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Abstract— Condition monitoring of gas pipes has been an 

important issue for gas companies. Failure to accurately 

identify condition of gas pipes result in numerous problems. 

Also, producing a condition monitoring system for buried 

pipelines is challenging. Small pipes (with diameters less than 

50 mm) are considered here as most of the literature focuses 

on larger pipes. Guided wave theory will be introduced 

alongside a numerical simulation of the relevant dispersion 

curves of the system. This paper investigates the feasibility of 

using torsional guided waves for inspecting defects in buried 

pipes with small diameters. The pipes are assumed to be 

lossless and hence the effect of attenuation is ignored in the 

calculations. Upon finding the theoretical guided wave 

characteristics, experiments were conducted to see if the aim 

could be achieved in a realistic scenario. A steel pipe with a 

diameter of 34 mm and wall thickness of 5.5 mm is 

considered. High reverberation levels at high frequency 

propagations due to mode conversion are studied. Having 

only a limited number of transducers could be a reason for 

high reverberation at high frequencies. 

Keywords— Condition Monitoring, Dispersion, Guided 

Wave Method, Piezoelectric Elements, Torsional Mode 

I. INTRODUCTION 

Corrosion is one of the major issues regarding the 

integrity of assets for a wide range of industries; hence 

inspections are currently conducted at regular intervals to 

ensure a sufficient quality of these assets. Obtaining cost 

reduction while maintaining a high level of reliability and 

safety of installations is a major challenge. Currently, 

guided wave technology seems to be the most successful 

method; however its main applications have been to 

relatively long and large diameter pipes, i.e., greater than 

70 mm [1-3].  In pipes, there are three main ultrasonic 

guided waves in the axial direction, namely longitudinal, 

torsional and flexural. These waves propagate along the 

pipe axially from the excitation area. Reflection of waves 

from cracks due to different acoustic impedances is 

processed to find crack sizes and locations. The ability of 

guided waves to locate cracks and notches including the 

effect of defect size on the reflected echo has been 

investigated by many researchers [4-6]. The most recent 

works such as Demma et. al [6] and Hu [7] have used the 

axially symmetric T(0,1) mode in 70 mm diameter 5.5 mm 

thick steel pipes. Most of the previous investigations have 

studied large pipes with axially symmetric L(0,2) and 

T(0,1) modes. Mostly, rings of transducers placed with 

minimum spacing to suppress the unwanted modes have 

been used to generate only the desired modes. In this 

paper, the challenges of using the axially symmetric and 

non-dispersive T(0,1) modes for small diameter pipes were 

investigated. At the axially symmetric modes, torsional 

modes are preferred over longitudinal modes because the 

mode shape of the torsional T(0,1) mode is not frequency 

dependent. A large advantage of the torsional mode is that 

it is unaffected by the non-viscous fluid content of the pipe 

[8]. A torsional mode can detect longitudinal cracks, 

whereas a longitudinal mode is insensitive to defects 

parallel to the pipe axis as it does not have radial 

displacement. However, the range of inspection in 

longitudinal mode L(0,2) is wider than the respective 

torsional mode. Also, as torsional modes are sensitive to 

circumferential changes, if there is a support bracket on the 

pipe, the reflected signal is strong and hence it is difficult 

to detect any corrosion on the bracket [8]. In this paper, an 

incident T(0,1) mode is considered as a complete non-

dispersive axially symmetric mode, but mode conversion 

to the non-symmetric modes happens due to non-

axisymmetric defects, as well as the fact that longitudinal 

and flexural modes (as well as the desired torsional modes) 

are generated by the transducers. 

II. METHODOLOGY 

A. Dispersion 

The dispersion curves describe the solutions to the 

modal wave propagation equations which give the 

properties of the guided wave such as phase velocity, 

group velocity, energy velocity, attenuation, and mode 

shape. This information enables the prediction of test 

results and decision making with regards to selecting the 

most appropriate guided wave for propagation [9]. From 

the relationships between stress, strain and displacement 

the characteristic matrix can be obtained by satisfying the 

boundary conditions. The coefficient matrix (Equation 

B16) in Appendix B is set to zero in order to satisfy the 

nontrivial solution [10]. The characteristic matrix is a 
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function of thickness, material properties, frequency and 

wavenumber, introduced as a function of frequency and 

wavenumber given by the properties of pipe. The roots of 

this characteristic function, which give the dispersion 

curves, are found using a numerical root-finding algorithm 

and the mode shapes are obtained by substituting these 

roots back into the governing equations. In this work, the 

roots were extracted by finding the sign changes in the 

output function using Muller’s method. The solution gives 

the variation in velocity for a mode versus frequency or 

versus the frequency-thickness product; this product is 

effectively a normalised frequency.  

B.  Group and Phase Velocities 

Dispersion curves for a group of waves can be different 

from individual frequency waves, so it is necessary to 

clarify the concepts of group velocities. The group velocity 

   is the velocity at which a group of waves will travel at a 

given frequency while the phase velocity is the wave 

velocity of each individual peaks of a single frequency 

wave. Phase velocity    and group velocity    are defined 

as 

   
 

 
, and (1) 

   
  

  
, (2) 

where k is the wavenumber. Phase and group velocities are 

related to each other through  

   
 (   )

  
     

 (  )

  
. 

(3) 

Here,      ( ) expresses the fact that    is a function of 

wavenumber [9]. 

C. Phase and Group Velocity Dispersion Curves 

Implementation in MATLAB 

 

The aim of the MATLAB implementation in this paper 

is to plot the phase and group velocities for a range of 

frequencies. To do this, the wave number in the 

characteristic equation for torsional modes needs to be 

determined. From equation B16 in Appendix B, the 

determinant of matrix can be considered as: 

  (β   )  (     )    (    )  (     )   . (4) 

From the roots β the wavenumber k for real and complex β 

were found. When β is real, real Bessel functions are used 

as 

   (β   )  (     )    (    )  (     )   ,  (5) 

and for complex β, 

  (β   )  (     )    (    )  (     )   , (6) 

which are given in Table B1. Equations (5) and (6) are 

written as functions of β. The Root Sign Change method is 

used here as a first step to find the roots of Equations (5) 

and (6) by finding the sign change intervals in the 

determinant function as a result of varying β. Muller’s 

method [11] uses these intervals as an initial guess to find a 

more precise value of β. This specific combination of 

methods was chosen as a compromise between simplicity 

and accuracy (required because the determinant function is 

sensitive to wayward changes in β). Interval sizing for the 

Sign Change Root Finder method is of critical importance 

because a grid too coarse may lead to some roots not being 

identified (resulting in missing values of β) and a grid too 

fine will result in a script that takes a great amount of time 

to execute. Through experimentation, the most suitable 

range and step-size for β values were found to be 0 to 50000 

and 100 respectively. The calculated values of wavenumber 

may be real or complex; real valued wavenumbers 

correspond to propagating wave modes. The system is 

assumed to be lossless, so only the real roots are considered, 

but note that Muller’s method can be used to find complex 

roots as well. Since β values for each torsional mode can be 

found at each frequency, a value known as the cut-off 

frequency needs to be identified so that the dispersion 

curves can be plotted. The cut-off frequency is the 

frequency at which the phase velocity of a given dispersive 

mode approaches infinity from a higher frequency value. 

 It is also the value at which the wavenumber is 

zero. The cut-off frequency can also be defined as 

         
   

  
 

(7) 

The group velocity at a point is related to the phase velocity 

at that point by  

   
  

  
 

    

√         
 .   (8) 

In addition to torsional mode dispersion curves, it is also 

necessary to find the dispersion curves for longitudinal 

modes. This is because of the mode conversion which 

happens between torsional and longitudinal modes. The 

main difference is that the torsional and longitudinal modes 

have different characteristic functions. The functions differ 

also in the fact that a longitudinal mode is a function of 

frequency, meaning that Muller's method needs to be 

applied for each frequency value separately. This is 

cumbersome, so a more time-efficient solution needs to be 

considered. In this implementation, the determinant of a 4×4 

matrix (B16) is calculated for each possible value of k for 

each frequency separately. The implementation finds the 

real sign changes in the function, thus finds the values of k 

that satisfy the characteristic equation. The range and step-

size for k values to search through was found through trials, 

because they can cause the same problems as a poor range 

choice of step size, as discussed in the previous section. The 

k values that correspond to the roots are used to find the 

phase velocity, given by equation (B18). A similar process 

was applied to the flexural modes. A flexural mode is a non-

axially symmetric mode, unlike the longitudinal mode; this 

difference modifies the determinant of the 4×4 matrix 

equation (B16). Also, the search domain and step-size for 

the k values were found through trials, and the chosen step 

size was reduced since until the missing roots were covered. 



 

III. EXPERIMENTAL SETUP 

A function generator (HP 33120A) triggered tone bursts 

of two cycles with a 10 Hz burst rate and an 18 V peak-peak 

voltage and a signal amplifier (ORTEC Precision AC 

Amplifier 9452) with 1 MHz and 100 kHz low pass and 

high pass filters was used. The system used the through–

transmission method, i.e., two identical transducers (a 

receiver and a transmitter) were used. The input and output 

signals were digitized by the oscilloscope (LeCroy 9304C) 

and stored. The oscilloscope was used to average the signal 

with 300 sweeps in its math function. Data acquisition and 

processing of the oscilloscope and controlling the 

oscilloscope were done with MATLAB using GPIB bus. 

Frequency bandpass filters including low-pass and high-

pass (KROHN-HITE, model: 3202 filter), are very common 

in signal processing and are also used in several different 

applications using guided waves [5]. In the experimental 

work here, a bandpass filter was used to remove some high 

frequencies when the signals were rectified in order to 

smooth the signal.  

A.  Frequency Tuning on the Pipe 

Frequency tuning with the axially symmetric mode 

T(0,1) was performed as an important first step of each 

experiment [13]. Here, frequency tuning was used to find a 

frequency that could clearly detect the pipe end and a 

defect. Tests were carried out on a 34 mm diameter steel 

pipe with 5.5 mm wall thickness. Tests were performed with 

one transmitter and one receiver, 100 mm apart, with the 

transmitter placed 170 mm away from one end of the pipe. 

Both sensors were placed on the left side of the pipe. When 

an incident wave is generated with the transducers on the 

pipe, the echo from the end of the pipe and the direct signal 

are both expected to arrive at the receiver. Defect responses 

are frequency-dependent so it is necessary to find the 

correct frequency in order to detect the defect with 

maximum amplitude response. Also, high frequency guided 

waves are utilized when sensitivity to small defects is 

important. In general, guided waves in the frequency range 

of 100 - 800 kHz were used to identify defects as small as 

0.1% of the pipe’s total cross sectional area (CSA). But low 

frequency guided waves are used for inspecting larger 

distances where sensitivity to small defects is not a main 

concern. The frequency range of 20 - 100 kHz can be used 

to inspect defects as small as 5% of the pipe’s CSA [6]. 

Since this work is concerned specifically with pipes of 34 

mm diameters and small size defects (1.7% CSA), higher 

frequencies are preferable. However, after tests with 

different frequencies, as shown in Figure 1, it was realized 

that higher frequencies (higher than 100 kHz) produce 

stronger reverberations. From these experiments it was 

found that piezoelectric shear transducers excite 

longitudinal and flexural modes as well as torsional modes, 

however in literature the array of elements were attached 

around the pipe (axially symmetric position recommended) 

to suppress the non-axially symmetric F(m,n) modes [12]. 

In the following test three different frequencies, below the 

first torsional non-dispersive mode (below 350 kHz), were 

chosen to identify the possible source of this reverberation. 

It was found that increasing the frequency caused the 

reverberation to increase. 

 
Figure 1. Amplitude of echoes for different frequencies from 30 - 200 kHz. 
For each frequency the signal incremented by 0.2V as shown by a different 

level in this figure. The tests were performed on a 34 mm diameter steel 

pipe with 5.5 mm wall thickness, with one transmitter and one receiver 100 
mm apart, with the transmitter placed 170 mm away from one end of the 

pipe, and both were placed on the left side of the pipe. The first wave 

corresponds to the direct arrival, then the pipe end echoes appear between 
the first end echo and second end echo. The reverberation appeared at a 

frequency higher than 50 kHz. The tests were performed on a clean pipe 

without any defects. 

The dispersion graphs in Figure  2, describe the velocity 

variation of each mode with frequencies, and apply only to 

the pipe considered in this study. The group velocity 

dispersion curves were used to find the wave velocity of 

each mode and consequently the effects of different modes 

on the received signal reverberation. The dispersion curves 

in Figure 2 show that modes propagate at 50 - 400 kHz. For 

example, at 50 kHz, T(0,1), L(0,1), F(1,1), F(1,2), F(2,1) 

and F(3,1) propagate at different group velocities. The first 

echo from the pipe end should travel 440 mm, at a group 

velocity of 3,309      when T(0,1) is excited, and the echo 

should have appeared at 133 μs.  The other modes that are 

slower should appear after these two. Having calculated all 

the modes’ travel times, they were compared with the signal 



 

from the receiver (Figure  3) to see how the reverberation 

compared to the unwanted modes (here longitudinal and 

flexural). Figure  3 shows the received signal at 50 kHz 

when one transmitter and one receiver were used, both 

placed in front of each other (i.e., at 0ᵒ). The unwanted 

modes such as L(0,1) and F(1,2), F(2,1), F(1,1), L(0,1) and 

F(1,2), F(2,1) and F(1,1) are found to match the unwanted 

waves. 

 
Figure 2. Group velocity dispersion curves for the steel pipe (Outer 

diameter: 34 mm, wall thickness: 5.5 mm.). 

 
Figure  3. Received signal for the zero-degree configuration at 50 kHz. 

IV. CONCLUSION 

Experimental tests were performed on a steel pipe with a 

diameter of 34 mm and a wall thickness of 5.5 mm. 

Increasing the frequency caused an increase in the 

reverberation level when only two transducers were used. In 

order to decrease the reverberation level at higher 

frequencies, increasing the number of receivers and 

transmitters to suppress the unwanted modes is a method 

used previously in the literature. A larger number of 

transducers would help to further this investigation. The 

reflection from the defect and pipe end has been shown to 

increase with frequency. To solve these problems (including 

detection of smaller defects), a larger number of transducers 

is recommended. For a pipe with 34 mm diameter, it is 

estimated that eight transducers would be required if the 

frequency was chose 100 kHz. Hence, the possibility of 

finding smaller defects by increasing the frequency and the 

number of transducer can be examined. The effect of losses 

(due to pipe contents and its underground surroundings) in 

the pipe system could be accounted for in the MATLAB 

scripts. The implementation of a two-layered pipe in the 

MATLAB script could help to expand the scope of research.  

APPENDIX A: EQUATION OF MOTION IN 

ISOTROPIC MEDIA 

Wave propagation in unbounded, isotropic media is well 

documented in many textbooks [9]. The equation of motion 

for an isotropic elastic medium (without considering body 

forces), is given by the Navier’s equation, 

(    )            (
   

   ) ,  (A1) 

where u is the three dimensional displacement vector,   is 

the material density,   and   are Lame‘s constants and    is 

the three dimensional Laplace operator. The vector u is 

expressed by Helmholtz decomposition as the sum of a 

compressional scalar potential  , and equivoluminal vector 

potential, H according to: 

         (A2) 

with      . (A3) 

Substitution of Equation (A2) into Navier’s equation (A1) 

gives  

  
      

   

   
 , and (A4) 

  
      

   

   
 ; (A5) 

The displacement equations of motion are satisfied if the 

potentials   and H satisfy the wave equations. Equation 

(A4) describes the longitudinal waves and equation (A5) 

describes the shear waves.    and    are the longitudinal and 

shear wave velocities in the infinite isotropic medium, given 

as: 

   √
    

 
    and 

(A6) 

   √
 

 
 . 

(A7) 

Longitudinal and shear waves are the only types of waves 

that can propagate in an unbounded isotropic medium and 

without interaction in the unbounded media (this can be 

proved from equations A4 and A5). For harmonic waves the 

scalar potential   and the directional component of vector 

potential H are defined as 

     
 (         ) , and (A8) 

     
 (         ), (A9) 

where    and    are the longitudinal and shear wave vectors 

and    and    are initial constants. 

APPENDIX B: WAVE PROPAGATION IN A HOLLOW 

CYLINDER 

The geometry of a cylindrical pipe is shown in Figure 

B1 using the cylindrical coordinate system. For the 

propagation of waves in a hollow cylinder, the potential 

  and components of vector potential H can be described as 



 

     ( )    (  )    (     ), (B1) 

     ( )    (  )    (     )   

     ( )    (  )    (     ) and  

     ( )    (  )     (     )  

where k is the component of the wave vector in the axial 

direction and n is the circumferential order. Substitution of 

(B1) into equations (A8) and (A9) gives the solution for the  

 ( )   ( )   ( ) and   ( ) in terms of Bessel functions J 

and Y and the modified Bessel functions, I and K with 

arguments of either β or α. β and α can be real or complex 

and are given by 

  √
  

  
     , and 

(B2) 

  √
  

  
     . 

(B3) 

Also,      |  |, and      |  |    . 

 
Figure B1. Schematic of pipe geometry, z is along the pipe, r is radial 

direction,   is angle position, a is the internal radius and h is the wall 
thickness. 

The assumed particle displacement components in the 

radial (  ), circumferential (  ), and axial (  ) directions 

are [B1] 

     ( )   (  )    (     )  (B4) 

     ( )   (  )    (     ) and (B5) 

     ( )   (  )    (     )  (B6) 

where   ( )   ( ) and   ( ) are the corresponding 

displacement amplitudes, composed of Bessel functions or 

modified Bessel functions depending on the wavenumber 

characteristic. Differentiation with respect to r yields the 

strain-displacement in cylindrical coordinates: 

    
   

  
, (B7) 

    (
 

 
) [ 

 

  
(

  

 
)  

 

 

   

  
], and (B8) 

    (
 

 
) [ 

   

  
 

 

 

   

  
] . (B9) 

Hooke’s Law can be used to define relationships between 

stresses and strains 

where         (     )     (  )     (     ) is 

dilation. The boundary conditions for the pipe geometry for 

free motion are given by: 
              at  r   a and at  r   a+h   b (B13) 

where a is internal radius, b is the external radius and h is 

the pipe thickness. Having related strains to small 

displacements along the pipe, stresses are related to strains 

to yield the general form of Hooke’s Law, so 
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(B14) 

where SV is the vertical component of shear deformation, 

SH is the shear horizontal deformation component and L is 

the longitudinal deformation component. The positive and 

negative signs refer to the direction of propagation. The 

characteristic equation formed by determinant of the Bessel 

functions is 

|   |    (          )  (B15) 

where i denotes the rows and j the columns of the 

determinant. Hence, the dispersion characteristic equation 

for a hollow cylinder is given by [B1] 
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The terms    and    in matrix elements represent the 

Bessel functions with type depending on the value of  . 

Table B1 shows the appropriate selection of the Bessel 

functions for selected wave characteristics. As previously 

mentioned, n is the circumferential order of guided waves in 

a hollow cylinder. n is equal to zero when the modes are 

axially symmetric. It can change as   varies but it remains 

axially symmetric. For axially symmetric modes the 

frequency equation can be decomposed into the product of 

two sub determinants with 

         (B17) 

where 
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] (B18) 

 

 

Table B1. Bessel function coefficients used for different values of the 

frequency range: corresponding values of         and   in terms of 

wavenumbers. (          are weighting coefficients,   and    are complex 

Bessel functions and   and   are real Bessel functions). 
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