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COLLISION AVOIDANCE MANEUVER DESIGN BASED ON
MULTI-OBJECTIVE OPTIMIZATION

Alessandro Morselli∗, Roberto Armellin†, Pierluigi Di Lizia‡, Franco
Bernelli-Zazzera§

The possibility of having collision between a satellite and a space debris or
another satellite is becoming frequent. The amount of propellant is directly re-
lated to a satellite’s operational lifetime and revenue. Thus, collision avoidance
maneuvers should be performed in the most efficient and effective manner pos-
sible. In this work the problem is formulated as a multi-objective optimization.
The first objective is the the ∆v, whereas the second and third one are the col-
lision probability and relative distance between the satellite and the threatening
object in a given time window after the maneuver. This is to take into account
that multiple conjunctions might occur in the short-term. This is particularly true
for the GEO regime, where close conjunction between a pair of object can occur
approximately every 12h for a few days. Thus, a CAM can in principle reduce the
collision probability for one event, but significantly increase it for others. Another
objective function is then added to manage mission constraint. To evaluate the
objective function, the TLE are propagated with SGP4/SDP4 to the current time
of the maneuver, then the ∆v is applied. This allow to compute the corresponding
“modified” TLE after the maneuver and identify (in a given time window after the
CAM) all the relative minima of the squared distance between the spacecraft and
the approaching object, by solving a global optimization problem rigorously by
means of the verified global optimizer COSY-GO. Finally the collision probabil-
ity for the sieved encounters can be computed. A Multi-Objective Particle Swarm
Optimizer is used to compute the set of Pareto optimal solutions.

The method has been applied to two test cases, one that considers a conjunction
in GEO and another in LEO. Results show that, in particular for the GEO case,
considering all the possible conjunctions after one week of the execution of a
CAM can prevent the occurrence of new close encounters in the short-term.

INTRODUCTION

The increasing number of resident space objects is impacting on the number of close conjunction

that are occurring between objects in orbit around the Earth. Many efforts in the past years have thus

been directed towards the research of new methods for the identification of close approaches, risk

analysis, and design of escape maneuvers. In the case of a predicted high risk event, the possibility of

a Collision Avoidance Maneuver (CAM) is considered. The classification of high-risk conjunctions

depends on conjunction geometry, collision probability value, and satellite operator practice and

procedures. These factors should be defined with the aim of avoiding all unnecessary CAM, to save
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fuel and in turns to guarantee satellite expected lifetime. When the driving parameters suggests that

an event will exceed an admissible level of risk, a CAM is designed.1, 2 The aim of the maneuver

is to increase the separation between the objects, in order to reduce the collision risk. The fuel

consumption should be as low as possible and the spacecraft must be kept in the operational window.

When the threatening conjunction occurs close to a designed station keeping maneuver, it can be

sufficient to anticipate it to reach an acceptable level of risk. The advantage of this approach is that

no extra fuel has to be used for an ad-hoc maneuver and mission constraints are not violated. In

all other cases a CAM (and maybe a subsequent restitution maneuver) has to be designed. Using

along-track burns it is possible to raise or decrease the altitude of the object at the time of the

conjunction or, with lower ∆v, to bring forward or delay the arrival at the conjunction location.3

The first strategy has to be applied with head-on conjunction, whereas the second is suitable for an

oblique approach geometry.

CAM can be optimized by looking at the gradient of the collision probability with respect to

velocity increment component and then using numerical methods to find the ∆v that lowers the

collision probability up to the desired value.4 Analytical expressions of the relative Keplerian dy-

namics of the two bodies on the B-plane can be obtained and used to set-up an optimization of the

∆v to maximize the collision miss distance.5

The design of CAM can be also tackled as an optimization problem. Genetic Algorithms (GA)

were used for the design of CAM for LEO and GEO objects, taking into account mission constraints

and combining them into a single objective function to be minimized.6 More complex cases, such

as the presence of multiple objects, can be tackled by GA optimization of the maneuver. In that case

the use of an along-track maneuver can not be the optimal choice to reduce collision risk.7

In this paper we assess the CAM design as a multi-objective optimization problem, using a Multi-

Objective Particle Swarm Optimizer (MOPSO).8 In this way, it is possible to define a set of objec-

tive functions, each one targeted for a particular constraint (e.g. ground track repeatability), or

optimization objective (e.g. minimum fuel consumption and collision risk reduction) without the

need of combining all of them in a single one using scaling factors. Furthermore, the optimization

will provide a set of solutions that are Pareto efficient, i.e. each CAM belonging to this set is such

that any change in it will result in a worst performance in one or more objective functions. The set

of all Pareto efficient solution is usually referred to as “Pareto front”. The analyst can then select a

CAM on the Pareto front, e.g. the one that guarantees a reduction of collision risk up to an accept-

able level. This is not possible for a single-objective optimization that provides only one optimal

solution that is strongly dependent on the scaling factors that are, in case, used to assemble objective

functions.

The paper is organized as follows: first we describe the method we use for the identification

of conjunction and to compute the probability of collision between the two objects. We also pro-

vide details on Differential Algebra and the rigorous global optimizer COSY-GO, that are the key

elements for our conjunction identification and algorithm. Then, we describe how the Collision

Avoidance Maneuver (CAM) is optimized, focusing on the selected optimization algorithm and the

design of the objective functions. Subsequently, we analyze two test cases, one considering two

LEO objects and the other two GEO objects, and try to identify the performances of the method. A

critical discussion of the results is then made before conclusions and future developments.
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IDENTIFICATION OF CONJUNCTION AND COLLISION PROBABILITY

In this section we describe how we compute a potential conjunction and the associated collision

probability. These two procedures are the cornerstones of the CAM optimization, that will be de-

scribed later. The conjunction identification is tackled as a global optimization problem, using an

optimizer based on Taylor models that can provides sharp, rigorous enclosures of the minima.9 A

brief description of Taylor models and differential algebra is provided together with a few details

on the global optimizer COSY-GO. Subsequently, a few notes on collision probability computation

are given and the selected method is specified.

Notes on Taylor models

Verified global optimization needs the determination of rigorous upper and lower bounds of the

objective function in order to implement a branch-and-bound method.10 The commonly used inter-

val approach has excelled in solving this problem elegantly from both a formal and an implemen-

tational viewpoint. However, there are situations where the method has limitations for extended or

complicated calculations because of the dependency problem, which is characterized by a cancella-

tion of various sub-parts of the function that cannot be detected by direct use of interval methods.

This effect often leads to pessimism and sometimes even drastic overestimation of range enclosure.

Furthermore, the sharpness of intervals resulting from calculations typically scales linearly with the

sharpness of the initial discretization intervals. For complicated problems, and in particular higher

dimensions, this sometimes significantly limits the sharpness of the resulting answer that can be

obtained.11

The Taylor model approach enables the computation of fully mathematically rigorous range en-

closures while largely avoiding many of the limitations of the conventional interval method.12 The

method is based on the inductive local modeling of functional dependencies by a polynomial with a

rigorous remainder bound, and as such represents a hybrid between formula manipulation, interval

methods, and methods of computational differentiation.13, 14

An n-th order Taylor model of a multivariate function f that is (n + 1) times continuously par-

tially differentiable on the domain D, consists of the n-th order multivariate Taylor polynomial P
expanded around a point x0 ∈ D and representing a high-order approximation of the function f ,

and a remainder error interval I for verification such that

∀x ∈ D, f(x) ∈ P (x− x0) + I. (1)

From Taylor’s theorem, it is clear that the width of the remainder interval I can be chosen to scale

with the domain size proportional to |x−x0|n+1. The practical computation of P and I is based on

Taylor model arithmetic, which carries P and I trough all the operations comprising I . By choosing

the size |x−x0| sufficiently small and the order n sufficiently high, the size of the remainder interval

I can be kept very small in practice. The bulk of the functional dependency is kept in the polynomial

part P with point coefficients, and there is no interval arithmetic associated inflation that happens

in the polynomial part. Thus, the interval related overestimation is rather optimally suppressed with

the Taylor model method.11 The implementation of the method in the code COSY INFINITY12, 15

supports binary operations and standard intrinsic functions, as well as the antiderivative operation

which widens the applications of the method. Note that when only the polynomial part P of the

Taylor model is considered, also the analytic operation of differentiation can be introduced, so

finalizing the definition of a differential algebraic (DA) structure.16
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The Taylor model approach has the following important properties:

1. The ability to provide rigorous enclosures of any function given by a finite computer code list

by a Taylor polynomial and a remainder bound with a sharpness that scales with order (n+1)
of the width of the domain.

2. The computational expense increases only moderately with order, allowing the computation

of sharp range enclosures even for complicated functional dependencies with significant de-

pendency problem.

3. The computational expense of higher dimensions increases only very moderately, signifi-

cantly reducing the “curse of dimensionality”.

The structure of Taylor models naturally represents a rich resource of information. In particular,

the coefficients of the polynomial part P of a Taylor model are nothing but the derivatives up to

order n. Consequently, when representing a function f by a Taylor model P + I on a computer, we

also obtain the local slope, Hessian and higher order derivatives. When a task is focused on range

bounding, those pieces of information become particularly useful.

While naive range bounding of Taylor models, namely merely evaluating each monomial of P
using interval arithmetic then summing up all the contributions as well as the remainder interval I ,17

already exhibits the superiority over the mere interval arithmetic and the more advanced centered

form,12 the active utilization of those additional pieces of information in Taylor models has a lot

of potential of developing efficient range bounders. Based on this observation, various kinds of

Taylor model based range bounders have been developed,18 and among them the linear dominated

bounder (LDB) and the quadratic fast bounder (QFB) are the backbones of Taylor model based

verified global optimizer COSY-GO that will be discussed afterward.

The linear dominated bounder is based on the fact that for Taylor models with sufficiently small

remainder bound, the linear part of the Taylor model dominates the behavior, and this is also the case

for range bounding. The linear dominated bounder utilizes the linear part as a guideline for iterative

domain reduction to bound Taylor models. Around an isolated interior minimizer, the Hessian of a

function f is positive definite, so the purely quadratic part of a Taylor model (P, I) which locally

represents f , has a positive definite Hessian matrix H . The quadratic fast bounder provides a lower

bound of a Taylor model cheaply when the purely quadratic part is positive definite. More details

on polynomial bounders are given in Reference 19.

COSY-GO

COSY-GO18 is a branch-and-bound optimization algorithm employing local domain reduction

techniques exploiting the bounding performances assured by Taylor model methods. Should the

global minimum of a sufficiently regular scalar function f on a given domain A ⊆ R
m wished to

be evaluated, the algorithm starts with an initial value for the global optimum, the cutoff value, and

then proceeds on analyzing at each step a sub-domain for possible elimination or reduction. At each

step the following tasks are performed

1. A rigorous lower bound l of the objective function is obtained on the sub-domain of interest

using various bounding schemes hierarchically with the hope of showing that l lies above

the already established cutoff value, which will allow elimination of the sub-domain. A first
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assessment is made whether the remainder bound of the Taylor model at hand is sufficiently

small; if it is not, then the underlying function exhibits too much detail for modeling by local

estimators, and the sub-domain is split in the direction of fastest change of the function.

2. If the remainder bound is sufficiently small, as a first test the polynomial part of the objec-

tive function is evaluated in interval arithmetic. When it fails to eliminate the box, the LDB

bounder is applied. If it also fails to eliminate the box, and if the quadratic part of the poly-

nomial representation of the objective function P is positive definite, the QFB bounder is

applied.

3. If the just studied sub-domain of interest cannot be eliminated, but is seen to have a lower

bound close to the current cutoff values, domain reduction techniques are brought to bear

based on the LDB and QFB algorithms to reduce the sub-domain in size. Once these methods

are applicable, they will allow to cut the sub-domain of interest and rapidly reduce the active

volume.

4. The cutoff value is updated using various schemes. First, the linear and quadratic parts of the

Taylor polynomial are utilized to obtain a potential cutoff update. In particular, if the quadratic

part of the polynomial is positive definite, the minimizer of the quadratic polynomial is tested.

If the quadratic part is not positive definite, the minimizer of the quadratic part in the direction

of the negative gradient is tested. For objective functions of nontrivial cost, as in the example

at hand, also more sophisticated local searches within and near the current sub-domain may

be carried out.

The algorithm continues to reduce and examine the domain until the minimum dimension allowed

is reached. The result of the optimization is the validated enclosure of the global minimum of the

problem.

Conjunction Determination

The computation of the time of closest approach (TCA) and distance of closest approach (DCA)

between two space bodies in a given time window can be formulated as an optimization problem

in which the global minimum of the square distance function between the two orbiting bodies is

searched.9 In general, given the initial set of orbital elements e0 at epoch t0, the state of a body at

time t can be expressed as

x = g(e0, t), (2)

where x = (r,v) and g is a nonlinear function that maps the initial orbital elements in the final

state. Thus, g includes both coordinate transformations and the forward propagation of the state up

to time t. For SGP4/SDP4 algorithm, e0 is the vector of mean elements included in the TLE. The

procedure to compute the state x can be summarized in

1. Recover Brouwer mean motion from the Kozai mean motion included in the TLE.

2. Update orbital elements at time t adding secular effects of Earth’s zonal harmonics and luni-

solar perturbations.

3. Compute resonance effect of Earth’s gravity through numerical integration.

4. Add long-period periodic perturbation due to Moon’s, Sun’s, and Earth’s gravity.
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5. Solve Kepler’s equation for U = E + ω.

6. Update for short-periodic effects of Earth’s gravity.

7. Compute x from the updated Keplerian elements.

For details on the Taylor model evaluation of SGP4/SDP4 please refer to 9.

The computation of the DCA and TCA is addressed as a global optimization problem in which

the square of the distance function is the objective function to be minimized

JGM (t) = d(t)2 = (r2 − r1) · (r2 − r1). (3)

For problems of practical interest the computation of all the minima of the square distance function

can be important, as a local minimum occurring before the TCA can potentially represent a risky

condition (this is particularly true when models accuracy and uncertainties on orbit determination

are taken into account). When all the minima are searched for, firstly the time derivative of the

square distance is computed

dd(t)2

dt
= 2dḋ = 2(v2 − v1) · (r2 − r1), (4)

then the objective function is set to

JSP (t) = [(v2 − v1) · (r2 − r1)]
2. (5)

Note that Eq. (5) is positive semidefinite, and its zeros (i.e. its global minima) are stationary points

of the distance function. These stationary points are then classified by exploiting the high order

derivatives included in the polynomial part of the Taylor model. The procedure for the CAM opti-

mization will use this approach to compute all local minima within the desired time window.

COMPUTATION OF COLLISION PROBABILITY

The collision probability is an important measure of the level of risk of a close encounter. The

uncertainties in position and velocities coming from orbit determination can be translated into a

probability density function that describes the orbital state of each object at the nominal TCA The

probability density function is then integrated over the volume Vc given by the shapes of the satellite

and colliding object to retrieve the collision probability.

Different methods exist for the computation of this multi-dimensional integral. Most of these

approaches have the following assumptions in common:20, 21, 22

• Position uncertainties of the two objects are not correlated;

• Objects move along straight lines at constant velocity during the conjunction;

• The uncertainties in the velocities can be neglected;

• Position uncertainty during the encounter is constant and equal to the value at estimated con-

junction;

• The uncertainties in the positions of the two objects are represented by three-dimensional

Gaussian distributions.
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These assumptions are suitable for most close approaches, since the duration of the encounter

usually lasts a few seconds and conjunction occur only a few days after the reference epoch so

that the uncertainty on position can be still considered Gaussian. The initial uncertainty can be

expressed by means of a (6 × 6) covariance matrix C0 that can be propagated to the TCA using a

state covariance matrix, Φ(t):
C(t) = Φ(t)C0 Φ

T (t). (6)

The covariance matrix can be easily computed by means of the automatic differentiation tech-

niques made available by COSY INFINITY. Once an arbitrary set of orbital elements is chosen, a

DA initialization of these uncertain variables can be performed. As an example, uncertainty of TLE

can be estimated in the RTN reference frame.3, 23 According to Figure 1, the first unit vector of the

reference frame r̂ is aligned with the position vector r, the third unit vector n̂ is perpendicular to

the orbital plane, and the second unit vector , or transverse unit vector, t̂ completes the frame. Note

that this unit vector is aligned with satellite velocity only for circular orbits.

⊕

r̂

t̂

b
n̂

r

v

Figure 1. RTN reference frame, radial r̂, transverse t̂, and normal n̂ vectors.

Since TLE and SGP4/SDP4, used for orbit propagation in this work, are written in classical

orbital elements, the relations between RTN state vector and Keplerian orbital elements is found

through the following steps:

1. Compute TEME state vector x = [r;v] at TLE epoch. This is achieved with an evaluation of

SGP4/SDP4 at time 0.0

[δx0] = [MTEME] [δκ0] , (7)

where κ0 is the classical orbital element vector κ = {a, e, I,Ω, ω,M}T

2. Convert TEME vectors into ECI J2000 vectors, retrieving

[δx0,ECI] = [MECI] [δκ0] (8)

3. Transform ECI J2000 state vector into RTN orbital frame, obtaining

[δx0,RTN] = [MRTN] [δκ0] (9)

This map provides the RTN initial state deviation as function of classical orbital elements

variation.

4. Invert the DA map with DA tools, retrieving

[δκ0] = [MRTN]
−1 [δx0,RTN] (10)
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The obtained DA map describes the deviation of the mean orbital elements used in SGP4/SDP4, as

function of deviation from position and velocity in RTN frame. By plugging this transformation in

the SGP4/SDP4 initialization phase, it is possible to compute the object position rf and velocity

vf in TEME reference frame as a function of initial uncertainties by simply evaluating the COSY

INFINITY implementation of SGP4/SDP4 at the desired time. It is then straightforward to assembly

the state transition matrix by computing the first derivatives with respect to the initial uncertain

variables within the DA framework

Φ(t) =











∂rf

∂rT
0,RTN

∂rf

∂vT
0,RTN

∂vf

∂rT
0,RTN

∂vf

∂vT
0,RTN











. (11)

The covariance matrices, C1
6×6 and C2

6×6, of the two object involved in the close approach are

thus propagated to the TCA using Eq. (6) and the state transition matrices computed using the above

procedure. The combined covariance matrix C is given by

C6×6 = C1
6×6 +C2

6×6 (12)

because, by hypothesis, the uncertainties of the two objects are not correlated. The 3× 3 submatrix

corresponding to the uncertainty in the final position is then extracted, since uncertainty on velocity

are assumed to be negligible. The combined probability density function of the relative position

vector is thus expressed as a Gaussian distribution by

p (∆r) =
1

√

(2π)3 detC3×3

e−
1

2
∆r

T
C

−1

3×3
∆r, (13)

where ∆r is the objects relative position vector. The collision probability of the encounter Pc is

given by the integral over the combined hard body volume of the two objects, Vc, of the probability

density function

Pc =
1

√

(2π)3 detC3×3

∫∫∫

Vc

e−
1

2
∆rTC

−1

3×3
∆r dV. (14)

The volume integral can be reduced to a surface integral on the B-plane, that is perpendicular to the

relative velocity ∆v at the TCA. The two unit vectors

Xb =
∆r

|∆r| ; Y b =
∆r ×∆v

|∆r ×∆v| , (15)

define the two perpendicular axis belonging to the B-plane and are used to build a transformation

matrix, Rb, from TEME to B-plane reference frame

Rb =

[

XT
b

Y T
b

]

. (16)

The 2× 2 projected covariance matrix is computed by means of

Cb = Rb C3×3 R
T
b (17)
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The volume integral is then reduced to a 2D integral over the combined cross-section circle of radius

D, centered at the predicted ∆rb = Rb∆r

Pc =
1

2π
√
detCb

D
∫

−D

√
D2−xb
∫

−
√

D2−x2
b

e−
1

2
∆r

T
b
C

−1

b
∆rb dyb dxb. (18)

If the reference frame is oriented as the major and minor axis of the covariance ellipse on the B-

plane, the integral becomes

Pc =
1

2π σx σy

D
∫

−D

√
D2−x2
∫

−
√
D2−x2

e
− 1

2

[

(

x+xm
σx

)2

+

(

y+ym
σy

)2
]

dy dx, (19)

where σx and σy are the standard deviations of the minor and major axis respectively, and the

position of the chaser in the covariance frame is given by xm and ym. Alfano24 expressed the

former integral as a combination of error functions and exponential terms of the form

Pc =
2D

σxn
√
8π

n
∑

i=0






erf







ym +
2D

n

√

(n− i) i

σy
√
2






+

+ erf







−ym +
2D

n

√

(n− i) i

σy
√
2






exp











−

(

2i− n

n
D + xm

)2

2σ2
x





















.

(20)

The series of Eq. (20) is used to compute collision probability for close encounters throughout this

work, using a number of terms n = 100.

CAM OPTIMIZATION

The following criteria are considered as driving factors for the CAM optimization

• Minimize fuel consumption

• Increase separation between the two objects

• Decrease collision risk below an accepted value

• Avoid that CAM increases the collision probability of other conjunctions in the week follow-

ing the maneuver

• No violation of mission constraints for the target within a given time window

In order to use classic optimization codes (i.e. gradient based methods) to solve a multi-objective

optimization problem, a common practice is to merge the different objective functions into a single

scalar objective function by means of weighting factors. This technique requires an accurate selec-

tion of the weights, and it has, as major drawback, the identification of a single optimal solution per
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run. It is clear that it is difficult to define a single objective function that takes into account all the

criteria previously listed. For this reason the CAM design is here tackled as a multi-objective opti-

mization problem. The advantage of a multi-objective optimization is that it can manage a vector

of objective functions, retrieving a set of Pareto optimal solutions. In the following, a few details

on the population-based optimizer MOPSO are given and the optimization strategy and architecture

are described.

MOPSO

Population-based optimizers can be easily modified to deal with a vector of objective functions

delivering the entire set of Pareto optimal solutions. Furthermore, particle swarm optimization

seems particularly suitable for multi-objective optimization mainly because of the high speed of

convergence that the algorithm presents for single-objective optimization.8 In a multi-objective

optimization problem the objective function is a M dimensional vector

f(x) = (f1(x), f2(x), . . . , fM (x)) . (21)

In this frame, a criterion to compare vectors is necessary to identify the optimal solution set. The

Pareto dominance is the appropriate criterion to serve this aim, enabling the solutions ranking.25

The MOPSO implemented for the solution of the problem at hand is based on the following

algorithmic flow:

1. Randomly initialize a number of individuals or particles N within the design space.

2. Evaluate the objective function

yi = f(xi) for i = 1, . . . , N. (22)

3. Update the personal best solution pbest. The solutions are compared using the Pareto domi-

nance criterion. Thus for each particle we have

pbest =











xi if xi dominates pbest

pbest if pbest dominates xi for i = 1, . . . , N

xi or pbest randomly in the other cases

. (23)

4. Update global best list Gbest. In the multi-objective problem Gbest is the analogous of the

scalar global best gbest and it represents the entire set of non-dominated solutions. This list is

updated by processing the subset of non-dominated solutions xj with j = 1, . . . , N∗ ≤ N

• If xj is dominated by one of the solution belonging to the list, do not updated the list

• If xj dominates one or more solutions belonging to the list, then add xj to the Gbest list

and delete the dominated solutions

• If xj neither dominates nor is dominated by any solution belonging to the Gbest list,

then simply add xj to the list

5. Update the global best solution gbest. Note that the gbest is univocally defined for a scalar

objective function, whereas it must be opportunely chosen within the Gbest list in the multi-

objective case. The selection of the gbest plays a key role in obtaining a uniform set of Pareto
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optimal solutions. For this purpose a uniform 30 cells grid in the objective space is defined

at each iteration and the number of solutions belonging to each grid cell is calculated. Based

on this number, a roulette-wheel method is then applied to promote the selection of gbest in a

low populated grid-cell.

6. Compute the new particles position by

xk+1
i = xk

i + vk+1
i ∆t for i = 1, . . . , N, (24)

in which vk+1
i is the velocity of the i-th particle at the (k + 1) iteration, given by

vk+1
i = wvk

i + c1r1
xk

i
− pbest

∆t
+ c2r2

xk

i
− gbest

∆t
. (25)

7. Repeat 2-6 until the convergence criterion is satisfied or the maximum number of iterations is

reached.

The parameters c1 and c2 of Eq. (25) are considered constant and equal to 2 during the optimiza-

tion, assuring a balance between local and global terms. A linear decrease of w with the iteration

number in the interval [0.4, 1.4] is adopted. In particular a greater value of the inertia enables a better

exploration of the search domain in the first phase of the optimization, whereas a lower value allows

a better analysis of the most promising areas of research space in the subsequent phases. Note that

if the position of a particle goes outside the search space, the violated component of the decision

vector takes the value of the corresponding boundary and its velocity component is multiplied by a

random number between [−1, 0].

The maximum numbers of particle belonging to the Gbest is fixed to 100 units. The same proce-

dure adopted for selecting the gbest is used to delete those solutions belonging to a highly populated

grid-cell, if the maximum list size is exceeded.

The problem addressed with implemented MOPSO is characterized by the presence of inequality

constraints necessary to control the time of execution of the CAM and limit the ∆v in terms of

module and direction. As the feasible domain inside the search space is sufficiently large the feasible

solution method (FSM) is adopted for the constraints handling.26 More specifically the swarm

initialization is performed randomly, but only feasible solutions are retained. This implies that the

first step of the algorithm generally requires the evaluation of a number of solutions greater than

the population size. Furthermore, only feasible solutions are counted for the gbest and pbest values

during the optimization. The initial velocity of the particle is set to be 0.

The convergence criterion adopted is based on the comparison of the average position of the

non dominated solutions in the objective space with the same average position of the previous 20

iterations. If the component-wise difference of this two vectors is lower than 1% the Pareto set of

optimal solutions is assumed to have been found. Furthermore, a maximum number of iterations

of 20 and a 50 particle swarm are considered. These values are chosen, on the basis of several

experiments, to assure an acceptable repeatability of the Pareto optimal solution set with a limited

computational time.

Optimization strategy and architecture

Four free parameters are considered: the maneuver time tm, the module of ∆v, and its direction,

expressed as a function of two angles λ and φ. The vector ∆v is defined in the RTN reference frame
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as

∆v = ∆v







cos(φ) cos(λ)
cos(φ) sin(λ)

sin(φ)







(26)

A set of these variables, hereafter grouped in the vector x, univocally identifies a possible ma-

neuver. Under the hypothesis of an instantaneous burn the orbital state after the maneuver is given

by
{

r(t+m)
v(t+m)

}

=

{

r(t−m)
v(t−m)

}

+

{

0

∆v

}

(27)

where the vector ∆v is in TEME reference frame. By imposing the passage through the new state

at t+m, the TLE of the target is updated. A new search for all minima in a time window of 7-days

is the performed, starting from tm. The search is performed as a global optimization problem with

COSY-GO and using the SGP4/SDP4 analytical propagator. This allows for the computation of

collision probability with Alfano’s formula (Eq. (20)) for each minima whose associated relative

distance is below the conjunction threshold. At this point, it is possible to define a set of objective

functions, f(x), that are used by the optimizer to manage the plethora of design criteria. The

objective function associated to propellant minimization is

f1(x) =
∆v

∆vmax

(28)

where ∆vmax corresponds to the maximum amount of fuel that can be allocated for the maneuver.

The second figure of merit is designed to increase both the closest approach distance and the

distances of other conjunctions that may occur within the time window of interest [tm; tm + 7]. The

objective function is defined as follows

f2(x) =
1

2

R−min (d(t))

R
+

1

2

R− d

R
, (29)

where min (d) is the distance of closest approach after the maneuver, and d is the mean distance of

all local minima below the conjunction threshold R. When both the minimum and the mean value

are equal to R the objective function has value zero. In case no minima below R are found the value

of f2(x) can be set equal to zero. This combination is chosen to correctly handle situations in which

using only mean or minimum is not sufficient. As an example, let us consider the case in which

a very low global minima is found together with many other local minima close to the threshold

R. By using only the mean value, f2(x) would result to be close to 1, since the global minima is

diluted by the mean.

The third objective function involves the collision probability of the global minimum, and is

f3(x) = log10 (Pc + 1) . (30)

This function is close to zero for little collision probabilities and reaches log10 2 when the collision

probability is maximum. The lower the probability, the lower the objective function, the more the

probability is close to 1 the more the value gets close to log10 2.

It could be observed that the two objective functions f2(x) and f3(x) could be condensed in a

single one, by computing the Pc for all minima and compute the sum of all collision probabilities.

12



Anyway this would imply that a good knowledge of the orbital elements uncertainties is available

during the considered time span for both the target and the chaser. This is usually not true when the

chaser is a debris. In addition, the uncertainties grow with time if no other orbit determination is

performed, resulting in possible underestimation of the actual collision probability. For this reason,

we prefer to separate the objective functions.

To handle mission constraints, another objective function is introduced. The design of such a

function is not straightforward, since each mission has different requirements and constraints. As

an example, a GEO satellite should lie in a well-defined latitude and longitude slot, whereas a LEO

satellite can have requirements on ground-track evolution. To avoid the definition of an ad-hoc

objective function for each case we used the following definition

f4(x) =
Tcycle − tin

Tcycle

(31)

where Tcycle is the desired time for which the mission constraint are not violated and tin is the actual

time of violation. In this way, the user has to verify when the mission constraints are violated, e.g.

performing an orbit propagation and comparing the latitude and longitude with their limit values.

To summarize, for each set of free parameters, the following steps are performed

1. Select the current particle xi

2. Update TLE of the target using the state after the implementation of the maneuver;

3. Perform a conjunction identification on a 7-days windows, starting from the maneuver epoch;

4. Find the global minimum and compute the mean of all minima below R;

5. Compute the collision probability using Alfano’s method for the global minimum if below R;

6. Find the time for which mission constraints are violated, performing orbit propagation. The

set of inequalities will change according to the mission constraints, which are different from

mission to mission;

7. Compute the objective function vector y = f(xi).

In the following section the approach is applied to two test cases, one LEO and one GEO orbit.

TEST CASES

In this section the CAM optimization is applied to two orbital conjunction, one in the LEO and the

other in the GEO regime. In both cases the conjunction threshold is R = 10 km and the hard-body

radius for collision probability computation is D = 100 m. The collision threshold D is not related

to body size in this case but guarantees that the collision probability for the nominal conjunction is

above 10−4. The upper and lower boundaries, ub and lb, of the optimization variables are listed in

Table 1. No constraints on the maneuver direction are considered for these simulations and the time

of the maneuver can occur up to one revolution before the targeted conjunction.

All computations are performed on an Intel Core i5 2500 @3.30GHz, 8Gb RAM processor run-

ning Sabayon Linux 13 (kernel version 3.11.0), each run of the MOPSO lasts approximately 2 h for

both LEO and GEO cases.
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Table 1. Upper and lower boundaries of optimization variables

Variable lb ub

tm (rev.) 0 1

∆v (m/s) 0 1

λ (deg) 0 360

φ (deg) -90 +90

LEO case

The LEO test case considers a close conjunction between satellite Metop-A and a debris from

Iridium-33 (NORAD ID 33874) occuring at 23:58:12 UTC on 2012/03/02.27 Metop-A is on a sun-

synchronous orbit, with an altitude of 820 km and an inclination of 98.7 deg, and its repeat cycle

is 29 days and 412 revolutions. Iridium-33 debris instead is found at an inclination of 86 deg, and

has an apogee of 890 km and a perigee of 750 km. According to last TLE data∗ before the event,

the DCA is 590 m, with a radial, along-track, and out-of-plane separation of 451, 222, and 308 m

respectively. The relative velocity at the TCA, again computed using SGP4/SDP4 and COSY-GO, is

12 km/s, mainly distributed on the along-track (9.7 km/s) and out-of-plane (7.1 km/s) components.

The nominal collision probability for the close conjunction is Pc = 5.118 × 10−4.

A CAM optimization is performed, considering the upper and lower bound for the optimization

variables of Table 1. Given that Metop-A is on a SSO, the following constraints were considered:

• Local solar time of the ascending node must be maintained within 15 minutes from the refer-

ence value;

• The error on the angular separation of tracks at the equator shall be less than ∆l = 360/R
deg, where R is the number of revolutions per cycle.

The results of the simulation are represented in Figure 2, where each cross corresponds to a point

on the Pareto front. The top left graph represents how the mean and minimum distance increases (i.e.

f2(x) decreases) as a function of the maneuver ∆v. The top right plot instead represents the Pareto

front on the plane (∆v, Pc). The graph on the left bottom is obtained from the last combination

of objective functions not associated with constraints. To lower collision probability below 10−4

a burn of at least 0.03 m/s is required. It can be observed that the two graphs on the top conveys

similar results: the reason is that only one conjunction is found below the threshold R in this case

for any CAM maneuver on the Pareto front. The last graph in Figure 2, on the bottom right, shows

the error on the longitude after 412 revolution, i.e. after one cycle. The error is within the bounds

±∆l, here represented by the dashed lines. For all Pareto optimal solutions no violations of the

constraints are found for the 29 days following the CAM.

The solutions x on the Pareto front are represented in Figure 3. On the left the maneuver ∆v is

plotted against the maneuver execution time tm. It can be observed that all maneuver capable of

lowering the most collision probability have to be performed between 0.6 and 0.3 revolutions prior

to the close conjunction† . In Figure 3(b) the direction and module of the associated ∆v are plotted.

∗available from http://www.space-track.org/
†Note that tm = 0 means executing the maneuver exactly at the TCA and tm = 1 one revolution before
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Figure 2. Pareto front for LEO collision avoidance maneuver optimization with MOPSO

The darkest vectors, which correspond to lower probabilities, are mainly aligned on the along-track

direction. According to the results, if a collision probability around 10−5 is acceptable, then a CAM

with ∆v = [−2;−64; 8] mm/s can be performed 0.458 revolutions before the TCA (the collision

probability becomes Pc = 1.083 × 10−5).
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Figure 3. LEO Collision avoidance maneuver on the Pareto front. Color of dots and
vectors are associated with the corresponding collision probability

GEO case

A conjunction between the GEO Korean satellite COMS and Russian GSO satellite Raduga 1-7

is analyzed. COMS occupies the 128.2 ± 0.05 deg E slot, whereas the second is found inside the
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128.0 ± 0.5 deg E region. Close conjunctions between the satellites can thus occur twice a day for

a few days when, due to orbit evolution, the two are both around 128.2 deg E longitude. The close

conjunction here analyzed occurred on 2011/07/02 at 23:14:17 UTC, one day after TLE epoch.28

Using TLE available from Space-Track the DCA is equal to 1.676 km, with a radial, along-track,

and out-of-plane separation of 1.006, 1.339, and 0.062 km respectively. The relative velocity at

the TCA is 282 m/s, in the out-of-plane direction with respect to COMS. The nominal collision

probability for the close conjunction is Pc = 4.274 × 10−4.

The following constraints are considered for the CAM optimization

• Longitude of COMS should must within ±0.5 deg

• Latitude of COMS should must within ±0.5 deg

The Pareto front obtained considering the objective function vector f(x) is represented in Figure

4. Due to the presence of multiple conjunctions the points are more spread: without the CAM there

is indeed another close encounter occurring 12h after, on 2011/08/02 at 11:12:13 with a relative

distance of 1.358 km and Pc = 1.394 × 10−4. Since Pc is computed for the global minimum only,

the value of f3(x) changes according to the global minimum, which can be either close to the first

or second one based on the maneuver.

The graph on the bottom right is the Pareto front projection on the plane (∆v,tin). It is interesting

to notice how the maneuver can be truly effective not only in increasing miss-distance but also as a

station keeping maneuver. Without any CAM or station keeping maneuver the satellite is estimated

to remain into the GEO slot for 21.5 days only, whereas the maneuver can increase this time up to

55 days.
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Figure 4. Pareto front for GEO collision avoidance maneuver optimization with MOPSO
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The Pareto efficient CAMs are plotted in Figure 5. It can be observed in Figure 5(a) that the ∆v
required to lower probability down to 10−5 increases as tm gets closer to the close conjunction.

Figure 5(b) shows that a burn in the −t̂ direction is more efficient, even if the other components

are not negligible. In this case two CAMs strategies can be selected from the optimization results:

the first would be to perform a maneuver with the minimum consumption of fuel that guarantees

a collision probability around 10−5 as for the LEO case. The CAM performed 0.806 revs. before

the TCA with ∆v = [11;−43;−8] mm/s meets this requirements since the collision probability

becomes Pc = 4.940 × 10−6. Another possibility would be to perform a maneuver with a slightly

larger ∆v that guarantees a larger stay in the GEO slot. For example with a ∆v = [−17;−118;−16]
mm/s executed 0.486 orbits before the close conjunction allows the spacecraft to remain into the

latitude/longitude slot for 50.7 days instead of the 29.7 day of the previous CAM.
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Figure 5. Collision avoidance maneuver on the Pareto front. Color of dots and vectors
are associated with the corresponding collision probability

An additional test is performed to understand whether another set of objective functions can give

better results when dealing with more than one close conjunction with the same object. In this

case the objective function f2(x) was not considered and f3(x) is modified to take into account the

cumulative collision probability of all conjunctions below threshold R. The resulting Pareto front

is represented in Figure 6. As before it can be observed that the CAM are able to act as station

keeping maneuvers and the graph relating collision probability and ∆v does not show two different

probability levels as in Figure 4.

The obtained solution xi are plotted in Figure 7. In this case all CAM that are more effective

in reducing collision probability must be executed at least 0.5 orbits before the close approach

and all vectors have a prevalent along-track component. As before, two possible CAM can be

identified. The one lowering to zero collision probability with the lowest fuel consumption consists

in a maneuver with direction ∆v = [18;−44;−15] mm/s to be executed 0.862 revolutions before

the close conjunction. The second one, that requires more fuel but allows a longer stay in the

GEO box (49.5 days instead of the 30 days achievable with the previous maneuver), has to be

performed 0.557 orbits before the TCA with ∆v = [−35;−116;−19] mm/s. It is worth noting

that the two CAM are really close to the one obtained with the previous strategy with four objective

functions. The two approaches seems equivalent, anyway it has to be taken into account that often

collision probability estimates are not reliable, since no accurate estimation of debris uncertainties
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Figure 6. Pareto front for GEO collision avoidance maneuver optimization with MOPSO

are available for TLE. For real satellite operations more accurate propagators and data coming from

optical or radar tracking should be used for these estimations.
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Figure 7. Collision avoidance maneuver on the Pareto front for GEO. Color of dots
and vectors are associated with the corresponding collision probability

The evolution of the latitude and longitude after the two CAM are plotted in Figure 8. It can be

observed how the first CAM acts only marginally to the longitude shift behavior, whereas the second

one has a larger impact, inverting the drift of the satellite from East to West after the maneuver, thus

increasing the time inside the GEO slot.

CONCLUSIONS

A method for CAM design using a Multi-Objective Particle Swarm Optimizer was developed.

The method relies on a conjunction identification algorithm, based on rigorous global optimizer

COSY-GO and SGP4/SDP4 that computes all stationary points of the relative distance within a

time window, and Alfano’s method for collision probability computation. Three objective functions

were defined to achieve the goal of increasing miss-distance between the objects involved in the

close conjunction, reducing the collision risk, and minimizing fuel consumption at the same time.
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Figure 8. Evolution of latitude and longitude of COMS inside ±0.5 deg GEO slot.
Time step is 0.5 revolutions, black dots are computed from the nominal trajectory, the
grey cross after CAM execution.

Another objective function was defined to take into account the mission constraint, checking that

they are not violated for a given time. The method allows for the computation of optimal maneuver

time and ∆v, which is not limited to the along-track direction and has a maximum magnitude of 1

m/s.

Two close conjunctions, one in LEO and one in GEO, for which a collision avoidance maneuver

was performed were tested. In both cases, it was possible to identify a CAM capable of reducing

collision risk below a given threshold and maintaining the satellite inside the station keeping area.

For the GEO case, in particular, it was possible not only to increase the miss-distance but also to

select a maneuver capable of performing some station keeping, increasing from 20 days to 50 days

the time within the latitude-longitude box.

Further efforts will be devoted to the use of a numerical propagator, since SGP4/SDP4 error on

position can become really large after a few days of propagations. More simulations should be per-

formed, considering different mission constraints and taking into account limitations on direction of

maneuver. Another interesting scenario, which could be studied with multi-objective optimization,

is the analysis of conjunctions with more than one debris in order to design a maneuver that can

reduce the cumulative collision risk with those objects.
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