
From outside in:
external structures and internal properties

in linear systems

Paolo Rapisarda
joint work with Jan C. Willems, Paul Fuhrmann, Yutaka Yamamoto,

Harry L. Trentelman, Arjan van der Schaft, and Shodhan Rao

School Electronics and Computer Science,
University of Southampton, GB



Dedicated to the memory of Jan C. Willems



Part I: introduction



A Leitmotiv in systems and control

External : arising from system-environment interaction.
External variables (inputs, outputs) involved.

Internal: arising from within the system.
“State" involved.



A Leitmotiv in systems and control

External : arising from system-environment interaction.
External variables (inputs, outputs) involved.

Internal: arising from within the system.
“State" involved.

Examples:

• Controllability/observability
! Kalman decomposition



A Leitmotiv in systems and control

External : arising from system-environment interaction.
External variables (inputs, outputs) involved.

Internal: arising from within the system.
“State" involved.

Examples:

• Controllability/observability
! Kalman decomposition

• Time-reversibility, reciprocity, symmetries
! Special realizations



A Leitmotiv in systems and control

External : arising from system-environment interaction.
External variables (inputs, outputs) involved.

Internal: arising from within the system.
“State" involved.

Examples:

• Controllability/observability
! Kalman decomposition

• Time-reversibility, reciprocity, symmetries
! Special realizations

• ...



A Leitmotiv in systems and control

Applications:

• Realization theory;



A Leitmotiv in systems and control

Applications:

• Realization theory;

• Model order reduction;



A Leitmotiv in systems and control

Applications:

• Realization theory;

• Model order reduction;

• Identification;

• ...



A Leitmotiv in systems and control

Applications:

• Realization theory;

• Model order reduction;

• Identification;

• ...

Usually representation-oriented, with given state variable



A Leitmotiv in systems and control

Applications:

• Realization theory;

• Model order reduction;

• Identification;

• ...

Usually representation-oriented, with given state variable

Today: a representation-free, trajectory-based approach
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Linear differential system: set of trajectories satisfying
higher-order linear constant-coefficient differential eq’ns.

There exists R0 + . . . + RLsL ∈ Rp×q[s] such that{
w | R

(
d
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)
w = 0

}
=: B .

If B “controllable", ∃ M0 + . . . + MNsN ∈ Rq×m[s] such that

B =
{

w | ∃ ` s.t. M
(

d
dt

)
` = w

}

“Kernel representation"
“Image representation"
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Bilinear- and quadratic differential forms:
functionals of w and a finite number of its derivatives.

Bilinear functional

LΦ(w1,w2) := w>1 Φ00w2 + . . . +
dkw1

dtk

>

Φk ,m
dmw2

dtm + . . .

represented as

Φ(ζ, η) := Φ00 + . . . + ζk Φk ,mη
m + . . .

Quadratic differential form definition straightforward
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Important questions

• What is “state”?

• How to compute state and state representations?

• How do external structures reflect in internal ones?

Philosophy/methodology:

from trajectory-level concept/property
to representation-level concept/property
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∧
0

reads (f1 ∧
0

f2)(t) :=

{
f2(t) for t < 0
f2(t) for t ≥ 0
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The state property revisited

For linear case, state property equivalent to:

(w , x) ∈ Bfull and x(0) = 0 and x continuous at 0
⇓

(0,0) ∧
0

(w , x) ∈ Bfull

• Concatenability with zero is key.

• Algebraic characterization?



Kernel representations and the remainder

w ∈ Lloc
1 =⇒ weak solution:

R
(

d
dt

)
w = 0⇐⇒

∫ +∞

−∞
w>R>

(
− d

dt

)
f dt = 0

for all∞-ly differentiable f (·) of compact support.
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Integrating
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Results in
• bilinear terms in derivatives of w and f in t2, t1
• integrals of bilinear terms in derivatives of w and f



Kernel representations and the remainder

Repeating until f no more differentiated in integral:∫ t2

t1
w>R

(
− d

dt

)>
fdt =

∫ t2

t1
f>R

(
d
dt

)
w dt + BΠ(f ,w)|t2t1

where remainder BΠ(f ,w) defined by

[
f> . . . f (N−1)>] Π̃

 w
...

w (N−1)


for some constant matrix Π̃ of dimension Np × Nq.

A bilinear differential form!



Algebraic construction: kernel representations

Theorem. w concatenable with zero iff BΠ(f ,w)|+∞0 = 0
for all test functions f .



Algebraic construction: kernel representations

Theorem. w concatenable with zero iff BΠ(f ,w)|+∞0 = 0
for all test functions f .

Moreover, (ζ + η)Π(ζ, η) = R(−ζ)− R(η).



Algebraic construction: kernel representations

Theorem. w concatenable with zero iff BΠ(f ,w)|+∞0 = 0
for all test functions f .

Moreover, (ζ + η)Π(ζ, η) = R(−ζ)− R(η).
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 Ip
sIp
...

.

x ′ := Y
(

d
dt

)
w is state for B⊥, acting on `′ s.t. w ′ = R

(
− d

dt

)
`′.



Dual system

w1,w2 ∈ C∞ of compact support; define dual system by:

< w1,w2 > :=

∫ +∞

−∞
w>1 w2 dt

B⊥ :=
{

w ′ |< w ′,w >= 0 ∀ w ∈ B
}

Theorem. Let (ζ + η)Π(ζ, η) = R(−ζ)− R(η) ∈ Rp×q[ζ, η].
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Conservative port-Hamiltonian systems

Partition w =:

[
u
y

]
, u(t), y(t) ∈ Rm.

For compact-support w1,w2 ∈ C∞:

< w1,w2 >Q:=

∫ +∞

−∞

[
u>1 y>1

] =:Q︷ ︸︸ ︷[
0 Im
Im 0

] [
u2
y2

]
dt



Conservative port-Hamiltonian systems

Partition w =:

[
u
y

]
, u(t), y(t) ∈ Rm.

For compact-support w1,w2 ∈ C∞:

< w1,w2 >Q:=

∫ +∞

−∞

[
u>1 y>1

] =:Q︷ ︸︸ ︷[
0 Im
Im 0

] [
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]
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B is conservative port-Hamiltonian if

B = B⊥Q



Conservative port-Hamiltonian systems

Proposition. B = im M
(

d
dt

)
is conservative port-Hamiltonian

if and only if
M(−s)>QM(s) = 0 .



Conservative port-Hamiltonian systems

Proposition. B = im M
(

d
dt

)
is conservative port-Hamiltonian

if and only if
M(−s)>QM(s) = 0 .

There exists Ψ ∈ Rm×m[ζ, η] s.t. (ζ+η)Ψ(ζ, η) = M(ζ)>QM(η).



Conservative port-Hamiltonian systems

Proposition. B = im M
(

d
dt

)
is conservative port-Hamiltonian

if and only if
M(−s)>QM(s) = 0 .

There exists Ψ ∈ Rm×m[ζ, η] s.t. (ζ+η)Ψ(ζ, η) = M(ζ)>QM(η).

Moreover Ψ(ζ, η) = Ψ(η, ζ)>, and Ψ̃ is symmetric.
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Conservative port-Hamiltonian systems

Theorem. From (ζ + η)Ψ(ζ, η) = M(ζ)>QM(η) factor

Ψ̃ = Z̃>Q′Z̃ ,

with # rows Z̃ = rank(Ψ̃) and Q′> = Q′.

Define Z (s) := Z̃

 Im
sIm
...

. Then x := Z
(

d
dt

)
` is state for B.

Q′: internal energy ; Q (external) supply rate.
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=⇒ (ζY (ζ))> X (η) + Y (ζ)>ηX (η)− R(−ζ) = −R(η)

with Y (s) =
[
Y0 . . . YN

]  In
Ins
...


For all testing functions f

[
f> . . . dN f

dtN

]


Y>0
...

YN−1
0

 d
dt

x +


0

Y>0
...

YN−1

 x −


R0
−R1

...
(−1)NRN

w

 = 0



State equations

Differential-algebraic equations follow:
Y>0
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Differential-algebraic equations follow:
Y>0

...
YN−1

0


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=:E

d
dt

x +


0

Y>0
...

YN−1


︸ ︷︷ ︸

=:F

x−


R0
−R1

...
(−1)NRN


︸ ︷︷ ︸

=:G

w = 0 .

• Realization by inspection.

• State-input-output equations, too.

• Canonical realizations: factorise Π̃ appropriately.
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Minimal state map: minimal number of components

Proposition: Let Π(ζ, η) = Y T (ζ)X (η) = R(−ζ)−R(η)
ζ+η

.
State variable x = X

(
d
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)
w is minimal if and only if

[fX (s) = h(s)R(s) with f ∈ R•, h ∈ R1×p[s]] =⇒ [f = 0]
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Minimal state map: minimal number of components

Proposition: Let Π(ζ, η) = Y T (ζ)X (η) = R(−ζ)−R(η)
ζ+η

.
State variable x = X

(
d
dt

)
w is minimal if and only if

[fX (s) = h(s)R(s) with f ∈ R•, h ∈ R1×p[s]] =⇒ [f = 0]

Minimal state =⇒ Minimal factorisation

Converse true if R is row-proper
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with λi + λ∗j 6= 0, i , j = 1, . . . ,N.

Approach: Compute state trajectories xi for wi .
State equations straightforward.

Analogous to subspace identification methods:

External trajectories
; state trajectories

; state equations
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State representations from data
• wi = vieλi t = M

(
d
dt

)
`i ;

• M(ζ)QM(η) = (ζ + η)X (ζ)>Q′X (η)

Follows v∗i Qvj = (λ∗i + λj)x∗i Q′xj , i , j = 1, . . . ,N

Theorem: If N > n(B)=minimal state dimension, then

rank
[

v∗
i Qvj

λ∗i + λj

]
i,j=1,...,N

= n(B) .

Rank-revealing factorize
[

v∗
i Qvj
λ∗i +λj

]
i,j=1,...,N

=: X ∗Q′X , with

X =
[
x1 . . . xN

]
. Then xieλi t state trajectory for wieλi t .

Solve for E , F , G:

E X diag(λ1, . . . , λN) + F X + G
[
v1 . . . vN

]
= 0



State representations from data

Approximate factorization
[

v∗
i Qvj
λ∗i +λj

]
i,j=1,...,N

' X̂ ∗Q̂′X̂

with X̂ ∈ Rn̂×N , n̂ < n(B)

=⇒ lower order approximate state model

also conservative, port-Hamiltonian

=⇒ model reduction
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Work in progress and open problems

• Model order reduction:

• choice of exponential trajectories;

• error bounds;

• generalisation to dissipative systems.

• Multidimensional systems:

• global state variable available for 2-D case;

• local state variable?

• n-D systems, with n > 2?
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