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Very small deletions within the NESP55 gene in
pseudohypoparathyroidism type 1b

Faisal I Rezwan1,6, Rebecca L Poole1,2,6, Trine Prescott3, Joanna M Walker4, I Karen Temple1,5

and Deborah JG Mackay*,1,2

Pseudohypoparathyroidism (PHP) is caused by reduced expression of genes within the GNAS cluster, resulting in parathormone

resistance. The cluster contains multiple imprinted transcripts, including the stimulatory G protein a subunit (Gs-a) and

NESP55 transcript preferentially expressed from the maternal allele, and the paternally expressed XLas, A/B and antisense

transcripts. PHP1b can be caused by loss of imprinting affecting GNAS A/B alone (associated with STX16 deletion), or the

entire GNAS cluster (associated with deletions of NESP55 in a minority of cases). We performed targeted genomic next-

generation sequencing (NGS) of the GNAS cluster to seek variants and indels underlying PHP1b. Seven patients were

sequenced by hybridisation-based capture and fourteen more by long-range PCR and transposon-mediated insertion and

sequencing. A bioinformatic pipeline was developed for variant and indel detection. In one family with two affected siblings,

and in a second family with a single affected individual, we detected maternally inherited deletions of 40 and 33 bp,

respectively, within the deletion previously reported in rare families with PHP1b. All three affected individuals presented with

atypically severe PHP1b; interestingly, the unaffected mother in one family had the detected deletion on her maternally

inherited allele. Targeted NGS can reveal sequence changes undetectable by current diagnostic methods. Identification of

genetic mutations underlying epigenetic changes can facilitate accurate diagnosis and counselling, and potentially highlight

genetic elements critical for normal imprint setting.
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INTRODUCTION

Pseudohypoparathyroidism (PHP) is caused by insensitivity to
parathormone (PTH), and the majority of cases are associated with
insufficiency of the G protein stimulatory alpha subunit (Gs-a).1 In
PHP type 1a (OMIM #103580), additional features may include
obesity, short stature, brachydactyly, ectopic ossification and cognitive
impairment. PHP1b (OMIM #603233) is classically defined as sharing
the biochemical but not the skeletal features of PHP1a, though this
distinction is not absolute.2 PHP1b is not associated with coding
mutations of GNAS, but with epigenetic errors altering its expression.
The GNAS gene cluster (OMIM þ 139320) on human chromosome
20 is under complex imprinted regulation, with transcripts variably
expressed from the maternal allele, the paternal allele, or biallelically,
in a tissue-dependent fashion.3 The clinical suspicion of PHP1b is
confirmed by detecting abnormal DNA methylation at imprinting
control regions within the GNAS cluster.4–6 Some patients show
alterations at multiple imprinting control regions (ICRs) within the
cluster, but the most consistent aberration is hypomethylation of the
A/B differentially methylated region directly upstream of the major
coding isoform of GNAS. Isolated hypomethylation of this region is
the commonest alteration in familial PHP1b; in all cases so far
described, it has been associated with deletion of a presumed
regulatory element within the STX16 gene.7,8 Much rarer are
deletions affecting NESP55;9–11 these are accompanied by epigenetic

disruption throughout the locus, and evidence from murine models
suggests they disrupt transcription and thereby primary imprint
setting throughout the GNAS cluster.12 However, apart from these
and some cases of paternal uniparental disomy (UPD20pat),13 the
majority of PHP1b cases seem to be caused by a primary epimutation
without an underlying genetic aberration.

We hypothesised that additional genetic variants may result in
epimutations of the GNAS differentially methylated regions and
screened PHP1b patients, using genomic next-generation sequencing
through the GNAS cluster.

MATERIALS AND METHODS

Patient recruitment: ethics
Clinical diagnosis of PHP1b was made locally by referring clinicians, and

patients were consented into the research study ‘Imprinting disorders–finding

out why’ (IDFOW: Southampton and South West Hampshire Research Ethics

approval 07/H0502/85) through the UK Comprehensive Local Research

network (www.southampton.ac.uk/geneticimprinting/informationpatients/

imprintingfindingoutwhy.page, accessed September 2013). Diagnosis was

confirmed by methylation-specific PCR and microsatellite analysis as

described.14 Twenty patients had PHP1b with methylation anomalies

affecting the GNAS AB, XLAS, NESP-AS and NESP differentially methylated

regions (DMRs), but no evidence of UPD20 or NESP deletion;9

STX16 deletions were also excluded; and there was no evidence of
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hypomethylation at any other imprinted locus. Two control PHP1b patients

were included: one with UPD20pat and one with a deletion of STX16.

Clinical findings in the two families with genetic variants are presented in

Table 1. Briefly:

Family 1: a non-dysmorphic sister and brother presented with exercise-

induced muscle cramping in childhood and hypocalcemia. Skeletal survey was

unremarkable. The mother was clinically unaffected.

Family 2: a male presented at 2 years 3 months with faltering growth,

increasing weight and global developmental delay, a consistently raised serum

phosphate and subsequently a raised serum PTH. Skeletal survey was

unremarkable. Family history was non-contributory (Figure 1h).

DNA methylation analysis
Methylation status was initially determined by methylation-specific PCR, as

described,14 and then more comprehensively assessed by methylation-specific

pyrosequencing, as described5 in all patients, and compared with normal

controls (Supplementary Table 1).

Table 1 Clinical features in the affected individuals in families 1 and 2

Family 1 Family 2

Case 1 Case 2 Case 9

Current age 18 years 23 years 4 years

Pregnancy and

delivery

Normal Normal Normal

Gender, birth

weight and

length, neonatal

course

Female

3790 g, 51cm at 41þ3 weeks

No neonatal problems

Male

3300 g, 49cm at 41 weeks

No neonatal problems

Male

2950g at 40 weeks

No neonatal problems

Family history Healthy unrelated parents Elder brother of case 1 Healthy unrelated parents

Presentation Activity-induced aching in arms and legs, cramps in fingers at

diagnosis at 12 years

Activity-induced aching in legs at 14 years, diagnosed

with PHP1b at 17 years

Growth failure, rapid weight gain

and global developmental delay by

2 years.

Early

development

Walked at 17 months. Delayed early milestones Walked at 19 months. No speech until age 4 years Walked at 25 months. Speech and

language delay noted by 3 3
4 years

Education and

schooling

Attended special primary school. Currently a year behind in a

normal school. Functions within the normal range cognitively,

but has specific difficulties with short-term memory and writing/

reading

Attended normal school with extra support.

Lives independently. Pursuing post-secondary educa-

tion. Above average cognitively, has specific learning

difficulties, problems with short-term memory

Attends normal school with a

statement of special educational

needs

Examination At 12 years 3 months:

Height 155 cm (50th centile)

Weight 47.7kg (75th centile) OFC 53.3cm (25–50th centile)

Not dysmorphic

At 17 years 6 months:

Height 173cm (25–50th centile)

Weight 57.5 kg (25th centile) OFC 53.3cm (50–75th

centile)

Not dysmorphic

At 3 years 10 months:

Height 97cm (9–25th centile),

weight 18.1kg (75th–91st cen-

tile) OFC 53cm (91st centile).

Skeletal and den-

tal findings

Normal hands and feet. No subcutaneous calcifications.

No dental problems

Normal hands and feet. No subcutaneous calcifica-

tions.

Two incisors extracted to make space. Retained tooth in

the maxilla repositioned surgically

Small 4th and 5th digits bilater-

ally. No subcutaneous

calcifications

X-ray findings Normal hands and feet Normal left hand.

Bilateral calcifications in subcortical white matter,

basal ganglia, cerebellum

Normal hand X-rays.

Normal bone density

Vision and

hearing

Normal Normal Normal

Metabolic

findings

At 12 years:

Calcium 1.21mmol/l (2.15–2.70)

Albumin 45g/l (36–48)

Phosphate 2.69 mmol/l (1.20–1.80)

Magnesium 0.82mmol/l (0.71–0.94)

Creatinine 46mmol/l (40–75)

PTH 61.5 pmol (1.6–6.9)

At 17 years:

Calcium 1.38mmol/l (2.15–2.55)

Albumin 44 g/l (36–48)

Phosphate 1.80mmol/l (0.7–1.50)

Magnesium 0.71mmol/l (0.71–0.94)

Creatinine 58mmol/l (60–105)

PTH 33.2pmol/l (1.6–6.9)

At 2 years 3 months:

Calcium 2.5 mmol/l;

Phosphate 1.9 mmol/l (upper limit

of normal 1.5) and PTH 3.3 pmol/l

(normal o6.4).

At 3 years:

Calcium 2.48mmol/l, Phosphate

1.9 mmol/l

At 4 years:

Calcium 2.43mmol/l (2.15–2.6)

Phosphate 1.88mmol/l (0.9–1.6)

PTH 10.9 pmol/l (0.9–9.9)

Other Recurrent urinary tract infections. Thyroxine supplementation

from age 14 years for borderline low free T4 with normal TSH

Age 19 years:

Hyperechogenic foci in both kidneys, possibly normal

variant

GNAS

sequencing

Exons 2–13: no coding variants Exons 2–13: no coding variants Exons 2–13: no coding variants

Abbreviation: OFC, occipito-frontal circumference; PTH, parathormone; TSH, thyroid stimulating hormone.
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Sequencing analysis

Targeted NGS. Genomic DNA was captured in the region chr20.GRCh37:

g.57200800_57627000 using a targeted SureSelect array (Agilent Technologies

UK Ltd, Wokingham, UK; 0.5–2.9 Mb capture). The array design (Agilent

SureDesign, Agilent Technologies UK Ltd) had baseline � 2 coverage,

moderate stringency, moderate masking of repeats and manual boosting in

order to reduce replication of high GC-content baits. In total, 3mg DNA was

sheared using a Bioruptor (Diagenode s.a., Seraing, Belgium) and then

captured using the Agilent SureSelect system, according to the manufacturer’s

instructions. DNA samples were indexed, and 500 cycles of sequencing

performed on an Illumina MiSeq (Reagent kit v2, Illumina UK, Chesterford,

UK), generating B800 000 clusters, 89% passing filter and 7 Gb data. Further

methodological details are available on request, and also the bed file of the

capture array. Sequences were visualised on the Integrative Genomics Viewer

v1.4 (www.broadinsitute.org/igv). Raw sequence data are available on request.

Long-range PCR and NGS. Genomic sequences: chr20.GRCh37:g.57413337_

57418468 and chr20.GRCh37:g.57416569_57419096 (primers 50-GCCCATC

ATTTGATTTTCTAGGGCCAAG-30; 50-GGAGCTGAGTACCAGTCTCTCA

GGCAG-30 5132 bp and 50-GCGCCAGTGCCTCCAGCTGCCG-30; 50-CCTT

CCACACAGCTGCAGAAAATGAAG-30 2529 bp) were amplified in individuals

with PHP1b. Sequencing libraries were prepared and indexed using the

Nextera DNA sample preparation kit and Nextera indexing kit (Illumina

UK) following the manufacturer’s protocols, and sequenced using the MiSeq

micro reagent kit, 500 cycles (Illumina UK).

Sanger sequencing. The deletions in family 1 (chr20.GRCh37:g.57416653_

57416693del) and family 2 (chr20.GRCh37:g.57418256_57418290del) were

amplified using primers 50-GCGCCAGTGCCTCCAGCTGCCG-30; 50-CGTT

CAACCCTGGTAGCCCGTAGGG-30 (220 bp) and 50-CCATGTTCACATGTA

GCGAGGAGGG-30; 50-CGGGGGTTGGTATAGCTCTCAGTTGC-30 (273 bp)

and verified by Sanger sequencing. To determine inheritance in the mother

and maternal grandmother, 200 ng genomic DNA was amplified after restric-

tion digestion with restriction enzyme Mcrbc (New England Biolabs UK,

Hitchin, UK) according to the manufacturer’s instructions, as described.15

Bioinformatic analysis
We developed a bioinformatic pipeline for identifying both single-nucleotide

variants (SNVs) and copy number variants (CNVs). Sequence output from

targeted NGS was aligned to a human reference sequence (UCSC Genome

Browser hg19, http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes/)

using Burrows-Wheeler Aligner (BWA-MEM–version 0.7.5a) (http://bio-bwa.

sourceforge.net) to produce BAM files (binary version of Sequence Alignment/

Map Format). Duplicate reads were removed from the BAM files using Picard

tools (version 1.95) (http://picard.sourceforge.net) to avoid biases that might

skew variant predictions. Local indel realignment was undertaken by the ‘Indel

Realigner’ function from the Genome Analysis Toolkit (GATK–version 2.4–916)

to avoid misalignment that might cause mismatches and compromise base

quality recalibration. Base quality recalibration was done using GATK ‘Table

Recalibration’ function, which analysed several covariates to remove systematic

biases and improve accuracy of quality scores.17 All produced aligned files were

further used to calculate average read depth in 1000 bps non-overlapping

windows within the captured region (Supplementary Table 2). The BAM files

were also used to normalise read depth between samples, which was used to

compare samples between different pools (Supplementary Table 2). These

realigned and recalibrated BAM files were then used to determine SNVs and

CNVs. Variant (SNVs eg SNPs and indel alleles) predictions and genotyping

were performed using the GATK ‘Unified Genotype’ function for each sample

by computing allele frequency distribution,18 and raw variant calls were

outputted in VCF (variant call format). An individual variant filtration (such

as Quality by Deptho2.0, Fisher Strand Bias460.0 etc) was performed for

both SNPs and indels using GATK Variant Filtration method to remove low

quality and potentially false positive sites. Variant data were further annotated

by Annovar to provide functional annotation of variants.19

Pindel (version 0.2.418), a structural variant detection tool that can detect

breakpoints of large deletions and medium-sized insertions from paired-end

short reads, was used to perform CNV predictions. These CNVs were further

filtered based on variant size, alternate allele frequency, CA/GT homopolymer

repeats and known SNPs. These filters increased sensitivity and specificity of

the predictions, which reduced false negatives and false positives.

The variants identified in Patients 1, 2 and 9 have been submitted to LOVD

(www.lovd.nl/GNAS variants GNAS_00174, GNAS_00175, GNAS_00176).

RESULTS

In seven PHP1b patients, the GNAS locus (chr20.GRCh37:
g.57200800_57627000) was enriched by targeted capture, and ana-
lysed by next-generation sequencing. On average, more than 98% of
the captured regions had read depth greater than 10, showing that the
sequence data were of high quality in our region of interest
(Supplementary Table 3). Case 1 of family 1, one of two affected
siblings, harboured a 40-bp deletion spanning the genomic
co-ordinates chr20.GRCh37:g.57416653_57416693del (family 1,
Figure 1c). This deletion was intronic to both NESP55 and NESP-
AS. It was not present in dbSNP137, Repeat Masker (http://
genome.ucsc.edu) or in 168 control samples. The deletion was
detected in the affected sibling and also in the siblings’ mother who
showed no clinical signs of PHP1b. To determine the parental origin
of the deletion in the mother, her DNA was amplified after digestion
with methylation-specific restriction enzymes BstUI and McrBc
(which digest only unmethylated and methylated DNA, respectively).
The deletion was detectable only in DNA restricted by McrBc,
demonstrating that it was present on her unmethylated, maternally
inherited allele (Figure 1d and g). The maternal grandmother of the
affected sibs also harboured the deletion, though methylation-specific
restriction analysis in her case showed it to be on the paternally
inherited allele (Figure 1g).

Building on this finding, the genomic region chr20.GRCh37:
g.57413337_57419096 was amplified by long-range PCR and
sequenced by NGS in samples from an additional 14 PHP1b patients
with no known underlying genetic aberration. A 33-bp intronic deletion
was identified (chr20.GRCh37:g.57418256_57418290del) in one further
patient (case 9, Figure 1, Table 1). Targeted sequencing showed the same
deletion to be present in his unaffected mother. The deletion was too
distant from the DMR to use methylation-specific restriction to
determine its origin in the mother. The deletion was not present in
the maternal grandmother of patient 2 (data not shown); the maternal
grandfather was deceased and no DNA was available for analysis, but he
was not known to have any clinical features of PHP1b. The variant in
family 2 represented a deletion of two of three copies of an 18-bp repeat
element; deletion of one copy was represented within dbSNP137 as
rs36230182 (minor allele frequency unknown); however, there was no
evidence of any deletion in 168 normal controls. In the remaining 13
patients, CNVs were called by Pindel and SNPs were called by GATK,
but no novel variants were identified (data not shown).

DNA methylation analysis showed the affected sibs in family 1 had
essentially complete paternalisation of the GNAS cluster, while
hypomethylation in proband 2 was incomplete, except at the GNAS
A/B DMR (Supplementary Table 1).

DISCUSSION

Like other imprinting disorders, PHP1b is clinically and molecularly
heterogeneous. Sporadic PHP1b is associated with UPD20pat and
epimutation of DMRs throughout the GNAS cluster; most heritable
PHP1b results from epimutation of the GNAS A/B DMR–associated
with maternal STX16 deletions–and rarely from deletions of NESP55
of maternal origin. We used NGS of the GNAS locus to seek genetic
lesions underlying epimutations in PHP1b patients. In two affected
siblings, a variant was found in the first intron of NESP55, within the

NESP55 deletions in PHP1b
FI Rezwan et al

3

European Journal of Human Genetics

www.broadinsitute.org/igv
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes/
http://bio-bwa.sourceforge.net
http://bio-bwa.sourceforge.net
http://picard.sourceforge.net
www.lovd.nl/GNAS
http://genome.ucsc.edu
http://genome.ucsc.edu


3-kb deletion described by Bastepe et al.9 Further localised sequencing
within this region revealed another deletion in a third, unrelated
individual. Both variants were maternally transmitted, but the
mothers showed no clinical or epigenetic evidence of PHP1b. In
family 1, the clinically unaffected mother inherited the deletion from
her own mother, showing that maternal inheritance of this deletion
does not always cause PHP1b.

Large NESP55 deletions are believed to abrogate germline tran-
scription from the NESP promoter, resulting in aberrant methylation
setting throughout the whole imprinted cluster.9,12 Notably, the
variants reported here are close to the transcriptional start site of
NESP55, overlapping those described by Bastepe, Chillambhi and
Richard et al.9–11 Such deletions potentially delineate critical
sequences for imprint setting of this locus.
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We detected variants in only two of 20 PHP1b index cases (albeit
with different extents of sequencing). NESP deletions 41 kb were not
detected in any individual. By contrast, STX16 deletions are found in
essentially all individuals with GNAS A/B hypomethylation. It remains
unclear whether genetic NESP mutations are uncommon in PHP1b.
It may be that in the patients we studied, some variants remained
undetected because of discontinuities in sequence coverage; CNVs
(like the STX16 deletion) may arise between repetitive sequences, but
these sequences cannot be unambiguously captured, results in
reduced or absent coverage. Further variants may lie outside the
region we targeted, in more distant chromatin-regulating
domains. Alternatively, it may be that the majority of PHP1b is
indeed sporadic, caused by epimutations without direct genetic
cause. Genetic mutations underlying epimutations have been
reported very infrequently in other imprinting disorders, includ-
ing Russell–Silver Syndrome, transient neonatal diabetes mellitus
and Beckwith–Wiedemann syndrome associated with KCNQ1OT1
(imprinting control region 2) hypomethylation. However, a significant
minority of BWS patients with H19 (ICR1) hypermethylation
have maternally inherited deletions or point mutations of ICR1.20

Genomic analysis of other patient groups could potentially identify
mutations that would help to uncover further determinants of
epigenetic function.

It is striking that the individuals with NESP55 deletions were not
identical, either in phenotype or in DNA methylation status. Clinical
features in the affected individuals were somewhat atypical of PHP1b,
which is associated chiefly with biochemical features of parathormone
resistance in the absence of dysmorphism.3 The probands of family 1
have mild learning difficulties, and one has calcifications in brain
tissue; the proband in family 2 has educational difficulties warranting
educational support, and has short stature, which is more typical of
PHP1a. It is recognised that a minority of individuals with PHP1b
epimutations have clinical features overlapping with PHP1a.21–24

In the three individuals with PHP1b, the deletions resulted in
epimutations throughout the GNAS cluster; but while the siblings
in family 1 had almost complete hypomethylation, the proband in
family 2 had less marked hypomethylation, except at the GNAS A/B
DMR. In family 1, a deletion was transmitted maternally through
three generations, but only the two-third-generation cases 1 and 2
presented with PHP1b. This may be because the deletion is
coincidental to PHP–though given the presence of deletions in two
of 20 pedigrees, and their absence from controls and databases, this
seems unlikely. It may be that these small deletions are not fully
penetrant, and do not always cause PHP1b. Alternatively, the severity
of the deletion’s effect may increase with successive generations,
causing apparent genetic anticipation–this phenomenon has been

observed in maternally transmitted BWS associated with hypermethy-
lation of H19.15 Investigation of further cases will shed light on these
unresolved issues. In summary, genomic sequencing is a powerful tool
with potential to reveal non-coding genetic variants that may underlie
epigenetic disorders.
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