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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Tayyaba Azim

This research focuses on developing visual object categorization methodologies that are

based on machine learning techniques and biologically inspired generative models of

visual scene recognition. Modelling the statistical variability in visual patterns, in the

space of features extracted from them by an appropriate low level signal processing

technique, is an important matter of investigation for both humans and machines. To

study this problem, we have examined in detail two recent probabilistic models of vision:

a simple multivariate Gaussian model as suggested by (Karklin & Lewicki, 2009) and a

restricted Boltzmann machine (RBM) proposed by (Hinton, 2002). Both the models have

been widely used for visual object classification and scene analysis tasks before. This

research highlights that these models on their own are not plausible enough to perform

the classification task, and suggests Fisher kernel as a means of inducing discrimination

into these models for classification power. Our empirical results on standard benchmark

data sets reveal that the classification performance of these generative models could

be significantly boosted near to the state of the art performance, by drawing a Fisher

kernel from compact generative models that computes the data labels in a fraction of

total computation time. We compare the proposed technique with other distance based

and kernel based classifiers to show how computationally efficient the Fisher kernels are.

To the best of our knowledge, Fisher kernel has not been drawn from the RBM before,

so the work presented in the thesis is novel in terms of its idea and application to vision

problem.
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Chapter 1

Introduction

1.1 Visual Object Recognition

Visual object recognition is an important function of the human visual system that helps

us in classifying objects into one of the several semantic categories, either known or

unknown previously. This process involves the perception of objects physical properties

such as shape, color and texture that leads to an understanding of its use and relationship

to other objects by applying meaningful attributes to it. Inspired from this human

vision, are artificial object recognition systems, that aim at recognizing and interpreting

the objects in the environment with a similar degree of correctness and speed as humans.

Artificial object recognition has for long remained an important problem in computer

vision because of its wide applications and the persistent gap in the performance be-

tween the human and artificial scene recognition systems. The advances in both vision

algorithms and hardware have made practical visual object recognition within reach,

as can be seen in systems deployed on airports and highways for security and risk as-

sessments. However, a versatile solution to this problem still evades the reach of even

the best researchers with only partial solutions and limited success in constrained envi-

ronment being the state of the art. In fact, some researchers also argue that it is not

possible to design an object recognition system that is functional for a wide variety of

scenes and environments and is still as efficient as a situation specific system (Aggarwal

et al., 1996). Thus, the ability to accurately recognize large number of objects in a small

compute time like humans is the key to the success of many potential perception applica-

tions. It is this driving force that still motivates us to look back into the functionality of

the human visual system and emulate it into the machines for better perception power.

1
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1.2 Challenges Posed by Visual Object Recognition Sys-

tems

The neural mechanisms of visual perception offer insight on how the eyes and brain

handle visual information to recognize different objects. Designing a robust artificial

recognition system based on both state-of-the-art neurophysiologic findings and avail-

able technology is not an easy task. The brain is a complex organ that simultaneously

processes information to control perception, decision making, learning and memory. The

high complexity of the mammalian brain is one of the major reasons of the limited under-

standing of brain physiology which ultimately leads to poor computational modelling of

the brain. Another computational bottleneck is the existing storage capacity and power

of the machines to store and process the massive amount of data humans are capable

of operating and recognizing in a fraction of time. As an approximation, Simon Thorpe

(Thorpe et al., 1996) revealed through event related potential (ERP) recordings that

the time humans take to identify the presence/absence of an object in a natural scene

is not more than 150ms. As far as the scale of the semantic space is concerned, the

psychologists postulate that humans are able to categorize at least tens of thousands of

high level object categories and scenes (Biederman, 1987; Deng et al., 2010).

Given the above mentioned challenges, recent advances in the neuroimaging and mi-

croscopy techniques1 have accelerated the pace of brain research by allowing us to mon-

itor and analyse the brain activity at different levels of spatial organization from the

genes, proteins, synapses and cells to micro circuits, brain regions, and the whole brain

(HBP, April 2012). Similarly, the development of the cloud technology combined with

the internet allows us to collect data from research groups and clinics all over the world

with supercomputers becoming powerful enough to build and simulate the brain models

with unprecedented levels of biological detail. The current industrial trends are on a

pathway to tackle these issues but they are still in the experimental phase. Therefore,

we leave this discussion aside and discuss those issues which are generic in nature and

are important for an artificial recognition system to resolve irrespective of the fact they

have biological inspiration or not.

Visual object recognition systems are subject to the changes in their environment as

they are affected by the way objects are presented to them for classification. Apart from

the environment, the physical properties of the objects also influence the classification

performance of the systems. The challenges that are most commonly faced by all the

visual object recognition systems can be categorised as:

• View Point Orientation

1Neuroimaging techniques refer to the techniques that directly/indirectly image the structure or
function of the brain. Examples include electroencephalography (EEG), computed tomography (CT) and
magnetic resonance imaging (MRI) techniques, whereas microscopy allows us to monitor the neuronal
activity of the brain in a non-intrusive way via a microscope, examples include light microscopy.
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Figure 1.1: Challenging problems of orientation, illumination and scale are shown
in (a), (b) and (c) respectively2. The human visual system recognizes these objects
without any difficulty whereas an artificial system lacking invariance/generalization
power might misclassify them when matching the extracted features with those saved

in database.

• Illumination

• Scale

• Occlusion

• Background Clutter

• Deformation (change in the shape or size of an object due to an applied force)

Due to the variations in the above mentioned conditions, visual features extracted from

the same objects may vary resulting in the misclassification of objects by an artificial

system. For example, if a system is trained with object features whose image was cap-

tured in daylight, with a specific orientation, size, shape and background; it might have

difficulty in recognizing the same object seen at different time of the day with a dif-

ferent background. As compared to this artificial system, an object remains the same

object (at the human perceptual level) after changing its position, scale, rotation, illu-

mination, color, occlusion and deformation. Therefore, in order to develop an artificial

object recognition system with human level of accuracy and speed, the response of the

system should be made generic to all these transformations, yet at the same time se-

lective enough to distinguish between very similar objects such as the faces of identical

twins. It would be relatively easy to build a computer system that can be extremely

selective by simply memorizing all the pixels in several training images. However such

a system would lack any power to generalize. Thus the tradeoff between selectivity and

invariance(generalization) constitutes one of the most astounding accomplishments of

the human visual recognition machinery and also one of the key challenges for computer

vision (Kreiman, 2008). See Figures 1.1 and 1.2 for the illustration of generalization and

selectivity difficulties posed by artificial object recognition systems.

2http://cs.nyu.edu/~fergus/icml_tutorial/.Accessed:2013-10-30.

http://cs.nyu.edu/~fergus/icml_ tutorial/. Accessed: 2013-10-30.
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Figure 1.2: Problems of occlusion, clutter and deformation are shown in (a), (b) and
(c) respectively2. An artificial system carries out a long computation to identify the
objects of interest whereas the human visual system deals with this issue effortlessly in

almost no time.

Figure 1.3: Generative model representing the distribution of images belonging to
each class; the Fisher vector derived from the generative model serves as a feature to

the discriminant classifier such as SVM.

1.3 Objective of the Current Research

The natural images recognized by the human visual system are not random in nature.

They contain striking statistical regularities which are usually captured through various

image descriptors/features. A lot of research in computer vision has focused on devel-

oping methods of extracting better image features for classification. One of the popular

ways of representing the statistical variability in the distribution of the images is through

probabilistic models which formalize the relationship between the image features while

taking into account the uncertainity/noise associated with them.

In this research, we investigate the discrimination capability of two widely used probabilis-

tic models of vision that reflect the neural activity in the mammalian visual pathway i.e.

the multivariate Gaussian model and the restricted Boltzmann machine. We demonstrate

through our experiments that both the generative models on their own are not suitable for

doing classification efficiently and therefore discrimination could be induced in them by

deriving a Fisher kernel that acts as a decision function in the support vector machine

(SVM) classifier. We show that discriminant Fisher score space could be drawn from

very compact generative models, giving computational as well as performance advantage

over comparable generative models of classification.
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1.4 Applications

Recognizing objects is an important capability of many of the automated systems which

enable us to perform a wide variety of tasks in our day to day life. Following are

examples of a few applications that deploy object recognition techniques at the core of

their development.

• Robust People Tracking in the Surveillance Applications: Surveillance

cameras are installed in many public areas to improve security, safety and site

management (Fuentes & Velastin, 2001; Liu et al., 2005; Anezaki et al., 2011).

Apart from just tracking and detecting humans through computer vision algo-

rithms, there is also an ongoing effort in the community to develop proactive

systems that can prevent the crime before they take place by deploying cameras

that work like human eye and thus detect where the potential danger in the scene

is.

• Vehicle Monitoring: Speed monitoring is often carried out by cameras triggered

by a vehicle exceeding the speed limit. The photograph captured by the closed-

circuit television (CCTV) is not only used to identify the moving vehicle within the

scene, but also locates the position of the registration plate to automatically read

the number for tracking the offender later (Rad et al., 2010; Adinarayana et al.,

2011). Other possible applications in this domain consist of collision warning

systems with adaptive cruise control, lane departure warning systems and rear

object detection systems (Batavia, 1999; Yusuke & Takaaki, 2006).

• Pattern Recognition in Systems Deployed by Forensics Science: In order

to investigate the crime scenes and trace evidence, pattern recognition techniques

are deployed to identify and recognize various objects of interest such as drug pills,

shoe prints, tool marks, fingerprints, fibers, faces, etc. (Garfinkel, 2006; Geradts

et al., 2007).

• Intelligent Robotic Applications: The use of vision based feature extraction

techniques have increased the deployment of robots in industrial environments

where they are used to weld, paint, assemble, pick and place, inspect, and test var-

ious products or objects (L.Torres-Mendez & Olaya, 2011; Siagian & Itti, 2009).

Apart from their use in the industry, they are also used by the military in un-

manned aerial vehicles (Der et al., 2004), astronomy for space exploration and

doctors in surgery(Lehr et al., 2011).

• Impact in the Field of Medicine: The study of the biological vision for object

recognition systems can also be used to reverse engineer the designed system to

explore how visual information is processed at later stages of vision. Such research

will not only help us in improving the performance of the biologically inspired ap-

plications discussed above, but will also assist us in devising effective treatment for

people suffering from perception and cognitive disorders, e.g. dyslexia, attention
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deficit hyperactivity disorder (ADHD), etc.

1.5 Contributions of this Thesis

This thesis

• Highlights the limitations of generative models: multivariate Gaussian model and

restricted Boltzmann machine (RBM) for the classification task on several bench-

mark texture, character and object recognition data sets.

• Suggests a fast alternate method of achieving state of the art classification perfor-

mances on these data sets with Fisher kernels derived from very compact generative

models.

• Proposes a recognition solution that is low cost, energy efficient and comparable

to state of the art classification methods.

• Surveys the computational models of object recognition used so far and suggests

some methods to improve the progress of research in this area.

• Explores the discriminative quality of the Fisher score space derived from differ-

ent generative models and points out the possibility of Fisher kernel’s biological

plausibility.

1.6 Organization

This thesis is organized as follows:

Chapter 2 reviews the biological aspects of the mammalian visual system that inspired

the computational models used in this work. We have reviewed the relevant visual

anatomy as well as the computer vision literature for scene recognition to put this

research into context. Chapter 3 describes the feature extraction and selection techniques

used to encode different object classes in the recognition systems. Chapter 4 explains

the generative models that were used to draw Fisher score space for the Fisher kernels.

Chapter 5 explains the details of the experimental results carried out for classifying

objects in natural scenes. We then summarize our conclusions and highlight the future

work that is to be investigated as a followup of this research.

1.7 Publications

The work shown in this thesis has been part of the following publications:
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• Chapter 5 :

T. Azim and M. Niranjan. Inducing Discrimination in Biologically Inspired Mod-

els of Visual Scene Recognition. In IEEE International Workshop on Machine

Learning for Signal Processing, (MLSP), September 2013.

• Chapter 2 and Chapter 6 : T. Azim. Computational Models of Object Recog-

nition: Goal, Role and Success. In International Joint Conference on Computer

Vision Theory and Applications (VISAPP), January 2014.

• Chapter 5: T. Azim and M. Niranjan. Texture Classification with Fisher Kernel

Extracted from the Continuous Models of RBM. In International Joint Conference

on Computer Vision Theory and Applications (VISAPP), January 2014.

• Chapter 5: T. Azim and M. Niranjan. Enhancing Discrimination in Biologically

Inspired Models of Visual Scene Recognition. Submitted to the Journal of Image

and Vision Computing.





Chapter 2

Background and Literature

Review

In this chapter, we review some biological aspects of the mammalian visual recogni-

tion system that have been borrowed by the computer vision community to help design

artificial recognition systems. We note that the low level optical sensing stage is well

understood and the computational models based on the cellular response to image fea-

tures are well developed. However, the way the mammalian visual system represents

pattern variability is less obvious, though some theories on this exist and are reviewed

here.

2.1 Anatomy of the Human Visual System

Visual scene recognition is viewed as a hierarchical process in which information is

processed sequentially with increasing sophisticated representations from the retina of

the eye to the lateral geniculate nucleus (LGN) and then from LGN to the primary and

secondary visual cortices of the brain.

The act of seeing starts when the lens of the eye focuses an image of its surroundings

onto a light-sensitive membrane at the back of the eye, called the retina. The photo-

receptive cells in the retina are responsible for the conversion of light patterns into nerve

impulses (electrochemical signals) that are sent via the optical nerve to various parts

of the brain for scene analysis and understanding. See Figure 2.1 for illustration. The

vast majority (approximately 90%) of the nerve fibres in the optic tract open into the

lateral geniculate nucleus (LGN), while the rest send information to the midbrain which

assists in controlling eye movements as well as other motor responses (Nolte, 2002).

The cells of the lateral geniculate nucleus terminate at the main image interpretation

center of the brain, the primary visual cortex. It is in the primary visual cortex from

9
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where the brain begins to reconstitute the image received at the receptive fields of the

retinal cells. In the visual system, the receptive field is often identified as the region

of the retina where the action of light causes reflex in the neurons but this concept

has been extended to other neurons in the visual pathway following Hubel and Wiesel’s

theory (Hubel & Wiesel, 1962, 1965) which proposed that the receptive fields of cells

at one level of the visual system are formed from input by cells at a lower level of the

visual system. Thus, small simple receptive fields are combined to form large complex

receptive fields. Hubel’s experiments were conducted on a cat’s visual cortex, however

later research on the human visual cortex also reaffirmed these findings, suggesting that

along the human visual pathway in the mammalian brain, the receptive fields increase

in size with increasing stimulus eccentricity (Smith et al., 2001).

Figure 2.1: Optical view of human eye showing the projection of real world image
onto its photographic film, i.e the retina. The lens finely focuses the light reflected from
the object onto the retina which initiates a cascade of chemical and electrical events
that trigger nerve impulses carried to the brain through optical nerve 1. The path from
eye to the visual information processing hub of brain, i.e. the primary visual cortex2 is

also shown.

2.1.1 Visual Cortex and Neural Cells

The visual cortex is organized into a primary and secondary region in each occipital lobe.

The visual signals first come into the primary cortex (also called Visual 1/ V1), located

in the most posterior portion of the brain’s occipital lobe. According to the Two Streams

Hypothesis, the neural information takes two different pathways/streams in parallel from

V1: the dorsal stream and the ventral stream (Goodale & Milner, 1992). The ventral

stream also known as the “what pathway”, travels via V2 and V4 to the temporal

lobe and is involved with object identification, recognition and long-term memory. The

dorsal stream or “how pathway” goes from V1 to V2, V6, V5 and then terminates in

the parietal lobe. It is involved with the processing of object’s spatial location relevant

to the viewer. See Figure 2.2 illustrating the anatomy of the mammalian visual cortex.

1http://www.tutorvista.com/science/human-eye-and-the-colourful-world
2http://thebrain.mcgill.ca/flash/d/d_02/d_02_cr/d_02_cr_vis/d_02_cr_vis.html#3

http://www.tutorvista.com/science/human-eye-and-the-colourful-world
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cr/d_02_cr_vis/d_02_cr_vis.html#3
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Figure 2.2: Lateral view of brain showing different regions involved in visual object
recognition. The occipital lobe is the visual information processing center of the mam-
malian brain containing most of the anatomical region of the visual cortex 3. The cortex
is divided into primary and secondary regions and the complex cells in cortex, V1-V5

are arranged symmetrically in each of the brain hemispheres respectively.

There are about 100 billion nerve cells (or neurons) in the primary and secondary regions

of the mammalian brain. Hubel and Wiesel classified these cells as simple and complex

according to the complexity of their response to the light stimulus (Hubel & Wiesel,

1962, 1965). A cell is termed as simple based on four different criteria: First, their

receptive field could be subdivided into distinct excitatory (on) and inhibitory (off)

regions. Second, we can find spatial summation of effects within each distinct subregion,

i.e. the more of a region a stimulus fills, the stronger is the resultant excitation or

inhibition. Third, there is a spatial antagonism between on and off subregions of the

receptive field, i.e. we get a mutual cancellation of responses on stimulating two opposing

regions at the same time. And fourth, the visual responses to stationary or moving spots

could be predicted from the spatial organization of the subregions. Cells that do not

fulfill these four criteria are classified as complex cells. According to Hubel’s classical

model of visual cortex, cells in the V1 region are regarded as simple cells and the cells

in V2, V3, V4 and V5 are categorized as complex cells. The specific function of each of

these nerve cells in the visual cortex is described in Table 2.1.

The hierarchical modelling paradigm proposed by Hubel and Wiesel has remained widely

popular because of its appealing simplicity, yet there are some critiques they have faced

3http://education.vetmed.vt.edu/Curriculum/VM8054/EYE/CNSPROC.HTM

http://education.vetmed.vt.edu/Curriculum/VM8054/EYE/CNSPROC.HTM
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Figure 2.3: Hierarchical models put forth the idea that simple cells and complex cells
represent two successive stages of cortical processing

Table 2.1: Neural cells in the visual cortex are sensitive to different features of visual
input summarised below.

Cells V1 V2 V3 V44 V5

Edge Information Y Of illusory contours specifically Y Y -
Color Information Basic/Initial Y (Few neurons) Y -
Motion(Objects Speed in a Scene) Y - Y - Y
Attentional modulation - (>V1 but <V4) - - -
Shape - Y - - -
Eye movement guidance - - - - Y

due to some new experimental and computational evidence. First, some complex cells

were found to receive direct geniculate input from the retina (Hoffman & Stone, 1971;

Bullier & Henry, 1979; Ferster & Lindstrom, 1983; Tanaka, 1983) indicating that complex

cells were not so different from simple cells. Second, several studies failed to find evidence

for excitatory connections from simple cells to complex cells (Toyama et al., 1981a,b;

Ghose et al., 1994; Freeman, 1996). Despite the wide acceptance of the hierarchical

processing idea, this critique makes it necessary for the hierarchical models to evolve

and embrace other ideas like parallel models and recurrent models. Parallel models put

forward the idea that simple and complex receptive fields could both be built in parallel

by direct geniculate inputs from the retina. The recurrent models on the other hand

suggest that the simple cells and complex cells may not be different cell types, rather

just two functional states of the same cortical circuit. To this day, a consensus among

hierarchical, parallel and recurrent models has been difficult to attain, however, the

circuitry used by all models is becoming increasingly similar (Martinez & Alonso, 2003).

4All this tuning is for the objects of intermediate complexity like geometric shapes not complex
objects like faces.
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2.2 Mathematical Model of Retinal Cells and Simple Cells

In order to understand the functionality and behaviour of neurons in different scenarios

without using invasive physiological methods, mathematical modelling is frequently used.

We discuss here the mathematical model of retinal ganglion cells and simple cells to give

an intuition of the mapping that forms the basis of many feature extraction algorithms

in computational neuroscience and computer vision.

The receptive field of cells at different locations of visual pathway show different spatial

organizations and have been been modelled mathematically quite accurately. Kuffler

(Kuffler, 1953) proposed that the ganglion cells in the retina are composed of receptors

with antagonistic concentric receptive fields that can be classified as off-center cells and

on-center cells. The on-center cells respond strongly to light entering on their receptive

field, whereas the off-center cells respond in the opposite way. Keeping in account this

anatomical structure, in the mid 1960s, Rodieck (Rodieck, 1965) and Cugell and Robson

(Cugell & Robson, 1966) proposed a mathematical model for the receptive fields of the

retinal ganglion cells. This model portrays the sensitivities of the ganglion cells as a

difference-of-Gaussian (DoG) function which is calculated by a linear subtraction of

two concentric responsively opposed Gaussian functions, with greater sensitivity in the

center and a smooth steep decay in the surround.

Response = W (r) = kc exp[−(r/rc)
2]− ks exp[−(r/rs)

2]. (2.1)

Here, the first Gaussian represents the excitatory region of the receptive field, and the

second Gaussian corresponds to the inhibitory region of the receptive field. The variable

r is the radial distance from the center of the receptive field, k characterizes the strength

of the center, c and surround, s summation regions respectively. The larger of the two

radii stands for the surround, and the smaller radius corresponds to the center. The DoG

function is good at quantitatively describing the receptive fields and therefore has been

widely used to study the ganglion cells. It is because of this concentric organization of

the receptive field, why the ganglion cells are locally sensitive to illumination changes and

therefore act as the basis of the scale invariant feature transform (SIFT) used widely to

detect and describe salient local features in the state of the art vision algorithms (Lowe,

1999). The rectified ganglion output is given by the linear spatial summation of a given

luminosity L(r, φ) of an image weighted by the DoG response function, W (r) as:

OG = ±GH(±G), where G =

∫ ∞
0

∫ 2π

0
rL(r, φ)W (r)drdφ,

and H(x) =

{
0, x<0

1, x≥0

is the unit step function. The + and - signs are for on and off center cells respec-

tively(Atick & Redlich, 1990).
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Figure 2.4: Diagram showing signal summation over a retinal ganglion cell receptive
field. The upper diagram illustrates the assumption that signals from elementary areas
constituting the centre summating region and signals from elementary areas consti-
tuting the surround summating region are separately summed and that the resulting
signals C and S have antagonistic effects upon the ganglion cell. For an on-centre cell
the two signals would be described by +C and -S, for an off-centre cell by -C and +S.
In the lower half of the figure are shown the Gaussian weighting functions assumed to
describe the sensitivities of the centre and surround summating regions respectively;
Wc(r) = kc exp[−(r/rc)

2].Ws(r) = ks exp[−(r/rs, )
2] The weighting functions for both

center and surround summating regions have maxima in the middle of the receptive
field. The bars drawn below the centre and surround weighting functions are 5rc and
5rs, long respectively. These bars indicate the assumed anatomical diameters of the

regions (Cugell & Robson, 1966).

A simple cell sums its input from a set of ganglion cells. If we consider the simple cells

response characteristics in terms of a function over the (x, y) plane of visual space, then

the receptive field profile (rfp) is a bivariate real-valued function f(x, y) which multiplies

to the stimulus distribution of light intensity L(x, y), and is integrated over the plane

to yield the cell response:

Response = k

∫ +∞

−∞

∫ +∞

−∞
L(x, y)f(x, y)dxdy. (2.2)

Thus, in the simplest case of a small spot of light located at (x0, y0) with intensity I0,

the cell’s response would be kI0f(x0, y0), where k is an arbitrary constant determined by

the chosen amplitude of modulation of response. A crucial feature of this concept is the

assumption of linearity: scaling the light stimulus, L(x, y) should identically scale the

response, and different stimuli in different regions of the plane should evoke responses

that would sum up. The receptive field profile, f(x, y) of the simple cells is usually mod-

elled via a Gabor function, first used by Marcelja (Marcelja, 1980) as a representation

of the functionality of simple cells’ receptive fields. The impulsive response of the Gabor
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function (Daugman, 1985) is given as: Response=f(x, y)=G ·H, where

G = exp

(
−x′2

2σ2
x

+
−y′2

2σ2
y

)
, and

H = cos
(
2πωx′ + φ

)
,where

x′ = x cos θ + y sin θ, and

y′ = −x sin θ + y cos θ

The arguments x and y specify the position of a light impulse in the visual field and

σ, λ, θ and φ are parameters defined as follows: The parameter λ is the wavelength and

1/λ the spatial frequency of the cosine factor in Eq.2.3. The ratio σ/λ determines the

spatial frequency bandwidth of simple cells and thus the number of parallel excitatory

and inhibitory stripe zones which can be observed in their receptive fields. The half-

response spatial frequency bandwidth b (in octaves5) and the ratio σ/λ are related as

follows:
σ

λ
=

1

π

√
ln 2

2

2b + 1

2b + 1
(2.3)

The parameter σ of the Gaussian factor determines the (linear) size of the receptive

field. Its value is determined by the choice of the parameters λ and b. Finally, the

parameter φ, which is a phase offset in the argument of the cosine factor, determines

the symmetry of the concerned Gabor function: for φ = 0◦ and φ = 180◦ the function

is symmetric/even; for φ = −90◦ and φ = 90◦, the function is antisymmetric/odd, and

all other cases are asymmetric mixtures of these two. We will discuss this filter and its

application in more detail in Chapter 3.

To date, the most successful computational models have been built for the neurons at the

earliest stages of the visual pathway, i.e., the DoG function for retinal geniculate cells

and the Gabor function for simple cortical cells. Note that the Gabor function does not

take into account the anatomical structure of the visual system since it just assumes the

2D projection of image on retina as its input, bypassing the retinal LGN output. Fur-

thermore, it fails to reproduce some properties of simple cells, such as cross orientation

suppression, independence of orientation tuning on contrast and response saturation.

Another recent model of simple cells which combines the responses of LGN cells with

center-surround receptive fields (RFs) is known as Combination of RFs (CORF) model

(Azzopardi & Petkov, 2012). Besides orientation selectivity, it exhibits cross orientation

suppression, contrast invariant orientation tuning and response saturation. They have

also shown to demonstrate that the RF map of the CORF model could be divided into

elongated excitatory and inhibitory regions typical of simple cells. More complex models

of cells combine multiple functions to accurately reproduce the response of a neuron to

different stimuli (Bonin et al., 2005; Rust et al., 2005).

5The frequency is divided into a set of frequencies called bands where each band covers a specific
range of frequencies. A frequency is regarded as an octave in width when the upper band frequency is
twice the lower band frequency.
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2.3 Literature Review

2.3.1 Earlier Computational Models of Object Recognition (1930-2005)

Some of the early ideas on the computational modelling of visual object recognition can

be traced back to Gestalt’s work in the 1930s (Wertheimer, 1938; Fulcher, 2003) that

illustrates a set of principles explaining how human vision groups elements to recognize

objects and how visual objects could be distinguished from each other and from the

background. The Gestalt psychologists maintained that humans constantly search for a

‘good fit’ between the visual image and the stored memories of the visual objects that

are naturally organized in the brain as patterns based on their continuity, similarity,

closure, proximity and symmetry. These defined principles of perception that assist

grouping of stimuli and are minimally affected by an individual’s past experience are

known as the Laws of Pragnanz. Gestalt theory laid much of the groundwork for the

study of object recognition, however it was criticized heavily because of being more

descriptive than explanatory enough to model the functioning of human vision (Bruce

& Green, 1985). More tangible work that draws ideas from the study of the neural

information processing in computational form, comes from Hubel and Wiesel (Hubel &

Wiesel, 1962, 1965), who by observing the cat’s visual cortex introduced the concept of

hierarchical visual information processing in the receptive fields. It was this discovery of

the receptive fields and feed forward architecture that later on lead to the development

of many different hierarchical models of object recognition (Fukushima, 1988; Wallis &

Rolls, 1996; Riesenhuber & Poggio, 1999; Deco & Rolls, 2006).

One of the most influential work on understanding visual scene analysis after Hubel and

Wiesel is that of David Marr, who proposed hierarchical modelling of the visual sys-

tem, from simple to complex at three independent levels of abstraction: computational,

algorithmic and implementational levels. In computer analogy, these could be roughly

understood as task, software and hardware levels. According to Marr, separating the

three levels allow those interested in cognition to focus on the level they are most inter-

ested in, while simultaneously allowing those not specially interested in cognition (like

computer scientists) to provide valuable insight from their specific point of view. The

tri-level hypothesis is not without any objections (Friedenberg & Silverman, 2006), but

it remained a valuable tool to aid in the study of cognitive science in general. Apart from

the tri-level hypothesis, Marr also proposed an intermediate stage of information repre-

sentation - the 2-1/2D sketch - between the 2D image on the retina and a 3D description

of the world in cortex (Marr & Poggio, 1979; Grimson, 1981). The idea of a primal sketch

is similar to a pencil drawing by an artist in which different areas of a scene are shaded

to give depth to it. This bottom up hierarchical processing insight although seminal,

has now been modified by the recent research (Serre et al., 2007b; Rolls et al., 2008-

2009). However, it highly influenced the state of the art object recognition systems circa
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1965-1980, giving birth to object centered/shape based models that focused on finding

the correct representation for visual primitives, and represented objects hierarchically in

terms of their structural properties. Marr and Nisihara’s idea of part based structural

representation was based on hierarchically stored three dimensional volumes of general-

ized cones (or cylinders) and their spatial relationship to one another (Marr & Nishihara,

1978). This approach of using geometric primitives was an attempt to reconstruct the

shape of objects, in a similar vein to how some other inspired approaches in parallel line

of work (Nevatia & Binford, 1973) were trying to reconstruct the scene, however, they

did not provide any empirical support for the proposed model. Compared to this initially

proposed model by Marr, the most well received structural descriptive model was the

recognition by components (RBC) model by Biederman (Biederman, 1987), who refined

Marr’s model of object recognition in important ways and provided empirical support for

the proposed theory: First and foremost improvement was the psychophysical support

of the RBC model (Biederman, 1986; Biederman & Cooper, 1991). Another defining

factor of the recognition by components (RBC) theory was its ability to recognize the

objects regardless of the viewing angle, known as viewpoint invariance. Although this

model made sensible assumptions of how human visual system may parse a scene, it was

not without any caveats in practice (Tarr & Blthoff”, 1998). The main disadvantages

of such shape-based methods are: the dependency on reliable extraction of geometric

primitives (lines, circles, etc.), the ambiguity in interpretation of the detected primitives

(presence of primitives that are not modelled), the restricted modelling capability owned

by a class of objects which are composed of few easily detectable elements, and the need

to create the models manually (Matas & Obdrzalek, 2004).

In contrast to the view point independent method proposed by Biederman, the decade

of 1990s saw the evolution of appearance/view based models in which the objects are

represented with respect to their viewpoint, thus entailing multiple representations that

place higher demands on memory capacity; however it does potentially reduce the de-

gree of computation necessary for deriving higher-level object representations in object

centered models. Based on the derived features, these methods can be sub-divided into

two main classes, i.e., local and global approaches. A local approach grabs a feature

from a small region of an image (object) which is ideally a distinctive property of the

object’s view/projection to the camera. Examples of local features of an object are

the color, mean gradient or mean gray value of pixels from small region. In contrast,

the global approaches grab features that cover the information content of the whole

image. This varies from simple statistical measures (e.g., mean values or histograms

of features) to more sophisticated dimensionality reduction techniques, i.e., subspace

methods, such as principal component analysis (PCA), independent component analysis

(ICA), or non negative matrix factorization (NMF). Some of the popular methods that

come into this category of models were proposed by (Turk & Pentland, 1991; Linsker,

1992; Lades et al., 1993; Ojala et al., 1994; Murase & Nayar, 1995; Bell & Sejnowski,

1997; Lowe, 1999). The question of whether the human visual system uses a view based
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or an object centered representation has been a subject of much controversy (Logothetis

& Sheinberg, 1996; Tarr & Blthoff”, 1998). We will just mention here the fact that the

psychophysical and physiological data from humans and monkeys actually supports a

view based approach. View based approach is attractive since it does not require image

features/geometric primitives to be detected and matched. But their limitations, i.e. the

necessity of dense sampling of training views and the low robustness to occlusion and

cluttered background, make them suitable mainly for certain applications with limited

or controlled variations in the image formation conditions, e.g. industrial inspection

(Matas & Obdrzalek, 2004).

In order to address the issues faced by object centered and appearance based models,

feature based methods were proposed next, in which the objects are represented by a set

of view independent local features which are automatically computed from the training

images and stored as a database for probing the class of the test images later. Putting

local features into correspondence is an approach that is robust to object occlusion and

cluttered background in principle. Thus, when part of an object is occluded by other

objects in the scene, only features of that part are missed and as long as there are

enough features detected in the unoccluded part, the object can be recognized accu-

rately. Examples of such features that have been widely used for object recognition are

scale invariant feature transform (SIFT) (Lowe, 2004), histogram of gradients (HoG)

(Dalal & Triggs, 2005), haar wavelet feature set (Viola & Jones, 2001), etc. Such local

patch based methods hold biological plausibility and tend to show benefits over global

approaches when supported by mathematical models and neural network frameworks in

object categorization (Leibe & Schiele, 2003b).

One of the most popular ways of transforming a set of low level features extracted

from an image into a high level image representation is the bag of visual words (BoW),

inspired by the traditional bag of words technique for text analysis. The BoW algorithm

constructs a codebook analogous to a dictionary from the collection of orderless patch

based features, where each codeword in the codebook is a representative of several

similar patches attained through the clustering process; consequently the test image

can be represented by the histogram of the codewords. Several state-of-the-art visual

object recognition systems (Csurka et al., 2004; Zhang et al., 2007), (Li et al., 2008;

Wu & Rehg, 2011) fit into this general framework of codebook based object recognition

models. After the image features are represented as codewords in the BoW model,

learning and recognition can be done in a generative or discriminative way. One of

the greatest challenges in building up a codebook based model is the computation time

required for clustering million of feature data points. (Ramanan & Niranjan, 2010)

proposed a solution to this problem via a sequential one-pass algorithm that creates the

codebook in a drastically reduced time.

From a computational scientists’ point of view, it goes without saying that this continu-

ous research effort of developing bio-inspired architecture and feature learning algorithms
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was only taking place because the machines had not achieved human compatible speed

and accuracy of detecting scenes. In this respect, the first researcher to quantify the

timing of the visual scene understanding in humans was Simon Thorpe (Thorpe et al.,

1996), who explained through event related potentials (ERP) analysis, the amount of

time it takes to categorize the visual scene in cortex, i.e. 100-150 ms. Progress towards

understanding object recognition was driven by exploring and linking phenomenon at

different levels of abstraction. At one end, where hierarchical generative models and

learning algorithms inspired from the cortex were being improved, statistical methods

independent of the biology of the visual system were also being developed in parallel.

One popular paradigm which gathered a lot of attention since mid 1990s was the Vapnik

theory of support vector machines (SVM) which showed impressive classification perfor-

mance on many benchmark data sets (Cortes & Vapnik, 1995). SVMs utilize a principle

called kernel trick that computes the dot products in high dimensional feature spaces us-

ing simple functions called kernels defined on pairs of input patterns. This trick enables

us to get a linearly separable hyperplane for the data which is otherwise nonlinearly

separable in the input space. Not only did the SVM classifier work successfully with the

state of the art BoW feature space (derived from the BoW model discussed just above),

but also with Fisher kernels (Jaakkola & Haussler, 1998) that combines the benefits of

the generative and discriminative approaches for classification by deriving a kernel from

the generative model of the data. Kernel classifiers like SVM proved their significance

in various applications but they require a large amount of labelled training data as well

as prior definition of a suitable similarity metric/feature space in which naive similarity

metrics suffice for the classification to perform well. This requirement invites criticism

by the researchers who are of the view that arranging a large amount of labelled data

for many objects is expensive/impractical.

Although most of the proposed object recognition systems are inspired from the hierar-

chical nature of the primate cortex, it is worth mentioning that the neural connectivity

and learning algorithms of these models have evolved with time. Earlier, most of the

computational efforts were focussed on feed forward processing of information but since

these feed forward connections just constitute a small fraction of the total connectivity

in cortex, researchers shifted their attention towards the development of systems that

made use of the back projection feedback too (Rumelhart et al., 1986). Feedback using

back projection provides the opportunity of using previous knowledge, memory and task

dependent expectations in a system (Kreiman, 2008; Karklin & Lewicki, 2005). This

change in neural connectivity revolutionized the learning algorithms used in undirected

graphical models (Rumelhart et al., 1986), directed graphical models (Hinton et al.,

1995) and non graphical models (Rumelhart et al., 1986). Although these theories failed

to answer the scientific question of how the brain learns visual features, they produced

two neat tricks: one for learning directed graphical models (Thulasiraman & Swamy,

1992) and the other one for undirected models (Hinton et al., 2006). Another influential

fact that was established was that individual neurons are not sufficient for discriminating
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between objects; rather population of neurons should be analysed - a neuronal behavior

also pointed out by the Wilson-Cowan model (Wilson & Cowan, 1972) in early 1970s

and later addressed in many computational neuroscience problems (Sejnowsky, 1976;

Amit & Brunel, 1997; Hertz et al., 2004).

2.3.2 Recent Computational Models of Image Understanding (2006-

Present)

Much of the progress experienced in the last decade has produced an overwhelming body

of object recognition results without explaining anything significant about the perception

and vision phenomenon in human visual system. The success of these artificial systems

is determined by the overall recognition accuracy and the time they take to categorize

these images. In order to cater for the speed of recognition, it is worth mentioning the

influential work of Poggio and Serre (Serre et al., 2007a) for developing an immediate

recognition or rapid categorization system, which is the fastest known form of computer

object recognition against humans. In this system, the parallel processing paradigm was

implemented rather than the conventional serial processing machine learning to model

the first 100-150 ms of visual information flow in the ventral stream of cortex. This is

behaviourally equivalent to a quick object categorization task where the presentation

time of the object is small and the back propagation of visual information is not likely

to happen. When compared to the human observers on animal presence/absence test in

a scene, it was found that the computers did as well as the humans, and thus better than

the best machine vision algorithms available at the time. Immediate object recognition

laid a new foundation of overall visual object recognition and extending this theory

to solve harder perception problem requires recruiting higher levels of brain function

which would take more time and computational complexity for implementation. This

extension has already began to spread in the Neuroscience community; an example being

Stan Bileschi who applied this model to scene recognition (Bileschi, 2006).

As far as the goal of gaining better accuracy is concerned, deep learning and representa-

tion has been the subject of much recent research ever since the proposed breakthrough

in feature learning by Hinton in 2006 (Hinton et al., 2006). The central idea of his

greedy layer wise pre-training procedure is based on training each layer of the graphical

model independently in an unsupervised way and then taking the features learnt at the

previous layer as input to the next level. The features learnt by the deep model can

either be used as an input to a standard supervised machine learning predictor such as

support vector machines or as an initialization for a deep supervised neural networks

like multi-layer perceptron (MLP). This idea of greedy layer wise unsupervised train-

ing was followed up quickly by the rest (Hinton & Nair, 2009; Taylor & Hinton, 2009;

Krizhevsky et al., 2012) as deep architectures showed potential of progressively learning

more abstract features at higher levels of representation, yielding better classification er-
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ror (Larochelle & Bengio, 2008; Erhan et al., 2010), quality of samples generated by the

probability distributions (Hinton & Salakhutdinov, 2009) and the invariance of proper-

ties learnt by the classifier. The recent work of (Krizhevsky et al., 2012) also shows that

with proper initialization of parameters and choice of non linearity, it is not necessary

to do unsupervised pretraining of the model as required by other deep networks. This

finding reinforces the hypothesis that the unsupervised pretraining acts as a prior that

brings little/no improvement over pure supervised learning from scratch when the train-

ing data is large. The deep learning algorithms first proved their dominance over the

MNIST digits data set by breaking the SVMs classification supremacy, and then moved

on to successful object recognition in natural images. The latest breakthrough has been

achieved with deep convolution neural networks on the ImageNet data set, bringing the

error rate of the state of the art algorithms from 26.1% to 15.3% (Krizhevsky et al.,

2012) on 10K classes of objects. Variants of deep models that embed sparsity have also

shown to mimic certain properties of visual area V2 (Lee et al., 2008), thus making this

approach a viable biologically inspired recognition solution. While deep learning algo-

rithms are making influential progress, another impressive approach making its mark in

parallel is that of Fisher kernels with SVMs (Jaakkola & Haussler, 1998). The Fisher

kernels made a successful come back by first showing its classification advantage over

the state of the art bag of words approach (Perronnin & Dance, 2007; Perronnin et al.,

2010b), and then showing its successful use with large scale data sets like PASCAL

VOC 2007 (Csurka & Perronnin, 2011), CALTECH-256 (Sanchez & Perronnin, 2011)

and ImageNet-10K (Sanchez et al., 2013). Currently, on the ImageNet-10K classification

task, the second best performance after the deep convolution network (Krizhevsky et al.,

2012) is achieved by the Fisher kernels (Sanchez et al., 2013) derived from a Gaussian

mixture model built for SIFT, LBP and GIST data descriptors. Another recent devel-

opment in this area has been made by the Google researchers with a scalable view based

approach that deploys millions of filters representing objects and their constituent parts

across a wide range of poses and scales to detect 100K object categories in about 20

seconds (Dean et al., 2013). This work is a great attempt of bridging the gap between

the performance of the artificial and human recognition systems in terms of their recog-

nition speed and wide range of recognizable classes, however its biological plausibility

is not verified. From a computational scientists’ point of view, this work emphasizes

the fact that an artificial perception learning algorithm does not necessarily have to

satisfy biological plausibility if the ultimate goal of recognition is achieved successfully,

however for cognitive neuroscientists, this solution does not provide any insights into

the unknown functionality of the human visual system.
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2.4 Summary

This chapter has discussed some aspects of the mammalian visual system that have

inspired the design of the artificial object recognition systems. We have reviewed the

mainstream learning algorithms of visual features representation and the computational

modelling approaches proposed with the aim of developing better artificial object recog-

nition systems. The focus of this thesis is to bring out the discrimination power of widely

used generative models of scene recognition, like restricted Boltzmann machine (RBM)

and multivariate Gaussian model (MVG), and suggest a Fisher kernel based solution to

achieve state of the art performances in a significantly short time. Fisher kernels have

already shown impressive classification results on large data sets like ImageNet discussed

just above. We have pursued this approach and report the success of the method on

multiple benchmark data sets in Chapter 5. A detailed review on the successful imple-

mentation and application of the Fisher kernels is given in Chapter 3. Based on this

survey presented here, we have also suggested some criterion of success in Chapter 6 that

can guide the direction of the future research for artificial object recognition systems.



Chapter 3

Feature Extraction and

Multi-class Object Recognition

with Fisher Kernels

This chapter introduces the preliminary concepts of feature extraction and kernel based

learning algorithms that form the basis of our experiments discussed in the following

chapters. We discuss how image descriptors are extracted from different object classes

and which discriminatory framework is utilized to classify them appropriately after prob-

abilistic modelling.

3.1 Feature Extraction

In image processing and pattern recognition, feature extraction is an important technique

used to represent the data into more informative and meaningful signatures than its

original form. It may also be used for data dimensionality reduction in order to avoid

model overfitting. Model overfitting is a serious concern when the number of variables

describing the data become extremely large in comparison to the number of available

data points. Analysis of such data requires a large amount of memory and computation

power, and will result in a classification algorithm that overfits the training samples and

generalizes poorly to the unseen data. Thus, it is considered very important to reduce

the data dimensionality by representing it with a reduced set of features/variables, called

feature vectors.

The performance of the classifiers rely a lot on the type of the features extracted and

used; some features might distribute very well into the feature space enabling the clas-

sifiers to discriminate between different class distributions perfectly, whereas others do

not spread as much, showing little discriminative information leading to poor classifica-

23
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Figure 3.1: An illustration of how the pixels of an image are reduced to represent
meaningful features of an image; the dimensionality of the extracted features is usually

less than the original dimensions of an image.

tion results. We will discuss here in detail two techniques relevant to feature extraction

and feature selection, both deployed in this work. For part of the experiments, the

feature extraction is carried out through biologically plausible Gabor filters, and the fea-

ture selection approach is carried out through maximum relevance minimum redundancy

approach, due to their better selection strategy.

3.1.1 Gabor Feature Extraction

Gabor features extracted by Gabor filters were initially introduced for representing 1

dimensional signals in the time-frequency domain by Dennis Gabor (Gabor, 1946). The

elementary 1D Gabor function can be defined as the product of the Gaussian probability

function, G with a harmonic oscillation, H of any frequency as:

Filter = G ·H = exp(−α2(t− t0)2) · cos(2πf0t0 + φ), (3.1)

where α, t0, f0, φ are constants and are interpreted as the sharpness/spread of the

Gaussian pulse, the epoch of the Gaussian peak, and the frequency and phase constant

of the modulating oscillation. The constant α is connected with ∆t and ∆f by the

relations:

∆t =

√
π

2

1

α
, ∆f =

1√
2π
α. (3.2)

The two-dimensional Gabor representation of the filter was proposed by Daugman

(Daugman, 1980) as a framework for understanding the orientation-selective and spatial-

frequency-selective receptive field properties of neurons in the brain’s visual cortex

(Daugman, 1985). Since then, they have been extensively used in computer vision,

neuroscience and psychophysics due to their wide applications in image segmentation,

compression, classification and retrieval (Mittal et al., 1999; Angelo & Haertel, 2003;

Zhang et al., 2000; Fischer & Cristobal, 2001). The impulse response of a 2D Gabor

filter can be written as a product of a sinusoidal plane of particular frequency modulated
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Figure 3.2: Visual representation of Gabor filter in 1D.

by a Gaussian function of particular orientation as:

Gabor Filter = G ·H,where

G = exp

(
−x′2

2σ2
x

+
−y′2

2σ2
y

)
,

H = cos
(
2πωx′ + φ

)
, where

x′ = (x− x0) cos θg + (y − y0) sin θg,

y′ = −(x− x0) sin θg + (y − y0) cos θg.

In the above equation, σx and σy determine the scale of the Gaussian function, θg is the

orientation of the Gaussian envelope expressed in terms of degrees, ω is the frequency

of cosine wave, φ is the phase offset of the cosine wave specified in degrees and x0, y0

represent the peak of the Gaussian envelope along x and y directions respectively. The

Gabor filter is convolved through the image I as described below:

I ′ = I ∗ (G ·H), (3.3)

Figure 3.3: Examples of Gabor stimuli. (a-d) show stimuli composed of a vertical
envelope multiplied by a carrier of orientation (a) 0 (b) 60 (c) 85 and (d) 90 degrees

respectively.

Gabor filters behave like linear bandpass filters with selectivity to orientation and spatial

frequency that results in edge detection. For this reason, they are a popular tool for the

task of extracting spatially localized spectral features. As an illustration, consider the

image of a zebra shown in Figure 3.4. If we apply a Gabor filter, oriented vertically on

this image, it would give high response at all spatial regions where vertical stripes are
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Figure 3.4: (a) An image (b) The response for Gabor filter oriented horizontally-
white indicates high amplitude of response, black indicates low response. Notice how

regions of vertical stripes are highlighted.

present. Figure 3.4 (b) shows the amplitude of the response of such a vertically oriented

Gabor filter for this image. From this example, it is obvious that a filter bank consisting

of several different combinations of frequencies and orientation must be designed to grab

discriminative features of objects belonging to different class. A set of filters in Gabor

bank is shown in Figure 3.3.

Note that the Gabor filters are not the only available method used to fit the spatial

receptive fields of simple cells. There are other methods as well that compute the recep-

tive field responses locally or globally in terms of histograms (Schiele & Crowley, 1996;

Linde & Lindeberg, 2004) or locally as sparse set of interest points (Marr & Hildreth,

1980; Lowe, 1999; Young & Lesperance, 2001). The feature detectors for generating

these histograms or interest points utilize techniques that deploy the following single or

combination of techniques: (1) direct chromatic cues from the RGB images, (2) second

order gradients of the normalized Gaussian function and (3) differential invariants, such

as normalized Gaussian magnitude, normalized Laplacian magnitude and the normalised

determinant of the Hessian to approximate the receptive field response.

3.1.1.1 Parameter Setting for Gabor Filter

In computer vision image analysis, since prior knowledge on the localization, orientation

and scale of the features present in the image are all unknown, designing a reasonably

sized filter bank that captures discriminatory information is a great challenge. Most

of these practices have been influenced by the empirical results achieved on different

data sets. For example, the usual practice for texture feature extraction is to define the

highest frequency fm, the number of frequencies nf and the number of orientations, no.

Some studies in the literature (Bianconi & Fernández, 2007; Li et al., 2010) suggest that

the smoothing parameters of Gaussian envelope (σx,σy) play more important role than

the frequency and orientation parameters. Thus, if we consider all of these as design

parameters, the total number of filters that can be generated in a bank after the selection

of these parameters are: nG= nf×no×nSx×nSy. The highest frequency, fm should not
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exceed the Nyquist frequency, i.e. 0.5 cycles/pixel; the most commonly adopted values

are 0.35 and 0.4 used for textures in the literature(Bianconi & Fernández, 2007). The

central frequency of the highest frequency fm helps us in selecting a range from which

the filter frequencies can be selected for each filter. Other assumptions that are usually

followed while designing these filters are:

• The angular displacement of two adjacent filters is constant (i.e. uniform separa-

tion in orientation)

• The frequency ratio of two adjacent filters is constant

• The size of the Gaussian envelope, σx and σy and the preferred spatial frequency

(1/λ) are also not completely independent. They are usually calculated as:

σ = aλ,

a =
1

π

√
ln 2

2

2b + 1

2b − 1
,

where b is the spatial frequency bandwidth in octaves. An octave is the interval

between two frequencies which are in the ratio of 2 to 1 (i.e the higher frequency

is exactly twice the lower frequency). Several experiments have shown that the

frequency bandwidth of simple cells in the visual cortex is about 1 octave(Pollen

& Ronner, 1983). Dependent on b, the value for a typically ranges between 0.3 to

0.6 in the literature(Kruizinga et al., 2002).

• Another common practice is to select the smoothing parameters such that the

iso-curves of the filter bank touch each other in the frequency plane as shown in

Figure 3.5. This minimization of superposition between various filters of the bank

would have beneficial effect on texture discrimination.

Figure 3.5: Filter banks with half-peak magnitude iso-curves touching each other
(left) and with a certain degree of overlap (right) (Bianconi & Fernández, 2007).

There are some other proposed techniques as well that design the filter bank ac-

cording to the resolution of the image (Jain & Farrokhnia, 1990). Traditionally,

large scale filter banks have played an important role in texture classification and

segmentation. However, their supremacy was brought into question, in the case of
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texture synthesis, by the approach of (Efros & Leung, 1999). They demonstrated

that superior synthesis results could be obtained using local pixel neighborhoods

directly, without resorting to large scale filter banks. For texture classification

problem, Varma (Varma & Zisserman, 2003) also showed that the textures can be

classified using the joint distribution of intensity values over extremely compact

3× 3 Markov Random Field (MRF) neighborhoods. Both these comparisons were

made by comparing the performances of MRF classifier with MR8 filter bank’s

performances in texture segmentation and classification problems respectively.

3.2 Feature Selection

The filter bank design should not be a process of simply setting parameters and

creating a lot of filters. Instead, feature selection should be an indispensable part

of the filter bank design process too. The filter bank generation provides us a

means to represent images in a transformed feature space, however their selection

enables us to view the effect on the model’s classification performance with the

change in

– The number of features and the number of training samples

Intuitively, if the number of samples are kept fixed, the introduction of more

features improves the classification performance and reduction of features

degrades the performance. However, in practice, this does not always hold

true. The classification performance might degrade with the increase in

number of features if the training samples are limited. This phenomenon is

referred to as peaking (Li et al., 2010) or overfitting in the literature, and it

happens because the classifier performance also depends on the relationship

between the number of samples and the number of features, i.e. sample-to-

feature ratio. The more complex the model is, the more samples one requires

to avoid the model to memorize the whole data and generalize well for the

unseen samples. Practical scenarios often have limited samples, and hence

low dimensional pattern representations to yield high sample to feature ratio.

In practice, the features extracted by a large filter bank are not equally informative,

and therefore could be pruned to yield better classification results. Similarly, if the

size of the training data is not sufficient, one can undersample/oversample it to

maintain the balance in sample-to-feature ratio. This balance contributes towards

training the model well for better classification besides saving the computational

costs. In the following section, we discuss feature selection schemes that allow us

to prune the least important features for classification task at hand. Apart from

feature selection methods, some other useful techniques that avoid overfitting are

cross-validation, regularization, early stopping, Bayesian priors on parameters or

model comparison. The basis of some techniques is either (1) to explicitly penalize

overly complex models, or (2) to test the model’s ability to generalize by evaluating
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its performance on a set of data not used for training and yet approximates the

typical unseen data that a model will encounter for testing.

3.2.1 Feature Selection Algorithms

The feature selection algorithms typically fall into two categories: ranking methods

and subset selection methods, both described as follows:

3.2.1.1 Ranking Methods

Feature ranking methods rank the features by a metric and eliminates all features

that do not achieve an adequate score. Some popular filter metrics that assist in

evaluating scores for the features in classification problems are correlation, mutual

information, class separability, error probability, inter-class distance, probabilis-

tic distance, entropy, minimum-redundancy-maximum-relevance and consistency-

based feature selection. These scores are computed between a candidate feature (or

set of features) and the desired output category. By convention, we assume that a

high score is indicative of a valuable feature, so we sort the features in decreasing

order of their achieved score S(i).

Following the classification of (Kohavi & John, 1997), feature ranking is a filter

method which is used independent of the choice of the predictor. Still, under cer-

tain independence or orthogonality assumptions, it may be optimal with respect

to a given predictor. For instance, using Fishers criterion to rank variables in

a classification problem where the covariance matrix is diagonal is optimum for

Fishers linear discriminant classifier (Duda et al., 2000). When feature ranking is

not optimal, it could still be used as a base line method to other variable subset

selection methods (3.2.1.2) because of its computational and statistical scalabil-

ity. Computationally, it is efficient since it requires only the computation and

sorting of n scores; whereas statistically, it is robust against overfitting because it

introduces bias but it may have considerably less variance (Hastie et al., 2009).

Despite these advantages, ranking the features individually and independently of

each other is unable to determine which combination of features would give the

best performance. A study shows that useless features often become meaningful

when used in combination with other features (Guyon & Elisseeff, 2003).

Maximum Relevance and Minimum Redundancy (mRMR) Technique:

Maximum relevance minimum redundancy (mRMR) approach (Peng et al., 2005)

is a filter based heuristic that selects the features which are least repetitive, and

for which the statistical dependence of the target class y in data subspace Rm is

maximal. If the relevance between the features is defined in terms of the mutual

information I, the purpose of feature selection is to find a feature set S with m

features of data x, that jointly have the largest dependency on the target class, y.
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This scheme has the following mathematical formulation:

Max-Relevance

maxD(S, y), where D(S, y) =
1

|S|
∑
fi∈S

I(fi; y). (3.4)

Minimum Redundancy

minR(S), where R(S) =
1

|S|2
∑

fi,fj∈S
I(fi, fj), (3.5)

where I represents the mutual information between the features fi and fj , S is the

set of features we want to select and y is the label of the target class. It is very

likely that the features selected according to Max Relevance have high redundancy.

When two features are highly similar, the respective class-discrimination potential

would not change much if one of them is removed. Therefore, it should be pruned

following the minimal redundancy constraint. The criterion combining the above

two constraints of maximal-relevance and minimal-redundancy is given by the

operator Φ that optimizes D and R simultaneously as:

max
S

Φ(D,R),Φ =D −R

In practice, incremental search methods can be used to find the near-optimal

features defined by Φ(·). Suppose we already have the feature set, Sm−1 with m−1

features and the task is to select the mth feature from the set {F − Sm−1}. This

task is accomplished by selecting the feature that maximizes Φ·. The respective

incremental algorithm optimizes the following condition:

max
fj∈F−Sm−1

=

I(y; fj)−
1

m− 1

∑
fj∈Sm−1

I(fi, fj)


The computational complexity of this incremental search method is O(|S| · N),

where N is the total number of data points and S is the set of features chosen

for better data discrimination. As compared to other standard ranking methods,

the mRMR technique has shown promising improvement for feature selection and

classification accuracy on handwritten digits, arrhythmia, NCI cancer cell lines,

and lymphoma tissues data sets. We therefore have chosen this technique to select

features in one of our experiments.

3.2.1.2 Subset Selection Methods

As compared to the ranking method in which the features present their individual

predictive power, the subset selection method searches the set of possible features
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for the optimal subset that improves classification performance. These methods,

generally known as wrappers, utilize the learning machine of interest as a black

box to score subsets of features according to their predictive power. Compared to

wrappers, the filters are computationally simpler and faster. For wrappers, one

needs to define: (i) how to search the space of all possible variable subsets (ii) how

to assess the prediction performance of a learning machine to guide the search and

halt it and (iii) which predictor to use. An exhaustive search can conceivably be

performed, if the number of features is not too large. But, the problem is known to

be NP-hard(Amaldi & Kann, 1998) and the search becomes quickly computation-

ally intractable. A wide range of search strategies can be used, including best-first,

branch-and-bound, simulated annealing, genetic algorithms (see (Kohavi & John,

1997) for a review). Performance assessments are usually done using a validation

set or by cross-validation. Popular predictors include decision trees, Naive Bayes,

least-square linear predictors, and support vector machines (SVM).

Wrappers are often criticized as a brute force method since they require a massive

amount of computation, however, it is not necessarily true. Efficient search strate-

gies may be devised. Using such strategies does not necessarily mean sacrificing

prediction performance. In fact, it appears to be the converse in some cases: coarse

search strategies may alleviate the problem of overfitting. Greedy search strategies

seem to be particularly computationally advantageous and robust against overfit-

ting. They come in two flavors: forward selection and backward elimination. In

forward selection, variables are progressively incorporated into larger and larger

subsets, whereas in backward elimination, one starts with the set of all variables

and progressively eliminates the least promising ones for classification.

3.3 Multi-class Object Recognition

Multi-class object recognition aims at assigning a class label to an object out of

several possible known categories. In practice, most of the classification problems

involve more than two classes, for example: identifying a person in an image, pre-

dicting phonemes from speech, associating a gene with biological processes etc.

Despite being widely studied, multi-class object recognition is still considered a

challenging task to undertake as it is simpler to construct classifier theory and al-

gorithms for two mutually-exclusive classes than for N mutually-exclusive classes.

There are not very elegant approaches of solving multi class problems directly and

it is still believed that developing a N -class SVM without decomposition of the

problem into a binary sub problem is an unresolved research problem.

The algorithms for carrying out multi-class classification fall into two broad cat-

egories: The first type performs true multi-class classification by directly deal-

ing with all the multiple labels in the target field; the second type breaks down

the multi-class problem into a collection of binary class sub-problems and then
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combines them later to make a full multi-class prediction. The second category

assumes that the problem can be solved naturally by extending the binary classifi-

cation technique for some algorithms. The examples of such algorithms are neural

networks, decision trees, k-nearest neighbor, naive Bayes, and support vector ma-

chines. Since we have used support vector machines as a discriminative classifier

to perform multi class classification in visual scenes, we will discuss it in detail in

the following section.

3.4 Choice of A Classifier - Support Vector Machines

(SVM)

Developed by Vapnik (Cortes & Vapnik, 1995), SVM is a supervised learning classi-

fier that analyzes the data and recognizes patterns by maximizing the classification

margin of a hyperplane boundary determined by a subset of training points on the

margin called the support vectors. SVMs function by projecting the training data

from the input space to a feature space of higher (infinite) dimensions by using a

kernel function. This results in a linearly separable hyperplane for the data which

is usually separable nonlinearly in the input space. In many instances, classifica-

tion in high dimensional feature spaces results in over-fitting in the input space,

however, in SVMs this over-fitting is controlled through the principle of structural

risk minimization(Cortes & Vapnik, 1995).

Figure 3.6: The SVM classifier that maximizes the margin between the two classes

The objective function of the support vector machines (SVM) in its primal form

is represented as:

min
w,b

max
α

1

2
‖ w ‖2 −

N∑
i=1

αi[yi(w.φ(xi)− b)− 1]}, (3.6)

where αi is a non negative Lagrange’s multiplier, w is the normal vector to the

hyperplane, xi are the data vectors with labels yi either equal to 1 or -1. Writing

the classification rule in its unconstrained dual form reveals that the maximum

margin hyperplane and therefore the classification task is only a function of the
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support vectors, the training data that lies on the margin. Using the fact, that

‖ w ‖2= w.w and substituting w =
∑N

i=1 αiyixi, one can show that the SVM

objective function reduces to the following optimization problem in dual form

described in Eq.3.7. See Appendix D to see the complete background of the theory

of SVMs for classification.

max
α

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK(θ,xi,xj)

subject to 0 ≤ αi ≤ C, i = 1, . . . N and
N∑
i=1

αiyi = 0, (3.7)

where αi is a non-negative Lagrange’s multiplier, C is the regularization parameter

and K is the kernel function used for nonlinear SVMs. This formulation is called

the soft-margin SVM and is used when there exists no hyperplane that splits the

positive and negative examples clearly. The soft margin method will choose a

hyperplane that splits the data as cleanly as possible, while still maximizing the

distance to the nearest cleanly split examples.

The parameter C controls the width of the margin to set the tradeoff between

margin maximization between classes and minimization of the misclassification

error on the training data. The higher the value of C, the more is the penalty

assigned to in-sample misclassifications, making the margin width smaller and

generalization ability of the predictor lower. Choosing a smaller C will produce

a maximal margin hyperplane irrespective of the misclassification error on the

training samples. This causes the model to generalize well, however care should

be taken while reducing its value so as to avoid model underfitting.

Figure 3.7: The effect of the soft-margin constant C on the decision boundary of the
classifier. A smaller value of C (right) allows to ignore points close to the boundary,

and increases the margin.

The kernel function K is used to find out the similarity between each pair of data

point in high dimensional feature space without explicitly mapping them into that

space. The technique famously known as the kernel trick allows us to represent the

nonlinearly separable data in the real space into an inner product space where it
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becomes linearly separable. The only condition to find out such a representation is

to look for a function that satisfies Mercer’s theorem1. If this theorem is satisfied,

this ensures that there exists a (possibly) non-linear map from the input space X
into some feature space F , x 7→ φ(x), such that its inner product equals the kernel,

i.e. K(xi,xj) = 〈φ(xi)φ(xj)〉. The non-linear transformation is only implicitly

Figure 3.8: Transforming the data from <2 −→ <3 through the kernel function so
that it becomes linearly separable.

defined through the use of a kernel, since it only appears as an inner product. It

is well established that this transformation works out well for Mercer kernels or

equivalently positive definite kernels (V.Vapnik, 1995). Although, the non-linear

classifiers provide better accuracy in most of the applications, it is often handy to

use linear classifiers because they have simple training algorithms that can scale

well with the size of the data (Bottou et al., 2007; Bishop, 2006).

There are different options available for choosing a kernel function K in SVM;

some widely used ones are listed below:

– Linear Kernel: K(xi,xj) = (xTi xj)

– Polynomial Kernel: K(xi,xj) = (1 + (xTi xj))
d

– Radial Basis(Gaussian) kernel: K(xi,xj) = exp( −1
2σ2 ‖xi − xj‖2)

– Sigmoid Kernel: K(xi,xj) = tanh(γ(xi,xj) + φ),

where d is the dimensionality of the space in which we intend to map the points.

The effectiveness the SVM depends on the selection of the kernel, kernel parameters

and soft margin regularization parameter C. An optimal value for these parameters

is chosen by cross validation technique on a small subset of data

1Mercer’s Theorem: A symmetric function K(x, y) can be expressed as an inner product, K(x, y) =<
φ(x)φ(y) >, for some φ if and only ifK(x, y) is positive semi-definite, i.e.

∫
K(x, y)g(x)g(y)dxdy = 0∀g or

equivalently


K(x1, x1) K(x1, x2) . . .

K(x2, x1)
. . .

...

 is positive semi-definite(psd) for any collection x1...xn.
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3.4.1 Multi-class Classification via SVM Classifier

There is no ‘definitive’ multi-class SVM formulation designed so far. In practice,

a multi-class classification via SVM is obtained by decomposing the multi-class

classification problem into multiple binary-class problems for SVM. The following

are some of the most common methods of doing SVM multi-class classification

through such decomposition techniques:

3.4.1.1 One Versus All (OVA)

The ‘one versus all’ approach builds as many classifiers as there are classes, each

trained to separate one class from the rest. The ith SVM is trained with all of

the examples in the ith class with positive labels, and all the other examples with

negative labels. To predict a new instance we choose the classifier with the largest

decision function value. This strategy is known as the ‘winner takes all strategy’

and is the earliest used implementation of multi-class classification through SVM

(Bottou et al., 1994).

3.4.1.2 One Versus One (OVO)

This methodology was introduced in (Knerr et al., 1990), and the first use of this

strategy on SVM was in (Kressel, 1999; Friedman, 1996). This approach builds
n(n−1)

2 binary classifiers for a n − class classification problem. Each classifier is

trained with all of the examples from the two classes such that the examples from

class i take positive labels while the examples from class j take negative labels.

For a test example x, if the classifier Cij predicts x is in class i, then the vote for

class i is increased by one, otherwise the vote for class j is increased by one. The

‘Max-Win’ strategy then assigns x to the class receiving the highest voting score

from all the built classifiers. Results in the literature show that this approach

takes less training time for each built classifier and is also better in performance

than the OVA scheme(Allwein et al., 2001; Hsu & Lin, 2002).

3.4.1.3 Directed Acyclic Graph (DAG)

Its training phase is the same as the one-against-one method that solves n(n−1)
2

binary SVMs. However, in the testing phase, it uses a rooted binary directed

acyclic graph which has n(n−1)
2 internal nodes and leaves. Each node is a binary

SVM of the ith and jth classes. The DAG is equivalent to operating on a list,

where each node eliminates one class from the list (Platt et al., 2000). The list is

initialized with a list of all classes at first. A test point is evaluated against the

decision node that corresponds to the first and last elements of the list. If the node

prefers one of the two classes, the other class is eliminated from the list, and the

DAG proceeds to test the first and the last elements of the new list. The DAG

terminates when only one class remains in the list. Thus, for a problem with n
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classes, n − 1 decision nodes will be evaluated in order to derive an answer. See

Figure 3.9 for illustration:

Figure 3.9: The decision DAG for finding the best class out of four classes. The
equivalent list state for each node is shown next to that node

3.4.2 Computational Cost of SVM

The computational cost of the SVM optimization problem with any arbitrary ker-

nel is given by two intuitive lower bounds that are determined by the value of the

regularization parameter C (Bottou & Lin, 2007) or in other words the total num-

ber of support vectors chosen to select the margin width. Since the asymptotic

number of support vectors grow linearly with the amount of data, the computa-

tional cost of solving the SVM quadratic problem has both a quadratic and a cubic

component. It grows at least like N2 when C is small and N3 when C gets larger.

In general, just testing that an optimal solution to the SVM quadratic problem

is achieved, requires an order of N2 dot products, while solving the quadratic

problem directly involves inverting the kernel matrix, which has complexity of the

order of N3, where N is the size of the training set (Bordes et al., 2005). However,

one hardly ever needs to estimate the optimal solution; and the training time for

a linear SVM to reach a certain level of generalization error actually decreases as

the training set size increases (Shalev-Shwartz & Srebro, 2008).

3.4.3 Computational Cost of the Kernel

Although computation of the n2 components of kernel matrix seems an easy

quadratic problem, a more detailed analysis in (Bottou & Lin, 2007) reveals that

it is quite expensive in terms of the required computational memory. When the

number of data points grow, the kernel matrix becomes quite large to fit into the

memory. Therefore, the kernel matrix coefficients must either be computed on the

fly or stored in the cache. The kernel cache hit rate becomes a major factor of the

training time and for this reason, in practice, the kernel values often account for

more than half of the total computing time.
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The other issue usually encountered is that computing the full kernel matrix is

often wasteful. The expression of the gradients of Eq. 3.7 w.r.t α only depends on

kernel values that involve at least one support vector (the other kernel values are

multiplied by zero). All the optimality criteria can be verified with these kernel

values only and the remaining kernel values have no impact on the solution. To

determine which kernel values are actually needed, efficient SVM solvers compute

no more than 15% to 50% additional kernel values (Bottou & Lin, 2007). The total

training time is usually smaller than the time needed to compute the whole kernel

matrix. SVM programs that pre-compute the full kernel matrix are not competi-

tive. These issues only appear as constant factors in the asymptotic complexity of

solving the SVM problem. But practice is dominated by these constant factors.

3.4.4 SVM Optimization Algorithms

Since SVM is a quadratic optimization problem, there are a lot of quadratic pro-

gramming solvers that aim to find a solution for the problem. However most of the

early approaches were adhoc approaches which achieved optimization either by:

– Taking advantage of the sparsity in the quadratic part of the objective func-

tion (Iterative searching/chunking methods),

– Performing successive applications of a very simple direction search (Direc-

tion search methods),

– Calculating kernel coefficients on the fly (Decomposition methods).

All these techniques considered the computational difficulty faced by the predictor

discussed in Section 3.4.3. We will not discuss each of these algorithms in de-

tail, rather just discuss those algorithms which have been used in the thesis. We

have used sequential minimal optimization (SMO) and stochastic gradient descent

(SGD) learning methods for optimizing the objective function of SVM. Details of

each of these is given below :

3.4.4.1 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) is a simple algorithm that can quickly

solve the SVM QP problem without any extra matrix storage and numerical QP

optimization steps (Platt, 1998). It works by decomposing the main QP problem

into smallest possible QP sub-problems called working sets. Each working set

involves two Lagrange multipliers α1 and α2 whose analytic solution is optimized

jointly using Osuna’s theorem (Osuna et al., 1997) while keeping the other αi’s

fixed. The algorithm could be summarized into two parts: (1) a set of heuristics

for efficiently choosing the pairs of Lagrange multipliers to work on, and (2) the

analytical solution to a QP problem of size two.
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SMO maximizes the following objective function in dual form:

LD =

N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi.xj),

∀i, 0 ≤ αi ≤ C and
N∑
i=1

αiyi = 0.

Thus, for any two multipliers α1 and α2 , the constraints are reduced to:

0 ≤ α1, α2 ≤ C,

y1α1 + y2α2 = k,

where k is the sum over the rest of the terms in the equality constraint (
∑N

i=1 αiyi =

0), which is fixed in each iteration. There is a one-to-one relationship between each

Lagrange multiplier and each training example. Once the Lagrange multipliers

are determined, the normal vector and the threshold b can be derived from the

Lagrange multipliers:

w =
N∑
i=1

yiαiφ(xi), b = wφ(xk)− yk for some 0 ≤ αk ≤ C. (3.8)

Because w can be computed via Equation 3.8 from the training data before use,

the amount of computation required to evaluate a linear SVM is constant in the

number of non-zero support vectors. The amount of memory required for SMO is

linear in the training set size, which allows SMO to handle very large training sets.

Overall, SMO scales somewhere between linear and quadratic in the training set

size for various test problems, while the standard chunking SVM algorithm scales

somewhere between linear and cubic in the training set size. SMO’s computation

time is dominated by kernel evaluation, hence SMO is fastest for linear SVMs and

sparse data sets (Platt, 1998). This algorithm is deployed by the popular machine

learning toolbox LIBSVM used in this research as well.

3.4.4.2 Stochastic Gradient Descent Learning

Stochastic gradient descent (SGD) is a simple yet very efficient approach to dis-

criminative learning of linear classifiers under convex loss functions such as (lin-

ear) support vector machines and logistic regression. Even though SGD has been

around in the machine learning community for a long time, it has received a con-

siderable amount of attention just recently in the context of large-scale learning

and sparse machine learning problems often encountered in text classification and

natural language processing.

Mathematical Formulation:
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Given a set of training examples (x1, y1), . . . , (xN , yN ) where xi ∈ RN and yi ∈
{−1, 1}, our goal is to learn a linear scoring function f(x) = wTx + b with model

parameters w ∈ Rm and intercept b ∈ R. In order to make predictions, we simply

look at the sign of f(x). A common choice to find the model parameters is by

minimizing the regularized training error given by:

E(w, b) =
N∑
i=1

L(yi, f(xi)) + αR(w), (3.9)

where L is a loss function that measures model (mis)fit and R is a regularization

term that penalizes model complexity; α > 0 is a non-negative hyper-parameter.

Different choices for L entail different classifiers such as:

– Hinge: (soft-margin) Support Vector Machines.
– Log: Logistic Regression.
– Least-Squares: Ridge Regression.
– Epsilon-Insensitive: (soft-margin) Support Vector Regression.

Popular choices for the regularization term R include:

L2 norm : = R(w) :=
1

2

N∑
i=1

w2
i ,

L1 norm : = R(w) :=
N∑
i=1

|wi|,

Elastic Net = R(w) := ρ
1

2

N∑
i=1

w2
i + (1− ρ)

n∑
i=1

|wi|,

a convex combination of L2 and L1, where ρ is given by 1− l1ratio; l1ratio controls

the convex combination of L1 and L2 penalty. The algorithm iterates over the

training examples and for each example updates the model parameters according

to the update rule given by :

w ← w − η
(
α
∂R(w)

∂w
+
∂L(wTxi + b, yi)

∂w

)
, (3.10)

where η is the learning rate which controls the step-size in the parameter space.

The intercept b is updated similarly but without regularization. The learning rate

η can be either constant or gradually decaying. For classification, the default

learning rate schedule is given by:

η(t) =
1

α(t0 + t)
, (3.11)

where t is the time step (there are a total of Nsamples ×Nitertimesteps), t0 is deter-

mined based on a heuristic proposed by Leon Bottou (Bottou et al., 2008) such
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that the expected initial updates are comparable with the expected size of the

weights (this assuming that the norm of the training samples is approx. 1).

The major advantage of SGD is its computational efficiency, which is basically

linear in the number of training examples. If X is a matrix of size (N, p), training

has a cost of O(kNp̄), where k is the number of iterations (epochs) and p̄ is the

average number of non-zero attributes per sample. Recent theoretical results,

however, show that the runtime to get some desired optimization accuracy does

not increase as the training set size increases. For multi class classification through

SGD, Bottou’s implementation (Bottou et al., 2008) uses one versus all strategy.

3.5 Fisher Kernel

The Fisher kernel, named after Sir Ronald Fisher, was proposed by Jaakola et al.

(Jaakkola & Haussler, 1998) to introduce a generic mechanism for inducing the

knowledge of the generative probability models into discriminative classifiers like

SVMs. Both the generative and discriminative statistical models have their own

respective properties due to which they are preferred over each other in different

tasks. Generative models offer the advantage of processing data of variable length,

thus data such as speech, vision, text and bio-sequences which are often arrays of

variable size and typically encounter a difficulty in a simple classification problem,

are modelled through a generative model easily. These probabilistic generative

models can further lend themselves to Bayesian rule for classification. Moreover,

the addition or removal of data in generative models is also well-supported, however

their main disadvantage is that the overall classifier is not optimized for the clas-

sification performance. On the contrary, the discriminative methods are trained

with the immediate goal of optimizing classification performance but require fixed

length data sequences and optimal choice of kernel function and its parameters to

bring in data separability. Although, the selection of kernel and its parameters is

often based on experience or a potentially costly search, discriminative methods

have shown to outperform the generative models for classification tasks. Keeping

in account the contrasting benefits of the two approaches, it is highly desired to

merge the benefits of the two techniques, generative and discriminative, together.

This gap between the two paradigms is bridged by the Fisher kernels, also called

hybrid generative-discriminative method of classification.

The Fisher kernel defines the similarity between the two samples xi and xj as:

K(xi,xj) = UTxiF
−1Uxj , (3.12)

where Uxi is the Fisher score that maps the data xi into a feature vector Uxi ,

that is a point in the gradient space of the manifold Mθ. The Fisher score is
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Figure 3.10: The diagram illustrates the main idea of the Fisher vector that retains
information about the underlying distribution of the data. The motivation to use this
feature space is that the gradient of the log-likelihood with respect to the parameters
of a generative model captures the generative process of a sequence better than just

the posterior probabilities.

mathematically expressed as:

Ux = ∇θ logP (x|θ), (3.13)

where θ refers to the set/vector of generative model’s parameters and logP (x|θ)

defines the log-likelihood function of the data learnt by the generative model.

The gradient of the log-likelihood function with respect to each model parameter

describes how that parameter contributes to the process of generating the observed

sample x. The F in Eq. 3.12 is the Fisher information matrix that tells us about

the covariance of the scores defined by Ux as:

F = Ep(x|θ)[UxU
T
x ] (3.14)

As an illustration, lets consider the example of a multivariate Gaussian generative

model, N(x,Σ), whose probability distribution is given as:

P (x|µ,Σ) =

(
1

(2π)d/2|Σ|1/2

)
exp

(
−1

2
(x− µ)T (Σ)−1 (x− µ)

)
(3.15)

Assuming that the data samples are independent and identically distributed, we
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can form the joint distribution of the samples via the following likelihood function:

logL = log

N∏
i=1

(P (x|µ,Σ))

logL = log
N∏
i=1

[(
1

(2π)d/2|Σ|1/2

)
exp

(
−1

2
(x− µ)T (Σ)−1 (x− µ)

)]
,

logL =− Nd

2
log(2π)− N

2
log(|Σ|)−

∑N
i=1(xi − µ)Σ−1(xi − µ)

2
,

where µ is a d-dimensional mean vector, Σ is a d×d dimensional covariance matrix,

and |Σ| denotes the determinant of the covariance matrix Σ. Since the parameters

of this model are θ = {µ,Σ}, the Fisher score for the model is calculated as:

Ux =

(
∇µ logL
∇Σ logL

)
where

∇µ logL = Σ−1(x− µ)

∇Σ logL =
1

2

[
−Σ−1 + Σ−1(x− µ)(x− µ)TΣ−1

]
.

The Fisher kernel enables us to calculate the separability measure between differ-

ent data points by taking into account of their underlying probability distributions.

It seems intuitive to compare the data points through the directions in which they

stretch the parameters of the model, i.e. by viewing the score function of the data

points as a function of their parameters and comparing the two gradients. If the

gradient vectors are similar, it means the two data points would adapt the model

in the same way. The motivation to use this feature space is that the gradient of

the log-likelihood with respect to the parameters of a generative model captures

the generative process of a sequence better than just the posterior probabilities.

There are a few properties of this kernel function which are stated in the form of

the following theorem (Jaakkola & Haussler, 1998):

Theorem 1. For any (suitably regular3) probability model P (x|θ) with parameters

θ, the Fisher kernel: K(xi,xj) = UTxiF
−1Uxj , where Ux = ∇θ logP (x|θ) has the

following properties:

a. it is a valid kernel function.

b. it is invariant to any invertible (and differentiable) transformation of the pa-

rameters.

c. a kernel classifier employing the Fisher kernel derived from a model that con-

tains the label as a latent variable is, asymptotically, at least as good a classifier

3We must have twice differentiable likelihood so that the Fisher information I exists and I must be
positive definite at the chosen θ.

4Maximum-a-Posteriori (MAP): Following the Bayesian statistics, the maximum-a-posteriori (MAP)
estimate is the mode of the posterior distribution, i.e. argmaxθ P (θ|x) = argmaxθ P (x|θ)P (θ).



Chapter 3 Feature Extraction & Multi-Class Recognition With Fisher Kernels 43

as the maximum-a-posteriori (MAP) 4 labelling based on the model.

The first property is immediate since the Fisher information matrix F is symmetric

as well as positive definite satisfying the requirements of an inner product space

for the Fisher kernel. The second property follows from the fact that the kernel is

defined on the manifold Mθ, that uses as a feature space the gradients of the log

likelihood the probability distribution with respect to its parameters rather than

the model parameters itself. The third property can be established on the basis of

the discriminative derivation of this kernel shown in (Jaakkola & Haussler, 1998).

We will omit showing the proof here for brevity, yet will refer to these properties

when discussing the experimental results later in Chapter 4.

3.5.1 Related Work with Fisher kernels

The idea of Fisher kernels has been around since 1998, and was pursued quickly

by other researchers who applied it for classification in different applications of

biology, speech, vision and text. In this section, we group the use of Fisher kernels

in different applications to see how it has been utilized and evolved with time.

After Jaakkola et al. (Jaakkola et al., 2000) showed that using the Fisher kernel

derived from the hidden Markov models (HMM) significantly improves on the

previous methods of protein domain classification, Moreno and Rifkin (Moreno &

Rifkin, 2000) adopted this method for large scale web audio data classification.

The underlying probability distribution from which the Fisher vectors were drawn

was a Gaussian mixture model. Smith and Niranjan (Smith & Niranjan, 2001) gave

some further experimental justification for using the Fisher kernel in audio data

classification domain by emphasizing that the Fisher kernel limits the dimensions

of the feature space to give some beneficial regularization, particularly when the

two classes are very inseparable. Smith and Gales (Smith & Gales, 2002) further

extended the standard likelihood based score space of the Fisher kernel to likelihood

ratio based score space, and showed that it outperforms the classical score space

and HMMs trained to maximise likelihood on speech recognition task.

Further research soon showed that when the data is costly to label, or is partially

labelled, Fisher kernel could still be deployed efficiently with an SVM that uses

transductive inference learning scheme (Joachims, 1999b). A case study showing

the successful use of Fisher kernels with labelled and unlabelled data from Medline

database of abstracts, is given by Goutte (Goutte et al., 2002). Vinokourov and

Girolami (Vinokourov & Girolami, 2001) also applied the Fisher kernel for docu-

ment classification problem, where the Fisher vectors were derived from a proba-

bilistic hierarchical clustering model that was a mixture of standard multinomial

and probabilistic latent semantic analysis models. Elkan (Elkan, 2005) investi-

gated the Dirichlet compound multinomial (DCM) distribution for the derivation
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of Fisher kernel and showed better document classification results than the alter-

native kernels. Chappelier and Eckard (Chappelier & Eckard, 2009) modelled the

documents through probabilistic latent semantic indexing (PLSI) and introduced

a new, rigorous development of the Fisher kernel for PLSI by addressing the sig-

nificant role of the Fisher information matrix and its relationship to the proposed

kernel. Some of the other application areas where Fisher kernels were quickly pur-

sued are logical sequence classification (Kersting & Gartner, 2004), topic based text

segmentation (Sun et al., 2008), sign language recognition (Aran & Akarun, 2010)

and currency prediction (Fletcher & Shawe-Taylor, 2013). This recent work on

currency prediction facilitates the canonical market microstructural models based

around three main families: Autoregressive conditional duration models, Poisson

processes and Weiner process to be efficiently utilised into the discriminative learn-

ing framework via Fisher kernels.

For object classification problem, Holub et al. (Holub et al., 2005) were the first to

highlight the performance gains on standard object recognition data sets from Cal-

Tech by successfully combining the probabilistic constellation model with Fisher

kernels. Following them, Perronnin and Dance (Perronnin & Dance, 2007) applied

the Fisher kernel framework to a visual vocabulary of low-level feature vectors

extracted from images and modelled via the Gaussian mixture model (GMM).

They showed that the proposed approach is actually a generalization of the pop-

ular bag-of-visual words (BoW) approach since for the same vocabulary size N ,

the gradient representation of the Fisher kernel has a much higher dimensionality

(2 × D + 1) × N − 1 than the histogram representation (N). In case of a Gaus-

sian mixture model, the BoW approach is directly related to the Fisher kernel

when the gradients with respect to the weight parameters wi are considered only:

they both consider 0-th order statistic (word counting). However, the derivatives

with respect to the means and standard deviations consider the 1st and 2nd order

statistics too, thus enriching the overall representation of the images with compact

vocabularies. This dimensionality enhancement makes the image representation

more informative even when the available vocabulary is limited, thus leading to a

computationally attractive approach. See Figure 3.11 for illustration of the BoW

model.

Since then, the Fisher kernel has been tested for classification on many large scale

object recognition data sets such as CalTech-256, PASCAL VOC 2007, PASCAL

VOC 2008 and ImageNet LSVRC 2012 (Perronnin et al., 2010b; Sanchez & Per-

ronnin, 2011; Csurka & Perronnin, 2011; Sanchez et al., 2013). It has constantly

proven to be empirically better than the state of the art bag of the words (BoW)

model of object recognition (Csurka & Perronnin, 2011) in several respects: First,

it provides a more general way to define a kernel from a generative process of the

data. Secondly, it can be computed from much smaller vocabularies since it does

not rely on the total number of occurrences of each visual word rather encodes
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Figure 3.11: Diagram illustrating the main idea of the bag of words(BoW) model
of image representation. Local descriptors are extracted from the image and each
descriptor is assigned to its closest visual word in a visual vocabulary: a codebook
obtained offline by clustering a large set of descriptors with k-means. A trend in BoW
approaches is to have multiple combinations of patch detectors, descriptors and spatial
pyramids. Systems following this paradigm have consistently performed the best in the
successive PASCAL VOC evaluations, yet the Fisher kernel has shown to outperform

this classical model for the advantages mentioned in the text.

additional information about the distribution of the descriptors. This results in

lower computational cost. Third, its classification performance ranks among the

best in a wide range of problems, despite relying on simple linear classifiers. A

significant benefit of linear classifiers is that they are very efficient to evaluate and

learn (linear in the number of training samples) using techniques such as stochastic

gradient descent (SGD) learning(Bottou et al., 2008). Thus, Fisher vectors serve

as an efficient alternative to the BoW histograms. Currently, the second best

performance on the ImageNet-10K classification task, after the deep convolution

network (Krizhevsky et al., 2012), is achieved by the Fisher kernels (Sanchez et al.,

2013) derived from a Gaussian mixture model built for SIFT, LBP and GIST data

descriptors.

Despite the various advantages Fisher kernel paradigm offers, it also suffers from

a limitation in comparison to the BoW approach: while the latter is typically

quite sparse because of the counts measure, the FV is mostly dense (Sanchez

et al., 2013). This leads to storage as well as input/output issues which makes it

impractical for large-scale applications. This computational difficulty is resolved

by compressing Fisher vectors through PCA or Hash kernels (Shi et al., 2009)

and then coding them with Product Quantizers (Jegou et al., 2011) to retain

the advantages of high dimensionality representation. These improvements have

shown to work very well in terms of the recognition performance without paying

an expensive price in terms of memory and I/O usage. It is also important to

note that most of the literature ignores the use of Fisher information matrix F

in the Fisher kernel construction. This invertible covariance matrix of Fisher

scores is considered asymptotically immaterial (Jaakkola & Haussler, 1998) and
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is often ignored in practice. The resulting practical Fisher kernel (Shawe-Taylor

& Cristianini, 2004) thus replaces the Fisher information matrix with an identity

matrix and simply uses the gradients as features without any further rescalings or

normalizations. In some works, it is replaced by a diagonal approximation of the

Fisher information matrix that is easy to compute than the whole d×d dimensional

matrix (Perronnin & Dance, 2007; Nyffenegger et al., 2006).

The literature discussed above highlights the significance of the use of Fisher ker-

nel in different applications, yet we emphasize that none of the previous work has

shown the utility of Fisher kernels for restricted Boltzmann machines(RBMs). In

this work, we have attempted to bridge the gap between the widely used deep gen-

erative models and the discriminative kernel paradigm by drawing Fisher kernels

from RBM, and shown that the shortcomings of the compact generative models

could be resolved if Fisher kernel is derived from them for the classification task.

3.6 Summary

This chapter has introduced the feature extraction and feature selection techniques

used to draw image descriptors for which the generative models of scene recogni-

tion are ultimately defined. We also introduced the discriminative framework that

deploys the Fisher kernel derived from the generative models to perform the clas-

sification task. The specific probability models from which the kernel is derived

are discussed in the next chapter.



Chapter 4

Probabilistic Models of Visual

Scene Analysis

This chapter discusses the probabilistic models of visual scene analysis that are

used to model the image descriptors from different object classes, and thus serve

as a generative basis for Fisher kernel derivation. Probabilistic modelling of vi-

sual data offers various advantages due to which it has always remained popular

among the machine learning researchers, and has therefore invited many develop-

ments to enhance their potential for various applications including artificial scene

recognition.

4.1 Probabilistic Models

We are living in an era of abundant data where a lot of information is available

as digital archives, large scale scientific experiments, mobile networks, social net-

works and web sites. The presence of this massive amount of data requires the

development of tools that allow us to model, analyse, visualize, search and un-

derstand these large data sets to reveal meaningful information. These modelling

tools should faithfully represent the data available and should ideally be adaptive

as well as robust to the noise, and scalable to the large data set sizes. Proba-

bilistic modelling is one such statistical analysis tool that describes the data that

one could observe from a system, and estimates on the basis of past (historical)

data, the probability of occurrence of a particular outcome/hypothesis. The use

of probability theory for mathematical models allows us to take into account the

noise and uncertainty associated with the data and model parameters. In this con-

text, the use of Bayesian approaches has been quite useful, that allows us to learn

from the data, infer unknown quantities, adapt our models and make predictions

47
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probabilistically. The Bayes rule is formalized as: follows:

Posterior =
Prior× Likelihood

Marginal Likelihood
or

P (M |D) =
P (M,D)

P (D)
=
P (M) · P (D|M)

P (D)
where P (D) =

∫
P (M,D) (4.1)

The Bayes rule states that the probability of a model M after observing data D

is proportional to the likelihood of the data D assuming that M is true, times the

prior probability of M . The prior P (M) can be determined by the experts via

reasonable distributions, however for cases where it is non existent or vague, unin-

formative priors could be used. The evidence criterion (data marginal likelihood),

P (D) is an integral over all the model parameters and acts as a normalization

constant that makes sure the posterior adds up to 1.

4.2 Types of Probabilistic Models

In machine learning, probabilistic models are broadly categorized as generative or

discriminative, based on how the distribution of image features is modelled.

Generative models are built to understand how samples from a particular object

category are generated by learning a joint probability distribution P (x, c) of sam-

ples x and class labels c. The generative models learn the parameters, θ of the

distribution by capturing the interaction between the system variables (i.e. in-

puts(x) and outputs(c)), in order to synthesize possible states of the system. This

approach is known as a generative approach since by sampling from the joint dis-

tribution, it is possible to generate synthetic examples of the feature vector x. In

practice, the generalization performance of generative models is often found to be

poorer than that of the discriminative models due to the differences between the

model and the true distribution of the data. Some of the examples of generative

models are: Gaussian mixture models (GMM), hidden Markov model (HMM),

naive Bayes, latent Drichlet allocation, restricted Boltzmann machine, etc.

The objective function of the generative model is to maximise the joint likelihood

of the complete training data with respect to the model parameters. Since we

typically have priors on the model parameters, we usually take generative learning’s

objective function to be the full joint distribution of the data and parameters,

P (xn, cn,θ) and maximise it with respect to the parameters θ as:

argmax
θ

P (θ)

N∏
n=1

P (xn, cn|θcn) (4.2)

The likelihood term P (xn, cn|θ) describes how the data looks like if a particular

value of parameter θ is taken. Most of the generative models are trained using the

maximum likelihood learning, yet it is not necessarily always the case.
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Discriminative models are concerned with defining the boundaries between the ob-

ject categories directly such that the category chosen for a new data-point depends

on which side of the boundary it belongs to. From a probabilistic perspective, the

goal of finding the class, c for an image x is handled by calculating the condi-

tional distribution P (c|x) directly. The resulting conditional distribution can be

used to make predictions of c for new values of x. This is known as a discrimi-

native approach, since the conditional distribution discriminates directly between

the different values of c. Some of the common examples of discriminative models

are: linear discriminant analysis (LDA), support vector machines (SVM), boost-

ing, neural networks, linear regression, etc. Discriminative probabilistic models

are very efficient classifiers, since this is what they are designed for, however they

have no modeling power that generative models possess, neither is it possible to

inject prior knowledge in them to overcome this deficiency. The objective function

of the discriminative models is formalized as:

argmax
θ

N∏
n=1

P (cn|xn,θ) (4.3)

The difference between P (x, c|θ) and P (c|x,θ) has an important impact. In

Figure 4.1: Illustration of class conditional probabilities of two classes having an input
variable x (left plot) and the posterior densities (right); Note that the left-hand mode
of the class conditional density p(x|C1) shown in blue on the left plot, has no effect on
the posterior probabilities. The vertical green line in the right plot shows the decision

boundary in x that gives the minimum misclassification rate (Bishop, 2006).

the context of classification, the generative model will focus on recovering the

distribution from where the data came from and the discriminative model will

concentrate on approximating the shape of the boundary between classes.
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4.2.1 Generative versus Discriminative Modelling

Generative and discriminative methods are both complementary in nature and

have a number of attractive properties, discussed as follows:

– Generative models are learnt independently for each category of data ( as

can be seen from Eq. 4.2), thus providing the flexibility of adding more

categories and introducing unique models for each class of objects without

disturbing the already trained models. On the contrary, the discriminative

methods are concerned with the class boundaries, where all the categories

need to be considered jointly; thus addition of a new class requires training

of the whole model from scratch.

– Generative models are most importantly known for their modelling power.

They have the potential of incorporating expert’s belief about the system’s

environment, i.e. prior knowledge about how some of its variables interac-

t/not interact and parameter’s range of values. Conversely, the discrimina-

tive models lack this modelling power and behave like a black box, where

given some data x, the probability P (c|x) is returned without a clear under-

standing of how or why.

– The third advantage of the generative model that naturally follows from their

modelling power, is their ability to deal with missing data. When a genera-

tive model is trained, reconstructions of the missing values are also obtained.

Conversely, discriminative models cannot easily handle incompleteness since

the distribution of the observed data is not explicitly modelled. This feature

is crucial since it allows us to use generative models with different kinds of

data i.e. (labelled, unlabelled, semi-labelled), and incompleteness that may

arise as a particular value missing in the feature vector x. The discriminative

models, on the other hand, require labels information to perform classifica-

tion.

– The joint probability calculated by the generative models might contain a lot

of structure/information that has little effect on the posterior probabilities

as illustrated in Figure 4.1. Thus, it is not always desired to compute the

joint distribution, for gaining better results. Particularly, for the classifica-

tion task, the discriminative models have practically shown more successful

results in different applications as compared to the generative models.

– Another popular characteristic for discriminative models is speed. Classifying

new samples is usually faster since P (c|x,θ) is directly obtained.

The contrasting properties of the two models have lead the researchers to think of

methods that can merge the strengths of the two modelling paradigms. The most

straightforward attempt of trying to combine the generative and discriminative

models is to use a generative model and train it in a discriminative fashion using
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the Bayes rule as:

P (c|x,θ) =
P (x, c|θ)

P (x|θ)
=

P (x, c|θ)∑
c P (x, c|θ)

which allows us to rewrite Eq.4.3 as:

P (c|x,θ) = P (θ)
N∏
n=1

P (cn|xn,θ) = P (θ)
N∏
n=1

P (xn, cn|θ)∑
c P (xn, c|θ)

Apart from this method, the research in this direction has lead to two different

kinds of hybrid frameworks (Lasserre, 2008): hybrid learning and hybrid algo-

rithms. Hybrid algorithms refer to algorithms involving two or more models (with

their own objective functions) that are trained one after the other and that influ-

ence each other. Hybrid learning (or more exactly hybrid objective functions) are

multi-criteria optimisation problems that optimise a single objective function con-

taining different terms, at least one for the generative component and one for the

discriminative component. The hybrid learning methods include techniques that

may (1) learn discriminative models on generative features (e.g. Fisher kernels

(Jaakkola & Haussler, 1998) discussed in Chapter 3 (2) learn generative models

on discriminative features (Lester et al., 2005)(3) refine generative models with

discriminative components (Raina et al., 2003) (4) refining generative classifiers

with a discriminative classifier (Prevost et al., 2005). The techniques of hybrid

learning include methods that do: (1) discriminative training of generative models

(Larochelle & Bengio, 2008)(2) convex combination of objective functions (Chen

et al., 2005) (3) multi-conditional learning (Mccallum et al., 2006).

We now discuss the probabilistic generative models that form the basis of our

work for visual scene analysis in the thesis. Both the probabilistic models have

drawn biological inspiration from the functionality of retinal and cortical cells of

mammalian brain, and have been efficiently utilized for modelling the visual data

distributions previously.

4.3 Multivariate Gaussian Distribution

A multivariate Gaussian distribution is a generalization of the one dimensional

univariate distribution to higher dimensions. The probability density function

(pdf) of a normalized multivariate Gaussian distribution is given as:

P (x|µ,Σ) = N (µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)T (Σ)−1 (x− µ)

)
, (4.4)

where µ is a D-dimensional mean vector, Σ is a D × D dimensional covariance

matrix, and |Σ| denotes the determinant of Σ.

For the Gaussian distribution to be well defined, it is necessary for all of the eigen

values λi of the covariance matrix to be strictly positive definite, otherwise the

distribution cannot be properly normalized.
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Figure 4.2: Probability density function and contours of a normal multivariate Gaus-
sian distribution in 2 dimensions; the mean µ of the distribution is zero and the spread
is shown by the eigen vectors λi that define the major and minor axes of the ellipse.

For a D-dimensional MVG model, the multivariate normal density is completely

specified by D(D+1)
2 + D = D(D+3)

2 parameters which consist of the elements of

the mean vector, µ and the independent elements of the covariance matrix, Σ.

For large D, the total number of parameters would increase quadratically, and

the computational task of manipulating and inverting large matrices would be-

come problematic. With high dimensional data becoming readily available, one

is frequently faced with the problem of estimating covariance matrices in high

dimensions which in most cases do not provide satisfactory estimate of the data

covariance due to singularity (i.e their determinant becomes zero making the in-

verse computation impossible). Various techniques have been proposed in the

literature to resolve this issue that involve banding (Bickel & Levina, 2006), ta-

pering (Furrer & Bengtsson, 2007; Wu & Pourahmadi, 2003) and shrinkage based

regularization techniques (Copas, 1993). An alternative way of avoiding this issue

is to use restricted forms of covariance matrix, like the diagonal covariance matrix

(Σ = diagonal(σ2
i )) and isotropic Gaussians (Σ = σ2I), the number of indepen-

dent parameters will be linear (2D and D+1 respectively), and the cost incurred to

calculate their inverses will be much smaller than the complete covariance matrix.

Interestingly, experience in the context of classification in machine learning sug-

gests that using a diagonal covariance matrix or ignoring the off-diagonal entries

can lead to better classification results than those based on complete covariance

matrix estimation (Pazzani, 1997).

The reason of the wide usage of Gaussian as a data density model is because of

its analytical tractability, i.e. a large number of results involving this distribution

can be derived in explicit form. Secondly, the normal distribution arises as the

outcome of the Central limit theorem, which states that under mild conditions, the
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sum of a large number of random variables is distributed approximately normally.

Finally, the ‘bell’ shape of the normal distribution makes it a convenient choice

for modeling a large variety of random variables encountered in practice.

4.3.1 Karklin and Lewicki’s Model of Scene Analysis

Neurons in the early visual pathway act as linear feature detectors of natural

scenes, however how these image features from similar objects are combined to

give an invariant abstract representation in brain, is poorly understood. Image

regions that are perceptually distinct produce response patterns that are highly

overlapping and cannot be distinguished using individual features or low level

linear transformations alone. Knowledge of the cognitive computations that are

required to achieve this generalization across the visual stimuli is an important

research problem that has not been completely resolved yet. Karklin and Lewicki

(Karklin & Lewicki, 2009) address this issue by proposing a computational model

of visual feature generalization that takes into account the pattern variability of

visual scenes and learns a compact set of features for image distributions typically

encountered in natural scenes. The proposed model allows the neural probability

distributions to be defined as a hierarchical statistical model in which the input

image is represented at different levels of abstraction: first by a set of linear fea-

tures bk and then by neural activities, yj . This model is a generalization of the

standard model of complex cell properties, where each complex cell takes as input

the squared output of two simple cells. In the proposed model, a neuron integrates

the squared response of a large number of image features bk and learns them by

correlating the pattern against its weights wjk.

For each model neuron y, the input image x is described by a multi-variate Gaus-

sian distribution:

P (x|y) =
1

(2π)N/2|C|1/2
exp

(
−1

2
xT (C)−1x

)
, (4.5)

with mean, µ = 0 and covariance matrix C defining the range and pattern of

variability of features, bk. The dimensionality of the data is represented by N

and the covariance matrix, C represents a function of the neural activity, y. This

functional representation has the advantage that the model can in principle de-

scribe arbitrary correlation patterns in features while still being mathematically

tractable.

C = f(y) = exp

∑
jk

yjwjkbkb
T
k

 , (4.6)

In the exponential space, the covariance matrix is calculated as the outer product

of localized oriented edge like feature vectors bk, neuronal activity yj , and weights

wjk that modify the encoded distribution of features bk as follows:
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Figure 4.3: Distributed coding model proposed by Karklin et al. that infers for each
image the most likely distribution (ellipses) encoding it. The top row identifies the
activation patterns of the model neurons yj . Absence of the activity corresponds to the
lack of image structure, which is therefore represented by a canonical distribution that
reflects the statistics over all natural images (black circle). Increased neural activity
represents deviations from this canonical distribution and captures statistical patterns

in local image regions (middle and right panels)(Karklin & Lewicki, 2009).

wjk


> 0, if the neuron responds to a wider range of stimuli;

< 0, if the neuron responds to a smaller range of stimuli;

= 0, if the neuron remains neutral.


This model allows us to determine for each model neuron the most excitatory

and inhibitory features. We compute the covariance matrix given in Eq. 4.6

by turning on only one neuron (yj = 1), and leaving the rest at 0. This fully

specifies the distribution of images encoded by neuron j and accounts for all the

contributions of individual features bk. When the neural activity is off (y = 0),

the covariance matrix is equivalent to the identity matrix I, corresponding to the

canonical distribution of whitened images. Non-zero values in neural activity y

warp the encoded distribution by stretching or contracting along the linear features

bk. The model parameters bk and wjk are initialized with small random values and

optimized by maximizing the likelihood of the data under the model P (x|bk, wjk)
through standard gradient ascent method. By adapting the model parameters,

θ = {bk, wjk} to the data, one can find an efficient way to use a limited number

of neurons to describe the wide range of distributions observed in natural images.

See Figure 4.3 for illustration of the proposed encoding model.

In order to compute the response of the model neurons y, the most likely/probable

neural representation given the input image x is calculated by maximizing the
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posterior probability P (y|x, {bk, wjk}) as follows:

Maximum-a-posteriori ŷ = argmax
y

P (y|x, {bk, wjk})

= argmax
y

P (x|y, {bk, wjk})P (y)

The model places a sparse prior on the neural activity y. In order to write the

model likelihood function of interest, i.e. logP (x|y) = −ND
2 ln(2π) − N

2 ln |C| −
1
2

∑N
n=1(xn − µ)TC−1(xn − µ), the following assumption of the covariance matrix

and matrix relations have been used:

C = exp

∑
jk

yjwjkbkb
T
k


log |C| =trace(log C) =

∑
jk

trace(yjwjkbkb
T
k ) =

∑
jk

yjwjk|bk|2 =
∑
jk

yjwjk

The norm of vectors bk is fixed to 1 as the weights can absorb any scaling. Thus

logP (x|y) becomes

logP (x|y) ∝ −1

2

∑
jk

yjwjk −
1

2
xT

exp

−∑
jk

yjwjkbkb
T
k

x. (4.7)

The proposed model was trained on a large set of 20× 20 image patches, sampled

randomly from gray scale photographs of outdoor scenes (Hateren & Schaaf, 1998).

The number of neurons was set to 150 and the number of linear features, bk were

set to 1000. After training, each of the model neurons was found to be tuned to

different image structure properties such as phase invariance, orientation, location

and complex suppressive effects. To compare the behavior of model neuron to

that of the cells in visual cortex, the authors tested its response to stimuli used in

classical physiological experiments and found that the model learns a much more

general set of features that are determined by the statistical structures in images.

4.4 Restricted Boltzmann Machine (RBM) for Dis-

crete Data

A restricted Boltzmann machine(RBM) is a generative probabilistic model that

belongs to the family of deep stochastic neural networks. It is a bipartite graph in

which the visible units that represent observations are connected to binary stochas-

tic hidden units using undirected weight connections. The hidden units allow the

network to discover interesting features that represent complex regularities in the

observations fed to the visible layer during training. The units are restricted in a
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way that there are no visible-visible or hidden-hidden connections allowing us to

update all the units in the same layer in parallel. Typically, all visible units are

connected to all hidden units, with biases connected as an external input to each

of the unit in the network. See Figure 4.4 for the illustration of the generative

model. The energy of the joint configuration of visible and hidden units is given

as:

E(v,h;θ) = −
V∑
i=1

H∑
j=1

wijvihj −
V∑
i=1

bivi −
H∑
j=1

ajhj , (4.8)

where θ={W, b,a}, vi, hj are the binary states of visible unit i and hidden unit

j, wij represents the symmetric interaction term between the visible unit i and

hidden unit j, while bi and aj are the respective bias terms for visible and hidden

units. The probability of a joint configuration over both visible and hidden units

depends on the energy of that joint configuration compared with the energy of all

other joint configurations:

P (v,h;θ) =
1

Z(θ)
exp (−E(v,h;θ)), (4.9)

where Z(θ) is known as the partition function or the normalization constant,

mathematically defined as .

Z(θ) =
∑
v

∑
h

exp (−E(v,h;θ)) (4.10)

Since there are no hidden-hidden or visible-visible connections, the conditional

distributions P (v|h) and P (h|v) are factorial and are given by the following prob-

abilities:

P (h|v;θ) =

H∏
i=1

P (hi = 1|v;θ) =

H∏
i=1

σ(ai +
∑
j

viwij) (4.11)

P (v|h;θ) =
V∏
j=1

P (vj = 1|h;θ) =
V∏
j=1

σ(bj +
∑
i

hjwij), (4.12)

Figure 4.4: A restricted Boltzmann machine composed of stochastic binary units with
symmetric connections. The top layer represents the hidden units h and the bottom
layer represents the visible units v. The weight vector W determines the connections

between the units in the two layers.
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where the sigmoidal function, σ(x) = 1
1+exp(−x) . With a data vector clamped

on the visible layer, the hidden units are all conditionally independent and thus

could be updated in parallel via Equation 4.11 to get an unbiased sample from

the posterior distribution over hidden configurations. Similarly, given a hidden

configuration, since all the connections between the visible units are prohibited,

the visible units could be updated in parallel via Equation 4.12. The parameters

of this energy-based model, θ = {W,a, b} are learnt by performing (stochastic)

gradient descent learning on the empirical negative log-likelihood `(θ,D) of the

training data using the stochastic gradient −∂ logP (v(i))

∂θ .

Mathematicaly, `(θ,D) = −L(θ,D) where

L(θ,D) =
1

N

∑
v(i)∈D

log P (v(i)), where

P (v) =
∑
h

P (v,h) =

∑
h exp(−E(v,h))

Z(θ)
;Z(θ) =

∑
v́,h́

exp(−E(v́, h́))

This implies logP (v) = log
∑
h

exp(−E(v,h))− logZ(θ).

By changing the model parameters, i.e. weights and biases through stochastic

gradient descent method, one can change the probability, the model assigns to

each possible visible vector and thus can model the whole set of training vectors by

adjusting the weights and biases that maximize the sum of their log probabilities.

The derivation of the log likelihood of the observations, P (v;θ) with respect to

each model parameter θ = {W,a, b} are shown in Appendix A and are given as:

∂ logP (v; θ)

∂W
= 〈vhT 〉Pdata − 〈vh

T 〉Pmodel (4.13)

∂ logP (v; θ)

∂a
= 〈h〉Pdata − 〈h〉Pmodel (4.14)

∂ logP (v; θ)

∂b
= 〈v〉Pdata − 〈v〉Pmodel (4.15)

Here 〈.〉Pdata denotes an expectation with respect to the data distribution P (h|v)

and 〈.〉Pmodel denotes an expectation with respect to the model distribution P (v,h).

Given the independence of the units in each layer, the first expectation over the

data is easier to calculate than the later one which is over P (v,h), and is alge-

braically intractable because of the involvement of the partition function, Z(θ)

that takes into account all possible configurations of the visible and hidden units

(Eq. 4.9. As apparent from its equation, this partition function cannot be com-

2Markov chain is a way to sample data from the probability distributions when their analytic solution
does not exist. The Markov chain sampling is run until it reaches the stationary distribution, where
the state of the pixels and feature detectors still change but the probability of a network being in a
particular binary configuration does not change. The detailed procedure is described in Section 4.7.2.
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Figure 4.5: This figure depicts a Markov chain that uses alternating Gibbs sampling
approach3 to sample data. In one full step of Gibbs sampling, the hidden units in the
top layer are all updated in parallel by applying Equation 4.11 to the inputs received
from the the current states of the visible units in the bottom layer, then the visible units
are all updated in parallel given the current hidden states. The chain is initialized by
setting the binary states of the visible units with data-vector. The correlations in the
activities of a visible and a hidden unit are measured after the first update of the hidden
units and again at the end of the chain. The difference of these two correlations provides

the learning signal for updating the weight on the connection (Equation 4.13).

puted exactly in less than an exponential time, therefore the standard approach

is to approximate the expectation over full distribution with an average over sam-

ples obtained from P (v′,h′;θ), by setting up a Markov chain2 that converges to

P (v,h;θ) ultimately as t −→ ∞. Since we do not know how many cycles of

Markov chain are required to reach equilibrium distribution that guarantees accu-

rate samples (v,h), we denote the number of steps as ∞. Thus, mathematically

∂ logP (v;θ)

∂θ
=

〈
∂ logP (v;θ)

∂θ

〉P0

−
〈
∂ logP (v;θ)

∂θ

〉P∞
(4.16)

Figure 4.7 graphically illustrates the Markov chain required to sample data from

the target distribution P (v,h). Note that we face a computational hurdle to over-

come here, i.e. the many Markov chain Monte Carlo (MCMC) cycles required to

compute an accurate gradient. Though there are some diagnostic methods that

exist to determine if an equilibrium distribution has been reached or not, they

are not perfect and should be practiced with skepticism (Cowles & Carlin, 1996).

Apart from being time consuming, another disadvantage of using a long Markov

chain is the large variance of the estimated gradient. The most popular algorithm

to approximate this part of the gradient is called contrastive divergence (CD) pro-

posed by Hinton (Hinton, 2002) and discussed in detail in the followup Section

4.4.1. Other alternative approaches to calculate this maximum likelihood approx-

imation are persistent contrastive divergence (PCD) (Tieleman & Hinton, 2009),

parallel tempering (Desjardins et al., 2010) and tempered transitions (Salakhutdi-

3The Gibbs sampling algorithm is a Markov chain Monte Carlo technique that approximates the
joint distribution P (x1, . . . , xn) via a conditional distribution that samples each data point at a time

by keeping the rest fixed (P (x1, . . . , xn)⇒ P (x
(i)
j |x

(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
n )). The point of Gibbs

sampling is that it is often easier to sample from the conditional distributions than to marginalize out
by integrating over a joint distribution. The method has been discussed in more detail in Section 4.7.2
and 4.7.2.2.
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nov). Most of these algorithms come with different hyper-parameters and heuris-

tics of weight-decay, momentum, and learning rate schedules to calculate better

approximations.

4.4.1 Contrastive Divergence

The contrastive divergence (CD) algorithm offers a solution to the approximation

of the gradient of the log likelihood function of RBM through a short Markov

chain2 started at the last seen example, v. In contrastive divergence learning, the

Markov chain starts at the data distribution P0 and is run for a small number of

steps n (e.g. n = 1), thus greatly reducing both the computation per gradient step

and the variance of the estimated gradient. Experiments showed that this results

in good parameter estimates (Hinton, 2002) because after a few iterations, the

data moves from the target distribution towards the proposed distribution, thus

giving an idea of the direction in which the proposed distribution should move to

better model the training data. Empirically, Hinton has found that even 1 cycle

of MCMC is sufficient for the algorithm to converge to the maximum likelihood

answer (Hinton, 2002). This approximation which replaces the average over all

possible inputs (in the second term of the gradient equation) by a single sample

is called contrastive divergence 1(CD-1); for k cycles or k steps of the chain, the

approximation is called k-contrastive divergence (CD-k). This name is given due

to the contrast between the statistics collected when the input is a real training

example and when the input is a chain sample.

The motivation behind contrastive divergence is that we want to minimize the

amount by which a step towards equilibrium P∞ improves the data distribution P0.

Therefore, instead of running the chain to equilibrium and comparing the initial

and final derivatives, we can simply run the chain for one full step and then update

the parameters to reduce the tendency of the chain to wander away from the initial

distribution on the first step. Since P1 is one step closer to the the equilibrium

distribution than P0, we are guaranteed that ||P0−P∞|| exceeds ||P1−P∞|| unless

P0 equals P∞, so the contrastive divergence can never be negative. Also, for

Markov chains in which all transitions have non-zero probability, P0 = P1, implies

P0 = P∞, so the contrastive divergence can only be zero if the model is perfect

(Hinton, 2002). Thus CD ensures that the direction of the gradient estimate is

somewhat accurate, even though its size is not, making it a biased estimator. The

Markov chain is usually implemented by Gibbs sampling3 or Hybrid Monte Carlo

transition operators explained in detail in Sections 4.7.2.2 and 4.7.2.3. For now,

we will just continue our discussion of how and why the overall method works for

approximating the maximum likelihood.

CD has been successfully applied to various problems for the Markov chain esti-

mation (Chen & Murray, 2003; Teh et al., 2003; He et al., 2004), yet, it is hard to

know in practice how good these parameter estimates are since no comparison has
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Algorithm 1 Contrastive Divergence learning of P (v,h)
Input: Training image, (vi) and the learning rate, η
% RBMupdate (v1, η,W, b,a).
% v: A sample from the training distribution for the RBM.
% η: Learning rate for the stochastic gradient descent in Contrastive Divergence.
% W : RBM weight matrix of dimension: number of hidden units ×
number of inputs.
% b: The RBM offset vector for visible units.
% a: The RBM offset vector for hidden units.
% Q(h2. = 1|v2) is the vector with elements Q(h2i = 1|v2).
Output: Model parameters, θ=(W,a, b)

1: for all hidden units i do
2: Compute Q(h1i = 1|v1) (for binomial units, σ(ai + ηjWijv1j)) %Equation 4.11
3: Sample h1i ∈ {0,1} from Q(h1i|v1)
4: end for

5: for all visible units j do
6: Compute P (v2j = 1|h1) (for binomial units, σ(bj + ηiWijh1i)) %Equation 4.12
7: Sample v2j ∈ {0, 1} from P (v2j = 1|h1)
8: end for

9: for all hidden units i do
10: Compute Q(h2i = 1|v2) (for binomial units, σ(ai + ηjWijv2j)) %Equation 4.11
11: end for

12: W ←W + η(h1v
′
1 −Q(h2. = 1|v2)v′2)% The transpose ensures matrix multiplication.

13: b← b+ η(v1 − v2)
14: a← a+ η(h1 −Q(h2 = 1|v2))

been made with the real maximum likelihood estimates which are impractical to

compute (Perpinan & Hinton, 2005). An extensive numerical comparison of train-

ing with CD-k versus exact log-likelihood gradient has been presented in (Perpinan

& Hinton, 2005), where taking k larger than 1 gives more precise results, although

very good approximations of the solution can still be obtained with k = 1. In

contrast, there has been a little theoretical investigation made on the properties

of the contrastive divergence algorithm (Mackay, 2001; Williams & Agakov, 2002;

Yuille, 2004; Sutskever & Tieleman, 2010), though all agree on the fact that the

contrastive divergence algorithm is not guaranteed to converge to the equilibrium

distribution. The important questions on the speed of convergence of CD and its

relationship to the true maximum likelihood estimates are still open and not been

answered yet.

In order to assess the learning progress of RBMs, one of the commonly used mea-

sures is to calculate the reconstruction error. The reconstruction error is the

difference between a data point and its reconstruction i.e. the expected value of

the visible nodes given the expected value of the hidden nodes. However, this is

not a very reliable measure judging RBM training, since it does not correlate to

the true objective function of RBM training and in particular does not detect the

divergence of the likelihood learning (Hinton, 2010). There are two different quan-
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Figure 4.6: Comparison of the covariance matrices of real-valued and binary images.
It is clear from the visual appearance that nearby elements in texture images show
higher correlation than the farther elements when compared to the binary images. This
calls for a computational model that captures the higher order correlation of nearby

pixels in continuous images.

tities that are changing during the learning: the first is the difference between the

empirical distribution(P0) of the training data and the equilibrium distribution Pn

of the RBM and the second one is the mixing rate of the alternate Markov chain. If

the mixing rate is very low, the reconstruction error will be very small even when

the distributions of the data and the model are very different. As the weights

increase, the mixing rate falls, so the decrease in the reconstruction error does not

necessarily mean that the model is improving and, conversely, small increases do

not necessarily mean the model is getting worse.

4.5 Restricted Boltzmann Machine for Continuous Data

The conventional RBM assumes that the state of each neuron is binary, i.e. {0,1}.
This, however limits the application utility of RBM because most of the real world

data is either continuous or real-valued. Real images have various statistical prop-

erties that other data sets do not possess. One such property is the covariance

relationship of the pixels in a texture image. Figure 4.6 shows the covariance ma-

trix comparison of a texture and a binary image. It is clear from the main diagonal

entries and its neighboring elements that nearby pixels have strong correlation with

each other compared to those that are far. There have been attempts to use the

binary unit RBM to learn real-valued data by scaling the input values to [0,1] and

considering each value as a probability (Hinton & Salakhutdinov, 2006), however it

has not been used very widely. Apart from this, there are two notable approaches
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in practice to address the limitations of the classical RBM model for continuous

data. Both the approaches replace the binary visible neurons with units that fol-

low other types of distributions. One approach adopts Gaussian visible units and

thus proposes a Gaussian Bernoulli Restricted Boltzmann Machine (GBRBM),

whereas the other approach replaces the binary visible neurons with the softmax

unit 4. The former has shown to work better for real valued data and the latter for

discrete data with the small number of possible states. We will discuss GBRBM

in detail in the next section. This model dubbed Gaussian is much slower to train

(Krizhevsky, 2009) and is not a good model of the covariance structure of an image

because it does not capture the fact that the intensity of a pixel is almost exactly

the average of its neighbours. Also it lacks a type of structure that has proven very

effective in vision applications. These challenges have been addressed in factored

3-way RBM that uses the states of its hidden units to represent the abnormalities

in the local covariance structure of an image. This has been described in detail in

Section 4.5.2.

4.5.1 Restricted Boltzmann Machine with Gaussian Units

The replacement of the sigmoidal activation function in visible units to Gaussian

function modifies the energy function of the RBM in the following way:

E(v,h) =
V∑
i=1

(vi − bvi )2

2σ2
i

−
H∑
j=1

bhj hj −
V∑
i=1

H∑
j=1

vi
σi
hjwij (4.17)

Just as before, there is no direct connection of the units of each layer with each

other, therefore it is easy to infer samples via the following conditional distribu-

tions:

P (v|h) =
V∏
i=1

N (bvi +
K∑
j=1

hjWij , σ
2
i ),

P (h|v) =

H∏
j=1

σ(bhj +

V∑
i=1

Wij
vi
σi

)

where N (., σ∈) denotes the pdf of the Gaussian distribution with mean, µ and

variance, σ2 and σ(x)= 1
1+exp(−x) . The gradient to update the model parameters

4Softmax unit = This activation function is a generalization of the logistic function to multiple
variables and is defined as: σ(q, i) = exp(qi)∑n

j=1 exp(qj)
, where the vector q is the net input to a softmax

node, and n is the number of nodes in the softmax layer. It ensures all of the output values are between
0 and 1, and that their sum is 1. It reduces to the simple logistic function when there are only two
categories. Suppose you choose to set q1 to 0. Then pi = exp(q1)∑C

j=1 exp(qj)
= exp(q1)

exp(q0)+exp(q1)
= 1

1+exp(−q1)

and p2, of course, is 1− p1.
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are:

∂L

∂W
= 〈vh〉data − 〈vh〉model,

∂L

∂b
= 〈v − bv〉data − 〈v − bv〉model,

∂L

∂c
= 〈h〉data − 〈h〉model

GBRBM in general is known as difficult to train and this difficulty arises from

learning standard deviations σi of the visible neurons. Unlike other parameters,

the standard deviations are constrained to be positive. However, with an inappro-

priate learning rate, it is possible for the obtained gradient update rule to result

in a non-positive standard deviation. This leads either to an infinite energy of

the model ( in case of σi=0) or to an ill-defined conditional distribution of the

visible neuron (in case of σi=0). Since, all gradients other than that of the hidden

biases are scaled by the standard deviation, inappropriate learning of it affects the

learning of other parameters also. Too rapid decrease of the standard deviation

increases the gradients of the weights and the visible biases such that the stochas-

tic gradient learning either diverges or converges very slowly. In order to overcome

this problem of learning the standard deviations, Krizhevsky (Krizhevsky, 2009)

suggested using a separate learning rate for the standard deviations which should

be 100 to 1000 times smaller than that of the other parameters. This does work but

adds another parameter to the list of model parameters that need tweaking. There

has been a general consensus that it is enough to update the weights and the biases

only, and use fixed, possibly unit standard deviations. Many impressive results us-

ing GBRBMs without learning standard deviations have already been published

recently (Hinton & Salakhutdinov, 2009), (Krizhevsky, 2009), (Mohamed et al.,

2010). The GBRBM can also be viewed as a Gaussian mixture model with the

number of components being exponential in the number of hidden units.

GBRBM is an unsatisfactory model of natural images because its modelled features

typically do not represent sharp edges that occur at object boundaries and lead to

latent representations that are not particularly useful features for classication tasks

(Courville et al., 2011). Natural images are chiefly characterized by the covariance

of the pixel values and not by their absolute values. This point is supported by

the common use of preprocessing methods that standardize the global scaling of

the pixel values across images in a data set or across the pixel values within each

image. These concerns about the ability of the GBRBM to model natural image

data has lead to the development of other RBM-based generative models that

aim to better model non-diagonal conditional covariances. Some of these models

include mean-covariance RBM (mcRBM) (Dahl et al., 2010), mean-product of

Students T-distributions model (mPoT) (Ranzato et al., 2010b), spike-and-slab

RBM (ssRBM) (Courville et al., 2011) and factored 3-way RBM (Ranzato et al.,

2010a).
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4.5.2 Factored 3-Way Restricted Boltzmann Machine

Ranzato et al. (Ranzato et al., 2010a) proposed that an RBM’s visible and hidden

units can be modified to incorporate three-way interactions so that the covariance

of the visible units is captured. This modified RBM which allows the hidden

units to modulate pair-wise interactions between the visible units is called three-

way RBM. Capturing the interactions between the visible units has far too many

Figure 4.7: A graphical representation of the factored 3-way RBM in which the
triangular symbol represents a factor that computes the projection of the input image
whose pixels are denoted by vi with a set of filters (columns of matrix C). Their output
is squared because each factor is connected twice to the same image with the same set of
lters. The square outputs are sent to binary hidden units after projection with a second
layer matrix (matrix P ) that pools similar filters. Because the second layer matrix P
is non positive the binary hidden units use their ‘off ’ states to represent abnormalities

in the covariance structure of the data (Ranzato et al., 2010a).

parameters, therefore, to keep their count under control and make learning efficient

in practice, it is necessary to factorize these 3-way interactions. These factors turn

out to look remarkably like simple cells which act as linear filters that send their

squared outputs to the hidden units and learn to act like local, oriented edge like

detectors. See Figure 4.8 for illustration. The energy function is redefined in terms

of the three-way multiplicative interactions between the two visible binary units,

vi, vj and one hidden binary unit, hk as:

E(v,h) = −
∑
i,j,k

vivjhkWijk (4.18)

For real images, we expect the lateral interactions in the visible layer to have a lot

of regular structure, therefore the three-way tensor can be approximated as a sum

of factors:

Wijk =
∑
f

BifCjfPkf (4.19)

The matrix B = Bif and C = Cif has as many rows as the dimensionality of visible

layer and as many columns as the number of factors. The matrix P = Pkf has as

many rows as the dimensionality of the hidden layer and as many of columns as

the number of factors. P is regarded as the factor-hidden or pooling matrix and

the matrix Cif is known as visible to factor matrix ; it is sensible to assume that
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Figure 4.8: 256 filters of size 16x16 pixels (columns of visible-to-factor matrix ) learned
on whitened image patches sampled from the Berkeley data set (Ranzato et al., 2010a).

matrix B = C in the final approximation:

Wijk =
∑
f

CifCifPkf (4.20)

Substituting Wijk in Equation 4.18, we get:

E(v,h) = −
∑
f

(∑
i

vi(Cif )

)2(∑
k

hkPkf

)
(4.21)

The parameters of the model could be learned by maximising the log likelihood

of the energy function through stochastic gradient descent learning technique, the

gradients of which are given as:

∂L

∂θ
=

〈
∂E

∂θ

〉
data

−
〈
∂E

∂θ

〉
model

, (4.22)

where θ denotes the model parameters {C,P}, and the biases for the visible and

hidden layer. The angle brackets represent the expectation under the distribution

specified by the subscript. The intractable integral over the model distribution

can be approximated by drawing samples through a Markov chain Monte Carlo

algorithm running for a very short time, starting at the data as proposed in Con-

trastive Divergence (Hinton, 2002). The hidden units remain conditionally inde-

pendent given the states of the visible units and their binary states can be sampled

through the following conditional distribution:

P (hk = 1|v) = σ

∑
f

Pkf (
∑
i

viCif )2 + bk

 , (4.23)

where σ is a logistic unit and bk is the bias of the k-th hidden unit. Given the

hidden states, however the visible units are not independent and form a Markov

random field in which the effective pairwise weight interaction between vi and vj

is
∑

k

∑
f hkCifCjfPkf . Because of this connectivity, it is much more difficult to

compute the reconstruction of the data from the hidden states required for the
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contrastive divergence learning. Fortunately, this reconstruction does not need to

be an exact sample of the model distribution but it should at least be closer to

the joint distribution of the visibles given the current states of the hiddens. This

task could be accomplished by one or more rounds of sequential Gibbs sampling

of the visibles, but it is more efficient to integrate out the hidden units and use

the Hybrid Monte Carlo (HMC) sampling technique on the free energy function 5

(Neal, 1996):

F (v) = −
∑
k

log

1 + exp

0.5
∑
f

Pkf (
∑
i

Cifvi)
2 + bk

−∑
i

bivi (4.24)

The details of HMC have been explained in Section 4.7.2.3, whereas the gradients

of the log likelihood function of free energy w.r.t each model parameter and visible

data v ,for stochastic gradient descent learning are given as:

∂F (v)

∂v
= −

∑
f

Cif
∑
k

Pkf
1

1 + exp(−0.5
∑

f Pkf (
∑

iCifvi)
2 − bk)

∑
i

Cifvi

(4.25)

∂F (v)

∂Pkf
= −1

2
(
∑
i

Cifvi)
2 1

1 + exp(−0.5
∑

f Pkf (
∑

iCifvi)
2 − bk)

(4.26)

∂F (v)

∂Cif
= −vi

∑
k

Pkf
1

1 + exp(−0.5
∑

f Pkf (
∑

iCifvi)
2 − bk)

∑
i

Cifvi (4.27)

∂F (v)

∂b
= −1

2
.

1

1 + exp(−0.5
∑

f Pkf (
∑

iCifvi)
2 − bk)

(4.28)

The algorithm proceeds as follows:

1. Compute the derivative of the free energy in Equation 4.24 w.r.t. to the

parameters (visible-to-factor, factor-to-hidden weights and hidden biases) at

the training samples.

2. Draw (approximate) samples from the distribution by using HMC (Equation

4.25).

3. Compute the derivatives of the free energy w.r.t. the parameters at the

samples given by HMC.

4. Update the parameters by taking the difference of these derivatives as shown

5The concept of free energy comes from the field of thermodynamics and refers to the internal energy
of the system minus the amount of energy that cannot be used to perform work. The use of free energy
in RBMs enables us to evaluate the partition function (Z(θ) =

∑
v,h exp(−E(v, h))) , which requires an

exponential time 2D and 2k computations, as a sum of free energy terms over all possible hidden states
(Z =

∑
h∈H exp(−F (h)) ) only. This representation makes our evaluation of the partition function

tractable ( 2k computations only ) for RBMs with a large visible and small hidden units. Here D refers
to the dimensionality of the data and k refers to the size of the hidden layer. The equation P (v) =∑

h exp(−E(v,h))∑
v,h exp(−E(v,h))

is thus converted to P (v) = exp(−F (v,θ))∑
h exp(−F (h,θ))

, where F (v) = − log
∑
h exp(−E(v, h)).
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in Equation 4.22.

The number of covariance matrices that this model can generate is exponential

in the number of hidden units since the representation is binary and distributed.

The covariance RBM (cRBM) can be viewed as a particular type of factored third

order Boltzmann machine. In other words, the RBM energy function is modified

to have multiplicative interactions between triples of two visible units, vi and vj ,

and one hidden unit hk. Unrestricted 3-way connectivity causes a cubic growth

in the number of parameters that is unacceptable if we wish to scale this sort of

model to high dimensional data. Factoring the weights into a sum of 3-way outer

products can reduce the growth rate of the number of parameters in the model

to one that is comparable to a normal RBM. The hidden units of the cRBM are

still (just as in GBRBMs) conditionally independent given the states of the visible

units, so inference remains simple. However, the visible units are coupled in a

Markov Random Field determined by the settings of the hidden units.

4.6 ClassRBM-An RBM Designed for Classification

Though RBMs are unsupervised generative models that are mostly used to model

the inputs of a classification problem, they can also be trained in a supervised

way by modelling the joint distribution of the inputs (v) and their associated

labels (l) together, in an architecture called ClassRBM (Larochelle & Bengio,

2008). The ClassRBM with n hidden units is a parametric model of the joint

distribution between a layer of hidden variables (referred to as neurons or features),

h = (h1, h2, . . . , hn), the observed variables v = (v1, v2, . . . , vd) and the labels,
~l = (1l=i)

C
i=1 for C classes. The probability of a full network configuration takes

the form:

P (l,v,h) =
exp(−E(l,v,h))

Z
, where Z =

∑
l′,v′,h′

exp (−E(l′,v′,h′)), and

E(l,v,h) = −
V∑
i=1

H∑
j=1

wijhjvi −
L∑
k=1

H∑
j=1

ukjhjlk −
H∑
j=1

ajhj −
L∑
k=1

cklk −
V∑
i=1

bivi,

(4.29)

with the parameters θ=(W,a, b, c, U). This model is illustrated in Figure 4.9. The

ClassRBM uses sigmoid activation function σ(x) = 1/1 + exp(−x) for the units in
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the visible and hidden layers, given probabilistically as:

P (v, l|h) = P (l|h)

D∏
i=1

P (vi = 1|h),where

P (vi = 1|h) = σ

bi +
∑
j

wjihj

 andP (lk = 1|h;θ) = softmax

 H∑
j=1

ujkhj + ck

 .

(4.30)

P (h|v, l) =
H∏
j=1

P (hj |v, l), where

P (hj = 1|v, l) = σ

(
aj + ujklk +

∑
i

wjivi

)
. (4.31)

The activation function used in the labels layer units is softmax. The softmax

units can be viewed as a set of binary units whose states are mutually constrained

such that exactly one of the units is turned on at a time (i.e has value 1), and

the remaining all are off. Mathematically, by using a logistic sigmoid function, if

a binary unit is turned on with the following probability,

σ(x) =
1

1 + exp (−x)
=

exp (x)

exp (x) + exp (0)
, (4.32)

then this can be generalized to K alternative states not ordered in any way to

make up a softmax unit, j:

Pj =
exp (xj)∑K
i=1 exp (xi)

. (4.33)

Thus the probability of a softmax unit being turned on in the labels layer is given

as shown in Equation . In order to learn the model parameters, θ= (W,a, b, c, U),

stochastic gradient descent learning is performed that calculates the gradients of

Figure 4.9: Architecture of a classification restricted Boltzmann machine (CRBM)
modeling the joint distribution of labels and inputs (Larochelle & Bengio, 2008).
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the log likelihood of the model with respect to its parameters θ as follows:

∂ logP (l,v)

∂θ
=

〈
∂

∂θ
E(l,v,h)

〉
P (h|l,v)

−
〈
∂

∂θ
E(l,v,h)

〉
P (l,v,h)

(4.34)

In the above equation, the first expectation over P (h|l,v) is tractable but the

second one is not. We use a stochastic approximation of this gradient, called the

contrastive divergence gradient which replaces the intractable expectation by an

average of samples generated after a limited number of Gibbs sampling iterations.

The model parameters a, b and c refer to the bias units attached to the hidden,

visible and label units respectively. These biases are also updated along with the

weights, W and U between the hidden-visible and hidden-label units. For each

parameter update, the gradient is calculated by the following Equations and the

parameters are incremented according to the stochastic gradient descent formula

as shown in Algorithm 2.

a← a+ η(〈h〉data − 〈h〉model)

b← b+ η(〈v〉data − 〈v〉model)

c← c+ η(〈l〉data − 〈l〉model)

W ←W + η(〈hv〉data − 〈hv〉model)

U ← U + η(〈hl〉data − 〈hl〉model). (4.35)

Algorithm 2 Contrastive Divergence learning of P (v, l)
Input: Training image pair, (li,vi), maximum training iterations, max epoch and
the learning rate, λ
% a← b : a is set to the value b
% a ∼ P : a is sampled from P
Output: Model parameters, θ=(W,U,a, b, c)

1: Initialize the weights, W and biases, a and b to small random numbers

2: for i=1 to max epoch do

3: % Positive Phase:
4: l0 ← li,v

0 ← vi,

5: ĥ0 ← sigma(a+Wv0 +U ~l0) %Equation 4.31

6: % Negative Phase:
7: h0 ∼ P (h|l0,v0), %Equation 4.31
8: l1 ∼ P (l|h0), %Equation 4.30
9: v1 ∼ P (v|h0), %Equation 4.30

10: ĥ1 ← sigma(a+Wv1 +U ~l1) %Equation 4.31

11: % Update the parameters
12: θ ← θ − λ( ∂

∂θE(l0,v0, ĥ0)− ∂
∂θE(l1,v1, ĥ1)) % Equation 4.35

13: end for

After training the joint density model P (v, l) using a single RBM, each possible
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label is tried in turn with a test vector and the one that gives the lowest free energy

is chosen as the most likely class. Note that in order to do classification, we are

interested in inferring P (l|v) to characterize the class of the test input, v. This is

calculated as follows:

P (l|v) =
∑
h

P (l,h|v)

P (l|v) =
exp(−F (v, l))∑

c′=1...C exp(−F (v, l))
, where (4.36)

F (v, l) =− cT l− Fk(v);Fk(v) =
H∑
j=1

softplus(aj + vjklk + wijvi).

with softplus(v) = log(1 + exp(v)) (4.37)

For an RBM with Nv visible units, Nh hidden units and Nl class labels, the

distribution P (l|v) can be exactly computed in O(NvNhNl) time. This result

follows from two observations: 1) Setting lk=1 reduces the model to an RBM

defined by the kth bit of the labels layer and 2) The negative log probability of

v, upto an additive constant, under this RBM is the free energy as expressed in

Equation 4.37. The idea is to first compute Fk(v) for each setting of the label,

and then convert them back to a discrete distribution by taking a softmax of the

negative free energies by the formula defined in Equation 4.37. The free energy

computation takes O(NvNh) time steps, which is repeated Nl times in Equation

4.36 for a total of O(NvNlNh) computation.

4.7 Sampling from Probability Distributions

In probability theory and statistics, we often come across probability density func-

tions like:

y =

∫ b

a
f(x)P (x)dx (4.38)

or optimization problems like:

x̂ = arg maxx∈(a,b)f(x)

If the problem is simple enough, we can solve it analytically to get a deterministic

answer. However, in most cases there is no closed form solution available and we

need to use numerical methods of integration. Sometimes, even numerical integra-

tion/optimization is not convenient or good enough when the problem is defined

on a high dimensional space. As the state space becomes larger, the solution grows

time exponential in the dimensionality of X. In such cases, Monte Carlo methods

are one of the solutions widely used to solve integration and optimization problems.
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4.7.1 Simple Monte Carlo

An integration function such as the one defined in Equation 4.38 could be written

simply as the expectation of f(x) over the distribution P (x):

y =

∫ b

a
P (x)f(x)dx = EP (f(x)) (4.39)

Note that P (x) fulfills the requirements of being a probability density function

of a distribution. Thus if we can draw many samples (x1, x2, x3, ..., xn) from the

density P (x), we can approximate the integration as:

y ≈ 1

n

n∑
i=1

f(xi) (4.40)

When the number of samples n→∞, this expectation approaches the true value

for integration and optimization. This statistical sampling technique to approxi-

mate general averages is known as Monte Carlo method and is directly relevant

to solving difficult integrals in statistical inference problems. The estimates are

unbiased and as long as the variances are bounded appropriately (1/
√
N), the sum

of independent terms will obey a central limit theorem. Simple ’Monte Carlo’ ap-

proximation is as easy to implement as a random variate generator for the entire

joint distribution involved, however the main issue is to know how we draw sam-

ples according to the distribution we have. In order to solve this problem, several

algorithms have been proposed which we’ll discuss in the following sections:

4.7.1.1 Importance Sampling

Suppose the probability density function P (x) roughly approximates the density

of interest Q(x), then∫
f(x)P (x)dx =

∫
f(x)

(
P (x)

Q(x)

)
Q(x)dx = EQ(x)

[
f(x)

(
P (x)

Q(x)

)]
(4.41)

This forms the basis for the method of importance sampling with∫
f(x)P (x)dx ≈ 1

n

n∑
i=1

f(xi)

(
P (xi)

Q(xi)

)
, (4.42)

where the xi are drawn from the distribution given by Q(x). An alternative for-

mulation of importance sampling is to use:∫
f(x)P (x)dx ≈ Î =

n∑
i=1

wif(xi)/

n∑
i=1

wi,where wi =
P (xi)

Q(xi)
, (4.43)
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Figure 4.10: Rejection sampling illustration

where xi are drawn from the density Q(x). This has an associated Monte carlo

variance of

V ar(Î) =
n∑
i=1

wi(f(xi)− Î)2/
n∑
i=1

wi (4.44)

4.7.1.2 Rejection Sampling

In rejection sampling, the proposal density Q(x) is considered under the condition

that P (x) < MQ(x) where M > 1 is an appropriate bound on P (x)
Q(x) . The rejection

sampling algorithm is described below: Informally, this process samples x(i) from

Algorithm 3 Rejection Sampling Algorithm

1: i←− 0
2: while i 6= N do
3: x(i) ∼ Q(x)
4: u ∼ U(0, 1)

5: if u < P (x(i))
MQ(x(i))

then

6: Accept x(i)

7: i←− i+ 1
8: else
9: Reject x(i)

10: end if
11: end while

some distribution and then it decides whether to accept it or reject. The main

disadvantage of this method is that M is generally large in high dimensional spaces

and since P (accept) ∼ 1
M , many samples will get rejected.

4.7.2 Markov Chain Monte Carlo

MCMC is a strategy for generating samples x(i) while exploring the state space X
using a Markov chain mechanism. The random variable is called a Markov process

if the transition probabilities between different values in the state space depend
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only on the random variable’s current state, i.e.,

P (xt+1 = sj |x0 = sk, . . . , xt = si) = P (xt+1 = sj |xt = si) (4.45)

Thus, for a Markov random variable, the only information about the past needed

to predict the future is the current state of the random variable, knowledge of the

values of earlier states do not change the transition probability. A Markov chain

refers to a sequence of random variables x0, . . . , xn generated by a Markov process.

A particular chain is defined most critically by its transition probabilities(or the

transition kernel, (i, j) = P (i→ j), which is the probability that a process at state

space,si moves to state sj in a single step,

P (i, j) = P (i→ j) = P (xt+1 = sj)|xt = si) (4.46)

This mechanism is constructed so that the chain spends more time in the most

important regions. In particular, it is constructed so that the samples x(i) mimic

samples drawn from the target distribution P (x). Note that we use MCMC when

we cannot draw samples from P (x) directly but can evaluate P (x) up to a nor-

malizing constant.

4.7.2.1 Metropolis Hastings Methods

The Metropolis Hastings algorithm is the most popular MCMC technique (Metropo-

lis et al., 1953),(Hastings, 1970) developed so far. In the later sections, we will see

that most practical MCMC algorithms can be interpreted as special cases or exten-

sions of Metropolis Hastings. This algorithm leads to samples from the target dis-

tribution P (x) by always accepting a new proposal from Q(x∗|x) if its more likely

under the target distribution than the old state. The Markov chain then moves to-

wards x∗ with acceptance probability, A(x, x∗) = min{1, [P (x)Q(x∗|x)]−1P (x∗)Q(x|x∗)},
otherwise it remains at x. This allows the sampler to move towards the regions of

state space, where the target function has high density. However, note that if the

new proposal is less likely than the current state, it is still possible to accept the

worse proposal and move forward towards it. This process of always accepting a

good proposal and occasionally accepting a bad proposal explores the whole state

space and samples from all parts of the distribution including the tails. The pseudo

code is given in Algorithm 9:

The MH algorithm is very simple, but it requires careful design of the proposal

distribution Q(x∗|x). In the subsequent sections, we’ll see that many MCMC

algorithms arise by considering specific choices of this distribution. By looking

at the acceptance criterion, one can see that this algorithm is close to importance

sampling, but now the samples are correlated since they result from comparing one



74 Chapter 4 Probabilistic Models of Visual Scene Analysis

Algorithm 4 Metropolis Hastings Algorithm

1: Initialize x(0)

2: for i=0 to N -1 do
3: Sample u ∼ U[0,1]

4: Sample x∗ ∼ Q(x∗|x(i))
5: if u < A(x(i), x∗)=min{1, P (x∗)Q(x(i)|x∗)

P (x(i))Q(x∗|x(i))
} %Equation 4.47

6: x(i+1)=x∗

7: else
8: x(i+1) = x(i)

9: end for

sample to the other through the density ratio calculated in acceptance criterion.

A(x(i), x∗) = min

{
1,
P (x∗)

P (x(i))

}
(4.47)

A major advantage of calculating this ratio is that we don’t need to know the

normalizing constants of the density/probability mass function.

4.7.2.2 Gibbs Sampling

Gibbs sampler can be viewed as a special case of Metropolis Hastings algorithm

where the sampled variable from the proposal distribution is always accepted,

i.e. A=1. The key to the Gibbs sampler is that one only considers univariate

conditional distribution- the distribution when all of the random variables but one

are assigned fixed values. Thus, by repeating the process k times, one generates

a Gibbs sequence of length k where a subset of points (xj , yj) for 1 ≤ j ≤ m < k

simulates n random variables drawn sequentially from the n univariate conditionals

rather than generating a single n-dimensional vector in a single pass using the full

joint distribution. Such conditional distributions are far easier to simulate than to

distributions and usually have simple forms:

Algorithm 5 Gibbs Sampling Algorithm

1: Initialize x0,1:n
2: for i=0 to N -1 do
3: – Sample x

(i+1)
1 ∼ P (x1|xi2, x

(i)
3 , . . . , x

(i)
n )

– Sample x
(i+1)
2 ∼ P (x2|x(i)1 , x

(i)
3 , . . . , x

(i)
n )

– Sample x
(i+1)
j ∼ P (xj |x(i+1)

1 , x
(i+1)
j−1 , . . . , x

(i)
n )

– Sample x
(i+1)
n ∼ P (xn|x(i+1)

1 , x
(i+1)
2 , . . . , x

(i+1)
n−1 )

4: end for

Maximum likelihood learning of energy-based models like RBM requires a robust

algorithm to sample negative phase particles (Equations 4.13,4.14,4.15). When

training RBMs with contrastive divergence, this is typically done via block Gibbs

sampling, where the conditional distributions P (h|v) and P (v|h) are used as the

transition operators of the Markov chain. In certain cases however, it might be

difficult to sample from these conditional distributions (for instance when expen-
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sive matrix inversion are required, as in the case of mean-covariance RBM ). In

situations, where sampling is possible, it is worth remembering that the Gibbs

sampling operates via a random walk which might not be statistically efficient for

some distributions. Some of the alternate methods that offer solution to these

problems are discussed below in the forthcoming discussion.

4.7.2.3 Auxiliary Variable Methods

The idea of introducing auxiliary variables in Markov chain Monte Carlo (MCMC)

sampling arose in statistical physics (Swendsen & Wang, 1987), was generalized

by (Edwards & Sokal, 1988), and brought into the mainstream statistical litera-

ture by (Besag & Green, 1993). Auxiliary variable techniques exploit the general

principle that often an apparently complicated n-dimensional problem becomes

easier and more tractable if embedded in a higher dimensional framework. Once

the high dimensional solution is found, it is projected on the original state space

and the original problem is thus solved. This projection procedure is reflected by

disregarding the auxiliary variable(s), and just obtaining a sample from the target

distribution. Mathematically speaking, in order to sample realizations from P (x),

one specifies a conditional distribution P (u|x) and writes P (x, u) = P (x)P (u|x)

with marginal distribution P (x). A Markov chain is then constructed on X × U
by alternately updating u and x via Gibbs sampling or some other method that

maintains P (x, u), and hence P (x). After sampling the (x(i), u(i)) according to

P (x, u), one can easily ignore the samples u(i) and keep x(i). The introduction of

the auxiliary/supplementary variables allow us to construct Markov chains that

mix faster and are easier to simulate than standard single site algorithms. Here we

will discuss two well known auxiliary variable methods, namely Hamiltonian Monte

Carlo (HMC) and Annealed Importance Sampling (AIS) used for data sampling

from the RBM in our work.

Hamiltonian Monte Carlo HMC is an MCMC algorithm that avoids random

walk behavior by simulating a physical system governed by Hamiltonian dynamics,

potentially avoiding tricky conditional distributions in the process. In order to

simulate a physical system, the particles move about a high dimensional landscape

subject to potential and kinetic energies. The particles are characterised by a

position vector or state x ∈ <D and a velocity vector v ∈ <D. In non-physical

MCMC applications of Hamiltonian dynamics, the position will correspond to the

variables of interest, whereas v serves as an auxiliary variable that is introduced

artificially. The combined state of the particle is denoted as χ←− (x, v).

The Hamiltonian equation is defined as the sum of the potential energy E(x), (

same energy function defined by the energy based models, i.e. E(x) = − logP (x)−
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log(Z) ) and kinetic energy, K(v) defined as follows:

H(x, v) = E(x) +K(v) = E(x) +
1

2
v2
i . (4.48)

Instead of sampling P (x) directly, HMC operates by sampling from the canonical

distribution:

P (x, v) =
1

Z
exp(−H(x, v))

P (x, v) ∝ exp(−H(x, v))

P (x, v) ∝ exp(−E(x)−K(v))

P (x, v) ∝ exp (−E(x)) exp−(K(v))

P (x, v) ∝ P (x)P (v)

Because the two variables x and v are independent, marginalizing over v is trivial

and recovers the original distribution of interest P (x). The state x and velocity

v are modied such that H(x, v) remains constant throughout the simulation. The

differential equations of the Hamiltonian used to choose x and v are given as:

dxi
dt

=
∂Hi

∂vi
= vi,

dvi
dt

=
∂Hi

∂xi
= −∂E

∂xi
.

As shown in (Neal, 1996), the above transformation preserves volume and is re-

versible, therefore these dynamics could be used as transition operators of a Markov

chain that leaves P (x, v) invariant.

Discretizing Hamiltons equations-The Leapfrog Method

For computer implementation, Hamiltonian equations must be approximated by

discretizing time, using some small step size, ε. Starting with the state at time

zero, we iteratively compute (approximately) the position x at times ε, 2ε, 3ε,

etc. There are several ways through which one can do that (for example Euler’s

method), however to maintain invariance of the Markov chain, care must be taken

to preserve the properties of volume conservation and time reversibility. The leap-

frog algorithm maintains these properties and operates in 3 steps that first perform

a half-step update of the velocity at time t + ε/2, which is then used to compute

x(t+ ε) and v(t+ ε) ultimately :

vi(t+ ε/2) = vi(t)−
(ε

2

) ∂E
∂xi

(x(t)) (4.49)

xi(t+ ε) = xi(t) + εvi(t+ ε/2) (4.50)

vi(t+ ε) = vi(t+ ε/2)− (ε/2)
∂E

∂xi
(x(t+ ε)) (4.51)
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The leap frog method can be run for L steps to simulate dynamics over L×ε units

of time. This particular discretization method has a number of properties that

make it preferable to other approximation methods like Eulers method, however a

discussion on that is beyond the scope of this thesis.

Accept / Reject Phase

In practice, using finite step sizes ε will not preserve H(x; v) exactly and will

introduce bias in the simulation. HMC cancels these effects exactly by adding a

Metropolis accept/reject stage, after n leapfrog steps. The new state χ′ ←− (x′, v′)

is accepted with the probability Pacc(χ;χ′), which is defined as:

Pacc(χ;χ′) = min

(
1, exp

(
−H(x′, v′)

−H(x, v)

))
(4.52)

In order to draw a new sample according to P (x, v), we first start off with a

Algorithm 6 Hamiltonian Monte Carlo Algorithm

1: Initialize position x0 and velocity v0
2: Set step-size, ε

3: for i = 1 to nsamples, take steps do
4: Draw v ∝ N (0; I)
5: (x0; v0) = (xi1; v)

6: % Perform N leapfrog steps to obtain the new state χ′ ←− (x′, v′)
7: for j = 1 to L do
8: v(j−1/2) = v(j−1) − ε

2∇E(x(j−1)) % Make half step in v (Equation 4.49)

9: x(j) = x(j−1) + εv(j−1/2) % Make full step in x (Equation 4.50)
10: v(j) = v(j−1/2) − ε

2∇E(x(j)) % Make full step in v (Equation 4.51)
11: end for

12: (x′; v′) = (x(L); v(L))
13: Draw α ∼ U [0; 1]
14: δH = H(x′; v′)−H(x(0); v(0)) %Equation 4.48
15: % Acceptance/Rejection Criterion in Equation 4.52
16: if α < min{1, exp(−δH)} then
17: (xi; vi) = (x′, v′)
18: else
19: (xi; vi) = (xi−1; vi−1)
20: end if

21: end for

22: Return {xi, vi}nsamples
i=0

random value of x and generate a Gaussian random variable v. We then take L

leap frog steps in v and x. The values of v and x at the last leap are the proposal

candidates in the MH algorithm with target density P (x, v). Marginal samples

from P (x) are obtained by simply ignoring v. Given (x(i−1), v(i−1)), the algorithm

proceeds as illustrated in Algorithm 6. The choice of the parameters L and ε

pose simulation tradeoffs. Large values of ρ result in low acceptance rates, while

small values require many leapfrog steps (expensive computation of the gradient)
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to move between two nearby states. Choosing L is equally problematic as we want

it to be large to generate candidates far from the initial state, but this can result

in many expensive computations. HMC therefore requires careful tuning of the

proposal distribution. It is more efficient in practice to allow a different step size

ε for each of the coordinates of x.

4.7.2.4 Annealing Methods

Annealed Importance Sampling Annealed importance sampling is a sequen-

tial Monte Carlo method which allows a non-analytically normalizable distribution

to be estimated in an unbiased fashion through simulated annealing heuristic. This

is accomplished by starting at a distribution with a known normalization, and grad-

ually transforming it into the distribution of interest through a chain of Markov

transitions. The transition operator Tk(x
′; x) represents the probability density of

transiting from state x to x′. One can use any suitable MCMC transition operator

that guarantees a suitable sequence of intermediate probability distributions. One

general way to define this sequence is to set:

Pk(x) ∝ P ∗A(x)1−βkP ∗B(x)βk , (4.53)

where 0 = β0 < β1 < · · · < βK = 1 is the annealing temperature chosen by the

user. Annealed Importance Sampling produces a sample of points x(1), x(2), . . . x(N)

and their weights w(1), w(2), . . . w(N) by a sequence of points x1, . . . , xk as follows:

Algorithm 7 Annealed Importance Sampling- One Run

1: Generate x1,x2, . . . ,xk as follows:
2: – Sample x1 from PA = P0

– Sample x2 given x1 using T1
– Sample xk given xk−1 using Tk−1

3: Set x(i) = xk and
4: Set w(i) =

P∗
1 (x1)

P∗
0 (x1)

P∗
2 (x2)

P∗
1 (x2)

. . .
P∗

K(xk)
P∗

k−1(xk)

The above procedure produces a single independent point x(i) for use in estimating

expectations. Note that since the transitions from each step to the next take

place through Metropolis Hastings, there is no need to calculate the normalizing

constants of any intermediate distributions. The final result Îj of each annealing

run is heavily dependent on the starting state which was randomly sampled from

the prior, thus the above procedure needs to be repeated several times(M) in

order for the result to converge to the true value. (Neal, 2005) shows that for

sufficiently large number of intermediate distributions, k, the variance of rAIS will

be propotional to 1/Mk, where M refers to the number of annealing runs.

In order to avoid possible overflow problems, the calculations are done in logarith-
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mic scale, i.e.

logP (x|M) ' log

 1

M

M∑
j=1

Îj

 ,where

Îj = exp

[
n∑
i=1

(βi − βi−1) logP (x|M ; θβij )

]

The major advantage of the AIS algorithm from a computational point of view,

is that it is not required for the Markov chains to converge to their stationary

distributions. The samples need only approximately be drawn from a series of in-

termediate distributions, which form a path in the probability density space from

the prior to the posterior. Thus, the algorithm provides a method to approximate

marginal likelihoods even in cases when one cannot find distributions that guaran-

tee convergence. Since convergence assessment may be problematic especially in

non linear problems, requiring several thousands of samples to be rejected before

convergence is achieved, proving AIS very useful.

Although the annealing run allows a much freer movement in the state space by

making small transitions from each step to the next using the Metropolis Hastings

algorithm, AIS is slow and still an approximation which means that there is no

guarantee that the precise result is calculated by visiting all modes. Thus for cases,

where multi-modality is an issue and the modes are far from each other with respect

to these small transition steps, the chain is less likely to move from one mode to

another. In such scenarios, one can increase the temperature to permit uphill

moves more frequently; this will allow the approximate sampling from a sequence

of intermediate distributions to provide greater coverage of different regions of the

state space.

4.8 Summary

This chapter discusses various probabilistic models of visual scene analysis that

take some functional inspiration from the mammalian visual system and provide

a useful basis to draw Fisher score space for the classification task. In order

to maximize the likelihood of the visual data, these models face the problem of

sampling from the joint probability distribution of the data and the features. We

discuss several sampling algorithms in this context and show how these models

could be trained to maximize the likelihood of the seen data.





Chapter 5

Experiments and Results

This chapter explains the design of the experiments carried out to investigate the

problem of visual scene classification typically solved via the generative models.

We discuss the experimental framework used to assess the classification potential

of these generative models and the proposed Fisher kernel based approach used to

take over the same recognition challenge.

5.1 Data Sets

In order to develop visual models of objects and scenes, benchmark data sets

play an important role to test the performance of detection and classification.

Current benchmark data sets for evaluating object classification systems claim

to provide image variability in terms of the object/scene’s appearance, shape,

size, orientation, viewpoint and noise that is naturally present in the real world.

Despite their wide use and applicability, these computer vision data sets have been

criticised for their inadequacy to provide a trustworthy test bed for algorithms

that aim to achieve human comparable speed and accuracy in recognition (Pinto

et al., 2008; Ponce et al., 2006; Torralba & Efros, 2011). Assuming these standard

data sets are decent enough to calibrate the recognition performance of artificial

algorithms, we continue to use them in order to gauge the performance of our

technique against the state of the art methods.

The following different texture, character and object recognition data sets have

been used in this work. Note that in all these data sets, an object may be part of

the scene or the scene itself used for the classification task.

Texture Data sets:

– UIUC (Lazebnik et al., 2005)

– CUReT (Dana et al., 1999a)

– Brodatz (Valkealahti & Oja, 1998)

– Berkeley (Martin et al., 2001)

– Emphysema (Sørensen et al., 2010)

81
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The first three data sets contain texture patterns that form the primitives of natu-

ral scene images. Natural images portray different visual textures with contrasting

properties such as regularity versus randomness and uniformity versus distortion

in the same image. This collage of pixel variation is a result of the uncontrolled

illumination conditions in real life with a variety of objects appearing at different

scales and viewpoints. The Berkeley data set is a natural scene image database that

is usually used for image segmentation tasks. The Emphysema data set contains

computed tomography (CT) slices of the lung tissues showing different textures

for medical image analysis.

Character and Object Recognition Data sets:

– MNIST (Lecun et al., 1998)

– USPS (Hull, 1994)

– Alphanumeric1

– ETH-802

– Caltech-1013

The first three data sets are character and digits recognition data sets, whereas the

last two are object recognition data sets widely used for determining the success

of computational models and algorithms for scene recognition. A more detailed

discussion on the specifications of the data sets is given in the forthcoming sections.

5.2 Measures of Performance Evaluation

In order to assess the classification performance of the algorithms on benchmark

data sets, we have used the accuracy measure, which is defined as:

Accuracy =
Total number of samples correctly classified

Total number of samples in the data set
× 100, (5.1)

A =
t

n
× 100. (5.2)

In the confusion matrix terminology, the numerator t in the above formula is often

regarded as a sum of true positives and true negatives, whereas the denominator

is defined as a sum of true positives, true negatives, false positives and false nega-

tives. The terms positive and negative refer to the classifier’s prediction, and the

terms true and false refer to whether that prediction corresponds to the external

judgment (sometimes known as the observation). This concept is illustrated in

the Table 5.1. We have provided average accuracy as a measure of performance

to evaluate how good the classifiers are to predict different classes. The measure

1The Alphadigits data set is available for download at: http://www.cs.nyu.edu/~roweis/data.html
2The ETH-80 data set is available for download at: sites/default/files/datasets/eth80/

eth80-cropped-close128.tgz
3The Caltech 101 Silhouettes data set could be downloaded from: http://people.cs.umass.edu/

~marlin/data.shtml

http://www.cs.nyu.edu/~roweis/data.html
sites/default/files/datasets/eth80/eth80-cropped-close128.tgz
sites/default/files/datasets/eth80/eth80-cropped-close128.tgz
http://people.cs.umass.edu/~marlin/data.shtml
http://people.cs.umass.edu/~marlin/data.shtml
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Table 5.1: A 2 × 2 contingency table or confusion matrix illustrating the concept of
true positives, true negatives, false positives and false negatives.

Predicted Class (Expectation)
Positive Negative

Actual Class(Observation)
Positive True Positives False Negatives
Negative False Positives True Negatives

of uncertainty over the average of obtained accuracies is given by the standard

deviation, which is calculated for measuring the precision for a series of repetitive

measurements.

s =

√∑N
i=1(xi − x̄)2

N − 1
, (5.3)

where N is the number of measurements, xi refers to each individual measurement

and x̄ is the average accuracy.

The proposed models are also assessed based on their computational complexity

measured asymptotically in terms of ‘big O’ notation as well as in terms of CPU

time measured in milliseconds. The asymptotic time complexity quantifies the

amount of time taken by an algorithm to run as a function of its input length

n. This helps us to assess how the algorithm would behave when the size of

the input goes to infinity. The run-time implementation time further justifies

these calculated complexities and enables us to see the the pros and cons of each

competitive technique.

We categorize our empirical work into two streams: Section 5.3 shows our analy-

sis of the discrimination capability of multivariate Gaussian generative model on

texture data sets, whereas Section 5.4 discusses the evaluation of the restricted

Boltzmann machine as a model of scene recognition. In both the sections, the

generative model’s likelihood based performance is compared with the Fisher ker-

nel’s performance. The two approaches are also compared to some simple distance

based classifiers like nearest neighbour and condensed nearest neighbour as well as

some other relevant state of the art classifiers to gauge their success on comparative

scale.

We do not probe a Gaussian mixture model (GMM) for classification here, since

it has already been shown to effectively model the data originating from differ-

ent class distributions. Also GMM was not used as a generative basis to model

the pattern generalization of natural scenes by Karklin (Karklin & Lewicki, 2009)

from where our investigation of finding a better model for classification initiated.

Gaussian mixture models (GMM) may improve over a single multivariate Gaussian

distribution to accommodate a broader and more complex range of distributions

using a combination of simple components, however we choose to keep our prob-

abilistic models simple in the form of a MVG and RBM to explore the power of

the Fisher kernel classifiers.
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5.3 Experiments and Results with Multivariate Gaus-

sian Model

In order to assess the discriminatory power of multivariate Gaussian model that

was introduced by Karklin as a probabilistic model of generalizing pattern variabil-

ity in natural scenes (Section 4.3.1), we followed the suggested image preprocessing

steps in (Karklin & Lewicki, 2009) to train the model in a similar way and probed

its classification ability. The texture data sets chosen to perform these experiments

are UIUC (Lazebnik et al., 2005) and CUReT (Dana et al., 1999a); sample images

from these data sets are shown in Figure 5.1 and their specifications are given in

Table 5.2. We describe the overall experiment and analysis as follows:

(a) UIUC textures (b) CUReT textures

Figure 5.1: There are significant viewpoint changes and scale differences present in
both the texture data sets; also the illumination conditions are uncontrolled as in real

life thus making it challenging enough for the designed recognition system.

Table 5.2: Specifications of the texture data sets on which the experiments were
performed.

Database No. of classes Images per Class Image Resolution Format

UIUC (Lazebnik et al., 2005) 25 40 480× 640 JPEG
CUReT (Dana et al., 1999b) 61 92 200× 200 24-bit BMP

5.3.1 Image Preprocessing

The texture input image is first converted into a gray scale image and then resized

by bi-cubic interpolation such that its aspect ratio is preserved, i.e. 240 × 320

for UIUC textures and 200 × 200 (original resolution) for CUReT images. We

then randomly draw 2800(70 × 40) patches from the images of each UIUC class

and 3680(40× 92) patches from each CUReT class image, where the resolution of

each patch is 32× 32. Each of the 32× 32 image patch is passed through a bank

of two dimensional Gabor filters, spanning 5 orientations linearly spaced around

the clock (0◦, 45◦, 90◦, 135◦ and 175◦) and 10 spatial frequencies (chosen within

the range [0.05, 0.37]) with fixed phase and Gaussian envelope, thus accounting
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for a total of 50 filters. Each patch after being processed through the filtering

stage produces a 32 × 32 size image which is then summed up to yield a 1 × 50

dimensional feature vector. From these 50, we select 11 appropriate filter outputs

through maximum relevance-minimum redundancy (mRMR) technique to repre-

sent the data in a space that enhances the inter-class separation and avoids model

overfitting (Peng et al., 2005). The number of features were selected by checking

the models performance on the validation data set.

Algorithm 8 Condensed Nearest Neighbour
Input: Training data D
Output: Templates Ds

1: Initialise two subsets: Ds = {x1} and Dg = D - Ds

2: ∀xi ∈ Dg, % data in random order
3: do 1-NN. If class Ds 6= class xi, move xi to Ds

4: Terminate if |Dg| = 0 or no change in Ds

5.3.2 Data Modelling and Results

The texture data with 11 selected features is cross validated through 10-fold cross

validation technique to make training and testing partitions. The training data is

used to learn a multivariate Gaussian generative model for each class as:

N (µ,C),= P (xi|µ,C) =
1

(2π)D/2|C|1/2
exp

(
−1

2
(xi − µ)T (C)−1(xi − µ)

)
,

(5.4)

where µ is the mean of the class distribution, D defines the dimensionality of the

data vectors and C defines its covariance which is regularized by adding a small

constant threshold (λ = 0.01) to its diagonal:

C′ = C + λI, (5.5)

where I is the identity matrix, and λ is called the regularization parameter which

is usually optimized by the user according to the given data. This regulariza-

tion is required to make the covariance matrix well posed4 which is otherwise

non-invertible because of singularity (i.e. its determinant is almost zero). The

covariance matrices suffer from singularity either due to the linear dependencies

in the data or simply not enough data given the parameters. The log likelihood

of the samples with respect to the parameters (µ,C) of each model is given as

4Given a mapping, A : X −→ Y , the equation Ax = y is called well posed if:
1. A solution exists, i.e. for each y ∈ Y, ∃x ∈ X such that Ax = y
2. The solution is unique, i.e. Ax1 = Ax2 =⇒ x1 = x2 and
3. The solution’s behavior hardly changes when there’s a slight change in the initial condition (topology).
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follows:

L(X|µ,C) =
N∏
i=1

logP (xi|µ,C),

L(X|µ,C) =
N∏
i=1

log

(
1

(2π)D/2|C|1/2
exp

(
−1

2
(xi − µ)T (C)−1(xi − µ)

))
,

L(X|µ,C) =
−ND

2
log(2π)− N

2
tr(log C)− 1

2

N∑
i=1

(xi − µ)TC−1(xi − µ).

Intuitively, this estimate corresponds to the values of parameters (µ,C) that in

some sense best agree with or support the actually observed training samples.

Thus, the label y for the test image x is calculated by the following maximum

likelihood estimate:

y = arg max
y
P (y|x;θ)

=⇒ y = argmax
i

P (x|yi,θ)P (yi) = argmax
i

P (x|yi,θ). (5.6)

This method is a simplification of the maximum a posteriori (MAP) computation

where we assume the same prior probability P (yi) for all the hypotheses, set on the

labels outcome, y in our case. In applications where a hypothesis is represented

by a set of data labels for a given model, we do not have a reason to prefer one

single set of labels over another. Thus, this assumption is valid and is widely

adopted in parameter estimation of physiological system models (Junior & Costa,

1998; Ludwig et al., 2011). This technique in which the test data belongs to the

class whose data model parameters show the highest likelihood with the test image

is known as maximum likelihood estimation and the classifier is called maximum

likelihood estimator (MLE). The multi-class classification results achieved by this

classifier are shown in Table 5.3 and Figure 5.2.

In order to calibrate the performance of the MLE classifier, the same Gabor fea-

tures from the texture data were given to the nearest neighbor (NN) classifier

and it was found to outperform this likelihood based model of neural computa-

tion. We therefore seek to improve the model’s efficiency of texture discrimination

through Fisher kernel derived from a single multivariate Gaussian model which is

learnt from the training data of all classes. In order to define the Fisher score, the

gradient of the log likelihood of the data with respect to the model parameters,
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Table 5.3: Comparison of the texture classification performance of Fisher kernel
framework with other kernel and distance based classifiers.

Algorithms Data sets
UIUC CUReT

No. of Classes (25) (61)
SVM Fisher Kernel (Fisher scores from MVG model of Gabor features) 52.5% 54.92%
kNN (k=1, Input= Fisher scores from MVG model of Gabor features) 23.21% 32.48%
SVM Linear Kernel (Input= Gabor features) 29.35% 33.12%
SVM Gaussian Kernel (Input= Gabor features) 32.21% 41.03%
kNN (k=1, Input = Gabor features) 51.9% 84.05%
CNN ( 60 % Retrieved rate, Input = Gabor features) 48.8% 80.13%

θ = {µ,Σ} is computed through the following set of equations:

∇θ logαn =
[
S[n] | Q[n]

]
, where

αn = P (xn|θ), S[n] = (xn − µ)TΣ−1,

Q[n] =
1

2

[
−vec[Σ−1]T + S[n] ⊗ S[n]

]
, and

vec(F ) = [f11, f12, ..., fmn]T (F is m× n). (5.7)

In the above equation, the matrix partition is denoted by | and ⊗ represents the

Kronecker matrix product. The same training data that was used to build up

the Gaussian generative model for each class was also used for training the Fisher

kernel for SVM. The optimal value of hyper-parameter C was calculated for all the

10-folds of the data. A comparison of the results obtained by all the techniques

(a)UIUC data set (b)CUReT data set

Figure 5.2: Comparison of the classification performances achieved by nearest neigh-
bor technique, Karklin’s Gaussian generative model and Fisher kernel on texture data

sets.

implemented on the two benchmark data sets is shown in Figure 5.2. On texture

classification task, the Fisher kernel derived from a MVG model is shown to boost

the maximum likelihood based performance of the generative model and is also

found better than the other kernel functions on the same input features. In the

Fisher score space, the SVM shows precedence in accuracy over a simple nearest
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neighbor (NN) approach as shown in Table 5.3, however when the input space

consists of Gabor features, the classification advantage of Fisher kernel varies in the

two data sets. Note that the nearest neighbour (NN) approach involves brute force

computation of distances between all pairs of points in the data set: for N samples

in D dimensions, this approach scales as O(DN2). Such an efficient brute-force

neighbors searches can be very competitive for small data samples. However, as

the number of samples N grow, the approach quickly becomes infeasible in terms of

the storage and retrieval cost. Considering these costs in account, we also checked

the performance of the condensed nearest neighbor (CNN) approach (Hart, 1968)

on the same feature space of Gabor filters. The CNN works on the observation that

the points far away from the decision boundary are not informative. Therefore,

the number of saved training examples are reduced according to the methodology

shown in algorithm 8. The CNN algorithm stores unique patterns one by one and

eliminates the duplicates that do not add more information to the training data

set. This absorption results in a reduction of saved training templates without

compromising the training set performance and ultimately leading to improved

query time and memory requirements. Although, this technique works well to

reduce the storage cost involved in large data sets, it is dependent on the order of

the training data Dg and does not necessarily choose the boundary points because

of the randomness involved in the order. For this reason, the number of restored

training points vary on each successive run of the algorithm and this selection also

affects the gained accuracy on the test sets with some small variance dependent

on the data.

In this experiment, with 60% restoration of the original training data through

CNN, it appears that the Fisher kernel outperforms the condensed nearest neigh-

bour approach for UIUC data set but still could not beat the CNN performance

on CUReT images. See Table 5.3 for a summary of the recognition results in com-

parsion. The purpose of this comparison is to benchmark the learning capability

of the state of the art generative model (MVG) and the proposed discriminatory

Fisher kernel solution against simple distance based learning techniques on dif-

ferent features (Fisher scores + Gabor features). Although these techniques are

not entirely free from the computational and storage caveats in comparison to the

statistical models, yet they can still give hard time to fancy algorithms on the

recognition frontier.

5.4 Experiments and Results with Binary-Binary Re-

stricted Boltzmann Machine

The next set of experiments was designed to assess the discrimination power of

RBMs which have been used for the classification task either as feature extractors

or as a good initial training phase for deep neural network classifiers (Sutskever &
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Hinton, 2007). We assess the ability of this model to classify different objects and

characters through maximum likelihood approach and then show an improvement

in its performance with Fisher kernels. For the sake of analysis and comparison

of classification performance on benchmark data sets, some other classifiers like

ClassRBM, k-nearest neighbor, condensed nearest neighbor and SVM with other

kernel functions, have also been implemented and discussed below.

5.4.1 Experiment 1 with MNIST Digits Data Set

We first of all select the problem of character recognition on MNIST data set which

contains 28×28 gray scale handwritten digits derived from a larger database called

NIST (Lecun et al., 1998). The number of classes in the database are 10 (digits

ranging from 0− 9) with 60, 000 training and 10, 000 test images.

Figure 5.3: Sample of binary digits taken from the MNIST handwritten digits data
set.

5.4.1.1 Image Preprocessing and Data Modelling

The digit images are first converted into binary images and then passed on to the

visible layer of 784(28×28) units. Each unit in the model has a sigmoidal activation

function σ(x) = 1
1+exp(−x) , that acts on the input coming up from the opposite

layer. Thus, the hidden and visible units are updated according to the condi-

tional distributions specified in Equations 4.11 and 4.12. The number of epochs

for stochastic gradient descent learning of parameters were fixed to 10. Other pa-

rameters that are significant for building and training this generative model are

learning rate (0.005), initial momentum (0.5), final momentum (0.9), penalty for

the weight decay factor (0.0002) and batch size5. A guide to initialize and optimize

these parameters is given by Hinton (Hinton, 2010). We have used contrastive di-

vergence (CD-1) explained in Section 4.4.1 to approximate the gradient of the log

likelihood function of RBM and updated the model parameters θ = {W,a, b} via
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the following rule:

θ ← θ + η(∇θ logP (v;θ)),where

logP (v) = log

( ∑
h exp(−E(v,h))∑
v,h exp(−E(v,h))

)
= log

∑
h

exp(−E(v,h))− log
∑
v,h

exp(−E(v,h)).

The energy function E(v,h) of the binary-binary RBM and its respective prob-

ability distributions to maximize the likelihood of the data have been described

previously in Section 4.4.

5.4.1.2 Results

We draw three different kind of classifiers to calibrate the performance of this gen-

erative model; the first is a maximum likelihood based classifier, second a Fisher

kernel based discriminative classifier and third is a ClassRBM. In order to clas-

sify digits with likelihood based approach, we train each RBM model with a dif-

ferent class of digits. The partition function, Z(θ) =
∑

v

∑
h exp (−E(v,h;θ))

of each probability model is calculated through annealed importance sampling

(AIS) (Salakhutdinov & Murray, 2008) and then the label of the test data is

estimated via Equation 5.6. For Fisher kernel calculation, we pool all the training

data from each class and train a single RBM model with the optimal parameters.

This training data that was used to train the RBM was also used to train the SVM

with Fisher kernel calculated as follows:

K(xi,xj) = φT
xi
φxj

, where x −→ φx.

The Fisher score φx is derived from the generative model as:

∇θ logP (xn|θ) =
[
S[n] | Q[n] | U[n]

]
,where

S[n] = ∇W logP (xn|θ) = 〈vhT〉Pdata
− 〈vhT〉Pmodel

,

Q[n] = ∇a logP (xn|θ) = 〈h〉Pdata
− 〈h〉Pmodel

,

U[n] = ∇b logP (xn|θ) = 〈v〉Pdata
− 〈v〉Pmodel

. (5.8)

The derivation of these gradients is shown in Appendix A. Figure 5.4(a) shows

the classification performance achieved by each of these methods as the learning

capacity of the RBM is increased with the addition of the hidden units. With ref-

erence to this experiment, Figure 5.4(b) shows the respective CPU time consumed

by each of the competing algorithms at different scales. The Fisher kernel derived

5For ClassRBM on MNIST task, a batch size of 10 was maintained as suggested in the literature,
whereas for the RBM generative and Fisher kernel RBM models full batch size was chosen for model
training.
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Table 5.4: Growth of Fisher vector length in case of MNIST data set.

No of hidden units 1 10 100 1000 6000
Fisher vector length 1569 8634 79284 785784 4710784
(l = nv + nh + nv×h)

(a) Classification accuracy (b) Overall time complexity on logarithmic scale

Figure 5.4: Comparison of the classification performances achieved by the RBM
generative model (η = 0.005), Fisher kernel RBM (η = 0.005) and ClassRBM (η =
0.05 ) on MNIST data set. The overall computation time of training and testing is also

shown on a logarithmic scale.

from the classical RBM shows a significant boost in the performance attained by

the RBM generative model through maximum likelihood approach, and is also

found much better than the ClassRBM at small scale. As the model becomes

shallow with increasing number of hidden units, the derived Fisher kernel shows

a trend of overfitting due to the massive number of model parameters that make

Fisher vectors immensely large (i.e. of the order of magnitude 106 at 6000 hidden

units), thus preventing the classifier from generalizing well despite regularization.

This experiment was carried out on full MNIST training and test sets where the

SVM training for Fisher kernel was carried out through stochastic gradient descent

(SGD) learning approach as suggested by Bottou (Bottou et al., 2008).

We emphasize on the need of using an online approach for training the SVMs

with Fisher vectors from RBM as their storage and retrieval becomes extremely

costly through batch algorithms when the size of the data and RBM model is in-

creased (Sanchez et al., 2013). Table 5.4 highlights how the number of parameters

are increased as we increase the number of hidden units of RBM. To calibrate the

storage cost, consider a double precision floating point integer of 8 bytes, then a

single signature of 79284 variables obtained from a 100 hidden units RBM would

require 634KB of storage. This implies that for the whole MNIST data set of

60,000 training data points, the amount of storage required is 35.4GB. As we scale

the size of this model to 6000 hidden units, at which the state of the art meth-

ods have shown the best performance on MNIST (Larochelle & Bengio, 2008),
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(a) Zoomed image of training time complexity (b) Overall train time complexity

Figure 5.5: Comparison of the CPU-time taken by all techniques during the training
phase is shown; the zoomed image for small scale models on MNIST is shown on the

left hand side.

(a)Zoomed image of test time (b) Overall test time duration

Figure 5.6: Comparison of the CPU-time taken by all techniques for the test phase is
shown; the zoomed image for small scale models on MNIST is shown on the left hand

side.

the storage requirements of Fisher vectors rise to approximately 2TB. Note that

this is not entirely a storage issue since handling tera bytes of dense data makes

experimentation very difficult if not impractical. Techniques like the decompo-

sition methods (Osuna et al., 1997) and shrinking (Joachims, 1999a), all offer a

way to avoid the unneeded full kernel matrix computation, however storing and

retrieving large Fisher vectors from/to the hard disk may take significant amount

of time without performing any useful calculation. In order to solve this stor-

age issue of large dimensional Fisher vectors, some compression techniques like

PQ encoding, local sensitivity hashing and spectral hashing have recently been

introduced (Sanchez & Perronnin, 2011). Likewise, another way of resolving this

computational issue is to use stochastic gradient descent (SGD) learning rule for
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Table 5.5: Performance achieved by state of the art methods on full MNIST digits
data set.

Algorithms % Error
SVM (Gaussian Kernel, c =4, γ =0.031, Input=Image pixels) 4.51%
SVM (Linear Kernel, Input= Image pixels) 2.33%
K-Nearest Neighbor (Eucledian, L2; k=1; Input = Image Pixels) 5%
K-Nearest Neighbor (Eucledian, L2; k=1; Input = Fisher scores from RBM (10 hid. units)) 4.94%
Convolution Neural Network (CNN) (Ciresan et al., 2012) 0.23%
Deep Belief Networks (DBN) (Hinton et al., 2006) 1.25%
Discriminative RBM (η=0.05, h=500) (Larochelle & Bengio, 2008) 1.81%
ClassRBM (η=0.005, h=6000) 3.39%
SVM Fisher Kernel ( h = 10) 9%

training SVMs so that the classifier learns the parameters on mini batches of Fisher

vectors convenient for processing. We have used this learning rule for SVM in all

of our experiments except for the CalTech 101 data base where the classification

accuracy obtained through sequential minimal optimization (SMO) algorithm was

comparatively better than SGD optimizer for SVM. A summary of the classifica-

tion results on the digits database is shown in Table 5.5, where the Fisher kernel

performance is compared to the other state of the art accuracies. The proposed

method does not supersede the best reported performances, yet it gives results in

the same league in a very small compute time.

5.4.2 Experiment 2 with All Other Binary Data Sets

5.4.2.1 CalTech-101 Data Set

The CalTech 101 Silhouettes data set (Marlin et al., 2010) has been derived from

the original CalTech 101 database (Fei-Fei et al., 2007) of distinct objects. In order

to obtain the silhouettes, the primary object in the image is first outlined through

a high quality polygon, and then centered and scaled to render on a 28× 28 pixel

image plane. The final image is a filled black polygon on a white background as

shown in Figure 5.7. The Caltech101 silhouettes data set is very different from

Figure 5.7: A subset of CalTech 101 silhouettes data set projecting the silhouettes
on a 28× 28 image plane.

MNIST as it contains a significantly larger number of classes (101 in total) but

much fewer samples for each class comparatively. The train/validation/test split



94 Chapter 5 Experiments and Results

(a) Classification performance (b) Overall computation complexity

Figure 5.8: Comparison of the classification performances achieved by the RBM
generative model (η = 0.005), Fisher kernel RBM (η = 0.005) and ClassRBM (η =
0.05 ) on CalTech 101 silhouettes data set. The comparison of the overall computation

time taken by these techniques is also shown in parallel.

is therefore a stratified sample to handle the class imbalance in the data set. Given

Nc instances from each class c, we put min(3
5 ×Nc, 100) instances from that class

into the training set, so each of the 101 classes has at most 100 training instances.

The minimum number of training instances per class is around 20. The remaining

instances are split evenly between validation and test sets. The validation and

test sets for each class have between 6 and 400 instances. It makes sense to use

class-balanced prediction accuracy, as for the standard CalTech data set, since the

test and validation sets are badly imbalanced and some classes may be much easier

to predict than others.

The 28 × 28 dimensional binary silhouettes serve as an observation to the visible

layer of the RBM thus formulating 784 visible units. The RBM model consists of

one hidden layer which was tested with different number of units to capture the

distinctive features of different objects. The number of epochs for the generative

model were fixed to 10 for the experiments shown in Figure 5.8 and Figure 5.15.

Other parameters that are significant for building and training this generative

model are learning rate (0.005), initial momentum (0.5), final momentum (0.9),

penalty for the weight decay factor (0.0002) and batch size. We have used con-

trastive divergence (CD-1) algorithm to approximate the gradient of the likelihood

function of RBM.

We compare the obtained classification results with some baseline state of the art

techniques on the CalTech 101 Silhouettes data set. Our achieved classification

performance through Fisher kernels is competitive to the state of the art results

shown in Table 5.6. Note that we confine the comparison of our classification

results with the methods that use the silhouettes rather than the colored images

in the original Caltech 101 database (Fei-Fei et al., 2007). Once again, the Fisher
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(a) Zoomed image of train time complexity (b) Training complexity

Figure 5.9: Comparison of the computational complexity incurred by each algorithm
for training the generative models and SVM optimizer is shown. The data set used is

Caltech-101.

(a) Zoomed image of test time complexity (b) Testing complexity

Figure 5.10: Comparison of the computational complexity of each algorithm for the
testing phase is shown. The data set used is Caltech-101.

kernel shows the best classification accuracy at 100 hidden units level as compared

to the ClassRBM’s best performance at 500 hidden units and generative model’s

performance at all scales. From the results in Table 5.6, it is also clear that the

classification performance achieved by Fisher kernel RBM is competitive to the

performance achieved by two layers DBN. This result speaks of the computational

benefit one would get by using Fisher kernels in comparison to the popular deep

models which require a lot of parameter tweaking to tune initially and then classify

the data.

Note that on this data set, the optimization algorithm used for SVM training and

6This model is different from the classical model of RBM that forms the core of DBN and is used
throughout in all our experiments. The performance figures are only mentioned here for the sake of
completion with other state of the art methods.
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Table 5.6: Performance achieved by state of the art methods on CalTech 101 silhou-
ettes data set.

Models Performance
(% Accuracy)

Support Vector Machines (Fisher Kernel; hidden units=100) 63.82± 1.5%
Support Vector Machines (Linear Kernel; Input=Image Pixels) 70.32± 0.11
Support Vector Machines (Gaussian Kernel; Input=Image Pixels) 68.57± 0.12
K-Nearest Neighbor (k = 1; Input=Fisher scores from RBM with hidden units=100) 59.92± 0.08%
K-Nearest Neighbor (k=1; Input=Image Pixels) 64.29± 0.16%
Condensed Nearest Neighbour (Input=Image Pixels)(@55% retrieved rate) 62.40± 0.42%
Convolutional Deep Belief Networks (DBN)(Lee et al., 2009) (2 layers) 65.4± 0.5%
ClassRBM (hidden units=500, η=0.05) 59.37± 1.18
Restricted Boltzmann Machine(Marlin et al., 2010) 71.4%
(550 class relevant and class irrelevant hidden units, Persistent CD learning)6

prediction is sequential minimal optimization (SMO) as well as stochastic gradient

descent (SGD) learning. The SMO implementation uses one versus one classifi-

cation method, whereas the SGD implementation uses one against all method to

solve the multi-class classification problem. Empirically, SMO offers a better clas-

sification accuracy close to the state of the art performances shown in Table 5.6,

whereas the SGD offers a comparable accuracy with a better computational cost.

Note that this better computational cost of SGD is not due to the one against

all methodology, rather it is so due to the SVM optimization algorithm which

learns the data in an online way. If one is interested in building a fast classifica-

tion system, then using SGD for SVM optimization is a better choice than SMO.

See Figure 5.11 to analyse the time and performance space of all the competitive

methods on CalTech-101 data set.
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Figure 5.11: Scatter plot of performance and time of all the competitive techniques;
SVM with SGD using Fisher kernel again outclasses the other methods on the compu-
tational complexity frontier, yet its performance is not the best as achieved by the the

Fisher kernel SVM deploying SMO optimization algorithm.
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Table 5.7: Performance achieved by state of the art methods on USPS data set.

Models Performance
(% Accuracy)

Support Vector Machines (Fisher Kernel; hidden unit=1) 87.39± 0.1%
K-Nearest Neighbor (k = 1; Input = Fisher scores from RBM with hidden units=1) 78.02± 1.67%
Support Vector Machines (Linear Kernel; Input = Image Pixels) 94.47
Support Vector Machines (Gaussian Kernel; Input = Image Pixels) 93.52
K-Nearest Neighbor (k = 1; Input = Image Pixels) 94.37%
Condensed Nearest Neighbour (Input=Image Pixels) 91.88%

5.4.2.2 USPS Data Set

The next binary data set that was used for evaluating RBM was USPS data set

that contains 7291 training examples and 2007 test examples of digits from 0-

9. This data set is extracted from the digital images of handwritten addresses

that were gathered as part of a research project sponsored by the United States

Postal Service (USPS)(Hull, 1994). This data set is considered quite challenging

for classification because of the reported human error rate of 2.5%. Also because

of the collection of the two sets (train and test) in slightly different ways, it is

pretty well established among the machine learning practitioners that the cases in

the test set are harder than the cases in the training set. We therefore check the

classification performance of our algorithm to gauge its success for USPS character

set.

Figure 5.12: Samples of the digits from the USPS data set

The gray scale images in the data set have dimensionality 16×16 thus constituting

a 256 dimensional vector for training the RBM model. The dynamic range of each

image is converted to [0,1] before feeding it to the probabilistic model. Other

parameters that are significant for building and training this generative model are

learning rate (0.005), initial momentum (0.5), final momentum (0.9), penalty for

the weight decay factor (0.0002) and batch size(optimally set for each technique).

We have used contrastive divergence (CD-1) algorithm to approximate the gradient

of the likelihood function of RBM.

From the results reported in Figure 5.13(a) and 5.13(b) on the USPS data set,

we can see that the Fisher kernel is once again boosting the generative model’s

classification performance. The Fisher kernel results shown at small scales are

competitive in terms of the classification accuracy and computation time when
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(a) Classification performance (b) Total time complexity

Figure 5.13: Comparison of the classification performances achieved by the RBM
generative model (η = 0.005), Fisherkernel RBM (η = 0.005) and ClassRBM (η = 0.05 )
on USPS database. The overall computational complexity of each algorithm is also

shown on the logarithmic scale in parallel.

(a) Zoomed image of train time complexity (b) Total train time complexity

Figure 5.14: Comparison of the training time complexity of each algorithm for USPS
data set is shown. For RBMLH, the training cost involves the training time of the
generative models only, whereas for the Fisher kernel, the training time includes the
cost of training the generative model as well as training the SVM model via SGD

optimizer.

compared to the other competing classifiers on this data set. A breakdown of

the training and testing cost of each algorithm is also shown in Figures 5.14 and

5.15. Moreover, we also compare the classification accuracy of the proposed Fisher

kernel method to other SVM kernels and distance based classifiers in Table 5.7.

We observe that when the input feature space consists of Fisher scores, the SVM

classifier shows a better performance than the kNN classifier, however when the

input features are image pixels, kNN and other SVM kernels perform a better

classification job.
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(a) Zoomed image of test time complexity (b) Total test time complexity

Figure 5.15: Comparison of the test time complexity of each algorithm used to classify
images in USPS data base.

Figure 5.16: Samples of the images belonging to 36 different classes of Alphanumeric
digits data set are shown.

5.4.2.3 Alphanumeric Digits Data set

We also carried out an experiment on Alphanumeric digits data set that consists of

20× 16 dimensional binary digits from 0 through 9, and capital English alphabets

from A through Z. There are 39 examples of each character in the data set thus

comprising a total of 1404 samples. This data set is comparatively quite small but

is used by the deep learning community due to its fast learning with a few number

of hidden units. We therefore use it to benchmark the performance of our method

on it.

The data set is divided into train and test sets through 10-fold cross validation and

the results are shown in Figure 5.17. Other parameters of interest significant for

building and training this generative model are learning rate7, initial momentum

(0.5), final momentum (0.9), penalty for the weight decay factor (0.0002) and

batch size7. We have used contrastive divergence (CD-1) algorithm to approximate

the gradient of the likelihood function of RBM. Again, the results reported by
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(a) Zoomed image of time complexity (b) Overall time complexity

Figure 5.17: Comparison of the classification performances achieved by the RBM
generative model (η = 0.005), Fisher kernel RBM (η = 0.005) and ClassRBM (η =
0.05 ) on Alphanumeric data set. The overall computation time on the logarithmic

scale is also shown.

(a) Zoomed image of train time complexity (b) Train time complexity

Figure 5.18: Comparison of the train time incurred by each competing technique for
Alphanumeric data set is shown; the zoomed image for small scale models is shown on

the left hand side.

the Fisher kernel show significant boost in the classification performance of the

generative models. As noted previously, the overall computational cost of the

best Fisher kernel performance is far less than the generative model’s computation

time to attain the best accuracy on this data set. The Fisher kernel is infact also

efficient in comparison to the RBM model designed specifically for classification,

i.e. the ClassRBM. We have also compared the classification results of the proposed

approach with other distance based and kernel classifiers in Table 5.8.

7These parameters have been set up optimally for each technique differently.
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(a) Zoomed image of test time complexity (b) Test time complexity

Figure 5.19: Comparison of the test time taken by each technique to classify Al-
phanumeric digits is shown; the zoomed image for small scale models is shown on the

left hand side.

Table 5.8: Performance achieved by state of the art methods on Alphanumeric data
set.

Models Performance
(% Accuracy)

Support Vector Machines (Fisher Kernel; RBM hidden units=10) 70.50± 2.73%
K-Nearest Neighbor (k = 1; Input = Fisher scores from RBM with hidden units=10) 58.95± 4.20%
Support Vector Machines (Linear Kernel; Input = Image Pixels) 74.87± 2.92%
Support Vector Machines (Gaussian Kernel; Input = Image Pixels) 74.10%
K-Nearest Neighbor (k = 1; Input = Image Pixels) 69.67± 2.3%
Condensed Nearest Neighbour (Input=Image Pixels) 63.96± 4.85%

5.4.2.4 ETH-80 Data Set

The ETH-80 data set holds the contours of 10 objects from 8 different categories

with 41 views per object, spaced equally over the viewing hemisphere, for a total

of 3280 images (Leibe & Schiele, 2003a). All images are cropped in a way that

they contain only the object, centered in the image, plus a 20% border area.

For our experiment, we resized the image into a 32 × 32 frame and fed a 1024

dimensional vector for the RBM model training. The classification performance

on this data set is measured by partitioning the training and test sets into 10

folds with k-fold cross validation. The results reported in Figures 5.21(a) and

5.21(b), once again speak of the computational advantage Fisher kernel has over

the likelihood based generative approach and ClassRBM. A comparison of the

performance with other state of the art methods is shown in Table 5.9. Unlike

other data sets, the knn classifier performs slightly better than the SVM classifier

in the Fisher score space.
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Figure 5.20: The 8 categories of the ETH-80 database. Each category contains 10
objects with 41 views per object, spaced equally over the viewing hemisphere, for a

total of 3280 images.

(a) Classification Performance (b) Computational Time

Figure 5.21: Comparison of the classification performances achieved by the RBM
generative model (η = 0.005), Fisher kernel RBM (η = 0.005) and ClassRBM (η =
0.05 ) on ETH-80 data set. The computational complexity of each algorithm is also

shown in parallel.

5.4.3 Effect of Noise on All the Competitive Techniques

In this section, we explain the effect of noise and translation on the classification

performance of all the algorithms. We take as a toy example, a small RBM model

Table 5.9: Performance achieved by state of the art methods on ETH-80 data set.

Models Performance
(% Accuracy)

Support Vector Machines (Fisher Kernel; RBM hidden units=100) 77.65± 2.29%
K-Nearest Neighbor (k = 1; Input = Fisher scores from RBM with hidden units=100) 82.65± 2.17%
Support Vector Machines (Linear Kernel; Input = Image Pixels) 87.35± 1.25%
Support Vector Machines (Gaussian Kernel; Input = Image Pixels) 86.34± 2.27%
K-Nearest Neighbor (k = 1; Input = Image Pixels) 89.76± 1.12%
Condensed Nearest Neighbour ( Input=Image Pixels) 87.95± 1.95%
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(a) Zoomed image of train time complexity (b) Train time complexity

Figure 5.22: Comparison of the CPU time taken by all the techniques to train the
generative models and the SVM classifier for ETH-80 data set is shown.

(a) Zoomed image of test time complexity (b) Test time complexity

Figure 5.23: Comparison of the CPU time taken by all the techniques to classify the
test data in ETH-80 database is shown.

with 10 hidden units. The number of training and test data points from MNIST

data set are also constrained to a small subset, i.e. randomly chosen 2000 points

for training and 1000 points for testing. It was observed that the classification

accuracy of all the models drop as more noise is introduced, however at the level

of 40% noise, when the digits are badly distorted but still recognizable, the Fisher

kernel is still better than the generative likelihood based approach as well as the

ClassRBM. At the next noise level of 50%, the digits lose their visual identity,

therefore the ClassRBM performs as good as a random classifier (10%), whereas

the generative and Fisher kernel based approaches still show some robustness by

being better than random. The generative likelihood based approach is more

robust than all methods at that scale of noise.
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(a) Performance Graph

(b) 0% (c) 10% (d) 20% (e) 30% (f) 40% (g) 50%

Figure 5.24: Graph showing the effect of the noise on a toy model of RBM and its
variants for classification. A small subset of data was used for training and testing to

see how each of the classifier’s performance degrades.

5.4.4 Effect of Translation on All the Competitive Techniques

In this section, we analyse the classification performance of all the competitive

techniques by giving translated versions of the images to the classifier for testing.

The model is trained with centre normalized images, but at the time of testing,

the images are translated 1-5 units to the left. The graph showing classification

performance as a result of this experiment is given below in Figure 5.25.

From the results obtained, we observed that all the competitive classifiers are

not robust against translation. The Fisher kernel performance is better than the

remaining classifiers until the translation is within 3 units; after that it drops

below the generative model’s likelihood based performance and then further drops

to least significant accuracy among all when the test image is translated 5 units

away. The accuracies of all these models in this toy example is better than the

random performance, showing that there is some connection between the features

and the output class, yet the extracted features are not robust enough against the

noise introduced due to translation.

In order to make the Fisher kernel based approach robust against translation, one

can adopt two possible strategies: (1) Either use translation invariant features

(Fisher scores) with the Fisher kernel or (2) Use translation invariant kernels with

the Fisher scores (Kovács & Hajdu, 2013). We have not tried any of these tech-

niques to make the proposed approach robust against translation in this work, yet

aim to improve the method on this front in the future.
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Figure 5.25: Effect of translating the image from the center towards the sides on the
classification performance of all the competitive algorithms.

5.4.5 Sparsity Analysis of the Fisher Vectors Obtained from Binary-

Binary RBM

Imposing sparsity constraints has gained popularity in computer vision, especially

for image classification tasks due to three reasons:(1) Evidence of sparse represen-

tations in the mammalian brain (Olshausen & Field, 1997; Ranzato et al., 2006);

algorithms that are based on such constraints can reproduce linear filters similar

to receptive fields in V1 (Olshausen & Field). Consequently, such approaches are

used to extract features that are assumed to be relevant for classification (Lee

et al., 2008).(2) Sparsity is also convenient to constrain over-complete linear repre-

sentations where the number of basis vectors is greater than the dimensionality of

the input and the representation of an input is not a unique combination of basis

vectors (Lewicki & Sejnowski, 1998). (3) For large scale classification applications,

a sparse data representation is the inevitable choice due to storage limitations

(Sanchez et al., 2013).

While sparse representations have been regarded as more likely to be separable in

high dimensional spaces (Ranzato et al., 2006), some literature also suggests that

solely enforcing sparsity is not helpful to achieve good recognition rate, at least in

the presence of a reasonable amount of noise (Rigamonti et al., 2011). Working on

these lines, we analyse the Fisher vector score space obtained from binary binary

RBM to understand the relationship between data sparsity and recognition rate.

Over here data sparsity refers to the zero gradients in the Fisher vector. Figure

5.26 illustrates the result of this analysis. On all the data sets, i.e. MNIST,

Caltech-101, USPS, Alphanumeric and ETH-80, we observe that the classification

performance drops as the sparsity increases due to the expansion of the model’s

hidden layer. Although there are no sparsity constraints that control the activity

of the hidden units in the current RBM implementation, the gradients naturally

grow more sparse as the number of hidden units increase in majority of the data

sets. Since the dot product is considered as a poor measure of similarity for sparse



106 Chapter 5 Experiments and Results

(a) MNIST Sparsity (b) MNIST Performance

(c) Caltech Sparsity (d) Caltech Performance

(e) ETH Sparsity (f) ETH Performance

(g) USPS Sparsity (h) USPS Performance

(i) Alpha Sparsity (j) Alpha Performance

Figure 5.26: Graph probing the effect of sparsity on the classification of digits and
objects in benchmark data sets.
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data, the decreasing performance seems to be an immediate consequence of the

sparsity that acts as a noise misleading the discrimination. In order to deal with

sparse data, the kernel based methods are usually left with two choices:

– Either use a kernel that is more robust to sparse data for example the Lapla-

cian kernel which is based on the L1 distance 8 or

– Unsparsify the data representations to retain the dot product similarity (Per-

ronnin et al., 2010b).

For low dimensional Fisher vectors extracted from very compact models, a nonlin-

ear kernel like Laplacian could be used to see if the prediction accuracy is improved,

however for high dimensional Fisher vectors, i.e. dimensions>10000, there is no

need to map the data to a higher dimensional input space because it is often al-

ready good enough. For such problems, linear kernels are an order of magnitude

faster with almost the same predictive performance as nonlinear kernels.

The alternate solution of unsparsifying the data is again useful for Fisher vectors

obtained from the compact generative models; unsparsification of the gradients

obtained from large scale models would lead to storage and overfitting issues. In

the past, Peronnin has used Power normalization9 scheme to unsparsify the Fisher

vectors obtained from the Gaussian mixture model (Perronnin et al., 2010b). This

approach did not prove any useful for the classification of Fisher gradients in our

case since the sparsity present in the gradient vector is primarily originating from

the absolute zero gradients and not near to zero gradients whose scale could be

normalized. We therefore intend to look for other ways of making the Fisher

vectors less sparse and discriminative simultaneously.

5.4.6 Fisher Vector Normalization - Use of Fisher Information

Matrix in Fisher Kernel

The performance of large margin classifiers like SVMs is sensitive to the way fea-

tures are scaled. For this reason, either the input features are normalized or the

kernel function is normalized to scale the data in the feature space. In order to

improve the classification accuracy with Fisher kernels, Perronin (Perronnin et al.,

2010b) has shown the use of L2 normalization as a way to improve the quality of

the gradient vectors. Linear kernels that deploy L2 normalized Fisher vectors, are

equivalent to using a normalized kernel, i.e.

K(X,Y ) =
K(X,Y )√

K(X,X)K(Y, Y )
(5.9)

On adopting the former strategy to see the impact of L2 normalization on Fisher

vectors recognition performance, we found that the accuracy is either no better

8The fact that L1 is more robust than L2 on sparse vectors is well known in the case of BOV
histograms, for reference, see the work of (Nister & Stewnius, 2006).

9Power Normalization = f(z) =sign(z)|z|α, where 0 ≤ α ≤ 1 is a parameter of normalization.
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Table 5.10: Summary of classification results attained by Fisher kernel obtained from
a RBM (10hid units).

Data Sets With L2 Normalization(Acc) Without L2 Normalization(Acc)

MNIST 79.09% 90.09%
CalTech-101 13.09% 39.92%
Alphanumeric 55.48% 63.95%
USPS 85.79% 85.10%
ETH-80 67.01% 67.07%

or is equivalent to the recognition accuracy of the unnormalized Fisher vectors.

See Table 5.10 for results obtained by a Fisher kernel derived from a small scale

restricted Boltzmann model.

5.5 Experiment and Results with Fisher Kernel Ex-

tracted from Continuous Models of RBM

In this section, we show the use of Fisher kernel derived from a Gaussian binary

RBM and factored 3-way RBM model for classification; the two probabilistic mod-

els have already shown the potential of capturing pixel variations present in con-

tinuous images like textures and natural scene images. These models, as discussed

in Section 4.5, are more appropriate than a binary binary RBM for modelling real

valued data.

5.5.1 Berkeley Image Segmentation Data set

We first of all demonstrate the use of factored 3-way RBM to model natural images

from Berkeley image segmentation data set (Martin et al., 2001). This data set

contains 300 colored images which have been divided into a training and test

set of 200 and 100 images. The ground truth/labels for these images have been

decided via human inspection and are provided to the users in the referenced public

repository. Since our goal is not to perform segmentation, we have just used these

images as an exemplary natural scene database to demonstrate and learn how a

factored RBM could be trained on continuous data as trained by (Ranzato et al.,

2010a).

The preprocessing phase of this demo includes random selection of 16× 16 dimen-

sional patches from the images of the data set. Due to demonstrative reasons,

we restrict the count of the number of patches to 105. We then extracted PCA10

features from these drawn patches and passed them on as an input to the fac-

tored 3-way RBM for modelling. The factored 3-way RBM uses contrastive diver-

gence algorithm (Equation 4.22) to calculate the gradients of the model parameters

θ = {Pfachid, Cvisfac, bh} via the Equations 4.26, 4.27 and 4.28. See Appendix C for

10PCA: Principal Component Analysis is defined as an orthogonal linear transformation that trans-
forms the data into a new coordinate system such that the greatest variance by any projection of the data
comes to lie on the first coordinate (called the first principal component), the second greatest variance
on the second coordinate, and so on.
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Figure 5.27: Samples of natural images from Berkeley image segmentation data set
BSDS-300. Originally, each sample is a colored RGB image of resolution 481 × 321,

which undergoes preprocessing phase to yield patches for each unique experiment.

Figure 5.28: The sum square reconstruction error shown by factored 3-way RBM on
PCA features extracted from 16× 16 dimensional patches of natural images in BSDS-

300.
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Figure 5.29: The sum square reconstruction error shown by factored 3-way RBM on
white normalized patches extracted from the natural images in BSDS-300.
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Figure 5.30: The visual factor filters, Cvisfac learnt from the whitened 16 × 16 size
patches of Berkeley segmentation data set. These 256 filters resemble the edge like

features detected by the simple cells of visual cortex.

Figure 5.31: Samples of some original (left) and reconstructed images(right) of the
whitened Berkeley data set patches.

the derivation of these gradients. In order to sample data from the model in con-

trastive divergence, Markov chain is implemented via hybrid Monte Carlo method

that employs gradients to find out the right direction of search in high dimen-

sional energy landscapes. The partial derivative of the free energy with respect

to the visible units, v is calculated using Equation 4.25. The hyper parameters of

the factored 3-way RBM for this demo were set as: learning rate for weights, ηC

=0.075, learning rate for biases of hidden units, ηB=0.0037, learning rate for biases

of visible units, ηP= 0.0037, leap frog step size=20, number of hidden units=256,

number of factors=256. The reconstruction error of the model at first rises and

then falls after 55 epochs until its becomes steady. We have shown the trend of

reconstruction error for natural image patches from Berkeley till 300 epochs in

Figure 5.28.

Note that increasing the number of epochs might increase the average rejection rate

of samples drawn via HMC, therefore it is suggested to constrain the number of
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epochs to small after observing the trend of reconstruction error for large epochs.

Also it is important to dynamically adjust the leapfrog step size to make sure

that the acceptance rate in the Hybrid Monte Carlo procedure is reasonably high,

otherwise the decay in reconstruction error may be the direct result of decline of

acceptance rate. Here the acceptance rate is around 90%.

The filters learnt by this model do not reveal any meaningful features because the

input at the visible layer consisted of PCA features which are not distinctive in

appearance. However, the reconstruction error curve and sampling rate determine

that the model has learnt some significant statistics on the provided features.

Some of the other cues which determine the progress of learning are reconstructed

patches of the provided data. We will observe these along with the learnt filters

in the forthcoming experiments.

In the next experiment on the Berkeley data set, we white normalized the drawn

patches and passed them on to the factored 3-way RBM. Whitening removes the

correlation between the pixels forcing the statistical model to learn higher order

correlations between the pixels. With an average rejection rate of 28%, the re-

construction error curve shows a steady and stable decline after 25 epochs(Figure

5.29). A subset of some reconstructed patches is shown in Figure 5.31 which look

very similar to the patches originally passed on to the model. The visible factor

filters learnt are shown in Figure 5.30 which are almost identical to what Ran-

zato has shown in (Ranzato et al., 2010a) and seem to capture the pixel intensity

variations in local patch regions. The other hyper parameters used in this model

are: learning rate for weights, ηC =0.0095, learning rate for biases of hidden units,

ηB=0.0047, learning rate for biases of visible units, ηP= 0.0047, leap frog step

size=20, number of hidden units=256, number of factors=256.

This data set was just chosen to learn how the factored 3-way RBM models the

data as reported in (Ranzato et al., 2010a). After having an intuition of how it

works and learns features similar to the one shown in (Ranzato et al., 2010a), we

move on to a classification data set again. We choose two more data sets with

continuous data: one is a medical image database of Emphysema affected lung

images and the other one consists of Brodatz textures. Since the binary-binary

RBM is not a good model of continuous data, we use Gaussian Bernoulli RBM

and Factored 3-way RBM to model the textures and then derive a Fisher kernel

from it to compare which model draws the best Fisher scores for a discriminative

classifier like SVM.

5.5.2 Emphysema Data set

The Emphysema database (Sørensen et al., 2010) consists of 15 high-resolution

computed tomography (CT) slices as well as 168 16 × 16 dimensional patches

extracted from the subset of slices and manually annotated for texture analysis

techniques. Emphysema is a disease characterised by a loss of lung tissue and
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(a) Normal Tissue (NT) (b) Centrilobular emphysema
(CLE)

(c) Paraseptal emphysema (PSE)

Figure 5.32: Examples of different lung tissue patterns extracted through computed
tomography are shown. NT represents the sample of a healthy tissue, CLE reveals a
healthy smokers tissue and PSE shows the distorted tissue of a person suffering from

chronic obstructive pulmonary disease (COPD)

is one of the main reasons of chronic obstructive pulmonary disease (COPD). A

proper classification of emphysematous - and healthy - lung tissue is useful for

a more detailed analysis of the disease. The 61 × 61 pixel patches11 are from

three different classes: NT (59 observations), CLE (50 observations), and PSE (59

observations). The NT patches were annotated in never smokers, and the CLE

and PSE region of interests were annotated in healthy smokers and smokers with

COPD in areas of the leading pattern. These texture patterns serve as a good basis

for assessing the modelling power of RBMs designed specifically for capturing pixel

intensity variations present in textures.

As a preprocessing step, we crop 31 × 31 dimensional patch from the center of

each 61 × 61 patch and threshold the pixel values in the dynamic range [-1000,

500]. The thresholding is based on the knowledge that the CT density values of

lung parenchyma pixels are usually between the Hounsefield unit range [-1000HU,

500HU]. In order to classify these patches into 3 different classes, we have used

Fisher kernel derived from three different probabilistic models: binary-binary

RBM, Gaussian-Bernoulli RBM and factored 3-way RBM that model the data

representations through different distributions. Once each of the generative model

is trained, we calculate the gradients of the log likelihood function to form Fisher

scores for the Fisher kernel. The Fisher kernel is then embedded into the SVM

classifier that finally performs multi-class classification through one versus one

training technique. The optimal value for hyperparameter C in SVM is decided

via grid search method. In factored 3-way RBM, we maintained an average rejec-

tion rate of 6% with HMC sampling that used an adaptive step size to control the

average acceptance rate of the drawn samples, thus yielding fast mixing rate. The

summary of the classification results of Fisher kernel derived from different proba-

bilistic models is shown in Table 5.11 and the reconstruction error for each model is

11The Emphysema data set could be downloaded from the following link: http://image.diku.dk/

emphysema_database/

http://image.diku.dk/emphysema_database/
http://image.diku.dk/emphysema_database/
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Table 5.11: Summary of classification results attained by different classifiers on the
Emphysema texture data set.

Classifier Emphysema Perf. (Acc)

k-Nearest Neighbour [Input=Image pixels, k=1] 46.04± 5.27%
Condensed Nearest Neighbour [Input=Image Pixels, 45% Data Retrieved] 46.06± 5.19%
FK (Binary Binary RBM) [5 hid units] 47.31± 5.54%
FK (GaussianBinary RBM) [5 hidden units, σ = 1] 47.85± 4.83%
FK (Factored 3-Way RBM ) [5 hid units, 32 factors] 86.97± 5.54%
k-Nearest Neighbour [Input= Fisher scores from Factored RBM, 5 hid. units, 32 factors, k=1] 37.97± 3.57%
k-Nearest Neighbour [Input=Local Binary Pattern features, k=1] 95.2%(Sørensen et al., 2010)
Support Vector Machines [Input=Image Pixels, Linear Kernel] 33.33± 2.22%
Support Vector Machines [Input=Image Pixels, Gaussian Kernel] 31.8± 2.14%
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(b) RBM-GB(Emphysema)
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(c) Factored 3-Way RBM (Emphy-
sema)

Figure 5.33: The reconstruction error shown after training different variants of RBM
generative model on the Emphysema data set for 10 epochs. The error for each of these
models drops after several epochs; for factored 3-way model on Emphysema, it first

rises, stabilises and then drops.

shown in Figure 5.33. Note that the best known performance on Emphysema data

set has been achieved by (Sørensen et al., 2010), in which he used the leave one

subject out methodology to test the classifier. Such a partitioning scheme did not

reveal discriminative Fisher score space in our case, due to which we constrained

to the holdout estimation method to train models and draw Fisher scores. Conse-

quently, the Fisher kernel derived from factored 3-way RBM does give competitive

classification performance in the same league as shown by (Sørensen et al., 2010).

The reconstructed patches of the model look very similar to the original patches

given at the visible layer. The average rejection rate of the samples is around 6% via

the HMC sampling approach. The visible factor filters learnt by the factored 3-way

RBM model are shown in Figure 5.34. The experimental results conducted reveal

that the performance of the Fisher kernel relies on the discriminative quality of

the Fisher score space attained via maximum likelihood training of the generative

models. On a comparative scale, the factored 3-way RBM proves better than the

Gaussian binary RBM and binary binary RBM since it was able to provide less

sparse Fisher vectors (i.e. 1% versus 21% sparsity) that makes them suitable for

discrimination in the dot product space. The dot product space is not suitable

for learning distance metric similarities over sparse data, therefore Fisher vectors
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Figure 5.34: The visual factor filters, Cvisfac learnt from the whitened 31 × 31 size
patches of Emphysema data set.

with zero or very small gradients donot provide a space discriminant enough for

texture classification. Similar problem was also observed for Fisher kernel learning

in (Maaten, 2011), where this problem of very small gradients is addressed via a

discriminative learning technique that transforms the Fisher score embedding in a

way that the test data has low nearest neighbor error. We have not implemented

this technique here but intend to further improve the classification performance of

the method via this technique.

5.5.3 Brodatz Data set

The Brodatz textures (Valkealahti & Oja, 1998) data set consists of a subset of

32 different classes chosen randomly from the main Brodatz data set, where each

class has one image alone. These textures are histogram equalized and then 20

patches12 of size 64× 64 are drawn from random locations of each class database

for further experimentation. Table 5.12 shows the classification performance of

distance based approaches, i.e. k-NN and condensed NN on these preprocessed

patches. The same patches are also fed to the generative probability models for

representational learning. Once the models (binary-binary, Gaussian-binary and

factored 3-way) are trained, a Fisher kernel is extracted from them and then em-

Figure 5.35: Samples of texture images from Brodatz data set. Patches of size 64×64
are drawn from random locations of these images which capture the unique texture

element of each texture class.
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Table 5.12: Summary of classification results attained by different classifiers on the
Brodatz texture data sets.

Classifier Brodatz Performance (Acc)

k-Nearest Neighbour [Input=Image pixels, k=1] 29.06± 1.66%
Condensed Nearest Neighbour [Input=Image Pixels, 25% Data Retrieved] 28.11± 2.01%
FK (Binary Binary RBM) [5 hidden units] 16.81± 2.008%
FK (GaussianBinary RBM) [5 hidden units, σ = 1] 16.96± 2.40%
FK (Factored 3-Way RBM ) [5 hid units, 32 factors] 65± 4.6%
k-Nearest Neighbour [Input=Local Binary Pattern features, k=1] 91.4%(Chen et al., 2013)
k-Nearest Neighbour [Input=Fisher Scores, k=1] 21.84± 8.26%
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Figure 5.36: The reconstruction error of factored 3 way RBM generative model on
the Brodatz data set trained for 10 epochs. The error for the model drops after several

epochs as shown in the figure.

bedded into the SVM classifier. The SVM classifies these textures using one versus

one training of the gradients learnt by different models. The hyperparameter C

in SVM is once again decided via the grid search method. From the results ob-

tained, we observe that the Fisher kernel derived from a factored 3-way RBM

gives better classification performance in comparison to the other Fisher kernel

based approaches and distance based classifiers on preprocessed images. The best

performance on the data set is once again shown by local binary pattern features

classified through k-NN and shown in Table 5.12. On exploring the sparsity of

the Fisher score spaces obtained from all the generative models, we observed that

they all have less than 1% of sparsity and the gradients obtained are also not very

small ( [0,6] of BBRBM and GBRBM versus [-0.51, 0.00009] of factored 3-way

RBM ), so the lack of discrimination of Fisher score space is not due to sparsity

or small magnitude of gradients here. The classification results presented here do

not beat the best state of the art performance; we therefore aim to enhance the

discrimination of the Fisher scores in future to make the technique practical and

successful for all real valued data sets.

12The data set could be downloaded from the following link: http://www.ee.oulu.fi/research/

imag/texture/image_data/Brodatz32.html

http://www.ee.oulu.fi/research/imag/texture/image_data/Brodatz32.html
http://www.ee.oulu.fi/research/imag/texture/image_data/Brodatz32.html
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Figure 5.37: The visual factor filters, Cif learnt from the 64 × 64 size patches of
Brodatz data set. The learnt filters resemble the texture strokes showing the capability

of learnt filters to detect local texture patterns.



Chapter 6

Conclusions and Future

Directions

This work has shown how the discrimination ability of biologically inspired genera-

tive models of visual scene recognition may be enhanced by building a kernel based

discriminant function. We have taken two state of the art probabilistic models of

visual scene analysis, i.e. a simple multivariate Gaussian model whose parame-

ters are learned via a neural substrate as proposed by Karlin et. al. (Karklin

& Lewicki, 2009) and a restricted Boltzmann machine (Hinton, 2002) which is a

stochastic model of neural units. Both the models have been widely used for visual

object classification and scene analysis tasks before. When comparing the model

likelihoods, our empirical results reveal that these models are not good enough

for discrimination tasks on their own. Though, the RBMs can be trained dis-

criminatively to show good classification results, the generative model needs to

be very large in the latent space. Thus, we suggest the derivation of Fisher ker-

nels from compact models to construct better classifiers that require very small

generative models and give immediate classification results in the same league as

the likelihood based large generative models. This methodology has produced im-

proved results near to the state of the art classification performances on various

benchmark texture, character and object recognition data sets shown in the thesis.

Some of the other highlights of the thesis are summarized below:

– Achieving Near to the State of the Art Performance in A Small

Computation Time

The proposed Fisher kernel based solution achieves comparable results in

the same league as the other state of the art methods but in a very small

computation time as revealed in the time performance graphs shown earlier.

On the classification task, the generative models like RBM/DBN have al-

ready shown good classification performances, but with very a large number

117
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of hidden nodes as shown in the experiments. We highlight that this clas-

sification success is indebted to high computing cost incurred in parameter

tuning and model pre-training before the data is actually classified. This

computational problem also persists with the distance based classifiers like

nearest neighbor and condensed nearest neighbor whose accuracies are occa-

sionally better but the storage and computational costs are always higher.

Therefore, we maintain that if the computing resources were to be restricted,

say to a few minutes of computation on the classification task, then a Fisher

kernel extracted from a small RBM is able to outperform the largest gener-

ative model that could be trained within the same computing budget. We

believe greater attention has to be paid to such computing / performance

compromises as data sets become larger and larger in novel applications.

Note that the shown computational gains are not indebted to any advance

coding techniques on expensive graphics processing units (GPUs), thereby

enhancing the appeal of the proposed algorithm as a low cost and energy

efficient solution for various vision applications.

– Fisher Kernel Derivation from Restricted Boltzmann Machine (RBM)

for the First Time

For the classification task, the Fisher kernel has already been derived from

the Gaussian probability model before (Moreno & Rifkin, 2000), however it

has not shown to induce discrimination in the restricted Boltzmann distri-

bution. RBMs have conventionally been used as a feature extractor for a

discriminant classifier or are stacked together in multiple layers to form deep

belief networks (Hinton, 2002) that model complex distributions and classify

the data ultimately. Thus, from the machine learning perspective, the nov-

elty of this work lies in the derivation of the Fisher kernel from restricted

Boltzmann machine (RBM). We show how the gradients of the parameters

of the RBM generative model could be drawn for Fisher kernel computation.

The challenges and the complexities of the kernel extraction from large scale

models have been discussed in Chapter 5.

– Fisher Kernel Computational Performance Satisfies our Intuition

of Cortical Circuit Functionality

Fisher kernel also satisfies our intuition of fast recognition ability in humans

by showing impressive classification results in a very small compute time on

all the binary data sets. The computational complexity of the proposed ap-

proach at small scales makes it amenable to study the Thorpe model (Thorpe

et al., 1996) that explains how an object in a scene is perceived by visual

cortex within 100-150ms. We do not demonstrate any biological mapping

in the current work, however we emphasize that the biological plausibility
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Figure 6.1: The feed forward progressive inhibition mechanism of the Thorpe Model
(Viéville & Crahay, 2002). From the stimulus input s a very high dimensional array of
“internal values” is computed and from a subset of this vector of values, the detection

of a “label” is performed in “one step”.

of the Fisher kernel is much better since all the computations needed in the

Fisher kernel calculations for Gaussian model can be mapped as a matrix-

vector product needed in a Kalman filter which is implemented in cortical

recurrent neural networks (Denve et al., 2007). For the deep belief network

(DBN), the gradient calculations necessary for the Fisher kernel are byprod-

ucts of the network’s inference calculations (Hinton et al., 2006). Thus, it is

possible to argue that a discriminant mechanism that exploits the gradients

of the likelihood of a biologically plausible model is itself also biologically

plausible.

6.1 Future Work

The research done in this thesis gives us a firm basis to further explore some ad-

vance techniques that can solve the challenges current scene recognition systems

face. We outline these interesting avenues of research as follows:

– Investigation of the Biological Plausibility of Fisher kernel

In order to enhance the power of linear learning algorithms, kernels have

extensively been used in machine learning. Might they also be used for

learning in the brain, is an interesting question, but has no direct proof

in the literature so far. There is some work by Thierry et al. (Viéville &

Crahay, 2004) in which an experimental evidence is shown to prove that

the Vapnik theory could be used for evaluating and analysing the Thorpe

model (Thorpe et al., 1996) which demonstrates the quick time duration

(100-150ms) a primate visual system takes to perform object classification

in natural scenes. Fortney et al. (Fortney & Tweed, 2007) also argued that

the kernel based learning algorithms are more biologically plausible than

have been supposed because of their amenable properties like speed, depth

and learning with fewer weights, however this work was not carried on any

further.

Our empirical results in Chapter 5 also reveal that in comparison to the

state of the art models of object recognition, the Fisher kernel framework is
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computationally very efficient when derived from small models. This com-

putational performance of Fisher kernel is one of the highlighting aspects

that satisfies our intuition of learning and perception in the cortical circuits

and makes it amenable to study the Thorpe model of object recognition. We

expect that this study will pave our way to prove the biological plausibility

of the Fisher kernels.

Note that for large probabilistic models, the cost of Fisher kernel compu-

tation enhances dramatically because the dimensions of the Fisher vector

becomes massive. Storing and then retrieving these vectors, from the drive

to the memory increases the computational cost without any gain in the clas-

sification accuracy. Therefore, it is not recommended to extract these kernels

from large models for classification performance gains. The small models are

sufficient to calibrate the computational and performance benefits.

– Exploiting Fisher Information Matrix for Fisher Kernel Computa-

tion from RBM The Fisher information matrix computation is generally

considered immaterial (Jaakkola & Haussler, 1998) and is often ignored in

practice by replacing it with an identity matrix. However, some of the lit-

erature on the classification systems has shown good discrimination results

by using approximations of the information matrix (Maaten, 2011) in kernel

computation. We would like to embed the Fisher information matrix in the

Fisher kernel computation to explore its impact on the classification perfor-

mance of the developed recognition system as well as to probe the biological

plausibility of Fisher kernel learning. Biologically plausible phenomenon such

as natural gradient descent learning and blind source separation of signals,

both use Fisher Information matrix for computation. This connection has

been described with the help of information geometry in Appendix E and

will be explored further in future.

– Exploration of Advance Sampling Techniques for RBM

The Gibbs sampling approach used in RBM could be replaced by other ad-

vance sampling techniques, such as Riemannian Manifold Hamiltonian Monte

Carlo method (RMHMC) (Girolami et al., 2011) that resolves the shortcom-

ings of the existing Monte Carlo algorithms. It is observed that blocked

Gibbs sampling from high dimensional target densities that exhibit strong

correlations, leads to poor sampling estimates. This is because each block is

updated while holding the other block constant, ignoring these correlations

of parameters between the blocks. Consequently, a very large number of

samples are needed to get a reasonable estimate of any desired property of

the distribution. On the contrary, the Hamiltonian Monte Carlo defined on a

Riemannian manifold provides a fully automated adaptation mechanism that



Chapter 6 Conclusions and Future Directions 121

avoids the costly pilot runs required to tune proposal densities for Metropolis

Hastings/Hybrid Monte Carlo algorithms, thus leading to a highly efficient

sampling approach. The use of a better sampling algorithm such as RMHMC

will offer an improved mixing rate to get a better estimate of the samples

from high dimensional restricted Boltzmann distribution. This ultimately

contributes to a better reconstruction error of the data.

– Expanding the Scale of Experiments to Large Size Data Sets

Recognition of objects from a large number of classes has always been a

challenging goal for the computer vision researchers, aiming to develop hu-

man compatible artificial recognition systems. The Fisher kernel has already

shown its classification advantage over the bag of the words approach (Per-

ronnin & Dance, 2007),(Perronnin et al., 2010b), and then showed its suc-

cessful use with large scale data sets like PASCAL VOC 2007 (Csurka & Per-

ronnin, 2011), CALTECH-256 (Sanchez & Perronnin, 2011) and ImageNet-

10K (Sanchez et al., 2013). Currently, the second best performance after

deep convolution network (Krizhevsky et al., 2012) achieved on the Image

Net 10K classification task is shown by the Fisher kernels (Sanchez et al.,

2013) derived from a Gaussian mixture model designed for SIFT, local binary

pattern (LBP) and GIST descriptors of the data. We would like to explore

the discriminatory power of the Fisher kernel for large number of classes

when the underlying model of data distribution is a restricted Boltzmann

machine or a convolutional neural network. This would help us in assessing

the discriminative quality of the Fisher score space for large number of avail-

able classes.

– Exploiting Sparsity to Enhance Fisher Score Space Discrimination

and Ease Computational Storage

When using RBMs as a generative model to extract Fisher scores, the dimen-

sionality of the Fisher vector can become immensely large as the size of the

hidden layer increases
(
φ(x) =

[
dw|v|×|h|,db|v|,dc|h|

])
. Thus, as the size of

the data set grows, the overall size of the Fisher vectors to be stored may

also increase enormously (i.e. in TB). This issue has been highlighted in the

thesis for the MNIST data set in Section 5.4.1. In order to resolve this cost

of storing and retrieving high dimensional Fisher vectors, one can adopt two

approaches: use data compression methods or use sparse generative models

to extract a sparse score space.

When dealing with large scale learning problems, different data compression

methods such as product quantization, α = 0 binarization, local sensitive

hashing and spectral hashing, have been used to resolve the storage and

retrieval problem (Sanchez et al., 2013). These methods allow the algorithm
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to learn on the compressed data directly with a five to ten folds speedup on

the standard approach. In particular, when the compression scheme allows

for the entire data to be stored in central memory, the learning accelerates

dramatically compared to the standard approach that accesses data from the

disk each time it is required.

Feature sparsity on the other hand, is also a good way of storing large di-

mensional features. If the obtained Fisher vectors are high dimensional, yet

strongly sparse (say more than half of the dimensions are zero), their stor-

age cost could be reduced with the help of sparse data structures. We have

explored the extent of the sparsity present in the Fisher score space for each

different binary data set in Section 5.4.5 and found that the Fisher scores

derived from the RBM were naturally quite sparse. This solves our problem

of saving large dimensional Fisher vectors, yet this sparsity does not add

to the discrimination power of the Fisher score space as shown in Figure

5.26. We would like to adopt a feature selection strategy that enhances the

discrimination power of these vectors while maintaining the sparsity of the

vectors simultaneously.

6.2 Some Guiding Principles for the Progress of Ob-

ject Recognition

With the ultimate objective of classification in hand, the dimensions of research in

computer vision and AI in general, have expanded so much so that it has become

important to understand if our goals and diagnostics of the visual input learning

are correct or not. In this section, we point out some misleading practices by

the research community in the field of computer vision and introduce some novel

aspects of research that have either been ignored completely or are given less at-

tention so far. We maintain that taking care of these aspects might improve the

progress of artificial object recognition systems in the future:

– Evaluation of the Benchmark Data Sets

In order to evaluate the strength of the learning algorithms and performance

of classifiers, the experiments are usually conducted on standard benchmark

data sets for comparison. Pinto (Pinto et al., 2008) argued that publicly

available data sets such as Caltech-101 and PASCAL VOC image sets lack

in several aspects that can actually mislead the progress in the long-term

interest of being able to achieve near human levels of recognition. To prove

this claim, he carried out the experiments on a V1 like model which was

based on the known properties of simple cells of primate visual cortex. The

model was a population of locally normalized, thresholded Gabor functions

spanning a range of orientations and frequencies. This model contained no
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explicit mechanism to tolerate variation in object position, size/pose and

shape. A standard one-versus-all approach was used to generate the multi-

class SVM classifier from the training images. It was found that this V1

like model performed remarkably well on the Caltech-101 data set but when

tested on a carefully controlled object recognition task that just consisted of

two classes, the problem proved substantially harder for the V1 like model,

exactly as one would expect for an incomplete model of object recognition.

This proved that the V1 like model performed well previously not because

of it being a good model of object recognition but because the natural image

sets were inadequate. Ponce et al. (Ponce et al., 2006) also pointed out some

of the issues present in the current standard data sets (i.e. UIUC, Caltech-

4 and Caltech-101) used for judging the performance of developed object

recognition systems. The most commonly observed problems in all these data

sets were the limited range of variability in viewpoint, orientation of different

instances in each category, no occlusion and background clutter. We have

not seen any work that objects these claims about the inadequacy of these

standard data sets or provides a counter solution to this problem. Torralba

et al. (Torralba & Efros, 2011) has also invited the interest of the community

towards this problem by presenting a comparative study of the benchmark

data sets which are evaluated on a number of different criterion: relative

data bias, cross-data set generalization, effects of closed world assumption

and sample values. Based on all this critique, we suggest that there should be

a formal mechanism of assigning a challenging score to each of the benchmark

data sets in practice; based on this measure, the ones that are too simple

should be discarded for experimentation in the future. Such an initiative is

important to provide a uniform test bed to all the competing algorithms on

a fair scale of evaluation defined explicitly through the challenging score.

– Impact of Learning Algorithms, Features and Amount of Training

Data

The object/scene classification approaches often focus on one of the three

aspects of the recognition problem: the amount of training data, the effi-

ciency of learning algorithm and the quality of feature representations. It is

important to know which of these factors are responsible for humans supe-

rior classification performance. The answer to this question was investigated

by (Parikh & Zitnick, 2010), who compared the human and machine re-

sponses on similar problems to evaluate which of the three factors: learning

algorithm, amount of training data and features, are responsible for better

performance. They found no evidence that human pattern matching algo-

rithms are better than standard machine learning algorithms. Also humans

do not take advantage of increased amount of data, thus the main factor

impacting the accuracies is the choice of features. We maintain that these
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observations should be further investigated and not ignored in order to focus

the efforts in the right direction.

– Integration Between Physiological Recordings and Empirical Re-

sults of Object Recognition

Learning systems inspired by the biology and evaluated by their classification

performance have become much more sophisticated in the last few decades.

However, there is a need to directly verify the empirical results of machine

recognition algorithms with the physiological recordings. Physiological data

may offer an avenue for recognizing aspects of recognition that may be less

obvious for humans but more suitable for computers. Such recognized cues

could be integrated within a machine’s control architecture to make it more

capable of responding to visual signals in real time.

– Addition of Time Dynamics

Most of the well known computational models reviewed here do not take into

explicit account the fact that retinal input has a time component associated

to it. It is important to consider the time dynamics of the neural circuit as

the objects in our surroundings move and the eyes show movement as well.

Thus, measured neuronal responses are functions of time and even for an

image presented in a flash, different types of neural information is carried

out over time (Perrett & Oram, 1993; Sugase et al., 1999). Incorporating the

time dimension in neuronal models of recognition is a challenge that began

in the last decade and is now actively being pursued (Reichert et al., 2011).

One of the interesting work in this regard is of (Nishimoto et al., 2011) who

experimented on reconstructing the visual brain activity elicited by natu-

ral scene movies in humans. The time dynamics of the system is captured

through a motion-energy model that describes how spatial and temporal in-

formation are represented in voxels throughout the visual cortex and then

uses a Bayesian approach to combine estimated encoding models with a sam-

pled natural movie prior for movie reconstruction. Much of the excitement

surrounding this work is motivated by the ultimate objective of directly pic-

turing subjective mental phenomenon such as visual imagery (Thirion et al.,

2006) or dreams. We argue that time is an interesting dimension of the data,

which if added to the existing computational models, can assist in making

interesting discoveries about the human vision that could be deployed in the

artificial recognition systems.



Appendix A

Derivation of the Fisher Scores

for Classical Restricted

Boltzmann Machine

This section explains how the gradients of the log likelihood of the data learned

by the binary-binary restricted Boltzmann machine are calculated with respect to

its model parameters, θ={w,a, b}. In order to do so, we first define the joint

configuration (v,h) of the visible and hidden units through an energy function

(Hopfield, 1982):

E(v,h;θ) = −
V∑
i=1

H∑
j=1

wijvihj −
V∑
i=1

bivi −
H∑
j=1

ajhj . (A.1)

The probability of a joint configuration over both visible and hidden units depends

on the energy of that joint configuration compared with the energy of all other

joint configurations:

P (v,h;θ) =
1

Z(θ)
exp (−E(v,h;θ)), (A.2)

where Z(θ) is known as the partitioning function or the normalizing constant.

Z(θ) =
∑
v,h

exp (−E(v,h;θ)). (A.3)

The probability that the network assigns to a visible vector, v is given by summing

over all possible hidden vectors:

P (v) =
1

Z(θ)

∑
h

exp (−E(v,h;θ)),

P (v) =

∑
h exp (−E(v,h;θ))∑
v,h exp (−E(v,h;θ))

. (A.4)
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Machine

In order to maximize the log likelihood (Equation A.4) of the observations, v;

we would like to calculate an estimator of its gradient with respect to the model

parameters, θ.

A.1 Gradient with respect to the weight parameter, w

From Equation A.4, we know that

log(P (v)) = log(
∑
h

exp(−E(v,h;θ)))− log(
∑
v,h

exp(−E(v,h;θ)))

∂ logP (v)

∂w
=

∂

∂w
(log

∑
h

exp(−E(v,h;θ)))− ∂

∂w
(log

∑
v,h

exp(−E(v,h;θ)))

∂ logP (v)

∂w
=


1× ∂

∂w

(∑
h

exp(−E(v, h;θ))

)
∑
h

exp(−E(v, h;θ))

−


1× ∂
∂w

∑
v,h

exp(−E(v, h;θ))


∑
v,h

exp(−E(v, h;θ))



=


∑
h

exp(−E(v, h;θ))× ∂

∂w
(−E(v, h;θ))∑

h

exp(−E(v, h;θ))

−

∑
v,h

exp(−E(v, h;θ))× ∂

∂w
(−E(v, h;θ))∑

v,h

exp(−E(v, h;θ))


Putting Equation A.1 in above, we get,

∂ logP (v)

∂w
=


∑
h

exp(−E(v, h; θ)× (vh))∑
h

exp(−E(v, h;θ))

−

∑
v,h

exp(−E((v, h);θ)× (vh)∑
v,h

exp(−E(v, h;θ))


Multiplying the nominator and denominator of the first part of the above equation by 1/Z(θ):

∂ logP (v)

∂w
=


(

1
Z(θ)

)
×
∑
h

exp(−E(v, h;θ)× (vh)(
1

Z(θ)

)
×
∑
h

exp(−E(v, h;θ)

−

∑
v,h

exp(−E((v, h); θ)× (vh)∑
v,h

exp(−E(v, h;θ)


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From Equation A.2, the above equation could be written as:

∂ logP (v)

∂wij
=


∑
h

P (v, h)(vh)

P (v)

−
∑
v,h

P (v, h)(vh)


∂ logP (v)

∂wij
=

(∑
h

P (h|v)(vh)

)
−

∑
v,h

P (v, h)(vh)



Since expectation ,E(f(x)) =
∑
x

f(x)P (x), thus

∂ logP (v)

∂wij
= E[vh]P (h|v) − E[vh]P (v,h)

∂ logP (v)

∂wij
= E[vh]data − E[vh]model

A.2 Gradient with respect to the bias vector attached

to the visible units, a

From Equation A.4, we know that

log(P (v)) = log(
∑
h

exp(−E(v,h;θ)))− log(
∑
v,h

exp(−E(v,h;θ)))

∂ logP (v)

∂a
=

∂

∂a
(log

∑
h

exp(−E(v,h;θ)))− ∂

∂a
(log

∑
v,h

exp(−E(v,h;θ)))

∂ logP (v)

∂a
=


1× ∂

∂a

(∑
h

exp(−E(v, h;θ))

)
∑
h

exp(−E(v, h;θ))

−


1× ∂
∂a

∑
v,h

exp(−E(v, h;θ))


∑
v,h

exp(−E(v, h;θ))



=


∑
h

exp(−E(v, h;θ))× ∂

∂a
(−E(v, h;θ))∑

h

exp(−E(v, h;θ))

−

∑
v,h

exp(−E(v, h;θ))× ∂

∂a
(−E(v, h;θ))∑

v,h

exp(−E(v, h;θ))


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Putting Equation A.1 in above, we get,

∂ logP (v)

∂a
=


∑
h

exp(−E(v, h;θ)× (h))∑
h

exp(−E(v, h;θ))

−

∑
v,h

exp(−E((v, h);θ)× (h)∑
v,h

exp(−E(v, h;θ))



Multiplying the first part of the above equation by 1/Z(θ); we get:

∂ logP (v)

∂a
=


(

1
Z(θ)

)
×
∑
h

exp(−E(v, h;θ)× (h)(
1

Z(θ)

)
×
∑
h

exp(−E(v, h;θ)

−

∑
v,h

exp(−E((v, h);θ)× (h)∑
v,h

exp(−E(v, h;θ)


From Equation A.2

∂ logP (v)

∂a
=


∑
h

P (v, h)(h)

P (v)

−
∑
v,h

P (v, h)(h)


∂ logP (v)

∂a
=

(∑
h

P (h|v)(h)

)
−

∑
v,h

P (v, h)(h)


Since expectation, E(f(x)) =

∑
x

f(x)P (x), thus

∂ logP (v)

∂a
= E[h]P (h|v) − E[h]P (v,h)

∂ logP (v)

∂a
= E[h]data − E[h]model
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A.3 Gradient with respect to the bias vector attached

to the hidden units, b

From Equation A.4, we know that:

log(P (v)) = log(
∑
h

exp(−E(v,h;θ)))− log(
∑
v,h

exp(−E(v,h;θ)))

∂ logP (v)

∂b
=

∂

∂b
(log

∑
h

exp(−E(v,h;θ)))− ∂

∂b
(log

∑
v,h

exp(−E(v,h;θ)))

∂ logP (v)

∂b
=


1× ∂

∂b

(∑
h

exp(−E(v, h;θ))

)
∑
h

exp(−E(v, h;θ))

−


1× ∂
∂b

∑
v,h

exp(−E(v, h;θ))


∑
v,h

exp(−E(v, h;θ))



=


∑
h

exp(−E(v, h;θ))× ∂

∂b
(−E(v, h;θ))∑

h

exp(−E(v, h;θ))

−

∑
v,h

exp(−E(v, h;θ))× ∂

∂b
(−E(v, h;θ))∑

v,h

exp(−E(v, h;θ))


Putting Equation A.1 in above, we get,

∂ logP (v)

∂b
=


∑
h

exp(−E(v, h;θ)× (v))∑
h

exp(−E(v, h;θ))

−

∑
v,h

exp(−E((v, h);θ)× (v)∑
v,h

exp(−E(v, h;θ))


Multiplying the first part of the above equation by 1/Z(θ); we get

∂ logP (v)

∂b
=


(

1
Z(θ)

)
×
∑
h

exp(−E(v, h;θ)× (v)(
1

Z(θ)

)
×
∑
h

exp(−E(v, h;θ)

−

∑
v,h

exp(−E((v, h);θ)× (v)∑
v,h

exp(−E(v, h;θ)


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From Equation A.2

∂ logP (v)

∂b
=


∑
h

P (v, h)(v)

P (v)

−
∑
v,h

P (v, h)(v)


∂ logP (v)

∂b
=

(∑
h

P (h|v)(v)

)
−

∑
v,h

P (v, h)(v)


Since expectation, E(f(x)) =

∑
x

f(x)P (x), thus

∂ logP (v)

∂b
= E[v]P (h|v) − E[v]P (v,h)

∂ logP (v)

∂b
= E[v]data − E[v]model



Appendix B

Derivation of the Fisher Scores

for Gaussian Bernoulli

Restricted Boltzmann Machine

This section explains how the gradients of the log likelihood of the data learned

by Gaussian Bernoulli Boltzmann machine can be drawn with respect to its pa-

rameters, θ = {bv, bh,w,σ}. The energy function of the Gaussian RBM is given

as:

E(v,h) =

V∑
i=1

(vi − bvi )2

2σ2
i

−
H∑
j=1

bhj hj −
V∑
i=1

H∑
j=1

vi
σi
hjwij . (B.1)

Given the above energy equation, the conditional probability p(vi = 1|h) is de-

rived as:

P (v|h) =
P (v,h)

P (h)
=

exp(−E(v, h))∑
v exp(−E(v,h))

(B.2)

=
exp(−

∑V
i=1

(vi−bvi )2

2σ2
i

+
∑H

j=1 b
h
j hj +

∑V
i=1

∑H
j=1

vi
σi
hjwij)∑

v(exp(−
∑V

i=1
(vi−bvi )2

2σ2
i

+
∑H

j=1 b
h
j hj +

∑V
i=1

∑H
j=1

vi
σi
hjwij))

=
exp(−

∑V
i=1

(vi−bvi )2

2σ2
i

+
∑H

j=1 b
h
j hj +

∑V
i=1

∑H
j=1

vi
σi
hjwij)∏V

i=1

[
exp(1

2 · (
∑

i = 1Hhjwij)2 +
∑H

j=1 b
h
j hj + 1

σi
bvi
∑H

j=1 hjwij) · σi
√

2π
]

=

∏V
i exp(− (vi−bvi )2

2σ2
i
−
∑H

j=1 b
h
j hj −

∑H
j=1

vi
σi
hjwij)∏V

i=1

[
exp(1

2 · (
∑H

i=1 hjwij)
2 +

∑H
j=1 b

h
j hj + 1

σi
bvi
∑H

j=1 hjwij) · σi
√

2π
]

(B.3)

131



132
Appendix B Derivation of the Fisher Scores for Gaussian Bernoulli Restricted

Boltzmann Machine

P (v|h) =
V∏
i=1

1

σi
√

2π
· exp

−(vi − bvi )2

2σ2
i

− 1

2

 H∑
j=1

hjwij

2

+
1

σi
(vi − bvi )

 H∑
j=1

hjwij


=

V∏
i=1

1

σi
√

2π
· exp

 1

2σ2
i

(vi − bvi )2 + σ2
i

 H∑
j=1

hjwij

2

− 2σi(vi − bvi )

 H∑
j=1

hjwij


=

V∏
i=1

1

σi
√

2π
· exp

 1

2σ2
i

(vi − bvi − σi
H∑
j=1

hjwij)
2


The above conditional distribution behaves like a multivariate Gaussian distribu-

tion with mean in dim i given as bvi + σi
∑H

j=1 hjwij , and the diagonal covariance

matrix represented as:


σ2

1 0 0 0

0 σ2
2 0 0

0 0
. . . 0

0 0 . . . σ2
V

.

The probability p(h|v) is given as:

P (hk = 1|v) =

∑
hj 6=k

P (v, hk = 1,hj 6=k)

P (v)

=

∑
hj 6=k

exp(−E (v, hk = 1,hj 6=k))∑
g exp(−E(v,g))

=

∑
hj 6=k

exp
[(∑V

i=1
vi
σi
wik + bhk

)
+
(∑V

i=1

∑H
j 6=k

vihjwij
σi

+
∑V

i=1
(vi−bvi )2

2σ2
i

+
∑H

j 6=k hjb
h
j

)]
∑
g exp(−E(v,g))

=
exp

(∑V
i=1

vi
σi
wik + bhk

)∑
hj 6=k

exp
(∑V

i=1

∑H
j 6=k

vihjwij
σi

+
∑V

i=1
(vi−bvi )2

2σ2
i

+
∑H

j 6=k hjb
h
j

)
∑
g exp(−E(v,g))

=
exp

(∑V
i=1

vi
σi
wik + bhk

)∑
hj 6=k

exp (−E(v, hk=0,hj 6=k))∑
gj 6=k

exp(−E(v, gk = 0, g)) +
∑
gj 6=k

exp(−E(v, gk = 1, g))

=
exp

(∑V
i=1

vi
σi
wik + bhk

)∑
hj 6=k

exp (−E(v, hk=0,hj 6=k))∑
gj 6=k

exp(−E(v, gk = 0, g)) + exp
(∑V

i=1
vi
σi
wik + bhk

)∑
gj 6=k exp(−E(v, gk = 0, g))

=
exp

(∑V
i=1

vi
σi
wik + bhk

)
1 + exp

(∑V
i=1

vi
σi
wik + bhk

)
=

1

1 + exp−
(∑V

i=1
vi
σi
wik + bhk

)
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which is the same as in the binary-visible case, except that here the real valued

visible activity vi is scaled by the reciprocal of its standard deviation σi.

logP (v) = log

(∑
h

P (v,h)

)
= log

(∑
h

exp(−E(v,h))∑
v,h exp(−E(v,h))

)
=⇒ logP (v) = log

∑
h

exp(−E(v,h))− log
∑
v,h

exp(−E(v,h))

Since −F (v) = log
∑

h exp(−E(v,h)), This =⇒ log p(v) = −F (v)− log(Z),

where Z =
∑
v exp(−F (v)). Thus simplifying F (v) first.

−F (v) = log
∑
h

exp

− V∑
i=1

(vi − bvi )2

2σ2
i

+
V∑
i=1

H∑
j=1

vihjwij
σi

+
H∑
j=1

bhj hj


= log

exp

(
−

V∑
i=1

(vi − bvi )2

2σ2
i

)
·
∑
h

exp

 V∑
i=1

H∑
j=1

vihjwij
σi

+
H∑
j=1

bhj hj


= −

V∑
i=1

(vi − bvi )2

2σ2
i

+ log
∑
h

exp

 V∑
i=1

H∑
j=1

vihjwij
σi

+
H∑
j=1

bhj hj


By taking hj common in the second term of the above equation, we get:

−F (v) = −
V∑
i=1

(vi − bvi )2

2σ2
i

+ log

∑
h

exp

 H∑
j=1

hj

(
bhj +

V∑
i=1

viwij
σi

)
= −

V∑
i=1

(vi − bvi )2

2σ2
i

+ log

∑
h

H∏
j=1

exp

(
hj

(
bhj +

V∑
i=1

viwij
σi

))
= −

V∑
i=1

(vi − bvi )2

2σ2
i

+ log
H∏
j=1

(
1 + exp

(
bhj +

V∑
i=1

viwij
σi

))

The above step is justified by the fact that each hj is either 0 or 1, therefore

−F (v) = −
V∑
i=1

(vi − bvi )2

2σ2
i

+ log

H∑
j=1

(
1 + exp

(
bhj +

V∑
i=1

viwij
σi

))

The following sections explain how the gradients for all the parameters, θ={w, bv, bh}
are calculated:
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B.1 Derivatives of the Free Energy Function w.r.t w

∂(−F (v))

∂w
=

∂

∂w

− V∑
i=1

(vi − bvi )2

2σ2
i

+ log
H∑
j=1

(
1 + exp

(
bhj +

V∑
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viwij
σi

))
=

∂

∂w

log
H∏
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(
1 + exp

(
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V∑
i=1

viwij
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))
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j=1 exp

(
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∑V
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viwij
σi

)
1 + exp

(
bhj +

∑V
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σi

) ∂

∂w

(
bhj +

V∑
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viwij
σi

)

=

H∑
j=1

1

1 + exp
(
bhj +

∑V
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viwij
σi

) [σi ∂∂w (viwij)− viwij ∂
∂wσi

σ2
i

]

=

H∑
j=1

1

1 + exp
(
bhj +

∑V
i=1

viwij
σi

) [σi[vi(1) + wij(0)]

σ2
i

]

=

H∑
j=1

1

1 + exp
(
bhj +

∑V
i=1

viwij
σi

) ( vi
σi

)

=
H∑
j=1

hjvi
σi

B.2 Derivatives of the Free Energy Function w.r.t bv

∂(−F (v))

∂bvi
=

∂

∂bv

− V∑
i=1

(vi − bvi )2

2σ2
i

+

H∑
j=1

log

(
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(
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viwij
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∂

∂bv

[
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2σ2
i

]
+

∂

∂bv
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j=1

log

(
1 + exp

(
bhj +

V∑
i=1

viwij
σi

))
= −1

2

[
σ2
i
∂
∂bv (vi − bvi )2 − (vi − bvi )2 ∂

∂bv (σi)

σ4
i

]

= −1

2

[
σ2
i 2(vi − bvi )(−1)

σ4
i

]
=

(
vi − bvi
σ2
i

)
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B.3 Derivatives of the Free Energy Function w.r.t bh

∂(−F (v))

∂bhi
=

∂

∂bh

− V∑
i=1

(vi − bvi )2

2σ2
i

+
H∑
j=1

log

(
1 + exp

(
bhj +

V∑
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viwij
σi
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=

∂

∂bh

[
−
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2σ2
i

]
+

∂

∂bh
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log

(
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(
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viwij
σi
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=

∂

∂bh

 H∑
j=1

log

(
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(
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) (1)

=
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B.4 Derivatives of the Free Energy Function w.r.t σi
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Appendix C

Derivation of the Fisher Scores

for Factored 3-Way Boltzmann

Machine

This section explains how the gradients of the log likelihood of the data learned by

a factored 3-way RBM are calculated with respect to its model parameters, θ =

{P,C, bh, bv} and visible layer, v to implement the hybrid Monte Carlo algorithm.

In order to do so, we first define the energy function of the Boltzmann machine as:

E(v,h;θ) = −1

2

∑
i,j,k

vivjhkWijk −
∑
j,k

bjhk −
∑
i

vibi. (C.1)

The probability of a joint configuration over both visible and hidden units depends

on the energy of that joint configuration compared with the energy of all other

joint configurations:

P (v,h;θ) =
1

Z(θ)
exp (−E(v,h;θ)), (C.2)

where Z(θ) is known as the partitioning function or the normalizing constant.

Z(θ) =
∑
v,h

exp (−E(v,h;θ)). (C.3)

Equation C.2 implies that:

P (v) =
∑
h

exp (−E(v,h;θ))

Z(θ)
or P (v) =

∑
h

exp (−F (v;θ))

Z(θ)
,

where F (v) = − log(
∑
h

exp(−E(v, h))). (C.4)
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F (v) = − log

∑
h

exp

1

2

∑
i,j,k

vivjhkWijk +
∑
j,k

bjhk +
∑
i

bivi


F (v) = − log

∑
h

exp

1

2

∑
f

(∑
i

viCif

)2∑
k

hkPkf

+ bjhk

− log

(
exp

(∑
i

bivi

))

F (v) = −
∑
k

log

1 + exp

1

2

∑
f

Pkf
∑
i

viCif

2

+ bjhk

−∑
i

bivi

In order to maximize the log likelihood (Equation C.4) of the observations,v; we

would like to calculate an estimator of its gradient with respect to the model

parameters, θ. The exact gradients for all the parameters, θ={C,P, bj} are cal-

culated below:

C.1 Gradient with respect to the bias parameter at-

tached to the hidden units, bj

From Equation C.4, we know that :

∂F (v)

∂bj
=

∂

∂bj

(
− log

∑
h

exp(−E(v,h;θ))

)

∂F (v)

∂bj
=

∂

∂bj

−∑
k

log

1 + exp
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2

∑
f
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∑
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viCif

2

+
∑
j,k

bjhk
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i

bivi


Using Formula: ∂

∂x(log(f(x))) = f ′(x)
f(x)

∂F (v)

∂bj
=
−exp

(
0.5
∑

f Pkf (
∑

iCifvi)
2 + bjhk

)
1 + exp

(
0.5
∑

f Pkf (
∑

iCifvi)
2 + bjhk

) × ∂

∂bj

0.5
∑
f

Pkf (
∑
i

Cifvi)
2 + bjhk

− 0

(C.5)

Since ∂
∂bj

(
0.5
∑

f Pkf (
∑

iCifvi)
2 + bjhk

)
= hk, Equation C.5 becomes:

∂F (v)

∂bj
=
−exp

(
0.5
∑

f Pkf (
∑

iCifvi)
2 + bjhk

)
1 + exp

(
0.5
∑

f Pkf (
∑

iCifvi)
2 + bjhk

) × hk (C.6)

Using the following identity in the above equation: exp(x)
1+exp(x) = 1

1+exp(−x)

∂F (v)

∂bj
= −hk ×

 1

1 + exp
(
−0.5

∑
f Pkf (

∑
iCifvi)

2 − bjhk
)
 (C.7)
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C.2 Gradient with respect to the parameter, Pkf
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∂
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Using the following identity in the above equation: exp(x)

1+exp(x) = 1
1+exp(−x) .
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C.3 Gradient with respect to the parameter, Cif
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C.4 Gradient with respect to the visible vector, v
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Using Formula: ∂
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1+exp(x) = 1
1+exp(−x)

∂F (v)

∂v
= −

∑
i

bi −

(
exp(0.5

∑
f Pkf (

∑
iCifvi)

2 + bjhk)
)

1 +
(

exp(−0.5
∑

f Pkf (
∑

iCifvi)
2 − bjhk)

) × 1

2
× 2

∑
f

Pkf
∑
i

Cif (Cif ∗ v)

Taking the exponent term exp(0.5
∑

f Pkf (
∑

iCifvi)
2 + bhk) down to the denom-

inator.

∂F (v)

∂v
= −

∑
i

bi −
1 ∗
∑

f

∑
k Pkf

∑
i(C

2
if )vi

B +A×B

where A = exp

0.5
∑
f

Pkf (
∑
i

Cifvi)
2 + bjhk

 and B = exp

−0.5
∑
f

Pkf (
∑
i

Cifvi)
2 − bjhk


Using formula: exp(a+ b) = exp(a)× exp(b)

∂F (v)

∂v
= −

∑
i

bi −
1 ∗
∑

f

∑
k Pkf

∑
i(C

2
if )vi

exp(−0.5
∑

f Pkf (
∑

iCifvi)
2 − bjhk) + exp(0)

∂F (v)

∂v
= −

∑
i

bi −
∑

f

∑
k Pkf

∑
i(C

2
if )vi

1 + exp(−0.5
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Appendix D

Support Vector Machines

This section explains the basics of the theory of SVM in linear case. Assume that

we’ve been given a set S of points xi ∈ < with i = 1, 2, . . . , N . Each point xi

belongs to either of the two classes and is therefore given a label yi ∈ {−1, 1}.
Our goal is to establish the equation of a hyperplane that divides S leaving all the

points of the same class on the same side while maximizing the minimum distance

between either of the two classes and the hyperplane. In order to achieve this

purpose, we set up some preliminary definitions. The set S is linearly separable if

there exists w ∈ <n and b ∈ <, such that

w · xi + b ≥ 1, if yi = 1

w · xi + b ≤ −1, if yi = −1. (D.1)

In more compact notation, the two inequalities can be written as:

y(w · xi + b) ≥ 1, (D.2)

for i = 1, 2, . . . , N . The pair (w, b) defines a hyperplane of equation

w · x + b = 0

named as a separating hyperplane (see Figure D.1). If we denote with w the norm

of w, the signed distance di of a point xi from the separating hyperplane (w, b) is

given as:

di =
w · xi + b

w
. (D.3)

Combining the inequality in Equation D.2 and D.3, for all xi ∈ S, we have

yidi ≥
1

w
. (D.4)

Therefore, 1/w is the lower bound on the distance between the points xi and the

separating hyperplane (w, b). Since the distance of the closest points equal 1/w,
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(a) The optimal separating hyperplane (b) Preliminaries of the optimal separating
hyperplane

Figure D.1: We want to choose the parameters w and b to maximise the margin or
distance between the parallel hyper planes as far apart as possible while still separating
the data. Here, b is a scalar determining the offset of the plane from the origin, w is the
normal vector determining the orientation of the discriminant plane and is therefore
perpendicular to the hyperplane. The parameter b/||w|| determines the offset of the

hyperplane from the origin along the normal vector w.

the optimal separating hyperplane can be regarded as the solution of the problem

of maximising 1/w subject to the constraint D.2, or

Minimize
1

2
w ·w,

subject to yi(w · xi + b) ≥ 1, i = 1, 2, . . . , N (D.5)

The solution of the above problem is always a separating hyperplane and can be

solved by means of the classical method of Langrange multipliers. If we denote

with α = (α1, α2, . . . , αN ), the N nonnegative Langrange multipliers associated

with the constraints (Equation D.2), the solution to the problem is equivalent to

determining the saddle point of the function:

L =
1

2
w ·w −

N∑
i=1

αi{yi(w · xi + b)− 1}. (D.6)

with L = L(w, b,α). At the saddle point, L has a minimum for w = w̄ and b = b̄

and a maximum for α = ᾱ, thus we can write,

∂L

∂b
=

N∑
i=1

yiαi = 0, (D.7)

∂L

∂w
= w −

N∑
i=1

αiyixi = 0, (D.8)

with
∂L

∂w
=

(
∂L

∂w1
,
∂L

∂w2
, . . .

∂L

∂wn

)
.
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By substituting Equations D.7 and D.8 into the right hand side of Equation D.6,

the problem in Equation D.5 reduces to the maximisation of the function:

L(α) =
N∑
i=1

αi −
1

2

N∑
i.j=1

αiαjyiyjxixj , (D.9)

subject to the constraint in Equation D.7 with α ≥ 02. This new formulation is

called the dual problem formulation and can be mathematically written as:

Maximize − 1

2
α ·Dα+

∑
αi,

subject to yiαi = 0,α ≥ 0, (D.10)

where both the sums are for i = 1, 2, . . . , N and D is an N ×N matrix such that

Dij = yiyjxixj . (D.11)

As for the pair (w̄, b̄) from Equation D.8, it follows that

w̄ =
N∑
i=1

ᾱiyixi, (D.12)

while b̄ can be determined from the Kuhen-Tucker conditions as:

ᾱi(yi(w · xi + b̄)− 1) = 0, i = 1, 2, . . . , N. (D.13)

Note that the only ᾱi that can be non zero in Equation D.13 are those that satisfy

the constraint in Equation D.2 with an equality sign. The corresponding points

xi, termed as support vectors are the points of S closest to the optimal separating

hyperplane. Given a support vector xj , the parameter b̄ can be obtained from the

corresponding Kuhn-Tucker condition as:

b̄ = yj − w̄ · xj .

The problem of classifying a new data point is now simply solved by computing

sign(w̄ · x + b̄).

where the support vectors condense all the information contained in the training

set S needed to classify new data points.



144 Appendix D Support Vector Machines

D.1 Linearly Non-Separable Case

If the data in set S is not linearly separable, slack variables are introduced for the

data within the margin, and the optimization problem is reformulated. Assume

that there are N non negative slack variables ξ = (ξ1, ξ2, . . . , ξN ), such that

y(w · xi) ≥ 1− ξ, i = 1, . . . , N.

If the point xi satisfies the inequality ( Equation D.2), then ξi is null and Equation

3.13 reduces to Equation D.2. However, if the point xi does not satisfy the in-

equality in Equation D.2, the term −ξi is added to the right hand side of Equation

D.2 to obtain Equation 3.13. The generalized optimal separating hyperplane is

then formulated as:

Minimize
1

2
w ·w + C

∑
ξi

subject to yi(w · xi + b) ≥ 1− ξi, i = 1, 2, . . . , N

ξ ≥ 0.

The term C
∑
ξ is a measure of the misclassification and makes the optimal sep-

arating hyperplane less sensitive to the presence of outliers in the training set.

The parameter C can be regarded as a regularization parameter.The optimal sep-

arating hyperplane tends to maximise the minimum distance 1/w for small C and

minimise the number of misclassified points for large C. As done in the separable

case, the problem can be transformed into the dual form:

Maximize − 1

2
α ·Dα+ αi

subject to
∑

yiαi = 0

0 ≤ αi ≥ C, i = 1, 2, . . . , N

From the above constraints, it follows that if C is sufficiently large, and the set S

is linearly separable, the above problem reduces to Equation D.10. As for the pair

(w̄, b̄), it is easy to find that

w̄ =

N∑
i=1

ᾱiyixi, (D.14)

while b̄ can be determined from the new Kuhn-Tucker conditions

ᾱi(yi(w̄ · xi + b̄)− 1 + ξ̄i) = 0 (D.15)

(C − αi)ξ̄i = 0 (D.16)
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where ξ̄i are the values of the ξi at the saddle point.





Appendix E

Natural Gradient Descent

Learning

E.1 Learning and Optimization in Machine learning

In a typical optimization problem, we try to find out the parameters θ for which

an objective function f(θ) is either minimized or maximized. Often when a cost

is associated to an event, the objective function to be minimized is called a loss

function L defined over the parameters θ and random variable x with distribution

P (x):

L̃(θ) =

∫
x
L(θ, x)P (x)dx (E.1)

Since the distribution P is defined over all possible data inputs and is normally

not known analytically, therefore we approximate L̃ by averaging over all the data

points xi drawn from a training data set D as:

L̄(θ) =
1

N

∑
xiεD

L(θ, xi) (E.2)

If the objective/loss function is differentiable, we can calculate the gradient gi(θ)

of the cost function at sample xi as:

gi(θ) =
∂L(θ, xi)

∂θ
(E.3)

Similarly we can also calculate the average gradient over a data set of size N :

ḡ(θ) =
1

N

N∑
i=1

gi(θ) (E.4)

and use ḡ(θ) as the direction of search for gradient descent learning of parameters

as:

L(θt+1) = L(θt)− αtḡ(θ), (E.5)
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where α defines the step size used in finding a good descent direction ḡ. This class

of algorithms is called stochastic gradient descent learning algorithms.

E.2 Natural Gradient Descent Learning

If the cost function L(θ) is twice differentiable, we can use the Newton direction

which is derived by minimizing the second order Taylor expansion of L(θ + g):

L(θt + g) ≈ L(θt) + gT∇L(θt) +
1

2
gT∇2L(θt)g (E.6)

By setting its derivative to zero, we get:

∇L(θt) +∇2L(θt)g = 0,

g = −(∇2L(θt))
−1∇L(θt)

g = −H−1∇L(θt)

Using this second order information, we can write the gradient descent learning

rule in Equation E.5 as:

L(θt+1) = L(θt)− αtH−1∇L(θt), or

L(θt+1) = L(θt)− αtH−1ḡ(θ),

where H denotes the Hessian or the approximation of the Hessian matrix that

is positive definite. This kind of learning strategy is regarded as natural gradient

learning because it exploits the geometry of the manifold in which the loss function

is defined.

Note that when a parameter space has a certain underlying structure, the ordinary

gradient of a function does not represent its steepest direction, but the natural

gradient does. We further describe how this natural gradient featuring the Hessian

matrix is defined for the Riemannian spaces and in particular for the Boltzmann

probability distribution.

E.3 Natural Gradient in the Riemannian Spaces

Information geometry proves that the Riemannian structure of the parameter space

of a statistical model is defined by the Fisher information (Rao, 1992; Amari, 1985)

as:

hij(θ) = E[
∂ logP (x,θ)

∂θi

∂ logP (x,θ)

∂θj
] (E.7)
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The Fisher information matrix H = (hij) is the only invariant metric to be in-

troduced in the space S = {θ} of the parameters of probability distributions

(Chentsov, 1982; Amari, 1985; Campbell, 1985). We will show how to calculate H

and its inverse for RBM in the later sections.

E.4 Natural Gradient in the Space of Restricted Boltz-

mann Machine

We first define the probability density function of RBM with visible and hidden

units as:

P (v,h;θ) =
1

Z(θ)
exp (−E(v,h;θ)), (E.8)

where Z(θ) =
∑
v

∑
h

exp (−E(v,h;θ)).

The energy function, E is a tractable measure of the discrepancy between actual

features of the world and the representations of features learnt by the restricted

Boltzmann machines. This measure could be considered as a loss function which

should be minimized to match the actual and learnt features.

The probability that the network assigns to a visible vector, v is given by summing

over all possible states of the hidden vectors as:

P (v;θ) =
1

Z(θ)

∑
h

exp (−E(v,h;θ)), (E.9)

where Z(θ) =
∑
v

∑
h

exp (−E(v,h;θ)).

Minimizing the loss/energy function in this context is equivalent to maximizing

the log likelihood function P (v;θ). The maximum likelihood estimator is efficient

or Fisher efficient, implying that it is the best consistent estimator satisfying the

Cramer-Rao bound asymptotically,

lim
T→inf

TE[(θ̂T − θ∗)(θ̂T − θ∗)T ] = H−1 (E.10)

Let the parameters of the model, θ = (W,a, b) , then the derivatives of the log

likelihood of the observations, P (v;θ) with respect to the model parameters, θ

can be obtained as :

∂ logP (v;θ = W )

∂W
= E[vhT ]pdata − E[vhT ]pmodel (E.11)

∂ logP (v;θ = a)

∂a
= E[h]pdata − E[h]pmodel (E.12)

∂ logP (v;θ = b)

∂b
= E[v]pdata − E[v]pmodel (E.13)
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By inducing the above gradients in Equation E.7, we can define the Fisher infor-

mation metric for each parameter in the model.

E.5 Natural gradient/ Fisher Information for the Blind

Separation of Mix Signals

Consider m signal sources that produce m independent signals si(t), i = 1, ...,m

at discrete times t = 1, 2, .... We assume that si(t) are independent at different

times and that the expectation of si are 0. Let r(s) be the joint probability density

function of s, therefore it is written in the product form as:

r(s) =
m∏
i=1

ri(si). (E.14)

Consider the case where we cannot have direct access to the source signals s(t)

but we can observe their m instantaneous mixtures x(t),

x(t) = As(t) (E.15)

Blind source separation is the problem of recovering the original signals s(t), t =

1, 2, ... from the observed signals x(t), t = 1, 2, ... (Jutten and Herault, 1991). If

we know A, this is trivial because we have:

s(t) = A−1x(t) (E.16)

The term blind implies that we do not know the mixing matrix A and the prob-

ability distribution densities ri(si) A typical algorithm to solve the problem is to

transform x(t) into:

y(t) = Wtx(t), (E.17)

where W (t) is an estimate of A−1. It is modified by the following learning equation:

Wt+1 = Wt − ηtF (xt,Wt) (E.18)

Here F (x,W ) is a special matrix function satisfying:

E[F (x;W )] = 0 (E.19)

for any density function r(s) when W = A−1. For Wt in Equation E.18 to converge

to A−1, Equation E.19 is necessary but not sufficient, because the stability of the

equilibrium is not considered here. For stability, lets define K(W ) as an operator

that maps a matrix to another matrix.

F̃ (x,W ) = K(W )F (x,W ) (E.20)



Appendix E Natural Gradient Descent Learning 151

satisfying Equation E.19 when F does. The equilibrium of F and F̃ is the same,

but their stability can be different. Since the natural gradient does not alter the

stability of an equilibrium because H−1 is positive-definite, we define the function

F in EquationE.18 in terms of the gradient of the loss function l with respect to

W as:

F (x;W ) = ∇l(x,W ), (E.21)

where l(x;W ) is the loss function whose expectation

L(W ) = E[l(x;W )] (E.22)

is the target function minimized at W = A−1. Such an F is also obtained by

heuristic arguments. Amari and Cardoso Amari & Cardoso (1997) gave the com-

plete family of F satisfying the statistical efficiency of related algorithms.
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T. Viéville and S. Crahay. A Deterministic Biologically Plausible Classifier. Neu-

rocomputing, 58 -60(0):923 – 928, 2004. ISSN 0925-2312.

A. Vinokourov and M. Girolami. Document Classification Employing the Fisher

Kernel Derived from Probabilistic Hierarchic Corpus Representations. Springer-

Verlag, 2001.



BIBLIOGRAPHY 171

P. Viola and M. Jones. Rapid Object Detection Using a Boosted Cascade of Simple

Features. In Computer Vision and Pattern Recognition (CVPR), volume 1,

pages I–511 – I–518, 2001.

V.Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York,

Inc., New York, NY, USA, 1995. ISBN 0-387-94559-8.

G. Wallis and E. Rolls. A Model of Invariant Object Recognition in the Visual

System. Prog. Neurobiol., 51:167–194, 1996.

M. Wertheimer. Laws of Organization in Perceptual Forms. W. Ellis, W (Ed. &

Trans.), London: Routledge & Kegan Paul(Original work published in 1923),

1938.

C. Williams and F. Agakov. An Analysis of Contrastive Divergence Learning in

Gaussian Boltzmann Machines, May 2002.

H. Wilson and J. Cowan. Excitatory and Inhibitory Interactions in Localized

Populations of Model Neurons. Biophysical Journal, 12(1):1–24, 1972.

J. Wu and J. Rehg. CENTRIST: A Visual Descriptor for Scene Categorization.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1489–

1501, 2011.

Wei Biao Wu and Mohsen Pourahmadi. Nonparametric Estimation of Large Co-

variance Matrices of Longitudinal Data. Biometrika, 90(4):831–844, 2003.

R. Young and R. Lesperance. The Gaussian Derivative model for Spatial-temporal

Vision. I. Cortical Model. Spatial Vision, 2001:3–4, 2001.

A. Yuille. The Convergence of Contrastive Divergences. In Advances in Neural

Information Processing Systems 17, pages 1593–1600. 2004.

T. Yusuke and H. Takaaki. Stand Alone Collision Warning Systems Based on

Information From On-board Sensors. International Association of Traffic and

Safety Sciences (IATSS) Research, 30(2):39–47, 2006.

D. Zhang, A. Wong, M. Indrawan, and G. Lu. Content-based Image Retrieval

Using Gabor Texture Features. In IEEE Transactions of PAMI, pages 13–15,

2000.

J. Zhang, S. Lazebnik, and C. Schmid. Local Features and Kernels for Classifi-

cation of Texture and Object Categories: A Comprehensive Study. Computer

Vision, 73:213–238, 2007.


