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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND THE EVIRONMENT 

Fluid Structure Interaction Group 

Doctor of Philosophy 

THE DEVLOPMENT OF A DISSIPATIVE POTENTIAL FLOW MODEL FOR 

WAVE MAKING RESITANCE PREDICTION 

by Mirjam Fürth 

Steady ship motion in calm water is a classical problem in ship hydrodynamics. 

Potential flow modelling is a common method to predict the wave resistance of 

ships. In its conventional form the flow is assumed to be free from damping due 

to the inviscid assumption of potential flow. It has been argued by the founding 

fathers of ship resistance predictions that damping plays an important role in 

determining the wave resistance. Despite this viscosity is often omitted from 

present wave resistance prediction methods. It is known that damping plays an 

important role in the formation of the wave pattern and it is therefore of interest 

to determine the effect on the resistance prediction by including a damping 

factor in a previously undampened model.  

In this study, the problem is modelled using Kelvin sources with a translating 

speed. The fluid flow is modelled using a linearised free surface condition but an 

exact body condition on the hull. Rayleigh damping is introduced in the model to 

emulate viscous damping. To calculate the source influences, a new dissipative 

3D Green function is derived. The image source part of Green function is 

separated into the near field and far field disturbance to achieve fast 

convergence of the integrals.  

The method is evaluated using thin ship theory to determine the wave pattern 

behind and the wave profile along a Wigley hull. A panel method is used to 

determine the wave and residual resistance for submerged ellipsoids and 

spheres. The results are validated and compared to existing numerical and 

experimental data from other sources. The results show that it may be possible 

to capture the residual resistance by including damping in a potential flow model 

but that more evaluations are needed.
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1 Introduction 

The oldest found boats date back 10 000 years and the history of boats parallel 

the human adventure (Breunig, 1996) . From the early canoes dug out of tree 

trunks, humans have tried to improve their sea going structures. Early on this 

was only based on practical experience or trial and error. With the age of 

enlightenment  and the improvement of scientific methods, experiments started 

to be used in order to improve ship operation. Even the multitalented Leonardo 

da Vinci tried to determine ship resistance by model tests (Tursini, 1953). Later 

on experimental methods were supplemented by theoretical methods. 

With globalisation and the associated rising demand on transportation, the 

volume and size of the merchant fleet will also increase since the majority of 

goods are transported by sea. Over time, the world’s GDP will rise. A GDP rise of 

3% will result in a 6% rise in world trade causing a 3% rise in demand for sea 

transportation and an associated 2% increase in the size of the merchant fleet 

(Nilsson, 2010). 

Such increases in shipping lead to a significant fossil fuel cost both to the ship 

owners and the environment. A tenth of the global oil consumption is used to 

power the merchant fleet (Nilsson, 2010). CO
2

 emissions from shipping might 

rise as much as 75% in the next 15 years and currently accounts for 4% of the 

total global CO
2

 emissions (Vidal, 2007). With the rising price of oil and the 

growing environmental concern, the motivation to reduce oil consumption has 

never been higher. 

1.1 Ship resistance 

A ship travelling in the seaway will experience forces trying to keep it from 

moving; these forces are known as the resistance. It is preferable to keep the 

resistance at a minimum because a ship’s resistance is linked to the power 

required to propel the ship. The ship designer has to ensure that the ship 

achieves the desired speed with the minimum amount of power.  

The experimental and theoretical investigation of the steady motion of a ship is 

complicated. Consequently, much effort has gone into developing and improving 

methods for determining a ship’s resistance over the past 100 years. The 

complexity of determining a ship’s resistance stems from the interaction 

between the water and the air; the free surface. In reality, all parts of the 

resistance are interconnected but to simplify resistance determination 

http://tyda.se/search/enlightenment
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theoretically it can be separated into different components. The resistance 

depends on viscosity and the gravitational field so that the total resistance,  
 
, is 

the sum of the viscous resistance,   
 
, and the wave resistance,   

 
.    

 
, is 

associated with the generation of boundary layer and wake.   
 
 is connected with 

the excitation of ship generated wave pattern. The viscous resistance can be 

divided into the friction resistance,   
 
, and the viscous pressure resistance,    

 
, 

where the friction resistance is the force in tangential direction on the hull and 

the viscous pressure resistance is associated with the pressure losses due to 

separation in the wake. The friction resistance depends on the roughness and 

size of the hull surface. Other types of resistance include aerodynamic drag on 

the hull and superstructure, spray drag or induced resistance related to the 

generation of lift. For the current investigation in still water, these are assumed 

to be negligible. The resistance forces are usually described by a non-

dimensionalised coefficient where the force/resistance could be non-

dimensionalised as: 

 
   

  
 

         ⁄
  (1.1) 

where   
 is the ship speed,   

 is the ship’s wetted surface area and   
 the density 

of water. The non-dimensionalised viscous resistance coefficient,   , wave 

resistance coefficient,   , and friction resistance coefficient,   ,  are determined 

in the same manner. 

From dimension analysis it is clear that the resistance depends on the speed, 

length, the fluid density and viscosity, gravity and some shape parameter 

(Molland et al, 2011). To describe this dependence the Froude and Reynolds 

number are often used. The Froude number is the relationship between the ship 

speed and the speed of the wave pattern. The Reynolds number is the 

relationship between the inertial and viscous forces in the fluid. The Froude and 

Reynolds numbers are used to help relate similar flow patterns in different fluid 

situations. The Froude number,   , is defined as 

 
   

  

√    
  (1.2) 

and the Reynolds number 

 
   

    

  
  (1.3) 
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where   
 is the ship length,   

 the gravitational acceleration and   
 the kinematic 

viscosity of water. 

For merchant ships the viscous resistance is the largest component, it is 

approximately quadratic with ship’s speed and increases with the fullness and 

wetted surface area of the hull. The wave resistance accounts for 10%-60% of the 

total resistance (Raven, 1996). The wave resistance is more amendable through 

changes in the hull shape (Eggers et al, 1967). A reduction in the resistance 

would bring considerable reductions both in operating costs and emissions. 

Since the viscous resistance cannot be reduced significantly by changes in the 

hull form optimal ship forms will be those that generate the smallest waves, it is 

therefore highly desirable to develop a theoretical tool to analyse the relationship 

between wave resistance and the geometry of the hull (Baar, 1986). 

For most ships there will be a main resistance hump when the transverse wave 

length defined as 

 

   
     

   
 (1.4) 

is roughly equal to half the ship length. Since the bow wave and stern wave will 

add together to create a higher wave pattern leading to higher resistance. At low 

speed the viscous resistance is the major component of the total resistance and 

at very low speed the wave resistance is very small. Then the wave resistance 

increases with increased speed to become a big component of the total 

resistance at high speed for displacement ships (Larsson & Eliasson, 2000). 

There are some high speed craft such as hovercraft and planning vessels, that 

operates at   >1.3. In this case wave resistance is of lower importance. (Tuck et 

al, 2002). 

1.2 Ship design process 

All properties of a ship are intertwined, for example an increase in beam will 

cause an increase in resistance and therefore require an engine with the ability to 

deliver more power. Hence it is not possible to decide one property of the ship 

without analysing how it will affect other aspects of the design. A common way 

of clarifying the design process is through the design spiral; as illustrated in 

Figure 1 . 
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Figure 1 Design spiral used in ship design phase  

There are differences in the design process between different shipyards, and it 

must be said that most shipyards tend to base their design on experience. This 

means that most designs are modifications of older models. A large part of all 

new builds are standardised models, especially among bulk carries and tankers 

(Nilsson, 2010).  

Determining the resistance is not an exact science and none of the now available 

methods of resistance determination are without error. There are currently two 

main approaches to still water resistance determination; experiments and 

numerical modelling. 

Tank testing is time consuming and expensive. It is often used at the end of the 

design process to confirm the estimated resistance. It could also be used to 

make minor changes to the underwater body such as modifying the appendices. 

On rare occasions tank testing or full scale tests can be used to optimise the hull 

shape but this mainly applies to competitive sail racing yachts such as in the 

America’s cup (Letcher et al, 1987). 

Numerical simulations are an alternative to tank testing and there are currently 

several different commercial codes that solves three dimensional non-linear wave 

resistance problems (Bertram, 2000). However, these methods are highly 

complex and require long computational time which drives up the cost. Some of 

them may need a super computer which restricts their use as a practical design 

tool (Diken et al, 2004). A benefit of numerical modelling compared to 
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experiments, besides the cost, is that it allows for thorough investigations into 

the impact of very specific changes of the hull geometry. An example of how a 

hull form can be optimised for different Froude numbers is given by Percival et 

al. (2001). 

There are options to determine the viscous and wave resistance. The first option 

is to determine the frictional resistance and wave resistance separately. The 

frictional resistance can be determined using the International Towing Tank 

conference correlation formula (ITTC 57 line)  (Ortigosa et al, 2009). To 

determine the wave resistance a regression method such as Holtrop-Mennen 

(Holtrop & Mennen, 1982) or a theory based on potential flow can be used. The 

viscous pressure resistance is assumed to depend on a form factor, k, and the 

friction resistance   
 

 

(Molland et al, 2011). The other option is to use a Reynolds-

Averaged Navier-Stokes (RANS) equations, Large Eddy Simulation (LES) or 

Detached Eddy Simulation (DES) based solver to solve the full Navier-Stokes 

equations and estimate the total resistance. 

Early on in the design process a speedy determination of the resistance is of 

great importance. Since all the ship properties are intertwined it is not beneficial 

to dwell too much on one parameter. Early on in the process simplicity and speed 

are more important than accuracy to some degree (Noblesse et al, 2010). The 

combination of potential flow and ITTC correlation line is an example of such a 

method. One benefit of potential flow is that the problem is reduced to the size 

of the wetted surface, whereas RANS solvers require the discretisation of the 

whole fluid domain which is considerably larger. It is this that gives potential 

flow its speed; a major advantage (Hess, 1975, Kumar & Philominathan, 2011). 

Potential flow modelling is based on three simplifications of the flow field; that 

the homogenous fluid is incompressible and inviscid and the flow is irrotational. 

This means that the method is only suitable to determine the wave resistance 

and not the friction resistance since, in an inviscid fluid, there will be no 

boundary layer. Since RANS solvers do not make these simplifications they can be 

used to determine the total resistance.  

The computational time will depend on many factors such as the complexity of 

the submerged body and accuracy required but generally speaking a potential 

flow method will yield a result in minutes, and RANS based solver in hours and a 

LES method in days (Molland et al, 2011). 

Later, as the design becomes more finalised a method with fewer simplifications 

such as advanced software based on RANS equations is often used. RANS based 
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solvers are often used to model breaking waves, resistance determination related 

to non-linear movement and local flow phenomena. RANS is also favourable when 

modelling non-linear surface effects. 

In the developments of a new ship, a combination of all of the above mentioned 

methods are usually applied and personal preferences of the shipyard or the 

naval architects usually plays an important role. Therefore, there is a benefit to 

developing all of these methods. To some extent there could also be a cost 

associated with not refining resistance prediction methods, since stagnated 

methods tend to become less effective. Without updates, software will generally 

become less efficient and methods without refinement and further development 

tend to lose users. 

To solve the two part problem of determining the viscous and wave resistance 

there are two approaches; Froude’s (Froude, 1868, Froude, 1877, Froude et al, 

1955) and Hughes (1954). In Froude’s approach 

          (1.5) 

and in Hughes 

    (   )       (1.6) 

where    is the residual resistance coefficient. The differences between the 

methods are illustrated in Figure 2. 

 

Figure 2 Froude's (top) and Hughes' (bottom) approach to resistance determination 
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The Hughes method is recommended by the ITTC and is the most adopted, 

though the form factor approach is not suitable for yachts and some high-speed 

crafts. Methods of estimating   include experimental, numerical and empirical 

methods (Molland et al, 2011). The form factor is usually depicted as (   ) as 

seen in (1.6) and typical values lies between 1.05-1.5 (Lauro & Miranda, 1987). 

The drawback of Froude’s method is that the residual resistance must be 

determined using model tests. The difficulty with Hughes method is to accurately 

determine the form factor  .  

1.3 Contribution to science 

At the dawn of modern naval architecture, scholars thought that damping was 

important when determining wave resistance. The men that laid the foundations 

of modern fluid mechanics such as Stokes, Michell, Havelock and Lamb all 

argued that damping effects are important when determining the wave 

resistance. 

Stokes was a Lucasian Professor with exceptional contribution to the fluid 

mechanics field. The Navier-Stokes equations, Stokes drift, Stokes’ law, Stokes 

wave and Stokes boundary layer are all named after him. He was made a Baron 

for his contributions to science. Michell was an Australian mathematician and 

Royal Society Fellow who published only 23 papers, yet one of them might be the 

single most important paper regarding ship resistance determination. Havelock 

was a knighted mathematician and fellow of the Royal Society known for his large 

productivity and significant contribution to theoretical resistance determination. 

Lamb was active in the field of applied mathematics and knighted for this work. 

He published the book Hydrodynamics in 1879 which is still in print and widely 

used around the world. 

When their theories could be implemented on a larger scale using computers it 

was assumed that the damping could be overlooked, because the computers of 

yesterday could not handle these far more complex theories. Today’s computers 

are more powerful than ever before and can solve these complex problems. 

There is therefore a possibility to investigate if the original assumptions and 

theories regarding the role of damping in resistance determination holds true. 

1.4 Aims and objectives 

To address this; this thesis aims to develop an efficient numerical method for 

residual resistance prediction based on an improved potential theory which 
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incorporates certain viscous effects in the model. The underlining methodology 

will be based on a panel method and a new Green function for the modified 

governing equations will be derived. Evaluation of the numerical implementation 

for efficiency and robustness will be undertaken. Validation and evaluation of the 

approach will be conducted. 

The objectives are: 

 Using a potential flow theory based model to describe the flow around a 

steady advancing hull. 

 The model should include some damping viscous force to capture the 

residual resistance. 

 Derive a new Green function that includes Rayleigh damping. 

 Evaluate and compare the model against existing results to establish 

some degree of validation. 

1.5 Summary of contributions 

 A new Green function is derived that is the first in 3D to include a 

damping parameter. 

 A potential flow based model that has the possibility to determine the 

residual resistance is developed. 

1.6 Outline of thesis 

This thesis is divided into 7 chapters. Chapter 1 provides the motivation for this 

study and explains the basics of theoretical resistance prediction. It gives a short 

account of the application of different methods and their benefits and 

drawbacks.  

Chapter 1 renders the historical aspects of theoretical resistance modelling and 

why the inclusion of damping in a potential flow based model is pertinent. 

Chapter 2 furnishes a general background of the problem with historical 

remarks. Having commenced with the history of potential flow it next surveys 

different formulations of Green function. Therefore the differences between 

potential flow and RANS equations are elucidated and viscosity in potential flow 

is discussed. Finally resistance determination methods based on potential flow 

are discussed with comments on existing data.  
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Chapter 3 explains the basic assumptions and provides a derivation of the 

governing mathematical model. Starting with the Navier-Stokes equation,  the 

dissipative Bernoulli equation and free surface condition lead to the formulation 

of  the integral identity that governs the relationship between the unknown 

steady potential and the translating source Green function. Finally a double and 

single integral representation of the proposed 3D Green function is generated.  

In Chapter 4 the numerical implementation of the mathematical model is 

illustrated together with convergence of the method. Two discretisation methods 

are explained; thin ship and a panel method. The convergence of the single 

integrals is established and specific limitations of the double integral are 

highlighted.  

Chapter 5 validates the predicted results with data from other sources. It 

provides the wave pattern of a single source together with the wave pattern 

generated by Wigley hull with no Rayleigh damping against existing data. The 

wave resistance of a submerged ellipsoid and sphere at different depths are 

compared to existing data from other sources. 

In Chapter 6 the proposed method is applied to determine the residual resistance 

of fully submerged bodies. The possible range of the Rayleigh damping is 

determined for a fully submerged ellipsoid and sphere at different depths. The 

wave elevation along a Wigley hull is compared to experimental measurements 

for different speeds. The wave resistance and residual resistance are compared 

with experiments for fully submerged ellipsoids at different depths.  

Chapter 7 furnishes concluding remarks and thoughts on future work. 

  

 





 

11 

 

2 Literature review 

By 1975 over 700 papers had been published on the experimental and/or 

theoretical study of ship waves and wave resistance (Baar, 1986). It is therefore 

not possible to give an account of them all, hence a general background and a 

pertinent historical context is disclosed. 

2.1 History of potential flow 

Potential flow can be said to have its base in a series of papers by Euler in the 

1750’s. Euler developed a field theory based on Newton’s laws, the Euler-

Lagrange differential equations (Euler, 1755a, b, c, 1756, Saad, 2008-2011). This 

field theory included velocity and pressure unlike prior field theories. In 1821 

Navier gave what is today known as the Navier-Stokes equations for 

incompressible fluids and in 1822 for viscous fluids, he was the first to introduce 

a non-ideal fluid (Anderson, 1997). Even though the equations were first 

presented by Navier, it was first correctly derived by Saint-Venant (Anderson, 

1997). 

The field variable, developed by Euler and improved by Lagrange (1781) and 

Laplace  was ideal to solve the Navier-Stokes equations in the entire fluid domain 

(Ball, 1960). Lagrange developed Euler’s field variable to be applied to potential 

flow. This potential could also describe the fluid flow if it was assumed to be 

irrotational. Lagrange described what is today know as streamlines, the 

orthogonal lines in the flow with makes it possible to use Bernoulli’s equation to 

determine the pressure in the fluid. Laplace proved that the field variable must 

satisfy a differential equation that today is known as the Laplace equation (Ball, 

1960). 

The wave profile for a surface wave was described by Green (1828) and Airy 

(1841). The potential under a surface wave over the seabed was proposed by 

Stokes (1847).  

Modern analytical resistance predictions are said to have been founded by 

Michell at the turn of the last century (Michell, 1898). For a long time the Michell 

thin ship theory, which only applies to slender ships was the only available 

theoretical evaluation of wave resistance. Michell touched upon the important 

subject of damping. Quoting from Michell’s paper “… similar work to that of the 

present paper gives a theory of the damping of the oscillation of ships due to 

wave-making. This I hope to give in a subsequent paper”. But he did not, he did 
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not publish any paper after 1902 and this problem was not solved until years 

later by Havelock and Newman (Tuck, 1989).  

Rayleigh damping was first introduced by Lord Rayleigh (1877) it is a viscous 

damping that uses a dissipative function to describe a damping that is 

proportional to the flow speed. 

2.2 Different formulations of Green function 

Most mathematical functions are adjectival in English, unlike most other 

European languages. Green function is the sole exception and can be called both 

Green and Green’s function. Throughout the last century the fashion has shifted 

back and forward regarding the possessive use  of Green function (Wright, 2006). 

Here Green function is used.  

Green function can be expressed either as a fundamental Rankine source or as 

the potential of a translating submerged source which satisfies the free surface 

condition and the infinity condition, where the last option is referred to as the 

Kelvin wave source potential (Baar & Price, 1988a, Kelvin (Thomson), 1887). The 

Rankine source is considerably easier mathematically but the Kelvin source has 

the numerical advantage since it does not require sources to be placed on the 

free surface (Ponizy et al, 1998). However, the Kelvin source is still cumbersome 

to evaluate and methods such as eigen-function expansion, power-series 

expansions, asymptotic expansions, continued fraction or multidimensional 

polynomial approximations may be needed (Newman, 1985). 

There are two major approaches that can be considered to solve the Kelvin wave 

source potential problem other than Michell (Baar, 1986). The first is introduced 

by Havelock (1928) and expanded in (1932), inspired by the work of Lamb 

(1926). It is interesting to note that Havelock inserted a small friction force into 

the equation of motion. The Havelock expression was later modified by, among 

others, Lunde (1951) and is considered the most popular expression. Wigley 

(1934) has compared both Havelock’s and Michell’s theories against 

experimental results but using an inviscid version of Havelock method. Thorough 

evaluation of analytical methods compared to experimental results has been 

undertaken by Eggers focusing on the method by Havelock (Eggers et al, 1967). 

Besides the methods by Havelock and Michell there is a third method by Peters 

(1949). However he considered the dissipation factor  , used by Lamb  (1945) as 

unnecessary. According to Baar (1986) there are two more methods, one 

originally by Bessho (1964) and one by Demanche (1981), however Baar 
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considers that they do not have “any practical advantages”. Bessho formulation is 

sparsely quoted in the literature perhaps because he published it in a Japanese 

journal not widely available or because his mathematical argument was given in 

outline rather than in detail (Ursell, 1984). The details of the derivation were not 

fully explained until the 1980s, when Ursell (1984) proved that the order of 

integration could in fact be changed, which had previously been disputed in the 

Bessho formulation. Therefore; the formulations by Michell, Havelock and Peters 

are considered to be the main solutions. The main difference between them is 

that they use different mathematical approaches, such as the integration path for 

the double integral. All representations has the same asymptotic behaviour to 

ensure that the free waves trail aft of the disturbance (Eggers et al, 1967). 

The difficulties with these formulations depend on the mathematical complexity 

of Green function. The Michell, Havelock and Peter formulations include a single 

integral for the near field disturbance. Havelock and Peters formulations also has 

a single integral for the wavelike disturbance (Michell has the wavelike 

disturbance as a double integral). 

Noblesse (1981) has derived the three single integral formulations in a 

uniformed manner which is both easy and straight forward to follow. He used a 

double Fourier transform in order to derive the Green function. The near field 

disturbance becomes a single integral with an exponential as the integrand. The 

exponential integral can be expressed as a standard function   ( ) and is 

numerically regarded as a standard function (Abramowitz & Stegun, 1964). The 

formulations by Noblesse are difficult to integrate numerically since they include 

highly oscillatory integrands (Baar & Price, 1988a). The far field or wave like 

disturbance is generally the more cumbersome integral to evaluate due to its 

highly oscillatory behaviour (Ponizy et al, 1998). Monacella (1966) simplified the 

problem by only evaluating the far field integral and thus obtaining a solution 

which is only valid for large distances, r,  between the source and field point. 

Therefore, the solution cannot be used to calculate the pressure on the body, 

Monacella uses it to determine the pressure on the seabed, and the method 

could be changed fairly easily to calculate the wave pattern far downstream. 

2.2.1 Surface piercing bodies 

A major difficulty to overcome is to determine the derivatives of the unknown 

distributions of Kelvin sources in the water line integral where the hull meets the 

free surface (Ponizy et al, 1998). It can be shown that a line singularity 

distribution should accompany the distribution over the hull (Brard, 1972). The 
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methods by Baar (1986), Baar and Price (1988a, b) and Doctors and Beck (1987a, 

1987b) were compared and evaluated by Marr and Jackson (1999). Marr and 

Jackson were unable to reproduce the results of Baar and Price (1988a, b) for the 

Wigley hull with a water line integral. They found a very good agreement for 

submerged thin bodies. However, for these bodies the water line integral is not 

important. Marr and Jackson drew the conclusion that at least one of the pairs of 

authors (Baar and Price, Doctors and Beck, Marr and Jackson) have calculated the 

water line integral incorrectly or the water line integrals exhibit some behaviour 

which is not yet understood. They state that “the Neumann-Kelvin theory as it is 

currently understood does not give satisfactory wave resistance results for 

idealized ship hull forms”. Belibassakis et al. (2013)  handles the problems 

associated with the water line integral by downshifting the whole hull by a small 

parameter. 

2.3 Potential flow versus RANS 

Today the most common methods to determine the wave resistance are either 

using a potential flow solver or a program that solves the full Navier-Stokes 

equation, such as RANS solver. Using RANS solver, the fluid is considered to be 

viscous and rotational, unlike potential flow. Many argue that RANS often gives a 

more accurate result, but the potential flow methods are faster (Bal, 2008). Since 

RANS solves the full Navier-Stokes equation the method can cope with a variety 

of non-linear flow phenomena such as turbulence, shock waves and breaking 

waves (Miyata, 1996). 

It is reasonable that a method that includes more of the physics would yield 

better results (however it is not always the case). Because water is a viscous fluid; 

a model that includes more viscous effects could improve the results. When 

looking at propagating waves from a ship it is evident that the physical 

phenomenon of damping affects the wave decay. A full RANS based CFD solver 

usually requires more of the user in terms of data input and the ability to 

interpret information to make sure that everything is physically correct; an 

example is ‘meshing’. To generate an appropriate discretisation of the entire 

fluid domain can be very time consuming, taking up both computational time 

and man-hours. Mesh generation has become so complex it has developed into a 

research field of its own (Argyris & Patton, 1966, Monaghan, 1988). A potential 

based program requires less input data from the user making the procedure less 

dependent on the user. 
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Havelock did not evaluate all his theories; some of them were computed (by 

hand) by Wigley. With the dawn of modern computers his ideas could be 

implemented on a larger scale. Havelock (1928, 1932) originally wanted a 

damping parameter to be included in the resistance expression. However some 

simplifications had to be made to simplify his resistance expression so the 

damping was assumed to be negligible. Quoting Newman (1970) “To make 

analytical progress we must ignore viscous effects, which are known to be 

significant in the steady-state resistance problem”. However computers have 

increased the speed rapidly over the last decades, until now Moore’s law that 

states that the number of transistors on integrated circuits doubled every two 

years has held true (Moore, 1965). The number of transistors strongly influences 

processing speed and memory capacity. This makes it possible to implement 

theories previously thought to be too complex. However it is likely that the 

doubling of computational speed associated with Moore’s law has come to a halt 

(Schenkman, 2009). So a good numerical implementation scheme is still crucial 

for the evaluation of Green function. 

2.4 Viscosity in potential flow 

Viscous potential flow is not a common idea and to some it is even an oxymoron. 

Stokes (1851) first suggested inclusion of some viscosity in potential flow to 

better model dissipation of energy. Lamb discussed the importance of viscosity 

on gravity waves in deep water, his solution was to have an irrotational but still 

dissipative fluid (art 348, 349 Lamb, 1945). He also studied the viscous decay of 

small oscillations of a mass of liquid about a spherical form (art 355) (Lamb, 

1945). Havelock on the other hand treated the dissipative viscosity as something 

so natural that it need no extra comments (Havelock, 1928, 1932). He wrote “It 

seems fairly certain that one of the main causes of differences between 

theoretical and experimental results is the neglect of fluid friction in the 

calculation of ship waves”. He introduced a reducing factor to represent the 

effect of friction. Even though his results were not comprehensive, he stated that 

the success of such a factor depends on its independence of speed and hull 

shape (Havelock, 1935). 

A newer contribution to viscous potential flow is the case argued by Joseph 

(2006) who strongly believes that viscosity should be incorporated into potential 

flow to enhance its results. The difference between his method, Viscous Potential 

Flow, (VPF), and conventional potential flow is that the viscous component for the 

normal stress at the free surface is included in the normal stress balance. 
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However, most of his applications concern gas bubbles. He also states that 

viscosity may act strongly in regions in which the vorticity is effectively zero, in 

cases involving gas bubbles or rotating cylinders (Joseph et al, 1993). 

2.5 Methods of determining wave resistance 

Methods to theoretically calculate wave resistance can be divided into two main 

methods (Harvald, 1983): 

A. The flow around the hull is determined to provide the pressure on the 

hull. The pressure is then integrated over the hull surface to get the 

resistance. 

B. The wave pattern generated by the ship is calculated. The resistance is 

then determined from the flow of energy necessary to maintain the wave 

system. 

2.5.1 Panel method 

Computing wave resistance by integrating the pressure over the hull is a very 

common method. However, it is very sensitive to the hull panelling,  in particular, 

at low Froude numbers (Raven, 1991).  Because the integrals describing the flow 

within the whole domain are transformed to integrals associated with a set of 

boundaries this method is sometimes referred to as Boundary Element Method 

(BEM). Sometimes the approach is designated as a ‘panel method’ because the 

boundary is discretised into panels (Denayer, 1978, Wördenweber, 1980). Panel 

methods were developed and proven firstly in 2D (Smith & Pierce, 1958)  and 

have been available in 3D since the 1960s (Hess & Smith, 1964). The predictions 

using panel methods have been found to agree well with experimental results. In 

cases where the agreement has been poor they continue to be useful in the 

design process, because they can predict the incremental effect of a design 

change (Hess, 1990). 

2.5.2 Egger series transverse cut technique 

The concept of determining wave resistance from the wave pattern, without 

reference to the ship, was originally proposed by Havelock (1934a, b). Janson 

and Spinney (2004) and Raven and Prins (1998) argued that a method based on 

the predicted wave pattern is much less sensitive  to the particular hull 

discretisation than resistance estimation via pressure integration.  However, 

panel methods are more widely used. Eggers (1962) showed that using linear 

theory, the wave pattern behind a ship can be expressed as a summation of 

series of discrete wave modes. Each mode is described as a sinusoidal wave train 
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with a particular amplitude, phase, wave number and direction.  Measurements 

of the real wave pattern are used to recreate the theoretical wave pattern and 

from this the corresponding resistance can subsequently be obtained (Eggers, 

1962, Hogben, 1972). There are three main approaches, either a transverse cut, 

a longitudinal cut and a combination of a transverse or longitudinal cut method 

known as the “X-Y” method. The last approach is also described as a longitudinal 

cut method with a truncation term (Eggers et al, 1967). For numerical methods 

the transverse cut is superior partly due to the fact that the wave profile is clearly 

finite (Nakos, 1991, Nakos & Sclavounos, 1994, Raven & Prins, 1998). The 

transverse cut also benefits from the limited extent of the discretisation that is 

needed downstream of the ship (Nakos & Sclavounos, 1994). 

A minimum of two cuts are needed to determine the two unknown wave 

parameters but it has been shown that a larger number of cuts are needed to 

provide redundancy and increase accuracy of the predicted wave resistance 

(Janson & Spinney, 2004, Raven & Prins, 1998). The transverse cuts must be far 

enough aft of the ship, they must extend outside of the Kelvin wedge and the 

resolution must be high enough to show all components of interest (Raven & 

Prins, 1998). The Kevin angle or wedge is illustrated in Figure 3. 

 

Figure 3 Kelvin angle 

According to Raven and Prins (1998) the wave resistance is supposed to be 

independent of the location of the cuts, however both their results and the 

results by Janson and Spinney showed that this is not the case. The first cut must 

be       aft of the stern to avoid the near-field disturbance which causes sharp 

variations in the resistance due to the location of the cut. (Nakos, 1991, Nakos & 

Sclavounos, 1994, Raven & Prins, 1998). 

Raven and Prins (1998) and Janson and Spinney (2004) found that the resistance 

varies around a mean line and decreases with increasing distance of the cuts 

behind the ship, if the cuts are further downstream the resistance will be lower, 

due to numerical damping. They also found that all values of the wave pattern 

resistance were lower than the resistance due to pressure integration on the hull. 

Raven and Prins (1998) found that the waviness in the resistance had a length 

19.28˚ 
19.28˚ 
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close to the fundamental wave length of equation (1.4) . Fluctuation in the 

resistance could be avoided if the eight cuts that they used were distributed over 

an area of one wave length because the variations will cancel and much more 

constant result can be obtained. As stated before, two cuts is the minimum 

number of cuts, but a higher number of cuts are needed to increase accuracy. 

Janson and Spinney (2004) used 10 cuts, Raven and Prins (1998) used 8 cuts and 

Sharma (1963, 1966) concluded that at least 5 cuts are required to ensure the 

error does not exceed 5 %. Janson and Spinney (2004) also mentioned that 

“certain numerical problems” can be avoided by using non-equidistant spacing 

between the cuts. 10 cuts with a non-equidistant spacing with a multiplication 

factor of 1.1 according to Janson and Spinney (2004) and Fürth et al. (2013) (see 

Appendix A) are illustrated in Figure 4. 

 

Figure 4 Location of the 10 cuts behind a Wigley hull at         

 

Nakos (1991) also states the importance of the location of the transverse cuts 

and that the method needs to be free from numerical damping if cuts at large 

distances aft of the ship are allowed. However, the dependence on the 

longitudinal location of the cuts is eliminated only at an infinite distance from 

the hull due to the discretisation of the surface (Nakos & Sclavounos, 1990). 

Nakos (1991) concluded that it is hard to get convergence at the downstream 

end of the computational domain due to the abrupt truncation of the free 

surface. It has been shown that the wave pattern resistance is only equivalent to 

the wave resistance via integrated pressure if the body is submerged, which is an 

inconsistency referred to as Gadd’s paradox (Nakos, 1991, Nakos & Sclavounos, 

1994). 
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A conventional form of the transverse cut technique will give a lower wave 

resistance estimation for higher Rayleigh damping, since higher damping 

generates lower wave profiles. Where higher damping should imply higher 

resistance since the modelled water would be more viscous. Fürth et al. (2013) 

(see Appendix A) derived a modified and new form of the Eggers series 

transverse wave cut technique that determined the wave resistance of a 

dissipative wave pattern. This method retains many aspects of the conventional 

transverse wave cut and still has its main benefit; the whole wave pattern does 

not need to be known, only the profile in the cuts. The details of the method are 

given in Appendix A, the main aspects of the method are reiterated here together 

with the main limitations. 

The wave resistance for a dissipative flow can be determined using a control 

volume analysis around the hull as illustrated in Figure 5. 

 

 

Figure 5 Control volume enclosing advancing ship 

Here    is the resistance force experienced by the fluid within the control 

volume.     is the pressure force acting on surface    from outside the control 

volume and    the corresponding  force acting on the surface   .  The non-

dimensionalised free stream is designated    whereas  (     ) specify the speed 

components of the water in the (     ) directions due the disturbance created by 

the advancing ship. The sea bed is located at –    and the width of the control 

volume is   . 

The wall reflection condition for a ship in a tank of limited width,   , is 

introduced to simplify the resistance expression. This simplified form is found to 
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be so convenient that it is recommended, even if the tank happens to be so large 

that is practically of infinite width (Eggers et al, 1967). 

The ship is fixed so that 

 The wave pattern is symmetrical and stationary 

 The wave pattern moves with the model 

 The wave pattern reflects that there is no flow through the tank walls 

The dissipative Egger series includes some simplifications that differ from the 

conventional form. These simplifications are made in order to limit the 

cumbersomeness of the resistance expression. There is however a risk that the 

simplifications are more mathematically than physically justified. 

The potential for a freely moving wave is assumed to be a separable equation 

that must satisfy the free surface conditions together with a Neumann condition 

on the seabed.  Usually the dispersion relationship is given by inserting the 

potential for a freely moving wave into the combined free surface condition. 

However the dissipative potential for a freely moving wave perfectly satisfies the 

free surface condition so the relationship between the wave number and speed of 

the wave has to be set. The wave pattern is port-starboard symmetric and 

therefore the potential must be symmetric with respect to  . The exponential 

decay dependant on   
 
 in the potential must be approximated as the decay along 

the   axis only and not along the travel direction of the wave. 

These simplifications are not sufficient to determine the resistance. All damping 

terms must be removed from the velocities and wave profile in order to get a 

resistance expression that is independent of the downstream end of the control 

volume.   

This leaves a damping term only in the expression for the Fourier coefficient 

used to determine the unknown wave parameters. This is enough to create an 

Egger series that takes a dissipative wave pattern into consideration.  

Because of the tenuous justifications for some of the mentioned simplifications, 

the modified Egger series transverse cut technique is not considered suitable for 

further evaluation as part of the current project. 

The method has some limitations at large Froude numbers (see Appendix A) but 

it is currently unclear if this depends on the modified Egger series or the use of 
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the double integral (as opposed to the single integrals) in evaluating Green 

function or some other limiting factor.  

2.6 Data from other sources for an ellipsoid 

Validation is very important when developing a novel computational method. 

Here a short survey of existing data and the methods used to obtain the data are 

shown. Both theoretical and experimental data from other sources for the Wigley 

hull are abundant, see for example Chen and Noblesse (1983), Noblesse et al. 

(1989) and Huan and Huang (2007). When investigating the effect on the surface 

elevation by a submerged object, the object may in most cases be approximated 

to an ellipsoid shape (Dong et al, 2013). However experimental data for an 

submerged ellipsoid are scarce to the author’s knowledge and consist only of 

that provided by  Weinblum et al. (1950) and Farell and Güven (1973). 

The velocity potential due to an ellipsoid moving in an infinite fluid is given by 

Lamb (1945) for an inviscid fluid (art 114) and a viscous fluid (art 339) and by 

Milne-Thomson (Chapter 16.52 1962). The potential wave resistance coefficient 

for a submerged ellipsoid is given  by Inui (1954). 

Farell (1973) semi-analytical method to determine the wave resistance has 

become somewhat of a benchmark and a very popular solution to validate new 

methods against. 

A comparison for the free surface elevation for a submerged ellipsoid is given by 

Tuck and Scullen (2002) and Tuck et al. (1999b, Tuck et al, 1999a). They 

compare the elevation from a “Neumann-Stokes” (exact body and surface 

condition) mode, “Neumann-Kelvin” (exact body condition and linearised free 

surface condition) and thin ship theory. They found an average error of 5% for 

the Neumann-Kelvin solution and thin ship theory compared to the Neumann-

Stokes, but in some locations of the wave profile for shallow submersion the 

error was as much as 50% when comparing thin ship theory to the Neumann-

Stokes solution. 

   is given for a submerged prolate spheroid using a Newman-Kelvin formulation 

by Doctors and Beck (1987a), Andrew et al. (1988) and Price et al. (1989) and 

Ponizy (1998). Price et al. also determine the wavemaking resistance for an 

ellipsoid in water with different layered density. The wave resistance and surface 

elevation due to a prolate spheroid is given by Lalli et al. (1999) applying a 

desingularised boundary integral method and a longitudinal cut technique and 

by Lalli et al. (1992) using a fully non-linear Dawson method. 
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Belibassakis et al.(2010, 2013) used a submerged ellipsoid travelling close to the 

free surface to validate their isogeometric higher order panel method. 

The wave-making resistance of a submerged ellipsoid in shallow water was 

investigate by Kinoshita and Inui (1953). Eng and Hu (1963) tried to give an 

optimum ellipsoid shape for different Froude numbers and depths based on an 

analytical resistance expression of the shape of the ellipsoid. Effects on the 

surface elevation from speed and submersion of the ellipsoid is also investigated 

by Uslu and Bal (2008) using a Dawson (Rankine source) method. Dong et al. 

(2013) states that the free surface was not affected by the submerged ellipsoid if 

the submersion depth was three times larger than the ellipsoid diameter. They 

also concluded that at this depth the free surface did not affect the drag using an 

incompressible RANS based method. 
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3 Mathematical model 

In this study the fluid is assumed to be inviscid and incompressible and the fluid 

flow is irrotational, but it includes some damping. The flow is to be considered 

around a single ship or submerged body which moves in a straight line in an 

otherwise undisturbed fluid. The computational domain is considered infinitely 

deep and extends infinitely in the horizontal directions. The coordinate system is 

body-fixed amidships as shown in Figure 6. The variables are non-

dimensionalised using Table 1. 

The problem is modelled using a Neumann-Kelvin formulation, which simplifies 

the free-surface condition by linearisation, allowing the use of a fundamental 

solution (Kelvin source) as a building block. From this, the flow around a hull is 

produced. Several solutions to this problem were modelled in the 1980’s by Baar 

(1986) , Baar and Price (1988a, b), Newman (1987a, 1987b) and Doctors and 

Beck (1987a, 1987b). Marr (1992) aimed to improve the speed and accuracy of 

the model developed by Baar and Price (1988a, b) by inclusion of what he called 

“the missing term” originally derived by Ursell (1988). 

To model the problem a right-handed Cartesian coordinate system      is used. 

It moves steadily with the ship in the direction of   . Here     is the undisturbed 

water surface, and the midship section of the ship is on the     plane.    

denotes the direction opposite to the gravitational acceleration g. 

 

Figure 6 Coordinate system, origin is amidships 

The physics of the fluid flow is described mathematically by governing equations. 

The rate of change of momentum within a control volume is equal to the net rate 

at which momentum enters and leaves the control volume plus the force that 

acts on the body (viscous-, pressure- and body forces). The set of equations 

obtained is known as the Navier-Stokes equations.  

z

y
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Dimensional variables are non-dimensionalised in terms of     
 
 for mass,    for 

length and      
 for time, where   

 is the density of water,    is the length of the 

submerged shape and   
 is the speed of the submerged shape/ship. The non-

dimensionalised variables are shown in Table 1. 

Table 1 Definition of non-dimensional flow variables 

Variable Dimensional Non-dimensional 

Density of water    
       ⁄  

Length of ship          ⁄  

Free stream velocity          ⁄  

Acceleration of gravity    

       
     ⁄⁄  

Coordinates                 (        )    

Speed of ship    (        )   (       )          

Gradient operator   
        

Rayleigh damping parameter   
 
   

    
   (    )⁄  

Pressure        (     )⁄  

Time                

Potential        (    )⁄  

3.1 Potential flow 

In the potential theory, fluid is modelled using field functions and the fluid 

velocity is the gradient of the velocity potential  . The fundamental approach 

when modelling the problem in a potential flow theory is that bodies submerged 

in the fluid (or boundaries such as channel walls or the sea bed) are modelled 

using fluid singularities such as: sources, sinks, vortices and doublets. A source 

is like a mathematical geyser pushing fluid out in all directions, a sink similarly 

sucks in fluid, a doublet is a source and a sink at the same location and a vortex 

is a point around which the flow rotates. The contribution from each source/sink, 

doublet and vortex can be linearly added together to build the flow field by 

appealing to the superposition principle. For example; instead of a wall which 

will reflect the incoming flow, a distribution of sources is used. This will have the 

same effect on the flow as a reflecting wall. A schematic picture of a source, 

doublet and vortex are shown in Figure 7. 
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Figure 7 Streamlines of a source, a doublet and a vortex 

To model a body in the fluid, sources are distributed over the corresponding 

wetted surface of the body of interest. Ideally the sources would be distributed 

continuously over the body; however that is numerically more demanding. For 

that reason a panel method is used. The corresponding surface of the 

submerged object is divided into small panels. The panels may be of different 

size, but size and panel distribution should represent both the geometric shape 

and an appropriate distribution of wetted surface boundary conditions. On each 

panel a source is placed at the centroid and is assumed to have constant 

strength over the panel. The strength of the sources ultimately depends on body 

geometry, location of structure relative to the free surface and the form of the 

fluid structure interaction being experienced by the structure.  The role of the 

source is to ensure that the boundary condition on the body is satisfied. For the 

particular subject of this dissertation the wetted surface boundary condition is of 

the Neumann form; there can be no flow through the submerged body as defined 

in: 

   

  
                        (3.1) 

Here and throughout    is the normal to the surface pointing into the fluid.  

3.1.1 Laplace equation 

For the purpose of ship analysis, water can be viewed as incompressible. The 

density within the fluid must thus be constant, and the continuity equation then 

becomes 

        (3.2) 

The curl of the velocity field is called vorticity and is a measure of how much a 

fluid element rotates. The vorticity vector is twice the rate of rotation (angular 

velocity) of the fluid element. It is assumed that the vorticity of the fluid is low so 

that the fluid can be assumed to be irrotational. For an irrotational fluid the 

vorticity is zero, that is 
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        (3.3) 

Inside and close to the boundary layer viscosity is of greater importance. 

However, outside of the boundary layer and the wake the fluid can be assumed 

inviscid.  Here the fluid flow outside of the boundary layer is of interest so the 

flow is assumed to be inviscid.  

The damping force to be introduced is the product of the constant,   
 
, and the 

associated disturbed velocity in the body fixed coordinate system. The damping 

coefficient is generally referred to as Rayleigh damping. This will give the same 

dynamic free surface condition as obtained by Havelock (1928, 1932), viz 

    

   
   

  

  
  

  

  
    (3.4) 

where         ⁄   and   Havelock’s damping parameter. The non-dimensional 

Navier-Stokes equations with Rayleigh damping for an inviscid, incompressible 

and irrotational fluid can be expressed using the single vector equation 

 
  

  
     

 

   
(
 
 
 
)    

 (  (
 
 
 
))  (3.5) 

The potential field   is defined such that 

 
  

  

  
       

  

  
      

  

  
 (3.6) 

it follows that 

       (3.7) 

Substituting (3.7) into the incompressible continuity equation (3.2) gives the 

Laplace equation 

        (3.8) 

3.1.2 Bernoulli pressure equation 

Expanding the left hand side of the modified Navier- Stokes equation (3.5) gives 

the following: 
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)    

 (  (
 
 
 
))  (3.9) 

Where    is the Froude number,   
 
 is the Rayleigh damping parameter and    is 

the pressure gradient. It will be shown that this Rayleigh damping is consistent 

with the damping coefficient introduced by Havelock (1928, 1932). Inserting the 

velocity potential into equation (3.9) gives 

 

 (
  

  
 

 

 
|  |    

 

   
    

 (   ))     (3.10) 

The unsteady non-dimensional Bernoulli equation with added Rayleigh damping 

is 

   

  
 

 

 
|  |    

 

   
    

 (   )   ( )  (3.11) 

For the steady case this becomes 

  

 
|  |    

 

   
    

 (   )         (3.12) 

3.1.3 Free surface condition 

Assuming that the fluid is of infinite extent in all directions, seabed and 

upstream/downstream boundaries can be considered far away from free surface 

and ship respectively.  

The mathematical model must limit the water to the domain below the free 

surface. This is done by imposing two physical conditions; the kinematic free 

surface condition and the dynamic free surface condition.  

The kinematic free surface condition states that a particle on the free surface 

must remain on the free surface, because if the particle moves, the surface (the 

intersection between the water and the air) must move as well. The dynamic free 

surface condition states that the pressure must be equal on either side of the 

free surface. The mathematical expression of each physical free surface 

condition is considered next. 

3.1.3.1 Kinematic free surface condition 

Let  (   ) measure the variation of the free surface elevation above its mean 

datum. Introducing a function,  , this variation satisfies 
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    (   )       (3.13) 

The total derivative of (3.13) is 

   

  
 

 

  
(   )    (3.14) 

and in  expanded form is expressed as 

   

  
 

  

  
 
  

  
 

  

  
 
  

  
 

  

  
 
  

  
 

  

  
    (3.15) 

given that   is not a function of  ,  and   and   are independent variables. 

Introducing the perturbed velocity potential   and moving the coordinate system 

from a global to a local ship fixed coordinate system which is time independent.  

        (3.16) 

lead to 

   

  
 

  

  
 

  

  
 
  

  
 

  

  
 
  

  
 

  

  
 
  

  
 

  

  
    (3.17) 

This is the non-linear kinematic free surface condition. 

The steady state kinematic surface condition (3.17) can be linearised, assuming 

that products of     ⁄      ⁄      ⁄      ⁄  are small and can be ignored. 

3.1.3.2  Dynamic free surface condition 

Rewriting the steady state Bernoulli equation (3.11) and assuming the pressure 

on the free surface (   (   )) is the atmospheric pressure. The pressure can be 

set to any reference value and so is set to zero. When     and     it can then 

be seen that the constant in Bernoulli equation (3.12) is ½, since 

  

 
|  |  

 

 
(   

  

  
 |  | )  

 

 
 (3.18) 

and thus (3.12) may be expressed as: 

  

 
|  |  

 

   
    

 (   )  
 

 
  (3.19) 

Rearranging the last equation the surface profile is then expressible as: 

 
      (

 

 
|  |    

 (   )  
 

 
) (3.20) 
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and upon appealing to the definition of the  perturbed in potential (3.16), the 

surface profile becomes 

 
      (

 

 
| (    )|    

 (      )  
 

 
)  (3.21) 

By linearisation with respect to small velocities it is assumed that |  |  is 

negligible and so the wave profile  

 
      (

 

 
(   

  

  
)    

   
 

 
) (3.22) 

reduces to 

 
     (

  

  
   

  )  (3.23) 

3.1.3.3  Combined linearised free surface condition 

To eliminate the unknown   and to obtain a condition only involving the 

perturbed velocity potential the kinematic and dynamic free surface conditions 

are combined. The time independent linearised free surface condition is 

   

  
 

  

  
    (3.24) 

To derive the combined free surface condition the expression for   in (3.23) is 

differentiated with respect to   and then inserted into the linearised kinematic 

free surface condition (3.24). Differentiating the linearised dynamic free surface 

condition (3.23), with respect to   gives 

   

  
   

 (
   

   
   

 
  

  
)  (3.25) 

This is substituted into the linearised kinematic free surface condition (3.24) and 

gives the combined free surface condition 

    

   
   

 
  

  
 

 

   

  

  
   (3.26) 

which is consistent with the expression by Havelock (1928, 1932) stated in (3.4). 

3.2 Integral identity 

The concept of Green functions was developed in the 1820s by the English 

mathematician George Green (1828). In physics, it is used to solve various field 
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problems. A Green function is a function that can be used to solve an 

inhomogeneous differential equation with boundary conditions. 

Green functions are equally useful in solving partial differential equations with 

satisfaction of their associated boundary conditions. To facilitate this advantage 

in this case an identity known as Green’s second identity will be established from 

first principles, so that an equivalent integral formulation may be subsequently 

developed to reflect the influence of the introduced Rayleigh damping. 

3.2.1 Integral equation for the velocity potential 

The integral identities to be derived describe the relationship between the 

unknown perturbation potential   and the Green function,  , and can be 

obtained by appealing to  Green’s second identity. In the process of deriving the 

integral identity a set of conditions are identified as being a sensible constraint 

to impose on the sought Green function. These conditions are then used 

explicitly to derive the Rayleigh damping sensitive Green function from first 

principles.  

The finite domain   is bounded by the hull surface  , the finite mean free surface 

   and an exterior surface    surrounding the hull surface      and    are the 

intersection curves of   and    with the plane     respectively,    is the inner 

domain bounded by the hull surface   and the inner free mean surface    and   is 

the outward normal from the body as illustrated in Figure 8. 

 

Figure 8 Boundaries of the fluid domain, in the   -plane only the port side is shown 

 The perturbed velocity potential   has the following properties: 
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  ( ) and all its derivatives exist and are continuous in the fluid domain 

 The integral   ∭ | ( )|
 

 is finite 

The potential must satisfy 

 

∭ (   ) ( )

 

    ( )  (3.27) 

where   (     ) is the location of the field point and   (     ) is the location 

of a source point, where   is strictly negative. The distance between the field 

point and the source point is described by ( -    -    - )   

Requiring Green function,  (   ), to satisfy  

    (   )   (   ) (   ) (   ) (3.28) 

gives 

 

∭ ( )   (   )

 

 

    ∭ (   )

 

 

  ( )    ( )  (3.29) 

Using the relationship 

        (   )        (3.30) 

in (3.29) gives 

 

 ( )  ∭(  (   )       )

 

 

     (3.31) 

Applying the divergence theorem (p. 459 Kreyszig, 2006) leads to: 

 

∭      ∬     

 

 

 

  (3.32) 

where   is the surface boundary enclosing the volume     to the first part of the 

integral in (3.31) gives  

 

 ( )  ∬        

 

∭     

 

 

    (3.33) 

and 
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     (3.34) 

The following property  

         (   )        (3.35) 

is then used in the triple integral and noticing the last term is zero (according to 

the Laplace equation), (3.33) reduces to 
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     (3.36) 

Applying the divergence theorem to the last integral gives 
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  (3.37) 

The surface   can then be partitioned into the hull surface  , the free surface    

and the exterior surface    according to Figure 9. 

 

Figure 9 Fluid domain 

This yield:  
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 (3.38) 

Assuming that the following infinity condition is satisfied, namely: 
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  (3.39) 

(3.38) leads to  

 

 ( )  ∬( 
  

  
  

  

  
)  

 

 ∬( 
  

  
  

  

  
)   

  

 (3.40) 

On the free surface         and 
 

  
  

 

  
 , since the coordinate direction   is 

vertical and out of the fluid, whereas the normal   is positive when directed into 

the fluid, as illustrated by Figure 9,  which means that 
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      (3.41) 

The potential must satisfy the free surface condition (3.26). However the right 

hand side of (3.41) is integrated with respect to   and   so the surface condition 

is applied with respect to the source point is 

 

[
  

   
   

 
 

  
 

 

   

 

  
]     (3.42) 

Applying Green’s theorem in the plane transforms the surface integral into a 

contour integral. This can be done either by integration by parts, or, by rewriting 

the integrand of the second integral as a mathematically equivalent expression 

by adding a zero (a common mathematical device). In this particular case the 

equivalent expression will also have a compound term satisfying the composite 

free-surface boundary condition and a derivative with respect to  . This 

technique is well understood in hydrodynamic circles, but lacks any definitive 

reference that recognises the originator of the particular form now introduced.  

Choosing the latter approach the expression is rewritten as 

 

         (            
      )

⏞                
              

  (            
      )

⏞                  
                      

    (          
   )   

(3.43) 

Expansion of the right hand side of (3.43) will readily establish the equivalence 

stated.  
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The steps taken so far are consistent with a conventional approach to the 

derivation of a required Green function. However, conditions on   have so far 

been limited to (3.28) and (3.39). (3.43) suggests that it is beneficial if   

satisfies:  

             
          (3.44) 

Inserting (3.26) and (3.44) into (3.43) gives  

            (            )   (3.45) 

Hence the last integral in (3.41) over the surface becomes 
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        ∬
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  (3.46) 

Substituting (3.46) into (3.41) and applying Green’s theorem in the plane (p. 439 

Kreyszig, 2006) 
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 (3.47) 

 leads to: 
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    ∮(          
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(3.48) 

The last integral is zero due to the infinity condition of (3.39) and the fact that 

     as    . The integral identity in (3.48) describes the relationship between 

the potential at the field point and source point if the field point is within the 

fluid domain. A similar relationship can be derived for the case where the field 

point is on the boundary of the domain, the hull or outside of the domain. The 

integration over fluid domain in (3.27) is obtained when the field point is in the 

fluid domain, as the integration domain in (3.27) can be shrunk to a small sphere 

around the field point see Figure 10. If the field point is on the hull, the 

enclosing volume around the fluid singularity becomes a hemisphere, as 

illustrated by Figure 10. If the field point is outside of the fluid domain the Dirac 

function is identical to zero and thus (3.27) is equal to zero 
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Figure 10 Spherical boundary around the singularity 

 

To combine these three cases the constant    is introduced so that (3.48) 

becomes 
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where  
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 (3.50) 

The most common way to eliminate this discontinuity in the value of    is to 

introduce an inner potential   
 that can be derived in a similar manner, which 

gives  
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where 
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 (3.52) 

Adding Equations (3.49) and (3.51) gives 
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              ∮( (     
 )  (    )     

 (    ) )  

  

 

where  ( ) corresponds to  ( ) or   ( ) for point   outside or inside the hull 

surface respectively. It is convenient to modify the water line integral (the last 

integral in equation (3.53)). This is done through a coordinate transformation to 

a coordinate system based on the unit normal to the hull surface pointing 

outward into the fluid   (        )  and a tangent   (       ) (which is the 

tangent unit vector to the water line   ). As illustrated in Figure 8.   (     ) is 

the unit vector along the  -axis. This gives the following relationship 

         (              )                      (3.54) 

where    is the derivative of   in the   direction and    is the derivative of   in 

    direction.     is a tangential unit vector to the hull pointing downwards. Since 

        in (3.53) can be rewritten as 
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(3.55) 

Defining 

                  ( )         
   (3.56) 

and 

                   ( )         (3.57) 

yields 

 

 ( )  ∬(      )

 

      ∮( (              )        
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 (3.58) 

This is consistent with the expression of Baar (1986). The inner potential can be 

chosen as      ⁄  so that the doublet strength,  , is always zero on    Then the 

expression simplifies to  
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 (3.59) 

3.2.2 Pressure on the hull 

The pressure on the hull is determined using the non-dimensionalised steady 

state Bernoulli equation (3.12) 
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   (3.60) 

The pressure is determined at a constant depth z and the atmospheric reference 

pressure    is set to be zero. The steady state Bernoulli equation becomes 
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  (3.61) 

Inserting the perturbed velocity potential according to (3.16) gives 
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The pressure is then 
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    (3.63) 

The pressure is therefore 
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]    
    (3.64) 

The pressure force acting on the hull is determined by integrating over the hull 

 

    ∬    

 

  (3.65) 

 

3.3 Deriving Green function 

The most common way to derive Green function is to apply the free surface 

condition to   which consists of a fundamental solution and an image source, 

the function is then integrated over the fluid domain to obtain Green function, 

see for example Fürth (2011). However a simpler approach is to apply a set of 
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conditions on   and transform it using a Fourier transform to solve in the 

transformed plane and then transform it back. This technique was described in 

detail by Wehausen and Laitone (p. 475, 1960). Here the outline by Noblesse 

(1981) is followed. 

The conditions set in chapter 3.2.1 on   are; the second derivative of Green 

function has to equal to the Dirac function according to (3.27), it is bounded by 

the condition in (3.45), which is similar to the free surface condition (3.26) but 

has a different sign on the Rayleigh damping term. Here it should be noted that 

the condition is applied to the space variable   instead of  . Green function must 

also satisfy the infinity condition (3.39).  

A commonly known solution to Poisson’s equation is 

 
     

 

 
         |   |  (3.66) 

The fundamental form to Green function can be expressed as 

 
   (      

 )   
 

 
  (      

 )  (3.67) 

where H is harmonic in the lower half plane.  

       (3.68) 

Equation (3.67) is inserted into (3.44) to provide the corresponding conditions 

for   
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        (3.69) 

and the following infinity condition is assumed to be satisfied: 

        |   |    (3.70) 

 

This problem can be solved using a double Fourier transform. By transformation, 

the Partial Differential Equation in (3.68) will be reduced to an Ordinary 

Differential Equation. A double Fourier transform with respect to   and   is used, 

leaving   untransformed. The transform of  (   ) is designated   ̂(   ) and 

satisfies: 
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The double Fourier transform for     is commonly known as 
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 (3.72) 

where 

   √(     )  (3.73) 

Transforming equation (3.68), (3.69) and (3.70) leads to: 
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  ̂             (3.76) 

The general solution to equation (3.74) is 
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     (3.77) 

From (3.76) it is obvious that           can be determined from (3.75) as 
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Substituting (3.78) into (3.77) gives 
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The function  (      )can then be found by taking the inverse double Fourier 

transform of   ̂ The double inverse transform is defined as 
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Using 
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                            √             (     ) (3.81) 

where  ’ is then the distance from the field point to the image source. Then 
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  (3.82) 

Inserting equation (3.82) in equation (3.67) gives 
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  (3.83) 

Equation (3.82) is consistent with the Noblesse expression (1981) (when the fact 

that a different form of non-dimensionalisation is used has been taken into to 

account). 

3.3.1 Double integral representation 

The early work by Havelock (1932) relates  to potential flow with Rayleigh 

damping. His derivation of a Green function for potential flow is most widely 

used (Baar, 1986). The benefit of Havelock’s method is the fact that it includes a 

viscous damping parameter. However, Noblesse’s (1981) derivation of Havelock’s 

expression is easier to follow and hence it is adapted to this problem. The main 

drawback of Havelock’s formula is that when the Green function is separated into 

near field and far field components, the lower limit on the far field integral 

makes it impractical to evaluate the function using Bessel functions. Baar 

recommends to use the Peters (1949) formulation. However Noblesse’s (1981) 

method to derive the Peters formulation is very hard to adapt to include Rayleigh 

damping.  

The Rayleigh damping has another benefit, besides modelling the damping 

behaviour of the wave profile, it will remove the singularity associated with this 

Green function. This will allow for the double integral to be evaluated without 

separating it into two single integrals. 

The procedure below follows the approach of Noblesse (1981), but with added 

Rayleigh damping. The challenge is to simplify and integrate the integral in 

(3.83). To achieve this, the integral is expressed in cylindrical coordinates. There 

are two main benefits to using cylindrical coordinates. Firstly, it simplifies the 

integration of the double integral since only one of the integration limits (the 

radius) will be infinitely large. Secondly it simplifies the procedure of separating 

the double integral into near field and far field wave contributions. There is a 
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strong correlation between the computational time and the range of integration 

(Hearn, 1977), it is therefore very beneficial to limit the integration range. 

Initially let 

                       (3.84) 

hence Green function (3.83) is then expressed as 
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Here it must be noted that the absolute value of   must be used due to symmetry 

reason.  

Noting that [  (          
       )   ]      s  [     (         
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the function can be expressed as 
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The integral  (      ) is 
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The integral in equation (3.86) can be separated into two integrals 
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Introducing       in the last integral leads to 
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(3.89) 

where   is the complex conjugate of  . This gives the double integral  
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(3.90) 

This means that Green function can be written as 
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The double integral is normalised with respect to the Froude number so that the 

convergence of the integrals can be determined independently of the speed. The 

double integral,    can be normalised using the following speed independent 

normalisation: 
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so that 
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  (3.93) 

The double integral in the Green function above has a major benefit compared to 

conventional methods. The location of the pole is off the real axis because of the 

damping as seen in Figure 11. 

  

Figure 11 Location of the pole in the complex  -plane 

A damping influence that is used to describe a physical phenomenon has a 

mathematical benefit; it enables direct integration without further algebraic 

manipulation. Conventional Green function definitions will have the pole of the 

double integral on the real axis, which makes the integration without further 

algebraic modifications very difficult. Next it is needed to divide the Green 

function of (3.91) into near field and far field parts, just as undertaken by  

Noblesse (1981), Baar (1986), Baar and Price (1988a, b) and Newman (1987b), 
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which is a common convenient way to facilitate integration of the double integral 

when it includes singularities.  

However, there are benefits to separating the double integral into two single 

integrals. Single integrals are much faster to evaluate numerically. 

3.3.2 Single integral representation 

The double integral in (3.91) can be separated into two single integrals. This is 

usually done in the case with no Rayleigh damping since the integral would 

otherwise be singular. However there are benefits in using two single integrals 

even with Rayleigh damping since single integrals are faster to evaluate 

numerically than double integrals. Green function will then consist of a source 

part, and image source part, a near field disturbance and far field disturbance 

(Baar, 1986, Baar & Price, 1988a, Eggers et al, 1967, Noblesse, 1981). Green 

function then becomes 
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The double integral,    can be rewritten as: 
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(3.95) 

Firstly a variable substitution is needed 

                                (    )  (3.96) 

The double integral in (3.95) is reduced to a single integral by analytically 

integrating the inner integral. Secondly double integral is rewritten as: 
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where 
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is the complex integral along the real axis in the complex plane 

         . (3.99) 
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Instead of integrating along the real axis, a pie shaped contour is used as seen in 

Figure 12. 

 

Figure 12 Integration contour in the complex plane  

There are two possible integration routes, one with a positive and one with a 

negative radial line as seen in Figure 12. The integration along a closed contour 

in the complex plane is zero if the contour does not contain a pole. If the contour 

contains a pole the integration will yield the residue according to Cauchy residue 

theorem. This means that the contour integration can yield a residue in the 

upper half plane but not in the lower half plane. On the circle sector the 

integrand will go towards zero when   goes towards infinity in accordance with 

Jordan’s Lemma. Since the contour integral is zero in the lower half plane and the 

integral along the circle sector is zero the integral along the real axis must be 

equal to the integral along the radial line. There is no sign difference since the 

integral along the radial line is integrated from ∞ to 0 and the integral along real 

axis from 0 to ∞. In the upper half plane the pole can be either inside or outside 

the closed contour depending on the argument of the radial line and the pole as 

seen Figure 13. If the pole is outside the same argument as for the lower contour 

will apply and the integration along the real axis becomes the integration along 

the radial line. If the pole is inside the contour the closed contour integration will 

yield a residue. The integration along the real axis then becomes the integration 

along the radial line plus the residue. The integration along the radial line will be 

the near field disturbance and the residue will be far field disturbance. 

 ρi

 ρr

pole
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Figure 13 Magnification of the first quadrant with pole 

The integral must be bounded which means that 

   [    (   |  | )(    )    ]         | |     (3.100) 

The location of the radial line is selected to reflect the requirement  

   [    (   |  | )(    )    ]     (3.101) 

(this is freely chosen but (3.101) will turn out to be a beneficial choice). Inserting 

(3.99) into (3.101) gives 
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Inserting (3.102) into (3.99) gives 
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Then letting  
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gives 
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This has the benefit that the location along the radial line can be described using 

only one variable  . The exponent in  ’ (3.98) is rewritten as 
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The inner integral (3.98) becomes 
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The denominator and numerator are multiplied with 
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The inner integral then becomes 
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This can be simplified using the following substitution: 
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so that 
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This is the same as 
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Here 
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(3.114) 

This integral has similarities with the exponential integral    (5.1.1 Abramowitz & 

Stegun, 1964). A new variable substitution is needed to express the integral of 

this standard form. This will simplify the evaluation of the function. The 

substitution          is used to get 
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    (3.115) 

Using the integral expression (5.1.1 Abramowitz & Stegun, 1964) gives 

        ( )  (3.116) 

As mentioned before this is the case in the lower half plane. In the upper half 

plane the residue must be taken into account. The radial lines are described by 

(3.103), the radial line in the first quadrant has a positive imaginary part and the 

radial line in the fourth quadrant has a negative imaginary part. The sign of the 

imaginary part depends on   so that 
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and 
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However as mentioned before, the pole does not have to be inside the contour in 

the upper plane. The pole is inside of the contour if       as seen in Figure 13. 

The equation for the radial line is 
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    (3.119) 

And the pole, upon reverting to (3.98), is: 

    (    )     (    )             (3.120) 
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and  
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The pole is inside the contour if  
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This gives 

    |  |       (3.123) 

since    is always negative. The pole is therefore inside the contour if  
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Since   must satisfy both (3.124) and (3.117), where if (3.124) is satisfied (3.117) 

must be satisfied as well. The residue for the simple pole with respect of the 

singular integral in (3.98) is (18.7 (1) Priestley, 2003) 

    (   (    )     (    )   )         (3.125) 

Here the exponent   is given by (3.114). The residue is included when the pole is 

inside the contour and is excluded otherwise by using a Heaviside step function. 

Then (3.116) becomes 
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where    is the Heaviside step function. The double integral in (3.97) has then 

become the single integral  
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Now the double integral can be split into two single integrals according to (3.94). 

The image source term is sometimes included in the near field disturbance. 
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However, here the near field disturbance is only the single integral over the 

standard function   . The near field and far field disturbance is then 
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The far field or wave like disturbance   can be rewritten using the relationship  
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to give 
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Since the step function is zero when    
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, the integral only has to be 

evaluated up to this limit. So 
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Here  ̅ is the complex conjugate of  .  
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The integration limits can be changed using      to give 
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To determine the derivatives it is noted that 
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To differentiate under the integral sign Leibniz’s rule is used (p. 137 Råde & 

Westergren, 2004)  
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Applying (3.138) to   for 
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Because the last term of (3.138) is zero since  (       ) becomes 

 (       
 |  |⁄ -    

 |  |⁄ ) and   { (       
 |  |⁄ -    

 |  |⁄ )}     It is beneficial to 

express the near field disturbance,   as a function of  ̅ as well. Hence the 

following relationship is used 
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so that 
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, (3.143) 

where  ̅ is determined according to (3.133). 

It is also seen that for the near field disturbance, the absolute value of    is not 

needed since for      it makes no difference and for      the negative sign can 

be removed yet again using       . However it must be remembered that for 

symmetry reasons (since the lower limit is infinite in the wave like disturbance) 

the absolute value of    must be used in the far field disturbance. The expression 
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for the near field disturbance (3.143) and the wave disturbance (3.134) are equal 

to the expressions for the Havelock formula by Noblesse (1981) if     .  

The derivative of the near field disturbance is obtained using the product rule. 

For the standard function    the derivative is 
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The derivatives of the near field disturbance (3.143) are 
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With the use of (3.144) the derivatives are simplified to 
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4 Numerical theory and implementations 

Green function and its derivatives need to be evaluated for a large number of 

field- source point relationships. Thus, the formulation of an efficient algorithm 

for numerical calculation is of utmost importance for practical use of the 

calculation scheme. 

To apply the method discussed in the previous chapter a discretisation of the 

body is needed. The aim is to modify the continuous integral equation (3.59) into 

a discrete form. 

4.1 Discretisation 

The disturbance potential of the flow about a moving ship is expressed in (3.59) 

in terms of a continuous distribution of Kelvin wave sources over the mean hull 

surface. Two types of discretisations are used; thin ship approximation and a 

panel method. Thin ship theory is only applicable to thin and slender ships but is 

much less complex and requires less computational time. Thin ship theory will 

approximate a 3D body as a 2D body and therefore only use 2D panels. A panel 

method using 3D panels can be used on both slender and fuller bodies but it is 

computationally much more demanding. Schematic pictures of a 2D and 3D 

panel are illustrated in Figure 14. 

 

Figure 14 3D and 2D panel 

 

4.1.1 Thin ship approximation 

Michell (1898) developed thin ship theory. The theory is powerful since the 

manner in which the wave profile along the hull, the pressure on the hull, the 

hydrodynamic lift and pitch moment, sinkage, trim, drag and the wave pattern 

nodes Collocation points

3D panel

2D panel
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can be determined using only sources distributed on the centre plane, meaning 

that a 3D problem essentially becomes a 2D problem (Noblesse et al, 2009). The 

local source strength is proportional to the change of geometry of the hull in the 

x direction (Faltinsen, 2006). Michell’s theory is exceptionally simple and robust 

when it comes to evaluating steady flow around a ship and it is the most widely 

used theory for determining wave resistance (Noblesse et al, 2009). Thin ship 

theory places the sources on the centre plane only so that equation (3.38) 

becomes 

 

 ( )   ∬  (      
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    (4.1) 

Since there is no inner domain, the hull is just its centre plane, the source 

strength becomes  

 
 (   )  

  

  
  (4.2) 

It is assumed that when the hull is divided into panels, Green function is 

relatively constant over each 2D panel (the difference between the node point 

and control point for each panel is very small) so that 
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  (4.3) 

The panels are a discretisation of the centre plane. The methodology outline 

presented next follows the approach of Faltinsen (p. 110, 2006). Hull integrity 

means there will be no flow through the hull, as stated in (3.1). The derivative 

along the normal vector can be expressed as  

  

  
   

 

  
   

 

  
   

 

  
  (4.4) 

The Neumann boundary condition in (3.1) combined with the defined 

perturbation potential of (3.16) leads to  

 
  

  

  
       

  

  
   

  

  
   

  

  
                            (4.5) 

The unit normal     (        ) is positive into the fluid domain. (4.5) can be 

simplified using the slenderness of the ship geometry. In particular one ship 
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dimension (hull length) is distinctly larger compared to the draught of the ship 

and hence, see Figure 15 and Figure 16, follows that        and         

 

 

Figure 15 Normal to hull surface in horizontal   - and vertical   -plane 

The ship is also assumed to be thin, so that        and that      , for 

positive and negative   values respectively, as illustrated in Figure 16. 

 

Figure 16 Transverse section of hull showing the normal in   -plane 

The unit normal to the hull surface is therefore  
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)  (4.6) 

where both      ⁄  and      ⁄  are very small. Here    is the expression for the 

hull shape in the   direction. 

The dominant terms within (4.5) are therefore 

 
    

  

  
  (4.7) 

since    is small. The sign of    depends on what side of the centre plane one is 

considering. This means that the flow outwards from the ship in the horizontal 

direction is: 
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 (4.8) 

on the 2 sides of the hull. Fluid appears to be either pushed out or sucked in 

depending on the sign of      ⁄ . Because      ⁄  is positive in the bow region 

fluid is pushed out there and the opposite occurs in the stern region. The source 

strength is determined depending on the mass flux. The source strength of a 

single source is equal to a continuous source distribution with source density 

 (   ) flowing through an area     . A sphere with radius   so small that it only 

includes one source is illustrated in Figure 17. The mass flux through the sphere 

is the same in any direction.  

 

Figure 17 The mass flux from one source on the centre plane 

This means that the mass flux through an area      must be 
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 (4.9) 

for further details see Faltinsen (p. 111, 2006). Hence the velocity potential of 

(4.3) becomes 
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 (4.10) 

where    is the forward edge of each panel,    the aft panel edge,    the panel 

edge closest to the free surface and    the deepest panel edge.  

4.1.2 Panel method 

The method described in the previous section is inadequate for fuller shapes, 

which represents the majority of ships. In the panel method the discretisation is 

done by describing the object as a series of panels. The mean hull surface   is 

divided into triangular or quadrilaterals panels, these are identified by their area 

    and the collocation points     For simplicity an ordinary panel method is used, 

which means that each panel has no curvature. The panel with the collocation 

y

x

Centre plane
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point is numbered   (field panel) and the panel with the source point   (source 

panel). Each panel has the collocation point at the centroid. The potential at the 

collocation point is determined by integrating the source strength and Green 

function over the hull according to (3.59), for a submerged object the surface 

line integral can be neglected so (3.59) becomes 

 

 (  )  ∬ (      ) ( )

 

    (4.11) 

To determine the unknown source strengths,  , the boundary condition (3.1) is 

used, inserting the perturbed potential (3.16) in (3.1) gives 

   

  
                 (4.12) 

Applying the boundary condition in (4.12) to the potential in (4.11) gives 
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where (4.13) is satisfied at the centroid on each panel. A source is placed at each 

collocation point. The integral identities in (4.13) can be written in discretised 

form  

 

∑    (  )

 

   

   (  ) (4.14) 

where 
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    is the influence matrix that describes how the sources influence the flow in the 

normal direction to the panels.   is obtained by solving (4.14). The derivative 

with respect to the normal is  

   (        )

  
      (4.16) 

where  
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and 
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and the derivative of the far field and near field disturbance is calculated 

according to (3.139) to (3.141) and (3.148) to (3.150) respectively. The first 

terms in the Green function     and      are integrated analytically over the panel 

according to Price and Tan (1987). To determine the pressure in (3.65)   is 

determined according to (4.11) and     is calculated by differentiating (4.11) 
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and the discrete form is 
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where 
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   (4.22) 

and    is obtained from (4.17).  

It is problematic to evaluate the Green function when the source point and the 

collocation point are on the same panel.  Since      and      are integrated 

analytically the problems associated with numerical integration of the 

singularities are avoided.  However, the single integrals cannot be evaluated 

numerically at             because of the assumption made when integration is 

along the radial line instead of along the positive axis (see (3.117) and (3.118)). 

There are two possible approaches to generating a solution, either rework the 

derivation of the single integrals for the case when             to get special 

case single integrals, or, when the collocation point is on the same panel, four 
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one point Gaussian quadrature are adopted as shown in Figure 18 to evaluate the 

contribution of the two single integrals. 

 

Figure 18 Evaluation points for the single integrals 

4.2 Behaviour and limitations of the double integral 

To numerically evaluate the double integral of (3.91) and its derivatives is 

problematic, especially for the case with no damping. The pole will then be 

located on the real axis. The closer to the real axis the pole is, the more 

challenging the integral will be to evaluate.  

Firstly the behaviour of the integrand is investigated. To capture the oscillatory 

behaviour the integrand must be evaluated close to where the denominator is 

zero (see Figure 21), however it cannot be evaluated when the denominator is 

zero. The maximum computed value of the integrand depends on the number of 

sections; a finer discretisation gives higher values of the integrand, because it is 

evaluated closer to the pole. The double integral cannot be evaluated if the 

denominator is zero which can happen only when   
   . Here the sections in the 

one point Gaussian quadrature are spaced so that the integrand is not evaluated 

at          when   
      

To illustrate the behaviour of the integrand, values of    are selected based on 

the example of a crude ellipsoid discretisation provided in Figure 19. Typical 

distances between field and source points are shown in Table 2. The distances in 

Table 2 are used to show the behaviour of the integrand. For the convergence 

study distances are normalised with        . 

x

Source points Field point
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Table 2 Typical distances between field and source points 

Panels x' y' z' 

red 0 0.0075 -0.5221 

purple -0.9773 0 -0.4934 

green 0 0 -0.5040 

cyan -0.9773 0 -0.5040 

yellow -1.1287 0.0427 -0.4613 

 

 

Figure 19 Crude ellipsoid translated with location equal to -0.252 in  -direction 

The integrand behaves similarly for all values       but it decays more slowly if 

   is small. The integrand will approach zero as   increases, the location of areas 

where the values of the integrand are greater than 0.1% of the absolute 

maximum value of the integrand is shown in Figure 20. 
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Figure 20 Spread of values between 0.1-100% of the maximum function value 

   = (-0.1287, 0.0427, -0.4613) 

The values of   and  , where the denominator in (3.93) is zero i.e.  

       (         )  is seen in Figure 21. 

 

Figure 21 Values of   and   corresponding to a zero denominator 

The real part of the numerator of the integrand can be split into two functions 

          (4.23) 

       (     ( )  |  |   ( ))  (4.24) 

which are shown in Figure 22. 

Integrand value relative 

to maximum value

θ 

ρ 

  5

  10

  15

30

60

90

270

300

330

0



4 Numerical theory and implementations 

62 

 

 

Figure 22 Functions D
1

 and D
2 

From Figure 22 it is clear that the numerator of (3.93) is small when D
1

 is small 

given that     .    is shown for different values of    in Figure 23. 
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Figure 23 Function D
1

 for different values of    

The marked points in Figure 23 correspond to where the value of    becomes 

less than 10
-5

, the star marked points are tabulated in Table 3. 

Table 3 Values of   when (4.23) is less than 10
-5

 with a discretisation of        

       

-0.01 1151.3 

-0.02 575.7 

-0.05 230.3 

-0.07 164.5 

-0.1 115.2 

-0.5 23.1 

-1 11.6 

-2 5.8 

 

A larger      is required when the submerged body is approaching the free 

surface, as seen in Figure 23 and Table 3. It is necessary that |  |            
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     for the integrand to be less than 10
-5

. This means that the minimum 

distance between the centroid of the top panel and the surface is 0.005. Since 

   is normalised with    
 this submersion corresponds to between 1.28∙10

-4  and 

1.352∙10
-3  for Froude numbers ranging from 0.16 to 0.52. 

Based on Table 3, three typical values of       are defined for the double integral 

as seen in Table 4. 

Table 4 ρ
max

 for far field disturbance 

|  |        

0.5 23 

0.05 230 

0.01 1150 

The error is determined by setting    to 300 and    = 125     and then doubling 

     to determine the change in      ⁄  and   .    is the number of sections in 

the one point Gaussian quadrature for   and     for  . This process is illustrated 

in Figure 24. 

 

Figure 24 ρ
max

 is doubled from the yellow to include black area as well to determine the 

error 

The maximum difference for 
   

  
 is 0.21% when      is doubled for the crude 

ellipsoid discretisation in Figure 19. For    the maximum difference is       
 % 

when      is doubled. 

4.2.1 Limitations of the double integral 

The numbers of summation steps in the one point Gaussian quadrature,    and 

   need to be large enough so that the integral converges. However, the 

computational time will increase with increasing    and   . It is clear from Figure 

20 that it would be beneficial to space the evaluation points in the one point 
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Gaussian quadrature more densely around the integration area where the 

denominator is close to zero, which is showed in Figure 21, but without 

evaluation of the function at the pole itself. 

The main problem with the convergence of the double integral for zero damping 

is the singular behaviour of the integrand. However, a finer discretisation does 

not always lead to evaluation points closer to the pole as seen in Figure 25. This 

limits the possibility to evaluate the double integral using a uniform 

discretisation.  

A single integral approach is favoured from a numerical efficiency point of view. 
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Figure 25 D
I

 for different spacing of   
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4.3 Evaluation of the single integrals 

No experimental validation of a numerical method can be convincing however 

good it is if consistency and the accuracy of the numerical method have not been 

established independently. 

To numerically evaluate the single integrals in (3.134) and (3.143) and their 

respective derivatives, the infinite integral limit is replaced with a finite limit       

The integral is divided into    sections and the contribution from each section is 

evaluated using a one point Gaussian quadrature. This means that the far field 

integral is divided from   |  |⁄     
 |  |⁄  to      into    sections that are 

calculated independently. The near field integral is divided into     sections from 

–     to     . 

The behaviour of the integrands are examined to determine the convergence of 

the single integrals. The closer to the real axis the pole is, the more difficult the 

integrand will behave. Therefore the case when    is zero is used to determine 

the convergence. All other values of     will yield a more regular integrand. The 

solution must converge both for small and large     Smaller values of    such as 

when the source point is close to the field point, are used to calculate the 

pressure on the hull and large values of    are used to determine the wave 

pattern.  

Both the far field and near field integrands and their derivatives approach zero as 

| |   . It is important to determine a suitable      so that the integrand is small 

enough that further summations would not change the result. This is determined 

by not allowing the value of the integral to change more than 0.5% if      is 

doubled. 

The number of summation steps    will ultimately determine the speed of the 

calculation. However, this is linked with the value of      since a larger    is 

required for larger      in order to keep the same resolution as shown in Figure 

26. 
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Figure 26 T
max

 and n
T

 

4.3.1 Convergence of the far field integral 

The far field integral in (3.134) with      is 
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Taking the imaginary part gives 
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(4.26) 

The far field integrand can be split into two functions 

       (    )  
   ([(   |  |  )](    )

 
 )        (4.27) 

here 

     (    )  
 (4.28) 

       ([(   |  |  )](    )
 
 )  (4.29) 

 For surface piercing bodies      , but for submerged bodies      .   is the 

integration variable and   |  |        ⁄ .The exponent of    is always negative 

since     .    is approaching zero when the absolute value of   is 

increasing.    is an oscillating function and         . Figure 27 shows 

        and    for the values of    for the red, green and yellow panels in Figure 

19. The integral is zero when      and       , since the lower limit becomes 

positively infinite, and hence the upper and lower limits of the integral are equal. 

When the exponential part of the integrand of    has reached the tolerance level 

the total integrand    will also be below the tolerance level since |  |   . The 

maximum value of the near field and far field combined is less than 10. 

Therefore it is a reasonable assumption that when the value of    is      
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further summation is not necessary when computing the value of the far field 

integral and its derivatives.  
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Figure 27 Integrand W
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   is shown for different values of    in Figure 28. It is clear that the decay is fast.  

     depends on the value of   ,   (    ) and   (       ). 

 

 

Figure 28 The function W
1

 for different values of    

The marked points in Figure 28 correspond to where the value of    becomes 

less than 10
-5

, the star marked points are tabulated in Table 5. 
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Table 5 Values of   when (4.28) is less than 10
-5

 with a discretisation of        

      

-0.01 34 

-0.02 24 

-0.05 15.2 

-0.07 12.8 

-0.1 10.7 

-0.5 4.7 

-1 3.3 

-2 2.2 

 

A larger      is required when the submerged body is approaching the free 

surface as seen in Figure 28 and Table 5. Convergence for |  |       is 

established at        . This means that the minimum distance between the 

centroid of the top panel and the surface is 0.005. Since    is normalised with the 

Froude number squared, this submersion is between 1.28∙10
-4  and 1.352∙10

-3  

for Froude numbers ranging from 0.16 to 0.52. 

Based on Table 5, 3 typical values of      are defined for the far field disturbance 

as presented in Table 6. 

Table 6 T
max

 for far field disturbance 

|  |        

0.5 5 

0.05 15 

0.01 35 

 

The error is determined by setting    to 300     and then doubling      to 

determine the change in   and its derivatives. For the submerged ellipsoid, 

illustrated in Figure 19, the maximum difference for   and     ⁄  does not 

exceed1.47%. In evaluating the integrals of these quantities any section that 

provides a contribution that is less than 10
-4

 are excluded. 

4.3.1.1    for   and its derivative in  -direction 

The pressure is calculated according to (3.64) the leading terms are the far field 

and near field and its derivative in  -direction. The number of summation steps 
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in the one point Gaussian quadrature,    needs to be large enough so that the 

integral converges. The computational time will increase with increasing   . 

A percentage difference is used to determine the error. The percentage error is 

determined with              as a reference solution. This is done since no 

“true” value is available for comparison. The percentage error is seen in Table 7. 

It is clear that             is sufficient to determine     ⁄  to within a tolerance 

of 1% of the reference value. 

Table 7 Percentage difference depending n
T

 

  

    

  
  

  
 

%   

5 1.6543 1.5763 

10 0.4169 0.3968 

15 0.1858 0.1769 

20 0.1045 0.0994 

50 0.0171 0.0161 

 

4.3.2 Convergence of the near field integral 

The near field disturbance in (3.143) with      is 

 
 (  )  

 

 
∫   {  ̅  ( ̅)}  

 

  

 (4.30) 

where 

  ̅  (    )    [      ](    )     (4.31) 

The near field integrand for the selected panels in Figure 19 are shown in Figure 

29, the near field is integrated from    to  , but only the positive side is shown 

in Figure 29. Changing the sign of   in (4.31) is the same as changing the sign of 

  so the behaviour of negative   for negative   is the same as the behaviour of 

positive   for positive  . The near field for the green panels is very similar to the 

near field for the red panels (see Figure 19); the only difference is that the 

imaginary part is zero. 
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Figure 29 Near field integrand 
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The standard function    is evaluated using a Taylor expansion for the special 

case around     . For small arguments (small  ̅) a series expansion (5.1.10, 

Abramowitz & Stegun, 1964) is used and for larger arguments a continued 

fraction  (5.1.22, Abramowitz & Stegun, 1964).  For further information on the 

evaluation of the exponential integral see Pegoraro and Slusallek (2011). To 

determine when the integrand approaches zero only the case when   is large is 

of interest. The continued fraction is 

 
  ( ̅)     ̅ (

 

 ̅  

 

  

 

 ̅  

   

  

 

 ̅  
 )   (|    ̅|   )  (4.32) 

Inserting (4.32) in the integrand in (4.30) will eliminate the exponential part and 

only leave the continued fraction 

 
     {(

 

 ̅  

 

  

 

 ̅  

   

  

 

 ̅  
 )}   (   )  (4.33) 

 ̅ is complex and the real part is negative since for submerged bodies     . To 

limit the continued fraction an inequality is used, this must be done using the 

absolute value since the function is complex, since     and without loss of 

generality it is assumed that 
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(4.34) 

By induction: 

 
|  |  

 

| ̅|   
  (4.35) 

since if     

 
|

 

| ̅|   
|  

 

| ̅|   
  (4.36) 

Assume that if      (4.35) is valid, then must 
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(4.35) is satisfied if 

 | ̅|   

| ̅|  | ̅|   
 

 

| ̅|   
  (4.38) 

which hold true if  

 | ̅|     (4.39) 

(4.39) is satisfied as long as   is sufficiently large. As before there is no reason 

to continue integration when the integrand is less than 10
-5

, therefore       is set 

to satisfy:  

  

| ̅|   
       (4.40) 

When looking at  ̅ in (3.133) it is evident that (3.142) will go to zero faster when 

|  | or |  | are large and that the value of    is of less importance.      will 

therefore depend only on    and          as a function of    and    for      is 

shown in Figure 30. 
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Figure 30 Required T
max

 as a function of    for varying    

From Figure 30 it is clear that            is sufficient if        . Figure 31 

shows two magnifications of Figure 30. 
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Figure 31 Magnifications of Figure 30 

Based on Figure 30 and Figure 31, the required      for different values of    and 

   are shown in Figure 32. All required      according to Figure 32 are sufficiently 

large satisfy (4.39).  
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Figure 32 T
max

 as a function of z' and y' 

The error is determined by setting    to 100     and then doubling      to 

determine the change in 
  

  
 and  . The pressure is calculated according to (3.65) 

where the leading terms are the far field and near field and its derivatives in 

  direction. For the submerged ellipsoid in Figure 19 the maximum difference 

for 
  

  
 is         

% when      is doubled. For   the maximum difference is 0.3% 

when      is doubled. 

4.3.2.1    for the Near field integral 

For the near field integral    is determined by establishing the percentage 

difference with              as a reference value.   is unaffected by the 

change of   .   is not as dependent on    as     ⁄   From Table 8 it is clear that 

          is sufficient. 

Table 8 Percentage difference n
T

 

  

    

  
  

  
 

5 1.7 

10 1.1 

15 0.47 

20 0.31 

50 0.065 
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4.3.3  Summary 

The far field integral and its derivative approach zero fast so a low      is 

possible. The near field integral and its derivatives approach zero slowly and  

therefore require a large     . Because      depends on    and   ,    must be a 

function of      to allow the step length in the summations to be constant. The 

findings are summarised in Table 9. 

Table 9 Summary T
max

 and n
T

 

 Far field Near field 

     5 to 35 500 to 3200 

        10 15 
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5 Validation 

The presented method is evaluated against numerical and experimental results 

for a range of validation cases. Having verified the level of numerical accuracy of 

the solutions in Chapter 4, comparisons with existing data must be made in 

order to assess the actual validity of the method. Three standard cases will be 

shown that are far from discriminative but they permit comparison with results of 

others. Firstly section 5.1 evaluates the results for a single source, section 5.2 

concerns the wave pattern for a thin ship Wigley hull and finally section 5.3 

evaluates the resistance of fully submerged bodies. 

5.1 Single source 

Combinations of sources and sinks are used in the presented method to 

represent arbitrary bodies. If the method is successful in the case of a single 

source, it should in principle be applicable in general. The wave pattern behind a 

single source is well known from previous studies. When the field point is on the 

free surface Green function will reduce to the single integrals. Combining (3.23), 

(3.59), (3.94), (3.139) and (3.148) gives the wave profile for a single submerged 

source. The wave pattern due to a unit single source is seen in Figure 33, where 

the Froude number refers to the depth Froude number. The source is located at 

(     )    (        )    
 and the surface profile is evaluated in 41x21 points. The 

results show good correlation with the results by Hoff (p. 207, 1990) (not 

shown). The general profile of the free surface is also consistent with Nakatake 

(1966) and Aanesland (p. 71,1986), Nakos and Sclavounos (1990).  
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Figure 33 Wave pattern behind a single source 

5.2 Wigley hull 

The next test case is the mathematical Wigley hull. The hull has a smooth 

gradient, has a fore-aft symmetry and can be categorised as thin. An abundance 

of numerical and experimental data exist for the Wigley hull which makes it well 

suited for comparison. The Wigley hull shape is defined as 
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where   is the beam   the depth and (        ) is the location of the hull surface. 

Using (4.9) it follows that the non-dimensionalised source strength in a single 

point is 

 

 (     )     (        
   
     

 

   ) (   
     

 )  (5.2) 

Table 10 provides the non-dimensionalised hull form for the Wigley hull. The 

ship length   is used as the characteristic length in the Froude number. 

Table 10 Wigley hull 

  1 

  0.1 

  0.0625 

 

The wave pattern is evaluated using thin-ship theory with no damping. Figure 34 

depicts the wave pattern along the hull normalised with the Froude number 

squared compared with the thin-ship theory predictions by Noblesse et al. (2009) 

and experimental results measured at the University of Tokyo (Kajitani et al, 

1983, Mccarthy, 1985). The results shows good comparison with the numerical 

results by Noblesse et al. (2009) and reasonable accuracy compared with the 

experimental results. 
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Figure 34 Wave elevation of the wave profile predicted by thin-ship theory compared to 

numerical (Noblesse et al, 2009) and experimental (Kajitani et al, 1983, Mccarthy, 1985) 

results 

 

5.3 Fully submerged bodies 

Previous numerical results for the wave resistance of a body travelling at 

constant forward speed near a free surface are widely available. These are usually 
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   (5.3) 

The present method is evaluated here against previous results for a submerged 

ellipsoid and sphere. The characteristic reference length      is the focal distance 

   for the ellipsoid and the radius    for the sphere.    is the wave resistance 

force acting on the submerged body.  

5.3.1 Ellipsoid 

An ellipsoid with the major axis parallel to the free surface is submerged to 3 

different depths corresponding to         (                ). The lengths of 

major and minor axes are           and        , the axis are illustrated in 

Figure 35.  The Froude number is calculated with twice the focal distance as the 

characteristics length.  

 

Figure 35 Axes of the ellipsoid 

The surface of the half ellipsoid is discretised using 20 panels along the major 

axis and 10 panels along the minor axis. The results are compared with the semi-

analytical results by Farell (1973), the panel based method by Chen et al. (2001) 

and the panel method by Baar (1986) in Figure 36. Baar’s results are generated 

for this ellipsoid using a code based on his method. The results are tabulated in 

Table 11 to Table 13; Farell did not provide any tabulated data so his results are 

not included in the tables. Chen et al. (2001) discretised the ellipsoid using 90 

panels, 8 along the major axis, 10 around the  -axis except at the forward and 

aft vertices where only 5 panels are used. Farell has not presented any result for 

the deepest submersion for this ellipsoid. 
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Figure 36 Wave resistance coefficient as a function of Froude number 
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Table 11 C
w

x10
3

 for d
e

/c
e

=0.252 

   Present 

method 

Baar Chen 

0.35 0.3191 0.3191 0.2907 

0.4 1.2622 1.2622 1.2293 

0.42 1.6113 1.6112 1.5862 

0.45 2.01 2.0099 2.0017 

0.48 2.2633 2.2631 2.2685 

0.5 2.3629 2.3627 2.3762 

0.52 2.4195 2.4192 2.4386 

0.54 2.4414 2.4411 2.4649 

0.55 2.4419 2.4416 2.4673 

0.56 2.4366 2.4363 2.4636 

0.58 2.4117 2.4114 2.441 

0.6 2.372 2.3718 2.4027 

0.62 2.3214 2.3212 2.3534 

0.65 2.233 2.2329 2.2655 

0.7 2.0694 2.0694 2.1017 

0.75 1.9037 1.9039 1.9351 

0.8 1.7467 1.7469 1.7766 
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Table 12 C
w

x10
3 

for d
e

/c
e

 =0.3266 

   Present 

method 

Baar Chen 

0.35 0.0671 0.0671 0.0614 

0.4 0.5766 0.5766 0.5620 

0.42 0.8383 0.8383 0.8244 

0.45 1.1872 1.1872 1.1799 

0.48 1.4484 1.4484 1.4480 

0.5 1.5691 1.5691 1.5739 

0.52 1.6529 1.6529 1.6614 

0.54 1.7045 1.7045 1.7163 

0.55 1.7199 1.7199 1.7332 

0.56 1.7297 1.7297 1.7442 

0.58 1.734 1.734 1.7505 

0.6 1.7222 1.7222 1.7401 

0.62 1.6981 1.698 1.7169 

0.65 1.6459 1.6458 1.6655 

0.7 1.5346 1.5345 1.5543 

0.75 1.4127 1.4126 1.4318 

0.8 1.2926 1.2926 1.3108 
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Table 13 C
w

x10
3 

for d
e

/c
e

 =0.5 

   Present 

method 

Baar Chen 

0.35 0.0053 0.00528 0.0049 

0.4 0.1244 0.12441 0.1222 

0.42 0.2194 0.21940 0.2167 

0.45 0.3823 0.38231 0.3808 

0.48 0.5396 0.53960 0.5396 

0.5 0.6289 0.62886 0.6306 

0.52 0.7030 0.70293 0.7059 

0.54 0.7606 0.76060 0.7618 

0.55 0.7832 0.78319 0.7883 

0.56 0.8025 0.80250 0.8081 

0.58 0.8306 0.83054 0.8372 

0.6 0.8467 0.84662 0.8541 

0.62 0.8528 0.85274 0.8607 

0.65 0.8472 0.84713 0.8557 

0.7 0.8113 0.81126 0.8201 

0.75 0.7576 0.75762 0.7663 

0.8 0.6976 0.69759 0.7059 

 

An ellipsoid with the major axis parallel to the free surface is submerged to 2 

different depths corresponding to         (          )  The lengths of major and 

minor axes are         and       respectivly. The Froude number is calculated 

with the major axis as the characteristics length. The surface of the half ellipsoid 

is discretised using 20 panels along the major axis and 10 panels along the 

minor axis. The results are compared with the semi-analytical results by Farell 

(1973), the Neumann-Kelvin panel method by Doctors and Beck (1987a) and a 

higher order panel by Belibassakis et al. (2013) in Figure 37 and Figure 38 . 

Doctors and Beck (1987a) discretised the ellipsoid using 16 panels along the 

major axis and 8 around the  -axis. Belibassakis et al. (2013) uses two different 

discretisations  for their spline based higher order panels. They differ in the 

sense one uses 2-knot insertion and the other a 4-knot insertion process. It is 

clear that the agreement is good compared to existing data. Farell (1973) only 

provides result for low and medium Froude number for the shallow submersion 

as seen in Figure 38 (top). 
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Figure 37 Ellipsoid with a
e

/b
e  

= 5 at low Froude numbers 
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Figure 38 Ellipsoid with a
e

/b
e  

= 5 at high Froude numbers 
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all the results to converge to a common curve. For the present method a larger 

number of panels are used along the  -axis. 

 

Figure 39 C
w

 for the submerged sphere 
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Table 14 C
w

x10
3

 for d
s

/R
s

=1.1 and 32x16 panels 

Fn Present 

method 

Baar Chen 

0.2 5E-05 5E-05 0.0010 

0.3 0.0284 0.0283 0.0296 

0.4 0.1501 0.1500 0.1497 

0.5 0.2744 0.2744 0.2759 

0.6 0.3238 0.3238 0.3270 

0.7 0.3140 0.3140 0.3178 

0.8 0.2789 0.2788 0.2824 

0.9 0.2384 0.2383 0.2415 

1.0 0.2009 0.2008 0.2035 

1.1 0.1688 0.1688 0.1710 

1.2 0.1424 0.1424 0.1442 

1.3 0.1209 0.1209 0.1224 

1.4 0.1035 0.1034 0.1047 

1.5 0.0892 0.0892 0.0903 

1.6 0.0776 0.0776 0.0784 

1.7 0.068 0.0679 0.0687 

1.8 0.0599 0.0599 0.0605 

1.9 0.0532 0.0532 0.0537 

2.0 0.0476 0.0476 0.0480 
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6 Applications 

The theory developed in the foregoing chapters has been compared to existing 

numerical results to show that it produces similar results when   
   . However, 

the purpose of developing the present method has been to improve on these 

methods and to produce results when   
 ≠ 0. This chapter serves to give an 

indication of suitable values of   
 
. Results are presented over a prescribed range 

of Froude number and compared with experimental data. Both the exact 

Neumann-Kelvin solution and thin ship approximation are considered. The 

present method with zero Rayleigh damping gives the wave resistance, whereas 

if damping is added it can determine the residual resistance. The residual 

resistance coefficient is 

 
   

   

       
   (6.1) 

Where the    is the residual resistance and      is the characteristic length. 

6.1 Range of the damping coefficient 

The damping coefficient   
 
 is small compared to the other variables in the 

modified Navier-Stokes equation (3.9). However the effect of   
 
 on the wave 

pattern behind a Wigley hull is clearly seen in Figure 40. A further indication of 

the range of possible damping coefficients can be found in Fürth (2011) and  

Fürth et al. (2013) (Appendix A). The Wigley hull is modelled using thin-ship 

theory with different values of the damping coefficient. 40x1 sources are placed 

on the centre plane to model the hull. As   
 
 is increased the wave pattern 

becomes more dampened. 
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Figure 40 Wave behind a Wigley hull using thin ship theory        
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6.1.1 Range of the damping coefficient for a slender body 

The ellipsoid previously described in chapter 5.3.1. is used to investigate the 

influence on resistance of a range of    
 
 values, as before the characteristic 

length used to determine the resistance coefficient is the focal distance and the 

Froude number it is twice the focal distance. A possible range for   
 
 is shown in 

Figure 41 and Figure 42 for a slender body at shallow submersion. From Figure 

41 it is clear that the profile for the residual resistance coefficient    distorts for 

  
     , which could imply a upper limit for   

 
 since it is unlikely that low speeds 

would give this much larger resistance coefficient than higher speeds. The 

resistance curves in Figure 42 cross each other between          and           

and again at in the region of         . This characteristic could indicate that the 

damping has changed the relationship between the bow and stern waves. That is, 

these waves interact at a different Froude number and hence the resistance 

hump occurs at a different Froude number. Consequently the curves cross so 

that a higher damping yields a lower resistance, which is not physically correct. 

Intuitively a higher damping coefficient implies a more viscous fluid and a more 

viscous fluid would yield a higher resistance.  

 

Figure 41 C
r

 for an ellipsoid submerged to d
e

/c
e

  =0.252 at low speeds 
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Figure 42 C
r

 for an ellipsoid submerged to d
e

/c
e

  =0.252 at high speeds 
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Figure 46 show that for larger submersions the resistance curves do not cross 

each other as in Figure 42. 

 

Figure 43 C
r

 for an ellipsoid submerged to d
e

/c
e

  =0.3266 at low speeds 
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Figure 44 C
r

 for an ellipsoid submerged to d
e

/c
e

  =0.3266 at high speeds 
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Figure 45 C
r

 for an ellipsoid submerged to d
e

/c
e

 =0.5 at low speeds 

 

Figure 46 C
r

 for an ellipsoid submerged to d
e

/c
e

 =0.5 at high speeds 
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damping and gives a proportionally higher resistance for low Froude numbers. It 

is also clear that   
      and   

      is distinctly different from the    curve for 

no damping at higher Froude numbers. It is also shown that after          only 

  
       yields a    curve that follows the shape of the no damping curve. 

 

 

Figure 47 C
w

 for the submerged sphere for different values of   
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6.1.3 Summary on the range of the damping coefficient 

A suitable range for the submerged ellipsoid is shown in Table 15 and the range 

for the sphere is shown in Table 16. 

Table 15 Ellipsoid range of μ
R

' 

         
       

0.1241 0.1 0.4 

0.1608 0.1 0.8 

0.2462 0.1 0.8 

 

Table 16 Sphere range of μ
R

' 

         
       

1.1 0.10 0.6 

1.1 0.01 2.0 

2.0 0.10 0.6 

2.0 0.01 2.0 

 

6.2 Comparisons with experiments 

The method shows good comparison with existing numerical results as shown in 

the previous chapter however the question remains whether the added damping 

factor can better capture some of the physical phenomena that a totally inviscid 

model discards. To determine this, results from the present method must be 

compared with experiments. There is a limited amount of experimental data 

available for fully submerged shapes. To the author’s knowledge there are no 

results published for a fully submerged sphere. This is likely to be because of the 

limited resemblance between a sea going vessel and a sphere, but there is on-

going work into the topic at the University of Southampton where results for a 

surface piercing sphere can be found in James at al. (2013). 

6.2.1 Wave profile 

It has been showed that the wave profile decays with distance in Figure 40. 

Conventional potential flow is somewhat lacking in determining the wave 

elevation on the hull and sometimes it overestimates the stern wave. By more 

correctly estimating the wave elevation on the hull the pressure on the hull could 

be more accurately determined. So the wave profile along a Wigley hull 

determined using thin ship theory. The wave elevation on the hull for different 
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damping coefficients is shown in Figure 48 to Figure 50. From Figure 48 to 

Figure 50 it is clear that the damping parameter does not dampen the wave close 

to the hull and that in fact it increases both the bow and stern wave. However 

thin-ship theory is known to give poor estimations of the wave elevation close to 

the hull and may not be the most suitable model to determine the wave elevation 

on the hull. A better accuracy compared to experimental results is achieved by 

Lee and Soni (2006) using a incompressible RANS based solver and a moving grid 

approach. 
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Figure 48 Wave elevation along the Wigley hull at         and          
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Figure 49 Wave elevation along the Wigley hull at          and          
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Figure 50 Wave elevation along the Wigley hull at          and          
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using the present method corresponds to the experimental results for all Froude 

numbers. But as the speed increases a higher damping coefficient gives a better 

result than an inviscid method. This could imply that   
 
 could depend on the 

Froude number. 

 

Figure 51 Submerged Ellipsoid d
e

/c
e

  = 0.3232 and 2a
e

/b
e

  = 10 compared with experiment 

6.2.3 Residual resistance 

To determine if the present method can be used to determine the residual 

resistance, results are compared with experiments conducted at the Berlin 

Towing tank (Weinblum et al, 1950), where the total resistance has been 

measured and the residual resistance coefficient has been determined by 

subtracting the Schoenherr (1932) frictional resistance coefficient from the total 

resistance coefficient.       in (6.1) is the length of the major axis which is also 

used as the characteristic length for the Froude number. The residual resistance 

coefficient is seen in Figure 52 to Figure 54 for an ellipsoid with           

submerged to different depths. From Figure 52 to Figure 54 it is clear that the 

current method can capture the behaviour of the residual resistance better than 

an inviscid method. But there is not a single value of   
 
 which would be suitable 

for all Froude number and depths. This implies that   
 
 is Froude- or possible 

Reynold number dependent. 
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7 Conclusions and recommendations 

A numerical method is developed to determine the resistance of submerged 

bodies using a dissipative potential flow model. The problem is modelled using 

translating Neumann-Kelvin sources. Rayleigh damping is introduced into the 

potential flow model in order to capture the residual resistance. A dissipative 3D 

Green function is derived where the Laplace equation, free surface condition and 

the infinity condition are transformed using a Fourier transform to obtain the 

Havelock-Lunde formula of the double integral. The double integral is converted 

into two single integrals to improve the speed and accuracy of the computations. 

Thin ship theory is adopted to determine the wave pattern behind a Wigley hull. 

A panel method is implemented to determine the pressure distribution and wave 

pattern of fuller submerged bodies. The pressure is used to determine the wave- 

and residual resistance of an ellipsoid. The resistance coefficients are compared 

to numerical and experimental data from other sources. The present method 

shows good potential at determining the residual resistance. The main 

conclusions from this study are listed below. 

7.1 Conclusions 

 A new Green function is derived that is the first in 3D to include a 

damping parameter. This allows the assessment of the effects of the 

values of Rayleigh damping on the wave pattern and resistance. The 

general approach of obtaining the present Green function is well known. 

Some conventional methods retain the damping factor to simplify the 

derivation. However, at one stage or another they all set the damping to 

zero.  

 The present method has proven to be successful in solving linear wave 

resistance problems. The calculation of the associated Green function and 

its derivatives have been verified against data from other sources based 

on different formulations. Results are generally in good agreement with 

existing numerical data for   
      . 

 The present method is considerably slower than the method developed by 

Baar. This could be improved by a more efficient evaluation of the single 

integral such as approximating the integrals with series representation or 

applying a parallel computing scheme. The current evaluation scheme is 

particularly suitable to a parallel computing scheme since the integrands 
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are evaluated separately in each point and not dependent on the value in 

any other point. However the order of magnitude of the speed is still 

much closer to that of potential flow models than full RANS based solvers. 

 

 The Havelock expression of Green function is favoured because it is easily 

adapted to include damping. This may be because Havelock’s original 

intention was to include such a damping coefficient. The main difficulty 

of the Havelock formulation, the lower variable integration limit, has not 

caused a problem because the single integrals have not been rewritten 

into Bessel functions. This may be the reason for the longer 

computational time.  

 

 In theory, the inclusion of   
 
 allows for the direct integration of the 

double integral. However, in practise the numerical evaluation of the 

double integral is challenging and the method is considerably slower than 

the numerical evaluation of the corresponding single integrals. It is 

therefore recommended to apply a single integral formulation of Green 

function with damping. 

 By including a damping parameter, there could be a possibility to better 

capture the decay of waves. The damping parameter has been shown to 

have some effect on the wave pattern. It has been proven that   
 
 has a 

damping effect on the wave pattern downstream of the ship that 

increases as   
 
 increases. However no such effect has been proven close 

to the ship. 

 The inclusion of   
 
 seems to allow for the residual resistance to be 

modelled more accurately, at least at low speeds. No existing data for the 

residual resistance at larger speeds have been available, but a comparison 

with existing experimental data for the wave resistance could imply that 

the present method only captures the wave resistance at larger speeds. 

However, by including Rayleigh damping a better comparison to 

experimental data of    at larger speeds is obtained. However no single 

value of   
 
 can be determined. It is likely that   

 
 is Froude number or 

possible Reynolds number dependent. It is also possible that   
 
 depends 

on the shape of the submerged body. 

 For an adequate description of the steady ship motion problem the three-

dimensional features of the fluid flow and hull geometry cannot be 
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neglected. Therefore Michell’s thin ship theory is not suitable for 

evaluation of realistic hull shapes. For the method to be used on realistic 

hull forms the method must be extended to include fuller, surface 

piercing bodies. This will also allow for better evaluation of the method 

since there exists an abundance of both numerical and experimental 

results available for surface piercing ships. 

 Conventional potential flow is somewhat lacking in determining the wave 

elevation on the hull and sometimes it overestimates the stern wave. This 

is especially important if the method is extended to include non-linear 

surface effects. Because of the apparent decay of the wave pattern due to 

  
 
 it was assumed that the wave profile along the hull would decay as well 

and that by including the damping term the pressure on a surface 

piercing body could be determined more accurately. However the 

expected decay of the stern wave has not been proved, instead   
 
 will 

increase both the bow and stern wave. However it is not clear if the 

inaccuracy in the wave elevation compared to experimental data from 

other sources is due to the use of thin-ship theory to model the wave 

pattern, since thin-ship theory is known to be less accurate than a panel 

method when it comes to modelling the wave elevation on the hull. 

 The quantitative agreement between the experimental results and 

theoretical predictions with varying   
 
 shows the method has good 

potential, although there is a limited amount of comparative data 

available. Comparisons with more experimental results would have been 

favoured but it has not been possible due to the lack of experimental data 

for fully submerged bodies. 

7.2 Future research 

Due to the fundamental nature of this research project, it is a stepping stone for 

future work which should aim at making this model applicable to realistic hull 

forms. 

7.2.1 Validations 

There is a limited amount of data available for fully submerged shapes. This 

could be because the shapes and their behaviour are fairly known or because the 

most commonly fully submerged sea vessel is the submarine for which, due to its 

nature as a military vessel, few results tend to be published.  
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To determine the suitable values of   
 
 data from other sources are needed. It 

would be beneficial with more available experimental or RANS equations based 

data regarding fully submerged bodies. Since this method does not capture the 

total resistance the comparison data must separate the friction resistance from 

the total resistance. 

7.2.2 Surface piercing body 

This research is a first step towards developing a potential flow based model to 

determine the resistance of ships. As such it must be able to evaluate the 

resistance of surface piercing bodies. Usually this is done by including the line 

integral in (3.59). 

7.2.3 Non-linear effects 

This works aims to assess the effect of damping in the resistance calculation. To 

better assess the effects of   
 
 non-linear effects could be included in the model. 

The method could be improved to at least incorporate partial non-linear surface 

effects. Partial non-linear surface means that free panels are located on the hull 

and they change with the wave elevation on the hull but the boundary conditions 

do not change. 

A full non-linear model would give better accuracy but it seems wiser as a first 

step to evaluate the influence of a partial non-linear free surface before moving 

on to a fully non-linear free surface if needed, because a fully non-linear model 

will increase the computation time.
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