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Abstract

We use the self-tuning Experience Weighted Attraction model with repeated-game strategies as

a computer testbed to examine the relative frequency, speed of convergence and progression of a

set of repeated-game strategies in four symmetric 2 × 2 games: Prisoner’s Dilemma, Battle of the

Sexes, Stag-Hunt, and Chicken. In the Prisoner’s Dilemma game, we find that the strategy with

the most occurrences is the “Grim-Trigger.” In the Battle of the Sexes game, a cooperative pair

that alternates between the two pure-strategy Nash equilibria emerges as the one with the most

occurrences. In the Stag-Hunt and Chicken games, the “Win-Stay, Lose-Shift” and “Grim-Trigger”

strategies are the ones with the most occurrences. Overall, the pairs that converged quickly ended up

at the cooperative outcomes, whereas the ones that were extremely slow to reach convergence ended

up at non-cooperative outcomes.
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1 Introduction

Robert Axelrod pioneered the area of computational simulations with the tournaments in which

game-playing algorithms were submitted to determine the best strategy in the repeated Prisoner’s

Dilemma game (Axelrod (1984)). Axelrod and Dion (1988) went on to model the evolutionary

process of the repeated Prisoner’s Dilemma game with a genetic algorithm (Holland (1975). The

genetic algorithm is an adaptive learning routine that combines survival of the fittest with a

structured information exchange that emulates some of the innovative flair of human search. Other

adaptive learning paradigms are derivatives of either belief-based models or reinforcement-based

models. Belief-based models operate on the premise that players keep track of the history of play

and form beliefs about other players’ behavior based on past observation. Players then choose a

strategy that maximizes the expected payoff given the beliefs they formed. Reinforcement-based

models operate according to the “law of effect,” which was formulated in the doctoral dissertation

of Thorndike (1898). In principle, reinforcement learning assumes that a strategy is “reinforced” by

the payoff it earned and that the propensity to choose a strategy depends, in some way, on its stock

of reinforcement. On the other hand, Camerer and Ho (1999) introduced in their seminal study

a truly hybridized workhorse of adaptive learning, the Experience Weighted Attraction (EWA)

model. Despite its originality in combining elements from both belief-based and reinforcement-

based models, EWA was criticized for carrying ‘too’ many free parameters. Responding to the

criticism, Ho, Camerer, and Chong (2007) replaced some of the free parameters with functions that

self-tune, while other parameters were fixed at plausible values. Appropriately labeled, the self-

tuning EWA, the model does exceptionally well in predicting subjects’ behavior in a multitude

of games, yet has been noticeably constrained by its inability to accommodate repeated-game

strategies. As Camerer and Ho (1999) acknowledge in their conclusion, the model will have to be

upgraded to cope with repeated-game strategies “because stage-game strategies (actions) are not

always the most natural candidates for the strategies that players learn about” (p. 871).1

In Ioannou and Romero (2014), we propose a methodology that is generalizable to a broad class

of repeated games to facilitate operability of adaptive learning models with repeated-game strate-

gies. The methodology consists of (1) a generalized repeated-game strategy space, (2) a mapping

between histories and repeated-game beliefs, and (3) asynchronous updating of repeated-game

strategies. The first step in operationalizing the proposed methodology is to use generalizable

rules, which require a relatively small repeated-game strategy set but may implicitly encompass a

much larger space (see, for instance, Stahl’s rule learning in Stahl (1996), Stahl (1999) and Stahl

and Haruvy (2012)). The second step applies a fitness function to establish a mapping between

histories and repeated-game beliefs. Our approach solves the inference problem of going from his-

1A first attempt was undertaken in the study of Chong, Camerer, and Ho (2006), albeit the model proposed
was specific to the structure of Trust and Entry games.
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tories to beliefs about opponents’ strategies in a manner consistent with belief learning.2 The third

step accommodates asynchronous updating of repeated-game strategies. The methodology is im-

plemented by building on three proven action-learning models: a self-tuning Experience Weighted

Attraction model (Ho, Camerer, and Chong (2007)), a γ-Weighted Beliefs model (Cheung and

Friedman (1997)), and an Inertia, Sampling and Weighting model (Erev, Ert, and Roth (2010)).

The models’ predictions with repeated-game strategies are validated with data from experiments

with human subjects in four symmetric 2 × 2 games: Prisoner’s Dilemma, Battle of the Sexes,

Stag-Hunt, and Chicken. The goodness-of-fit results indicate that the models with repeated-game

strategies approximate subjects’ behavior substantially better than their respective models with

action learning. The model with repeated-game strategies that performs the best is the self-tuning

EWA model, which captures significantly well the prevalent outcomes in the experimental data

across the four games.

In this study, our goal is to use the self-tuning EWA model with repeated game strategies as

a computer testbed to examine the relative frequency, speed of convergence and progression of a

set of repeated-game strategies in the four aforementioned symmetric 2× 2 games. Learning with

repeated-game strategies is important on many levels (henceforth, for brevity, we refer to repeated-

game strategies as strategies, unless there is a risk of confusion). First, identifying empirically

relevant strategies can help future theoretical work to identify refinements or conditions that lead

to these strategies. The literature on repeated games has made little progress towards this target

thus far. Second, pursuing an understanding of the strategies that emerge may also help identify

in which environments cooperation is more likely to be sustained. Third, identifying the set of

strategies used to support cooperation can provide a tighter test of the theory. For instance, we

could test whether the strategies that emerge coincide with the ones that the theory predicts.

Similar to Ioannou and Romero (2014), in the computational simulations, we chose to limit

the number of potential strategies considered so as to reflect elements of bounded rationality and

complexity as envisioned by Simon (1947). Thus, the players’ strategies are implemented by a

type of finite automaton called a Moore machine (Moore (1956)). According to the thought

experiment, a fixed pair of players is to play an infinitely-repeated game with perfect monitor-

ing and complete information. A player is required to choose a strategy out of a candidate set

consisting of one-state and two-state automata. The strategy choice is based on the attraction of

the strategy. Initially, each of the strategies in a player’s candidate set has an equal attraction

2Alternatively, Hanaki, Sethi, Erev, and Peterhansl (2005) develop a model of learning of repeated-game strate-
gies with standard reinforcement. Reinforcement learning responds only to payoffs obtained by strategies chosen
by the player and, thus, evades the inference problem highlighted above. Yet reinforcement models are most sen-
sible when players do not know the foregone payoffs of unchosen strategies. Several studies show that providing
foregone payoff information affects learning, which suggests that players do not simply reinforce chosen strategies
(see Mookherjee and Sopher (1994), Rapoport and Erev (1998), Camerer and Ho (1999), Costa-Gomes, Crawford,
and Broseta (2001), Nyarko and Schotter (2002) and Van Huyck, Battalio, and Rankin (2007)).
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and hence an equal probability of being selected. The attractions are updated periodically as the

payoffs resulting from strategy choices are observed. The new strategy is chosen on the basis of

the updated attractions. Over the course of this process, some strategies decline in use, while

others are used with greater frequency. The process continues until convergence to a limiting

distribution is approximated.

In the Prisoner’s Dilemma game, we find that the strategy with the most occurrences was the

“Grim-Trigger.” Moreover, the pairs that converged quickly ended up at the cooperative outcome,

whereas the ones that were extremely slow to reach convergence ended up at the defecting outcome.

In the Battle of the Sexes game, a cooperative pair that alternates between the two pure-strategy

Nash equilibria emerged as the one with the most occurrences. The pairs that alternated were

quicker to reach convergence compared to the ones that ended up at one of the two pure-strategy

Nash equilibria. In the Stag-Hunt and Chicken games, the “Win-Stay, Lose-Shift” and “Grim-

Trigger” strategies were the ones with the most occurrences. Similar to the other games, the

automaton pairs that converged quickly ended up at the cooperative outcomes (i.e. the payoff-

dominant equilibrium in the Stag-Hunt game, and the conciliation outcome in the Chicken game),

whereas the ones that were slow to reach convergence ended up at non-cooperative outcomes.

2 The Self-Tuning EWA with Repeated-Game Strategies

2.1 Preliminaries

To simplify exposition, we start with some notation. The stage game is represented in standard

strategic (normal) form. The set of players is denoted by I = {1, ..., n}. Each player i ∈ I has

an action set denoted by Ai. An action profile a = (ai, a−i) consists of the action of player i and

the actions of the other players, denoted by a−i = (a1, ..., ai−1, ai+1, ..., an) ∈ A−i. In addition,

each player i has a real-valued, stage-game, payoff function gi : A → R, which maps every action

profile a ∈ A into a payoff for i, where A denotes the cartesian product of the action spaces Ai,
written as A ≡

I
×
i=1
Ai. In the infinitely-repeated game with perfect monitoring, the stage game in

each time period t = 0, 1, ... is played with the action profile chosen in period t publicly observed

at the end of that period. The history of play at time t is denoted by ht = (a0, ..., at−1) ∈ At,
where ar = (ar1, ..., a

r
n) denotes the actions taken in period r. The set of histories is given by

H =
∞⋃

t=0

At,
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where we define the initial history to the null set A0 = {∅}. A strategy si ∈ Si for player i is,

then, a function si : H → Ai, where the strategy space of i consists of Ki discrete strategies; that

is, Si = {s1
i , s

2
i , ..., s

Ki
i }. Furthermore, denote a strategy combination of the n players except i by

s−i = (s1, ..., si−1, si+1, ..., sn). The set of joint-strategy profiles is denoted by S = S1 × · · · × Sn.

Each player i has a payoff function πti : S → R, which represents the average payoff per period

when the joint-strategy profile is played for t periods.

2.2 Evolution of Learning

Players have attractions, or propensities, associated with each of their strategies, and these at-

tractions determine the probabilities with which strategies are chosen when players experiment.

Initially, all strategies have an equal attraction and hence an equal probability of being chosen.

The learning process evolves through the strategies’ attractions that are periodically updated.

Similar to its predecessors, the self-tuning EWA model consists of two variables that are updated

once an agent switches strategies. The first variable is Ni(χ), which is interpreted as the number

of observation-equivalents of past experience in block χ of player i.3 The second variable, denoted

as Aji (χ), indicates player i’s attraction to strategy j after the χth block of periods. The variables

Ni(χ) and Aji (χ) begin with some prior values, Ni(0) and Aji (0). These prior values can be thought

of as reflecting pre-game experience, either due to learning transferred from different games or due

to pre-play analysis. In addition, we use an indicator function I(x, y) that equals 1 if x = y and

0 otherwise. The evolution of learning over the χth block with χ ≥ 1 is governed by the following

rules:

Ni (χ) = φi(χ) ·Ni (χ− 1) + 1, (1)

and

Aji (χ) =
φi(χ) ·Ni (χ− 1) · Aji (χ− 1) + I(sji , si (χ)) ·Ri (χ) + δji (χ) · E ji (χ)

φi(χ) ·Ni (χ− 1) + 1
, (2)

where Ri(χ) is the reinforcement payoff and E ji (χ) is the expected forgone payoff to player i for

strategy j.

The reinforcement payoff, Ri(χ), is defined as the average payoff obtained by player i over the

3Traditionally, action-learning models require that the updating of a player’s action set occurs at the end of
each period. Instead, the proposed methodology in Ioannou and Romero (2014) requires that the updating of
repeated-game strategies occurs with the completion of a block of periods, where a block typically consists of more
than 1 period. Furthermore, players’ blocks of periods vary in length and end at different time-periods (see also
Subsection 2.3).
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χth block,

Ri (χ) =
1

Ti(χ)

∑

a∈h(χ)

gi (a) ,

where h(χ) is the sequence of action profiles played in the χth block, and Ti(χ) is the χth block’s

length for player i. In addition, the forgone payoffs in the self-tuning EWA model with repeated-

game strategies are not as simple as in the case of the self-tuning EWA model with actions,

where the opponent’s action is publicly observed in each period. To calculate the forgone payoff

E ji (χ) players need to form beliefs about the current repeated-game strategy of their opponent. In

particular, the expected forgone payoff for player i of repeated-game strategy j over the χth block

is the payoff player i would have earned had he chosen some other repeated-game strategy j given

his beliefs about player −i’s current repeated-game strategy.

We indicate next how beliefs are specified. To determine the beliefs, let h (t1, t2) = (at1 , at1+1, . . . , at2)

for t1 ≤ t2 be the truncated history between periods t1 and t2 (all inclusive). Also, let h (t, t− 1) =

∅ be the empty history. Let Ti(χ) =
∑χ

j=1 Ti(j) be the total number of periods at the end of block

χ. Then, repeated-game strategy s−i is consistent with hTi(χ) for the last t′ periods if

s−i (h (Ti(χ)− t′, Ti(χ)− t′ − 1 + r)) = a
Ti(χ)−t′+r
−i for r = 0, . . . , t′ − 1.

Define the fitness function F : S−i × N→ [0, Ti(χ)] as

F (s−i, χ) = max
{
t′|s−i is consistent with hTi(χ) for the last t′ periods

}
.4 (3)

Define the belief function B : S−i × N→ [0, 1] as

B(s−i, χ) =
F(s−i, χ)∑

r∈S−i

F(r, χ)
,

which can be interpreted as player i’s belief that the other player was using repeated-game strategy

s−i at the end of block χ. Therefore, the expected foregone payoff for player i of strategy j over

4In the context of finite automata (a formal description is provided in Appendix A), let hti(χ) be player i’s
action in the tth period of block χ, and s−i =

(
Q−i, q

0
−i, f−i, τ−i

)
be a potential automaton for player −i. We

say automaton s−i is consistent with h(χ) for the last t′ periods, if according to the history, it is possible that
the other player played automaton s−i in the last t′ periods and, given player i’s most recent action, the proposed
automaton is in the starting state. Formally, automaton s−i is consistent with h(χ) for the last t′ periods if there
exists some state qt ∈ Q−i such that ht−i(χ) = f−i (qt) and qt+1 = τ−i (qt, hti(χ)) for all Ti(χ)− t′ + 1 ≤ t ≤ Ti(χ)

and qTi(χ)+1 = q0.
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the χth block is given by

E ji (χ) =
∑

s−i∈S−i

π
Ti(χ)
i (sji , s−i|h(s−i,χ)) · B(s−i, χ),

where s−i|h is the continuation strategy induced by history h and

h (s−i, χ) = h (Ti(χ)−F (s−i, χ) , Ti(χ)− 1)

is the longest history such that s−i is consistent with hTi(χ).

In the original EWA model of Camerer and Ho (1999), the attraction function consisted of

the exogenous parameters δ and φ. In the self-tuning EWA model, these exogenous parameters

were changed to self-tuning functions δ(·) and φ(·), referred to as the attention function and the

decay-rate function, respectively. The attention function δ(·) determines the weight placed on

forgone payoffs. The idea is that players are more likely to focus on strategies that would have

given them a higher payoff than the strategy actually played. This property is represented by the

following function:

δji (χ) =

{
1 if E ji (χ) ≥ Ri(χ) and sji 6= si(χ)

0 otherwise.

Thus, the attention function enables player i to reinforce only unchosen strategies with weakly

better payoffs. On the other hand, the decay rate function φ(·) weighs lagged attractions. When

a player senses that the other player is changing behavior, a self-tuning φi(·) decreases so as to

allocate less weight to the distant past. The core of the φi(·) is a “surprise index,” which indicates

the difference between the other player’s most recent strategy and the strategies he chose in the

previous blocks. First, define the averaged belief function σ : S−i × N→ [0, 1],

σ(s−i, χ) =
1

χ

χ∑

j=1

B(s−i, j),

which averages the beliefs, over the χ blocks, that the other player chose strategy s−i. The surprise

index Si(χ) simply sums up the squared deviations between each averaged belief σ(s−i, χ) and the

immediate belief B(s−i, χ); that is,

Si(χ) =
∑

s−i∈S−i

(σ(s−i, χ)− B(s−i, χ))2.

Thus, the surprise index captures the degree of change of the most recent beliefs from the historical

average of beliefs. Note that it varies from zero (when there is belief persistence) to two (when a
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player is certain that the opponent just switched to a new strategy after playing a specific strategy

from the beginning). The change-detecting decay rate of the χth block is then

φi(χ) = 1− 1

2
Si(χ).

Therefore, when player i’s beliefs are not changing, φi(χ) = 1; that is, the player weighs previous

attractions fully. Alternatively, when player i’s beliefs are changing, then φi(χ) = 0; that is, the

player puts no weight on previous attractions.

Attractions determine probabilities of choosing strategies. We use the logit specification to

calculate the choice probability of strategy j. Thus, the probability of a player i choosing strategy

j when he updates his strategy at the beginning of block χ+ 1 is

Pji (χ+ 1) =
eλ·A

j
i (χ)

∑K
k e

λ·Ak
i (χ)

.

The parameter λ ≥ 0 measures the sensitivity of players to attractions. Thus, if λ = 0, all

strategies are equally likely to be chosen regardless of their attractions. As λ increases, strategies

with higher attractions become disproportionately more likely to be chosen. In the limiting case

where λ→∞, the strategy with the highest attraction is chosen with probability 1.

2.3 Asynchronous Updating of Repeated-Game Strategies

The probability that player i updates his strategy set in period t, 1
Pt
i
, is determined endogenously

via the expected length of the block term, P ti , which is updated recursively; that is,5

P ti = P t−1
i − 1

P t−1
i

∣∣∣ 1
t−t(χ(t))

∑t−1
s=t(χ(t)) gi(a

s
i , a

s
−i)− Esi(χ(t))

i (χ(t))
∣∣∣

ḡ − g ,

where t(χ) is the first period of block χ, and χ(t) is the block corresponding to period t. In

addition, ḡ = maxa1,a2,j gj (a1, a2) is the highest stage-game payoff attainable by either player,

and g = mina1,a2,j gj (a1, a2) is the lowest stage-game payoff attainable to either player. The

normalization by 1
ḡ−g ensures that the expected block length is invariant to affine transformations

of the stage-game payoffs. The variable P ti begins with an initial value P0
i . This prior value can

be thought of as reflecting pre-game experience, either, due to learning transferred from other

games, or due to (publicly) available information. The law of motion of the expected block length

5For the interested reader, a detailed exposition to asynchronous updating of repeated-game strategies can be
found in Ioannou and Romero (2014).
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depends on the absolute difference between the actual average payoff thus far in the block and the

expected payoff of strategy si. The expected payoff for player i, Esi(χ(t))
i (χ(t)), is the average payoff

that player i expects (anticipates) to receive during block χ(t) and is calculated at the beginning

of the block. The difference between actual and expected payoff is thus a proxy for (outcome-

based) surprise. As Erev and Haruvy (2013) indicate, surprise triggers change; that is, inertia

decreases in the presence of a surprising outcome.6 In addition, a qualitative control is imposed

on the impact of surprise on the expected block length. Multiplying the absolute difference by
1
Pt−1
i

ensures that when the expected block length is long, surprise has a smaller impact on the

expected block length than when the expected block length is short.

3 Results

We study next the relative frequency, speed of convergence and progression of a set of repeated-

game strategies in four symmetric 2×2 games: Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt,

and Chicken. The payoff matrices of the games are illustrated in Figure 1. For the computational

simulations, we chose to limit the number of potential strategies considered so as to reflect elements

of bounded rationality and complexity as envisioned by Simon (1947). Thus, the players’ strategies

are implemented by a type of finite automaton called a Moore machine. Figure 2 depicts a player’s

candidate strategy set, which consists of one-state and two-state automata. A formal description

is provided in Appendix A.

In the simulations, players engage in a lengthy process of learning among strategies. At the

beginning of the simulations, each agent is endowed with initial attractions Aji (0) = 1.5 for each

strategy j in Si
7 and initial experience Ni(0) = 1. Players are matched in fixed pairs and update

their attractions at the end of each block. The play ends when the average payoff of a given

pair converges. More specifically, each simulation is broken up into epochs of 100 periods. The

simulation runs until the average epoch payoff of the pair has not changed by more than 0.01 from

the previous epoch (in terms of Euclidean distance) in 20 consecutive epochs.8 The simulations

6This gap-based abstraction can be justified from the observation that the activity of certain dopamine-related
neurons is correlated with the difference between the expected and actual outcomes (see Caplin and Dean (2007)).

7The values of the initial attractions are derived from the Cognitive Hierarchy (CH) model of Camerer, Ho, and
Chong (2004).

8The maximum length in each of the simulation runs was set to 100,000 periods. The average payoff of the pair
converged in 1, 000× 4− 47 = 3, 953 out of the 4,000 total simulations. In 47 simulations, all in the Battle of the
Sexes game, the average payoff of the pair did not converge; players were playing their preferred outcome most of
the time, but there was too much noise for the average payoff of the pair to converge. In all other simulations,
the average payoff of the pair converged. The median length for convergence was 10,750 periods in the Prisoner’s
Dilemma game, 11,400 periods in the Battle of the Sexes game, 2,750 periods in the Stag-Hunt game, and 3,300
periods in the Chicken game. Given the convergence criterion, the minimum length of periods for a simulation
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use an intensity parameter λ = 4 in the logit specification.9 The initial value of P0
i is set to

100 periods.10 The results displayed in the plots are averages taken over 1,000 simulated pairs.

At the start of the simulations, each of the strategies in a player’s candidate strategy set has an

equal attraction and hence an equal probability of being selected. This phase is a lengthy learning

process that ends when the average payoff of a given pair of automata converges. We elaborate

next on the results of the computational simulations.

3.1 Relative Frequency and Speed of Convergence

The payoff matrix of the Prisoner’s Dilemma game is indicated in Figure 1(a). The cooperative

action is denoted with the letter “A,” whereas the action of defection is denoted with the letter

“B.” Each player’s dominant strategy is to play B. Figure 3 displays the results of the simulations

in the Prisoner’s Dilemma. Figure 3(a) shows the relative frequency of automaton pairs played

over the last 1,000 periods. The relative frequency of an automaton pair is the number of times

the automaton pair occurred normalized by the total number of occurrences of all automaton

pairs. Automaton 6, which implements the “Grim-Trigger” strategy, was the one with the most

occurrences. It is important to note that the cooperative outcome (A,A) is sustained in a pair

consisting of Grim-Trigger automata. This finding is confirmed in Figure 3(b), which plots the

relative frequency of the payoffs. Crucially, even though the majority of automaton pairs converged

run is 20 × 100 = 2, 000 periods. This implies that, for instance in Stag-Hunt, a pair of players who arrives at
convergence in a median length of 2,750 periods has reached the convergence point after 7.5 strategy-updates (a
pair of players arrives at convergence point in 7.5× 100 = 750 periods, given that P0

i is set to 100).
9The calibration is based on a grid search. We consider a simple goodness-of-fit measure to determine how far

the predictions of the model are from the experimental data. The dataset used is from Mathevet and Romero
(2012). Subjects were instructed that the continuation probability for an additional period was 0.99; this was
common knowledge in all experiments conducted. We compare the average payoffs over the last 10 periods of the
computational simulations to the average payoffs over the last 10 periods of the experimental data. To calculate
the measure, we first discretize the set of possible payoffs by using the following transformation:

D (π) = ε
⌊π
ε

⌉
,

where π is the payoff, ε is the accuracy of the discretization and D(π) denotes the transformed payoff. Note that
the symbolic function b·e rounds the fraction to the nearest integer. For example, if ε = 0.5, then the payoff pair
(π1, π2) = (2.2, 3.7) would be transformed to (D (π1) , D (π2)) = (2, 3.5). We then construct a vector consisting of
the relative frequency of each of the transformed payoffs given some ε. We do the same for the experimental data. To
determine how far the predictions of the model are from the experimental data, we calculate the Euclidean distance
between the model’s vector and the vector of the experimental data. If the predictions match the experimental
data perfectly, then the distance will have a value of 0. The maximum value of distance is

√
2 for each game. This

value is attained if only one payoff is predicted by the model, only one payoff is observed in the experiment, and
the two payoffs are different. Crucially, for a given discretization parameter ε, we define the best goodness of fit
model as the one whose parameter value minimizes the sum of Euclidean distances across the four games studied.

10An upper bound of 60 periods was set on the fitness function for computational efficiency; that is, a player can
use a maximum of 60 periods when formulating beliefs.
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Figure 3: Prisoner’s Dilemma

Notes: Figures 3-6 follow the same structure. Panel (a) shows the relative frequency of play across the 262

automaton pairs over the last 1,000 periods. The relative frequency of an automaton pair is the number of times

the automaton pair occurred normalized by the total number of occurrences of all automaton pairs. The relative

frequency of a given pair is denoted by a square located on the coordinates that correspond to that pair; the darker

(more red) the square, the higher the (relative) frequency of that pair. In addition, the relative frequency (as a

percentage rounded to the nearest integer) is displayed for each pair that appeared at least once in the simulations.

If the relative frequency is < 0.5% it shows as a 0. Panel (b) shows the relative frequency of each payoff combination

over the final 1,000 periods and the set of feasible payoffs. The radius of the circle is r =
√
RF
2 , where RF is the

relative frequency. Note that this is a concave function which emphasizes points with small relative frequency.

Panel (c) provides information on the speed of convergence. The left axis indicates the probability and the red

dotted line denotes the Empirical Cumulative Distribution Function (ECDF) for convergence. On the other hand,

the blue solid line and the green dashed line correspond to the right axis and provide information on the payoffs of

the automaton pairs when averaged over the last 1,000 periods. The blue solid line represents the average payoff

of the automaton pair ( g1+g22 ). The green dashed line represents the absolute payoff difference of the automaton

pair (|g1 − g2|). Points on the blue solid and the green dashed line are sorted according to the corresponding point

on the red dotted line. 12



to the cooperative payoff (3, 3), there, still, exists a small number of automaton pairs, which chose

to defect repeatedly and thus earned a payoff of (2, 2). Finally, the plot in Figure 3(c) provides

information on the speed of convergence. The red dotted line denotes the Empirical Cumulative

Distribution Function (ECDF) for convergence. The blue solid line and the green dashed line

provide information on the payoffs (right axis) of the automaton pairs when averaged over the

last 1,000 periods. The blue solid line represents the average payoff of the automaton pair (g1+g2
2

).

The green dashed line represents the absolute payoff difference of the automaton pair (|g1 − g2|).
Points on the blue solid and the green dashed line are sorted according to the corresponding point

on the red dotted line. About 20% of the simulations converged quite quickly in less than 3,000

periods. At this point in time, the blue solid line signifies that the average payoff of the automaton

pairs was 3. Given the convergence criterion, we can deduce that about 20% of the automaton

pairs started off by cooperating and maintained cooperation until convergence. The next 70% of

the simulations were (roughly) uniformly distributed across the range of 3, 000− 27, 000 periods.

The last 10% of the simulations converged in the range of 27, 000 − 34, 000 periods. Looking

at the green and blue lines, we observe that the pairs that were converging in less than 27,000

periods ended up at the cooperative outcome, while the pairs that converged at 31,000 periods

and beyond converged to the defecting outcome. After 31,000 periods, the automaton pairs that

did not attain cooperation experienced short expected block lengths, which prompted them to

constantly update the strategies in a manner similar to action-learning models hence converged

to the defecting outcome. Pairs that converged between 27,000 and 31,000 periods ended up in

either the cooperating or the defecting outcome.

The payoff matrix of the Battle of the Sexes game is indicated in Figure 1(b). In this game,

there are two pure-strategy equilibria: (A,B) and (B,A) . Figure 4 shows the results of the

simulations. In particular, Figure 4(a) shows the relative frequency of automaton pairs played

over the last 1,000 periods. The plot covers a large number of automata although Automaton 12

and Automaton 18 show up most frequently. Automaton 12 switches actions every period unless

both players choose B in the previous period. Automaton 18 switches actions every period unless

both players choose A in the previous period. Therefore, a pair consisting of Automaton 12 and

Automaton 18 would end up alternating between the two pure-strategy Nash equilibria of the

stage game. Each automaton would thus earn an average payoff of 3. This is shown in Figure

4(b). Arifovic, McKelvey, and Pevnitskaya (2006) indicate that standard learning algorithms

have limited success in capturing the alternation between the two pure-strategy Nash equilibria

in the Battle of the Sexes game. Yet in the proposed model, automata predominantly converge

on alternating behavior between the two actions. Finally, a few pairs converged to one of the two

pure-strategy Nash equilibria. Figure 4(c) provides information on the speed of convergence. The

automaton pairs can be classified into two groups: (1) those which converged to alternations, and

13



(2) those which converged to one of the pure-strategy Nash equilibria. The pairs that converged

to alternations are denoted by the green dashed line at a payoff of 0 (i.e. players within the pairs

earned the same payoff). These pairs converged in less than 28,000 periods. On the other hand,

the pairs which converged to one of the two pure-strategy Nash equilibria are denoted by the green

dashed line at a payoff of 2. The latter pairs took between 28,000 and 34,000 periods to converge.
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Figure 4: Battle of the Sexes
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Figure 5: Stag-Hunt

The payoff matrix of the Stag-Hunt game is indicated in Figure 1(c). In this game, there are two

pure-strategy Nash equilibria: (A,A) and (B,B). However, outcome (A,A) is the Pareto dominant

equilibrium. Figure 5 shows the results of the simulations. The relative frequency of automaton

pairs in Figure 5(a) suggests that a relatively small set of automata was chosen. Automaton 5,

which implements the “Win-Stay, Lose-Shift” strategy, and Automaton 6, which implements the

“Grim-Trigger” strategy were the ones with the most occurrences. Other automata that were

chosen frequently included: Automaton 1, Automaton 3, Automaton 4, and Automaton 26. It

is important to note that with the exception of Automaton 26, any pair combination from this

small set of automata yields a payoff of 3 as both players choose (A,A) repeatedly. Automaton
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26 paired with Automaton 26 corresponds to alternating between the two pure-strategy Nash

equilibria, which yields an average payoff of 2. Figure 5(b) confirms that the most likely outcome

is for both players to choose A repeatedly. Note that there is also a small number of pairs

that converged to (2, 2). Figure 5(c) shows that convergence in the Stag-Hunt game was quite

fast. More specifically, 90% of the pairs converged within only 6,000 periods. The blue solid line

oscillates mostly between an average payoff of 3 and an average payoff of 2, while the green dashed

line indicates that, in either case, the average payoff difference of the automaton pairs was 0.
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Figure 6: Chicken
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The payoff matrix of the Chicken game is indicated in Figure 1(d). In this game, there are

two pure-strategy Nash equilibria: (A,B) and (B,A). Recall that in the Chicken game, the

mutual conciliation outcome of (A,A) yields higher payoffs than the average payoffs for each

of the players when alternating between the pure-strategy Nash equilibria. Figure 6 shows the

results of the simulations. The results in plots (a) and (b) confirm that game-play converged to a

small set of automata: Automaton 3, Automaton 4, which implements the “Tit-For-Tat” strategy,

Automaton 5, which implements the “Win-Stay, Lose-Shift” strategy, and Automaton 6, which

implements the “Grim-Trigger” strategy. In addition, a very small number of pairs converged

to one of the two pure-strategy Nash equilibria. The simulations work in a similar manner to

those in the Prisoner’s Dilemma game. The automaton pairs, which converged quickly to the

conciliation outcome are those that started off by conciliating. Some other automaton pairs that

did not establish conciliation from the beginning managed eventually to attain the conciliation

outcome. Finally, the rest ended up in one of the two pure-strategy Nash equilibria. The latter

observation is evident by the blue line, which indicates an average payoff of 2.5 for the pairs that

converged towards the end.

In summary, the extension of the self-tuning EWA model from actions to a simple class of

repeated-game strategies improves predictions in two distinct ways. First, it allows for conver-

gence to non-trivial sequences, such as alternation in the Battle of the Sexes game. Second, the

richer set of strategies allows the emergence of sophisticated strategic behavior, which not only

incorporates punishments and triggers, but also anticipation of punishments and triggers. Such so-

phisticated behavior is instrumental in capturing cooperative behavior in the Prisoner’s Dilemma

game and mutual conciliation in the Chicken game, precisely, because the threat of punishment

may drive a selfish player to conform to cooperation and conciliation in the two games. An alter-

native approach could be to assume a mixture of adaptive and sophisticated players. An adaptive

player responds to either the payoffs earned or the history of play, but does not anticipate how

others are learning, whereas a sophisticated player responds to his forecasts using a more sophisti-

cated forward-looking expected payoff function and a mental model of an opponent’s behavior (see

Camerer, Ho, and Chong (2002), Chong, Camerer, and Ho (2006), Hyndman, Terracol, and Vaks-

mann (2009) and Hyndman, Ozbay, Schotter, and Ehrblatt (2012)). Yet such teaching models’

inability to both execute and anticipate sophisticated behaviors, impedes the delivery of coopera-

tion and conciliation in the Prisoner’s Dilemma game and the Chicken game, respectively. Take,

for instance, learning in the Prisoner’s Dilemma game. Assume that there exists a population of

agents, which consists of sophisticated players and adaptive players á la Camerer, Ho, and Chong

(2002). An adaptive player always chooses to defect, regardless of his belief about the opponent’s

action, because defection is a strictly dominant action. On the other hand, a sophisticated player

is able to anticipate the effect of his own behavior on his opponent’s actions. However, this is
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not sufficient to drive a sophisticated player paired with an adaptive player to cooperative be-

havior because the adaptive player will choose to defect, as defection is always his best response.

Consequently, the sophisticated player will also respond with defection, and, thus, the pair will

lock themselves into an endless string of defections. Analogous arguments hold for the Chicken

game; that is, a teaching model with sophisticated and adaptive players would predict the Nash

equilibrium − not, the mutual conciliation outcome.

3.2 Progression

Figures 7-10 display information about the progression of play relative to the periods until conver-

gence for the Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt and Chicken games, respectively.

Figure 7 displays information about the progression of play for the Prisoner’s Dilemma game. Fig-

ure 7(a) confirms that Automaton 6, which implements the “Grim-Trigger” strategy, was the one

with the most occurrences. In the same panel, we also observe that in the earlier periods, Au-

tomaton 14 was played almost as frequently as Automaton 6. Automaton 14 plays A one time,

and plays B from then on. Automaton 14 is gradually phased out. Figure 7(b) indicates that

pairs are playing the uncooperative outcome (B,B) around 70% of the time before convergence;

eventually, the pairs learn to play the cooperative outcome (A,A).

Figure 8(a) shows that in the Battle of the Sexes game, the pairs that take a long time to

converge predominately play the preferred action B. Eventually pairs learn to play automata that

alternate between the two pure-strategy Nash equilibria. Figure 8(b) shows that 5,000 periods

before convergence about half of the time pairs are playing the non-equilibrium outcome (B,B)

and half of the time pairs are playing one of the two pure-strategy Nash equilibria. Pairs rarely

ever play the (A,A) outcome.11 Eventually pairs either play one of the two pure-strategy Nash

equilibria or alternate between the two pure-strategy Nash equilibria. Furthermore, by the time

convergence is reached, only a small percentage of pairs are stuck in an inefficient war-of-attrition

outcome.

Figure 9(a) shows that in the Stag-Hunt game, the small percentage of pairs that took more

11There are several reasons why automata favor action B over action A. First, if the co-player is selecting an
action at random (i.e. selects each action with probability 0.5), then one is better off selecting the most preferred
choice; that is, action B. Second, if one is trying to set a precedent on preferred choice, they may continually select
the preferred choice to make the co-player believe that there is no intention to switch to the other action. In such
a case, the co-player may eventually concede and start best-responding to the player’s preferred action. However,
if a pair is unwilling to concede, then, this will lead to a war-of-attrition outcome where the pair repeatedly goes
to their preferred choice. Consider, for example, a pair using Automaton 12, which is the most commonly used
automaton in the Battle of the Sexes simulation. Recall that Automaton 12 switches actions every period unless
both players choose B in the previous period. Thus, a pair using Automaton 12 will mostly alternate between the
two pure-strategy Nash equilibria, also play a few times the war-of-attrition profile, but will almost never play the
(A,A) outcome.
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Figure 7: Prisoner’s Dilemma

Notes: Figures 7-10 follow the same structure. The plots display information about the progression of play relative

to the periods until convergence. The far right of all plots (labeled as “0” on the x-axis) is the point of convergence.

Panel (a) shows the progression of the relative frequency of play across the 26 automata over the last 30,000 periods.

The automata are ordered starting from Automaton 1 and moving up to Automaton 26. The height of a region

at a certain x-value denotes the relative frequency with which an automaton was played at a given number of

periods before convergence. We display in color only those automata with a relative frequency of at least 10% in

the 30,000 periods before convergence; the remaining automata are represented by the white regions. Panel (b)

shows the progression of play of each of the four action profiles. Panel (c) displays the percentage of pairs that

took longer than the given x-value to converge. For example, we observe in (c) that roughly 25% of the pairs took

more than 20,000 periods to converge (and 75% of the pairs took less than 20,000 periods to converge). Thus, the

corresponding x-values in (a) and (b) only reflect 25% of the pairs. All plots are smoothed by taking the average

over the previous 2,000 periods of play.
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Figure 9: Stag Hunt
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than 5,000 periods to converge predominately play automata which alternate between the two

pure-strategy Nash equilibria. This is confirmed in plot (b) as the frequency of the two Nash

equilibria is roughly the same. However, this is only a small percentage of the data since about

80% of the pairs converged quickly in less than 5,000 periods. Those pairs that converge quickly

appear to pick one of the cooperative automata (1, 3, 4, 5, 6) from the beginning, which leads to

the Pareto-dominant Nash equilibrium.

Figure 10(a) shows that in the Chicken game, the pairs that took a long time to converge

overwhelmingly select Automaton 17. This automaton starts off by playing the preferred action

B. It continues to do so as long as the co-player plays A; otherwise, it switches to A. A pair

of such automata are quite infrequent, whereas the relative frequency of the other three action

profiles is about the same. This is what is observed in Figure 10(b). However, analogous to the

Stag-Hunt game, the majority of pairs converge to the cooperative outcome in less than 5,000

periods and quickly learn to play one of the cooperative automata.
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4 Conclusion

Recently, Rabin (2013) proposed a research program that called for the portable extension of

existing models with modifications that would improve the models’ psychological realism and

economic relevance. In Ioannou and Romero (2014), we applied this program of research by

building on three leading action-learning models to facilitate their operability with repeated-game

strategies. The three modified models approximated subjects’ behavior substantially better than

their respective models with action learning. The best performer in that study was the self-

tuning EWA model with repeated-game strategies, which captured significantly well the prevalent

outcomes in the experimental data. In this study, we use the model as a computer testbed to study

more closely the relative frequency, speed of convergence and progression of a set of repeated-game

strategies in four symmetric 2×2 games: Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt, and

Chicken. In the Prisoner’s Dilemma game, the strategy with the most occurrences was the “Grim-

Trigger.” In the Battle of the Sexes game, a cooperative pair that alternates between the two pure-

strategy Nash equilibria emerged as the one with the most occurrences. Furthermore, cooperative

strategies, such as the “Grim-Trigger” strategy and the “Win-Stay, Lose-Shift” strategy, had the

most occurrences in the computational simulations of the Stag-Hunt and Chicken games. Finally,

we find that the pairs which converged quickly ended up at the cooperative outcomes. On the

other hand, the pairs that were extremely slow to reach convergence ended up at non-cooperative

outcomes.

Recently, Dal Bó and Fréchette (2013) required subjects to directly design a repeated-game

strategy to be deployed in lieu of themselves in the infinitely-repeated Prisoner’s Dilemma game.

Dal Bó and Fréchette find that subjects choose common cooperative repeated-game strategies, such

as the “Tit-For-Tat” strategy and the “Grim-Trigger” strategy. The “Grim-Trigger” strategy is

also predicted in the simulations of the Prisoner’s Dilemma game. We hope that in the near future

similar studies will be carried across other symmetric 2 × 2 games to confirm the ability of the

self-tuning EWA model with repeated-game strategies to capture well subjects’ behavior in the

laboratory. Finally, it would be interesting to determine the influence of small errors on repeated-

game strategies. Currently, the only stochasticity of the model enters through the logit decision

rule in the early periods before repeated-game strategies accumulate high attractions, which result

in near deterministic strategy choice. We know from the received literature (Miller (1996), Imhof,

Fudenberg, and Nowak (2007), Fudenberg, Rand, and Dreber (2012), Ioannou (2013) and Ioannou

(2014)) that the likelihood and type of errors can affect the degree of cooperation and the prevailing

strategies. Thus, a fruitful direction for future research would be to test the susceptibility of the

results to small amounts of perception and/or implementation errors.
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Dal Bó, Pedro, and Guillaume R. Fréchette. “Strategy Choice in the Infinitely Repeated Prisoner’s

Dilemma.”, 2013. Working Paper.

Erev, Ido, Eyal Ert, and Alvin E. Roth. “A Choice Prediction Competition for Market Entry

Games: An Introduction.” Games 1: (2010) 117–36.

Erev, Ido, and Ernan Haruvy. “Learning and the Economics of Small Decisions.” In The Handbook

of Experimental Economics, Vol. 2, edited by John H. Kagel, and Alvin E. Roth, Princeton

University Press, 2013.

23



Fudenberg, Drew, David G. Rand, and Anna Dreber. “Slow to Anger and Fast to Forgive:

Cooperation in an Uncertain World.” American Economic Review 102, 2: (2012) 720–49.

Hanaki, Nobuyuki, Rajiv Sethi, Ido Erev, and Alexander Peterhansl. “Learning Strategies.”

Journal of Economic Behavior and Organization 56: (2005) 523–42.

Ho, Teck-Hua, Colin F. Camerer, and Juin-Kuan Chong. “Self-tuning Experience Weighted At-

traction Learning in Games.” Journal of Economic Theory 133: (2007) 177–98.

Holland, John H. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

Hyndman, Kyle, Erkut Y. Ozbay, Andrew Schotter, and Wolf Ze’ev Ehrblatt. “Convergence: An

Experimental Study of Teaching and Learning in Repeated Games.” Journal of the European

Economic Association 10, 3: (2012) 573–604.

Hyndman, Kyle, Antoine Terracol, and Jonathan Vaksmann. “Learning and Sophistication in

Coordination Games.” Experimental Economics 12: (2009) 450–72.

Imhof, Lorens A., Drew Fudenberg, and Martin A. Nowak. “Tit-For-Tat or Win-Stay, Lose-Shift?”

Journal of Theoretical Biology 247: (2007) 574–80.

Ioannou, Christos A. “Coevolution of Finite Automata with Errors.” Journal of Evolutionary

Economics (forthcoming).

. “Asymptotic Behavior of Strategies in the Repeated Prisoner’s Dilemma Game in the

Presence of Errors.”, 2014. Mimeo.

Ioannou, Christos A., and Julian Romero. “A Generalized Approach to Belief Learning in Re-

peated Games.” Games and Economic Behavior 87: (2014) 178–203.

Mathevet, Laurent, and Julian Romero. “Predictive Repeated Game Theory: Measures and

Experiments.”, 2012. Mimeo.

Miller, John H. “The Coevolution of Automata in the Repeated Prisoner’s Dilemma.” Journal of

Economic Behavior and Organization 29: (1996) 87–112.

Mookherjee, Dilip, and Barry Sopher. “Learning Behavior in an Experimental Matching Pennies

Game.” Games and Economic Behavior 7, 1: (1994) 62–91.

Moore, Edward F. “Gedanken Experiments on Sequential Machines.” Annals of Mathematical

Studies 34: (1956) 129–53.

24



Nyarko, Yaw, and Andrew Schotter. “An Experimental Study of Belief Learning Using Elicited

Beliefs.” Econometrica 70, 3: (2002) 971–1005.

Rabin, Matthew. “An Approach to Incorporating Psychology into Economics.” American Eco-

nomic Review 103, 3: (2013) 617–22.

Rapoport, Amnon, and Ido Erev. “Magic, Reinforcement Learning and Coordination in a Market

Entry Game.” Games and Economic Behavior 23: (1998) 146–75.

Simon, Herbert. Administrative Behavior: A Study of Decision-Making Processes in Administra-

tive Organizations. The Free Press, 1947.

Stahl, O. Dale. “Boundedly Rational Rule Learning in a Guessing Game.” Games and Economic

Behavior 16: (1996) 303–30.

. “Evidence Based Rules and Learning in Symmetric Normal-Form Games.” International

Journal of Game Theory 28: (1999) 111–30.

Stahl, O. Dale, and Ernan Haruvy. “Between-Game Rule Learning in Dissimilar Symmetric

Normal-Form Games.” Games and Economic Behavior 74: (2012) 208–21.

Thorndike, Edward Lee. “Animal Intelligence: An Experimental Study of the Associative Process

in Animals.” Psychological Review, Monograph Supplements, 8: (1898) Chapter II.

Van Huyck, John B., Ramond C. Battalio, and Frederick W. Rankin. “Selection Dynamics and

Adaptive Behavior Without Much Information.” Economic Theory 33, 1: (2007) 53–65.

25



A Finite Automata

A finite automaton is a mathematical model of a system with discrete inputs and outputs. The system

can be in any one of a finite number of internal configurations or “states.” The state of the system

summarizes the information concerning past inputs that is needed to determine the behavior of the

system on subsequent inputs. The specific type of finite automaton used here is a Moore machine. A

Moore machine for player i, Mi, in a repeated game G = (I,{Ai}i∈I , {gi}i∈I) is a four-tuple (Qi, q
0
i , fi,

τi) where Qi is a finite set of internal states of which q0
i is specified to be the initial state, fi : Qi → Ai

is an output function that assigns an action to every state, and τi : Qi × A−i → Qi is the transition

function that assigns a state to every two-tuple of state and other player’s action. It is pertinent to

note that the transition function depends only on the present state and the other player’s action. This

formalization fits the natural description of a strategy as i’s plan of action in all possible circumstances

that are consistent with i’s plans. In contrast, the notion of a game-theoretic strategy for i requires the

specification of an action for every possible history, including those that are inconsistent with i’s plan of

action. It is important to highlight that to formulate the game-theoretic notion of a strategy, one would

only have to construct the transition function so that τi : Qi ×A → Qi, instead of τi : Qi ×A−i → Qi.

In the first period, the state is q0
i , and the automaton chooses the action fi(q

0
i ). If a−i is the action

chosen by the other player in the first period, then the state of i’s automaton changes to τi(q
0
i , a−i), and

in the second period, i chooses the action dictated by fi in that state. Then, the state changes again

according to the transition function given the other agent’s action. Thus, whenever the automaton is

in some state q, it chooses the action fi(q), while the transition function τi specifies the automaton’s

transition from q (to a state) in response to the action taken by the other player. For example, the

automaton (Qi, q
0
i , fi, τi) in Figure 11 carries out the “Grim-Trigger” strategy. In the transition diagram,

a vertex denotes the internal state of the automaton with the prescribed agent’s action indicated in the

center, and the arcs labeled with the action of the other player indicate the transition to the states.
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q2

B

A AB
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ta
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Qi = {q1, q2}
q0i = q1

fi (q) =

{
A if q = q1
B if q = q2

τi (q, a−i) =

{
q1 if (q, a−i) = (q1, A)
q2 otherwise

Figure 11: Grim-Trigger Automaton

Notes: The vertices denote the states of the automaton, and the arcs labeled with the action of the other agent

indicate the transition to the states.
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