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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE EVIRONMENT

Fluid Structure Interaction Group

Doctor of Philosophy

THE DEVLOPMENT OF A DISSIPATIVE POTENTIAL FLOW MODEL FOR
WAVE MAKING RESITANCE PREDICTION

by Mirjam Firth

Steady ship motion in calm water is a classical problem in ship hydrodynamics.
Potential flow modelling is a common method to predict the wave resistance of
ships. In its conventional form the flow is assumed to be free from damping due
to the inviscid assumption of potential flow. It has been argued by the founding
fathers of ship resistance predictions that damping plays an important role in
determining the wave resistance. Despite this viscosity is often omitted from
present wave resistance prediction methods. It is known that damping plays an
important role in the formation of the wave pattern and it is therefore of interest
to determine the effect on the resistance prediction by including a damping
factor in a previously undampened model.

In this study, the problem is modelled using Kelvin sources with a translating
speed. The fluid flow is modelled using a linearised free surface condition but an
exact body condition on the hull. Rayleigh damping is introduced in the model to
emulate viscous damping. To calculate the source influences, a new dissipative
3D Green function is derived. The image source part of Green function is
separated into the near field and far field disturbance to achieve fast
convergence of the integrals.

The method is evaluated using thin ship theory to determine the wave pattern
behind and the wave profile along a Wigley hull. A panel method is used to
determine the wave and residual resistance for submerged ellipsoids and
spheres. The results are validated and compared to existing numerical and
experimental data from other sources. The results show that it may be possible
to capture the residual resistance by including damping in a potential flow model
but that more evaluations are needed.
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1 Introduction

The oldest found boats date back 10 000 years and the history of boats parallel
the human adventure (Breunig, 1996) . From the early canoes dug out of tree
trunks, humans have tried to improve their sea going structures. Early on this
was only based on practical experience or trial and error. With the age of
enlightenment and the improvement of scientific methods, experiments started
to be used in order to improve ship operation. Even the multitalented Leonardo
da Vinci tried to determine ship resistance by model tests (Tursini, 1953). Later

on experimental methods were supplemented by theoretical methods.

With globalisation and the associated rising demand on transportation, the
volume and size of the merchant fleet will also increase since the majority of
goods are transported by sea. Over time, the world’s GDP will rise. A GDP rise of
3% will result in a 6% rise in world trade causing a 3% rise in demand for sea
transportation and an associated 2% increase in the size of the merchant fleet
(Nilsson, 2010).

Such increases in shipping lead to a significant fossil fuel cost both to the ship
owners and the environment. A tenth of the global oil consumption is used to
power the merchant fleet (Nilsson, 2010). CO, emissions from shipping might
rise as much as 75% in the next 15 years and currently accounts for 4% of the
total global CO, emissions (Vidal, 2007). With the rising price of oil and the
growing environmental concern, the motivation to reduce oil consumption has

never been higher.

1.1 Ship resistance

A ship travelling in the seaway will experience forces trying to keep it from
moving; these forces are known as the resistance. It is preferable to keep the
resistance at a minimum because a ship’s resistance is linked to the power
required to propel the ship. The ship designer has to ensure that the ship

achieves the desired speed with the minimum amount of power.

The experimental and theoretical investigation of the steady motion of a ship is
complicated. Consequently, much effort has gone into developing and improving
methods for determining a ship’s resistance over the past 100 years. The
complexity of determining a ship’s resistance stems from the interaction
between the water and the air; the free surface. In reality, all parts of the

resistance are interconnected but to simplify resistance determination
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theoretically it can be separated into different components. The resistance
depends on viscosity and the gravitational field so that the total resistance,R;, is
the sum of the viscous resistance, R;, and the wave resistance, R;,. R}, is
associated with the generation of boundary layer and wake. R;, is connected with
the excitation of ship generated wave pattern. The viscous resistance can be
divided into the friction resistance, Rj, and the viscous pressure resistance, R},
where the friction resistance is the force in tangential direction on the hull and
the viscous pressure resistance is associated with the pressure losses due to
separation in the wake. The friction resistance depends on the roughness and
size of the hull surface. Other types of resistance include aerodynamic drag on
the hull and superstructure, spray drag or induced resistance related to the
generation of lift. For the current investigation in still water, these are assumed
to be negligible. The resistance forces are usually described by a non-
dimensionalised coefficient where the force/resistance could be non-
dimensionalised as:

R;

“= 12U a-b

where U* is the ship speed, S* is the ship’s wetted surface area and p* the density
of water. The non-dimensionalised viscous resistance coefficient, C,, wave
resistance coefficient, C,,, and friction resistance coefficient, Cr, are determined

in the same manner.

From dimension analysis it is clear that the resistance depends on the speed,
length, the fluid density and viscosity, gravity and some shape parameter
(Molland et al, 2011). To describe this dependence the Froude and Reynolds
number are often used. The Froude number is the relationship between the ship
speed and the speed of the wave pattern. The Reynolds number is the
relationship between the inertial and viscous forces in the fluid. The Froude and
Reynolds numbers are used to help relate similar flow patterns in different fluid

situations. The Froude number, Fn, is defined as

Fn = : (1.2)

and the Reynolds number

) (1.3)
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where L* is the ship length, g* the gravitational acceleration and v* the kinematic

viscosity of water.

For merchant ships the viscous resistance is the largest component, it is
approximately quadratic with ship’s speed and increases with the fullness and
wetted surface area of the hull. The wave resistance accounts for 10%-60% of the
total resistance (Raven, 1996). The wave resistance is more amendable through
changes in the hull shape (Eggers et al, 1967). A reduction in the resistance
would bring considerable reductions both in operating costs and emissions.
Since the viscous resistance cannot be reduced significantly by changes in the
hull form optimal ship forms will be those that generate the smallest waves, it is
therefore highly desirable to develop a theoretical tool to analyse the relationship

between wave resistance and the geometry of the hull (Baar, 1986).

For most ships there will be a main resistance hump when the transverse wave

length defined as

(1.4)

is roughly equal to half the ship length. Since the bow wave and stern wave will
add together to create a higher wave pattern leading to higher resistance. At low
speed the viscous resistance is the major component of the total resistance and
at very low speed the wave resistance is very small. Then the wave resistance
increases with increased speed to become a big component of the total
resistance at high speed for displacement ships (Larsson & Eliasson, 2000).
There are some high speed craft such as hovercraft and planning vessels, that
operates at Fn>1.3. In this case wave resistance is of lower importance. (Tuck et
al, 2002).

1.2 Ship design process

All properties of a ship are intertwined, for example an increase in beam will
cause an increase in resistance and therefore require an engine with the ability to
deliver more power. Hence it is not possible to decide one property of the ship
without analysing how it will affect other aspects of the design. A common way
of clarifying the design process is through the design spiral; as illustrated in

Figure 1 .
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Figure 1 Design spiral used in ship design phase

There are differences in the design process between different shipyards, and it
must be said that most shipyards tend to base their design on experience. This
means that most designs are modifications of older models. A large part of all

new builds are standardised models, especially among bulk carries and tankers
(Nilsson, 2010).

Determining the resistance is not an exact science and none of the now available
methods of resistance determination are without error. There are currently two
main approaches to still water resistance determination; experiments and

numerical modelling.

Tank testing is time consuming and expensive. It is often used at the end of the
design process to confirm the estimated resistance. It could also be used to
make minor changes to the underwater body such as modifying the appendices.
On rare occasions tank testing or full scale tests can be used to optimise the hull
shape but this mainly applies to competitive sail racing yachts such as in the

America’s cup (Letcher et al, 1987).

Numerical simulations are an alternative to tank testing and there are currently
several different commercial codes that solves three dimensional non-linear wave
resistance problems (Bertram, 2000). However, these methods are highly
complex and require long computational time which drives up the cost. Some of
them may need a super computer which restricts their use as a practical design

tool (Diken et al, 2004). A benefit of numerical modelling compared to
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experiments, besides the cost, is that it allows for thorough investigations into
the impact of very specific changes of the hull geometry. An example of how a
hull form can be optimised for different Froude numbers is given by Percival et
al. (2001).

There are options to determine the viscous and wave resistance. The first option
is to determine the frictional resistance and wave resistance separately. The
frictional resistance can be determined using the International Towing Tank
conference correlation formula (ITTC 57 line) (Ortigosa et al, 2009). To
determine the wave resistance a regression method such as Holtrop-Mennen
(Holtrop & Mennen, 1982) or a theory based on potential flow can be used. The
viscous pressure resistance is assumed to depend on a form factor, k, and the
friction resistance R; (Molland et al, 2011). The other option is to use a Reynolds-
Averaged Navier-Stokes (RANS) equations, Large Eddy Simulation (LES) or
Detached Eddy Simulation (DES) based solver to solve the full Navier-Stokes

equations and estimate the total resistance.

Early on in the design process a speedy determination of the resistance is of
great importance. Since all the ship properties are intertwined it is not beneficial
to dwell too much on one parameter. Early on in the process simplicity and speed
are more important than accuracy to some degree (Noblesse et al, 2010). The
combination of potential flow and ITTC correlation line is an example of such a
method. One benefit of potential flow is that the problem is reduced to the size
of the wetted surface, whereas RANS solvers require the discretisation of the
whole fluid domain which is considerably larger. It is this that gives potential
flow its speed; a major advantage (Hess, 1975, Kumar & Philominathan, 2011).
Potential flow modelling is based on three simplifications of the flow field; that
the homogenous fluid is incompressible and inviscid and the flow is irrotational.
This means that the method is only suitable to determine the wave resistance
and not the friction resistance since, in an inviscid fluid, there will be no
boundary layer. Since RANS solvers do not make these simplifications they can be

used to determine the total resistance.

The computational time will depend on many factors such as the complexity of
the submerged body and accuracy required but generally speaking a potential
flow method will yield a result in minutes, and RANS based solver in hours and a
LES method in days (Molland et al, 2011).

Later, as the design becomes more finalised a method with fewer simplifications

such as advanced software based on RANS equations is often used. RANS based
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solvers are often used to model breaking waves, resistance determination related
to non-linear movement and local flow phenomena. RANS is also favourable when

modelling non-linear surface effects.

In the developments of a new ship, a combination of all of the above mentioned
methods are usually applied and personal preferences of the shipyard or the
naval architects usually plays an important role. Therefore, there is a benefit to
developing all of these methods. To some extent there could also be a cost
associated with not refining resistance prediction methods, since stagnated
methods tend to become less effective. Without updates, software will generally
become less efficient and methods without refinement and further development

tend to lose users.

To solve the two part problem of determining the viscous and wave resistance
there are two approaches; Froude’s (Froude, 1868, Froude, 1877, Froude et al,
1955) and Hughes (1954). In Froude’s approach

Ct=CF+CR (] .5)
and in Hughes
Cf = (1 + k)CF + CW’ (] .6)

where C; is the residual resistance coefficient. The differences between the

methods are illustrated in Figure 2.

Total Resistance, R,

I
v v

Residual Resistance, R;" Friction Resistance, R/

V

Viscous Pressure
Resistance, Ry»"

t

A A

Wave Resistance, R,” Viscous Resistance, R,”

| I

Total Resistance, R/

Figure 2 Froude's (top) and Hughes' (bottom) approach to resistance determination
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The Hughes method is recommended by the ITTC and is the most adopted,
though the form factor approach is not suitable for yachts and some high-speed
crafts. Methods of estimating k include experimental, numerical and empirical
methods (Molland et al, 2011). The form factor is usually depicted as (1 + k) as
seen in (1.6) and typical values lies between 1.05-1.5 (Lauro & Miranda, 1987).

The drawback of Froude’s method is that the residual resistance must be
determined using model tests. The difficulty with Hughes method is to accurately

determine the form factor k.

1.3 Contribution to science

At the dawn of modern naval architecture, scholars thought that damping was
important when determining wave resistance. The men that laid the foundations
of modern fluid mechanics such as Stokes, Michell, Havelock and Lamb all
argued that damping effects are important when determining the wave

resistance.

Stokes was a Lucasian Professor with exceptional contribution to the fluid
mechanics field. The Navier-Stokes equations, Stokes drift, Stokes’ law, Stokes
wave and Stokes boundary layer are all named after him. He was made a Baron
for his contributions to science. Michell was an Australian mathematician and
Royal Society Fellow who published only 23 papers, yet one of them might be the
single most important paper regarding ship resistance determination. Havelock
was a knighted mathematician and fellow of the Royal Society known for his large
productivity and significant contribution to theoretical resistance determination.
Lamb was active in the field of applied mathematics and knighted for this work.
He published the book Hydrodynamics in 1879 which is still in print and widely

used around the world.

When their theories could be implemented on a larger scale using computers it
was assumed that the damping could be overlooked, because the computers of
yesterday could not handle these far more complex theories. Today’s computers
are more powerful than ever before and can solve these complex problems.
There is therefore a possibility to investigate if the original assumptions and

theories regarding the role of damping in resistance determination holds true.

1.4 Aims and objectives

To address this; this thesis aims to develop an efficient numerical method for

residual resistance prediction based on an improved potential theory which
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incorporates certain viscous effects in the model. The underlining methodology
will be based on a panel method and a new Green function for the modified
governing equations will be derived. Evaluation of the numerical implementation
for efficiency and robustness will be undertaken. Validation and evaluation of the

approach will be conducted.
The objectives are:

e Using a potential flow theory based model to describe the flow around a

steady advancing hull.

e The model should include some damping viscous force to capture the

residual resistance.
e Derive a new Green function that includes Rayleigh damping.

e Evaluate and compare the model against existing results to establish

some degree of validation.

1.5 Summary of contributions

e A new Green function is derived that is the first in 3D to include a

damping parameter.

e A potential flow based model that has the possibility to determine the

residual resistance is developed.

1.6 Outline of thesis

This thesis is divided into 7 chapters. Chapter 1 provides the motivation for this
study and explains the basics of theoretical resistance prediction. It gives a short
account of the application of different methods and their benefits and

drawbacks.

Chapter 1 renders the historical aspects of theoretical resistance modelling and

why the inclusion of damping in a potential flow based model is pertinent.

Chapter 2 furnishes a general background of the problem with historical
remarks. Having commenced with the history of potential flow it next surveys
different formulations of Green function. Therefore the differences between
potential flow and RANS equations are elucidated and viscosity in potential flow
is discussed. Finally resistance determination methods based on potential flow

are discussed with comments on existing data.



1.6 Outline of thesis

Chapter 3 explains the basic assumptions and provides a derivation of the
governing mathematical model. Starting with the Navier-Stokes equation, the
dissipative Bernoulli equation and free surface condition lead to the formulation
of the integral identity that governs the relationship between the unknown
steady potential and the translating source Green function. Finally a double and

single integral representation of the proposed 3D Green function is generated.

In Chapter 4 the numerical implementation of the mathematical model is
illustrated together with convergence of the method. Two discretisation methods
are explained; thin ship and a panel method. The convergence of the single
integrals is established and specific limitations of the double integral are
highlighted.

Chapter 5 validates the predicted results with data from other sources. It
provides the wave pattern of a single source together with the wave pattern
generated by Wigley hull with no Rayleigh damping against existing data. The
wave resistance of a submerged ellipsoid and sphere at different depths are

compared to existing data from other sources.

In Chapter 6 the proposed method is applied to determine the residual resistance
of fully submerged bodies. The possible range of the Rayleigh damping is
determined for a fully submerged ellipsoid and sphere at different depths. The
wave elevation along a Wigley hull is compared to experimental measurements
for different speeds. The wave resistance and residual resistance are compared

with experiments for fully submerged ellipsoids at different depths.

Chapter 7 furnishes concluding remarks and thoughts on future work.






2 Literature review

By 1975 over 700 papers had been published on the experimental and/or
theoretical study of ship waves and wave resistance (Baar, 1986). It is therefore
not possible to give an account of them all, hence a general background and a

pertinent historical context is disclosed.

2.1 History of potential flow

Potential flow can be said to have its base in a series of papers by Euler in the
1750’s. Euler developed a field theory based on Newton’s laws, the Euler-
Lagrange differential equations (Euler, 1755a, b, ¢, 1756, Saad, 2008-2011). This
field theory included velocity and pressure unlike prior field theories. In 1821
Navier gave what is today known as the Navier-Stokes equations for
incompressible fluids and in 1822 for viscous fluids, he was the first to introduce
a non-ideal fluid (Anderson, 1997). Even though the equations were first
presented by Navier, it was first correctly derived by Saint-Venant (Anderson,
1997).

The field variable, developed by Euler and improved by Lagrange (1781) and
Laplace was ideal to solve the Navier-Stokes equations in the entire fluid domain
(Ball, 1960). Lagrange developed Euler’s field variable to be applied to potential
flow. This potential could also describe the fluid flow if it was assumed to be
irrotational. Lagrange described what is today know as streamlines, the
orthogonal lines in the flow with makes it possible to use Bernoulli’s equation to
determine the pressure in the fluid. Laplace proved that the field variable must
satisfy a differential equation that today is known as the Laplace equation (Ball,
1960).

The wave profile for a surface wave was described by Green (1828) and Airy
(1841). The potential under a surface wave over the seabed was proposed by
Stokes (1847).

Modern analytical resistance predictions are said to have been founded by
Michell at the turn of the last century (Michell, 1898). For a long time the Michell
thin ship theory, which only applies to slender ships was the only available
theoretical evaluation of wave resistance. Michell touched upon the important
subject of damping. Quoting from Michell’s paper “... similar work to that of the
present paper gives a theory of the damping of the oscillation of ships due to

wave-making. This | hope to give in a subsequent paper”. But he did not, he did
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not publish any paper after 1902 and this problem was not solved until years

later by Havelock and Newman (Tuck, 1989).

Rayleigh damping was first introduced by Lord Rayleigh (1877) it is a viscous
damping that uses a dissipative function to describe a damping that is

proportional to the flow speed.

2.2 Different formulations of Green function

Most mathematical functions are adjectival in English, unlike most other
European languages. Green function is the sole exception and can be called both
Green and Green’s function. Throughout the last century the fashion has shifted
back and forward regarding the possessive use of Green function (Wright, 2006).

Here Green function is used.

Green function can be expressed either as a fundamental Rankine source or as
the potential of a translating submerged source which satisfies the free surface
condition and the infinity condition, where the last option is referred to as the
Kelvin wave source potential (Baar & Price, 1988a, Kelvin (Thomson), 1887). The
Rankine source is considerably easier mathematically but the Kelvin source has
the numerical advantage since it does not require sources to be placed on the
free surface (Ponizy et al, 1998). However, the Kelvin source is still cumbersome
to evaluate and methods such as eigen-function expansion, power-series
expansions, asymptotic expansions, continued fraction or multidimensional

polynomial approximations may be needed (Newman, 1985).

There are two major approaches that can be considered to solve the Kelvin wave
source potential problem other than Michell (Baar, 1986). The first is introduced
by Havelock (1928) and expanded in (1932), inspired by the work of Lamb
(1926). It is interesting to note that Havelock inserted a small friction force into
the equation of motion. The Havelock expression was later modified by, among
others, Lunde (1951) and is considered the most popular expression. Wigley
(1934) has compared both Havelock’s and Michell’s theories against
experimental results but using an inviscid version of Havelock method. Thorough
evaluation of analytical methods compared to experimental results has been
undertaken by Eggers focusing on the method by Havelock (Eggers et al, 1967).
Besides the methods by Havelock and Michell there is a third method by Peters
(1949). However he considered the dissipation factor y, used by Lamb (1945) as
unnecessary. According to Baar (1986) there are two more methods, one

originally by Bessho (1964) and one by Demanche (1981), however Baar
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considers that they do not have “any practical advantages”. Bessho formulation is
sparsely quoted in the literature perhaps because he published it in a Japanese
journal not widely available or because his mathematical argument was given in
outline rather than in detail (Ursell, 1984). The details of the derivation were not
fully explained until the 1980s, when Ursell (1984) proved that the order of
integration could in fact be changed, which had previously been disputed in the
Bessho formulation. Therefore; the formulations by Michell, Havelock and Peters
are considered to be the main solutions. The main difference between them is
that they use different mathematical approaches, such as the integration path for
the double integral. All representations has the same asymptotic behaviour to

ensure that the free waves trail aft of the disturbance (Eggers et al, 1967).

The difficulties with these formulations depend on the mathematical complexity
of Green function. The Michell, Havelock and Peter formulations include a single
integral for the near field disturbance. Havelock and Peters formulations also has
a single integral for the wavelike disturbance (Michell has the wavelike

disturbance as a double integral).

Noblesse (1981) has derived the three single integral formulations in a
uniformed manner which is both easy and straight forward to follow. He used a
double Fourier transform in order to derive the Green function. The near field
disturbance becomes a single integral with an exponential as the integrand. The
exponential integral can be expressed as a standard function E;(y) and is
numerically regarded as a standard function (Abramowitz & Stegun, 1964). The
formulations by Noblesse are difficult to integrate numerically since they include
highly oscillatory integrands (Baar & Price, 1988a). The far field or wave like
disturbance is generally the more cumbersome integral to evaluate due to its
highly oscillatory behaviour (Ponizy et al, 1998). Monacella (1966) simplified the
problem by only evaluating the far field integral and thus obtaining a solution
which is only valid for large distances, r, between the source and field point.
Therefore, the solution cannot be used to calculate the pressure on the body,
Monacella uses it to determine the pressure on the seabed, and the method

could be changed fairly easily to calculate the wave pattern far downstream.

2.2.1 Surface piercing bodies

A major difficulty to overcome is to determine the derivatives of the unknown
distributions of Kelvin sources in the water line integral where the hull meets the
free surface (Ponizy et al, 1998). It can be shown that a line singularity

distribution should accompany the distribution over the hull (Brard, 1972). The
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methods by Baar (1986), Baar and Price (1988a, b) and Doctors and Beck (1987a,
1987b) were compared and evaluated by Marr and Jackson (1999). Marr and
Jackson were unable to reproduce the results of Baar and Price (1988a, b) for the
Wigley hull with a water line integral. They found a very good agreement for
submerged thin bodies. However, for these bodies the water line integral is not
important. Marr and Jackson drew the conclusion that at least one of the pairs of
authors (Baar and Price, Doctors and Beck, Marr and Jackson) have calculated the
water line integral incorrectly or the water line integrals exhibit some behaviour
which is not yet understood. They state that “the Neumann-Kelvin theory as it is
currently understood does not give satisfactory wave resistance results for
idealized ship hull forms”. Belibassakis et al. (2013) handles the problems
associated with the water line integral by downshifting the whole hull by a small

parameter.

2.3 Potential flow versus RANS

Today the most common methods to determine the wave resistance are either
using a potential flow solver or a program that solves the full Navier-Stokes
equation, such as RANS solver. Using RANS solver, the fluid is considered to be
viscous and rotational, unlike potential flow. Many argue that RANS often gives a
more accurate result, but the potential flow methods are faster (Bal, 2008). Since
RANS solves the full Navier-Stokes equation the method can cope with a variety
of non-linear flow phenomena such as turbulence, shock waves and breaking
waves (Miyata, 1996).

It is reasonable that a method that includes more of the physics would yield
better results (however it is not always the case). Because water is a viscous fluid;
a model that includes more viscous effects could improve the results. When
looking at propagating waves from a ship it is evident that the physical
phenomenon of damping affects the wave decay. A full RANS based CFD solver
usually requires more of the user in terms of data input and the ability to
interpret information to make sure that everything is physically correct; an
example is ‘meshing’. To generate an appropriate discretisation of the entire
fluid domain can be very time consuming, taking up both computational time
and man-hours. Mesh generation has become so complex it has developed into a
research field of its own (Argyris & Patton, 1966, Monaghan, 1988). A potential
based program requires less input data from the user making the procedure less

dependent on the user.
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2.4 Viscosity in potential flow

Havelock did not evaluate all his theories; some of them were computed (by
hand) by Wigley. With the dawn of modern computers his ideas could be
implemented on a larger scale. Havelock (1928, 1932) originally wanted a
damping parameter to be included in the resistance expression. However some
simplifications had to be made to simplify his resistance expression so the
damping was assumed to be negligible. Quoting Newman (1970) “To make
analytical progress we must ignore viscous effects, which are known to be
significant in the steady-state resistance problem”. However computers have
increased the speed rapidly over the last decades, until now Moore’s law that
states that the number of transistors on integrated circuits doubled every two
years has held true (Moore, 1965). The number of transistors strongly influences
processing speed and memory capacity. This makes it possible to implement
theories previously thought to be too complex. However it is likely that the
doubling of computational speed associated with Moore’s law has come to a halt
(Schenkman, 2009). So a good numerical implementation scheme is still crucial

for the evaluation of Green function.

2.4 Viscosity in potential flow

Viscous potential flow is not a common idea and to some it is even an oxymoron.
Stokes (1851) first suggested inclusion of some viscosity in potential flow to
better model dissipation of energy. Lamb discussed the importance of viscosity
on gravity waves in deep water, his solution was to have an irrotational but still
dissipative fluid (art 348, 349 Lamb, 1945). He also studied the viscous decay of
small oscillations of a mass of liquid about a spherical form (art 355) (Lamb,
1945). Havelock on the other hand treated the dissipative viscosity as something
so natural that it need no extra comments (Havelock, 1928, 1932). He wrote “It
seems fairly certain that one of the main causes of differences between
theoretical and experimental results is the neglect of fluid friction in the
calculation of ship waves”. He introduced a reducing factor to represent the
effect of friction. Even though his results were not comprehensive, he stated that
the success of such a factor depends on its independence of speed and hull
shape (Havelock, 1935).

A newer contribution to viscous potential flow is the case argued by Joseph

(2006) who strongly believes that viscosity should be incorporated into potential
flow to enhance its results. The difference between his method, Viscous Potential
Flow, (VPF), and conventional potential flow is that the viscous component for the

normal stress at the free surface is included in the normal stress balance.
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However, most of his applications concern gas bubbles. He also states that
viscosity may act strongly in regions in which the vorticity is effectively zero, in

cases involving gas bubbles or rotating cylinders (Joseph et al, 1993).

2.5 Methods of determining wave resistance

Methods to theoretically calculate wave resistance can be divided into two main
methods (Harvald, 1983):

A. The flow around the hull is determined to provide the pressure on the
hull. The pressure is then integrated over the hull surface to get the
resistance.

B. The wave pattern generated by the ship is calculated. The resistance is
then determined from the flow of energy necessary to maintain the wave

system.

2.5.1 Panel method

Computing wave resistance by integrating the pressure over the hull is a very
common method. However, it is very sensitive to the hull panelling, in particular,
at low Froude numbers (Raven, 1991). Because the integrals describing the flow
within the whole domain are transformed to integrals associated with a set of
boundaries this method is sometimes referred to as Boundary Element Method
(BEM). Sometimes the approach is designated as a ‘panel method’ because the
boundary is discretised into panels (Denayer, 1978, Wordenweber, 1980). Panel
methods were developed and proven firstly in 2D (Smith & Pierce, 1958) and
have been available in 3D since the 1960s (Hess & Smith, 1964). The predictions
using panel methods have been found to agree well with experimental results. In
cases where the agreement has been poor they continue to be useful in the
design process, because they can predict the incremental effect of a design
change (Hess, 1990).

2.5.2 Egger series transverse cut technique

The concept of determining wave resistance from the wave pattern, without
reference to the ship, was originally proposed by Havelock (1934a, b). Janson
and Spinney (2004) and Raven and Prins (1998) argued that a method based on
the predicted wave pattern is much less sensitive to the particular hull
discretisation than resistance estimation via pressure integration. However,
panel methods are more widely used. Eggers (1962) showed that using linear
theory, the wave pattern behind a ship can be expressed as a summation of

series of discrete wave modes. Each mode is described as a sinusoidal wave train
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with a particular amplitude, phase, wave number and direction. Measurements
of the real wave pattern are used to recreate the theoretical wave pattern and
from this the corresponding resistance can subsequently be obtained (Eggers,
1962, Hogben, 1972). There are three main approaches, either a transverse cut,
a longitudinal cut and a combination of a transverse or longitudinal cut method
known as the “X-Y” method. The last approach is also described as a longitudinal
cut method with a truncation term (Eggers et al, 1967). For numerical methods
the transverse cut is superior partly due to the fact that the wave profile is clearly
finite (Nakos, 1991, Nakos & Sclavounos, 1994, Raven & Prins, 1998). The
transverse cut also benefits from the limited extent of the discretisation that is

needed downstream of the ship (Nakos & Sclavounos, 1994).

A minimum of two cuts are needed to determine the two unknown wave
parameters but it has been shown that a larger number of cuts are needed to
provide redundancy and increase accuracy of the predicted wave resistance
(Janson & Spinney, 2004, Raven & Prins, 1998). The transverse cuts must be far
enough aft of the ship, they must extend outside of the Kelvin wedge and the
resolution must be high enough to show all components of interest (Raven &

Prins, 1998). The Kevin angle or wedge is illustrated in Figure 3.

Figure 3 Kelvin angle

According to Raven and Prins (1998) the wave resistance is supposed to be
independent of the location of the cuts, however both their results and the
results by Janson and Spinney showed that this is not the case. The first cut must
be 0.5L* aft of the stern to avoid the near-field disturbance which causes sharp
variations in the resistance due to the location of the cut. (Nakos, 1991, Nakos &
Sclavounos, 1994, Raven & Prins, 1998).

Raven and Prins (1998) and Janson and Spinney (2004) found that the resistance
varies around a mean line and decreases with increasing distance of the cuts
behind the ship, if the cuts are further downstream the resistance will be lower,
due to numerical damping. They also found that all values of the wave pattern
resistance were lower than the resistance due to pressure integration on the hull.

Raven and Prins (1998) found that the waviness in the resistance had a length
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close to the fundamental wave length of equation (1.4) . Fluctuation in the
resistance could be avoided if the eight cuts that they used were distributed over
an area of one wave length because the variations will cancel and much more
constant result can be obtained. As stated before, two cuts is the minimum
number of cuts, but a higher number of cuts are needed to increase accuracy.
Janson and Spinney (2004) used 10 cuts, Raven and Prins (1998) used 8 cuts and
Sharma (1963, 1966) concluded that at least 5 cuts are required to ensure the
error does not exceed 5 %. Janson and Spinney (2004) also mentioned that
“certain numerical problems” can be avoided by using non-equidistant spacing
between the cuts. 10 cuts with a non-equidistant spacing with a multiplication
factor of 1.1 according to Janson and Spinney (2004) and Fuirth et al. (2013) (see
Appendix A) are illustrated in Figure 4.

15

Figure 4 Location of the 10 cuts behind a Wigley hull at Fn = 0.3

Nakos (1991) also states the importance of the location of the transverse cuts
and that the method needs to be free from numerical damping if cuts at large
distances aft of the ship are allowed. However, the dependence on the
longitudinal location of the cuts is eliminated only at an infinite distance from
the hull due to the discretisation of the surface (Nakos & Sclavounos, 1990).
Nakos (1991) concluded that it is hard to get convergence at the downstream
end of the computational domain due to the abrupt truncation of the free
surface. It has been shown that the wave pattern resistance is only equivalent to
the wave resistance via integrated pressure if the body is submerged, which is an
inconsistency referred to as Gadd’s paradox (Nakos, 1991, Nakos & Sclavounos,
1994).
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2.5 Methods of determining wave resistance

A conventional form of the transverse cut technique will give a lower wave
resistance estimation for higher Rayleigh damping, since higher damping
generates lower wave profiles. Where higher damping should imply higher
resistance since the modelled water would be more viscous. Firth et al. (2013)
(see Appendix A) derived a modified and new form of the Eggers series
transverse wave cut technique that determined the wave resistance of a
dissipative wave pattern. This method retains many aspects of the conventional
transverse wave cut and still has its main benefit; the whole wave pattern does
not need to be known, only the profile in the cuts. The details of the method are
given in Appendix A, the main aspects of the method are reiterated here together

with the main limitations.

The wave resistance for a dissipative flow can be determined using a control

volume analysis around the hull as illustrated in Figure 5.
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Figure 5 Control volume enclosing advancing ship

Here R, is the resistance force experienced by the fluid within the control
volume. F,is the pressure force acting on surface A, from outside the control
volume and Fy the corresponding force acting on the surface B.. The non-
dimensionalised free stream is designated —1 whereas (u,v,w) specify the speed
components of the water in the (x,y, z) directions due the disturbance created by
the advancing ship. The sea bed is located at - d,. and the width of the control

volume is b,.

The wall reflection condition for a ship in a tank of limited width, b, is

introduced to simplify the resistance expression. This simplified form is found to
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be so convenient that it is recommended, even if the tank happens to be so large

that is practically of infinite width (Eggers et al, 1967).
The ship is fixed so that

e The wave pattern is symmetrical and stationary
e The wave pattern moves with the model

e The wave pattern reflects that there is no flow through the tank walls

The dissipative Egger series includes some simplifications that differ from the
conventional form. These simplifications are made in order to limit the
cumbersomeness of the resistance expression. There is however a risk that the

simplifications are more mathematically than physically justified.

The potential for a freely moving wave is assumed to be a separable equation
that must satisfy the free surface conditions together with a Neumann condition
on the seabed. Usually the dispersion relationship is given by inserting the
potential for a freely moving wave into the combined free surface condition.
However the dissipative potential for a freely moving wave perfectly satisfies the
free surface condition so the relationship between the wave number and speed of
the wave has to be set. The wave pattern is port-starboard symmetric and
therefore the potential must be symmetric with respect to y. The exponential
decay dependant on uj in the potential must be approximated as the decay along

the x axis only and not along the travel direction of the wave.

These simplifications are not sufficient to determine the resistance. All damping
terms must be removed from the velocities and wave profile in order to get a
resistance expression that is independent of the downstream end of the control

volume.

This leaves a damping term only in the expression for the Fourier coefficient
used to determine the unknown wave parameters. This is enough to create an

Egger series that takes a dissipative wave pattern into consideration.

Because of the tenuous justifications for some of the mentioned simplifications,
the modified Egger series transverse cut technique is not considered suitable for

further evaluation as part of the current project.

The method has some limitations at large Froude numbers (see Appendix A) but

it is currently unclear if this depends on the modified Egger series or the use of
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the double integral (as opposed to the single integrals) in evaluating Green

function or some other limiting factor.

2.6 Data from other sources for an ellipsoid

Validation is very important when developing a novel computational method.
Here a short survey of existing data and the methods used to obtain the data are
shown. Both theoretical and experimental data from other sources for the Wigley
hull are abundant, see for example Chen and Noblesse (1983), Noblesse et al.
(1989) and Huan and Huang (2007). When investigating the effect on the surface
elevation by a submerged object, the object may in most cases be approximated
to an ellipsoid shape (Dong et al, 2013). However experimental data for an
submerged ellipsoid are scarce to the author’s knowledge and consist only of
that provided by Weinblum et al. (1950) and Farell and Giiven (1973).

The velocity potential due to an ellipsoid moving in an infinite fluid is given by
Lamb (1945) for an inviscid fluid (art 114) and a viscous fluid (art 339) and by
Milne-Thomson (Chapter 16.52 1962). The potential wave resistance coefficient

for a submerged ellipsoid is given by Inui (1954).

Farell (1973) semi-analytical method to determine the wave resistance has
become somewhat of a benchmark and a very popular solution to validate new

methods against.

A comparison for the free surface elevation for a submerged ellipsoid is given by
Tuck and Scullen (2002) and Tuck et al. (1999b, Tuck et al, 1999a). They
compare the elevation from a “Neumann-Stokes” (exact body and surface
condition) mode, “Neumann-Kelvin” (exact body condition and linearised free
surface condition) and thin ship theory. They found an average error of 5% for
the Neumann-Kelvin solution and thin ship theory compared to the Neumann-
Stokes, but in some locations of the wave profile for shallow submersion the
error was as much as 50% when comparing thin ship theory to the Neumann-

Stokes solution.

C,, is given for a submerged prolate spheroid using a Newman-Kelvin formulation
by Doctors and Beck (1987a), Andrew et al. (1988) and Price et al. (1989) and
Ponizy (1998). Price et al. also determine the wavemaking resistance for an
ellipsoid in water with different layered density. The wave resistance and surface
elevation due to a prolate spheroid is given by Lalli et al. (1999) applying a
desingularised boundary integral method and a longitudinal cut technique and

by Lalli et al. (1992) using a fully non-linear Dawson method.
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Belibassakis et al.(2010, 2013) used a submerged ellipsoid travelling close to the

free surface to validate their isogeometric higher order panel method.

The wave-making resistance of a submerged ellipsoid in shallow water was
investigate by Kinoshita and Inui (1953). Eng and Hu (1963) tried to give an
optimum ellipsoid shape for different Froude numbers and depths based on an
analytical resistance expression of the shape of the ellipsoid. Effects on the
surface elevation from speed and submersion of the ellipsoid is also investigated
by Uslu and Bal (2008) using a Dawson (Rankine source) method. Dong et al.
(2013) states that the free surface was not affected by the submerged ellipsoid if
the submersion depth was three times larger than the ellipsoid diameter. They
also concluded that at this depth the free surface did not affect the drag using an

incompressible RANS based method.
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In this study the fluid is assumed to be inviscid and incompressible and the fluid
flow is irrotational, but it includes some damping. The flow is to be considered
around a single ship or submerged body which moves in a straight line in an
otherwise undisturbed fluid. The computational domain is considered infinitely
deep and extends infinitely in the horizontal directions. The coordinate system is
body-fixed amidships as shown in Figure 6. The variables are non-

dimensionalised using Table 1.

The problem is modelled using a Neumann-Kelvin formulation, which simplifies
the free-surface condition by linearisation, allowing the use of a fundamental
solution (Kelvin source) as a building block. From this, the flow around a hull is
produced. Several solutions to this problem were modelled in the 1980’s by Baar
(1986) , Baar and Price (1988a, b), Newman (1987a, 1987b) and Doctors and
Beck (1987a, 1987b). Marr (1992) aimed to improve the speed and accuracy of
the model developed by Baar and Price (1988a, b) by inclusion of what he called
“the missing term” originally derived by Ursell (1988).

To model the problem a right-handed Cartesian coordinate system Oxyz is used.
It moves steadily with the ship in the direction of 0x. Here Oxy is the undisturbed
water surface, and the midship section of the ship is on the 0yz plane. 0z

denotes the direction opposite to the gravitational acceleration g.

!

o X
—)

Direction of travel

Figure 6 Coordinate system, origin is amidships

The physics of the fluid flow is described mathematically by governing equations.
The rate of change of momentum within a control volume is equal to the net rate
at which momentum enters and leaves the control volume plus the force that
acts on the body (viscous-, pressure- and body forces). The set of equations

obtained is known as the Navier-Stokes equations.
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Dimensional variables are non-dimensionalised in terms of p*L3" for mass, L* for
length and L*/U* for time, where p* is the density of water, L* is the length of the
submerged shape and U* is the speed of the submerged shape/ship. The non-

dimensionalised variables are shown in Table 1.

Table 1 Definition of non-dimensional flow variables

Variable Dimensional Non-dimensional
Density of water p* 1=p*/p*
Length of ship L 1=L"/L*
Free stream velocity u* 1=U0"/U"
Acceleration of gravity g gL /U = 1/Fn?

Coordinates x*y*,z" x,y,z= (x"y,z") /L

q=(u,v,w) = q'/U"

Speed of ship q = W,vw")

Gradient operator v* V= V*L*
Rayleigh damping parameter Ug Ur = UrL*/(p*U")
Pressure P p=p"/(p"U"?)
Time t* t =t'ur/r
Potential P o =o*/(U*LY)

3.1 Potential flow

In the potential theory, fluid is modelled using field functions and the fluid
velocity is the gradient of the velocity potential ®. The fundamental approach
when modelling the problem in a potential flow theory is that bodies submerged
in the fluid (or boundaries such as channel walls or the sea bed) are modelled
using fluid singularities such as: sources, sinks, vortices and doublets. A source
is like a mathematical geyser pushing fluid out in all directions, a sink similarly
sucks in fluid, a doublet is a source and a sink at the same location and a vortex
is a point around which the flow rotates. The contribution from each source/sink,
doublet and vortex can be linearly added together to build the flow field by
appealing to the superposition principle. For example; instead of a wall which
will reflect the incoming flow, a distribution of sources is used. This will have the
same effect on the flow as a reflecting wall. A schematic picture of a source,

doublet and vortex are shown in Figure 7.
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3.1 Potential flow

©

Figure 7 Streamlines of a source, a doublet and a vortex

To model a body in the fluid, sources are distributed over the corresponding
wetted surface of the body of interest. Ideally the sources would be distributed
continuously over the body; however that is numerically more demanding. For
that reason a panel method is used. The corresponding surface of the
submerged object is divided into small panels. The panels may be of different
size, but size and panel distribution should represent both the geometric shape
and an appropriate distribution of wetted surface boundary conditions. On each
panel a source is placed at the centroid and is assumed to have constant
strength over the panel. The strength of the sources ultimately depends on body
geometry, location of structure relative to the free surface and the form of the
fluid structure interaction being experienced by the structure. The role of the
source is to ensure that the boundary condition on the body is satisfied. For the
particular subject of this dissertation the wetted surface boundary condition is of
the Neumann form; there can be no flow through the submerged body as defined
in:

P

T 0 on the body surface. (3.1)

Here and throughout n is the normal to the surface pointing into the fluid.

3.1.1 Laplace equation
For the purpose of ship analysis, water can be viewed as incompressible. The

density within the fluid must thus be constant, and the continuity equation then

becomes
V-q=0. 3.2)

The curl of the velocity field is called vorticity and is a measure of how much a
fluid element rotates. The vorticity vector is twice the rate of rotation (angular
velocity) of the fluid element. It is assumed that the vorticity of the fluid is low so
that the fluid can be assumed to be irrotational. For an irrotational fluid the

vorticity is zero, that is
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3 Mathematical model

Vxq=0. (3.3)

Inside and close to the boundary layer viscosity is of greater importance.
However, outside of the boundary layer and the wake the fluid can be assumed
inviscid. Here the fluid flow outside of the boundary layer is of interest so the

flow is assumed to be inviscid.

The damping force to be introduced is the product of the constant, ug, and the
associated disturbed velocity in the body fixed coordinate system. The damping
coefficient is generally referred to as Rayleigh damping. This will give the same

dynamic free surface condition as obtained by Havelock (1928, 1932), viz

% d¢ 0 0 (3.4)

axz THog, THe =

where k, = g*/U** and u Havelock’s damping parameter. The non-dimensional
Navier-Stokes equations with Rayleigh damping for an inviscid, incompressible

and irrotational fluid can be expressed using the single vector equation

Pa_ g (o) 0 3.5
D—t——p"'F—nz(l)—HR‘H‘g- (3.5)

The potential field ¢ is defined such that

0P 0P 0P

u=a, v=E,w=a—Z (3.6)
it follows that
q="Vo. 3.7)
Substituting (3.7) into the incompressible continuity equation (3.2) gives the
Laplace equation
V2 = 0. (3.8)

3.1.2 Bernoulli pressure equation

Expanding the left hand side of the modified Navier- Stokes equation (3.5) gives

the following:
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3.1 Potential flow

bg_oq 1o, o 1 (\_, 0 3.9
Dt -9t T2V = VP 5|0 ) —He| At O) ) (3.9)
1 0
Where Fn is the Froude number, uy is the Rayleigh damping parameter and Vp is
the pressure gradient. It will be shown that this Rayleigh damping is consistent
with the damping coefficient introduced by Havelock (1928, 1932). Inserting the

velocity potential into equation (3.9) gives

v 0P 1 Vo|? ! (@ =0 3.10
E-I-El | +p+mZ+‘U.R( +x) = 0. ( . )
The unsteady non-dimensional Bernoulli equation with added Rayleigh damping
is

acl)+1|Vc1>|2+ + ! + up(® + x) = F(t) (3.11)
at 2 P T ppz? THRE T X) = 2L '

For the steady case this becomes

1 1
E|V¢|2+p+F—nzz+u;¢(d)+x)=const. (3.12)

3.1.3 Free surface condition
Assuming that the fluid is of infinite extent in all directions, seabed and
upstream/downstream boundaries can be considered far away from free surface

and ship respectively.

The mathematical model must limit the water to the domain below the free
surface. This is done by imposing two physical conditions; the kinematic free

surface condition and the dynamic free surface condition.

The kinematic free surface condition states that a particle on the free surface
must remain on the free surface, because if the particle moves, the surface (the
intersection between the water and the air) must move as well. The dynamic free
surface condition states that the pressure must be equal on either side of the
free surface. The mathematical expression of each physical free surface

condition is considered next.

3.1.3.1 Kinematic free surface condition

Let ¢{(x,y) measure the variation of the free surface elevation above its mean

datum. Introducing a function, F, this variation satisfies
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3 Mathematical model

F=0{xy)—z=0. (3.13)
The total derivative of (3.13) is

DF D

and in expanded form is expressed as

0 09 0¢ 0w 0¢ 09 0 90 _ 3.15)
ot 0x 0x dy 0y 0z 0z 0z ’ )

given that ¢ is not a function of z, and z and ¢ are independent variables.
Introducing the perturbed velocity potential ¢ and moving the coordinate system

from a global to a local ship fixed coordinate system which is time independent.
O=—-x+¢ (3.16)
lead to

¢ 9 0d¢p 9 9 0 d¢p Al 9P
ot oxTax oax oy oyt ez 9z oz (3.17)

This is the non-linear kinematic free surface condition.

The steady state kinematic surface condition (3.17) can be linearised, assuming
that products of 3¢/dx,07/dy,d¢/dx,0¢/dy are small and can be ignored.

3.1.3.2 Dynamic free surface condition

Rewriting the steady state Bernoulli equation (3.11) and assuming the pressure
on the free surface (z = {(x,y)) is the atmospheric pressure. The pressure can be
set to any reference value and so is set to zero. When x - « and ¢ — 0 it can then

be seen that the constant in Bernoulli equation (3.12) is )%, since

1 1 ¢ 1
z 2=_(1_,2% 2\ ==
Vol = 2(1 252+ 179 ) ; (3.18)
and thus (3.12) may be expressed as:
1 1
|V<b|2+—('+uR(d>+x) (3.19)

Rearranging the last equation the surface profile is then expressible as:

¢ = —Fn? (%|vq>|2 (@ + %) —%) (3.20)
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3.2 Integral identity
and upon appealing to the definition of the perturbed in potential (3.16), the
surface profile becomes

1 1
¢ = —Fn? (SIV(=x + P + i (—x + ¢ + ) = 5). (3.21)

By linearisation with respect to small velocities it is assumed that |V¢|? is

negligible and so the wave profile

(ot =23 ssie =)
reduces to
{ = Fn? (%— M,)_ (3.23)

3.1.3.3 Combined linearised free surface condition
To eliminate the unknown ¢ and to obtain a condition only involving the
perturbed velocity potential the kinematic and dynamic free surface conditions

are combined. The time independent linearised free surface condition is

% 00 _

— . 3.24
ox 0z 0 ( )

To derive the combined free surface condition the expression for ¢ in (3.23) is
differentiated with respect to x and then inserted into the linearised kinematic
free surface condition (3.24). Differentiating the linearised dynamic free surface

condition (3.23), with respect to x gives

2
o E? <6 L 6¢>_ (3.25)

ax M \ax2  MFox

This is substituted into the linearised kinematic free surface condition (3.24) and

gives the combined free surface condition

0%¢ ¢ 1 d¢
P TR 3.26
dx2 Hr dx Fn? oz 0 ( )

which is consistent with the expression by Havelock (1928, 1932) stated in (3.4).
3.2 Integral identity

The concept of Green functions was developed in the 1820s by the English

mathematician George Green (1828). In physics, it is used to solve various field
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3 Mathematical model

problems. A Green function is a function that can be used to solve an

inhomogeneous differential equation with boundary conditions.

Green functions are equally useful in solving partial differential equations with
satisfaction of their associated boundary conditions. To facilitate this advantage
in this case an identity known as Green’s second identity will be established from
first principles, so that an equivalent integral formulation may be subsequently

developed to reflect the influence of the introduced Rayleigh damping.

3.2.1 Integral equation for the velocity potential

The integral identities to be derived describe the relationship between the
unknown perturbation potential ¢ and the Green function, G, and can be
obtained by appealing to Green’s second identity. In the process of deriving the
integral identity a set of conditions are identified as being a sensible constraint
to impose on the sought Green function. These conditions are then used
explicitly to derive the Rayleigh damping sensitive Green function from first

principles.

The finite domain 2 is bounded by the hull surface h, the finite mean free surface
s" and an exterior surface h,, surrounding the hull surface h.¢, and c,, are the
intersection curves of h and h,, with the plane z = 0 respectively, d; is the inner
domain bounded by the hull surface h and the inner free mean surface s; and n is

the outward normal from the body as illustrated in Figure 8.
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Figure 8 Boundaries of the fluid domain, in the xy-plane only the port side is shown

The perturbed velocity potential ¢ has the following properties:
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3.2 Integral identity

e ¢(x) and all its derivatives exist and are continuous in the fluid domain

o Theintegral [ff, |¢(x)|is finite

The potential must satisfy

ff 6(a—x)¢p(a)da = ¢p(x), 3.27)
Q

where x = (x,y,z) is the location of the field point and a = (a, b, ) is the location

of a source point, where c is strictly negative. The distance between the field

point and the source point is described by (x-a, y-b, z-c).

Requiring Green function, G(x, a), to satisfy

ViG(x,a) = 6(a—x)5(b —y)6(c — 2) (3.28)
gives
[|| p@viexar da= [[[ sa-x p@da =g, (3.29)
Q Q
Using the relationship
dV2G = V- (pVG) — VG - Vo (3.30)
in (3.29) gives
d(x) = [|[ (V- (¢VG) — VG - V) dQ. (3.31)
I

Applying the divergence theorem (p. 459 Kreyszig, 2006) leads to:

fﬂv-mn:ﬂrndz, (3.32)
Q Z

where X is the surface boundary enclosing the volume (, to the first part of the

integral in (3.31) gives

$(x) :ff ¢va-nd2—ﬂfvc;-v¢ 4o (3.33)
z Q

and
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3 Mathematical model

d(x) =ﬂ¢g—fldz—fﬂvc;-v¢ dQ. (3.34)
z Q

The following property
VG -V = V- (GV¢) — GV2¢, (3.35)

is then used in the triple integral and noticing the last term is zero (according to

the Laplace equation), (3.33) reduces to

P(x) = ﬂ¢g—fldz—fﬂv-(c;v¢) dQ. (3.36)
z Q

Applying the divergence theorem to the last integral gives

(x)_ffq)—dz ﬂcwp nds = ¢(x) = ﬂ cp——G— %, (3.37)

The surface X can then be partitioned into the hull surface h, the free surface s’

and the exterior surface h,, according to Figure 9.

\é 1

Figure 9 Fluid domain

This yield:
¢(x)=£ ¢6—G—G— d2+J ¢a—G—G— d2+£<¢g—i—6%>d2 (3.38)

Assuming that the following infinity condition is satisfied, namely:
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3.2 Integral identity

lim ﬂ — o, (3.39)
R—oo0 an

(3.38) leads to
¢(x)—ﬂ ¢—G—G— d2+ﬂ ¢—n— ) as. (3.40)

On the free surface dX = dadb and aa—n = —% , since the coordinate direction cis

vertical and out of the fluid, whereas the normal n is positive when directed into

the fluid, as illustrated by Figure 9, which means that

b(x) = ﬂ ¢——a— )z - U <;b——G— ) dadb, (3.41)

The potential must satisfy the free surface condition (3.26). However the right
hand side of (3.41) is integrated with respect to a and b so the surface condition

is applied with respect to the source point is

0? , 0 1 0
da? ‘uRGa Fn2dc

¢ = 0. (3.42)

Applying Green’s theorem in the plane transforms the surface integral into a
contour integral. This can be done either by integration by parts, or, by rewriting
the integrand of the second integral as a mathematically equivalent expression
by adding a zero (a common mathematical device). In this particular case the
equivalent expression will also have a compound term satisfying the composite
free-surface boundary condition and a derivative with respect to a. This
technique is well understood in hydrodynamic circles, but lacks any definitive

reference that recognises the originator of the particular form now introduced.

Choosing the latter approach the expression is rewritten as

condition on G free surface condition

$Ge — GPp. = ¢ (Fn?Goq + Fn?upGy + Go) — G (Fn2ggq — Fn?uppg + ¢c) (3.43)
+ Fnz(Gd)a — G, — .uI’?d)G)a-

Expansion of the right hand side of (3.43) will readily establish the equivalence
stated.
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3 Mathematical model

The steps taken so far are consistent with a conventional approach to the
derivation of a required Green function. However, conditions on G have so far
been limited to (3.28) and (3.39). (3.43) suggests that it is beneficial if G

satisfies:
Fn?Gy, + Fn?upG, + G, = 0. (3.44)
Inserting (3.26) and (3.44) into (3.43) gives
PG — G = Fn* (G — $Ga — tp$G)q- (3.45)

Hence the last integral in (3.41) over the surface becomes

ﬂ ¢——G— dadb— ﬂa(G(pa (gi“_“;*‘p(;)dadb. (3.46)

Substituting (3.46) into (3.41) and applying Green’s theorem in the plane (p. 439
Kreyszig, 2006)

[ G-ty =§ s ray 547

leads to:

e)) —ff ¢——G— )ds — Fn? f(ccpa—cpca—u;ecpc:)db
Ch
(3.48)
— Fn? 35(6% — $Gy — ) db.

Ceo

The last integral is zero due to the infinity condition of (3.39) and the fact that

¢ - 0 as a - . The integral identity in (3.48) describes the relationship between
the potential at the field point and source point if the field point is within the
fluid domain. A similar relationship can be derived for the case where the field
point is on the boundary of the domain, the hull or outside of the domain. The
integration over fluid domain in (3.27) is obtained when the field point is in the
fluid domain, as the integration domain in (3.27) can be shrunk to a small sphere
around the field point see Figure 10. If the field point is on the hull, the
enclosing volume around the fluid singularity becomes a hemisphere, as
illustrated by Figure 10. If the field point is outside of the fluid domain the Dirac

function is identical to zero and thus (3.27) is equal to zero
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3.2 Integral identity

4me? 2me?

Ag
M/("!\\

h

Figure 10 Spherical boundary around the singularity

To combine these three cases the constant C, is introduced so that (3.48)

becomes
G 9 , ,
Ct@ = [[ (95— 652) 4= = Fr § (Geba — B ~ ihpG) db
h Ch

where

1 in the fluid

C, = {1/2 if ais onthe body
0 inside the body

(3.49)

(3.50)

The most common way to eliminate this discontinuity in the value of C, is to

introduce an inner potential ¢! that can be derived in a similar manner, which

gives
i e ¢! 2 i i r i
Cp') = — || (#' 5~ Go—)dZ + Fn? § (Gl — G, — up'G) db
h ch
where
0 in the fluid
C; = {1/2 if ais onthe body
1 inside the body

Adding Equations (3.49) and (3.51) gives

px) = f f (G (bn — BL) — (& — §1)Gy) d
h

(3.51)

(3.52)

(3.53)
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—Fn? 56 (G (e — BL) — (& — §)Go — 1h( — $HG)db

where ¢(a) corresponds to ¢(a) or ¢i(a) for point a outside or inside the hull
surface respectively. It is convenient to modify the water line integral (the last
integral in equation (3.53)). This is done through a coordinate transformation to
a coordinate system based on the unit normal to the hull surface pointing
outward into the fluid n = (ng,, n,,n.) and a tangent t = (t,, t,, 0) (Which is the
tangent unit vector to the water line ¢,). As illustrated in Figure 8. i = (1,0,0) is

the unit vector along the x-axis. This gives the following relationship

b=V i= (n¢n +tp, + nxt ¢d) i=ngpp + e, — nctbd)d' (3.54)

where ¢, is the derivative of ¢ in the t direction and ¢, is the derivative of ¢ in
nxt direction. nxt is a tangential unit vector to the hull pointing downwards. Since

db = t,d?f in (3.53) can be rewritten as

dx) = || (G(Ppy — D) — (¢ — $)G,)dE
f

—Fn? f (6 (na(dn — &1 + ta(be — BL) — ncty(da — B1)) G5
— (¢ = $))Ga — (¢ — )G ) t,de
Defining
Source strength Q(a) as ¢, — P (3.56)
and
Doublet strength S(a) as ¢* — ¢ (3.57)
yields

P(x) = jf(GQ + SG,) d5—Fn? SL(G(na — t4Sp + NetySy) + SG, + upSG)tydf  (3.58)
h Ch

This is consistent with the expression of Baar (1986). The inner potential can be
chosen as ¢; = ¢/h so that the doublet strength, S, is always zero on h. Then the

expression simplifies to
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3.3 Deriving Green function

$(x) = ff GCx, a,1p)Q(a) dE — Fr? 35 6(x, a, 1p)ngQ(@)dy. (3.59)
h

Ch

3.2.2 Pressure on the hull

The pressure on the hull is determined using the non-dimensionalised steady

state Bernoulli equation (3.12)

1 1 1 1
E|V¢|2+p+mz+y§(¢+x)=po tot et (3.60)

The pressure is determined at a constant depth z and the atmospheric reference

pressure p, is set to be zero. The steady state Bernoulli equation becomes
1 1
E|V¢|2+p+u;2(<b+x)=§. (3.61)

Inserting the perturbed velocity potential according to (3.16) gives

1 1
SIVEx+ R +p + ppd == (3.62)
The pressure is then
101 1+a¢2+ a¢2+ N (3.63)
p=3-3|("1+5) +(5) + (&) | e -
The pressure is therefore
20 O 2V 4 ()] - ao (3.64)
P=%x " 2|\ox dy 0z Hr®: '

The pressure force acting on the hull is determined by integrating over the hull

F, = —ff pndh. (3.65)
h

3.3 Deriving Green function

The most common way to derive Green function is to apply the free surface
condition to ¢ which consists of a fundamental solution and an image source,
the function is then integrated over the fluid domain to obtain Green function,

see for example Fiirth (2011). However a simpler approach is to apply a set of
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conditions on G and transform it using a Fourier transform to solve in the

transformed plane and then transform it back. This technique was described in

detail by Wehausen and Laitone (p. 475, 1960). Here the outline by Noblesse

(1981) is followed.

The conditions set in chapter 3.2.1 on G are; the second derivative of Green

function has to equal to the Dirac function according to (3.27), it is bounded by

the condition in (3.45), which is similar to the free surface condition (3.26) but

has a different sign on the Rayleigh damping term. Here it should be noted that

the condition is applied to the space variable x instead of a. Green function must

also satisfy the infinity condition (3.39).

A commonly known solution to Poisson’s equation is
1
4G = - wherer = |x — al.
The fundamental form to Green function can be expressed as
1
476G (x, a, ug) = — + H(x,a,ug),

where H is harmonic in the lower half plane.

VZH =0

(3.66)

(3.67)

(3.68)

Equation (3.67) is inserted into (3.44) to provide the corresponding conditions

for H

+Up—+ —onz=0

dx  FnZoz|r

02+,6+16 _62 , 0 1 0]1
0x2 “Rax Fn2oz| = |0x?

and the following infinity condition is assumed to be satisfied:

H-0as|x—a| > w

(3.69)

(3.70)

This problem can be solved using a double Fourier transform. By transformation,

the Partial Differential Equation in (3.68) will be reduced to an Ordinary

Differential Equation. A double Fourier transform with respect to x and vy is used,

leaving z untransformed. The transform of H(x,y) is designated H(¢,n) and

satisfies:
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3.3 Deriving Green function

_ 1 o o )
AEnzam) =5 [ dv[ @ Hey,zaumdx 3.71)

The double Fourier transform for 1/ris commonly known as

<1) — (l) e—vlz—c|+i(§a+nb) (372)

where

v=JE +712). (3.73)

Transforming equation (3.68), (3.69) and (3.70) leads to:

d’H _

e —viH=0inz<0 (3.74)
d 1 v )
_z2 7 =Tl g = g2 1z " | jve+i(éa+nb) —
& +uRl€+Fn2dZH v[ &5+ ugié Fnze onz=0
(3.75)
H-0asz— —oo. (3.76)
The general solution to equation (3.74) is

H=Ce"? + C,e™"2. 3.77)

From (3.76) it is obvious that ¢, = 0.C; can be determined from (3.75) as

1 '
g[—fz + pgi§ — 1;/2] .
C. = n evc+z(§a+nb)_ (3.78)

17 . v
|62 + it + 2]
n

Substituting (3.78) into (3.77) gives

1
1 . 24— .
ﬁ — _ev(z+c)+1(fa+17b) _ Fn ev(z+c)+l(fa+‘r]b). (379)
v [z — € — urid)
FnZ R

The function H(x, a, uz)can then be found by taking the inverse double Fourier

transform of H. The double inverse transform is defined as

1 o) oo ] _
HOa ) = f dr f deCrm) (5, 2,a, ). (3.80)

Using
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X=x—a Y=y—-b Z=z+4+c r' =X24+Y2+72 X=(X,Y,2) (3.81)

where 7’ is then the distance from the field point to the image source. Then

) 1 1 r® oo evZ—L'(fX+r}Y)
H(X, up, Fn?) = 7—;[_00(117 J-_oo dé = @ — i (3.82)
Inserting equation (3.82) in equation (3.67) gives
1 1 1™ o evz'—i(¢x"+ny')
P2y — 4 = . 3.83
416G (X, g, Fn?) —+ nf_mdnf_mdf = iR ( )

Equation (3.82) is consistent with the Noblesse expression (1981) (when the fact
that a different form of non-dimensionalisation is used has been taken into to

account).

3.3.1 Double integral representation

The early work by Havelock (1932) relates to potential flow with Rayleigh
damping. His derivation of a Green function for potential flow is most widely
used (Baar, 1986). The benefit of Havelock’s method is the fact that it includes a
viscous damping parameter. However, Noblesse’s (1981) derivation of Havelock’s
expression is easier to follow and hence it is adapted to this problem. The main
drawback of Havelock’s formula is that when the Green function is separated into
near field and far field components, the lower limit on the far field integral
makes it impractical to evaluate the function using Bessel functions. Baar
recommends to use the Peters (1949) formulation. However Noblesse’s (1981)
method to derive the Peters formulation is very hard to adapt to include Rayleigh

damping.

The Rayleigh damping has another benefit, besides modelling the damping
behaviour of the wave profile, it will remove the singularity associated with this
Green function. This will allow for the double integral to be evaluated without

separating it into two single integrals.

The procedure below follows the approach of Noblesse (1981), but with added
Rayleigh damping. The challenge is to simplify and integrate the integral in
(3.83). To achieve this, the integral is expressed in cylindrical coordinates. There
are two main benefits to using cylindrical coordinates. Firstly, it simplifies the
integration of the double integral since only one of the integration limits (the
radius) will be infinitely large. Secondly it simplifies the procedure of separating

the double integral into near field and far field wave contributions. There is a
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3.3 Deriving Green function

strong correlation between the computational time and the range of integration

(Hearn, 1977), it is therefore very beneficial to limit the integration range.
Initially let
& =vcosO and n = vsinf (3.84)

hence Green function (3.83) is then expressed as

ev[Z—i(Xcos9+|Y|sin9)]

(3.85)

1 1 1" *©
AnG(X,up) =——+———| db d - .
G (X, k) r+r’ nf_ﬂ fo v V[v— (v2cos?6 — upivcosd)Fn?]

Here it must be noted that the absolute value of ¥ must be used due to symmetry

reason.

Noting that [v — (v2c0s?8 — ugivcos8)Fn?] = —v cos? 8[vFn? — (sec?8 + iupsecFn?)],

the function can be expressed as

3
1 1 1172
MG (X, h) =~ 4+ f ? 18, x', Fr)sec?0ds. (3.86)

The integral 1(6,X, ug) is

© v[Z-i(XcosO+|Y|sinB)]

e

1(6,X,up, Fn) = dv. 3.87
( Hr, F) fo vFn? — (sec?6 + iugsecOFn?) v ( )
The integral in equation (3.86) can be separated into two integrals
4G (X, iy, Fn) = 1+ !
TR M P = T
1|z 3n (3.88)
+; nt(H,X,Fn)SeCZGdH +.L 1(8,X, Fn)sec?6d8|.
Introducing ¢ = 6 —  in the last integral leads to
4G (X, iy, Fn) = 1+ !
oA, fgo £ = ror
™ (3.89)

fil(e,X, Fn)sec?6do +fif(1/),X, Fn)sec?ydy |,

1
+ —
I

where T is the complex conjugate of I. This gives the double integral
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1 1
AG (X, up, Fn) = ——+ —
G (X, pg, Fn) St
2 (2 o eV[Z-i(Xcos6+|Y|sing)] (3.90)
TR d 20d6.
nf_% efo VFnZ — (sec?0 + pipisecOFn?) vsec

This means that Green function can be written as

eV[Z—i(Xcos9+|Y|sin9)]

Vs
1 1 2 N
476G (X, ug, Fn) = _;+F+5Refnf dvdd. (3.91)
—=Jo
2

vFn2cos?0 — 1 — upicos6Fn?

The double integral is normalised with respect to the Froude number so that the
convergence of the integrals can be determined independently of the speed. The
double integral, D, can be normalised using the following speed independent

normalisation:

X Y Z
p = VFn?, x’=F_nz' yl:F_nz' ZI:F_nZ' pg = upFn? (3.92)
so that
D= 2 j-n/z J-oo ep[zt—i(xrcose+|yl|sin9)] dod = DI (3 93)
"mFn? ), )y peos?6 — (1 — pgicos6) Pav = Fnz '

The double integral in the Green function above has a major benefit compared to
conventional methods. The location of the pole is off the real axis because of the

damping as seen in Figure 11.

Im
pole

s

3] cosejr
: » Re

Figure 11 Location of the pole in the complex p-plane

A damping influence that is used to describe a physical phenomenon has a
mathematical benefit; it enables direct integration without further algebraic
manipulation. Conventional Green function definitions will have the pole of the
double integral on the real axis, which makes the integration without further
algebraic modifications very difficult. Next it is needed to divide the Green
function of (3.91) into near field and far field parts, just as undertaken by
Noblesse (1981), Baar (1986), Baar and Price (1988a, b) and Newman (1987b),
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3.3 Deriving Green function

which is a common convenient way to facilitate integration of the double integral

when it includes singularities.

However, there are benefits to separating the double integral into two single

integrals. Single integrals are much faster to evaluate numerically.

3.3.2 Single integral representation

The double integral in (3.91) can be separated into two single integrals. This is
usually done in the case with no Rayleigh damping since the integral would
otherwise be singular. However there are benefits in using two single integrals
even with Rayleigh damping since single integrals are faster to evaluate
numerically than double integrals. Green function will then consist of a source
part, and image source part, a near field disturbance and far field disturbance
(Baar, 1986, Baar & Price, 1988a, Eggers et al, 1967, Noblesse, 1981). Green

“lG(‘r! ‘l!.uR!I n ) I 2 [N(’r MuR) “ (’r !.uR)]' (E E )
1 1 1 n

The double integral, D; can be rewritten as:

2 /2 © ep[zl—i(xlcosa+|yl|sin6)]
DI = _j Ref
0

sec?0dpd®.
T —-m/2

1 Uri (3.95)
P (00529 - cosG)

Firstly a variable substitution is needed
T =tanf = dT = sec’6d6 and sec?6 = (1 + T?). (3.96)

The double integral in (3.95) is reduced to a single integral by analytically

integrating the inner integral. Secondly double integral is rewritten as:
2 oo
D; = ;J Rel' (T, x")dT, (3.97)

where

—1/2]

o ep[z'—i(x’+|yl|T)(1+T2)
I = f dp. (3.98)
o p—((1+T2) +pgi(1+T2)1/2)
is the complex integral along the real axis in the complex plane
p=prt+ip;. (3.99)
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Instead of integrating along the real axis, a pie shaped contour is used as seen in

Figure 12.

Y
\
®

Figure 12 Integration contour in the complex plane

There are two possible integration routes, one with a positive and one with a
negative radial line as seen in Figure 12. The integration along a closed contour
in the complex plane is zero if the contour does not contain a pole. If the contour
contains a pole the integration will yield the residue according to Cauchy residue
theorem. This means that the contour integration can yield a residue in the
upper half plane but not in the lower half plane. On the circle sector the
integrand will go towards zero when p goes towards infinity in accordance with
Jordan’s Lemma. Since the contour integral is zero in the lower half plane and the
integral along the circle sector is zero the integral along the real axis must be
equal to the integral along the radial line. There is no sign difference since the
integral along the radial line is integrated from oo to 0 and the integral along real
axis from 0 to . In the upper half plane the pole can be either inside or outside
the closed contour depending on the argument of the radial line and the pole as
seen Figure 13. If the pole is outside the same argument as for the lower contour
will apply and the integration along the real axis becomes the integration along
the radial line. If the pole is inside the contour the closed contour integration will
yield a residue. The integration along the real axis then becomes the integration
along the radial line plus the residue. The integration along the radial line will be

the near field disturbance and the residue will be far field disturbance.
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3.3 Deriving Green function

Pi

(05} @

- =pr

Figure 13 Magnification of the first quadrant with pole

The integral must be bounded which means that
Re[z' —i(x' + |y'IT)(A + T?)™2]p <0 as|p| - . (3.100)
The location of the radial line is selected to reflect the requirement
Im[z' —i(x' + |y |IT)A + T ?|p = 0. (3.101)

(this is freely chosen but (3.101) will turn out to be a beneficial choice). Inserting
(3.99) into (3.101) gives

(" +1y'IT)
pi=——"—"—7Pr (3.102)
z'(1+ T2z

Inserting (3.102) into (3.99) gives

i(x"+1y'IT)
z’(1+T?)2
Then letting
or=—27'c (3.104)
gives
- ! + ! T
P=[_Z'_w o where g = 0. (3.105)
(1+7T?):2

This has the benefit that the location along the radial line can be described using

only one variable o. The exponent in I’ (3.98) is rewritten as

1

[Z, LG+ 1y
(1+7T2)2

1
(1+7T2)2

[, i +1y'IT)
p=|2 ——————

_p A YID] (3.106)
A+ T2)1/2
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x'+ |y'|T)?
= e ST
(1+T?

along the radial lines and

dp = [—z' w] -

(1+T2)2

The inner integral (3.98) becomes

lz+(" +ly'|r)* - L ,
R X[_Z,_zoc 1y,
(1+T72)2

1'=f0m
|

(1+7T32)2
The denominator and numerator are multiplied with
[z — i + YT+ TH~?].

The inner integral then becomes

(x G+ 1y'IT)* IT)?

(x"+]y'|T)
T e

I =J.oo Z’2+ (1+12)
0

o (]2  EHVID]
2 (1+72)

—(Z@+TH + pp(x' +1y'1T)

+ i[upz' (1 + THYZ2 — (x' + |y'|IT)(1 + Tz)l/z])> do

This can be simplified using the following substitution:
t=[2%+ &' +1y'IT)?/(1 +T?)]o,

so that

I =J —e "
0

x (—T _ (z'(l T2 —i(x + |y |T)( + T2)V/?
+ g [z’(l FTI—i(x + |y’|T)])> dr

This is the same as
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3.3 Deriving Green function

oo e—T
I =f0 T+Xdr. 3.113)

Here

x =20 +TH+p(x" +|y'IT)

(3.114)
+i[upz (1 + T2 — (' + |y'IT)(A + TH)V?].

This integral has similarities with the exponential integral E; (5.1.1 Abramowitz &
Stegun, 1964). A new variable substitution is needed to express the integral of
this standard form. This will simplify the evaluation of the function. The

substitution A= 7 + y is used to get

o . —A
' — pX -
I'=e fx —dn. (3.115)

Using the integral expression (5.1.1 Abramowitz & Stegun, 1964) gives
I' = eXE; (). (3.116)

As mentioned before this is the case in the lower half plane. In the upper half
plane the residue must be taken into account. The radial lines are described by
(3.103), the radial line in the first quadrant has a positive imaginary part and the
radial line in the fourth quadrant has a negative imaginary part. The sign of the

imaginary part depends on T so that

r

x
—0<T< _Iy_’l is the positive radial line (3.117)
and
xl
i < T < o isthe negative radial line. (3.118)

However as mentioned before, the pole does not have to be inside the contour in
the upper plane. The pole is inside of the contour if a, > a; as seen in Figure 13.

The equation for the radial line is

Pi x'+[y'IT

b TG e
And the pole, upon reverting to (3.98), is:
po = (1 +T?) + ugi(1 + T?)Y2 = py,. + ipy; (3.120)
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and

Poi Hr

G =— ="
Yo 4TV

(3.121)

The pole is inside the contour if

Pi _ Poi x'+|y'|T Lig
Pr >P0r :z’(1+T2)1/2 ~ (14 T2)V2 (3.122)
This gives
I < e (3.123)
since z' is always negative. The pole is therefore inside the contour if
x' pgz’
T T (3.124)

<0

Since T must satisfy both (3.124) and (3.117), where if (3.124) is satisfied (3.117)
must be satisfied as well. The residue for the simple pole with respect of the
singular integral in (3.98) is (18.7 (1) Priestley, 2003)

Res(I': (1 + T?) + pgi(1 + T?)Y/?) = 2mieX. (3.125)

Here the exponent y is given by (3.114). The residue is included when the pole is
inside the contour and is excluded otherwise by using a Heaviside step function.
Then (3.116) becomes

1'=eXEl(X)+HS<—I’yC—,|+’I‘;—,Z|—T>2mex (3.126)

where H; is the Heaviside step function. The double integral in (3.97) has then

become the single integral

2 [ee] ! 14
D,=—f Re( eXEy(p) + Hy | = + 582 — T | 2mie | dT. (3.127)
TJ_o 'l 1yl

Now the double integral can be split into two single integrals according to (3.94).

The image source term is sometimes included in the near field disturbance.
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3.3 Deriving Green function

However, here the near field disturbance is only the single integral over the

standard function E;. The near field and far field disturbance is then

2 (0]
N g) = = f Re{eXE,(;)}dT (3.128)
2 (o] xl #RZ, )
W(x',,uR) ZEJ- Re <HS <—|y—,|+m—T> 27'[16)() dT. (3]29)

The far field or wave like disturbance W can be rewritten using the relationship
Reiz = Imz since Re(i(x + iy)) =Re(ix —y) =—y (3.130)

to give

[oe] xl HRZI _
W(x', ug) =4j Im(HS (_Iy_’l+ V] —T)e’f)dT. (3.131)

Since the step function is zero when T > _|;_’|+ IT;_'ZV the integral only has to be
evaluated up to this limit. So
x'  upz'

T T
W(x, ug) = 4f VW pn(et)dr. (3.132)
Here y is the complex conjugate of y.
1 1
7= +THZ +ug(x’ + |Y'T) +i [(x' + 1y |ITYA + T2 — ppz'(1 + TZ)E]. (3.133)

The integration limits can be changed using T = —T to give

(oo}

!

WX, 1g) = 4fx - Im <e(1+T2)Z’+ﬂR(X’—|yl|T)+i[(x’—|y’|T)_NRZ’](:H'TZ)E) daT. (3.134)

A

To determine the derivatives it is noted that

oW oW ow N N oN

ow _w _ IN_IN g2 3.135
ax Cox Mgy Ml g =ax T g ( )
oW _ow _ oW ON_ON__ 0N (3.136)
ay oy Moy Mo Tay T 5y :
oW oW aw  ON oN aN

ow _w _ N _ g2 3.137
9z "oz Mgy ed g Tz T g ( )
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To differentiate under the integral sign Leibniz’s rule is used (p. 137 Rade &
Westergren, 2004)

a

d f Fx,t) dt f 9 podt — Foou) ™ (3.138)
- X, = —_— X, — X, U)—. .
dx ) w(x) ox dx

. d d d .
Applying (3.138) to W for el and — gives

W, ug) 4 [ , 1
T | M [uR +i(l+T )2]
'l 1yl (3-' 39)

1
X e(1+T2)Z’+#R(X’—|y’|T)+i[(X’—|y’IT)—uRZ’](HTZ)Z} dT

W, u) 4 N , L
oy~ zs9n0) f_ i e + i+ 72

' 1y (3.140)

1
¢ (1T +ur ('~ T) il e/ |y |7 )-ude(l”Z)E} dr

ow(x',ug) 4 (©

1
—_ 2y . 2 2
5 Fn? ) et Im{[(l +T%) — pgi(1 +T2) ]

' 1yl (3]4])

1
¢ ¢(1T2)z"+1un (e’ Ly )i~y |7 Lwr](lﬂzﬁ} dr.

Because the last term of (3.138) is zero since W (x', ug, T) becomes
W(x', up, x'/1y'| -urz'/1y'l) and Im{W(x', ug, x'/1y’| - urz'/1y’1)} = 0. It is beneficial to
express the near field disturbance, N as a function of y as well. Hence the

following relationship is used

Re[eXE,(x)] = Re[eXE;(x)] and eXE,(x) = e*E;(}) larg(D)| <m (3.142)
so that
N, up) = g [ Re{eXE,(7)}dT, (3.143)
where j is determined according to (3.133).

It is also seen that for the near field disturbance, the absolute value of y’ is not
needed since for y' > 0 it makes no difference and for y’ < 0 the negative sign can
be removed yet again using T = —T. However it must be remembered that for
symmetry reasons (since the lower limit is infinite in the wave like disturbance)

the absolute value of y' must be used in the far field disturbance. The expression

50



3.3 Deriving Green function

for the near field disturbance (3.143) and the wave disturbance (3.134) are equal

to the expressions for the Havelock formula by Noblesse (1981) if uz = 0.

The derivative of the near field disturbance is obtained using the product rule.

For the standard function E; the derivative is

E’1()?) = Eo()?) = _87-

The derivatives of the near field disturbance (3.143) are

6N(x" .u-R) _ 2
ox " nFn?

[ Refling + 11+ 79 21eX (5, G ~ Eo ()T

ON(x',ug) 2
dy "~ mFn?

fooRe{[yRT +iT(1 + TA)Y2]eX(E, () — Eo())}dT

ON(X',pg) 2
0z " mFn?

fooRe{[u +T?) — ppi(1 + THY2|eX(Ey (%) — Eo (7)) }dT.

With the use of (3.144) the derivatives are simplified to

ON(x',ug) 2
0x T mFn?

j_w Re {[MR +i(1+T2)Y?] (e’_fEl()Z) - )lz)}dT

ON(x',ug) 2
dy ~ mFn?

j_w Re {[/,LRT +iT(1 + T?)'?] (e’_fEl()Z) - %)} dr

ON(x',ug)
0z © mFn?

J_OO Re {[(1 +T?) — pgi(1 + T?)/?] (e’?El()Z) _ %)} dT.

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)
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4 Numerical theory and implementations

Green function and its derivatives need to be evaluated for a large number of
field- source point relationships. Thus, the formulation of an efficient algorithm
for numerical calculation is of utmost importance for practical use of the

calculation scheme.

To apply the method discussed in the previous chapter a discretisation of the
body is needed. The aim is to modify the continuous integral equation (3.59) into

a discrete form.

4.1 Discretisation

The disturbance potential of the flow about a moving ship is expressed in (3.59)
in terms of a continuous distribution of Kelvin wave sources over the mean hull
surface. Two types of discretisations are used; thin ship approximation and a
panel method. Thin ship theory is only applicable to thin and slender ships but is
much less complex and requires less computational time. Thin ship theory will
approximate a 3D body as a 2D body and therefore only use 2D panels. A panel
method using 3D panels can be used on both slender and fuller bodies but it is
computationally much more demanding. Schematic pictures of a 2D and 3D

panel are illustrated in Figure 14.

Q_Odes_ Collocation points

o /' b —e—o
y 2D panel
C, O
3D panel

Figure 14 3D and 2D panel

4.1.1 Thin ship approximation
Michell (1898) developed thin ship theory. The theory is powerful since the

manner in which the wave profile along the hull, the pressure on the hull, the

hydrodynamic lift and pitch moment, sinkage, trim, drag and the wave pattern
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can be determined using only sources distributed on the centre plane, meaning
that a 3D problem essentially becomes a 2D problem (Noblesse et al, 2009). The
local source strength is proportional to the change of geometry of the hull in the
x direction (Faltinsen, 2006). Michell’s theory is exceptionally simple and robust
when it comes to evaluating steady flow around a ship and it is the most widely
used theory for determining wave resistance (Noblesse et al, 2009). Thin ship
theory places the sources on the centre plane only so that equation (3.38)

becomes

a
ox) =— J-f G(x,a,u&)%d& 4.1)

centre plane

Since there is no inner domain, the hull is just its centre plane, the source
strength becomes
¢
,b) = —. 4.2
Qa,b) == 4.2)
It is assumed that when the hull is divided into panels, Green function is
relatively constant over each 2D panel (the difference between the node point

and control point for each panel is very small) so that

b(x) = — Z G(x, a 1) f 0(a, b)dadb. 4.3)

panel panel

The panels are a discretisation of the centre plane. The methodology outline
presented next follows the approach of Faltinsen (p. 110, 2006). Hull integrity
means there will be no flow through the hull, as stated in (3.1). The derivative
along the normal vector can be expressed as

9 9 9 9
AU L L 4.4
an_ Mg Ty T e (4.4)

The Neumann boundary condition in (3.1) combined with the defined

perturbation potential of (3.16) leads to

f L5y ap ap dap
= =— — — — . 4.5
0 In ng+n, 7a +ny b +n, 3 on the hull surface (4.5)

The unit normal n = (n,,n,,n.) is positive into the fluid domain. (4.5) can be

simplified using the slenderness of the ship geometry. In particular one ship
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4.1 Discretisation

dimension (hull length) is distinctly larger compared to the draught of the ship

and hence, see Figure 15 and Figure 16, follows that n, << n, and n, << n,.

[ N
Hull waterline y t»x a
z
Hull longitudinal
9 LX

profile

Figure 15 Normal to hull surface in horizontal xy- and vertical xz-plane

The ship is also assumed to be thin, so that n, << n, and that n, = +1, for

positive and negative y values respectively, as illustrated in Figure 16.

Figure 16 Transverse section of hull showing the normal in yz-plane

The unit normal to the hull surface is therefore

e (6ys 1 6y5>, (4.6)

da’ = dc

where both dy,/da and dy,/dc are very small. Here y, is the expression for the

hull shape in the y direction.

The dominant terms within (4.5) are therefore
ng=1— (4.7)

since V¢ is small. The sign of n, depends on what side of the centre plane one is
considering. This means that the flow outwards from the ship in the horizontal

direction is:
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06 _ 9% (4.8)

on the 2 sides of the hull. Fluid appears to be either pushed out or sucked in
depending on the sign of dy,/da. Because dy,/da is positive in the bow region
fluid is pushed out there and the opposite occurs in the stern region. The source
strength is determined depending on the mass flux. The source strength of a
single source is equal to a continuous source distribution with source density
Q(a,c) flowing through an area dadc. A sphere with radius ¢ so small that it only
includes one source is illustrated in Figure 17. The mass flux through the sphere

is the same in any direction.

— <
\J
X

Centre plane

Figure 17 The mass flux from one source on the centre plane

This means that the mass flux through an area dadc must be

j j @)

for further details see Faltinsen (p. 111, 2006). Hence the velocity potential of

(4.3) becomes

o(x) =G(x,a,up)2 f da f —dc, (4.10)

X0 Z1

where x, is the forward edge of each panel, x; the aft panel edge, z, the panel

edge closest to the free surface and z, the deepest panel edge.

4.1.2 Panel method

The method described in the previous section is inadequate for fuller shapes,
which represents the majority of ships. In the panel method the discretisation is
done by describing the object as a series of panels. The mean hull surface his
divided into triangular or quadrilaterals panels, these are identified by their area
Ah; and the collocation points x;. For simplicity an ordinary panel method is used,

which means that each panel has no curvature. The panel with the collocation
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point is numbered i (field panel) and the panel with the source point j (source
panel). Each panel has the collocation point at the centroid. The potential at the
collocation point is determined by integrating the source strength and Green
function over the hull according to (3.59), for a submerged object the surface

line integral can be neglected so (3.59) becomes

p(x) = ff GCx, a,17)Q(a) dE. 4.11)
h

To determine the unknown source strengths, Q, the boundary condition (3.1) is

used, inserting the perturbed potential (3.16) in (3.1) gives

d¢
o = aon the body. 4.12)

Applying the boundary condition in (4.12) to the potential in (4.11) gives
aG(x' a'.uR)
= || —= = 4.13
x ﬂ oy @z, ( )
h

where (4.13) is satisfied at the centroid on each panel. A source is placed at each
collocation point. The integral identities in (4.13) can be written in discretised

form
N
ZlijQ(aj) = n,(x;) (4.14)
=1

where

ff aG(x“ “R) (4.15)

Ah;

I;; is the influence matrix that describes how the sources influence the flow in the
normal direction to the panels. Q is obtained by solving (4.14). The derivative

with respect to the normal is

aG(xu ”R)

=VG-n (4.16)
on

where
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1 1 1
VinG = —V—+ V= +—[VN + VI/] “4.17)
T r' Fn?
and
1 a—-x b—-yc—z
—= 4.18
vr ( r3 ' r3 7 3 > ( )
1 a—x b—y —z—c
— = 4.19
Vr’ (r’3 T3 3 ) ( )

and the derivative of the far field and near field disturbance is calculated
according to (3.139) to (3.141) and (3.148) to (3.150) respectively. The first
terms in the Green function 1/r and 1/ are integrated analytically over the panel
according to Price and Tan (1987). To determine the pressure in (3.65) ¢ is
determined according to (4.11) and V¢ is calculated by differentiating (4.11)

Vo(x;) = ﬂ VG (x, a,ugz)Q(a) dz, 4.20)
h
and the discrete form is
N
Vo (x;) = ZJijQ(aj)v 4.21)
j=1
where
Jij = ﬂ VG (x;, a;, ug) dE (4.22)
Ahj

and VG is obtained from (4.17).

It is problematic to evaluate the Green function when the source point and the
collocation point are on the same panel. Since 1/r and 1/r" are integrated
analytically the problems associated with numerical integration of the
singularities are avoided. However, the single integrals cannot be evaluated
numerically at x' = y' = 0 because of the assumption made when integration is
along the radial line instead of along the positive axis (see (3.117) and (3.118)).
There are two possible approaches to generating a solution, either rework the
derivation of the single integrals for the case when x' = y' = 0 to get special

case single integrals, or, when the collocation point is on the same panel, four
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one point Gaussian quadrature are adopted as shown in Figure 18 to evaluate the

contribution of the two single integrals.

Source points Field point
N '\_'\.\ /
O NN \.\ / O
N\ 4 a //
\_\ ) ’6
« X
[ ] [ J
¢ O

Figure 18 Evaluation points for the single integrals

4.2 Behaviour and limitations of the double integral

To numerically evaluate the double integral of (3.91) and its derivatives is
problematic, especially for the case with no damping. The pole will then be
located on the real axis. The closer to the real axis the pole is, the more

challenging the integral will be to evaluate.

Firstly the behaviour of the integrand is investigated. To capture the oscillatory
behaviour the integrand must be evaluated close to where the denominator is
zero (see Figure 21), however it cannot be evaluated when the denominator is
zero. The maximum computed value of the integrand depends on the number of
sections; a finer discretisation gives higher values of the integrand, because it is
evaluated closer to the pole. The double integral cannot be evaluated if the
denominator is zero which can happen only when u; = 0. Here the sections in the
one point Gaussian quadrature are spaced so that the integrand is not evaluated

at pcos?6 = 1 when puj = 0.

To illustrate the behaviour of the integrand, values of x’ are selected based on
the example of a crude ellipsoid discretisation provided in Figure 19. Typical
distances between field and source points are shown in Table 2. The distances in
Table 2 are used to show the behaviour of the integrand. For the convergence

study distances are normalised with Fn? = 1.
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Table 2 Typical distances between field and source points

Panels X' y' z'
red 0 0.0075 -0.5221
purple -0.9773 0 -0.4934
green 0 0 -0.5040
cyan -0.9773 0 -0.5040
yellow -1.1287 0.0427 -0.4613

Figure 19 Crude ellipsoid translated with location equal to -0.252 in z-direction

The integrand behaves similarly for all values x’,y’ but it decays more slowly if
z'is small. The integrand will approach zero as p increases, the location of areas
where the values of the integrand are greater than 0.1% of the absolute

maximum value of the integrand is shown in Figure 20.
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p
: 80
; ; >80%
i 1o
P 30
E ’ 50%
{560 N T S I S >10%
AR : e[
' .. =1%
330
. >0.1%
300

270 Integrand value relative
to maximum value

Figure 20 Spread of values between 0.1-100% of the maximum function value
x'=(-0.1287, 0.0427,-0.4613)

The values of p and 6, where the denominator in (3.93) is zero i.e.

pcos?0 — (1 — pgicosh), is seen in Figure 21.

Figure 21 Values of p and 8 corresponding to a zero denominator

The real part of the numerator of the integrand can be split into two functions
D, = eP? (4.23)
D, = cos(x'cos(8) + |y'Isin(8)), (4.24)

which are shown in Figure 22.
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iy x'=0 y'=0.0075 z'=-0.5221[1
------ x'=-0.9773 y'=0 7'=-0.504
----------- x'=-0.1287 y'=0.0427 7'=-0.4613
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Figure 22 Functions D, and D,

From Figure 22 it is clear that the numerator of (3.93) is small when D is small
given that uz = 0. D, is shown for different values of z' in Figure 23.



4.2 Behaviour and limitations of the double integral
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Figure 23 Function D, for different values of z’

The marked points in Figure 23 correspond to where the value of D; becomes

less than 107, the star marked points are tabulated in Table 3.

Table 3 Values of p when (4.23) is less than 10® with a discretisation of dp = 0.1

z' < p=
-0.01 1151.3
-0.02 575.7
-0.05 | 230.3
-0.07 164.5
-0.1 115.2
-0.5 23.1
-1 11.6
-2 5.8

A larger p,,.. is required when the submerged body is approaching the free

surface, as seen in Figure 23 and Table 3. It is necessary that |z'| = 0.01 p,,0 =

63



4 Numerical theory and implementations

1150 for the integrand to be less than 10°. This means that the minimum
distance between the centroid of the top panel and the surface is 0.005. Since
7' is normalised with Fn? this submersion corresponds to between 1.28:10*L and

1.352:10°L for Froude numbers ranging from 0.16 to 0.52.

Based on Table 3, three typical values of p,,,, are defined for the double integral

as seen in Table 4.

Table 4 p__ for far field disturbance

1Z'l = | Pmax
0.5 23
0.05 | 230
0.01 1150

The error is determined by setting ny to 300 and n, = 125p,,,, and then doubling
Pmax 10 determine the change in dD,;/dx and D,. ny is the number of sections in

the one point Gaussian quadrature for 8 and n, for p. This process is illustrated

in Figure 24.

Figure 24 p__ is doubled from the yellow to include black area as well to determine the
error

The maximum difference for % is 0.21% when p,,,, is doubled for the crude

ellipsoid discretisation in Figure 19. For D, the maximum difference is 9- 107> %

when p,.., is doubled.

4.2.1 Limitations of the double integral
The numbers of summation steps in the one point Gaussian quadrature, n, and

ny need to be large enough so that the integral converges. However, the

computational time will increase with increasing n, and n,. It is clear from Figure

20 that it would be beneficial to space the evaluation points in the one point
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4.2 Behaviour and limitations of the double integral

Gaussian quadrature more densely around the integration area where the
denominator is close to zero, which is showed in Figure 21, but without

evaluation of the function at the pole itself.

The main problem with the convergence of the double integral for zero damping
is the singular behaviour of the integrand. However, a finer discretisation does
not always lead to evaluation points closer to the pole as seen in Figure 25. This
limits the possibility to evaluate the double integral using a uniform

discretisation.

A single integral approach is favoured from a numerical efficiency point of view.
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4.3 Evaluation of the single integrals

No experimental validation of a numerical method can be convincing however
good it is if consistency and the accuracy of the numerical method have not been

established independently.

To numerically evaluate the single integrals in (3.134) and (3.143) and their
respective derivatives, the infinite integral limit is replaced with a finite limit T,,,.
The integral is divided into n; sections and the contribution from each section is
evaluated using a one point Gaussian quadrature. This means that the far field
integral is divided from x'/|y'| — ugz'/|y’| to T4, into ny sections that are
calculated independently. The near field integral is divided into 2n, sections from

_Tmax to Tmax .

The behaviour of the integrands are examined to determine the convergence of
the single integrals. The closer to the real axis the pole is, the more difficult the
integrand will behave. Therefore the case when puj is zero is used to determine
the convergence. All other values of u; will yield a more regular integrand. The
solution must converge both for small and large x'. Smaller values of x’ such as
when the source point is close to the field point, are used to calculate the
pressure on the hull and large values of x’ are used to determine the wave

pattern.

Both the far field and near field integrands and their derivatives approach zero as
|T| - o. It is important to determine a suitable T,,,, so that the integrand is small
enough that further summations would not change the result. This is determined
by not allowing the value of the integral to change more than 0.5% if T, is
doubled.

The number of summation steps n; will ultimately determine the speed of the
calculation. However, this is linked with the value of T,,,, since a larger n; is
required for larger T,,,, in order to keep the same resolution as shown in Figure
26.
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T

Figure 26 T __and n_

4.3.1 Convergence of the far field integral
The far field integral in (3.134) with ug = 0is

we) =4, m <e<l+ﬂ>z’+i[(x'—|y'|r>1(1+r2>%> ar. (4.25)
il

Taking the imaginary part gives

W) = 4 f et i (16 =y 1mo1a + 7232 ar. 4.26)
4

The far field integrand can be split into two functions

Wine = €70 sin (10 = 1y 711 +72)2) = W, - 4.27)

here
w, = e(1+T2)Z’ (428)
W, = sin <[(x’ —yTIA + TZ)%). (4.29)

For surface piercing bodies z' < 0, but for submerged bodies z' < 0. T is the
integration variable and x'/|y'| < T < T,,4,-The exponent of W, is always negative
since z' < 0. W, is approaching zero when the absolute value of T is

increasing. W, is an oscillating function and —1 < W, < 1. Figure 27 shows

Wi, Wi and W, for the values of x' for the red, green and yellow panels in Figure
19. The integral is zero when y' = 0 and x' # 0, since the lower limit becomes
positively infinite, and hence the upper and lower limits of the integral are equal.
When the exponential part of the integrand of W, has reached the tolerance level
the total integrand W, will also be below the tolerance level since [W,| < 1. The
maximum value of the near field and far field combined is less than 10.

Therefore it is a reasonable assumption that when the value of W, is < 1075
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further summation is not necessary when computing the value of the far field

integral and its derivatives.
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W, is shown for different values of z' in Figure 28. It is clear that the decay is fast.

Tmax depends on the value of z', W, (z',T) and W,(x',y',T).

1 T T T T T

*

10

-0.01
-0.02
-0.05
=-0.07

Figure 28 The function W, for different values of z’

The marked points in Figure 28 correspond to where the value of W, becomes

less than 107, the star marked points are tabulated in Table 5.
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Table 5 Values of T when (4.28) is less than 10° with a discretisation of dT = 0.1

z'= T
-0.01 34
-0.02 | 24
-0.05 | 15.2
-0.07 | 12.8
-0.1 10.7
-0.5 4.7
-1 3.3
2 2.2

A larger T, is required when the submerged body is approaching the free
surface as seen in Figure 28 and Table 5. Convergence for |z'| = 0.01 is
established at T,,,, = 34. This means that the minimum distance between the
centroid of the top panel and the surface is 0.005. Since z' is normalised with the
Froude number squared, this submersion is between 1.28:10*L and 1.352-103L

for Froude numbers ranging from 0.16 to 0.52.

Based on Table 5, 3 typical values of T,,,, are defined for the far field disturbance

as presented in Table 6.

Table 6 T for far field disturbance

'l 2 | Tnax
0.5 5
0.05 |15
0.01 |35

The error is determined by setting n; to 3007,,,, and then doubling T, to
determine the change in W and its derivatives. For the submerged ellipsoid,
illustrated in Figure 19, the maximum difference for W and W /dx does not
exceed1.47%. In evaluating the integrals of these quantities any section that

provides a contribution that is less than 10* are excluded.

4.3.1.1n; for W and its derivative in x-direction

The pressure is calculated according to (3.64) the leading terms are the far field

and near field and its derivative in x-direction. The number of summation steps
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4.3 Evaluation of the single integrals

in the one point Gaussian quadrature, n; needs to be large enough so that the

integral converges. The computational time will increase with increasing ny.

A percentage difference is used to determine the error. The percentage error is
determined with n; = 10000T,,,,, as a reference solution. This is done since no
“true” value is available for comparison. The percentage error is seen in Table 7.
It is clear that n; = 10T,,,, is sufficient to determine oW /dx to within a tolerance

of 1% of the reference value.

Table 7 Percentage difference depending n_

ne %6_W
Tnax ox % W

5 1.6543 1.5763

10 0.4169 0.3968

15 0.1858 0.1769

20 0.1045 0.0994

50 0.0171 0.0161

4.3.2 Convergence of the near field integral
The near field disturbance in (3.143) with uz = 0 is

N(x') = % J * Re(e?E, (D)}dT (4.30)

where
7=A+THZ +i[x' +y'TI(1 +T?)V2 (4.31)

The near field integrand for the selected panels in Figure 19 are shown in Figure
29, the near field is integrated from —o to o, but only the positive side is shown
in Figure 29. Changing the sign of T in (4.31) is the same as changing the sign of
y so the behaviour of negative T for negative y is the same as the behaviour of
positive T for positive y. The near field for the green panels is very similar to the
near field for the red panels (see Figure 19); the only difference is that the

imaginary part is zero.
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Figure 29 Near field integrand




4.3 Evaluation of the single integrals

The standard function E; is evaluated using a Taylor expansion for the special
case around y’ = 0. For small arguments (small y) a series expansion (5.1.10,
Abramowitz & Stegun, 1964) is used and for larger arguments a continued
fraction (5.1.22, Abramowitz & Stegun, 1964). For further information on the
evaluation of the exponential integral see Pegoraro and Slusallek (2011). To
determine when the integrand approaches zero only the case when T is large is

of interest. The continued fraction is

7) — _)7 - - = —
E.C)=e ()Z+1+)Z+ g )?+m) (largx| < m). (4.32)
Inserting (4.32) in the integrand in (4.30) will eliminate the exponential part and
only leave the continued fraction

N, = Re {(Lliﬂi )} (n=1). 4.33)

X+1+x+ 1+ y+°
¥ is complex and the real part is negative since for submerged bodies z' < 0. To
limit the continued fraction an inequality is used, this must be done using the
absolute value since the function is complex, since n = 1 and without loss of

generality it is assumed that

71 li ! cm
_ n = m n =L
T S (4.34)
X T X T+
1
1
By induction:
|Cm| <|X_|—_1, (435)
sinceifm=1
| ! |< ! (4.36)
el +1l el -1 '

Assume that if m = m, (4.35) is valid, then must
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o™+ = | 1 | < 1 < 1 _ 1
x+cmoxl —|cm 17l — _1 xldxl =1 -1
Ll =1 Xl =1 (4.37)
_ Ll —1
[x1?2 = lxl =1
(4.35) is satisfied if
xl—1 1
< : 4.38
P17 -1 Iz -1 (4.38)
which hold true if
Izl > 3. (4.39)

(4.39) is satisfied as long as T is sufficiently large. As before there is no reason
to continue integration when the integrand is less than 107, therefore T,,,, is set
to satisfy:

1 -5
|X_|——1 <107. (4.40)

When looking at 7 in (3.133) it is evident that (3.142) will go to zero faster when
ly'| or |Z'| are large and that the value of x'is of less importance. T,,,, will
therefore depend only on z' and y'. T,,,,, as a function of z’ and y’ for x’ =0 is

shown in Figure 30.
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Figure 30 Required T as a function of y’ for varying z'

From Figure 30 it is clear that T,,,, = 500 is sufficient if z’ < —0.5. Figure 31

shows two magnifications of Figure 30.
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Figure 31 Magnifications of Figure 30

Based on Figure 30 and Figure 31, the required T,,,, for different values of y’' and

z' are shown in Figure 32. All required T,,,, according to Figure 32 are sufficiently

large satisfy (4.39).
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Figure 32 T as a function of z'and y'
The error is determined by setting n; to 100T,,,, and then doubling T,,, to
determine the change in Z—Z and N. The pressure is calculated according to (3.65)

where the leading terms are the far field and near field and its derivatives in

x —direction. For the submerged ellipsoid in Figure 19 the maximum difference
for Z—: is 7.3-107%% when T,,,, is doubled. For N the maximum difference is 0.3%

when T,,., is doubled.

4.3.2.1n; for the Near field integral

For the near field integral n; is determined by establishing the percentage
difference with ny = 100007,,, as a reference value. N is unaffected by the
change of n;. N is not as dependent on n; as dN/dx. From Table 8 it is clear that

ny = 15Ty, is sufficient.

Table 8 Percentage difference n_

nr %a_N
Tmax dx
5 1.7
10 1.1
15 0.47
20 0.31
50 ] 0.065
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4.3.3 Summary

The far field integral and its derivative approach zero fast so a low T, is
possible. The near field integral and its derivatives approach zero slowly and
therefore require a large T,,,,. Because T,,,, depends on z' and y', n; must be a
function of T,,,, to allow the step length in the summations to be constant. The

findings are summarised in Table 9.

Table 9 Summary T and n_

Far field Near field
Trax 5 to 35 500 to 3200
Ny /Tmax | 10 15
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5 Validation

The presented method is evaluated against numerical and experimental results
for a range of validation cases. Having verified the level of nhumerical accuracy of
the solutions in Chapter 4, comparisons with existing data must be made in
order to assess the actual validity of the method. Three standard cases will be
shown that are far from discriminative but they permit comparison with results of
others. Firstly section 5.1 evaluates the results for a single source, section 5.2
concerns the wave pattern for a thin ship Wigley hull and finally section 5.3

evaluates the resistance of fully submerged bodies.

5.1 Single source

Combinations of sources and sinks are used in the presented method to
represent arbitrary bodies. If the method is successful in the case of a single
source, it should in principle be applicable in general. The wave pattern behind a
single source is well known from previous studies. When the field point is on the
free surface Green function will reduce to the single integrals. Combining (3.23),
(3.59), (3.94), (3.139) and (3.148) gives the wave profile for a single submerged
source. The wave pattern due to a unit single source is seen in Figure 33, where
the Froude number refers to the depth Froude number. The source is located at
(a,b,c¢) = (0,0,—0.3)/Fn? and the surface profile is evaluated in 41x21 points. The
results show good correlation with the results by Hoff (p. 207, 1990) (not
shown). The general profile of the free surface is also consistent with Nakatake
(1966) and Aanesland (p. 71,1986), Nakos and Sclavounos (1990).
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Figure 33 Wave pattern behind a single source

5.2 Wigley hull

The next test case is the mathematical Wigley hull. The hull has a smooth
gradient, has a fore-aft symmetry and can be categorised as thin. An abundance
of numerical and experimental data exist for the Wigley hull which makes it well
suited for comparison. The Wigley hull shape is defined as

v, = §<1 - (%)2) (1 — 4x2), (5.1)
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5.2 Wigley hull

where B is the beam D the depth and (x,, y,, z,) is the location of the hull surface.
Using (4.9) it follows that the non-dimensionalised source strength in a single

point is

73 — 73 2 2
Q(x5,25) = —4B | zso — Zs; + 3D2 X1 — X50)- (5.2)

Table 10 provides the non-dimensionalised hull form for the Wigley hull. The

ship length L is used as the characteristic length in the Froude number.

Table 10 Wigley hull

L1
B | 0.1
D | 0.0625

The wave pattern is evaluated using thin-ship theory with no damping. Figure 34
depicts the wave pattern along the hull normalised with the Froude number
squared compared with the thin-ship theory predictions by Noblesse et al. (2009)
and experimental results measured at the University of Tokyo (Kajitani et al,
1983, Mccarthy, 1985). The results shows good comparison with the numerical
results by Noblesse et al. (2009) and reasonable accuracy compared with the

experimental results.
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Figure 34 Wave elevation of the wave profile predicted by thin-ship theory compared to
numerical (Noblesse et al, 2009) and experimental (Kajitani et al, 1983, Mccarthy, 1985)

results

5.3 Fully submerged bodies

Previous numerical results for the wave resistance of a body travelling at

0.5

constant forward speed near a free surface are widely available. These are usually

presented in the form of the wave resistance coefficient C, defined as;
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C —Rw

e —T 5.3
Tl’pgl’ref3 ( )

The present method is evaluated here against previous results for a submerged
ellipsoid and sphere. The characteristic reference length L, is the focal distance
c, for the ellipsoid and the radius R, for the sphere. R, is the wave resistance

force acting on the submerged body.

5.3.1 Ellipsoid

An ellipsoid with the major axis parallel to the free surface is submerged to 3
different depths corresponding to d,./c, = (0.252,0.3266,0.5). The lengths of
major and minor axes are 2a, = 2.3 and 2b, = 0.4, the axis are illustrated in
Figure 35. The Froude number is calculated with twice the focal distance as the

characteristics length.

2ce

]
focus

2ae

Figure 35 Axes of the ellipsoid

The surface of the half ellipsoid is discretised using 20 panels along the major
axis and 10 panels along the minor axis. The results are compared with the semi-
analytical results by Farell (1973), the panel based method by Chen et al. (2001)
and the panel method by Baar (1986) in Figure 36. Baar’s results are generated
for this ellipsoid using a code based on his method. The results are tabulated in
Table 11 to Table 13; Farell did not provide any tabulated data so his results are
not included in the tables. Chen et al. (2001) discretised the ellipsoid using 90
panels, 8 along the major axis, 10 around the x-axis except at the forward and
aft vertices where only 5 panels are used. Farell has not presented any result for

the deepest submersion for this ellipsoid.
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Figure 36 Wave resistance coefficient as a function of Froude number
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Table 11 wal 03 for d/ce=0.252

Fn Present Baar Chen

method

0.35 0.3191 | 0.3191 | 0.2907

0.4 1.2622 | 1.2622 | 1.2293

0.42 1.6113 | 1.6112 | 1.5862

0.45 2.01 2.0099 | 2.0017

0.48 2.2633 | 2.2631 | 2.2685

0.5 2.3629 | 2.3627 | 2.3762

0.52 2.4195 | 2.4192 | 2.4386

0.54 2.4414 | 2.4411 | 2.4649

0.55 2.4419 | 2.4416 | 2.4673

0.56 2.4366 | 2.4363 | 2.4636

0.58 24117 | 2.4114 | 2.441

0.6 2.372 2.3718 | 2.4027

0.62 2.3214 | 2.3212 | 2.3534

0.65 2.233 2.2329 | 2.2655

0.7 2.0694 | 2.0694 | 2.1017

0.75 1.9037 | 1.9039 | 1.9351

0.8 1.7467 | 1.7469 | 1.7766

87



5 Validation

88

Table 12 C x1 03for d/ce =0.3266

Fn Present Baar Chen
method
0.35 0.0671 | 0.0671 | 0.0614
0.4 0.5766 | 0.5766 | 0.5620
0.42 0.8383 | 0.8383 | 0.8244
0.45 1.1872 | 1.1872 | 1.1799
0.48 1.4484 | 1.4484 | 1.4480
0.5 1.5691 | 1.5691 | 1.5739
0.52 1.6529 | 1.6529 | 1.6614
0.54 1.7045 | 1.7045 | 1.7163
0.55 1.7199 | 1.7199 | 1.7332
0.56 1.7297 | 1.7297 | 1.7442
0.58 1.734 1.734 | 1.7505
0.6 1.7222 | 1.7222 | 1.7401
0.62 1.6981 1.698 | 1.7169
0.65 1.6459 | 1.6458 | 1.6655
0.7 1.5346 | 1.5345 | 1.5543
0.75 1.4127 | 1.4126 | 1.4318
0.8 1.2926 | 1.2926 | 1.3108




5.3 Fully submerged bodies

Table 13 wal 03for d/ce =0.5

Fn Present Baar Chen
method

0.35 0.0053 | 0.00528 | 0.0049

0.4 0.1244 | 0.12441 | 0.1222

0.42 0.2194 | 0.21940 | 0.2167
0.45 0.3823 | 0.38231 | 0.3808
0.48 0.5396 | 0.53960 | 0.5396
0.5 0.6289 | 0.62886 | 0.6306
0.52 0.7030 | 0.70293 | 0.7059
0.54 0.7606 | 0.76060 | 0.7618
0.55 0.7832 | 0.78319 | 0.7883
0.56 0.8025 | 0.80250 | 0.8081
0.58 0.8306 | 0.83054 | 0.8372
0.6 0.8467 | 0.84662 | 0.8541
0.62 0.8528 | 0.85274 | 0.8607
0.65 0.8472 | 0.84713 | 0.8557

0.7 0.8113 | 0.81126 | 0.8201
0.75 0.7576 | 0.75762 | 0.7663
0.8 0.6976 | 0.69759 | 0.7059

An ellipsoid with the major axis parallel to the free surface is submerged to 2
different depths corresponding to d./c, = (0.3266,0.5). The lengths of major and
minor axes are 2a, = 5 and 2b, = 1 respectivly. The Froude number is calculated
with the major axis as the characteristics length. The surface of the half ellipsoid
is discretised using 20 panels along the major axis and 10 panels along the
minor axis. The results are compared with the semi-analytical results by Farell
(1973), the Neumann-Kelvin panel method by Doctors and Beck (1987a) and a
higher order panel by Belibassakis et al. (2013) in Figure 37 and Figure 38 .
Doctors and Beck (1987a) discretised the ellipsoid using 16 panels along the
major axis and 8 around the x-axis. Belibassakis et al. (2013) uses two different
discretisations for their spline based higher order panels. They differ in the
sense one uses 2-knot insertion and the other a 4-knot insertion process. It is
clear that the agreement is good compared to existing data. Farell (1973) only
provides result for low and medium Froude number for the shallow submersion

as seen in Figure 38 (top).
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Figure 37 Ellipsoid with a /b, = 5 at low Froude numbers
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Figure 38 Ellipsoid with a /b =5 at high Froude numbers

5.3.2 Sphere

A sphere with radius R, and diameter D, defined by Wu (1995) is submerged to
two depths corresponding to d,/R; = (1.1,2.0). The Froude number is calculated
with the diameter as the characteristic length. The results are compared with the
panel based method by Chen et al. (2001) and the panel method by Baar (1986)
in Figure 39. Again Baar’s results are generated for this sphere using a code
based on his method. The results for the shallow submersion are tabulated in
Table 14; Chen et al. (2001) did not provide any tabulated data for the deeper
submersion. Chen et al. (2001) discretised the sphere using 56 panels, 8 along
x-axis, 8 around the x-axis except at the forward and aft vertices where only 4
panels are used. It is clear from Figure 39 that more panels are needed for the

present method and the one by Baar, compared to Chen et al. (2001) method, for
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all the results to converge to a common curve. For the present method a larger

number of panels are used along the x-axis.

dS/RS =1.1
0.35 T T T T T T T T

o Baar 8x4
—+Present method 8 x 4 B
Baar 16 x 8
Present method 16 x 8
© Baar 32 x 16
e -+-Present method 32 x 16
* Chenetal
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o 015

0.05

_008 [ L [ [ L L [ [

2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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e
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0.01-
e =
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Figure 39 C for the submerged sphere
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5.3 Fully submerged bodies

Table 14 wa103 for d/RS=1 .1 and 32x16 panels

Fn Present | Baar Chen
method

0.2 5E-05 5E-05 0.0010
0.3 0.0284 | 0.0283 | 0.0296
0.4 0.1501 | 0.1500 | 0.1497
0.5 0.2744 0.2744 | 0.2759
0.6 0.3238 | 0.3238 | 0.3270
0.7 0.3140 | 0.3140 | 0.3178
0.8 0.2789 | 0.2788 | 0.2824
0.9 0.2384 | 0.2383 | 0.2415
1.0 0.2009 | 0.2008 | 0.2035

p—
J—

0.1688 | 0.1688 | 0.1710

1.2 0.1424 | 0.1424 | 0.1442
1.3 0.1209 | 0.1209 | 0.1224
1.4 0.1035 | 0.1034 | 0.1047
1.5 0.0892 | 0.0892 | 0.0903
1.6 0.0776 | 0.0776 | 0.0784
1.7 0.068 0.0679 | 0.0687
1.8 0.0599 | 0.0599 | 0.0605
1.9 0.0532 | 0.0532 | 0.0537
2.0 0.0476 | 0.0476 | 0.0480
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6 Applications

The theory developed in the foregoing chapters has been compared to existing
numerical results to show that it produces similar results when u; = 0. However,
the purpose of developing the present method has been to improve on these
methods and to produce results when up= 0. This chapter serves to give an
indication of suitable values of uy. Results are presented over a prescribed range
of Froude number and compared with experimental data. Both the exact
Neumann-Kelvin solution and thin ship approximation are considered. The
present method with zero Rayleigh damping gives the wave resistance, whereas
if damping is added it can determine the residual resistance. The residual

resistance coefficient is

c —Rr

S 6.1
' nngref3 ( )

Where the R, is the residual resistance and L, is the characteristic length.

6.1 Range of the damping coefficient

The damping coefficient uj is small compared to the other variables in the
modified Navier-Stokes equation (3.9). However the effect of u; on the wave
pattern behind a Wigley hull is clearly seen in Figure 40. A further indication of
the range of possible damping coefficients can be found in Firth (2011) and
Firth et al. (2013) (Appendix A). The Wigley hull is modelled using thin-ship
theory with different values of the damping coefficient. 40x1 sources are placed
on the centre plane to model the hull. As uj is increased the wave pattern

becomes more dampened.
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Figure 40 Wave behind a Wigley hull using thin ship theory Fn = 0.3
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6.1 Range of the damping coefficient

6.1.1 Range of the damping coefficient for a slender body

The ellipsoid previously described in chapter 5.3.1. is used to investigate the
influence on resistance of a range of uj values, as before the characteristic
length used to determine the resistance coefficient is the focal distance and the
Froude number it is twice the focal distance. A possible range for uy is shown in
Figure 41 and Figure 42 for a slender body at shallow submersion. From Figure
41 it is clear that the profile for the residual resistance coefficient C, distorts for
Uz > 0.1, which could imply a upper limit for u; since it is unlikely that low speeds
would give this much larger resistance coefficient than higher speeds. The
resistance curves in Figure 42 cross each other between Fn = 0.4 and Fn = 0.45
and again at in the region of Fn = 0.6. This characteristic could indicate that the
damping has changed the relationship between the bow and stern waves. That is,
these waves interact at a different Froude number and hence the resistance
hump occurs at a different Froude number. Consequently the curves cross so
that a higher damping yields a lower resistance, which is not physically correct.
Intuitively a higher damping coefficient implies a more viscous fluid and a more

viscous fluid would yield a higher resistance.

1.6

1.4

Fn

Figure 41 C for an ellipsoid submerged to d /c, =0.252 at low speeds
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Figure 42 C for an ellipsoid submerged to d /c, =0.252 at high speeds

Results for a deeper submersion of the ellipsoid are depicted in Figure 43 to
Figure 44. A final and deepest submersion is shown in Figure 45 and Figure 46.
From Figure 43 and Figure 45 it is clear that the effect of uj is the same
regardless of submersion depth for the slender ellipsoid at low speeds. From
Figure 43, Figure 45 and Figure 46 it can be seen that u; > 0.1 may not be

suitable since the general shape of the curve distorts. However Figure 44 and
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Figure 46 show that for larger submersions the resistance curves do not cross

each other as in Figure 42.
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Figure 43 C for an ellipsoid submerged to d /c, =0.3266 at low speeds
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Figure 44 C for an ellipsoid submerged to d /c, =0.3266 at high speeds
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Figure 46 C for an ellipsoid submerged to d /c =0.5 at high speeds

6.1.2 Range of the damping coefficient for a bluff body

A sphere with diameter D, = 1 is submerged to d,/R;, = (1.1,2.0). The Froude
number is calculated with the diameter as the characteristic length and
resistance coefficient with the radius as the characteristic length. It is clearly
seen in Figure 47 that the resistance curve with a high damping coefficient such

as up = 0.3 and uy = 0.5 deviates from the general profile of the ¢, curve for no
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damping and gives a proportionally higher resistance for low Froude numbers. It
is also clear that u; = 0.3 and uy = 0.5 is distinctly different from the C,, curve for
no damping at higher Froude numbers. It is also shown that after Fn = 0.6 only

Ur < 0.01 yields a C,, curve that follows the shape of the no damping curve.
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Figure 47 C for the submerged sphere for different values of uj

From this, it is likely that for Fn < 0.6 u; should be less or equal to 0.1 and for
Fn > 0.6 up should be less or equal to 0.01 for a bluff body such as the sphere.

This applies both to shallow and deep submersion of the sphere.
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6.1.3 Summary on the range of the damping coefficient
A suitable range for the submerged ellipsoid is shown in Table 15 and the range

for the sphere is shown in Table 16.

Table 15 Ellipsoid range of p'

d./2a, U < Fn <
0.1241 0.1 0.4
0.1608 0.1 0.8
0.2462 0.1 0.8

Table 16 Sphere range of p '

ds/R; U < Fn <
1.1 0.10 0.6
1.1 0.01 2.0
2.0 0.10 0.6
2.0 0.01 2.0

6.2 Comparisons with experiments

The method shows good comparison with existing numerical results as shown in
the previous chapter however the question remains whether the added damping
factor can better capture some of the physical phenomena that a totally inviscid
model discards. To determine this, results from the present method must be
compared with experiments. There is a limited amount of experimental data
available for fully submerged shapes. To the author’s knowledge there are no
results published for a fully submerged sphere. This is likely to be because of the
limited resemblance between a sea going vessel and a sphere, but there is on-
going work into the topic at the University of Southampton where results for a

surface piercing sphere can be found in James at al. (2013).

6.2.1 Wave profile

It has been showed that the wave profile decays with distance in Figure 40.
Conventional potential flow is somewhat lacking in determining the wave
elevation on the hull and sometimes it overestimates the stern wave. By more
correctly estimating the wave elevation on the hull the pressure on the hull could
be more accurately determined. So the wave profile along a Wigley hull

determined using thin ship theory. The wave elevation on the hull for different
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damping coefficients is shown in Figure 48 to Figure 50. From Figure 48 to
Figure 50 it is clear that the damping parameter does not dampen the wave close
to the hull and that in fact it increases both the bow and stern wave. However
thin-ship theory is known to give poor estimations of the wave elevation close to
the hull and may not be the most suitable model to determine the wave elevation
on the hull. A better accuracy compared to experimental results is achieved by
Lee and Soni (2006) using a incompressible RANS based solver and a moving grid

approach.
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Figure 48 Wave elevation along the Wigley hull at Fn = 0.25 and Fn = 0.267
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Figure 49 Wave elevation along the Wigley hull at Fn = 0.289 and Fn = 0.316
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Figure 50 Wave elevation along the Wigley hull at Fn = 0.354 and Fn = 0.408

6.2.2 Wave resistance

A comparison with the experimental results of Farell and Giiven’s (1973) for an

ellipsoid is shown in Figure 51. Farell and Giiven’s (1973) have measured the

residual resistance with a wake-survey and then subtracted it from the total

measured resistance in order to obtain the wave resistance. ¢, is determined

using the focal distance ¢, as the reference length and twice the focal distance

for the Froude number. The results show that none of the resistances curves
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using the present method corresponds to the experimental results for all Froude
numbers. But as the speed increases a higher damping coefficient gives a better
result than an inviscid method. This could imply that u; could depend on the

Froude number.
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Figure 51 Submerged Ellipsoid d /c, = 0.3232 and 2a /b, = 10 compared with experiment

6.2.3 Residual resistance

To determine if the present method can be used to determine the residual
resistance, results are compared with experiments conducted at the Berlin
Towing tank (Weinblum et al, 1950), where the total resistance has been
measured and the residual resistance coefficient has been determined by
subtracting the Schoenherr (1932) frictional resistance coefficient from the total
resistance coefficient. L,., in (6.1) is the length of the major axis which is also
used as the characteristic length for the Froude number. The residual resistance
coefficient is seen in Figure 52 to Figure 54 for an ellipsoid with 2a,/2b, = 8
submerged to different depths. From Figure 52 to Figure 54 it is clear that the
current method can capture the behaviour of the residual resistance better than
an inviscid method. But there is not a single value of uy which would be suitable
for all Froude number and depths. This implies that uj is Froude- or possible

Reynold number dependent.
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Figure 53 C for Ellipsoid with d =3b,
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7 Conclusions and recommendations

A numerical method is developed to determine the resistance of submerged
bodies using a dissipative potential flow model. The problem is modelled using
translating Neumann-Kelvin sources. Rayleigh damping is introduced into the
potential flow model in order to capture the residual resistance. A dissipative 3D
Green function is derived where the Laplace equation, free surface condition and
the infinity condition are transformed using a Fourier transform to obtain the
Havelock-Lunde formula of the double integral. The double integral is converted
into two single integrals to improve the speed and accuracy of the computations.
Thin ship theory is adopted to determine the wave pattern behind a Wigley hull.
A panel method is implemented to determine the pressure distribution and wave
pattern of fuller submerged bodies. The pressure is used to determine the wave-
and residual resistance of an ellipsoid. The resistance coefficients are compared
to numerical and experimental data from other sources. The present method
shows good potential at determining the residual resistance. The main

conclusions from this study are listed below.

7.1 Conclusions

e A new Green function is derived that is the first in 3D to include a
damping parameter. This allows the assessment of the effects of the
values of Rayleigh damping on the wave pattern and resistance. The
general approach of obtaining the present Green function is well known.
Some conventional methods retain the damping factor to simplify the
derivation. However, at one stage or another they all set the damping to

Zero.

e The present method has proven to be successful in solving linear wave
resistance problems. The calculation of the associated Green function and
its derivatives have been verified against data from other sources based
on different formulations. Results are generally in good agreement with

existing numerical data for uyp = 0.

e The present method is considerably slower than the method developed by
Baar. This could be improved by a more efficient evaluation of the single
integral such as approximating the integrals with series representation or
applying a parallel computing scheme. The current evaluation scheme is

particularly suitable to a parallel computing scheme since the integrands
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are evaluated separately in each point and not dependent on the value in
any other point. However the order of magnitude of the speed is still

much closer to that of potential flow models than full RANS based solvers.

The Havelock expression of Green function is favoured because it is easily
adapted to include damping. This may be because Havelock’s original
intention was to include such a damping coefficient. The main difficulty
of the Havelock formulation, the lower variable integration limit, has not
caused a problem because the single integrals have not been rewritten
into Bessel functions. This may be the reason for the longer

computational time.

In theory, the inclusion of p; allows for the direct integration of the
double integral. However, in practise the numerical evaluation of the
double integral is challenging and the method is considerably slower than
the numerical evaluation of the corresponding single integrals. It is
therefore recommended to apply a single integral formulation of Green

function with damping.

By including a damping parameter, there could be a possibility to better
capture the decay of waves. The damping parameter has been shown to
have some effect on the wave pattern. It has been proven that u; has a
damping effect on the wave pattern downstream of the ship that
increases as uy increases. However no such effect has been proven close

to the ship.

The inclusion of u; seems to allow for the residual resistance to be
modelled more accurately, at least at low speeds. No existing data for the
residual resistance at larger speeds have been available, but a comparison
with existing experimental data for the wave resistance could imply that
the present method only captures the wave resistance at larger speeds.
However, by including Rayleigh damping a better comparison to
experimental data of C,, at larger speeds is obtained. However no single
value of uy can be determined. It is likely that uj; is Froude number or
possible Reynolds number dependent. It is also possible that u; depends

on the shape of the submerged body.

For an adequate description of the steady ship motion problem the three-

dimensional features of the fluid flow and hull geometry cannot be
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neglected. Therefore Michell’s thin ship theory is not suitable for
evaluation of realistic hull shapes. For the method to be used on realistic
hull forms the method must be extended to include fuller, surface
piercing bodies. This will also allow for better evaluation of the method
since there exists an abundance of both numerical and experimental

results available for surface piercing ships.

Conventional potential flow is somewhat lacking in determining the wave
elevation on the hull and sometimes it overestimates the stern wave. This
is especially important if the method is extended to include non-linear
surface effects. Because of the apparent decay of the wave pattern due to
up it was assumed that the wave profile along the hull would decay as well
and that by including the damping term the pressure on a surface
piercing body could be determined more accurately. However the
expected decay of the stern wave has not been proved, instead ujy will
increase both the bow and stern wave. However it is not clear if the
inaccuracy in the wave elevation compared to experimental data from
other sources is due to the use of thin-ship theory to model the wave
pattern, since thin-ship theory is known to be less accurate than a panel

method when it comes to modelling the wave elevation on the hull.

The quantitative agreement between the experimental results and
theoretical predictions with varying ur shows the method has good
potential, although there is a limited amount of comparative data
available. Comparisons with more experimental results would have been
favoured but it has not been possible due to the lack of experimental data

for fully submerged bodies.

7.2 Future research

Due to the fundamental nature of this research project, it is a stepping stone for

future work which should aim at making this model applicable to realistic hull

7.2.1 Validations

There is a limited amount of data available for fully submerged shapes. This

could be because the shapes and their behaviour are fairly known or because the

most commonly fully submerged sea vessel is the submarine for which, due to its

nature as a military vessel, few results tend to be published.
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To determine the suitable values of u; data from other sources are needed. It

would be beneficial with more available experimental or RANS equations based
data regarding fully submerged bodies. Since this method does not capture the
total resistance the comparison data must separate the friction resistance from

the total resistance.

7.2.2 Surface piercing body

This research is a first step towards developing a potential flow based model to
determine the resistance of ships. As such it must be able to evaluate the
resistance of surface piercing bodies. Usually this is done by including the line
integral in (3.59).

7.2.3 Non-linear effects

This works aims to assess the effect of damping in the resistance calculation. To

better assess the effects of uy non-linear effects could be included in the model.

The method could be improved to at least incorporate partial non-linear surface
effects. Partial non-linear surface means that free panels are located on the hull
and they change with the wave elevation on the hull but the boundary conditions

do not change.

A full non-linear model would give better accuracy but it seems wiser as a first
step to evaluate the influence of a partial non-linear free surface before moving
on to a fully non-linear free surface if needed, because a fully non-linear model

will increase the computation time.
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ABSTRACT

The wave resistance of a ship is determined using a dissipative
potential flow model and a modified transverse cut techniques. The
problem 1s modelled using Kelvin sources with a translating speed.
Rayleigh damping is introduced in the model to represent a damping
effect. A dissipative 3D Green function is derived where the Laplace
equation, free surface condition and the radiation condition are
transformed using a Fourier transform to get the Havelock-Lunde
formula of the double integral. Thin ship theory is adopted to determine
the wave pattern behind a Wigley hull. To evaluate the method and
determine the wave resistance and a new and modified form of the
Eggers transverse cut technique is used.

KEY WORDS: Wave resistance; dissipative potential flow; Green
function; Rayleigh damping; Egger series; transverse cut.

INTRODUCTION

In shipping; a significant cost both to the ship owners and the
environment is the fossil fuels used for propulsion. A tenth of the world
consumption of oil is used to power the merchant fleet (Nilsson, 2010)

To propel ships, heavy oil is used which, during its manufacturing
stages produces as much as three times in total CO, emissions
compared to conventional oil (Century, 2008). With the rising price of
oil and the growing environmental concern, the motivation to reduce oil
consumption has never been higher.

In the design phase, in order to determine the propulsion cost it is
necessary to estimate the resistance of the ship. To simplify the
resistance calculation of a ship, the resistance is traditionally divided
into friction resistance and wave resistance; it is commonly assumed
that they can be determined independently.

Potential flow is a common method to determine wave resistance of
ships. In its conventional form the flow is assumed to be free from
damping. Stokes (1851) first suggested to include some viscosity in
potential flow to better model dissipation of energy. Havelock (1935)
deemed it “fairly certain” that the difference between theoretical and

726

experimental results depends on the neglect of friction in ship waves.
When looking at waves due to a moving ship, it is evident that damping
has an important physical role and by including more of the actual
physical aspect in mathematical model the results will improve. Initial
2D investigations show encouraging results for dissipative potential
flow (Fiirth, 2011).

The main benefit of potential flow compared to other methods to
determine the wave resistance such as Reynolds-Averaged Navier-
Stokes (RANS) and Large-Eddy Simulation (LES) based solvers is the
speed. Early on in the process simplicity and fastness comes before
accuracy, to some degree (Noblesse et al, 2010).

A RANS (or LES) based CFD software is currently too time-
consuming to be adopted in the initial design stages. However if the
early wave resistance predictions are too inaccurate the design phase
becomes longer and therefore more expensive. The cost will also
increase if the prediction method used early on is slow. Therefore, a
method which is more accurate, but still as fast as existing potential
flow methods or experimentally derived wave resistance methods,
could improve the design process.

To address this; this paper aims to develop an efficient numerical
method for wave resistance prediction based on an improved potential
theory which incorporates certain viscous effect in the model. The
underlining methodology will be based on a potential flow model and a
new Green function for the modified governing equations will be
derived.

MATHEMATICAL MODEL

To mode] the problem a right-handed Cartesian coordinate system Oxyz
is used. [t moves steadily with the ship in the direction of Ox. Here Oxy
is the undisturbed surface, Qzx the centre plane and Oyz the midship
section of the ship. And Oz is defined as upwards, against the
gravitational acceleration. The ship moves through horizontally and
vertically unbounded water. The problem is modelled using Kelvin
sources with a translating speed, which eliminates the need to place
sources on the surface.
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It is in the Navier-Stokes equations that a viscous a Rayleigh damping
force can be introduced. It is assumed that the damping depends on the
velocity and a constant gz , which is similar to the added viscosity by
Havelock (1932). The damping does not affect the uniform speed. This
gives the non-dimensionlized steady state Bernoulli equation

1 1

E|V¢|2+1/Fnzz+uk(¢’—x) =3 (&Y
Where Fn” is the Froude number, 1 the Rayleigh damping and the
total potential @ is

d=-x+¢ 2)

Here p* is the density of water, L* the length of the ship and U™ the
speed. Non-dimensional variables are defined in terms of p*L*” for
mass, . for length and . /U for time and are seen in Table 1.

Table 1 Definition of non-dimensional flow variables

Variable Dimensional Non-dimensional
Density of water p* 1=p"/p*
Tength of ship L 1=L/I"
Free stream velocity U 1L=U-/u"
Acceleration of gravity g gL /U = 1/E?
Coordinates x,y,z x,y, 7=y, z )L
Speed of ship g = v,w) | q=(u,vw)=q /T
Rayleigh damping H Hr = pR" L /U
parameter

Pressure p* p=p*/pV?
Time r* t = U*L*

The dynamic free surface condition is

n=FE (g—f - uR¢) (3)

Where # is the free surface. The steady state free surface which is

consistent with the expression by Havelock (1928, 1932) is
92 5}
(4)

3
AT § Rl PO
PPl il /177;262(1)70

The Green function that is bounded by the free surface is defined by the
Laplace equation, the free surface condition and the radiation condition.
This problem can be solved using a double Fourier transform according
to Noblesse (1981). By transforming the fundamental solution the PDE
in the Laplace equation will reduce to an ODE. A double Fourier
transform with respect to x and y is used leaving z untransformed. The
solution to the ODE is then transformed back to get the Havelock-
Lunde formula of the double integral (Havelock, 1932, Lunde, 1951).
The Green function in polar coordinates is:

,___'_7/T

Tz pee eplz’ =il cosd+lyilsing)]
dpd@
J.,E/ZJ; pFnZcas?8 — 1 — pgicos6Fn? o

(5)

Toor
2

+—Re
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Polar coordinates are more suitable to get the Havelock-Lunde formula
with damping and it also has the benefit that at least one integration
parameter is bounded; the angle & does not go to infinity. Where

x'=x=—a ¥y =y=b 2 =z+c v =Jx%+y%+z?

#” is then the distance from the field point to the image source, where the
field point is x = {x,3,z) and the location of the singularity is @ = (a,b,c)
where ¢ is strictly negative. The double integral in the Green function
above has a major benefit compared to conventional methods. The
location of the pole is off the real axis because of the damping as seen in
Figure 1. This enables a straight forward integration along the real axis.

]

Im

pole

Re

Figure 1 The pole can be placed at either side of the real axis depending
onéd

Application with Thin Ship Approximation

Michell (1898) developed thin ship theory to determine the resistance
of ships. The theory is powerful since properties such as the wave
profile along the hull, pressure on the hull, hydrodynamic lift and pitch
moment, sinkage, trim, drag and the wave pattern can be determined
with only sources on the centre plane meaning that a 3D problem partly
becomes a 2D problem (Noblesse et al, 2009). The local source
strength is proportional to the change of geometry in the x direction
(Faltinsen, 2006). Michell’s theory is exceptionally simple and robust
when it comes to evaluating steady flow around a ship and the most
widely used theory for determining wave resistance (Noblesse et al,
2009).

The centre plane is divided into panels and it is assumed that the Green
function is relatively constant over each panel {the difference between
the node point and control point for each panel is very small) so that

9@ =6 [[ oaraz )

panel

Using the principals of Faltinsen (2006) Equation (7) can be written as

¢(a) = GQ (8)
‘Where Q is defined as
1 o o,

- f e[S

‘Where x; is the forward edge of each panel, x, the aft edge, z, the edge
closest to the surface and z; the deepest edge.

Wigley hull
A Wigley hull is mathematically defined as

2= &) (- )

Where y, is the location of the model in y direction, B the width of the
ship, D the draft and L the length. The particulars for the Wigley hull
are shown in Table 2.

(10)



Table 2 Wigley hull

L |1
B lol
D | 0.0625

Wave Resistance from Wave pattern

The concept of determining the wave resistance from the wave pattern,
without reference to the ship, was originally proposed by Havelock
{1934a, b). Eggers (1962) showed that using linear theory the pattern
behind a ship can be expressed as a summation of series of discrete
wave modes where each mode is described as a sinusoidal wave train
with a particular amplitude, phase, wave number and direction. Eggers
described how this function can be determined from wave elevation
measurements, and from this subsequently get the corresponding
resistance (Eggers, 1962, Hogben, 1972). There are three main
approaches, either a transverse cut, a longitudinal cut or an “X-I”
method (“X-Y” method is a combination of a transverse and
longitudinal cut method it alse described as a longitudinal cut method
with a truncation term) (Eggers et al, 1967). For numerical methods the
transverse cut is superior partly due to the fact that the wave profile is
finite (Nakos, 1991, Nakos & Sclavounos, 1994, Raven & Prins, 1998).
The transverse cut also benefits from the limited extent of the
discretisation that is needed downstream of the ship (Nakos &
Sclavounos, 1994).

A minimum of two cuts is needed but it has been shown that a larger
nurnber of cuts are needed to reduce redundancy and increase accuracy
{Janson & Spinney, 2004, Raven & Prins, 1998). The transverse cuts
must be far enough aft of the ship, they must extend outside of the
Kelvin wedge and the resolution must be high enough to show all
components of interest (Raven & Prins, 1998).

A conventional form of the transverse cut technique will give a lower
wave resistance estimation for higher Rayleigh damping since higher
damping generates lower wave profiles. Where higher damping should
imply higher resistance since the modelled water would be more
viscous. So a modified and new form of the Eggers series transverse
wave cut technique is developed. This method retains many aspects of
the conventional transverse wave cut and still has its main benefit; the
whole wave pattern does not need to be known, only the profile in the
cuts. The cut technique presented here will take damping into account.

Momentum analysis of flow around a hull
The wave resistance can be determined using a control volume analysis
around the hull as seen in

z=0
F
[ PLLN
s -1
«-—
-1+u

b

z=-d

B A

Figure 2 Control volume with ship
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A control volume analysis of the momentum inflow and outflow and
pressures on the side 4 and B of the volume in Figure 2 gives the wave
resistance

by
e d:
IFn? f s 4y
-~
. b s (11)
+3 J. J. [—u? +v? + w?]
by, ~a
+ ppppdzdy

The upper limit of the inner integral will be replaced from the free
surface to assumed location of the free surface z=0. And it can be noted
that after integration the last term g b5 will disappear.

The potential of a freely moving wave

To determine the resistance the potential for a freely moving wave must
be known. The potential must satisfy the Laplace equation, the
combined free surface condition (which also means it must satisfy the
kinematic and dynamic free surface condition) and the seabed
condition. This gives the potential and wave profile for a freely moving
wave with Rayleigh damping

B
n= z elr*[E&) cos(kyxcos8y,)
=0 (12)

27'my)

b
- 1 MpX+haz

» = Z Tk oosn® wXkn? g3 cos(Rpxcos0, — ugz)
=0 n n

vy

21T
+ Esin(kyxcosd, — uRZ)]cos(

— @y, sin{k,xcos0,)]cos (

(13)

Where @, and &, are the unknown wave parameters. And 8, the angle
of each wave is defined according to Figure 3 (not to be confused with
the integration angle 8).

Y

Figure 3 Moving ship with wave pattern

If the potential in equation (13) is used, the resistance will depend on
the location of the downstream end of the contrel volume (B) in Figure
2, this is not reasonable. But if the cut B is taken close to the ship the
term eHR¥8 will be so small that it can be assumed to be negligible.
However the term pipz inside in the argument also gives a resistance
that depends on the location of the end of the control volume B. It can
be argued that the term pzz only gives the phase of the potential and
should not affect the wave height so the following simplified potential
is used. This gives the simplified potential and wave profile for a freely
moving wave
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w
n= Z [Epcos(hyxcos8,)
n=0

(14)
2mn;
- zzrnsin(k,!xcosﬂ,,)]cos( 5 y)
kil e knz
D= 7Z}m[rzr,,cos(k,,xcosﬁn) (15)
+ &psinlkpxcost,)|cos(h, ysing,)
This gives the wave resistance
R= b 2 Z
= 37 @ + 80
<~ b 1 (16)
+D i [(m’? ) (1 - Emze")]
n=1
where the wave angle # can be determined using
2mn
kysing, = — (17)
b
where the wave number £, is
e K (Zﬂ)z (18)
Fn? b

To determine the resistance in (16) the wave parameters @, and &,
must be known. To determine them at least two downstream cuts {wave
profiles) are needed. Since these cuts can be located far downstream the
term ef#* cannot be assumed to be small so the wave profile in (12)
must be used. [t can be written as

= 2nny
n:ZC,,cus( B ) (19)
n=0
So that for cut j
Coj = [Encos(xskycos8,) — @, sin{x;ky, cos, ) [elaxi (20)

C,,; can be obtained by matching a Fourier series to the wave profile.
From C,; can the wave parameters §, and @, be determined. This
finally gives the resistance in (16). The novelty for this method is last
term e#*% in (20) which compensates for the damping when
determining the wave resistance.

NUMERICAL INVESTIGATIONS

As stated before; two cuts is the minimum but a higher number of cuts
are needed to increase accuracy. Janson and Spmney (2004) uses 10
cuts, Raven and Prins (1998) 8 cuts and Sharma (1963, 1966)
concludes that at least 5 cuts is need to get the error within 5 %. Janson
and Spinney (2004} also mentions that “certain numerical problems”
can be avoided by using non-equidistant spacing between the cuts.

Based on this 10 cuts are used with a non-equidistant spacing. Janson
and Spinney got their best results by increasing the space between each
cut with a multiplication factor f,. the same spacing and multiplication
factor is used here and shown in Table 3 and Figure 4.
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Table 3 Cut spacing properties

[ Initial separation [ Multiplication factor |

[dx=03 [£=11 |
08 1
08 LR X 1 g

N

oaf B b

02k ~
Yoo [

a2p 4

ab o j
06 i 7 t 'f J
0.8 f 4

-25 -2 1.5 1 -05 o 05

Figure 4 Location of the ten cuts

The whole wave pattern must be included in transverse direction. The
Kelvin angle that incorporates the whole wave pattern is seen in Figure
5.

Figure 5 Kelvin angle for bow and stern wave

Based on this the grid spacing in Table 4 1s used.

Table 4 Field point spacing

x field v field spacing | Max x field Spacing field

spacing point points

nx=120 ny =60 xmax =13 dy = dy=
xmaxi{nx-1)

The wave pattern behind the ship is determined by inserting the
potential (8) in the dynamic free surface condition {3). The Green
function G is given by (5) and the source strength Q by (9). A one point
Gauss quadrature rule is used to integrate the double integral in
equation (5)

ep[z’—i(x’cosﬂ+\y’|sm9)]

Z o
g
f_%ja pFEn?eos?0 — 1 — pgicos0Fn? dp

(21)
/2 M eplz'=ilx'cost+yr|sm8)]
—drary Y S : _
=z L p=0 PFM7C0OS?H — | — pipicosOFn’
where
dr = M/f(nr — 1) (22)
dt =m/(nt—1) (23)

Where M is the upper limit of the integral replacing oo and dr, dt, nr and
nt are defined in Figure 6.
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Figure 6 Explanation of integration parameters dr, dr, nrand nt

0 and p are increased with df and dr respectively. The step length
parameters nf and nr are varied and Cw determined when the first cut is
placed at x=-1 (0.5L aft of the stern).

It is seen from (5) that the term pz’ makes the integral decrease when p
is increasing, the rest of the exponent only makes the function oscillate.
So when pz’ is sufficiently small the double integral will be close to
zero. Therefore M is set to be a function of the location of the source.
Using one row of sources in the z direction (number of sources in z
direction, nsz = 1), means that z=D/2= -0.0313. M is chosen so that
Mz’=-6 which means that the double integral is small according to

Mzt _ ,=6 _ b =3
eM* =7 =2.478- 10 (24)
When investigating the suitable parameters for the double integral and
the sources, Rayleigh damping sz = 0.1 and Froude number Fn = 0.3
are used.

So with a constant upper limit, z#» will only change the step length in
the summation in (21). The number of sources is here 20 in x direction
(nsx =20). It is seen from Table 5 that Cw depends on the discretisation
of the double integral, however after n# = 1500 this dependence is
small. The wave profile for the different values of nz, #» in Table 5 are
shown in Figure 7. It can be seen that the profile is affected and the
borders are showing some noise when the step length is increased.
However as seen from Table 5 it does not affect the final result other
than beyond the fourth significant number.

Table 5 Values of Cw for varying step length in the double integral

nr nt Cw

375 75 0.0028175
750 150 0.0025553
1500 | 300 0.0026440
3000 600 0.0026417
6000 | 1200 0.0026417
12000 | 2400 0.0026417
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Figure 7 Wave pattern behind Wigley hull for varying n# and nr

The importance of M as the upper limit of the inner integral is
determined using the same step length. The results are shown in Figure
8 and Table 6.

o = 15000t = 300 e = 5989 nt = 300

0

2F

730
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o = 600 1t = 1200 e = 23997 it = 1200

number of sources are 3 in z direction, this is also evident for higher
number of rows but not shown here. This could be because the top
sources come to close to the surface and the double integral does not go
towards zero fast enough (as stated before the decay depends on the
source location), where M is varied so that Mz’ is constant (Mz* = -6),
so that M is larger when z” is closer to the surface. From

Table 8 it is also evident that this method is not suitable for ssz>1 since
it will give too high wave resistance.

Table 8 Cw for different sisz, nsx = 40

B I R T R T B e e R B TR BT nsz | Cw
’ v 1 (L.0025775
Figure 8§ Wave pattern for different upper limit A according to Table 7 ) 0.0033247
. . 3 0.0035643
Table 6 Particulars for Figure 8
- - ‘Wave resistance coefficient
Figure 8 Mz nr dr nt Cw The following results were obtained using the parameters in Table 9.
Top left -6 1500 0.1278807 | 300 | 0.0026440
Top right -24 | 5999 0.1278807 | 300 (0026448 Table 9 Result properties
Bottom left -6 6000 0.0320053 1200 | 0.0026417
Bottom -24 | 23997 | 0.0320053 1200 | 0.0026418 Number of field points x direction nx 120
right Number of field points y direction ny 60
Location of furthest downstream field | xmax 3
Judging from Figure 8 and Table 6 it is assumed that using s = 1500, point
nt =300 and Mz’ = -6 will give a result which is accurate enough. Summation variable @ nt 300
Summation variable p nr 1500
Number of Sour(‘:es L . o . Upper limit inner integral Mz’ -6
The centre plane is divided into panels in x and z direction giving each Number of sources » direction e 0
panel one source. The sources are evenly spaced. Table 7 shows the Number of sources v direction P 1
wave resistance coefficient, Cw and the number of sources in x Y

direction. One row of sources in z direction is used.

Table 7 Values of Cw for different number of sources in x direction

Number of sourees in x direction, ssx Cw

10 0.0029407
20 0.0026440
40 0.0025775
80 0.0025613
160 0.0025573

From Table 7 it is seen that 40 sources in x direction is sufficient
compared to the prolonged computational time with comes with an
increase in the number of sources. The wave pattern for 1 to 3 rows of
sources in z direction and 40 sources in x direction are showed in
Figure 9.

Figure 9 Wave pattern nsx =4{, nsz = 1, nsxz =2, nsz = 3 repectivly

{left to rigth)

In Figure 9 it is clearly seen that the wave pattern distorts when the

Cw is shown as a function of Froude number in Figure 10 to Figure 13
for different values of pip. The reference values are both experimental
and numerical. Tarafder and Suzuki (2008) and Bal {2008) uses a
Rankine source panel methods with a linearized free surface in their
numerical model. Chen and Noblesse {1983) uses slender ship theory
and Kelvin sources. Nakatake et al. (1979) uses double body flow and a
low speed assumption. None of the numerical methods inclide any
damping.

X Present methad

45 Tarafer & Suzuki 2007 num
Shearer & Cross 1683 exp
4 Nakas & Sclavounos 1984 exp
—£— Bl 2008 rum X
a5 % Chen & Noblesse 1383 num
O Nakatake et al. 1979 num
3 & Chen & Nablesse 1983 exp range
Xkx
w, 25 v i
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Figure 10 Cw as a function of Fr with ftg=0.01
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Figure 13 Cw as a function of Fn with pg=0.5

Location of the cuts

The wave resistance will depend on the location of the cut for any
method that includes damping, numerical damping is enough to make
the resistance change with the location of the cuts (Nakos, 1991). Even
traditional potential flow methods have this problem. Cw as a function
of the location of the cuts is seen in Figure 14 to Figure 17. The Wigley
hull is located between 0.51. and -0.51., which means that the first
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location of the cut that will not interfere with the near field stern wave
is -L. Here 10 cuts are used.

2

2

22 ) a8 a8 14 2 1 08

Figure 14 Cwas a fun::tion of the location of the first cut, Frz =0.3 and
Hep=0.01
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Figure 15 Cw as a function of the location of the first cut, Fr =0.3 and
1g=0.05
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Figure 16 Cw as a function of the location of the first cut, Fr =0.3 and
He=0.1
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Figure 17 Cw as a function of the location of the first cut, F» =0.3 and
Hg=0.5
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CONCLUSIONS

Rayleigh damping is introduced into a potential flow model in order to
more accurate by model the decay due to friction that waves have over
time and distance. A new Green function for potential flow including
damping is developed. This function also has a major mathematical
benefit since it has no singularity in the double mtegral which is present
in conventional Green functions that does not include damping. This
method is evaluated using a modified version of the transverse cut
technique (based on the Egger series wave theory) to determine the
resistance for a Wigley hull.

The wave resistance coefficient (Cw) is compared to numerical and
experimental reference values. The profile of Cw as a function of
Froude number shows the same humps and hollows as the conventional
results. However Cyw for the present method is higher and it is increased
with higher damping. It is expected since higher damping would imply
more viscous water which would give a higher resistance. The results
shows a large deviance form the reference values at Fn>0.4 this could
imply that the present model has limitations at larger Froude numbers.

The dependence for Cw on the location of the cut for pip < 0.1 is less
than the dependence in the method by Janson and Spinney (2004)
who’s method does not include damping {other than numerical).
However, for larger values of g the wave resistance coefficient will
depend on the location of the transverse cut, this implies a limitation to
the application of the transverse cut technique to a dissipative wave
pattern. For better accuracy a panel method would be recommended for
flows with high dissipation.
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