAS SHOWING MODULAR APPROACH. REPRODUCED WITH PERMISSION

FROM ANDY J. KEANE
3
.

This aircraft was designed with search-and-rescue operational capability in mind to allow for

long endurance. However, the early development stage of the DECODE software suite (includ-

ing OSCAR) at the time prevented targeted search-and-rescue development. Instead, this design

was a proof-of-concept aircraft demonstrating aircraft development using agile and integrated

design tools (Gorissen, Quaranta, Ferraro, Schumann, Schaik, Bolinches I Gisbert, et al. 2014).

The UAS has an empty weight of 8.8 kg with a 1.8 kg fuel capacity. It is made of carbon spars

and has a twin-cylinder four-stroke engine.

5.2.3.2 Design 2 – BBC

FIGURE 5-3: BBC UAS VIRTUAL DESIGN (A) AND ASSEMBLED AIRCRAFT INFLIGHT (B). REPRO-

DUCED WITH PERMISSION FROM JEROEN VAN SCHAIK
4
 AND ANDY J. KEANE

5
.

This UAS was developed based on collaboration between the University of Southampton and

the BBC. It investigated the use of UAS for communication and live video broadcasting of ma-

3
 E-Mail: andy.keane@soton.ac.uk

4
 E-Mail: jeroenrob@gmail.com

5
 E-Mail: andy.keane@soton.ac.uk

mailto:jeroenrob@gmail.com
mailto:andy.keane@soton.ac.uk

Chapter 5: Case study – Decision support

104

jor events. The UAS is based upon the DECODE design but has larger dimensions at 4 m wing

span, 2.5 m length and almost 23 kg take-off weight. A larger twin-cylinder four-stroke engine

allows much higher flight speeds compared to DECODE. Moreover, the fuel tank is larger, in-

creasing flight endurance. The final design is a monoplane with a pusher 3-blade propeller and a

twin-boom ―inverted V‖ tail as in Figure 5-3. The internal structure was designed for rapid pro-

totyping and aerodynamic surfaces use ultra-light foam.

5.2.3.3 Design 3 – SULSA

(A)

(B)

FIGURE 5-4: SULSA INTERNAL STRUCTURE (A) AND THE DISASSEMBLED AIRCRAFT SHOWING

INSTRUMENTS TRAY (B). REPRODUCED WITH PERMISSION FROM JEROEN VAN SCHAIK
6
 AND

ANDY J. KEANE
7
.

SULSA (Southampton University Laser-Sintered Aircraft) is the smallest design and was cre-

ated to explore the DECODE rapid prototyping capabilities (Figure 5-4). It was designed, built

and tested in less than two weeks. Moreover, it was the ―world’s first printed aircraft‖
8
 as its

entire structure, including wings, control surfaces and hatches were printed layer by layer on a

nylon laser sintering machine. SULSA’s dry weight is 0.208 kg only with a wing area of 0.24

m
2
.As SULSA is the only design in this case study that is propelled by an electric engine, the

custom performance model (Section 4.9.2) is not applicable. Instead, the generic performance

model (Section 4.9.1) links flight speed to power consumption as in Figure 5-5. Appendix 11

details the rationale.

6
 E-Mail: jeroenrob@gmail.com

7
 E-Mail: andy.keane@soton.ac.uk

8
 See http://www.newscientist.com/article/dn20737-3d-printing-the-worlds-first-printed-plane.html#.-

UfU-D43vh8E, accessed 29/07/2013.

mailto:jeroenrob@gmail.com
mailto:andy.keane@soton.ac.uk
http://www.newscientist.com/article/dn20737-3d-printing-the-‌worlds-‌first-‌printed-plane.html#.UfU-D43vh8E
http://www.newscientist.com/article/dn20737-3d-printing-the-‌worlds-‌first-‌printed-plane.html#.UfU-D43vh8E

Chapter 5: Case study – Decision support

105

FIGURE 5-5: SULSA POWER-TO-SPEED RELATIONSHIP.

5.2.3.4 Design 4 - 3i

FIGURE 5-6: 3I AIRPLANE OVERVIEW. REPRODUCED WITH PERMISSION FROM JEROEN VAN

SCHAIK
9
.

This design is the largest and heaviest of all four UAS. It was developed as part of the follow-

on research project after DECODE, namely the 3i project (―Integrated Coastal Zone Manage-

ment via Increased Situational Awareness through Innovations on Unmanned Aircraft Systems―

described in Section 6.2). Design focussed upon flight safety and component redundancy as the

product is intended to be used in real operations after the project end. A FMEA (Failure Modes

and Effects Analysis) indicated that using two engines and a duplex redundant flight control

system was required to achieve high levels of flight reliability. About 70% of the 3i UAS are

laser-sintered, reducing production errors and performance loss. The design configuration is a

9
 E-Mail: jeroenrob@gmail.com

0

50

100

150

200

250

0 5 10 15 20 25
P
o
w

e
r

(J
/
s
)

Speed (m/s)

mailto:jeroenrob@gmail.com

Chapter 5: Case study – Decision support

106

twin-engine, twin-boom monoplane, featuring a versatile payload pod near the CoG (Centre of

Gravity) with an unobstructed forward view (Figure 5-6). The aircraft is the heaviest design at

24.2 kg but also the fastest, capable of flying at 45 m/s. If one engine fails, it can safely return to

base using the remaining engine.

5.3 Scenario

This section describes the situation of search-and-rescue operations as it is found today

around the Solent region at the south coast of the UK. Moreover, it discusses how adding one or

more UAS would change real search-and-rescue execution for stakeholders. The remainder of

this chapter uses the keyword ―baseline‖ to refer to the former case (Section 5.3.1) while ―re-

vised‖ alludes to the latter (Section 5.3.2).

5.3.1 Baseline scenario

FIGURE 5-7: SOUTH COAST OF THE UK INDICATING RNLI LIFEBOAT STATIONS IN THAT REGION.

UK search-and-rescue operations are conducted by several authorities that follow specific

guidelines (Section 4.11.1). One of them is the RNLI employing maritime vessels exclusively.

The area chosen for this case study covers part of the south coast of the UK, ranging from Lyme

Regis in the West to Portsmouth in the East as seen in Figure 5-7.

Chapter 5: Case study – Decision support

107

The area includes the Solent, the water strait between the Isle of Wight and the City of South-

ampton. The Solent is one of the busiest shipping routes of the UK and features a very high lev-

el of leisure activities, ranging from sailing and diving to water-skiing and surfing. Ten RNLI

lifeboat stations conduct search-and-rescue in the chosen area. Each harbours between one and

two lifeboats of varying types. Lifeboat services include missions due to vessel machinery fail-

ures, troubled vessels, persons in distress/missing, capsizes, fires or collisions. About one third

of all missions can be classified as searches because the incident position is unknown (RNLI

2009). In this case study, only missions including unknown incident positions are included as

these merit additional search tools.

Generally, search missions consist of four stages: initially, the responsible lifeboat station

will dispatch the appropriate lifeboat towards the suspected incident position. Next, a coordinat-

ed search begins, using fixed search patterns until the incident is found or searchers give up.

One or more lifeboats can search for an incident, depending on weather, incident type, available

equipment and location. Upon spotting the incident, rescuing is performed based on the inci-

dent’s requirements. Lastly, lifeboats return to their base.

5.3.2 Revised scenario

Current search-and-rescue operations combine very expensive equipment (lifeboats, helicop-

ters, aircraft) with limited human performance as pilots and lookouts can conduct searches for

no more than several hours on end. Moreover, equipment and operators can be severely restrict-

ed by weather and night time operations. This leads to very high fixed costs with acceptable (yet

improvable) search performance. The use of UAS lends itself ideally to support search-and-

rescue operations because UAS are not confined to the same limits. Using autonomous technol-

ogies, UAS can operate much longer than humans can. Given the right payload, they can auton-

omously scan and analyse large areas for incidents, even in bad weather or during night.

Once the technology has matured, UAS could be easily implemented into current search-and-

rescue operations, weather permitting. They could be launched from lifeboat station managers

after lifeboats dispatched. Most stations have a strip of grass long enough to house medium

sized UAS as those presented in this case study. Alternatively, UAS could be launched by life-

boats themselves while searching, broadcasting a live view from the air into the lifeboat or to its

base. Combining live search image analysis and human search potentially increases the chance

to find incidents earlier at little additional cost.

Chapter 5: Case study – Decision support

108

5.4 Simulation setup

The simulation runtime of all scenarios is one virtual year. This is less than the entire life cy-

cle of a search-and-rescue UAS but suffices to for the purpose of this case study, i.e. to compare

and decide upon the best UAS design. The input data described in this section is applicable over

the course of one year only. Therefore, longer runtimes would have extrapolated that data with-

out new model insights.

This section presents how current search-and-rescue operations and the anticipated UAS in-

tegration were translated into the OSCAR simulation. Section 5.4.1 describes the baseline sce-

nario as found at the south coast of the UK today. Section 5.4.2 presents the setup for the re-

vised scenario that includes a UAS vessel. Section 5.4.3 details the value model developed to

compare both scenarios quantitatively. Last, section 5.4.4 introduces an additional OSCAR sim-

ulation add-in used for modelling the landing of UAS in more detail. Appendix 16 details the

rationale behind setting the number of simulation replications for this case study.

5.4.1 Baseline scenario

The baseline scenario is used to judge the performance of each UAS design against a datum.

It represents the current status of search-and-rescue operations around the southern coast of UK

waters as described in chapter 5.3.1 within the OSCAR simulation.

5.4.1.1 Lifeboat stations

FIGURE 5-8: BASELINE SCENARIO OVERVIEW SHOWING LIFEBOAT STATIONS (SQUARES) AND

INCIDENT POSITIONS (DOTS).

This case study models 10 RNLI lifeboat stations along the south coast of the UK as shown

in Figure 5-8. Each station is an agent incident of the BASE class (Section 4.7) with the respec-

tive coordinates.

file:///D:/Dropbox/Thesis/5%20Case%20study%20decision%20support/5-4%20baseline%20scenario%20map.PNG

Chapter 5: Case study – Decision support

109

The geographical region was chosen such that model validation could be supported by local

RNLI personnel. The geographical extent of this case study was chosen based on initial range

and endurance estimates for the UAS such that they could support all incidents from an edge

location. Each lifeboat station is assigned incidents and lifeboat vessels as described below.

5.4.1.2 Incidents

Figure 5-8 shows the geographic distribution of incidents. Each incident is an agent of the

non-generic INCIDENT class (Section 4.11.4). The majority of INCIDENTS occur very close to the

shore and in proximity to lifeboat stations, most acutely within the Solent region between the

Isle of Wight and mainland UK. Here, leisure activities such as sailing, surfing and swimming

are predominant. Further out at sea, incidents involve fishing vessel capsize or staff washed

overboard (RNLI 2009; RNLI 2008). Each station features an average number of incidents oc-

curring at that station per year as in Figure 5-9. This neglects seasonal differences.

FIGURE 5-9: AVERAGE NUMBER OF INCIDENTS FOR LIFEBOAT STATIONS
10

.

Based on lack of detailed data, each incident has a uniformly distributed random position un-

certainty between 50 and 3,000 metres. Larger uncertainty alludes to persons immersed in water

with a small target size of 0.2 by 0.2 metres (essentially a head in water), a loose Detection-

Criteria requiring identification only, a longer UAS loiter time upon detection and a high-

er UAS flight altitude. Conversely, smaller position uncertainty defined incidents to be small

boats of target size 3 by 10 metres with a tighter DetectionCriteria requiring recognition

10
 Based on publicly available data from www.rnli.org.uk

B
e
m

b
ri

d
g
e

C
a
ls

h
o
t

C
o
w

e
s

L
y
m

e
 R

e
g
is

L
y
m

in
g
to

n

P
o
o
le

P
o
rt

s
m

o
u
th

S
w

a
n
a
g
e

W
e
y
m

o
u
th

Y
a
rm

o
u
th

0

20

40

60

80

100

120

140

160

A
v
e
ra

g
e
 i
n
c
id

e
n
ts

 p
e
r

y
e
a
r

http://www.rnli.org.uk/

Chapter 5: Case study – Decision support

110

or even detection, less UAS loiter time upon detection and lower UAS flight altitude. This

setup recreates reality in the sense that the position of a person in water is known less well than

that of a small boat (which might even have a transponder radioing its exact position). Small

boat incidents represent people that have gone overboard but are still near the boat (hence more

easily found by rescuers or UAS).

However, all incidents are essentially persons immersed in ocean water. Submersion time is

by far the most influential factor for survival in water (Suominen et al. 2002). A simple proba-

bility of incident survival links to water immersion time as in Figure 5-10. It assumes that ocean

water temperature around the Solent remains constant at 14 °C throughout the year
11

, people

wear clothes and a life-jacket and are of average shape and fitness (Wissler 2003).

FIGURE 5-10: INCIDENT SURVIVAL PROBABILITY BASED ON WATER IMMERSION TIME. ADAPTED

FROM (Wissler 2003).

5.4.1.3 Vessels

The baseline scenario features VESSEL agents representing lifeboats by setting catego-

ry=boat and type=boat (Figure 3-12). In reality, the Solent stations feature different types

of lifeboats and varying number of boats per station. For this case study, however, one VESSEL

type applies for each station because engine performance data was available for one lifeboat

type only, namely the Mersey. The Mersey lifeboat is an all-weather boat with a maximum

speed of 17 12
. It is powered by two Caterpillar 3208T marine diesel engines consuming

11
 This is a reasonable assumption based on the World Ocean Atlas 1994: http://iridl.ldeo.-

columbia.edu/SOURCES/.LEVITUS94/, accessed on 11/07/2013.
12

 See http://rnli.org/aboutus/lifeboatsandstations/lifeboats/Pages/Mersey.aspx, accessed on

10/07/2013.

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000

S
u
rv

iv
a
l
p

ro
b

a
b
il
it

y

Immersion time (s)

http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/
http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/
http://rnli.org/aboutus/lifeboatsandstations/lifeboats/Pages/Mersey.aspx

Chapter 5: Case study – Decision support

111

between 10 and 90 kg/hr of maritime diesel, depending on cruise speed. Appendix 13 details the

power consumption for varying cruise speeds. The Mersey has a fuel capacity of 821.4 kg and a

search cruise speed of 7 m/s. Each lifeboat assumes one lookout searching for the incident. Due

to lack of a human visual model, the camera model (Section 4.10) was adapted to emulate hu-

man vision. The horizontal and vertical field-of-view were set to 40° and 15° respectively, mir-

roring the human cone of visual attention. The horizontal and vertical pixels were set to 1,000

each, reflecting the total number of signal fibres going from the eye to the brain (Defense 1999).

The camera tilt angle was set to 0° as the lookout will scan the horizon. Moreover, setting cam-

era_recognition_factor=3 increases the chance of spotting an incident threefold. This

factor was chosen to match the baseline output average_incident_waiting_time with the

observed RNLI waiting times
13

.

5.4.2 Revised UAS scenario

This section describes the ―revised‖ scenario including UAS setup within OSCAR. The life-

boat stations, VESSELS and INCIDENTS setup is identical to the ―baseline‖ setup. The only differ-

ence in the ―revised‖ scenario is the addition of a UAS agent. This agent is a VESSEL where

category=fixedWing and type=aircraft (Appendix 3). For DECODE, BBC and 3i,

performanceModel=fixedWing_aircraft_petrol and fuelType=petrol

while SULSA uses performanceModel=powerAgainstSpeed and fuel-

Type=electric. Further parameters base on the UAS in question as outlined in Section

5.2.3 and Appendix 12. The UAS agent operates from the BASE at Lyme Regis, the westernmost

BASE in this case study. Thereby, the UAS is forced to cover long distances to most of the inci-

dents, stretching its operational capabilities as much as possible. This helps design comparison

as performance between two similar designs can be difficult if designs are not strained to their

limits.

5.4.3 Value model

A simple value model demonstrates useful post-processing of OSCAR outputs for value-

driven design. Real applications would feature more elaborate value or cost models, including

currency depreciation but this is beyond the scope of this work. In general, the value of a prod-

uct can be described as the revenue it generates minus the costs it accumulates. However,

search-and-rescue operations do not create any incoming revenue so an alternative ―benefits‖

13
 The RNLI aims to ―reach at least 90% of all casualties within 10 miles of lifeboat stations within 30

minutes‖. (RNLI, 2009).

Chapter 5: Case study – Decision support

112

model was devised, monetising the perceived search-and-rescue benefit of saving lives and

scanning large ocean areas. Vanguard Studio
14

 generated the models and statistical distributions.

5.4.3.1 Cost model

The cost model used for this case study employs a comprehensible bottom-up cost estimation

approach. Usually, parametric or analogous (i.e. top-down) cost estimation methods are used

during conceptual design due to the lack of available information (Curran et al. 2004; Fielding

1999). However, OSCAR processes more detailed information during the conceptual design

phase and merits the application of a bottom-up approach. The cost model structure can be seen

in Figure 5-11.

FIGURE 5-11: COST MODEL OVERVIEW

The model consists of OSCAR inputs provided by the operational simulation, cost parameters

and results. The total system cost is subdivided into UAS and lifeboat costs, reflecting the case

study setup. The ―baseline‖ scenario has UAS costs = 0. UAS costs are further sub-divided

into maintenance, operating, fixed and payload costs while lifeboat costs only consists of fixed

14
 Vanguard Studio Version 5.2.0, available at http://www.vanguardsw.com/.

http://www.vanguardsw.com/

Chapter 5: Case study – Decision support

113

and operating costs. This reflects the additional OSCAR outputs available for UAS while keep-

ing the lifeboat outputs as simple as possible. Actual cost calculation is conducted via simple

factoring of OSCAR outputs and given parameters. By way of example, the UAS maintenance

costs in Figure 5-11 are calculated as in Eq. 5-1.

 Eq. 5-1

Where CM is the maintenance cost, tM is the maintenance time, is the cost per mainte-

nance hour, is the number of maintenance operations and is the cost per maintenance

operation. Appendix 14 derives the cost parameters (light grey arrowed boxes in Figure 5-11).

Each OSCAR output (white boxes in Figure 5-11) was included into the value model as follows:

First, output values for each iteration were summarized by fitting a statistical distribution using

Vanguard Studio distribution fitting. Distributions were included into the cost model such that

10,000 Monte Carlo simulation runs could be produced to obtain overall cost distributions.

5.4.3.2 Benefit model

As search-and-rescue operations do not produce economic revenue or income, the perceived

benefit of saving lives and scanning large ocean areas were monetised in a benefits model. Fig-

ure 5-12 shows the benefits model used for this case study.

FIGURE 5-12: BENEFITS MODEL OVERVIEW

This model uses the same factoring approach as the cost model above. It quantifies the bene-

fits of search-and-rescue in monetary terms to compare it to the costs caused by search-and-

rescue operations. The major benefit of conducting search-and-rescue is saving lives. In order to

save more lives, rescuers must find and rescue incidents as fast as possible as the prime driver

for death at sea is time in water (Suominen et al. 2002). Therefore, the absolute number of saved

lives is the main benefit. However, in this case study, we are interested in the improvement over

the baseline case so the number of additional saved lives over the baseline case is used. Some-

what arbitrarily, this benefit model also includes the scanned area as a benefit. This founds upon

the assumption that scanning more area can reveal other incidents that search-and-rescue opera-

Chapter 5: Case study – Decision support

114

tors were not aware off, increasing total benefits further. However, it also demonstrates how

different OSCAR outputs can be applied for value calculation.

Several estimates for the statistical value of a live exist, varying by two orders of magnitude.

The value of a statistical life of a prime-age worker in a developed country is estimated to be

around $ 7M, based on a review of 100 studies on mortality and injury risk premiums (Viscusi

& Aldy 2002). However, using such a high value for saving one additional live would strongly

dominate the cost-benefit calculations, preventing analysis of more subtle influences. A differ-

ent valuation is used based on RNLI statistics: the daily operational cost of the RNLI is £

385,000 (RNLI 2009). On average, 22 lives are saved every day by the RNLI (ibid). As this ser-

vice is financed exclusively through charitable donations, the public appears to value saving a

live at sea at about £ 17,500, the value used for this case study.

The value of scanning one square kilometre is arbitrarily set to $ 1 as there are no relevant es-

timates for a similar application.

5.4.4 UAS landing loss plug-in

UAS landings are risky operations since a human operator or an autopilot must remotely land

the UAS, often on grass or uneven ground. VESSEL loss due to landings is a relevant influence

on UAS operational performance that is not captured in the generic OSCAR framework. There-

fore, this Section presents an OSCAR add-in modelling the risk of VESSEL loss upon landing at

BASES for UAS only.

Weibel et al. (2004) identified UAS weight as one of the most critical factors for UAS crash

probability. However, a crash is more likely to occur upon landing with high speed as well.

Therefore, the plug-in assumes that the probability of landing loss is related to the UAS landing

kinetic energy.

There is very little scientific data of UAS landing losses for two reasons: First, manufacturers

and operators do not want to publish crash data for confidentiality. Second, little data on civil

UAS operations exist because their application is very new. There is not much data on landing

losses for this aircraft category.

Therefore, users define a custom relation between landing loss probability and landing kinetic

energy. For the case studies in this thesis, the relationship in Figure 5-13 defines the probability

of landing loss based on landing kinetic energy. The setup is arbitrary and based on engineering

judgement, consultation with UAS pilots and designers.

Chapter 5: Case study – Decision support

115

FIGURE 5-13: LANDING LOSS PROBABILITY BASED ON LANDING KINETIC ENERGY FOR UAS.

Upon UAS arrival at its BASE, the current landing speed (calculated from the aircraft perfor-

mance add-in, see Appendix 9) and the current UAS weight define the landing kinetic energy.

The UAS is lost with the given probability. If the UAS is lost, a replacement UAS immediately

takes over and adds to the fixed UAS costs as the number of used UAS rises (Figure 5-11).

5.5 Results and Analysis

This section presents and analyses all results from the case study, starting with the raw OS-

CAR outputs (Section 5.5.1), followed by the costs (Section 5.5.2), benefits (Section 5.5.3) and

value outputs derived from the value model (Section 5.5.4).

5.5.1 OSCAR outputs

For this case study, 14 outputs were recorded for 120 iterations for each of the simulation

runs (one baseline case and four UAS designs), totalling 8400 outputs. The following boxplots

summarise outputs aggregated over the simulation period of one year. Note that whiskers indi-

cate the maximum/minimum of data (unless otherwise stated).

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000
L
a
n
d
in

g
 l
o
s
s
p
ro

b
a
b
il
it

y

Kinetic Engery (J)

Chapter 5: Case study – Decision support

116

(A)

(B)

FIGURE 5-14: AVERAGE INCIDENT WAITING TIME (A) AND THE NUMBER OF SAVED LIVES (B)

(A)

(B)

FIGURE 5-15: LIFEBOAT UTILISATION (A) AND FUEL USED BY LIFEBOATS (B)

Each UAS design reduces the average incident waiting time (Figure 5-14 (A)) by at least 30

minutes compared to the baseline case. The BBC design and the 3i design are more successful

at this than the DECODE and SULSA design. The waiting time reduces because the UAS

searches in parallel with lifeboats, thereby spotting incidents earlier, on average. The better per-

formance of the BBC and 3i aircraft originates from their higher maximum and search speeds,

reaching the search area faster and spotting incidents earlier, on average.

The increase in the number of saved lives in Figure 5-14 (B) is similar in trend but less strong

in absolute numbers. The BBC and 3i design increase the number by about 10 % while DE-

Chapter 5: Case study – Decision support

117

CODE and SULSA add less than 3% to the number of saved lives. As incident survival is criti-

cally linked to time in water (Suominen et al. 2002), the faster BBC and 3i designs can rescue

more people alive.

By introducing UAS to the baseline case, lifeboats utilisation decreases (Figure 5-15 (A)).

The BBC and 3i design reduce the required lifeboat hours by about 33% while DECODE and

SULSA reduce it by 22.5% and 19%, respectively. In absolute terms, each lifeboat is used be-

tween 18 and 27 minutes per day, on average. Fuel usage reduces accordingly (Figure 5-15 (B)):

Each lifeboat burns between 23 and 35 kg of diesel per day. Lifeboat utilisation is inversely

proportional to the number of saved lives (Figure 5-14), because the faster BBC and 3i designs

help spotting incidents earlier, allowing lifeboats to return home quicker, thereby reducing their

overall utilisation.

(A)

(B)

LOGARITHMIC SCALE.

FIGURE 5-16: UAS FUEL BURNED (A) AND UAS ENERGY USED (B)

Figure 5-16 (A) plots the fuel burned for petrol-driven UAS (DECODE, BBC and 3i). DE-

CODE burns about 1kg each day, BBC requires 4 kg and the twin-engine 3i burns 8 kg each

day, on average. SULSA does not burn any fuel as it is propelled by an electric engine. To com-

pare SULSA energy consumption, the energy consumed by the petrol designs was converted

using the calorific value of petrol, as in Figure 5-16 (B). Still, SULSA consumes 64 times less

energy than DECODE at 0.2 kWh or 720 kJ per day. In general, fuel consumption is inversely

proportional to UAS flight times (Figure 5-17) because a fast design burns more fuel but also

returns home earlier, on average.

Chapter 5: Case study – Decision support

118

(A)

(B)

FIGURE 5-17: UAS FLIGHT TIME (A) AND NUMBER OF UAS LAUNCHES (B)

UAS flight times (Figure 5-17 (A)) correlate with lifeboat utilisation (Figure 5-15 (A)). The

reason is that the slower DECODE and SULSA designs (flight times at about 3.3 hours each

day) generally need longer to spot incidents (Figure 5-14 A). The faster BBC and 3i designs

(operating for about 2.5 hours per day) spot incidents earlier, accruing less flight time. This is

not mirrored by the number of take-offs shown in Figure 5-17 (B): While DECODE, BBC and

SULSA launch around 1.75 times per day, 3i launches 1.9 times each day. The reason is found

in Figure 5-18 showing the number of refuelling operations conducted during searches.

While BBC and SULSA virtually never need to refuel during a search, the high search speed

and performance of 3i require it to interrupt a search in order to return home for refuel almost

twice a month. Each refuel adds a take-off in Figure 5-17(B). However, despite more refuel op-

erations for DECODE compared to BBC, it has less take-offs accrued. This indicates the fol-

lowing specific case: the slow DECODE design searched for an INCIDENT while a second INCI-

DENT appeared somewhere else. Due to its slow speed, it could not respond to that second INCI-

DENT which was rescued by lifeboats instead. As the UAS still searched for the first INCIDENT,

it accrued less take-offs in total, not needing to dispatch to the second INCIDENT anymore (see

discussion in Schumann et al. (2011) for more details of this specific case).

Chapter 5: Case study – Decision support

119

FIGURE 5-18: UAS REFUELLING COUNT

Figure 5-19 sums the UAS losses occurring inflight (A) and upon landing (B). DECODE and

BBC losses are similar at about one inflight loss every 3 months and a landing loss once a year.

SULSA is lost inflight almost every month and never upon landing (due to its low mass). Con-

trary, 3i is lost very rarely inflight but almost every 2 weeks upon landing.

Inflight losses occur when any component without redundancy stops working and causes loss

of control (Section 4.12). DECODE and BBC feature identical components (compare Appendix

12) and the slightly higher DECODE inflight losses are caused by the larger flight time of DE-

CODE. SULSA has fewer parts than the other designs and a much more reliable fuselage. How-

ever, its large number of inflight losses is also rooted in its increased flight time, causing more

COMPONENT deterioration. 3i has less inflight losses because it has redundant engines, throttle

servos, ignitions and propellers. Moreover, inflight losses are reduced by 3i’s large number of

landing losses because a new UAS is purchased after any loss, increasing the time to the next

loss due to the new COMPONENTS aboard.

Landing losses occur based on the vessel kinetic energy upon landing (see Section 5.4.4). 3i

is by far the heaviest design with the highest landing speeds and, therefore, features the highest

risk of crashing upon landing. SULSA as the other extreme is very light and has a lower landing

Chapter 5: Case study – Decision support

120

speed, its average landing kinetic energy being about 20 times lower than 3i. Both DECODE

and BBC are in between these extremes.

(A)

(B)

FIGURE 5-19: UAS INFLIGHT LOSSES (A) AND UAS LANDING LOSSES (B)

(A)

(B)

FIGURE 5-20: UAS MAINTENANCE OPERATIONS OUTPUTS WITH COUNT (A) AND MAINTENANCE

OPERATIONS DURATION (B)

Figure 5-20 (A and B) indicate the maintenance operations details. As the maintenance dura-

tion for specific component repairs is deterministic (Appendix 4), both outputs correlate closely.

They feature separately here because the cost model accounts for both separately.

Chapter 5: Case study – Decision support

121

The 3i aircraft has least repair requirements not because it has a sturdier structure or more re-

liable COMPONENTS but because it crashes more often upon landing (see Figure 5-19). A new

UAS featuring new COMPONENTS is purchased after these frequent landing crashes, increasing

the time to subsequent COMPONENT failures (See Schumann et al. (2012) for a more detailed

analysis of this counter-intuitive result). The large spread of data for all designs roots in the rela-

tively short simulation period of one year. During this time, too few maintenance operations are

conducted to reduce spread satisfactorily. However, the OSCAR maintenance outputs are of

minor importance to the value model results below, not justifying the additional workload of

defining longer life cycles.

 (A) (B) (C)

FIGURE 5-21: UAS CAMERA OUTPUTS: ACQUIRED DATA (A), IMAGE COUNT (B) AND AREA

SCANNED (C)

Figure 5-21 (A-C) depicts measures collected for the UAS payload camera system. Data dis-

tribution is highly correlated between the acquired data, image count and area scanned because

each depends linearly on the number of pictures taken (Section 4.10). Camera outputs are in-

versely proportional to UAS flight times (Figure 5-17 A) so that much data is gathered when a

design spends little time in the air. The cause for this counter-intuitive correlation is found in the

search-speeds for each design (see Appendix 12): BBC and 3i search at much higher speeds

than DECODE and SULSA, thereby covering a larger area, taking more pictures and arriving

home earlier (i.e. less flight time accrued).

Chapter 5: Case study – Decision support

122

5.5.2 Costs

FIGURE 5-22: TOTAL COST DISTRIBUTIONS BOXPLOTS

FIGURE 5-23: ABSOLUTE COTS HISTOGRAM

As shown in Figure 5-22, total system cost relative to the baseline case increases upon intro-

ducing any type of UAS. This result bases on 10,000 Monte Caro runs of the cost model (Sec-

tion 5.4.3.1).

Chapter 5: Case study – Decision support

123

DECODE and SULSA add costs of about $ 200,000, BBC has the lowest increase at about $

150,000 while introducing 3i is most expensive at an additional $ 460,000, on average. Figure

5-23 shows the absolute system cost histograms to assess the spread of data.

All design costs are normally distributed. The baseline and SULSA case have the smallest

spread while 3i features the largest spread at and .

5.5.3 Benefits

Figure 5-24 depicts the benefits relative to the baseline case, based on 10,000 Monte Carlo

runs of the benefits model (Section 5.4.3.2).

FIGURE 5-24: BENEFITS RELATIVE TO BASELINE CASE.

Introducing UAS has a beneficial effect in any case: on average, each UAS design accrues

between $ 0.2M and $ 1.2M. BBC and 3i generate about $ 0.9M more than DECODE and

SULSA. For each design, the major benefit contribution is the number of additional saved lives

because the value of scanning one square kilometre is not large enough to compare. This is as

expected because it is more desirable to save lives than to scan very large areas of the ocean. In

some cases, both DECODE and SULSA can cause a benefit of nearly $ 0 because they do not

save any additional lives compared to the baseline case. This is reflected in UAS flight times

(Figure 5-17 A) where DECODE and SULSA feature very long flight hours while only saving

marginally more lives (Figure 5-14 B). The reason is the slower dash and cruise speeds causing

these designs to spot incidents later, sometimes even after the lifeboats.

Chapter 5: Case study – Decision support

124

5.5.4 Values

By subtracting the additional costs over the baseline (Figure 5-22) from the additional bene-

fits over the baseline (Figure 5-24), the expected value over the baseline can be plotted as in

Figure 5-25.

FIGURE 5-25
15

: TOTAL VALUE OVER BASELINE CASE (WHISKERS SHOW 1.5*IQR
16

).

On average, the most valuable design to use is BBC, closely followed by 3i, both creating

about $ 0.8M of additional value compared to the baseline case. Both DECODE and SULSA

score considerably worse with SULSA featuring an average negative value.

In this comparative case study, it is not useful to plot the absolute value of all designs and the

baseline case because the underlying parameter assumptions are too vague to justify discussion.

5.6 Discussion

This section discusses the results obtained concerning the initial case study objective, namely

to assist in decision support for value-driven design. As with all but the simplest engineering

problems, there cannot be a single right answer as to which design should be used. The follow-

ing sub-sections consider decision support from pure value or cost considerations as well as

from a qualitative viewpoint. Additional benefits of the OSCAR approach are debated followed

by a discourse into the applicability of OSCAR conceptual value-driven design.

15
 In this graph, boxplot whiskers indicate the third quartile plus 1.5 times the inter-quartile range and

the first quartile minus 1.5 times the inter-quartile range.
16

 Here, IQR abbreviates Inter-Quartile Range

Chapter 5: Case study – Decision support

125

5.6.1 Value-based decision support

Computing a numerical value as part of the value-driven design approach allows comparing

different designs based on a single, monetary number. Using the simple value model above,

Figure 5-25 identifies the BBC design as the one with the highest average value, closely fol-

lowed by 3i. Numerically, the decision is clear. However, the proximity of value of both designs

constitutes a closer look. Figure 5-26 compares the additional saved lives over the baseline case

with the UAS cost distribution for BBC and 3i.

(A)

(B)

FIGURE 5-26: SAVED LIVES OVER BASELINE HISTOGRAM (A) AND UAS COSTS (B) FOR BBC AND

3I.

The latter saves about 6.8 more lives, on average (worth $ 119,000

ing). However, it requires additional average costs of

$ 325,000 to achieve this. The largest part of this additional cost is rooted in the fixed costs as

seen in Figure 5-27.

While operating costs are almost identical for both UAS, the large number of 3i losses blow

up its fixed costs (see Figure 5-19 A). In this study, fixed costs consist of the number of lost

UAS only, so high fixed costs indicate a high number of UAS losses.

With this information, value-based decision support allows a more informed decision as to

which design to go for. Before, value-driven design would argue to choose the BBC design be-

cause it has a higher value over the baseline. Now, analysis shows that not only has the BBC

design a higher value, it also crashes less often, a characteristic highly desirable in civil UAS

applications.

In fact, a 3i design is lost almost every two weeks during operations while the BBC design

breaks every 8 weeks on average (see Figure 5-19 A). However, this level of reliability is far too

low for practical purposes. As shown in Figure 5-28, both BBC and 3i have similar number of

inflight losses but 3i has far more landing losses.

Chapter 5: Case study – Decision support

126

FIGURE 5-27: BBC AND 3I FIXED AND OPERATIONAL COSTS.

FIGURE 5-28: BBC AND 3I LANDING AND INFLIGHT LOSSES

The high number of landing losses is attributed to the high kinetic energy upon landing. As

both BBC and 3i have similar landing speeds, it is the higher dry weight of the 3i design causing

the additional landing losses. This higher weight originates from the prudent design approach

for 3i, being tailored for maritime search-and-rescue. BBC, on the other hand, was designed for

broadcasting (Section 5.2.3.2). In this case study, the additional weight of 3i, caused by twin

Chapter 5: Case study – Decision support

127

engines and other backup COMPONENTS as well as a sturdier structure, is only partly balanced

by improved reliability: 3i has the lowest number of inflight losses but landing losses due to

high weight undo these benefits. In order to reduce the inflight losses, the COMPONENT reliabil-

ity model allows calculating the average losses for each component in order to identify hot spots

as in Figure 5-29.

FIGURE 5-29: AVERAGE INFLIGHT LOSSES FOR BBC AND 3I, BASED ON COMPONENTS.

Both designs fail frequently due to receiver, GPS & comms aerial and autopilot issues. These

COMPONENTS are not subject to loads and physical fatigue so they can be improved by buying

better components. Moreover, the 3i design has no losses caused by the engine, throttle servo,

ignition or propeller while BBC suffers a sizable number of losses from these COMPONENTS.

Here, the benefit of redundant COMPONENTS in 3i becomes visible and should be taken into ac-

count by decision makers. The 3i aircraft will be more reliable inflight and would become a fea-

sible alternative once landing issues are resolved. If the number of landing losses for 3i reduces,

its overall cost would decrease, making it the most valuable design option.

5.6.2 Cost-based decision support

The value model in this case study is a very simple factoring of parameters. The parameters

(valueOfAStatisticalLife and valueOfScanning1SquareKm) are very difficult to

quantify, as search-and-rescue is an intrinsically non-commercial enterprise lacking an obvious

monetary profit. Several estimates for the statistical value of a live exist, varying by two orders

Chapter 5: Case study – Decision support

128

of magnitude. Therefore, it is useful to neglect benefits and discuss OSCAR results based on

costs only.

As seen in Figure 5-22, introducing any UAS increases costs relative to the base case. In fact,

the analysis of absolute system costs in Figure 5-30 shows that not only do costs increase but

also their spread.

FIGURE 5-30: ABSOLUTE COST DISTRIBUTION.

 (A) (B)

FIGURE 5-31: ABSOLUTE LIFEBOAT COSTS (A) AND ABSOLUTE UAS COSTS (B)

Intuitively, one might expect total cost to reduce upon introducing UAS because they are

cheap to operate and reduce utilisation of expensive lifeboat equipment. In fact, lifeboat costs do

decrease using UAS (see Figure 5-31 A). Cost decrease ranges between $ 150,000 and $

270,000, attributed to less lifeboat utilisation and fuel burn as the UAS helps spotting incidents

Chapter 5: Case study – Decision support

129

earlier. However, the net rise in total cost originates from additional UAS costs depicted in Fig-

ure 5-31 B (ranging between £ 350,000 and $ 720,000).

The large whiskers in Figure 5-31 B are caused by outliers and do not represent highly uncer-

tain cost estimates, as can be seen in the UAS cost histograms in Figure 5-32.

FIGURE 5-32: ABSOLUTE UAS COSTS HISTOGRAMS.

The main contributing factor to UAS costs is found through sensitivity analysis of the cost

model. For BBC, cost per UAS flight hour (⁄ and UAS acquisition

($20,000) are the most influential parameters (Figure 5-33 A). For 3i, it is the same but UAS

acquisition is more influential than cost per UAS flight hour (Figure 5-33 B). De-

signers should focus upon reduction of UAS losses while the cost per UAS flight hour parame-

ter needs to be reviewed or, if deemed correct, labour cost must be reduced through further au-

tomation.

However, sensitivity analysis of these parameters as in Figure 5-34 reveals that any cost pa-

rameter (except BBC cost per UAS flight hour) would need to reduce by 100% to reduce total

costs to below the baseline case average.

Therefore, a combined parameter reduction is desirable to achieve total cost reduction

through UAS implementation. Moreover, cost per UAS launch and cost per UAS

maintenance operation influence on total cost is not negligible and should be reduced as

much as possible. Only the cost per image and cost per GB of data parameters are

insignificant and require no further analysis (GB is Gigabytes).

Chapter 5: Case study – Decision support

130

(A)

 (B)

FIGURE 5-33: UAS COST SENSITIVITIES FOR BBC (A) AND 3I (B): DARKER SHADING INDICATES

STRONGER INFLUENCE

FIGURE 5-34: COST PARAMETER SENSITIVITY ANALYSIS AGAINST BASELINE TOTAL COST.

Based on cost, designers should decide for the BBC design as it has a lower additional cost

impact and it has the potential to reduce total cost by optimizing several cost parameters. How-

ever, if designers can reduce the number of UAS losses for 3i (see discussion in Section 5.6.1),

UAS costs would reduce dramatically and 3i could become the design of choice.

Chapter 5: Case study – Decision support

131

5.6.3 Qualitative decision support

Decision support discussed so far based on quantitative figures only. However, OSCAR out-

puts can be assessed directly, bypassing value model challenges. This section discusses some

key points from OSCAR outputs as a basis for a more qualitative decision support.

Take, for example, the case where UAS acquisition is examined by a search-and-rescue au-

thority that needs to increase its live-saving performance above all. Figure 5-14 B indicates that

primarily, BBC and 3i deem a closer analysis. They allow a fourfold increase in saved lives

over DECODE or SULSA. This trend is backed by the reduction in waiting time in water

(Figure 5-14 A) as a twofold improvement over DECODE and SULSA. Following the analysis

in Section 5.5.1, the most critical design features for saving more lives are the dash and search

flight speeds. Therefore, even if none of the designs is chosen and a new design is developed for

the search-and-rescue operator, this critical insight remains. Moreover, it was shown that land-

ing crashes and inflight crashes are not only a nuisance to operators and the public, but that they

are a big cost driver that must be minimized with all effort.

5.6.4 Unforeseen insights

Conducting OSCAR analysis during conceptual design reveals quantitative results and quali-

tative recommendations as above. However, insight into the operational environment, the prod-

uct design and their interaction grows along the way. This can lead to answers that nobody

knew required asking. This section reviews two sample insights for Solent search-and-rescue

design that were first described in Schumann et al. (2012).

5.6.4.1 Number of launches

Figure 5-17 B depicts the number of UAS launches (i.e. take-offs) for all four designs. De-

spite a fixed number of missions, each design has a distribution of launches indicating that

sometimes, they launch more often than other times. Moreover, the number varies strongly be-

tween designs so the design influences the number of launches. The reason for these variations

can be explained only by considering the operations of the designs.

Consider the case of a faster design (like 3i) and a slower design (like DECODE): Some-

times, two incidents can occur nearly at the same time. The UAS is dispatched to the first inci-

dent and starts searching. A fast UAS might spot the first incident quickly, return home for a

refuel and be dispatched to the second incident that has not yet been found by other lifeboats. A

slow UAS takes longer to spot the first incident. Upon returning home, it finds that the second

incident has already been found by other lifeboats so there is no need to dispatch anymore. The

fast UAS collects more take-offs while the number of incidents stays constant.

Chapter 5: Case study – Decision support

132

Similarly, the fuel tank size, fuel burn characteristics and flight speed and altitude can influ-

ence the number of take-offs (see Schumann et al. (2011)). If a small fuel tank (or high fuel

burn) require a design to return home during searches for refuels, the number of take-offs in-

creases. Figure 5-18 shows that 3i requires far more refuel operations than the other designs,

adding to its number of take-offs.

As the number of take-offs varies, so does the number of landings, naturally. In turn, ex-

pected landing numbers are very important for undercarriage design, as more landings require a

sturdier landing gear. This can be achieved through heavier material or higher cost by employ-

ing new high-tech materials such as carbon fibre. If heavier material is used, the total design

weight increases which, in turn, reduces the overall flight speeds (all other parameters being

constant). However, flight speed has been identified as the most critical design parameter for a

search-and-rescue UAS and any reduction results in less lives saved. Therefore, the number of

take-offs (and landings) should be minimized in order to maximise saved lives.

5.6.4.2 Save more – cost more?

In this case study, payload stays constant to allow comparison of UAS design. However, con-

sider the case where payload is varied such that a better camera system requires more weight,

hence adding to the design weight. On the one hand, a better camera system would spot inci-

dents faster as UAS would overfly incidents less often, on average. More lives could be saved.

On the other hand, a better camera system is heavier and a heavier UAS requires more power

(i.e. fuel) to be propelled through the air at constant speed. Cost increases (more fuel) when ad-

ditional benefits (more lives save) are required. First order interactions like these are well

known to engineers and often intuitively implemented in designs.

However, OSCAR allows analysis of the operational effect of a heavier payload through se-

cond order operational interactions. In this case, there is a balancing effect to burning more fuel

due to a heavier camera: the UAS spots incidents earlier and therefore reduces its overall flight

time, thereby reducing its overall fuel burn again. It is possible that this effect is stronger than

the additional fuel required for the higher payload weight. In this case, saving more lives could

actually decrease cost. Only a mission-modelling tool like OSCAR is able to combine first order

design relations with second order operational interactions arising from the environment and

procedures.

Chapter 5: Case study – Decision support

133

5.7 Summary

This section reviews the case study results with respect to its applicability in conceptual val-

ue-driven design.

OSCAR was developed for real conceptual design applications, keeping inputs, setup and

outputs generic and variable while allowing for quick and easy data generation. A trained engi-

neer can setup this case study within one hour, given the right data. Input data consists of geo-

graphical information, UAS parameters, incident data and implicit operational knowledge. Geo-

graphical maps can be generated within two days if the engineer works together with a search-

and-rescue operator. UAS parameters are well-known conceptual design parameters that any

engineer can produce in minutes from existing design tools. Implicit operational knowledge is

more difficult to quantify, as each scenario requires operational alterations. The search function-

ality presented here is flexible enough to allow for different search patterns. However, very spe-

cific operational details (such as fleet coordination, etc.) cannot be incorporated easily. The

computing time per UAS design is about two hours on a 2010 desktop PC with eight cores, us-

ing parallel computing. Data outputs can be queried quickly by any engineer familiar with SQL

database management. Using a plotting program of choice, output data can be visualized easily.

The insights, quantifications and decision advices produced by about 30 labour-hours warrant

the additional effort. A conceptual design can be chosen based quantitative and qualitative ar-

guments not available by existing conceptual design phase mission models.

Chapter 6: Case study – Optimisation

135

6 . C A S E S T U D Y –

O P T I M I S A T I O N

This case study examines the use of the OSCAR simulation for conceptual design phase op-

timisation based on a real application for maritime UAS design. In reality, OSCAR would either

be part of a design optimisation loop similar to the DECODE software suite (Section 5.2.2) or it

would be used for manual optimisation. It is beyond the scope of this thesis to describe a com-

plete, integrated optimisation process. Therefore, this case study will demonstrate a manual

three-step optimisation indicating its potential for automated optimisation within a larger design

framework (see Fu et al. (2005) for a survey of simulation optimisation techniques).

 Section 6.1 explains the case study background and assumptions: they base upon the 3i re-

search project (Section 6.2) investigating cross-border UAS application for the English Channel.

Section 6.3 describes the real scenario and how UAS are intended to be used while Section 6.4

shows how this was translated into OSCAR concepts to create a viable simulation scenario. Sec-

tion 6.5 analyses and discusses the results of a baseline UAS design. It is refined into a first de-

sign iteration varying the UAS design in Section 6.6. Subsequently, Section 6.7 presents a se-

cond design iteration where operational parameters vary. Section 6.8 discusses the case study

findings and presents two mission-related trade-offs.

6.1 Background

The ability of UAS to provide airborne intelligence in real-time or near real-time led to the

instigation of the 3i research project (Section 6.2). One of the stakeholders is the PRA (Section

Chapter 6: Case study – Optimisation

136

6.3.1), responsible for the save conduct of operations in the harbour of Rotterdam. In this case

study, assume that the 3i project finished with a working UAS design, called the ―initial design‖

from now on. PRA is interested in using UAS to increase intelligence within their harbour area.

However, they want a design optimised for their specific operational mission requirements. The

3i UAS design goal was to carry sensors for long periods, focussing on robustness and redun-

dancy required in maritime applications. Therefore, PRA commissions a UAS manufacturer to

assess the robust initial design
1
 for PRA requirements and modify it if required. Thereby, PRA

hopes to exploit the advantages of the existing design while improving performance specific to

PRA operations.

This case study describes the manufacturer assessment and optimisation progress, assuming

that it conducts a manual optimisation. Two design iterations occur, based upon the initial 3i

design (named ―3i-a‖ and ―3i-b‖ from now on).

6.2 3i project

As part of the European Union Interreg 2Seas program
2
, the 3i-project (―Integrated Coastal

Zone Management via Increased Situational Awareness through Innovations on Unmanned Air-

craft Systems‖) investigates improving maritime safety in the English Channel through cross-

border collaboration between UK, French and Dutch industrial partners and academic institu-

tions. This shall be achieved through implementing purpose-built UAS designed for the specific

tasks of the stakeholders. These include Police authorities, harbour masters, environmental and

border agencies. Therefore, tasks vary from search-and-rescue operations, ship tracking, emer-

gency support, environmental monitoring to policing and border patrols.

The University of Southampton designed the 3i UAS airframe. The main challenge was to in-

corporate varying stakeholder requirements. Police forces need very fast UAS that can reach

crime scenes and incidents quickly. Harbour masters require a long endurance to allow continu-

ous harbour monitoring as well as on-board detection systems. Search-and-rescue operators ide-

ally want a fast UAS with a long endurance. However, all stakeholders share two design re-

quirements: First, certification and public acceptance require high operational reliability. Se-

cond, the harsh maritime environment (salty air, storms, fog, rain) ask for robust components

with redundant backup systems where possible.

These considerations led to the 3i design as presented above in Section 5.2.3.4. Most promi-

nently, it features two engines to reduce UAS losses due to engine failure. Moreover, its entire

1
 The 3i design will be publicly available since it is publicly funded.

2
 See http://www.interreg4c.eu/ for more details, accessed 03/08/2013.

http://www.interreg4c.eu/

Chapter 6: Case study – Optimisation

137

structure and aerodynamic performance is designed prudently to provide a robust and reliable

design. This design is used as the baseline design for PRA analysis.

6.3 Scenario

This section describes the reality of operations in the case study area covering the Port of

Rotterdam (Section 6.3.1). Subsequently, possible integration of UAS is discussed based on

PRA feedback and comments (Section 6.3.2). Some information in this chapter is based upon

interviews with PRA employees and does not necessarily reflect the official view of the PRA.

6.3.1 The Port of Rotterdam

With about 34,000 sea-going vessels each year, the port of Rotterdam is the largest port in

Europe
3
. The inshore harbour area stretches along parts of the Rhine river mouth for about 40

kilometres, from the centre of Rotterdam out to the artificially reclaimed land of Maasvlakte

area (Figure 6-1). The harbour processes all kinds of goods, ranging from consumer goods and

minerals to dangerous freight such as oil, gas and petrol. The harbour houses five oil refineries,

45 chemical plants, four gas power plants and one coal power plant. Therefore, any aeronautical

operation above the harbour area is safety critical and must be assessed carefully.

FIGURE 6-1: ROTTERDAM INSHORE HARBOUR AREA.

In addition to the inshore area, the port boundary includes offshore areas stretching 60 kilo-

metres out at sea. These areas include several offshore anchor areas as shown in Appendix 15.

Here, vessels wait for their terminal to become available if occupied.

3
 See http://www.2seas-uav.com/images/stories/downloads/Port%20of%20Rotterdam%20ppt.pptx, ac-

cessed 04/08/2013. You may need to register first on http://www.2seas-uav.com/.

http://www.2seas-uasuav.com/‌‌images/‌‌stories/‌‌downloads/‌‌Port%20of%20Rotterdam%20ppt.pptx
http://www.2seas-uav.com/

Chapter 6: Case study – Optimisation

138

The port is operated by the PRA, which is responsible for the safe conduct of harbour opera-

tions. PRA operates five patrol vessels (only one of which can go out to open sea
3
). They are

used to conduct ―inventories‖ and search-and-rescue missions. An ―inventory‖ includes patrol-

ling to every in-shore and offshore anchor position to investigate possible law violations such as

waste dumping, smuggling or illegal anchoring. These operations are expensive, slow and inef-

fective (since they are conducted infrequently). Search-and-rescue missions occur irregularly. In

2012, PRA recorded 16 ―significant‖ safety incidents leading to fatalities, severe injuries, major

equipment damage or harbour closure (Smits et al. 2011).

6.3.2 UAS integration

PRA is part of the 3i research project in order to assess the usefulness of UAS for improving

harbour safety through increased intelligence. The goal for PRA is ―to get a real time operation-

al picture in the remote sea areas and anchorages as well as in the port‖
3
. Current equipment is

not capable of delivering that vision due to harbour area size, tall structures (from a small patrol

vessel, you cannot monitor the deck of an ocean liner) and human limitations. Autonomous

UAS can improve the current state by supplying 24-hour bird-eye views of all harbour and off-

shore areas.

Beside regulatory issues (flying UAS above oil refineries and LNG tankers is not a trivial un-

dertaking), PRA envisages using UAS for continuous patrolling and intermittent missions as

required by harbour incidents. Continuous patrolling would be conducted above the inshore

harbour area to obtain real-time imagery of harbour activities, possibly also at night. Intermit-

tent missions include regular ―inventories‖ of inshore and offshore anchorages as well as re-

sponding to any incidents occurring. The latter includes search-and-rescue operations as well as

adding situational awareness to crisis staff during fires, crashes or oil spills. Moreover, troubled

ships asking to find a refuge port could be investigated before harbouring.

6.4 Simulation setup

This Section describes how the UAS operations anticipated by PRA were translated into OS-

CAR concepts to build a realistic scenario.

During the 3i project flight tests, the UAS was assembled on a grass strip at the southern tip

of the Maasvlakte reclaimed land area (see Figure 6-1). In this case study, assume that PRA will

use this site as a permanent UAS base as it is far from any dangerous harbour area. Take-offs

and landings can be conducted out to the sea, reducing the risk of external damage when the

UAS crashes in these precarious flight phases.

Chapter 6: Case study – Optimisation

139

The case study simulation runtime is set to one year because UAS missions would repeat eve-

ry year. This is much shorter than the anticipated UAS life cycle but sufficient for the purpose

of this case study. In reality, the entire life cycle should be modelled with varying mission setup

and UAS performance.

The UAS must fulfil three main operational capabilities: Patrol the harbour continuously,

conduct regular anchorage ―inventories‖ and respond to any search-and-rescue emergency. The

rest of this section describes each of the three missions in more detail (Sections 6.4.1-6.4.3).

Subsequently, Section 6.4.4 compares mission setup inputs. Appendix 16 details the rationale

behind setting the number of simulation replications to 500 for this case study.

6.4.1 Harbour patrol

A continuous harbour patrol is conducted every day of the year between 8am and 6pm
4
. The

UAS patrols along a zigzag path covering most parts of the inshore harbour area (Figure 6-2).

This mission has the lowest priority (see Table 6-2) because it is conducted much more fre-

quently than the other missions and because it features no emergencies.

FIGURE 6-2: ROTTERDAM HARBOUR PATROL MISSION MAP. LOITER OCCURS AT THE ARROW-

HEADS.

The UAS launches from Maasvlakte at 8am, dashing at maximum speed to the start of the pa-

trol path nearby. It follows the path at a constant 25 m/s and 100 m height. At 19 designated

positions, the UAS loiters (at the same speed and height) for a specified duration to monitor ac-

tivities in more detail. Upon completing one patrol round, it restarts the patrol. This is repeated

until fuel dictates returning to base for a refuel (after which the patrol is continued) or until 6pm

or until another mission with higher priority occurs.

4
 In order to cover daylight hours throughout the year at the given latitude.

Chapter 6: Case study – Optimisation

140

6.4.2 Anchorage monitoring

Based upon the PRA ―inventory‖ mission conducted by patrol vessels, two missions recreate

―inventories‖, namely AnchorageCensus and AnchorageEmergency. Both share the

same route, mission details and flight profiles as in Figure 6-3.

FIGURE 6-3: ANCHORAGE MISSIONS OVERVIEW MAP.

If an anchorage mission is scheduled, the UAS dashes to the initial cruise point near

Maasvlakte at maximum speed and 100 m altitude. Subsequently, it visits 160 anchorage posi-

tion POINTS in nine offshore anchorage areas. Each POINT refers to a ship of varying dimensions

for identification. Flying and loitering occurs at maximum speed and 100 m altitude. The UAS

loiters for one minute at each anchorage position to obtain adequate intelligence. The difference

between AnchorageEmergency and AnchorageCensus is as follows: during Anchor-

ageEmergency missions, an anchored ship has an emergency or PRA suspects a legal viola-

tion, requiring UAS investigation. Five specific ship positions with emergencies require 10

minutes of loitering, while the remaining 155 positions are visited as with AnchorageCen-

sus, taking advantage of the fact the UAS is out at sea anyway. If the UAS detects fuel short-

age, it interrupts for a refuel. Afterwards, it returns to the previous anchorage POINT.

Another difference between the two ―inventory‖ missions is that AnchorageCensus oc-

curs every two months while AnchorageEmergency is modelled every month, in line with

real PRA security incidents (Smits et al. 2011). In reality, AnchorageEmergency would

occur irregularly.

Chapter 6: Case study – Optimisation

141

6.4.3 Search-and-Rescue

FIGURE 6-4: SEARCH-AND-RESCUE MISSION OVERVIEW MAP.

TABLE 6-1: SEARCH-AND-RESCUE MISSION DETAILS. ―IPG‖ = INITIAL POSITION GUESS.

incident ID 0 1 2 3 4 5

Time Jan 1st Feb 13th March 25th April 17th May 22nd July 19th

Origin IPG IPG IPG IPG IPG IPG

Destination
ManOver-

board
Suicide

Swimmer-
mer-

Missing

ManOver-
board

SurferDro
wning

ManOver-
board

UponArrival search search search search search search

Type 500 500 1000 500 2000 1000

TargetHeight 0.2 0.2 0.2 0.2 0.2 0.2

TargetWidth 0.2 1.8 0.2 0.2 2 0.2

Detection-
Criteria 6 3 6 6 6 6

Hover 1800 1800 1800 1800 2700 1800

Height 200 200 100 200 100 100

Speed 9999 9999 9999 9999 9999 9999

Chapter 6: Case study – Optimisation

142

In a large harbour area, it is hard to avoid accidents and emergencies. PRA handles about 16

emergencies leading to serious injuries and death per year (Smits et al. 2011). Because conven-

tional UAS support emergencies through searching only, a fraction of PRA emergencies feature

here: PRA estimated that about six search emergencies occur each year. Figure 6-4 shows the

geographical distribution of search incidents. Table 6-1 provides details on each incident.

Destination details the search-and-rescue incident type. Most incidents are men washed

overboard and lost at sea. Type specifies the initial position uncertainty, indirectly indicating

the time it takes to find the incident. Most targets are only small heads in the water, as specified

in TargetHeight and TargetWidth. Only suicides and drowning surfers are larger because

their whole body length (or board length) floating on the water dictates the characteristic width.

All search-and-rescue incidents feature the highest priority (Table 6-2). If the UAS is

conducting any other mission while an incident requires search, the mission is cancelled and the

UAS will return to BASE for refuel. Afterwards, it will dash out to the initial position guess and

start searching.

6.4.4 Mission comparison

TABLE 6-2: ROTTERDAM HARBOUR MISSIONS COMPARISON.

Parameter Harbour patrol
Anchorage

census

anchorage

emergency

Search-and-

Rescue

Vessel_IDs 12 12 12 12

Base Maasvlakte Maasvlakte Maasvlakte Maasvlakte

TrackFragmented FALSE FALSE FALSE TRUE

Destination Maasvlakte Maasvlakte Maasvlakte Maasvlakte

Time 2014-01-

01T08:00:00

2014-01-

03T10:00:00

2014-01-

07T22:00:00

2014-01-

01T02:00:00

Repetition 36000X86400X365 0X5184000X6 0X2592000X12 0X0X0

Priority 0 1 2 3

DashHeight 100 100 100 100

DashSpeed 9999 9999 9999 9999

ReturnHeight 100 100 100 100

ReturnSpeed 9999 9999 9999 9999

Table 6-2 displays the relevant mission setup for all Rotterdam harbour missions. Note that

only the search-and-rescue mission has TrackFragmented=true, indicating that its POINTS

are separate incidents that should not be visited in one go (Appendix 2).

Chapter 6: Case study – Optimisation

143

6.5 Initial design – 3i

This section presents and analyses the results obtained for the 3i UAS design (Section 6.5.1).

Moreover, it provides an intermediate discussion of these initial results to justify the design

changes for the first design iteration (Section 6.5.2).

6.5.1 Results and analysis

6.5.1.1 OSCAR outputs

There are 14 outputs provided by the OSCAR simulation for this case study. All figures be-

low refer to the simulation timeframe of one year. Figure 6-5 depicts the flight performance

outputs.

(A) (B)

(C)

(D)

FIGURE 6-5: OSCAR FLIGHT PERFORMANCE OUTPUTS, SHOWING FUEL USED (A), FLIGHT TIME

(B), NUMBER OF TAKE-OFFS (C) AND REFUELS (D).

The UAS burns about 13.5 kg of petrol per day by flying for an average of 10.6 hours. The

harbour patrol requires about 10 hours of daily flight duration while the remaining 0.6 hours

divide into the other three missions. An average fuel burn of 1.27 kg/hr gives the 3i design an

endurance of 4.5 hours. Therefore, the harbour patrol cannot be flown in one session but at least

two refuels are required each day. This is reflected in the number of take-offs: the UAS launch-

es (and lands) about 3.3 times each day out of which 2.2 times are due to refuelling.

Chapter 6: Case study – Optimisation

144

(A)

(B)

(C)

FIGURE 6-6: UAS LOSSES (A) CONSIST OF INFLIGHT (B) AND LANDING (C) LOSSES.

Component fatigue and landing lead to UAS losses as shown in Figure 6-6. In total, one UAS

is lost every eight days, on average. About one quarter of all losses is attributed to inflight losses

caused by component fatigue. Three quarters are lost during landing, caused by the high kinetic

energy due to weight and landing speed (see Section 5.4.4).

(A)

(B)

(C)

(D)

FIGURE 6-7: SEARCH-AND-RESCUE INCIDENT METRICS (A AND B) AND MAINTENANCE METRICS

(C AND D).

Search-and-rescue incident metrics (Figure 6-7 A & B) show that incidents have to wait for

detection for more than six hours, on average. Less than one third of all incidents are detected

alive due to the long search times involved. This rescue performance is much worse compared

Chapter 6: Case study – Optimisation

145

to search-and-rescue operations including lifeboats, as examined in the previous case study

(compare with Figure 5-14). In reality, the PRA would still need to use their fleet of patrol ves-

sels to find incidents quicker. However, this case study is only interested in the relative perfor-

mance gain by changing UAS design parameters so these baseline metrics are acceptable.

The maintenance metrics in Figure 6-7 (C & D) show that the UAS needs repair every two

weeks, on average. Each maintenance operation takes about 1.7 hours.

(A)

(B)

(C)

FIGURE 6-8: CAMERA PERFORMANCE OUTPUTS: SCANNED AREA (A), ACQUIRED DATA (B) AND

IMAGES TAKEN (C).

Due to the long operating hours, the camera system collects large amounts of data (Figure

6-8). In total, it scans about 124,000 km
2
, equivalent to an area of 340 km

2
 each day (about half

the size of greater London). Thereby, it collects about 3.5 GB of data each day, taking 1800 im-

ages, on average.

6.5.1.2 Costs

Using the ―UAS costs‖ branch of the cost model described in Section 5.4.3.1, the total costs

and its break-up into maintenance, operational, fixed and payload costs can be seen in Figure

6-9 (see Appendix 14 for cost parameter assumptions).

Chapter 6: Case study – Optimisation

146

FIGURE 6-9: COST BREAKDOWN FOR 3I.

The total cost of adding the UAS to the PRA operations is expected to be 1.8 $M per year.

Both maintenance and payload costs only contribute a small fraction. The majority of cost is

caused by operational (0.82 $M per year) and fixed costs (0.92 $M per year). Here, fixed costs

have a much higher spread, caused by the large spread of UAS losses (see Figure 6-6 A).

6.5.2 Intermediate discussion

Generally, the initial design is capable of fulfilling PRA mission requirements. However,

there are two key points that merit optimisation, namely the number of launches and the number

of losses.

6.5.2.1 Number of launches

The UAS flies 389 missions during the simulation period (daily harbour patrol, six anchorage

censuses, twelve anchorage emergencies and six search-and-rescue operations). However, it

launches three times as often (Figure 6-5 C), amassing almost refuel 800 launches. The UAS

endurance is not enough to fly harbour patrol missions in one go. Every patrol is interrupted by

two refuels, the second just 10 minutes before the end of the patrol. Every anchorage census

(and emergency) mission requires four refuels because the UAS flies at top speed for very long

distances. Last, some incidents are very hard to spot for the UAS, requiring one refuel for every

Chapter 6: Case study – Optimisation

147

second incident (search incidents are omitted in the following discussion due to the low absolute

number of launches).

Each refuel operation (stopping current SEGMENT  returning to base  refuel  take-off

 dash out to current SEGMENT) takes between 25 and 60 minutes, depending on UAS geo-

graphical position while running out of fuel. Up to 1 kg of additional fuel is burnt during refuel-

ling. Moreover, landing and taking off are the most risky part of UAS operation so reducing the

number of launches is desirable. Last, more landings require a sturdier landing gear design, add-

ing weight which, in turn, decreases the overall flight speed and increases fuel burn. Therefore,

the first design iteration will feature an increased fuel tank capacity (over the 3i capacity of 5.8

kg) in order to increase aircraft endurance and reduce the number of launches. The current 3i

design would require 21 kg of fuel to fly the anchorage missions without refuel (completion

within 6 hours) while 16 kg of fuel would be required to finish the harbour patrol without refuel.

However, a major redesign of the UAS would be required since take-off weight would double.

Essentially, a completely new UAS design would emerge increasing development costs for the

PRA. Therefore, a compromise increases the fuel tank size to 9 kg. Now, the current design

would require 21.5 kg of fuel to fly the anchorage missions, taking 7 hours caused by two refu-

els. The harbour patrol would require one refuel only, burning 12.5 kg in total. Hence, the total

number of refuels should reduce. Note that these estimates use the initial design but increasing

the fuel tank size will change design performance as well. The effect will be analysed in Section

6.6.

6.5.2.2 Number of losses

 The UAS is lost far too often for commercial use in a port environment (Figure 6-6). About

one fifth of all losses are caused by component failure happening inflight, possibly over the har-

bour area or above a ship. The rest is caused by inferior landing performance, based on the high

speed and weight upon landing (Section 5.4.4). However, the UAS is designed to be relatively

heavy (to carry heavy payload, increase endurance, carry two engines, use components that are

more robust and to reduce vibrations due to weather). Moreover, it is supposed to operate fast,

making it difficult to design towards slow landing speed. Moreover, the relationship between

landing losses and landing kinetic energy in Section 5.4.4 is based upon engineering judgement

due to lack of data for UAS. Landing losses could be reduced by reviewing the underlying as-

sumptions in Section 5.4.4 and by designing safer landing performance (through sturdier land-

ing gear, flight personnel training, softening the landing grass strip, etc.). Otherwise, landing

losses can be reduced through landing less often, i.e. by reducing the number of refuels (see

above). The following discussion will focus on reducing inflight losses.

Chapter 6: Case study – Optimisation

148

Inflight losses are caused by failing COMPONENTS. Figure 6-10 depicts the average number of

inflight losses for all COMPONENTS causing any inflight loss.

FIGURE 6-10: AVERAGE NUMBER OF INFLIGHT LOSSES FOR COMPONENTS.

Most prominently, communication equipment and the autopilot lead to over seven UAS loss-

es each year. Sensor equipment such as the static port, static hose and pitot tubing also cause

about one inflight loss per year, on average. Moreover, structural COMPONENTS like the wing

and fuselage main structures and the horizontal tail structure are responsible for another loss.

Therefore, the first design iteration 3i-a will contain more robust COMPONENTS to reduce in-

flight failures. The communication COMPONENTS ―Receiver‖, ―gps aerial‖ and ―comms aerial‖

as well as the ―autopilot‖ and ―autopilot servo board‖ will be duplicated on-board, effectively

creating a backup system that can take over whenever a single COMPONENT fails. Additional

weight is negligible and additional complexity is manageable as the technology is mature. Addi-

tional acquisition costs are not calculated in the cost model due to lack of data. Moreover, a du-

plicate ―static port‖ will be installed on 3i-a, again assuming negligible weight addition and

manageable complexity. The structural COMPONENTS cannot be duplicated for obvious reasons.

Therefore, the robustnessScalingFactor of ―wing main structure‖, ―horizontal tail struc-

ture‖ and ―fuselage main structure‖ will be increased from zero to one, effectively doubling the

reliability of these COMPONENTS.

Chapter 6: Case study – Optimisation

149

6.6 First design iteration – 3i-a

This section details the results from the first design iteration. As described above, the initial

design 3i was altered in two ways: the fuel tank capacity was increased from 5.8 to 9 kg and a

number of COMPONENTS were either duplicated or increased in reliability. In order to increase

the fuel tank capacity, a UAS redesign was conducted using the conceptual design spread sheet

developed for the DECODE research project (Section 4.9.2 and Ferraro et al. (2012)). Table 6-3

compares the design parameter changes between 3i and 3i-a.

TABLE 6-3: UAS DESIGN PARAMETERS COMPARISON.

Parameter 3i 3i-a

Wing area (m
2
) 1.4 2

Maximum lift coefficient 1.574 1.894

Propeller diameter (m) 0.457 0.610

k1_a 0.043676 0.041786

k3_a 0.04207 0.04207

Installed power (W) 6800 6800

Propeller RPM 7000 5500

sfc_a (g/kWh) 1339 868

sfc_b (g/kWh) -970 -649

sfc_c (g/kWh) 298 225

sfc_d (g/kWh) 0 0

maximum speed (m/s) 45 40

minimum speed (m/s) 14 14

dry weight (kg) 24.17 36

fuel weight 5.8 9

zeta_a 577 550

zeta_b -6813 -6927

zeta_c 34459 37554

zeta_d -87795 -102335

zeta_e 120137 149342

zeta_f -83881 110588

zeta_g 23317 32236

Increasing the fuel tank size has a strong effect on the UAS design. Obviously, size (i.e. wing

area and propeller diameter) and dry weight increase. As the new design is heavier, its

Chapter 6: Case study – Optimisation

150

maximum speed reduces from 45 to 40 m/s. Note that the minimum speed stays constant, in-

dicating that landing speeds generally stay constant as well. The fuel burn and drag coefficients

confirm the increase in aircraft size: overall drag increases and, thereby, fuel consumption. Note

that 3i-a has not been built in reality (unlike 3i, see Section 5.2.3.4).

6.6.1 Results and analysis

This section describes the operational performance achieved by 3i-a, presenting the OSCAR

and cost outputs as before for 3i. However, the section starts with a mission performance com-

parison between 3i and 3i-a.

6.6.1.1 Mission performance comparison

To understand the OSCAR output changes better, it is useful to analyse the mission-specific

performance first. Table 6-4 compares mission specific performance for 3i and 3i-a. It omits the

search mission outputs, as their impact is negligible.

TABLE 6-4: MISSION PERFORMANCE COMPARISON FOR 3I AND 3I-A. ALL VALUES ARE ARITHME-

TIC MEANS.

The harbour patrol flight time increases slightly due to the slower dash and return

speeds. This is not offset by the flight time reduction due to less number of refuels. The

fuel used remains constant because slower dash and return speeds offset the higher specific

fuel consumption of 3i-a.

The anchorage census and emergency flight time reduce because the saving from less

number of refuels does offset the increase due to slower flight speeds. This exemplifies the

advantage of using geographical information during conceptual design: for harbour patrol, the

combined effects of 3i-a increase the flight time, while for anchorage census and emergency the

flight time reduces. Anchorage mission fuel used reduces significantly, owing to the fact that

Mission Parameter 3i 3i-a

Harbour patrol flight time (hrs) 10.3 10.4

fuel used (kg) 12.0 12.0

number of refuels 2 1

Anchorage census flight time (hrs) 8.7 7.0

fuel used (kg) 24.7 17.5

number of refuels 4 1

Anchorage emergency flight time (hrs) 9.3 8.3

fuel used (kg) 27.2 20.0

number of refuels 4 2

Chapter 6: Case study – Optimisation

151

less refuel operations require less additional flying. Moreover, 3i-a burns less fuel despite its

higher specific fuel consumption because it flies at a slower maximum speed.

6.6.1.2 OSCAR outputs

Since the spread of OSCAR outputs is similar to the 3i design above, only (arithmetic) mean

values are presented. For better comparison, the 3i mean values also appear in Table 6-5. The

following analysis will examine each output in turn.

TABLE 6-5: OSCAR ARITHMETIC MEAN OUTPUTS COMPARISON BETWEEN 3I AND 3I-A. DATA

BARS INDICATE RELATIVE MAGNITUDES.

The total fuel burn has decreased by almost 300 kg. The explanation is a sum of several

operational factors: First, 3i-a has higher specific fuel consumption due to its additional weight

and drag. Second, dash and return SEGMENTS as well as anchorage and search-and-rescue mis-

sions use slower speeds as 3i-a’s maximum speed has reduced from 45 to 40 m/s. Third, consid-

erably fewer refuel operations are necessary during the anchorage missions, reducing the total

fuel burn for these missions.

The flight time increases slightly by 19 hours. Again, OSCAR combines several opera-

tional factors to arrive at this result: First, all dash and return SEGMENTS as well as Anchorage

and search-and-rescue missions are flown at slower speeds. This is offset by the flight time re-

duction caused by less refuel operations. Last, the harbour patrol duration increases slightly be-

Parameter 3i 3i-a

Fuel used (kg) 4944 4662

Flight time (hrs) 3879 3898

Number of take-offs 1195 786

Number of refuels 798 392

Losses (total) 46.3 59.9

Losses (inflight) 10.4 0.6

Losses (landing) 35.9 59.2

Maintenance duration (hrs) 43 37

Maintenance operations 24 34

Scanned area (km
2
) 124,000 136,000

Acquired data (GB) 1278 1403

Images taken 647,000 710,000

SAR incident waiting time (hrs) 6.2 5.4

SAR incident lives saved 1.91 2.10

Chapter 6: Case study – Optimisation

152

cause slower dash and return speeds are not offset by the flight time reduction from fewer

refuels.

The number of take-offs reduces by one third. This is caused by the reduction in refuel

operations required for all missions. The strongest effect originates from the harbour patrol re-

duction as it is conducted much more frequently than the other missions are. However, the num-

ber of refuels still has about one refuel each day, adding to the chance of losing UAS dur-

ing take-off or landing.

The (total) number of losses increases by almost one third. The increased reliability and

the duplication of critical COMPONENTS has reduced the number of inflight losses to

0.6 losses per year. However, the additional weight of 3i-a combined with the same landing

speed as 3i increased the kinetic energy upon landing, leading to many more landing losses,

now more than one every week.

The total maintenance duration has decreased by 14 % while the number of

maintenance operations has increased by more than 40 %. Figure 6-11 depicts the num-

ber of COMPONENT failures by COMPONENT type.

FIGURE 6-11: COMPONENT FAILURE COMPARISON BETWEEN 3I AND 3I-A. LISTS ONLY FAILURES

THAT DO NOT LEAD TO AIRFRAME LOSS.

The maintenance duration decreases because COMPONENTS with long repair times (en-

gine, throttle servo, ignition and power servo) cause fewer failures in the 3i-a design (check

COMPONENT repair times in Appendix 17). The reason for fewer failures is operational: the

higher number of landing crashes causes operators to repurchase new UAS more often. These

Chapter 6: Case study – Optimisation

153

feature new COMPONENTS that are less likely to fail. The additional 3i-a number of mainte-

nance operations is caused by those COMPONENTS that were duplicated in the new design

(Receiver, GPS aerial, comms aerial, autopilot & servo plug, static port). However, repair times

are shorter for those COMPONENTS, leading to an overall reduction in maintenance dura-

tion. Despite less COMPONENT failures for most COMPONENTS (due to more landing losses),

the duplicated 3i-a COMPONENTS require maintenance operations that were not necessary with

3i. Previously, these COMPONENTS failed and led to airframe loss in any case because no redun-

dant COMPONENTS took over. With 3i-a, redundant COMPONENTS do take over and the airframe

requires maintenance upon landing, increasing the number of maintenance operations.

The payload performance indicators area scanned, data acquired and images taken

all show a modest increase in the amount of collected data. First, this is caused by the additional

flight time. Second, 3i-a can collect more data because it spends less time refuelling (as no im-

ages are taken during flight to and from the base).

3i-a is also performing better concerning search-and-rescue incidents despite the lower 3i-a

maximum speed. The incident waiting time reduces by 14 % while the number of saved

lives increases accordingly. This is achieved because 3i-a can search the respective area for

longer without returning home for refuels. This increases the chance of spotting the incident

more than the penalty paid due to the slower speed of 3i-a. Again, consolidating operational ef-

fects like these is best achieved through simulation.

6.6.1.3 Costs

Figure 6-12 presents the overall cost of using 3i-a and a cost breakdown. Compared to the 3i

costs (Figure 6-9), the overall cost increases by about $ 250,000. Maintenance costs increase by

about $ 17,800, operational costs decrease by about $ 44,400, fixed costs rise by almost $

272,000 and payload costs increase by about $ 3,000.

The rise of maintenance costs originates from the increased number of maintenance

operations, adding costs for parts, building rent, etc. (Appendix 14). This is not offset by the

decrease in maintenance costs due to lower maintenance duration, leading to fewer

maintenance labour-hours to be paid.

The decrease in operational costs originates from fewer number of take-offs, leading to

less launch costs. Moreover, less fuel is used. The increase in flight time costs does not off-

set these benefits.

The strongest increase in cost is the amount of fixed costs, originating from the higher total

number of losses of 3i-a. This is also the cause for the total rise in costs for 3i-a compared

to 3i. Moreover, fixed costs feature the highest spread of data caused by the high price per lost

UAS.

Chapter 6: Case study – Optimisation

154

FIGURE 6-12: COST BREAKDOWN FOR 3I-A.

6.6.2 Intermediate discussion

The 3i-a design offers some operational advantages over 3i bought at higher total costs. In-

creasing the fuel tank capacity reduced the number of refuel operations drastically, increasing

not only search-and-rescue performance. The other missions also benefit from the longer endur-

ance as 3i-a can spend more time collecting data. The operational penalties for the redesign

(slower maximum speed and higher specific fuel consumption) were offset by the added benefit

of conducting missions with less refuels. Here, OSCAR demonstrated its unique benefit for

conceptual design: it consolidates various (often conflicting) operational factors taking into ac-

count specific mission and airframe characteristics. For example, it is not possible with conven-

tional conceptual design phase tools to predict if 3i-a will burn more fuel during the harbour

patrol mission and less during an anchorage mission (Table 6-4). The mixture of fewer refuels,

geographic mission details (distance to base when running out of fuel, etc.) and the airframe

performance led to varying results for each mission.

Another example is the decrease in maintenance duration combined with an increase in

maintenance operations. It is easy to predict that duplicating certain COMPONENTS will reduce

the airframe losses. However, the operational effect of reducing losses is that COMPONENTS age

more, requiring more maintenance or causing airframe losses again. Moreover, fewer missions

are cancelled due to airframe loss, increasing overall performance. In this design iteration, the

airframe performance was altered together with COMPONENT reliability and redundancy. This

led to a heavier design featuring more losses upon landing. OSCAR consolidating this impact

Chapter 6: Case study – Optimisation

155

against the fact that increased endurance led to fewer landings due to fewer refuels, finding that

the number of landing losses still increases.

The overall performance of 3i-a improved, yet too many airframes were lost during landing,

leading to unnecessary cost increases. The next design iteration 3i-b must aim to reduce landing

losses, in this case by reducing the number of take-offs as much as possible. Conventional

design could opt to increase the fuel tank capacity further until no refuels were required. Esti-

mates require a fuel tank capacity increase of nearly 100 % to 18 kg. However, airframe size

would increase further, making the UAS impractical for PRA application. The landing site

would need rework to accommodate such a large design. Certification would become much

harder as the possible damage of a heavier UAS increases non-linearly with weight. Moreover,

cost (and thereby acquisition price) would rise manifold.

The OSCAR framework allows a value-driven design approach that takes a holistic view at

design and operations. The PRA specified missions such that they gather as much intelligence

as possible, as fast as possible and in real-time. Therefore, anchorage missions as well as all

dash and return SEGMENTS were flown at maximum speed by 3i and 3i-a. Only the harbour pa-

trol used an arbitrary speed of 30 m/s to reduce airframe losses over the harbour area.

With OSCAR, it is possible to optimise airframe design but also operations. Therefore, the

second design iteration 3i-b will explore how changing the mission definition can reduce overall

cost while keeping mission performance acceptable. For this iteration, the airframe itself will

remain as in 3i-a. The number of inflight losses was acceptable due to duplicated and more reli-

able critical COMPONENTS. The mission performance improved over 3i so there is no reason to

change the design any further in this case study. However, in order to reduce the number of

landing losses, operations will be altered to reduce the number of required refuels further. For

this, all mission SEGMENTS will be flown at VRmax, the maximum range speed. Depending on

airframe weight, this speed varies between 19 and 21 m/s for 3i-a, essentially halving the maxi-

mum speed used during dash, return and all anchorage missions. Moreover, the very long an-

chorage emergency mission will feature a 30-second loiter at each non-emergency anchorage,

instead of the previous 60 seconds. Last, the harbour patrol will be conducted for 9 nine hours

instead of 10 each day (i.e. from 8am to 5pm).

These changes are expected to lead to the following results: search-and-rescue incidents will

be spotted later but this might be offset by fewer refuels, possibly leading to spotting incidents

earlier. Anchorage missions and the harbour patrol will take longer but manage without refuels.

The total data collected will reduce as the airframe spends less time in the air. However, OS-

CAR quantifies the consolidated effects of less refuels, lower mission performance (less data)

and lower total costs. The next Section will present and discuss the results of this second design

iteration 3i-b.

Chapter 6: Case study – Optimisation

156

6.7 Second design iteration – 3i-b

6.7.1 Results and analysis

This section presents and discusses the results from the second design iteration, called 3i-b.

As before, flight performance is compared for each mission before discussing the OSCAR out-

puts. Subsequently, cost outputs are presented for 3i-b.

6.7.1.1 Mission performance comparison

Table 6-6 extends the mission performance indicators of Table 6-4 by adding the perfor-

mance of the second design iteration 3i-b.

TABLE 6-6: MISSION PERFORMANCE INDICATORS FOR 3I, 3I-A AND 3I-B.

For harbour patrol missions, flying at VRmax reduces the number of refuels to zero. This a

combined effect of flying at the more economical speed but also by reducing the patrol duration

from 10 to 9 hours. Overall, the flight time reduces by 12 % over 3i-a. Spending less time in the

air at a more fuel-efficient speed cuts fuel burn by almost 30 %.

Anchorage census and emergency missions require no more refuel operations. For the census

missions, the slower flight speeds increase the flight time above the initial 3i design flight time.

For the emergency missions, flight time reduces slightly because loiter times above non-

emergency anchorage positions was halved. This is not offset by the flight time increase due to

lower speeds. For both census and emergency anchorage missions, the fuel used reduces dra-

matically by 50 % and 60 %, respectively. This is caused by flying at VRmax during all flight

SEGMENTS. Moreover, the reduction in refuel operations reduces the number of SEGMENTS

flown at maximum speed, further reducing the fuel used.

Mission Parameter 3i 3i-a 3i-b

Harbour patrol flight time (hrs) 10.3 10.4 9.2

fuel used (kg) 12.0 12.0 8.5

number of refuels 2 1 0

Anchorage census flight time (hrs) 8.7 7.0 9.2

fuel used (kg) 24.7 17.5 8.5

number of refuels 4 1 0

Anchorage emergency flight time (hrs) 9.3 8.3 8.2

fuel used (kg) 27.2 20.0 7.9

number of refuels 4 2 0

Chapter 6: Case study – Optimisation

157

6.7.1.2 OSCAR outputs

Table 6-7 shows all arithmetic mean OSCAR outputs for all three designs. Output distribu-

tion is similar for all designs. Therefore, refer to output distribution plots for 3i in Section 6.5

for reference. Each output will be analysed below.

TABLE 6-7: OSCAR ARITHMETIC MEAN OUTPUTS COMPARISON BETWEEN 3I, 3I-A AND 3I-B DE-

SIGNS. DATA BARS INDICATE RELATIVE MAGNITUDES.

As expected, the fuel used reduced drastically by about 35 %, caused by more economic

fuel burn at VRmax and because the aircraft flight time reduced by about 300 hours. This re-

duction is a combination of two operational effects: First, the aircraft flies slower during all

missions, thereby increasing flight time; second, the number of refuels reduced to al-

most none, reducing the overall flight time. The latter effect is stronger, reducing overall

flight time. The number of take-offs reduced by 391 over 3i-a, equal to the amount of

the number of refuels saved (subject to rounding error). This reduction is a direct conse-

quence of flying at VRmax instead of Vmax. The aircraft endurance has increased beyond the dura-

tion of any individual mission. The two refuels were caused by search-and-rescue incidents.

Previously, search-and-rescue incidents required more refuel operations, therefore performance

improved overall for 3i-b.

The number of total losses reduced by over 70 % to one loss every three weeks. In-

flight losses occur very rarely at a rate of 1.7 losses per year. However, this increased al-

most threefold compared to 3i-a owing to two counter-acting effects: First, the lower number of

flight hours led to fewer inflight losses as COMPONENTS were stressed less. Second,

Parameter 3i 3i-a 3i-b

Fuel used (kg) 4944 4662 3011

Flight time (hrs) 3879 3898 3512

Number of take-offs 1195 786 395

Number of refuels 798 392 2

Losses (total) 46.3 59.9 17.0

Losses (inflight) 10.4 0.6 1.7

Losses (landing) 35.9 59.2 15.3

Maintenance duration (hrs) 43 37 153

Maintenance operations 24 34 104

Scanned area (km
2
) 124,000 136,000 103000

Acquired data (GB) 1278 1403 1042

Images taken 647,000 710,000 527000

SAR incident waiting time (hrs) 6.2 5.4 7.2

SAR incident lives saved 1.91 2.10 1.66

Chapter 6: Case study – Optimisation

158

the lower number of landing losses caused fewer new aircraft purchases. Hence, aircraft aged

more, increasing the likelihood of inflight crashes.

The number of landing losses decreased by almost 75 %. This is a direct effect of fewer

landings as the number of refuels decreased to almost zero. 3i-b is lost upon landing about

once every 24 days. In reality, this number would still be far too high for reasonable operations,

as is reflected in the high costs of the system (see below). Therefore, the relationship between

landing KE and the likelihood of landing losses needs critical review. Real landing loss data of

similar aircraft is not available but empirical data of civil aircraft could be scaled down. Alterna-

tively, expert interviews could lead to a refined relation.

The number of maintenance operations and the maintenance duration in-

creased by 67 and 76 %, respectively, compared to 3i-a. The aircraft requires two maintenance

operations per week, each lasting 88 minutes, on average. This increase is caused by the reduced

number of total losses leading to aircraft aging more, on average. The older an aircraft

gets, the more likely it is to feature a COMPONENT failure, either leading to an inflight loss

or requiring a maintenance operation. Therefore, the success of 3i-b in reducing fuel use and

producing fewer losses is offset through more maintenance operations as in Figure 6-13.

FIGURE 6-13: RELATION BETWEEN THE NUMBER OF TOTAL LOSSES AND MAINTENANCE RE-

QUIREMENTS. TREND LINE: - WITH .

If a design causes fewer losses, it requires more and more maintenance. Alternatively, de-

signs with very low demand on maintenance feature more losses.

As seen in Table 6-7, the payload performance (scanned area, acquired data and im-

ages taken) decreases by about 25 % compared to 3i-a. This is a result of flying at the re-

duced VRmax during the harbour patrol missions. As the aircraft flies slower compared to 3i-a, it

covers less distance in the same time, thereby taking fewer images. Moreover, the harbour pa-

trol duration decreased from 10 to 9 hours, further reducing the possible payload output. Note

Chapter 6: Case study – Optimisation

159

that the output for the anchorage and search-and-rescue missions stayed constant because the

mission duration is not specified as with harbour patrol. Instead, the aircraft covers the same

distance at a slower speed, taking the same amount of images, overall.

The search-and-rescue incident outputs incident waiting time and lives saved

show a performance decrease for 3i-b over 3i-a. Because incidents are found 33 % later, on av-

erage, the aircraft spots 21 % less incidents alive. This was expected because flight speed is crit-

ical in finding incidents quick and alive and 3i-b flies significantly slower than 3i-a. On the oth-

er hand, 3i-b required fewer refuel operations during search-and-rescue missions, thereby spot-

ting incidents earlier. In total, however, OSCAR found the former effect to be stronger, reduc-

ing overall search-and-rescue performance. In reality, operators should fly 3i-b at maximum

speed for search operations.

6.7.1.3 Costs

Figure 6-14 depicts the total cost and its breakdown into cost components for 3i-b.

FIGURE 6-14: COST DISTRIBUTION AND BREAK DOWN FOR 3I-B.

The total cost is dominated by operational costs making up about half of the total costs.

Maintenance costs total about $ 200,000 while fixed costs require about $ 340,000. Both feature

relatively large whiskers but small IQR boxes. This indicates that the standard deviation is ac-

ceptable but the data has some outliers, caused by the high aircraft acquisition cost (for fixed

Chapter 6: Case study – Optimisation

160

costs) and by the varying number of maintenance operations (for maintenance costs).

Payload cost is trivial compared to the other cost drivers.

FIGURE 6-15: ARITHMETIC MEAN COST BREAKDOWN FOR 3I, 3I-A AND 3I-B.

Figure 6-15 compares the mean costs for all three designs (combining arithmetic means of

Figure 6-9, Figure 6-12 and Figure 6-14). Design 3i-b is the cheapest design overall, mainly

caused by a strong reduction in fixed costs. This is based upon the reduced number of total

losses, requiring fewer aircraft purchases.

Operational costs reduce for 3i-a and 3i-b mainly because the number of take-offs re-

duces. Moreover, the fuel used and flight time reduces (except for a small increase in

flight time for 3i-a), keeping operational costs down.

Maintenance costs increase for each design iteration because the number of maintenance

operations increases. A slight reduction in maintenance duration for 3i-a over 3i does

not offset the overall maintenance cost increase.

Payload costs are directly proportional to payload performance and are negligible compared

to the other cost drivers. The reason is the choice of payload cost parameters (see Appendix 14)

showing that payload cost does not influence total cost strongly.

Chapter 6: Case study – Optimisation

161

6.8 Discussion

This section discusses the results of 3i-b and the overall optimisation process shown above.

Moreover, it introduces two trade-off studies derived from the manual optimisation above.

Design 3i-b achieved performance improvements through changing the mission specification

(and not the design itself). The number of refuels reduced to almost zero, reducing the

number of landing losses and, thereby, fixed costs. Moreover, the design operated more

efficiently as it wasted less time returning home for refuel and flying back out again. Combined

with flying at a more fuel-economic speed, this reduced the fuel used drastically.

However, the performance improvements came at a price: First, more maintenance oper-

ations occurred, adding to costs. Second, the payload performance reduced due to reduced

speed. Third, the search-and-rescue performance reduced as it took longer to find incidents.

From a cost-driven perspective, design 3i-b is still the preferred choice as it has the lowest

overall cost. However, real engineering cannot optimise for one factor (lowest cost) while not

penalising other performance measures. Therefore, it is useful to analyse the loss in perfor-

mance versus the gain in cost using Pareto charts. In a real optimisation, many more designs

would help create a smooth Pareto front. In this case study, however, the low number of itera-

tions provide indications only. The following charts aim to present what kind of discussion and

insights are possible using OSCAR during conceptual design.

6.8.1 Cost versus payload performance

As most PRA mission goals are to gather intelligence, it is interesting to investigate the rela-

tion between cost and payload performance. Figure 6-16 depicts the additional cost per extra

GB of data. Designers can expect to pay an extra $ 2,341 per additional GB of intelligence data

per year (or save the same amount if they are willing to sacrifice one GB of data). In reality, the

relationship is non-linear, as the cost for more data rises to infinity at some point. However, the

low sample number of three design iterations only allows a limited view upon this relationship.

Similar relationships can be produced for the cost per additional image taken and the cost per

scanned additional square kilometre.

Chapter 6: Case study – Optimisation

162

FIGURE 6-16: TOTAL COST VERSUS ACQUIRED DATA RELATIVE TO BASELINE DESIGN. TREND

LINE: - WITH

6.8.2 Cost versus lives saved

Consider the case where PRA is primarily interested in search-and-rescue performance. Fig-

ure 6-17 depicts the relationship between total cost and the number of saved lives, both relative

to the baseline design 3i.

FIGURE 6-17: TOTAL COST VERSUS SAVED LIVES RELATIVE TO BASELINE DESIGN 3I. TREND

LINE:

 - WITH

This correlation allows designers and managers to assess how much more money they are

willing to spend to save additional lives. In this case, saving one more live costs additional $M

1.9 compared to the baseline design. Interestingly, this value corresponds to the order of magni-

tude for the value of a statistical life (Viscusi & Aldy 2002).

Chapter 6: Case study – Optimisation

163

6.9 Summary

This chapter presented the use of OSCAR for conceptual design optimisation. As an automat-

ed design optimisation was beyond the scope of this work, a three-step manual optimisation

process was followed to indicate procedures and insights.

The first design iteration changed obvious design flaws that inhibited effective operation of

the baseline design. However, by increasing the fuel capacity, duplicating or strengthening vul-

nerable COMPONENTS, some improvements were achieved while other metrics changed unex-

pectedly. For example, inflight losses almost vanished, repairs occurred less often and search-

and-rescue and payload performance improved. However, the redesign increased the aircraft

size and weight, increasing landing losses. Overall, more aircraft were lost and total costs in-

creased despite opposite expectations.

The second design iteration alleviated these problems somewhat. The optimisation changed

operational parameters instead of design parameters, making full use of OSCAR capabilities.

Reducing the general flight speed from Vmax to VRmax and changing the harbour patrol duration

decreased the number of refuel operations to almost zero. This reduced the landing losses with-

out the drawback of an even larger fuel tank. However, this time the improvements in landing

losses and total costs were offset by increased repair demands as aircraft aged more. Moreover,

payload and search-and-rescue performance suffered as they depend upon flight speeds directly.

As engineering cannot achieve an optimal design, it was shown how designers and customers

could use OSCAR for trade-off studies. By linking OSCAR with a cost model, performance

gains linked directly to cost increases. This helps decision makers and designers to focus upon

their requirements and helps choosing the right design candidate.

Chapter 7: Conclusion

165

7 . C O N C L U S I O N

This chapter concludes the thesis and summarises the main findings. Section 7.1 re-focuses

on the context for doing the study and how it justifies the research question. Section 7.2 returns

to the study objective while Section 7.3 discusses problems encountered during the OSCAR

framework development. Section 7.4 does the same for the OSCAR simulation. Subsequently,

Section 7.5 details the boundaries and limitations of the research, commenting on applicability

in industry. Section 7.6 recommends follow-on work while Section 7.7 summaries the main

conclusions.

7.1 Context

Design of complex aeronautical systems consists of trade-offs based on informed decision-

making processes. In general, trade-offs are not straightforward but feature multi-dimensional

multi-scale considerations. Moreover, they intersect and overlap each other. Therefore, aeronau-

tical design is inherently complex: A small design change can result in large consequences for

life-cycle operations and overall product performance. Design complexity grows at a very fast

pace, exacerbating cost overruns, delivery delays and defects. There is a need for a decision-

support design methodology that operates at multiple levels of abstraction throughout the entire

design process. This helps to manage design complexity by providing clear design decision

support. Value-driven design aims to provide this overarching signpost capability for the design

of large complex systems. It supports objective design decisions and trade-offs by using a holis-

tic life-cycle perspective that includes analysis of product missions and operations. Therefore,

value-driven design requires information from a mission-modelling tool that simulates the entire

life cycle of a variety of designs in a comparable, comprehensive and rational way. Value-

Chapter 7: Conclusion

166

driven design and mission modelling should be applied whenever decisions and trade-offs oc-

cur. Some argue that the most critical decisions occur during the very early conceptual design

phase. However, current conceptual design mission modelling does not apply the level of fideli-

ty required by value-driven design analysis. Typically, current models combine parameterised

building blocks in order to simulate characteristic mission profiles for one product instance

alone. The process is slow, manual and neglects a lot of information and data already available

during conceptual design. Current models do not include dynamic life-cycle operational changes

and lack support for operational uncertainties. Moreover, they neglect spatial details, losing po-

tentially relevant information for designers. Instead, the characteristic mission is extrapolated

over a typical life cycle, yielding trivial analysis of design decision impact. Not least, mission

definitions are seen as a design constraint rather than a design parameter.

Therefore, the research question asked if it is possible to create an improved life-cycle mis-

sion-modelling framework for aeronautical vessels that supports decision-making and trade-offs

for value-driven design.

7.2 Objectives

This thesis identified the need for an improved conceptual design phase mission-modelling

application. Accounting for the large variety of aeronautical design products, the objective was

to create a generic framework that is widely applicable. Moreover, the framework should be

comprehensible to allow easy integration and successful user adoption. The level of realism

aims to be applicable for conceptual design phase requirements. Essentially, the goal was to be

as realistic as possible taking into account the limited data, labour and computing resources dur-

ing conceptual design. Last, the framework was supposed to be modular to ease adoption but

also to help comprehensibility, flexibility and genericity. In the end, the framework would ena-

ble specifying entire product life-cycle operations with higher fidelity than currently possible

during conceptual design. Applying the framework would provide unique design information

for decision support and optimisation that can be exploited by value-driven design methods.

In order to demonstrate the capabilities of the framework practically, another objective of this

thesis was to present a working prototype, i.e. a simulation model. It should act as an inspiration

as to how to develop or expand existing tools. The simulation should incorporate and implement

most of the framework features. It would include vessel and scenario features as well as auto-

mated geographical modelling capabilities. Moreover, it would be modular to allow adding

plug-ins of custom fidelity.

In order to test the simulation, the thesis objective was to apply the simulation in practise.

Two case studies presented real-life applications of aircraft design using the simulation. One

Chapter 7: Conclusion

167

case study demonstrated its decision-support capabilities while the other highlighted its optimi-

sation abilities. The goal was to describe and discuss how the tool would be used during aircraft

value-driven design as well as demonstrate how the tool can benefit designers by creating new

knowledge and insights.

7.3 Framework

This section concludes the status quo for the OSCAR framework and the issues and challeng-

es faced during development. The OSCAR framework (Chapter 3) tries to achieve the objec-

tives set above in order to answer the research question. It divides mission simulation into sce-

nario-related and vessel-related information. Scenarios consist of generic building blocks (SEG-

MENTS, TRACKS and MISSIONS) that make up entire life cycles, if desired. All information re-

lates to geographical modelling to exploit spatial information. VESSELS are characterised by

parameters such that they can represent a large variety of moving objects like aircraft, cars,

trains, humans or submarines. VESSELS consume energy at specified rates. An open plug-in ap-

proach allows specifying custom propulsion algorithms. An object-oriented approach defines

COMPONENTS for VESSELS. COMPONENTS deteriorate during VESSEL operations with stochastic

uncertainty. Last, VESSELS can carry inactive or active payload to compute VESSEL operational

performance. Through these steps, it has been possible to provide a largely generic framework

for mission simulation that enables to simulate large fleets of products in any area and detail

required over long life cycles. However, several issues and challenges occurred during frame-

work development.

The modularisation of an aeronautical life cycle into MISSIONS, TRACKS and SEGMENTS fo-

cussed on realism and genericity rather than usability. SEGMENTS enable very fine and detailed

mission scenarios. Nonetheless, initial setup of life cycles requires a large amount of work. Re-

using mission objects through a database alleviates these problems. However, the framework

(and the simulation, for that matter) do not support pre-defined standard mission building blocks

like aircraft holding patterns, airport arrival procedures or airways. In reality, these data exist in

(commercial) databases. Depending on design context, such data could be implemented, reduc-

ing genericity but increasing usability.

The proposed VESSEL dynamics arising from the VESSEL parameters are very simplistic. Es-

sentially, VESSELS are simple point masses moving through 2D space. They lack acceleration

and deceleration behaviour. VESSELS can only climb or descend in discrete steps, neglecting

smooth altitude changes. Moreover, directional changes occur instantaneously, lacking any turn

performance. This is acceptable for VESSELS that do not perform such manoeuvres as core char-

Chapter 7: Conclusion

168

acteristics of their life cycle, i.e. VESSELS that operate at level altitudes and constant speeds

most of the time.

VESSEL payload definition focussed on active payload. However, many aeronautical missions

carry inactive payload only. It was difficult to unify both payload types in a simple parameter

set. Therefore, different parameters were suggested for both types. Moreover, the framework

assumes constant payload for a VESSEL throughout its life cycle. This assumption does not hold

in reality because often, each operation features different payload (e.g. airliner loading different

passengers on each flight).

VESSEL COMPONENTS deteriorate based on a user-defined weibull function. There is no sup-

port for other distributions or non-stochastic behaviour. COMPONENTS cannot interact with each

other directly. Essentially, there is no knowledge of how COMPONENTS link to others and how

failure at one COMPONENT affects all other COMPONENTS. However, there is a simple model for

redundant COMPONENTS of the same type that can take over work of broken COMPONENTS.

Moreover, the OSCAR framework does not take into account definition of scheduled mainte-

nance as commonly conducted with most aeronautical products.

7.4 Simulation

This section summarises the status quo for the OSCAR simulation (Chapter 4) and the issues

and challenges faced during model development. The OSCAR simulation includes the OSCAR

framework building blocks for SEGMENTS, TRACKS and MISSIONS. It applies an agent-based

approach for simulating generic moving VESSELS. VESSELS interact with a geographical envi-

ronment and with each other. The simulation feeds from (and to) an extensive database speci-

fied in the OSCAR framework. VESSELS apply either a generic propulsion module or custom

plug-ins, as demonstrated in the case studies. They can carry electro-optical sensor payload.

Payload performance depends on payload parameters, VESSEL definition and life cycle perfor-

mance. Several challenges occurred during development of the OSCAR simulation.

One problem was that SEGMENT-related geographical data should be stored within Geograph-

ical Information System shapefiles. However, it was not possible to read this data within the

simulation. Therefore, only spatial SEGMENT data is stored in shapefiles while SEGMENT-related

data (altitude, speed, etc.) is stored within the external database. Care is required to combine a

shapefile SEGMENT with the correct SEGMENT data in the database.

Another database problem was structural: Typically, users would store many TRACKS, MIS-

SIONS and VESSELS in the database. Although possible, the database easily fills with hundreds

or even thousands of tables with similar names. Several database files could organise data better

Chapter 7: Conclusion

169

but would complicate post-simulation data processing because SQL queries cannot access sev-

eral database files simultaneously.

In general, it was very difficult to combine geographical shapefiles and agent-based model-

ling within the simulation tool AnyLogic. Complex custom algorithms read shapefiles and con-

vert them into AnyLogic ―polylines‖ automatically. This solution is generic and unique. How-

ever, it is not optimal because agents do not interact with geographical features directly. Moreo-

ver, runtime increases due the conversion algorithms. Not least, users must create geographical

shapes in the correct sequence within a Geographical Information System program to ensure

VESSELS move along shapefile paths or points correctly. These drawbacks offer numerous pos-

sibilities for human error. Object-oriented geographical modelling can simplify some of these

problems (Section 7.6).

The OSCAR simulation payload model focuses on electro-optical sensors while neglecting

many other types of active payload (microphones, Geiger tubes, etc.). Moreover, inactive pay-

load is not supported at all because the database structure does not contain the relevant parame-

ters suggested by the OSCAR framework.

During model development, validation was a recurring problem, as with any simulation mod-

el. One can never formally prove that a model or part of it are working correctly (Sterman

2000). Therefore, traditional validation techniques were applied throughout. Unit tests and

walkthroughs were conducted after each model change. Expert opinion was obtained for specif-

ic operational procedures. External modules (propulsion, geographical modelling, etc.) were

tested using extreme case scenarios.

Moreover, it was difficult to choose ideal model fidelity levels for the various parts of the

model. Some required more detail (e.g. payload performance) while other parts were modelled

more coarse (e.g. climb/descent). The decision for module fidelity was based on engineering

judgement, conceptual design phase requirements and development iterations. To give an ex-

ample, consider the update frequency of the fuel burn calculation (Section 4.9): Initially, a very

high frequency was chosen (every virtual second) because correct fuel burn measurement was

considered important. However, runtimes exceeded acceptable limits and the frequency was

reduced to every virtual minute. Comparison runs revealed acceptable precision loss and strong

increase in computing performance.

Issues occurred not only during model development but during model application as well.

While applying the OSCAR simulation as part of the DECODE project (Section 5.2.2), it was

difficult to distinguish two very similar designs by their outputs. Essentially, output noise and

small design change impacts merged. One of the reasons was that the virtual life cycles were

very short (1-3 years) and included relatively few missions (less than 200). There are three solu-

tions to such problems:

 Inflate the design changes arbitrarily, i.e. compare designs that are less similar.

Chapter 7: Conclusion

170

 Extend the life cycles arbitrarily.

 Increase the number of replications to reduce noise.

Each option has disadvantages that must be taken into account when facing such problems.

However, the OSCAR simulation delivered one insight that could not be obtained otherwise:

The impact of small design changes can be neglected for operational scenarios similar to DE-

CODE. This is not always the case, as was shown in the other case study in Chapter 6.

Another problem faced during model application relates to output analysis: Once designers

observe different output performance for different designs, it can be difficult to explain the

change. Designers usually change one design parameter such as wingspan or landing speed.

However, the resulting ―balanced‖ aircraft design varies in numerous operational parameters

such as maximum speed, fuel capacity, etc. This can cause a complex operational ―reaction‖

leading to step changes in outputs that were not anticipated by a (supposedly) small design pa-

rameter change (see Section 3.2.4.1 for an example). Moreover, agent interaction can cause un-

expected outputs. In any case, result analysis often includes time-consuming model re-runs with

human supervision in a ―step-by-step‖ manner.

7.5 Limitations

Both the OSCAR framework and simulation are suitable for a limited area of application.

Although developed with genericity in mind, OSCAR is not applicable for space and military

designs. For space applications, the 2D assumption of the Geographical Information System

environment does not hold. For military design, agent interactions are not sophisticated enough

to model battlefields.

OSCAR can model a large variety of moving objects but only if they can control their own

motion. Consider scientific balloons: They drift with prevalent winds and change altitude based

on hanging weights. This could be modelled by dictating direction but there is no dynamic wind

impact during model run. Moreover, vessel operations should predominantly consist of constant

altitude and constant speed segments to reduce output error.

Moreover, OSCAR does not support a weather module in its current state. Therefore, opera-

tions and vessels that strongly depend on weather should be included cautiously. To some de-

gree, any moving vessel operation depends on weather: Bicycles are predominantly used in

good weather; rockets launch only below certain wind speeds; commercial airliners choose

flight routes based on large weather structures; etc. However, most weather-dependent opera-

tions can be defined during conceptual design applying statistical averages and engineering

judgement. Future work could include weather impact by adding SEGMENT characteristics such

as temperature, wind or visibility.

Chapter 7: Conclusion

171

Another OSCAR limitation for aeronautical conceptual design is the lack of take-off field

length consideration. This parameter is crucial for conceptual aircraft design because it dictates

landing speed and thereby many other design parameters. Currently, designers must ensure

manually that their design can land at any expected airport during its life cycle.

Another limitation of OSCAR is its implicit work overhead during conceptual design. Sourc-

ing data and creating the mission as well as vessel definitions can be time-consuming and ex-

pensive. It is beyond the scope of this thesis to quantify new cost and additional benefit that

arise from using OSCAR. This thesis argues that improved decision rationales and more precise

product values have the potential to outweigh the overhead and produce overall benefit.

Not least, this thesis argues that an explicit mission simulation triggers thinking about alterna-

tive design ideas or modes of operations that are difficult to conceive with simplified mission

models. The value of such insights is hard to quantify as it depends on the specific application.

7.6 Future work

This section provides guidance and ideas for future developments based on the OSCAR

framework and simulation.

The VESSEL model should include simple dynamics for altitude changes, directional changes

and speed changes. Currently, VESSELS only change these characteristics incremental. However,

a simple, computationally cheap and flexible model could improve conceptual design phase re-

sults without additional workload. Moreover, the existing incremental approach could remain

for non-critical VESSELS of the operational scenario (like the lifeboats in Chapter 5). A very

simple dynamics model could feature additional VESSEL parameters such as turnRate (in

 ⁄), climbRate (in ⁄) and accelerationRate (in ⁄).

Another improvement regarding VESSELS concerns replacement policies: What happens if a

VESSEL breaks during operation? A VESSEL can break but remain fixable for future application

or it can break beyond repair. Replacement policies should be definable for both cases separate-

ly. Policies could include:

 No replacement: The VESSEL is not replaced ever.

 Immediate replacement: The VESSEL is replaced at the instant of failure with an iden-

tical copy. This is the current (unrealistic) option for the OSCAR simulation. This

policy is useful if unlimited resources are of interest.

 Earliest replacement: The VESSEL is replaced as soon as practically possible. BASES

could feature a stock of VESSELS from which replacements are drawn (using a new

BASE parameter vesselsInStock). If the stock is empty, the new VESSEL parame-

ter timeToReplace defines how long it takes to refill the stock.

Chapter 7: Conclusion

172

In order to provide better feedback for VESSELS carrying payload other than electro-optical

sensors, the payload module requires a more generic modelling approach. Inactive payload can

be included easily by adding the parameters payloadItems and payloadWeight as suggest-

ed in Section 3.3.6.1. Moreover, payload should become object-oriented: Each payload item

should become a separate object such that a VESSEL can carry any number of any payload type

(e.g. passengers and a camera). This would overcome the problem that current VESSELS are

bound to one item of payload for their entire life cycle. Object-oriented payload could be

changed for each MISSION, TRACK and even SEGMENT, if desired. If payload is assigned SEG-

MENT-wise, specialised operations with payload drop become possible (e.g. parachute flights,

UAS dropping equipment or supplies, trains collecting and releasing passengers, etc.).

VESSEL COMPONENTS modelling can be improved in several ways. First, fixed scheduled

maintenance events should be defined for individual COMPONENTS and entire VESSELS based

on different conditions such as operating hours, age, operating cycles, etc. Moreover, a simple

model of COMPONENT relations and interactions could improve the current simplistic approach

of stressing remaining redundant COMPONENTS more. In this relational model, each COMPO-

NENT could define the effect of its failure on any other COMPONENT specifically. If an engine

fails, this puts additional stress on the remaining engines but also (to a lesser degree) on the

rudder to keep lateral stability. Another COMPONENT modelling improvement concerns failure

probability: The OSCAR simulation supports Weibull failure distributions only as it can model

a wide range of data. However, the weibull distribution cannot model lognormal data often

found in maintenance repair times. Users should be able to decide and apply standard statistical

distributions independently.

If a COMPONENT fails, it can cause immediate VESSEL loss in the OSCAR simulation. How-

ever, if the VESSEL remains operable, the COMPONENT should define if the current VESSEL op-

eration will be cancelled or not. Using a new COMPONENT parameter missionCritical, a

VESSEL would return to its BASE as soon as possible for COMPONENT repair. This option would

be useful for COMPONENTS that are critical to the mission: If the camera sensor fails on a map-

ping mission, there is no point in continuing; if a passenger becomes very sick, the mission must

be cancelled; if known safety-critical COMPONENTS like the batteries on the Boeing 787 fail
1
,

the VESSEL should land as soon as possible.

Most conceptual design tools feature take-off and landing modules (compare Section 2.5)

while this aspect is largely neglected in the OSCAR framework and simulation. One of the criti-

cal design parameters during conceptual aeronautical design is airfield runway length (except

for vertical take-off and landing VESSELS). The shortest runway for the expected operations dic-

1
 After a number of battery failures on the 787, it was monitored closely during operations. See

http://www.boeing.com/787-media-resource/docs/787-battery-certification.pdf, accessed 30/12/2013.

http://www.boeing.com/787-media-resource/docs/787-battery-certification.pdf

Chapter 7: Conclusion

173

tates landing performance, i.e. landing speed. Therefore, BASES could feature the additional pa-

rameter shortestFieldLength while a simple take-off and landing module based on existing

empirical relations could ensure that BASE field lengths are within limits at any time during the

life cycle. However, such modules would not be applicable to VTOL (Vertical Take-off and

Landing) aircraft and other VESSELS such as trains, cars or ships. Moreover, the hazardous issue

of crosswind landings could be modelled by extending the current simple landing module.

Currently, OSCAR does not support weather and geographical influences such as dust. How-

ever, connecting the SEGMENT spatial data with weather databases could take into account

weather effects such as average or stochastic wind speeds, temperatures, visibility or precipita-

tion. A simple weather module would amend flight performance accordingly, possibly including

effects of wind on flight speed, effects of temperature on air density, effects of visibility on op-

erations, etc. Moreover, local effects such as gusts or winds could influence performance and

deterioration of specific COMPONENTS (e.g. sand grinds engine blades).

The current geographical modelling capability does not utilise the full potential of spatial

analysis. Connecting to online databases, mission definition could be simplified for commercial

airliners by applying existing airways and airport departure & arrival procedures. Other opera-

tions could automatically apply routes following roads (for cars or road-monitoring aircraft),

shipping routes or train tracks. Another major improvement geographical modelling would be

object-oriented geographical modelling: Here, the idea is to model each spatial SEGMENT

(POINT or PATH) as a specific, addressable object within AnyLogic (or any other tool). This

would simplify assigning spatial details such as weather conditions. Moreover, VESSEL agents

would interact with an object instead of following a passive background drawing. This would

enable new functionalities for future developments: A road SEGMENT could hold a maximum

number of cars; an airway could report on the number of aircraft that used it; a train track could

feature overhead contact wire or not, etc.

7.7 Summary

This thesis introduced the OSCAR framework and simulation, a set of ideas and tools for im-

proved conceptual design mission modelling for value-driven design. It is the first tool of its

kind that takes into account mission geography specifically. Moreover, it enables designers to

incorporate additional useful information into conceptual mission modelling compared to cur-

rent tools. This includes simulating a whole fleet of vessels, competitors and other vessels that

might interact with the design vessel. Vessels consist of components that deteriorate by opera-

tions and affect operational performance. Missions are modelled ―explicitly‖ through defining

any operation, life-cycle variation and spatial as well as fleet detail in a specific and unambigu-

Chapter 7: Conclusion

174

ous way. This omits parameterised mission building blocks that are prevalent in current concep-

tual mission models. By applying an object-oriented approach, additional workload for design-

ers is minimised. Most of the required information is available during the conceptual design

phase already. The initial overhead in work (defining missions, vessels and components) is re-

quired only once. Subsequent analysis can draw from existing objects for alteration.

Technically, the OSCAR simulation is the first application of agent-based modelling specifi-

cally considering geography for conceptual aeronautical design. Although complicated, the ad-

vantages of geographical modelling for conceptual design have the potential to outweigh its

technical drawbacks. Through geography, operational scenarios can cause complex interactions

between vessels and their environment that cannot be predicted analytically. These can steer

design decisions and improve overall value.

The OSCAR framework and simulation outputs enable detailed cost and benefit analysis pro-

ducing quantitative value comparisons between different designs and design optimisation.

Therefore, the initial hypothesis and research question can be answered as follows:

The OSCAR framework enables explicit and generic life-cycle mis-

sion modelling for aeronautical vessels supporting design deci-

sions, trade-offs and optimisation for value-driven design.

Appendices

I

A P P E N D I C E S

Appendices

II

Appendix 1: Segment parameters

This appendix details the parameters required to define a SEGMENT object.

SEGMENT parameter Description

Time

An integer value (in seconds) indicating when this SEGMENT

should be started relative to the start TIME of the current TRACK

(Section 3.2.3.2). Hence, the initial SEGMENT of a TRACK always

has Time=0. UponArrival and Hover can override the Time

value. If a SEGMENT is finished earlier than the Time value of the

subsequent SEGMENT, the vessel will loiter at the end point of the

SEGMENT until the subsequent SEGMENT should be started. If a

SEGMENT is finished after the Time value of the subsequent

SEGMENT, the vessel will proceed after the Loiter duration of

the current SEGMENT. Note that all SEGMENTS of a TRACK can

have Time=0.

Origin

A string indicating a name of a POINT or the start point for a

PATH. This string distinguishes POINTS and PATHS from each

other beyond spatial difference. However, Origin is not re-

quired and has no direct operational function in OSCAR.

Destination

A string indicating a name of a POINT or the end point for a

PATH. This string distinguishes POINTS and PATHS from each

other. However, Destination is not required and has no direct

operational function in OSCAR. Note that Destination and

Origin may be identical. This is good practice for POINTS as

their Origin and Destination are equal by definition.

UponArrival

A keyword string indicating what should be done upon arriving at

this POINT or end point of this PATH. Permitted keywords are

home, stay, next and search. The keyword home sug-

gests that the vessel should proceed to its Destination airport

upon arriving until it is time to proceed to the next SEGMENT of

this TRACK (only applicable if not the last SEGMENT of a

TRACK). This can enforce refuelling during a TRACK. The key-

word stay requires the vessel to loiter at the current POINT or

PATH end point until it is time to proceed to the next SEGMENT or

the subsequent TRACK. The keyword next informs the vessel to

proceed to the next SEGMENT disregarding the subsequent Time-

value. This enables ―sweeping‖ through a TRACK without inter-

ruption. The keyword search triggers the build-in search-and-

rescue capability (Section 4.11). UponArrival overrides the

Time-characteristic: if the vessel should go home, it will not

judge if it has enough time to fly to its BASE before starting the

subsequent SEGMENT. Therefore, careless data entry may cause

vessels to accumulate significant delays.

Type

A string or integer that can be used to cause specific vessel be-

haviour for the current SEGMENT. Developers can define specific

keywords and link those to purpose-build features. Currently, one

specific behaviour is included: If UponArrival=search and

Type contains an integer number, the custom search-and-rescue

module will use the value as an input to search-and-rescue inci-

dent position uncertainty (Section 4.11). In any other case, this

Appendices

III

column is has no functionality.

TargetHeight

Based on the ―target‖ concept defined in Section 3.3.6 and 4.10,

this double value defines the target height in metres. Note that

this value represents the perceived target height as seen by the

vessel, not the actual physical target height. Consider the physical

height of a human at around 1.8 metres: if this human swims in in

water, its TargetHeight reduces to about 0.3 metres (i.e. the

height of the head). If targetHeight=0, the Segment does

not contain a target that requires detection (see Section 4.10.2).

TargetWidth
Similar to TargetHeight, this double value defines the per-

ceived width of the target in metres.

DetectionCriteria

This double value can only be 0.75, 3.0 or 6.0. These key values

represent the ―Johnson criteria‖ specified by the current camera

model. A higher value ensures more precise image recognition.

See Section 4.10 for a full description of this value.

Loiter

An integer value indicating how many seconds the vessel should

loiter upon reaching this POINT or PATH end point. Loiter over-

rides UponArrival and Time entries. Hence, a vessel will loiter

even if it should proceed to the next SEGMENT indicated by Up-
onArrival or if the Time of the subsequent SEGMENT has al-

ready passed. If Loiter=0, the vessel proceeds with actions

defined in UponArrival.

Height

An integer value indicating in metres at what height the vessel

should conduct the SEGMENT. If the SEGMENT is a POINT, the

distance covered to reach the POINT and any loitering will be

flown at this height (except for the first POINT of a TRACK whose

Height is defined in DashHeight in the MISSION-table for the

current TRACK). If the SEGMENT is a PATH, height will be used

for possible manoeuvres to reach the current PATH, the total

length of the PATH and any loitering. If the SEGMENT has Up-

onArrival=search, the search and loitering will be flown at

this height. A value of ``99999'' indicates that the vessel should

fly at the maximum possible altitude defined in the VESSEL pa-

rameter altitudeMax (see Section 3.3.2). Note that altitude

changes can only occur step-wise between SEGMENTS.

Speed

An integer value indicating at what speed (in meters per second)

the vessel should conduct the current SEGMENT. If the SEGMENT

is a POINT, the distance covered towards the POINT and any loi-

tering will be conducted at this speed (except for the first POINT

of a TRACK whose Speed is defined in DashSpeed in the MIS-

SION-table for the current TRACK). If the SEGMENT is a PATH, the

PATH itself, any manoeuvres conducted to reach the PATH and

any loitering will be conducted at this speed. If the SEGMENT has

UponArrival=search, the Search and any loitering will be

conducted at this speed. A value of 9999 indicates that the vessel

should move at its maximum speed (defined in the VESSEL pa-

rameter speedMax, see Section 3.3.2). A value of 0 indicates that

the VESSEL should move at its minimum possible speed (speed-
Min). If speedMin=0, the vessel will move at 0.01 m/s to avoid

vessels never reaching their goal.

Appendices

IV

Appendix 2: Track parameters

This appendix details the parameters required to define a TRACK object.

TRACK parameter Description

Vessel_IDs

A comma-separated list of integers defining the VESSELS to

conduct this TRACK. The integers refer to the VESSEL pa-

rameter id (see Section 3.3.3). A TRACK can be conducted by

any number of VESSELS of any type. Integers must be unique

for each TRACK.

Base
A string defining the BASE where this TRACK will start. It

refers to the Base parameter StationName (see Section 4.7).

Track
A string defining the list of SEGMENTS to be conducted. This

loads the corresponding SEGMENT-table of this name.

TrackFragmented

Boolean value indicating if the SEGMENTS of this TRACK are

independent (i.e. fragmented) of each other. If true, the vessel

will return to the DESTINATION of this TRACK after complet-

ing each individual SEGMENT. This is useful to define

TRACKS with many ―sub-Tracks‖, for example all search-and-

rescue POINTS in an area over one year. If false, SEGMENTS

are conducted sequentially without return to the DESTINATION

(unless a SEGMENT has UponArrival=home).

Destination

A string defining the Destination where this TRACK will end.

It refers to the BASE parameter StationName (see Section

4.7). Care must be taken to ensure physical integrity of VES-

SEL operations: If a vessel ends its initial Track at Destina-

tion=X and is scheduled to start a subsequent TRACK from

Base=Y, the vessel will be ―beamed‖ from X to Y.

Time

Entry defining the point in time when the TRACK will com-

mence, i.e. when the vessel will leave the BASE. The entry

follows the ISO 8601 date format ―YYYY-MM-

DDThh:mm:ss‖ (for example: ―2014-01-12T14:36:22‖). All

values refer to GMT (Greenwich Mean Time). If a VESSEL is

not ready at that time, it will commence the TRACK as soon as

possible afterwards.

Repetition

Three integer values separated by ―X‖ define the TRACK repe-

tition in the format ―dXfXr‖ (for example

―36000X86400X365‖). The first integer ―d‖ defines the patrol

duration in seconds, i.e. the duration for which the TRACK

should be patrolled without landing in between (unless refuel

required). On a patrol, the VESSEL returns to the initial SEG-

MENT after reaching the final SEGMENT of a TRACK. If d=0, the

TRACK is flown once and repeated as defined by the second

and third values ―f‖ and ―r‖. Otherwise, the TRACK is patrolled

for the desired duration. The second entry ―f‖ is the repetition

frequency in seconds. It defines how often the TRACK should

be repeated. If ―d‖<‖f‖, the vessel patrols for duration ―d‖ and

repeats the patrol every ―f‖ seconds. If ―d‖>‖f‖, the vessel

will interrupt the patrol after ―f‖ seconds, go to its DESTINA-

TION and repeat the TRACK afterwards, starting a patrol for ―f‖

seconds only. If ―f‖ is smaller than the total duration it takes

Appendices

V

to finish the TRACK, repetitions are queuing up for this VES-

SEL, building up delays. The third integer entry ―r‖ defines the

number of repetitions of this TRACK. If ―f‖=0 and ―r‖>0, Rep-

etitions are scheduled to start at the same time. The VESSEL

will conduct them one by one, building up delays. If ―r‖=0, no

patrols and no repetitions are conducted and ―d‖ and ―f‖ are

meaningless. If ―r‖=2, the TRACK will be flown three times in

total.

Priority

An integer indicating the relative importance of TRACKS with-

in a MISSION. Higher values define TRACKS of higher priority.

If a VESSEL conducts a low priority TRACK while being asked

to start a high priority TRACK, it cancels the current TRACK

and starts the higher priority TRACK. If a new TRACK with

equal or lower priority is scheduled while a VESSEL con-

ducts a TRACK, the VESSEL stores the new TRACK and con-

ducts it as soon as possible afterwards.

DashHeight

A double value indicating the height in metres at which the

dash of this TRACK will be conducted (i.e. the distance be-

tween the BASE and the first SEGMENT). VESSEL minimum and

maximum altitudes are taken into account (i.e. ships do not

fly, cars do not drive under water, etc.). If Dash-

Height=99999, the VESSEL’s altitudeMax parameter

defines the DashHeight. If DashHeight=0, airborne VES-

SELS conduct the TRACK at altitudeMin.

DashSpeed

A double value indicating the speed in metres per second at

which the dash SEGMENT should be conducted. DashSpeed

must not be equal to zero. If DashSpeed=-9999, the VES-

SEL will conduct the dash at its speedMin (see Section 3.3.2).

If DashSpeed=9999, it will dash at its speedMax.

ReturnHeight Same as DashHeight but for the return stage.

ReturnSpeed Same as DashSpeed but referring to the return stage.

Appendices

VI

Appendix 3: Vessel parameters

This appendix details the parameters required to define a VESSEL.

VESSEL parameter Description

performanceModel

Specify which performance model should be loaded for this

VESSEL. The default model is ―powerAgainstSpeed‖ as de-

scribed in Section 4.9. Custom models can be loaded (see

Section 4.8).

fuelType

A String specifying the fuel type used by this VESSEL. Key

words include ―petrol‖, ―diesel‖, ―nuclear‖, ―coal‖

or ―food‖. If performanceMod-

el=powerAgainstSpeed, the calorific value of the fuel

will be changed accordingly as follows: petrol  44.4 MJ/kg;

diesel  41.1 MJ/kg; nuclear  ∞ MJ/kg; coal  20 MJ/kg;

electric  ∞ MJ/kg. Note that both keywords nuclear and

electric will set the calorific value to ∞ MJ/kg. This is because

the calorific value is used to convert energy used into mass of

fuel used (see Section 3.3.4). However, electricity does not

use up any mass while nuclear consumption of fuel elements

is negligible for VESSELS.

occupants

Integer value indicating the number of humans required to

operate a VESSEL directly, i.e. how many humans must be on-

board the VESSEL to control it? For UAS, occupants=0

while for civil airliners, occupants=2, usually. This value

can be used to calculate operating costs but has no functional-

ity in the OSCAR simulation.

speedMax

Double value larger than zero that indicates in metres per se-

cond the maximum speed that the VESSEL can move at. If a

Segment requests higher speeds, the VESSEL will move at

speedMax only, building up delays. In reality, any VESSEL

type has varying maximum speeds depending on a number of

parameters. However, during conceptual design one value

suffices.

speedMin

Double value larger or equal to zero that indicates in metres

per second the minimum speed that the VESSEL can move at.

If a SEGMENT requests a lower speed, the VESSEL will move

at speedMin only. Except for fixed wing aircraft, all VES-

SELS have speedMin=0, i.e. they can stop motion during a

TRACK. For fixed wing aircraft, speedMin equates to the stall

speed in landing configuration (VS0), neglecting its variation

across different flight regimes. A SEGMENT will never ask for

speed=0 (see Section 3.2.3.1).

speedTypical
Double value larger to zero that indicates in metres per second

the typical speed to be used if useTypicalSetup=true

(see below).

altitudeMax

Double value larger or equal to zero indicating in metres the

maximum operating altitude for VESSELS. For non-airborne

VESSELS, altitudeMax=0. For airborne VESSELS, this

value neglects the variation of maximum operating altitude

depending on weight, temperature, etc. If a SEGMENT requests

Appendices

VII

a higher altitude, the VESSEL will move at altitudeMax.

altitudeMin

Double value indicating in metres the minimum operating

altitude for VESSELS. For most VESSELS, altitudeMin=0,

except for submarines that can move under water. Further

exceptions would be mining lorries and subway trains. If a

SEGMENT requests a lower altitude, the VESSEL will move at

altitudeMin.

altitudeTypical
Double value indicating in metres the typical altitude to be

used if useTypicalSetup=true (see below).

useTypicalSetup

A Boolean switch. If ―false‖, the SEGMENT parameters

Height and Speed shall be applicable for this VESSEL. If

―true‖, the VESSEL will not apply the SEGMENT Height and

Speed values but use its own speedTypical and alti-
tudeTypical parameters instead for all SEGMENTS. This is

useful if a SEGMENT shall be conducted by several VESSELS

but one of them is controlled through user inputs on altitude

and speed while the others are not. User control can be ap-

plied through specific SEGMENT Height and Speed entries

while the other VESSELS have useTypicalSetup=true.

weightDry

Double value larger than zero indicating in kilograms the

weight of the VESSEL without any fuel loaded (if applicable).

Value includes structural and payload weight. For nuclear and

electric VESSELS, this is the same as the total weight.

weightFuel

Double value larger or equal to zero indicating in kilograms

the maximum fuel weight the VESSEL can carry. For electric

and nuclear VESSELS, weightFuel=0. Within OSCAR,

VESSELS are always fuelled up completely.

Appendices

VIII

Appendix 4: Component parameters

This appendix details the parameters required to define a COMPONENT.

COMPONENT parameter Description

weibullLifeMeasure

A string indicating by what mechanism the COMPONENT

deteriorates. Value can be either ―duration‖ or ―cycles‖. The

former will trigger the COMPONENT to deteriorate continu-

ously while operating. This is applicable to any COMPO-

NENT that primarily suffers fatigue from VESSEL move-

ments, i.e. aircraft wings, car wheels, a ship’s hull or a hu-

man foot. If weibullLifeMeasure=cycles, the COM-

PONENT deteriorates only when a TRACK concludes, i.e.

every time an aircraft lands, a ship arrives in a harbour or a

car parks. This is applicable to COMPONENTS primarily suf-

fering fatigue once every VESSEL cycle, i.e. aircraft landing

gear, car doors or a ship’s anchor.

weibullEta

Double value indicating the shape parameter of the weibull

distribution characterizing the units to failure for this COM-

PONENT.

weibullBeta

Double value indicating the scale parameter of the weibull

distribution characterizing the units to failure for this COM-

PONENT. If weibullLifeMeasure=duration, unit is

the time unit used in the simulation. If weibullLife-

Measure=cycles, unit is cycles.

LossProbabilityFromFailure

Double value between 0 and 1 indicating the likelihood of

losing the entire VESSEL if this COMPONENT fails during

service and there are no functional redundant COMPONENTS

that can take over. Aircraft engines have LossProbabil-

ityFromFailure=1 because the aircraft will crash if its

only engine (or all available engines) fails inflight. A car’s

CD-player will have LossProbabilityFromFail-

ure=0 because a broken CD-player cannot cause the de-

struction of the car itself.

unplannedMaintenanceDuration

Double value in seconds indicating how long unplanned

maintenance takes on this COMPONENT. If the COMPONENT

failed, it will schedule unplanned maintenance at the next

suitable time.

quantityOnboard

Integer value indicating how many COMPONENTS of the

same type are on-board this VESSEL. Ensure to include

COMPONENTS that can take over the tasks and workload of

this COMPONENT only. In aircraft wings, several aileron ser-

vos can replace a broken servo if needed. However, only

servos on the left wing can replace a broken servo on the left

wing. Similarly, a car usually features four identical wheels

but none can take over the workload of a broken wheel,

therefore each wheel should be a separate COMPONENT with

quantityOnboard=1.

robustnessScalingFactor
Double value scaling the COMPONENT robustness such that
scaledTimeToFailure = TimeToFailure *

(1+robustnessScalingFactor). A value of zero

Appendices

IX

indicates no change to the COMPONENT time to failure. If

robustnessScalingFactor=-0.1, the COMPONENT

will fail 10 % earlier than assumed by the proposed weibull

distribution. During the conceptual design, COMPONENT

failure behaviour is often unknown. Therefore, this parame-

ter helps validating historical data or estimates against ex-

pected VESSEL performance (as conducted in Chapter 6).

Moreover, this parameter enables sensitivity analysis of

COMPONENT robustness.

Appendices

X

Appendix 5: Camera footprint algorithm

This appendix details calculation of airborne VESSEL active payload camera footprints based

on flight conditions. This calculation occurs every time the payload records an image. For air-

borne VESSELS flying level, assuming their camera is pointed towards the earth surface and tar-

gets must be found on the surface, Chen et al. (2009) define a camera footprint as in Figure A-1.

FIGURE A-1: AIRBORNE VESSEL CAMERA FOOTPRINT DEFINITION. REPRODUCED FROM CHEN ET

AL. (2009).

For the OSCAR framework, the characteristic dimensions are the footprint length “l”, the

footprint width closer to the VESSEL “w2”, the footprint width farther from the VESSEL “w1”

and the ground distance ̅̅ ̅̅ from VESSEL to “w2”. The VESSEL parameter height corresponds

to ”h”, the VESSEL parameter sensorFOVver corresponds to “fov1” and sensorFOVhor cor-

responds to “fov2”. Moreover, the VESSEL parameter sensorTiltAngle corresponds to “af”.

For level flight with constant pitch angle and altitude height, simple trigonometry defines

the camera footprint length as

 { (

) (

)} Eq. A-1

Appendices

XI

Similarly, the camera footprint widths w1 and w2 are

 (

)

 (

)
 Eq. A-2

 (

)

 (

)

Eq. A-3

The airborne camera footprint must be updated whenever any of the following VESSEL pa-

rameters changes: height, sensorFOVver, sensorFOVhor or sensorTiltAngle.

However, not all OSCAR VESSELS are airborne. There are ground-based and submerged

VESSELS as well. Submerged VESSELS (i.e. submarines, etc.) can use the method described

above if they scan the ocean surface or the water surface for targets. In this case, height is the

difference between the VESSEL depth and the ocean or water surface. Maritime VESSELS float-

ing on the water surface (ships…) can use the method to scan the ocean surface. Both cases as-

sume perfectly luminous water.

For ground-based VESSELS, a different approach is used. Here, cameras are very close to the

surface and the assumptions of Chen et al. (2009) do not hold anymore. Instead, cameras look

horizontally towards the horizon to scan for targets on the ground. The camera footprint is not a

trapezoid anymore, but a circular arc, as in Figure A-2.

FIGURE A-2: CAMERA FOOTPRINT DEFINITION FOR AIRBORNE/SUBMERGED VESSELS AND

GROUND-BASED VESSELS.

For ground-based VESSELS, assume and because the camera is near the ground

looking towards the horizon. This assumes sensorTiltAngle =0 for ground-based VESSELS.

Appendices

XII

Define the footprint length “l” as the distance to the earth horizon from the camera, neglecting

refraction and assuming infinite visibility.

FIGURE A-3: DISTANCE TO HORIZON SCHEMATIC
1
.

This distance to the horizon from an observer O is the same as ̅̅ ̅̅ in Figure A-3. From trigo-

nometry, ̅̅ ̅̅ √ where R is the earth radius and h is the camera height above

ground. However, since R is much larger than h for ground-based VESSELS, simplify the foot-

print length to

 ̅̅ ̅̅ √ Eq. A-4

Note that this discussion assumes that ̅̅ ̅̅ ̅̅̅̅ because h is small compared to these dis-

tances. Within the OSCAR simulation, all ground-based Vessels assume , i.e. the

camera sits 2.2 metres above the VESSEL height. Future work can make this another VESSEL

parameter, named ―cameraHeight‖.

The last parameter to define the circular arc footprint for ground-based VESSELS is alpha

(compare Figure A-2). Within the OSCAR framework, alpha corresponds to the VESSEL pa-

rameter sensorFOVhor.

1
 Discussion from http://mintaka.sdsu.edu/GF/explain/atmos_refr/horizon.html, accessed 01/11/2013.

http://mintaka.sdsu.edu/‌GF/‌explain/‌atmos_refr/‌horizon.html

Appendices

XIII

Appendix 6: Sample model walkthrough

This appendix presents a systematic tutorial on how to create and operate a simple OSCAR

simulation.

1) Create geographical model:

a) Obtain a Geographical Information System program of your choice (ArcGis from

www.esri.com, QGIS from www.qgis.org, etc.).

b) Create a new shapefile containing a number of ―Point‖ or ―Polyline‖ elements only.

Create a new dbf-file associated with the shapefile. Add a new column ―Constant‖. As-

sign all elements required to run the simulation the value ―Constant=0‖ (Figure

A-4).

FIGURE A-4: SIMPLE GEOGRAPHICAL INFORMATION SYSTEM MAP WITH DBF COLUMN "CON-

STANT".

c) Save shapefile, dbf-, ssx- and shx-file in subfolder ―GIS‖.

2) Setup database

a) Open the file ―data.sqlite3‖ in the model folder using any SQLite database manager

(SQLiteStudio from www. http://sqlitestudio.pl).

b) Edit the input tables. Figure A-5 shows a sample TRACK table for the five POINTS in

Figure A-4.

FIGURE A-5: SAMPLE TRACK TABLE INPUTS.

3) Simulation setup

a) Load the file ―OpSim.alp‖ into AnyLogic.

http://www.esri.com/
http://www.qgis.org/
http://sqlitestudio.pl/

Appendices

XIV

b) If you want to use the experiments ―Simulation‖ or ―FastRun‖, open the respective ac-

tive object, navigate to the ―General‖ tab of its properties and set the parameter mis-

sionStrings = new String[]{db_table_yourMissionName}, follow-

ing the name of the MISSION table in the database.

c) If using the ―Simulation_Customers‖ experiment, no action is required.

d) Set remaining parameters as described in Section 4.13.

4) Run simulation

5) Analyse outputs

a) Open the file ―data.sqlite3‖ in the model folder, navigate to the output tables.

b) Analyse and post-process data.

Appendices

XV

Appendix 7: Database

This appendix details the database developed for the OSCAR simulation. There are four dif-

ferent table types in the database, namely equipment, mission, track and outputs. Each has sev-

eral sub-types as described below. Each database table name starts with its type followed by an

underscore as in equipment_table1.

Equipment tables

There are three equipment table types, namely bases, vessels and components.

Base table

There is exactly one base table named ―equipment_Bases‖ listing all available bases using the

format below:

TABLE A-1: EQUIPMENT BASE TABLE FORMAT.

Column name Description

BaseID Integer value used as the table primary key

BaseName String naming the Base

Longitude Double value specifying the base longitude position in deci-

mal degrees.

Latitude Double value specifying the base latitude position in decimal

degrees.

Vessel table

There is exactly one vessel table named ―equipment_Vessels‖ listing all available VESSEL

agents that can be used. The table format is as follows:

Appendices

XVI

TABLE A-2: EQUIPMENT VESSEL TABLE FORMAT.

Column name Description

id Integer value used as the table primary key

category String describing the VESSEL category as defined in Figure

3-12

type String describing the VESSEL type as defined in Figure 3-12

name Optional String for VESSEL name, i.e. ―BMW‖, ―Policeman‖,

etc.

performanceModel As described in Appendix 3.

fuelType As described in Appendix 3.

occupants As described in Appendix 3.

cameraFOVhor As described in Section 3.3.6.2.1.

cameraFOVver As described in Section 3.3.6.2.1.

cameraPixelHor As described in Section 3.3.6.2.1.

cameraPixelsVer As described in Section 3.3.6.2.1.

cameraTiltAngle As described in Section 3.3.6.2.1.

cameraRecognitionFactor As described in Section 3.3.6.2.1.

speedMax As described in Appendix 3.

speedMin As described in Appendix 3.

speedTypical As described in Appendix 3.

altitudeMax As described in Appendix 3.

altitudeMin As described in Appendix 3.

altitudeTypical As described in Appendix 3.

useTypicalSetup As described in Appendix 3.

weightDry As described in Appendix 3.

weightFuel As described in Appendix 3.

speedValues

Comma-separated list of double values specifying a speed

range for this VESSEL. Only required if performanceMod-

el=powerAgainstSpeed. Can have any number of en-

tries but total number must equal that of powerValues.

powerValues

Comma-separated list of double values specifying the energy

consumption at the respective speed value in speedValues.

Only required if performanceMod-

el=powerAgainstSpeed. Can have any number of en-

tries but total number must equal that of speedValues.

Appendices

XVII

The OSCAR simulation features one additional performance model plug in (Section 4.9.2).

Additional Vessel parameters run this module if performanceMod-

el=fixedWing_aircraft_petrol and are described in Appendix 9.

Component table

There is an arbitrary number of COMPONENT tables depending on user requirements. Each

VESSEL listed in the table equipment_Vessels can have its own COMPONENT table if it is

supposed to deteriorate and receive maintenance (Section 3.3.5). In this case, the COMPONENT

table must be named using the VESSEL’S parameters following the scheme ―equip-

ment_category_type_name_Components‖. If the user wants to assign COMPONENTS to a

VESSEL of category=fixedWing, type=aircraft and name=G-DHBX, the COMPO-

NENT table name were ―equipment_fixedWing_aircraft_G-DHBX_Components‖. Upon VESSEL

creation, the agent checks if a corresponding COMPONENT table exists. If so, COMPONENTS are

created for this VESSEL agent. Each COMPONENT table follows the structure below:

TABLE A-3: EQUIPMENT COMPONENT TABLE FORMAT.

Column name Description

ComponentID Integer value used as the table primary key

ComponentName String indicating the name of the COMPONENT.

WeibullLifeMeasure As described in Appendix 4.

WeibullEta As described in Appendix 4.

WeibullBeta As described in Appendix 4.

LossProbabilityFromInflightFailure As described in Appendix 4.

MaintReplacementTime Described as ―unplannedMaintenanceDuration‖ in

Appendix 4.

QuantityOnboard As described in Appendix 4.

RobustnessScalingFactor As described in Appendix 4.

Mission tables

There are an arbitrary number of mission tables in the database. Each table refers to one MIS-

SION as defined in Section 3.2.3.3. Each mission table lists an arbitrary number of TRACKS.

Each mission table name starts with ―mission_‖ and is followed by a descriptive string (i.e.

―RotterdamPolice‖, ―search_southernUK‖, etc.). The mission table structure follows the TRACK

parameters defined in Section 3.2.3.2 and Appendix 2 as follows:

Appendices

XVIII

TABLE A-4: MISSION TABLE FORMAT.

Column name Description

ID Integer value used as the table primary key

Vessel_IDs As described in Appendix 2.

Base As described in Appendix 2.

Track As described in Appendix 2.

TrackFragmented As described in Appendix 2.

Destination As described in Appendix 2.

Time As described in Appendix 2.

Repetition As described in Appendix 2.

Priority As described in Appendix 2.

DashHeight As described in Appendix 2.

DashSpeed As described in Appendix 2.

ReturnHeight As described in Appendix 2.

ReturnSpeed As described in Appendix 2.

Track tables

There are an arbitrary number of track tables in the database. Each table refers to one TRACK

as defined in Section 3.2.3.2. Each track table lists an arbitrary number of SEGMENTS. Each

track table name starts with ―track_‖ and is followed by a descriptive string. For better abridge-

ment, use the same descriptive string used for the respective MISSION table followed by a more

specific description of this TRACK. Consider a UAS designed to follow the Olympic torch relay

every day. For this, the MISSION table name could be ―mission_OlympicTorchRelay‖ listing

TRACKS for each day of the relay. The TRACK tables could be

―track_OlympicTorchRelay_Day1‖, etc. The track table structure follows the SEGMENT parame-

ters defined in Section 3.2.3.1 and Appendix 1 as below:

Appendices

XIX

TABLE A-5: TRACK TABLE FORMAT.

Column name Description

ID Integer value used as the table primary key

Time As described in Appendix 1.

Origin As described in Appendix 1.

Destination As described in Appendix 1.

UponArrival As described in Appendix 1.

Type As described in Appendix 1.

TargetHeight As described in Appendix 1.

TargetWidth As described in Appendix 1.

DetectionCriteria As described in Appendix 1.

Hover Described as ―Loiter‖ in Appendix 1.

Height As described in Appendix 1.

Speed As described in Appendix 1.

Output tables

All output data is stored into one of two output tables named ―output_Segments‖ and

―output_MaintenanceOperations‖. To allow flexible post-processing for users, data is

stored in a raw format without processing from OSCAR. Output tables are stored within the

same database as the input tables to enable matching simulation inputs and output performance.

Moreover, one database file relates to one simulation run. Users can backup and store data easi-

ly by naming databases accordingly. In addition, keeping inputs and outputs within one database

enables creating advanced database ―views‖ for post-processing (see below).

Segment output table

This table named ―output_Segments‖ stores data on every SEGMENT conducted in this

simulation run. Each table entry is created through an instance of the OSCAR simulation Java

class TARGETSTATISTIC corresponding to the table columns as below:

TABLE A-6: OUTPUT SEGMENTS TABLE FORMAT. SPLIT OVER SEVERAL PAGES.

Column name Description

ID Integer value used as the table primary key

iteration Integer value specifying the simulation iteration (i.e. replica-

tion) that this SEGMENT was computed in.

missionName String indicating the name of the MISSION table that this

Appendices

XX

SEGMENT belongs to.

missionID Integer indicating the ―ID‖ of the TRACK in the mission table

that this SEGMENT belongs to.

missionStartTimeDB

Date and time when this SEGMENT’s TRACK was supposed to

start as specified in the MISSION table Time column. Howev-

er, the value is updated for repetitions to distinguish between

repeated MISSION entries. The entry follows the ISO 8601

date format ―YYYY-MM-DDThh:mm:ss‖ (for example:

―2014-01-12T14:36:22‖).

missionStartTimeActual

Date and time when this SEGMENT’S TRACK actually com-

menced in the simulation. Use this value to find delays of

TRACK starts due to tight repetition setup or previous TRACK

performance. Can have keyword ―cancelled due to

fuel‖ if the VESSEL could not perform the Track due to in-

sufficient fuel capacity.

trackName String indicating the TRACK table name that this SEGMENT

belongs to.

segmentID

Integer value indicating the ―ID‖ of this SEGMENT as speci-

fied in its TRACK table. Can be ―8888‖ if SEGMENT was can-

celled due to insufficient fuel capacity. Can be ―-1‖ for dash

SEGMENTS. Can be ―9999‖ for return SEGMENTS.

startTimeDB

Date and time when this Segment was supposed to start. It is

the sum of missionStartTimeDB and the TRACK table en-

try Time for this SEGMENT. For return SEGMENTS, this is

―null‖ since return SEGMENT start times are not defined.

startTimeActual

Date and time when this SEGMENT actually commenced with-

in the simulation run. Can have keyword ―cancelled due

to fuel‖ if the VESSEL could not perform the TRACK due

to insufficient fuel capacity.

departures

Integer value indicating how often a VESSEL departed from a

BASE during this SEGMENT. For airborne VESSELS, this

equates to take-offs. For dash SEGMENTS, value cannot be

higher than 1. Otherwise, this value indicates how often the

VESSEL had to return for refuels.

origin Use this SEGMENT’S track table value origin. For dash

SEGMENTS, use mission table Base entry.

destination Use this SEGMENT’S track table value destination. For

return SEGMENTS, use mission table destination entry.

uponArrival Use this SEGMENT’S track table value uponArrival. Value

is ―landing‖ for return SEGMENTS.

type Use this SEGMENT’S track table value type. Use ―dash‖ for

dash SEGMENTS and ―return‖ for return SEGMENTS.

targetHeight
Use this SEGMENT’S track table value targetHeight. Return

SEGMENTS have targetHeight=0.0 by default.

targetWidth
Use this SEGMENT’S track table value targetWidth. Return

SEGMENTS have targetWidth=0.0 by default.

detectionCriteria Use this SEGMENT’S track table value detectionCriteria.

Appendices

XXI

Return SEGMENTS have detectionCriteria=0.0 by

default.

hover
Use this SEGMENT’S track table value hover. Dash and re-

turn SEGMENTS have hover=0 by default.

height

Integer value indicating the actual height in metres that this

SEGMENT was conducted at. Value can differ from track table

entry height for this SEGMENT if VESSEL could not work at

specified height or if entry was keyword value like ―9999‖.

speed

Integer value indicating the actual speed in metres per second

that this SEGMENT was conducted at. Value can differ from

track table entry speed for this SEGMENT if VESSEL could

not work at specified speed or if entry was keyword value like

9999.

vesselID
Integer value indicating the id of the VESSEL that conducted

this SEGMENT. Corresponds to the equipment_Vessels
table entry id.

timeOfSpotting

Date and time when the VESSEL spotted this SEGMENT’S tar-

get using its active payload (if any) and the payload model

(Section 3.3.6.2). Value can be spotting not re-

quired if this SEGMENT did not require spotting (tar-

getHeight=0 or targetWidth =0). If it required spot-

ting but the VESSEL could not spot it, value will be null.

Value can be cancelled due to fuel if VESSEL had

to cancel this SEGMENT due to insufficient fuel. Value can be

spotted by other vessel if this VESSEL did not find

target but a connected VESSEL looking for the same target did.

timeOfArrival

Date and time when the VESSEL arrived at the SEGMENT tar-

get. Value can be null if VESSEL aborted SEGMENT be-

cause a patrol ended in between and it never arrived. Value

can be cancelled due to fuel.

timeOfDeparture

Date and time when the VESSEL departed this SEGMENT. Val-

ue can be cancelled due to fuel. The difference be-

tween timeOfArrival and timeOfDeparture is the VES-

SEL loiter duration and additional loiter due uponArri-

val=stay. Value is null for return Segments.

energyUsed How much energy (in Joule) did the VESSEL use during this

SEGMENT?

imagesTaken How many images did the active payload collect during this

SEGMENT, if any.

areaScanned

How much ground area in m
2
 was scanned by the VESSEL ac-

tive payload in this SEGMENT, if any? Currently, this equates

to the net area scanned, neglecting overlap areas scanned mul-

tiple times. However, it is possible to record the total area in-

cluding overlaps.

dataAcquired

Double value indicating how much data (in MB) the active

payload stored by taking digital images, if any? Assumes pix-

el format RGBA32 where each pixel has four colour channels

and each channel requires 8 bits.

Appendices

XXII

segmentMeasure

String indicating a context-specific measure of choice by the

client. Currently, search SEGMENTS record the incident alive-

ness upon spotting between 0 and 1. This can be used to find

the number of total saved lives (Section 4.11). For other

SEGMENTS, value is null.

Maintenance Operations output table

There is one table named ―output_MaintenanceOperations‖ in each database. It in-

cludes raw details on all component problems causing maintenance operations (planned and

unplanned) as well as VESSEL losses. Each table entry is created through an instance of the OS-

CAR simulation Java class MAINTENANCE corresponding to the table columns as below:

TABLE A-7: OUTPUT MAINTENANCE OPERATIONS TABLE FORMAT.

Column name Description

id Integer value used as the table primary key

iteration Integer value specifying the simulation iteration (i.e. replica-

tion) where the current COMPONENT problem occurred.

vesselID
Integer value indicating the id of the VESSEL that experi-

enced a COMPONENT problem. Corresponds to the equip-
ment_Vessels table entry id.

ComponentID

Integer value indicating the ComponentID listed in the corre-

sponding COMPONENT table. Value can be 9999 if VESSEL

was lost upon arriving at destination (i.e. landing for airborne

VESSELS, parking for cars, etc.) because no component was

causing this loss.

segmentID

Integer value indicating the SEGMENT’S ID in the correspond-

ing TRACK table where this COMPONENT problem occurred.

Can be 9999 if problem occurred during return SEGMENT.

 Can be -1 if problem occurred during dash SEGMENT.

Can be -9999 if problem occurred during landing.

timeOfProblem Date and time when this problem occurred.

redundancy

String value indicating if the problematic COMPONENT was

replaced by redundant COMPONENTS during operation (yes)

or not (no). If no redundancy existed, the VESSEL may be

lost. Value can be not applicable if VESSEL was lost

during arrival at a BASE without specific COMPONENT prob-

lems.

crash

Boolean value indicating if the VESSEL was lost due to the

current problem (yes) or not (no). If crash=yes, then by

default timeOfMaintenance=not applicable and

duration=0.

timeOfMaintenance
Date and time when the maintenance operation occurred that

was caused by this COMPONENT’S problem. Value can be

not applicable if VESSEL was lost.

Appendices

XXIII

duration

Integer value indicating the duration in seconds that the

maintenance operation took. Corresponds to column

MaintenanceReplacementTime in component table for

this COMPONENT. If duration=0, either the VESSEL was

lost due to the current problem or no maintenance was carried

out.

Output views & analysis capabilities

A typical VESSEL conducts a large number of SEGMENTS and maintenance operations during

its life cycle. If OSCAR simulates a fleet of VESSELS using several replications, the output ta-

bles become very large. Therefore, intelligent data post-processing is required to analyse out-

puts.

As with every database tool, SQLite creates ―Views‖ by extracting and displaying specific in-

formation from large tables through SQLite syntax. In order to analyse outputs for the two case

studies (Chapter 5 and 6), the OSCAR simulation provides 18 ―Views‖. This section discusses

one ―View‖ in more detail to present the database analysis capability that comes with the OS-

CAR simulation.

For the case studies, one required output is the total fuel used by all UAS. However, the out-

put_Segments table stores the energy used for each SEGMENT for any VESSEL. Therefore, the

data must be filtered using the code below:

SELECT

output_Segments. iteration, SUM (output_Segments. en-

ergyUsed)

AS

energyUsedByUAS_in_Joule

FROM

output_Segments

INNER JOIN

equipment_Vessels ON output_Segments. vesselID = equip-

ment_Vessels. id

WHERE

equipment_Vessels. category = 'fixedWing' AND equip-

ment_Vessels. type = 'aircraft' AND equipment_Vessels.

occupants = 0

GROUP BY

output_Segments. iteration

The SQL syntax sums the energyUsed column of all SEGMENTS conducted by fixedWing

aircraft with zero occupants (i.e. UAS) listed in the equipment_Vessels table. Results

are grouped by iteration to allow analysing statistical variation as in Figure A-6.

Appendices

XXIV

FIGURE A-6: DATABASE OUTPUT VIEW FOR UAS ENERGY USED, SORTED BY ITERATION.

This data can be copied into a spread sheets to convert it into fuel used (using the UAS fuel

calorific value). See Figure 5-16 and Figure 6-5 for sample box plots of UAS fuel used.

Appendices

XXV

Appendix 8: Geographical setup

This appendix details the essential structure required to import and use shapefile data within

the OSCAR simulation. Moreover, it describes the actual data import process and how the data

is turned into objects for AnyLogic processing.

Structure

In order to use shapefile data within the OSCAR simulation, users must adhere to a specific

data structure shown in Figure A-7.

FIGURE A-7: GEOGRAPHICAL INFORMATION SYSTEM FOLDER STRUCTURE

The folder containing the actual AnyLogic OSCAR model file must contain a sub-folder

named ―GIS‖. The ―GIS‖ folder itself contains a number of sub-folders containing the actual

shapefiles. As a minimum, the ―Basemap‖ folder contains the background world map data. Each

file must be named ―Basemap‖ plus its file-extension (.shp, .dbf, .ssx and .shx). Here, users can

insert a background map of their choice. This map is for display purposes, but also allows agent

interactions if required. Users can add any number of additional folders into the ―GIS‖ folder.

Folder names follow the respective MISSION table names. Similar to MISSION tables containing

any number of TRACKS, folders can contain any number of shapefiles (and corresponding .dbf,

.ssx and .shx files). Naming follows the same conventions as for TRACK-table names, i.e. the

MISSION name followed by an underscore ―_‖ followed by the TRACK name.

Appendices

XXVI

For the current OSCAR simulation, the Basemap data provider is the free open source geo-

graphical data provider ―Natural Earth‖
1
. The Basemap includes the entire planet physical

landmasses including islands as polygons at a 1:10m resolution (Figure A-8).

FIGURE A-8: BASEMAP SHAPEFILE
1
 USED WITHIN OSCAR SIMULATION. RESOLUTION 1:10M.

Mission folders contain one or more shapefiles (and associated .dbx, .ssx and .shx files). A

shapefile can contain either Point features or Polyline features. In any case, each .dbf file must

contain a specific column ―Constant‖ assigning the value ―0‖ to all shapes required for loading

into the OSCAR simulation. Shapefiles can contain any number of features (of one type) in any

geographical formation.

Import and conversion

Once users have created the shapefiles following the rules above, AnyLogic will be able to

load the data and modify it to allow agent interaction with geographical features.

Upon creating the ―Main‖ object (Figure 4-2) on start-up, the OSCAR simulation loads all

shapefiles associated with the MISSION tables loaded for the current experiment (Section 4.13).

The shapefiles are added to the AnyLogic map for visual display only. More importantly, the

simulation associates all geographical features from the shapefiles with the SEGMENT details

supplied by the database. This is the reason for the strict file formats and structural demands

described earlier. The consolidated SEGMENT and shapefile data is combined using the custom

OSCAR Java class ―GISPOSITIONFULL‖. Each GISPOSITIONFULL object is a 2D point with lati-

tude and longitude but also featuring respective SEGMENT characteristics such as Origin, Des-

tination, Height, Speed, etc. (Appendix 1). Point SEGMENTS map directly to GISPOSI-

1
 Available at http://www.naturalearthdata.com/http//www.naturalearthdata.com/

download/10m/physical/ne_10m_land.zip, accessed 13/11/2013.

http://www.naturalearthdata.com/‌http/www.naturalearthdata.com/‌download/10m/physical/ne_10m_land.zip
http://www.naturalearthdata.com/‌http/www.naturalearthdata.com/‌download/10m/physical/ne_10m_land.zip

Appendices

XXVII

TIONFULL, i.e. each Point SEGMENT becomes a GISPOSITIONFULL object. Path SEGMENTS split

into nodes and each node becomes a GISPOSITIONFULL object carrying its Path SEGMENT char-

acteristics.

The consolidation algorithms access shapefile structures through the open source geograph-

ical tool OpenMap
2
. In fact, the AnyLogic geographical map feature imports the OpenMap

toolkit to display geographical shapefiles.

After consolidating database SEGMENT and shapefile data, the OSCAR simulation can task

VESSELS to move towards GISPOSITIONFULL object coordinates and use the specific GISPOSI-

TIONFULL characteristics drawn from the database SEGMENT, i.e. Height, Speed, etc.

2
 https://code.google.com/p/openmap/, accessed 13/11/2013.

https://code.google.com/p/openmap/

Appendices

XXVIII

Appendix 9: Custom aircraft performance module

This appendix introduces a sample performance add-in developed using the steps in Section

4.9.2. It was developed by Mario Ferraro
1
 to increase performance realism for fixed wing air-

craft using petrol-driven propeller engines (i.e. the UAS in Chapters 5 and 6). Among other in-

fluences, this model takes into account the weight reduction due to fuel burn.

Inputs

Using this add-in, several additional parameters define VESSEL agents that have catego-

ry=fixedWing, type=aircraft and fuelType=petrol as in Table A-8. These pa-

rameters feature as AnyLogic ―parameter‖ objects as well as new columns in the database

equipment_Vessels table (see Table A-2).

TABLE A-8: ADDITIONAL VESSEL PARAMETERS

Additional VESSEL

parameters
Description

a_wing The aircraft wing area in m
2
.

cl_max
The maximum lift coefficient. Used to compute optimal air-

craft landing speed based on aircraft weight upon landing.

d_prop The propeller diameter in metres.

k1_a

Coefficient defining the drag polar. There are nine coeffi-

cients named k1_a, k1_b, k1_c, k2_a, k2_b, k2_c, k3_a, k3_b

and k3_c. The polynomial is defined below.

p_inst The installed maximum continuous engine power in Watts.

rpm The maximum engine rpm (rounds per minute).

sfc_a

Coefficient defining the 4
th
 degree polynomial for specific

fuel consumption as a function of engine power output in

 ⁄ . There are four coefficients named sfc_a, sfc_b,

sfc_c and sfc_d. The polynomial is defined below.

zeta_a

Coefficient defining the 7
th
 degree polynomial describing the

propulsive efficiency polynomial as a function of flight speed

and rpm. There are seven coefficients named zeta_a, zeta_b,

zeta_c, zeta_d, zeta_e, zeta_f and zeta_g. The polynomial is

defined below.

Processing

1
 PhD candidate at the University of Southampton, see http://www.southampton.ac.uk/engineering/-

postgraduate/research_students/mf1o07.page, accessed 22/01/2014.

http://www.southampton.ac.uk/engineering/postgraduate/research_students/mf1o07.page
http://www.southampton.ac.uk/engineering/postgraduate/research_students/mf1o07.page

Appendices

XXIX

The module code resides in the file performance_fixedWing_aircraft_

petrol.jar in the main model folder. The OSCAR simulation loads it upon model start as a

dependency. Based on the additional VESSEL parameters described above, the module calculates

fuel burn from first principles. The aircraft drag polar is defined as

 Eq. A-5

where cL and cD are the lift and drag coefficients. The terms k1, k2 and k3 refer to the aircraft

flight conditions take-off, cruise and landing, respectively. Each is defined as

 Eq. A-6

where V is the current aircraft flight speed. The coefficients k2 and k3 are defined similarly.

The specific fuel consumption is defined as a 4
th
 degree polynomial based on function of en-

gine power output as

 Eq. A-7

where r is the ratio between the required engine shaft power and the maximum available

power, i.e.

 Eq. A-8

The available shaft power Pinst is defined as

 Eq. A-9

Where is the propeller efficiency, V is the aircraft velocity and D is the current aircraft drag

defined as

 Eq. A-10

Appendices

XXX

where ρ is the air density and S is the wing area. The current performance module is stream-

lined for low altitude UAS, therefore

 independent of flight altitude. However, the

model can be extended to include altitude-dependent air density using the standard atmosphere.

The propeller efficiency is defined as

Eq. A-11

where the ―zeta_‖ factors refer to the zeta_ parameters described above. y is defined as

 Eq. A-12

Where s the propeller rounds per minute and is the propeller diameter.

The OSCAR simulation calls any custom performance module following the process of the

generic performance module (see Section 4.9.1.2), i.e. the fuel burn is calculated after each

SEGMENT. Fuel burn is calculated by subtracting the weight at the end of a SEGMENT W2 from

the weight at the start of a SEGMENT W1 assuming constant flight speed and altitude. Under the-

se assumptions

{ [(

)

]

} Eq. A-13

where R is the segment distance in metres and

 [] Eq. A-14

 Eq. A-15

 Eq. A-16

 Eq. A-17

Appendices

XXXI

Outputs

The OSCAR simulation outputs and stores data in the same way as for generic performance

module VESSELS (Section 4.9.1.3).

Appendices

XXXII

Appendix 10: Experimental setup

This appendix describes the three OSCAR simulation experiments ―Single run‖, ―Interactive

single run‖ and ―Run fast‖ in turn.

Single run

This experiment requires users to input the experiment parameters manually within the

AnyLogic IDE. The experiment loads the specified MISSION tables and executes all MISSIONS

and TRACKS once. No outputs are saved in the database. This experiment is to be used for quick

model validation by the user. Users can view the animation during runtime and use AnyLogic

capabilities to check on every agent state at any time. Note that the Java applet and Java applica-

tion version of this experiment do not allow experiment parameter alteration.

Interactive single run

This experiment is identical to the previous ―Single Run‖ experiment except that users can

amend input data dynamically during runtime and that outputs are written to the database after

the simulation run. Upon starting the experiment, an intuitive GUI guides the user through se-

lecting and amending the correct data, as described below.

1. Initially, the user must select one or more MISSIONS that the experiment should simu-

late, based on the available MISSION tables in the database (Figure A-9). Optional

buttons cannot be clicked yet.

FIGURE A-9: INTERACTIVE SINGLE RUN EXPERIMENT MISSION SELECTION.

2. Upon selecting one or more MISSIONS, the GUI extends by displaying the MISSION

table data in Figure A-10. Moreover, a descriptive pop-up explains the next step. Op-

tional buttons are still non-functional.

Appendices

XXXIII

FIGURE A-10: INTERACTIVE SINGLE RUN EXPERIMENT TRACK SELECTION.

3. The user can click on any table entry and amend it. The experiment will use the

amended value instead of the database value.

4. To be able to run the experiment (i.e. enable the buttons on top of the screen), the us-

er is asked to click at least one green frame. This will load and display the respective

database TRACK table below the current table (Figure A-11). This additional step is

deemed necessary to demonstrate the full capability of the experiment setup to new

users.

Appendices

XXXIV

FIGURE A-11: INTERACTIVE SINGLE RUN EXPERIMENT SEGMENT SELECTION.

5. Additional pop-ups inform the user of possible actions. He can edit any visible data-

base entry by clicking on the desired entry (Figure A-12). Moreover, the buttons at

the top of the screen are now functional. There are several options.

FIGURE A-12: INTERACTIVE SINGLE RUN EXPERIMENT: ENTER AND SAVE NEW VALUES.

6. The user can ―view and edit VESSELS‖. This displays the database Vessel table as in

Figure A-13. As before, any entry can be amended by clicking on it. Note that VES-

SEL COMPONENTS cannot be viewed and edited in the current version.

Appendices

XXXV

FIGURE A-13: INTERACTIVE SINGLE RUN EXPERIMENT VESSEL SETUP.

7. The user can ―view and edit Bases‖. This displays the Base table as in Figure A-14.

As before, any entry can be amended by clicking on it.

FIGURE A-14: INTERACTIVE SINGLE RUN EXPERIMENT BASE SETUP.

8. Once all amendments are done, the experiment can be started by clicking ―Run the

model‖.

The model executes the simulation once, applying inputs from the database except those

amended by the user above. As with the ―Single Run‖ experiment, the model animation is visi-

ble. After completion, all outputs are written to the output database.

“Run fast”

This experiment is structurally different from the previous experiments described. All exper-

iment parameters must be defined in the AnyLogic IDE. This experiment will not display any

animation to speed up model execution. Moreover, it allows running a number of replications to

factor in the variations from random sampling. The number of replications must be defined in

the AnyLogic IDE as well. The randomSeed parameter takes the value of the current replica-

tion to ensure that each replication uses different random number streams, generating variable

outputs.

Once starting the experiment, it will use each available processor core to run one replication,

thus speeding up total execution time. Replications are independent from each other. Every time

a replication finishes, it writes all output data to the database, marking each entry with its cur-

rent replication number in the column ―iteration‖ (Figure A-15).

Appendices

XXXVI

FIGURE A-15: RUNFAST EXPERIMENT MARKS ALL OUTPUT DATA WITH COLUMN "ITERATION".

This allows post-processing to distinguish data from different replications, thus enabling cal-

culations of statistical measures such as averages, standard deviations, etc.

Appendices

XXXVII

Appendix 11: SULSA power

This appendix explains the rationale for the power-speed relation used for the electrically

propelled SULSA UAS in Chapter 5. In level flight, Power P is defined as

 Eq. A-18

where D is drag and V is flight speed. In general, drag D can be defined as

 Eq. A-19

where the density of air is assumed constant at ⁄ (as SULSA flight altitudes are

low), the wing area and the coefficient of drag cD is

 Eq. A-20

where and are drag coefficients as in the custom performance

model (Appendix 9) and the coefficient of lift cL is

. Eq. A-21

Here, the aircraft mass is assumed constant and g is the standard gravity. This yields

the power-to-speed relation used, depicted in Figure 5-5.

Appendices

XXXVIII

Appendix 12: UAS inputs comparison

This appendix compares the inputs used for the different UAS designs in Chapter 5. Table

A-9 summarises the OSCAR performance and camera setup inputs for the UAS designs for easy

comparison. Note that the camera setup is identical to avoid output bias.

TABLE A-9: UAS DESIGNS PERFORMANCE AND CAMERA COMPARISON.

 DECODE BBC SULSA 2Seas

maximum speed (m/s) 24.0 37.0 19.9 45.0

search & loiter speed (m/s) 18.0 25.0 17.0 26.0

minimum speed (m/s) 10.0 13.7 10.0 14.0

dry weight (kg) 8.8 17.8 2.1 24.2

fuel weight (kg) 1.2 5.0 0.0 5.8

horizontal field-of-view (degrees) 91.7 91.7 91.7 91.7

vertical field-of-view (degrees) 91.7 91.7 91.7 91.7

horizontal pixels 680.0 680.0 680.0 680.0

vertical pixels 780.0 780.0 780.0 780.0

camera tilt angle (degrees) 68.8 68.8 68.8 68.8

Table A-10 compares the performance model inputs used to feed the petrol-engine perfor-

mance model described in Section 4.9.2. SULSA, being propelled by an electric engine, used

the standard performance model (Section 4.9.1) and cannot be compared to the other designs.

TABLE A-10: UAS PERFORMANCE MODEL PARAMETERS COMPARISON. NOTE: SULSA USES

DIFFERENT PERFORMANCE MODEL.

 DECODE BBC 2Seas

wing area (m²) 1.12 1.496 1.4

maximum lift coefficient 1.5 1.908 1.57356

propeller diameter (m) 0.41564 0.508 0.4572

k1_a 0.045 0.032 0.043676

Appendices

XXXIX

k1_b 0 0 0

k1_c 0 0 0

k2_a 0 -0.002 0

k2_b 0 0 0

k2_c 0 0 0

k3_a 0.0334 0.04 0.04207

k3_b 0 0 0

k3_c 0 0 0

installed power (W) 1490 3310 3400

propeller RPM 8000 6500 7000

sfc_a 450 459.857 1339.784

sfc_b 0 0 -970.149

sfc_c 0 0 297.7281

sfc_d 0 0 0

zeta_a 60 -0.129 577.4458

zeta_b 0 287.776 -6813.39

zeta_c 0 -1788.785 34458.75

zeta_d 0 11181.081 -87795.4

zeta_e 0 -33616.437 120137.5

zeta_f 0 46099.676 -83881

zeta_g 0 -23892.233 23317.32

Table A-11 compares all component parameters used for the UAS designs in Chapter 5. Most

parameters are identical for all designs due to lack of trustworthy reliability data for UAS com-

ponents. The differences are based on the fact that SULSA, being a laser-sintered aircraft with

an inverted v-tail, does not feature a number of COMPONENTS such as the vertical tail structure.

Accordingly, it has a unique component ―aft fuselage‖ representing a much more endurable fu-

selage component. Moreover, the 3i aircraft has two engines, increasing the redundancies of the

engines, throttle servos, ignitions and propellers.

Appendices

XL

TABLE A-11: UAS COMPONENT INPUTS COMPARISON.

DEC BBC SUL 2Se DEC BBC SUL 2Se DEC BBC SUL 2Se DEC BBC SUL 2Se DEC BBC SUL 2Se DEC BBC SUL 2Se

wing main structure FH FH FH 2 2 2 600 600 600 1 1 1 1 1 1 1 1 1

wing aileron control mechanism FH FH FH FH 2 2 2 2 600 600 600 600 0.4 0.4 0.4 0.4 1 1 1 1 2 2 2 2

aileron servo FH FH FH 2 2 2 2 500 500 500 500 0.4 0.4 0.4 0.4 2 2 2 2 4 4 4 4

vertical tail structure FH FH FH 2 2 2 600 600 600 0.1 0.1 0.1 1 1 1 1 1 2

rudder control mechanism FH FH FH FH 2 2 2 2 600 600 600 600 0.1 0.1 0.1 0.1 1 1 1 1 2 2 2 2

rudder servo FH FH FH FH 2 2 2 2 500 500 500 500 0.2 0.2 0.2 0.2 2 2 2 2 2 2 2 2

horizontal tail structure FH FH FH 2 2 2 600 600 600 1 1 1 1 1 1 1 1 1

elevator control mechanism FH FH FH FH 2 2 2 2 600 600 600 600 1 1 1 1 1 1 1 1 4 4 4 4

elevator servo FH FH FH FH 2 2 2 2 500 500 500 500 1 1 1 1 2 2 2 2 4 4 4 4

aft fuselage FH 2 2400 1 1 1

Fuselage main structure FH FH FH 2 2 2 600 600 600 0.7 0.7 0.7 1 1 1 1 1 1

Fuselage secondary structure FH FH FH 2 2 2 500 500 500 0.05 0.05 0.05 0.5 0.5 0.5 1 1 1

main undercarriage FC FC FC 2 2 2 800 800 800 0.8 0.8 0.8 1 1 1 1 1 1

front undercarriage FC FC FC 2 2 2 500 500 500 0.3 0.3 0.3 1 1 1 1 1 1

engine FH FH FH FH 2 2 2 2 300 300 2400 300 1 1 1 1 3 3 3 3 1 1 1 2

throttle servo FH FH FH FH 2 2 2 2 500 500 500 500 1 1 1 1 2 2 2 2 1 1 1 2

ignition FH FH FH 2 2 2 600 600 600 1 1 1 1 1 1 1 1 2

propellor FH FH FH FH 2 2 2 2 300 300 300 300 1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 2

power generator FH FH FH 2 2 2 400 400 400 0.3 0.3 0.3 2 2 2 1 1 1

6v flight systems battery FC FC FC FC 10 10 10 10 1000 1000 1000 1000 1 1 1 1 0.5 0.5 0.5 0.5 2 2 2 2

Receiver FH FH FH FH 1 1 1 1 1000 1000 1000 1000 1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 1

gps aerial FH FH FH FH 1 1 1 1 1000 1000 1000 1000 1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 1

comms aerial FH FH FH FH 1 1 1 1 1000 1000 1000 1000 1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 1

autopilot FH FH FH FH 1 1 1 1 1000 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1 1

autopilot servo plug board FH FH FH FH 2 2 2 2 500 500 500 500 1 1 1 1 1 1 1 1 1 1 1 1

static port FH FH FH FH 1 1 1 1 1000 1000 1000 1000 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1

static hose FH FH FH FH 2 2 2 2 1000 1000 1000 1000 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1

pitot probe FH FH FH FH 2 2 2 2 5000 5000 5000 5000 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1

pitot tubing FH FH FH FH 2 2 2 2 1000 1000 1000 1000 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1

payload FH FH FH FH 1 1 1 1 1000 1000 1000 1000 0 0 0 0 1 1 1 1 1 1 1 1

quantity onboard

Legend: DEC=DECODE, SUL=SULSA, 2Se=2Seas, FH=flight hours, FC=flight cycles Changes

Weibull life Weibull eta Weibull beta (FH: loss probability from maintenance time

Appendices

XLI

Appendix 13: Mersey lifeboat performance data

Based on publicly available fuel consumption charts
1
, it is possible to derive the power con-

sumption for various speeds for the Mersey lifeboat as follows:

OSCAR interpolates linearly between data points, leading to the following relationship be-

tween speed and energy consumption:

1
 See http://www.44mlb.com/fuel-consumption-charts.html, accessed on 10/07/2013.

Speed (knots) Speed (m/s) δ (gal/hr) δ (litres/s) δ (kg/s) Power (J/s)

0 0 3 0.00315451 0.002775969 118533.8609

9.101 4.681958889 6.07 0.006382625 0.00561671 239833.5118

10 5.144444444 9.69 0.010189067 0.008966379 382864.3706

11 5.658888889 14.05 0.014773621 0.013000786 555133.5817

12 6.173333333 17.97 0.018895514 0.016628052 710017.8266

12.7 6.533444444 20.24 0.021282426 0.018728535 799708.448

13 6.687777778 21.09 0.022176204 0.01951506 833293.0419

14 7.202222222 23.5 0.024710327 0.021745088 928515.2435

14.894 7.662135556 25.29 0.026592518 0.023401416 999240.4471

17 8.745555556 27.5 0.02891634 0.025446379 1086560.391

Constants:

litres/gal 3.78541178

density Diesel (kg/m^3) 880

calorific value Diesel (J/kg) 42700000

NOTE: extreme values for Speed=0 m/s

and Speed=8.74 m/s are estimated.

http://www.44mlb.com/fuel-consumption-charts.html

Appendices

XLII

Appendix 14 Cost model parameters rationale

This table explains the parameters used in the cost model for the decision support case study

(see Section 5.4.3). All currency conversion based on www.oanda.com exchange rate from

19/07/2013 where .

Parameter Value Rationale

Cost per UAS maintenance

hour
$ 34.63

Average yearly income of UK

airline maintenance personnel

is £ 43,658
1
. Assume 40-hour

workweek and 4 weeks holi-

day.

Cost per UAS maintenance

operation
$ 1,830.76

Rent for building at £ 500;

Average part cost: £ 500;

Other expenditure: £ 200;

Cost per UAS flight hour $ 172.09

Average yearly income of UK

pilots is £ 72,184
1
. Assume

40-hour week and 4 weeks

holidays. Assume 3 people

needed to control UAS: 1 pi-

lot, 1 ATC support, 1 image

analyser)

Price per kg petrol

$ 2.88

(used for DECODE, BCC and

3i UAS)

Average price per kg petrol in

Southampton on 19/07/2013.

Price per kg diesel
$ 1.40

(used for lifeboats)

Price for maritime commercial

diesel in Solent area on

06/06/2013.

Price per kWh
$ 0.26

(used for SULSA UAS)

Average price based on South-

ampton rates for 1 kWh from

British Gas on 19/07/2013.

Cost per UAS launch $ 114.73

Use 2 people paid at pilot rate
1

for one hour (including pack-

ing up after landing).

UAS acquisition

$ 15,256 (DECODE)

$ 30,512 (BBC & 3i)

$ 5,340 (SULSA)

Based on simple cost model

developed by DECODE re-

search
2
.

Cost per image $ 0.0458

High quality SLR camera

costs about £ 3,000 and has

mean life of 100,000 images.

Cost per GB of data $ 0.01
Extrapolated from average

hard disk prices 1980-2009
3
.

1
 See http://www.caa.co.uk/docs/80/airline_data/2009Annual/Table_1_14_Airline_Personnel_

Cost_UK_and_Overseas_2009.pdf, accessed 19/07/2013.
2
 See http://www.southampton.ac.uk/~decode/, accessed 22/07/2013.

http://www.oanda.com/
http://www.caa.co.uk/docs/‌80/airline_data/2009Annual/‌Table_1_14_Airline_‌Personnel_‌Cost_UK_and_Overseas_2009.pdf
http://www.caa.co.uk/docs/‌80/airline_data/2009Annual/‌Table_1_14_Airline_‌Personnel_‌Cost_UK_and_Overseas_2009.pdf
http://www.southampton.ac.uk/~decode/

Appendices

XLIII

Lifeboat acquisition cost per

year
$ 76,281

Lifeboat similar to Mersey

class costs £ 1.5M
4
. Assume

lifeboat lifetime is 30 years

and cost is amortised yearly.

Cost per lifeboat operating

hour
$ 405.82

Daily RNLI running costs are

£ 385,000 for 330 lifeboats
4
.

Assume lifeboat operates for

4.4 hours daily. Includes

launch costs!

3
 See http://www.mkomo.com/cost-per-gigabyte, accessed 22/07/2013.

4
 See http://rnli.org/aboutus/aboutthernli/Pages/Running-costs.aspx, accessed 19/07/2013.

http://www.mkomo.com/cost-per-gigabyte
http://rnli.org/aboutus/aboutthernli/Pages/Running-costs.aspx

Appendices

XLIV

Appendix 15: Port of Rotterdam offshore map

This map
1
 depicts the offshore anchor position areas used in Chapter 6.

1
 Published with kind permission from M. J. Tolhuisen at www.Maritiemfreelancer.nl

http://www.maritiemfreelancer.nl/

Appendices

XLV

Appendix 16: Replications setup

This appendix describes the rationale for defining the number of replications for the case

study in Chapter 6. The same methodology was applied for the case study in Chapter 5.

The confidence interval method combined with the graphical method (Robinson 2004) were

used to assess the required number of replications for each of the optimisation iterations. For

this, the initial design simulation was run for 850 replications, a number estimated high enough

(based on previous experience with the simulation) to achieve very good estimates of mean per-

formance. All analysis in Section 6.5 bases upon 850 replications. To reduce runtime for the

subsequent design iterations in Section 6.6 and 6.7, the minimum number of replications was

investigated as follows.

For each OSCAR output, a cumulative mean ̅ was used to describe a confidence interval as

 ̅ ⁄

√
 Eq. A-22

where is the confidence interval, n is the number of replications, ⁄ is the value from

the Student’s t-distribution with n-1 degrees of freedom and a significance level of ⁄ . The

common significance level is used. σ refers to the standard deviation of the OSCAR

output and is defined as

∑ ̅

 Eq. A-23

where Xi is the result of replication i. Plotting the deviation from the mean (as in Figure A-16)

and the confidence interval (as in Figure A-17) for each OSCAR output allowed to identify the

most critical output as the maintenance time.

Appendices

XLVI

FIGURE A-16: PERCENTAGE DEVIATION FROM CUMULATIVE MEAN FOR MAINTENANCE TIME.

FIGURE A-17: CONFIDENCE INTERVAL FOR MAINTENANCE TIME.

In order to achieve less than 5 % deviation, 200 replications are required, as seen in Figure

A-16. However, the confidence interval should not only be narrow enough but the cumulative

mean should be sufficiently flat. Therefore, the graphical method was used as a sanity check. It

was found that most OSCAR outputs feature a rugged cumulative mean at 200 iterations. There-

fore, number of replications should be set to 400 to avoid cumulative mean errors (compare

Figure A-18).

Appendices

XLVII

FIGURE A-18: CONFIDENCE INTERVAL FOR UAS FUEL USED.

To add a margin of safety for the design iterations, 500 replications will be used for the first

and second design iteration.

In order to reduce the number of required replications, an LPτ pseudorandom sequence or

Latin hypercube sampling can be employed in future work, as suggested by Keane (2012).

Appendices

XLVIII

Appendix 17: 3i component details

This appendix shows the COMPONENTS used for the 3i and 3i-a UAS designs in Chapter 6.

Changes between the designs are highlighted in yellow.

3i 3i-a 3i 3i-a 3i 3i-a 3i 3i-a 3i 3i-a 3i 3i-a 3i 3i-a

wing main structure FH FH 2 2 600 600 1 1 1 1 1 1 0 1

wing aileron control mechanism FH FH 2 2 600 600 0.4 0.4 1 1 2 2 0 0

aileron servo FH FH 2 2 500 500 0.4 0.4 2 2 4 4 0 0

vertical tail structure FH FH 2 2 600 600 0.1 0.1 1 1 2 2 0 0

rudder control mechanism FH FH 2 2 600 600 0.1 0.1 1 1 2 2 0 0

rudder servo FH FH 2 2 500 500 0.2 0.2 2 2 2 2 0 0

horizontal tail structure FH FH 2 2 600 600 1 1 1 1 1 1 0 1

elevator control mechanism FH FH 2 2 600 600 1 1 1 1 4 4 0 0

elevator servo FH FH 2 2 500 500 1 1 2 2 4 4 0 0

Fuselage main structure FH FH 2 2 600 600 0.7 0.7 1 1 1 1 0 1

Fuselage secondary structure FH FH 2 2 500 500 0.05 0.05 0.5 0.5 1 1 0 0

main undercarriage FC FC 2 2 800 800 0.8 0.8 1 1 1 1 0 0

front undercarriage FC FC 2 2 500 500 0.3 0.3 1 1 1 1 0 0

engine FH FH 2 2 300 300 1 1 3 3 2 2 0 0

throttle servo FH FH 2 2 500 500 1 1 2 2 2 2 0 0

ignition FH FH 2 2 600 600 1 1 1 1 2 2 0 0

propellor FH FH 2 2 300 300 1 1 0.5 0.5 2 2 0 0

power generator FH FH 2 2 400 400 0.3 0.3 2 2 1 1 0 0

6v flight systems battery FC FC 10 10 1000 1000 1 1 0.5 0.5 2 2 0 0

Receiver FH FH 1 1 1000 1000 1 1 0.5 0.5 1 2 0 0

gps aerial FH FH 1 1 1000 1000 1 1 0.5 0.5 1 2 0 0

comms aerial FH FH 1 1 1000 1000 1 1 0.5 0.5 1 2 0 0

autopilot FH FH 1 1 1000 1000 1 1 1 1 1 2 0 0

autopilot servo plug board FH FH 2 2 500 500 1 1 1 1 1 2 0 0

static port FH FH 1 1 1000 1000 0.5 0.5 1 1 1 2 0 0

static hose FH FH 2 2 1000 1000 0.5 0.5 0.5 0.5 1 1 0 0

pitot probe FH FH 2 2 5000 5000 0.5 0.5 0.5 0.5 1 1 0 0

pitot tubing FH FH 2 2 1000 1000 0.5 0.5 0.5 0.5 1 1 0 0

payload FH FH 1 1 1000 1000 0 0 1 1 1 1 0 0

Roustness

scaling factor

Legend: FH=flight hours, FC=flight cycles Change

Weibull life

measure
Weibull eta

Weibull beta

(FH: hours, FC:

cycles)

loss probability

from inflight

failure

maintenance

time (hours)

quantity

onboard

References

L

R E F E R E N C E S

Abbas-Bayoumi, A. & Becker, K., 2011. An Industrial View on Numerical Simulation for

Aircraft Aerodynamic Design. Journal of Mathematics in Inudstry, 1, pp.1–14.

Adelantado, M., 2004. Rapid Prototyping of Airport Advanced Operational Systems and

Procedures through Distributed Simulation. Simulation, 80.

Alonso, J.J., LeGresley, P. & Pereyra, V., 2009. Aircraft Design Optimization. Mathematics and

Computers in Simulation, 79, pp.1948–1958.

Al-Salka, M.A., 2001. Computer-Aided Design for Life-Cycle. In: Concurrent Engineering In

Product Design And Development. I. Moustapha, ed. New Delhi, India: New Age

International, pp. 229–249.

Amirreze, K. et al., 2013. A New Systematic Approach in UAV Design Analysis Based on

SDSM Method. Journal of Aeronautics and Aerospace Engineering, S1 (001).

Andersson, M. & Olsson, G., 1998. A Simulation-based Decision Support Approach for

Operational Capacity Planning in a Customer Order-driven Assembly Line. In D. J.

Medeiros et al., eds. Proceedings of the 1998 Winter Simulation Conference. pp. 935–

941.

Anemaat, W.A.J. et al., 2013. Software Tool Development to Improve the Airplane Preliminary

Design Process. In C. B. et al., ed. 20th ISPE International Conference on Concurrent

Engineering. IOS Press, pp. 12–18.

Ashok, S.V., 2013. An Integrated Product – Process Development (IPPD) Based Approach for

Rotorcraft Drive System Sizing, Synthesis and Design Optimization. Atlanta, USA:

Georgia Institute of Technology. PhD thesis.

Austin, R., 2010. Unmanned Aircraft Systems: UAVS Design, Development and Deployment I.

Moir, A. Seabridge, & R. Langton, eds., John Wiley and Sons, Ltd.

Backlund, G., 2000. The Effects of Modelling Requirements in Early Phases of Buyer-Supplier

Relation. Linkoeping, Sweden: Linkoeping University. PhD thesis.

Bandte, O., 2000. A Probabilistic Multi-Criteria Decision Making Technique for Conceptual

and Preliminary Aerospace Systems Design. Georgia, USA: Georgia Institute of

Technology. PhD thesis. Available at: http://www.reli.ari.ac.ir/english%20papers/-

10.1.1.83.5914.pdf.

Banks, J. & Gibson, R.R., 2009. The ABCs of Simulation Practice. In Software Solutions.

Software Solutions. INFORMS, 1, pp. 16–21.

Batty, M. et al., 2012. Agent-Based Models of Geographical Systems A. J. Heppenstall et al.,

eds., New York, USA: Springer. Available at: http://www.springer.com/social+sciences/-

population+studies/book/978-90-481-8926-7.

References

LI

Bell, P.C. & O’Keefe, R.M., 1987. Visual Interactive Simulation—History, Recent

Developments, and Major Issues. Simulation, 49, pp.109–116.

Bergh, J. Van den et al., 2013. Aircraft Maintenance Operations: State of the Art. status:

published. Available at: https://lirias.kuleuven.be/bitstream/123456789/426843/1/-

13HRP09.pdf.

Bertoni, M. et al., 2013. Using 3D CAD Models for Value Visualisation: An Approach with

SIEMENS NX HD3D Visual Reporting. Computer-Aided Design & Applications, 10.

Available at: http://www.bth.se/fou/forskinfo.nsf/all/3ed9a6e34ae7d77ec1257b63002e9b-

ca/file/CADandA_Bertoni_reviewed.pdf.

Birkin, M. & Wu, B., 2012. Agent-Based Models of Geographical Systems. In A. J.

Heppenstall, A. T. Crooks, L. M. See, & M. Batty, eds. New York, USA: Springer, pp.

51–68.

Boehm, B.W., 1988. A Models Model of Software Development and Enhancement. Computer,

21, pp.61–72.

Bond, A.H. & Ricci, R.J., 1992. Cooperation in Aircraft Design. Research in Engineering

Design, 4, pp.115–130. Available at: ftp://ftp.eng.umd.edu/afs/glue.umd.edu/home/glue/-

a/h/aharrin1/pub/Airplane%20Design/red92.pdf.

Bosse, T. et al., 2013. An Integrated Multi-Agent Model for Modelling Hazards within Air

Traffic Management. In Proceedings of the 2013 IEEE/WIC/ACM International

Conferences on Web Intelligence and Intelligent Agent Technology. IEEE, pp. 179–186.

Box, G.E.P. & Draper, N.R., 1987. Empirical Model-Building and Response Surfaces,

Hoboken, NJ, USA: Wiley & Sons, Ltd.

Brooks, C., 2001. Survival in Cold Water, 40 Mount Hope Avenue, Dartmouth, Nova Scotia,

B2Y4K9 Canada: Survival Systems Limited.

Brown, D. et al., 2005. Spatial Process and Data Models: Toward Integration of Agent-Based

Models and GIS. Journal of Geographical Systems, 7, pp.25–47.

Bussmann, S., Jennings, N. & Wooldridge, M., 2004. Multiagent System for Manufacturing

Control: A Design Methodology, New York, USA: Springer.

Cassidy, P.F., Gatzke, T.D. & Vaporean, C.N., 2008. Integrating Synthesis and Simulation for

Conceptual Design. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and

Exhibit. Reno, NV, USA: AIAA.

Castagne, S., Curran, R. & Collopy, P., 2009. Implementation of Value-Driven Optimisation for

the Design of Aircraft Fuselage Panels. International Journal of Production Economics,

117, pp.381–388.

Chan, L.K. & Wu, M.L., 2002. Quality Function Deployment: A Literature Review. European

Journal of Operational Research, 143, pp.463–497.

Chapman, D., 1987. Planning for Conjunctive Goals. Artificial Intelligence, 32, pp.333–377.

Charette, R.N., 2009. This Car Runs on Code. IEEE Spectrum, New York, USA. Available at:

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code.

Chen, H. et al., 2009. Research on Search Probability and Camera Footprint of Region

Coverage for UAVs. In IEEE International Conference on Control and Automation.

Christchurch, New Zealand: IEEE, pp. 1920–1924.

Chen, Y. et al., 2012. Design and Simulation of Multi-Agent System for Marine Engineering

Platform Automation. In Proceedings of the Third International Conference on Mechanic

Automation and Control Engineering (MACE). Washington, D.C., USA: IEEE, pp. 1526–

1529.

Cheung, J. et al., 2010. Application of Value-Driven Design to Commercial Aero-Engine

Systems. In 10th AIAA Aviation Technology, Integration and Operations Conference.

AIAA2010-9058. Fort Worth, Texas: AIAA.

Cheung, J.M.W., Scanlan, J.P. & Wiseall, S.S., 2009. An Aerospace Component Cost

Modelling Study for Value-driven Design. In CIRP IPS2 Conference. University of

Cranfield.

Cioppa, T.M., Lucas, T.W. & Sanchez, S.M., 2004. Military Applications of Agent-Based

Simulations. In R. G. Ingalls et al., eds. Proceedings of the 2004 Winter Simulation

Conference. Washington, D.C., USA: INFORMS, pp. 171–180.

References

LII

Collins, P. ed., 2012. Buy or Rent?, The Economist (January 21st, 2012). Available at:

http://www.economist.com/node/21543195.

Collopy, P.D., 2007. Adverse Impact of Extensive Attribute Requirements on the Design of

Complex Systems, AIAA2007-7820. Urbana, Illinois: AIAA. Available at:

http://vddi.org/reqts.pdf.

Collopy, P.D., 2001. Economic-based distributed Optimal Design, AIAA2001-4675. AIAA.

Collopy, P.D., 2008. Value of the Probability of Success. In AIAA SPACE 2008 Conference and

Exposition. San Diego, California: AIAA.

Collopy, P.D. & Hollingsworth, P., 2009. Value-Driven Design. In 9th AIAA Aviation

Technology, Integration and Operations Conference (ATIO). AIAA2009-7099. Hilton

Head, South Carolina: AIAA.

Collopy, P.D. & Hollingsworth, P., 2011. Value-Driven Design. Journal of Aircraft, 48 (3),

pp.749–759.

Collopy, P.D. & Poleacovschi, C., 2012. Validating Value-Driven Design. In R. Curran et al.,

eds. Proceedings of the Third International Air Transport and Operations Symposium.

Delft, The Netherlands: IOS Press, pp. 3–13.

Corke, T.C., 2003. Design of Aircraft, Upper Saddle River, NJ, USA: Pearson Education, Inc.

Cox, T.H. et al., 2004. Civil UAV Capability Assessment, NASA. Available at

http://www.uavm.com/images/NASA_UAV_Capabilities_Assessment-2004.pdf.

Crooks, A.T., 2008. Constructing and Implementing an Agent-Based Model of Residential

Segregation through Vector GIS. In UCL Working Paper Series. UCL Working Paper

Series. London, UK: University College London. Available at: http://eprints.ucl.ac.uk/-

15185/1/15185.pdf.

Cullinane, K. & Khanna, M., 1998. Economies of Scale in Large Container Ships. Journal of

Transportation Economics and Policy, 33 (2), pp.185–208.

Curran, R., 2010. Value-Driven Design and Operational Value. Encyclopedia of Aerospace

Engineering. In R. Blockley & W. Shyy, eds. Hoboken, NJ, USA: John Wiley and Sons,

Ltd., pp. 1–11.

Curran, R. et al., 2005. Integrating Aircraft Cost Modelling into Conceptual Design. Concurrent

Engineering, 13 (4), pp.321–330.

Curran, R. et al., 2012. Value Operations Methodology (VOM) Applied to Medium-Range

Passenger Airliner Design. Journal of Aerospace Operations, 1, pp.3–27. Available at:

http://iospress.metapress.com/content/q32t3068857j6276/fulltext.pdf.

Curran, R., Raghunathan, S. & Price, M., 2004. Review of Aerospace Engineering Cost

Modelling: the Genetic Causal Approach. Progress in Aerospace Sciences, 40 (8),

pp.487–534. Available at: http://www.sciencedirect.com/science/article/pii/-

S0376042104000594.

Cusumano, M. et al., 2003. Software Development Worldwide: the State of the Practice. IEEE

Software, 20 (6), pp.28–34. Available at: http://ebiz.mit.edu/research/papers/-

178_Cusumano_Intl_%20Comp.pdf.

Dalamagkidis, K., Valavanis, K.P. & Piegl, L.A., 2011. On Integrating Unmanned Aircraft

Systems into the National Airspace System: Issues, Challenges, Operational Restrictions,

Certification, and Recommendations, New York, USA: Springer.

Davidsson, P., 2002. Agent-Based Social Simulation: A Computer Science View. Journal of

Artificial Societies and Social Simulation, 5 (1).

Hagel, C., 1999. Design Criteria for Military Systems, MIL-STD-1472F, 1400 Defense

Pentagon,Washington DC, USA: US Department of Defense. Available at:

http://www.everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-STD-1472F_208/.

Delaurentis, D.A., Mavris, D.N. & Schrage, D.P., 1996. System Synthesis in Preliminary

Aircraft Design Using Statistical Methods. In Proceedings of the 20th International

Council of the Aeronautical Sciences (ICAS) Congress. Sorrento, Italy: Georgia Institute

of Technology. Available at: http://hdl.handle.net/1853/6282.

Deshpande, S. et al., 2013. ADML: Aircraft Design Markup Language for Multidisciplinary

Aircraft Design and Analysis. Blacksburg, Va, USA: Virginia Polytechnic Institute &

References

LIII

State Unversity. Available at: http://vtechworks.lib.vt.edu/bitstream/handle/10919/-

24826/admlJAIS13.pdf?sequence=1.

Doll, T.J. et al., 1998. Robust, Sensor-Independent Target Detection and Recognition Based on

Computational Models of Human Vision. Optical Engineering, 37, pp.2006–2021.

Duquette, M., 2009. Effects-Level Models for UAV Simulation. In Proceedings of the AIAA

Modeling and Simulation Technologies Conference. Chicago, Illinois: AIAA, pp. 1155–

1166.

Egan, J., 2011. The Unmanned Initiative: A Strategic Appraisal of Coast Guard Unmanned

Aerial Systems, Norfolk, VA, USA: National Defence University - School of Joint

Advanced Warfighting. Available at: http://www.dtic.mil/dtic/tr/fulltext/u2/a545609.pdf.

Engler, W.O., 2013. A Methodology for Creating Expert-based Quantitative Models for Early

Phase Design. Georgia Institute of Technology. PhD thesis. Available at: https://-

smartech.gatech.edu/bitstream/handle/1853/47670/engler_william_o_201305_phd.pdf?se

quence=1.

ESRI, 1998. ESRI Shapefile Technical Description, Redlands, Ca, USA: Environmental

Systems Research Institute, Inc. Available at: http://www.esri.com/library/whitepapers/-

pdfs/shapefile.pdf.

Ferraro, M. et al., 2012. Toward Value-Driven Design of a Small, Low-Cost UAV. In 53rd

AIAA/ASME/ASCE/AHS/AS Structures, Structural Dynamics and Materials Conference.

AIAA2012-1723. Honolulu, Hawaii: AIAA.

Fielding, J.P., 1999. Introduction to Aircraft Design, Cambridge, UK: Cambridge University

Press.

Forsberg, K. & Mooz, H., 1999. System Engineering for Faster, Cheaper, Better. In

Proceedings of the Ninth Annual International Symposium on Systems Engineering.

Brighton, UK: INCOSE.

Frangopol, D.M. & Maute, K., 2003. Life-Cycle Reliability-Based Optimization of Civil and

Aerospace Structures. Computers and Structures, 81, pp.397–410.

Fu, M.C., Glover, F.W. & April, J., 2005. Simulation Optimization: A Review, New

Developments, and Applications. In M. E. Kuhl et al., eds. Proceedings of the 2005

Winter Simulation Conference. Availabe at: http://leeds-faculty.colorado.edu/glover/-

WSC2005.pdf.

Fulton, E.A., Smith, A.D.M. & Johnson, C.R., 2003. Effect of Complexity on Marine

Ecosystem Models. Marine Ecology Progress Series, 253, pp.1–6.

Garcia, A., 2010. High Speed, Energy Consumption and Emissions. Technical Report.

International Union of Railroads, 16 Rue Jean Rey, Paris, France.

Gao, C., Johnson, E. & Smith, B., 2009. Integrated Airline Fleet and Crew Robust Planning.

Transportation Science, 43, pp.2–16.

Glas, M., 2013. Ontology-Based Model Integration for the Conceptual Design of Aircraft.

Munich, Germany: Technische Universitaet Muenchen. PhD thesis.

Glickman-Weiss, E., Hearon, C. & Nelson, A., 1997. Does Shivering Thermogenesis Enhance

the Individual’s Ability to Maintain Rectal Temperature During Immersion in Cold

Water. Wilderness & Environmental Medicine, 8 (1), pp.3–7.

Goerzen, C., Kong, Z. & Mettler, B., 2010. A Survey of Motion Planning Algorithms from the

Perspective of Autonomous UAV Guidance. Journal of Intelligent and Robotic Systems,

57 (1-4), pp.65–100. Available at: http://dx.doi.org/10.1007/s10846-009-9383-1.

Golden, F. & Tipton, M., 1987. Human Thermal Responses During Leg-only Exercise in Cold

Water. The Journal of Physiology, 391 (1), p.399.

Gorissen, D., Quaranta, E., Ferraro, M., Schumann, B., Schaik, J. van, Keane, A., et al., 2014.

Value-Based Decision Environment: Vision and Application. Journal of Aircraft

(Accepted for publication): AIAA.

Gundlach, J., 2012. Designing Unmanned Aircraft Systems: A Comprehensive Approach, AIAA

Education Series.

Hauser, J. & Clausing, D., 1988. The House of Quality. In Harvard Business Review. pp. 63–73.

References

LIV

Heilala, J. & Maantila, M., 2010. Developing Simulation-Based Decision Support Systems for

Customer-Driven Manufacturing Operation Planning. In B. Johansson et al., eds.

Proceedings of the 2010 Winter Simulation Conference. IEEE, pp. 3363–3375.

Herpel, T. et al., 2008. Multi-sensor Data Fusion in Automotive Applications. In Proceedings of

the 3rd International Conference on Sensing Technology (ICST 2008). Tainan, Taiwan:

IEEE. Available at: http://www7.informatik.uni-erlangen.de/herpel/publications/pdf/-

herpel2008sensorfusion.pdf.

Herrick, K., 2000. Development of the Unmanned Aerial Vehicle Market: Forecasts and Trends.

Air & Space Europe, 2 (2), pp.25–27.

Hurrion, R.D., 1976. The Design, Use and Required Facilities of an Interactive Visual

Computer Simulation Language to Explore Product Planning Problems. London, UK:

University of London. PhD thesis.

Hybertson, D.W., 2010. Model-Oriented Systems Engineering Science: A Unifying Framework

for Traditional and Complex Systems, Boca Raton, USA: CRC Press.

IAMSAR, 2007. International Aeronautical and Maritime Search and Rescue Manual Volume

III 6th ed., 4 Albert Embankment, London, SE1 7SR, UK: International Maritime

Organisation.

Jameson, A., 1999. Re-Engineering the Design Process Through Computation. Journal of

Aircraft, 36 (1), pp.36–50.

Jennings, N.R., 2000. On Agent-Based Software Engineering. Artificial Intelligence, 117,

pp.277–296.

Jennings, N.R., Sycara, K. & Wooldridge, M., 1998. A Roadmap of Agent Research and

Development. Autonomous Agents and Multi-Agent Systems, 1 (1), pp.7–38.

Jinks, S., 2012. Integrating Supply Chain Simulation, Component Geometry, and Unit Cost

Estimation. University of Southampton. Available at: http://eprints.soton.ac.uk/348807/.

PhD thesis.

Jones, R.A., Jimmieson, N.L. & Griffiths, A., 2005. The Impact of Organizational Culture and

Reshaping Capabilities on Change Implementation Success: The Mediating Role of

Readiness for Change. Journal of Management Studies, 42 (2), pp.361–386. Available at:

http://dx.doi.org/10.1111/j.1467-6486.2005.00500.x.

Karban, R. et al., 2008. Exploring Model-Based Systems Engineering for Large Telescopes -

Getting Started with Descriptive Models. SPIE Proceedings, 7017.

Keane, A.J., 2012. Cokriging for Robust Design Optimization. AIAA Journal, 50 (11), pp.2351–

2364.

Keane, A.J. & Nair, P.B., 2005. Computational Approach for Aerospace Design, Chichester,

UK: John Wiley and Sons, Ltd.

Keatinge, W., 1961. The Effect of Work and Clothing on the Maintenance of the Body

Temperature in Water. Experimental Physiology, 46 (1), pp.69–82.

Keeter, H.C., 2008. Coast Guard Partners with Government, Industy in Unmanned Aircraft

System Evaluation H. C. Keeter, ed., US Coast Guard Acquisition Directorate. Available

at: www.uscg.mil/acquisition.

Keller, S. & Collopy, P., 2013. Value Modeling for a Space Launch System. Procedia

Computer Science, 16, pp.1152–1160. Available at: http://www.sciencedirect.com/-

science/article/pii/S1877050913001221#.

Kirby, M.R., 2001. A Methodology for Technology Identification, Evaluation and Selection in

Conceptual and Preliminary Aircraft Design. Georgia Institute of Technology. PhD

thesis.

Kroo, I. et al., 1994. Multidisciplinary Optimization Methods for Aircraft Preliminary Design,

AIAA1994-4325. AIAA. Available at: http://aero.stanford.edu/reports/mdo94.html.

Krus, P., 2011. Whole Aircraft Simulation for System Design and Optimisation in Preliminary

Design. In: Proceedings of the 2011 International Conference of the European Aerospace

Societies (CEAS). AIAA.

Krus, P. & Jouannet, C., 2010. Whole Mission Simulation for Aircraft Preliminary Design. In:

Proceedings of the 48
th
 AIAA Aerospace Sciences Meeting. AIAA.

http://eprints.soton.ac.uk/348807/

References

LV

Law, A.M. & Kelton, W.D., 1997. Simulation Modeling and Analysis, Columbus, OH, USA

with: McGraw-Hill Higher Eduaction.

Leachtenauer, J.C., 2003. Resolution Requirements and the Johnson Criteria revisited. In G. C.

Holst, ed. Proc. SPIE 5076, Infrared Imaging Systems: Design, Analysis, Modeling, and

Testing XIV. Orlando, Fl, USA: International Society for Optics and Photonics.

Leachtenauer, J.C. & Driggers, R.G., 2001. Surveillance and Reconnaissance Imaging Systems:

Modeling and Performance Prediction, Norwood, MA, USA: Artech House.

Leonard, J., 2001. Systems Engineering Fundamentals: Supplementary Text, Fort Belvoir, Va,

USA: Defense Acquisition University Press.

Mabus, R., 2008. NATOPS Flight Manual Navy Model SH-60B Helicopter. Technical Report

A1-H60BB-NFM-000. US Navy, Patuxent River, Md, USA.

Macal, C.M. & North, M.J., 2010. Tutorial on Agent-Based Modelling and Simulation. Journal

of Simulation, 4, pp.151–162.

Maslow, A.H., 2002. The Psychology of Science: A Reconnaissance. Richmond, Ca, USA:

Maurice Bassett Publishing.

Mavris, D., Bandte, O. & DeLaurentis, D.A., 1999. Robust Design Simulation: a Probabilistic

Approach to Multidisciplinary Design. Journal of Aircraft, 36 (1), pp.298–307.

Mavris, D. & Kirby, M.R., 1999. Technology Identification, Evaluation, and Selection for

Commercial Transport Aircraft. In Proceedings of the 58th Annual Conference of Society

of Allied Weight Engineers, Inc. San Jose, USA: SAWE, Inc.

Mavris, D.N. et al., 1998. A Stochastic Approach to Multi-Disciplinary Aircraft Analysis and

Design. In Proceedings of the 36th Aerospace Sciences Meeting & Exhibit. Reno, NV,

USA: AIAA98-0912. AIAA.

MCA, 2008. Search and Rescue Framework for the United Kingdom of Great Britain and

Northern Ireland, Southampton, UK: Maritime Coastguard Agency. Available at:

http://www.dft.gov.uk/mca/uksar.pdf.

McConnell, S., 2004. Code Complete - A Practical Handbook of Software Construction 2nd

edition., Redmond, WA, USA: Mircrosoft Press.

McCullers, L.A., 1995. Flight Optimisation System User’s Guide, Langley, Va, USA: NASA

Langley Research Center.

McLean, C. & Leong, S., 2001. The Expanding Role of Simulation in Future Manufacturing. In

B. A. Peters et al., eds. Proceedings of the 2001 Winter Simulation Conference.

Arlington, VA, USA: INFORMS. Available at: http://informs-sim.org/wsc01papers/-

203.PDF.

Mullan, C. et al., 2012. Surplus Value Sensitivity and Subsystem Analysis. In R. Curran et al.,

eds. Proceedings of the 2012 Air Transport and Operations Symposium (ATOS).

Amsterdam, the Netherlands: IOS Press, pp. 162–175.

Murman, E.M., Walton, M. & Rebentisch, E., 2000. Challenge in the Better, Faster, Cheaper

Era of Aeronautical Design, Engineering and Manufacturing. Aeronautical Journal, 104

(1040), pp.481–489.

Murphy, L. & Collopy, P., 2012. A Work-Centered Perspective on Research Needs for Systems

Engineering with Models. In C. H. Dagli, ed. New Challenges in Systems Engineering

and Architecting: Conference on Systems Engineering Research. Procedia Computer

Science. St. Louis, MO, USA: Elsevier, pp. 305–310.

Nagel, B. et al., 2012. Communication in Aircraft Design: Can We Establish a Common

Language? In 28th International Congress of the Aeronautical Sciences. Brisbane,

Australia. Available at: http://software.dlr.de/p/cpacs/home/.

Nalepka, J.P. & Duquette, M.M., 2003. A Multi-Purpose Simulation Environment for UAV

Research, Wright-Patterson Air Force Base, OH, USA: AIAA-2003-5685. AIAA.

Niedringhaus, W.P., 2004. The Jet:Wise Model of National Air Space System Evolution.

Simulation, 80 (1), pp.45-58.

Nilubol, O., 2005. Development of a Combat Aircraft Operational and Cost-Effectiveness

Design Methodology. Cranfield College of Aeronautics. Available at:

https://dspace.lib.cranfield.ac.uk/handle/1826/3380.

References

LVI

Nunez, M. & Guenov, M.D., 2013. Design-Exploration Framework for Handling Changes

Affecting Conceptual Design. Journal of Aircraft, 50 (1), pp.114–129.

Nurminen, K. & Karonen, O., 2003. What Makes Expert Systems Survive over 10 Years:

Empirical Evaluation of Several Engineering Applications. Expert Systems with

Applications, 24 (2), pp.199–211. Available at: http://lib.tkk.fi/Diss/2003/-

isbn9512265745/article8.pdf.

Otto, K.N. & Wood, K.L., 2001. Product Design: Techniques in Reverse Engineering and New

Product Development, Upper Saddle River, NJ, USA: Prentice Hall, Inc.

Paine, J., 2000. Spreadsheet Structure Discovery with Logic Programming. In Proceedings of

the European Spreadsheet Risks Interest Group (EuSpRIG). pp. 16–17. Available at:

http://arxiv.org/ftp/arxiv/papers/0802/0802.3940.pdf.

Panko, R.P., 2008. Spreadsheet Errors: What We Know. What We Think We Can Do. In

Proceedings of the Spreadsheet Risk Symposium. Greenwhich, UK: European

Spreadsheet Risks Interest Group (EuSpRIG). Available at: http://arxiv.org/ftp/arxiv/-

papers/0802/0802.3457.pdf.

Panko, R.R., 2000. Two Corpuses of Spreadsheet Errors. In Proceedings of the 33rd Hawaii

International Conference on System Sciences. IEEE, pp. 1–8.

Park, J.H. & Seo, K.-K., 2004. Incorporating Life-Cycle Cost into Early Product Development.

Journal of Engineering Manufacture, 218 (9), pp.1059–1066.

Parunak, H. v. D., Savit, R. & Riolo, R.L., 1998. Agent-Based Modeling vs. Equation-Based

Modeling: A Case Study and User’s Guide. In Proceedings of Multi-Agent Systems and

Agent-Based Simulation (MABS). Springer, pp. 10–25.

Peters, J.F., 1995. The Transition of Functional Organizations to Integrated Product Teams on

the Space Station Program. In Proceedings of the Fifth Annual International Symposium

INCOSE. St. Louis, USA, pp. 767–773.

Pidd, M., 1998. Computer Simulation in Management Science 4th edn., Chichester, UK: Wiley

& Sons, Ltd.

Pidd, M., 1992. Guidelines for the Design of Data Driven Generic Simulators for Specific

Domains. Simulation, 59 (4), pp.237–243.

PMI, 2013. A Guide to the Project Management Body of Knowledge 5th ed., Newton Square,

PA, USA: Project Management Institute.

Price, M. et al., 2012. A Novel Method to Enable Trade-offs Across the Whole Product Life of

an Aircraft Using Value Driven Design. Journal of Aerospace Operations, 1 (4), pp.359–

375.

Price, M., Raghunathan, S. & Curran, R., 2006. An Integrated Systems Engineering Approach

to Aircraft Design. Progress in Aerospace Sciences, 42 (4), pp.331–376.

Prilla, M. et al., 2013. Collaborative Usage and Development of Models: State of the Art,

Challenges and Opportunities. International Journal of e-Collaboration, 9 (4), pp.1–16.

Quinn, C., Soban, D. & Price, M., 2012. Value Driven Design in the Presence of Fuzzy

Requirements. In R. Curran et al., eds. Proceedings of the 2012 Air Transport and

Operations Symposium (ATOS). Amsterdam, the Netherlands: IOS Press, pp. 317–327.

Raj, P., 1998. Aircraft Design in the 21st Century: Implications for Design Methods, Reston,

VA, USA: AIAA.

Rand, W. et al., 2005. Toward a Graphical ABM Toolkit with GIS Integration. In Proceedings

of Agent2005. Chicago, Il, USA.

Ranky, P.G., 1994. Concurrent/Simultaneous Engineering: a Practical and Consistent

Approach Centred Around Powerful Creative & Innovative Manufacturing and Product

Design Methods, Tools and Technologies, CIMware.

Raymer, D., 2006. Aircraft Design: A Conceptual Approach 5th Edition. J. A. Schetz, ed.,

Reston, Va, USA: AIAA Educational Series.

RNLI, 2009. RNLI Annual Operational Statistics Report, West Quay Road, Poole, Dorset,

BH15 1HZ, UK: Royal National Lifeboat Institution.

RNLI, 2008. RNLI Annual report and accounts 2008, West Quay Road, Poole, Dorset, BH15

1HZ, UK: Royal National Lifeboat Institution.

References

LVII

Robinson, S., 2004. Simulation: The Practice of Model Development and Use, Chichester, UK:

John Wiley and Sons, Ltd.

Rohrer, M.W., 2000. Seeing Is Believing: the Importance of Visualization in Manufacturing

Simulation. In J. A. Jones et al., eds. Proceedings of the 32nd Winter Simulation

Conference. Washington, D.C., USA: INFORMS, pp. 1211–1216.

Romli, F.I., 2013. Functional Analysis for Conceptual Aircraft Design. Journal of Advanced

Management Science, 1 (4), pp.349–353.

Royo, P., Barrado, C. & Pastor, E., 2013. ISIS+: A Software-in-the-Loop Unmanned Aircraft

System Simulator for Nonsegregated Airspace. Journal of Aerospace Information

Systems, 10 (11), pp.530–544.

Rubinstein, R.Y. & Kroese, D.P., 2011. Simulation and the Monte-Carlo Method 2nd ed.,

Chichester, UK: John.

Sadraey, M.H., 2012. Aircraft Design: A Systems Engineering Approach, Chichester, UK: John

Wiley & Sons.

SAE, 1998. Perceptions and Limitations Inhibiting the Application of Probabilistic Methods,

SAE G-11 Probabilistic Methods Committee. Available at: http://standards.sae.org/-

air5086/.

Saravi, M., Newnes, L. & Mileham, T., 2013. Optimising Performance and Cost at the Early

Design Stages. International Journal of Engineering and Technology Innovation, 3 (3),

pp.214–228.

Sargent, R.G., 2007. Verification and Validation of Simulation Models. In Proceedings of the

2007 Winter Simulation Conference. Washington, D.C., USA: INFORMS, pp. 124–137.

Sawyer, J.T. & Brann, D.M., 2009. How to Test your Models more Effectively: Applying Agile

and Automated Techniques to Simulation Testing. In M.D.Rossetti et al., eds.

Proceedings of the 2009 Winter Simulation Conference. Austin, TX, USA: INFORMS,

pp. 968–978.

Scanlan, J. & Rao, A., 2006. DATUM Project: Cost Estimating Environment for Support of

Aerospace Design Decision Making. Journal of Aircraft, 43 (4), pp.1022–1028.

Scanlan, J.P., 2007. A Metric-Based Approach to Concept Design. Journal of Engineering

Design, accepted for publication. Available at: http://www.southampton.ac.uk/jps7/-

Lecture%20notes/Student%20copy%20value%20based%20design.pdf.

Scanlan, J.P., 2004. DATUM (Design Analysis Tool for Unit cost Modelling): a Tool for Unit

Cost Estimation of Gas Turbine Design within Rolls-Royce. Cost Engineer, 42, pp.8–10.

Schumann, B., Scanlan, J. & Fangohr, H., 2012. Complex Agent Interactions in Operational

Simulations for Aerospace Design. In C. Laroque et al., eds. Proceedings of the 2012

Winter Simulation Conference. Berlin, Germany: IEEE, pp. 2986–2997.

Schumann, B., Scanlan, J. & Takeda, K., 2011. Evaluating Design Decisions in Real-Time

Using Operations Modelling. In R. Curran & S. C. Santema, eds. Air Transport and

Operations Symposium 2011 (ATOS). Delft, the Netherlands: Delft University of

Technology.

Smits, H., Menssen, T. & Smits, P., 2011. Port of Rotterdam Annual Report, Rotterdam, the

Netherlands: Port of Rotterdam Authority. Available at: http://www.-

portofrotterdam.com/en/Port-authority/finance/annual-report/Documents/-

annual_report.pdf.

Smulders, F., Zwan, F.M. van der & Curran, R., 2012. A Value Operations-Based Methodology

for Airport Concept Development for the Year 2050. In R. Curran et al., eds. Proceedings

of the 2012 Air Transport and Operations Symposium (ATOS). Amsterdam, the

Netherlands: IOS Press, pp. 119–129.

Soban, D.S., 2001. A Methodology for the Probability Assessment of System Effectiveness as

Applied to Aircraft Survivability and Susceptibility. Atlanta, Ga, USA: Georgia Institute

of Technology. PhD thesis.

Soban, D.S., Hollingsworth, P. & Price, M.E., 2011. Defining a Research Agenda in Value-

Driven Design: Questions that Need to be Asked. Journal of Aerospace Operations, 1 (4),

pp.329–342.

References

LVIII

Soban, D.S. & Mavris, D.N., 2000a. Formulation of a Methodology for the Probabilistics

Assessment of System Effectiveness. In Proceedings of the AIAA Missile Science

Conference. Montoney, Ca, USA: AIAA.

Soban, D.S. & Mavris, D.N., 2000b. Methodology for Assessing Survivability Tradeoffs in the

Preliminary Design Process. In Proceedings of the 2000 World Aviation Conference. San

Diego, Ca, USA: SAE.

Steinkeller, S., 2011. Aircraft Vehicle Systems Modeling and Simulation under Uncertainty.

Stockholm, Sweden: Soerdertoern University. PhD thesis. Available at: http://sh.diva-

portal.org/smash/get/diva2:415979/FULLTEXT01.

Sterman, J.D., 2000. Business Dynamics: Systems Thinking and Modeling for a Complex World,

Columbus, OH, USA: McGraw-Hill.

Stevenson, W.J., 2002. Operations Management 7th edition., Boston, USA: McGraw-

Hill/Irwin.

Streit, A., Pham, B. & Brown, R., 2008. A Spreadhseet Approach to Facilitate Visualisation of

Uncertainty in Information. IEEE Transactions on Visualisation and Computer Graphics,

14 (1), pp.61–72.

Sturm, P.J. & Hausberger, S., 2005. Emissions and Fuel Consumption from Heavy Duty

Vehicles. Technical University Graz. Graz, Austria. Available from: http://www.-

transport-research.info/Upload/Documents/200906/20090619_171904_26922_II_-

COST346_WGA_FinalReport.pdf.

Suominen, P. et al., 2002. Impact of Age, Submersion Time and Water Temperature on

Outcome in Near-Drowning. Resuscitation, 52 (3), pp.247–254.

Taguchi, G., 1986. Introduction to Quality Engineering: Designing Quality into Products and

Processes, Am. Supplier Inst.

Tam, W.F., 2004. Improvement Opportunities for Aerospace Design Process. Space, pp.28–30.

Available at: https://info.aiaa.org/tac/ADSG/DETC/Web%20Pages/Paper-TamSpace-

2004_26027.pdf.

Thokala, P., 2009. Life Cycle Cost Modelling as an Aircraft Design Decision Support Tool.

University of Southampton. PhD thesis. Available at: http://eprints.soton.ac.uk/72021/.

Tikuisis, P. & Keefe, A.A., 2005. Stochastic and Life Raft Boarding Predictions in the Cold

Exposure Survival Model (CESM v3.0), Toronto, Ca: Defence Research and Development

Canada.

Tipton, M. et al., 1999. Immersion Deaths and Deterioration in Swimming Performance in Cold

Water. The Lancet, 354 (9179), pp.626–629.

Torenbeek, E., 2013. Advanced Aircraft Design: Conceptual Design, Technology and

Optimization of Subsonic Civil Airplanes, Chichester, UK: John Wiley & Sons.

Torenbeek, E., 1982. Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary

Design of Subsonic General Aviation and Transport Aircraft, with Emphasis on Layout,

Aerodynamic Design, Propulsion and Performance, Delft, the Netherlands: Delft

University Press.

Twiss, B.C., 1992. Forecasting for Technologists and Engineers: A Practical Guide for Better

Decisions, London, UK: Peter Peregrinus Ltd.

Viscusi, W.K. & Aldy, J.E., 2002. The Value of a Statistical Life: A Critical Review of Market

Estimates Throughout the World. In Harvard Law School John M. Olin Center for Law,

Economics and Business Discussion Paper Series. Harvard Law School, p. 128.

Weibel, R.E. & R. John Hansman, J., 2004. Safety Considerations for Operation of Different

Classes of UAVs in the NAS. In Proceedings of the 4th Aviation, Technology, Integration

and Operations (ATIO) Forum. Chicago, Il, USA: AIAA.

Weisbuch, G., 1991. Complex Systems Dynamics: An Introduction to Automata Networks,

Redwood City, CA, USA: Addison-Wesley.

Wheeler, T.M. & Brooks, M.D., 2007. Experiences in Applying Architecture-Centric Model-

Based Systems Engineering to Large-Scale, Distributed, Real-Time Systems, Bedford,

Ma, USA: Mitre Corporation.

References

LIX

Wieland, F. & Satapathy, G., 2010. Aviation Analysis Using a Distributed Agent-based

Infrastructure. In Proceedings of the 2010 AIAA Infotech@Aerospace Conference.

Atlanta, Ga, USA: AIAA.

Will, P.M., 1991. Simulation and Modeling in Early Concept Design: An Industrial Perspective.

Research in Engineering Design, 3 (1), pp.1–13.

Wissler, E.H., 2003. Probability of Survival During Accidental Immersion in Cold Water.

Aviation, Space and Environmental Medicine, 74 (1), pp.47–55.

Wooldridge, M. & Jennings, N.R., 1995. Intelligent Agents: Theory and Practice. The

Knowledge Engineering Review, 10 (2), pp.115–152.

Yilmaz, L. & Hunt, C.A., 2011. Advanced Concepts and Generative Simulation Formalisms for

Creative Discovery Systems Engineering. In A. Tolk & L. C. Jain, eds. Intelligence-based

Systems Engineering. Intelligent Systems Reference Library. Berlin, Germany: Springer,

pp. 233–258.

Yu, T.-T., 2008. The Development of a Hybrid Simulation Modelling Approach Based on

Agents and Discrete-Event Modelling. University of Southampton. PhD thesis.

Zhu, Y. & Sala-Diakanda, S., 2007. Integration of Underwater Sonar Simulation with a

Geographical Information System. In S. G. Henderson et al., eds. Proceedings of the 2007

Winter Simulation Conference. Washington D.C., USA: Winter Simulation Conference,

pp. 1378–1386.

