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Introduction Results

We can learn the meaning of a word from a definition.
A definition is a string of further words, each of whose
meanings we can likewise learn via definition. This recursive
process can be repeated indefinitely, but it cannot convey
meaning at all unless the meanings of some words, at least,
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sensorimotor experience (Harnad 1990). How many words?
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A dictionary can be represented as a directed graph .- . soe —
with links from defining to defined words. The minimal 064 0.69
feedbaCk Vertex SEtS (Minsetsl MS) Of a diCtionary graph are o Cambridge Longman Webster WordNet Cambridge Longman Webster WordNet 05 Cambridge Longman Webster WordNet
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Psycholinguistic data
Three psycholinguistic variables were used : frequency 8.00 8.00
(SUBTLEXus corpus, Brysbaert & New, 2009), age of
acquisition (Kuperman et al., 2012) and concreteness >0 R
(Brysbaert et al., 2013). 2o 400
Structures 2.00 2.00
 The Kernel (K) (~10% of the dictionary) is extracted by .
recursively removing all words that can be reached by 000 Age Concreteness Frequency oo Age Concreteness Frequency

definition but that do not define any further words.
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Discussion

The words in the dictionary components revealed by our graph-
theoretic analysis differ in their psycholinguistic correlates. Every MinSet
has a C-part that is younger and more frequent and an S-part, that is
more concrete. To understand the functional role of these components

dictionaries only (Cambridge (n = 20) and Longman (n = 19)), will rgquirg a closg sjcgdy of the w?rds th(?mselves, and how they are
and only one for each bigger dictionary because computing combined into definitions. (For this we will need to analyze even smaller

M is still too hard. The differences between the Ms and the ' dictionaries, which are generated through an online dictionary game in

| which participants must define a word, then define the words in the
definition, etc. The game ends when all words are defined.) We can
already conclude that the closer a word is to the MinSets that can define
all other words, the more concrete and frequent the word is likely to be,
and the earlier it is likely to have been learned. This is what one would
expect if the words in the MinSets were the ones that had been acquired

The psycholinguistic databases are large enough to cover most
of our words (~Y90%) for each variable. We only report effects
that showed the same pattern for all four dictionaries.

To test whether words in each M differ from words in

. Kernel

(core + satellites)

the rest of K in frequency, age or concreteness, we generated
random samples including the same S/C ratio of words for Age

I : . Frequency
each dictionary. We had multiple Ms for the two smaller vounger~
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random samples were compared with t-tests. Satellites \

Rest
MinSet
The deeper the words in the RKSC hierarchy, the nSe \

younger and more frequent they are (C>S>K>R). For

concreteness, the pattern is somewhat different: S>C and efn':,fﬁte"ess through direct sensorimotor grounding.
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