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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Tayyaba Azim

This research focuses on developing visual object categorization methodologies that are
based on machine learning techniques and biologically inspired generative models of
visual scene recognition. Modelling the statistical variability in visual patterns, in the
space of features extracted from them by an appropriate low level signal processing
technique, is an important matter of investigation for both humans and machines. To
study this problem, we have examined in detail two recent probabilistic models of vision:
a simple multivariate Gaussian model as suggested by (Karklin & Lewicki, 2009) and a
restricted Boltzmann machine (RBM) proposed by (Hinton, 2002). Both the models have
been widely used for visual object classification and scene analysis tasks before. This
research highlights that these models on their own are not plausible enough to perform
the classification task, and suggests Fisher kernel as a means of inducing discrimination
into these models for classification power. Our empirical results on standard benchmark
data sets reveal that the classification performance of these generative models could
be significantly boosted near to the state of the art performance, by drawing a Fisher
kernel from compact generative models that computes the data labels in a fraction of
total computation time. We compare the proposed technique with other distance based
and kernel based classifiers to show how computationally efficient the Fisher kernels are.
To the best of our knowledge, Fisher kernel has not been drawn from the RBM before,
so the work presented in the thesis is novel in terms of its idea and application to vision

problem.
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Chapter 1

Introduction

1.1 Visual Object Recognition

Visual object recognition is an important function of the human visual system that helps
us in classifying objects into one of the several semantic categories, either known or
unknown previously. This process involves the perception of objects physical properties
such as shape, color and texture that leads to an understanding of its use and relationship
to other objects by applying meaningful attributes to it. Inspired from this human
vision, are artificial object recognition systems, that aim at recognizing and interpreting

the objects in the environment with a similar degree of correctness and speed as humans.

Artificial object recognition has for long remained an important problem in computer
vision because of its wide applications and the persistent gap in the performance be-
tween the human and artificial scene recognition systems. The advances in both vision
algorithms and hardware have made practical visual object recognition within reach,
as can be seen in systems deployed on airports and highways for security and risk as-
sessments. However, a versatile solution to this problem still evades the reach of even
the best researchers with only partial solutions and limited success in constrained envi-
ronment being the state of the art. In fact, some researchers also argue that it is not
possible to design an object recognition system that is functional for a wide variety of
scenes and environments and is still as efficient as a situation specific system (Aggarwal
et al., 1996). Thus, the ability to accurately recognize large number of objects in a small
compute time like humans is the key to the success of many potential perception applica-
tions. It is this driving force that still motivates us to look back into the functionality of

the human visual system and emulate it into the machines for better perception power.

1
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1.2 Challenges Posed by Visual Object Recognition Sys-

tems

The neural mechanisms of visual perception offer insight on how the eyes and brain
handle visual information to recognize different objects. Designing a robust artificial
recognition system based on both state-of-the-art neurophysiologic findings and avail-
able technology is not an easy task. The brain is a complex organ that simultaneously
processes information to control perception, decision making, learning and memory. The
high complexity of the mammalian brain is one of the major reasons of the limited under-
standing of brain physiology which ultimately leads to poor computational modelling of
the brain. Another computational bottleneck is the existing storage capacity and power
of the machines to store and process the massive amount of data humans are capable
of operating and recognizing in a fraction of time. As an approximation, Simon Thorpe
(Thorpe et al., 1996) revealed through event related potential (ERP) recordings that
the time humans take to identify the presence/absence of an object in a natural scene
is not more than 150ms. As far as the scale of the semantic space is concerned, the
psychologists postulate that humans are able to categorize at least tens of thousands of

high level object categories and scenes (Biederman, 1987; Deng et al., 2010).

Given the above mentioned challenges, recent advances in the neuroimaging and mi-
croscopy techniques! have accelerated the pace of brain research by allowing us to mon-
itor and analyse the brain activity at different levels of spatial organization from the
genes, proteins, synapses and cells to micro circuits, brain regions, and the whole brain
(HBP, April 2012). Similarly, the development of the cloud technology combined with
the internet allows us to collect data from research groups and clinics all over the world
with supercomputers becoming powerful enough to build and simulate the brain models
with unprecedented levels of biological detail. The current industrial trends are on a
pathway to tackle these issues but they are still in the experimental phase. Therefore,
we leave this discussion aside and discuss those issues which are generic in nature and
are important for an artificial recognition system to resolve irrespective of the fact they

have biological inspiration or not.

Visual object recognition systems are subject to the changes in their environment as
they are affected by the way objects are presented to them for classification. Apart from
the environment, the physical properties of the objects also influence the classification
performance of the systems. The challenges that are most commonly faced by all the

visual object recognition systems can be categorised as:

e View Point Orientation

! Neuroimaging techniques refer to the techniques that directly/indirectly image the structure or
function of the brain. Examples include electroencephalography (EEG), computed tomography (CT) and
magnetic resonance imaging (MRI) techniques, whereas microscopy allows us to monitor the neuronal
activity of the brain in a non-intrusive way via a microscope, examples include light microscopy.
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FicUure 1.1: Challenging problems of orientation, illumination and scale are shown

in (a), (b) and (c) respectively?. The human visual system recognizes these objects

without any difficulty whereas an artificial system lacking invariance/generalization

power might misclassify them when matching the extracted features with those saved
in database.

INlumination

Scale

Occlusion
Background Clutter

Deformation (change in the shape or size of an object due to an applied force)

Due to the variations in the above mentioned conditions, visual features extracted from
the same objects may vary resulting in the misclassification of objects by an artificial
system. For example, if a system is trained with object features whose image was cap-
tured in daylight, with a specific orientation, size, shape and background; it might have
difficulty in recognizing the same object seen at different time of the day with a dif-
ferent background. As compared to this artificial system, an object remains the same
object (at the human perceptual level) after changing its position, scale, rotation, illu-
mination, color, occlusion and deformation. Therefore, in order to develop an artificial
object recognition system with human level of accuracy and speed, the response of the
system should be made generic to all these transformations, yet at the same time se-
lective enough to distinguish between very similar objects such as the faces of identical
twins. It would be relatively easy to build a computer system that can be extremely
selective by simply memorizing all the pixels in several training images. However such
a system would lack any power to generalize. Thus the tradeoff between selectivity and
invariance(generalization) constitutes one of the most astounding accomplishments of
the human visual recognition machinery and also one of the key challenges for computer
vision (Kreiman, 2008). See Figures 1.1 and 1.2 for the illustration of generalization and

selectivity difficulties posed by artificial object recognition systems.

“http://cs.nyu.edu/~fergus/icml_tutorial/.Accessed:2013-10-30.


http://cs.nyu.edu/~fergus/icml_ tutorial/. Accessed: 2013-10-30.
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FIGURE 1.2: Problems of occlusion, clutter and deformation are shown in (a), (b) and

(c) respectively?. An artificial system carries out a long computation to identify the

objects of interest whereas the human visual system deals with this issue effortlessly in
almost no time.
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FIGURE 1.3: Generative model representing the distribution of images belonging to
each class; the Fisher vector derived from the generative model serves as a feature to
the discriminant classifier such as SVM.

1.3 Objective of the Current Research

The natural images recognized by the human visual system are not random in nature.
They contain striking statistical regularities which are usually captured through various
image descriptors/features. A lot of research in computer vision has focused on devel-
oping methods of extracting better image features for classification. One of the popular
ways of representing the statistical variability in the distribution of the images is through
probabilistic models which formalize the relationship between the image features while

taking into account the uncertainity /noise associated with them.

In this research, we investigate the discrimination capability of two widely used probabilis-
tic models of vision that reflect the neural activity in the mammalian visual pathway i.e.
the multivariate Gaussian model and the restricted Boltzmann machine. We demonstrate
through our experiments that both the generative models on their own are not suitable for
doing classification efficiently and therefore discrimination could be induced in them by
deriving a Fisher kernel that acts as a decision function in the support vector machine
(SVM) classifier. We show that discriminant Fisher score space could be drawn from
very compact generative models, giving computational as well as performance advantage

over comparable generative models of classification.



Chapter 1 Introduction 5

1.4 Applications

Recognizing objects is an important capability of many of the automated systems which
enable us to perform a wide variety of tasks in our day to day life. Following are
examples of a few applications that deploy object recognition techniques at the core of

their development.

e Robust People Tracking in the Surveillance Applications: Surveillance
cameras are installed in many public areas to improve security, safety and site
management (Fuentes & Velastin, 2001; Liu et al., 2005; Anezaki et al., 2011).
Apart from just tracking and detecting humans through computer vision algo-
rithms, there is also an ongoing effort in the community to develop proactive
systems that can prevent the crime before they take place by deploying cameras
that work like human eye and thus detect where the potential danger in the scene
is.

e Vehicle Monitoring: Speed monitoring is often carried out by cameras triggered
by a vehicle exceeding the speed limit. The photograph captured by the closed-
circuit television (CCTV) is not only used to identify the moving vehicle within the
scene, but also locates the position of the registration plate to automatically read
the number for tracking the offender later (Rad et al., 2010; Adinarayana et al.,
2011). Other possible applications in this domain consist of collision warning
systems with adaptive cruise control, lane departure warning systems and rear
object detection systems (Batavia, 1999; Yusuke & Takaaki, 2006).

e Pattern Recognition in Systems Deployed by Forensics Science: In order
to investigate the crime scenes and trace evidence, pattern recognition techniques
are deployed to identify and recognize various objects of interest such as drug pills,
shoe prints, tool marks, fingerprints, fibers, faces, etc. (Garfinkel, 2006; Geradts
et al., 2007).

e Intelligent Robotic Applications: The use of vision based feature extraction
techniques have increased the deployment of robots in industrial environments
where they are used to weld, paint, assemble, pick and place, inspect, and test var-
ious products or objects (L.Torres-Mendez & Olaya, 2011; Siagian & Itti, 2009).
Apart from their use in the industry, they are also used by the military in un-
manned aerial vehicles (Der et al., 2004), astronomy for space exploration and
doctors in surgery(Lehr et al., 2011).

e Impact in the Field of Medicine: The study of the biological vision for object
recognition systems can also be used to reverse engineer the designed system to
explore how visual information is processed at later stages of vision. Such research
will not only help us in improving the performance of the biologically inspired ap-
plications discussed above, but will also assist us in devising effective treatment for

people suffering from perception and cognitive disorders, e.g. dyslexia, attention
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deficit hyperactivity disorder (ADHD), etc.

1.5 Contributions of this Thesis

This thesis

e Highlights the limitations of generative models: multivariate Gaussian model and
restricted Boltzmann machine (RBM) for the classification task on several bench-
mark texture, character and object recognition data sets.

e Suggests a fast alternate method of achieving state of the art classification perfor-
mances on these data sets with Fisher kernels derived from very compact generative
models.

e Proposes a recognition solution that is low cost, energy efficient and comparable
to state of the art classification methods.

e Surveys the computational models of object recognition used so far and suggests
some methods to improve the progress of research in this area.

e Explores the discriminative quality of the Fisher score space derived from differ-
ent generative models and points out the possibility of Fisher kernel’s biological

plausibility.

1.6 Organization

This thesis is organized as follows:

Chapter 2 reviews the biological aspects of the mammalian visual system that inspired
the computational models used in this work. We have reviewed the relevant visual
anatomy as well as the computer vision literature for scene recognition to put this
research into context. Chapter 3 describes the feature extraction and selection techniques
used to encode different object classes in the recognition systems. Chapter 4 explains
the generative models that were used to draw Fisher score space for the Fisher kernels.
Chapter 5 explains the details of the experimental results carried out for classifying
objects in natural scenes. We then summarize our conclusions and highlight the future

work that is to be investigated as a followup of this research.

1.7 Publications

The work shown in this thesis has been part of the following publications:
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e Chapter 5 :

T. Azim and M. Niranjan. Inducing Discrimination in Biologically Inspired Mod-
els of Visual Scene Recognition. In IEEE International Workshop on Machine
Learning for Signal Processing, (MLSP), September 2013.

e Chapter 2 and Chapter 6 : T. Azim. Computational Models of Object Recog-
nition: Goal, Role and Success. In International Joint Conference on Computer
Vision Theory and Applications (VISAPP), January 2014.

e Chapter 5: T. Azim and M. Niranjan. Texture Classification with Fisher Kernel
Extracted from the Continuous Models of RBM. In International Joint Conference
on Computer Vision Theory and Applications (VISAPP), January 2014.

e Chapter 5: T. Azim and M. Niranjan. Enhancing Discrimination in Biologically
Inspired Models of Visual Scene Recognition. Submitted to the Journal of Image

and Vision Computing.






Chapter 2

Background and Literature

Review

In this chapter, we review some biological aspects of the mammalian visual recogni-
tion system that have been borrowed by the computer vision community to help design
artificial recognition systems. We note that the low level optical sensing stage is well
understood and the computational models based on the cellular response to image fea-
tures are well developed. However, the way the mammalian visual system represents
pattern variability is less obvious, though some theories on this exist and are reviewed

here.

2.1 Anatomy of the Human Visual System

Visual scene recognition is viewed as a hierarchical process in which information is
processed sequentially with increasing sophisticated representations from the retina of
the eye to the lateral geniculate nucleus (LGN) and then from LGN to the primary and

secondary visual cortices of the brain.

The act of seeing starts when the lens of the eye focuses an image of its surroundings
onto a light-sensitive membrane at the back of the eye, called the retina. The photo-
receptive cells in the retina are responsible for the conversion of light patterns into nerve
impulses (electrochemical signals) that are sent via the optical nerve to various parts
of the brain for scene analysis and understanding. See Figure 2.1 for illustration. The
vast majority (approximately 90%) of the nerve fibres in the optic tract open into the
lateral geniculate nucleus (LGN), while the rest send information to the midbrain which
assists in controlling eye movements as well as other motor responses (Nolte, 2002).
The cells of the lateral geniculate nucleus terminate at the main image interpretation

center of the brain, the primary visual corter. It is in the primary visual cortex from

9
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where the brain begins to reconstitute the image received at the receptive fields of the
retinal cells. In the visual system, the receptive field is often identified as the region
of the retina where the action of light causes reflex in the neurons but this concept
has been extended to other neurons in the visual pathway following Hubel and Wiesel’s
theory (Hubel & Wiesel, 1962, 1965) which proposed that the receptive fields of cells
at one level of the visual system are formed from input by cells at a lower level of the
visual system. Thus, small simple receptive fields are combined to form large complex
receptive fields. Hubel’s experiments were conducted on a cat’s visual cortex, however
later research on the human visual cortex also reaffirmed these findings, suggesting that
along the human visual pathway in the mammalian brain, the receptive fields increase

in size with increasing stimulus eccentricity (Smith et al., 2001).

\| Lateral

L geniculatef" %’ r,-)

FI1GURE 2.1: Optical view of human eye showing the projection of real world image

onto its photographic film, i.e the retina. The lens finely focuses the light reflected from

the object onto the retina which initiates a cascade of chemical and electrical events

that trigger nerve impulses carried to the brain through optical nerve !. The path from

eye to the visual information processing hub of brain, i.e. the primary visual cortex? is
also shown.

2.1.1 Visual Cortex and Neural Cells

The visual cortex is organized into a primary and secondary region in each occipital lobe.
The visual signals first come into the primary cortex (also called Visual 1/ V1), located
in the most posterior portion of the brain’s occipital lobe. According to the Two Streams
Hypothesis, the neural information takes two different pathways/streams in parallel from
V1: the dorsal stream and the ventral stream (Goodale & Milner, 1992). The ventral
stream also known as the “what pathway”, travels via V2 and V4 to the temporal
lobe and is involved with object identification, recognition and long-term memory. The
dorsal stream or “how pathway” goes from V1 to V2, V6, V5 and then terminates in
the parietal lobe. It is involved with the processing of object’s spatial location relevant

to the viewer. See Figure 2.2 illustrating the anatomy of the mammalian visual cortex.

Mttp://www.tutorvista.com/science/human-eye-and-the-colourful-world
*http://thebrain.mcgill.ca/flash/d/d_02/d_02_cr/d_02_cr_vis/d_02_cr_vis.html#3
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FIGURE 2.2: Lateral view of brain showing different regions involved in visual object

recognition. The occipital lobe is the visual information processing center of the mam-

malian brain containing most of the anatomical region of the visual cortex 3. The cortex

is divided into primary and secondary regions and the complex cells in cortex, V1-V5
are arranged symmetrically in each of the brain hemispheres respectively.

There are about 100 billion nerve cells (or neurons) in the primary and secondary regions
of the mammalian brain. Hubel and Wiesel classified these cells as simple and complex
according to the complexity of their response to the light stimulus (Hubel & Wiesel,
1962, 1965). A cell is termed as simple based on four different criteria: First, their
receptive field could be subdivided into distinct excitatory (on) and inhibitory (off)
regions. Second, we can find spatial summation of effects within each distinct subregion,
i.e. the more of a region a stimulus fills, the stronger is the resultant excitation or
inhibition. Third, there is a spatial antagonism between on and off subregions of the
receptive field, i.e. we get a mutual cancellation of responses on stimulating two opposing
regions at the same time. And fourth, the visual responses to stationary or moving spots
could be predicted from the spatial organization of the subregions. Cells that do not
fulfill these four criteria are classified as complex cells. According to Hubel’s classical
model of visual cortex, cells in the V1 region are regarded as simple cells and the cells
in V2, V3, V4 and V5 are categorized as complex cells. The specific function of each of

these nerve cells in the visual cortex is described in Table 2.1.

The hierarchical modelling paradigm proposed by Hubel and Wiesel has remained widely

popular because of its appealing simplicity, yet there are some critiques they have faced

3http://education.vetmed.vt.edu/Curriculum/VM8054/EYE/CNSPROC . HTM
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Complex Cell

Simple Cell

LGN

FIGURE 2.3: Hierarchical models put forth the idea that simple cells and complex cells
represent two successive stages of cortical processing

TABLE 2.1: Neural cells in the visual cortex are sensitive to different features of visual
input summarised below.

Cells Vi V2 V3 V4T V5
Edge Information Y Of illusory contours specifically Y Y -
Color Information Basic/Initial Y (Few neurons) Y -
Motion(Objects Speed in a Scene) Y - Y - Y
Attentional modulation - (>V1 but <V4) - - -

Shape - Y - - _
Eye movement guidance - - - - Y

due to some new experimental and computational evidence. First, some complex cells
were found to receive direct geniculate input from the retina (Hoffman & Stone, 1971;
Bullier & Henry, 1979; Ferster & Lindstrom, 1983; Tanaka, 1983) indicating that complex
cells were not so different from simple cells. Second, several studies failed to find evidence
for excitatory connections from simple cells to complex cells (Toyama et al., 1981a,b;
Ghose et al., 1994; Freeman, 1996). Despite the wide acceptance of the hierarchical
processing idea, this critique makes it necessary for the hierarchical models to evolve
and embrace other ideas like parallel models and recurrent models. Parallel models put
forward the idea that simple and complex receptive fields could both be built in parallel
by direct geniculate inputs from the retina. The recurrent models on the other hand
suggest that the simple cells and complex cells may not be different cell types, rather
just two functional states of the same cortical circuit. To this day, a consensus among
hierarchical, parallel and recurrent models has been difficult to attain, however, the

circuitry used by all models is becoming increasingly similar (Martinez & Alonso, 2003).

4All this tuning is for the objects of intermediate complexity like geometric shapes not complex
objects like faces.
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2.2 Mathematical Model of Retinal Cells and Simple Cells

In order to understand the functionality and behaviour of neurons in different scenarios
without using invasive physiological methods, mathematical modelling is frequently used.
We discuss here the mathematical model of retinal ganglion cells and simple cells to give
an intuition of the mapping that forms the basis of many feature extraction algorithms

in computational neuroscience and computer vision.

The receptive field of cells at different locations of visual pathway show different spatial
organizations and have been been modelled mathematically quite accurately. Kuffler
(Kuffler, 1953) proposed that the ganglion cells in the retina are composed of receptors
with antagonistic concentric receptive fields that can be classified as off-center cells and
on-center cells. The on-center cells respond strongly to light entering on their receptive
field, whereas the off-center cells respond in the opposite way. Keeping in account this
anatomical structure, in the mid 1960s, Rodieck (Rodieck, 1965) and Cugell and Robson
(Cugell & Robson, 1966) proposed a mathematical model for the receptive fields of the
retinal ganglion cells. This model portrays the sensitivities of the ganglion cells as a
difference-of-Gaussian (DoG) function which is calculated by a linear subtraction of
two concentric responsively opposed Gaussian functions, with greater sensitivity in the

center and a smooth steep decay in the surround.
Response = W (r) = keexp|—(r/re)?] — ks exp[—(r/r5)?]. (2.1)

Here, the first Gaussian represents the excitatory region of the receptive field, and the
second Gaussian corresponds to the inhibitory region of the receptive field. The variable
r is the radial distance from the center of the receptive field, k characterizes the strength
of the center, ¢ and surround, s summation regions respectively. The larger of the two
radii stands for the surround, and the smaller radius corresponds to the center. The DoG
function is good at quantitatively describing the receptive fields and therefore has been
widely used to study the ganglion cells. It is because of this concentric organization of
the receptive field, why the ganglion cells are locally sensitive to illumination changes and
therefore act as the basis of the scale invariant feature transform (SIFT) used widely to
detect and describe salient local features in the state of the art vision algorithms (Lowe,
1999). The rectified ganglion output is given by the linear spatial summation of a given

luminosity L(r, ¢) of an image weighted by the DoG response function, W (r) as:

oo 27
O¢ = +GH(£G), where G = / / rL(r, o)W (r)drde,
o Jo

0, x<0
1, x>0

and H(x) = {

is the unit step function. The + and - signs are for on and off center cells respec-

tively(Atick & Redlich, 1990).
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FIGURE 2.4: Diagram showing signal summation over a retinal ganglion cell receptive
field. The upper diagram illustrates the assumption that signals from elementary areas
constituting the centre summating region and signals from elementary areas consti-
tuting the surround summating region are separately summed and that the resulting
signals C and S have antagonistic effects upon the ganglion cell. For an on-centre cell
the two signals would be described by +C and -S, for an off-centre cell by -C and +S.
In the lower half of the figure are shown the Gaussian weighting functions assumed to
describe the sensitivities of the centre and surround summating regions respectively;
We(r) = keexp|—(r/re)?.Ws(r) = ks exp[—(r/rs,)?] The weighting functions for both
center and surround summating regions have maxima in the middle of the receptive
field. The bars drawn below the centre and surround weighting functions are 5r. and
5rg, long respectively. These bars indicate the assumed anatomical diameters of the
regions (Cugell & Robson, 1966).

A simple cell sums its input from a set of ganglion cells. If we consider the simple cells
response characteristics in terms of a function over the (z,y) plane of visual space, then
the receptive field profile (rfp) is a bivariate real-valued function f(x,y) which multiplies
to the stimulus distribution of light intensity L(x,y), and is integrated over the plane

to yield the cell response:

+o0o “+oo
Response = k‘/ / L(z,y) f(x,y)dzdy. (2.2)

Thus, in the simplest case of a small spot of light located at (xq,yo) with intensity Iy,
the cell’s response would be kI f(xo, yo), where k is an arbitrary constant determined by
the chosen amplitude of modulation of response. A crucial feature of this concept is the
assumption of linearity: scaling the light stimulus, L(z,y) should identically scale the
response, and different stimuli in different regions of the plane should evoke responses
that would sum up. The receptive field profile, f(x,y) of the simple cells is usually mod-
elled via a Gabor function, first used by Marcelja (Marcelja, 1980) as a representation

of the functionality of simple cells’ receptive fields. The impulsive response of the Gabor
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function (Daugman, 1985) is given as: Response=f(x,y)=G - H, where

22
G = exp< v + y),and

202 202
H = cos (27rwa:’ + qﬁ) , where
¥ = zcosf+ysinh, and
y = —xsinf+ ycosh

The arguments x and y specify the position of a light impulse in the visual field and
o, A, 0 and ¢ are parameters defined as follows: The parameter A is the wavelength and
1/X the spatial frequency of the cosine factor in Eq.2.3. The ratio o/\ determines the
spatial frequency bandwidth of simple cells and thus the number of parallel excitatory
and inhibitory stripe zones which can be observed in their receptive fields. The half-

response spatial frequency bandwidth b (in octaves®) and the ratio o/\ are related as

o 1 /In220+1
o_1L1 2.3
A T 2 2041 ( )

The parameter o of the Gaussian factor determines the (linear) size of the receptive

follows:

field. Its value is determined by the choice of the parameters A and b. Finally, the
parameter ¢, which is a phase offset in the argument of the cosine factor, determines
the symmetry of the concerned Gabor function: for ¢ = 0° and ¢ = 180° the function
is symmetric/even; for ¢ = —90° and ¢ = 90°, the function is antisymmetric/odd, and
all other cases are asymmetric mixtures of these two. We will discuss this filter and its

application in more detail in Chapter 3.

To date, the most successful computational models have been built for the neurons at the
earliest stages of the visual pathway, i.e., the DoG function for retinal geniculate cells
and the Gabor function for simple cortical cells. Note that the Gabor function does not
take into account the anatomical structure of the visual system since it just assumes the
2D projection of image on retina as its input, bypassing the retinal LGN output. Fur-
thermore, it fails to reproduce some properties of simple cells, such as cross orientation
suppression, independence of orientation tuning on contrast and response saturation.
Another recent model of simple cells which combines the responses of LGN cells with
center-surround receptive fields (RFs) is known as Combination of RFs (CORF) model
(Azzopardi & Petkov, 2012). Besides orientation selectivity, it exhibits cross orientation
suppression, contrast invariant orientation tuning and response saturation. They have
also shown to demonstrate that the RF map of the CORF model could be divided into
elongated excitatory and inhibitory regions typical of simple cells. More complex models
of cells combine multiple functions to accurately reproduce the response of a neuron to
different stimuli (Bonin et al., 2005; Rust et al., 2005).

5The frequency is divided into a set of frequencies called bands where each band covers a specific
range of frequencies. A frequency is regarded as an octave in width when the upper band frequency is
twice the lower band frequency.
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2.3 Literature Review

2.3.1 Earlier Computational Models of Object Recognition (1930-2005)

Some of the early ideas on the computational modelling of visual object recognition can
be traced back to Gestalt’s work in the 1930s (Wertheimer, 1938; Fulcher, 2003) that
illustrates a set of principles explaining how human vision groups elements to recognize
objects and how visual objects could be distinguished from each other and from the
background. The Gestalt psychologists maintained that humans constantly search for a
‘good fit’ between the visual image and the stored memories of the visual objects that
are naturally organized in the brain as patterns based on their continuity, similarity,
closure, prorimity and symmetry. These defined principles of perception that assist
grouping of stimuli and are minimally affected by an individual’s past experience are
known as the Laws of Pragnanz. Gestalt theory laid much of the groundwork for the
study of object recognition, however it was criticized heavily because of being more
descriptive than explanatory enough to model the functioning of human vision (Bruce
& Green, 1985). More tangible work that draws ideas from the study of the neural
information processing in computational form, comes from Hubel and Wiesel (Hubel &
Wiesel, 1962, 1965), who by observing the cat’s visual cortex introduced the concept of
hierarchical visual information processing in the receptive fields. It was this discovery of
the receptive fields and feed forward architecture that later on lead to the development
of many different hierarchical models of object recognition (Fukushima, 1988; Wallis &
Rolls, 1996; Riesenhuber & Poggio, 1999; Deco & Rolls, 2006).

One of the most influential work on understanding visual scene analysis after Hubel and
Wiesel is that of David Marr, who proposed hierarchical modelling of the visual sys-
tem, from simple to complex at three independent levels of abstraction: computational,
algorithmic and implementational levels. In computer analogy, these could be roughly
understood as task, software and hardware levels. According to Marr, separating the
three levels allow those interested in cognition to focus on the level they are most inter-
ested in, while simultaneously allowing those not specially interested in cognition (like
computer scientists) to provide valuable insight from their specific point of view. The
tri-level hypothesis is not without any objections (Friedenberg & Silverman, 2006), but
it remained a valuable tool to aid in the study of cognitive science in general. Apart from
the tri-level hypothesis, Marr also proposed an intermediate stage of information repre-
sentation - the 2-1/2D sketch - between the 2D image on the retina and a 3D description
of the world in cortex (Marr & Poggio, 1979; Grimson, 1981). The idea of a primal sketch
is similar to a pencil drawing by an artist in which different areas of a scene are shaded
to give depth to it. This bottom up hierarchical processing insight although seminal,
has now been modified by the recent research (Serre et al., 2007b; Rolls et al., 2008-

2009). However, it highly influenced the state of the art object recognition systems circa
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1965-1980, giving birth to object centered/shape based models that focused on finding
the correct representation for visual primitives, and represented objects hierarchically in
terms of their structural properties. Marr and Nisihara’s idea of part based structural
representation was based on hierarchically stored three dimensional volumes of general-
ized cones (or cylinders) and their spatial relationship to one another (Marr & Nishihara,
1978). This approach of using geometric primitives was an attempt to reconstruct the
shape of objects, in a similar vein to how some other inspired approaches in parallel line
of work (Nevatia & Binford, 1973) were trying to reconstruct the scene, however, they
did not provide any empirical support for the proposed model. Compared to this initially
proposed model by Marr, the most well received structural descriptive model was the
recognition by components (RBC) model by Biederman (Biederman, 1987), who refined
Marr’s model of object recognition in important ways and provided empirical support for
the proposed theory: First and foremost improvement was the psychophysical support
of the RBC model (Biederman, 1986; Biederman & Cooper, 1991). Another defining
factor of the recognition by components (RBC) theory was its ability to recognize the
objects regardless of the viewing angle, known as viewpoint invariance. Although this
model made sensible assumptions of how human visual system may parse a scene, it was
not without any caveats in practice (Tarr & Blthoff”, 1998). The main disadvantages
of such shape-based methods are: the dependency on reliable extraction of geometric
primitives (lines, circles, etc.), the ambiguity in interpretation of the detected primitives
(presence of primitives that are not modelled), the restricted modelling capability owned
by a class of objects which are composed of few easily detectable elements, and the need
to create the models manually (Matas & Obdrzalek, 2004).

In contrast to the view point independent method proposed by Biederman, the decade
of 1990s saw the evolution of appearance/view based models in which the objects are
represented with respect to their viewpoint, thus entailing multiple representations that
place higher demands on memory capacity; however it does potentially reduce the de-
gree of computation necessary for deriving higher-level object representations in object
centered models. Based on the derived features, these methods can be sub-divided into
two main classes, i.e., local and global approaches. A local approach grabs a feature
from a small region of an image (object) which is ideally a distinctive property of the
object’s view/projection to the camera. Examples of local features of an object are
the color, mean gradient or mean gray value of pixels from small region. In contrast,
the global approaches grab features that cover the information content of the whole
image. This varies from simple statistical measures (e.g., mean values or histograms
of features) to more sophisticated dimensionality reduction techniques, i.e., subspace
methods, such as principal component analysis (PCA), independent component analysis
(ICA), or non negative matrix factorization (NMF). Some of the popular methods that
come into this category of models were proposed by (Turk & Pentland, 1991; Linsker,
1992; Lades et al., 1993; Ojala et al., 1994; Murase & Nayar, 1995; Bell & Sejnowski,

1997; Lowe, 1999). The question of whether the human visual system uses a view based
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or an object centered representation has been a subject of much controversy (Logothetis
& Sheinberg, 1996; Tarr & Blthoff”, 1998). We will just mention here the fact that the
psychophysical and physiological data from humans and monkeys actually supports a
view based approach. View based approach is attractive since it does not require image
features/geometric primitives to be detected and matched. But their limitations, i.e. the
necessity of dense sampling of training views and the low robustness to occlusion and
cluttered background, make them suitable mainly for certain applications with limited
or controlled variations in the image formation conditions, e.g. industrial inspection

(Matas & Obdrzalek, 2004).

In order to address the issues faced by object centered and appearance based models,
feature based methods were proposed next, in which the objects are represented by a set
of view independent local features which are automatically computed from the training
images and stored as a database for probing the class of the test images later. Putting
local features into correspondence is an approach that is robust to object occlusion and
cluttered background in principle. Thus, when part of an object is occluded by other
objects in the scene, only features of that part are missed and as long as there are
enough features detected in the unoccluded part, the object can be recognized accu-
rately. Examples of such features that have been widely used for object recognition are
scale invariant feature transform (SIFT) (Lowe, 2004), histogram of gradients (HoG)
(Dalal & Triggs, 2005), haar wavelet feature set (Viola & Jones, 2001), etc. Such local
patch based methods hold biological plausibility and tend to show benefits over global
approaches when supported by mathematical models and neural network frameworks in
object categorization (Leibe & Schiele, 2003b).

One of the most popular ways of transforming a set of low level features extracted
from an image into a high level image representation is the bag of visual words (BoW),
inspired by the traditional bag of words technique for text analysis. The BoW algorithm
constructs a codebook analogous to a dictionary from the collection of orderless patch
based features, where each codeword in the codebook is a representative of several
similar patches attained through the clustering process; consequently the test image
can be represented by the histogram of the codewords. Several state-of-the-art visual
object recognition systems (Csurka et al., 2004; Zhang et al., 2007), (Li et al., 2008;
Wu & Rehg, 2011) fit into this general framework of codebook based object recognition
models. After the image features are represented as codewords in the BoW model,
learning and recognition can be done in a generative or discriminative way. One of
the greatest challenges in building up a codebook based model is the computation time
required for clustering million of feature data points. (Ramanan & Niranjan, 2010)
proposed a solution to this problem via a sequential one-pass algorithm that creates the

codebook in a drastically reduced time.

From a computational scientists’ point of view, it goes without saying that this continu-

ous research effort of developing bio-inspired architecture and feature learning algorithms
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was only taking place because the machines had not achieved human compatible speed
and accuracy of detecting scenes. In this respect, the first researcher to quantify the
timing of the visual scene understanding in humans was Simon Thorpe (Thorpe et al.,
1996), who explained through event related potentials (ERP) analysis, the amount of
time it takes to categorize the visual scene in cortex, i.e. 100-150 ms. Progress towards
understanding object recognition was driven by exploring and linking phenomenon at
different levels of abstraction. At one end, where hierarchical generative models and
learning algorithms inspired from the cortex were being improved, statistical methods
independent of the biology of the visual system were also being developed in parallel.
One popular paradigm which gathered a lot of attention since mid 1990s was the Vapnik
theory of support vector machines (SVM) which showed impressive classification perfor-
mance on many benchmark data sets (Cortes & Vapnik, 1995). SVMs utilize a principle
called kernel trick that computes the dot products in high dimensional feature spaces us-
ing simple functions called kernels defined on pairs of input patterns. This trick enables
us to get a linearly separable hyperplane for the data which is otherwise nonlinearly
separable in the input space. Not only did the SVM classifier work successfully with the
state of the art BoW feature space (derived from the BoW model discussed just above),
but also with Fisher kernels (Jaakkola & Haussler, 1998) that combines the benefits of
the generative and discriminative approaches for classification by deriving a kernel from
the generative model of the data. Kernel classifiers like SVM proved their significance
in various applications but they require a large amount of labelled training data as well
as prior definition of a suitable similarity metric/feature space in which naive similarity
metrics suffice for the classification to perform well. This requirement invites criticism
by the researchers who are of the view that arranging a large amount of labelled data

for many objects is expensive/impractical.

Although most of the proposed object recognition systems are inspired from the hierar-
chical nature of the primate cortex, it is worth mentioning that the neural connectivity
and learning algorithms of these models have evolved with time. FEarlier, most of the
computational efforts were focussed on feed forward processing of information but since
these feed forward connections just constitute a small fraction of the total connectivity
in cortex, researchers shifted their attention towards the development of systems that
made use of the back projection feedback too (Rumelhart et al., 1986). Feedback using
back projection provides the opportunity of using previous knowledge, memory and task
dependent expectations in a system (Kreiman, 2008; Karklin & Lewicki, 2005). This
change in neural connectivity revolutionized the learning algorithms used in undirected
graphical models (Rumelhart et al., 1986), directed graphical models (Hinton et al.,
1995) and non graphical models (Rumelhart et al., 1986). Although these theories failed
to answer the scientific question of how the brain learns visual features, they produced
two neat tricks: one for learning directed graphical models (Thulasiraman & Swamy,
1992) and the other one for undirected models (Hinton et al., 2006). Another influential

fact that was established was that individual neurons are not sufficient for discriminating
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between objects; rather population of neurons should be analysed - a neuronal behavior
also pointed out by the Wilson-Cowan model (Wilson & Cowan, 1972) in early 1970s
and later addressed in many computational neuroscience problems (Sejnowsky, 1976;
Amit & Brunel, 1997; Hertz et al., 2004).

2.3.2 Recent Computational Models of Image Understanding (2006-
Present)

Much of the progress experienced in the last decade has produced an overwhelming body
of object recognition results without explaining anything significant about the perception
and vision phenomenon in human visual system. The success of these artificial systems
is determined by the overall recognition accuracy and the time they take to categorize
these images. In order to cater for the speed of recognition, it is worth mentioning the
influential work of Poggio and Serre (Serre et al., 2007a) for developing an immediate
recognition or rapid categorization system, which is the fastest known form of computer
object recognition against humans. In this system, the parallel processing paradigm was
implemented rather than the conventional serial processing machine learning to model
the first 100-150 ms of visual information flow in the ventral stream of cortex. This is
behaviourally equivalent to a quick object categorization task where the presentation
time of the object is small and the back propagation of visual information is not likely
to happen. When compared to the human observers on animal presence/absence test in
a scene, it was found that the computers did as well as the humans, and thus better than
the best machine vision algorithms available at the time. Immediate object recognition
laid a new foundation of overall visual object recognition and extending this theory
to solve harder perception problem requires recruiting higher levels of brain function
which would take more time and computational complexity for implementation. This
extension has already began to spread in the Neuroscience community; an example being

Stan Bileschi who applied this model to scene recognition (Bileschi, 2006).

As far as the goal of gaining better accuracy is concerned, deep learning and representa-
tion has been the subject of much recent research ever since the proposed breakthrough
in feature learning by Hinton in 2006 (Hinton et al., 2006). The central idea of his
greedy layer wise pre-training procedure is based on training each layer of the graphical
model independently in an unsupervised way and then taking the features learnt at the
previous layer as input to the next level. The features learnt by the deep model can
either be used as an input to a standard supervised machine learning predictor such as
support vector machines or as an initialization for a deep supervised neural networks
like multi-layer perceptron (MLP). This idea of greedy layer wise unsupervised train-
ing was followed up quickly by the rest (Hinton & Nair, 2009; Taylor & Hinton, 2009;
Krizhevsky et al., 2012) as deep architectures showed potential of progressively learning

more abstract features at higher levels of representation, yielding better classification er-
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ror (Larochelle & Bengio, 2008; Erhan et al., 2010), quality of samples generated by the
probability distributions (Hinton & Salakhutdinov, 2009) and the invariance of proper-
ties learnt by the classifier. The recent work of (Krizhevsky et al., 2012) also shows that
with proper initialization of parameters and choice of non linearity, it is not necessary
to do unsupervised pretraining of the model as required by other deep networks. This
finding reinforces the hypothesis that the unsupervised pretraining acts as a prior that
brings little/no improvement over pure supervised learning from scratch when the train-
ing data is large. The deep learning algorithms first proved their dominance over the
MNIST digits data set by breaking the SVMs classification supremacy, and then moved
on to successful object recognition in natural images. The latest breakthrough has been
achieved with deep convolution neural networks on the ImageNet data set, bringing the
error rate of the state of the art algorithms from 26.1% to 15.3% (Krizhevsky et al.,
2012) on 10K classes of objects. Variants of deep models that embed sparsity have also
shown to mimic certain properties of visual area V2 (Lee et al., 2008), thus making this
approach a viable biologically inspired recognition solution. While deep learning algo-
rithms are making influential progress, another impressive approach making its mark in
parallel is that of Fisher kernels with SVMs (Jaakkola & Haussler, 1998). The Fisher
kernels made a successful come back by first showing its classification advantage over
the state of the art bag of words approach (Perronnin & Dance, 2007; Perronnin et al.,
2010b), and then showing its successful use with large scale data sets like PASCAL
VOC 2007 (Csurka & Perronnin, 2011), CALTECH-256 (Sanchez & Perronnin, 2011)
and ImageNet-10K (Sanchez et al., 2013). Currently, on the ImageNet-10K classification
task, the second best performance after the deep convolution network (Krizhevsky et al.,
2012) is achieved by the Fisher kernels (Sanchez et al., 2013) derived from a Gaussian
mixture model built for SIFT, LBP and GIST data descriptors. Another recent devel-
opment in this area has been made by the Google researchers with a scalable view based
approach that deploys millions of filters representing objects and their constituent parts
across a wide range of poses and scales to detect 100K object categories in about 20
seconds (Dean et al., 2013). This work is a great attempt of bridging the gap between
the performance of the artificial and human recognition systems in terms of their recog-
nition speed and wide range of recognizable classes, however its biological plausibility
is not verified. From a computational scientists’ point of view, this work emphasizes
the fact that an artificial perception learning algorithm does not necessarily have to
satisfy biological plausibility if the ultimate goal of recognition is achieved successfully,
however for cognitive neuroscientists, this solution does not provide any insights into

the unknown functionality of the human visual system.
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2.4 Summary

This chapter has discussed some aspects of the mammalian visual system that have
inspired the design of the artificial object recognition systems. We have reviewed the
mainstream learning algorithms of visual features representation and the computational
modelling approaches proposed with the aim of developing better artificial object recog-
nition systems. The focus of this thesis is to bring out the discrimination power of widely
used generative models of scene recognition, like restricted Boltzmann machine (RBM)
and multivariate Gaussian model (MVG), and suggest a Fisher kernel based solution to
achieve state of the art performances in a significantly short time. Fisher kernels have
already shown impressive classification results on large data sets like ImageNet discussed
just above. We have pursued this approach and report the success of the method on
multiple benchmark data sets in Chapter 5. A detailed review on the successful imple-
mentation and application of the Fisher kernels is given in Chapter 3. Based on this
survey presented here, we have also suggested some criterion of success in Chapter 6 that

can guide the direction of the future research for artificial object recognition systems.



Chapter 3

Feature Extraction and
Multi-class Object Recognition

with Fisher Kernels

This chapter introduces the preliminary concepts of feature extraction and kernel based
learning algorithms that form the basis of our experiments discussed in the following
chapters. We discuss how image descriptors are extracted from different object classes
and which discriminatory framework is utilized to classify them appropriately after prob-

abilistic modelling.

3.1 Feature Extraction

In image processing and pattern recognition, feature extraction is an important technique
used to represent the data into more informative and meaningful signatures than its
original form. It may also be used for data dimensionality reduction in order to avoid
model overfitting. Model overfitting is a serious concern when the number of variables
describing the data become extremely large in comparison to the number of available
data points. Analysis of such data requires a large amount of memory and computation
power, and will result in a classification algorithm that overfits the training samples and
generalizes poorly to the unseen data. Thus, it is considered very important to reduce
the data dimensionality by representing it with a reduced set of features/variables, called

feature vectors.

The performance of the classifiers rely a lot on the type of the features extracted and
used; some features might distribute very well into the feature space enabling the clas-
sifiers to discriminate between different class distributions perfectly, whereas others do

not spread as much, showing little discriminative information leading to poor classifica-
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Ficure 3.1: An illustration of how the pixels of an image are reduced to represent
meaningful features of an image; the dimensionality of the extracted features is usually
less than the original dimensions of an image.

tion results. We will discuss here in detail two techniques relevant to feature extraction
and feature selection, both deployed in this work. For part of the experiments, the
feature extraction is carried out through biologically plausible Gabor filters, and the fea-
ture selection approach is carried out through mazimum relevance minimum redundancy

approach, due to their better selection strategy.

3.1.1 Gabor Feature Extraction

Gabor features extracted by Gabor filters were initially introduced for representing 1
dimensional signals in the time-frequency domain by Dennis Gabor (Gabor, 1946). The
elementary 1D Gabor function can be defined as the product of the Gaussian probability

function, G with a harmonic oscillation, H of any frequency as:
Filter = G - H = exp(—a?(t — to)?) - cos(2m foto + ¢), (3.1)

where «, tg, fo, ¢ are constants and are interpreted as the sharpness/spread of the
Gaussian pulse, the epoch of the Gaussian peak, and the frequency and phase constant

of the modulating oscillation. The constant « is connected with At and Af by the

w1l 1

relations:

The two-dimensional Gabor representation of the filter was proposed by Daugman
(Daugman, 1980) as a framework for understanding the orientation-selective and spatial-
frequency-selective receptive field properties of neurons in the brain’s visual cortex
(Daugman, 1985). Since then, they have been extensively used in computer vision,
neuroscience and psychophysics due to their wide applications in image segmentation,
compression, classification and retrieval (Mittal et al., 1999; Angelo & Haertel, 2003;
Zhang et al., 2000; Fischer & Cristobal, 2001). The impulse response of a 2D Gabor

filter can be written as a product of a sinusoidal plane of particular frequency modulated
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by a Gaussian function of particular orientation as:

Gabor Filter = G- H, where
2?2y
G = — + ==
P ( 202 * 202 ) ’
H = cos (27rwac' + qb) , Where
' = (x—xg)cosby+ (y—yo)sinby,
y = —(z—x0)sinb, + (y — yo) cosb,.

In the above equation, o, and o, determine the scale of the Gaussian function, 6, is the
orientation of the Gaussian envelope expressed in terms of degrees, w is the frequency
of cosine wave, ¢ is the phase offset of the cosine wave specified in degrees and xg, yo
represent the peak of the Gaussian envelope along x and y directions respectively. The

Gabor filter is convolved through the image I as described below:

I'=1%(G-H), (3.3)

FIGURE 3.3: Examples of Gabor stimuli. (a-d) show stimuli composed of a vertical
envelope multiplied by a carrier of orientation (a) 0 (b) 60 (¢) 85 and (d) 90 degrees
respectively.

Gabor filters behave like linear bandpass filters with selectivity to orientation and spatial
frequency that results in edge detection. For this reason, they are a popular tool for the
task of extracting spatially localized spectral features. As an illustration, consider the
image of a zebra shown in Figure 3.4. If we apply a Gabor filter, oriented vertically on

this image, it would give high response at all spatial regions where vertical stripes are
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FIGURE 3.4: (a) An image (b) The response for Gabor filter oriented horizontally-
white indicates high amplitude of response, black indicates low response. Notice how
regions of vertical stripes are highlighted.

present. Figure 3.4 (b) shows the amplitude of the response of such a vertically oriented
Gabor filter for this image. From this example, it is obvious that a filter bank consisting
of several different combinations of frequencies and orientation must be designed to grab
discriminative features of objects belonging to different class. A set of filters in Gabor

bank is shown in Figure 3.3.

Note that the Gabor filters are not the only available method used to fit the spatial
receptive fields of simple cells. There are other methods as well that compute the recep-
tive field responses locally or globally in terms of histograms (Schiele & Crowley, 1996;
Linde & Lindeberg, 2004) or locally as sparse set of interest points (Marr & Hildreth,
1980; Lowe, 1999; Young & Lesperance, 2001). The feature detectors for generating
these histograms or interest points utilize techniques that deploy the following single or
combination of techniques: (1) direct chromatic cues from the RGB images, (2) second
order gradients of the normalized Gaussian function and (3) differential invariants, such
as normalized Gaussian magnitude, normalized Laplacian magnitude and the normalised

determinant of the Hessian to approximate the receptive field response.

3.1.1.1 Parameter Setting for Gabor Filter

In computer vision image analysis, since prior knowledge on the localization, orientation
and scale of the features present in the image are all unknown, designing a reasonably
sized filter bank that captures discriminatory information is a great challenge. Most
of these practices have been influenced by the empirical results achieved on different
data sets. For example, the usual practice for texture feature extraction is to define the
highest frequency f,,, the number of frequencies n; and the number of orientations, n,.
Some studies in the literature (Bianconi & Fernandez, 2007; Li et al., 2010) suggest that
the smoothing parameters of Gaussian envelope (0,,0,) play more important role than
the frequency and orientation parameters. Thus, if we consider all of these as design
parameters, the total number of filters that can be generated in a bank after the selection

of these parameters are: ng= ny x n, X ngy X nsy. The highest frequency, f,,, should not
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exceed the Nyquist frequency, i.e. 0.5 cycles/pixel; the most commonly adopted values
are 0.35 and 0.4 used for textures in the literature(Bianconi & Ferndndez, 2007). The
central frequency of the highest frequency f,, helps us in selecting a range from which
the filter frequencies can be selected for each filter. Other assumptions that are usually

followed while designing these filters are:

e The angular displacement of two adjacent filters is constant (i.e. uniform separa-
tion in orientation)

e The frequency ratio of two adjacent filters is constant

e The size of the Gaussian envelope, o, and o, and the preferred spatial frequency

(1/X) are also not completely independent. They are usually calculated as:

o= al,
1 /In220+1
a=—\——,
TV 2 201

where b is the spatial frequency bandwidth in octaves. An octave is the interval
between two frequencies which are in the ratio of 2 to 1 (i.e the higher frequency
is exactly twice the lower frequency). Several experiments have shown that the
frequency bandwidth of simple cells in the visual cortex is about 1 octave(Pollen
& Ronner, 1983). Dependent on b, the value for a typically ranges between 0.3 to
0.6 in the literature(Kruizinga et al., 2002).

e Another common practice is to select the smoothing parameters such that the
iso-curves of the filter bank touch each other in the frequency plane as shown in
Figure 3.5. This minimization of superposition between various filters of the bank

would have beneficial effect on texture discrimination.

FiGURE 3.5: Filter banks with half-peak magnitude iso-curves touching each other
(left) and with a certain degree of overlap (right) (Bianconi & Ferndndez, 2007).

There are some other proposed techniques as well that design the filter bank ac-
cording to the resolution of the image (Jain & Farrokhnia, 1990). Traditionally,
large scale filter banks have played an important role in texture classification and

segmentation. However, their supremacy was brought into question, in the case of
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texture synthesis, by the approach of (Efros & Leung, 1999). They demonstrated
that superior synthesis results could be obtained using local pixel neighborhoods
directly, without resorting to large scale filter banks. For texture classification
problem, Varma (Varma & Zisserman, 2003) also showed that the textures can be
classified using the joint distribution of intensity values over extremely compact
3 x 3 Markov Random Field (MRF) neighborhoods. Both these comparisons were
made by comparing the performances of MRF classifier with MRS filter bank’s

performances in texture segmentation and classification problems respectively.

3.2 Feature Selection

The filter bank design should not be a process of simply setting parameters and
creating a lot of filters. Instead, feature selection should be an indispensable part
of the filter bank design process too. The filter bank generation provides us a
means to represent images in a transformed feature space, however their selection
enables us to view the effect on the model’s classification performance with the
change in
— The number of features and the number of training samples
Intuitively, if the number of samples are kept fixed, the introduction of more
features improves the classification performance and reduction of features
degrades the performance. However, in practice, this does not always hold
true. The classification performance might degrade with the increase in
number of features if the training samples are limited. This phenomenon is
referred to as peaking (Li et al., 2010) or overfitting in the literature, and it
happens because the classifier performance also depends on the relationship
between the number of samples and the number of features, i.e. sample-to-
feature ratio. The more complex the model is, the more samples one requires
to avoid the model to memorize the whole data and generalize well for the
unseen samples. Practical scenarios often have limited samples, and hence
low dimensional pattern representations to yield high sample to feature ratio.
In practice, the features extracted by a large filter bank are not equally informative,
and therefore could be pruned to yield better classification results. Similarly, if the
size of the training data is not sufficient, one can undersample/oversample it to
maintain the balance in sample-to-feature ratio. This balance contributes towards
training the model well for better classification besides saving the computational
costs. In the following section, we discuss feature selection schemes that allow us
to prune the least important features for classification task at hand. Apart from
feature selection methods, some other useful techniques that avoid overfitting are
cross-validation, regularization, early stopping, Bayesian priors on parameters or
model comparison. The basis of some techniques is either (1) to explicitly penalize

overly complex models, or (2) to test the model’s ability to generalize by evaluating
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its performance on a set of data not used for training and yet approximates the

typical unseen data that a model will encounter for testing.

3.2.1 Feature Selection Algorithms

The feature selection algorithms typically fall into two categories: ranking methods

and subset selection methods, both described as follows:

3.2.1.1 Ranking Methods

Feature ranking methods rank the features by a metric and eliminates all features
that do not achieve an adequate score. Some popular filter metrics that assist in
evaluating scores for the features in classification problems are correlation, mutual
information, class separability, error probability, inter-class distance, probabilis-
tic distance, entropy, minimum-redundancy-maximum-relevance and consistency-
based feature selection. These scores are computed between a candidate feature (or
set of features) and the desired output category. By convention, we assume that a
high score is indicative of a valuable feature, so we sort the features in decreasing
order of their achieved score S(7).

Following the classification of (Kohavi & John, 1997), feature ranking is a filter
method which is used independent of the choice of the predictor. Still, under cer-
tain independence or orthogonality assumptions, it may be optimal with respect
to a given predictor. For instance, using Fishers criterion to rank variables in
a classification problem where the covariance matrix is diagonal is optimum for
Fishers linear discriminant classifier (Duda et al., 2000). When feature ranking is
not optimal, it could still be used as a base line method to other variable subset
selection methods (3.2.1.2) because of its computational and statistical scalabil-
ity. Computationally, it is efficient since it requires only the computation and
sorting of n scores; whereas statistically, it is robust against overfitting because it
introduces bias but it may have considerably less variance (Hastie et al., 2009).
Despite these advantages, ranking the features individually and independently of
each other is unable to determine which combination of features would give the
best performance. A study shows that useless features often become meaningful

when used in combination with other features (Guyon & Elisseeff, 2003).

Maximum Relevance and Minimum Redundancy (mRMR) Technique:
Maximum relevance minimum redundancy (mRMR) approach (Peng et al., 2005)
is a filter based heuristic that selects the features which are least repetitive, and
for which the statistical dependence of the target class y in data subspace R,, is
maximal. If the relevance between the features is defined in terms of the mutual
information I, the purpose of feature selection is to find a feature set S with m

features of data x, that jointly have the largest dependency on the target class, y.



30

Chapter 3 Feature Extraction & Multi-Class Recognition With Fisher Kernels

This scheme has the following mathematical formulation:

Mazx-Relevance

max D(S,y), where D(S,y) Z I(fiy) (3.4)
€S

Minimum Redundancy

min R(S), where R(S) = |51|2 > I i), (3.5)

fi,fj€8

where I represents the mutual information between the features f; and f;, S is the
set of features we want to select and y is the label of the target class. It is very
likely that the features selected according to Maz Relevance have high redundancy.
When two features are highly similar, the respective class-discrimination potential
would not change much if one of them is removed. Therefore, it should be pruned
following the minimal redundancy constraint. The criterion combining the above
two constraints of maximal-relevance and minimal-redundancy is given by the

operator ® that optimizes D and R simultaneously as:
max ®(D,R),»=D—-R

In practice, incremental search methods can be used to find the near-optimal
features defined by ®(-). Suppose we already have the feature set, Sy,,—1 with m—1
features and the task is to select the mth feature from the set {F — S;,—1}. This
task is accomplished by selecting the feature that maximizes ®-. The respective

incremental algorithm optimizes the following condition:

max = I(y; fj) — Z I(fi, f5)

i E€EF—Sm—
fj fJES'm 1

The computational complexity of this incremental search method is O(|S| - N),
where N is the total number of data points and S is the set of features chosen
for better data discrimination. As compared to other standard ranking methods,
the mRMR technique has shown promising improvement for feature selection and
classification accuracy on handwritten digits, arrhythmia, NCI cancer cell lines,
and lymphoma tissues data sets. We therefore have chosen this technique to select

features in one of our experiments.

3.2.1.2 Subset Selection Methods

As compared to the ranking method in which the features present their individual

predictive power, the subset selection method searches the set of possible features
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for the optimal subset that improves classification performance. These methods,
generally known as wrappers, utilize the learning machine of interest as a black
box to score subsets of features according to their predictive power. Compared to
wrappers, the filters are computationally simpler and faster. For wrappers, one
needs to define: (i) how to search the space of all possible variable subsets (ii) how
to assess the prediction performance of a learning machine to guide the search and
halt it and (iii) which predictor to use. An exhaustive search can conceivably be
performed, if the number of features is not too large. But, the problem is known to
be NP-hard(Amaldi & Kann, 1998) and the search becomes quickly computation-
ally intractable. A wide range of search strategies can be used, including best-first,
branch-and-bound, simulated annealing, genetic algorithms (see (Kohavi & John,
1997) for a review). Performance assessments are usually done using a validation
set or by cross-validation. Popular predictors include decision trees, Naive Bayes,
least-square linear predictors, and support vector machines (SVM).

Wrappers are often criticized as a brute force method since they require a massive
amount of computation, however, it is not necessarily true. Efficient search strate-
gies may be devised. Using such strategies does not necessarily mean sacrificing
prediction performance. In fact, it appears to be the converse in some cases: coarse
search strategies may alleviate the problem of overfitting. Greedy search strategies
seem to be particularly computationally advantageous and robust against overfit-
ting. They come in two flavors: forward selection and backward elimination. In
forward selection, variables are progressively incorporated into larger and larger
subsets, whereas in backward elimination, one starts with the set of all variables

and progressively eliminates the least promising ones for classification.

3.3 Multi-class Object Recognition

Multi-class object recognition aims at assigning a class label to an object out of
several possible known categories. In practice, most of the classification problems
involve more than two classes, for example: identifying a person in an image, pre-
dicting phonemes from speech, associating a gene with biological processes etc.
Despite being widely studied, multi-class object recognition is still considered a
challenging task to undertake as it is simpler to construct classifier theory and al-
gorithms for two mutually-exclusive classes than for N mutually-exclusive classes.
There are not very elegant approaches of solving multi class problems directly and
it is still believed that developing a N-class SVM without decomposition of the
problem into a binary sub problem is an unresolved research problem.

The algorithms for carrying out multi-class classification fall into two broad cat-
egories: The first type performs true multi-class classification by directly deal-
ing with all the multiple labels in the target field; the second type breaks down

the multi-class problem into a collection of binary class sub-problems and then
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combines them later to make a full multi-class prediction. The second category
assumes that the problem can be solved naturally by extending the binary classifi-
cation technique for some algorithms. The examples of such algorithms are neural
networks, decision trees, k-nearest neighbor, naive Bayes, and support vector ma-
chines. Since we have used support vector machines as a discriminative classifier
to perform multi class classification in visual scenes, we will discuss it in detail in

the following section.

3.4 Choice of A Classifier - Support Vector Machines
(SVM)

Developed by Vapnik (Cortes & Vapnik, 1995), SVM is a supervised learning classi-
fier that analyzes the data and recognizes patterns by maximizing the classification
margin of a hyperplane boundary determined by a subset of training points on the
margin called the support vectors. SVMs function by projecting the training data
from the input space to a feature space of higher (infinite) dimensions by using a
kernel function. This results in a linearly separable hyperplane for the data which
is usually separable nonlinearly in the input space. In many instances, classifica-
tion in high dimensional feature spaces results in over-fitting in the input space,
however, in SVMs this over-fitting is controlled through the principle of structural
risk minimization(Cortes & Vapnik, 1995).

X,

FI1GURE 3.6: The SVM classifier that maximizes the margin between the two classes

The objective function of the support vector machines (SVM) in its primal form

is represented as:

N
. 1
min max o | w = Z; oilyi(w.g(xi) — b) — 1]}, (3.6)
1=
where «; is a non negative Lagrange’s multiplier, w is the normal vector to the
hyperplane, x; are the data vectors with labels y; either equal to 1 or -1. Writing
the classification rule in its unconstrained dual form reveals that the maximum

margin hyperplane and therefore the classification task is only a function of the
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support vectors, the training data that lies on the margin. Using the fact, that
| w ||?>= w.w and substituting w = Zfil a;yiX;, one can show that the SVM
objective function reduces to the following optimization problem in dual form
described in Eq.3.7. See Appendix D to see the complete background of the theory
of SVMs for classification.

N N
1
mgx E 1 o — 5 E ai@jyiyjK(07xi7Xj)
1=

ij=1
N
subject to 0 < a; < C, i=1,...N and Zaiyi =0, (3.7)
i=1

where «; is a non-negative Lagrange’s multiplier, C is the regularization parameter
and K is the kernel function used for nonlinear SVMs. This formulation is called
the soft-margin SVM and is used when there exists no hyperplane that splits the
positive and negative examples clearly. The soft margin method will choose a
hyperplane that splits the data as cleanly as possible, while still maximizing the
distance to the nearest cleanly split examples.

The parameter C controls the width of the margin to set the tradeoff between
margin maximization between classes and minimization of the misclassification
error on the training data. The higher the value of C, the more is the penalty
assigned to in-sample misclassifications, making the margin width smaller and
generalization ability of the predictor lower. Choosing a smaller C' will produce
a maximal margin hyperplane irrespective of the misclassification error on the
training samples. This causes the model to generalize well, however care should

be taken while reducing its value so as to avoid model underfitting.

C=100 C=10

_l'gl..O -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

F1cURE 3.7: The effect of the soft-margin constant C' on the decision boundary of the
classifier. A smaller value of C' (right) allows to ignore points close to the boundary,
and increases the margin.

The kernel function K is used to find out the similarity between each pair of data
point in high dimensional feature space without explicitly mapping them into that
space. The technique famously known as the kernel trick allows us to represent the

nonlinearly separable data in the real space into an inner product space where it



34 Chapter 3 Feature Extraction & Multi-Class Recognition With Fisher Kernels

becomes linearly separable. The only condition to find out such a representation is
to look for a function that satisfies Mercer’s theorem!. If this theorem is satisfied,
this ensures that there exists a (possibly) non-linear map from the input space X
into some feature space F, x — ¢(x), such that its inner product equals the kernel,

ie. K(xi,%x;) = (¢(x;)¢(x;)). The non-linear transformation is only implicitly
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FIGURE 3.8: Transforming the data from 2 — R2 through the kernel function so
that it becomes linearly separable.

defined through the use of a kernel, since it only appears as an inner product. It
is well established that this transformation works out well for Mercer kernels or
equivalently positive definite kernels (V.Vapnik, 1995). Although, the non-linear
classifiers provide better accuracy in most of the applications, it is often handy to
use linear classifiers because they have simple training algorithms that can scale
well with the size of the data (Bottou et al., 2007; Bishop, 2006).
There are different options available for choosing a kernel function K in SVM;
some widely used ones are listed below:

— Linear Kernel: K(x;,x;) = (x!x;)

— Polynomial Kernel: K(x;,x;) = (1 + (x'x;))?

— Radial Basis(Gaussian) kernel: K(x;,x;) = exp(%“xi —x;[1?)

— Sigmoid Kernel: K(x;,x;) = tanh(y(x;,x;) + ¢),
where d is the dimensionality of the space in which we intend to map the points.
The effectiveness the SVM depends on the selection of the kernel, kernel parameters
and soft margin regularization parameter C. An optimal value for these parameters

is chosen by cross validation technique on a small subset of data

"Mercer’s Theorem: A symmetric function K (x,y) can be expressed as an inner product, K (z,y) =<
#(x)P(y) >, for some ¢ if and only if K (z,y) is positive semi-definite, i.e. [ K(z,y)g(z)g(y)dzdy = 0Vg or
K(zl,z1) K(z1,22)...

equivalently | K(z2,x1) is positive semi-definite(psd) for any collection z1...2x.
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3.4.1 Multi-class Classification via SVM Classifier

There is no ‘definitive’ multi-class SVM formulation designed so far. In practice,
a multi-class classification via SVM is obtained by decomposing the multi-class
classification problem into multiple binary-class problems for SVM. The following
are some of the most common methods of doing SVM multi-class classification

through such decomposition techniques:

3.4.1.1 One Versus All (OVA)

The ‘one versus all’ approach builds as many classifiers as there are classes, each
trained to separate one class from the rest. The ith SVM is trained with all of
the examples in the ith class with positive labels, and all the other examples with
negative labels. To predict a new instance we choose the classifier with the largest
decision function value. This strategy is known as the ‘winner takes all strategy’
and is the earliest used implementation of multi-class classification through SVM
(Bottou et al., 1994).

3.4.1.2 One Versus One (OVO)

This methodology was introduced in (Knerr et al., 1990), and the first use of this
strategy on SVM was in (Kressel, 1999; Friedman, 1996). This approach builds
% binary classifiers for a n — class classification problem. Each classifier is
trained with all of the examples from the two classes such that the examples from
class ¢ take positive labels while the examples from class j take negative labels.
For a test example x, if the classifier C;; predicts x is in class 4, then the vote for
class i is increased by one, otherwise the vote for class j is increased by one. The
‘Max-Win’ strategy then assigns x to the class receiving the highest voting score
from all the built classifiers. Results in the literature show that this approach
takes less training time for each built classifier and is also better in performance

than the OVA scheme(Allwein et al., 2001; Hsu & Lin, 2002).

3.4.1.3 Directed Acyclic Graph (DAG)

Its training phase is the same as the one-against-one method that solves @

binary SVMs. However, in the testing phase, it uses a rooted binary directed

n(n—1)
2

acyclic graph which has internal nodes and leaves. Each node is a binary
SVM of the ith and jth classes. The DAG is equivalent to operating on a list,
where each node eliminates one class from the list (Platt et al., 2000). The list is
initialized with a list of all classes at first. A test point is evaluated against the
decision node that corresponds to the first and last elements of the list. If the node
prefers one of the two classes, the other class is eliminated from the list, and the
DAG proceeds to test the first and the last elements of the new list. The DAG

terminates when only one class remains in the list. Thus, for a problem with n
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classes, n — 1 decision nodes will be evaluated in order to derive an answer. See

Figure 3.9 for illustration:

F1cURE 3.9: The decision DAG for finding the best class out of four classes. The

equivalent list state for each node is shown next to that node

3.4.2 Computational Cost of SVM

The computational cost of the SVM optimization problem with any arbitrary ker-
nel is given by two intuitive lower bounds that are determined by the value of the
regularization parameter C' (Bottou & Lin, 2007) or in other words the total num-
ber of support vectors chosen to select the margin width. Since the asymptotic
number of support vectors grow linearly with the amount of data, the computa-
tional cost of solving the SVM quadratic problem has both a quadratic and a cubic
component. It grows at least like N2 when C is small and N3 when C gets larger.
In general, just testing that an optimal solution to the SVM quadratic problem
is achieved, requires an order of N2 dot products, while solving the quadratic
problem directly involves inverting the kernel matrix, which has complexity of the
order of N3, where N is the size of the training set (Bordes et al., 2005). However,
one hardly ever needs to estimate the optimal solution; and the training time for
a linear SVM to reach a certain level of generalization error actually decreases as

the training set size increases (Shalev-Shwartz & Srebro, 2008).

3.4.3 Computational Cost of the Kernel

Although computation of the n? components of kernel matrix seems an easy
quadratic problem, a more detailed analysis in (Bottou & Lin, 2007) reveals that
it is quite expensive in terms of the required computational memory. When the
number of data points grow, the kernel matrix becomes quite large to fit into the
memory. Therefore, the kernel matrix coefficients must either be computed on the
fly or stored in the cache. The kernel cache hit rate becomes a major factor of the
training time and for this reason, in practice, the kernel values often account for

more than half of the total computing time.
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The other issue usually encountered is that computing the full kernel matrix is
often wasteful. The expression of the gradients of Eq. 3.7 w.r.t a only depends on
kernel values that involve at least one support vector (the other kernel values are
multiplied by zero). All the optimality criteria can be verified with these kernel
values only and the remaining kernel values have no impact on the solution. To
determine which kernel values are actually needed, efficient SVM solvers compute
no more than 15% to 50% additional kernel values (Bottou & Lin, 2007). The total
training time is usually smaller than the time needed to compute the whole kernel
matrix. SVM programs that pre-compute the full kernel matrix are not competi-
tive. These issues only appear as constant factors in the asymptotic complexity of

solving the SVM problem. But practice is dominated by these constant factors.

3.4.4 SVM Optimization Algorithms

Since SVM is a quadratic optimization problem, there are a lot of quadratic pro-
gramming solvers that aim to find a solution for the problem. However most of the
early approaches were adhoc approaches which achieved optimization either by:
— Taking advantage of the sparsity in the quadratic part of the objective func-
tion ([terative searching/chunking methods),
— Performing successive applications of a very simple direction search (Direc-
tion search methods),
— Calculating kernel coefficients on the fly (Decomposition methods).
All these techniques considered the computational difficulty faced by the predictor
discussed in Section 3.4.3. We will not discuss each of these algorithms in de-
tail, rather just discuss those algorithms which have been used in the thesis. We
have used sequential minimal optimization (SMO) and stochastic gradient descent
(SGD) learning methods for optimizing the objective function of SVM. Details of

each of these is given below :

3.4.4.1 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) is a simple algorithm that can quickly
solve the SVM QP problem without any extra matrix storage and numerical QP
optimization steps (Platt, 1998). It works by decomposing the main QP problem
into smallest possible QP sub-problems called working sets. Each working set
involves two Lagrange multipliers a; and as whose analytic solution is optimized
jointly using Osuna’s theorem (Osuna et al., 1997) while keeping the other «;’s
fixed. The algorithm could be summarized into two parts: (1) a set of heuristics
for efficiently choosing the pairs of Lagrange multipliers to work on, and (2) the

analytical solution to a QP problem of size two.
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SMO maximizes the following objective function in dual form:
al 1
Lp = ;ai 5 Z iy K (xi X;),
= 4,7

N
Vi, 0 < a; <C and Zaiyi =0.
i=1

Thus, for any two multipliers «y and as , the constraints are reduced to:

OSOQ,O(QSC,

y1aq + Yo = K,

where k is the sum over the rest of the terms in the equality constraint (Zf\; 104y =
0), which is fixed in each iteration. There is a one-to-one relationship between each
Lagrange multiplier and each training example. Once the Lagrange multipliers
are determined, the normal vector and the threshold b can be derived from the

Lagrange multipliers:

N
w = Zyiaiqﬁ(xi), b= w¢(xk) — yx for some 0 < oy, < C. (3.8)

=1

Because w can be computed via Equation 3.8 from the training data before use,
the amount of computation required to evaluate a linear SVM is constant in the
number of non-zero support vectors. The amount of memory required for SMO is
linear in the training set size, which allows SMO to handle very large training sets.
Overall, SMO scales somewhere between linear and quadratic in the training set
size for various test problems, while the standard chunking SVM algorithm scales
somewhere between linear and cubic in the training set size. SMQO’s computation
time is dominated by kernel evaluation, hence SMO is fastest for linear SVMs and
sparse data sets (Platt, 1998). This algorithm is deployed by the popular machine
learning toolbox LIBSVM used in this research as well.

3.4.4.2 Stochastic Gradient Descent Learning

Stochastic gradient descent (SGD) is a simple yet very efficient approach to dis-
criminative learning of linear classifiers under convex loss functions such as (lin-
ear) support vector machines and logistic regression. Even though SGD has been
around in the machine learning community for a long time, it has received a con-
siderable amount of attention just recently in the context of large-scale learning
and sparse machine learning problems often encountered in text classification and

natural language processing.

Mathematical Formulation:
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Given a set of training examples (x1,%1),..., (Xxn,yn) where x; € RY and y; €
{—1,1}, our goal is to learn a linear scoring function f(x) = w’x + b with model
parameters w € R™ and intercept b € R. In order to make predictions, we simply
look at the sign of f(x). A common choice to find the model parameters is by

minimizing the regularized training error given by:

N
E(w,b) = ZL(yi, f(x:)) + aR(w), (3.9)
i=1
where L is a loss function that measures model (mis)fit and R is a regularization
term that penalizes model complexity; o > 0 is a non-negative hyper-parameter.
Different choices for L entail different classifiers such as:

— Hinge: (soft-margin) Support Vector Machines.

— Log: Logistic Regression.

— Least-Squares: Ridge Regression.

— Epsilon-Insensitive: (soft-margin) Support Vector Regression.

Popular choices for the regularization term R include:

L N
L2 norm: = R(w):= 3 Zw?,
i=1
N
Ll norm: = R(w):= Z |w;,
i=1
1 N n
Elastic Net = R(w):= P Zw? +(1—p) Z lw;|,
i=1 i=1

a convex combination of L2 and L1, where p is given by 1 —1,4ti0; {1ratio controls
the convex combination of L1 and L2 penalty. The algorithm iterates over the
training examples and for each example updates the model parameters according

to the update rule given by :

(3.10)

OR(w) OL(w'x; +b,y;)
+ )
ow ow

w(—m—n(a

where 7 is the learning rate which controls the step-size in the parameter space.
The intercept b is updated similarly but without regularization. The learning rate
7 can be either constant or gradually decaying. For classification, the default

learning rate schedule is given by:

1
- _ - 3.11
" alto+t)’ ( )

where ¢ is the time step (there are a total of Nggmpies X Nitertimesteps), to is deter-

mined based on a heuristic proposed by Leon Bottou (Bottou et al., 2008) such
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that the expected initial updates are comparable with the expected size of the
weights (this assuming that the norm of the training samples is approx. 1).

The major advantage of SGD is its computational efficiency, which is basically
linear in the number of training examples. If X is a matrix of size (IV, p), training
has a cost of O(kNp), where k is the number of iterations (epochs) and p is the
average number of non-zero attributes per sample. Recent theoretical results,
however, show that the runtime to get some desired optimization accuracy does
not increase as the training set size increases. For multi class classification through

SGD, Bottou’s implementation (Bottou et al., 2008) uses one versus all strategy.

3.5 Fisher Kernel

The Fisher kernel, named after Sir Ronald Fisher, was proposed by Jaakola et al.
(Jaakkola & Haussler, 1998) to introduce a generic mechanism for inducing the
knowledge of the generative probability models into discriminative classifiers like
SVMs. Both the generative and discriminative statistical models have their own
respective properties due to which they are preferred over each other in different
tasks. Generative models offer the advantage of processing data of variable length,
thus data such as speech, vision, text and bio-sequences which are often arrays of
variable size and typically encounter a difficulty in a simple classification problem,
are modelled through a generative model easily. These probabilistic generative
models can further lend themselves to Bayesian rule for classification. Moreover,
the addition or removal of data in generative models is also well-supported, however
their main disadvantage is that the overall classifier is not optimized for the clas-
sification performance. On the contrary, the discriminative methods are trained
with the immediate goal of optimizing classification performance but require fixed
length data sequences and optimal choice of kernel function and its parameters to
bring in data separability. Although, the selection of kernel and its parameters is
often based on experience or a potentially costly search, discriminative methods
have shown to outperform the generative models for classification tasks. Keeping
in account the contrasting benefits of the two approaches, it is highly desired to
merge the benefits of the two techniques, generative and discriminative, together.
This gap between the two paradigms is bridged by the Fisher kernels, also called
hybrid generative-discriminative method of classification.

The Fisher kernel defines the similarity between the two samples x; and x; as:
K(x4,%;) = ULF Uy, (3.12)

where Uy, is the Fisher score that maps the data x; into a feature vector Uy;,

that is a point in the gradient space of the manifold My. The Fisher score is
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FIGURE 3.10: The diagram illustrates the main idea of the Fisher vector that retains

information about the underlying distribution of the data. The motivation to use this

feature space is that the gradient of the log-likelihood with respect to the parameters

of a generative model captures the generative process of a sequence better than just
the posterior probabilities.

mathematically expressed as:
Ux = Vglog P(x|0), (3.13)

where 0 refers to the set/vector of generative model’s parameters and log P(x|0)
defines the log-likelihood function of the data learnt by the generative model.
The gradient of the log-likelihood function with respect to each model parameter
describes how that parameter contributes to the process of generating the observed
sample x. The F in Eq. 3.12 is the Fisher information matrix that tells us about

the covariance of the scores defined by Uy as:
F = Ey(xj0)[UxUs | (3.14)

As an illustration, lets consider the example of a multivariate Gaussian generative

model, N(x,X), whose probability distribution is given as:

Poctin®) = (g ) v (G -0 7 k- m) 69

Assuming that the data samples are independent and identically distributed, we
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can form the joint distribution of the samples via the following likelihood function:

N
log £ =log [ [(P(x|u, )
=1

log £ zlogﬁ () o (5w @ x-w)]

Nd N N (% — )5 (x; —
lOgE:—2log(2ﬂ)—2log(‘§)’)_zz=1(x u2) (i — ).

where p is a d-dimensional mean vector, 3 is a d X d dimensional covariance matrix,
and |X| denotes the determinant of the covariance matrix 3. Since the parameters

of this model are @ = {u, X}, the Fisher score for the model is calculated as:

Vylog L
X = h
U, <v2 log E) where

VylogL =X x — p)

1
Vxlog L = 3 [—E_l + 37 (x — p)(x - u)TE_l] :

The Fisher kernel enables us to calculate the separability measure between differ-
ent data points by taking into account of their underlying probability distributions.
It seems intuitive to compare the data points through the directions in which they
stretch the parameters of the model, i.e. by viewing the score function of the data
points as a function of their parameters and comparing the two gradients. If the
gradient vectors are similar, it means the two data points would adapt the model
in the same way. The motivation to use this feature space is that the gradient of
the log-likelihood with respect to the parameters of a generative model captures
the generative process of a sequence better than just the posterior probabilities.
There are a few properties of this kernel function which are stated in the form of
the following theorem (Jaakkola & Haussler, 1998):

Theorem 1. For any (suitably reqular®) probability model P(x|0) with parameters
0, the Fisher kernel: K(x;,x;) = ULF~'U,,, where Uy = Vglog P(x|6) has the
following properties:

a. it is a valid kernel function.

b. it is invariant to any invertible (and differentiable) transformation of the pa-
rameters.

c. a kernel classifier employing the Fisher kernel derived from a model that con-

tains the label as a latent variable is, asymptotically, at least as good a classifier

3We must have twice differentiable likelihood so that the Fisher information I exists and I must be
positive definite at the chosen 6.

*Maximum-a-Posteriori (MAP): Following the Bayesian statistics, the maximum-a-posteriori (MAP)
estimate is the mode of the posterior distribution, i.e. argmax, P(f|x) = argmax, P(x|0)P(0).
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as the mazimum-a-posteriori (MAP) * labelling based on the model.

The first property is immediate since the Fisher information matrix F' is symmetric
as well as positive definite satisfying the requirements of an inner product space
for the Fisher kernel. The second property follows from the fact that the kernel is
defined on the manifold Mpy, that uses as a feature space the gradients of the log
likelihood the probability distribution with respect to its parameters rather than
the model parameters itself. The third property can be established on the basis of
the discriminative derivation of this kernel shown in (Jaakkola & Haussler, 1998).
We will omit showing the proof here for brevity, yet will refer to these properties

when discussing the experimental results later in Chapter 4.

3.5.1 Related Work with Fisher kernels

The idea of Fisher kernels has been around since 1998, and was pursued quickly
by other researchers who applied it for classification in different applications of
biology, speech, vision and text. In this section, we group the use of Fisher kernels
in different applications to see how it has been utilized and evolved with time.
After Jaakkola et al. (Jaakkola et al., 2000) showed that using the Fisher kernel
derived from the hidden Markov models (HMM) significantly improves on the
previous methods of protein domain classification, Moreno and Rifkin (Moreno &
Rifkin, 2000) adopted this method for large scale web audio data classification.
The underlying probability distribution from which the Fisher vectors were drawn
was a Gaussian mixture model. Smith and Niranjan (Smith & Niranjan, 2001) gave
some further experimental justification for using the Fisher kernel in audio data
classification domain by emphasizing that the Fisher kernel limits the dimensions
of the feature space to give some beneficial regularization, particularly when the
two classes are very inseparable. Smith and Gales (Smith & Gales, 2002) further
extended the standard likelihood based score space of the Fisher kernel to likelihood
ratio based score space, and showed that it outperforms the classical score space
and HMMs trained to maximise likelihood on speech recognition task.

Further research soon showed that when the data is costly to label, or is partially
labelled, Fisher kernel could still be deployed efficiently with an SVM that uses
transductive inference learning scheme (Joachims, 1999b). A case study showing
the successful use of Fisher kernels with labelled and unlabelled data from Medline
database of abstracts, is given by Goutte (Goutte et al., 2002). Vinokourov and
Girolami (Vinokourov & Girolami, 2001) also applied the Fisher kernel for docu-
ment classification problem, where the Fisher vectors were derived from a proba-
bilistic hierarchical clustering model that was a mixture of standard multinomial
and probabilistic latent semantic analysis models. Elkan (Elkan, 2005) investi-

gated the Dirichlet compound multinomial (DCM) distribution for the derivation
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of Fisher kernel and showed better document classification results than the alter-
native kernels. Chappelier and Eckard (Chappelier & Eckard, 2009) modelled the
documents through probabilistic latent semantic indexing (PLSI) and introduced
a new, rigorous development of the Fisher kernel for PLSI by addressing the sig-
nificant role of the Fisher information matrix and its relationship to the proposed
kernel. Some of the other application areas where Fisher kernels were quickly pur-
sued are logical sequence classification (Kersting & Gartner, 2004), topic based text
segmentation (Sun et al., 2008), sign language recognition (Aran & Akarun, 2010)
and currency prediction (Fletcher & Shawe-Taylor, 2013). This recent work on
currency prediction facilitates the canonical market microstructural models based
around three main families: Autoregressive conditional duration models, Poisson
processes and Weiner process to be efficiently utilised into the discriminative learn-
ing framework via Fisher kernels.

For object classification problem, Holub et al. (Holub et al., 2005) were the first to
highlight the performance gains on standard object recognition data sets from Cal-
Tech by successfully combining the probabilistic constellation model with Fisher
kernels. Following them, Perronnin and Dance (Perronnin & Dance, 2007) applied
the Fisher kernel framework to a visual vocabulary of low-level feature vectors
extracted from images and modelled via the Gaussian mixture model (GMM).
They showed that the proposed approach is actually a generalization of the pop-
ular bag-of-visual words (BoW) approach since for the same vocabulary size N,
the gradient representation of the Fisher kernel has a much higher dimensionality
(2x D+ 1) x N —1 than the histogram representation (/N). In case of a Gaus-
sian mixture model, the BoW approach is directly related to the Fisher kernel
when the gradients with respect to the weight parameters w; are considered only:
they both consider 0-th order statistic (word counting). However, the derivatives
with respect to the means and standard deviations consider the 1st and 2nd order
statistics too, thus enriching the overall representation of the images with compact
vocabularies. This dimensionality enhancement makes the image representation
more informative even when the available vocabulary is limited, thus leading to a
computationally attractive approach. See Figure 3.11 for illustration of the BoW
model.

Since then, the Fisher kernel has been tested for classification on many large scale
object recognition data sets such as CalTech-256, PASCAL VOC 2007, PASCAL
VOC 2008 and ImageNet LSVRC 2012 (Perronnin et al., 2010b; Sanchez & Per-
ronnin, 2011; Csurka & Perronnin, 2011; Sanchez et al., 2013). It has constantly
proven to be empirically better than the state of the art bag of the words (BoW)
model of object recognition (Csurka & Perronnin, 2011) in several respects: First,
it provides a more general way to define a kernel from a generative process of the
data. Secondly, it can be computed from much smaller vocabularies since it does

not rely on the total number of occurrences of each visual word rather encodes



Chapter 3 Feature Extraction & Multi-Class Recognition With Fisher Kernels 45

Dataset of
vectors

Discriminative
classifier

Codebook — @

FIGURE 3.11: Diagram illustrating the main idea of the bag of words(BoW) model
of image representation. Local descriptors are extracted from the image and each
descriptor is assigned to its closest visual word in a visual vocabulary: a codebook
obtained offline by clustering a large set of descriptors with k-means. A trend in BoW
approaches is to have multiple combinations of patch detectors, descriptors and spatial
pyramids. Systems following this paradigm have consistently performed the best in the
successive PASCAL VOC evaluations, yet the Fisher kernel has shown to outperform
this classical model for the advantages mentioned in the text.

additional information about the distribution of the descriptors. This results in
lower computational cost. Third, its classification performance ranks among the
best in a wide range of problems, despite relying on simple linear classifiers. A
significant benefit of linear classifiers is that they are very efficient to evaluate and
learn (linear in the number of training samples) using techniques such as stochastic
gradient descent (SGD) learning(Bottou et al., 2008). Thus, Fisher vectors serve
as an efficient alternative to the BoW histograms. Currently, the second best
performance on the ImageNet-10K classification task, after the deep convolution
network (Krizhevsky et al., 2012), is achieved by the Fisher kernels (Sanchez et al.,
2013) derived from a Gaussian mixture model built for SIFT, LBP and GIST data
descriptors.

Despite the various advantages Fisher kernel paradigm offers, it also suffers from
a limitation in comparison to the BoW approach: while the latter is typically
quite sparse because of the counts measure, the FV is mostly dense (Sanchez
et al., 2013). This leads to storage as well as input/output issues which makes it
impractical for large-scale applications. This computational difficulty is resolved
by compressing Fisher vectors through PCA or Hash kernels (Shi et al., 2009)
and then coding them with Product Quantizers (Jegou et al., 2011) to retain
the advantages of high dimensionality representation. These improvements have
shown to work very well in terms of the recognition performance without paying
an expensive price in terms of memory and I/O usage. It is also important to
note that most of the literature ignores the use of Fisher information matrix F
in the Fisher kernel construction. This invertible covariance matrix of Fisher

scores is considered asymptotically immaterial (Jaakkola & Haussler, 1998) and
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is often ignored in practice. The resulting practical Fisher kernel (Shawe-Taylor
& Cristianini, 2004) thus replaces the Fisher information matrix with an identity
matrix and simply uses the gradients as features without any further rescalings or
normalizations. In some works, it is replaced by a diagonal approximation of the
Fisher information matrix that is easy to compute than the whole d x d dimensional
matrix (Perronnin & Dance, 2007; Nyffenegger et al., 2006).

The literature discussed above highlights the significance of the use of Fisher ker-
nel in different applications, yet we emphasize that none of the previous work has
shown the utility of Fisher kernels for restricted Boltzmann machines(RBMs). In
this work, we have attempted to bridge the gap between the widely used deep gen-
erative models and the discriminative kernel paradigm by drawing Fisher kernels
from RBM, and shown that the shortcomings of the compact generative models

could be resolved if Fisher kernel is derived from them for the classification task.

3.6 Summary

This chapter has introduced the feature extraction and feature selection techniques
used to draw image descriptors for which the generative models of scene recogni-
tion are ultimately defined. We also introduced the discriminative framework that
deploys the Fisher kernel derived from the generative models to perform the clas-
sification task. The specific probability models from which the kernel is derived

are discussed in the next chapter.



Chapter 4

Probabilistic Models of Visual

Scene Analysis

This chapter discusses the probabilistic models of visual scene analysis that are
used to model the image descriptors from different object classes, and thus serve
as a generative basis for Fisher kernel derivation. Probabilistic modelling of vi-
sual data offers various advantages due to which it has always remained popular
among the machine learning researchers, and has therefore invited many develop-
ments to enhance their potential for various applications including artificial scene

recognition.

4.1 Probabilistic Models

We are living in an era of abundant data where a lot of information is available
as digital archives, large scale scientific experiments, mobile networks, social net-
works and web sites. The presence of this massive amount of data requires the
development of tools that allow us to model, analyse, visualize, search and un-
derstand these large data sets to reveal meaningful information. These modelling
tools should faithfully represent the data available and should ideally be adaptive
as well as robust to the noise, and scalable to the large data set sizes. Proba-
bilistic modelling is one such statistical analysis tool that describes the data that
one could observe from a system, and estimates on the basis of past (historical)
data, the probability of occurrence of a particular outcome/hypothesis. The use
of probability theory for mathematical models allows us to take into account the
noise and uncertainty associated with the data and model parameters. In this con-
text, the use of Bayesian approaches has been quite useful, that allows us to learn

from the data, infer unknown quantities, adapt our models and make predictions
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probabilistically. The Bayes rule is formalized as: follows:

Prior x Likelihood

Posterior =
OStNOT= Narginal Likelihood "
P(M,D) _ P(M)- P(D|M)
P(M|D) = _ here D) = [ P D) (4
(MID) = =55 R M PO)= [ POLD)

The Bayes rule states that the probability of a model M after observing data D
is proportional to the likelihood of the data D assuming that M is true, times the
prior probability of M. The prior P(M) can be determined by the experts via
reasonable distributions, however for cases where it is non existent or vague, unin-
formative priors could be used. The evidence criterion (data marginal likelihood),
P(D) is an integral over all the model parameters and acts as a normalization

constant that makes sure the posterior adds up to 1.

4.2 Types of Probabilistic Models

In machine learning, probabilistic models are broadly categorized as generative or
discriminative, based on how the distribution of image features is modelled.
Generative models are built to understand how samples from a particular object
category are generated by learning a joint probability distribution P(x,c) of sam-
ples x and class labels c. The generative models learn the parameters, 6 of the
distribution by capturing the interaction between the system variables (i.e. in-
puts(x) and outputs(c)), in order to synthesize possible states of the system. This
approach is known as a generative approach since by sampling from the joint dis-
tribution, it is possible to generate synthetic examples of the feature vector x. In
practice, the generalization performance of generative models is often found to be
poorer than that of the discriminative models due to the differences between the
model and the true distribution of the data. Some of the examples of generative
models are: Gaussian mixture models (GMM), hidden Markov model (HMM),
naive Bayes, latent Drichlet allocation, restricted Boltzmann machine, etc.

The objective function of the generative model is to maximise the joint likelihood
of the complete training data with respect to the model parameters. Since we
typically have priors on the model parameters, we usually take generative learning’s
objective function to be the full joint distribution of the data and parameters,

P(xy, ¢y, 0) and maximise it with respect to the parameters 0 as:

N
argmax P(6) H P(xy,¢p|0c,) (4.2)
o n=1

The likelihood term P(xy,c,|@) describes how the data looks like if a particular
value of parameter 6 is taken. Most of the generative models are trained using the

maximum likelihood learning, yet it is not necessarily always the case.
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Discriminative models are concerned with defining the boundaries between the ob-
ject categories directly such that the category chosen for a new data-point depends
on which side of the boundary it belongs to. From a probabilistic perspective, the
goal of finding the class, ¢ for an image x is handled by calculating the condi-
tional distribution P(c|x) directly. The resulting conditional distribution can be
used to make predictions of ¢ for new values of x. This is known as a discrimi-
native approach, since the conditional distribution discriminates directly between
the different values of c. Some of the common examples of discriminative models
are: linear discriminant analysis (LDA), support vector machines (SVM), boost-
ing, neural networks, linear regression, etc. Discriminative probabilistic models
are very efficient classifiers, since this is what they are designed for, however they
have no modeling power that generative models possess, neither is it possible to
inject prior knowledge in them to overcome this deficiency. The objective function

of the discriminative models is formalized as:

N
argmax P(c,|x,,0 4.3
&n 11 Plenlxn, 6) (4.3)

n=1

The difference between P(x,c|@) and P(c|x,0) has an important impact. In

N
[

p(C1|x) p(C2|x)

plx|C2)

class densities

plx|C1)

posterior probabilities
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FIGURE 4.1: Tlustration of class conditional probabilities of two classes having an input
variable z (left plot) and the posterior densities (right); Note that the left-hand mode
of the class conditional density p(z|C7) shown in blue on the left plot, has no effect on
the posterior probabilities. The vertical green line in the right plot shows the decision
boundary in x that gives the minimum misclassification rate (Bishop, 2006).

the context of classification, the generative model will focus on recovering the
distribution from where the data came from and the discriminative model will

concentrate on approximating the shape of the boundary between classes.
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4.2.1 Generative versus Discriminative Modelling

Generative and discriminative methods are both complementary in nature and
have a number of attractive properties, discussed as follows:

— Generative models are learnt independently for each category of data ( as
can be seen from Eq. 4.2), thus providing the flexibility of adding more
categories and introducing unique models for each class of objects without
disturbing the already trained models. On the contrary, the discriminative
methods are concerned with the class boundaries, where all the categories
need to be considered jointly; thus addition of a new class requires training
of the whole model from scratch.

— Generative models are most importantly known for their modelling power.
They have the potential of incorporating expert’s belief about the system’s
environment, i.e. prior knowledge about how some of its variables interac-
t/not interact and parameter’s range of values. Conversely, the discrimina-
tive models lack this modelling power and behave like a black box, where
given some data x, the probability P(c|x) is returned without a clear under-
standing of how or why.

— The third advantage of the generative model that naturally follows from their
modelling power, is their ability to deal with missing data. When a genera-
tive model is trained, reconstructions of the missing values are also obtained.
Conversely, discriminative models cannot easily handle incompleteness since
the distribution of the observed data is not explicitly modelled. This feature
is crucial since it allows us to use generative models with different kinds of
data i.e. (labelled, unlabelled, semi-labelled), and incompleteness that may
arise as a particular value missing in the feature vector x. The discriminative
models, on the other hand, require labels information to perform classifica-
tion.

— The joint probability calculated by the generative models might contain a lot
of structure/information that has little effect on the posterior probabilities
as illustrated in Figure 4.1. Thus, it is not always desired to compute the
joint distribution, for gaining better results. Particularly, for the classifica-
tion task, the discriminative models have practically shown more successful
results in different applications as compared to the generative models.

— Another popular characteristic for discriminative models is speed. Classifying
new samples is usually faster since P(c|x,8) is directly obtained.

The contrasting properties of the two models have lead the researchers to think of
methods that can merge the strengths of the two modelling paradigms. The most
straightforward attempt of trying to combine the generative and discriminative

models is to use a generative model and train it in a discriminative fashion using
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the Bayes rule as:

P(x,cl|O) _ P(x,c|O)
(X|0) 2. P(x,cl0)

(Xpn,Cn|0)
plein.0) = £(0) [] Ples.0) = 7o) T[ £5eel0

Plclx,0) =

which allows us to rewrite Eq.4.3 as:

Apart from this method, the research in this direction has lead to two different
kinds of hybrid frameworks (Lasserre, 2008): hybrid learning and hybrid algo-
rithms. Hybrid algorithms refer to algorithms involving two or more models (with
their own objective functions) that are trained one after the other and that influ-
ence each other. Hybrid learning (or more exactly hybrid objective functions) are
multi-criteria optimisation problems that optimise a single objective function con-
taining different terms, at least one for the generative component and one for the
discriminative component. The hybrid learning methods include techniques that
may (1) learn discriminative models on generative features (e.g. Fisher kernels
(Jaakkola & Haussler, 1998) discussed in Chapter 3 (2) learn generative models
on discriminative features (Lester et al., 2005)(3) refine generative models with
discriminative components (Raina et al., 2003) (4) refining generative classifiers
with a discriminative classifier (Prevost et al., 2005). The techniques of hybrid
learning include methods that do: (1) discriminative training of generative models
(Larochelle & Bengio, 2008)(2) convex combination of objective functions (Chen
et al., 2005) (3) multi-conditional learning (Mccallum et al., 2006).

We now discuss the probabilistic generative models that form the basis of our
work for visual scene analysis in the thesis. Both the probabilistic models have
drawn biological inspiration from the functionality of retinal and cortical cells of
mammalian brain, and have been efficiently utilized for modelling the visual data

distributions previously.

4.3 Multivariate Gaussian Distribution

A multivariate Gaussian distribution is a generalization of the one dimensional
univariate distribution to higher dimensions. The probability density function

(pdf) of a normalized multivariate Gaussian distribution is given as:

_ _ 1 —1 T ;v -1
P(x|p, %) =N(p, X) = W €xp <2(X —u) (2) (x— H)) , (4.4)
where p is a D-dimensional mean vector, 3 is a D x D dimensional covariance
matrix, and |3| denotes the determinant of X.

For the Gaussian distribution to be well defined, it is necessary for all of the eigen
values \; of the covariance matrix to be strictly positive definite, otherwise the

distribution cannot be properly normalized.
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Probability Density

FIGURE 4.2: Probability density function and contours of a normal multivariate Gaus-
sian distribution in 2 dimensions; the mean u of the distribution is zero and the spread
is shown by the eigen vectors \; that define the major and minor axes of the ellipse.

For a D-dimensional MVG model, the multivariate normal density is completely
D(D+1) D(D+3)

specified by =5 + D = === parameters which consist of the elements of
the mean vector, u and the independent elements of the covariance matrix, 3.
For large D, the total number of parameters would increase quadratically, and
the computational task of manipulating and inverting large matrices would be-
come problematic. With high dimensional data becoming readily available, one
is frequently faced with the problem of estimating covariance matrices in high
dimensions which in most cases do not provide satisfactory estimate of the data
covariance due to singularity (i.e their determinant becomes zero making the in-
verse computation impossible). Various techniques have been proposed in the
literature to resolve this issue that involve banding (Bickel & Levina, 2006), ta-
pering (Furrer & Bengtsson, 2007; Wu & Pourahmadi, 2003) and shrinkage based
regularization techniques (Copas, 1993). An alternative way of avoiding this issue
is to use restricted forms of covariance matrix, like the diagonal covariance matrix
(¥ = diagonal(c?)) and isotropic Gaussians (X = ¢2I), the number of indepen-
dent parameters will be linear (2D and D+ 1 respectively), and the cost incurred to
calculate their inverses will be much smaller than the complete covariance matrix.
Interestingly, experience in the context of classification in machine learning sug-
gests that using a diagonal covariance matrix or ignoring the off-diagonal entries
can lead to better classification results than those based on complete covariance
matrix estimation (Pazzani, 1997).

The reason of the wide usage of Gaussian as a data density model is because of
its analytical tractability, i.e. a large number of results involving this distribution
can be derived in explicit form. Secondly, the normal distribution arises as the

outcome of the Central limit theorem, which states that under mild conditions, the
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sum of a large number of random variables is distributed approximately normally.
Finally, the ‘bell’ shape of the normal distribution makes it a convenient choice

for modeling a large variety of random variables encountered in practice.

4.3.1 Karklin and Lewicki’s Model of Scene Analysis

Neurons in the early visual pathway act as linear feature detectors of natural
scenes, however how these image features from similar objects are combined to
give an invariant abstract representation in brain, is poorly understood. Image
regions that are perceptually distinct produce response patterns that are highly
overlapping and cannot be distinguished using individual features or low level
linear transformations alone. Knowledge of the cognitive computations that are
required to achieve this generalization across the visual stimuli is an important
research problem that has not been completely resolved yet. Karklin and Lewicki
(Karklin & Lewicki, 2009) address this issue by proposing a computational model
of visual feature generalization that takes into account the pattern variability of
visual scenes and learns a compact set of features for image distributions typically
encountered in natural scenes. The proposed model allows the neural probability
distributions to be defined as a hierarchical statistical model in which the input
image is represented at different levels of abstraction: first by a set of linear fea-
tures by and then by neural activities, y;. This model is a generalization of the
standard model of complex cell properties, where each complex cell takes as input
the squared output of two simple cells. In the proposed model, a neuron integrates
the squared response of a large number of image features by and learns them by
correlating the pattern against its weights wy.

For each model neuron y, the input image x is described by a multi-variate Gaus-

sian distribution:

Plxly) = W exp <21XT(C)_1X> , (4.5)
with mean, gu = 0 and covariance matrix C defining the range and pattern of
variability of features, by. The dimensionality of the data is represented by N
and the covariance matrix, C represents a function of the neural activity, y. This
functional representation has the advantage that the model can in principle de-
scribe arbitrary correlation patterns in features while still being mathematically

tractable.
C=f(y)=exp > yjwbpbf |, (4.6)
ik
In the exponential space, the covariance matrix is calculated as the outer product

of localized oriented edge like feature vectors by, neuronal activity y;, and weights

wj), that modify the encoded distribution of features by, as follows:
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F1GURE 4.3: Distributed coding model proposed by Karklin et al. that infers for each
image the most likely distribution (ellipses) encoding it. The top row identifies the
activation patterns of the model neurons y;. Absence of the activity corresponds to the
lack of image structure, which is therefore represented by a canonical distribution that
reflects the statistics over all natural images (black circle). Increased neural activity

represents deviations from this canonical distribution and captures statistical patterns
in local image regions (middle and right panels)(Karklin & Lewicki, 2009).

> (0, if the neuron responds to a wider range of stimuli;
wjr ¢ < 0, if the neuron responds to a smaller range of stimuli;

=0, if the neuron remains neutral.

This model allows us to determine for each model neuron the most excitatory
and inhibitory features. We compute the covariance matrix given in Eq. 4.6
by turning on only one neuron (y; = 1), and leaving the rest at 0. This fully
specifies the distribution of images encoded by neuron j and accounts for all the
contributions of individual features bx. When the neural activity is off (y = 0),
the covariance matrix is equivalent to the identity matrix I, corresponding to the
canonical distribution of whitened images. Non-zero values in neural activity y
warp the encoded distribution by stretching or contracting along the linear features
by.. The model parameters by, and wy, are initialized with small random values and
optimized by maximizing the likelihood of the data under the model P(x|by,w;)
through standard gradient ascent method. By adapting the model parameters,
0 = {bi, wj;} to the data, one can find an efficient way to use a limited number
of neurons to describe the wide range of distributions observed in natural images.
See Figure 4.3 for illustration of the proposed encoding model.

In order to compute the response of the model neurons y, the most likely /probable

neural representation given the input image x is calculated by maximizing the
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posterior probability P(y|x, {bg,w;i}) as follows:

Maximum-a-posteriori § = argmax P(y|x, {by, w;})
y

= argmax P(x|y, {by, w;i})P(y)
y

The model places a sparse prior on the neural activity y. In order to write the
model likelihood function of interest, i.e. log P(x]y) = =52 In(27) — 5 In|C| —
% Zgil(xn —p)TC71(x, — p), the following assumption of the covariance matrix

and matrix relations have been used:

C =exp Z ijjkbkbg
ik

log |C| =trace(log C) = ) _ trace(yjwbibi ) = > yjwilbal* = D yjws
jk jk ik
The norm of vectors by, is fixed to 1 as the weights can absorb any scaling. Thus

log P(x|y) becomes

1 1 7 T
log P(x|y) o ~3 Zk Yjwjk = 5% | exp | — Zk: yjw;rbyby, X. (4.7)
j j

The proposed model was trained on a large set of 20 x 20 image patches, sampled
randomly from gray scale photographs of outdoor scenes (Hateren & Schaaf, 1998).
The number of neurons was set to 150 and the number of linear features, by were
set to 1000. After training, each of the model neurons was found to be tuned to
different image structure properties such as phase invariance, orientation, location
and complex suppressive effects. To compare the behavior of model neuron to
that of the cells in visual cortex, the authors tested its response to stimuli used in
classical physiological experiments and found that the model learns a much more

general set of features that are determined by the statistical structures in images.

4.4 Restricted Boltzmann Machine (RBM) for Dis-

crete Data

A restricted Boltzmann machine(RBM) is a generative probabilistic model that
belongs to the family of deep stochastic neural networks. It is a bipartite graph in
which the visible units that represent observations are connected to binary stochas-
tic hidden units using undirected weight connections. The hidden units allow the
network to discover interesting features that represent complex regularities in the

observations fed to the visible layer during training. The units are restricted in a



56

Chapter 4 Probabilistic Models of Visual Scene Analysis

way that there are no visible-visible or hidden-hidden connections allowing us to
update all the units in the same layer in parallel. Typically, all visible units are
connected to all hidden units, with biases connected as an external input to each
of the unit in the network. See Figure 4.4 for the illustration of the generative
model. The energy of the joint configuration of visible and hidden units is given

s vV H v H
’U h 0 Z Z wijvihj — Z bﬂ]i — Z ajhj, (4.8)
i=1 j=1 i=1 j=1

where §={W,b,a}, v;, h; are the binary states of visible unit ¢ and hidden unit
J, w;j represents the symmetric interaction term between the visible unit 7 and
hidden unit j, while b; and a; are the respective bias terms for visible and hidden
units. The probability of a joint configuration over both visible and hidden units
depends on the energy of that joint configuration compared with the energy of all

other joint configurations:

P(v,h;0) =

Z(l g 0 (~E(v.h:)) (4.9)

where Z(0) is known as the partition function or the normalization constant,

mathematically defined as .

ZZeXp E(v,h;0)) (4.10)

Since there are no hidden-hidden or visible-visible connections, the conditional

distributions P(v|h) and P(h|v) are factorial and are given by the following prob-

abilities:
H H
P(h|v;0) = [ P(hi = 1jv;0) = [ [ o(ai + ) viws;) (4.11)
i=1 i=1 j
14 14
P(vlh;0) =[] P(v; = 11h;8) = [T oty + D hywyy), (4.12)
j=1 j=1 i

Gias

w

FIGURE 4.4: A restricted Boltzmann machine composed of stochastic binary units with

symmetric connections. The top layer represents the hidden units h and the bottom

layer represents the visible units v. The weight vector W determines the connections
between the units in the two layers.
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1
1+exp(—z) "~

on the visible layer, the hidden units are all conditionally independent and thus

where the sigmoidal function, o(x) = With a data vector clamped
could be updated in parallel via Equation 4.11 to get an unbiased sample from
the posterior distribution over hidden configurations. Similarly, given a hidden
configuration, since all the connections between the visible units are prohibited,
the visible units could be updated in parallel via Equation 4.12. The parameters
of this energy-based model, @ = {W, a,b} are learnt by performing (stochastic)
gradient descent learning on the empirical negative log-likelihood £(8,D) of the

.. : . . dlog P(v;
training data using the stochastic gradient —w.

Mathematicaly, £(0,D) = —L(0, D) where
1
L£(6,D) = N Z log P(v(;), where

’U(i)ED

P(v) =Y Plo,h) = 2= epo((—O? ©.1). 76) = 3 exp(~ E (5, F))
h 6,k

This implies log P(v) = log Z exp(—FE(v,h)) —log Z(0).
h

By changing the model parameters, i.e. weights and biases through stochastic
gradient descent method, one can change the probability, the model assigns to
each possible visible vector and thus can model the whole set of training vectors by
adjusting the weights and biases that maximize the sum of their log probabilities.
The derivation of the log likelihood of the observations, P(v;0) with respect to

each model parameter 8 = {W, a, b} are shown in Appendix A and are given as:

dlog P(v;0)

aIAE' = <th>Pdata - <’Uh’T>Pmodel (413)
POEP0) )y — ) (114)
ak)gaplf,l);e) = <U>Pdata - <U>Pmodel (415)

Here (.)p,,,, denotes an expectation with respect to the data distribution P(h|v)
and (.)p

model

denotes an expectation with respect to the model distribution P (v, h).
Given the independence of the units in each layer, the first expectation over the
data is easier to calculate than the later one which is over P(v,h), and is alge-
braically intractable because of the involvement of the partition function, Z(0)
that takes into account all possible configurations of the visible and hidden units

(Eq. 4.9. As apparent from its equation, this partition function cannot be com-

2Markov chain is a way to sample data from the probability distributions when their analytic solution
does not exist. The Markov chain sampling is run until it reaches the stationary distribution, where
the state of the pixels and feature detectors still change but the probability of a network being in a
particular binary configuration does not change. The detailed procedure is described in Section 4.7.2.
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FIGURE 4.5: This figure depicts a Markov chain that uses alternating Gibbs sampling
approach? to sample data. In one full step of Gibbs sampling, the hidden units in the
top layer are all updated in parallel by applying Equation 4.11 to the inputs received
from the the current states of the visible units in the bottom layer, then the visible units
are all updated in parallel given the current hidden states. The chain is initialized by
setting the binary states of the visible units with data-vector. The correlations in the
activities of a visible and a hidden unit are measured after the first update of the hidden
units and again at the end of the chain. The difference of these two correlations provides
the learning signal for updating the weight on the connection (Equation 4.13).

puted exactly in less than an exponential time, therefore the standard approach
is to approximate the expectation over full distribution with an average over sam-
ples obtained from P(v’,h’;8), by setting up a Markov chain? that converges to
P(v,h;0) ultimately as ¢ — oo. Since we do not know how many cycles of
Markov chain are required to reach equilibrium distribution that guarantees accu-

rate samples (v, h), we denote the number of steps as co. Thus, mathematically

(4.16)

Olog P(v;0)  /0log P(v;0) PO_ dlog P(v; 0) \ >
a0 B 00 00

Figure 4.7 graphically illustrates the Markov chain required to sample data from
the target distribution P(v,h). Note that we face a computational hurdle to over-
come here, i.e. the many Markov chain Monte Carlo (MCMC) cycles required to
compute an accurate gradient. Though there are some diagnostic methods that
exist to determine if an equilibrium distribution has been reached or not, they
are not perfect and should be practiced with skepticism (Cowles & Carlin, 1996).
Apart from being time consuming, another disadvantage of using a long Markov
chain is the large variance of the estimated gradient. The most popular algorithm
to approximate this part of the gradient is called contrastive divergence (CD) pro-
posed by Hinton (Hinton, 2002) and discussed in detail in the followup Section
4.4.1. Other alternative approaches to calculate this maximum likelihood approx-
imation are persistent contrastive divergence (PCD) (Tieleman & Hinton, 2009),

parallel tempering (Desjardins et al., 2010) and tempered transitions (Salakhutdi-

3The Gibbs sampling algorithm is a Markov chain Monte Carlo technique that approximates the
joint distribution P(z1,...,%,) via a conditional distribution that samples each data point at a time
by keeping the rest fixed (P(z1,...,%n) = P(mg-i) |:c§i)7 ... ,xéi_)l, xg.i:ll), .. 7x£f_1))). The point of Gibbs
sampling is that it is often easier to sample from the conditional distributions than to marginalize out
by integrating over a joint distribution. The method has been discussed in more detail in Section 4.7.2
and 4.7.2.2.
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nov). Most of these algorithms come with different hyper-parameters and heuris-
tics of weight-decay, momentum, and learning rate schedules to calculate better

approximations.

4.4.1 Contrastive Divergence

The contrastive divergence (CD) algorithm offers a solution to the approximation
of the gradient of the log likelihood function of RBM through a short Markov
chain? started at the last seen example, v. In contrastive divergence learning, the
Markov chain starts at the data distribution Py and is run for a small number of
steps n (e.g. n = 1), thus greatly reducing both the computation per gradient step
and the variance of the estimated gradient. Experiments showed that this results
in good parameter estimates (Hinton, 2002) because after a few iterations, the
data moves from the target distribution towards the proposed distribution, thus
giving an idea of the direction in which the proposed distribution should move to
better model the training data. Empirically, Hinton has found that even 1 cycle
of MCMC is sufficient for the algorithm to converge to the maximum likelihood
answer (Hinton, 2002). This approximation which replaces the average over all
possible inputs (in the second term of the gradient equation) by a single sample
is called contrastive divergence 1(CD-1); for k cycles or k steps of the chain, the
approximation is called k-contrastive divergence (CD-k). This name is given due
to the contrast between the statistics collected when the input is a real training
example and when the input is a chain sample.

The motivation behind contrastive divergence is that we want to minimize the
amount by which a step towards equilibrium P,, improves the data distribution F.
Therefore, instead of running the chain to equilibrium and comparing the initial
and final derivatives, we can simply run the chain for one full step and then update
the parameters to reduce the tendency of the chain to wander away from the initial
distribution on the first step. Since P is one step closer to the the equilibrium
distribution than Py, we are guaranteed that || Py — Px|| exceeds || P — Px|| unless
Py equals P, so the contrastive divergence can never be negative. Also, for
Markov chains in which all transitions have non-zero probability, Py = P;, implies
Py = P4, so the contrastive divergence can only be zero if the model is perfect
(Hinton, 2002). Thus CD ensures that the direction of the gradient estimate is
somewhat accurate, even though its size is not, making it a biased estimator. The
Markov chain is usually implemented by Gibbs sampling® or Hybrid Monte Carlo
transition operators explained in detail in Sections 4.7.2.2 and 4.7.2.3. For now,
we will just continue our discussion of how and why the overall method works for
approximating the maximum likelihood.

CD has been successfully applied to various problems for the Markov chain esti-
mation (Chen & Murray, 2003; Teh et al., 2003; He et al., 2004), yet, it is hard to

know in practice how good these parameter estimates are since no comparison has
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Algorithm 1 Contrastive Divergence learning of P(v, h)

Input: Training image, (v;) and the learning rate, 7

% RBMupdate (vy,n, W, b, a).

% v: A sample from the training distribution for the RBM.

% m: Learning rate for the stochastic gradient descent in Contrastive Divergence.

%

W: RBM weight matrix of dimension: number of hidden units x

number of inputs.

% b: The RBM offset vector for visible units.

% a: The RBM offset vector for hidden units.

% Q(ha. = 1|vg) is the vector with elements Q(hg; = 1|va).
Output: Model parameters, 0=(W, a, b)

1
2
3:
4

for all hidden units 7 do
Compute Q(h1; = 1|v1) (for binomial units, o(a; + n;W;;v1;)) %Equation 4.11
Sample hy; € {0,1} from Q(hq;|v1)

: end for

for all visible units j do
Compute P(vq; = 1|h1) (for binomial units, o(b; + n;W;;h1;)) %Equation 4.12
Sample vy; € {0,1} from P(ve; = 1|h)

end for

for all hidden units ¢ do

Compute Q(hg; = 1|v2) (for binomial units, o(a; + n;W;;v2;)) %Equation 4.11

: end for

: W W +n(hiv] — Q(ha, = 1|va)vh)% The transpose ensures matrix multiplication.
b b+n(vy —v2)
t a < a+n(hi —Q(hy = 1fvz))

been made with the real maximum likelihood estimates which are impractical to
compute (Perpinan & Hinton, 2005). An extensive numerical comparison of train-
ing with CD-k versus exact log-likelihood gradient has been presented in (Perpinan
& Hinton, 2005), where taking k larger than 1 gives more precise results, although
very good approximations of the solution can still be obtained with k¥ = 1. In
contrast, there has been a little theoretical investigation made on the properties
of the contrastive divergence algorithm (Mackay, 2001; Williams & Agakov, 2002;
Yuille, 2004; Sutskever & Tieleman, 2010), though all agree on the fact that the
contrastive divergence algorithm is not guaranteed to converge to the equilibrium
distribution. The important questions on the speed of convergence of CD and its
relationship to the true maximum likelihood estimates are still open and not been
answered yet.

In order to assess the learning progress of RBMs, one of the commonly used mea-
sures is to calculate the reconstruction error. The reconstruction error is the
difference between a data point and its reconstruction i.e. the expected value of
the visible nodes given the expected value of the hidden nodes. However, this is
not a very reliable measure judging RBM training, since it does not correlate to
the true objective function of RBM training and in particular does not detect the

divergence of the likelihood learning (Hinton, 2010). There are two different quan-
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FIGURE 4.6: Comparison of the covariance matrices of real-valued and binary images.

It is clear from the visual appearance that nearby elements in texture images show

higher correlation than the farther elements when compared to the binary images. This

calls for a computational model that captures the higher order correlation of nearby
pixels in continuous images.

tities that are changing during the learning: the first is the difference between the
empirical distribution(FPp) of the training data and the equilibrium distribution P,
of the RBM and the second one is the mixing rate of the alternate Markov chain. If
the mixing rate is very low, the reconstruction error will be very small even when
the distributions of the data and the model are very different. As the weights
increase, the mixing rate falls, so the decrease in the reconstruction error does not
necessarily mean that the model is improving and, conversely, small increases do

not necessarily mean the model is getting worse.

4.5 Restricted Boltzmann Machine for Continuous Data

The conventional RBM assumes that the state of each neuron is binary, i.e. {0,1}.
This, however limits the application utility of RBM because most of the real world
data is either continuous or real-valued. Real images have various statistical prop-
erties that other data sets do not possess. One such property is the covariance
relationship of the pixels in a texture image. Figure 4.6 shows the covariance ma-
trix comparison of a texture and a binary image. It is clear from the main diagonal
entries and its neighboring elements that nearby pixels have strong correlation with
each other compared to those that are far. There have been attempts to use the
binary unit RBM to learn real-valued data by scaling the input values to [0,1] and
considering each value as a probability (Hinton & Salakhutdinov, 2006), however it

has not been used very widely. Apart from this, there are two notable approaches
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in practice to address the limitations of the classical RBM model for continuous
data. Both the approaches replace the binary visible neurons with units that fol-
low other types of distributions. One approach adopts Gaussian visible units and
thus proposes a Gaussian Bernoulli Restricted Boltzmann Machine (GBRBM),
whereas the other approach replaces the binary visible neurons with the softmax
unit 4. The former has shown to work better for real valued data and the latter for
discrete data with the small number of possible states. We will discuss GBRBM
in detail in the next section. This model dubbed Gaussian is much slower to train
(Krizhevsky, 2009) and is not a good model of the covariance structure of an image
because it does not capture the fact that the intensity of a pixel is almost exactly
the average of its neighbours. Also it lacks a type of structure that has proven very
effective in vision applications. These challenges have been addressed in factored
3-way RBM that uses the states of its hidden units to represent the abnormalities
in the local covariance structure of an image. This has been described in detail in
Section 4.5.2.

4.5.1 Restricted Boltzmann Machine with Gaussian Units

The replacement of the sigmoidal activation function in visible units to Gaussian

function modifies the energy function of the RBM in the following way:

v

E(v,h) = Z Z bh; — Z Z Ui iy (4.17)

i=1 z1]1

Just as before, there is no direct connection of the units of each layer with each
other, therefore it is easy to infer samples via the following conditional distribu-

tions:

P(v|h) = HN bv—}—Zh Wi, 02),

P(h|v) = HabMZWw

where N (.,0€) denotes the pdf of the Gaussian distribution with mean, g and

1

Trom(=a)" The gradient to update the model parameters

variance, o2 and o(x)=

4Softmax unit = This activation function is a generalization of the logistic function to multiple

variables and is defined as: o(q,i) = % , where the vector ¢ is the net input to a softmax
1

node, and n is the number of nodes in the softmax layer. It ensures all of the output values are between
0 and 1, and that their sum is 1. It reduces to the simple logistic function when there are only two

categories. Suppose you choose to set ¢1 to 0. Then p; = Zfzpe(:;iqj) = exp(;;‘)p_‘(_‘g)p(q” = 1+exp}(—q1)

and pa, of course, is 1 — p;.
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are:
oL
W == <vh>data - <vh>modela
OL
% = <’U - bv)data - <U - bv>model7
OL
% = <h>data - <h>model

GBRBM in general is known as difficult to train and this difficulty arises from
learning standard deviations o; of the visible neurons. Unlike other parameters,
the standard deviations are constrained to be positive. However, with an inappro-
priate learning rate, it is possible for the obtained gradient update rule to result
in a non-positive standard deviation. This leads either to an infinite energy of
the model ( in case of 0;=0) or to an ill-defined conditional distribution of the
visible neuron (in case of 0;=0). Since, all gradients other than that of the hidden
biases are scaled by the standard deviation, inappropriate learning of it affects the
learning of other parameters also. Too rapid decrease of the standard deviation
increases the gradients of the weights and the visible biases such that the stochas-
tic gradient learning either diverges or converges very slowly. In order to overcome
this problem of learning the standard deviations, Krizhevsky (Krizhevsky, 2009)
suggested using a separate learning rate for the standard deviations which should
be 100 to 1000 times smaller than that of the other parameters. This does work but
adds another parameter to the list of model parameters that need tweaking. There
has been a general consensus that it is enough to update the weights and the biases
only, and use fixed, possibly unit standard deviations. Many impressive results us-
ing GBRBMs without learning standard deviations have already been published
recently (Hinton & Salakhutdinov, 2009), (Krizhevsky, 2009), (Mohamed et al.,
2010). The GBRBM can also be viewed as a Gaussian mixture model with the
number of components being exponential in the number of hidden units.
GBRBM is an unsatisfactory model of natural images because its modelled features
typically do not represent sharp edges that occur at object boundaries and lead to
latent representations that are not particularly useful features for classication tasks
(Courville et al., 2011). Natural images are chiefly characterized by the covariance
of the pixel values and not by their absolute values. This point is supported by
the common use of preprocessing methods that standardize the global scaling of
the pixel values across images in a data set or across the pixel values within each
image. These concerns about the ability of the GBRBM to model natural image
data has lead to the development of other RBM-based generative models that
aim to better model non-diagonal conditional covariances. Some of these models
include mean-covariance RBM (mcRBM) (Dahl et al., 2010), mean-product of
Students T-distributions model (mPoT) (Ranzato et al., 2010b), spike-and-slab
RBM (ssRBM) (Courville et al., 2011) and factored 3-way RBM (Ranzato et al.,
2010a).
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4.5.2 Factored 3-Way Restricted Boltzmann Machine

Ranzato et al. (Ranzato et al., 2010a) proposed that an RBM’s visible and hidden
units can be modified to incorporate three-way interactions so that the covariance
of the visible units is captured. This modified RBM which allows the hidden
units to modulate pair-wise interactions between the visible units is called three-

way RBM. Capturing the interactions between the visible units has far too many

A
| hidd _ hiddens
lk\-T/I N ans :-:,;!- l‘::_?l- t;'

T -‘ -
F &
factors ..-E_:‘F?
-. o —— i — —
. .visibles éi:ﬁ - — = > "

FIGURE 4.7: A graphical representation of the factored 3-way RBM in which the
triangular symbol represents a factor that computes the projection of the input image
whose pixels are denoted by v; with a set of filters (columns of matrix C'). Their output
is squared because each factor is connected twice to the same image with the same set of
Iters. The square outputs are sent to binary hidden units after projection with a second
layer matrix (matrix P) that pools similar filters. Because the second layer matrix P
is non positive the binary hidden units use their ‘off ’ states to represent abnormalities
in the covariance structure of the data (Ranzato et al., 2010a).

parameters, therefore, to keep their count under control and make learning efficient
in practice, it is necessary to factorize these 3-way interactions. These factors turn
out to look remarkably like simple cells which act as linear filters that send their
squared outputs to the hidden units and learn to act like local, oriented edge like
detectors. See Figure 4.8 for illustration. The energy function is redefined in terms
of the three-way multiplicative interactions between the two visible binary units,

v;, vj and one hidden binary unit, Ay as:

E(v,h) = = viv;hWijk (4.18)
i,k

For real images, we expect the lateral interactions in the visible layer to have a lot
of regular structure, therefore the three-way tensor can be approximated as a sum

of factors:
Wik = > BisCisPey (4.19)

f

The matrix B = B;; and C' = C;y has as many rows as the dimensionality of visible
layer and as many columns as the number of factors. The matrix P = Py has as
many rows as the dimensionality of the hidden layer and as many of columns as
the number of factors. P is regarded as the factor-hidden or pooling matriz and

the matrix Cjy is known as wisible to factor matriz; it is sensible to assume that
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FIGURE 4.8: 256 filters of size 16x16 pixels (columns of visible-to-factor matriz) learned
on whitened image patches sampled from the Berkeley data set (Ranzato et al., 2010a).

matrix B = C in the final approximation:

Wik = Z CifCisPry (4.20)
!

Substituting Wi in Equation 4.18, we get:

E(v,h)=->" (Z vi(cif)> (Z hkpkf> (4.21)
f i k

The parameters of the model could be learned by maximising the log likelihood
of the energy function through stochastic gradient descent learning technique, the

gradients of which are given as:

oL oF oF
% B <%>dam - <%>model, (422)

where 0 denotes the model parameters {C, P}, and the biases for the visible and
hidden layer. The angle brackets represent the expectation under the distribution
specified by the subscript. The intractable integral over the model distribution
can be approximated by drawing samples through a Markov chain Monte Carlo
algorithm running for a very short time, starting at the data as proposed in Con-
trastive Divergence (Hinton, 2002). The hidden units remain conditionally inde-
pendent given the states of the visible units and their binary states can be sampled

through the following conditional distribution:

P(hy=1v) =0 | Y Pes(O viCis)* +bi |, (4.23)
f 7

where o is a logistic unit and by is the bias of the k-th hidden unit. Given the
hidden states, however the visible units are not independent and form a Markov
random field in which the effective pairwise weight interaction between v; and v;
is > > 7 hiCifCipPyg. Because of this connectivity, it is much more difficult to

compute the reconstruction of the data from the hidden states required for the
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contrastive divergence learning. Fortunately, this reconstruction does not need to
be an exact sample of the model distribution but it should at least be closer to
the joint distribution of the visibles given the current states of the hiddens. This
task could be accomplished by one or more rounds of sequential Gibbs sampling
of the visibles, but it is more efficient to integrate out the hidden units and use
the Hybrid Monte Carlo (HMC) sampling technique on the free energy function °
(Neal, 1996):

P(v)==Y log |1+exp 05> Pir(d> Cipvi)> +bp | | = bovs (4.24)
k f i i

The details of HMC have been explained in Section 4.7.2.3, whereas the gradients
of the log likelihood function of free energy w.r.t each model parameter and visible

data v ,for stochastic gradient descent learning are given as:

OF(v) 1
== G y Cifvi
ov ; fg kfl —|—exp(—0.5 Zf Pkf(Zz Cif’l)i)z — bk) ; 1Y
(4.25)
OF(v) 1 9 1
= —— C;rv; 4.26
0Py 2(; 1Y ) 1+ exp(—0.5 Zf Pkf(zi Cifvi)Q — by) ( )
OF(v) 1

_Sp Cipvi (4.2
aC:y Uzk: kfl‘f‘eXp(_O'E’Zkaf(ZiCifvi)Q_bk)Zz‘: e

OF (v) :_1 1 (4.28)
ob 21 + exp(—0.5 Zf Pkf(zi C’ifvi)Q — by) ’

The algorithm proceeds as follows:

1. Compute the derivative of the free energy in Equation 4.24 w.r.t. to the
parameters (visible-to-factor, factor-to-hidden weights and hidden biases) at

the training samples.

2. Draw (approximate) samples from the distribution by using HMC (Equation
4.25).

3. Compute the derivatives of the free energy w.r.t. the parameters at the

samples given by HMC.

4. Update the parameters by taking the difference of these derivatives as shown

®The concept of free energy comes from the field of thermodynamics and refers to the internal energy

of the system minus the amount of energy that cannot be used to perform work. The use of free energy
in RBMs enables us to evaluate the partition function (Z(0) = >_, , exp(—E(v,h))) , which requires an

exponential time 22 and 2* computations, as a sum of free energy terms over all possible hidden states

(7 =

> hen €xp(—=F(h)) ) only. This representation makes our evaluation of the partition function

tractable ( 2¥ computations only ) for RBMs with a large visible and small hidden units. Here D refers
to the dimensionality of the data and k refers to the size of the hidden layer. The equation P(v) =

ZnePCEWR)_ 4 s converted to Pw) = %%, where F(v) = —log )", exp(—E(v, h)).

S exp(—E(v,h))

T Xpexp(=F(h,
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in Equation 4.22.

The number of covariance matrices that this model can generate is exponential
in the number of hidden units since the representation is binary and distributed.
The covariance RBM (cRBM) can be viewed as a particular type of factored third
order Boltzmann machine. In other words, the RBM energy function is modified
to have multiplicative interactions between triples of two visible units, v; and vj,
and one hidden unit hg. Unrestricted 3-way connectivity causes a cubic growth
in the number of parameters that is unacceptable if we wish to scale this sort of
model to high dimensional data. Factoring the weights into a sum of 3-way outer
products can reduce the growth rate of the number of parameters in the model
to one that is comparable to a normal RBM. The hidden units of the cRBM are
still (just as in GBRBMs) conditionally independent given the states of the visible
units, so inference remains simple. However, the visible units are coupled in a
Markov Random Field determined by the settings of the hidden units.

4.6 ClassRBM-An RBM Designed for Classification

Though RBMs are unsupervised generative models that are mostly used to model
the inputs of a classification problem, they can also be trained in a supervised
way by modelling the joint distribution of the inputs (v) and their associated
labels (I) together, in an architecture called ClassRBM (Larochelle & Bengio,
2008). The ClassRBM with n hidden units is a parametric model of the joint
distribution between a layer of hidden variables (referred to as neurons or features),
h = (h1,ha,...,hy), the observed variables v = (v1,v2,...,v4) and the labels,
= (1;=)%_, for C classes. The probability of a full network configuration takes

the form:
—E(l,v,h
P(l,v,h) = exp( Z(m? )), where Z = Z exp (—E(',v',h’)), and
' v h'
V H
E(l,v,h) ==Y ) wijhjv; — ZZuk]h lk—Zajh —chlk—ZbUz,
=1 j=1 k=1 j=1

(4.29)

with the parameters 8=(W, a, b, ¢, U). This model is illustrated in Figure 4.9. The
ClassRBM uses sigmoid activation function o(x) = 1/1+ exp(—z) for the units in
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the visible and hidden layers, given probabilistically as:

D
P(v,1h) = P(1lh) [ [ P(vi = 1|h), where

i=1

H
Plv;=1h)=0 | b; + ijihj andP(l = 1|h;0) = softmax Zujkhj + ¢k
j g=1
(4.30)

H
P(h|v,1) = [ P(h;lv.1), where
j=1

P(hj=1|v,) =0 <aj +ujple + Y wjivi> . (4.31)
i
The activation function used in the labels layer units is softmax. The softmax
units can be viewed as a set of binary units whose states are mutually constrained
such that exactly one of the units is turned on at a time (i.e has value 1), and
the remaining all are off. Mathematically, by using a logistic sigmoid function, if

a binary unit is turned on with the following probability,

_ 1 _ exp (x)
1+exp(—z) exp(z)+exp(0)’

o(x) (4.32)

then this can be generalized to K alternative states not ordered in any way to

make up a softmax unit, j:

exp (x])

S exp (zi)

Thus the probability of a softmax unit being turned on in the labels layer is given

P = (4.33)

as shown in Equation . In order to learn the model parameters, 0= (W, a, b, c,U),

stochastic gradient descent learning is performed that calculates the gradients of
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FIGURE 4.9: Architecture of a classification restricted Boltzmann machine (CRBM)
modeling the joint distribution of labels and inputs (Larochelle & Bengio, 2008).
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the log likelihood of the model with respect to its parameters 0 as follows:

dlog P(Lv) _ <6E(1,V, h)> — <8E(1,v,h)> (4.34)
00 00 P(h|Lv) 06 P(L,v,h)

In the above equation, the first expectation over P(h|l,v) is tractable but the
second one is not. We use a stochastic approximation of this gradient, called the
contrastive divergence gradient which replaces the intractable expectation by an
average of samples generated after a limited number of Gibbs sampling iterations.
The model parameters a,b and c refer to the bias units attached to the hidden,
visible and label units respectively. These biases are also updated along with the
weights, W and U between the hidden-visible and hidden-label units. For each
parameter update, the gradient is calculated by the following Equations and the
parameters are incremented according to the stochastic gradient descent formula

as shown in Algorithm 2.

a < a+n({h)data — (R)model)
b < b+ n({V)data — (V) modet)
¢ < c+n({Ddata — (Omodet)
W W 4+ n((hv)data — (RV)modet)

(
U«U+ n((hl>data - <hl>model)~ (4'35)

Algorithm 2 Contrastive Divergence learning of P(v,l)

Input: Training image pair, (I;, v;), maximum training iterations, max_epoch and
the learning rate, A

% a <+ b:ais set to the value b

% a ~ P : a is sampled from P

Output: Model parameters, 0=(W, U, a, b, c)

1: Initialize the weights, W and biases, @ and b to small random numbers

2: for i=1 to max_epoch do

3: % Positive Phase:

4: l0<—li7’UO(—’Ui,

5. hO « sigma(a + Wo' 4 UI°) %Equation 4.31

6: % Negative Phase:

7. h" ~ P(h|I° v°), %Equation 4.31

8 I' ~ P(n°), %Equation 4.30

9:  w' ~ P(v|h"), %Equation 4.30
10: k' « sigma(a + Wo' + Ul") %Equation 4.31

11: % Update the parameters R
122 00— \NZE(°v°, k%) — ZE(1",v', h1)) % Equation 4.35
13: end for

After training the joint density model P(wv,l) using a single RBM, each possible
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label is tried in turn with a test vector and the one that gives the lowest free energy
is chosen as the most likely class. Note that in order to do classification, we are
interested in inferring P(l|v) to characterize the class of the test input, v. This is

calculated as follows:

P(ilv) =) P(1,h}v)
h

exp(—F(v,1))

P(llv) = , where 4.36
s e F(v.1) 0
H
_ T . — .
Fv,l)=—c'1— Fg(v); Fx(v) = Zsoftplus(aj + vkl + wijv;).
j=1
with softplus(v) =log(1 + exp(v)) (4.37)

For an RBM with N, visible units, N, hidden units and N} class labels, the
distribution P(l|v) can be exactly computed in O(NyNyN)) time. This result
follows from two observations: 1) Setting lz—; reduces the model to an RBM
defined by the kth bit of the labels layer and 2) The negative log probability of
v, upto an additive constant, under this RBM is the free energy as expressed in
Equation 4.37. The idea is to first compute Fi(v) for each setting of the label,
and then convert them back to a discrete distribution by taking a softmax of the
negative free energies by the formula defined in Equation 4.37. The free energy
computation takes O(N, Ny) time steps, which is repeated NV; times in Equation
4.36 for a total of O(Ny N1 Ny,) computation.

4.7 Sampling from Probability Distributions

In probability theory and statistics, we often come across probability density func-

tions like: )
Y = / ()P (2)dz (4.38)

or optimization problems like:

7 = arg max,e(qp (@)

If the problem is simple enough, we can solve it analytically to get a deterministic
answer. However, in most cases there is no closed form solution available and we
need to use numerical methods of integration. Sometimes, even numerical integra-
tion/optimization is not convenient or good enough when the problem is defined
on a high dimensional space. As the state space becomes larger, the solution grows
time exponential in the dimensionality of X. In such cases, Monte Carlo methods

are one of the solutions widely used to solve integration and optimization problems.
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4.7.1 Simple Monte Carlo

An integration function such as the one defined in Equation 4.38 could be written

simply as the expectation of f(z) over the distribution P(x):

b
y= / P(2)f(z)dz = Ep(f(x)) (4.39)

Note that P(z) fulfills the requirements of being a probability density function
of a distribution. Thus if we can draw many samples (z1, z2, 3, ..., ;) from the

density P(z), we can approximate the integration as:
1 n
y~ - Z; f (i) (4.40)
1=

When the number of samples n — 00, this expectation approaches the true value
for integration and optimization. This statistical sampling technique to approxi-
mate general averages is known as Monte Carlo method and is directly relevant
to solving difficult integrals in statistical inference problems. The estimates are
unbiased and as long as the variances are bounded appropriately (1/ VN ), the sum
of independent terms will obey a central limit theorem. Simple "Monte Carlo’ ap-
proximation is as easy to implement as a random variate generator for the entire
joint distribution involved, however the main issue is to know how we draw sam-
ples according to the distribution we have. In order to solve this problem, several

algorithms have been proposed which we’ll discuss in the following sections:

4.7.1.1 Importance Sampling

Suppose the probability density function P(z) roughly approximates the density

of interest Q(x), then
[ 1@ p@as = [ ) (53 ) @iis = Fow |10 (5] @y

This forms the basis for the method of importance sampling with

x)

Fa Pz ~ 13 ) (FEDY (4.42)
n < Qi)

where the z; are drawn from the distribution given by Q(z). An alternative for-
mulation of importance sampling is to use:
P(xi)

/f(x)P(:L‘)dx ~1= szf(xz)/ Zwi,where w; = Q) (4.43)
i=1 i=1 !
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A Lot
)

accept

FIGURE 4.10: Rejection sampling illustration

where z; are drawn from the density @(x). This has an associated Monte carlo

variance of

Var(l) =Y wi(f(z:) = 1)*/ > w (4.44)
=1 i=1

4.7.1.2 Rejection Sampling

In rejection sampling, the proposal density Q(x) is considered under the condition

that P(x) < MQ(x) where M > 1 is an appropriate bound on %. The rejection

sampling algorithm is described below: Informally, this process samples @ from

Algorithm 3 Rejection Sampling Algorithm

1:
2:

10:
11:

4
5
6
7
8
9

1<— 0

while i # N do
20 ~ Q(x)
u~U(0,1)

. P(z®
if u< W then

Accept z(®
14— 1+ 1
else
Reject z(?)
end if
end while

some distribution and then it decides whether to accept it or reject. The main
disadvantage of this method is that M is generally large in high dimensional spaces

and since P(accept) ~ ﬁ, many samples will get rejected.

4.7.2 Markov Chain Monte Carlo

MCMC is a strategy for generating samples (9 while exploring the state space X
using a Markov chain mechanism. The random variable is called a Markov process

if the transition probabilities between different values in the state space depend



Chapter 4 Probabilistic Models of Visual Scene Analysis 73

only on the random variable’s current state, i.e.,
P(xir1 = sjlzo = sk, . ., 2 = 85) = Pxi1 = sjla = 55) (4.45)

Thus, for a Markov random variable, the only information about the past needed
to predict the future is the current state of the random variable, knowledge of the
values of earlier states do not change the transition probability. A Markov chain
refers to a sequence of random variables xg, ..., x, generated by a Markov process.
A particular chain is defined most critically by its transition probabilities(or the
transition kernel, (7,j) = P(i — j), which is the probability that a process at state

space,s; moves to state s; in a single step,
P(i,j) = P(i = j) = P(x1 = s5)|xr = s3) (4.46)

This mechanism is constructed so that the chain spends more time in the most
important regions. In particular, it is constructed so that the samples 2@ mimic
samples drawn from the target distribution P(z). Note that we use MCMC when
we cannot draw samples from P(z) directly but can evaluate P(x) up to a nor-

malizing constant.

4.7.2.1 Metropolis Hastings Methods

The Metropolis Hastings algorithm is the most popular MCMC technique (Metropo-
lis et al., 1953),(Hastings, 1970) developed so far. In the later sections, we will see
that most practical MCMC algorithms can be interpreted as special cases or exten-
sions of Metropolis Hastings. This algorithm leads to samples from the target dis-
tribution P(z) by always accepting a new proposal from Q(z*|x) if its more likely
under the target distribution than the old state. The Markov chain then moves to-
wards z* with acceptance probability, A(z, z*) = min{1, [P(z)Q(z*|z)] L P(x*)Q(z|z*)},
otherwise it remains at x. This allows the sampler to move towards the regions of
state space, where the target function has high density. However, note that if the
new proposal is less likely than the current state, it is still possible to accept the
worse proposal and move forward towards it. This process of always accepting a
good proposal and occasionally accepting a bad proposal explores the whole state
space and samples from all parts of the distribution including the tails. The pseudo
code is given in Algorithm 9:

The MH algorithm is very simple, but it requires careful design of the proposal
distribution Q(z*|x). In the subsequent sections, we’ll see that many MCMC
algorithms arise by considering specific choices of this distribution. By looking
at the acceptance criterion, one can see that this algorithm is close to importance

sampling, but now the samples are correlated since they result from comparing one
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Algorithm 4 Metropolis Hastings Algorithm

1:
2:
3:

4
5
6:
7
8.
9

Initialize z(©)
for i=0 to N-1 do
Sample u ~ Upg y
Sample z* ~ Q(z*|z(?)
if u < A(z@, 2*)=min{1, %m} %Equation 4.47
ZL.(iJrl):x*

else
2+ — ()

: end for

sample to the other through the density ratio calculated in acceptance criterion.

A(z', 2*) = min {1, ( (i))} (4.47)
A major advantage of calculating this ratio is that we don’t need to know the

normalizing constants of the density/probability mass function.

4.7.2.2 Gibbs Sampling

Gibbs sampler can be viewed as a special case of Metropolis Hastings algorithm
where the sampled variable from the proposal distribution is always accepted,
i.e. A=1. The key to the Gibbs sampler is that one only considers univariate
conditional distribution- the distribution when all of the random variables but one
are assigned fixed values. Thus, by repeating the process k times, one generates
a Gibbs sequence of length k& where a subset of points (z;,y;) for 1 <j <m <k
simulates n random variables drawn sequentially from the n univariate conditionals
rather than generating a single n-dimensional vector in a single pass using the full
joint distribution. Such conditional distributions are far easier to simulate than to

distributions and usually have simple forms:

Algorithm 5 Gibbs Sampling Algorithm

1:
2:
3:

4:

Initialize xg 1.n
for i=0 to N-1 do

—  Sample xg “+1) ~ P(z |x2,333 ,...,ng))

—  Sample :c( GRS P(xo |x§2),xy)7 . ,:cgf))

—  Sample z; 1) P(x; |xf+1), §Z+11)7 i ,55512))

—  Sample acn+1) ~ P(zp|x; (t+1) (l+1) <o Efjll))
end for

Maximum likelihood learning of energy-based models like RBM requires a robust
algorithm to sample negative phase particles (Equations 4.13,4.14,4.15). When
training RBMs with contrastive divergence, this is typically done via block Gibbs
sampling, where the conditional distributions P(h|v) and P(v|h) are used as the
transition operators of the Markov chain. In certain cases however, it might be

difficult to sample from these conditional distributions (for instance when expen-
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sive matrix inversion are required, as in the case of mean-covariance RBM). In
situations, where sampling is possible, it is worth remembering that the Gibbs
sampling operates via a random walk which might not be statistically efficient for
some distributions. Some of the alternate methods that offer solution to these

problems are discussed below in the forthcoming discussion.

4.7.2.3 Auxiliary Variable Methods

The idea of introducing auxiliary variables in Markov chain Monte Carlo (MCMC)
sampling arose in statistical physics (Swendsen & Wang, 1987), was generalized
by (Edwards & Sokal, 1988), and brought into the mainstream statistical litera-
ture by (Besag & Green, 1993). Auxiliary variable techniques exploit the general
principle that often an apparently complicated n-dimensional problem becomes
easier and more tractable if embedded in a higher dimensional framework. Once
the high dimensional solution is found, it is projected on the original state space
and the original problem is thus solved. This projection procedure is reflected by
disregarding the auxiliary variable(s), and just obtaining a sample from the target
distribution. Mathematically speaking, in order to sample realizations from P(z),
one specifies a conditional distribution P(u|z) and writes P(z,u) = P(x)P(u|x)
with marginal distribution P(z). A Markov chain is then constructed on X x U
by alternately updating u and x via Gibbs sampling or some other method that
maintains P(z,u), and hence P(z). After sampling the (2, u(®) according to
P(x,u), one can easily ignore the samples u and keep (V. The introduction of
the auxiliary/supplementary variables allow us to construct Markov chains that
mix faster and are easier to simulate than standard single site algorithms. Here we
will discuss two well known auxiliary variable methods, namely Hamiltonian Monte
Carlo (HMC) and Annealed Importance Sampling (AIS) used for data sampling
from the RBM in our work.

Hamiltonian Monte Carlo HMC is an MCMC algorithm that avoids random
walk behavior by simulating a physical system governed by Hamiltonian dynamics,
potentially avoiding tricky conditional distributions in the process. In order to
simulate a physical system, the particles move about a high dimensional landscape
subject to potential and kinetic energies. The particles are characterised by a
position vector or state € R and a velocity vector v € R”. In non-physical
MCMC applications of Hamiltonian dynamics, the position will correspond to the
variables of interest, whereas v serves as an auxiliary variable that is introduced
artificially. The combined state of the particle is denoted as x +— (z,v).

The Hamiltonian equation is defined as the sum of the potential energy E(z), (

same energy function defined by the energy based models, i.e. E(x) = —log P(z)—
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log(Z) ) and kinetic energy, K (v) defined as follows:

_

H(z,v) = BE(x) + K(v) = BE(z) + v (4.48)

2
Instead of sampling P(z) directly, HMC operates by sampling from the canonical

distribution:

Because the two variables x and v are independent, marginalizing over v is trivial
and recovers the original distribution of interest P(x). The state x and velocity
v are modied such that H(z,v) remains constant throughout the simulation. The

differential equations of the Hamiltonian used to choose x and v are given as:

da:i o 8HZ
dt N 8’Ui
d’UZ‘ . 8HZ . OF

dt N 8331 __al'i.

= Vi,

As shown in (Neal, 1996), the above transformation preserves volume and is re-
versible, therefore these dynamics could be used as transition operators of a Markov

chain that leaves P(x,v) invariant.

Discretizing Hamiltons equations-The Leapfrog Method

For computer implementation, Hamiltonian equations must be approximated by
discretizing time, using some small step size, €. Starting with the state at time
zero, we iteratively compute (approximately) the position x at times e, 2¢, 3¢,
etc. There are several ways through which one can do that (for example Euler’s
method), however to maintain invariance of the Markov chain, care must be taken
to preserve the properties of volume conservation and time reversibility. The leap-
frog algorithm maintains these properties and operates in 3 steps that first perform
a half-step update of the velocity at time ¢ + €/2, which is then used to compute
x(t + ¢) and v(t + ¢) ultimately :

it +/2) = ult) = (5) G a(t) (4.49)
xi(t+5) = l‘l(t) +€Ui(t+€/2) (450)

vi(t+e)=wvi(t+¢/2) —(g/2) OF

oz, (x(t+¢)) (4.51)
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The leap frog method can be run for L steps to simulate dynamics over L X € units
of time. This particular discretization method has a number of properties that
make it preferable to other approximation methods like Eulers method, however a

discussion on that is beyond the scope of this thesis.

Accept / Reject Phase

In practice, using finite step sizes ¢ will not preserve H(z;v) exactly and will
introduce bias in the simulation. HMC cancels these effects exactly by adding a
Metropolis accept/reject stage, after n leapfrog steps. The new state x' +— (a/,v)
is accepted with the probability P,..(x;X’), which is defined as:

Pace(x;X') = min (1, exp <m>) (4.52)

In order to draw a new sample according to P(x,v), we first start off with a

Algorithm 6 Hamiltonian Monte Carlo Algorithm

1: Initialize position xg and velocity vg
2: Set step-size, ¢

3: for i =1 to nsamples, take steps do

4:  Draw v oc N'(0; )
5. (w0;v0) = (21 0)
6: % Perform N leapfrog steps to obtain the new state x’ +— (2/,v")
7. forj=1to L do
8: v=1/2) = U= — Y E(2U-D) % Make half step in v (Equation 4.49)
9: 20 = g0=1 4 gpl=1/2) % Make full step in = (Equation 4.50)
10: 0@ =U=1/2) — eV E(20)) % Make full step in v (Equation 4.51)
11:  end for
12 (2/50) = (2(B);0(B)
13:  Draw a ~ U[0;1]
14:  6H = H(2';0") — H(z(©; () %Equation 4.48
15: % Acceptance/Rejection Criterion in Equation 4.52
16:  if @ < min{l,exp(—dH)} then
17: (zi50) = (2/,0)
18:  else
19: (:vl, Ui) = (xi_l;vi_l)
20:  end if
21: end for

sample:
22: Return {z;,v;}.20""""*

random value of x and generate a Gaussian random variable v. We then take L
leap frog steps in v and . The values of v and = at the last leap are the proposal
candidates in the MH algorithm with target density P(x,v). Marginal samples
from P(z) are obtained by simply ignoring v. Given (21, v(*=1), the algorithm
proceeds as illustrated in Algorithm 6. The choice of the parameters L and e
pose simulation tradeoffs. Large values of p result in low acceptance rates, while

small values require many leapfrog steps (expensive computation of the gradient)
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to move between two nearby states. Choosing L is equally problematic as we want
it to be large to generate candidates far from the initial state, but this can result
in many expensive computations. HMC therefore requires careful tuning of the
proposal distribution. It is more efficient in practice to allow a different step size

¢ for each of the coordinates of x.

4.7.2.4 Annealing Methods

Annealed Importance Sampling Annealed importance sampling is a sequen-
tial Monte Carlo method which allows a non-analytically normalizable distribution
to be estimated in an unbiased fashion through simulated annealing heuristic. This
is accomplished by starting at a distribution with a known normalization, and grad-
ually transforming it into the distribution of interest through a chain of Markov
transitions. The transition operator Tj(x’; x) represents the probability density of
transiting from state x to x’. One can use any suitable MCMC transition operator
that guarantees a suitable sequence of intermediate probability distributions. One

general way to define this sequence is to set:
Py(x) oc Pi(x)' P P(x)™, (4.53)

where 0 = By < f1 < -+ < Bg = 1 is the annealing temperature chosen by the
user. Annealed Importance Sampling produces a sample of points (1), 22 2()

and their weights w® w@ . wW) by a sequence of points 1, ...,z as follows:

Algorithm 7 Annealed Importance Sampling- One Run

1: Generate x1,Xo,...,Xy as follows:
2: — Sample x; from Py = Py
— Sample x5 given x; using T}
— Sample x;, given X;_1 using Tp_1

3: Set x() = ?;k;(an?P*( ) P (xi)
. (1) = Diix1) 75 (X2 =
4: Set w'" = p}(xl) p?(xZ) P,:Ijl(xk)

The above procedure produces a single independent point 2@ for use in estimating
expectations. Note that since the transitions from each step to the next take
place through Metropolis Hastings, there is no need to calculate the normalizing
constants of any intermediate distributions. The final result I ; of each annealing
run is heavily dependent on the starting state which was randomly sampled from
the prior, thus the above procedure needs to be repeated several times(M) in
order for the result to converge to the true value. (Neal, 2005) shows that for
sufficiently large number of intermediate distributions, k, the variance of r47¢ will
be propotional to 1/Mk, where M refers to the number of annealing runs.

In order to avoid possible overflow problems, the calculations are done in logarith-
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mic scale, i.e.
M
log P(x| M) ~ Z , where

j = exp Z — Bi—1) log P(x|M; 07

The major advantage of the AIS algorithm from a computational point of view,
is that it is not required for the Markov chains to converge to their stationary
distributions. The samples need only approximately be drawn from a series of in-
termediate distributions, which form a path in the probability density space from
the prior to the posterior. Thus, the algorithm provides a method to approximate
marginal likelihoods even in cases when one cannot find distributions that guaran-
tee convergence. Since convergence assessment may be problematic especially in
non linear problems, requiring several thousands of samples to be rejected before
convergence is achieved, proving AIS very useful.

Although the annealing run allows a much freer movement in the state space by
making small transitions from each step to the next using the Metropolis Hastings
algorithm, AIS is slow and still an approximation which means that there is no
guarantee that the precise result is calculated by visiting all modes. Thus for cases,
where multi-modality is an issue and the modes are far from each other with respect
to these small transition steps, the chain is less likely to move from one mode to
another. In such scenarios, one can increase the temperature to permit uphill
moves more frequently; this will allow the approximate sampling from a sequence
of intermediate distributions to provide greater coverage of different regions of the

state space.

4.8 Summary

This chapter discusses various probabilistic models of visual scene analysis that
take some functional inspiration from the mammalian visual system and provide
a useful basis to draw Fisher score space for the classification task. In order
to maximize the likelihood of the visual data, these models face the problem of
sampling from the joint probability distribution of the data and the features. We
discuss several sampling algorithms in this context and show how these models

could be trained to maximize the likelihood of the seen data.






Chapter 5
Experiments and Results

This chapter explains the design of the experiments carried out to investigate the
problem of visual scene classification typically solved via the generative models.
We discuss the experimental framework used to assess the classification potential
of these generative models and the proposed Fisher kernel based approach used to

take over the same recognition challenge.

5.1 Data Sets

In order to develop visual models of objects and scenes, benchmark data sets
play an important role to test the performance of detection and classification.
Current benchmark data sets for evaluating object classification systems claim
to provide image variability in terms of the object/scene’s appearance, shape,
size, orientation, viewpoint and noise that is naturally present in the real world.
Despite their wide use and applicability, these computer vision data sets have been
criticised for their inadequacy to provide a trustworthy test bed for algorithms
that aim to achieve human comparable speed and accuracy in recognition (Pinto
et al., 2008; Ponce et al., 2006; Torralba & Efros, 2011). Assuming these standard
data sets are decent enough to calibrate the recognition performance of artificial
algorithms, we continue to use them in order to gauge the performance of our
technique against the state of the art methods.

The following different texture, character and object recognition data sets have
been used in this work. Note that in all these data sets, an object may be part of

the scene or the scene itself used for the classification task.

Texture Data sets:

UIUC (Lazebnik et al., 2005)

— CUReT (Dana et al., 1999a)

— Brodatz (Valkealahti & Oja, 1998)
— Berkeley (Martin et al., 2001)

— Emphysema (Sgrensen et al., 2010)

81
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The first three data sets contain texture patterns that form the primitives of natu-
ral scene images. Natural images portray different visual textures with contrasting
properties such as regularity versus randomness and uniformity versus distortion
in the same image. This collage of pixel variation is a result of the uncontrolled
illumination conditions in real life with a variety of objects appearing at different
scales and viewpoints. The Berkeley data set is a natural scene image database that
is usually used for image segmentation tasks. The Emphysema data set contains
computed tomography (CT) slices of the lung tissues showing different textures

for medical image analysis.

Character and Object Recognition Data sets:
— MNIST (Lecun et al., 1998)
— USPS (Hull, 1994)

— Alphanumeric!

— ETH-80?

— Caltech-1013
The first three data sets are character and digits recognition data sets, whereas the
last two are object recognition data sets widely used for determining the success
of computational models and algorithms for scene recognition. A more detailed

discussion on the specifications of the data sets is given in the forthcoming sections.

5.2 Measures of Performance Evaluation

In order to assess the classification performance of the algorithms on benchmark

data sets, we have used the accuracy measure, which is defined as:

Accurac Total number of samples correctly classified « 100 (5.1)
uracy = .
Y Total number of samples in the data set ’

t
A= — x100. (5.2)
n

In the confusion matrix terminology, the numerator ¢ in the above formula is often
regarded as a sum of true positives and true negatives, whereas the denominator
is defined as a sum of true positives, true negatives, false positives and false nega-
tives. The terms positive and negative refer to the classifier’s prediction, and the
terms true and false refer to whether that prediction corresponds to the external
judgment (sometimes known as the observation). This concept is illustrated in
the Table 5.1. We have provided average accuracy as a measure of performance

to evaluate how good the classifiers are to predict different classes. The measure

!The Alphadigits data set is available for download at: http://www.cs.nyu.edu/~roweis/data.html
2The ETH-80 data set is available for download at: sites/default/files/datasets/eth80/

eth80-cropped-closel28.tgz

3The Caltech 101 Silhouettes data set could be downloaded from: http://people.cs.umass.edu/

~marlin/data.shtml


http://www.cs.nyu.edu/~roweis/data.html
sites/default/files/datasets/eth80/eth80-cropped-close128.tgz
sites/default/files/datasets/eth80/eth80-cropped-close128.tgz
http://people.cs.umass.edu/~marlin/data.shtml
http://people.cs.umass.edu/~marlin/data.shtml
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TABLE 5.1: A 2 x 2 contingency table or confusion matrix illustrating the concept of
true positives, true negatives, false positives and false negatives.

Predicted Class (Expectation)
Positive Negative

Actual Class(Observation)
Positive  True Positives  False Negatives
Negative False Positives True Negatives

of uncertainty over the average of obtained accuracies is given by the standard
deviation, which is calculated for measuring the precision for a series of repetitive

measurements.

where N is the number of measurements, x; refers to each individual measurement
and T is the average accuracy.

The proposed models are also assessed based on their computational complexity
measured asymptotically in terms of ‘big O’ notation as well as in terms of CPU
time measured in milliseconds. The asymptotic time complexity quantifies the
amount of time taken by an algorithm to run as a function of its input length
n. This helps us to assess how the algorithm would behave when the size of
the input goes to infinity. The run-time implementation time further justifies
these calculated complexities and enables us to see the the pros and cons of each
competitive technique.

We categorize our empirical work into two streams: Section 5.3 shows our analy-
sis of the discrimination capability of multivariate Gaussian generative model on
texture data sets, whereas Section 5.4 discusses the evaluation of the restricted
Boltzmann machine as a model of scene recognition. In both the sections, the
generative model’s likelihood based performance is compared with the Fisher ker-
nel’s performance. The two approaches are also compared to some simple distance
based classifiers like nearest neighbour and condensed nearest neighbour as well as
some other relevant state of the art classifiers to gauge their success on comparative
scale.

We do not probe a Gaussian mixture model (GMM) for classification here, since
it has already been shown to effectively model the data originating from differ-
ent class distributions. Also GMM was not used as a generative basis to model
the pattern generalization of natural scenes by Karklin (Karklin & Lewicki, 2009)
from where our investigation of finding a better model for classification initiated.
Gaussian mixture models (GMM) may improve over a single multivariate Gaussian
distribution to accommodate a broader and more complex range of distributions
using a combination of simple components, however we choose to keep our prob-
abilistic models simple in the form of a MVG and RBM to explore the power of

the Fisher kernel classifiers.
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5.3 Experiments and Results with Multivariate Gaus-
sian Model

In order to assess the discriminatory power of multivariate Gaussian model that
was introduced by Karklin as a probabilistic model of generalizing pattern variabil-
ity in natural scenes (Section 4.3.1), we followed the suggested image preprocessing
steps in (Karklin & Lewicki, 2009) to train the model in a similar way and probed
its classification ability. The texture data sets chosen to perform these experiments
are UIUC (Lazebnik et al., 2005) and CUReT (Dana et al., 1999a); sample images
from these data sets are shown in Figure 5.1 and their specifications are given in

Table 5.2. We describe the overall experiment and analysis as follows:

(a) UIUC textures (b) CUReT textures

F1GURE 5.1: There are significant viewpoint changes and scale differences present in
both the texture data sets; also the illumination conditions are uncontrolled as in real
life thus making it challenging enough for the designed recognition system.

TABLE 5.2: Specifications of the texture data sets on which the experiments were

performed.
Database No. of classes Images per Class Image Resolution Format
UIUC (Lazebnik et al., 2005) 25 40 480 x 640 JPEG
CUReT (Dana et al., 1999b) 61 92 200 x 200 24-bit BMP

5.3.1 Image Preprocessing

The texture input image is first converted into a gray scale image and then resized
by bi-cubic interpolation such that its aspect ratio is preserved, i.e. 240 x 320
for UIUC textures and 200 x 200 (original resolution) for CUReT images. We
then randomly draw 2800(70 x 40) patches from the images of each UIUC class
and 3680(40 x 92) patches from each CUReT class image, where the resolution of
each patch is 32 x 32. Each of the 32 x 32 image patch is passed through a bank
of two dimensional Gabor filters, spanning 5 orientations linearly spaced around
the clock (0°,45°,90°,135° and 175°) and 10 spatial frequencies (chosen within
the range [0.05,0.37]) with fixed phase and Gaussian envelope, thus accounting
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for a total of 50 filters. Each patch after being processed through the filtering
stage produces a 32 x 32 size image which is then summed up to yield a 1 x 50
dimensional feature vector. From these 50, we select 11 appropriate filter outputs
through maximum relevance-minimum redundancy (mRMR) technique to repre-
sent the data in a space that enhances the inter-class separation and avoids model
overfitting (Peng et al., 2005). The number of features were selected by checking

the models performance on the validation data set.

Algorithm 8 Condensed Nearest Neighbour
Input: Training data D
Output: Templates Dy

1
2
3
4

: Initialise two subsets: Dy = {z1} and Dy, = D - D;
: Vz; € Dy, % data in random order

: do 1-NN. If class D, # class z;, move x; to Dg

: Terminate if |Dy| = 0 or no change in D;

5.3.2 Data Modelling and Results

The texture data with 11 selected features is cross validated through 10-fold cross
validation technique to make training and testing partitions. The training data is

used to learn a multivariate Gaussian generative model for each class as:

N(p,C), = P(xilu, C) = M exp (‘21<xz- — ") (xi - m) ,
(5.4)

where p is the mean of the class distribution, D defines the dimensionality of the

data vectors and C' defines its covariance which is regularized by adding a small
constant threshold (A = 0.01) to its diagonal:

C' = C+Al (5.5)

where I is the identity matrix, and A is called the regularization parameter which
is usually optimized by the user according to the given data. This regulariza-
tion is required to make the covariance matrix well posed* which is otherwise
non-invertible because of singularity (i.e. its determinant is almost zero). The
covariance matrices suffer from singularity either due to the linear dependencies
in the data or simply not enough data given the parameters. The log likelihood

of the samples with respect to the parameters (u,C) of each model is given as

4Given a mapping, A : X — Y, the equation Az = y is called well posed if:

1. A solution exists, i.e. for each y € Y,dz € X such that Az =y
2. The solution is unique, i.e. Azl = Az2 = z1 = 22 and
3. The solution’s behavior hardly changes when there’s a slight change in the initial condition (topology).



86

Chapter 5 Experiments and Results

follows:
N
L(X|p,C) = [ log P(xiu, C),
i=1

(X[, C Hlog (Gromgms o (T (© - m) ).

D N 1 -
log(2m) — Etr(log C) - 5 Z(X’ —wlhCc T (x; — ).
i=1

L(X|p,C) =

Intuitively, this estimate corresponds to the values of parameters (u,C) that in
some sense best agree with or support the actually observed training samples.
Thus, the label y for the test image x is calculated by the following mazimum

likelihood estimate:

y = arg max P(y|x; 0)
y

= y = argmax P(x|y;, ) P(y;) = argmax P(x|y;, 0). (5.6)

This method is a simplification of the maximum a posteriori (MAP) computation
where we assume the same prior probability P(y;) for all the hypotheses, set on the
labels outcome, y in our case. In applications where a hypothesis is represented
by a set of data labels for a given model, we do not have a reason to prefer one
single set of labels over another. Thus, this assumption is valid and is widely
adopted in parameter estimation of physiological system models (Junior & Costa,
1998; Ludwig et al., 2011). This technique in which the test data belongs to the
class whose data model parameters show the highest likelihood with the test image
is known as mazximum likelihood estimation and the classifier is called mazimum
likelihood estimator (MLE). The multi-class classification results achieved by this
classifier are shown in Table 5.3 and Figure 5.2.

In order to calibrate the performance of the MLE classifier, the same Gabor fea-
tures from the texture data were given to the nearest neighbor (NN) classifier
and it was found to outperform this likelihood based model of neural computa-
tion. We therefore seek to improve the model’s efficiency of texture discrimination
through Fisher kernel derived from a single multivariate Gaussian model which is
learnt from the training data of all classes. In order to define the Fisher score, the

gradient of the log likelihood of the data with respect to the model parameters,
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TABLE 5.3: Comparison of the texture classification performance of Fisher kernel
framework with other kernel and distance based classifiers.

Algorithms Data sets
UIUC CUReT

No. of Classes (25) (61)

SVM Fisher Kernel (Fisher scores from MVG model of Gabor features) 52.5% 54.92%
kNN (k=1, Input= Fisher scores from MVG model of Gabor features) 23.21%  32.48%
SVM Linear Kernel (Input= Gabor features) 29.35%  33.12%
SVM Gaussian Kernel (Input= Gabor features) 32.21%  41.03%
kNN (k=1, Input = Gabor features) 51.9% 84.05%
CNN ( 60 % Retrieved rate, Input = Gabor features) 48.8% 80.13%

0 = {pu, X} is computed through the following set of equations:

Vylog o, = [S[n] ] Q[n]] , where
Qan = P(Xn’0)7 S[n] = (Xn - H’)TE_17
1
Q) = 3 [—Vec[Efl]T + S ® Spy) , and

vec(F) = [fi1, f12, - fmn]T(F is m x n). (5.7)

In the above equation, the matrix partition is denoted by | and ® represents the
Kronecker matrix product. The same training data that was used to build up
the Gaussian generative model for each class was also used for training the Fisher
kernel for SVM. The optimal value of hyper-parameter C' was calculated for all the
10-folds of the data. A comparison of the results obtained by all the techniques
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FIGURE 5.2: Comparison of the classification performances achieved by nearest neigh-
bor technique, Karklin’s Gaussian generative model and Fisher kernel on texture data
sets.

implemented on the two benchmark data sets is shown in Figure 5.2. On texture
classification task, the Fisher kernel derived from a MVG model is shown to boost
the maximum likelihood based performance of the generative model and is also
found better than the other kernel functions on the same input features. In the

Fisher score space, the SVM shows precedence in accuracy over a simple nearest
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neighbor (NN) approach as shown in Table 5.3, however when the input space
consists of Gabor features, the classification advantage of Fisher kernel varies in the
two data sets. Note that the nearest neighbour (NN) approach involves brute force
computation of distances between all pairs of points in the data set: for N samples
in D dimensions, this approach scales as O(DN?). Such an efficient brute-force
neighbors searches can be very competitive for small data samples. However, as
the number of samples N grow, the approach quickly becomes infeasible in terms of
the storage and retrieval cost. Considering these costs in account, we also checked
the performance of the condensed nearest neighbor (CNN) approach (Hart, 1968)
on the same feature space of Gabor filters. The CNN works on the observation that
the points far away from the decision boundary are not informative. Therefore,
the number of saved training examples are reduced according to the methodology
shown in algorithm 8. The CNN algorithm stores unique patterns one by one and
eliminates the duplicates that do not add more information to the training data
set. This absorption results in a reduction of saved training templates without
compromising the training set performance and ultimately leading to improved
query time and memory requirements. Although, this technique works well to
reduce the storage cost involved in large data sets, it is dependent on the order of
the training data D, and does not necessarily choose the boundary points because
of the randomness involved in the order. For this reason, the number of restored
training points vary on each successive run of the algorithm and this selection also
affects the gained accuracy on the test sets with some small variance dependent
on the data.

In this experiment, with 60% restoration of the original training data through
CNN, it appears that the Fisher kernel outperforms the condensed nearest neigh-
bour approach for UIUC data set but still could not beat the CNN performance
on CUReT images. See Table 5.3 for a summary of the recognition results in com-
parsion. The purpose of this comparison is to benchmark the learning capability
of the state of the art generative model (MVG) and the proposed discriminatory
Fisher kernel solution against simple distance based learning techniques on dif-
ferent features (Fisher scores + Gabor features). Although these techniques are
not entirely free from the computational and storage caveats in comparison to the
statistical models, yet they can still give hard time to fancy algorithms on the

recognition frontier.

5.4 Experiments and Results with Binary-Binary Re-
stricted Boltzmann Machine
The next set of experiments was designed to assess the discrimination power of

RBMs which have been used for the classification task either as feature extractors

or as a good initial training phase for deep neural network classifiers (Sutskever &
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Hinton, 2007). We assess the ability of this model to classify different objects and
characters through maximum likelihood approach and then show an improvement
in its performance with Fisher kernels. For the sake of analysis and comparison
of classification performance on benchmark data sets, some other classifiers like
ClassRBM, k-nearest neighbor, condensed nearest neighbor and SVM with other

kernel functions, have also been implemented and discussed below.

5.4.1 Experiment 1 with MNIST Digits Data Set

We first of all select the problem of character recognition on MNIST data set which
contains 28 x 28 gray scale handwritten digits derived from a larger database called
NIST (Lecun et al., 1998). The number of classes in the database are 10 (digits
ranging from 0 — 9) with 60,000 training and 10,000 test images.

$1#%0)642194]7

FI1GURE 5.3: Sample of binary digits taken from the MNIST handwritten digits data
set.

5.4.1.1 Image Preprocessing and Data Modelling

The digit images are first converted into binary images and then passed on to the

visible layer of 784(28 x 28) units. Each unit in the model has a sigmoidal activation
1

1+exp(—z)’

layer. Thus, the hidden and visible units are updated according to the condi-

function o(z) = that acts on the input coming up from the opposite
tional distributions specified in Equations 4.11 and 4.12. The number of epochs
for stochastic gradient descent learning of parameters were fixed to 10. Other pa-
rameters that are significant for building and training this generative model are
learning rate (0.005), initial momentum (0.5), final momentum (0.9), penalty for
the weight decay factor (0.0002) and batch size®. A guide to initialize and optimize
these parameters is given by Hinton (Hinton, 2010). We have used contrastive di-
vergence (CD-1) explained in Section 4.4.1 to approximate the gradient of the log
likelihood function of RBM and updated the model parameters 8 = {W, a, b} via
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the following rule:

0 «— 0 +n(Vglog P(v;0)), where

2.nxp(=E(v, h))
2wn Xp(=E(v, h))

= logZexp(—E(v, h)) — logZexp(—E(v, h)).
h v,h

log P(v) = log (

The energy function E(v,h) of the binary-binary RBM and its respective prob-
ability distributions to maximize the likelihood of the data have been described

previously in Section 4.4.

5.4.1.2 Results

We draw three different kind of classifiers to calibrate the performance of this gen-
erative model; the first is a maximum likelihood based classifier, second a Fisher
kernel based discriminative classifier and third is a ClassRBM. In order to clas-
sify digits with likelihood based approach, we train each RBM model with a dif-
ferent class of digits. The partition function, Z(60) = > >, exp (—E(v, h;0))
of each probability model is calculated through annealed importance sampling
(AIS) (Salakhutdinov & Murray, 2008) and then the label of the test data is
estimated via Equation 5.6. For Fisher kernel calculation, we pool all the training
data from each class and train a single RBM model with the optimal parameters.
This training data that was used to train the RBM was also used to train the SVM

with Fisher kernel calculated as follows:
K(xi,%x;) = qﬁziqﬁxj, where X — ¢x.
The Fisher score ¢y is derived from the generative model as:

Ve log P(xn|0) = [Sm) | Q) | Upy)] s where

S = Vi log P(xn0) = (vh¥)p,,,, — (vhT)p
Qjn) = Valog P(x4|0) = (h
Upn) = Vp log P(xn[0) = (v

model’
Pdata — <h>Pmode1’
\'2

)
>Pdata - ( >Pmodel' (5'8)
The derivation of these gradients is shown in Appendix A. Figure 5.4(a) shows
the classification performance achieved by each of these methods as the learning
capacity of the RBM is increased with the addition of the hidden units. With ref-
erence to this experiment, Figure 5.4(b) shows the respective CPU time consumed

by each of the competing algorithms at different scales. The Fisher kernel derived

SFor ClassRBM on MNIST task, a batch size of 10 was maintained as suggested in the literature,
whereas for the RBM generative and Fisher kernel RBM models full batch size was chosen for model
training.



Chapter 5 Experiments and Results 91

Performance (% Correct)

TABLE 5.4: Growth of Fisher vector length in case of MNIST data set.

No of hidden units 1 10 100 1000 6000
Fisher vector length 1569 8634 79284 785784 4710784
(I = ny + nn + Nvxn)
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(a) Classification accuracy (b) Overall time complexity on logarithmic scale

FiGURE 5.4: Comparison of the classification performances achieved by the RBM

generative model (n = 0.005), Fisher kernel RBM (n = 0.005) and ClassRBM (n =

0.05 ) on MNIST data set. The overall computation time of training and testing is also
shown on a logarithmic scale.

from the classical RBM shows a significant boost in the performance attained by
the RBM generative model through maximum likelihood approach, and is also
found much better than the ClassRBM at small scale. As the model becomes
shallow with increasing number of hidden units, the derived Fisher kernel shows
a trend of overfitting due to the massive number of model parameters that make
Fisher vectors immensely large (i.e. of the order of magnitude 10° at 6000 hidden
units), thus preventing the classifier from generalizing well despite regularization.
This experiment was carried out on full MNIST training and test sets where the
SVM training for Fisher kernel was carried out through stochastic gradient descent
(SGD) learning approach as suggested by Bottou (Bottou et al., 2008).

We emphasize on the need of using an online approach for training the SVMs
with Fisher vectors from RBM as their storage and retrieval becomes extremely
costly through batch algorithms when the size of the data and RBM model is in-
creased (Sanchez et al., 2013). Table 5.4 highlights how the number of parameters
are increased as we increase the number of hidden units of RBM. To calibrate the
storage cost, consider a double precision floating point integer of 8 bytes, then a
single signature of 79284 variables obtained from a 100 hidden units RBM would
require 634KB of storage. This implies that for the whole MNIST data set of
60,000 training data points, the amount of storage required is 35.4GB. As we scale
the size of this model to 6000 hidden units, at which the state of the art meth-
ods have shown the best performance on MNIST (Larochelle & Bengio, 2008),
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F1GURE 5.5: Comparison of the CPU-time taken by all techniques during the training
phase is shown; the zoomed image for small scale models on MNIST is shown on the
left hand side.
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FIGURE 5.6: Comparison of the CPU-time taken by all techniques for the test phase is
shown; the zoomed image for small scale models on MNIST is shown on the left hand
side.

the storage requirements of Fisher vectors rise to approximately 2TB. Note that
this is not entirely a storage issue since handling tera bytes of dense data makes
experimentation very difficult if not impractical. Techniques like the decompo-
sition methods (Osuna et al., 1997) and shrinking (Joachims, 1999a), all offer a
way to avoid the unneeded full kernel matrix computation, however storing and
retrieving large Fisher vectors from/to the hard disk may take significant amount
of time without performing any useful calculation. In order to solve this stor-
age issue of large dimensional Fisher vectors, some compression techniques like
PQ encoding, local sensitivity hashing and spectral hashing have recently been
introduced (Sanchez & Perronnin, 2011). Likewise, another way of resolving this

computational issue is to use stochastic gradient descent (SGD) learning rule for
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TABLE 5.5: Performance achieved by state of the art methods on full MNIST digits

data set.

Algorithms % Error
SVM (Gaussian Kernel, ¢ =4, v =0.031, Input=Image pixels) 4.51%
SVM (Linear Kernel, Input= Image pixels) 2.33%
K-Nearest Neighbor (Eucledian, L2; k=1; Input = Image Pixels) 5%
K-Nearest Neighbor (Eucledian, L2; k=1; Input = Fisher scores from RBM (10 hid. units)) 4.94%
Convolution Neural Network (CNN) (Ciresan et al., 2012) 0.23%
Deep Belief Networks (DBN) (Hinton et al., 2006) 1.25%
Discriminative RBM (n=0.05, h=500) (Larochelle & Bengio, 2008) 1.81%
ClassRBM (1n=0.005, h=6000) 3.39%
SVM Fisher Kernel ( h = 10) 9%

training SVMs so that the classifier learns the parameters on mini batches of Fisher
vectors convenient for processing. We have used this learning rule for SVM in all
of our experiments except for the CalTech 101 data base where the classification
accuracy obtained through sequential minimal optimization (SMO) algorithm was
comparatively better than SGD optimizer for SVM. A summary of the classifica-
tion results on the digits database is shown in Table 5.5, where the Fisher kernel
performance is compared to the other state of the art accuracies. The proposed
method does not supersede the best reported performances, yet it gives results in

the same league in a very small compute time.

5.4.2 Experiment 2 with All Other Binary Data Sets
5.4.2.1 CalTech-101 Data Set

The CalTech 101 Silhouettes data set (Marlin et al., 2010) has been derived from
the original CalTech 101 database (Fei-Fei et al., 2007) of distinct objects. In order
to obtain the silhouettes, the primary object in the image is first outlined through
a high quality polygon, and then centered and scaled to render on a 28 x 28 pixel
image plane. The final image is a filled black polygon on a white background as

shown in Figure 5.7. The Caltech101 silhouettes data set is very different from
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MNIST as it contains a significantly larger number of classes (101 in total) but

much fewer samples for each class comparatively. The train/validation/test split
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FicUure 5.8: Comparison of the classification performances achieved by the RBM

generative model (n = 0.005), Fisher kernel RBM (1 = 0.005) and ClassRBM ( =

0.05 ) on CalTech 101 silhouettes data set. The comparison of the overall computation
time taken by these techniques is also shown in parallel.

is therefore a stratified sample to handle the class imbalance in the data set. Given
Nc instances from each class ¢, we put min(% x Ne¢,100) instances from that class
into the training set, so each of the 101 classes has at most 100 training instances.
The minimum number of training instances per class is around 20. The remaining
instances are split evenly between validation and test sets. The validation and
test sets for each class have between 6 and 400 instances. It makes sense to use
class-balanced prediction accuracy, as for the standard CalTech data set, since the
test and validation sets are badly imbalanced and some classes may be much easier
to predict than others.

The 28 x 28 dimensional binary silhouettes serve as an observation to the visible
layer of the RBM thus formulating 784 visible units. The RBM model consists of
one hidden layer which was tested with different number of units to capture the
distinctive features of different objects. The number of epochs for the generative
model were fixed to 10 for the experiments shown in Figure 5.8 and Figure 5.15.
Other parameters that are significant for building and training this generative
model are learning rate (0.005), initial momentum (0.5), final momentum (0.9),
penalty for the weight decay factor (0.0002) and batch size. We have used con-
trastive divergence (CD-1) algorithm to approximate the gradient of the likelihood
function of RBM.

We compare the obtained classification results with some baseline state of the art
techniques on the CalTech 101 Silhouettes data set. Our achieved classification
performance through Fisher kernels is competitive to the state of the art results
shown in Table 5.6. Note that we confine the comparison of our classification
results with the methods that use the silhouettes rather than the colored images
in the original Caltech 101 database (Fei-Fei et al., 2007). Once again, the Fisher
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F1GURE 5.9: Comparison of the computational complexity incurred by each algorithm
for training the generative models and SVM optimizer is shown. The data set used is
Caltech-101.
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F1GURE 5.10: Comparison of the computational complexity of each algorithm for the
testing phase is shown. The data set used is Caltech-101.

kernel shows the best classification accuracy at 100 hidden units level as compared
to the ClassRBM'’s best performance at 500 hidden units and generative model’s
performance at all scales. From the results in Table 5.6, it is also clear that the
classification performance achieved by Fisher kernel RBM is competitive to the
performance achieved by two layers DBN. This result speaks of the computational
benefit one would get by using Fisher kernels in comparison to the popular deep
models which require a lot of parameter tweaking to tune initially and then classify
the data.

Note that on this data set, the optimization algorithm used for SVM training and

5This model is different from the classical model of RBM that forms the core of DBN and is used
throughout in all our experiments. The performance figures are only mentioned here for the sake of
completion with other state of the art methods.
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TABLE 5.6: Performance achieved by state of the art methods on CalTech 101 silhou-
ettes data set.

Models Performance
(% Accuracy)

Support Vector Machines (Fisher Kernel; hidden units=100) 63.82 +1.5%
Support Vector Machines (Linear Kernel; Input=Image Pixels) 70.32 +£0.11
Support Vector Machines (Gaussian Kernel; Input=Image Pixels) 68.57 £ 0.12
K-Nearest Neighbor (k = 1; Input=Fisher scores from RBM with hidden units=100) 59.92 + 0.08%
K-Nearest Neighbor (k=1; Input=Image Pixels) 64.29 + 0.16%
Condensed Nearest Neighbour (Input=Image Pixels)(@55% retrieved rate) 62.40 + 0.42%
Convolutional Deep Belief Networks (DBN)(Lee et al., 2009) (2 layers) 65.4+0.5%
ClassRBM (hidden units=500, n=0.05) 59.37 £1.18
Restricted Boltzmann Machine(Marlin et al., 2010) 71.4%

(550 class relevant and class irrelevant hidden units, Persistent CD learning)®

prediction is sequential minimal optimization (SMO) as well as stochastic gradient
descent (SGD) learning. The SMO implementation uses one versus one classifi-
cation method, whereas the SGD implementation uses one against all method to
solve the multi-class classification problem. Empirically, SMO offers a better clas-
sification accuracy close to the state of the art performances shown in Table 5.6,
whereas the SGD offers a comparable accuracy with a better computational cost.
Note that this better computational cost of SGD is not due to the one against
all methodology, rather it is so due to the SVM optimization algorithm which
learns the data in an online way. If one is interested in building a fast classifica-
tion system, then using SGD for SVM optimization is a better choice than SMO.
See Figure 5.11 to analyse the time and performance space of all the competitive
methods on CalTech-101 data set.
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FIGURE 5.11: Scatter plot of performance and time of all the competitive techniques;

SVM with SGD using Fisher kernel again outclasses the other methods on the compu-

tational complexity frontier, yet its performance is not the best as achieved by the the
Fisher kernel SVM deploying SMO optimization algorithm.
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TABLE 5.7: Performance achieved by state of the art methods on USPS data set.

Models Performance
(% Accuracy)

Support Vector Machines (Fisher Kernel; hidden unit=1) 87.39 +£0.1%
K-Nearest Neighbor (k = 1; Input = Fisher scores from RBM with hidden units=1) 78.02+ 1.67%
Support Vector Machines (Linear Kernel; Input = Image Pixels) 94.47

Support Vector Machines (Gaussian Kernel; Input = Image Pixels) 93.52
K-Nearest Neighbor (k = 1; Input = Image Pixels) 94.37%
Condensed Nearest Neighbour (Input=Image Pixels) 91.88%

5.4.2.2 USPS Data Set

The next binary data set that was used for evaluating RBM was USPS data set
that contains 7291 training examples and 2007 test examples of digits from 0-
9. This data set is extracted from the digital images of handwritten addresses
that were gathered as part of a research project sponsored by the United States
Postal Service (USPS)(Hull, 1994). This data set is considered quite challenging
for classification because of the reported human error rate of 2.5%. Also because
of the collection of the two sets (train and test) in slightly different ways, it is
pretty well established among the machine learning practitioners that the cases in
the test set are harder than the cases in the training set. We therefore check the
classification performance of our algorithm to gauge its success for USPS character

set.

4 1 X
o] & 1 E3
kd
1M E1 1l

FIGURE 5.12: Samples of the digits from the USPS data set

The gray scale images in the data set have dimensionality 16 x 16 thus constituting
a 256 dimensional vector for training the RBM model. The dynamic range of each
image is converted to [0,1] before feeding it to the probabilistic model. Other
parameters that are significant for building and training this generative model are
learning rate (0.005), initial momentum (0.5), final momentum (0.9), penalty for
the weight decay factor (0.0002) and batch size(optimally set for each technique).
We have used contrastive divergence (CD-1) algorithm to approximate the gradient
of the likelihood function of RBM.

From the results reported in Figure 5.13(a) and 5.13(b) on the USPS data set,
we can see that the Fisher kernel is once again boosting the generative model’s
classification performance. The Fisher kernel results shown at small scales are

competitive in terms of the classification accuracy and computation time when
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FicUure 5.13: Comparison of the classification performances achieved by the RBM

generative model (n = 0.005), Fisherkernel RBM (n = 0.005) and ClassRBM (n = 0.05)

on USPS database. The overall computational complexity of each algorithm is also
shown on the logarithmic scale in parallel.
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FIGURE 5.14: Comparison of the training time complexity of each algorithm for USPS

data set is shown. For RBMLH, the training cost involves the training time of the

generative models only, whereas for the Fisher kernel, the training time includes the

cost of training the generative model as well as training the SVM model via SGD
optimizer.

compared to the other competing classifiers on this data set. A breakdown of
the training and testing cost of each algorithm is also shown in Figures 5.14 and
5.15. Moreover, we also compare the classification accuracy of the proposed Fisher
kernel method to other SVM kernels and distance based classifiers in Table 5.7.
We observe that when the input feature space consists of Fisher scores, the SVM
classifier shows a better performance than the kNN classifier, however when the
input features are image pixels, kNN and other SVM kernels perform a better

classification job.
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20 x 16 dimensional binary digits from 0 through 9, and capital English alphabets
), final momentum (0.9),

comprising a total of 1404 samples. This data set is comparatively quite small but
of hidden units. We therefore use it to benchmark the performance of our method
The data set is divided into train and test sets through 10-fold cross validation and
the results are shown in Figure 5.17. Other parameters of interest significant for
batch size”. We have used contrastive divergence (CD-1) algorithm to approximate
the gradient of the likelihood function of RBM. Again, the results reported by

building and training this generative model are learning rate”, initial momentum

is used by the deep learning community due to its fast learning with a few number
(0.5

We also carried out an experiment on Alphanumeric digits data set that consists of
from A through Z. There are 39 examples of each character in the data set thus

5.4.2.3 Alphanumeric D

FI1GURE 5.16: Samples of the images belonging to 36 different classes of Alphanumeric
on it.
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FicUrRe 5.17: Comparison of the classification performances achieved by the RBM

generative model (n = 0.005), Fisher kernel RBM (1 = 0.005) and ClassRBM ( =

0.05 ) on Alphanumeric data set. The overall computation time on the logarithmic
scale is also shown.
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F1cURE 5.18: Comparison of the train time incurred by each competing technique for
Alphanumeric data set is shown; the zoomed image for small scale models is shown on
the left hand side.

the Fisher kernel show significant boost in the classification performance of the
generative models. As noted previously, the overall computational cost of the
best Fisher kernel performance is far less than the generative model’s computation
time to attain the best accuracy on this data set. The Fisher kernel is infact also
efficient in comparison to the RBM model designed specifically for classification,
i.e. the ClassRBM. We have also compared the classification results of the proposed

approach with other distance based and kernel classifiers in Table 5.8.

"These parameters have been set up optimally for each technique differently.
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F1GURE 5.19: Comparison of the test time taken by each technique to classify Al-
phanumeric digits is shown; the zoomed image for small scale models is shown on the
left hand side.

TABLE 5.8: Performance achieved by state of the art methods on Alphanumeric data

set.

Models Performance

(% Accuracy)
Support Vector Machines (Fisher Kernel; RBM hidden units=10) 70.50 £ 2.73%
K-Nearest Neighbor (k = 1; Input = Fisher scores from RBM with hidden units=10)  58.95 4+ 4.20%
Support Vector Machines (Linear Kernel; Input = Image Pixels) 74.87 £ 2.92%
Support Vector Machines (Gaussian Kernel; Input = Image Pixels) 74.10%
K-Nearest Neighbor (k = 1; Input = Image Pixels) 69.67 + 2.3%
Condensed Nearest Neighbour (Input=Image Pixels) 63.96 + 4.85%

5.4.2.4 ETH-80 Data Set

The ETH-80 data set holds the contours of 10 objects from 8 different categories
with 41 views per object, spaced equally over the viewing hemisphere, for a total
of 3280 images (Leibe & Schiele, 2003a). All images are cropped in a way that
they contain only the object, centered in the image, plus a 20% border area.

For our experiment, we resized the image into a 32 x 32 frame and fed a 1024
dimensional vector for the RBM model training. The classification performance
on this data set is measured by partitioning the training and test sets into 10
folds with k-fold cross validation. The results reported in Figures 5.21(a) and
5.21(b), once again speak of the computational advantage Fisher kernel has over
the likelihood based generative approach and ClassRBM. A comparison of the
performance with other state of the art methods is shown in Table 5.9. Unlike
other data sets, the knn classifier performs slightly better than the SVM classifier

in the Fisher score space.
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(k) Binary Image Conour

FIGURE 5.20: The 8 categories of the ETH-80 database. Each category contains 10
objects with 41 views per object, spaced equally over the viewing hemisphere, for a
total of 3280 images.
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FiGUrRE 5.21: Comparison of the classification performances achieved by the RBM

generative model (n = 0.005), Fisher kernel RBM (n = 0.005) and ClassRBM (n =

0.05 ) on ETH-80 data set. The computational complexity of each algorithm is also
shown in parallel.

5.4.3 Effect of Noise on All the Competitive Techniques

In this section, we explain the effect of noise and translation on the classification

performance of all the algorithms. We take as a toy example, a small RBM model

TABLE 5.9: Performance achieved by state of the art methods on ETH-80 data set.

Models Performance
(% Accuracy)
Support Vector Machines (Fisher Kernel; RBM hidden units=100) 77.65 +2.29%
K-Nearest Neighbor (k = 1; Input = Fisher scores from RBM with hidden units=100) 82.65 £2.17%
Support Vector Machines (Linear Kernel; Input = Image Pixels) 87.35 £ 1.25%
Support Vector Machines (Gaussian Kernel; Input = Image Pixels) 86.34 + 2.27%
K-Nearest Neighbor (k = 1; Input = Image Pixels) 89.76 + 1.12%

Condensed Nearest Neighbour ( Input=Image Pixels) 87.95 + 1.95%
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generative models and the SVM classifier for ETH-80 data set is shown.
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FIGURE 5.23: Comparison of the CPU time taken by all the techniques to classify the

test data in ETH-80 database is shown.

with 10 hidden units. The number of training and test data points from MNIST
data set are also constrained to a small subset, i.e. randomly chosen 2000 points

for training and 1000 points for testing. It was observed that the classification

accuracy of all the models drop as more noise is introduced, however at the level
of 40% noise, when the digits are badly distorted but still recognizable, the Fisher
kernel is still better than the generative likelihood based approach as well as the
ClassRBM. At the next noise level of 50%, the digits lose their visual identity,
therefore the ClassRBM performs as good as a random classifier (10%), whereas

the generative and Fisher kernel based approaches still show some robustness by

being better than random. The generative likelihood based approach is more

robust than all methods at that scale of noise.
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F1cURE 5.24: Graph showing the effect of the noise on a toy model of RBM and its
variants for classification. A small subset of data was used for training and testing to
see how each of the classifier’s performance degrades.

5.4.4 Effect of Translation on All the Competitive Techniques

In this section, we analyse the classification performance of all the competitive
techniques by giving translated versions of the images to the classifier for testing.
The model is trained with centre normalized images, but at the time of testing,
the images are translated 1-5 units to the left. The graph showing classification
performance as a result of this experiment is given below in Figure 5.25.

From the results obtained, we observed that all the competitive classifiers are
not robust against translation. The Fisher kernel performance is better than the
remaining classifiers until the translation is within 3 units; after that it drops
below the generative model’s likelihood based performance and then further drops
to least significant accuracy among all when the test image is translated 5 units
away. The accuracies of all these models in this toy example is better than the
random performance, showing that there is some connection between the features
and the output class, yet the extracted features are not robust enough against the
noise introduced due to translation.

In order to make the Fisher kernel based approach robust against translation, one
can adopt two possible strategies: (1) Either use translation invariant features
(Fisher scores) with the Fisher kernel or (2) Use translation invariant kernels with
the Fisher scores (Kovacs & Hajdu, 2013). We have not tried any of these tech-
niques to make the proposed approach robust against translation in this work, yet

aim to improve the method on this front in the future.
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FI1GURE 5.25: Effect of translating the image from the center towards the sides on the
classification performance of all the competitive algorithms.

5.4.5 Sparsity Analysis of the Fisher Vectors Obtained from Binary-
Binary RBM

Imposing sparsity constraints has gained popularity in computer vision, especially
for image classification tasks due to three reasons:(1) Evidence of sparse represen-
tations in the mammalian brain (Olshausen & Field, 1997; Ranzato et al., 2006);
algorithms that are based on such constraints can reproduce linear filters similar
to receptive fields in V1 (Olshausen & Field). Consequently, such approaches are
used to extract features that are assumed to be relevant for classification (Lee
et al., 2008).(2) Sparsity is also convenient to constrain over-complete linear repre-
sentations where the number of basis vectors is greater than the dimensionality of
the input and the representation of an input is not a unique combination of basis
vectors (Lewicki & Sejnowski, 1998). (3) For large scale classification applications,
a sparse data representation is the inevitable choice due to storage limitations
(Sanchez et al., 2013).

While sparse representations have been regarded as more likely to be separable in
high dimensional spaces (Ranzato et al., 2006), some literature also suggests that
solely enforcing sparsity is not helpful to achieve good recognition rate, at least in
the presence of a reasonable amount of noise (Rigamonti et al., 2011). Working on
these lines, we analyse the Fisher vector score space obtained from binary binary
RBM to understand the relationship between data sparsity and recognition rate.
Over here data sparsity refers to the zero gradients in the Fisher vector. Figure
5.26 illustrates the result of this analysis. On all the data sets, i.e. MNIST,
Caltech-101, USPS, Alphanumeric and ETH-80, we observe that the classification
performance drops as the sparsity increases due to the expansion of the model’s
hidden layer. Although there are no sparsity constraints that control the activity
of the hidden units in the current RBM implementation, the gradients naturally
grow more sparse as the number of hidden units increase in majority of the data

sets. Since the dot product is considered as a poor measure of similarity for sparse
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FIGURE 5.26: Graph probing the effect of sparsity on the classification of digits and

objects in benchmark data sets.
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data, the decreasing performance seems to be an immediate consequence of the
sparsity that acts as a noise misleading the discrimination. In order to deal with
sparse data, the kernel based methods are usually left with two choices:

— Either use a kernel that is more robust to sparse data for example the Lapla-

cian kernel which is based on the L1 distance & or
— Unsparsify the data representations to retain the dot product similarity (Per-
ronnin et al., 2010b).

For low dimensional Fisher vectors extracted from very compact models, a nonlin-
ear kernel like Laplacian could be used to see if the prediction accuracy is improved,
however for high dimensional Fisher vectors, i.e. dimensions>10000, there is no
need to map the data to a higher dimensional input space because it is often al-
ready good enough. For such problems, linear kernels are an order of magnitude
faster with almost the same predictive performance as nonlinear kernels.
The alternate solution of unsparsifying the data is again useful for Fisher vectors
obtained from the compact generative models; unsparsification of the gradients
obtained from large scale models would lead to storage and overfitting issues. In
the past, Peronnin has used Power normalization® scheme to unsparsify the Fisher
vectors obtained from the Gaussian mixture model (Perronnin et al., 2010b). This
approach did not prove any useful for the classification of Fisher gradients in our
case since the sparsity present in the gradient vector is primarily originating from
the absolute zero gradients and not near to zero gradients whose scale could be
normalized. We therefore intend to look for other ways of making the Fisher

vectors less sparse and discriminative simultaneously.

5.4.6 Fisher Vector Normalization - Use of Fisher Information

Matrix in Fisher Kernel

The performance of large margin classifiers like SVMs is sensitive to the way fea-
tures are scaled. For this reason, either the input features are normalized or the
kernel function is normalized to scale the data in the feature space. In order to
improve the classification accuracy with Fisher kernels, Perronin (Perronnin et al.,
2010b) has shown the use of L2 normalization as a way to improve the quality of
the gradient vectors. Linear kernels that deploy L2 normalized Fisher vectors, are

equivalent to using a normalized kernel, i.e.

K(X,Y)

KX, Y) = VEX, X)K(Y,Y)

(5.9)

On adopting the former strategy to see the impact of L2 normalization on Fisher

vectors recognition performance, we found that the accuracy is either no better

8The fact that L1 is more robust than L2 on sparse vectors is well known in the case of BOV
histograms, for reference, see the work of (Nister & Stewnius, 2006).
9Power Normalization = f(z) =sign(z)|z|*, where 0 < a < 1 is a parameter of normalization.
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TABLE 5.10: Summary of classification results attained by Fisher kernel obtained from
a RBM (10hid units).

Data Sets With L2 Normalization(Acc) Without L2 Normalization(Acc)
MNIST 79.09% 90.09%
CalTech-101 13.09% 39.92%
Alphanumeric  55.48% 63.95%
USPS 85.79% 85.10%
ETH-80 67.01% 67.07%

or is equivalent to the recognition accuracy of the unnormalized Fisher vectors.
See Table 5.10 for results obtained by a Fisher kernel derived from a small scale

restricted Boltzmann model.

5.5 Experiment and Results with Fisher Kernel Ex-
tracted from Continuous Models of RBM

In this section, we show the use of Fisher kernel derived from a Gaussian binary
RBM and factored 3-way RBM model for classification; the two probabilistic mod-
els have already shown the potential of capturing pixel variations present in con-
tinuous images like textures and natural scene images. These models, as discussed
in Section 4.5, are more appropriate than a binary binary RBM for modelling real

valued data.

5.5.1 Berkeley Image Segmentation Data set

We first of all demonstrate the use of factored 3-way RBM to model natural images
from Berkeley image segmentation data set (Martin et al., 2001). This data set
contains 300 colored images which have been divided into a training and test
set of 200 and 100 images. The ground truth/labels for these images have been
decided via human inspection and are provided to the users in the referenced public
repository. Since our goal is not to perform segmentation, we have just used these
images as an exemplary natural scene database to demonstrate and learn how a
factored RBM could be trained on continuous data as trained by (Ranzato et al.,
2010a).

The preprocessing phase of this demo includes random selection of 16 x 16 dimen-
sional patches from the images of the data set. Due to demonstrative reasons,
we restrict the count of the number of patches to 105. We then extracted PCA!Y
features from these drawn patches and passed them on as an input to the fac-
tored 3-way RBM for modelling. The factored 3-way RBM uses contrastive diver-
gence algorithm (Equation 4.22) to calculate the gradients of the model parameters
0 = { Ptachid, Cvisfac, br } via the Equations 4.26, 4.27 and 4.28. See Appendix C for

OPCA: Principal Component Analysis is defined as an orthogonal linear transformation that trans-
forms the data into a new coordinate system such that the greatest variance by any projection of the data
comes to lie on the first coordinate (called the first principal component), the second greatest variance
on the second coordinate, and so on.
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FIGURE 5.27: Samples of natural images from Berkeley image segmentation data set
BSDS-300. Originally, each sample is a colored RGB image of resolution 481 x 321,
which undergoes preprocessing phase to yield patches for each unique experiment.
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F1cURE 5.28: The sum square reconstruction error shown by factored 3-way RBM on
PCA features extracted from 16 x 16 dimensional patches of natural images in BSDS-
300.
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FI1GURE 5.29: The sum square reconstruction error shown by factored 3-way RBM on
white normalized patches extracted from the natural images in BSDS-300.
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FIGURE 5.30: The visual factor filters, Cyisfqc learnt from the whitened 16 x 16 size
patches of Berkeley segmentation data set. These 256 filters resemble the edge like
features detected by the simple cells of visual cortex.

FIGURE 5.31: Samples of some original (left) and reconstructed images(right) of the
whitened Berkeley data set patches.

the derivation of these gradients. In order to sample data from the model in con-
trastive divergence, Markov chain is implemented via hybrid Monte Carlo method
that employs gradients to find out the right direction of search in high dimen-
sional energy landscapes. The partial derivative of the free energy with respect
to the visible units, v is calculated using Equation 4.25. The hyper parameters of
the factored 3-way RBM for this demo were set as: learning rate for weights, nco
=0.075, learning rate for biases of hidden units, n5=0.0037, learning rate for biases
of visible units, np= 0.0037, leap frog step size=20, number of hidden units=256,
number of factors=256. The reconstruction error of the model at first rises and
then falls after 55 epochs until its becomes steady. We have shown the trend of
reconstruction error for natural image patches from Berkeley till 300 epochs in
Figure 5.28.

Note that increasing the number of epochs might increase the average rejection rate

of samples drawn via HMC, therefore it is suggested to constrain the number of
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epochs to small after observing the trend of reconstruction error for large epochs.
Also it is important to dynamically adjust the leapfrog step size to make sure
that the acceptance rate in the Hybrid Monte Carlo procedure is reasonably high,
otherwise the decay in reconstruction error may be the direct result of decline of
acceptance rate. Here the acceptance rate is around 90%.

The filters learnt by this model do not reveal any meaningful features because the
input at the visible layer consisted of PCA features which are not distinctive in
appearance. However, the reconstruction error curve and sampling rate determine
that the model has learnt some significant statistics on the provided features.
Some of the other cues which determine the progress of learning are reconstructed
patches of the provided data. We will observe these along with the learnt filters
in the forthcoming experiments.

In the next experiment on the Berkeley data set, we white normalized the drawn
patches and passed them on to the factored 3-way RBM. Whitening removes the
correlation between the pixels forcing the statistical model to learn higher order
correlations between the pixels. With an average rejection rate of 28%, the re-
construction error curve shows a steady and stable decline after 25 epochs(Figure
5.29). A subset of some reconstructed patches is shown in Figure 5.31 which look
very similar to the patches originally passed on to the model. The visible factor
filters learnt are shown in Figure 5.30 which are almost identical to what Ran-
zato has shown in (Ranzato et al., 2010a) and seem to capture the pixel intensity
variations in local patch regions. The other hyper parameters used in this model
are: learning rate for weights, nc =0.0095, learning rate for biases of hidden units,
1np=0.0047, learning rate for biases of visible units, np= 0.0047, leap frog step
size=20, number of hidden units=256, number of factors=256.

This data set was just chosen to learn how the factored 3-way RBM models the
data as reported in (Ranzato et al., 2010a). After having an intuition of how it
works and learns features similar to the one shown in (Ranzato et al., 2010a), we
move on to a classification data set again. We choose two more data sets with
continuous data: one is a medical image database of Emphysema affected lung
images and the other one consists of Brodatz textures. Since the binary-binary
RBM is not a good model of continuous data, we use Gaussian Bernoulli RBM
and Factored 3-way RBM to model the textures and then derive a Fisher kernel
from it to compare which model draws the best Fisher scores for a discriminative
classifier like SVM.

5.5.2 Emphysema Data set

The Emphysema database (Sgrensen et al., 2010) consists of 15 high-resolution
computed tomography (CT) slices as well as 168 16 x 16 dimensional patches
extracted from the subset of slices and manually annotated for texture analysis

techniques. Emphysema is a disease characterised by a loss of lung tissue and
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"

(a) Normal Tissue (NT) (b) Centrilobular ~ emphysema  (c) Paraseptal emphysema (PSE)
(CLE)

F1GURE 5.32: Examples of different lung tissue patterns extracted through computed

tomography are shown. NT represents the sample of a healthy tissue, CLE reveals a

healthy smokers tissue and PSE shows the distorted tissue of a person suffering from
chronic obstructive pulmonary disease (COPD)

is one of the main reasons of chronic obstructive pulmonary disease (COPD). A
proper classification of emphysematous - and healthy - lung tissue is useful for
a more detailed analysis of the disease. The 61 x 61 pixel patches!! are from
three different classes: NT (59 observations), CLE (50 observations), and PSE (59
observations). The NT patches were annotated in never smokers, and the CLE
and PSE region of interests were annotated in healthy smokers and smokers with
COPD in areas of the leading pattern. These texture patterns serve as a good basis
for assessing the modelling power of RBMs designed specifically for capturing pixel
intensity variations present in textures.

As a preprocessing step, we crop 31 x 31 dimensional patch from the center of
each 61 x 61 patch and threshold the pixel values in the dynamic range [-1000,
500]. The thresholding is based on the knowledge that the CT density values of
lung parenchyma pixels are usually between the Hounsefield unit range [-1000HU,
500HU]. In order to classify these patches into 3 different classes, we have used
Fisher kernel derived from three different probabilistic models: binary-binary
RBM, Gaussian-Bernoulli RBM and factored 3-way RBM that model the data
representations through different distributions. Once each of the generative model
is trained, we calculate the gradients of the log likelihood function to form Fisher
scores for the Fisher kernel. The Fisher kernel is then embedded into the SVM
classifier that finally performs multi-class classification through one versus one
training technique. The optimal value for hyperparameter C' in SVM is decided
via grid search method. In factored 3-way RBM, we maintained an average rejec-
tion rate of 6% with HMC sampling that used an adaptive step size to control the
average acceptance rate of the drawn samples, thus yielding fast mixing rate. The
summary of the classification results of Fisher kernel derived from different proba-

bilistic models is shown in Table 5.11 and the reconstruction error for each model is

" The Emphysema data set could be downloaded from the following link: http://image.diku.dk/
emphysema_database/


http://image.diku.dk/emphysema_database/
http://image.diku.dk/emphysema_database/
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TABLE 5.11: Summary of classification results attained by different classifiers on the

Emphysema texture data set.

Classifier

Emphysema Perf. (Acc)

k-Nearest Neighbour [Input=Image pixels, k=1]

Condensed Nearest Neighbour [Input=Image Pixels, 45% Data Retrieved]

FK (Binary Binary RBM) [5 hid units]
FK (GaussianBinary RBM) [5 hidden units, o = 1]
FK (Factored 3-Way RBM ) [5 hid units, 32 factors]

k-Nearest Neighbour [Input= Fisher scores from Factored RBM, 5 hid. units, 32 factors, k=1]

k-Nearest Neighbour [Input=Local Binary Pattern features, k=1]
Support Vector Machines [Input=Image Pixels, Linear Kernel]
Support Vector Machines [Input=Image Pixels, Gaussian Kernel]

46.04 + 5.27%

46.06 + 5.19%

47.31 + 5.54%

47.85 + 4.83%

86.97 + 5.54%
37.97+3.57%
95.2%(Sgrensen et al., 2010)
33.33 £2.22%

31.8 £2.14%
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FI1GURE 5.33: The reconstruction error shown after training different variants of RBM

generative model on the Emphysema data set for 10 epochs. The error for each of these

models drops after several epochs; for factored 3-way model on Emphysema, it first
rises, stabilises and then drops.

shown in Figure 5.33. Note that the best known performance on Emphysema data
set has been achieved by (Sgrensen et al., 2010), in which he used the leave one
subject out methodology to test the classifier. Such a partitioning scheme did not
reveal discriminative Fisher score space in our case, due to which we constrained
to the holdout estimation method to train models and draw Fisher scores. Conse-
quently, the Fisher kernel derived from factored 3-way RBM does give competitive

classification performance in the same league as shown by (Sgrensen et al., 2010).

The reconstructed patches of the model look very similar to the original patches
given at the visible layer. The average rejection rate of the samples is around 6% via
the HMC sampling approach. The visible factor filters learnt by the factored 3-way
RBM model are shown in Figure 5.34. The experimental results conducted reveal
that the performance of the Fisher kernel relies on the discriminative quality of
the Fisher score space attained via maximum likelihood training of the generative
models. On a comparative scale, the factored 3-way RBM proves better than the
Gaussian binary RBM and binary binary RBM since it was able to provide less
sparse Fisher vectors (i.e. 1% versus 21% sparsity) that makes them suitable for
discrimination in the dot product space. The dot product space is not suitable

for learning distance metric similarities over sparse data, therefore Fisher vectors
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FIGURE 5.34: The visual factor filters, Cyisfac learnt from the whitened 31 x 31 size
patches of Emphysema data set.

with zero or very small gradients donot provide a space discriminant enough for
texture classification. Similar problem was also observed for Fisher kernel learning
in (Maaten, 2011), where this problem of very small gradients is addressed via a
discriminative learning technique that transforms the Fisher score embedding in a
way that the test data has low nearest neighbor error. We have not implemented
this technique here but intend to further improve the classification performance of

the method via this technique.

5.5.3 Brodatz Data set

The Brodatz textures (Valkealahti & Oja, 1998) data set consists of a subset of
32 different classes chosen randomly from the main Brodatz data set, where each
class has one image alone. These textures are histogram equalized and then 20
patches!? of size 64 x 64 are drawn from random locations of each class database
for further experimentation. Table 5.12 shows the classification performance of
distance based approaches, i.e. k-NN and condensed NN on these preprocessed
patches. The same patches are also fed to the generative probability models for
representational learning. Once the models (binary-binary, Gaussian-binary and

factored 3-way) are trained, a Fisher kernel is extracted from them and then em-

FIGURE 5.35: Samples of texture images from Brodatz data set. Patches of size 64 x 64
are drawn from random locations of these images which capture the unique texture
element of each texture class.



Chapter 5 Experiments and Results 115

TABLE 5.12: Summary of classification results attained by different classifiers on the
Brodatz texture data sets.

Classifier Brodatz Performance (Acc)
k-Nearest Neighbour [Input=Image pixels, k=1] 29.06 £+ 1.66%
Condensed Nearest Neighbour [Input=Image Pixels, 25% Data Retrieved] 28.11 +2.01%
FK (Binary Binary RBM) [5 hidden units] 16.81 £ 2.008%
FK (GaussianBinary RBM) [5 hidden units, o = 1] 16.96 £ 2.40%
FK (Factored 3-Way RBM ) [5 hid units, 32 factors] 65 + 4.6%
k-Nearest Neighbour [Input=Local Binary Pattern features, k=1] 91.4%(Chen et al., 2013)
k-Nearest Neighbour [Input=Fisher Scores, k=1] 21.84 + 8.26%
22X20°

2.835

2.83

2.825

Reconstruction Error

5 6
No. of Epochs

FIGURE 5.36: The reconstruction error of factored 3 way RBM generative model on
the Brodatz data set trained for 10 epochs. The error for the model drops after several
epochs as shown in the figure.

bedded into the SVM classifier. The SVM classifies these textures using one versus
one training of the gradients learnt by different models. The hyperparameter C'
in SVM is once again decided via the grid search method. From the results ob-
tained, we observe that the Fisher kernel derived from a factored 3-way RBM
gives better classification performance in comparison to the other Fisher kernel
based approaches and distance based classifiers on preprocessed images. The best
performance on the data set is once again shown by local binary pattern features
classified through k-NN and shown in Table 5.12. On exploring the sparsity of
the Fisher score spaces obtained from all the generative models, we observed that
they all have less than 1% of sparsity and the gradients obtained are also not very
small ( [0,6] of BBRBM and GBRBM versus [-0.51, 0.00009] of factored 3-way
RBM ), so the lack of discrimination of Fisher score space is not due to sparsity
or small magnitude of gradients here. The classification results presented here do
not beat the best state of the art performance; we therefore aim to enhance the
discrimination of the Fisher scores in future to make the technique practical and

successful for all real valued data sets.

12The data set could be downloaded from the following link: http://www.ee.oulu.fi/research/
imag/texture/image_data/Brodatz32.html


http://www.ee.oulu.fi/research/imag/texture/image_data/Brodatz32.html
http://www.ee.oulu.fi/research/imag/texture/image_data/Brodatz32.html
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FIGURE 5.37: The visual factor filters, C;; learnt from the 64 x 64 size patches of
Brodatz data set. The learnt filters resemble the texture strokes showing the capability
of learnt filters to detect local texture patterns.



Chapter 6

Conclusions and Future

Directions

This work has shown how the discrimination ability of biologically inspired genera-
tive models of visual scene recognition may be enhanced by building a kernel based
discriminant function. We have taken two state of the art probabilistic models of
visual scene analysis, i.e. a simple multivariate Gaussian model whose parame-
ters are learned via a neural substrate as proposed by Karlin et. al. (Karklin
& Lewicki, 2009) and a restricted Boltzmann machine (Hinton, 2002) which is a
stochastic model of neural units. Both the models have been widely used for visual
object classification and scene analysis tasks before. When comparing the model
likelihoods, our empirical results reveal that these models are not good enough
for discrimination tasks on their own. Though, the RBMs can be trained dis-
criminatively to show good classification results, the generative model needs to
be very large in the latent space. Thus, we suggest the derivation of Fisher ker-
nels from compact models to construct better classifiers that require very small
generative models and give immediate classification results in the same league as
the likelihood based large generative models. This methodology has produced im-
proved results near to the state of the art classification performances on various

benchmark texture, character and object recognition data sets shown in the thesis.
Some of the other highlights of the thesis are summarized below:

— Achieving Near to the State of the Art Performance in A Small
Computation Time
The proposed Fisher kernel based solution achieves comparable results in
the same league as the other state of the art methods but in a very small
computation time as revealed in the time performance graphs shown earlier.
On the classification task, the generative models like RBM/DBN have al-

ready shown good classification performances, but with very a large number

117
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of hidden nodes as shown in the experiments. We highlight that this clas-
sification success is indebted to high computing cost incurred in parameter
tuning and model pre-training before the data is actually classified. This
computational problem also persists with the distance based classifiers like
nearest neighbor and condensed nearest neighbor whose accuracies are occa-
sionally better but the storage and computational costs are always higher.
Therefore, we maintain that if the computing resources were to be restricted,
say to a few minutes of computation on the classification task, then a Fisher
kernel extracted from a small RBM is able to outperform the largest gener-
ative model that could be trained within the same computing budget. We
believe greater attention has to be paid to such computing / performance
compromises as data sets become larger and larger in novel applications.
Note that the shown computational gains are not indebted to any advance
coding techniques on expensive graphics processing units (GPUs), thereby
enhancing the appeal of the proposed algorithm as a low cost and energy

efficient solution for various vision applications.

— Fisher Kernel Derivation from Restricted Boltzmann Machine (RBM)

for the First Time

For the classification task, the Fisher kernel has already been derived from
the Gaussian probability model before (Moreno & Rifkin, 2000), however it
has not shown to induce discrimination in the restricted Boltzmann distri-
bution. RBMs have conventionally been used as a feature extractor for a
discriminant classifier or are stacked together in multiple layers to form deep
belief networks (Hinton, 2002) that model complex distributions and classify
the data ultimately. Thus, from the machine learning perspective, the nov-
elty of this work lies in the derivation of the Fisher kernel from restricted
Boltzmann machine (RBM). We show how the gradients of the parameters
of the RBM generative model could be drawn for Fisher kernel computation.
The challenges and the complexities of the kernel extraction from large scale

models have been discussed in Chapter 5.

— Fisher Kernel Computational Performance Satisfies our Intuition
of Cortical Circuit Functionality
Fisher kernel also satisfies our intuition of fast recognition ability in humans
by showing impressive classification results in a very small compute time on
all the binary data sets. The computational complexity of the proposed ap-
proach at small scales makes it amenable to study the Thorpe model (Thorpe
et al., 1996) that explains how an object in a scene is perceived by visual
cortex within 100-150ms. We do not demonstrate any biological mapping

in the current work, however we emphasize that the biological plausibility
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FI1GURE 6.1: The feed forward progressive inhibition mechanism of the Thorpe Model

(Viéville & Crahay, 2002). From the stimulus input s a very high dimensional array of

“internal values” is computed and from a subset of this vector of values, the detection
of a “label” is performed in “one step”.

of the Fisher kernel is much better since all the computations needed in the
Fisher kernel calculations for Gaussian model can be mapped as a matrix-
vector product needed in a Kalman filter which is implemented in cortical
recurrent neural networks (Denve et al., 2007). For the deep belief network
(DBN), the gradient calculations necessary for the Fisher kernel are byprod-
ucts of the network’s inference calculations (Hinton et al., 2006). Thus, it is
possible to argue that a discriminant mechanism that exploits the gradients
of the likelihood of a biologically plausible model is itself also biologically
plausible.

6.1 Future Work

The research done in this thesis gives us a firm basis to further explore some ad-
vance techniques that can solve the challenges current scene recognition systems

face. We outline these interesting avenues of research as follows:

— Investigation of the Biological Plausibility of Fisher kernel

In order to enhance the power of linear learning algorithms, kernels have
extensively been used in machine learning. Might they also be used for
learning in the brain, is an interesting question, but has no direct proof
in the literature so far. There is some work by Thierry et al. (Viéville &
Crahay, 2004) in which an experimental evidence is shown to prove that
the Vapnik theory could be used for evaluating and analysing the Thorpe
model (Thorpe et al., 1996) which demonstrates the quick time duration
(100-150ms) a primate visual system takes to perform object classification
in natural scenes. Fortney et al. (Fortney & Tweed, 2007) also argued that
the kernel based learning algorithms are more biologically plausible than
have been supposed because of their amenable properties like speed, depth
and learning with fewer weights, however this work was not carried on any
further.

Our empirical results in Chapter 5 also reveal that in comparison to the

state of the art models of object recognition, the Fisher kernel framework is



120

Chapter 6 Conclusions and Future Directions

computationally very efficient when derived from small models. This com-
putational performance of Fisher kernel is one of the highlighting aspects
that satisfies our intuition of learning and perception in the cortical circuits
and makes it amenable to study the Thorpe model of object recognition. We
expect that this study will pave our way to prove the biological plausibility
of the Fisher kernels.

Note that for large probabilistic models, the cost of Fisher kernel compu-
tation enhances dramatically because the dimensions of the Fisher vector
becomes massive. Storing and then retrieving these vectors, from the drive
to the memory increases the computational cost without any gain in the clas-
sification accuracy. Therefore, it is not recommended to extract these kernels
from large models for classification performance gains. The small models are

sufficient to calibrate the computational and performance benefits.

Exploiting Fisher Information Matrix for Fisher Kernel Computa-
tion from RBM The Fisher information matrix computation is generally
considered immaterial (Jaakkola & Haussler, 1998) and is often ignored in
practice by replacing it with an identity matrix. However, some of the lit-
erature on the classification systems has shown good discrimination results
by using approximations of the information matrix (Maaten, 2011) in kernel
computation. We would like to embed the Fisher information matrix in the
Fisher kernel computation to explore its impact on the classification perfor-
mance of the developed recognition system as well as to probe the biological
plausibility of Fisher kernel learning. Biologically plausible phenomenon such
as natural gradient descent learning and blind source separation of signals,
both use Fisher Information matrix for computation. This connection has
been described with the help of information geometry in Appendix E and

will be explored further in future.

Exploration of Advance Sampling Techniques for RBM

The Gibbs sampling approach used in RBM could be replaced by other ad-
vance sampling techniques, such as Riemannian Manifold Hamiltonian Monte
Carlo method (RMHMC) (Girolami et al., 2011) that resolves the shortcom-
ings of the existing Monte Carlo algorithms. It is observed that blocked
Gibbs sampling from high dimensional target densities that exhibit strong
correlations, leads to poor sampling estimates. This is because each block is
updated while holding the other block constant, ignoring these correlations
of parameters between the blocks. Consequently, a very large number of
samples are needed to get a reasonable estimate of any desired property of
the distribution. On the contrary, the Hamiltonian Monte Carlo defined on a

Riemannian manifold provides a fully automated adaptation mechanism that
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avoids the costly pilot runs required to tune proposal densities for Metropolis
Hastings/Hybrid Monte Carlo algorithms, thus leading to a highly efficient
sampling approach. The use of a better sampling algorithm such as RMHMC
will offer an improved mixing rate to get a better estimate of the samples
from high dimensional restricted Boltzmann distribution. This ultimately

contributes to a better reconstruction error of the data.

— Expanding the Scale of Experiments to Large Size Data Sets
Recognition of objects from a large number of classes has always been a
challenging goal for the computer vision researchers, aiming to develop hu-
man compatible artificial recognition systems. The Fisher kernel has already
shown its classification advantage over the bag of the words approach (Per-
ronnin & Dance, 2007),(Perronnin et al., 2010b), and then showed its suc-
cessful use with large scale data sets like PASCAL VOC 2007 (Csurka & Per-
ronnin, 2011), CALTECH-256 (Sanchez & Perronnin, 2011) and ImageNet-
10K (Sanchez et al., 2013). Currently, the second best performance after
deep convolution network (Krizhevsky et al., 2012) achieved on the Image
Net 10K classification task is shown by the Fisher kernels (Sanchez et al.,
2013) derived from a Gaussian mixture model designed for SIF'T, local binary
pattern (LBP) and GIST descriptors of the data. We would like to explore
the discriminatory power of the Fisher kernel for large number of classes
when the underlying model of data distribution is a restricted Boltzmann
machine or a convolutional neural network. This would help us in assessing
the discriminative quality of the Fisher score space for large number of avail-

able classes.

— Exploiting Sparsity to Enhance Fisher Score Space Discrimination
and Ease Computational Storage
When using RBMs as a generative model to extract Fisher scores, the dimen-
sionality of the Fisher vector can become immensely large as the size of the
hidden layer increases (qb(x) = [dw|v|x|h|, dby,,, dc|h‘]). Thus, as the size of
the data set grows, the overall size of the Fisher vectors to be stored may
also increase enormously (i.e. in TB). This issue has been highlighted in the
thesis for the MNIST data set in Section 5.4.1. In order to resolve this cost
of storing and retrieving high dimensional Fisher vectors, one can adopt two
approaches: use data compression methods or use sparse generative models
to extract a sparse score space.
When dealing with large scale learning problems, different data compression
methods such as product quantization, a = 0 binarization, local sensitive
hashing and spectral hashing, have been used to resolve the storage and

retrieval problem (Sanchez et al., 2013). These methods allow the algorithm
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to learn on the compressed data directly with a five to ten folds speedup on
the standard approach. In particular, when the compression scheme allows
for the entire data to be stored in central memory, the learning accelerates
dramatically compared to the standard approach that accesses data from the
disk each time it is required.

Feature sparsity on the other hand, is also a good way of storing large di-
mensional features. If the obtained Fisher vectors are high dimensional, yet
strongly sparse (say more than half of the dimensions are zero), their stor-
age cost could be reduced with the help of sparse data structures. We have
explored the extent of the sparsity present in the Fisher score space for each
different binary data set in Section 5.4.5 and found that the Fisher scores
derived from the RBM were naturally quite sparse. This solves our problem
of saving large dimensional Fisher vectors, yet this sparsity does not add
to the discrimination power of the Fisher score space as shown in Figure
5.26. We would like to adopt a feature selection strategy that enhances the
discrimination power of these vectors while maintaining the sparsity of the

vectors simultaneously.

6.2 Some Guiding Principles for the Progress of Ob-

ject Recognition

With the ultimate objective of classification in hand, the dimensions of research in
computer vision and Al in general, have expanded so much so that it has become
important to understand if our goals and diagnostics of the visual input learning
are correct or not. In this section, we point out some misleading practices by
the research community in the field of computer vision and introduce some novel
aspects of research that have either been ignored completely or are given less at-
tention so far. We maintain that taking care of these aspects might improve the

progress of artificial object recognition systems in the future:

— Evaluation of the Benchmark Data Sets
In order to evaluate the strength of the learning algorithms and performance
of classifiers, the experiments are usually conducted on standard benchmark
data sets for comparison. Pinto (Pinto et al., 2008) argued that publicly
available data sets such as Caltech-101 and PASCAL VOC image sets lack
in several aspects that can actually mislead the progress in the long-term
interest of being able to achieve near human levels of recognition. To prove
this claim, he carried out the experiments on a V1 like model which was
based on the known properties of simple cells of primate visual cortex. The
model was a population of locally normalized, thresholded Gabor functions

spanning a range of orientations and frequencies. This model contained no
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explicit mechanism to tolerate variation in object position, size/pose and
shape. A standard one-versus-all approach was used to generate the multi-
class SVM classifier from the training images. It was found that this V1
like model performed remarkably well on the Caltech-101 data set but when
tested on a carefully controlled object recognition task that just consisted of
two classes, the problem proved substantially harder for the V1 like model,
exactly as one would expect for an incomplete model of object recognition.
This proved that the V1 like model performed well previously not because
of it being a good model of object recognition but because the natural image
sets were inadequate. Ponce et al. (Ponce et al., 2006) also pointed out some
of the issues present in the current standard data sets (i.e. UIUC, Caltech-
4 and Caltech-101) used for judging the performance of developed object
recognition systems. The most commonly observed problems in all these data
sets were the limited range of variability in viewpoint, orientation of different
instances in each category, no occlusion and background clutter. We have
not seen any work that objects these claims about the inadequacy of these
standard data sets or provides a counter solution to this problem. Torralba
et al. (Torralba & Efros, 2011) has also invited the interest of the community
towards this problem by presenting a comparative study of the benchmark
data sets which are evaluated on a number of different criterion: relative
data bias, cross-data set generalization, effects of closed world assumption
and sample values. Based on all this critique, we suggest that there should be
a formal mechanism of assigning a challenging score to each of the benchmark
data sets in practice; based on this measure, the ones that are too simple
should be discarded for experimentation in the future. Such an initiative is
important to provide a uniform test bed to all the competing algorithms on
a fair scale of evaluation defined explicitly through the challenging score.

— Impact of Learning Algorithms, Features and Amount of Training
Data
The object/scene classification approaches often focus on one of the three
aspects of the recognition problem: the amount of training data, the effi-
ciency of learning algorithm and the quality of feature representations. It is
important to know which of these factors are responsible for humans supe-
rior classification performance. The answer to this question was investigated
by (Parikh & Zitnick, 2010), who compared the human and machine re-
sponses on similar problems to evaluate which of the three factors: learning
algorithm, amount of training data and features, are responsible for better
performance. They found no evidence that human pattern matching algo-
rithms are better than standard machine learning algorithms. Also humans
do not take advantage of increased amount of data, thus the main factor

impacting the accuracies is the choice of features. We maintain that these
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observations should be further investigated and not ignored in order to focus

the efforts in the right direction.

Integration Between Physiological Recordings and Empirical Re-
sults of Object Recognition

Learning systems inspired by the biology and evaluated by their classification
performance have become much more sophisticated in the last few decades.
However, there is a need to directly verify the empirical results of machine
recognition algorithms with the physiological recordings. Physiological data
may offer an avenue for recognizing aspects of recognition that may be less
obvious for humans but more suitable for computers. Such recognized cues
could be integrated within a machine’s control architecture to make it more

capable of responding to visual signals in real time.

Addition of Time Dynamics

Most of the well known computational models reviewed here do not take into
explicit account the fact that retinal input has a time component associated
to it. It is important to consider the time dynamics of the neural circuit as
the objects in our surroundings move and the eyes show movement as well.
Thus, measured neuronal responses are functions of time and even for an
image presented in a flash, different types of neural information is carried
out over time (Perrett & Oram, 1993; Sugase et al., 1999). Incorporating the
time dimension in neuronal models of recognition is a challenge that began
in the last decade and is now actively being pursued (Reichert et al., 2011).
One of the interesting work in this regard is of (Nishimoto et al., 2011) who
experimented on reconstructing the visual brain activity elicited by natu-
ral scene movies in humans. The time dynamics of the system is captured
through a motion-energy model that describes how spatial and temporal in-
formation are represented in voxels throughout the visual cortex and then
uses a Bayesian approach to combine estimated encoding models with a sam-
pled natural movie prior for movie reconstruction. Much of the excitement
surrounding this work is motivated by the ultimate objective of directly pic-
turing subjective mental phenomenon such as visual imagery (Thirion et al.,
2006) or dreams. We argue that time is an interesting dimension of the data,
which if added to the existing computational models, can assist in making
interesting discoveries about the human vision that could be deployed in the

artificial recognition systems.



Appendix A

Derivation of the Fisher Scores
for Classical Restricted

Boltzmann Machine

This section explains how the gradients of the log likelihood of the data learned
by the binary-binary restricted Boltzmann machine are calculated with respect to
its model parameters, ={w, a,b}. In order to do so, we first define the joint
configuration (v, h) of the visible and hidden units through an energy function
(Hopfield, 1982):

vV H H
(v,h;0) ZZwijvih] Zb UZ—Z (A.1)

i=1 j=1 Jj=1

The probability of a joint configuration over both visible and hidden units depends
on the energy of that joint configuration compared with the energy of all other

joint configurations:

P(v,h;0) = E(v,h;0)), (A.2)

1
Mexp(_

where Z(0) is known as the partitioning function or the normalizing constant.

Zexp (v,h;0)). (A.3)

The probability that the network assigns to a visible vector, v is given by summing

over all possible hidden vectors:

Zexp E(v,h;0)),
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Appendix A Derivation of the Fisher Scores for Classical Restricted Boltzmann
Machine

In order to maximize the log likelihood (Equation A.4) of the observations, v;
we would like to calculate an estimator of its gradient with respect to the model

parameters, 6.

A.1 Gradient with respect to the weight parameter, w

From Equation A.4, we know that

log(P = log( Zexp (v, h;8))) — log( Zexp (v, h;0)))

dlog P(v) 0
~w = a— 1ogZexp (v,h;8)) logZexp (v,h;8)))

1 x 8w (Z exp(—E (v, h; 0))) 1 x % (Z exp(—E(v, h§9)))

0log P(v) _ _ v,h
ow Zexp (v, h;0)) > " exp(—E(v, h;0))
v,h
Zexp E(v, h;0)) x ai;( E(v,h:0)) Zexp (v, h; 0)) x ai; (—E(v, h;8))
Zexp (v, h;0)) N Zexp (v, h;0))

Putting Equation A.1 in above, we get,

exp(—E(v, h;0) x (vh ex ((v,h); 0) x (vh
alogp(v)_zp ) x (vh)) Zp E((v, h);8) x (vh)

ow Zexp (v, h;0)) Zexp (v, h;8))

Multiplying the nominator and denominator of the first part of the above equation by 1/Z(8):

ex (v, h;0) x (vh ex v, h);0) x (vh)
mogp(v):()zp ><>_Zp E((v, h);0) x
w (m) X Zexp(— (v, h;0) ZGXP (v, h; 0)

h
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From Equation A.2, the above equation could be written as:

> P(v,h)(vh)
dlog P(v) _|n _ (Z P(v, h)('vh))
v,h

8’wi]’ P(’U)

alogP
Dros (Z}L:P h|v)(vh) > - (; P(v,h)(vh))

Since expectation , E(f Z f(z ), thus
0dlog P(v)
“ows;, = E[vh]p(hjv) — E[vh]p,n)
Olog P(v
(‘fwij() = E[vh]data - E[vh]model

A.2 Gradient with respect to the bias vector attached

to the visible units, a

From Equation A.4, we know that

log(P(v)) =log(}_ exp(—E(v, h;0))) — 10g(z exp(—E (v, h; 0)))

h
PEP0) _ 2 108y expl~ (v, h: ) 1ogzexp (v,h:0))
h
2 exp(—E(v, h; 1 % exp(—E(v, h; 0))

da Y exp(~E(v, h: 0)) > exp(—E(v, h; )

h v,h
> exp(—E(v, h; 0)) x % (—E(v, h;0)) > " exp(—E(v, h; 0)) x ;a (—E(v, h;0))

h v,h

Zexp(—E(v,h; 0)) Zexp(—E(v,h; 0))
v,h
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Putting Equation A.1 in above, we get,

exp(—E(v, h; 0 ex ((v,h);0) x (h
N Z p(—E(v, h: 0) x (h)) Z p(—E((v, h);6) x (h)

da Zexp (v, h;0)) Zexp (v, h;0))

Multiplying the first part of the above equation by 1/Z(0); we get:
COE Zexp(— (v, h;0) x (h) Zexp E((v, h); 0) x (h)
dlog P(v)
da ( ) Zexp (v, h;0) Zexp (v, h;0)

From Equation A.2

Since expectation, E(f(z)) = Z f(x)P(x), thus

T

0log P(v)
Oa
0log P(v)
Oa

= E[h]p(hjv) — E[P] p(v,n)

= E[h]data - E[h]modd
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A.3 Gradient with respect to the bias vector attached
to the hidden units, b

From Equation A.4, we know that:

log(P(v)) = log Zexp (v,h;8))) —log(> _ exp(—E(v, h;0)))
'u,h
81025() = aab(logzhjexp E(v,h;0)) logZexp (v,h;0)))
1 exp(—FE(v, h; 0 1 x exp(—E(v, h; 6))

0log P(v) _ o (Z P ))> B 3” (Z )

ob Zexp (v, h;0)) Zexp (v, h;0))

Zexp (v, h;0)) x ;b (—E(v, h;0)) v};exp(—E(v,h ;0)) x % (—E(v, h;0))
a Zexp E(v, h;0)) N Zexp(—E('v,h;B))

v,h

Putting Equation A.1 in above, we get,

ex v, h;0) x (v ex v,h);0 v
SgPls) _ Z p(~E(v, h;0) x (v)) Z p(=E((v; h); 0) x (v)
ob Zexp (v, h;0)) Zexp (v, h;0))

Multiplying the first part of the above equation by 1/7(0); we get
1) S exp(—E(v, h: 6) x (v) Zexp E((v, h);0) x (v)
dlog P(v) (#ts) Z
ob (Z ) Zexp (v, h;0) Zexp (v, h;0)
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From Equation A.2

0log P(v)
b = E[U]P(hh;) - E[U]P(v,h)
Olog P(v)

b - E['v]data - E[U]model



Appendix B

Derivation of the Fisher Scores
for Gaussian Bernoulli

Restricted Boltzmann Machine

This section explains how the gradients of the log likelihood of the data learned
by Gaussian Bernoulli Boltzmann machine can be drawn with respect to its pa-
rameters, = {b’, b, w, o}. The energy function of the Gaussian RBM is given

as:

i thh - ZZ Ulh wis. (B.1)

=1 2131

Given the above energy equation, the conditional probability p(v; = 1|h) is de-

rived as:

_ P(v,h)  exp(—E(v,h))
PO = "Dy = 55, exp(—E(o, b))

v;—bY
eXP(—ZY1( 20 r +Z] 1 ]h +Ez 12] 1crlh’w1])
S (exp(— 01, U Z] NACEDVED Ry AIITD)
eXp(_Z'yl 0'. +Z] 1 jh +Zz 123 1aihww)

(B.2)

I [exp(h - (S0 = Wihyuwg + S0, Uiy + L6y 1L hywy) - 0027
v;—b? 2
YeXP(—% S by = Yoihy hjwi)
I, [exp(% (I hjwi)? + 5 by 4+ 6y I hjwig) - "“/ﬂ]
(B.3)

—
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2

14
1 (v: —b” 1
P(v|h) = cexp | ——5— hjw; —l—f v; — bY) hjw;
(v|h) gai or Z i o Z i
2
\% H
1 1
= . — C_ pY)2 2 B —9 h.
il—IlUi\/% exp 2072 (vi — b)) + o ]Zl Wij oi(v; Z Wij
\%4
1 1
= . (v — b — ;Y hiw;)?
Ea,-m exXp | 52 (i~ b 7 2 hjwy)

The above conditional distribution behaves like a multivariate Gaussian distribu-

tion with mean in dim ¢ given as by + 0; > _;_; hjw;;, and the diagonal covariance

o2 0 0 0

0 o2 0 0
matrix represented as: )

0O 0 . 0

0o 0 ... 0‘2/

The probability p(h|v) is given as:

Zh#k v, hp =1, hjzp)
P(v)
2 g exp(~ E(v,9))

| T[S Hewr ) + (S D e 1+ 2L, O5 - S nth)

[

P(hy = 1|v) =

2 g exp(~E(v,9))
vihjw;; H 2
exp (ZY 1 o Wik + bk) >oh ik EXP (Zz 1 Zﬁék L+ Zz 1 02) + Zf;k hjb?)

2 gexp(~E(v.g)
exp (S Zwik +0}) T, 50 (~E (v, hio, hiz))
g, exp(—E(v,gr=0,9) + 3, , exp(—E(v, gx = 1,9))

exp (X201 Zwie +0F) S, X0 (~B (0, hizo, hyz))
g, XP(—E(v, g, = 0,9)) + exp (Zl 1oy Wik +b ) 2,4k XP(=E(v, 91 = 0, 9))
eXP(ZYh, wi, + by )

1—|—exp(zZ 1owlk+b>
1

1+exp—(zz/lawzk+b>
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which is the same as in the binary-visible case, except that here the real valued

visible activity v; is scaled by the reciprocal of its standard deviation o;.

log P(v) = log (ZP v, h) > log (Z Ze),jixp (v, (Z))h)))

= log P(v logZexp — logZexp —FE(v,h))

Since —F(v) =log ), exp(—E(v, h)), This = logp(v) = —F(v) — log(2),
where Z = Y vexp(—F(v)). Thus simplifying F(v) first.

v

zlogZexp —Z szlh wl] th
h

=1 =1 j=1

g exp<_i ) S exp zz”hwmzbh

=1 i=1 j=1

v V. H e
-y +1°gzexp 22— Sy i,

i=1 i=1 j=1 7j=1

By taking h; common in the second term of the above equation, we get:

\%
—F(v) = _ZZ; (vi b + log ZGXP Zh (bh + Zz; Uf:m)

" (0 — bY)? =t LA

= _Z 22021' + log Z Hexp (hj (bé1 + Z zg”))
i=1 @ hoj=1 i=1 '
Y (v; — b?)? L

:_21272+1og1_[ <l—|—exp <b§l+z ZJ”))
=1 j=1 _ ?

The above step is justified by the fact that each h; is either 0 or 1, therefore

|4 v)2

— b VW
AR RAR | 1 bt L
-2 +ogz< +exp< +Z o ))

=1 g j=1

The following sections explain how the gradients for all the parameters, 6={w, b", b" }

are calculated:



Appendix B Derivation of the Fisher Scores for Gaussian Bernoulli Restricted
134 Boltzmann Machine

B.1 Derivatives of the Free Energy Function w.r.t w

|4 v)2

H 1%
; — bt ViW;4
f;—klogz <1+exp (bg'thU]))]
@ j i=1 "

i=1 J j=1

0 h Ulwzj

7j=1 =1

H h Vo ovjw;y
> j—1€XP <bj +2im1 o J) 0 (bh ’ UﬂUz’j)
1+ exp (b;‘ + ZLl L;L:”) ow = i

H

. 1 ai%(viwlj) - inija(i]o‘i]
- Vo ovjwi; 2
j=1 1+ exp <b§l + Zi:l %) i o;

1 [oilvi(1) +wz'j(0)]}

T

2
=1 1+6Xp (bh+zl 11)1;1:1J> L Ui

(ex3

> 1 ()
=1 1+exp <bh + Zl 1 vlw”) of}
H

d-F) & | L —w)? & e v
obY b’ Z 207 —|—Zlog L+exp bj+z o;

2 0?
_ 1 [a72(v = b)) (=1)
2 J?
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B.3 Derivatives of the Free Energy Function w.r.t b"

[ v v H 1%
O(-F() _ 9 _Z(Uigazbi)g +) log (1 + exp (b?—kzvl;%))]

_ 9 Hl b N i
—w Zog 1+6Xp bj‘i‘ZT

j=1 i=1

H Vo vjwij
B > j=1€XP (b§?+2¢21 o'iJ) 0 h V Vi Wy
prol LD D

- A h
1+exp (b}-Z + Zyzl %) 9b
ZJ 1 €Xp (bh + Zz 1 vl;i”> 1

1+exp (bh + Zl 1 Uz;i”)

H
- Zh]
j=1

B.4 Derivatives of the Free Energy Function w.r.t o;

O(—F(v)) d v - b” u h Y ViWij
- = log [ 1
do; 9o, Z; o? + ; og | 1+exp|bj+ 2 o
S . L
0 (v; — BV . viws
= - log [ 1 !
Do, ; + o, g og ( + exp (b] + ; o
r o) Vo vwi
1 [02(0) — (v - )2 dal(al)] L[ (b + 0, )
T2 2)2 ViWij
: () Uep (b + X, )

- - vi — BY)? H exp (b’? +3V, v;?) B,
A ) 4

o
(v; — BY)° 0;(0) — viw;
— — + Z hj TJ







Appendix C

Derivation of the Fisher Scores
for Factored 3-Way Boltzmann
Machine

This section explains how the gradients of the log likelihood of the data learned by
a factored 3-way RBM are calculated with respect to its model parameters, 8 =
{P,C,b", b’} and visible layer, v to implement the hybrid Monte Carlo algorithm.

In order to do so, we first define the energy function of the Boltzmann machine as:

E(v,h;0) = —% > wivihWige — Y _bihg — > vibs. (C.1)

.5,k Ik @

The probability of a joint configuration over both visible and hidden units depends
on the energy of that joint configuration compared with the energy of all other

joint configurations:
1
P(v,h;0) = Mexp (—E(v,h;0)), (C.2)

where Z(0) is known as the partitioning function or the normalizing constant.
Z(0) =) _exp(—E(v,h;0)). (C.3)
v,h

Equation C.2 implies that:

_—exp(—E(v,h;0) _x—exp(=F(v;0))
P(v)_zh: 7(0) or P(v)_zhzz(a),

where F(v) = —log() _exp(—E(v, h))). (C.4)
h
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1
F(v)=—log | ) exp 5 > wiwihi Wi + Y bihi + > bivs
h ik .k i

2
F(v) = —log Z exp % Z (Z viCl-f> Z hiPyy | +bjhy | —log <exp <Z bﬂ),))
h f i k i

2
F(v)=-) log (1 + exp (; (Z PkuUiCif) + bjhk)> —) biv;
k f i i

In order to maximize the log likelihood (Equation C.4) of the observations,v; we
would like to calculate an estimator of its gradient with respect to the model
parameters, 8. The exact gradients for all the parameters, 8={C, P, b;} are cal-

culated below:

C.1  Gradient with respect to the bias parameter at-
tached to the hidden units, b;

From Equation C.4, we know that :

0
b, = a—bj (— logzh:exp(—E('v,h; 0)))

2

k

Using Formula: %(bg(f(x))) _ (=)

f@)
F —exp (0.5 ; Py (3, Cipvi)® + bjhy
aaév) _ < f ! > X 8(?) 05ZPkf(Z Cz‘fvi)2 + bjhk
j 1+ exp (0.5 > Pry(X2; Cipvi)? +bjhk) J f i
(C.5)
Since % (0-5 > P32 Ciyvi)* + bjhk> = hy, Equation C.5 becomes:
orw) _ o (053 Pu(Si Ol tbih) -
8bj 1+ exp (0.5 Zf Pkf(zz‘ Cifvi)Q + bjhlc)
Using the following identity in the above equation: 1?;1:(&)%) =7 +eX§(_x)
OF (v) 1
—_h :
Ob; e 0

1+ exp (—0.5 Zf Pkf(zz C’ifvi)z - bjhk>

0 1
b, :ﬁibj —Zlog 1+ exp 3 Zf:Pkui:viCif +jzk:bjhk —Z:bivi

)0
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C.2  Gradient with respect to the parameter, P

2
oF(v) 0 1 Vol . _ iy
9Py, = 9P ( glog (1 + exp (2 (; Py ;Uzczf) + b_]h‘k)) ;bm)

Using Formula: 2 (log(f(z))) = ()

)

OF(v) _ —(exp(0.53 ; Py (3_; Cigvi)” + bnk)) 9 os S P (3" Copun? + byl
8Pkf 1+ (exp(0.5 Zf Pkf(Zz C’ifvi)Q + bjhk)> 8Pkf 7 -

exp(z) 1
1+exp(z) ~ 14exp(—z)”

Using the following identity in the above equation:

OF (v) —1 o (0.5 Z Pkf(z Cifvi)2 + bjhk)
7 ,

_ X
Py 14 (exp(—O.S 25 B (32 Cigvi)® — bjh’“)) O Z

OP®) _ LN~ (Gypun)? !
8Pkf 2 i 1+ exp (—0.5 Zf Pkf(zz Cifvi)Q - bjhk>

C.3  Gradient with respect to the parameter, C;

OF (v) 0 1
3, = s ( Xk: log (1 + exp (Q(Zf: Py ZI: viCif)? + bjhk> ) - ZZ: biUi)

Using Formula: %(log(f(:c))) — =)

)

- 0.5 P Cirv;)? + bh
aaF(U) _ (exp( Zf er (22 Cipvi) k) % 88 0.5 Z Pkf(z Cz‘f’Ui)2 +bjhy
Cir 1 (exp(0.5 X Peg(32; Cipvi)? + byhg)) - 9Chs - ,

exp(z) _ 1
1+exp(z) ~ 14exp(—z)-

Using the following identity in the above equation:

OF (v) _ —1 4 (O.E)Zpkf(z Cz‘fvi)2 +bjhk>
7 ,

X
i 1+ (eXP(—0~5 > Per (32 Cipvi)® — bﬂ%)) 9Ciy ;

OF(v) 1
= —v; Pkf X X Cifvi
9Cif ; 14 exp (—0.5 Zf Pkf(zi C’Z-fvi)Q — bjhk> ;
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C.4 Gradient with respect to the visible vector, v

825)’0) _ aav ( zk: log (1 + exp (;(zf: Py Zz: UiCif)Q + bjhk) ) — XZ: bw@')

Using Formula: %(log(f(x))) = ]}/((‘f))'

exp(0.5) Pk:f(zi C’Z-fvi)2 + bhy)
32(,0) _ —sz‘— ( f ) % 88 0.52Pkf(20ifvi)2+bjhk
v : 1+ (exp(0.5 > Prer (X2 Cigvi)* + bﬂ“«)) v f i
xp(z) 1

Using the following identity in the above equation: 7 Fexp(z) = TTexp(=)

(exp(0.5 Zf P (>, Cz‘fvi)2 + bjhk)>
1+ (exp(—0.5 > Per (32 Cipui)? — bjhk))

ZACN

1
9o XQXQ%:Pkui:CZ’f(CZ'f*U)

Taking the exponent term exp (0.5, Prr(>_; C;fvi)? + bhy) down to the denom-

inator.

OF(v) _ Zb‘ B L3> Py Zi(oz?f)vi
v = B+ AxB
where A = exXp (0.5 Zpkf(z Cifvi)2 + bjhk) and B = exp (0.5 ZPkf(Z Cifvi)2 - bjhk)
f d ! i

Using formula: exp(a + b) = exp(a) x exp(b)

OF(v) o L3 e >y Py Zi(cz?f)vi
ov sz exp(

B —0.5 Zf Py (>, Cisvi)? — bjhy) + exp(0)
OF(v) _ SN - 2o 2k Pep 22:(Cp)ui
ov i " T+exp(=05 > p Prr(X; Cipvi)? — bjhy)

~—




Appendix D

Support Vector Machines

This section explains the basics of the theory of SVM in linear case. Assume that
we’ve been given a set S of points x; € R with ¢ = 1,2,..., N. Each point x;
belongs to either of the two classes and is therefore given a label y; € {—1,1}.
Our goal is to establish the equation of a hyperplane that divides S leaving all the
points of the same class on the same side while maximizing the minimum distance
between either of the two classes and the hyperplane. In order to achieve this
purpose, we set up some preliminary definitions. The set S is linearly separable if
there exists w € R" and b € R, such that

w-x;+b< -1, ify; = —1. (Dl)

In more compact notation, the two inequalities can be written as:
y(w - x; +b) > 1, (D.2)
fori=1,2,...,N. The pair (w,b) defines a hyperplane of equation
w-x+b=0

named as a separating hyperplane (see Figure D.1). If we denote with w the norm

of w, the signed distance d; of a point x; from the separating hyperplane (w, b) is

given as:
x4+ b
g woXith (0.3)
w
Combining the inequality in Equation D.2 and D.3, for all z; € S, we have
1
yidi > —. (D.4)
w

Therefore, 1/w is the lower bound on the distance between the points x; and the

separating hyperplane (w,b). Since the distance of the closest points equal 1/w,
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(a) The optimal separating hyperplane (b) Preliminaries of the optimal separating
hyperplane

FiGure D.1: We want to choose the parameters w and b to maximise the margin or

distance between the parallel hyper planes as far apart as possible while still separating

the data. Here, b is a scalar determining the offset of the plane from the origin, w is the

normal vector determining the orientation of the discriminant plane and is therefore

perpendicular to the hyperplane. The parameter b/||w|| determines the offset of the
hyperplane from the origin along the normal vector w.

the optimal separating hyperplane can be regarded as the solution of the problem

of maximising 1/w subject to the constraint D.2, or

|
Minimize —w - w,

subject to y;(w-x; +b) > 1, i=1,2,...,N (D.5)

The solution of the above problem is always a separating hyperplane and can be
solved by means of the classical method of Langrange multipliers. If we denote
with @ = (aq,@g,...,ay), the N nonnegative Langrange multipliers associated
with the constraints (Equation D.2), the solution to the problem is equivalent to

determining the saddle point of the function:

N
1

L:2w-w—;ai{yi(w-xi+b)—l}. (D.6)

with L = L(w, b, ). At the saddle point, L has a minimum for w = w and b = b

and a maximum for o = &, thus we can write,

N
oL
g Zyio‘i =0, (D.7)
ob pat
N
L
g'w =w — Z a;yix; = 0, (D.8)
i=1
th oL OL OL oL
ith — = .. )
W w owy Owy’ " Owy,
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By substituting Equations D.7 and D.8 into the right hand side of Equation D.6,

the problem in Equation D.5 reduces to the maximisation of the function:

N N
1
Lla) = E o — 5 E OGOGYY XX (D.9)
i=1 ij=1

subject to the constraint in Equation D.7 with o > 0%. This new formulation is

called the dual problem formulation and can be mathematically written as:

o 1
Maximize — ia Do+ Z Q;,

subject to y;o; = 0, ¢ > 0, (D.10)
where both the sums are for i =1,2,..., N and D is an N x N matrix such that
Di]' = yiijin. (D]_l)

As for the pair (w, b) from Equation D.8, it follows that
N
w = Z OGYiXi, (D12)
i=1
while b can be determined from the Kuhen-Tucker conditions as:

i(yi(w-x; +b) — 1) =0,i=1,2,...,N. (D.13)

Note that the only &; that can be non zero in Equation D.13 are those that satisfy
the constraint in Equation D.2 with an equality sign. The corresponding points
x;, termed as support vectors are the points of S closest to the optimal separating
hyperplane. Given a support vector x;, the parameter b can be obtained from the

corresponding Kuhn-Tucker condition as:

The problem of classifying a new data point is now simply solved by computing
sign( - x + b).

where the support vectors condense all the information contained in the training

set S needed to classify new data points.
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D.1 Linearly Non-Separable Case

If the data in set S is not linearly separable, slack variables are introduced for the
data within the margin, and the optimization problem is reformulated. Assume

that there are N non negative slack variables € = (£1,£a,...,&nN), such that
ylw-x)>1-¢&i=1,...,N.

If the point x; satisfies the inequality ( Equation D.2), then &; is null and Equation
3.13 reduces to Equation D.2. However, if the point x; does not satisfy the in-
equality in Equation D.2, the term —¢; is added to the right hand side of Equation
D.2 to obtain Equation 3.13. The generalized optimal separating hyperplane is

then formulated as:

|
Minimize 5w-w+CZ§i
subject to y;(w -x; +b) >1—-¢,i=1,2,...,N
£>0.

The term C ) ¢ is a measure of the misclassification and makes the optimal sep-
arating hyperplane less sensitive to the presence of outliers in the training set.
The parameter C' can be regarded as a regularization parameter.The optimal sep-
arating hyperplane tends to maximise the minimum distance 1/w for small C' and
minimise the number of misclassified points for large C. As done in the separable

case, the problem can be transformed into the dual form:

1
Maximize — ia -Da+ oy

subject to Zyiai =0
0<o; >Cyi=1,2,...,N

From the above constraints, it follows that if C is sufficiently large, and the set S
is linearly separable, the above problem reduces to Equation D.10. As for the pair
(w,b), it is easy to find that

N
w = Z oGYiXy, (D.14)
=1

while b can be determined from the new Kuhn-Tucker conditions

@i (yi(@ - x; +b) —14+&) =0 (D.15)
(C—a;))& =0 (D.16)
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where &; are the values of the & at the saddle point.






Appendix E

Natural Gradient Descent

Learning

E.1 Learning and Optimization in Machine learning

In a typical optimization problem, we try to find out the parameters @ for which
an objective function f(@) is either minimized or maximized. Often when a cost
is associated to an event, the objective function to be minimized is called a loss
function L defined over the parameters 8 and random variable & with distribution
P(x):

i(9) = / L(0, ) P(x)dz (E.1)

z

Since the distribution P is defined over all possible data inputs and is normally
not known analytically, therefore we approximate L by averaging over all the data

points x; drawn from a training data set D as:
- 1
16) = 3 1(0::) (E:2)
T;€

If the objective/loss function is differentiable, we can calculate the gradient g; (@)

of the cost function at sample x; as:

OL(8, ;)

% (E.3)

9:(0) =

Similarly we can also calculate the average gradient over a data set of size N:

3(0) = 5 > 9:(6) (B4)

and use g(0) as the direction of search for gradient descent learning of parameters
as:
L(6:41) = L(0¢) — a:g(8), (E.5)
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where a defines the step size used in finding a good descent direction g. This class

of algorithms is called stochastic gradient descent learning algorithms.

E.2 Natural Gradient Descent Learning

If the cost function L(6) is twice differentiable, we can use the Newton direction

which is derived by minimizing the second order Taylor expansion of L(6 + g):
1
L(6;+g)~ L(6;) + g VL(6,) + §QTV2L(9t)Q (E.6)
By setting its derivative to zero, we get:

VL(6:) + V*L(8)g = 0,
g =—(V?L(6,))"'VL(6:)
g=—-H"'VL(6;)

Using this second order information, we can write the gradient descent learning

rule in Equation E.5 as:

L(0:11) = L(6;) — ay H 'V L(6;),0r
L(644+1) = L(6:) — . H ' g(0),

where H denotes the Hessian or the approximation of the Hessian matrix that
is positive definite. This kind of learning strategy is regarded as natural gradient
learning because it exploits the geometry of the manifold in which the loss function
is defined.

Note that when a parameter space has a certain underlying structure, the ordinary
gradient of a function does not represent its steepest direction, but the natural
gradient does. We further describe how this natural gradient featuring the Hessian
matrix is defined for the Riemannian spaces and in particular for the Boltzmann

probability distribution.

E.3 Natural Gradient in the Riemannian Spaces

Information geometry proves that the Riemannian structure of the parameter space
of a statistical model is defined by the Fisher information (Rao, 1992; Amari, 1985)
as:

0log P(x,0) 0log P(x,0)

i (0) = B[220 5. (E.7)
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The Fisher information matrix H = (h;;) is the only invariant metric to be in-
troduced in the space S = {0} of the parameters of probability distributions
(Chentsov, 1982; Amari, 1985; Campbell, 1985). We will show how to calculate H

and its inverse for RBM in the later sections.

E.4 Natural Gradient in the Space of Restricted Boltz-

mann Machine

We first define the probability density function of RBM with visible and hidden

units as:

P(v,h;0) = exp (—E(v, h;0)), (E.8)

1
Z(8)
where Z(0 ZZeXp E(v,h;0)).

The energy function, E is a tractable measure of the discrepancy between actual
features of the world and the representations of features learnt by the restricted
Boltzmann machines. This measure could be considered as a loss function which
should be minimized to match the actual and learnt features.

The probability that the network assigns to a visible vector, v is given by summing

over all possible states of the hidden vectors as:

Zexp (v,h;0)), (E.9)
where Z(0 ZZexp E(v,h;0)).

Minimizing the loss/energy function in this context is equivalent to maximizing
the log likelihood function P(v;@). The maximum likelihood estimator is efficient
or Fisher efficient, implying that it is the best consistent estimator satisfying the
Cramer-Rao bound asymptotically,

lim TE[(0r —0)(0r —6")T] = H! (E.10)

T—inf

Let the parameters of the model, @ = (W, a,b) , then the derivatives of the log
likelihood of the observations, P(v;0) with respect to the model parameters, 6

can be obtained as :

O0log P(v;0 = W)

8W [ hT]pdata - E[th]pmodel (Ell)
Olog P(v;0 = a
(aa ) = E[h]pdatu - E[h]pmodel (E12)
Olog P(v;0 =b
( ) = E[v]pduta - E[v]pnwdel (E]‘3)

ob
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By inducing the above gradients in Equation E.7, we can define the Fisher infor-

mation metric for each parameter in the model.

E.5 Natural gradient/ Fisher Information for the Blind

Separation of Mix Signals

Consider m signal sources that produce m independent signals s;(t),7 = 1,...,m
at discrete times t = 1,2,.... We assume that s;(¢) are independent at different
times and that the expectation of s; are 0. Let r(s) be the joint probability density

function of s, therefore it is written in the product form as:

r(s) = Hrz(sl) (E.14)

=1

Consider the case where we cannot have direct access to the source signals s(t)

but we can observe their m instantaneous mixtures z(t),
x(t) = As(t) (E.15)

Blind source separation is the problem of recovering the original signals s(t),t =
1,2, ... from the observed signals x(t),t = 1,2, ... (Jutten and Herault, 1991). If

we know A, this is trivial because we have:
s(t) = A7 la(t) (E.16)

The term blind implies that we do not know the mixing matrix A and the prob-
ability distribution densities r;(s;) A typical algorithm to solve the problem is to
transform x(t) into:

y(t) = Wia(t), (E.17)
where W (t) is an estimate of A~!. It is modified by the following learning equation:
Wip1 = Wy — e F (g, W) (E.18)

Here F(x, W) is a special matrix function satisfying:
E[F(x;W)] =0 (E.19)

for any density function r(s) when W = A~!. For W; in Equation E.18 to converge
to A~ Equation E.19 is necessary but not sufficient, because the stability of the
equilibrium is not considered here. For stability, lets define K (W) as an operator

that maps a matrix to another matrix.

F(x, W)= K(W)F(x, W) (E.20)
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satisfying Equation E.19 when F' does. The equilibrium of F' and F is the same,
but their stability can be different. Since the natural gradient does not alter the
stability of an equilibrium because H ! is positive-definite, we define the function
F in EquationE.18 in terms of the gradient of the loss function [ with respect to
W as:

F(z;W) = Vi(z, W), (E.21)
where [(z; W) is the loss function whose expectation
L(W) = E[l(x; W)] (E.22)

is the target function minimized at W = A~!. Such an F is also obtained by
heuristic arguments. Amari and Cardoso Amari & Cardoso (1997) gave the com-

plete family of F satisfying the statistical efficiency of related algorithms.
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