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Abstract

We propose a new A5 model of leptons which corrects the LO predictions of Golden Ratio mixing
via a minimal NLO Majorana mass correction which completely breaks the original Klein symmetry of the
neutrino mass matrix. The minimal nature of the NLO correction leads to a restricted and correlated range of
the mixing angles allowing agreement within the one sigma range of recent global fits following the reactor
angle measurement by Daya Bay and RENO. The minimal NLO correction also preserves the LO inverse
neutrino mass sum rule leading to a neutrino mass spectrum that extends into the quasi-degenerate region
allowing the model to be accessible to the current and future neutrinoless double beta decay experiments.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is an interesting feature of neutrino physics that two of the lepton mixing angles, the atmo-
spheric angle θ23 and the solar angle θ12, are both rather large [1]. Until recently the remaining
reactor angle, θ13, was unmeasured. Direct evidence for θ13 was first provided by T2K, MINOS
and Double Chooz [2–4]. Recently Daya Bay [5], RENO [6], and Double Chooz [7] collabora-
tions have measured sin2(2θ13):

Daya Bay: sin2(2θ13) = 0.089 ± 0.011(stat.) ± 0.005(syst.),

RENO: sin2(2θ13) = 0.113 ± 0.013(stat.) ± 0.019(syst.),

Double Chooz: sin2(2θ13) = 0.109 ± 0.030(stat.) ± 0.025(syst.). (1)
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This measurement excludes the tri-bimaximal (TB) lepton mixing pattern [8] in which the
atmospheric angle is maximal, the reactor angle vanishes, and the solar mixing angle is approx-
imately 35.3◦. When comparing global fits to TB mixing it is convenient to express the solar,
atmospheric and reactor angles in terms of deviation parameters (s, a and r) from TB mixing
[9]:

sin θ12 = 1√
3
(1 + s), sin θ23 = 1√

2
(1 + a), sin θ13 = r√

2
. (2)

From the global fits in [10–12] for illustrative purposes one may consider the representative 1σ

ranges for the TB deviation parameters:

s = −0.03 ± 0.03, a = −0.10 ± 0.03, r = 0.22 ± 0.01, (3)

assuming a normal neutrino mass ordering and a first octant atmospheric mixing angle. Notice
that even though these ranges are quoted for the normal hierarchy, the representative ranges for
the inverted hierarchy lie within these normal hierarchy ranges when considering a first octant
atmospheric mixing angle. We emphasise that the global fits do not decisively determine the
octant for the atmospheric mixing angle. As well as showing that TB is excluded by the reactor
angle being non-zero, Eq. (3) indicates a preference for the atmospheric angle to be below its
maximal value and also a slight preference for the solar angle to be below its tri-maximal value.
It seems that TB mixing no longer holds the exalted position that it did before, and perhaps now
is an opportune moment to consider other mixing patterns that have been proposed but which
have so far been somewhat eclipsed by TB mixing.

An interesting alternative to TB mixing is the Golden Ratio (GR) [13–15] mixing pattern:

UGR =

⎛
⎜⎜⎜⎜⎝

√
φg√

5

√
1

φg

√
5

0

−
√

1
2φg

√
5

√
φg

2
√

5
1√
2√

1
2φg

√
5

−
√

φg

2
√

5
1√
2

⎞
⎟⎟⎟⎟⎠P0, (4)

so named because it involves φg = 1+√
5

2 , the famed Golden Ratio which ancient Greeks thought
aesthetically pleasing. Notice that we have reported the above lepton mixing matrix in the Particle

Data Group (PDG) convention for UPMNS [1] where P0 = Diag(1, eiα0
2/2, eiα0

3/2) is the matrix of
Majorana phases.

The history of the GR’s possible role in lepton mixing began as a footnote [13]. Several years
later, this idea was applied [14] in the context of a non-diagonal charged lepton basis by observing
that θ12 = tan−1(1/φg) ≈ 31.7◦ was a good leading order (LO) prediction for the solar neutrino
mixing angle. In addition to this, Ref. [14] conjectured the possible connection of this prediction
to the group A5. With this in mind, the authors of Ref. [15] sought to elucidate the group theory
of A5 and generate the aforementioned prediction for the solar neutrino angle prediction in the
context of a non-dynamical flavour model.1 Shortly after this, it was found [17] that there was
another possible prediction for the solar neutrino mixing angle involving the Golden Ratio, θ12 =
cos−1(φg/2) = 36◦. But instead of using A5, the dihedral group D10 was utilised to dynamically

1 It is important to note that Ref. [16] laid a large portion of the group theoretics of A5 used in the exploration of
Ref. [15].
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generate this prediction. For two years, the idea of the Golden Ratio’s possible implication in
neutrino mixing lay seemingly dormant,2 until a dynamical A5 model was constructed [19] in a
basis in which the charged lepton mass matrix is diagonal. Shortly afterwards, it was shown [20]
that the prediction of θ12 = tan−1(1/φg) ≈ 31.7◦ was minimally realised in A5, when assuming
a diagonal charged lepton basis. Yet a group in which the prediction θ12 = cos−1(φg/2) was
realised under the same assumptions, could not be found. The same work [20] also contained
two dynamical models which predicted Golden Ratio mixing. It should be noted that as all of
this work using A5 to construct models which predicted Golden Ratio lepton mixing was being
done, A5 was also being used to construct a four family lepton model [21], and its double cover,
A′

5, to construct a four family model incorporating quarks [22]. In addition to this, A′
5 was used

to construct a flavour model explaining cosmic-ray anomalies [23].
Unfortunately the measurement of the reactor angle also excludes the GR lepton mixing pat-

tern in Eq. (4) in which the atmospheric angle is maximal, the reactor angle vanishes, and the
solar mixing angle is given by θ12 = tan−1(1/φg) ≈ 31.7◦, corresponding to r = a = 0 and
s ≈ −0.09. These all lie outside the 1σ ranges in Eq. (3), especially the reactor parameter r , but
also the atmospheric deviation parameter a, and even the solar parameter s is too negative. In
the face of this disagreement, we shall interpret the GR prediction as the LO prediction and then
try to achieve consistency with the data at next-to-leading order (NLO). This is analogous to a
recent strategy that was developed for dealing with the TB prediction in the light of a non-zero
reactor angle [24], where the LO Klein symmetry based on the S4 generators S,U was broken
at NLO but the generator S was preserved in order to maintain the successful tri-maximal so-
lar prediction s = 0, leading to an atmospheric sum rule relation a = −(r/2) cos δ. However,
in the present case, since we also wish to correct the solar angle prediction, we do not wish to
preserve any of the original LO Klein symmetry, and so we shall break both the correspond-
ing S and U Klein subgroup generators of A5 defined in Table 4 at NLO. For a general NLO
correction, this would imply arbitrary values for the deviation parameters r , s, a. However we
shall consider a minimal NLO correction leading to restricted and correlated ranges of these
parameters.

In the present paper, then, we propose a new A5 model of leptons which corrects the LO
prediction of GR mixing via a minimal NLO Majorana mass correction that completely breaks
the original Klein symmetry generators, S and U , thereby correcting all three mixing angles and
allowing agreement to be achieved with the global fits. Although there is no remaining mixing
angle sum rule prediction, the minimal nature of the assumed NLO correction leads to a re-
stricted and correlated range of the resulting deviation parameters r , s, a which encompasses
the 1σ ranges of these parameters from the recent global fits. The minimal NLO Majorana mass
correction also has the feature that it preserves an LO inverse neutrino mass sum rule even at
NLO, leading to a quasi-degenerate neutrino mass spectrum.3 This, in turn, severely constrains
the parameter space of neutrinoless double beta decay, allowing the model to be tested by next
generation neutrinoless double beta decay experiments.

The layout of the remainder of the paper is as follows. In Section 2, the Golden Lepton Flavour
Model is constructed by defining its fields and transformation properties under A5 as well as an
additional U(1) symmetry. The resulting LO and NLO mass matrices are constructed after elec-
troweak and flavour symmetry breaking and diagonalised to reveal the lepton mass and mixing

2 With the exception of Ref. [18] constructing a quark model by extending A5 to its double cover, A′
5, with their golden

ratio prediction of Ref. [15] in mind.
3 Note that if a singlet flavon is added then the sum rule does not exist at LO.
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Table 1
The field content of the A5 × U(1) model where x and y are carefully chosen integers. For example we have checked
that x = −9 and y = 2 leads to the desired operators with no undesirable operators.

Field L E N hu,d χ φ θ λ ϕ

A5 3 3 3 1 5 5 1 3 5
U(1) −y 5x + y y 0 −5x −3x −x −y −2y

parameters. In Section 3, the vacuum alignment of the model is analysed by explicit construction
and minimisation of the model’s flavon potential. Section 4 contains a detailed analysis of the
phenomenological implications of the NLO correction on the TB deviations parameters (r , s,
and a) and the effective Majorana mass scale of neutrinoless double beta decay. In Section 5, the
discussion of the A5 × U(1) model is concluded. The relevant group theory of A5 can be found
in Appendix A and the breaking of the low-energy Golden Ratio Klein symmetry is discussed in
Appendix B.

2. The model

2.1. Fields, symmetries, and Yukawa superpotentials

In this section, we present an A5 model of leptons as a framework in which to study the
generation of a non-zero θ13 from A5. We begin this discussion by noting that the left-handed
lepton doublets L = (le, lμ, lτ ), the right-handed charged lepton singlets E = (ec

R,μc
R, τ c

R), and
the right-handed neutrinos N = ((νc

R)e, (ν
c
R)μ, (νc

R)τ ) all transform under the 3-dimensional ir-
reducible representation of A5. Furthermore, the up- and down-type Higgs doublet fields hu and
hd are assumed to be blind to the flavour symmetry. As a result of this minimal field content and
its transformation properties huLN , NN , and hdLE are the only allowed terms in the Yukawa
superpotential because 3 ⊗ 3 = 1s ⊕ 3a ⊕ 5s contains a singlet (see Appendix A for the group
theory of A5). However, these terms lead to undesirable phenomenological predictions, namely
degenerate charged lepton and neutrino masses as well as no leptonic mixing.

To fix the problematic predictions of the simplest LO terms (huLN , NN , and hdLE), it is
necessary to introduce additional scalar fields (i.e. flavon fields) which will couple to the existing
matter fields, as well as an additional U(1) symmetry to forbid problematic operators which
lead to un-phenomenological results. The U(1) symmetry will not be gauged, in order to avoid
constraints associated with anomaly cancellation. Yet, it will be spontaneously broken by the
flavon fields acquiring vacuum expectation values (VEVs). In general, this will lead to massless
Goldstone bosons, unless the symmetry is also explicitly broken. Therefore, the U(1) symmetry
is assumed to be explicitly broken in the hidden sector of the theory, so that Goldstone bosons
become pseudo-Goldstone bosons with mass around 1 TeV. The additional fields, as well as
the original matter fields, and their transformation properties under A5 × U(1) can be found in
Table 1. Using these transformation properties, the Yukawa operators invariant under the A5 ×
U(1) symmetry can be constructed.

The construction of the A5 × U(1) invariant Yukawa superpotential is begun in the neutrino
sector. Using the fields and transformation properties defined in Table 1, the neutrino Yukawa
superpotential may be schematically written to NLO as

Wν = yLNhu + y2NNϕ + �Wν, (5)
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Table 2
The vacuum alignments of the flavons used in the model in terms of
complex VEVs. Justification of the flavon alignments follows from a
detailed discussion of the minimisation of the flavon potential in Sec-
tion 3.

Flavon VEV VEV alignment

〈φ〉 (0,0,0, vφ,0)T

〈χ〉 (0,0, vχ ,0,0)T

〈λ〉 (0,0, a3)T

〈ϕ〉 (

√
2
3 (v2 + v3), v2, v3, v3, v2)T

where �Wν denotes the NLO correction to the superpotential which will generate a non-zero θ13
and a correction to θ23 and θ12; it will be discussed more fully in Section 2.4. Proceeding to the
charged lepton sector, the superpotential resulting in the generation of the charged lepton masses
and mixings can be schematically expressed as

Wl = y4

Λ
LEχhd + y5

Λ3
LEθ2φhd + y6

Λ5
LEθ5hd. (6)

With the charged lepton and neutrino superpotentials in hand, we now turn to the construction of
the charged lepton and neutrino mass matrices after electroweak and flavour symmetry breaking.

2.2. The charged lepton mass matrix and its predictions

Using the superpotential in Eq. (6), the charged lepton mass matrix, after electroweak and
flavour symmetry breaking, can be constructed. This is done by utilising the Clebsch–Gordan
coefficients of Appendix A to appropriately contract the flavon fields, thereby extracting the
singlets from the product representations. Then, the VEVs of φ and χ given in Table 2, as well
as 〈θ〉 = vθ are applied to reveal the charged lepton mass matrix, Me, after electroweak and
flavour symmetry breaking, to be

Me = vd

⎛
⎜⎝

y6
Λ5 v5

θ 0 0

0
√

6 y5
Λ3 v2

θ vφ
y6
Λ5 v5

θ

0 y6
Λ5 v5

θ

√
6 y4

Λ
vχ

⎞
⎟⎠ . (7)

By assuming all flavon field VEVs are of the same order, i.e. vi

Λ
∼ ε, and absorbing factors of

√
6

into y4 and y5, a charged lepton hierarchy of ε4 : ε2 : 1 is obtained. With the added assumption
that ε ∼ 0.15, a phenomenologically viable charged lepton mass spectrum is obtained. Further-
more, the associated charged lepton mixing matrix is the identity to O(ε4). Therefore, charged
lepton mixing may be neglected with respect to the mixing originating from the neutrino sector,
as will be seen.

2.3. The leading order neutrino mass matrix

In the case of A5 a non-zero value for θ13 can be generated by adding flavons which develop
VEVs which break the U generator of the Klein symmetry (cf. similar logic applied in Ref. [24]).
Yet before adding these flavons whose VEVs break the Klein symmetry leading to deviations
away from GR mixing, we must deduce which flavons should be added whose VEVs preserve
the Klein symmetry and lead to GR mixing.
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To deduce the possible irreducible representations of the Klein symmetry preserving flavons,
we begin by noting that since we choose to couple all of our flavons to NN , where N ∼ 3 and
3 ⊗ 3 = 1s ⊕ 3a ⊕ 5s, three flavons could be added transforming under the corresponding 1s,
3a, and 5s representations. Yet the 3a contained in 3 ⊗ 3 is antisymmetric (as denoted by the
subscript “a”), and hence it vanishes. One could include the 1s from the 3 ⊗ 3, as in Ref. [20],
but its addition alone will not yield GR mixing, and when added with the 5s in 3 ⊗ 3 will not
lead to an LO neutrino mass sum rule. Thus we choose not to include it. Therefore, to LO we
only include a single flavon ϕ ∼ 5 which acquires a VEV (up to basis transformations) 〈ϕ〉 =
(

√
2
3 (v2 + v3), v2, v3, v3, v2)

T , where v2 and v3 are left unspecified by A5. This VEV alignment
is preserved by the five-dimensional representations of the S and U generators in Appendix A,
and hence respects the corresponding ZS

2 × ZU
2 Klein symmetry of the LO neutrino Majorana

mass matrix,

MLO
R = y2

⎛
⎜⎜⎜⎝

2
√

2
3 (v2 + v3) −√

3v2 −√
3v2

−√
3v2

√
6v3 −

√
2
3 (v2 + v3)

−√
3v2 −

√
2
3 (v2 + v3)

√
6v3

⎞
⎟⎟⎟⎠ . (8)

It is straightforward to see that

UT
GRMLO

R UGR = Diag
(
MLO

1 ,MLO
2 ,MLO

3

)
, (9)

where

MLO
1 = y2(v2(6φg − 2) + 4v3)√

6
, MLO

2 =
y2(4v3 − v2(

6
φg

+ 2))
√

6
,

MLO
3 = y2

√
2(v2 + 4v3)√

3
. (10)

It is clear the above masses obey the sum rule

MLO
1 + MLO

2 = MLO
3 . (11)

Having constructed and diagonalised MLO
R , it is trivial to construct the LO Dirac mass matrix, as

it is just the 1s in 3⊗3 resulting from the yLNhu operator in the superpotential (cf. Eq. (5)). After
the spontaneous breaking of electroweak and flavour symmetries, the LO Dirac mass matrix has
the form

mD = yvu

(1 0 0
0 0 1
0 1 0

)
. (12)

Notice that the LO neutrino mass matrices given in Eqs. (8) and (12) respect Form Dominance
[26]. Applying the Seesaw Mechanism [25] to mD and MLO

R generates the light neutrino mass
matrix, MLO

ν , that is diagonalised by the UGR of Eq. (4) after a matrix of unphysical phases
P ′ = Diag(1,1,−1) has been applied to UGR. Furthermore, we will neglect the Majorana phases
of UGR in the diagonalisation so the resulting masses are complex. Performing this procedure
yields the complex light neutrino masses
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mLO
1 =

√
6y2v2

u

y2(v2(6φg − 2) + 4v3)
, mLO

2 =
√

6y2v2
u

y2(4v3 − v2(
6
φg

+ 2))
,

mLO
3 =

√
3
2y2v2

u

(v2 + 4v3)y2
. (13)

Notice that these complex masses obey the inverse neutrino mass sum rule [20]

1

mLO
1

+ 1

mLO
2

= 1

mLO
3

. (14)

For the remainder of this work, it is useful to re-express the complex neutrino masses in terms
of new parameters β , ξ , and δ such that

mLO
1 = β

6φg − 2 + 4eiδξ
, mLO

2 = β

4eiδξ − ( 6
φg

+ 2)
, mLO

3 = β

2(1 + 4eiδξ)
. (15)

To arrive at the above forms of the complex neutrino masses, let v2 = |v2|eiθ2 and v3 = |v3|eiθ3 .

Then, define ξ = |v3|/|v2| and δ = θ3 − θ2. Then, it is clear β = v2
uy2

√
6

y2v2
. Notice that ξ and δ are

real parameters, where δ should not be confused with the Dirac CP phase. Note that the argument
of β corresponds to an overall phase and hence is unphysical.

The re-parametrisation of the complex neutrino masses in terms β , ξ , and δ concludes the
construction of the LO lepton model. Notice that this model yields a zero reactor angle, maximal
atmospheric mixing, and a solar mixing angle given by θ12 = tan−1(1/φg) ≈ 31.7◦ which are
all in conflict recent global fits. Therefore, it is necessary to consider the NLO corrections to the
existing minimal LO GR model resulting from the addition of operators which, upon application
of the flavon fields’ VEVs, lead to corrections to the neutrino mass matrix that leave it no longer
invariant under the S and U generators, providing a correction to the problematic leading order
predictions.

2.4. The neutrino sector at NLO

In order to generate a non-zero reactor mixing angle in the context of A5, a flavon field must
be added which breaks the U generator of the ZS

2 × ZU
2 Klein symmetry. To do this, an addi-

tional flavon field λ transforming as a 3 under A5 is introduced. Recall that the contraction of
a flavon field transforming as a 3 and NN necessarily vanishes due to the anti-symmetry of the
3a contained in 3 ⊗ 3. Thus, we allow for a quadratic coupling of λ to NN . As a result, the
superpotential receives a next-to-leading-order correction of4

�Wν = yA

Λ
(NN)1s(λλ)1s + yC

Λ

(
(NN)5s(λλ)5s

)
1s

. (16)

This corrects the LO Majorana mass matrix in Eq. (8) to yield

MR = MLO
R + �MR, (17)

where MLO
R is defined in Eq. (8). Before proceeding to calculate �MR , it is useful to note that

the coefficient yA will not enter the eigenvectors of the corrected/perturbed mass matrix since

4 The pair of contractions given here form a basis for all possible contractions.
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the associated operator has a simple structure in which its contribution to �MR is of the form of
a singlet of A5 which is compatible with the preservation the Golden Ratio Klein Group. Thus,
such a contribution still leads to GR mixing. Therefore, it will not affect the corrected mixing.5

Thus, we choose an alignment for 〈λ〉 = (a1, a2, a3)
T such that the operator associated with yA

vanishes. This will require a1 = 0 and either a2 or a3 to be zero. We choose a2 = 0 implying
〈λ〉 = (0,0, a3)

T . This choice will be justified in the detailed discussion of the minimisation of
the flavon potential in Section 3.

Having assumed λ develops VEV 〈λ〉 = (0,0, a3)
T , the correction �MR takes the rather

simple form

�MR =
(0 0 0

0 6yCv4 0
0 0 0

)
, (18)

where v4 ≡ a2
3/Λ. As discussed in Appendix B, this correction turns out to be sufficient to break

both the S and U Klein symmetry generators associated with the unsuccessful LO Golden Ratio
predictions of a vanishing reactor angle and a solar angle that which is too small. Both of these
generators must be broken because (from Section 1) breaking U will lead to a non-zero reactor
angle and a non-maximal atmospheric angle and breaking S will affect the solar mixing angle
prediction.

Recall that the LO Golden Ratio mixing matrix is given by the usual GR form as in Eq. (4),
up to charged lepton corrections (which are small as can be seen in Eq. (7)), where UGR has been
brought into the PDG convention [1]. In the presence of λ, the PMNS mixing matrix is given as

U ′
PMNS = UGR + �U, (19)

where the prime on U ′
PMNS indicates that it is not yet in standard PDG form due to the correction.

Assuming

v4 ≡ a2
3

Λ

 v2, v3 (20)

enables a perturbative calculation of the correction �U . To first order in v4/v2,3, the corrections
to the columns of the PMNS matrix are

�U11 ≈ −ε

5

√
3

2φg

√
5
, (21)

�U12 ≈ ε

5

√
3φg

2
√

5
, (22)

�U13 ≈ 18ε
√

3D−1
1 , (23)

�U21 ≈ ε
√

3φg

(
2φgξeiδ − φg + 12

)
D−1

2 , (24)

�U22 ≈ ε

√
3

φg

(
12φg + 1 − 2ξeiδ

)
D−1

3 , (25)

�U23 ≈ 3ε
√

6
(
1 − 2ξeiδ

)
D−1

1 , (26)

5 However, its existence will shift the neutrino masses depending on the alignment of 〈λ〉.
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�U31 ≈ ε
√

3φg

(
2φgξeiδ − φg − 18

)
D−1

2 , (27)

�U32 ≈ ε

√
3

φg

(
1 − 18φg − 2ξeiδ

)
D−1

3 , (28)

�U33 ≈ 3ε
√

6
(
1 − 2ξeiδ

)
D−1

1 , (29)

where

D1 = 2
√

2
(
4ξ2e2iδ + 2ξeiδ − 11

)
, (30)

D2 = 10 × 51/4(φg + 3 − 2φgξeiδ
)
, (31)

D3 = 10 × 51/4(3φg − 1 + 2ξeiδ
)
, and (32)

ε = yCv4

v2y2
. (33)

For simplicity, we will identify the ε of Eq. (33) with ε ∼ vi/Λ used in Eq. (7). This is justi-
fied/motivated by assuming that yC and y2 are of O(1) and that any VEV over the cut-off scale
Λ should be of similar size. Hence, v4 = a2

3/Λ ∼ εa3 and a3 ∼ v2. From this it is clear that the
quantity ε ∼ vi

Λ
defined below Eq. (7) and that in Eq. (33) will be of similar size and perturba-

tively indistinguishable. Therefore the correction to the PMNS matrix is

�U = (�Ui1 �Ui2 �Ui3 ) . (34)

As noted in Section 1, a general lepton mixing matrix can be expressed in terms of the TB
deviation parameters r , s, and a. Doing so allows one to write the lepton mixing matrix as [9]

UPMNS ≈

⎛
⎜⎜⎝

2√
6
(1 − 1

2 s) 1√
3
(1 + s) 1√

2
re−iδ

− 1√
6
(1 + s − a + reiδ) 1√

3
(1 − 1

2 s − a − 1
2 reiδ) 1√

2
(1 + a)

1√
6
(1 + s + a − reiδ) − 1√

3
(1 − 1

2 s + a + 1
2 reiδ) 1√

2
(1 − a)

⎞
⎟⎟⎠P, (35)

where the diagonal matrix P = Diag(1, eiα2/2, eiα3/2) contains the usual two Majorana phases in
the PDG convention [1]. The result of Eq. (35) can be compared to the corrected GR matrix to
show how the breaking of the S and U generators corrects the leading order prediction of r , s,
and a. However before we make this comparison, phase conventions must be matched. Again,
we use the freedom to multiply unphysical phases from the left since they may be absorbed
into charged lepton rotations. Multiplying phases from the right corresponds to a redefinition of
the Majorana phases. Once this redefinition has been made, the NLO PMNS matrix is in the
PDG convention. Then, we may identify the deviation parameters r , a and s resulting from the
corrected UGR mixing matrix. They are

r = √
2|�U13|, (36)

a = √
2 Re

(
�U23 exp

(−iα3

2

))
, (37)

s = 3

2φg

√
5

− 1

2
+ 3

√
1

φg

√
5

Re

(
�U12 exp

(−iα2

2

))
, (38)

where α2 and α3 are the redefined Majorana phases in the PDG convention [1].
We pause here to comment on the lack of a concrete prediction even though we have only

introduced one parameter. As remarked earlier the LO neutrino mass matrices given in Eqs. (8)
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and (12) respect Form Dominance [26]. As such the GR mixing matrix of Eq. (4) contains no
free parameters. By adding the correction, �MR (cf. Eq. (18)) to MR , “one” additional free pa-
rameter is introduced (yCv4). However because of the way that the parameter enters, i.e. only
in the (22) entry of MR , the Majorana mass matrix can no longer be diagonalised with a trans-
formation independent of parameters of the model, and the resulting UPMNS will no longer be
parameter free. Hence, at NLO the mixing angles will depend on parameters in the model, as
Form Dominance has been broken.

A similar (slightly easier) perturbative exercise may be performed to calculate the NLO cor-
rections to the light neutrino masses. Performing this calculation reveals the light, complex
masses at NLO to be

mNLO
1 ≈ mLO

1 − 9β

2φg

√
30(1 − 3φg − 2ξeiδ)2

ε,

mNLO
2 ≈ mLO

2 − 9βφg

2
√

30(2 − 3φg + 2ξeiδ)2
ε,

mNLO
3 ≈ mLO

3 − 9β

2
√

6(1 + 4ξeiδ)2
ε, (39)

where the mLO
i are as defined in Eq. (15). Notice that the LO sum rule still exists at NLO, i.e.

1

mNLO
1

+ 1

mNLO
2

= 1

mNLO
3

. (40)

This surprising result can be explained by first observing that the NLO correction to the heavy,
right-handed neutrino masses will be given by the corresponding diagonal element of the matrix
UT

GR�MRUGR. A calculation of these corrections reveals

MNLO
1 = MLO

1 + 3v4yC√
5φg

, MNLO
2 = MLO

2 + 3v4φgyC√
5

,

MNLO
3 = MLO

3 + 3v4yC (41)

for the corrected heavy neutrino masses. Clearly MNLO
1 + MNLO

2 = MNLO
3 , preserving the LO

sum rule for the heavy right-handed neutrino masses of Eq. (11). Furthermore, because of the
form of mD , it can be shown that

mi = v2
uy

2M−1
i . (42)

Hence, MNLO
1 + MNLO

2 = MNLO
3 implies 1/mNLO

1 + 1/mNLO
2 = 1/mNLO

3 . In summary, due to the
form of the correction to �MR (cf. Eq. (18)), the resulting matrix which governs the corrections
to the heavy neutrino masses, UT

GR�MRUGR, also shares the same sum rule between its diagonal
elements, allowing for the preservation of the sum rule for the heavy neutrino masses at NLO.
Then, because of the form of mD (cf. Eq. (12)), it is possible to deduce that the heavy neutrino
masses, Mi are inversely proportional to mi , preserving the light neutrino mass sum rule to
O(v4/v2,3).

Before concluding this section, we briefly discuss NLO corrections to the mass matrices.
These will depend on the specific choice of charges x, y, z. For the choice x = −9, y = 2, z = 5
we find that the NLO operators first enter at order ε5, and involve auxiliary flavons, i.e. ω and φ′,
which must be added to aid in the Golden Model’s vacuum alignment, cf. Section 3. Examples
of such operators are:
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1

Λ5
LhuNλω2ϕ2,

1

Λ′Λ4
LhuLhuλϕω2,

1

Λ6
LhdEλωφ′ϕ3,

1

Λ5
NNλϕ3ω2, (43)

where Λ′ is the Majorana mass scale and Λ is the messenger mass scale for the Yukawa sector.
As will be seen in the next section, these additional (auxiliary) flavon fields must be added to
aid in the minimisation of the flavon potential. Clearly these operators, will contribute to higher
order corrections to the neutrino mass matrices and charged lepton mass matrix. Notice that
these results arise when coupling at least more than four flavons to the leptons. Therefore, the
results of the preceding sections are good through order at least ε4. Furthermore, recall that the
charged lepton mass matrix was only approximately diagonal to order ε4, so these additional
flavon couplings cause no further problems.

3. Vacuum alignment

Flavour models of this type must have the alignment of the VEVs of the flavon fields justified
by minimising a flavon potential. Therefore, the explicit VEVs quoted in Section 2 must be
derived from a flavon potential. Herein lies the goal of the present section.

To properly align the VEVs of the flavon fields of the A5 × U(1) Golden Model, a set of
auxiliary flavon fields will be added as well as a set of “driving fields”. Recall that with the
choice of charges x = −9, y = 2 and z = 5, the auxiliary fields will not contribute to the heavy
neutrino mass matrix until at least 6 flavon fields are involved, e.g. with operators of the form
NNλϕ3ω2/Λ5, cf. Eq. (43). They will also not contribute to the Dirac neutrino mass matrix until
5 flavons are involved in operators like LhuNλω2ϕ2/Λ5, and they will not couple to the charged
lepton mass matrix until at least 6 flavons are involved in operators like LhdEλωφ′ϕ3/Λ6. No-
tice that there is also a coupling like LhuLhuλϕω2/Λ′Λ4 contributing to the effective neutrino
mass matrix. As previously discussed, the suppression of these operators provides negligible cor-
rections to the mass matrices. Driving fields in turn are similar to flavons in that they are gauge
singlets and transform in a nontrivial way under A5 × U(1). However, their difference becomes
apparent when an additional U(1)R symmetry is introduced.6 Under this symmetry, we define
all chiral superfields containing Standard Model fermions to have a U(1)R charge of +1. Then,
all chiral superfields containing Higgs and flavon fields have a U(1)R charge of 0. Driving fields
will have a U(1)R charge of +2. Since the superpotential carries a +2 U(1)R under these con-
ventions, the driving fields may only couple linearly to flavon fields. Furthermore, we will work
in the supersymmetry preserving limit so that to minimise the flavon potential it is only neces-
sary to enforce that the F -terms of the driving fields vanish identically. These so-called F -term
conditions will give rise to the vacuum alignments. The driving fields, additional flavon fields,
and their transformation properties under A5 × U(1) × U(1)R can be found in Table 3.

To begin the minimisation of the flavon potential, the first step is the construction of the flavon
superpotential from the fields’ transformation properties given in Tables 1 and 3. A straightfor-
ward calculation shows the “LO” flavon superpotential may be constructed from contractions of
the operators

φ′φ0, φφφ0, θχφ0, φ′χρ0, φχχ0, ωωψ0, ωϕϕ0,

λλλ0, and λχξ0. (44)

6 U(1)R is broken to R-parity when supersymmetry breaking terms are included.
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Table 3
Auxiliary flavon and driving fields of the A5 ×U(1) model where x, y, and z are carefully chosen integers (e.g. x = −9,
y = 2 and z = 5).

Field φ′ ω φ0 ρ0 χ0 ϕ0 λ0 ξ0 ψ0

A5 5 4 5 3 4 3′ 1 3′ 5
U(1) −6x z 6x 11x 8x 2y − z 2y 5x + y −2z

U(1)R 0 0 2 2 2 2 2 2 2

Because some of these operators have multiple independent contractions that can result from
them, it is necessary to explicitly write the flavon superpotential in terms of the relevant contrac-
tions. Doing this yields

Wd = M
(
φ′φ0)

1s
+ g1

(
(φφ)51,sφ

0)
1s

+ g2
(
(φφ)52,sφ

0)
1s

+ g3
(
θ
(
χφ0)

1s

)
1s

+ g4
((

φ′χ
)

3a
ρ0)

1s
+ g5

(
(φχ)4sχ

0)
1s

+ g6
(
(φχ)4aχ

0)
1s

+ g7
(
(ωω)5sψ

0)
1s

+ g8
(
(ωϕ)3′ϕ0

)
1s

+ g9
(
(λλ)1sλ

0)
1s

+ g10
(
(λχ)3′ξ0)

1s
. (45)

As previously discussed, the superpotential can be used to construct the driving fields’ F -terms,
that when vanish, minimise the flavon potential. The vanishing F -term of ρ0 and χ0 that provide
the alignment for the VEVs of φ, φ′, and χ are

∂Wd

∂ρ0
1

= g4
(−φ′

5χ2 − 2φ′
4χ3 + 2φ′

3χ4 + φ′
2χ5

) = 0,

∂Wd

∂ρ0
2

= g4
(−√

3φ′
5χ1 − √

2φ′
4χ2 + √

2φ′
2χ4 + √

3φ′
1χ5

) = 0,

∂Wd

∂ρ0
3

= g4
(√

3φ′
2χ1 − √

3φ′
1χ2 − √

2φ′
5χ3 + √

2φ′
3χ5

) = 0,

∂Wd

∂χ0
1

= g5
(
3
√

2χ1φ5 − √
3χ2φ4 + 4

√
3χ3φ3 − √

3χ4φ2 + 3
√

2χ5φ1
)

+ g6
(−√

2χ1φ5 + √
3χ2φ4 − √

3χ4φ2 + √
2χ5φ1

) = 0,

∂Wd

∂χ0
2

= g5
(
3
√

2χ1φ4 − √
3χ2φ3 − √

3χ3φ2 + 3
√

2χ4φ1 + 4
√

3χ5φ5
)

+ g6
(√

2χ1φ4 + √
3χ2φ3 − √

3χ3φ2 − √
2χ4φ1

) = 0,

∂Wd

∂χ0
3

= g5
(
3
√

2χ1φ3 + 4
√

3χ2φ2 + 3
√

2χ3φ1 − √
3(χ4φ5 + χ5φ4)

)
+ g6

(√
2χ1φ3 − √

2χ3φ1 + √
3(χ5φ4 − χ4φ5)

) = 0,

∂Wd

∂χ0
4

= g5
(
3
√

2χ1φ2 + 3
√

2χ2φ1 − √
3(χ3φ5 − 4χ4φ4 + χ5φ3)

)
+ g6

(−√
2χ1φ2 + √

2χ2φ1 + √
3(χ5φ3 − χ3φ5)

) = 0 (46)

which have the non-vanishing solutions necessary for spontaneous symmetry breaking:

〈χ〉 = (0,0, vχ ,0,0)T , 〈φ〉 = (0,0,0, vφ,0)T and
〈
φ′〉 = (0, vφ′, vφ′,0,0)T . (47)



662 I.K. Cooper et al. / Nuclear Physics B 875 (2013) 650–677
We turn now to the F -term conditions resulting from φ0. These are found to be

∂Wd

∂φ0
1

= Mφ′
1 + 2g1

(
φ2

1 + φ2φ5 − 2φ3φ4
) + 2g2

(
φ2

1 − 2φ2φ5 + φ3φ4
) + g3θχ1 = 0,

∂Wd

∂φ0
2

= Mφ′
5 + 2g1(φ1φ5 + √

6φ2φ4) + g2
(−4φ1φ5 + √

6φ2
3

) + g3θχ5 = 0,

∂Wd

∂φ0
3

= Mφ′
4 + g1

(−4φ1φ4 + √
6φ2

5

) + 2g2(φ1φ4 + √
6φ2φ3) + g3θχ4 = 0,

∂Wd

∂φ0
4

= Mφ′
3 + g1

(−4φ1φ3 + √
6φ2

2

) + 2g2(φ1φ3 + √
6φ4φ5) + g3θχ3 = 0,

∂Wd

∂φ0
5

= Mφ′
2 + 2g1(φ1φ2 + √

6φ3φ5) + g2
(−4φ1φ2 + √

6φ2
4

) + g3θχ2 = 0. (48)

Applying the previous results for the alignments of 〈χ〉, 〈φ〉, and 〈φ′〉, collapses these equations
to the rather simple constraints

Mvφ′ + g3vθvχ = 0 and Mvφ′ + √
6g2v

2
φ = 0 (49)

which together imply v2
φ = g3√

6g2
vθvχ . Notice that since vχ �= 0 and vφ �= 0, then vθ �= 0.

To find the other nontrivial solutions of Eqs. (46) and (48) which yield the same relationship
between the VEVs of φ, θ and χ , i.e. v2

φ = g3√
6g2

vθvχ , we must only act with all A5 group

elements on the VEVs given in Eq. (47) and verify which still solve the F -term conditions given
in Eqs. (46) and (48), while keeping the desired aforementioned relationship between the flavon
VEVs. It has been verified that 17 other nontrivial A5 group elements acting on the preceding
VEV alignments produce v2

φ = g3√
6g2

vθvχ , providing a complete set of degenerate, non-vanishing

solutions (for this particular choice of alignment).7 The other 60− (17+1) = 42 elements acting
on the VEV alignments in Eq. (47) fail to produce the same relationship between the flavon
VEVs. Thus, they will be neglected.

With the justification of the alignment of 〈χ〉, 〈φ〉, and 〈θ〉, we turn ourselves to aligning the
flavons associated with the neutrino sector.

Aligning the flavons associated with the neutrino sector we begin by minimising the F -terms
associated with ψ0. We find the following conditions on the alignment of the auxiliary field ω:

∂Wd

∂ψ0
1

= g7
(
2
√

3ω1ω4 − 2
√

3ω2ω3
) = 0,

∂Wd

∂ψ0
2

= g7
(
2
√

2ω2
2 − 2

√
2ω1ω3

) = 0,

∂Wd

∂ψ0
3

= g7
(
2
√

2ω1ω2 − 2
√

2ω2
4

) = 0,

∂Wd

∂ψ0
4

= g7
(
2
√

2ω3ω4 − 2
√

2ω2
1

) = 0,

7 These solutions can be obtained by the action of T , T 2, T 3, T 4, S, U , ST , T S, UT , T U , SU , T 2S, T 2U , UT 2,

T 3S, T 3ST 3, or T 3ST 4 on the VEV alignments in Eq. (47).
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∂Wd

∂ψ0
5

= g7
(
2
√

2ω2
3 − 2

√
2ω2ω4

) = 0, (50)

which have nontrivial solutions of the form

〈ω〉 ∝ ρmT n
4

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠ = ρm

⎛
⎜⎝

ρ 0 0 0
0 ρ2 0 0
0 0 ρ3 0
0 0 0 ρ4

⎞
⎟⎠

n ⎛
⎜⎝

1
1
1
1

⎞
⎟⎠ (51)

in which ρ = e2πi/5 and m,n = 0,1,2,3,4. For the rest of this work, we take m = n = 0 such
that 〈ω〉 = vω(1,1,1,1)T .

With the alignment for 〈ω〉 calculated, we turn now to the F -terms associated with ϕ0 and
find the following F -term conditions:

∂Wd

∂ϕ0
1

= g8(
√

2ϕ5ω1 + 2
√

2ϕ4ω2 − 2
√

2ϕ3ω3 − √
2ϕ2ω4) = 0,

∂Wd

∂ϕ0
2

= g8(−2ϕ3ω1 + ϕ2ω2 + √
6ϕ1ω3 − 3ϕ5ω4) = 0,

∂Wd

∂ϕ0
3

= g8(3ϕ2ω1 − √
6ϕ1ω2 − ϕ5ω3 + 2ϕ4ω4) = 0. (52)

Since vω �= 0 and by assuming the previous solution for 〈ω〉, the above equations yield the solu-
tion

〈ϕ〉 =
(√

2

3
(v2 + v3), v2, v3, v3, v2

)T

. (53)

The remaining set of F -terms to analyse belong to λ0 and ξ0. They are

∂Wd

∂λ0
= g9

(
λ2

1 + 2λ2λ3
)
,

∂Wd

∂ξ0
1

= g10(
√

3λ1χ1 + λ3χ2 + λ2χ5),

∂Wd

∂ξ0
2

= g10(−
√

2λ2χ3 + λ1χ4 − √
2λ3χ5),

∂Wd

∂ξ0
3

= g10(−
√

2λ2χ2 + λ1χ3 − √
2λ3χ4). (54)

Upon applying the previously found alignment for 〈χ〉 (i.e. 〈χ〉 ∝ (0,0,1,0,0)T ), these F -terms
vanish when 〈λ〉 is aligned as

〈λ〉 ∝
(0

0
1

)
, (55)

the ZS
2 × ZU

2 breaking alignment for 〈λ〉 used in Section 2.4. Before concluding the discussion
of the flavon potential, we pause to comment on the generality of the A5 ×U(1) model’s vacuum
solutions.

Because the alignment of 〈ω〉 was not dependent on the results of the alignments for 〈χ〉,
〈φ〉, and 〈φ′〉 it is possible to begin the consideration of possible A5 vacua by considering the
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alignment of 〈ω〉, which may be brought to the desired (1,1,1,1)T by action of the T generator.
Then, having properly aligned 〈ω〉, the VEV alignment of 〈ϕ〉 is determined uniquely. Then, the
VEVs of the flavons associated with the charged leptons (i.e. χ , φ, and φ′) may be brought to
the desired form by application of relevant powers of S, T , and U matrices. In general, these
transformations will change the already aligned 〈ω〉 by multiples of T . This in turn will force
〈ϕ〉 out of the alignment needed for GR mixing. Therefore, Nature is required to choose one
of five vacua necessary for the Golden Model. This is a mild assumption. It is worth pointing
out that we have not justified the relative size of each of the flavon VEVs with respect to each
other. Hence, in this paper we impose by hand the relative sizes of the VEVs with respect to each
other. Said in a different way, there are 7 flavon field VEVs (8 flavon VEV parameters due to
the presence of v2 and v3 in 〈ϕ〉) and one equation relating 3 of the VEVs, i.e. v2

φ = g3√
6g2

vθvχ .

Therefore, this model has at least 7 complex flat directions corresponding to the undetermined
complex VEVs.

Before discussing the phenomenological predictions of the Golden Model, we pause here to
discuss the NLO corrections to the flavon superpotential. The NLO contributions coming from
the charges in Tables 1 and 3 with x = −9, y = 2 and z = 5 enter in when 3 flavons and 1 driving
field are involved, for example

1

Λ
ρ0χφ2,

1

Λ
ψ0θωϕ. (56)

Notice that the first operator in the above equation exists for any integer value for x, y, and z, but
the latter does not. Further observe that in particular there are no additional renormalisable oper-
ators which are introduced. Thus, we shall assume that the above non-renormalisable operators
give a negligible contribution to the vacuum alignment, for example due to a heavier messenger
mass scale here than in the Yukawa sector.

4. Phenomenological predictions

In this section of the paper, we study the phenomenological implications of the complex mass
sum rule of Eqs. (14) and (40). Although this sum rule has been studied before in S4 and A4

flavour symmetry based models [27], this work was done in the era of a small reactor angle.
There has been some mass sum rule studies after the advent the measurement of a large value
for θ13 [28], but this work did not go into great detail for the inverse mass sum rule we have
generated in our model. Hence, we are motivated to perform our own analysis.

We begin the analysis of the phenomenological implications of the Golden Model by re-
expressing the complex mass sum rules of Eqs. (14) and (40) in terms of the physical neutrino
masses, |mi |, and Majorana phases, α2 and α3 (note the sign convention change on αi ):

1

|m1| + e−iα2

|m2| = e−iα3

|m3| (57)

where the superscripts “LO” and “NLO” have been dropped on mi . From the above formula, it
is easy to see that Eq. (57) implies that

1

|m1|2 = 1

|m2|2 + 1

|m3|2 − 2 cos�

|m2||m3| , (58)
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Fig. 1. Mass vs. cos(�) for the normal and inverted neutrino mass orderings.

where � = α2 −α3. With the realisation of this form, it becomes clear that together with the two
experimentally measured values of the neutrino mass squared differences �m2

21 and |�m2
23|,

where �m2
ij = |mi |2 − |mj |2, it is possible to numerically calculate the individual neutrino

masses for a specified value of �. The results of this analysis can be found in Fig. 1. The plot
of Fig. 1 was made using the central value mass squared differences of Ref. [10]. Using another
global fit or including a 3σ error band on the masses would produce negligible plot differences
or slightly thicker lines for the light neutrino masses, respectively. The former results from the
relatively small variance between the global fits’ values for the �m2

ij , and the latter results from
the 3σ deviation being not large enough to produce a noticeable difference on the plot when
considering the inverse mass sum rule, i.e. the same behaviour.

The plot of Fig. 1 contains many interesting features. The first of which is the discontinuity
at cos(�) ≈ 0.5. Namely, given the experimentally measured values for �m2

ij and the neutrino
sum rule from Eq. (58) no solution exists. The second interesting feature is that only normal
ordered neutrino masses can only exist below cos(�) ≈ 0.5, and inverted only above cos(�) ≈
0.5. This implies that varying � provides a transition between normal and inverted neutrino
mass orderings, the justification of why there is no solution for neutrino masses at cos(�) ≈
0.5.

The physical masses as a function of cos(�) serve as a stepping stone for numerically calcu-
lating the values of ξ , δ, and |β| (cf. Eq. (15)) for a fixed value of cos(�). To correctly calculate
these parameters to NLO, it is necessary to use the NLO masses of Eq. (39). However, notice
that these masses include an additional complex parameter ε = |ε|eiθε . We find |ε| by demanding
that the TB deviation parameter r (cf. Eq. (36)) matches the corresponding value derived from
the central value of the reactor angle given in Ref. [10], i.e. r = 0.22. Then, |ε| may be solved for
as a function of the ξ , δ, |β| parameters and removed from the NLO masses of Eq. (39) leaving 4
unknown real parameters. θε can be eliminated by minimising and maximising the masses with
respect to θε . After this, the maximised and minimised NLO masses may be expressed in terms of
only ξ , δ, and |β|. Setting these analytic forms for the maximised and minimised NLO neutrino
masses equal to their corresponding values found in Fig. 1 reveals the values of the parameters ξ ,
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Fig. 2. s vs. cos(�) for fixed r = 0.22: The region between the red lines represents the possible values the s parameter
can take for normal ordered neutrino masses, and the region between the light blue lines represents the possible values
for the inverted ordering. The thickness of the lines takes into account the 1σ ranges for the �m2

ij
used in producing the

plot, and the grey area represents the experimentally allowed 1σ range from Eq. (3). The LO Golden Ratio prediction is
given by the dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

δ, and |β| as a function of cos(�).8 Notice that the parameters entering in the masses also appear
in the analytic forms of the corrected mixing matrix elements, cf. Eqs. (21)–(33). Therefore, it
is possible to numerically calculate the elements of the PMNS matrix and find the TB deviation
parameters s and a of Eqs. (37)–(38) as a function of cos(�).

4.1. NLO corrections to s and a

In this section, we report the results obtained from using the previously discussed method
for determining |ε|, |β|, ξ , and δ to calculate the TB deviation parameters s and a to NLO.
Notice that in the definitions of a and s in Eqs. (37)–(38), the unknown Majorana phases α2
and α3 appear. s and a are minimised and maximised with respect to these phases to remove
their dependence on them. Then, the calculation of how the s and a parameters vary as a
function of cos(�) is straightforward. The plots resulting from parameter scans ranging over
values of cos(�) ∈ [−1,1] for the s and a parameters can be found in Figs. 2 and 3, respec-
tively.

The plots in Figs. 2 and 3 show some interesting features. The first feature to notice is that the
LO GR prediction is contained in the allowed region predicted by the NLO Golden Model. This

is due to the fact that if �U12e
−i

α2
2 and �U23e

−i
α3
2 are purely imaginary then the corrections

to s and a vanish, respectively, as can be seen from Eqs. (37)–(38). The second slightly more
interesting feature to notice is that the at cos(�) = 0.5 there exists no solution, a relic of the mass
vs. cos(�) analysis.9 Yet, the most intriguing result of this analysis is that the values for s and a

8 Numerical instabilities in some of the solutions for the ξ , δ, and |β| results of the minimised NLO neutrino masses
urged us to use the maximised results in our analysis. Although, the stable results show little difference between the two
cases.

9 It should be noted that in the graph of a vs. cos(�), the value of a in the inverted hierarchy takes larger values which
begin to break down the r , s, a, perturbative expansion for the PMNS matrix in a.



I.K. Cooper et al. / Nuclear Physics B 875 (2013) 650–677 667
Fig. 3. a vs. cos(�) for fixed r = 0.22: The region between the red lines represents the possible values the “a” parameter
can take for the normal ordered neutrino masses, and the region between the light blue lines represents the possible values
for the inverted ordering. The thickness of the lines takes into account the 1σ ranges for the �m2

ij
used in producing the

plot, and the grey area represents the experimentally allowed 1σ range from Eq. (3). The LO Golden Ratio prediction is
given by the dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

can actually lie within the 1σ band of Eq. (3). Clearly, the NLO corrections provide the needed
adjustment to the Golden Model’s problematic LO predictions of r = a = 0 and s = −0.09, by
allowing them to be shifted to agree with current experimental bounds.

Having calculated the allowed ranges which s and a can take (as a function of cos(�)),
there still exists another plot which needs to be generated to further probe the predictions of
the Golden Model, a vs. s. The plot of a vs. s will further restrict our parameter space of
the Golden Model through the correlation of a and s. The method for generating this plot is
straightforward because all relevant parameters are known with the exception of the Majorana
phases, α2 and α3, and the phase of ε, θε . Unfortunately � = α2 − α3 does not enter in either
of the forms of the a or s parameters in Eqs. (37)–(38), so the method of taking the maxi-
mum and minimum values cannot be used here because we want a value of a for each s. Thus,
it is necessary to introduce another parameter Σ = α2 + α3, so that the parameter � may be
utilised when analysing how s and a vary with each other. Doing this enables α2 and α3 to
be re-expressed as α2 = 1/2(� + Σ) and α3 = 1/2(Σ − �). Since all parameters are known
for each value of �, all that is left unknown is Σ and θε . Generating random values for Σ ,
θε ∈ [0,2π ], while keeping the consistency of the definition of the Majorana phases, yields the
plot found in Fig. 4. As can be seen, this plot further constrains the parameter space of the
Golden Model, as it contains a subset of the values displayed in the plots of Figs. 2 and 3,
through the correlation of a and s. Yet even though the correlation of a and s further reduces
the Golden Model’s parameter space, the experimentally determined values for a and s can be
still accommodated by the Golden Model, providing consistent phenomenological predictions
which are able to match the bounds of Eq. (3). However, to further analyse the phenomenology
of this model, we next consider the Golden Model’s predictions for neutrinoless double beta
decay.



668 I.K. Cooper et al. / Nuclear Physics B 875 (2013) 650–677
Fig. 4. a vs. s for fixed r = 0.22: Purple represents predictions from normally ordered neutrino masses and the light blue
points from inverted neutrino masses. The purple region is also where they overlap. The black rectangle designates the
allowed 1σ region of Eq. (3) and the black cross is the LO Golden Ratio prediction. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. mββ vs. cos(�): The red region corresponds to the values that mββ can take in the normal neutrino mass ordering,
the light blue region corresponds in the inverted ordering, and the grey region is the experimental range of upper bounds
that mββ can take from EXO-200 [29]. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

4.2. Neutrinoless double beta decay

From the plots in Figs. 2 and 3, it is seen that as the parameter � varies, a transition be-
tween normal ordered and inverted ordered neutrino masses occurs. Therefore, it is interesting to
analyse the behaviour of the effective Majorana mass parameter, mββ , as a function of cos(�),
where

mββ = ∣∣|m1|U2
11 + |m2|U2

12e
−iα2 + |m3|U2

13e
−iα3

∣∣. (59)

Notice that in Eq. (59), Uij represent the entries of the PMNS matrix without Majorana phases.
This analysis is preformed by utilising the previously discussed parameters � = α2 − α3 and
Σ = α2 + α3, so that Eq. (59) may be re-expressed in terms of Σ and �, instead of α2 and α3.
Then, it is possible to invoke the work from previous sections to numerically generate a plot
revealing how mββ changes as cos(�) varies. The results from this analysis can be found in
Fig. 5. Notice that (as postulated), cos(�) “disentangles” degenerate neutrino orderings, as can
be seen from the transition at cos(�) = 0.5. Also, the results are consistent with the experimental
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Fig. 6. mββ vs. mlightest : The red and light red regions represent the model independent values that the inverted neutrino
mass ordering can take based on the central value and 1σ deviation of Ref. [10], respectively. The blue and light blue
regions are the analogue of this for the normal neutrino mass ordering. The gold regions correspond to the Golden
Model’s prediction for mββ in both the normal and inverted orderings. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

upper bounds on mββ reported by EXO-200 [29]. Yet the most important conclusion one can
draw from Fig. 5 is that the Golden Model is testable in the near future. Due to the neutrino mass
sum rule of Eqs. (14) and (40), the normal neutrino mass ordering’s prediction for mββ cannot
be arbitrarily small. Hence, the model has the capability of being tested by the next generation
of neutrinoless double beta decay experiments.

We continue the analysis of the Golden Model’s phenomenology by constructing, mββ vs.
mlightest. This is possible to do since the neutrino masses and mββ are known for each value of
cos(�). Thus, it is straightforward to find the maximum and minimum values of mββ as well as
the value of the lightest neutrino mass (i.e. m1 in the normal ordering and m3 in the inverted or-
dering) for each value of cos(�). These results can then be combined to produce the gold regions
of the plot found in Fig. 6. The plot in Fig. 6 also contains blue and red regions corresponding to
the normal and inverted neutrino mass orderings if there was no neutrino mass sum rule. The dif-
ferent shades of the blue and red regions correspond to the different ranges obtained when taking
into account the best fit and 1σ deviations away from the best fit.10 It should be clear from Fig. 6
that the Golden Model’s inverse mass sum rule severely restricts the allowed values that mββ can
take, leading to a lower bound of mlightest � 0.01 eV and mββ � 0.005 eV for the normal mass
ordering, with the mass spectrum extending into the quasi-degenerate region. As previously dis-
cussed, this allows the Golden Model to be tested by near future neutrinoless double beta decay
experiments.

Before concluding, we comment on the absence of the Dirac CP violating phase in the pre-
ceding discussion. Since we are working within the standard PDG parametrisation of the PMNS
matrix, it can be seen that the last term in Eq. (59) involves both the Dirac phase and a Majo-
rana phase. In the plots we have considered this term to be described by only one independent
phase. Hence, the neutrinoless double beta decay plots do not depend on the value of the Dirac
CP phase in our approach. However we also briefly mention that the Golden Model is consistent
with a Jarlskog Invariant of J = Im(U11U33U

∗
13U

∗
31) ≈ 0.05 sin(δ).

10 It is important to note that in order to generate the model independent case of Fig. 6, we have used the code developed
in Ref. [30] with the global fit values of Ref. [10].
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5. Conclusions

The Golden Ratio mixing prediction of a zero reactor angle means that this model, along
with other simple schemes such as TB mixing, is no longer viable. Similarly, there is increas-
ing evidence that the atmospheric angle lies in the first octant, and so the prediction of maximal
atmospheric mixing, also shared by TB mixing, is also disfavoured. However, while the TB
prediction for the solar angle remains viable, the Golden Ratio solar angle prediction is also
disfavoured. This provides a motivation for considering the Golden Ratio predictions at NLO.
Unlike the case of TB mixing, however, where the LO solar angle prediction is viable, and
so one may preserve a subgroup of the Klein symmetry, in the case of the Golden Ratio pre-
dictions there is a strong motivation to completely break the original Klein symmetry at the
NLO.

In this paper we have proposed a new A5 model of leptons which corrects the LO predic-
tions of Golden Ratio mixing via a minimal NLO Majorana mass correction which completely
breaks the original Klein symmetry of the neutrino mass matrix. The minimal nature of the NLO
correction leads to a restricted and correlated range of the mixing angles allowing agreement
within the one sigma range of recent global fits. Yet even though the Golden Model cannot pre-
dict the sign of the correction to the solar and atmospheric mixing angles, agreement with recent
global fits can be reached in a specific region of parameter space allowed by the model. Re-
markably, the minimal NLO correction also preserves the LO inverse neutrino mass sum rule,
implying a neutrino mass spectrum which extends into the quasi-degenerate region, allowing
the model to be accessible to the current and future neutrinoless double beta decay experi-
ments.
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Appendix A. The group theory of A5

A5 is a simple group.11 By definition, it is the group of all even permutations of a set of five
elements. As such, it has 5!/2 = 60 elements. In fact, it can be shown to be isomorphic to the
Icosahedral Symmetry Group, I , the group of all rotations of an icosahedron which preserve
the icosahedron’s orientation. This isomorphism turns out to be insightful when considering the
conjugacy classes of A5 ∼= I , as one can express the conjugacy classes in terms of Schoenflies
notation where they are denoted by Ck

n and represent rotations by 2πk
n

. With the further definition
that the number in front of Ck

n is the number of elements contained in a conjugacy class, the con-
jugacy classes of A5 can be written as: I (the conjugacy class consisting solely of the identity),
15C1

2 , 20C1
3 , 12C1

5 and 12C2
5 . Using these conjugacy classes and the theorems that posit that the

11 A5 contains no nontrivial normal subgroups.
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Table 4
The S, T , and U elements of A5 for the 1-, 3-, 3′-, 4-, and 5-dimensional irreducible representations in which ρ = e2πi/5

and φg = (1 + √
5)/2 is the Golden Ratio.

S T U

1: 1 1 1

3: 1√
5

⎛
⎜⎝

1 −√
2 −√

2
−√

2 −φg
1
φg

−√
2 1

φg
−φg

⎞
⎟⎠

⎛
⎝1 0 0

0 ρ 0
0 0 ρ4

⎞
⎠

⎛
⎝−1 0 0

0 0 −1
0 −1 0

⎞
⎠

3′: 1√
5

⎛
⎜⎝

−1
√

2
√

2√
2 − 1

φg
φg√

2 φg − 1
φg

⎞
⎟⎠

⎛
⎝1 0 0

0 ρ2 0
0 0 ρ3

⎞
⎠

⎛
⎝−1 0 0

0 0 −1
0 −1 0

⎞
⎠

4: 1√
5

⎛
⎜⎜⎜⎜⎝

1 1
φg

φg −1
1
φg

−1 1 φg

φg 1 −1 1
φg

−1 φg
1
φg

1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

ρ 0 0 0
0 ρ2 0 0
0 0 ρ3 0
0 0 0 ρ4

⎞
⎟⎠

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠

5: 1
5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
√

6
√

6
√

6
√

6√
6 1

φ2
g

−2φg
2
φg

φ2
g

√
6 −2φg φ2

g
1
φ2
g

2
φg√

6 2
φg

1
φ2
g

φ2
g −2φg

√
6 φ2

g
2
φg

−2φg
1
φ2
g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 ρ 0 0 0
0 0 ρ2 0 0
0 0 0 ρ3 0
0 0 0 0 ρ4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎠

number of elements of a group is equal to the sum of the squares of the dimensions of the irre-
ducible representations and that the number of irreducible representations of a group is equal to
the number of conjugacy classes, it is easy to see that A5 has a one-dimensional irreducible repre-
sentation (1), two three-dimensional irreducible representations (3 and 3′), one four-dimensional
representation (4), and one five-dimensional irreducible representation (5) because

1 + 15 + 20 + 12 + 12 = 60 = 12 + 32 + 32 + 42 + 52. (A.1)

Yet in order to do anything physically useful with these five irreducible representations, an ex-
plicit matrix representation for each irreducible representation of A5 must be calculated/found.
To do this it is helpful to find a set of generators and rules defining their multiplication (i.e. a
presentation) which generate A5. We choose to work in the basis given in Ref. [20] in which A5

is generated by two generators, S and T , satisfying the presentation rules

S2 = T 5 = (ST)3 = 1. (A.2)

The explicit forms of S and T can be found in Ref. [20]. For completeness, we choose to list
them again here along with another element of A5, U = T 3ST 2ST 3S. Notice that the S and U

elements generate a ZS
2 × ZU

2 Klein subgroup of A5. Recall that in Section 2.3 of this work,
spontaneously breaking A5 to this Klein subgroup (in the neutrino sector) was used to generate
Golden Ratio mixing. The explicit forms of S, T and U for each irreducible representation can
be found in Table 4.
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Table 5
The invariant VEV alignments for one and only one of the S, T , and U elements. The wi and vi represent components
of the 4- and 5-dimensional flavon VEVs left unspecified by S and U , respectively. Notice that there exists no nontrivial
VEV invariant under the action of T4.

S T U

3

⎛
⎜⎝

1
− 1√

2φg

− 1√
2φg

⎞
⎟⎠

⎛
⎝1

0
0

⎞
⎠

⎛
⎝ 0

1
−1

⎞
⎠

3′
⎛
⎜⎝

1
φg√

2
φg√

2

⎞
⎟⎠

⎛
⎝1

0
0

⎞
⎠

⎛
⎝ 0

1
−1

⎞
⎠

4

⎛
⎜⎝

w3φ2
g − w2φg

w2
w3

w2φ2
g − w3φg

⎞
⎟⎠ –

⎛
⎜⎝

w1
w2
w2
w1

⎞
⎟⎠

5

⎛
⎜⎜⎜⎜⎜⎝

v4√
6φ2

g
+ v3φg√

6
+

√
2
3 v2

v2
v3
v4

v3
φg

− v4
φg

+ v2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

v1
v2
v3
v3
v2

⎞
⎟⎟⎟⎠

Each of the elements in Table 4 will leave invariant a different flavon VEV alignment (up
to proportionality), i.e. G〈φ〉 = 〈φ〉 where G = S,T or U and 〈φ〉 is the VEV of a flavon field
preserved by the action of the group element G. These alignments are crucial when considering
the spontaneous breaking of A5 to ZS

2 × ZU
2 , as having flavons develop VEVs invariant under

the action of the S and U preserves the Klein subgroup. A listing of these “invariant” alignments
is given in Table 5.

Notice that if both S and U generators are unbroken, such that the Klein symmetry exists
at low energies, then the only nontrivial alignments that exist are for the 4- and 5-dimensional
irreducible representations. The VEV which preserves both S4 and U4 is given by⎛

⎜⎝
1
1
1
1

⎞
⎟⎠ , (A.3)

whereas the VEV which preserves S5 and U5 is given by⎛
⎜⎜⎜⎜⎝

√
2
3 (v2 + v3)

v2
v3
v3
v2

⎞
⎟⎟⎟⎟⎠ . (A.4)

Recall that the five-dimensional VEV given above was crucial in constructing the LO Golden
Model of Section 2.3. In addition to constructing these invariant VEVs the S and T elements/gen-
erators can also be used to calculate the Clebsch–Gordan coefficients associated with the partic-
ular irreducible representations of A5. This is the goal of the remainder of this appendix.
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A.1. The Kronecker products and Clebsch–Gordan coefficients of A5

From the matrix representations of the S and T elements/generators of A5 given in the
previous section, it is straightforward to calculate the Clebsch–Gordan coefficients for the de-
composition of the product representations, which we now list for this basis in detail. We use ai

to denote the elements of the first representation, bi to indicate those of the second representation
of the product, and the subscripts “a” and “s” to indicate a representation which is antisymmetric
or symmetric, respectively.

3 ⊗ 3 = 1s ⊕ 3a ⊕ 5s 3′ ⊗ 3′ = 1s ⊕ 3′
a ⊕ 5s

1s ∼ a1b1 + a2b3 + a3b2 1s ∼ a1b1 + a2b3 + a3b2

3a ∼
⎛
⎝ a2b3 − a3b2

a1b2 − a2b1
a3b1 − a1b3

⎞
⎠ 3′

a ∼
⎛
⎝ a2b3 − a3b2

a1b2 − a2b1
a3b1 − a1b3

⎞
⎠

5s ∼

⎛
⎜⎜⎜⎜⎝

2a1b1 − a2b3 − a3b2
−√

3a1b2 − √
3a2b1√

6a2b2√
6a3b3

−√
3a1b3 − √

3a3b1

⎞
⎟⎟⎟⎟⎠ 5s ∼

⎛
⎜⎜⎜⎜⎝

2a1b1 − a2b3 − a3b2√
6a3b3

−√
3a1b2 − √

3a2b1
−√

3a1b3 − √
3a3b1√

6a2b2

⎞
⎟⎟⎟⎟⎠

3 ⊗ 3′ = 4 ⊕ 5

4 ∼

⎛
⎜⎜⎝

√
2a2b1 + a3b2

−√
2a1b2 − a3b3

−√
2a1b3 − a2b2√

2a3b1 + a2b3

⎞
⎟⎟⎠ 5 ∼

⎛
⎜⎜⎜⎜⎝

√
3a1b1

a2b1 − √
2a3b2

a1b2 − √
2a3b3

a1b3 − √
2a2b2

a3b1 − √
2a2b3

⎞
⎟⎟⎟⎟⎠

3 ⊗ 4 = 3′ ⊕ 4 ⊕ 5 3′ ⊗ 4 = 3 ⊕ 4 ⊕ 5

3′ ∼
⎛
⎝ −√

2a2b4 − √
2a3b1√

2a1b2 − a2b1 + a3b3√
2a1b3 + a2b2 − a3b4

⎞
⎠ 3 ∼

⎛
⎝ −√

2a2b3 − √
2a3b2√

2a1b1 + a2b4 − a3b3√
2a1b4 − a2b2 + a3b1

⎞
⎠

4 ∼

⎛
⎜⎜⎝

a1b1 − √
2a3b2

−a1b2 − √
2a2b1

a1b3 + √
2a3b4

−a1b4 + √
2a2b3

⎞
⎟⎟⎠ 4 ∼

⎛
⎜⎜⎝

a1b1 + √
2a3b3

a1b2 − √
2a3b4

−a1b3 + √
2a2b1

−a1b4 − √
2a2b2

⎞
⎟⎟⎠

5 ∼

⎛
⎜⎜⎜⎜⎝

√
6a2b4 − √

6a3b1
2
√

2a1b1 + 2a3b2
−√

2a1b2 + a2b1 + 3a3b3√
2a1b3 − 3a2b2 − a3b4
−2

√
2a1b4 − 2a2b3

⎞
⎟⎟⎟⎟⎠ 5 ∼

⎛
⎜⎜⎜⎜⎝

√
6a2b3 − √

6a3b2√
2a1b1 − 3a2b4 − a3b3
2
√

2a1b2 + 2a3b4
−2

√
2a1b3 − 2a2b1

−√
2a1b4 + a2b2 + 3a3b1

⎞
⎟⎟⎟⎟⎠
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3 ⊗ 5 = 3 ⊕ 3′ ⊕ 4 ⊕ 5 3′ ⊗ 5 = 3 ⊕ 3′ ⊕ 4 ⊕ 5

3 ∼
⎛
⎝ −2a1b1 + √

3a2b5 + √
3a3b2√

3a1b2 + a2b1 − √
6a3b3√

3a1b5 − √
6a2b4 + a3b1

⎞
⎠ 3 ∼

⎛
⎝

√
3a1b1 + a2b4 + a3b3

a1b2 − √
2a2b5 − √

2a3b4
a1b5 − √

2a2b3 − √
2a3b2

⎞
⎠

3′ ∼
⎛
⎝

√
3a1b1 + a2b5 + a3b2

a1b3 − √
2a2b2 − √

2a3b4
a1b4 − √

2a2b3 − √
2a3b5

⎞
⎠ 3′ ∼

⎛
⎝ −2a1b1 + √

3a2b4 + √
3a3b3√

3a1b3 + a2b1 − √
6a3b5√

3a1b4 − √
6a2b2 + a3b1

⎞
⎠

4 ∼

⎛
⎜⎜⎝

2
√

2a1b2 − √
6a2b1 + a3b3

−√
2a1b3 + 2a2b2 − 3a3b4√

2a1b4 + 3a2b3 − 2a3b5
−2

√
2a1b5 − a2b4 + √

6a3b1

⎞
⎟⎟⎠ 4 ∼

⎛
⎜⎜⎝

√
2a1b2 + 3a2b5 − 2a3b4

2
√

2a1b3 − √
6a2b1 + a3b5

−2
√

2a1b4 − a2b2 + √
6a3b1

−√
2a1b5 + 2a2b3 − 3a3b2

⎞
⎟⎟⎠

5 ∼

⎛
⎜⎜⎜⎜⎝

√
3a2b5 − √

3a3b2
−a1b2 − √

3a2b1 − √
2a3b3

−2a1b3 − √
2a2b2

2a1b4 + √
2a3b5

a1b5 + √
2a2b4 + √

3a3b1

⎞
⎟⎟⎟⎟⎠ 5 ∼

⎛
⎜⎜⎜⎜⎝

√
3a2b4 − √

3a3b3
2a1b2 + √

2a3b4
−a1b3 − √

3a2b1 − √
2a3b5

a1b4 + √
2a2b2 + √

3a3b1
−2a1b5 − √

2a2b3

⎞
⎟⎟⎟⎟⎠

4 ⊗ 4 = 1s ⊕ 3a ⊕ 3′
a ⊕ 4s ⊕ 5s 4 ⊗ 5 = 3 ⊕ 3′ ⊕ 4 ⊕ 51 ⊕ 52

1s ∼ a1b4 + a2b3 + a3b2 + a4b1 3 ∼
⎛
⎝ 2

√
2a1b5 − √

2a2b4 + √
2a3b3 − 2

√
2a4b2

−√
6a1b1 + 2a2b5 + 3a3b4 − a4b3

a1b4 − 3a2b3 − 2a3b2 + √
6a4b1

⎞
⎠

3a ∼
⎛
⎝ −a1b4 + a2b3 − a3b2 + a4b1√

2a2b4 − √
2a4b2√

2a1b3 − √
2a3b1

⎞
⎠ 3′ ∼

⎛
⎝

√
2a1b5 + 2

√
2a2b4 − 2

√
2a3b3 − √

2a4b2
3a1b2 − √

6a2b1 − a3b5 + 2a4b4
−2a1b3 + a2b2 + √

6a3b1 − 3a4b5

⎞
⎠

3′
a ∼

⎛
⎝ a1b4 + a2b3 − a3b2 − a4b1√

2a3b4 − √
2a4b3√

2a1b2 − √
2a2b1

⎞
⎠ 4 ∼

⎛
⎜⎜⎝

√
3a1b1 − √

2a2b5 + √
2a3b4 − 2

√
2a4b3

−√
2a1b2 − √

3a2b1 + 2
√

2a3b5 + √
2a4b4√

2a1b3 + 2
√

2a2b2 − √
3a3b1 − √

2a4b5
−2

√
2a1b4 + √

2a2b3 − √
2a3b2 + √

3a4b1

⎞
⎟⎟⎠

4s ∼

⎛
⎜⎜⎝

a2b4 + a3b3 + a4b2
a1b1 + a3b4 + a4b3
a1b2 + a2b1 + a4b4
a1b3 + a2b2 + a3b1

⎞
⎟⎟⎠ 51 ∼

⎛
⎜⎜⎜⎜⎝

√
2a1b5 − √

2a2b4 − √
2a3b3 + √

2a4b2
−√

2a1b1 − √
3a3b4 − √

3a4b3√
3a1b2 + √

2a2b1 + √
3a3b5√

3a2b2 + √
2a3b1 + √

3a4b5
−√

3a1b4 − √
3a2b3 − √

2a4b1

⎞
⎟⎟⎟⎟⎠

5s ∼

⎛
⎜⎜⎜⎜⎝

√
3a1b4 − √

3a2b3 − √
3a3b2 + √

3a4b1
−√

2a2b4 + 2
√

2a3b3 − √
2a4b2

−2
√

2a1b1 + √
2a3b4 + √

2a4b3√
2a1b2 + √

2a2b1 − 2
√

2a4b4
−√

2a1b3 + 2
√

2a2b2 − √
2a3b1

⎞
⎟⎟⎟⎟⎠ 52 ∼

⎛
⎜⎜⎜⎜⎝

2a1b5 + 4a2b4 + 4a3b3 + 2a4b2
4a1b1 + 2

√
6a2b5

−√
6a1b2 + 2a2b1 − √

6a3b5 + 2
√

6a4b4
2
√

6a1b3 − √
6a2b2 + 2a3b1 − √

6a4b5
2
√

6a3b2 + 4a4b1

⎞
⎟⎟⎟⎟⎠
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5 ⊗ 5 = 1s ⊕ 3a ⊕ 3′
a ⊕ 4s ⊕ 4a ⊕ 51,s ⊕ 52,s

1s ∼ a1b1 + a2b5 + a3b4 + a4b3 + a5b2

3a ∼
⎛
⎝ a2b5 + 2a3b4 − 2a4b3 − a5b2

−√
3a1b2 + √

3a2b1 + √
2a3b5 − √

2a5b3√
3a1b5 + √

2a2b4 − √
2a4b2 − √

3a5b1

⎞
⎠

3′
a ∼

⎛
⎝ 2a2b5 − a3b4 + a4b3 − 2a5b2√

3a1b3 − √
3a3b1 + √

2a4b5 − √
2a5b4

−√
3a1b4 + √

2a2b3 − √
2a3b2 + √

3a4b1

⎞
⎠

4s ∼

⎛
⎜⎜⎝

3
√

2a1b2 + 3
√

2a2b1 − √
3a3b5 + 4

√
3a4b4 − √

3a5b3
3
√

2a1b3 + 4
√

3a2b2 + 3
√

2a3b1 − √
3a4b5 − √

3a5b4
3
√

2a1b4 − √
3a2b3 − √

3a3b2 + 3
√

2a4b1 + 4
√

3a5b5
3
√

2a1b5 − √
3a2b4 + 4

√
3a3b3 − √

3a4b2 + 3
√

2a5b1

⎞
⎟⎟⎠

4a ∼

⎛
⎜⎜⎝

√
2a1b2 − √

2a2b1 + √
3a3b5 − √

3a5b3
−√

2a1b3 + √
2a3b1 + √

3a4b5 − √
3a5b4

−√
2a1b4 − √

3a2b3 + √
3a3b2 + √

2a4b1√
2a1b5 − √

3a2b4 + √
3a4b2 − √

2a5b1

⎞
⎟⎟⎠

51,s ∼

⎛
⎜⎜⎜⎜⎝

2a1b1 + a2b5 − 2a3b4 − 2a4b3 + a5b2
a1b2 + a2b1 + √

6a3b5 + √
6a5b3

−2a1b3 + √
6a2b2 − 2a3b1

−2a1b4 − 2a4b1 + √
6a5b5

a1b5 + √
6a2b4 + √

6a4b2 + a5b1

⎞
⎟⎟⎟⎟⎠

52,s ∼

⎛
⎜⎜⎜⎜⎝

2a1b1 − 2a2b5 + a3b4 + a4b3 − 2a5b2
−2a1b2 − 2a2b1 + √

6a4b4
a1b3 + a3b1 + √

6a4b5 + √
6a5b4

a1b4 + √
6a2b3 + √

6a3b2 + a4b1
−2a1b5 + √

6a3b3 − 2a5b1

⎞
⎟⎟⎟⎟⎠

Appendix B. Breaking the GR Klein symmetry

In this appendix we show that the assumed correction to the superpotential (cf. Eq. (16)),

�Wν = yA

Λ
(NN)1s(λλ)1s + yC

Λ

(
(NN)5s(λλ)5s

)
1s

, (B.1)

is sufficient to completely break the Klein symmetry associated with the unsuccessful LO Golden
ratio prediction. We begin by first noting that so long as a1 �= 0 and/or a2 �= −a3, a non-zero value
of θ13 will be obtained because a VEV proportional to (0,1,−1)T will be preserved by U3 (cf.
Table 5). Furthermore, by construction, any representation formed from the combination of two
triplet fields preserving U3 will preserve said representation’s corresponding U . For example, the
5 constructed from two λ fields where the ai are left arbitrary is
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〈
(λλ)5s

〉 ∼
⎛
⎜⎜⎜⎜⎝

2a2
1 − 2a2a3

−2
√

3a1a2√
6a2

2√
6a2

3
−2

√
3a1a3

⎞
⎟⎟⎟⎟⎠ . (B.2)

In the above result, the subscript “5s” on (λλ) denotes that we are selecting the 5s from the tensor
product 3 ⊗ 3 = 1s ⊕ 3a ⊕ 5s. From the form of U5 given in Table 4, it is clear to see that only
two solutions exist which leave U5 invariant (i.e. satisfy U5〈(λλ)5s〉 = 〈(λλ)5s〉):{

a1 = 0 and a2 = −a3,

a2 = a3 and a1 arbitrary.
(B.3)

From these two solutions, the latter may be interpreted as resulting from general invariance of
a VEV acted upon by U5 and the former existing because the 5s was constructed from two
3-dimensional irreducible representations. In either case, the assumed VEV of 〈λ〉 = (0,0, a3)

T

breaks U3 and the corresponding 〈(λλ)5s〉 breaks U5 providing a correction to the problematic
vanishing reactor mixing angle. Next, we turn to the invariance of 〈(λλ)5s〉 under the S generator.
From the form of S3 (cf. Table 4), it is straightforward to see a 〈λ〉 ∝ (−√

2φg,1,1)T is left
unchanged by the action of S3 (cf. Table 5). This, in turn, implies the conditions for the invariance
of a triplet VEV under the 3-dimensional S generator:

a1 = −√
2φga3 and a2 = a3. (B.4)

Then, acting S5 (cf. Table 4) on 〈(λλ)5〉 implies S5 is preserved by the 〈(λλ)5〉 VEVs constructed
from

〈λ〉 ∝
(−φg

√
2

1
1

)
,

(√
2(φg − 1)

1
1

)
,

(
φg

√
2

(2φg + 1)

−1

)
,

⎛
⎝

a3+1√
2φg

1
a3

⎞
⎠ . (B.5)

Notice that the first two solutions preserve S3 and S3′ , respectively. The final two alignments
preserve S5 (when it acts on their corresponding 〈(λλ)5〉 contraction). From these S-preserving
alignments it is easy to see 〈λ〉 = (0,0, a3)

T will also break the S generator. Furthermore, it is
interesting to see that, as noted in Ref. [20], it is impossible to preserve both S3 and U3 simul-
taneously by any VEV given to a flavon field transforming under the 3-dimensional irreducible
representation. However, this is exactly what is needed to correct the problematic predictions of
LO golden ratio mixing given in Eq. (4).
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