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Gold nanoparticle liquid crystal composites as a tunable nonlinear medium

A. Acreman,1,* M. Kaczmarek,1 and G. D’Alessandro2

1Physics and Astronomy, University of Southampton, Southampton, England, United Kingdom
2Mathematical Sciences, University of Southampton, Southampton, England, United Kingdom

(Received 29 April 2014; published 8 July 2014)

We investigate the nonlinearity of a liquid crystal cell doped with gold nanoparticles by considering their
selective absorption. Such nonlinearities are promising for optical processing applications and optical limiters.
Systems displaying thermal nonlinearities are particularly attractive as the maximum nonlinearity may occur in
the absence of an applied field and additionally this nonlinearity can be controlled by the reorientation of the
liquid crystal. We show that there exists a theoretical optimum concentration of absorbers, which maximizes the
nonlinearity. Further we show that the nonlinearity of the system can be tuned by the reorientation of the liquid
crystal host, with the nonlinearity decreasing from 9×10−5 cm2W−1 to zero by the application of a magnetic
field of the order of 0.01 Tesla. This allows a fine control of the diffraction efficiency and, in principle, many
other nonlinear effects.
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I. INTRODUCTION

The doping of liquid crystals (LCs) with nanoparticles
has become a common method of improving their optical,
magnetic, electrical and physical properties [1]. For example,
ferroelectric nanoparticles have been shown to decrease the
Fréedericksz threshold and increase the birefringence of
nematics [2,3]. Similarly, ferromagnetic nanoparticles have
been used to increase the sensitivity of the host liquid crystals
to an applied magnetic field [4,5].

Gold nanoparticles have also been investigated as possible
dopants for liquid crystals. Initially this was due to their
potential to form a tunable, self-organizing, three-dimensional
(3D) metamaterial suitable for the visible and infrared regions
of the optical spectrum [6]. However gold nanoparticles have
since also been shown to improve the electro-optical proper-
ties of their host liquid crystals. Such suspensions display
increased dielectric anisotropy and birefringence, lowered
optical and electrical Fréedericksz thresholds, and increased
thermal stability [7–12]. Moreover, even low concentration
suspensions have increased the nonlinearity of hybrid pho-
torefractive liquid crystal cells [13]. Liquid crystals have also
been shown to cause gold nanoparticles to spontaneously
form linear self-assemblies [14] and large 3D plasmonic
crystals have been formed in an LC host using optical
tweezers [15]. Gold nanoparticles functionalized with liquid
crystalline surfactants have been demonstrated to form large,
complex, self-assembled structures, which exhibit anisotropic
absorption [16,17]. Furthermore these samples also show
pseudo-liquid-crystal phases, with mesogenic functionalized
gold nanorods showing a magnetically controllable nematic
phase [18–20]. Finally gold nanoparticle liquid crystal suspen-
sions have been shown to exhibit large thermal nonlinearities
with n2 coefficients of up to 1.9×10−5 cm2W−1 [21].

Gold nanoparticles are of particular interest due to
their plasmon resonances, which occur in the optical spec-
trum [22,23]. We are specifically interested in the decay of
these plasmons, which leads to heating of the surrounding
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material, an effect that has already been investigated as a
potential cancer treatment [24]. In this paper we focus on the
large thermal nonlinearity induced by the local heating of gold
nanoparticle suspensions in a liquid crystal [21,25]. While
other absorbing systems such as dye-doped liquid crystals
can exhibit giant nonlinearities of up to 1000 cm2W−1, these
require the application of a bias field. Gold nanoparticles
are preferable to dyes as absorbers for several reasons:
their absorption cross section is greater by over an order of
magnitude and, due to their excellent thermal stability, they do
not bleach [22].

The nonlinearity of gold nanoparticle liquid crystal com-
posites has been investigated experimentally and theoretically
by Ouskova et al. with an aim towards optical processing
applications [21]. They doped a nematic liquid crystal with
small gold nanospheres in order to enhance its thermal
nonlinearity. Figure 1 shows a schematic diagram of their
experimental setup. Two pump beams write a refractive index
grating on the liquid crystal cell [21], which is probed by a third
beam. They also modeled the thermal nonlinearity by solving
the thermal diffusion equation. The best theoretical estimates
they obtain are larger than the experimental values [26]. In
particular, the overshoot is larger in the system with greater
absorbance of the light beams [21]. In order to explain this
difference we extend here their model to include the effect of
pump and probe absorbance.

In the following section we find the mathematical form
of the temperature distribution within such a LC system
by solving the heat diffusion equation for an absorbing
material. By comparing our results to experimental data in
Ref. [21] we show that the consideration of the attenuation
of the beams is critical to accurately modeling the system.
In Sec. III A we examine how the thermal nonlinearity varies
with the concentration of absorbing particles and show that
customization of the system can be improved by using gold
nanorods as absorbers. In Sec. III B we investigate the control
of the nonlinearities for both gold nanorod and nanosphere
suspensions by a magnetic field. This was done by solving
for the director profile considering the thermal change in the
elastic constants and diamagnetic anisotropy. We investigate
and compare the different components of the nonlinearity
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FIG. 1. (Color online) Schematic diagram of the diffraction effi-
ciency experimental setup used in Ref. [21] to measure the thermal
nonlinearity of the liquid crystal gold nanoparticle suspensions. In the
configuration considered in this paper the polarizations of the pump
and probe beams are parallel to the liquid crystal director which is in
the ŷ direction.

associated with separate coupled physical effects caused by
the reorientation of the liquid crystal. We then compare the
complete nonlinearity of gold nanorod and nanosphere sus-
pensions discussing the advantages of each. Finally we discuss
the conclusions of our work and the potential applications of
such nonlinear systems.

II. HEATING MODEL AND COMPARISON
TO EXPERIMENT

Our model of the thermal nonlinearity is an extension of the
one developed by Ouskova et al. in Ref. [21]. We assume that
the liquid crystal is heated by pointwise absorption of light by
uniformly dispersed gold nanoparticles. We neglect any liquid
crystal absorption and thermally driven fluid motion. However,
contrary to Ouskova et al., we do not work in the undepleted
pump approximation. As shown in Ref. [21] the concentrations
required to achieve observable thermal nonlinearity can lead
to significant attenuation through the cell with a decrease
in the pump intensity of up to 90%. We will show later in
this section that accounting for this absorption significantly
changes the predicted thermal nonlinearity of the doped liquid
crystal and, in fact, gives remarkably good agreement with the
experimental data of Ref. [21].

The intensity I (z,λ) of a optical beam of a wavelength λ

propagating a distance z through an absorbing material is given
by the the Beer-Lambert law [27],

I (z,λ) = I0e
− ∫ z

0 α(z′,λ)dz′
, (1)

where I0 is the initial intensity of the beam and α(z,λ) is the
spatially dependent absorption coefficient at the wavelength λ.
This absorption leads to a temperature change �T within the
system. In the geometry considered here, shown in Fig. 1,
only diffusion along the ordinary optical axis needs to be
considered [26]. Consequently the temperature can be found
by solving the heat diffusion equation at equilibrium,

Klc∇2�T = αp(z)Ipump(z)

2
[1 + cos(qx)]. (2)

Here Klc is the thermal conductivity of the liquid crystal along
the ordinary optical axis, q = 2π/� is the wave number of

the grating for a grating spacing �, αp is the absorption of
the material at the wavelength of the pump beams. Ipump is the
combined intensity of the pump beams throughout the cell and
is attenuated as shown in Eq. (1). Finally x and z are distances
along the intensity grating and into the cell respectively as
indicated in Fig. 1. �T can be separated into the periodically
modulated component �Tp and the nonperiodic component
�T0,

�T (x,z) = �T0(z) + �Tp(z) cos(qx). (3)

As the thermal conductivity of the glass windows is an order
of magnitude larger than that of the liquid crystal we have
assumed the temperature variation at the liquid crystal glass
interface is zero [21], i.e., �Tp = �T0 = 0 at z = 0,L, where
L is the thickness of the cell. Solving Eq. (2) gives

�Tp(z) = sinh(qz)

sinh(qL)
F (L) − F (z), (4)

and

�T0(z) =
(

1 − z

L

)
G(z), (5)

where

F (z) = 1

q

∫ z

0
sinh[q(z − z′)]A(z′)dz′, (6)

G(z) =
∫ z

0

∫ z′

0
A(z′′)dz′′dz′, (7)

and A(z) is given by

A(z) = Ipumpαp(z)

2Klc

e− ∫ z

0 αp(z′)dz′
. (8)

For homogeneous absorption profiles, αp(z) = ᾱp, Eqs. (6)
and (7) simplify to

F (z) = Ipumpᾱp[ᾱp sinh(qz) − q cosh(qz) + qe−ᾱpz]

2Klcq
(
ᾱ2

p − q2
)

and

G(z) = Ipump

2Klcᾱp

(ᾱpz + e−ᾱpz − 1),

respectively.
The temperature distribution leads to a periodic modulation

of the refractive index grating. The effective refractive of a
liquid crystal is given by [28]

n(T ,θ ) = ne(T )no(T )√
ne(T )2 sin2(θ ) + no(T )2 cos2(θ )

, (9)

where θ is the angle between the polarization of the probe
beam (parallel to the y axis) and the liquid crystal principal
optical axis, and ne(T ), no(T ) are the temperature-dependent
extraordinary and ordinary refractive indices respectively. The
devices we consider here operate in the nematic phase of
the liquid crystal, where the temperature dependence of the
refractive indices can be modeled using an extended Cauchy
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TABLE I. A summary of the parameter values used for the
modeling work. These values are used for all the figures except where
indicated.

Parameter Value (Units)

Ipump 33.5 (Wcm−2)
λpump 532 (nm)
λprobe 633 (nm)
αp 400 (cm−1)
� 50 (μm)
L 55 (μm)
Klc 0.15 (WK−1m−1)
T † 326 (K)
γ 0.2435
�χ0 2.52×10−7

K0 19.25 (pN)
�n0 0.211
A 1.7487
B 4.896×10−4

Ta 23 (◦C)
Sphere radius 5 (nm)
Nanorod minor axis 10 (nm)
Nanorod aspect ratio R 2.5

model [29,30]

ne(T ) = A − BT + 2�n0

3
S(T ), (10)

no(T ) = A − BT − �n0

3
S(T ), (11)

where A, B and �n0 are wavelength-dependent fitting param-
eters and S(T ) is the liquid crystal scalar order parameter. We
estimate its value using Haller’s approximation [31],

S(T ) =
(

1 − T

T †

)γ

, (12)

where T † and γ are also fitting parameters. In general, T †

is slightly higher than the clearing temperature. We have
determined all the parameters in Eqs. (10)–(12) by fitting
literature E7 refractive index data [30]. Their values at
λpump are reported Table I. Finally, as T in Eq. (12) is the
absolute temperature whereas Eq. (4) calculates the change
in temperature relative to the background, we have assumed
that the system is at an ambient temperature Ta = 23 ◦C. As
numerical simulations have shown that the refractive index
grating is in phase with the intensity grating we can express
the amplitude of the refractive grating �n as

�n = 2

L�

∫ L

0

∫ �

0
n(T ,0) cos(qx)dxdz. (13)

As the grating spacings considered in this paper are larger than
10 μm we can assume the grating thickness to be small with
respect to its pitch. In this case, known as the the Raman-
Nath regime, it is possible to obtain an analytical expression
for the amplitude of the diffracted orders in terms of Bessel
functions [32]. Consequently the diffraction efficiency η, i.e.,
the ratio of the intensities of the first diffracted order and the
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FIG. 2. (Color online) A plot of the theoretical and experimental
values for the diffraction efficiency for a range of intensities. The
modeling parameters are as listed in Table I with the exception of
of the pump and probe absorption coefficients which have values of
390 cm−1 and 276 cm−1 respectively. The experimental curve is the
line of best fit from Ref. [21].

probe beam, is given by

η = J 2
1

(
2πL�n

λprobe

)
e− ∫ z

0 αprobe(z′)dz′
, (14)

which is an adaptation of the standard expression for diffrac-
tion efficiency from a thin sinusoidal grating [32]. The
factor e− ∫ z

0 αprobe(z′)dz′
has been included to compensate for the

attenuation of the probe beam as it passes through the cell. J1

is the first-order Bessel function, λprobe is the wavelength of
the probe beam and αprobe is the absorption of the medium at
the wavelength of the probe.

In order to validate Eqs. (4)–(14) we have reproduced the
experimental data from Ref. [21] using the configuration in
Fig. 1. The parameters were chosen to match those in Ref. [21],
specifically the probe at a wavelength of 633 nm, a 55 μm cell
thickness and a 50 μm grating spacing. The writing beams have
a combined intensity of 33.5 W cm−2. The absorption coeffi-
cient at pump and probe wavelengths are 390 cm−1 and 276
cm−1, respectively, the wavelengths are specified in Table I.

Figures 2 and 3 show the variation of the diffraction
efficiency with intensity and grating spacing as predicted by
Eq. (14) with the line of best fit to the experimental data from
Ref. [21]. Both plots show excellent agreement. This verifies
that our model can be used to accurately predict the diffraction
efficiency of a gold nanoparticle liquid crystal cell. The
theoretical model used in Ref. [21] neglected the attenuation of
both the probe and the pump. The agreement between the ex-
periment results and the model presented here is significantly
better, implying that the consideration of the attenuation of the
beams is critical to achieving a good agreement.

III. CONTROLLING THE NONLINEARITY

A. Optimization of the gold nanoparticle liquid
crystal composite

In the previous section we showed that our model can
accurately reproduce the thermal nonlinearity of liquid crystal
gold nanoparticle suspensions. In this section we investigate
two key issues relevant to the optimization of the system. The
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FIG. 3. (Color online) A plot of the theoretical and experimental
values for the diffraction efficiency for a range of grating spacings.
The modeling parameters are as listed in Table I with the exception
of of the pump and probe absorption coefficients which have values
of 390 cm−1 and 276 cm−1 respectively. The experimental curve is
the line of best fit from Ref. [21].

first of these is the variation of the nonlinearity with respect to
the absorption coefficient of the system α. This is important as
the absorption coefficient is related to the molar concentration
of nanoparticles C by

C = α

ε
, (15)

where ε is the molar extinction coefficient. Consequently
understanding how the nonlinearity changes with α allows
the selection of an appropriate concentration of nanoparticles
for the composite. The second issue is the optimization of
the absorption characteristics of the nanoparticles themselves.
As the absorption properties of gold nanorods are strongly
dependent on their aspect ratio, we will investigate how this
can be used to specifically design a system to suit a range of
pump and probe wavelengths.

First, however, we need a suitable measure of the nonlin-
earity. As the heating of the liquid crystal is approximately
linearly proportional to the intensity of the pump beams Ipump

for heating effects of the order of �T ≈ 10 ◦C, it is appropriate
to define an effective nonlinear refractive index as

n2 = �n

Ipump
, (16)

where �n is the refractive index variation given by Eq. (13).
Note that n2 is, through Eqs. (13) and (9), a function of �, L,
α and θ .

In Fig. 4 we have plotted the nonlinear coefficient against
the absorption coefficient of the system at a fixed grating
spacing of 50 μm. The largest effect is seen at αp ≈ 600 cm−1

showing that there is a concentration of particles, which
maximizes the nonlinearity. The magnitude of the nonlinearity
declines past this point due to the attenuation of the probe beam
skewing the temperature distribution toward the initial cell
wall. This acts to limit the magnitude of the periodic tempera-
ture distribution and consequently the nonlinearity. The loca-
tion of this peak nonlinearity is also dependent on the thickness
of the cell and the grating spacing, with thicker gratings and
cells causing the maximum to occur at smaller values of α.
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FIG. 4. (Color online) A plot of the nonlinear coefficient against
the absorption coefficient at the pump wavelength. With the exception
of αp the modeling parameters are listed in Table I.

This absorption coefficient can be converted to a concentra-
tion by using the corresponding molar absorption coefficients
and Eq. (15). We have calculated that 600 cm−1 converts
to approximate concentrations of 1.5%, 0.75%, and 0.054%
by weight for 1 nm and 5 nm gold spheres and 10 by
25 nm gold nanorods respectively. These dimensions were
chosen as they correspond to nanoparticles synthesized by
the groups of Georg Mehl and Torsten Hegmann, which have
been specifically designed to be soluble in a room temperature
nematics [8,18,20].

While Fig. 4 shows that it is possible to increase the
nonlinearity by increasing the concentration of absorbers, this
will also increase the attenuation of the probe beam and hence
decrease the effective diffraction efficiency. It is worth noting
that the attenuation of the probe led to a decrease in the
diffraction efficiency by a factor of four in Figs. 2 and 3, as
e− ∫ z

0 αprobe(z′)dz′ ≈ 0.25. Because of this, it is imperative to select
nanoparticles, which have minimal absorption at the probe
wavelength. Nanorods can be used for this as the wavelength
of their long axis plasmon resonance is strongly dependent
on their aspect ratio. Consequently they can be specifically
synthesized in order to minimize the absorption of the probe.

Figure 5 shows the diffraction efficiency η of a suspension
of gold nanorods for a range of probe wavelengths and aspect
ratios. The absorption properties of the suspensions were
modeled using the dipole approximation neglecting the bire-
fringence of the liquid crystal [33]. The dielectric properties
of gold were modeled using the Drude model with adaptations
to account for the interband transitions and finite size of the
particles (see Appendix) [34,35]. The wavelength of the pump
beams was set to the absorption peak of the gold nanorods in
order to maximize the heating effect. We have chosen a con-
centration such that αp = 400 cm−1: this is the largest value
of αp that does not lead to significant diffraction into higher
orders and is close to the experimental parameters in Ref. [21].

The first observation that can be made from Fig. 5 is that
in order to have significant diffraction of the probe beam it is
essential to chose a probe wavelength away from the plasmon
resonance of the particles (dashed line in Fig. 5). Secondly,
the diffraction efficiency decreases for longer wavelengths as
expected from the inverse proportionality of Eq. (14). Finally,
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FIG. 5. (Color online) A plot of the diffraction efficiency of a
gold nanorod suspension with varying aspect ratios and for a range of
probe wavelengths. With the exception of λprobe and the aspect ratio,
the modeling parameters are listed in Table I.

the diffraction is fairly insensitive to the aspect ratio of the
particles. For the monodispersed samples considered here, the
plasmon resonance is very narrow for sufficiently large aspect
ratios and, therefore, the absorption away from the resonance
is negligible.

B. Controlling the nonlinearity with a magnetic field

The ordinary refractive index of E7 is three orders of
magnitude less sensitive to temperature changes than the ex-
traordinary refractive index [21,30]. This difference opens the
possibility of actively controlling the nonlinearity of the gold
nanoparticle suspension. So far we have treated the case where
the incoming probe beam is polarized parallel to the director
orientation and, consequently, it observes the largest possible
nonlinear refractive index. However, if we were to reorient the
liquid crystal so that the beam polarization is aligned with the
ordinary refractive index, the resulting nonlinear coefficient
should be three orders of magnitude smaller. In principle either
an electric or a magnetic field could be used to achieve this
change of direction, and consequent modulation of n2. Here,
for simplicity, we model the effect of a magnetic field. In
Sec. IV we will discuss briefly the case of the electric field.

The equilibrium configuration of the liquid crystal director
field in a twist-free cell is the solution of

∇ · [K(T )∇θ ] + H 2�χ (T ) sin(2θ ) = 0, (17)

where we have assumed that the liquid crystal lies in the
(y,z) plane and that its director forms an angle θ with the
y axis. Here H is the magnetic field applied to the cell, and
�χ (T ) and K(T ) are the temperature-dependent diamagnetic
anisotropy and splay elastic constant, respectively. These can
be approximated by [36,37],

�χ (T ) = �χ0S(T ), K(T ) = K0S
2(T ), (18)

where �χ0 and K0 are fitting parameters the values of which
are shown in Table I. For S(T ) we have used the function (12)
fitted to the birefringence data and estimated �χ0 and K0 using
room temperature values of �χ and K . We have solved numer-
ically Eq. (17) using the coefficient form differential equation
solver in COMSOL MULTIPHYSICS R©. As we are not interested in

a detailed quantitative analysis of the nonlinear coefficient as a
function of the magnetic field, we have neglected the effect that
the change in orientation of the liquid crystal has on the heat
diffusion. This effect is relatively small and does not change
qualitatively the features that we analyze here.

From Eqs. (9) and (17) we can see that the magnetic-
field-induced reorientation of the liquid crystal will affect its
thermal nonlinearity through three factors: (F1) the change
in the particle absorption, α; (F2) the change in the observed
refractive index; and (F3) the thermal dependence of θ through
K(T ) and �χ (T ). We now consider these three factors in turn.

F1: Changes to the absorption. As the liquid crystal reori-
ents, the refractive index surrounding the nanosphere changes
according to Eq. (9). This shifts the plasmon wavelength out
of resonance with the pump and, hence, reduces the particle
absorption coefficient [33]. This can be expressed as

α(θ ) = αne
cos2(θ ) + αno

sin2(θ ), (19)

where αne
and αno

are the absorption assuming the surrounding
refractive index is equal to ne and no respectively. For
a suspension of gold nanospheres of 5 nm radius in the
liquid crystal E7 αne

/αno
=1.42, i.e., reorientation reduces the

absorption by a factor of 1.42.
The change in absorption is enhanced for nanorods: these

are expected to reorient with the liquid crystal thus changing
the excited plasmon resonance. When θ = 0 the plasmon is
excited along the long axis of the rod, but as the rod reorients
and θ → π/2 the plasmon is instead excited along the short
axis. This reduces the absorption of the rods at the wavelength
of the long axis plasmon resonance by over three orders of
magnitude [33,38]. The rod absorption coefficient can be
expressed as

α(θ ) = αl cos2(θ ) + αs sin2(θ ), (20)

where αl and αs are the absorption due to the plasmon
oscillations along the of the long and short axis of the rod
respectively. At the wavelength of the long axis plasmon
resonance αl/αs = 10−3.

The effect of reorientation on absorption is illustrated in
Fig. 6 for typical nanoparticle sizes (see Table I). From the
figure it is clear that the absorption decreases with the applied
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FIG. 6. (Color online) A plot of the magnetic field dependent
absorption of a liquid crystal cell doped with gold nanospheres and
gold nanorods. All parameters as listed in Table I.
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FIG. 7. (Color online) Plot of the effects that the magnetic field
induced reorientation has on n2. F2: Effect on birefringence. The
dashed blue curve is the plot of n2 computed assuming that T =
T (x,z) in Eq. (9), but T = Ta in Eq. (17). F3: Effect of the director
parameters. The solid green curve is the plot of n2 computed assuming
that T = Ta in Eq. (9), but T = T (x,z) in Eq. (17). All parameters
as listed in Table I. The inset shows a magnification of the effect
of the director parameters (F3) highlighting the sign change of the
nonlinearity.

magnetic field. As expected, the decrease is considerably larger
for nanorods than for spheres, but is limited by regions near
the cell walls, which do not reorient.

F2: Temperature sensitivity of the birefringence. This effect
is illustrated by the blue curve in Fig. 7. As the liquid
crystal reorients the effective refractive index seen by the
probe becomes closer and closer to the ordinary refractive
index of the liquid crystal. This is much less sensitive to
temperature variations than the extraordinary refractive index
and it increases, rather than decreases, with temperature. The
net result is that the nonlinearity decreases in magnitude with
the applied magnetic field and changes sign at sufficiently high
magnetic fields (0.012 Tesla in the case of Fig. 7).

F3: Effect of the director parameters. This effect is
illustrated by the green curve in Fig. 7. We observe first
that at low magnetic fields this effect is approximately
50 times smaller than the birefringence contribution (blue
curve). At high magnetic fields the magnitudes of the two
contributions become comparable and the nonlinear behavior
of the liquid crystal is a combination of both effects. The
second observation is that the behavior with the applied field is
nonmonotonic, as highlighted in the inset. This is the result of
the competing effects of K(T ) and �χ (T ). At low magnetic
fields the thermal effect on the elastic constant dominates:
this increases the reorientation of the liquid crystal in the hot
regions, thus giving a negative nonlinear coefficient. At higher
magnetic fields the liquid crystal is fully reoriented and K

no longer plays a significant role. Consequently the thermal
change in �χ (T ) dominates and the situation is reversed:
hotter regions have smaller diamagnetic anisotropy and, thus,
reorient less, leading to a change of sign of the nonlinearity.

Combined effects. The effects of all these factors are
combined in Fig. 8. A quick comparison with Fig. 7 shows
immediately that for both spheres and nanorods the behavior
of the nonlinearity with the applied magnetic field is dominated
by F2, its effect on the birefringence.
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FIG. 8. (Color online) Plot of the nonlinear coefficient n2 against
the applied magnetic field for: the gold nanorod suspension (dashed
red line), the nanosphere suspension (solid green line) including
factors F1–F3 and, for comparison, the nanosphere suspension
neglecting F1 (dashed and dotted blue line). In the latter case α is no
longer a function of the applied magnetic field H. All parameters as
listed in Table I.

In the case of nanospheres the behavior of n2 with the
applied magnetic field is determined by F2 and F3, while F1
plays only a very minor role (compare the green and blue
curves in Fig. 8). In particular, n2 decreases with magnetic
fields and changes sign as expected from Fig. 7. At this point
the material changes from defocusing to focusing, opening up
the possibility of temperature and magnetic fields tuning of
the sign of the nonlinearity [25]. In the case of nanorods, the
effect of the absorption is more significant and consequently
at high magnetic fields the nonlinearity tends to zero, rather
than change sign.

We conclude this section by remarking that even though
the modulation of the absorption with magnetic fields has
only a limited effect on n2, it has a very large effect on
the pump beams. While in nanosphere suspensions the pump
beams are always significantly absorbed, they will be only
weakly attenuated by nanorod suspensions at sufficiently high
magnetic fields.

IV. CONCLUSION

We have modeled the optical thermal nonlinearity of gold
nanoparticle liquid crystal suspensions by extending previous
models to include the attenuation of the pump and probe
beams. As our model gives a much better fit to existing
experimental data we can conclude that the consideration of
this attenuation is key to accurately predicting the behavior of
the thermal nonlinearity. Due to the attenuation of the beams,
the scaling of the induced refractive index grating with the
number of absorbers is no longer trivial. Our model predicts a
critical concentration of particles above which the magnitude
of the nonlinearity will decrease. Specific to the geometry
we consider, the peak nonlinearity occurs at 600 cm−1 which
equates to concentrations of 1.5%, 0.75%, and 0.054% for
1 nm and 5 nm gold spheres and 10 × 25 nm gold nanorods,
respectively. The disparity in the concentrations is important as
it can be extremely difficult to suspend nanoparticles in a liquid
crystal host and complex surfactants are usually required.
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Because of this, any decrease in the number of particles
required is a boon to those working with the system. We have
also shown that the system can be customized for different
probe and pump wavelengths by using gold nanorods instead
of nanospheres.

In this paper we have assumed that a magnetic field is
used to reorient the liquid crystal. It is also possible to use
an electric field to this effect. The main difference between
the two driving fields are that (i) the electric field has a far
higher sensitivity to the alignment of the liquid crystal than the
magnetic field, (ii) gold particles affect the material properties
of the liquid crystal [7,39], and (iii) the particles may migrate to
regions of high field intensity due to dielectrophoretic forces.
While these effects may have to be taken into account for
precise quantitative modeling of the device tunability under
the influence of the electric field, they are all sufficiently
small that we do not expect qualitative differences when
using either field for controlling the orientation of the liquid
crystal.

We also investigated the dependence of the nonlinearity
on the reorientation of the liquid crystal host showing that
an applied field can be used to dramatically decrease the
nonlinearity and even switch the system from a self-focusing to
self-defocusing regime. We have identified that the dominant
effect is the change of the thermal dependence in the
refractive index due to the reorientation of the liquid crystal.
While the gold nanosphere suspension displays a slightly
greater tunability in the nonlinearity, the nanorod suspension
allows the attenuation of the probe beam to be significantly
reduced. Consequently, each system lends itself to different
applications.

The analysis carried out in this paper assumes that the
heating source is a regular grating. However, the effect we have
studied is much more general: for example, the differential
heating of the liquid crystal could be caused by a spatially
inhomogeneous beam. While the thermal nonlinearity is slow,
the flexibility of its behavior and the latitude with which it
can be controlled may make it ideal for non-time-critical,
low-power applications.
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TABLE II. The physical meanings and values for the parameters
used to model the dielectric properties of gold, Eq. (A2). All values
taken from Refs. [34,40], with the exception of A1 and A2, which
were slightly changed to give a better fit for wavelengths between
400 and 600 nm.

Parameter Value

(units) Description a = 1 a = 2

Aa Unitless transition amplitude 0.99 1.42

λa (nm) Interband transaction wavelength 468 331

θa Interband transaction phase −π/4 −π/4

γa (nm) Interband transaction dampening 2300 940

μa Order of the pole 1 1

γc (nm) Dampening of conduction electrons 17000

λp (nm) Plasmon wavelength 145

ε∞ Dielectric constant as λ → 0 1.53

� Scaling parameter 0.7

APPENDIX: NANOPARTICLE MODEL

In this Appendix we give some additional details of the
model used to determine the absorption spectra of aligned
gold nanorods that enabled us to produce Fig. 5. We have
assumed that the particles are ellipsoids, coated with a thin
layer of surfactant and immersed in an isotropic liquid with
refractive index equal to the extraordinary refractive of E7. As
the particle size is much smaller than the light wavelength, its
interaction with the light field can be considered quasistatic
and the scattered field is approximated by an electrostatic
dipole (dipole approximation). Finally, we have computed
the dielectric permittivity of gold using a Drude model with
adaptations to account for the interband transitions and the
finite particle size.

The absorption cross section Cabs of aligned nanorods is
given by

Cabs = k	[cos(θ )2α1 + sin(θ )2αs], (A1)

where αl,αs are the the polarizabilities along their long and
short axis respectively, and θ is the angle between the long axis
and the polarization of the incident light. The polarizabilities
can be found by solving for the scattered field of an ellipsoidal
gold particle coated with a dielectric layer in the dipole
approximation [33]:

αj = V
(ε2 − εm)

[
ε2 + (ε1 − ε2)

(
L

(1)
j − f L

(2)
j

)] + f ε2(ε1 − ε2)(
εm + L

(2)
j (ε2 − εm)

)[
ε2 + (ε1 − ε2)

(
L

(1)
j − f L

(2)
j

)] + f ε2L
(2)
j (ε1 − ε2)

,

where L
(1)
j and L

(2)
j are the geometric functions of the inner

and outer ellipsoids [33], V is the total volume of the particle
including the surfactant layer, and f is the ratio of the volume
of the gold core relative to V . ε{1,2,m} are the dielectric
permittivities of the gold core, surfactant and surrounding
material, respectively. In producing Fig. 5 we have assumed

that the surfactant layer has thickness of 1.2 nm and dielectric
permittivity ε2 = 2.128, values that are close to those of
dodecanethiol, a common surfactant for gold nanoparticles.
For the surrounding material the extraordinary refractive index
of E7 was used using the extended Cauchy model for the
wavelength dependence.
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The dielectric function of gold was modeled using a Drude
model with adaptations for the interband transitions and finite
particle size. This is given by [34]

ε(λ) = ε∞ − 1

λp

(
1
λ2 + i

λγc,1

)

+
∑
a=1,2

Aa

(
eiθa(

1
λa

− 1
λ

− i
γa,1

) + e−iθa(
1
λa

+ 1
λ

+ i
γa,1

)
)

.

(A2)

The physical meanings and values for these parameters are
given in Table II, with the exception of γc, γ1,1, and γ2,1. These
are corrections to the dampening lengths of the conduction
electrons, γ , and interband transitions, γ{1,2} due to the finite
size of the particles. They are given by [35]:

1

γα,1
= 1

γα

+ �vf

2πcR
, α = {c,1,2} , (A3)

where � is a scaling parameter, vf is the Fermi velocity, c is
the speed of light in a vacuum and R is the adapted mean free
path of the electrons, which is equal to the particle size.
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