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Abstract 13 

Digestibility of a micro-algal mixture was evaluated by mesophilic anaerobic digestion in 14 

continuously-stirred tank reactors. The culture consisted primarily of Scenedesmus spp. 15 

continuously cultivated over a 6-month period in a 100 m
2
 raceway reactor instrumented to 16 

record pH, dissolved oxygen and temperature. The raceway received supplementary carbon 17 

in the form of flue gas from a diesel boiler (10% CO2) injected into a 1-m deep sump to 18 

control pH in the range 7.8-8.0. Dilution was optimised to biomass productivity and gave 19 

values of 10-15 and 20-25 g total suspended solids (TSS) m
-2

 day
-1

 in winter (December - 20 

February) and Spring (April - May), respectively. The culture for the anaerobic digestion trial 21 

was harvested in February by centrifugation to give an algal paste containing 4.3% volatile 22 

solids (VS). Semi-continuous digestion at organic loading rates of 2.00, 2.75 and 3.50 g VS l
-

23 

1
 day

-1
 gave volumetric biogas productions of ~0.66, ~0.83 and ~0.99 l l

-1
 day

-1
, respectively. 24 

Specific methane yield ranged from 0.13-0.14 l CH4 g
-1

 VSadded with biogas methane content 25 

~62%. Overall the digestion process was stable, but only ~30% VS destruction was achieved 26 

indicating low biodegradability, due to the short retention times and the recalcitrant nature of 27 

this type of biomass. 28 

 29 

Keywords 30 

Micro-algae; Scenedesmus spp.; raceway; flue gas; anaerobic digestion; biodegradability  31 



 

3 

 

1 Introduction 32 

 33 

The finite nature of fossil fuel supplies combined with an increasing global demand for 34 

energy has led to substantial interest in developing renewable biologically-produced carbon 35 

neutral fuels sources [1]. In the search for renewable biofuels, micro-algae have been 36 

considered an attractive source of bioenergy for several reasons: they have a rapid growth 37 

rate and high biomass production, do not compete with terrestrial crops for arable land, have 38 

minimal needs for pesticides or herbicides, and offer the potential for cultivation using 39 

wastewater nutrients [2-5].  40 

 41 

The major disadvantages of micro-algal biomass are the cost and energy requirements for 42 

growth and harvest, which currently make it uncompetitive with other biomass types [6]. 43 

Reduced costs of production are thus essential to the success of this technology. Open 44 

raceways, suggested more than fifty years ago by Oswald and Golueke [7, 8], are still the 45 

only realistic large-scale engineered method available for micro-algal biomass production for 46 

biofuels: this is because of the lower initial investment compared to alternative systems, due 47 

to lower construction costs, and the low operating costs [9-11]. The biomass productivity 48 

reported for this type of reactor is, however, lower than required to achieve commercial 49 

bioenergy production [6]. 50 

 51 

Micro-algae can be utilised to produce different types of biofuels, and amongst these bio-52 

methane appears increasingly attractive. The main reason is that most of the macromolecules 53 

(i.e. protein, lipid, carbohydrate) in algal biomass can theoretically be converted to biogas 54 

through the anaerobic digestion process [12]. Algal residues after biodiesel production can 55 

also be utilised to produce biogas [13]. 56 
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 57 

Although the idea of using micro-algae as feedstock for biogas production is not new [14], 58 

this research area has seen an upsurge of interest in the past few years. Literature on 59 

anaerobic digestion of micro-algae is still limited, however, in part due to the limited 60 

availability of sufficiently large quantities of feedstock material. This paper reports on a study 61 

of the semi-continuous digestion of a mixed micro-algal culture grown in an open raceway.  62 

 63 

2 Materials and methods 64 

 65 

2.1 Algal cultivation 66 

 67 

2.1.1 Bioreactors 68 

 69 

The algae were grown in experimental reactors at the Estación Experimental Las Palmerillas 70 

of Fundación CAJAMAR in El Ejido (Almería), Spain. The inoculum for the raceway was 71 

grown in a closed tubular fence-type photobioreactor constructed of 0.09 m diameter acrylic 72 

tubes with a total length of 400 m and stacked vertically to a height of 2.2 m. The 73 

unobstructed space on either side of the reactor was 1.4 m, and the reactor was located in a 74 

greenhouse with a polythene covering to diffuse direct sunlight (Figure 1a). The volume to 75 

surface ratio was 75 l m
-2

, and oxygen was stripped from the culture using coarse air bubbles 76 

in a vertical tower 3.5 m high and 0.4 m diameter, with a heat exchanger inside to control the 77 

reactor temperature. Pure CO2 was injected directly into the reactor to meet the growth needs 78 

of the algae, with the addition based on pH control. 79 

 80 

The open channel raceway reactor (Figure 1b) used for long-term cultivation consisted of two 81 
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48 m channels, each 1 m wide and connected by 180º bends at both ends to give a total 82 

surface area of 100 m
2
. The raceway was constructed out of 3 mm white fibreglass and the 83 

culture was circulated and mixed by a marine plywood paddlewheel with a diameter of 1.2 m 84 

driven by a 0.37 kW geared electric motor (Ebarba and WEG Iberica, Barcelona, Spain). In 85 

order to supply CO2 and enhance the mass transfer capacity of the system, flue gas from a 86 

diesel boiler was bubbled on demand through three membrane plate diffusers positioned at 87 

the bottom of a sump (0.65 m long × 0.90 m wide × 1 m deep) located 1.5 m downstream of 88 

the paddlewheel. The raceway was equipped with pH-T and dissolved oxygen (DO) probes 89 

(5083T and 5120, Crison, Barcelona, Spain) calibrated and maintained in accordance with the 90 

manufacturers' instructions and connected to transmitters (MM44, Crison, Barcelona, Spain). 91 

Information was collected by a data acquisition card and software (LabJack U12 and 92 

Daqfactory Azeotech Arizona USA, respectively).  Solar radiation was measured on-site by 93 

means of a light sensor (Li-Cor, Pyranometer, PY 61654, USA). A full hydraulic 94 

characterisation of the raceway and studies of O2 and CO2 mass transfer are reported 95 

elsewhere [15-17].   96 

 97 

The total suspended solids content (TSS) of the raceway culture was measured by vacuum 98 

filtration of a 250 ml sample through a pre-weighed glass fibre filter (MN 85/90, Macherey-99 

Nagel, Spain) and subsequent drying of the filter at 80 
o
C for 24 hours. Total solids (TS) 100 

content of centrifuged algal material was measured according to Standard Method 2540 G 101 

[18]. 102 

 103 

2.1.2 Culture medium 104 

 105 

The culture medium used in both tubular photobioreactor and raceway reactor was prepared 106 
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in fresh water using commercial agricultural fertilisers to give ionic concentrations additional 107 

to those naturally present in the fresh water source as follows (mmol l
-1

): NO
-
3 9.49, Na

+
 8.20, 108 

NH
+

4 0.59, Cl
-
 11.10, H2PO

-
4 1.00, Fe

3+
 2.00, K

+
 1.60, Mn

2+
 0.84, Ca

2+
 5.00, Zn

2+
 0.56. 109 

 110 

2.1.3 Seed culture, inoculation and raceway operation 111 

 112 

A seed culture of Scenedesmus spp. was grown in the tubular photobioreactor in batch mode 113 

to a concentration of 2 g TSS l
-1

. 2000 l of the seed culture was inoculated into the raceway, 114 

which had previously been filled with 8 m
3
 of fresh culture medium. The final operating 115 

depth was 0.1 m, giving a total culture volume of 10 m
3
, and the paddlewheel rotational 116 

speed was set to give a liquid velocity in the channel of 0.27 m s
-1

. The raceway was initially 117 

operated in batch mode for 11 days, until a biomass concentration of 0.9 g TSS l
-1

 was 118 

achieved. The culture was then switched from batch to semi-continuous mode, in which part 119 

of the culture was removed on each weekday by gravity drainage and replaced by fresh 120 

culture medium to restore the raceway to its 0.1 m working depth. The difference between the 121 

volume harvested and the added medium was taken as the loss due to evaporation. The pH in 122 

the raceway was controlled between set points of 7.8 and 8.1 by bubbling exhaust gases (10 123 

% CO2, 18.1 ppm CO, 38.3 ppm NOx, and 0.0 ppm SOx) from a diesel oil-fired boiler 124 

(Tradesa, MOD SF 20, RA-GTI, TRADE, Italy) at 6 m
3
 hour

-1
 (flow meter FR4500, Key 125 

Instruments, USA). Before injection into the raceway, the flue gas was cooled to air 126 

temperature and stored in a 1.5 m
3
 reservoir at a constant pressure of 2 bar (BUSCH, Mink 127 

MM 1104 BP, model C-1000 compressor, Barcelona). Flue gas was only injected during 128 

daylight hours (solar radiation >50 W m
-2

) as no CO2 demand was exerted by the algae 129 

during the night. 130 

 131 



 

7 

 

Biomass concentration was measured daily, and average daily production (g TSS m
-2

 day
-1

) 132 

was calculated based on this concentration and the harvested volume, taken over weekly 133 

periods. The culture was maintained from December until May to provide information on 134 

algal growth during winter and spring periods. The micro-algal culture used in the AD 135 

experiment was harvested in batches from the raceway between 19 January - 3 February by 136 

continuous centrifugation (Alfa Laval Clara 15, LAPX 404 SGP-31G/TGP-61G).  The 137 

batches of algal paste had TS contents ranging from 7-12 %, and were frozen immediately on 138 

harvesting then shipped under refrigeration from Almeria (Spain) to Southampton (United 139 

Kingdom). On arrival the paste was thawed and the batches mixed to give a homogeneous 140 

mass that was distributed into small containers and re-frozen immediately, then thawed as 141 

required before use. 142 

 143 

2.2 Anaerobic digestion  144 

 145 

Six digesters each with a working volume of 1.5 litres were operated for a period of 136 days. 146 

These were constructed of PVC tube with gas tight top and bottom plates. The top plate was 147 

fitted with a gas outlet, a feed port sealed with a rubber bung, and a draught tube liquid seal 148 

through which an asymmetric bar stirrer was inserted with a 40 rpm motor mounted directly 149 

on the top plate. Temperature was maintained at 35±0.5 
o
C by water circulating through an 150 

external heating coil. During semi-continuous operation digestate was removed through an 151 

outlet port in the base plate, and feed added via the top plate. Gas production was measured 152 

using tipping-bucket gas counters with continuous datalogging. Calibration of gas counters 153 

was checked weekly by collecting the gas from the outlet of the gas counter in a Tedlar bag 154 

(SKC Ltd, Blandford Forum, UK); the volume was then measured accurately in a water 155 
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displacement weight-type gasometer [19]. All gas volumes reported are corrected to standard 156 

temperature and pressure of 0 
o
C, 101.325 kPa. 157 

 158 

The inoculum was taken from laboratory-scale digesters that had been operating with a 159 

feedstock of freeze-dried Scenedesmus spp.; its characteristics were: pH 7.5, TS content 160 

6.17%, VS content 4.71%, total ammonia nitrogen (TAN) 2070 mg N l
-1

, and total alkalinity 161 

13.3 g CaCO3 l
-1

. The digestion feedstock composition is shown in Table 1. On day 1 of the 162 

digestion experiment, three pairs of digesters were fed with the thawed micro-algal mixture at 163 

an organic loading rate (OLR) of 2 g VS l
-1

 day
-1

. After 75 days, the OLR of one pair was 164 

kept unchanged, and the OLRs of the other two pairs were increased to 2.75 and 3.5 g VS l
-1

 165 

day
-1

 respectively. All six digesters were then operated for at least three hydraulic retention 166 

times at these OLR. System performance was monitored by weekly measurement of digestate 167 

pH, TS and VS, TAN, total alkalinity, and volatile fatty acids (VFA).  168 

 169 

pH was determined using a Mettler Toledo FE20/EL20 pH meter with a combination glass 170 

electrode, calibrated in buffers at pH 4, 7 and 9.2 (Fisher Scientific, UK). TS and VS were 171 

measured according to Standard Method 2540 G [18]. Alkalinity was measured by titration 172 

using 0.25 N H2SO4 to endpoints of 5.7, 4.3 and 4.0 [20]. Total Kjeldahl Nitrogen (TKN) and 173 

ammonia were determined using a Kjeltech block digestion and steam distillation unit 174 

according to the manufacturer's instructions (Foss Ltd, UK). VFA concentrations were 175 

quantified in a Shimazdu 2010 gas chromatograph (Shimadzu, UK). Calorific values (CV) 176 

were determined using a bomb calorimeter (CAL2k-ECO, South Africa). Biogas composition 177 

was measured three times a week using a Varian CP-3400 gas chromatograph (Varian, UK). 178 

Elemental composition (C, H, N) content was determined using a FlashEA 1112 Elemental 179 
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Analyzer, (Thermo Finnigan, Italy) based on the manufacturer's instructions using 180 

methionine, L-cystine and sulphanilamide as standards.  181 

 182 

Theoretical CV was calculated using the Dulong equation according to the method in 183 

Combustion File 24 [21]. Theoretical biogas composition was calculated based on the 184 

Buswell equation [22]. The calorific value of methane was taken as 39.84 MJ m
-3

 at STP. 185 

 186 

3 Results and discussion 187 

 188 

3.1 Raceway cultivation 189 

 190 

The method of carbonation of the culture medium in the raceway was found to be adequate to 191 

maintain high micro-algal productivity in the raceway. The CO2-rich flue gas injected at the 192 

bottom of the sump gave turbulence in this zone and allowed almost complete dissolution of 193 

the CO2 into the aqueous phase with only around 10% of CO2 entering the sump leaving in 194 

the exhaust gas, which had a CO2 content of < 0.5 % (Figure 3a) (de Godos et al., 2014). By 195 

supplying flue gas 'on demand' it was possible to control the raceway pH in the desired range 196 

of 7.8-8.1 even during peak carbon demand in the mid-day period when solar radiation was at 197 

its highest (Figure 3b).  198 

 199 

During the batch start-up the average water temperature was 13.6 
o
C, with a maximum 200 

daytime temperature of 18.4 
o
C, and was therefore lower than the optimal growth 201 

temperatures reported for the most common species [23, 24]. The temperature increased in 202 

the transition from winter to spring conditions and this had a pronounced effect on algal 203 

growth and on the evaporation rate. In December the average air temperature was around 15 204 
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o
C with an evaporation rate of around 200 l day

-1
; while by the end of the experimental period 205 

in May the temperature had risen to 25 
o
C with an evaporation rate of 700 l day

-1
 (Figure 4a). 206 

The evaporation rate was therefore between 2 % and 7 % of total reactor volume and a 207 

significant fraction of the total daily volume removed for harvesting: this loss was taken into 208 

account when calculating the biomass yield.  209 

 210 

Figure 4b shows the total suspended solids (TSS) concentration in the raceway culture, which 211 

remained around 0.75 g l
-1

 for the first 6 weeks of operation when the average water 212 

temperature was fairly constant. Once the temperature started to rise there was a 213 

corresponding increase in culture density, reaching ~1.4 g TSS l
-1

 by early April. Further 214 

increases in temperature did not increase culture density, which in fact declined slightly as 215 

temperatures rose further in May. Figure 4b also shows the solar efficiency, which was 216 

between 0.6 and 0.7 g E
-1

, in the range for cultures that are photosynthetically active [25]. 217 

Small variances in this parameter could be explained by changes in the average irradiance 218 

due mainly to the variation in weather conditions from winter to spring; some variations, 219 

however, may also be as a result of changes in the cell size and concentration or pigment 220 

content [26]. The higher temperatures seen at the end of the study period resulted in a 221 

reduction in solar efficiency and TSS concentration as a result of photoinhibition in part of 222 

the culture. Turbidity and absorbance at 680 nm (Figure 4c) were related to the culture TSS 223 

concentration (R
2
 = 0.613, n = 111 and R

2
 = 0.775, n = 108, respectively; p <0.001 in both 224 

cases) showing that, as expected, absorption of light in the culture increased with the culture 225 

density. 226 

 227 

To determine the optimum dilution rate a trial-and-error approach was adopted, hence the 228 

dilution rate was modified weekly. Figure 4d shows the dilution rate expressed as the amount 229 
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of fresh medium added as a percentage of the total reactor volume; and the productivity as the 230 

mass of algae produced per unit area per day. The results indicate that 43% of the variation in 231 

productivity  can be attributed to the dilution rate (R
2
 = 0.43, n = 23, p < 0.001), and also 232 

show how productivity increased during the spring period from late February through to the 233 

end of May, reflecting the higher temperatures and longer days with more solar radiation. 234 

When averaged over weekly periods, estimated productivities of 10-15 g TSS m
-2

 day
-1

 were 235 

achieved in winter (December - February) and of 20-25 g TSS m
-2

 day
-1

 during spring (April-236 

May) (Figure 4d). Maximum biomass productivity was comparable to that reported in the 237 

literature, with values of 19 g TSS m
-2

 day
-1 

obtained by Ketheesan and Nirmalakhandan [10] 238 

in an airlift-driven raceway, and by Vonshak and Guy [27] in outdoor cultivation with natural 239 

sunlight and a culture depth of 10 cm. Similar results were obtained by Boussiba et al. [28] 240 

with CO2 addition and pH in the range 7.0-7.5. Yoo et al. [29] achieved 21.8 g m
-2

 day
-1

 for 241 

Scenedesmus spp. cultivated for CO2 mitigation. These productivities have been suggested as 242 

indicating a good potential for fuel production [30]. The highest productivity was obtained in 243 

Spring at a dilution rate of 20-25 %. The increment in productivity in Spring is due to the 244 

increasing intensity of irradiance and the duration of daylight periods. The raceway design 245 

may also have affected productivity during the winter period as the angle of inclination of the 246 

sun during these months is low, and the narrow width of the raceway resulted in more than 247 

half of the culture surface being in the shadow of the freeboard of the channel at mid-day; 248 

this area was reduced as the sun's angle of inclination increased throughout the experimental 249 

period. 250 

 251 

Figure 5 shows continuous monitoring data for selected periods of operation corresponding to 252 

batch start-up, first week of semi-continuous operation, period of maximum productivity and 253 

the onset of reduced productivity in early summer conditions (Figure 5a, b, c and d 254 
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respectively). During the batch start-up period (Figure 5a) peak daily solar radiation was 255 

between 300-550 W m
-2

 and both water temperature and DO concentrations showed diurnal 256 

fluctuation, with day and night temperatures varying by up to 10 
o
C. A similar pattern was 257 

reflected in the first week of continuous operation (Figure 5b), and during December DO 258 

concentrations never rose above 200% saturation. During the entire study period pH 259 

remained within narrow limits, with only small increases during the dark period which were 260 

more pronounced in winter than spring. The control of raceway pH by the addition of flue gas 261 

CO2 addition thus proved very effective, and the single carbonisation sump was adequate for 262 

its purpose. In the maximum productivity period (Figure 5c), peak solar radiation was 263 

between 800-900 W m
-2

, and water temperature peaked between 25-30 
o
C falling to around 264 

15 
o
C at night. DO concentrations during the day could reach 350 % saturation. DO 265 

concentrations as high as 45 mg l
-1

 have been reported in raceways [31, 32], causing 266 

inhibition of photosynthesis and growth. By May water temperature had increased to over 30 267 

o
C in the middle of the day. This was associated with reduced productivity and lower peak 268 

DO concentrations of 200-250 % saturation (Figure 5d). In all cases temperature and DO 269 

peaks lagged behind peak solar radiation. 270 

 271 

The accumulation of photosynthetic oxygen in raceways during operation at high irradiancies 272 

was one of the main potential problems observed, as this can lead to a loss of productivity 273 

due to inhibition. Accumulation was minimised by operating the gas exchange sump with 274 

flue gas rather than pure CO2 as this resulted in a greater gas volume passing through the 275 

sump, which in turn stripped more oxygen out of the culture medium [16]. The sump proved 276 

to be one of the main zones in the raceway where oxygen could effectively be removed. The 277 

other major problem was the increase in temperature between spring and summer. As air 278 

temperatures increased in late May the water temperature in the raceways rose above 35 
o
C 279 
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resulting in very marked effects on productivity as a result of thermal inhibition. This was 280 

apparent as the dissolved oxygen concentration in the raceway was reduced during the mid-281 

day period along with a reduced demand for CO2, both strongly indicating inhibition or even 282 

death of the culture. As the summer progressed it became increasingly difficult to maintain 283 

the raceways in a stable condition. 284 

 285 

3.2 Anaerobic digestion trials 286 

 287 

pH. The pH in all six digesters fluctuated between 7.07 and 7.52 (Figure 6a). From day 1 to 288 

day 75 when all digesters were operating under the same conditions, the daily pH values were 289 

almost identical: small day-to-day differences are therefore believed to reflect slightly 290 

different intervals between sampling and pH measurement. From day 75 onward, there was 291 

some variation between digesters at different OLRs, with the lower-loaded A1 and A2 292 

operating at a slightly higher pH than A3 - A6. Nevertheless, pH remained in the optimum 293 

range for the growth of methanogens in all cases. 294 

 295 

TS and VS. As seen in Figure 6b, in the first 28 days the digestate TS increased gradually 296 

from 6% and stabilised at around 9.5%. This increase reflected the high proportion of 297 

inorganic matter (VS/TS = 0.40), which may have been in part due to a combination of wind-298 

blown dust entering the raceway and high salinity due to surface evaporation. The digestate 299 

VS content decreased gradually from an initial value of 4.7% and stabilised at 3% by the end 300 

of experiment. Based on the feedstock VS concentration of ~4.3 %, the apparent VS 301 

destruction was low, with only ~30% of VS degraded.  302 

 303 
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Alkalinity, ammonia and VFA. Similar to the trend in digestate TS, in the first 28 days there 304 

was an increase in total alkalinity, starting at 13 g CaCO3 l
-1

 and then stabilising at around 35 305 

g CaCO3 l
-1

 until the end of experiment. The TAN concentration in all digesters rose slightly 306 

to around 2.4 g N l
-1

 in the first 14 days of operation then declined during the experimental 307 

run and stabilised at around 1.8 g N l
-1

 in all cases. The digestate TKN concentration at the 308 

end of the run was around 4.1 g N l
-1

 indicating a breakdown rate for organic nitrogen-309 

containing compounds of around 44%, slightly above the VS destruction rate but still quite 310 

low. Total VFA concentrations in the digestate were initially between 100-250 mg l
-1

 and 311 

after day 75 remained consistently below 120 mg l
-1

. Despite the low VFA concentration, the 312 

IA/PA ratio rose during the first 28 days then fluctuated between 1-4, a range often 313 

considered to indicate potential instability [20]. The reason for this high value for the IA/PA 314 

ratio under apparently stable conditions is unknown. 315 

 316 

Biogas production and methane yield. Volumetric biogas production (VBP) was low, with 317 

average values over the last 30 days of the experiment of 0.66, 0.87 and 1.06 l l
-1

 day
-1

 for 318 

OLR of 2.0, 2.75 and 3.5 g VS l
-1

 day
-1

 respectively (Figure 6c). The specific methane 319 

production (SMP) was almost unaffected by the applied OLR and in the same period 320 

averaged around 0.139, 0.133 and 0.131 l CH4 g
-1

 VSadded at OLR 2.0, 2.75 and 3.5 g VS l
-1

 321 

day
-1

, respectively (Figure 6d). The average biogas methane content for all digesters in this 322 

period was around 62%, slightly above the value of 59% predicted by the Buswell equation 323 

[22]. This SMP was considerably below the specific methane yield of 0.220 l CH4 g
-1

 VSadded 324 

found in a 90-day batch test on the same feedstock (results not shown), but relatively similar 325 

to the yield of around 0.15 l CH4 g
-1

 VSadded in the first 1.6 days of the batch test, 326 

corresponding to a change of slope in the cumulative gas production curve. This indicates 327 

that only the readily degradable proportion of the biomass is being digested effectively in the 328 
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semi-continuous trials.  329 

 330 

The estimated calorific value based on the elemental composition was 21.95 MJ kg
-1

 VS, in 331 

reasonably good agreement with the measured value of 21.36 MJ kg
-1

 VS.  The energy 332 

recovered as methane therefore corresponded to ~25% of the measured calorific value in the 333 

semi-continuous trials at OLR 2.0, 2.75 and 3.5 g VS l
-1

 day
-1

, respectively.  This compares to 334 

~41% recovery in the BMP test, again confirming the poor degradability of the material. At 335 

the time of harvesting the average algal biomass productivity was 7.3 g TSS m
-2

 day
-1

, 336 

equating to an energy output as raw methane of 161 MJ ha
-1

 day
-1

 at the maximum SMP in 337 

semi-continuous digestion of 0.139 l CH4 g
-1

 VSadded.  Using an average productivity of 10.3 338 

g TSS m
-2

 day
-1

 over the winter to spring period and the BMP value for methane yield, this 339 

increases to a 362 MJ ha
-1

 day
-1

 or 66 GJ ha
-1

 for the half-year period. 340 

 341 

The SMP in this study was similar to that found by Yen and Brune [33], but lower than 342 

reported by some others [7, 34, 35]. When a mixed algal sludge consisting mainly of 343 

Scenedesmus and Chlorella spp. was digested at 10 days HRT and OLR of 2.0, 4.0 and 6.0 g 344 

VS l
-1

 day
-1

, Yen and Brune [33] reported methane yields of 0.09 - 0.14 l CH4 g
-1

 VSadded. 345 

Oswald and Golueke [7] reported a methane yield of 0.26 l CH4 g
-1

 VSadded from digestion of 346 

mixed algal cultures at 30 days HRT. Ras et al. [35] obtained a methane yield of 0.15 l CH4 g
-

347 

1
 VSadded for 16 days HRT and 0.24 l CH4 g

-1
 VSadded from digestion of Chlorella vulgaris 348 

grown in a laboratory photobioreactor at 28 days HRT. There is considerable debate on the 349 

digestibility of micro-algal biomass, with a wide range of reported values [36]. The value 350 

reported here for a mixed algal culture primarily consisting of Scenedesmus spp. is lower than 351 

the BMP value of 0.261 l CH4 g
-1

 VSadded for a laboratory culture of Scenedesmus spp., and 352 

lower than that of 0.331 l CH4 g
-1

 VSadded for laboratory-grown C. vulgaris run at the same 353 
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time under the same test conditions [37]. The lower values found in the semi-continuous 354 

digestion compared to the BMP suggest that longer retention times could give slightly higher 355 

methane production, but pre-treatment of this type of substrate may also be required to 356 

improve methane yield. For example, thermal treatment of micro-algae collected from a high-357 

rate sewage stabilisation pond at 100 
o
C increased methane fermentation up to 33 % [38]. 358 

Similarly, a 2.2-fold increase in methane production in comparison to untreated substrate was 359 

achieved when Scenedesmus biomass grown in a laboratory bioreactor was pretreated at 90 360 

o
C [39]. 361 

 362 

4 Conclusions 363 

 364 

The culture conditions in an open pond photobioreactor were strongly related to the climatic 365 

conditions. Therefore, the correct choice of location for this kind of reactors is essential if 366 

satisfactory productivity is to be achieved across the seasons. The biggest problem 367 

encountered in operation of the raceways was the daytime accumulation of photosynthetic 368 

oxygen in the culture: even during the period of relatively low light intensity and temperature 369 

DO concentrations of 200% saturation occurred. At higher light intensities, DO 370 

concentrations of 350% saturation could have caused some reduction in productivity due to 371 

inhibition of photosynthesis, and this problem was compounded by water temperatures of up 372 

to 35 
o
C by late May.  373 

 374 

Anaerobic digestion of the harvested raceway culture was possible at a VS content of 4.3% 375 

and HRT as low as 12.4 days, as indicated by stable volumetric and specific methane 376 

production and low VFA concentrations. The methane yield and biodegradability of this 377 

mixture was low, however, with a VS destruction of only about 30%. Possible reasons could 378 
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be the recalcitrant nature of this type of biomass, and the short retention times used due to the 379 

high moisture content. It is suggested that either longer retention times or pre-treatment 380 

techniques may be required in order to improve biodegradability and methane yield, if this 381 

mixture is to be grown and harvested at large scale as a feedstock for biomethane production. 382 
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List of figures and tables 493 

 494 

 495 

Figure 1. Algal cultivation facilities. (a) Tubular fence-type photobioreactor used to grow the 496 

inoculum of Scenedesmus sp. (F.G. Acién Fernández et al., 2013) [40]. (b) Raceway reactor 497 

in which the main algal culture was grown. 498 

 499 
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 500 

Figure 2. Anaerobic digesters: (a) schematic cross-section; (b) photograph  501 

 502 

 503 
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Figure 3. CO2 demand on the sump during a daylight period: (a) pH control hysteresis in the 504 

range 7.8-8.1 as maintained by flue gas injection (0 is flue gas valve closed and 1 is flue gas 505 

valve opened). (b) Timing of flue gas injections and % of CO2 in gas exhausted to 506 

atmosphere. 507 

 508 

 509 

Figure 4. Parameters studied during the culture period. (a) Online culture temperature 510 

registered and daily evaporation in the raceway. (b) Daily analysis of total suspended solids 511 

and quantum yield. (c) Daily analysis of absorbance at 680 nm and turbidity. (d) Weekly 512 

average dilution and productivity in raceway algal culture. 513 

 514 
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 515 

Figure 5. Selected results from continuous monitoring of raceway culture during the 516 

experimental period: (a) Batch start-up, (b) First week semi-continuous, (c) Maximum 517 

productivity, (d) Reduced productivity. 518 

 519 

 520 

Figure 6. Results from anaerobic digestion trial with raceway culture of Scendesmus sp. (a) 521 

Digestate pH. (b) TS and VS of digestate. (c) Volumetric biogas production. (d) Specific 522 
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methane production. Vertical dotted line indicates change in organic loading rates on day 523 

75. 524 

 525 

Table 1. Characteristics of the algal mixture after centrifugation 526 

Parameter Unit Algal mixture 

TS g kg
-1

 WW 108.5
b
 

VS g kg
-1

 WW 43.31
b
 

TKN g kg
-1

 WW 3.77
a
 

C % (on a VS basis) 45.6 

H % (on a VS basis) 9.0 

O % (on a VS basis) 35.7 

N % (on a VS basis) 8.7 

S % (on a VS basis) 1.0 

C/N - 5.24/1 

Calorific Value MJ kg
-1

 VS 21.36 

a
 measured as dry matter 527 

b
 measured as wet matter 528 

 529 


