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We introduce a simple and general XML format for spin system description that is the result of extensive
consultations within Magnetic Resonance community and unifies under one roof all major existing spin
interaction specification conventions. The format is human-readable, easy to edit and easy to parse using
standard XML libraries. We also describe a graphical user interface that was designed to facilitate
construction and visualization of complicated spin systems. The interface is capable of generating input
files for several popular spin dynamics simulation packages.
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1. Introduction does not attempt to introduce or change any of the current interac-
The task of setting up a complicated spin system for a solid state
NMR or EPR simulation is a noted test of perseverance: an aspiring
theorist would find himself juggling nested time-dependent tensor
rotations in half a dozen ad hoc conventions [1–7], struggling with
Euler angle singularities [8–10] and trying to visualize interactions
that occur in direct products of Lie algebras [11,12]. Function
libraries [13–17], command-line [14–17] and interactive [18]
simulation tools for spin systems are available, but convenient
point-and-click visualization and editing tools for setting up
complex calculations are in their infancy. More importantly, no
standards exist (whether by ISO, IUPAC or even a consensus) on
a universal spin system description format that would be applica-
ble across all types of Magnetic Resonance spectroscopy – every
major simulation package has its own spin system specification
requirements. Of the existing formats, the Pople convention [19]
only deals with NMR and the latest IUPAC recommendations only
go as far as listing reasonable chemical shift and shielding tensor
reporting styles [4,7]. At the time of writing, the task of setting
up a complicated spin system for simulation still amounts to man-
ual parsing of unintuitive conventions and hand-coding of the
associated tensor transformations.

In this communication, we suggest a simple and general XML
[20,21] format for spin system description that is the result of
broad consultations within NMR and EPR communities. The format
tion specification conventions [1–4,6,7,21–26], but instead
incorporates them as special cases and options into a common
framework. SpinXML format is human-readable, extensible and
easy to edit, both manually and automatically. We also describe
a graphical user interface that was designed to facilitate the setting
up of complicated spin systems and is capable of importing inter-
action data from electronic structure theory programs as well as
producing input files for spin dynamics simulation packages.

2. SpinXML data format version 1.0

This section describes elements, types and attributes specified
by the SpinXML schema file that is included into the Supplementary
Information and available for download from the Spinach library
website (http://spindynamics.org). An XML schema is a general
description of an XML document, containing additional constraints
on the structure and content of that document beyond those im-
posed by the syntax of XML itself [20,21]. XML has been used for
a while in other areas of NMR – Agilent’s VNMRJ package employs
it for window layout description and an XML specification was
recently proposed for phase cycles [22].

A graphical representation of the SpinXML schema is given in
Fig. 1. At the bottom of the SpinXML complex type (CT) hierarchy
are objects intended to formalize the description of spin interac-
tion tensors – for each interaction, amplitude and orientation
information should be given. Vector and matrix complex types
are not native in XML and are therefore specified explicitly as
collections of double-precision real numbers. One level up, the first
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Fig. 1. A visual representation of the SpinXML format schema. The four fundamental complex types, described in detail in the main text, are vector, matrix, rotation and
interaction_term. The spin_system XML element contains an arbitrary number of spin sub-elements and an arbitrary number of interaction sub-elements, each of
which must conform to the interaction_term complex type. Dashed lines indicate optional attributes. An example of the XML specification conforming to this schema is
given in Fig. 2. The schema file is included in the Supplementary Information.
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physically significant complex type in the SpinXML hierarchy is
orientation – a property of anisotropic spin interactions that
makes use of the vector and matrix CTs. Four different ways of
specifying orientation are supported (Fig. 1, top right corner),
corresponding to the four most popular rotation conventions in
Magnetic Resonance – Euler angles [23] (in degrees), angle-axis
[24] (angle in degrees, unit norm vector), unit quaternion [25]
and direction cosine matrix (DCM) [26]. Euler angles and quater-
nion specifications are simple lists of the corresponding numerical
parameters, whereas DCM invokes an instance of the above men-
tioned matrix CT and angle-axis parameterization makes use of
the vector CT for the rotation axis vector. The SWITCH bar that
connects the four specifications indicates that only one of the four
options may be invoked in each instance of the rotation CT. At
the level of the software package making use of SpinXML, the par-
ser function should be able to interpret all four rotation conven-
tions and should be able to write at least one – from our
experience working with rotation specifications in Magnetic
Resonance context, we strongly recommend DCM as the default
convention. SpinXML makes no attempt to rectify the well-docu-
mented ambiguities inherent in Euler angles [10], it only serves
as a container.

At the next level in the complex type hierarchy shown in Fig. 1,
SpinXML formalizes the three general styles of spin interaction
specification that are encountered in the daily practice of Magnetic
Resonance spectroscopy – a scalar (isotropic interaction not requir-
ing orientation specification), a 3 � 3 matrix (anisotropic interac-
tion with orientation information already contained in the
matrix) and [eigenvalue data] + [orientation data] pair. The three
styles are related by a SWITCH bar (Fig. 1 upper left corner). The
scalar specification simply requires a double, and the matrix
specification an instance of the matrix CT. The [eigenvalue
data] + [orientation data] style includes an instance of the above
mentioned rotation CT for the orientation information and offers
the four commonly encountered ways of specifying eigenvalues:
either by listing them explicitly (current IUPAC recommendation
[4,7]), or by listing isotropic part, anisotropy and asymmetry [27],
or isotropic part, axiality and rhombicity [2,3,28], or isotropic part,
span and skew [3,29]. The mandatory attributes of the interac-

tion_term CT include interaction kind (strictly from one of the fol-
lowing: shielding, shift, gtensor, hfc, quadrupolar,
exchange, jcoupling, dipolar, spinrotation, zfs), interac-
tion identifier (an integer), physical units and the identifier of at
least one spin to which the interaction relates. The second spin
(for binary interactions) and a text label are optional.

We will not discuss here the relative merits of the different
styles of specifying eigenvalues – they have a long history [1–
4,6,7,21–26] and a proper unification of the existing conventions
is only possible in a format that includes all of them as options.
This puts some strain on the software developer (a SpinXML parser
should be able to interpret all conventions listed in Fig. 1), but
makes life easier for the end user. When an instance of SpinXML
is being written rather than parsed, we would join IUPAC [4,7] in
recommending the 3 � 3 matrix style for spin interaction tensor
specification.

As a matter of practical safety, we would not recommend specify-
ing dipolar interactions as 3 � 3 interaction matrices or [eigenvalue
data] + [orientation data] pairs: there are quite a few papers in Mag-
netic Resonance literature where the listed dipole–dipole coupling
constants or matrices do not correspond to a physically possible
arrangement of particles in 3D space. We recommend recording in-
ter-nuclear and inter-electron dipolar couplings by specifying parti-
cle coordinates. Electron–nuclear dipolar couplings should be
supplied as anisotropic hyperfine interactions that naturally incor-
porate the case of an electron–nucleus pair with a delocalized elec-
tron. The case of two spatially proximate delocalized electrons is
covered by exchange and zero-field splitting. If the above does not
apply and dipole–dipole couplings still have to be specified as effec-
tive spin interactions (this may be necessary in strongly non-Born–
Oppenheimer systems where nuclei are delocalized), care should
be taken to ensure that the numbers provided are consistent with
a physically possible set of particle coordinates.
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Another problematic area is the difference between chemical
shielding and chemical shift, and the associated debate [1–3]
about the definition of span and skew parameters – electronic
structure theory calculations report absolute nuclear shielding
defined in terms of molecular energy derivatives [3], whereas
experimental data is reported as fractional frequency shifts relative
to a specific substance [2]. To prevent any misunderstanding Spin-
XML includes two types of nuclear Zeeman interaction terms:
‘shielding’ and ‘shift’, as well as reference attribute in
the interaction_term complex type, which is a character string
that should contain the name of the reference substance. We recom-
mend the definitions of span and skew given in the Maryland
Consortium paper [1], including the subtle difference illustrated
therein between the definition of tensor span for shielding and shift
tensors. That having been said, although span and skew are
provided as specification conventions in SpinXML, we would also
support IUPAC [4,7] in discouraging their use – whenever possible,
both chemical shift and chemical shielding should be specified
using 3 � 3 interaction matrices that leave no room for ambiguity.

At the top level of the SpinXML format hierarchy, the
spin_system element (Fig. 1, bottom middle) contains an
arbitrary number of spin and interaction elements. Each spin
Fig. 2. An example of a SpinXML file for the spin system of 13C-labelled formaldehyde. At
GIAO DFT M06/cc-pVTZ calculation in Gaussian09 [31].
element has an integer id, an isotope identification string and an
optional set of Cartesian coordinates. The interaction elements
conform to the interaction_term complex type described in the
previous paragraphs. An example of SpinXML specification for the
spin system of 13C-labelled formaldehyde given in Fig. 2 illustrates
the format structure. Because of its similarity to HTML (which is
actually a subset of XML), SpinXML syntax appears similar to a
web page specification. This self-documenting property of XML
[20,21] is useful because edits can be made without consulting
format documentation.

Note that the isotope specification is not limited to magnetic
isotopes – retaining oxygen atoms as 16O in particular is often use-
ful in visualizations because it puts magnetic interaction schemat-
ics into a general chemical context.

3. Graphical user interface

A much needed stage in the spin system simulation setup process
is interaction visualization. Ellipsoid plots [27,28] and spherical har-
monic representations [11] of second rank tensors have been around
for a while, and visualization tools dealing with subsets of spin inter-
actions (e.g. Simmol [30]) are available, but a general interactive 3D
omic coordinates, chemical shielding tensors and J-couplings were imported from a
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GUI that would be applicable to both NMR and EPR, and be capable
of exporting input files for spin dynamics simulation packages, par-
ticularly in EPR spectroscopy, has so far been missing.

Spinach GUI (designed primarily to accompany our Spinach
library [17], hence the name) is an interactive 3D graphical user
interface that implements all SpinXML features. It supports point-
and-click specification of NMR and EPR spin systems, interaction
tensor import from popular electronic structure theory programs
(Gaussian [31], CASTEP [32], ADF [33], ORCA [34]) and export of spin
system specifications into popular spin dynamics simulation
packages (EasySpin [15], Spinach [17] and SIMPSON [14] at the time
of writing). Import and export filters for other major programs will
be added in the near future.

The main GUI window is shown in Fig. 3. The atom table on the
left and the interaction table on the right are self-explanatory. The
central window contains a ball-and-stick representation of the
molecule (bonds are drawn based on a simple distance check with
a user-specified threshold) and visual representations of the
following interactions:

– Chemical shift and shielding tensors, using ellipsoid plots (blue
by default), with ellipsoids centered at the corresponding nuclei.

– J-couplings, using straight lines connecting the corresponding
nuclei. Interaction amplitude is mapped to the color of the line.

– Hyperfine interaction tensors, using ellipsoid plots (yellow by
default), with ellipsoids centered at the corresponding nuclei.

– Nuclear quadrupolar interaction tensors, using ellipsoid plots
(purple by default), with ellipsoids centered at the correspond-
ing nuclei.

Ellipsoid plots are generated in the standard way [25,30]: a unit
sphere is scaled by the moduli of the eigenvalues in the three
Fig. 3. A screenshot of the main window of the graphical user interface. (1) Nuclei and
unpaired electron, and isotope mass numbers for each nucleus. (2) Interaction visualizatio
zero-field splitting) and linear (exchange, J-couplings) scaling sliders for visual representa
splitting tensors (ellipsoids) and exchange couplings (spirals). (4) Nuclei area, showing sh
interaction exceeds a set threshold) and quadrupolar tensors (ellipsoids). (5) Interacti
nucleus, showing its identification number. The corresponding table rows are highlighte
the right hand side (interactions). (For interpretation of the references to color in this fi
primary directions, rotated into the principal axis frame of the ten-
sor and translated to the point of the corresponding nucleus. Blue
axes are drawn inside for positive eigenvalues and red axes for
negative eigenvalues.

Dipolar interaction tensors are not visualized – inter-nuclear
dipolar coupling is visually apparent from the distances and elec-
tron–nuclear dipolar coupling is contained in the hyperfine inter-
action. In systems with multiple electrons, the inter-electron
dipolar coupling is either contained in the distances (in the individ-
ual electron spin representation) or in the zero-field splitting
tensor (in the total electron spin representation).

It is often the case in Magnetic Resonance simulations that elec-
trons do not have specific Cartesian coordinates, being instead
delocalized over the nuclear ensemble and manifesting themselves
through hyperfine interactions. For this reason electrons are drawn
separately in the lower part of the central area of Fig. 3. Electron
interaction ellipsoids rotate synchronously with the rest of the
molecule, but the electrons themselves (visualized as translucent
blobs) do not move around the visualization window. Zero-field
splitting tensors and g-tensors are visualized as ellipsoids centered
on their corresponding electrons and inter-electron exchange cou-
plings are shown as coils with the amplitude mapped to the color.

A summary of the visualization methods is given in Table 1.
Visualization tab in the upper part of the main window controls
the appearance and scaling of the ellipsoids as well as
magnitude-color maps in the 3D view using logarithmic sliders.
Visualization of individual interactions may be switched on and
off using the tick boxes. NMR and EPR buttons switch the 3D view
to the visualization of the corresponding interactions – shielding,
shift, J-coupling, quadrupolar coupling for the NMR mode;
g-tensor, hyperfine coupling, exchange coupling, zero-field splitting
for the EPR mode.
unpaired electrons list. Cartesian coordinates are displayed for every nucleus and
n control panel, containing logarithmic (shielding, hyperfine, quadrupolar, g-tensor,
tions of the interactions. (3) Electrons area, showing g-tensors (ellipsoids), zero-field
ielding tensors (ellipsoids), hyperfine tensors (ellipsoids), J-couplings (lines, drawn if
on list, containing basic interaction information and editing buttons. (6) Selected
d in pink on the left hand side (coordinates and isotope information) and yellow on
gure legend, the reader is referred to the web version of this article.)



Table 1
Interaction visualization methods and default units.

Interaction Visualization method Default units in
GUI

Hyperfine interaction Ellipsoid on the nucleus Gauss
Chemical shielding and

shift
Ellipsoid on the nucleus ppm

Quadrupolar interaction Ellipsoid on the nucleus MHz
J-coupling Colored line between

nuclei
Hz

Dipolar coupling
(=distances)

Particle positions Ångstrom

g-tensor Ellipsoid on the electron Dimensionless
Zero-field splitting Ellipsoid on the electron MHz
Exchange interaction Coiled line between

electrons
MHz
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The primary format for spin system data storage and retrieval is
SpinXML, but the GUI can also import Gaussian 03/09 logs (�.log,
�.out), Cartesian XYZ files (�.xyz, coordinates only, isotopes are
guessed) and both versions of CASTEP files (�.magres). When
multiple instances of the relevant tables are present in the file
(e.g. multiple coordinate sections in geometry optimizations), the
last section is read. For Gaussian 03/09 calculations, the detailed
printing option is required in the route section of the input file.

Electronic structure theory calculations often produce large
quantities of small interactions (e.g. J-couplings between remote
spins) that are inconsequential in practical simulations. At the
point of data import the GUI offers an option to ignore interactions
with total magnitude (defined as the Frobenius norm of the
corresponding tensor) below the user-specified value.

The 3D view is rendered using the OpenGL library [35]. Real-
time rotations are implemented using the ARCBALL scheme [36]
Fig. 4. Interaction editing dialogue window, accessed by clicking ‘‘Edit’’ in the right han
indicated above). (2) Eigenvalues of the interaction matrix. (3) Eigenvectors of the intera
tensor to the laboratory frame of reference. (5) Interaction axiality, rhombicity, span and
rotation parameters connecting the principal axis frame of the interaction tensor to the
principal axis frame of the interaction tensor to the laboratory frame of reference. (9) Wi
the laboratory frame of reference.
that assumes the mouse to be moving on the surface of a ball cen-
tered on the model. Dragging the pointer forms an arc that the sys-
tem is rotated along. When the pointer is dragged outside the ball
(e.g. at the edge of the 3D view panel), the model is rotated only
around the axis perpendicular to the screen. The 3D view is
cross-referenced with both tables – when an atom is selected in
the 3D view, its coordinate line in the atom table is highlighted
in blue and its associated spin interactions in the interaction table
are highlighted in yellow.

The Interactions table on the right side of the main window pro-
vides a list of all spin interactions present in the system, except for
the dipole–dipole couplings that are controlled via Cartesian coor-
dinates in the left hand side table. For each interaction, a unique
numerical ID, a user-specified label, the IDs of the participating
spins and the type of the interaction may be edited directly in
the table. Eigenvalues and orientation may be edited by pressing
‘‘Edit’’ in the table and making changes in the Magnitude & Orien-
tation dialogue window shown in Fig. 4. The GUI offers five ways
to edit an interaction. The user can change the interaction matrix
(only symmetric matrices are supported at the time of writing),
eigenvalues, spherical tensor coefficients, Euler angles, or angle-
axis rotation angle. If any of those are changed, the content of
the entire window is recomputed to reflect the changes and the
3D view is updated accordingly. In the cases where manual edits
have the potential to violate a convention (e.g. break the norm of
a directional cosine matrix or a quaternion), direct edits are
disabled and the corresponding fields are grayed out – they are
only updated in response to convention-preserving edits. The
flowchart of rotational convention updates is given in Fig. 5.

The interface to spin dynamics simulation packages follows the
same design philosophy as the very successful Gaussian/GaussView
d side table of the main window. (1) Interaction tensor matrix (type and units are
ction matrix. (4) Euler angles connecting the principal axis frame of the interaction
skew. (6) Irreducible spherical components of the interaction tensor. (7) Angle-axis
laboratory frame of reference. (8) Quaternion rotation parameters connecting the

gner rotation matrix connecting the principal axis frame of the interaction tensor to
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Fig. 5. A map of amplitude and orientation information conversion within the
interaction editing dialogue window. Double arrows indicate two-way conversion
(when one side is edited, the other side is updated). Single arrows indicate one-way
conversion (the receiving side is updated, but is not itself editable). Green boxes
indicate representations that typically arrive from electronic structure theory
programs, green and blue boxes indicate representations that can be imported from
SpinXML, gray boxes indicate significant but uncommon representations that are
calculated and reported within the GUI for diagnostic purposes. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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[31] pair of programs in electronic structure theory. An example of
the export dialogue window is shown in Fig. 6. The GUI currently
generates ASCII text files containing spin system description inputs
for EasySpin [15], Spinach [17] and SIMPSON [14] packages with
support for other major simulation programs currently in the
works. Only the spin system description part is generated: spinsys
section of SIMPSON input and the corresponding Matlab code for
Spinach and EasySpin packages – experiment description parts
should be appended to the resulting text file by the user.
4. Limitations and possible extensions

Both the SpinXML format and the graphical user interface make
a number of assumptions that should be noted. The core assump-
tion, inherited from the theory of Magnetic Resonance spectros-
copy [37], is the validity of the spin Hamiltonian approximation
– the electronic structure is assumed to be in a stationary state
and to only manifest itself via spin operators.
Fig. 6. An example of a simulation package export dialogue window producing an ASC
export window is shown; the GUI also supports Spinach [17] and SIMPSON export [14]
motion and solid state in the case of EasySpin. (2) Case-specific and program-specific pa
Interaction specification in SpinXML format currently also
assumes a single common frame of reference for all spins and
interactions. This is sufficient, but not necessarily convenient,
particularly in solid state NMR, where chains nested of reference
frames (interaction ? molecule ? unit cell ? crystal ? spinner ?
magnet) are often present, and in macromolecular NMR, where
groups of spins belonging to different reference frames can move
relative to one another. This calls for the creation of a refer-

ence_frame complex type shown in Fig. 7 and for the addition
of a frame attribute citing the number of the relevant reference
frame to rotation and vector complex types. Once the reference
frame with id = ‘‘0’’ is defined as the laboratory frame, this amend-
ment allows to specify chains and trees of reference frames, each
with its own set of spins and interactions. The resulting structure
is illustrated in Fig. 8. It is particularly convenient in systems
undergoing magic angle spinning or conformational dynamics;
its elegance, however, is matched by the practical difficulty of
implementing a parser, an export routine and an interactive editor
for the resulting ultra-flexible format – we are therefore listing this
feature as a possible extension that is not a part of SpinXML version
1.0 described in Section 3.

Another minor limitation is the finite number of coupling speci-
fication styles in the interaction_term complex type (Fig. 1) –
less common conventions (such as D, E specification for zero field
splitting and ‘‘alphabet notation’’ for dipolar coupling) have not been
included. Such design decisions are necessarily subjective and
further specification styles could, if proven necessary, be added in
future to either of the two SWITCH bars in the interaction_term
complex type. Under any future expansion, however, the SpinXML
version 1.0 subset described in Section 3 will remain unchanged.

The last noteworthy limitation of SpinXML is the absence of
molecular dynamics (MD) variables, such as correlation times
and order parameters. Although they could, particularly in protein
NMR spectroscopy, be viewed as spin system parameters, they are
not intrinsic to the spin system. MD parameters are also model-
dependent and the number of models in the literature is
unfortunately rather large. Critically, the models themselves and
the community opinion on their relative merits continue to evolve,
II text input file for a third-party spin dynamics simulation package. EasySpin [15]
. (1) Route specification area, switching the simulation between liquid state, slow
rameter specification area. (3) Text output preview window.
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meaning that an attempt at standardization would be premature.
The decision to not include correlation times and order parameters
in SpinXML will be reviewed in due course – they may appear in the
subsequent versions of the format that will be backwards compat-
ible with the version described in Section 3.

5. Conclusions and outlook

SpinXML unifies under one roof all major spin interaction spec-
ification conventions and provides a way of tying them up into a
multi-spin system description format that is applicable to both
NMR and EPR spectroscopy. The format is based on the industry
standard XML markup language and benefits from the existence
of standard validation, generation and parsing tools in all major
programming languages. It is our hope that it would facilitate the
storage and exchange of spin system data, particularly with the re-
cently created protein-scale simulation tools [17]. The associated
graphical user interface provides a user-friendly way of setting
up complicated spin systems as well as a convenient way of
importing magnetic interaction data from electronic structure
theory packages.
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